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CHAPTER 0

INTRODUCTION

I. Grattan-Guinness

1 WAVES IN THE SEA

For a very long time mathematical research has been circulated as a stream of books and
papers, manuscripts and letters; in ancient times scrolls and tablets prevailed, and in recent
ones emails and electronic files have joined in. Most writings duly took or take their mod-
est or perhaps overlooked place in the flow; but some have made a major impact on the
branches and aspects of mathematics to which they refer, and maybe also to other branches
and even disciplines not originally within their purview. This book is devoted to a sub-
stantial number of the principal writings of this kind that were published during the period
1640–1940. The order of articles is that of the appearance of the writings involved: they
are cited throughout the book by article number, in the manner ‘§21’. The table of con-
tents indicates the range of topics to be covered; this introduction explains the scope and
limitations of the choice of writings, and the manner of their treatment.

Usually the text discussed is a book; but sometimes it is one or more papers in a journal,
such as N.H. Abel on the quintic equation in 1826 (§29). Thus the more general word
‘writing’ is used to describe the chosen text. This book is composed of ‘articles’, which
are divided into ‘sections’ (whereas some of the original writings fall into ‘Sections’). The
articles contain cross-references to other articles; ‘§21.3’ refers to section 3 of article 21.

Most articles deal with one writing each; but in a few cases more than one are taken
together when they handle closely related topics and were published within a short time; for
example, G.W. Leibniz launching his version of the calculus in three papers between 1684
and 1693 (§4), or two books by different pairs of authors in the mid 1930s (§76). A multi-
volume work is considered in total even if the spread of time is as great as that needed
by P.S. Laplace to assemble his mathematical astronomy (1796–1827: §18). Normally the
first edition of a book catchesthe attention; but the second (1799–1802) edition of Etienne
Montucla’s history of mathematics is taken in §21, for it covered a wider range and enjoyed
much more impact than did the first edition of 40 years earlier.

2 ORGANISATION OF THE ARTICLES

Each article begins bibliographically, with the publication history of the writing(s) as far
as we have been able to track it down: first publication, later reprints and/or editions where

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.

ix



x I. Grattan-Guinness

applicable, and (photo)reprints and translations. (In the case of modern reprints that may
have been reprinted several times themselves, such as with publishers such as Dover and
Chelsea, we have given only the date of theinitial reprinting.) We exclude short extracts or
parts of a writing as reproduced in general anthologies. When known, the location of the
manuscript of the original writing is recorded. Finally, cross-references to related articles
are listed.

In the article proper the career of the author is briefly reviewed, with especial attention
given to the place of the writing in his career. Its prehistory and content are surveyed, and
for writings of some length a table of contents is supplied, divided up into suitable units
such as parts or chapters. Page numbers are usually given, either of the first page number of
each unit or the number of pages that it occupies; unless indicated otherwise, they pertain
to the original printing. Then principal features of the writing are described and discussed,
and on occasion omissions of topics that one might expect to have seen handled. In a few
cases a portrait of an author is included, and the title page of a writing if it includes a nice
design, say, or carries an interesting motto. Some original diagrams are included.

Then comes the impact of the writing—often the most difficult part of the history to
assess. When impact was made fairly quickly, authors have concentrated upon the first 30–
40 years or so, including where appropriate upon the later work of its author(s); striking
cases of negative influence are noted. Butfor several writingsthe reception was quite
tardy—the ripples from Hermann Grassmann’sAusdehnungslehre (1844) took nearly 40
years to propagate before being gaining aquantity of admirers, for instance (§32)—and
such facts are noted, and where possible explanations are suggested. When different parts
of the writing received rather different impacts, each one is discussedin situ. On literary
style, some authors write in the past (‘Newton showed’) while others adopt the historic
present (‘Newton shows’).

Some writings have appeared in various printings, editions and translations: thus several
page numbers are involved. Where practical, passages in the writing are cited by article or
chapter numbers. Otherwise the original printing is cited unless it has become very rare;
for example, George Green’s book of 1828 on potential theory (§30), where the reprint in
the edition of his works is cited.

Each article ends with a bibliography of relevant items, mostly historical ones but some
primary ones also. Several items, sometimes all of them, are cited in the text, in the style
‘[Smith, 1976]’. Reprints of these items are often indicated, especially in editions of works.
Other items, especially of primary literature, are usually mentioned by name in the article,
and with sufficient precision for thereader to be able to track them down.

The book ends with a list of affiliations of the authors and their articles, and an index.

3 SOME PRINCIPAL LIMITATIONS

3.1 Period

The chosen period begin around 1640, when mathematics (and science in general) was
beginning to show the first signs of professional employment and diffusion of information
as we know it; for example, somewhat more publication than before, the founding the
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Royal Society of London and theAcadémie des Sciences in Paris in the 1660s, and the
launch of scientific journals such as theActa Eruditorum which was Leibniz’s venue in
1684 and later. Some comments need to be made about the immediate pre-history.

In research up to and during the early 17thcentury, geometry wasEuclidean, but the
range of curves and surfaces had expanded far beyond the repertoire deployed in Euclid’s
Elements. Topics included methods of determining tangents to curves or surfaces and areas
enclosed by them, in methods now often called ‘pre-calculus’. Partly in these connections
some functions and series were developed; also various numerical methods, especially log-
arithms. Algebra was much concerned with properties of polynomial equations. Mechanics
was a major concern, usually with different theories obtaining in the terrestrial and celes-
tial branches (the latter including technology of machines and artefacts). Trigonometry,
planar and spherical, was part of the mathematical wardrobe, especially for cartography
with navigation and astronomy, though its heyday for research was largely over. Much less
developed topics include probability theory and mathematical statistics, and number the-
ory. Professional support was modest; universities were best developed in Italy. Another
important type of employer was the leader of a country or state. Few mathematicians made
a living from their work; for several their research was a hobby.

Major figures from the immediately preceding generation include Johannes Kepler in
Germany, Galileo Galilei (died1642) in Italy, Simon Stevin in the Netherlands, and John
Napier and Thomas Harriot in Britain. They and other contemporaries and immediate fore-
runners come at the end of adifferent European story, which begins with the transmission
of ancient and Arabic sources into Europe in the 11th and 12th centuries and the translation
into Latin of most of them, and then the reliance upon manuscripts being supplemented and
later overtaken by the introduction of printing from the late 15th century onwards. That
story is substantially different from ours, and needs a separate book; to encompass both
would require more space than is available here. The same remark could be made about
the history of writings elsewhere in the world, such as in the Far East.

The publication terminus of 1940 is chosen not only because of the Second World War
but also the massive size of candidate later writings. Various survey books or encyclopae-
dias on branches of recent mathematics can beconsulted: for example, [Pier, 1994, 2000],
largely for pure mathematics.

3.2 Choice of the writings

It would have been easy but rather tedious and narrow-minded to dominate the list of writ-
ings with a procession of undoubtedly major treatises on mathematical analysis, algebras,
mechanics and mathematical physics. A principal purpose of this book is to exhibit the
range andvariety of theories within mathematics as it has developed over the period cov-
ered. Thus writings have been selected from both pure and applied mathematics, including
probability and statistics, and their selection was guided by their global place as well as
by their intrinsic merits: for example, that a writing was not only important but also is
the only representative of its rather unusual area (such as Stanley Jevons on mathematical
economics in §41).

It was decided to havearticles on the chosen writings, and not create a much more
numerous list of dictionary-like summaries. This policy made selection even more severe;
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77 articles cover 89 writings from across the mathematical board of the period. Cut down
from an original list of more than twice the length, several of the final choices were difficult
to make, and omissions do not entail criticism. The selected ensemble offers, we hope, a
reasonable characterisation of the full ensemble. If Your Favourite Writing is missing, dear
reader, then we mortals have offended.

Within the full sequence of articles occur some sub-sequences of articles on writings
in and around the same branch of mathematics or topic. Table 1 indicates the main such
sub-sequences.

The book is not offered as ageneral history of mathematics, even for its period. For
various important developments have taken place without any one writing being signifi-
cant enough to have gained an article here. Among many examples, Newton’s ‘fluxional’
version of the calculus gradually became known in manuscript form from the late 1660s
onwards and then in print from 1704, but no one (or even two) versions are sufficiently
significant to enter our roll; however, Colin MacLaurin’sTreatise on fluxions (1742) is the
subject of §10. Again, Karl Weierstrass’s lectures at the University of Berlin cast a huge
influence upon his students and their own later endeavours for nearly 30 years from the
late 1850s; but none was published at that time, and the line of influence from any one of
them is too tenuous to be described, or to be highlighted over those of the other lecture
courses. Among branches of mathematics, numerical methods are not well represented, as
they have not generated major writings in our sense; however, several methods are men-
tioned in some articles.

Another criterion for selection was that the impact of the writing had to be reasonably
(inter)national. This required that it be written in a widely read language or soon translated
into one, or at least that much of its contents became known well beyond its geographical
origin. Among writings that did not meet this criterion, some Russian works have been
casualties, in particular several excellent Soviet achievements.

In some cases the impact of a writing was so late that the achievement involved was
acknowledged as anticipation and maybe as a general inspiration for later work but not
as an active source for its prosecution. For example, Leonhard Euler’s solution in 1736
of the Königsberg bridge problem was a remarkable pioneering effort in graph theory and
combinatorics; but it does not seem to have led to the development, much later, of both
subjects [Biggs and others, 1976], and so is not given an article here.

Another excluded source is a short statement. For example, Pierre de Fermat’s conjec-
ture in number theory, which became known rather optimistically as his ‘last theorem’,
was posthumously published in 1679; but his few lines involved have not been taken as a
writing as such.

Also excluded are all manuscripts (including letters) that were published only much
later or not (yet) at all; for while the achievements in them may have been remarkable, no
broad impact was made. However, manuscripts pertinent to the history of a chosen writing
(such as its own manuscript, as mentioned above) are noted in some articles.

3.3 Mathematical level

In the early 1820s A.-L. Cauchy launched his version of real-variable mathematical analy-
sis, a landmark process indeed (§25). However, the writings involved are very unusual for
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Table 1. Groupings of writing by principal branches of mathematics. Often a shortened
title or indicative description is used.

Geometries Algebras
1649 Descartes,Geometria (§1) 1649 Descartes,Geometria (§1)
1744 Euler on curves (§12) 1826 Abel on the quintic equation (§29)
1748 Euler,Introductio to analysis (§13) 1844 Grassmann,Ausdehnungslehre (§32)
1795 Monge,Géométrie descriptive (§17) 1853 Hamilton,Lectures on quaternions

(§35)1822 Poncelet on projective geometry (§27)
1844 Grassmann,Ausdehnungslehre (§32) 1854 Boole,Laws of thought (§36)
1847 von Staudt,Geometrie der Lage (§33) 1863 Dirichlet,Vorlesungen über Zahlen-

theorie (§37)1867 Riemann on geometries (§39)
1872 Klein, Erlangen programme (§42) 1872 Klein, Erlangen programme (§42)
1899 Hilbert, Grundlagen der Geometrie

(§55)
1895–1896 Weber,Lehrbuch der Algebra

(§53)

1905–34 Enriques and Chisini on algebraic
geometry (§62)

1897 Hilbert on algebraic number fields
(§54)

Calculus
1930–1931 van der Waerden,Moderne

Algebra (§70)

1684–93 Leibniz, first papers on the
calculus (§4) Number theory

1734 Berkeley,The analyst (§8) 1801 Gauss,Disquisitiones arithmeticae
(§22)1742 MacLaurin,Treatise on fluxions (§10)

1744 Euler on curves (§12) 1863 Dirichlet Vorlesungen über Zahlen-
theorie (§37)1755 Euler,Differentialis (§14)

1797 Lagrange,Fonctions analytiques
(§19)

1897 Hilbert on algebraic number fields
(§54)

1797–1800 Lacroix,Traité du calcul (§20) 1919–1923 Dickson,Number theory (§65)

Functions, series, differential equations Real and complex analysis
1656 Wallis,Arithmetica infinitorum (§2) 1823 Cauchy,Résumé of the calculus (§25)
1748 Euler,Introductio to analysis (§13) 1825, 1827 Cauchy, two main writings on

complex analysis (§28)1797 Lagrange,Fonctions analytiques
(§19) 1851 Riemann on complex analysis (§34)

1797–1800 Lacroix,Traité du calcul (§20) 1867 Riemann on trigonometric series
(§38)1799–1827 Laplace,Mécanique céleste

(§18) 1904 Lebesgue,Intégration (§59)
1821 Cauchy,Cours d’analyse (§25) 1932 Bochner on Fourier integrals (§74)
1822 Fourier on heat diffusion (§26)
1829 Jacobi,Functionum ellipticarum

(§31)
Set theory, foundations

1872 Dedekind,Stetigkeit und Irrational-
zahlen (§43)
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Table 1. (continued)

1905–06 Baire on discontinuous functions
and Lebesgue on trigonometric series
(§59)

1883 Cantor,Grundlagen of set theory
(§46)

1888 Dedekind,Was sind Zahlen? (§47)
1932 Bochner on Fourier integrals (§74) 1889 Peano on axioms for arithmetic (§47)

1910–1913 Whitehead and Russell,Prin-
cipia mathematica (§61)General mechanics

1687 Newton,Principia (§5) 1931 Gödel’s incompletability theorem
(§71)1743 d’Alembert,Dynamique (§11)

1788 Lagrange,Méchanique analitique
(§16)

1934, 1939 Hilbert and Bernays,Grundla-
gen der Mathematik (§77)

1867 Thomson and Tait,Treatise on natural
philosophy (§40) History, general

1894 Hertz,Prinzipien der Mechanik (§52) 1799–1802 Montucla,Histoire des mathé-
matiques (§21)

Astronomy 1892 Rouse Ball,Mathematical recreations
(§50)1687 Newton,Principia (§5)

1788 Lagrange,Méchanique analitique
(§16)

1901 Hilbert, paper on mathematical prob-
lems (§57)

1799–1827 Laplace,Mécanique céleste
(§18) Dynamics

1809 Gauss,Theoria motus (§23) 1673 Huygens,Horologium (§3)
1890 Poincaré on the three-body problem

(§48)
1738 Daniel Bernoulli, Hydrodynamica

(§9)
1890 Poincaré on the three-body problem

(§48)Probability and statistics
1713 James Bernoulli,Ars conjectandi (§6) 1893 Lyapunov,Stability theory (§51)
1718 De Moivre,Doctrine of chances (§7) 1927 Birkhoff,Dynamical systems (§68)
1764 Bayes on probability theory (§15)
1809 Gauss,Theoria motus (§23) Mathematical physics
1812–1814 Laplace,Probabilités (§24) 1822 Fourier on heat diffusion (§26)
1854 Boole,Laws of thought (§36) 1828 Green,Electricity and magnetism

(§30)1900 Pearson on the chi-squared test (§56)
1925 Fisher,Statistical methods (§67) 1844 Grassmann,Ausdehnungslehre (§32)
1931 Shewhart,Economic quality control

(§72)
1873 Maxwell,Electricity and magnetism

(§44)
1933 Kolmogorov on the foundations of

probability theory (§75)
1877–1878 Rayleigh,Theory of sound

(§45)
1892 Heaviside,Electrical theory (§49)
1904 Thomson,Baltimore lectures (§58)
1909 Lorentz on electrons (§60)



Chapter 0. Introduction xv

Table 1. (continued)

Topology 1916 Einstein on general relativity theory
(§63)1889 Poincaré on the three-body problem

(§48) 1930 Dirac,Quantum mechanics (§69)
1923–1926 Urysohn and Brouwer on di-

mensions (§66)
1932 von Neumann,Quantenmechanik

(§69)
1934 Seifert and Threlfall,Topologie (§76)
1935 Alexandroff and Hopf,Topologie

(§76)
Social and life sciences

1871 Jevons,Theory of political economy
(§41)

1917 Wentworth Thompson,On growth
and form (§64)

1931 Volterra on mathematical biology
(§73)

this volume in being two textbooks; they were chosen because much of their content was
new—and, as is revealed in the article, the students hated them! The writings for this book
have been chosen for theirresearch content: the novelties that they contained and/or ‘the
state of the art’ which they comprehensively summarised. A comparable review of text-
books at various stages of education requires acompanion volume, for a massive literature
of its own is involved—in terms of print-runs, often much larger than those of the writ-
ings discussed here. While historians of mathematical education will find some material of
interest here, the main audience is historically sympathetic mathematicians, members of
kindred disciplines, and historians of mathematics.

3.4 Journals

Since the majority of research mathematics appears in journals, then their own inaugura-
tions constitute landmarks. However, they have not been treated here, since they embody a
different kind of history. It is not well covered: Erwin Neuenschwander provides a valuable
short survey in [Grattan-Guinness, 1994, art. 11.12].

3.5 Landmarks as epitaphs

The writings discussed here either launched new phases of work, or consolidated the known
state of theory on a topic, of both. But theories and traditions sometimes die, or at least die
down: for example for mathematics, the last fluxional textbooks in the 1810s and 1820s,
the fading away of quaternions (for a long time anyway) in the early 20th century, or the
final calculations of massive invariants of high order. This volume bears upon declines only
when a chosen writing treats theories that were soon to be noticeably eclipsed. An arresting
example is Lord Kelvin’s ‘Baltimore lectures’ of 1884 on aspects of classical mathematical
physics (§58), which were fully published in 1904, just before the emergence of Albert
Einstein.
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CHAPTER 1

RENÉ DESCARTES,GÉOMÉTRIE, LATIN
EDITION (1649), FRENCH EDITION (1637)

M. Serfati

Inspired by a specific and novel view of the world, Descartes produced hisGéométrie, a
work as exceptional in its contents (analytic geometry) as in its form (symbolic notation),
which slowly but surely upset the ancient conceptions of his contemporaries. In the other
direction, this treatise is the first in history to be directly accessible to modern-day mathe-
maticians. A cornerstone of our ‘modern’ mathematical era, theGéométrie thus paved the
way for Newton and Leibniz.

First publication. La Géométrie (hereafter, ‘G37’), Leiden: Jan Maire, 1637 [at the end of
theDiscours de la Méthode (‘DM’)]. 118 pages.

Latin editions. 1) Geometria (trans. Frans van Schooten), Leiden: Maire, 1649, x+ 118
pages. [WithNotae Breves de F. de Beaune, a commentary by van Schooten and aAddi-
tamentum.] 2) Three further editions, in 1659–1661 (‘G59’), Amsterdam: 1683 (‘G83’)
and Frankfurt/Main, 1695. 3) Derivatives of G59, with commentaries of Van Schooten,
de Beaune, J. Hudde (De reductione equationum), J. de Witt (Elementa curvarum) and
H. Van Heuraet. [G59 and G83 are available on http://gallica.bnf.fr/.]

Principal French editions. 1) Paris: C. Angot, 1664. 2) Ed. V. Cousin inOeuvres de
Descartes, Paris: Levraut, 1824–1826, vol. 5. 3) InOeuvres de Descartes (ed. C. Adam
and P. Tannery), vol. 6, Paris: L. Cerf, 1896, 367–485. [Common today, frequently
reprinted and re-edited; the source of citations here. Hereafter, ‘[ATz]’, where ‘z’ is
the Roman number of the volume: see further in the bibliography.]

English translation. The geometry of René Descartes (ed. D.E. Smith and M.L. Latham),
London and Chicago: Open Court, 1925. [Repr. New York: Dover, 1954. Includes a
facsimile of G37.]

German translation. Die Geometrie (ed. L. Schlesinger), 1st ed., Leipzig: Mayer and
Müller, 1894. [4th ed. 1923; repr. Darmstadt: Wissenschaftliche Buchgesellschaft,
1969.]

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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Italian translation. La geometria, in Opere scientifiche, vol. 2 (ed. E. Lojacono), Turin:
UTET, 1983.

Related articles: Wallis (§2), Leibniz (§4), Newton (§5), EulerIntroductio (§13), Lacroix
(§20).

1 YOUTH, FROM LA FLÈCHE TO THEREGULAE

The main biographical source, theVie de M. Descartes by Father Baillet [1691], is some-
times unreliable; so we supplement it with the critical biography [Rodis-Lewis, 1995].
Born in 1596 at La Haye en Touraine (now ‘Descartes’) on the borders of Poitou into
the minor aristocracy, the young René Descartes (then ‘Du Perron’) studied at the Jesuit
college of La Flèche, near le Mans. Following the educational reforms of Christopher Clav-
ius, school mathematics was taught only as a subsidiary subject. After leaving La Flèche,
Descartes took a degree in law at Poitiers and then travelled to Holland to enlist as a soldier
under the orders of Maurice de Nassau (Prince Maurice of Orange).

It was at Breda in November 1618 thathe met Isaac Beeckman (1588–1637) in front
of a poster displaying a mathematical problem. The Dutch scientist, eight years older
than Descartes, was impassioned with ‘physico-mathematics’, a new concept with a name
coined by him. Having formed a friendship with Beeckman, Descartes was pleased to dis-
cover in him a perspective on science different from contemporary esoteric theories such
as that of Raimond Llull. Descartes gave him his first scientific work, theCompendium
musicae [ATx, 79–141]. On 26 March 1619, he enthusiastically sent him an important let-
ter [ATx, 165–160], in which he concluded that ‘there is almost nothing left to discover in
geometry’ (‘adeo ut pene nihil in Geometria supersit inveniendium’) and that he possessed
the elements of ‘a completely new science’ (‘scientia penitus nova’) and had discovered
‘a light to dispel the deepest darkness’ (‘luminis [. . .] cujus auxilio densissimas quasque
tenebras discuti posse existimo’).

Descartes then went to Germany, to the Duchy of Neuburg. On the night of 10 Novem-
ber 1619, shut in a heated room (an ‘oven’), he had three dreams (see [ATx,Olympica]),
which he always declared to be decisive in determining his scientific vocation and his
Method [Rodis-Lewis, 1995, 60–71]. The Cartesian commentary is traditionally divided
into two periods, before and after the ‘oven’.

Having left his ‘oven’, Descartes decided to make a radical change in his way of life and
to ‘get rid of his prejudices’ garnered from scholastic philosophy [Baillet, 1691]. He left
for ‘nine years of exercise in the Method’, a wandering life of which the timetable is not
known, except for a visit to Italy in 1623–1625; during it he made no attempt at publication.
Following his return to Paris in 1625, he was a member of the Mersenne group until the
death of the latter. Marin Mersenne (1588–1648), a religious Minim, was a recognized
scientist. The ‘reverend father’, competent and clever, was for a long time the ‘secretary of
European science’, a scientific intermediary between scholars with Descartes at the head
(see the letters in [ATi–ATv]). This was also the time of Descartes’s ‘Rules for the direction
of the mind’ [Descartes, 2002], a posthumous text not intended for publication. It was based
on the mathematical method, and central to the elaboration of the Cartesian philosophy of
science: theGéométrie depended directly on it, even more than on theDM. Rule IV, for
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example, develops various privileges of the method of discovery: what matters is not what
is found without method, ‘by chance’, but rather why and how it is found. Descartes also
explains the superiority of analysis as he conceived it (one starts with the effect or result,
assuming it to have been achieved) over synthesis.

The objective was not, however, the advancement of mathematics, but a description of
the physical world using theMathesis universalis, a method of analysis based on mathe-
matical procedures. In the Cartesian view of an objective world, where space was identified
with his ‘solidified’ geometric structure, geometry and mechanics were only to play the role
of sciences. And the reduction of the physical world to the geometric was thus essential,
but the geometry of the measurable. Centred around ‘order and measure’, theRegulae thus
proposed a modern view of the ‘real numbers’. Rule XVI contains the first exponent in
history (‘2a3’), a Cartesian invention, with the consequence thata2 could represent a line,
and not necessarily an area. This position opposed ancient conceptions of the world from
the Greek dualism (numbers versus magnitudes) to the Cossic system of ‘species’ (squares,
cubes, and so on) and also Franciscus Vieta.

This was a decisive step. In the Cartesian doctrine, according to theRegula, algebra
existed only as a tool useful for stating and solving geometric problems. Not being a for-
malist, Descartes had no interest in symbolic problems, and it was somehow in spite of
himself that he became a founder of modern mathematical symbolism [Serfati, 1994]. For
him the role of algebra lay chiefly in the register of ‘mechanical imagination’ [Rodis-
Lewis, 1995], which he loved: he believed that the automatic nature of calculation enabled
the mathematician to free himself from relying on his memory.

This period came to an end in 1628 through a meeting in Paris with Bérulle, a papal
legate. Descartes decided to emigrate to Holland, where he spent nearly all the rest of his
life, frequently changing his address.

2 DESCARTES IN HOLLAND AND STOCKHOLM

In the autumn of 1628, Descartes met Beeckman briefly at Dordrecht. He also began,
around 1630, the drafting of a treatise on physics,Le Monde or Traité de la lumière, in
which he defended his position on the movement of the earth; but he discontinued the
work for prudence following the condemnation of Galileo in 1633. In 1631, Jacobus Golius
(1596–1667), professor of mathematics and oriental languages at Leyden, submitted to him
the problem of Pappus (discussed in section 6 below).

In 1637, Descartes put out at Leiden theDM and theEssais, of which Géométrie was
the only mathematical work he published. By then he was a philosopher of European repu-
tation: scholars and theologians argued over his philosophy. The year 1640 saw the death of
his daughter Francine, ‘the greatest sadness I have ever known’. The Cartesian philosophy
was established with the publication, in Paris and then in Amsterdam (1641 and 1642), of
the ‘Meditations on the first philosophy’ (Meditationes de prima philosophia) along with
the ‘Objections and replies’ (Objectiones cum responsionibus authoris).

The second period in Holland (1642–1649) was marked for Descartes by various dif-
ficulties caused by the accusations of atheism made against his philosophy by the Dutch
universities and theologians (compare thequarrel of Utrecht in [Rodis-Lewis, 1995, 227–
243]. It was punctuated by important publications, such as the ‘Principles of philosophy’
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(Principia philosophiae), which was actually a treatise on Cartesian physics, published in
Amsterdam in 1644; and G49, published by Frans van Schooten (1615?–1660) in 1649.

In 1649, Descartes received an invitation from Queen Christine of Sweden to visit
Stockholm and teach her his philosophy. Withlittle enthusiasm, he set off in September
1649, but died a few months later, on the morning of 11 February 1650, in Stockholm at
the age of 54 [Rodis-Lewis, 1995, 261–297]. The manuscripts he took with him make up
the ‘Stockholm inventory’ [ATx, 5–12].

3 THE GÉOMÉTRIE

TheGéométrie is the last of theEssais (that is, texts of application) in theDM. The four
texts were published in sequence (418+ 31 pages) without the name of the author on
8 June 1637 by the printing-house of Jan Maire in Leyden, under thetitle ‘Discourse on
the Method of correct reasoning and the search for truth in the sciences, then theDioptrics,
the Meteors and theGeometry, which are tests of this method’ (‘Discours de la Méth-
ode pour bien conduire sa raison, et chercher la vérité dans les sciences, plus la Diop-
trique, les Météores, et la Géométrie,qui sont des Essais de cette Méthode’). DM is a cel-
ebrated philosophical text, in which theGéométrie is the only mathematical application.
It contains, besides an autobiography, a description of the four principles of the ‘Méth-
ode’ anchored in the practice of mathematics and the preference for ‘thinking clearly and
distinctly’.

Descartes finished the drafting of theGéométrie at the very last moment, making the
final discoveries as theMétéores was being printed. TheEssais were written in French in
such a way that non-specialists and ‘even ladies’ could understand them. TheGéométrie
was ignored in several editions of theDM. In contrast, it appeared on its own in the Latin
edition G49 (our ‘Landmark’ writing), whichwas aimed at the European public (Figure 1);
it also contained a commentary by van Schooten and a translation of the notes sent to
Descartes by Florimond de Beaune (1601–1652), an admirer of theGéométrie, soon af-
ter its appearance. Descartes was aware of the originality of the project: ‘Finally, in the
Géométrie I try to give a general method for solving all the problems that have never been
solved’. He was aware of the difficulty of the work, and asked the reader to ‘follow all the
calculations, which may seem difficult at first, with pen in hand’, whereupon he will get
used to them ‘after a few days’. He also advised passing ‘from the first book to the third
before reading the second’ [ATi, 457–458].

4 THE ‘CONSTRUCTION’ OF THE EXPRESSIONS

The contents of theGéométrie/Geometria are summarised in Table 1. It is divided into
three Books, but the layout does not follow a coherent scheme. This paradox in a ‘me-
thodical’ setting, as is noted in the commentary [Bos, 1991], was undoubtedly a secret
strategy adopted by Descartes for several reasons [Serfati, 1993]. A main one was to dis-
guise the true depth of his methods in such a way that his enemies, such as Gilles de
Roberval (1602–1675), whom he hated, could not imagine after the event that they know
them before Descartes. The work is thus difficult to read. Three ‘threads of Ariadne’ can
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Figure 1.

be distinguished: the acceptability of curves, the problem of Pappus and the construction
of roots ‘using curves’. Descartes describesevery geometrical result in two phases, by
‘construction–demonstration’, that is, statement of the result and details of the proof, the
latter being sometimes in another place or absent altogether. We shall adopt a double pag-
ination, separated by the symbol≡: the first number refers to [ATvi] and the second to
G49.



6 M. Serfati

Table 1. Contents of Descartes’s book. The page numbers refer to theeditions indicated.
The abbreviations are explained in the text.

1637 1649 Contents
(ATvi) (G49)
Book I Planar problems. Ruler and compass.

369 1 I-A Geometrical constructions of algebraic expressions.

372 4 I-B Strategy of putting into equation of a geometrical problem. ‘Construc-
tion’ of planar problems.

377 8 I-C Statement of the problem of Pappus. Expression of the ‘distance’ from
a point to a straight line. Equation for four lines.

Book II The two criteria for the acceptability of curves.

388 19 II-A Acceptability according to the CMcriterion. Cartesian compasses.

392 23 II-B Acceptability according to the algebraic criterion. Classification into
species.

393 24 II-C Return to CM. Ruler and slide. The CP, image of a parabola.

396 28 II-D Return to the problem of Pappus in three or four lines. Reconnais-
sance of loci. Point-by-point constructions. Planar and solid loci. The CP,
Pappus curve in five lines.

412 45 II-E Tangents and normals.

424 57 II-F Ovals.

440 74 II-G Notions for the case of three dimensions.
Book III Algebraic equations. Constructions (by curves) of roots.

442 75 III-A Constructions of roots by auxiliary curves. ‘Simplicity’ of the
methods.

444 77 III-B Roots of algebraic equations.

454 86 III-C Transformation and reduction of equations.

464 95 III-D Solid problems. ‘Construction’ of the third and fourth degrees by
circle and parabola. Mean proportionals doubles. Trisection.

476 107 III-E ‘More than solid’ problems. [End 485≡ 118.]

Book I begins with several definitions of notation, indispensable to the reader of the
time, for whom the contents was new. This symbolic preamble was so important to
Descartes that he had written up part of it [‘Calcul de M. Descartes’, ATx] before relin-
guishing the idea of publishing it separately. He listed the usual five operations, including
the extraction of roots, and (like Vieta) introduced a segment of unit length to ensure the un-
derlying physical homogeneityof written expressions: thus,aabb− b must be understood
asaabb− b111 (pp. 371≡ 3). Letters always stand for lengths of segments, or positive
numbers, just as with Pierre de Fermat (1607–1665). Following Vieta, Descartes used let-
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tersa, b or x, z to represent known or unknown lengths in the same way (replacing the
distinction between vowels and consonants by that between the beginning and end of the
alphabet). Along with the Cartesian exponents (z3 or b4), of which this was the first pub-
lic use, the symbols for the basic operations comprise such expressions asa + b, ab and√
aa + bb. Like Vieta, Descartes described how to ‘construct’ them geometrically with

ruler and compass. Thus, multiplication isdone using a construction with parallel lines,
the theorem of Thales and a unit segment, according to whichx/a = b/1. Thus, ‘ab’ is
represented, according theRegulae, by a line and not by the area of a rectangle: a decisive
point in the Cartesian numerization of the world.

Descartes also introduced the specific symbol∝for equality. The notation is close to
that used today. He explained a specific strategy (see below) for expressing a geometrical
problem as an equation. He completely solved ‘plane’ problems, that is, the equationz2=
az+ b, both geometrically by ruler and compass and algebraically.

5 COMPASSES, RULER-AND-SLIDE,
CRITERION FOR ‘CONTINUOUS MOTIONS’

The first thread of Ariadne is to delineate thefrontier between the curves acceptable in
geometry, which Descartes called ‘geometric’, and the rest, which he called ‘mechanical’;
the modern terms ‘algebraic’ and ‘transcendental” are due to G.W. Leibniz (1646–1716).
The question had been open from antiquity (from Plato to Pappus), constructibility by
ruler-and-compass usually defining the boundary. Being critical of Pappus’s categorization
of plane, solid and linear curves, Descartes gives in theGéométrie two criteria of accept-
ability.

Firstly, for Pappus ‘plane’ curves were those constructible by ruler and compass, ‘solid’
curves were the conic sections, and ‘linear’ curves were the rest, such as the conchoids, the
spiral, the quadratrix and the cissoid. The linear curves were also called ‘mechanical’ by the
ancient Greeks because instruments were needed to construct them. Observing that ruler
and compasses are also instruments, Descartes extended this classification by introducing
his set-square compasses. This is a mechanical system of sliding set squares that ‘push’
each other, the whole motion being regulated by the aperture of the compasses (Figure 2).
A specifically Cartesian invention, these theoretical machines (he never constructed them)
served him from his youth in the solution of cubic equations, the insertion of proportional
means, and the construction of curves [Serfati, 1993; Serfati, 2003].

The compass-curves appear in Book II: in modern terms, thenth curve has the polar
equationρ = a/(cosθ)2n, represented by dotted lines in Figure 2. They constitute a model
conforming to the first criterion for ‘continuous motions’ (hereafter, ‘CM’). In Descartes’s
words (pp. 389–390≡ 20–21):

One must not exclude [from geometry] the composite lines any more than the
simple ones, provided one can imagine them being described by a continu-
ous motion, or by several such motions in sequence where the later ones are
entirely governed by their predecessors.

On the other hand, Descartes excludes the quadratrix and spiral from the ‘geometrical’
curves since they are the result of separate motions, circular and rectilinear, without a con-
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Figure 2. Set-square compasses.

nection ‘that one could measure exactly’. Being dependent on a single integer parametern,
however, compasses could only describe a restricted class of curves. To extend it, Descartes
introduced, always within the confines of CM, another articulated theoretical instrument,
the ruler-and-slide (Figure 3).

This instrument enables one to associate to any curve ‘embedded’ in a moveable plane
an ‘image curve’ in a fixed plane (compare Descartes’s transformation in [Serfati, 2003]).
To a line there thus corresponds a hyperbola and to a circle, a conchoid. To a parabola there
corresponds a new curve ‘one degree more complicated than the conic sections’, crucial
in the rhetoric of theGéométrie and called a ‘Cartesian parabola’ (hereafter, ‘CP’) by the
historians Gino Loria and Henk Bos. It has the equation

axy = y3− 2ay2− a2y + 2a3 [= (y + a)(y − a)(y − 2a)
]
, (1)

and belongs to a family of cubics that Isaac Newton (1642–1727) called ‘tridents’ in the
Enumeratio: (1) is no. 66 in his classification. Such kinematically generated curves were
not considered by Fermat, but they arise (in a different way) in the work of Roberval.

6 THE PROBLEM OF PAPPUS AND AN ALGEBRAIC CRITERION

In 1631, Golius sent Descartes a geometrical problem, that ‘of Pappus on three or four
lines’, and this forms our second thread of Ariadne (for ‘line’ here, read ‘straight line’).
It had originally been posed and solved shortly before the time of Euclid in a work called
Five books concerning solid loci by Aristaeus, and was then studied by Apollonius and
later by Pappus. The solution was lost in the 17th century (see Paul Tannery’s note on the
problem of Pappus in [ATvi, 721–725]).
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Figure 3. Ruler-and-slide.

In modern terminology, the ‘four lines’ problem can be stated as follows. Letk be a
positive real number,D1, D2, D3, D4 four lines in the plane, andα1, α2, α3, α4 four
angular magnitudes. Through a pointC in the plane draw four lines�1, �2, �3, �4,
where�i meetsDi , at a pointHi say, in the angleαi . Then it is required to find the locus
of the pointsC (Figure 4) such that

CH1CH2= kCH3CH4. (2)

This can be generalized to ‘the problem of Pappus on 2n lines’ as follows. Given two
sets ofn lines in the plane, two sets of angular magnitudes, and a numberk, what is the
locus of the points in the plane the ratio of the products of whose distances from one set
of lines to those from the other, all measured at the given angles, is equal tok? In the
corresponding problem on 2n− 1 lines, one compares the product of the distances fromn

of them with that from the othern− 1 except whenn= 3, when one compares the product
of two of the distances with the square of the third. Putting in modern notation, it is

ω = (a1, b1, c1, . . . , an, bn, cn, . . . , a2n, b2n, c2n, k) ∈R
6n+1; (3)

the case of 2n lines leads to the equation

i=n∏
i=1

(aix + biy + ci)− k
i=2n∏
i=n+1

(aix + biy + ci)= 0. (4)
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Figure 4. Pappian lines problem. The pointsB, D, F , H in the figure are theHi above.

The difficulty of a general solution without analytical tools is evident. The solution be-
ing lost, the problem was a test-case of the first importance for Descartes. Claude Hardy
(1598–1678), a contemporary at the time of its solution, later reported to Leibniz the diffi-
culties that Descartes had met in solving it (it took him six weeks), which ‘disabused him
of the small opinion he had held of the analysis of the ancients’.

In theGéométrie, the problem became a model for the generation of acceptable curves
according to the new criterion,algebraicity. It appears in Book I, following preliminaries
about expressing in an equation the ‘distance’ from a point to a line given as an affine func-
tion of the coordinates,CH = ax + by + c. This requires the use of algebraic symbolism
à la Vieta and (implicitly) of a coordinate system. Descartes uses (without saying so) a
non-orthogonal frame of reference withoutemphasizing the use of coordinates (x andy
are lengths) and employs similar triangles instead of calculations with distances. The prob-
lem reappears in Book II when expressing by an equation the locus of three or four lines,
in which he effectively forms products of ‘distances’. He finds an equation of the second
degree for one of the variables,

y(a1x + b1y + c1)= k(a2x + b2y + c2)(a3x + b3y + c3), (5)

or, in modern notation,

x2P0(y)+ xP1(y)+ P2(y)= 0, (6)
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where theP s are polynomials iny; this is the first case in history of a geometric locus
being expressed by an equation. The formulae for the solution contain, as well as the ‘four
operations’, only square roots, which are constructible.

Descartes identifies point by point the solution as a hyperbola with the equation

yy = cy − (c/b)xy+ ay − ac (7)

by a ruler-and-compass construction of the roots of his equation, without ever recognizing
equations of the first degree as those of straight lines. For five lines, one has the equation

y(a1x + b1y + c1)(a2x + b2y + c2)= k(a3x + b3y + c3)(a4x + b4y + c4) (8)

of degree 3 iny and of degree 2 inx, which again requires the construction for each fixed
y the solution of a quadratic equation. For 2n lines, one has

xkP0(y)+ xk−1P1(y)+ · · · + Pk(y)= 0, (9)

of which Descartes tried to construct solutions inx for each fixedy. Thus, for a given
y, the construction of anarbitrary point of the curve is the key step, summed up in the
Leitmotif ‘all the points [of a geometrical curve] must somehow be related to all the points
in a straight line’.

Descartes thus recognized that the equationF(x, y)= 0 determines a locus and thus a
curve, which arises from the excess of unknowns (two in the case of a single equation);
this is the basic idea behind the plane loci that Fermat had described more clearly in the
Isagoge (1629). It is essentially analytic in the Cartesian sense; the equating of products as
above, which is the basis of the strategy of loci, only legitimizes the existence of a pointC

of the required kind, that is, something that has been taken for granted. ‘Let us suppose the
thing has been done’ is an expression Descartes uses again and again. Thus, when applied
to loci, the Cartesian geometry ‘of coordinates’ is also ‘analytic’ in a natural way.

For Descartes, the Pappus curves served asmodels; for they could generate, in accor-
dance with a complexity measured by 2n and also in accordance with the second criterion,
algebraicity, all the curves that he would henceforth regard as acceptable. He noticed, how-
ever, that this classification is inadequate as to complexity. He also obtained Pappus curves
for five, six and ten lines, still constructible by ruler and compass, such as the CP, as the
curve for five lines with four parallel and equidistant and the fifth meeting them orthog-
onally: the complexity does indeed depend as much on the disposition of the lines as on
their number. He therefore abandoned this criterion in favour of the more practical one
of intrinsic complexity–simplicity, that is, the degree of the equation, or rather its ‘genus’
(he continued to group degrees together in pairs (2n− 1,2n)). The quadratrix and spiral
were again rejected by this criterion, since it was not possible to construct an arbitrary
point: for the quadratrix, only points with certain rational abscissae, such ask/2n, could
be constructed.

‘Simplicity’ thus became a dimension in theclassification of acceptable curves: to
breach it would be to commit ‘a mistake’. Descartes even conjectured that every algebraic
curve (in the modern sense) is a Pappus curve, a false assertion (an arbitrary curve has
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‘too many’ coefficients) that was immediately criticized by his successors, such as Newton
[Bos, 1981].

Following Descartes, the supremacy of algebraic criteria became established: curves
were defined by equations with integer degrees. Algebra thus brought to geometry the most
natural hierarchies and principles of classification. This was extended by Newton to frac-
tional and irrational exponents, and by Leibniz to ‘variable’ exponents (gradus indefinitus,
or transcendence in the sense of Leibniz).

7 TANGENTS

Descartes continues his promotion of the algebraic method in Book II, emphasizing the
importance of determining the angle made by two curves at one of their points of inter-
section as ‘the most useful and general [question. . .] I have ever wanted to answer’. This
angle is that between the tangents, hence also between the normals. He therefore wished to
construct the normal at a pointC of an algebraic curve by finding a pointP on it. He wrote
that, at the intersection with the curve of the circle with centreP and containingC, there
are two points coincident withC, so that the algebraic equation for their common ordinate
has a fixed double root, the ordinate ofC in Figure 5.

The method required knowledge of how to eliminate one variable between two alge-
braic equations (a point also considered by Fermat), and then to state the condition for
which one knows of an equation that a root is a double root. Descartes did this either by
identifying the coefficient of(y − e)2 in (E) (when the curve is an ellipse for example) or,
generally, by dividing (E) by (y− e)2. In the case of the CP, where (E) is of degree six, the
division of the first (complex) member by(y − e)2 is done by identifying the quotient via
four indeterminate coefficients. If these techniques of identification were completely new
at the time, the method of indeterminate coefficients later became universal, from Leibniz
and Newton to the present day. Profoundly algebraic, the Cartesian method of tangents
introduced the concept of a double point. Not being very convenient, it would hardly sur-
vive into posterity; following Fermat, tangents were determined by Newton in the 1660s
and Leibniz in the 1670s using infinitesimal and differential methods (§5, §4). After 1700,

Figure 5. Construction of the normal.
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the many treatises on curves combined Cartesian algebraic concepts (equations, multiple
points) with infinitesimal local considerations (cusps, points of inflection).

8 OVALS

One section, ‘Ovals’, occupies some fifteen pages of Book II. Descartes defines step by
step the construction of ‘four new kinds of oval of use in optics’ according to the values of
the parameters (lengths of segments), of which the modern reader will recognize no more
than two (compare Tannery’s ‘clarification’ in [ATx, 325–328]). Descartes, who shares
with Willebrord Snell the discovery of the laws of refraction, introduces these curves in the
context of theDioptrique: to determine the surfaces of glass such that after refraction the
rays meet at the same point.

The rhetorical value of the discussion of ovals is important for the Descartes of theDM:
they link a work on physics (theDioptrique) with one on mathematics (theGéométrie).
Van Schooten notes that they are acceptable in the algebraic sense: in modern terms, they
are curves of degree four (their bifocal definition is simpler:FM±λF ′M = c, whereλ is a
positive real number). Their optical use for reflection and refraction then requires the deter-
mination of tangents, justifying the above calculation of normals. Like the compass curves,
ovals also admit, for certain values of parameters, a mechanical construction, depicted by
Descartes as a taut string. Finally, like the CP, they present another generalization of the
central conics, the ellipse and hyperbola (a point repeatedly emphasized by Descartes), in
the sense that for certain valuesof the parameters the ovals ‘degenerate’ into these conics.

9 ALGEBRAIC EQUATIONS

Descartes motivates this study, which occupies the beginning of Book III, with the de-
sire of avoiding one of the two opposing ‘mistakes’ when solving a problem that he de-
nounces; namely, the use of methods that are either excessive in relation to their object
and thus superfluous, or inadequate and thus unsuccessful. In the mathematical context
of the Géométrie, the ‘clearly conceived’ of theDM thus becomes the ‘most simple’.
He essentially attaches to each problem a certain level of complexity and an appropriate
methodology. In algebra, he applies this principle to the reduction of algebraic equations,
often assumed implicitly to have rational coefficients.

The abundance and variety of results in this section is remarkable. A number of the
interesting results presented are not altogether new, some being due to Girolamo Cardano,
Thomas Harriot and Albert Girard. The exposition is, however, clear and systematic, and
expressed for the first time in history in modern notation; one finds it again in Jan Hudde’s
De reductione equationum (published in G59). These results were taken up and extended
by Newton inArithmetica universalis [1707], in lectures between 1673 and 1683.

For the sake of simplicity, Descartes wanted to consider only irreducible polynomials
(in Z[X]), for otherwise they would be further simplified, and he therefore studied factor-
izations. He first states without proof that the maximum number of roots that an equation
‘can have’ is equal to its ‘dimension’ (degree), as does Girard in hisInvention nouvelle en
algèbre of 1629. When the total number of ‘true’ (positive) and ‘false’ (negative) roots is
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less than the dimension, one can, according to Descartes, artificiallyadjoint ‘imaginary’
roots, a naïve term coined by him but not described (he does not even write

√−2, like
Girard). He also proves that for a polynomialP to be divisible by(X − a), a ‘binomial’
containing a ‘true’ roota, it is necessary and sufficient thatP(a) be zero (and likewise with
(X + a) andP(−a)). He then uses his indeterminate coefficients to describe the division
of a polynomial by(X − a). It was important for him to know at least one root. For an
equation with rational coefficients, he studies the rational roots by first obtaining integer
coefficients using multiplication by a suitable denominator; the possible integer roots are
then among the divisors of the constant term. This method is also to be found in Girard.

Descartes is also interested in the number of real roots, and asserts without justification
that themaximum number of positiveor negative roots of an equation is that of the alter-
nancesor permanences of the signs ‘+’ and ‘−’ between consecutive coefficients. This is
the celebrated ‘rule of signs’, which earned unfounded criticism for Descartes [Montucla,
1799, vol. 2, 114–115]. Newton took up and extended the matter in theDe limitibus aequa-
tionum, which concludes theAU. The result was proved in the 18th century, in particular by
J. De Gua and J.A. Segner, and led to the theorem of Jacques Sturm (1829) on the number
of real roots contained in a given interval[a, b].

Descartes also transformed equations by various mappings, such asx → x − a and
x→ ax, especially to annihilate the ‘second term’, givingx4+ px2+ qx + r in the case
of degree four. He can render all the roots as true or as false, by a method described in Har-
riot’s posthumous workArtis analyticae praxis of 1631. The nature, positive or negative, of
a root is thus immaterial to Descartes. WhereasVieta categorically rejected negative num-
bers, Descartes, like Girard, accepted them in algebra as roots of equations but rejected
them in geometry, prefixing the letters with ‘±’. By a change of variables, he can always
fix in advance the value of the constant term of an equation. Without proof he then displays
the value of a cubic resolvent for the (almost) general quartic, describing its factorization
as a product of two quadratics. Undoubtedly he adapted this method from theArs magna
of Cardano and Ferrari, but remarkably he invoked it here to determine the resolvents of
certain examples, some of them parametric:

z4 ∗ +
(

1

2
a2− c2

)
z2− (

a3+ ac2)
z+

(
5

16
a4− 1

4
a2c2

)
= 0. (10)

(In theGéométrie, ‘∗’ denotes the position of a ‘missing’ term and ‘.’ denotes±.) Degree
four is thus reduced algebraically to degree three; it is further reduced geometrically, using
the circle and parabola. Thus everything converges towards degree three, and thus one must
know how to construct the solutions.

10 THE ‘CONSTRUCTION’ OF EQUATIONS

The need to solve algebraic equations stems from the problem of Pappus and the scheme
of ‘loci’. The geometrical construction of solutions, which is the third thread of Ariadne
in theGéométrie, was first and foremost a result of the Cartesian theory of knowledge. For
Descartes, to know was in fact to construct. In spite of algebraic appearances, he never
departed from a ‘Greek’ constructivist position. In accordance with the mood of the times,



Chapter 1. René Descartes,Géométrie (1637, 1649) 15

this meantconstruction by curves. On this point, which ends Book III, Descartes is close to
Fermat but differs from Vieta, who also proposed auxiliary curves but confined himself to
construction fordetermined problems (like those of the ‘expressions’ in section 3 above)
and not for ‘loci’.

Descartes begins with the ‘solid problems’ naturally identified with the construction of
solutions of irreducible equations of the third and fourth degrees. Invoking his ‘simplicity’,
he restricted himself to using in the construction only the circle and parabola. Using letters
to denote positive real parameters, or lengths of intervals, the list of equations reduces to
these two:

z3= ∗pz . q and z4= ∗pzz . qz . r. (11)

Descartes describes his two basic constructions, by ‘circle-vertex’ and parabola for de-
gree three (basic), and ‘circle-shift’ and parabola for degree four (Figure 6). The positive
roots of the equations correspond to the lengths of the projections on the axisCDK of the
points of intersection of the two curves lying to the left of the axis, and the negative roots
to those on the other side [Serfati, 2003]: the ‘modern’ expression as an equation is irre-
proachable. Then, as applications, come the Greek problems of means and trisection. To

Figure 6. Construction of an equation.
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Figure 7. Problem of proportional means.

Figure 8. Construction for a cubic equation.

find two proportional means betweena andq , that is, to solvea
z
= z
y
= y
q
, is to construct

the solutions ofz3= ∗ ∗ aaq by the basic circle-vertex method (Figure 7).
The other example, that of trisecting an angle, is equivalent to solvingz3 = ∗3z − q :

Descartes proves this using the similarity of isosceles triangles with one angle equal. He
then uses the basic construction to find the solutions of this cubic (Figure 8).

These two Greek questions embody for him the essence of solid problems: he shows
in effect, like Vieta in theSupplementum geometriae (1593), that to solveany incomplete
equation of degree three of the formz3= ∗+ pz+ q or z3= ∗+ pz− q , comes down to
trisecting a certain angle. Like Vieta, he concludes without a convincing proof that prob-
lems such as trisection that lead to irreducible cubic equations cannot be solved by ruler
and compasses, a cornerstone in the characterization of constructible numbers by Pierre
Wantzel in 1837. Descartes then describes the problems to be tackled in the future, simple
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extensions of the constituent problems (means and trisection) of a higher order, asserting
that they ‘cannot be constructed from any of the conic sections’.

In all these cases, Descartes was concerned to construct solutionsusing curves. These
latter, which we may call ‘constructing curves’, and they were thus means and not ends
[Bos, 1981]. And the constructing curves involved became more and more complicated
(like the CP): Descartes never drew a single one! In modern terms, the method regarded
an algebraic equationH(x)= 0 as theresultant of eliminatingy betweenF(x, y)= 0 and
G(x,y)= 0. To construct the solutions ofH(x)= 0, it suffices to make a suitable choice
of F andG, and then to study graphically the abscissae of the points of intersection of the
constructing curves with equationsF = 0 andG= 0, the skill of the geometer lying in the
‘most simple’ choice ofF andG, which is clearly an ill-defined concept.

Descartes asserted falsely that to construct the solutions of an equation of degreen, it
is necessary to cut a circle (in all cases) with a curve of degree (n− 1), an error that was
pointed out by Fermat and Jakob Bernoulli, among others. Forgotten today, these problems
of ‘construction from equations’ survived for a long time [Bos, 1984]. In theEquationum
constructio linearis, an appendix toAU, Newton rightly criticized as ill defined this Carte-
sian notion of simplicity, contesting the systematic use of the circle, the parabola being for
him, because of his equation, the simplest [Montucla, 1799, vol. 2, 128]. But the vast array
of potential constructing curves served another purpose in theGéométrie: the construction
of a hierarchical universe of new curves, extending ad infinitum the classification of the
ancients.

11 FROM THEGÉOMÉTRIE TO THE ENUMERATIO

Immediately after theGéométrie was published, the question of tangents became the sub-
ject of a quarrel, stirred up by Fermat into a famous dispute (see [ATi, ii] for the corre-
spondence between Descartes, Mersenne, Fermat and Roberval at the end of 1637). In a
short manuscript, ‘Methodus ad disquirendam maximam et minimam’ (‘The method of
maxima and minima’), Fermat described another method, of ‘differential’ inspiration, that
of Descartes being algebraic. Written soon after theIsagoge, this was one of a number of
unpublished manuscripts circulated by Fermat among his friends in Paris. Descartes, con-
vinced of the complete correctness of his own approach, displayed a sort of blindness [Mil-
haud, 1921, 149–175; Mahoney, 1994, 170–193]. Robervalnaturally supported Fermat, for
his part proposing another procedure for tangents, by composition of motions. Descartes
had the support of two old friends, Hardy and Claude Mydorge (1585–1647), the author of
De sectionibus conicis (Paris, 1631, 1639, 1644); also Girard Desargues (1591–1661); and
above all De Beaune, a staunch Cartesian, who, in hisNotae on G49, became a promoter
of the new analysis.

After 1649, the text became a long-lasting object of study for European mathematicians
and a veritable bedside read for geometers, while the faithful Latin translation by the disci-
ple van Schooten ensured its wide dissemination. The ample commentaries, painstakingly
completed by De Beaune and much longer than theGéométrie itself, were indispensable in
explaining Descartes’s ideas to his contemporaries, clarifying obscurities, reconstructing
omitted calculations and also producing new constructions and loci.
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Over many decades, a considerable number of treatises, too many to cite here, made es-
sential reference to Descartes and theGéométrie. Successive modifications of the concepts
took various directions, very progressively at first and often based only on examples. Thus
for a long time there was, as with Descartes, only a single ‘true’ axis and a corresponding
asymmetry of coordinates, a term absent from Descartes, the modern nomenclature (coor-
dinates, abscissa, ordinate, constant, parameter) being due to Leibniz (1692). Similarly, the
folium of Descartes,

x3+ y3− axy = 0, (12)

survived for a long time (up to Huygens in 1692) in its restricted form as a loop, when
its manifest incompleteness served as a stimulus for the introduction of negative coordi-
nates. From 1655, theDe sectionibus conicis of John Wallis used the Cartesian method for
expressing algebraically the ancient geometric definitions and properties of the conics of
Apollonius, systematically interpretingx andy as having any sign.De sectionibus favoured
the modern view of conics as plane curves rather than spatial intersections (‘solids’). How-
ever, Wallis did accuse Descartes unjustly ofhaving plagiarized Harriot ([Montucla, 1799,
vol. 2, 115–120] and compare §2).

The Lieux géométriques (1679) of Philippe de La Hire (1640–1718) introduced the
symmetrization of the coordinates. Leibniz, who knew theGéométrie in Paris no later
than 1674, made full use of its methods in his arithmetic quadrature of the circle around
1674, his first discovery. G59 was decisive in directing the interest of the young Newton
towards mathematics in the years 1664 and 1665. From his ‘Method of fluxions and infinite
series’ (1671?) onwards, he skillfully manipulated the geometry of coordinates. But in his
‘Equationum constructio’ he remained ambiguous over Descartes, strangely siding with
the ‘antique’ conservativeness of Barrow against the Cartesian ‘modernity’.

After 1637, Descartes turned away from all theoretical work in mathematics, even the
new questions he had raised in theGéométrie (except under duress, as in the case of Fermat
and the tangents). He took no interest in general equations of degree two and still less in
the classification of cubics. This was accomplished by Newton in theEnumeratio linearum
tertii ordinis (1676?, published in 1704), a remarkable natural extension of Descartes’s
work which listed 72 types of cubic though missing six that were found in the 18th century.
Breaking away from the original Cartesian practice, theEnumeratio classified cubics in a
modern fashion according to the values of the parameters and the representations using two
orthogonal axes with the same status and an origin of exchangeable coordinates of arbitrary
sign, like the parameters. This was an important step: it is not the same as accepting,
like Descartes, negative roots of equations and then representing them in a figure, and
supposing that letters stand for quantities, unknownor known, of any sign.

12 ‘PROLES SINE MATRE CREATA’

In his Géométrie, Descartes organized a mathematical revolution by establishing, in a pol-
ished, effective and clear manner, a relation between curves and algebraic calculation, both
the continuum of geometry and the discontinuity of number. Today, the use of coordinates
in visualizing a curve by means of its equation is an almost automatic process. However,
the text is not clear for two reasons: on the one hand by the conflict of criteria, on the other
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hand by the Cartesian strategy of secrecy. These reasons can explain its obscurity. In a
book where Descartes is supposed to be describing the principles of his method, the reader
does not get to the heart of the matter: the correspondence between curves and equations
is not made explicit by the use of coordinates. It is written like a self-teaching manual: ‘the
Géométrie does not deliver to the reader the considerable reform of which it is the fruit,
but only a set of directions for use’ [Costabel, 1987, 220].

Descartes actually proposes two criteria of acceptability for curves that are not logi-
cally connected. The first is the CM criterion, exemplified by the compasses and ruler-
and-slide. This was his first programme, spontaneous, inherited from his youth, and not
entirely renounced at the time of writing theGéométrie. The second is the algebraic crite-
rion, which concerns the possibility of constructing point by point the roots of equations
derived from Pappus curves. This is, in contrast, a reasoned criterion, dictated by the exi-
gencies of simplicity and effectiveness encountered while writing thefinal draft. To ensure
universal acceptability, Descartes hoped that the two criteria were logically equivalent, that
is, every curve with an equation has the CM property, and vice versa. He then postulated
their equivalence, although this was not established until the 19th century [Kempe, 1876].
He also hoped to ‘prove’ it using the ubiquity of the CP, and obtained from each of the
criteria. In theGéométrie itself, the conflict between the criteria turns in favour of the alge-
braic, admittedly not withouttrouble but clearly enough: ‘and in some other way imagining
the description of a curved line, provided it is ofthe type that I call geometrical, it is always
possible to find an equation that determines all its points in this way’ (pp. 395≡ 27). The
conflict nevertheless has an effect ‘in real time’, adding to the difficulty of the text in the
eye of the reader.

Posterity has clearly retained the algebraic criterion for classifying curves, being both
simple and practical, subsequently improved (in 1695) by replacing ‘genus’ by ‘degree’.
Thus the criterion of algebraicity that enables one to envisage ‘all the (geometric) curves’
has the potential to extend the class of acceptable curves in a fashion inconceivable to the
Ancients, who knew only a small number of curves occurring individually ‘on the ground’.

On receiving theGéométrie, Fermat sent to Descartes in return (via Pierre de Carcavi
and Mersenne) two short manuscripts, the treatise ‘De maximis et minimis’ mentioned
earlier and an ‘Introduction to plane and solid loci’ (‘Ad locos planos et solidos isagoge’).
TheIsagoge, a short treatise on analytical geometry written around 1629 in which frequent
reference is made to theDe emendatione of Vieta, presents more explicitly than Descartes
the scheme of ‘loci’ (‘planes’ and even ‘solids’). The dispute for priority as the true dis-
coverer of analytical geometry, Descartes or Fermat, which consumed enormous quantities
of ink [Milhaud, 1921; Mahoney, 1994], was nevertheless to no purpose. They had both
begun at the point where Vieta had left off, and had discovered, independently and at al-
most the same time, two theories on the same subject but with non-comparable extensions,
processes, objectives and notation. A detailed analysis shows the supremacy of one or other
of the two protagonists, depending on the point in question [Boyer, 1956, 74–102; Brun-
schvicg, 1981, 99–126]. If, for example, Fermat gave precedence to the scheme of ‘loci’,
he did not, unlike Descartes, accompany with it any organized view of the hierarchy of
curves produced. None of Fermat’s manuscripts was published during his lifetime, while
theEssais, widely disseminated in Europe, aroused a profound interest in the mathemati-
cal community. The semi-rhetorical style of Fermat, who was a follower of Vieta, was not
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conducive to working out calculations, unlike the Cartesian exponential notation, which
was adopted rapidly and almost universally.

The ease that Descartes displays in handling symbolic notation and the familiarity that
we have with it today must not obscure its profound novelty at the time, or the ‘shock’
[Costabel, 1987, 218] of that supposedly ‘geometric’ work, but with every page covered by
calculations, letters and new symbols, provoked among his contemporaries. The use of the
exponent, and of a specific sign for equality—while different from that of today (Recorde),
it still destroys the syntax of natural language [Serfati, 1998]—just like the systematic lit-
eralization of Vieta, were decisive in the advent of the new symbolism. The statement in
modern terms of Cardano’s formula in one line in Book III proves to the reader the clear
superiority of this symbolism over the laborious rhetoric of Cardano. Contemporary math-
ematicians were not mistaken in using theGéométrie as a ‘Rosetta stone’ for deciphering
symbolism.

Conversely, it is the first text in history to be directly accessible to mathematicians of
today. By the systematic use of substitutions (hisArt combinatoire), Leibniz continued
the implementation of what was not just a ‘change of notation’ but a radical modification
of modes of mathematical thought [Serfati,1998]. Fractional and literal exponents were
added by Newton.

In 1630, Descartes declared to Mersenne that he was ‘tired of mathematics’, and he
meant it. Leaving for Holland, he thought of the mathematical model of his youth as over
and turned to metaphysics. In 1637, however, when faced with the need to find applica-
tions of hisDM, he returned briefly to mathematics. But while he was proud of the results
found, he never intended to continue in mathematics. So incontestably theGéométrie rep-
resents a culmination in his work and not as an avenue opening towards the future. After
1637, he devoted himself exclusively to philosophy, while occasionally studying with his
correspondents certain mathematical problems. Some of these lay in areas previously re-
jected, such as the question of the divisors of an integer (including, strangely enough, the
integers equal to twice the sum of their proper divisors), and the study of non-geometric
curves like the ‘roulette’, or cycloid, or again an ‘inverse-tangent’ problem posed by de
Beaune, the first in the history of differential geometry, of which the solutions are tran-
scendental curves. Descartes’s correspondence with Mersenne after 1637 shows that he
was conscious of having produced an exceptional mathematical work that few of his con-
temporaries seemed able to understand. Admittedly, he had simply sought to introduce,
through his analytical geometry, a method into geometry, the algebra being merely a tool;
but in fact he had achieved more, and with his customary pride, he gave a good account
of himself. Henceforth, he said to Mersenne at the end of 1638, he had no need to go any
further in mathematics.

In a famous phrase, Chasles described theGéométrie as ‘a child without a parent’ (‘pro-
les sine matre creata’). This judgement needs some slight qualification. It is true that
Descartes borrowed little from his predecessors, certainly not from Fermat but perhaps
from Girard and Harriot; on the other hand, he had certainly read Pappus, Cardano and
above all Vieta, although he only admitted this in Holland after 1628, declaring proudly at
the end of December 1637 that he had ‘begun where he [Vieta] had left off’. It was nev-
ertheless to a large extent independently of his contemporaries, and guided by a specific
‘physical’ view of the world, that Descartes wrote theGéométrie, a work as exceptional
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for its contents (analytic geometry and the analytical method) as for its style (symbolic no-
tation), which progressively organized the final breakaway from the ancient and mediaeval
mathematical world, pre-symbolic and ‘specious’. Only then could one pass into the age
of the ‘calculus’. Let us emphasize this obvious fact: Leibniz, while rightly deploring the
absence from Descartes’s mathematical thought of any infinite operation, a concept that
is indeed foreign to the Cartesian system of the world, nevertheless could only criticize
Descartes retrospectively.
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CHAPTER 2

JOHN WALLIS, ARITHMETICA INFINITORUM
(1656)

Jacqueline Stedall

TheArithmetica infinitorum was a key text in the 17th-century transition from geometry to
algebra and in the development of infinite series and the integral calculus.

First publication. In Operum mathematicorum, vol. 2, Oxford: Oxford University Press,
1656, 1–199. [Digital copy available in the database ‘Early English books online’
(EEBO).]

Reprint. In Opera mathematica, vol. 1, Oxford: Oxford University Press, 1695, 355–478.
[Edition photorepr. Hildesheim: Olms, 1972.]

English translation. The arithmetic of infinitesimals (trans. J.A. Stedall), New York:
Springer-Verlag, 2004.

Related articles: Descartes (§1), Newton (§5), Berkeley (§8), Maclaurin (§10), EulerIn-
troductio (§13).

1 BACKGROUND TO THEARITHMETICA INFINITORUM

John Wallis (1616–1703) was Savilian Professor of Geometry at Oxford for over half a
century, from 1649 until his death in 1703 at the age of 87. The professorship was his
reward for his services as a code-breaker tothe Parliamentarians during the civil wars
of the 1640s. Wallis came to Oxford with no more than a little self-taught mathematics,
but within a few years produced his most important work, theArithmetica infinitorum.
The book was begun in 1651 and completed in early 1655 and was printed by July of
that year, but it was published only in 1656in a compilation of Wallis’s mathematical
works, theOperum mathematicorum (1656–1657). It was reprinted with minor alterations
towards the end of Wallis’s life, in 1695, in a much larger set of collected works, theOpera
mathematica (1693–1699).

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
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23



24 J. Stedall

Table 1. Contents of Wallis’s book.

Propositions Page Contents
1–52 1 Sums of integer powers and geometric corollaries.

53–85 42 Sums of fractional powers and geometric corollaries.

86–102 67 Sums of negative powers and geometric corollaries.

103–168 77 Sums of compound quantities and geometric corollaries.

169–186 136 Properties of figurate numbers.

187–191 167 Interpolation of tables.

‘Idem aliter’ 181 Brouncker’s continued fractions.

192–194 193 Interpolations demonstrated geometrically. [End 198.]

TheArithmetica infinitorum is not written in chapters or sections, but as series of 194
Propositions (lemmas, theorems, corollaries), some followed by a ‘Scholium’ or commen-
tary. At the end of the book, in an ‘Index propositionum’ (p. 198), Wallis himself listed the
propositions and their contents. The propositions and their subject matter are grouped in
Table 1.

The book was Wallis’s masterpiece. It contains the infinite fraction for 4/π that is now
his chief claim to fame; but for his contemporaries the most significant feature was the
introduction of new methods, new concepts and new vocabulary. TheArithmetica infinito-
rum stands both chronologically and mathematically at the mid point of the 17th century,
drawing together the best ideas from the first half of the century, the algebraic geometry of
René Descartes, and the theory of indivisibles of Bonaventura Cavalieri (1598–1647), and
preparing the ground for some of the astonishing advances of the second half: the discovery
of the general binomial theorem, applications of infinite series, and the integral calculus.

In De sectionibus conicis, a book written at the same time as theArithmetica infinitorum
and published alongside it [Wallis, 1656a]. Wallis gave the first fully algebraic treatment
of conic sections, showing that they could be adequately defined by their equations alone.
Thereafter he rarely used the formulae he had so carefully derived, but the process of find-
ing them must have done much to consolidate in his own mind the possibility of exchanging
geometric ways of thinking for the arithmetic or algebraic.

A more fundamental source of inspiration in Wallis’s mind was the theory of indivisi-
bles, first proposed by Cavalieri in hisGeometria indivisibilibus continuorum nova quadam
ratione promota of 1635 [Andersen, 1985]. Cavalieri based his ideas on the notion of a
plane passing at right angles through a given figure and intersecting it in ‘all the lines’ of
the figure. From this there followed his fundamental theorem: that two plane figures could
be said to be in the ratio of ‘all the lines’ of one to ‘all the lines’ of the other. Later in the
Geometria, and also in hisExercitationes geometricae sex of 1647, Cavalieri tried to avoid
the problems of handling infinitely many lines by comparing pairs of lines, but most of
his work relied on the comparison of collections of lines, and he successfully applied his
methods to a variety of plane figures and solids.

Cavalieri’s careful attempts to put his theory on a sound footing were of little concern to
Evangelista Torricelli (1608–1647) when he took up some of the same ideas in hisOpera
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geometrica of 1644. For Torricelli a plane figure was simply the sum of its lines, and a solid
was a sum of planes or surfaces. It was through Torricelli’sOpera, more easily available
than Cavalieri’sGeometria, that Wallis and others learned of the theory of indivisibles, but
only in the cruder form into which Torricelli had transposed it. Wallis was even more lax
than Torricelli: for him a plane figure could be regarded, when convenient, as the sum of
its lines, but at other times as a sum of infinitely thin parallelograms. In Proposition 1 of
De sectionibus conicis he wrote:

I suppose, as a starting point (according to Bonaventura Cavalieri’s geometry
of indivisibles) that any plane is constituted, as it were, from an infinite number
of parallel lines. Or rather (which I prefer) from an infinite number of paral-
lelograms of equal altitude, the altitude of each of which indeed may be1

∞
of the whole altitude, or an infinitely small part (for let∞ denote an infinite
number), and therefore the altitude of all taken together is equal to the altitude
of the figure.

In theArithmetica infinitorum Wallis never discussed the distinction between lines and
parallelograms, and his evasion of such fundamental definitions was to draw criticism later.
But Wallis was not too concerned because he recognized that, without being too careful
about precise meanings, the summation of lines, or ‘indivisibles’, gave him useful ways of
handling the quadrature and cubature of a multitude of curved shapes.

2 METHODS AND RESULTS IN THEARITHMETICA INFINITORUM

Cavalieri and Torricelli had also used indivisibles for the purpose of quadrature, and so
had the French Jesuit Grégoire St. Vincent in his massiveOpus geometricum of 1647,
though the latter was unknown to Wallis when he began his work. Wallis’s advance over his
predecessors was his conversion of the problem of quadrature from geometry to arithmetic.
In Figure 1, to find the ratio of the concave areaATO defined by the parabolaAO (with
vertexA), to the rectangleATOD, Wallis needed to sum the linesTO. Since eachTO equals
(OD)2 for the correspondingOD, the problem reduced to finding the ratio

02+ a2+ (2a)2+ (3a)2+ · · · + (na)2
(na)2+ (na)2+ (na)2+ (na)2+ · · · + (na)2 , (1)

wherea is the (small) distance between each of the linesTO. Thus Wallis needed to find

02+ 12+ 22+ 32+ · · · + n2

n2+ n2+ n2+ n2+ · · · + n2
(2)

for large values ofn (but small values ofa sincena was fixed and finite). This he did by
what he called ‘induction’ (see Propositions 1, 19 and 39):

0+ 1= 1

1+ 1= 2
= 3

6
= 1

3
+ 1

6
,

0+ 1+ 4= 5

4+ 4+ 4= 12
= 1

3
+ 1

12
, (3)

0+ 1+ 4+ 9= 14

9+ 9+ 9+ 9= 36
= 7

18
= 1

3
+ 1

18
, (4)
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Figure 1. Wallis’s analysis of the parabola.

0+ 1+ 4+ 9+ 16= 30

16+ 16+ 16+ 16+ 16= 80
= 3

8
= 9

24
= 1

3
+ 1

24
, · · · . (5)

The answer in each case is1
3 plus a fraction that becomes smaller as more terms are taken.

In fact, Wallis noted, the additional fraction eventually becomes less than any ‘assignable
quantity’ and therefore, if the process is continued infinitely, it may be considered to be
zero (see Propositions 20 and 40).

By allowing n to increase anda to decrease Wallis had thus shown that the areaATO
was one third ofATOD, a result already well known to be correct, but he had arrived at
it by arithmetic rather than geometry. Thus, just as Cavalieri’s method could be described
as the geometry of indivisibles, orgeometria indivisibilium, Wallis’s could be described
as the arithmetic of infinitesimals, orarithmetica infinitorum, and hence the title of his
book. Wallis himself translatedarithmetica infinitorum as ‘The Arithmetick of Infinites’,
but since the ‘infinites’ in question were in fact infinitely small quantities, ‘the arithmetic
of infinitesimals’ is perhaps a more accurate modern translation.

The above and similar examples were enough to convince Wallis that the method
worked, and he set out to extend it by investigating sums of cubes and higher powers,
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rapidly arriving at the result that for largen (bearing in mind thatna is fixed and finite):∑n
k=0(ka)

r∑n
k=0(na)

r
≈ 1

r + 1
, (6)

(here using the modern summation symbol). Wallis introduced the term ‘index’ to denote
the powerr of each term, and his next step was to extend the above result by analogy to
sequences with fractional or negative index. Again, he continually checked his methods by
confirming well known results. In particular he could now perform term-by-term multipli-
cation or division of series, which he interpreted geometrically as multiplication of lines
by lines, or division of planes by lines. Here he came close to Grégoire St. Vincent who
had performed many similar ‘multiplications’, but some of Wallis’s examples stretch the
geometrical imagination to the limit as the potential of his method begins to go beyond
anything he could sensibly describe in the language of geometry.

3 THE MOTIVATION TO ‘WALLIS’S PRODUCT’

Two final problems of geometry, however, were outstanding: the quadrature of the hy-
perbola and of the circle, and it was the latter that exercised Wallis for the entire sec-
ond half of theArithmetica infinitorum. It was easy for him to see that for the area
of a quadrant of radiusR he needed to sum terms of the form(R2 − (ka)2)1/2 for
k = 0,1,2, . . . ,R/a, but without the general binomial theorem he had no way of han-
dling such quantities. He could, however, sum terms of the form(R1/p − (ka)1/p)q when
p andq were integers, and so he set out to find sums for intermediate, non integer, val-
ues by numerical interpolation. In particular he needed the sum forp = q = 1/2, which
would give the ratio of a square to the inscribed quadrant (in modern notation 4/π ), a ra-
tio that Wallis denoted by the symbol�. Wallis’s interpolative methods have been fully
described elsewhere, and here it need only be said that they required much of the pa-
tience and tenacity he must previously have applied to code-breaking [Nunn, 1910–1911;
Scott, 1938, 26–64; Stedall, 2002, 159–165].

Wallis himself explained every step in full, often in laborious detail, so that the reader
has the experience of entering his mind and sharing at first hand his sense of achievement
or frustration as he slowly proceeded towards his goal [Whiteside, 1961]. Wallis began to
have a very clear sense that the ratio he was seeking was unlike any other number in math-
ematics, neither a rational nor a surd, but what we would now describe as ‘transcendental’
(see [Stedall, 2002, 159–165; Panza, 2004]). Eventually he arrived at the sequence:�/2, 1,
�, 3

2, 4�/3, 15
8 , 8�/5, 35

16, . . . and realised that although the terms themselves are increas-
ing, the ratios of each term to the previous one, that is, 2/�, �, 3/2�, 8�/9, . . . decrease
towards 1. Hence he was able to find sequences of upper and lower bounds for�, and so
arrived at his famous formula, given here as he wrote it himself (in Proposition 191):

�= 3× 3× 5× 5× 7× 7×&c.

2× 4× 4× 6× 6× 8×&c.
. (7)

Wallis’s formula is easily proved by the methods of modern analysis, but to have arrived at
it with the very limited numerical tools at his disposal was a remarkable achievement.



28 J. Stedall

Wallis’s fraction is not the end of theArithmetica infinitorum, for he showed his interpo-
lations to William Brouncker (c.1620−1684)who came up with an alternative formulation
(see the ‘Idem aliter’ following Proposition 191):

�= 1
1

2
9

2
25

2
49

2
81

2
&c.

. (8)

It is impossible to look at Brouncker’s fraction even now without a sense of astonishment.
It is written in a form previously unknown in English mathematics, yet it suddenly appears
in the Arithmetica infinitorum fully fledged, without introduction or preamble. It is not
obvious even that Brouncker’s fraction is equal to Wallis’s, let alone how one form might
give rise to the other; were it not for the fact that it appears on the printed page, one would
be inclined to say that it was impossible for Brouncker to have found it. Brouncker himself
could not be persuaded to explain his methods; Wallis tried to do it for him, but was quickly
out of his depth. The most important point is that Brouncker’s fraction brought in its train
a whole sequence of similar fractions:

�= 1+ 1

2+ 9

2+ 25

2+ · · ·

, B = 3+ 1

6+ 9

6+ 25

6+ · · ·

,

C = 5+ 1

10+ 9

10+ 25

10+ · · ·

, . . . , (9)

with the remarkable multiplicative properties that�B = 22, BC = 42, CD = 62, . . . . Fur-
ther, this sequence of fractions enabled Wallis to find the multipliers he had sought in vain
for the sequence:

�/2, 1, �, 3

2
, 4�/3, 15

8
, 8�/5, . . . , (10)

for now he could write it (putting�/2=A) as:

A× B
2
× C

4
× D

6
× E

8
× F

10
× G

12
× H

14
×&c. (11)

TheArithmetica infinitorum goes on to give the first general treatment of continued frac-
tions (the name comes from Wallis’s description of them asfractiones continue fractae,
or ‘fractions continually broken’), including a recursive formula for evaluating them ‘from
the top down’ written using the first example of subscript notation.

In the final pages of the book Wallis produced diagrams that illustrated his interpolations
geometrically, by the construction of what he called a ‘smooth curve’ (curva aequabilis)
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between given points, but this added little towhat had gone before, and appears to have
been something of an afterthought. He insisted, though, that thanks to his previous work
such curves were as well defined as those given by equations, and therefore deserved to be
called ‘geometric’ in Descartes’s sense of the word (§1.5). Wallis’scurva aequabilis was
also printed separately at Easter 1655 to advertise his forthcoming book and dedicate it to
William Oughtred, and in an enthusiastic letter of thanks Oughtred declared that Wallis had
‘opened a way into these profoundest mysteries of art, unknown and not thought out by the
ancients’ [Rigaud, 1841, vol. 1, 87–88]. Oughtred’s letter was written in August 1655, too
late for inclusion in theArithmetica infinitorum, but Wallis took care to print it at the front
of the second edition 40 years later.

4 REACTIONS TO THEARITHMETICA INFINITORUM

The Arithmetica infinitorum quickly circulated amongst mathematicians in England and
Europe but, despite the glowing words from Oughtred, it was not an immediate success.
Fermat was the first to claim that he had found many of Wallis’s results already: ‘I have read
theArithmetica infinitorum of Wallis and I have great regard for its author. Even though the
quadrature both of parabolas and infinite hyperbolas was done by me many long years ago’
[Brouncker et alii, 1658, letter IV]. Fermat had indeed found many of Wallis’s results, and
by not dissimilar means (though for integer indices only), but since they were circulated
only in private correspondence, he could notblame Wallis for being unaware of them.
Wallis argued (and continued to do so years later) that what he had hoped to achieve were
not so much new results as new methods of investigation [Wallis, 1685, 305–306]:

[Fermat] doth wholly mistake the design of that Treatise; which was not so
much to shew a Method of Demonstrating things already known [. . .] as to
shew a way ofInvestigation or finding out of things yet unknown [. . .] and that
therefore I rather deserved thanks, than blame, when I did not only prove to
be true what I had found out; but shewed also, how I found it, and how others
might (by those Methods) find the like.

Unfortunately Wallis’s methods themselvesalso came into question. Not only Fermat,
but Christiaan Huygens in the Netherlands and Thomas Hobbes in England expressed
doubts about Wallis’s use of ‘induction’ which, they argued, was not a secure method
of proof [Brouncker et alii, 1658, letter XIII; Huygens,Works, vol. 1, 458–460; Hobbes,
1656, 46]. Wallis fell back, as he so often did,on precedent, and claimed that induction
had been used by Euclid every time he allowed a triangle to stand for any other triangle of
the same kind. This was induction in its most general sense: the inference of a general law
from particular instances. Wallis’s induction in theArithmetica infinitorum was more than
this, and much closer (though not yet identical) to the modern principle of mathematical in-
duction: Wallis showed a proposition to be true for integers 0,1,2, . . . , k, and then argued
that if there was no reason to suppose that the pattern would change then the proposition
must hold for any positive integer. Here he cited precedents in the work of François Viète
and Henry Briggs, who had made similar claims in their work on angle sections.

The second and more serious stumbling block to Wallis’s readers was his lack of clarity
on the subject of indivisibles. InDe sectionibus conicis [Wallis, 1656a] had argued that
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a parallelogram of infinitely small altitude was scarcely more than a line, but at the same
time that a line must be considered ‘dilatable’, that is, of some non-zero width, so that
infinitely multiplied it would reach to the required altitude. Hobbes saw the weaknesses of
Wallis’s arguments immediately [Hobbes, 1656, 46]:

‘The triangle consists as it were’ (‘as it were’ is no phrase of a geometrician)
‘of an infinite number of straight lines.’ Does it so? Then by your own doctrine,
which is, that ‘lines have no breadth’,the altitude of your triangle consisteth of
an infinite number of ‘no altitudes’, that is of an infinite number of nothings,
and consequently the area of your triangle has no quantity. If you say that by
the parallels you mean infinitely little parallelograms, you are never the better;
for if infinitely little, either they are nothing, or if somewhat, yet seeing that no
two sides of a triangle are parallel, those parallels cannot be parallelograms.

Wallis’s reply, ‘I do not mean precisely a line but a parallelogram whose breadth is very
small, viz an aliquot part [divisor] of thewhole figures altitude’ [Wallis, 1656b, 43], added
nothing to what he had said already. In truth the problem did not greatly concern him.
For Wallis the justification of his methods was that they worked, and in theArithmetica
infinitorum he had clearly deduced numerous correct results for parabolas and hyperbolas.
His quadrature of the circle too (that is, his formula for�) was upheld by Brouncker’s
calculation of the number now known asπ , in agreement with the known and accepted
value as far as the ninth decimal place [Brouncker et alii, 1658, letter V].

Fermat and Hobbes came to maturity in an era when mathematics was still firmly
grounded in classical geometry and Archimedean methods of proof, and both were un-
easy about Wallis’s apparent abandonment of classical methods. Fermat could have been
speaking for either of them when he wrote [Brouncker et alii, 1658, letter XLVI; trans.
Wallis, 1685, 305]:

We advise that you would lay aside (for some time at least) the Notes, Sym-
bols, or Analytick Species (now since Vieta’s time, in frequent use,) in the
construction and demonstration of Geometrick Problems, and perform them in
such method as Euclide and Apollonius were wont to do; that the neatness and
elegance of Construction and Demonstration, by them so much affected, do
not by degrees grow into disuse.

Apart from finding algebraic formulae for triangular figurate numbers, Wallis’s use of
‘notes and symbols’ was sparing, and it was perhaps not so much the algebraic notation
in his text that Fermat or Hobbes objected toas the loss of traditional geometry. Huy-
gens was much younger than Fermat and only twenty-seven when he read theArithmetica
infinitorum, but he too espoused the same kind of classical approach.

The most astute reader of theArithmetica infinitorum, however, was someone who be-
longed to a new generation of mathematicians and who immediately recognized its poten-
tial: Isaac Newton (1642–1727). He read and made extensive notes on it in the winter of
1664–1665, and his notes continued without interruption as he finished reading and began
to explore some of the same themes for himself [Newton,Papers, vol. 1, 96–115]. Where
Wallis had sought the area of a complete quadrant of a circle, as a numerical ratio to the
area of the circumscribed square, Newton set himself the more general and much harder
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task of finding partial areas of the quadrant in terms of a free variable,x. The problem
was now posed in different language, but Newtontackled it as Wallis had, by interpolating
between curves for which the quadrature was easily calculated. Thus he needed, as Wallis
had done, to interpolate values in the places marked∗ in the following sequence:

0 ∗ 1 ∗ 3 ∗ 6 ∗ 10 ∗ 15 ∗ · · · . (12)

Wallis had regarded his sequences as being generated by multiplication and so would have
written 1, 3, 6, 10 as 1× 3

1 × 4
2 × 5

3 × 6
4 × · · · . Newton saw a much simpler method of

interpolating the sequence by means of addition, by noting that it could be written (starting
from anywhere in the sequence) as:

a a + b a + 2b+ c a + 3b+ 3c a + 4b+ 6c a + 4b+ 10c · · · (13)

for suitable values ofa, b, c. Newton, like Wallis, implicitly assumed continuity and so
was able quickly and easily to interpolate the table, and to confirm Wallis’s values. Further,
because his pattern was simple it was not difficult for him to generalize it to two or more
intermediate values, that is to the general coefficients ofxr in the expansion of(1− x)p/q .
Thus Newton discovered, by a purely interpolative numerical method, the general binomial
theorem. Newton’s method was different from Wallis’s, but it was no coincidence that he
wrote his coefficients as Wallis had done, using a sequence of multipliers:

p

q
× p− q

2q
× p− 2q

3q
× p− 3q

4q
× · · · , (14)

or, puttingm= p/q :

m× m− 1

2
× m− 2

3
× m− 3

4
× · · · . (15)

The possibilities opened up by the discovery of the binomial theorem and associated in-
finite series expansions can hardly be overestimated. Newton could now write not only any
rational function ofx as an infinite series, but also trigonometric and logarithmic functions,
all of which he could then integrate term by term. He described his results in a handwritten
tract entitled ‘De analysi per aequationes numero terminorum infinitas’, which he sent to
Isaac Barrow and John Collins in1669, and in the ‘Epistola prior’ and ‘Epistola posterior’
to Leibniz in 1676 [Newton,Papers, vol. 2, 206–247;Correspondence, vol. 2, 20–47, 110–
163]. When Wallis learned of the contents ofthe latter he immediately recognized both the
extent of Newton’s achievement and the debt to theArithmetica infinitorum, and published
long extracts from the letters inA treatise of algebra in 1685 [Wallis, 1685, 330–346].

With Newton’s work the influence and value of theArithmetica infinitorum was no
longer in doubt. It would be many years before the ideas of Wallis or Newton would be
made fully rigorous, but that did not prevent mathematicians from using the new tools now
at their disposal. The book contains the first hints or developments of many of the key
concepts of later mathematics: negative and fractional powers, indices, induction, infini-
tesimals, infinite sums, algebraic formulae fornth terms of sequences, limits, convergence,
continuity, the transcendence ofπ , continued fractions and subscript notation. In many
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ways theArithmetica infinitorum was superseded within 20 years of its publication be-
cause later developments, particularly of thecalculus, rendered Wallis’s methods obsolete;
but the role of his work in inspiring those developments makes it one of the seminal texts
of 17th-century mathematics.
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Manuscripts. Main manuscript is missing, but Huygens bequeathed background manu-
scripts and correspondence to the Library of the University of Leiden, now in the
Codices Hugeniorum. Much background material is inOeuvres complètes, vols. 17
and 18.

Related article: Newton (§5).

1 THE THREE STRANDS OF HUYGENS’S RESEARCH

The Horologium oscillatorium is a superb tapestry woven from the three strands of the
science of Christiaan Huygens (1629–1695): mathematics, mechanics, and technology. As
is usually the case with scientists who have such a leaning, the young Huygens assimi-
lated his mathematical lessons easily and showed a precocious interest in building small
models. He was educated at home by his father, the Dutch poet and diplomat, Constantijn
Huygens, and by tutors, including the mathematician Jan Jansz Stampioen de Jonge. He did
take courses from Frans van Schooten at the University of Leiden and was sent to the Uni-
versity of Breda to obtain a law degree. Despite his training in mathematics and his natural
propensity for science, Christiaan and his brothers were groomed to succeed their father
and grandfather as secretaries to the House of Orange that ruled the Netherlands. However,
a political crisis in 1650 left the House of Orangedeprived of power and Christiaan without
a suitable position. Thus, he was free to pursue his interest in science, supported at home by
his father. In 1665, Louis XIV invited him to head the newly formedAcadémie Royale des
Sciences in Paris, where he resided from 1666 to 1681. He returned home during periods
of illness and after the last return, owing to a changed political climate, was never granted
permission to rejoin the court in Paris [Bos et alii, 1980].

Mathematics dominated Huygens’s early years. During the 1650s he absorbed and ex-
tended the results of the Greeks, especiallyArchimedes. He composed a treatise on float-
ing bodies (published posthumously), related areas under curves to their centers of gravity
(Theoremata de quadratura, 1651), and devised a better method for approximating pi by
inscribed and circumscribed polygons (De circuli magnitudine inventa, 1654). Along with
his Leiden classmates, Johan Hudde and Johan de Witt, he contributed to the second edition
(1659) of van Schooten’s Latin translation and gloss on René Descartes’sGéométrie (§1).
During his years in Paris, Huygens turned away from pure mathematics, although he did
present to theAcadémie explanations of Pierre de Fermat’s methods for finding maxima
and minima and for finding tangents. In his final decade, isolated in the Netherlands, he
returned to mathematics in response to the correspondence of Gottfried Wilhelm Leibniz.

Huygens’s early work in mechanics centered on his confrontations with the theory of
Descartes. As he readily admitted, like many young people of his generation he was se-
duced by the simplicity of Cartesian theory but then discovered yawning holes in the par-
ticulars. Nonetheless, throughout his life he adhered to the basic Cartesian view that all
physical systems can be reduced to matter in motion, relative motion to be precise. His
first major treatise dealt with his analysis of percussion, in which he replaced Descartes’s
erroneous theorems on colliding bodies with his own corrections based on a strict appli-
cation of symmetry inherent in the concept of relative motion. Although he finishedDe
motu corporum ex percussione by 1656 and presented summaries to both theAcadémie
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and the Royal Society of London in the 1660s, Huygens never published the complete
work, leaving it for posthumous publication in 1703.

Another area of research inspired by Descartes was dioptrics, or the study of the conver-
gence of light by lenses. Again Huygens differed with his predecessor, particularly over the
speed of light and over the refraction of light. Again Huygens moved beyond Cartesian ex-
planations by means of a detailed mathematical analysis. And again, while the topic occu-
pied him throughout his life, yet he published no finished treatise on the subject, though he
left a nearly complete manuscript for posthumous publication. Concurrent with his mathe-
matical study of dioptrics, he and his older brother, Constantijn Jr., began grinding lenses
and constructing telescopes. With one of their telescopes he discovered Saturn’s largest
moon, Titan (De Saturni Luna observatio nova, 1656), and observed the planet’s changing
profile, from which he concluded that it was surrounded by a ring (Systema Saturnium,
1659). The brothers wrote a description of their lens grinding machine, exchanging the
manuscript over successive drafts, but never published it; a Latin translation appeared in
the 1703 posthumous edition of Christiaan’sworks. In Paris, Huygens was outshone by
the observational skills of Giovanni Domenico Cassini, but he still advanced certain astro-
nomical topics such as the development of themicrometer. He also became involved in the
improvement of the microscope, initially throughhis father’s interest in the work of Antoni
van Leeuwenhoek.

2 PENDULUM CLOCKS

Clocks were another topic of research that occupied Huygens throughout his life. He in-
vented his first clock regulated by a pendulum in 1656, and was still working on elaborate
variations capable of going to sea in the late 1680s. His marine clocks functioned just well
enough to keep him doggedly following that avenue as the solution to the problem of lon-
gitude. Ironically, although in one of his clocks he used a spring in place of the driving
weight, he never tried using a spring-regulated watch, which he also had invented, at sea
because he felt that the influence of temperature on the spring undermined its accuracy.
Ultimately, as later inventors would show, the solution was to overcome the temperature
variation of a spring and not to try to control the erratic swing of a pendulum.

In 1658 Huygens published a short treatise called simply ‘Horologium’. It described
his most recent design of a clock whose timing was regulated by afreely swinging pendu-
lum. Galileo had already conceived of mounting a pendulum to a clock, and his son had
even attempted to build one according to a design dictated by his blind father. There are
still partisan debates about whether Galileo’s clock should be acknowledged as the first
successful pendulum clock. As with most mechanical devices, the priority debate devolves
into a contest of terms and standards: is the concept enough to ensure precedence or must
there be a model that runs reliably and accurately? Huygens argued for priority based on
the latter criteria, even claiming that his clock could be used to determine with exactness
the inequality of the solar day. Certainly,his book popularized the pendulum clock, and
most models were constructed along the lines described in his patent.

A year later, however, Huygens had moved beyond the original design and was plan-
ning a second edition of his book that wouldnot only describe the new pendulum clock
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but also detail the mathematical and physical underpinnings of its construction. The book,
titled Horologium oscillatorium, sive de motu pendulorum ad horologia aptato demonstra-
tiones geometricae (‘The Pendulum clock, or geometrical demonstrations concerning the
motion of pendulums fitted to clocks’), was not published until 1673, and even then it was
unfinished. Its appearance at that moment had more to do with politics than science, for
Huygens was under pressure to demonstrate his allegiance to Louis XIV during a time
when his royal patron was at war with the Netherlands. The dedication to the king is ripe
with the expected obsequious compliments, including praise for Louis’s generosity even
in times of war. To his brother, Huygens confided that he would rush past the bonfires
celebrating French victories with downcast eyes.

3 THE FIVE PARTS OFHOROLOGIUM OSCILLATORIUM

The contents of Huygens’s book are summarized in Table 1. He divided it into five parts that
were tightly related. The first described the new clock and how to build it (Figure 1). Many
features of the earlier design were carried over, such as the use of a small weight to adjust
the timing of the swing, the verge and crown-wheel escapement mechanism for connecting
the pendulum to the gears, and the endless cord or chain for winding the clock without
stopping it. The radical innovation was that the pendulum no longer swung freely but was
limited in its motion by thin metal plates mounted on either side of the pivot point. The
plates were bent to a cycloidal shape in the vertical plane, and this part of the book included
a description of how to create a cycloid, by rolling a circular object along a straight edge.

At the end of this part, Huygens described a variant of the clock for use at sea, in
which the regulating apparatus was essentially stretched out in the horizontal, noncycloidal
plane in order to compensatefor the tilting of the clock fore and aft. The pendulum was a
triangular contrivance that consisted of a cord fastened at either end to a pair of cycloidal
plates with the bob hung at the cord’s midpoint. Along with the two cycloidal clocks,
Part 1 also included a table by which their time could be adjusted for the inequality of
the solar day. As Huygens explained, owing to the eccentricity of the earth’s orbit and the
obliquity of the ecliptic, the length of a day varies and, thus the time given by a clock,
which beats at a constant rate and so measures a mean solar day, must be adjusted if it is
to be scientifically accurate. This adjustment for the Equation of Time, as it is called, was
essential if the clocks were to be used for astronomical observation, on land or at sea.

The primary purpose of the next two parts of the book was to prove that the cycloidal
pendulum was isochronous; that is, the bob would complete its swing at a uniform rate
independent of the magnitude of the swing. Thus, the clock would keep exact time irre-
spective of anomalies in the pendulum’s oscillation. Despite the enduring myth, Galileo’s
claim that a freely swinging pendulum is isochronous is wrong, although if the pendulum
is made to swing through very small arcs, as it does in a grandfather clock or in Huygens’s
1658 clock, the variation is negligible.

Part 2 comprised a set of propositions on fall,beginning with the hypothesis of rectilin-
ear inertial motion and then introducing compound motion owing to gravity. The object in
motion was an idealized point mass; gravity was assumed and not explained. In this section
Huygens took up Galileo’s analysis of free fall and fall along inclined planes and extended
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Table 1. Contents by grouped propositions of Huygens’s book. 161 pages.

Pt., Props. Topics

I Description of a clock regulated by a cycloidal pendulum; table for equation
of time; marine clock.

II, 1–8 Bodies falling freely and through inclined planes [Galilean section].

II, 9–11 Fall, and subsequent ascent, in general.

II, 12–15 Tangent of cycloid; history of the tangent problem; generalization to similar
curves.

II, 16–26 Fall through cycloid.

III, 1–4 Definition of evolute and its companion; their relationship.

III, 5–6, 8 Evolute of cycloid and parabola.

III, 7, 9a Rectification of cycloid and semicubical parabola; history of the problem.

III, 9b–e Circles equal in area to surfaces of conoids; rectification of parabola equiv-
alent to quadrature of hyperbola; approximation of the latter by logarithms.

III, 10 Evolutes of ellipses and hyperbolas; rectifications of those evolutes.

III, 11 Evolute of any given curve; rectification of that evolute; examples.

IV, 1–6 Simple pendulum equivalent to a pendulum compounded of weights along
its length.

IV, 7-20 Center of oscillation of a plane figure and its relationship to center of
gravity.

IV, 21–22 Centers of oscillation of common plane and solid figures.

IV, 23–24 How to adjust a pendulum clock using a small weight; application to a
cycloidal pendulum.

IV, 25 Universal measure of length based on seconds pendulum.

IV, 26 Constant of gravitational acceleration.

V Description of a clock regulated by a rotating pendulum; 13 theorems on
centrifugal force stated without proofs.

it to fall along curves, where the curve was approximated at each point by its tangent plane.
Although completely general, the propositions were background for the main theorem in
which Huygens demonstrated that, given a cycloid erected in the vertical plane with its
axis perpendicular and its vertex at the bottom, no matter where along the inverted cycloid
a body is released it will reach the bottom in a fixed amount of time; that is, fall along an
inverted cycloid is isochronous. In modern terms, Huygens showed that the time of fall is
a constant(π/2)

√
(2D/g) seconds, whereD is the diameter of the circle that generated

the cycloid (and 2D is the length of the pendulum in Part 1). Or, to phrase the conclusion
using proportions, as Huygens did, the time of fall from any point along the cycloid is to
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Figure 1. Huygens’s diagrams for his clock design.
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the time of free fall through the diameter of the generating circle as a semicircumference
of a circle is to its diameter.

In Part 3 Huygens went further into the mathematics embodied in his clock. He intro-
duced the concept of an evolute, a curve that is ‘unrolled’ (evolutus in Latin) to create a
second curve, which Huygens called ‘that described by the unrolling’ and later mathemati-
cians labeled either ‘evolvent’ or ‘involute’. Although in this section he never discussed
the technological application behind his theory, the pendulum of his clock served as his
model: if a cord were ‘unrolled’ off of one curved plate, the bob would trace out the in-
volute. Given the results of Part 2, he obviously wanted the curve swept out by the bob to
be a cycloid. When he first discovered theisochronism of the cycloid in 1659, he deter-
mined its evolute using infinitesimal techniques. He took two points very close together on
the cycloid, derived the point of intersection of the perpendiculars through them, and de-
duced the curve defined by all such points. That evolute would be the shape into which the
curved plates should be bent. Imagine his surprise to discover that it was another cycloid.
For the published derivation, Huygens banished infinitesimals and proved that the evolute
of a cycloid is another cycloid using a sequence of propositions that defined the reciprocal
relationship between the tangent of the evolute and the perpendicular (we would now say
normal) of the involute.

In Part 4 Huygens finally introduced physical parameters into his analysis by addressing
the problem of the compound pendulum [Gabbey, 1982]. He began by explicitly stating the
definitions of a pendulum, as any figure that can continue reciprocal motion around a point
or axis by means of its own weight; of a simple pendulum, as one that has a weightless cord
and a point mass bob; and of a compound pendulum, as any suspended object with weight
distributed throughout. Further definitions included what he meant for two pendulums to
be isochronous (they were to swing through equal arcs in equal times), from which he
could then speak of the center of oscillation of a suspended object as the point along the
axis at which to situate the bob of a simple pendulum that would be isochronous with
the compound one. A few more definitions werefollowed by the fundamental hypothesis
of this passage, usually referred to as Torricelli’s Principle: a system of weights cannot
rise of its own accord above its center of gravity. Applying that hypothesis, Huygens was
able to derive a simple pendulum that was isochronous to a given compound pendulum,
first for one consisting of a set of weights distributed along a pendulum’s cord, then for a
general figure, and then, as a concluding tour de force, for a whole set of plane and solid
figures. Commentators have noted that Huygens did not break free of gravity and deal with
a generalized system of masses, most particularly a rotating body.

At last, as the fourth part ended, Huygens drew together all of his evidence and applied it
to the clock described in Part 1. Parts 2 and 3 had justified the introduction of the cycloidal
plates to his clock by mathematically demonstrating that the bob of a pendulum that banks
along cycloidal plates as it swings will trace out a cycloid. Thus the clock described in
Part 1 was theoretically isochronous. Part 4 gave him a way to account for the mass of the
cord and bob and to adjust the rate of swing of the pendulum by means of a small weight
that could be moved up and down the cord. Thus the clock could be made physically as
exact as possible. Frustrated with international variations in the length of a foot, Huygens
next proposed a universal measure based on this very accurate clock. He defined a clock-
foot to be equal to one-third the length of a simple pendulum that was isochronous with
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a cycloidal-pendulum clock that had been previously adjusted to beat precisely once a
second. Ever the perfectionist, Huygens exposed the flaw in his beautiful cycloidal clock:
all his theorems had dealt with a pendulum of fixed length but, as the cycloidal pendulum
banked along its cycloidal plates, its cord was foreshortened. However, he rationalized, it
did not introduce that large an error.

In the last proof of the book, Huygens finally returned to the problem that had insti-
gated his work on the cycloidal pendulum: find the distance traversed in a given time by a
body falling perpendicularly under the influence of gravity. If the time is one second, the
distance fallen from rest is numerically one-half the constant of gravitational acceleration
(the modern formula isd = 1/2gt2). By the last proposition of Part 2, the time of free
fall can be related to the length (3 clock-feet) of a cycloidal pendulum that swings one arc
a second. Inverting the concluding proportion of that proposition yields: the time a body
falls freely through one-half the length of the pendulum (18 inches= the diameter of the
generating circle of the cycloid) is to one-half a second (the time it takes the pendulum to
reach bottom= half its swing) as the diameter (d) of a circle is to its semicircumference
(πd/2). Huygens approximatedπ by 355/113; therefore the time of fall through 18 inches
is (1/2)× 2× (113/355) seconds or 19.1 thirds (a sixtieth of a second). The Galilean for-
mula for relating distance fallen to time-squared gives:

distance fallen in one second (60 thirds) is to 18 inches as(60)2 is to (19.1)2, (1)

yielding a distance of 14 feet and 9.6 inches.
At last the modern reader can deduce the value of the constant of gravitational accelera-

tion, which Huygens never expressed directly. It is twice the distance Huygens did derive,
or 29 feet, 7.2 inches in clock-feet, which is about 987 cm per sec2 in the units that even-
tually did become a universal measure. Yielding to contemporary measure for his Parisian
locale, Huygens converted his value to 15 Parisian feet, one inch.

In an odd anticlimax, Huygens then proceeded to describe an experiment to find the
constant using a pendulum not attached to a clock but rather fixed to a wall and with its bob
attached to a lead weight by a thin cord, which then was to be severed by a flame, leaving
the two objects to swing/fall freely simultaneously. The bob of the pendulum, which was
to be blackened with soot, was to hit a paper scale dragged along the wall by the falling
weight. Strange as it sounds, Huygens probably executed just such an experiment, because
he performed one similar to it in 1659 and determined a value very close to that derived
from the clock.

In Part 5 ofHorologium oscillatorium Huygens introduced another clock, this one based
on a three-dimensional mathematical model that paralleled the design elements in the clock
of Part 1. Of course, the earlier clock was three-dimensional, but Huygens had treated it
as a two-dimensional system; the pendulum was presumed to swing in a plane and the
curved plates along which it banked were shaped only for that plane (in the other dimension
they were straight). The progenitor of this second clock had also begun life with a freely
swinging pendulum, but its bob had rotated in a circle and hence the cord traced out a cone.
But as with the cycloidal clock, he modified the clock of Part 5 so that it was constrained by
a curved plate to move isochronously. In one of his discoveries made in 1659, Huygens had
shown that a ball circulating inside a chalice shaped like a paraboloid (the surface generated
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by revolving a parabola about its axis) completed any circle in the same amount of time,
regardless of how high or low the ball was in the chalice; the paraboloid was isochronous.
With his theory of evolutes, he could easily transfer his result to the rotating pendulum
and deduce the proper shape for a curved plate that would hold the revolving bob onto the
imaginary surface of a paraboloid. By Part3, Proposition 8, the evolute of a parabola is
a semicubical parabola. So, if a pendulum were mounted to a curved plate shaped like a
semicubical parabola and if the combined pendulum and plate were then rotated about an
axis, the bob would isochronously sweep out a paraboloid. Like its cycloidal brother, the
paraboloidal clock would theoretically keep perfect time.

With the description of the paraboloidal pendulum clock,Horologium oscillatorium
ended. Huygens did not continue on and provide a detailed mathematical study to accom-
pany the second clock which would parallel the analysis for the first. Instead, he merely
appended a list of thirteen theorems regarding motion in a circle that had guided his cre-
ation of the clock in 1659, but he withheld their proofs. Huygens’s stated intent was to save
the results for a larger work that would present his definitive explanation of circular motion
and centrifugal force. Alas, that work never materialized, although hints of it are found in
his manuscripts. The original proofs finally appeared in the 1703 posthumous edition un-
der the titleDe vi centrifuga. Even without the added material,Horologium oscillatorium
is a masterpiece of mathematical physics, but in holding back his work on circular motion
Huygens further undermined his standing and influence.

Many of the propositions in the book had nothing to do with the clock but everything to
do with the history of Huygens’s ideas. He had begun his mathematical study of pendulums
when an attempt to measure the gravitational constant using a pendulum failed to give
consistent results. Rather than continue the experiment, he idealized it into a mathematical
study comparing free fall and fall along a circle. His first attempt to solve the mathematical
problem by essentially retracing Galileo’s work on fall ended in failure at the point where
he tried to extend his results to curvilinearfall. He abandoned the Galilean approach and
tackled the problem directly by using a very personal form of infinitesimal analysis, a
strange fusion of the Cartesian analytic geometry that he had learned from van Schooten
with classical geometry and contemporary infinitesimal techniques. Significantly, when he
came to publish the results, he reverted to a strictly classical presentation that built upon
his Galilean study.

4 ON HUYGENS’S MATHEMATICAL STYLE

Parts 2 and 3 summarized many of the achievements of 17th-century mathematics, particu-
larly Huygens’s own contributions. They were written in the classical style of Archimedean
geometry, with every step strictly substantiated by an appropriate proposition. They were
written in the classical language of proportions, with nothing displayed in easily recogniz-
able formulas. In a quintessential tribute to Archimedes, Huygens paused in the middle of
Part 3 to reduce the areas of surfaces of conoids to the areas of circles. The results paral-
leled the propositions given in his earlyTheoremata de quadratura of 1651, in which he
had related areas of conics to their centers of gravity.

Despite his classicism, Huygens was at pains to place his discoveries in the context of
contemporary priority debates that accompanied the advances in quadrature (the determi-
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nation of the area of a curved figure) and rectification (the determination of the length of a
curve), all material that set the stage for the growth of the calculus. In Part 2 he presented
his method for finding the tangent to the cycloid and reviewed the history of earlier meth-
ods. In Part 3 he asserted his claim that he was at the forefront of discoveries regarding
the rectification of important curves, including his beloved cycloid. In fact, he was able
to develop a general method of rectification based on evolutes. After all, as the cord un-
wound off the evolute, it literally straightened, or rectified, the curve. But the method had
a major flaw, for it rectified the evolute of a given curve, not the curve itself. He closed
Part 3 with derivations of the evolutes of theellipse, hyperbola, and higher order conics
accompanied by the rectifications of those evolutes. More significant was his reduction of
the rectification of the parabola to the quadrature of the hyperbola, which he then solved
by numerical approximation using logarithms. In Part 4, ever seeking his due, he sketched
his abbreviated history of the problem of the center of oscillation, particularly referring to
his early exposure to the subject via his youthful correspondence with Marin Mersenne.

5 UNFOCUSED RECEPTION

Because much of the information in theHorologium oscillatorium had become known
during its 14-year gestation, its reception was piecemeal. While clerking for diplomatic
missions in 1660, Huygens had already shown off a clock based on the cycloidal model
in both Paris and London. Indeed, his reputation as a designer of clocks is one reason
that he later received appointment to theAcadémie. Very few clocks were actually built
to the cycloidal design, and Huygens even admitted that a free pendulum with a small
swing would suffice. But he was adamant about the superiority of his design as a scientific
instrument. Alas, before he died he learned that his carefully calibrated clocks did not beat
the same in every location when members of theAcadémie took them along on distant
expeditions. So confident was he that the clocks were accurate that he correctly surmised
that the shape of the Earth must be affecting the timing. The constant of gravitational
acceleration was not, it seems, quite constant.

The reception of the mechanicaltheory was also diffused by the delay in publication.
The isochronism of the cycloid becameknown along with the clock that embodied it.
Lord William Brouncker even made several attempts to prove the result before Huygens
published his own. Huygens’s derivation of the center of oscillation for compound pen-
dulums engendered a debate in theAcadémie when he presented a draft version to his
colleagues. The major objection concerned his fundamental hypothesis, the Torricelli Prin-
ciple. Huygens revised sections of Part 4 in response to criticisms, particularly those of
Gilles Personne de Roberval. Still, objections continued after publication. Eventually Jakob
Bernoulli replaced the fundamental hypothesis with the law of the lever, proved that the
center of oscillation is equal to the center of percussion, and extended the results to rotat-
ing bodies (1703). Moreover, Huygens’s studies of collisions and of compound pendulums
became elements of thevis viva debate at the turn of the century, as partisans tried to define
precisely what they meant by force,motion, and conservation of motion.

Huygens’s early work on circular motion became absorbed into the larger debate over
the vortex theory and the cause of gravity. Before going to Paris, he had tended to treat
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mechanics as a strictly mathematical system. But once in Paris and confronted with op-
ponents of Cartesianism, he was forced to assess the foundations of his mechanical be-
liefs, most particularly with respect to the vortex explanation of centrifugal force. Pre-
sumably Huygens withheld publishing the proofs of his theorems on circular motion in
Horologium oscillatorium because he wanted to include them in a broader study of motion
that would codify his position on vortices. The task ballooned when Huygens realized he
had to respond to Newton’sPrincipia, which essentially demolished Cartesian vortices.
Ironically, Newton claimed to be modeling his masterpiece onHorologium oscillatorium
and he saluted its author by calling his new force ‘centripetal’ (compare §5.2.1).

The influence of Huygens’s mathematical theory of evolutes was fleeting but important.
First, he himself applied evolutes to optics in order to derive the wave front of light as it
moved through Iceland spar. Indeed, he thought that his explanation of the strange double
refraction that occurs was strong proof that light must move in a wave. In particular, he
gave the definition of a wave front that is now referred to as Huygens Principle; namely, as
the common tangent (envelope) to all the secondary waves that emanate from the previous
position of the wave. Moreover, he extended this approach by finding the wave fronts
(called caustics) formed by reflection andrefraction in a spherical surface, where light
rays do not converge. The Bernoulli brothers generalized this work to other nonconvergent
cases.

Huygens presented his theory inTraité de la lumière (1691). Published jointly with that
work was hisDiscours de la cause de la pesanteur, which summarized his latest thoughts
on circular motion. Even with that, however, he did not complete the work promised by
Horologium oscillatorium, Part 5. In addition, in Part 1, Huygens had remarked that he did
not know if any other curve besides the cycloid was its own evolute. By 1678 he himself
discovered that the epicycloid also replicated itself when ‘evolved’, and in 1692 Jakob
Bernoulli showed that the logarithmic spiral likewise qualified.

Implicit in the theory of evolutes is the mathematical concept of the radius of curvature.
At any point an involute can be approximated by a circle centered on its evolute, where
the ‘unrolled’ line connecting the two curves is the radius of that circle and hence, by
definition, is the radius of curvature.

It is debatable whether Huygens really thought of a curve as being continuously mea-
sured in that way, especially since he was just as likely to approximate a curve by a parabola
as by a circle. However, when Leibniz more formally introduced the ‘osculating’ circle,
Huygens’s reaction was to claim priority because his general derivation of an evolute was
similar. Indeed, it was, as his proof of Part 2, Proposition 11 showed. In this general case,
Huygens reverted to the infinitesimal approach that he had used originally to derive the
evolute of the cycloid. From the relationship of involute and evolute, any two normals to
the curveABF, such asBMD andFNE, are tangent to the evolute atD andE (Figure 2).
If B andF are indefinitely close, then bothD andE can be approximated by the point
of intersection,G, of the two normals and the curve betweenB andF can be treated
as a line segment, namely as the extension of the tangent,BH, to ABF at B. Draw FPL
andBK perpendicular to the axisAL, and drawBPO perpendicular toFPL. By the sim-
ilarity of trianglesBOG andMNG, BG/MG = BO/MN. Huygens then decomposed this
proportion intoBG/MG = BO/BP× BP/MN. SinceBP = KL and, by similar triangles,
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Figure 2. Huygens’s derivation of an evolute.

BO/BP=HN/HL, the proportion can be rewritten as

BG/MG=HN/HL×KL/MN. (2)

This composed proportion was Huygens’s fundamental formula for deriving any point,
G, on the evolute to the curveABF. It is reducible to the modern formula for the ra-
dius of curvature for a twice-differentiable curve. However, only with Jakob Bernoulli
do we get an analytical expression that represents the rate of change of the primary curve
((ds/dx)3/(d2y/dx2)). Did Huygens determine curvature? As with priority claims about
the pendulum clock, the answer depends upon the criteria.

The lasting importance ofHorologium oscillatorium stemmed more from its applied
mathematics than from its pure mathematics. The next generation of mathematicians spent
a great deal of time trying to find curves that satisfied specific physical properties. What
other curve, if any, is a tautochrone (curve in which fall is isochronous)? What curve does a
hanging chain delineate? What shape does a sail take? What is the curve of fastest descent?
These were the test cases for the new mathematical technique Leibniz called ‘calculus’.
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While he was alive, Huygens was still able to find many of the solutions using his own
ad hoc infinitesimal geometrical methods. But the younger generation reduced it all to
formulas and then generalized those.

Foremost, Huygens gave us precise time. His clocks were the first timekeepers to be
accurate enough to be reliable in scientific experiments. Once time could be accurately
measured, other variables could be graphed against time. From that foundation, one could
then proceed to consider instantaneous variation. Although he himself did not go down
that path, Huygens opened the way with his exacting mathematical dissections of physical
problems into a minimum of parameters. Others, especially the Bernoullis, built on his
examples. InHorologium oscillatorium Huygens extolled the cycloid, citing ‘the power of
this line to measure time’. What a remarkablestatement of the mathematical reductionism
this made him such an important figure in the foundation of applied mathematics.
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CHAPTER 4

GOTTFRIED WILHELM LEIBNIZ, FIRST
THREE PAPERS ON THE CALCULUS

(1684, 1686, 1693)

C.S. Roero

The invention of the differential and integral calculus, in these papers printed in theActa
Eruditorum, is one of the most important and revolutionary developments in mathematics.
Leibniz and Newton share out the glory of the invention of the infinitesimal calculus, that
they found independently. The priority of publication is due to Leibniz, who had the fortune
to be followed by mathematicians of first rank who collaborated on the diffusion of his
methods.

First publications.

a) ‘Nova methodus pro maximis et minimis, itemque tangentibus, quae nec frac-
tas, nec irrationales quantitates moratur, et singulare pro illis calculi genus’,Acta
Eruditorum, (1684), 467–473+ Tab. xii. October issue.

b) ‘De geometria recondita et analysi indivisibilium atque infinitorum’,Acta Erudi-
torum, (1686), 292–300. June issue.

c) ‘Supplementum geometriae dimensoriae, seu generalissima omnium tetragonis-
morum effectio per motum: similiterque multiplex constructio lineae ex data tan-
gentium conditione’,Acta Eruditorum, (1693), 385–392. September issue.

Photoreprint of a). In P. Dupont and C.S. Roero,Leibniz 84. Il decollo enigmatico del
calcolo differenziale, Rende (CS): Mediterranean Press, 1991, 154–161.

Reprints of a). In Historia fluxionum, sive tractatus originem [. . .] exhibens (ed. J. Raph-
son), London: Pearson, 1715, 19–26. Also in [G. G. L.],Nova methodus [. . .], Opuscula
omnia Actis Eruditorum [. . .], Venice: J.B. Pasquali, vol. 1, 1740, 270–275.

Reprints of a)–b). InDie Werke von Jakob Bernoulli, vol. 5 (ed. A. Weil and M. Mattmüller),
Basel: Birkhäuser, 1999, 13–27.

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
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Reprints of a)–c). In Leibniz,Opera omnia (ed. L. Dutens), vol. 3,Opera mathematica,
Geneva: de Tournes, 1768, 167–172, 188–194, 287–293. Also inLeibnizens mathema-
tische Schriften (ed. C.I. Gerhardt), vol. 5, Halle: Schmidt, 1858 (photorepr. Hildesheim:
Olms, 1971), 220–226, 226–233, 294–301.

Partial English translation of a)–c) by D.J. Struik in hisA source book in mathemat-
ics 1200–1800, Cambridge, MA: Harvard University Press, 1969, 272–280, 281–282
(part), 282–284 (part). [a) repr. in J. Fauvel and J. Gray (eds.),The history of mathemat-
ics: a reader, London: Macmillan, 1987, 428–434.]

Partial English translation of a) and b) by E. Walker in D.E. Smith (ed.),A source book
in mathematics, vol. 2, New York: McGraw-Hill, 1929 (repr. New York: Dover, 1959),
620–623, 624–626.

German translation of a) and c) by G. Kowalewski in his (ed.),Leibniz über die Analy-
sis des Unendlichen, Leipzig: Engelmann, 1908 (Ostwald’s Klassiker der exakten Wis-
senschaften, no. 162), 3–11, 72–76; 24–34, 79.

French translation of a) by P. Mansion inMathesis, 4 (1884), 177–185. [Repr. in hisRé-
sumé du cours d’analyse infinitésimale de l’Université de Gand, Paris: Gauthier–Villars,
1887, 199–208.]

French translation of a)–c) by M. Parmentier in his (ed.),G.W. Leibniz, La naissance du
calcul différentiel, Paris: Vrin, 1989, 96–117, 131–143, 252–267.

Italian translations of a). 1) By E. Carruccio inPeriodico di matematiche, (4) 7 (1927),
285–301. [Repr. in G. Castelnuovo,Le origini del calcolo infinitesimale nell’era mo-
derna, Milano: Feltrinelli, 1938 (repr. 1962), 163–177.] 2) By C.S. Roero in P. Dupont
and Roero,Leibniz 84. Il decollo enigmatico del calcolo differenziale, Rende (CS):
Mediterranean Press, 1991, 23–49.

Partial Italian translation of b) and c) by L. Giacardi and C.S. Roero, in P. Dupont,Appunti
di storia dell’analisi infinitesimale, vol. 2, part 2, Turin: Cortina, 1982, 862–864, 873–
876.

Russian translation of a) by A.P. Jushkevich inZhurnal uspechi matematicheskich nauk, 3
(1948), 166–173.

Spanish translations of a)and b). 1) By J. Babini in his (ed.),El calculo infinitesimal, 1972,
41–51. 2) By T. Martin Santos in Leibniz,Análisis infinitesimal, Madrid: Tecnos, 1987,
3–29.

Related articles: Descartes (§1), Newton (§5), Berkeley (§8), Euler on the calculus (§14).

1 LEIBNIZ’S RESEARCH ON THE INFINITESIMAL MATHEMATICS

The invention of the Leibnizian infinitesimal calculus dates from the years between 1672
and 1676, when Gottfried Wilhelm Leibniz (1646–1716) resided in Paris on a diplomatic
mission. In February 1667 he received the doctor’s degree by the Faculty of Jurisprudence
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of the University of Altdorf and from 1668 was in the service of the Court of the chancel-
lor Johann Philipp von Schönborn in Mainz. At that time his mathematical knowledge was
very deficient, despite the fact that he had published in 1666 the essayDe arte combina-
toria. It was Christiaan Huygens (1629–1695), the great Dutch mathematician working at
the Paris Academy of Sciences, who introduced him to the higher mathematics. He recog-
nised Leibniz’s versatile genius when conversing with him on the properties of numbers
propounded to him to determine the sum of the infinite series of reciprocal triangular num-
bers. Leibniz found that the terms can be written as differences and hence the sum to be 2,
which agreed with Huygens’s finding. This success motivated Leibniz to find the sums of a
number of arithmetical series of the same kind, and increased his enthusiasm for mathemat-
ics. Under Huygens’s influence he studied Blaise Pascal’sLettres de A. Dettonville, René
Descartes’sGeometria (§1), Grégoire de Saint-Vincent’sOpus geometricum and works by
James Gregory, René Sluse, Galileo Galilei and John Wallis.

In Leibniz’s recollections of the origin of his differential calculus he relates that reflect-
ing on the arithmetical triangle of Pascal he formed his own harmonic triangle in which
each number sequence is the sum-series of the series following it and the difference-series
of the series that precedes it. These results make him aware that the forming of difference-
series and of sum-series are mutually inverse operations. This idea was then transposed
into geometry and applied to the study of curves by considering the sequences of ordi-
nates, abscissas, or of other variables, and supposing the differences between the terms of
these sequences infinitely small. The sum of the ordinates yields the area of the curve, for
which, signifying Bonaventura Cavalieri’s ‘omnes lineae’, he used the sign ‘

∫
’, the initial

letter of the word ‘summa’. The difference of two successive ordinates, symbolized by ‘d ’,
served to find the slope of the tangent. Going back over his creation of the calculus Leibniz
wrote to Wallis in 1697: ‘The consideration of differences and sums in number sequences
had given me my first insight, when I realized that differences correspond to tangents and
sums to quadratures’ [Gerhardt, 1859, 25].

The Paris mathematical manuscripts of Leibniz published by Gerhardt [1846, 1855,
1863], translated into English in [Child, 1920] and discussed in detail by Hofmann [1949,
1974] show Leibniz working out these ideas to develop an infinitesimal calculus of dif-
ferences and sums of ordinates by which tangents and areas could be determined and
in which the two operations are mutually inverse. The reading of Blaise Pascal’sTraité
des sinus du quart de circle gave birth to the decisive idea of the characteristic trian-
gle, similar to the triangles formed by ordinate, tangent and sub-tangent or ordinate, nor-
mal and sub-normal [Gerhardt, 1858, 399–400]. Its importance and versatility in tangent
and quadrature problems is underlined by Leibniz in many occasions, as well as the spe-
cial transformation of quadrature which he called the transmutation theorem by which
he deduced simply many old results in the field of geometrical quadratures [Bos, 1980,
62–65]. The solution of the ‘inverse-tangent problems’, which Descartes himself said
he could not master, provided an ever stronger stimulus to Leibniz to look for a new
general method with optimal signs and symbols to make calculations simple and auto-
matic.
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2 THE ENIGMATIC FIRST PUBLICATION

The first public presentation of differential calculus appeared in October 1684 in the new
journalActa Eruditorum, established in Leipzig, in only six and an half pages, written in
a disorganised manner with numerous typographical errors. In the title, ‘A new method
for maxima and minima as well as tangents, which is impeded neither by fractional nor
irrational quantities, and a remarkable type ofcalculus for them’, Leibniz underlined the
reasons for which his method differed from—and excelled—those of his predecessors.
In his correspondence with his contemporaries and in the later manuscript ‘Historia et
origo calculi differentialis’, Leibniz predated the creation of calculus to the Paris period,
declaring that other tasks had prevented publication for over nine years following his return
to Hannover [Gerhardt, 1846, 4–6, 14–17; 1858, 395–398, 404–407].

Leibniz’s friends Otto Mencke and Johann Christoph Pfautz, who had founded the sci-
entific journalActa Eruditorum in 1682 in Leipzig, encouraged him to write the paper;
but it was to be deemed very obscure and difficult to comprehend by his contemporaries.
There is actually another more urgent reason which forced the author to write in such a hur-
ried, poorly organised fashion. His friend Ehrenfried Walter von Tschirnhaus (1651–1708),
country-fellow and companion of studies in Paris in 1675, was publishing articles on cur-
rent themes and problems using infinitesimal methods which were very close to those that
Leibniz had confided to him during their Parisian stay [Tschirnhaus, 1682; 1683a, 122–
124; 1683b, 433–437]; Leibniz risked having his own invention stolen from him [Hess,
1986, 73]. The structure of the text, which was much more concise and complex than the
primitive Parisian manuscript essays, wascomplicated by the need to conceal the use of
infinitesimals. Leibniz was well aware of the possible objectionshe would receive from
mathematicians linked to classic tradition who would have stated that the infinitely small
quantities were not rigorously defined, that there was not yet a theory capable of proving
their existence and their operations, and hence they were not quite acceptable in mathe-
matics.

Leibniz’s paper opened with the introduction of curves referenced to axisx, variables
(abscissas and ordinates) and tangents. The context was therefore geometric, as in the
Cartesian tradition, with the explicit representation of the abscissa axis only. The concept
of function did not yet appear, nor were dependent variables distinguished from indepen-
dent ones. The characteristics of the introduced objects were specified only in the course
of the presentation: the curve was considered as a polygon with an infinity of infinitesimal
sides (that is, as an infinitangular polygon), and the tangent to a point of the curve was
the extension of an infinitesimal segment of that infinitangular polygon that represented
the curve. Differentials were defined immediately after, in an ambiguous way. Differen-
tial dx was introduced as a finite quantity: a segment arbitrarily fixeda priori, which is
even shown in Figure 1. This definition however would never be used in applications of
Leibniz’s method, which was to operate with infinitely smalldx in order to be valid. The
ordinate differential was introducedapparently with a double definition: ‘dv indicates the
segment which is todx asv is to XB, that is,dv is the difference of thev’.

In the first part Leibniz establishes the equality of the two ratios (dv : dx = v : XB),
the equality deduced by the similitude between the finite triangle formed by the tangent,
the ordinate and the subtangent, and the infinitesimal right-angle triangle whose sides are
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Figure 1. The top half of Leibniz’s principal diagram for his first paper.

the differentials thereof and is called ‘characteristic triangle’. But the proportion contains
a misprint in the expression for the subtangent that would be corrected only in the general
index of the first decade of the journal [Acta Eruditorum, 1693], ‘Corrigenda in Schedias-
matibusLeibnitianis, quae Actis Eruditorum Lipsiensibus sunt inserta’). The second part
(‘dv is the difference of thev’) mentioned the difference between the two ordinates which
must lie infinitely close:dv = v(x + dx)− v(x). In actual fact, the proportion was needed
to determine the tangent line and the definition ofdv was consequently the second, as
explicitly appeared in three of Leibniz’s Parisian manuscripts [Gerhardt, 1855, 140–155;
trans. Child, 1920, 124–144]. Considering the corresponding sequences of infinitely close
abscissas and ordinates, Leibniz called differentials into the game as infinitely small differ-
ences of two successive ordinates (dv) and as infinitely small differences of two successive
abscissae (dx), and established a comparison withfinite quantities reciprocally connected
by the curve equation [Dupont and Roero, 1991, 65–71].

These first concepts were followed, without any proof, by differentiation rules of a con-
stanta, of ax, of y = v, and of sums, differences, products and quotients. For the latter,
Leibniz introduced double signs, whereby complicating the interpretation of the operation.
In [Acta Eruditorum, 1693] he would decide to abolish ‘ambiguous signs’ in divisions and
their interpretation. The proofs of the rules by means of infinitesimal differentials appeared
in Leibniz’s Parisian manuscripts (see above), where higher-order differentials or products
of differentials have to be discarded with respect to ordinary differentials, and similarly
ordinary differentials have to be discarded with respect to finite quantities. Conscious of
the criticism that the use of the infinitely small quantities would have had on the contempo-
raries, Leibniz chose to hide it in his first paper; many years later, replying to the objections
of Bernard Nieuwentijt, he showed in a manuscript how to prove the rules of the calculus
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without infinitesimals, based on a law of continuity [Gerhardt, 1846, 39–50; trans. Child,
1920, 147–155]. In his ‘Nova methodus’ of October 1684 he would then go onto studying
the behaviour of the curve in an interval, specifically increasing or decreasing ordinates,
maxima and minima, concavity and convexity referred to the axis, the inflexion point and
deducing the properties of differentials.

Leibniz implicitly always considereddx to be increasing positively, corresponding to
the way in whichdv was analysed. Ifdv were positive, the tangent would meet thex-axis
towards the origin of the co-ordinates. This happened when the ordinates increased with the
abscissae; ifdv were negative, then the tangent would be drawn on the opposite side, which
happened when the ordinates decreased when the abscissas increased. He then reversed
matters and erroneously affirmed that increasing ordinates corresponded to positivedv

and tangent leading to origin while decreasing ordinates corresponded to negativedv and
tangent traced on the opposite side.

At this point, Leibniz neglected the case in which the curve increased with a point of in-
flexion having tangent parallel to thex-axis, and also other cases he considered afterwards
in his manuscripts. After observing thatdv = 0 for maxima or minima and the tangent line
was parallel to the axis, it appeared that the differential was to be set equal to zero to find
the maxima or minima and that the condition of the differential equalling zero at a certain
point would determine the presence of maxima or minima there. Leibniz did not ques-
tion the existence of singular points, maybe because the matter was already evident from
geometric or physical considerations, and he was only concerned about their exact deter-
mination. Only several years later did the idea dawn on him that the sign of the differential
ratio (or of the derivative) changed from+ to −, which could occur either through zero
or through infinite (as specified by Johann Bernoulli and Guillaume François de l’Hôpital
(1661–1704) and published in the textbookAnalyse des infiniment petits of 1696) or main-
tain the function finite-valued and not null (as later proved by Augustin-Louis Cauchy:
§25) was fundamental in determination of maxima and minima.

After introducing the concept of convexity and concavity referred to the axis and linked
to increase and decrease of ordinates and of theprime differentials, Leibniz dealt with the
second differentials, simply called ‘differences of differences’ for which constantdx was
implicitly presupposed. The inflexion point was thus defined as the point where concavity
and convexity were exchanged or as a maximum or minimum of the prime differential.
These considerations, burdened by the previous incorrect double implications, would lead
him to state as necessary and sufficient conditions which were in fact only necessary. They
will be elucidated in l’Hôpital’s textbook of 1696.

Leibniz then set out the differentiation rules for powers, roots and composite functions.
In the latter case, he chose to connect a generic curve to the cycloid because he wanted to
demonstrate that his calculus was easily also applied to transcendent curves, possibility that
Descartes wanted to exclude from geometry. It was a winning move to attract the attention
on one of the most celebrated curves of the time, and his mentor Huygens expressed to him
his admiration when in 1690 Leibniz sent him in detail the calculation of the tangent to the
cycloid [Dupont and Roero, 1991, 117–119].

Finally, Leibniz demonstrated how to apply his differential method on four current prob-
lems which led him to proudly announce the phrase quoted at the beginning of this paper.
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The first example, on the determination of a tangent to a curve, was very complex, con-
taining many fractions and radicals. Earlier methods of past and contemporary mathemati-
cians, such as Descartes, P. de Fermat, Jan Hudde and Sluse, would have required very
long calculations. The second example was a minimum problem occurring in refraction of
light studied by Descartes and by Fermat. Fermat’s method for maxima and minima led to
an equation containing four roots, and hence to long and tedious calculations [Andersen,
1983]. The third example was a problem that Descartes had put to Fermat, deeming it ‘of
insuperable difficulty’ (Fermat to P. de Carcavi, 20 August 1650) because the equation of
the curve whose tangent was to be determined contained four roots. Leibniz complicated
the curve whose tangent was sought even more because his equation contained six. He
solved a similar problem in a letter sent to Huygens on 8 September 1679 [Gerhardt, 1850,
17–38]. The last argument was the ‘inverse-tangent problem’, which corresponded to the
solution of a differential equation, that is, find a curve such that for each point the subtan-
gent is always equal to a given constant. In this case, the problem was put by Florimond
de Beaune to Descartes, who did not manage to solve it, while Leibniz reached the goal
in only a few steps. By these four examples he demonstrated the power of his differential
method.

3 THE EARLY RECEPTION OF THE DIFFERENTIAL CALCULUS

The brevity of Leibniz’s essay of October 1684 bewildered many readers: it was not im-
mediately understood even by the most famous mathematicians. Jacob Bernoulli (1654–
1705), who was to become one of the main supporters of the new calculus, was the first
to underline these difficulties. In 1687, soon after obtaining the mathematics chair at Uni-
versity of Basel, he wrote to Leibniz on 15 December 1687 asking for explanations on the
mysterious new method [Gerhardt, 1855, 13]:

Therefore I believe that you, Monsieur, are concealing here the traces of a
more sublime form of mathematics that I have not yet succeeded in penetrating
using common Cartesian analysis. I wish to learn about the mathematics by
means of which you and Messer Tschirnhaus have discovered so many and
such important things on the squaring of the circle and on the dimensions of
other curves. If you will deem me worthy of partaking a ray of light of your
method (that I most dearly wish), to the extent allowed by your very important
commitments, once I have been informed of your discoveries, I will become
not only a simple admirer, but your most devoted appraiser and propagator.

Unfortunately, Leibniz was not able to answer this request for explanation because he
was travelling to southern Germany, Austria and Italy at that time, in search of the origins
of the House of Brunswick-Lüneburg. Bernoulli, who tenaciously persevered in his intent,
finally succeeded in penetrating the secrets of calculus and taught them to his younger
brother Johann (1667–1748). As Jacob wrote to Leibniz on 15 November 1702: ‘Once,
before writing a letter to you, to justify myself, I intended to write a short story of my life
and the discoveries we made since our tender youth (where, by the way, you would have
noted that I, not he, penetrated the mysteries of your calculus first and that I them taught
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them to him)’ [Gerhardt, 1855, 63]. Neitherdid he hide the difficulties encountered from
the start to the readers of his earliest publications, stressing the need to show use ‘so that,
if by chance my readers have not adequately understood the thoughts of the sharp scientist
from the words he published inActa in 1684, due to excessive brevity, they may learn his
method of application here’ [Jacob Bernoulli, 1691, 13; 1744, 431].

Evidence along these lines was confirmed inthe obituaries written in 1705 following
Jacob’s death. For example, Bernard Fontenelle wrote: ‘He had already gained understand-
ing of the most abstruse geometry and was perfecting it with his own discoveries gradually
as his studies progressed when, in 1684, geometry changed appearance nearly suddenly.
Mr. Leibniz had given a few examples of the differential or infinitesimal calculus in the
Leipzig Acta concealing both the art and the method’ [Fontenelle, 1706, 139].

Johann Bernoulli expressed even more severe opinions about Leibniz’sNova methodus
in his inaugural dissertation [1705] at Basel University:

By the incomparable Leibniz was invented that famous calculus called differ-
ential to which all the questions that go beyond the common algebra are sub-
mitted and the curves that Descartes excluded from geometry are treated and
expressed by their equations. Nevertheless to that renowned scholar pleased to
show to the mathematical community the beauty of his invention only through
a fog curtain. Precisely in 1684 inActa Eruditorum the monthly journal edited
in Leipzig he wanted to display the first elements only in very few pages, with-
out any explanation, but covered in enigma.

In his autobiography Bernoulli repeated: ‘After this beginning, by pure chance, my
brother and I run into a short essay by Mr. Leibniz in the 1684 LeipzigActa, where in
barely five or six pages he sketched a very vague idea of differential calculus, which was
more an enigma than an explanation; however, this was sufficient for us to grasp the entire
secret in a few days. Evidence of this is found in our later publications on infinitesimals’
[Wolf, 1848, 218–219].

Leibniz himself must have soon come toknow of the difficulties encountered by his
readers; for two years later he was to start off his second paper, on his integral calculus,
thus: ‘I have seen that many essays I published inActa on the progress of Geometry have
been most appreciated by many a man of culture and have gradually even entered common
use, but, due to errors made in writing and to other reasons, some points were not fully
understood, therefore I believe it will be worth adding a few remarks to clarify the previous
articles herein’ [Gerhardt, 1858, 226]. Later, in 1693, he informed Malebranche: ‘If one
day I will have the opportunity, I will present the rules and use of this calculus a little more
clearly than I did in the LeipzigActa because many mistakes are responsible for making
the writing obscure and for this reason I believe that many readers did not understand a
thing’ [Gerhardt, 1875, 349].

The misprints and the obscurity of the text were a hurdle even for Huygens, who had
spoken to Leibniz in Paris and had the opportunity to appreciate his scientific qualities.
As he candidly confessed in a letter dated 24 August 1690: ‘I read something about your
new algebraic calculus in the LeipzigActa but I found it obscure and did not study it
sufficiently to gain understanding’ [Gerhardt, 1850, 45]. On 9 October 1690, he wrote:
‘I attempted after the aforesaid letter to understand your differential calculus and I insisted
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to the extent that I can now comprehend, if only after two days, your examples, the one on
the cycloid in your letter and the other on the search for Mr. Fermat’s Theorem in the 1684
Leipzig Journal. I grasped the fundaments of calculus and of your entire method, which I
deem very good and very useful’ [Gerhardt, 1850, 47].

Once again, in September 1693, Huygens congratulated Leibniz on the success of his
new analysis but did not hesitate to ask for additional explanations: ‘I increasingly appreci-
ate the beauty of geometry, for the new progresses which are made every day, in which you
always play such an important role, Sir, thanks to your marvellous calculus, if not more.
I am inadequately studying the matter but still do not understand theddx at all and I would
like to know if you have encountered major problems where it should be used, because I
wish to study it’ [Gerhardt, 1850, 162].

Considering the difficulties in understanding Leibniz’s essay encountered by famous
mathematicians mentioned above, one can easily guess the impact of the text on the av-
eragedly educatedActa Eruditorum reader. Criticisms by historians were to be no less
pungent than those expressed by his contemporaries [Dupont and Roero, 1991, 10–14]. In
his history of mathematics (§21) Etienne Montucla affirmed that still many years after the
essay was published ‘the differential and integral calculus remained a mystery for most
geometers’ [Montucla, 1799, 397]. Later, Joseph Hofmann was even more severe and in
1966 suggested that Leibniz may have been deliberately obscure: ‘[Nova Methodus] was
deliberately formulated in such a concise way that an unsuspecting reader could scarcely,
if ever, grasp the fundamental ideas underlying the symbolism’ [Hofmann, 1966, 219].
Leibniz’s obscurity was also stressed by historians of philosophy such as A. Rivaud, who
was sceptical about the possibility of understanding other essays on Leibniz’s calculus, in
addition toNova Methodus [Rivaud, 1950, 486]:

The famous essay published inActa Eruditorum in October 1684, calledNova
Methodus pro maximis et minimis, which contains the principles of the method,
is most obscure and difficult. Later essays in actual fact only educated but a few
exceptionally gifted readers, like the Bernoulli brothers Jacob and Johann and
the Marquis de l’Hôpital. Even great mathematicians like Christiaan Huygens
would never full comprehend the method that Leibniz had described to him in
short excerpt in 1680.

4 THE FIRST PAPERS ON INTEGRAL CALCULUS

It was the book by John Craig on quadratures,Methodus figurarum lineis rectis et curvis
comprehensarum quadraturas determinandi, published in London in 1685, that stimulated
Leibniz to draft his first exposition of the integral calculus. Craig attributed to him the
paper [Tschirnhaus, 1683b] on figures, published in theActa Eruditorum. To clarify any
false impressions concerning his own methods, Leibniz therefore sent to Leipzig his first
article on the integral calculus, our second paper here: entitled ‘About the deep geome-
try and the Analysis of indivisibles and infinities’, it appeared in June 1686 in theActa
Eruditorum. Here he illustrated the importance of transcendent curves in the problems of
quadrature and claimed the merit for having subjected this type of curve to analysis. Hav-
ing defined the differential expression of the subnormal of a given curve, he went on to
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‘summation’, i.e. he introducedcalculus summatorius, the name of which reflects the link
with the ‘sums’ of small rectangles whose heights are the ordinates and whose bases are
the infinitesimal differences of the abscissas. The integration was presented as the inverse
operation of differentiation and would be later accepted as such. The integrals considered
were not indefinite integrals: from the differential equationpdy = x dx Leibniz deduced∫
pdy = 1

2x
2 to be interpreted as

∫ y
0 p dy = 1

2x
2. As early as his Parisian period, Leibniz

decided to indicate the integral sign
∫

with the stylised symbol of the initial of the word
‘summa’ [Hofmann, 1974, 187–193]. The term ‘integral’ appeared in May 1690 in an arti-
cle by Jacob Bernoulli, and was possibly due to his brother Johann who claimed priority in
his autobiography written in French in the 1740s [Jacob Bernoulli, 1690,218; 1744, 423;
Works, vol. 5, 30].

The central problem of quadratures is dealt with in our third paper, ‘Supplement to
measuring geometry’, which appeared in September 1693 in theActa Eruditorum. Leibniz
introduced and constructed by tractional motion the ‘quadratrix curve’, whose ordinates
represent the areas under the given curve. He showed that all quadrature problems could
be reduced to inverse tangent problems; more precisely, the slope of the quadratrix curve
results from the function to be squared, i.e.

∫ y
0 z(y) dy was simply the ordinatex = x(y)

of a curve such thatdx
dy
= z, which in modern terms is expressed by saying that func-

tion x is the primitive of functionz. There was no explicit definition of definite integral
and indefinite integral, for which the same notation is used, but Leibniz and the Bernoulli
brothers knew that infinite primitives, which differed by a constant term, correspond to
an assigned function and knew the rule for computing

∫ y
0 z(y) dy as the difference of the

values assumed by a primitive in the bounds of integration (see Johann Bernoulli to Pierre
Varignon, 11 August 1696, in his [1988, 106; 1742, vol. 3, 412–413]).

5 THE SPREAD OF THE LEIBNIZIAN CALCULUS

From the first, when Leibniz was living in Paris, he had understood that the algorithm that
he had invented was not merely important but revolutionary for mathematics as a whole.
Although his first paper on differential calculus proved to be unpalatable for most of his
readers, he had the good fortune to find champions like the Bernoulli brothers, and a pop-
ulariser like de l’Hôpital, who helped to promote and advance his methods at the highest
level. There was certainly no better publicity for the Leibnizian calculus than the results
published in theActa Eruditorum, and in the Memoirs of the Paris and Berlin Academies.
They not only offered a final solution to open problems such as those of the catenary, the
brachistochrone, the velary (the curve of thesail when moved by the wind), the paracentric
isochrone, the elastica, and various isoperimetrical problems; they also provided tools for
dealing with more general tasks, such as the solution of differential equations, the construc-
tion of transcendental curves, the integration of rational and irrational expressions, and the
rectification of curves. Both the mathematicians and the scholars of applied disciplines
such as optics, mechanics, architecture, acoustics, astronomy, hydraulics and medicine,
were to find the Leibnizian methods useful, nimble and elegant as an aid in forming and
solving their problems.

The first and most important champion of the spread of the Leibnizian calculus was
Leibniz himself. From the 1690s he had been looking among his friends for young collab-
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orators who would be capable of assisting him in the preparation of the ‘Scientia infiniti’, a
work designed to offer a clear exposition of infinitesimal mathematical procedures [Costa-
bel, 1968; Dupont and Roero, 1991, 15–19]; but this work never saw the light. Leibniz had
expressed his satisfaction at the publication in 1696 of de l’Hôpital’sAnalyse des infini-
ment petits, and had repeatedly said that he sharedhis invention with the Bernoulli brothers
because of their elegant, and very profound, applications and further developments of his
calculus that had made a significant contribution to its acceptance among scholars in sci-
entific fields ranging from geometry to physics, from astronomy to mechanics, from optics
to medicine.

Thus Leibniz’s words are significant. ‘I have so many different kinds of occupations
to attend to that I gladly entrust this terrain to the cultivation of my friends’ (Leibniz to
Magliabechi, 18 August 1692, in his [Works, ser. 1, vol. 8, 395]); or ‘But it is a very great
pleasure for me to see the seeds I have sown bear fruit in others’ gardens too’ [Gerhardt,
1858, 258]; or, finally, ‘Moreover as I am often more inclined to provide inspiration for
discoveries than to make them,acting as a whetstone which, though it does not itself cut,
is in the habit of making iron sharp, I hope I may be allowed sometimes to present things
related either to calculations and reasonings or to execution, and to let others judge whether
they are worth pursuing (Leibniz to l’Hôpital, 13/23 March 1699, in [Gerhardt, 1850, 333]).

It was through his wide network of acquaintances in various European countries that
Leibniz put into effect all his strategies for the spread of his analysis. The presence first of
Jacob Hermann, the favourite pupil of Jacob Bernoulli, and then of Nicolaus I Bernoulli,
the nephew of the Bernoulli brothers, as professors of mathematics in Padua was one out-
let [Mazzone and Roero, 1997]. In France it was through the Oratorian circle of Nicolas
Malebranche (1638–1715) that Johann Bernoulli introduced in 1691 the Leibnizian calcu-
lus. His lessons to the Marquis de l’Hôpital led to the draft of the first treatise of differential
calculus (1696), and it was under the influence of Malebranche that some years later ap-
peared the first works on the integral calculus by Louis Carré in 1700 and Charles René
Reyneau in 1708. The spread and acceptance of theLeibnizian calculus was transferred
in this way to the wide public, through the manuals and textbooks written for students at
universities or ecclesiastical colleges.

What Leibniz and Jacob Bernoulli had foreseen at the very beginning of the history
of differential calculus was at last happening. For example, ‘These are only the premises
of a more sublime geometry which extends to all other more difficult and most beautiful
problems, also of mixed mathematics, which without our differential calculus or the like,
no-one is capable of treating with equal ease’ (Nova methodus, 473). Or again, ‘Besides,
for all these problems that some have attempted to solve with other methods with no avail,
I am convinced that the excellent and extraordinary use of Leibniziancalculus is necessary,
to the extent that I believe that it should therefore be numbered among the most important
discoveries of our century’ [Jacob Bernoulli,1691, 290; 1744, 452–453].

But this success was soon smeared with tragedy. Leibniz’s calculus became known in
the Continent before Newton’s, which was published only in 1704. By then Newton and
some of his followers were convinced that Leibniz had created his calculus by plagiarism,
and Newton himself rigged an international committee at the Royal Society to come to the
same conclusion [Hall, 1980]. Leibniz’s followers, especially Johann Bernoulli, reacted
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strongly against this slander, with the result that the mathematical community became po-
larised: Newton’s theory was practiced almostexclusively in Britain and Leibniz’s on the
Continent, the latter with eventual greater success.
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CHAPTER 5

ISAAC NEWTON, PHILOSOPHIAE NATURALIS
PRINCIPIA MATHEMATICA , FIRST EDITION

(1687)

Niccolò Guicciardini

Newton’sPrincipia is one of the great classics of the Scientific Revolution. Before 1687
natural philosophers were able to mathematize only parabolic motion caused by a constant
force and circular uniform motion. Newton was pushing exact quantitative mathematiza-
tion in fields such as the attraction exerted by extended bodies, the perturbed motions of
many bodies in gravitational interaction, the motion in resisting media. The book delivered
an awesome picture of the world, a world in which the same physical law governs celestial
and terrestrial phenomena.

First edition. London: for the Royal Society, about 5 July 1687. viii+ 511 pages. Print-
run: first issue about 250–350, second issue about 50 copies. [Available on the internet
at www.bnf.fr/gallica.]

Second edition. Cambridge: Cambridge University Press, 11–14 July 1713. xxviii+ 492
pages. Edited by Roger Cotes, with a Preface concerning the Newtonian method in nat-
ural philosophy (pp. xi–xxvi). Print-run: 711 copies. [Contains many variants, emenda-
tions and additions (most notably the concluding General Scholium).]

Third edition. London: for the Royal Society, presentation copies available by 31 March
1726. xxxii+536 pages. Edited by Henry Pemberton. Print-run: first issue 1000 copies,
second issue 200, third issue 50.

Variorum edition = [Newton, 1972].Philosophiae naturalis principia mathematica. The
third edition (1726) with variant readings assembled and edited by Alexandre Koyré
and I. Bernard Cohen, with the assistance of Anne Whitman, Cambridge: Cambridge
University Press, 1972. [The starting point for any serious research on thePrincipia,
it consists of a facsimile of the third Latin edition. The critical notes indicate the vari-
ants relative to the first two editions, to the manuscript deposited for publication, to
Newton’s Lucasian lectures based on thePrincipia, as well as to Newton’s annotations

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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and marginalia to several copies. Published along with [Cohen, 1971] which provides
information on the history of the composition and diffusion of the text.]

Many reprints, abridgements, and translations into many languages including Chinese,
Dutch, French, German, Italian, Japanese, Rumanian, Russian, Spanish and Swedish
(for up to 1972 see [Newton, 1972, 855–883]). We note these:

Principal English translations. 1) The mathematical principles of natural philosophy. By
Sir Isaac Newton. Translated into English by Andrew Motte. To which are added the
laws of the Moon’s motion according to gravity. By John Machin, London: for Ben-
jamin Motte, 1729. [Photorepr. London: Dawson, 1968.] 2) This ed. revised and ‘sup-
plied with an historical and explanatory appendix’ by Florian Cajori asSir Isaac New-
ton’s mathematical principles of natural philosophy and his system of the world, Berke-
ley, Los Angeles and London: University of California Press, 1934. [The best known
translation; but corrigible, and now superseded by] 3) [Newton, 1999].The Principia:
Mathematical principles of natural philosophy, A new translation by I. Bernard Cohen
and Anne Whitman assisted by Julia Budenz, Preceded by a guide to Newton’s Prin-
cipia by I. Bernard Cohen, Berkeley, Los Angeles and London: University of California
Press, 1999. [Prefaced by an informativeguide [Cohen, 1999], written by I.B. Cohen
(with contributions by George Smith and Michael Nauenberg). 4) Partial translations in
[Brackenridge, 1995] and [Densmore, 1995].]

German translation. Die mathematischen Prinzipien der Physik (ed. and trans. Volkmar
Schüller), Berlin, New York: Walter de Gruyter, 1999. [Includes a translation of the
variants noted in [Newton, 1972] and a critical apparatus.]

Spanish translations. 1) Principios matemáticos de la filosofía natural (trans. Anto-
nio Escohotado), Madrid: Editora Nacional, 1982. [Repr. Madrid: Tecnos, 1987; and
Barcelona: Altaya, 1994.] 2)Principios matemáticos de la filosofía natural, introduc-
tion, translation and notes by Eloy Rada García, Madrid: Alianza Editorial, 1987.

Manuscripts. The manuscript deposited for publication and the Lucasian lectures can be
reconstructed from [Newton, 1972]. Manuscripts related to thePrincipia can be found
especially in [Herivel, 1965]; NewtonPapers, vol. 6; andThe preliminary manuscripts
for Isaac Newton’s 1687 Principia, 1684–1685: facsimile of the original autographs,
now in Cambridge University Library (ed. and introd. by D.T. Whiteside), Cambridge:
Cambridge University Press, 1989.

Related articles: Descartes (§1), Leibniz (§4), Maclaurin (§10), d’Alembert (§11), La-
grange (§16, §19), Laplace on celestial mechanics (§18).

1 NEWTON’S MATHEMATICAL METHODS

ThePhilosophiae naturalis principia mathematica (hereafter thePrincipia) was published
in 1687, thanks to the financial and editorial support of Edmond Halley (1656–1742), and
under the auspices of the Royal Society. The author was the Lucasian Professor of Math-
ematics at Cambridge University. Since his election to the prestigious Chair in 1669, he
had spent a rather monotonous life in Cambridge, interrupted by a few travels to his native
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Lincolnshire and to London. He was known to his contemporaries as a talented mathemati-
cian and a competent divine, even though littleof his mathematical discoveries and even
less of his (heretical) theological studies had been communicated to the world. His theory
of the refraction of light had indeed been printed from 1672 in theTransactions of the
Royal Society, meeting skepticism and opposition, especially from the Society’s curator of
experiments, Robert Hooke (1635–1703).

1.1 Background

Isaac Newton (1643–1727) had entered Trinity College in 1661 while the University was
paralized by the turmoil caused by the purges following the re-establishment of the Stu-
art monarchy. The confusion that reigned in those years allowed a studious lad to devote
his time to reading and experimenting. Newton soon distanced himself from the standard
curriculum, which assigned a rather dull diet of Aristotelianism, and began reading in the
new geometry and natural philosophy. Boyle’s corpuscularism and Descartes’s theory of
motion and cosmology attracted his attention. Somewhat dissatisfied by the materialism
of the mechanical philosophy (an attempt to explain all the phenomena of nature in terms
of the impact and shapes of material particles) he was soon to delve into the esoteric texts
published during a renaissance of alchemical research which occurred in the first half of the
17th century. Newton flirted with alchemy almost all his life: a flirt which is still the cause
of much disagreement amongst Newtonian scholars. His smoky ‘elaboratory’ was built
just beside Trinity Chapel. Newton’s last alchemical papers are dated 1696, when—now
a celebrity (and from 1705 ‘Sir Isaac’)—he moved to London to become rich as Warden
(and then Master) of the Mint, and powerful in science as President of the Royal Society.

But Newton’s first love was mathematics. Just a couple of years after his arrival on the
Cam’s shores he began reading some symbol-laden books which introduced him to the new
symbolic algebra:William Oughtred’s (1574–1660)Clavis mathematicae (Oxford, 1631)
and Frans van Schooten’s (1615–1660)Exercitationes mathematicae (Leiden, 1657). van
Schooten, a well-known Dutch mathematician influenced by René Descartes (1596–1650),
was the editor of François Viète’s (1540–1603) collected works, theOpera mathematica
(Leiden, 1646), which Newton studied. Newton was particularly impressed by two short,
highly advanced, tracts: Descartes’sGéométrie (1637) (§1) and John Wallis’s (1616–1703)
Arithmetica infinitorum (1656) (§2). The importance of Descartes’sGéométrie for New-
ton’s mathematical development cannot be overestimated. It is by reading the second Latin
edition, translated by Frans van Schooten and enriched by commentaries by van Schooten
himself and other Dutch mathematicians, that Newton learned how the study of plane
curves could be carried on in algebraic terms. Newton devoted particular attention to two
problems: the drawing of tangents to curves and the determination of the area subtended to
a curve.

Newton immediately faced these two problems in terms which would have been in-
admissible by the standards set in theGéométrie. Firstly, not only manipulation of equa-
tions, but also kinematic properties such as instantaneous velocity and infinitesimal dis-
placements entered into the solution of geometric problems. Secondly, infinitesimals—
conceived of as ‘moments’, infinitesimal increases covered in an infinitesimal interval of
time—were admitted. Finally, the curves could be represented by ‘infinite equations’, viz.



62 N. Guicciardini

infinite series, and not only by ‘finite’ algebraic equations. As a result of these departures
from theGéométrie Newton could accept mechanical (i.e. in modern terms, ‘transcenden-
tal’) curves as admissible objects of mathematical inquiry. It is clear that Newton consid-
ered the exclusion of mechanical curves as a serious limitation of Descartes’s method. He
insisted that his method overcame such a limitation.

In a paper dated October 1665 entitled ‘How to draw tangents to Mechanicall lines’
[NewtonPapers, vol. 1, 272–280] Newton conceived curves as the trajectory of a moving
body. A possible source for Newton is Isaac Barrow (1630–1677),who conceived curves as
generated by motion in very similar terms. The idea was, however, common in 17th-century
mathematics, and an indirect influence ofGilles Personne de Roberval (1602–1675) should
not be excluded. What is new with Newton is the fact that, thanks to the kinematic con-
ception of geometric quantities, he arrived at the understanding of the inverse relationship
between tangent- and area-problems (what in a somewhat Whiggish way we might call
the ‘fundamental theorem of the calculus’). Newton developed also an efficient algorithm,
which can be roughly defined as ‘equivalent’ to Leibniz’s differential and integral calcu-
lus (§4). Thanks to the fundamental theorem he began tackling quadrature problems by
anti-differentiation.

1.2 Progress

In Winter 1664, inspired by Wallis’sArithmetica infinitorum (1656), thanks to a rather
shaky inductive procedure, Newton stated the binomial theorem for fractional exponents.
He immediately realised that quadrature problems (the inverse problems) could be tackled
via infinite series: as we would say nowadays, by expanding the integrand in power series
and integrating term-wise. Newton deployed this procedure from the very beginning of his
mathematical researches. These infinitary problem-solving techniques formed the core of a
treatise that Newton wrote in 1669 entitled ‘Deanalysi per aequationes numero terminorum
infinitas’ (On the analysis by means of equations with an infinite number of terms) [Newton
Papers, vol. 2, 206–247]. Equations with an infinite number of terms (i.e. infinite series)
were not, of course, contemplated by Cartesian ‘common analysis’, or ‘common algebra’
(as Descartes’s algorithm came to be known in the second half of the 17th century). Their
use, according to Newton, allowed to extend the boundaries of analysis. Newton referred
to his ‘new analysis’ as the ‘method of series and fluxions’. He defined a ‘fluent’ as a
magnitude which flows continuously in time (e.g. an area which increases by continuous
motion of the ordinate). The ‘fluxion’ is the instantaneous velocity of the fluent.

In the 1670s Newton began to raise deliberate criticisms against Cartesian mathemat-
ics. As the time passed by, his distaste towards the ‘analysis of the moderns’ increased.
This notwithstanding, Newton remained for all his life profoundly influenced by Carte-
sian mathematics, even though he would not have liked to admit it. The heritage of the
Géométrie could not be obliterated and remained evident in works such as theArithmetica
universalis (1707) [NewtonPapers, vol. 5, 54–491] and theEnumeratio linearum tertii
ordinis (1704) [NewtonPapers, vol. 7, 588–645]. However, from the early 1670s New-
ton began distancing himself from Cartesian mathematics, in order to devote his attention
to the works of ancient geometers. He spent much effort to studying Pappus’sCollectio
mathematica.
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Newton’s new interest for geometry, an interest which he shared with many of his con-
temporaries such as Barrow and Thomas Hobbes, led him to compose several geometrical
works which were unpublished until recently [Papers, vols. 4 and 7]. Now we know that
Newton trod in the steps of those who believed that the ancients were possessors of a hid-
den analysis, a method of discovery superior to the analysis of the moderns. He rejected
infinitesimals, a typical tool of modern mathematics, and tried to present his method of
fluxions in purely geometric terms, avoiding the symbolism of algebra. Newton was led
to distance himself from his early mathematical work on fluxions: he gave preference to
a new method that he termed the ‘synthetic method of fluxions’, rather than to his ear-
lier ‘analytical method of fluxions’. In this new presentation of the fluxional method the
importance of basing geometry upon kinematics was further enhanced.

The synthetic method of fluxions was first worked out in a treatise entitledGeometria
curvilinea, written around 1680 [NewtonPapers, vol. 4, 420–484]. Newton’s purpose was
to reformulate the results concerning fluents and fluxions, which he had achieved in his
early analytical method of fluxions, in geometric terms compatible with the methods of
the ancients. In the first place he had to avoid symbolic algebra: he did so by referring
directly to geometric figures and their properties. Secondly he had to avoid infinitesimals:
instead of making recourse to infinitesimals, he deployed limit procedures. We will find in
section 4 many examples of these geometric limit procedures in thePrincipia.

Many reasons lay behind Newton’s shift for the geometry of the ancients and his critical
attitude towards the moderns, an attitude which is somewhat in resonance with his anti-
cartesianism in philosophy, and with his belief in aprisca philosophia (the wisdom of the
ancients) which he fully endorsed most probably in the 1690s. Here we note that he was
often to underline the fact that the objects of the synthetic geometric method of fluxions
have an existence in Nature. The objects of geometric inquiry are generated by motions
which one observes in the study of the natural world (one can think of the ellipses traced
by planets).

2 EARLY STUDIES ON THE MOTION OF BODIES
AND ON PLANETARY MOTION

2.1 Initial influences

Newton’s earliest studies on the laws of motions occurred during the Winter of 1664
[Herivel, 1965; Nauenberg, 1994]. As in the case of mathematics, his starting point was
Descartes. He commented upon Book 2 of Descartes’sPrincipia philosophiae (1644) with
particular penetration. It is believed that the title of Newton’s magnum opus was conceived
of as a criticism to the French philosopher, whose work would have lacked adequate math-
ematical principles. From Descartes Newton learned about the law of inertia: what was
to become the first law of motion of thePrincipia. A body moves in a straight line with
constant speed until a force is applied to it. Unaccelerated rectilinear motion is a status in
which a body naturally perseveres: it does not need, as it was thought in the Aristotelian
tradition, a mover.

By the early 1660s natural philosophers had concerned themselves with two cases of
accelerated motion: rectilinear uniformly accelerated and uniform circular motion. The
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first case occurred in the fall of bodies and gave rise (as Galileo had taught) to parabolic
trajectories by composition of inertial and uniformly accelerated motions. Uniform circular
motion was often conceived of as caused by the balancing of two endeavours or conatuses:
one centrifugal to recede from the centre, one centripetal seeking the centre. An additional
endeavour acting at right angles to the radius was often posited in order to sustain the
uniform circular motion.

From the very beginning of his studies Newton was trying to subject the motions of
bodies to mathematical laws. His first mathematical law in this field is nowadays attributed
to Christiaan Huygens (1629–1695) since it was first published in 1673 in theHorologium
oscillatorium (§3). In modern terms the laws says that the centripetal acceleration of a body
which moves in a circular trajectory with constant speed is proportional to the square of
the speed and inversely proportional to the radius.

In 1665 Newton tried to generalise his mathematical results on uniform circular motion
to more general cases. He noted [Whiteside, 1991, 14]:

If the body b moved in an Ellipsis, then itsforce in each point (if its motion in
that point bee given) may bee found by a tangent circle of Equall crookednesse
with that point of the Ellipsis.

This is an extremely fertile insight. How canwe go beyond the simple cases of uniformly
accelerated rectilinear and circular uniform motion? In order to estimate the acceleration,
for instance, in an elliptical trajectory (itgoes without saying that here Newton had in
mind planetary orbits), Newton conceived that locally the body moves with circular uni-
form motion along the osculating circle. It should be reminded that in those years he was
developing fluxional techniques to calculate the radius of curvature to plane curves. New-
ton understood that the instantaneous normal accelerationaN in a non circular orbit can be
calculated by applying locally Huygens laws for circular uniform motion: in modern terms
|aN | = v2/ρ (v instantaneous speed,ρ radius of curvature) [Brackenridge, 1995].

What about Newton’s early thoughts on planetary motions? The few extant records in-
dicate that he remained for many years trapped in the framework of Cartesian vortex theory
[Cohen, 1999, 11–22]. There are reasons to believe that in the 1660s Newton thought that
the planets orbit the Sun because they are transferred by a vortex in nearly circular orbits.
Assuming that the orbits are exactly circular, it was childplay, combining Huygens’s law
with Kepler’s third law, to verify that the planets’ radial acceleration varies inversely as
the square of their distance from the Sun. This inverse square law was thus attained in a
context which is far away from gravitation theory.

2.2 The role of Hooke

Instrumental in awakening Newton from his Cartesian dream was Hooke, who in 1679
tried to revive correspondence with an offended Newton because of the reception of the
paper on the theory of light. Hooke, who hadbeen recently appointed secretary of the
Royal Society, proposed to Newton a new ‘hypothesis’ for planetary motion according to
which planets, moving in vacuo, describeorbits around the Sun because of a rectilinear
inertial motion by the tangent and an accelerated motion towards the Sun. Hooke was thus
disposing both of the Cartesian endeavour to recede from the centre and of the Cartesian
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vortex. Only onecentripetal force directed towards the Sun is needed to deviate the planets
unresisted inertial rectilinear motion. Newtonwas soon to discover that Hooke’s hypothesis
was mathematically fruitful. The most fruitful insight that Newton achieved, even though
it is unclear exactly when he did so, was that a body moving in a space void of resistance
and attracted by a central force must obey Kepler’s area law, and vice versa a body which
moves in accordance to the area law must beaccelerated by a central force (more on this
in section 5).

It is difficult to establish the steps which led Newton to conceive universal gravita-
tion. Certainly Hooke’s contribution was momentous, and historians are re-evaluating the
role of the Royal Society’s Secretary in formulating the new cosmology [Inwood, 2002;
Bennett et alii, 2003; Nauenberg, 2004]. Hooke’s ideas were indeed revolutionary, and the
extant records prove that Newton did not immediately endorse them: he continued to be-
lieve that the planetary motions were caused by a revolving ether. Contrary to Descartes, he
seems to have interpreted this ethereal medium in non-mechanistic terms, somewhat rem-
iniscent of his alchemical researches. Until 1681 Newton discussed the motion of comets
with John Flamsteed (1646–1719) in terms of a fluid which revolves round the centre of
the cosmic system carrying with itself the planets and the comets [Ruffner, 2000]. Further-
more, he believed that the two appearances of the 1680 comet were actually due to two
comets moving along roughly straight line trajectories. The appearance of the 1682 comet,
whose trajectory passed close to the ecliptic but in the reverse direction of planetary orbits,
probably gave the final blow, in Newton’s mind, to the cosmic vortex. At last, Newton re-
alised that the interplanetary space is void [Kollerstrom, 1999]. At least there is no inert
matter there: Newton never abandoned the hypothesis of the existence of a non-material
planetary medium completely.

Hooke’s hypothesis for planetary motions was discussed at the Royal Society by as-
tronomers interested in alternatives to Cartesian cosmology. Perhaps, as Kepler had sug-
gested, the Sun was the cause of a force analogous to the force between loadstone and iron:
this centripetal force would deviate the planets. But, how could one relate this force to the
observed motions of the planets? More specifically, was it possible to prove any implica-
tion between the three Keplerian planetarylaws and a specific force law? It was highly
suspected that this law would be inverse square. Christopher Wren (1632–1723) posed this
problem to Halley and Hooke. Could one of the two provide, within the context of Hooke’s
hypothesis, a mathematical theory linking the Keplerian laws with a specific force law?
The winner would have been rewarded with a book worth 30 shillings.

Since finding a reply to Wren’s question proved to be mathematically difficult, Halley
took the wise, if somewhat humiliating, decision of travelling to Cambridge on August
1684 to ask Newton’s advice. Most to his amazement he found that the Lucasian Professor
had the answer, or, at least this is what he claimed. In November 1684 Halley received
from Newton a short treatise, theDe motu, in which Wren’s desiderata were satisfied [De
Gandt, 1995]. This is how thePrincipia began to take shape. Thanks to Halley’s encour-
agement and insistence, a reluctant Newton was convinced to embark into a project that a
couple of years afterwards—indeed years of hard work and scientific creativity—led to the
completion of thePrincipia, the work to which now we turn.
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3 THE PRINCIPIA (1687): DEFINITIONS AND LAWS

ThePrincipia (2nd and 3rd eds.) opens with a long laudatory Ode written by Halley in ho-
nour of the author (Table 1). This is followed by several Prefaces of philosophical content,
several pages on the basic definitions of mass (‘quantity of matter’), momentum (‘quan-
tity of motion’), inherent, impressed, centripetal, absolute, accelerative, and motive force,
a puzzling but profound scholium on absolute time and space, the three laws of motions
and their corollaries. These introductory pages have quite rightly attracted the attention of
scholars: in particular Newton’s conceptions of absolute time and space [DiSalle, 2002]

Table 1. Summary of Preliminaries toPrincipia, 1st edition (1687) (title page+
dedication+ pp. i–iv+ pp. 1–25).

The most notable variant is the addition of Cotes’s Preface, which contains important philosophical
considerations on the relationships between natural philosophy and religion, as well as a defence of

Newton’s concept of gravitation against the criticisms raised by Continental Cartesians.

1st edition Main variants

Title page, 1687, for the Royal Society. The
two issues have different title pages.

2nd ed.: 1713, Cambridge University Press.
3rd ed.: 1726, for the Royal Society.

Dedication to the Royal Society.

Author’s Preface: relations between rational
mechanics and geometry, forces of nature
discovered from phenomena of motions.

Halley’s Ode. From 2nd ed. moved after dedication.

Author’s Preface to 2nd ed.

Cotes’s Preface (added in 2nd ed.) on
Cartesian and Newtonian methods.

Author’s Preface to 3rd ed.

Chapter Index added in 2nd ed.

Definitions of: (i) quantity of matter;
(ii) quantity of motion; (iii) inherent force;
(iv) impressed force; (v) centripetal force;
(vi) absolute, (vii) accelerative, and (viii)
motive quantity of centripetal force.

Scholium on absolute time and space,
rotating bucket.

Axioms or laws of motions.

Corollaries on composition of forces and
inertial frames.

Scholium on collisions and experimental
demonstration of third law of motion.



Chapter 5. Isaac Newton,Philosophiae naturalis principia mathematica, first edition (1687) 67

and of ‘inherent force’ have been widely discussed [Cohen, 2002]. It is worth quoting the
three laws [Newton, 1999, 416–417]:

Law 1: Every body perseveres in its state of being at rest or of moving uni-
formly straight forward, except insofar as it is compelled to change its state by
forces impressed.
Law 2: A change in motion is proportional to the motive force impressed and
takes place along the straight line in which that force is impressed.
Law 3: To every action there is always an opposite and equal reaction; in other
words, the action of two bodies upon each other are always equal and always
opposite in direction.

Numerous scholars have faced the question of the equivalence between Newton’s sec-
ond law quoted above and its modern formulation asF = ma. It should be noted that
Newton’s law is formulated as a proportion, not as an equation (as in the modern case).
Further, in Newton’s law no reference to time is made. According to some scholars New-
ton’s second law is best explained as stating a proportionality between the intensity of an
instantaneous impulse and a discontinuous change of momentum. This conception of an
impulsive impressed force which causes discontinuous changes of momentum might be
related to Newton’s endorsement of atomism, where impacts between hard atoms cause
instantaneous velocity changes. There is no doubt, however, that Newton understood and
used also the continuous formulation of the second law, as it appears, for instance, from
Prop. 24, Book 2, which contains a statement that a continuous force is proportional to the
infinitesimal change of momentum acquired in an infinitesimal interval of time [Newton,
1999, 700].

4 THE PRINCIPIA (1687): LIMITS

The mathematically minded reader of thePrincipia will hastily skip these preliminaries
before pausing at last on the first mathematical jewels. (Book 1 is summarised in Table 2.)
They are contained in Section 1, Book 1, devoted to the method of first and ultimate ratios
[De Gandt, 1995; Brackenridge, 1995]. In this Section we read a clear statement about the
use of infinitesimals [Newton, 1999, 441–442]:

whenever in what follows I consider quantities as consisting of particles or
whenever I use curved line-elements in place of straight lines, I wish it always
to be understood that I have in mind not indivisibles but evanescent divisibles,
and not sums and ratios of definite parts but the limits of such sums and ratios,
and that the force of such proofs always rests on the method of the preceding
lemmas.

Newton points out that the method of first and ultimate ratios rests on the following
Lemma 1 (p. 433):

Quantities, and also ratios of quantities, which in any finite time constantly
tend to equality, and which before the end of that time approach so close to one
another that their difference is less than any given quantity, become ultimately
equal.
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Table 2. Summary by sections of Book 1 ofPrincipia, 1st edition (1687) (pp. 26–235).
One of the most notable variants concerns Prop. 6, Section 2, which is foundational for the

treatment of central force motion. In the 2nd ed. Newton presents a new measure of central force.
Propositions 7–13 in Sections 2 and 3, which concerncentral forces, are augmented by additional

demonstrations in which the new measure of force is deployed. Also Cor. 1, Prop. 13, was
significantly altered. For a detailed analysis of variants in Sections 2 and 3 see [Brackenridge, 1995].

Title: On the Motion of Bodies,
First Book

Sect. 1st edition Main variants

1 First and ultimate ratios: 11 Lem-
mas on geometric limit procedures as
foundation of the whole work.

2 Props. 1–2: Kepler’s area law valid iff
force central.
Prop. 4: on circular uniform motion:
a = v2/ρ.

Altered in 2nd ed.

Prop. 6: geometrical measure of
central force.

New measure of central force based on
radius of curvature added in 2nd ed.

Props. 7–10: central force determined
given the orbit.

Additional proofs based on new Prop. 6
added in 2nd ed.

3 Props. 11–13: 1/r2 force deduced for
Keplerian orbits.

Additional proofs based on new Prop. 6
added in 2nd ed.

Cor. 1, Prop. 13 on inverse problem
of central forces: just a statement.

Expanded in 2nd and 3rd eds. Newton
claims it is a sketch of a proof.

4–5 Geometry of conics, Pappus problem
solved, projective transformations.

Plans in the 1690s to move these sections
at the end as a separate treatise on an-
cient geometry.

6 Algebraical nonintegrability of ovals,
Kepler problem, Newton–Raphson
method.

Scholium on approximation of Kepler
equation’s roots reworked in 2nd ed.

7–8 Orbit found when central force given.
Cor. 3, prop. 41: result obtained by
integration.

9 Precession of nearly circular orbits. In Cor 2, Prop. 45, 3rd ed., Newton notes
Prop. 45: use of infinite series. failure in accounting for Moon’s apses

motion: ‘The advance of the apsis of the
moon is about twice as swift’ [Newton,
1999, 545].

10 Cycloidal pendular motion:
extension of results obtained in
Huygens’sHorologium oscillatorium.
Results obtained by integration
techniques.
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Table 2. (Continued)

Title: On the Motion of Bodies,
First Book

Sect. 1st edition Main variants
11 Three-body problem: qualitative

treatment of Moon’s inequali-
ties, tidal motion, precession of
equinoxes. Some of these results
dealt numerically in Book 3.

Lettering of figures changed in 2nd ed.

12–13 Attraction of spherical and non-
spherical bodies.
Some results obtained by integrations
(esp. Cor. 2, Prop. 91). Scholium,
Prop. 93: binomial theorem.

14 Motion of small corpuscles: math-
ematization of corpuscular optics.

Newton’sad absurdum proof runs as follows (p. 433):

If you deny this, let them become ultimately unequal, and let their ultimate
difference beD. Then they cannot approach so close to equality that their
difference is less than the given differenceD, contrary to the hypothesis.

This principle might be regarded as an anticipation of A.L. Cauchy’s theory of limits (§25),
but this would certainly be a mistake, since Newton’s theory of limits is referred to a geo-
metrical rather than a numerical model. The objects to which Newton applies his ‘synthetic
method of fluxions’ or ‘method of first and ultimate ratios’ are geometrical quantities gen-
erated by continuous flow. A typical mathematical problem which occurs in thePrincipia
is the study of the limit to which the ratio of two geometrical fluents tends when they si-
multaneously vanish (Newton uses the expression the ‘limit of the ratio of two vanishing
quantities’).

Notice that Newton is careful in dealing always with ratios of ‘vanishing quantities’
which have well-defined limits. For instance, in Lemma 7 he shows that given a curve
(Figure 1) ‘the ultimate ratio of the arc [ACB], the chord [AB], and the tangent [AD] to one
another’ tends to 1 [Newton, 1999, 436].

In Lemma 2 Newton shows that the area of a curvilinear surfaceAabcdE (Figure 2)
can be approached as the limit of the areas of rectilinear surfaces, inscribedAKbLcMdD
or circumscribedAalbmcndoE. Each rectilinear surface is composed of a finite number of
rectangles with equal basesAB, BC, CD, etc. The proof is magisterial in its simplicity. Its
structure is still retained in present-day calculus textbooks in the definition of the Riemann
integral. It consists in showing that the difference between the areas of the circumscribed
and the inscribed figures tends to zero, as the number of rectangles is ‘increased indefi-
nitely’. In fact this difference is equal to the area of rectangleABla which, ‘because its
width AB is diminished indefinitely, becomes less than any given rectangle’ (p. 433).
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Figure 1. Limiting ratio of chord, tangent
and arc (after Newton [1972, 79]).

Figure 2. Approximating areas curvilinear
surfaces (after Newton [1972, 74]).

Notice how in Lemmas 2 and 7 Newton provides proofs of two assumptions that were
made in the 17th-century ‘new analysis’. The ‘new analysts’ (Newton himself in his early
writings!) had assumed that a curve can be conceived as a polygonal of infinitely many
infinitesimal sides, and that a curvilinear surface can be conceived as composed of infinitely
many infinitesimal stripes. According to Newton, the method of first and ultimate ratios
provides a foundation for such infinitesimal procedures. In theGeometria curvilinea and in
thePrincipia curves are smooth, and curvilinear surfaces are not resolved into infinitesimal
elements. In the synthetic method of fluxions one always works with finite quantities and
limits of ratios and sums of finite quantities.

Since Newton has banished infinitesimals and moments from thePrincipia in favour
of limits, he has to justify the limits themselves, and in order to do so he makes use of
geometrical and kinematical intuition. It is worth quoting from Section 1 at some length
on this particular point (p. 442):

It may be objected that there is no such thing as an ultimate proportion of van-
ishing quantities, inasmuch as before vanishing the proportion is not ultimate,
and after vanishing it does not exist at all. But by the same argument it could
equally be contended that there is noultimate velocity of a body reaching a
certain place at which the motion ceases; for before the body arrives at this
place, the velocity is not the ultimate velocity, and when it arrives there, there
is no velocity at all. But the answer is easy; to understand the ultimate velocity
as that with which a body is moving, neither before it arrives at its ultimate
place and the motion ceases, nor after it has arrived there, but at the very in-
stant when it arrives, that is, the very velocity with which the body arrives at its
ultimate place and with which the motion ceases. And similarly the ultimate
ratio of vanishing quantities is to be understood not as the ratio of quantities
before they vanish or after they have vanished, but the ratio with which they
vanish.

We turn now to Lemma 9 (Figure 3) which states (p. 437):
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Figure 3. Lemma 9 (after Newton [1972, 80]).

If the straight lineAE and the curveABC, both given in position, intersect
each other at a given angleA, and ifBD andCE are drawn as ordinates to the
straight lineAE at another given angle and meet the curve inB andC, and if
then pointsB andC simultaneously approach pointA, I say that the areas of
the trianglesABD andACE will ultimately be to each other as the squares of
the sides.

As in Lemma 7, the essential step in the proof of Lemma 9 consists in local linearization.
The curveABC can be identified in the neighbourhood ofA with its tangentAG. Therefore,
if one takes the pointB close toA, the curvilinear areaABD subtended by the curve grows
very nearly as the square of the ‘side’AD.

Lemma 9 has very important consequences for Newton’s science of motion. These con-
sequences are spelled out in Lemma 10. Let the abscissaAD in Figure 3 represent time,
and the ordinateDB velocity, then (pp. 437–438):

The spaces which a body describes when urged by any finite force, whether that
force is determinate and immutable or is continually increased or continually
decreased, are at the very beginning of the motion in the squared ratio of the
times.

From Galileo’s writings one knew that, when the force is ‘determined and immutable’, the
space travelled from rest is proportional to the square of time (in Newton’s terminology
‘the spaces described are in the squared ratio of the times’). Newton states that this result
is applicable to variable forces ‘at the very beginning of the motion’. As Newton explains
in the Corollaries to this Lemma, the first or ultimate ratio of displacement from rest, or
generally displacement from inertial motion,over the square of the time is proportional to
instantaneous acceleration.

As we will see, in thePrincipia Newton deals with variable forces. Thus he needs a
geometric representation of force. Lemma 10 says that locally the velocity can be consid-
ered as varying linearly with time. Under this local approximation one can state that the
displacement from inertial motion is proportional to the force times the square of time.
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5 THE PRINCIPIA (1687): THE AREA LAW

One of the deepest dynamical insights that Newton gained after adopting Hooke’s hypoth-
esis on planetary motions is that Kepler arealaw is equivalent to central force motion. This
is spelled out in Propositions 1 and 2, Book 1.These propositions are mathematically im-
portant since—when central force motion is considered—they allow Newton to represent
geometrically time as the area swept by the radius vector, an essential step for achieving a
geometrical representation of central force.

Proposition 1 reads as follows (p. 444):

The areas which bodies made to move in orbits describe by radii drawn to an
unmoving centre of forces lie in unmoving planes and are proportional to the
times.

A body is fired atA with given initial velocity in the directionAB (Figure 4). The cen-
tripetal force acting on the body must be first imagined as consisting of a series of im-
pulses which act after equal finite intervals of time. The trajectory will then be a polygonal
ABCDEF. The body moves, during the first interval of time, fromA to B with uniform
rectilinear inertial motion. If the impulse did not act atB the body would continue its rec-
tilinear uniform motion: it would reachc at the end of the second interval of time, so that
AB = Bc. But because of the first impulse the body will be instantaneously deflected: it
will reachC at the end of the second interval of time. Applying the first two laws of mo-
tion and elementary geometry, it is possible to show that trianglesSAB andSBC have the
same area and lie on the same plane. Similarly, all the triangular areasSCD, SDE, SEF,
etc. spanned by the radius vector in equal times are equal and planar. In order to prove
Proposition 1 Newton takes a limit. When the time interval tends to zero, the impulsive
force approaches a continuous centripetal force and the trajectory approaches a smooth
plane curve. The result (equal planar areas spanned in equal times by the radius vector)

Figure 4. Polygonal trajectory (after Newton [1972, 90]).
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obtained for the polygonal trajectory generated by the impulsive force is extrapolated to
the limiting smooth trajectory generated by the continuous force.

Following a similar procedure, Newton proves Proposition 2 which states the inverse of
Proposition 1. In Propositions 1 and 2 he has shown that a force is central if and only if the
area law holds: the plane of orbital motion is constant and the radius vector sweeps equal
areas in equal times. Notice that in his proof of Proposition 1 Newton makes recourse to
limit arguments, according to the method of first and ultimate ratios.

6 THE PRINCIPIA (1687): CENTRAL FORCES

In order to tackle central forces with geometrical methods, a geometrical representation
of such forces is required, a result which is not so easy to achieve since the central force
applied to an orbiting body changes continuously, both in strength anddirection. In Propo-
sition 6 such a representation is provided.

This proposition implements Hooke’s hypothesis. The body is accelerated in vacuo by a
central force and its motion, as Hooke had suggested, is decomposed into an inertial motion
along the tangent and an accelerated motion towards the force centre. A body accelerated
by a centripetal force directed towardsS (the centre of force) describes a trajectory as
shown schematically in Figure 5.PQ is the arc traversed in a finite interval of time. The
pointQ is fluid in its position on the orbit, and one has to consider the limiting situation
‘when pointsQ andP come together’. The lineZPR is the tangent to the orbit atP .
QR tends to be parallel toSP asQ approachesP . QT is normal toSP. As we know
from Lemma 10 (see Section 4), ‘at the very beginning of the motion’ the force can be
considered as constant. In the case taken into consideration in Figure 5, this implies that,
asQ approaches P , the displacement QR is proportional to force times the square of time.
In fact, in the limiting situation,QR can be considered as a small Galilean fall caused by
a constant force. Newton can now obtain the required geometrical representation of force.
Since Kepler’s area law holds (the force is central; cf. Prop. 1), the area ofSPQ (a triangle
since the limit of the ratio between the vanishing chordPQ and arcPQ is 1; cf. Lemma 7)
is proportional to time. The area of triangleSPQ is 1

2(SP ·QT). Therefore, the geometrical
measure of force is:

F ∝ QR

(SP ·QT)2
, (1)

where the above ratio has to be evaluated in the limiting situation ‘when pointsP andQ
come together’ and∝ is here used to mean ‘is proportional to’. Proposition 6 is a good

Figure 5. Parabolic trajectory in Prop. 6. After Newton [1972, 103n7].
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example of application of the method of first and ultimate ratios. The limit to which tends
the ratioQR/(SP · QT)2 is to be evaluated by purely geometric means. Notice thatSP
remains constant.

When the orbit is an equiangular spiral (in polar coordinates lnr = aθ ) andS is placed
at the centre (Proposition 9), asQ tends toP :

QR/QT2∝ 1/SP, (2)

and thus the force varies inversely with the cube of distance. While, when the orbit is an
ellipse and the centre of force is at the centre of the ellipse (Proposition 10)QR/QT2 ∝
SP3: i.e. the force varies directly with distance. It is to be noted that forces which vary with
the inverse of the cube of distance found an application later on in Book 3 in the study
of tidal forces, while forces which vary directly with distance occur in the study of elastic
vibrations.

In Section 3 Newton considers Keplerian orbits. In Proposition 11 Newton derives the
result that if the body describes an orbitO ,O is an ellipse and the force is directed toward
a focusS, then the force varies inversely with the square of distance. In Propositions 12
and 13 he shows that the force is inverse square also ifO is an hyperbola or a parabola. In
fact, when the orbit is a conic section andS is placed at one focus,

QR/QT2∝ 1/L, (3)

whereL is a constant (thelatus rectum), and the ratioQR/QT2 is evaluated, as always,
as the first or last ratio ‘with the pointsQ andP coming together’. Therefore, for a body
which obeys the first two Keplerian laws, the force varies inversely with the square of
distance. This is the birth of gravitation theory [Brackenridge, 1995].

In Corollary 1 to Propositions 11–13 Newton states that if the force is inverse square,
than the orbits are conic sections such that a focus coincides with the force centre. Corol-
lary 1 reads as follows [Newton, 1999, 467]:

From the last three propositions [i.e. Propositions 11–13] it follows that if any
bodyP departs from the placeP along any straight linePR with any veloc-
ity whatever and is at the same time acted upon by a centripetal force that is
inversely proportional to the square of the distance from the centre, this body
will move in some one of the conics having a focus in the centre of forces; and
conversely.

Quite understandably this terse statement wassubject to criticisms. Newton himself, while
revising the second edition of thePrincipia, emended Corollary 1 adding the sketch of
what he considered as a valid proof.

In the emended Corollary, and in the related Proposition 17, Newton makes it clear the
following. He considers a ‘body’ of given massm fired atP in an inverse-square force field.
Initial velocity �v0 (not directed towards the force centre) and normal component of central
force �FN at P determine the following geometric properties: i) the tangent atP , and ii)
the curvatureρ−1 of the orbit atP (via local application of Huygens law,ρ =mv2

0/|FN|).
It is clear that Newton restricts his attention to a particular class of orbits, namely conic



Chapter 5. Isaac Newton,Philosophiae naturalis principia mathematica, first edition (1687) 75

sections having a focus at the force centre: let us call this classC. There is a unique conic
with a focus in the force centre which satisfies the geometric properties implied by the
initial conditions. Further, the initial conditions determine the areal velocity and thus a
unique motion along this conic. From Propositions 11–13 one knows that such a conic
motion is a possible trajectory. So what Newton does in Corollary 1 plus Proposition 17 is
to show that for every initial condition it ispossible to identify a conic belonging toC and
a motion along it which satisfy the equation of motion. The proof that conics are necessary
orbits is completed by adding a uniqueness condition (unproven by Newton) according
to which for any initial condition only one trajectory is possible in a inverse-square force
field. This Newtonian procedure has recently given rise to a lively debate [Pourciau, 1991;
Weinstock, 2000]. This Corollary is an example of what was called ‘an inverse problem
of central forces’: the central forceF (force law and force centreS) is given, and what is
required is the trajectory (a singular, assuming uniqueness!) corresponding to any initial
position and velocity of a ‘body’ of given mass acted upon by such force.

7 THE PRINCIPIA (1687): PAPPUS’S PROBLEM

Descartes did not stress continuity with past tradition: hisGéométrie could be read as a
deliberate proof of the superiority of the new analytical methods, which united symbolic
algebra and geometry, over those purely geometrical of the ancients. Descartes began the
Géométrie with a problem, the four-lines locus, stated in Pappus’sCollectiones. According
to Descartes it could be inferred from Pappus’s text, which he cited at length, that Euclid
and Apollonius were not able to solve this problem, at least in its general form (§1.6). The
so-called Pappus problem received a general solution in theGéométrie: could have been
found a better proof of the superiority of the moderns over the ancients? In the late 1670s
Newton studied in depth the seventh book of Pappus’sCollectiones and began working
on the restoration of some lost books by Euclid and Apollonius. These new interests led
Newton to re-evaluate the use of geometry. Contrary to what Descartes had maintained,
Newton believed that the solution of Pappus problem was within the reach of the ancients.
His geometric solution of this problem attained not by ‘a computation [as Descartes had
done] but a geometrical synthesis, such as the ancients required’ [Newton, 1999, 485]
was to appear in print in Corollary 2 to Lemma 19, Section 5, Book 1, of thePrincipia.
Sections 4 and 5 remain almost wholly separate from the rest of thePrincipia. They do
not play a major role in Newton’s mathematization of natural philosophy. In these Sections
Newton aims at showing that the four-line locus can be determined by pure geometry.
These two Sections are thus an anti-Cartesian manifesto [Di Sieno and Galuzzi, 1989].

In the 7th book of theCollectiones Pappus had hinted at the existence of a hidden
method of discovery practiced by Euclid and Apollonius, the method of ‘analysis’. Newton
was convinced, by reading Pappus, that the ancient method of analysis was superior to
the modern symbolic one, that he identified with Cartesian analysis. In his attempts to
rediscover the method of the ancients Newton developed elements of projective geometry.
The idea was that the ancients were able to solve complex problems related to conics
by projective transformations (see Lemma 22). In Section 5 Newton applies projective
transformations in order to determine the conic which is tangent to 5− n given lines and
touchesn given points (0� n� 5).
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8 THE PRINCIPIA (1687): ALGEBRAIC NON-INTEGRABILITY OF OVALS

Section 6, Book 1, of thePrincipia is devoted to the solution of the so-called Kepler prob-
lem. The problem consists in finding the area of a focal sector of the ellipse and is equiva-
lent to the solution forx of the equationx − e sinx = z (e andz given). Johannes Kepler
(1571–1630) found that planets move in ellipses having the Sun placed at one focus. He
also found that they move in such a way that the radius vector joining the Sun with the
planet sweeps equal areas in equal times. When the elliptic orbit is known, the position of
the planet in function of time can thus be found by calculating the area of the focal sector.

Lemma 28 reads as follows [Newton, 1999, 511]:

No oval figure exists whose area, cut off by straight lines at will, can in gen-
eral be found by means of equations finite in the number of their terms and
dimensions.

This lemma is quite general. Given an oval figure and a pointP inside it, we cut a sector
S via a straight line passing throughP . The lemma states that the sectorS is not generally
expressible by means of a finite algebraic equation. Peter Pesic has beautifully paraphrased
Newton’s simple, but powerful, demonstration [2001, 215]:

Pick any point inside the oval and let it be the pole about which a line revolves
with uniform angular speed. On that line, let a point move away from the pole
with speed proportionate to the square of the distance along the line between
the pole and the line’s intersection with the oval. Then that moving point on the
moving line will move in a gyrating spiral, its distance from the pole recording
the area swept out by the line. The area of the oval is given by the distance
moved by the point over one complete revolution of the line. But as the line
continues to sweep over the oval area again and again, the spiral will continue
uncoiling to infinity. Hence, it will intersect any straight line drawn across it
an infinite number of times, which shows that the degree of the equation of the
spiral is not finite, since an equation of finite degree can only intersect a given
line a finite number of times. Therefore, since the area is given by the equation
of the spiral, the area of the curve is not given by an equation of finite degree.

Newton’s lemma 28 creates problems of interpretation since it is unclear what Newton
means by ‘an oval figure’ [Pourciau, 2001]. However, one can assume that the ellipse is
an oval figure and the Lemma applies to the focal sector of the ellipse swept by the ra-
dius vector according to Kepler’s first twolaws. Thus the Kepler problem can be solved
only via infinite series (equations with an infinite number of terms). Infinite series, as we
know, are Newton’s main tool to deal with mechanical curves. In the following Propo-
sition 31 and its scholium Newton shows how one can obtain numerical approximations
of the equationx − e sinx = z thanks to an iterative procedure which is related to the
Newton–Raphson method [Kollerstrom, 1992]. As Newton proves, Descartes’s rejection
of infinitary techniques would render the mathematization of Keplerian planetary theory
an impossible task.
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9 THE PRINCIPIA (1687): THE GENERAL INVERSE PROBLEM
OF CENTRAL FORCES

In Sections 7 and 8 of Book 1 Newton faces the general inverse problem of central forces:
i.e. the problem of determining the trajectory, given initial position and velocity, of a ‘body
acted upon’ byany central force. He deals first with ‘rectilinear ascent and descent’ and
then with curvilinear motion. The inverse problem for inverse square central forces was
faced by Newton in Corollary 1 to Propositions 11–13 and in Proposition 17, Book 1 (Sec-
tion 6). In Proposition 41 a general solution of the inverse problem is provided [Cohen,
1999, 334–345]. This proposition is based on the assumption that a method for the ‘quadra-
ture of curvilinear figures’ is given. As weknow, Newton had developed in his youth the
‘method of fluxions and infinite series’. However, in thePrincipia he chose not to make
his mathematical discoveries in this field wholly explicit. When Newton in thePrincipia
reduces a problem to a difficult quadrature, he follows the policy of giving the solution
without the complete demonstration. He simply shows that the solution depends upon the
quadrature of a curve and leaves the reader without any hint on how to perform the required
quadrature. Other examples of these mysterious reductions to quadratures can be found in
Newton’s treatment of the attraction of extended bodies (Sections 12 and 13, Book 1), of
the solid of least resistance (Scholium to Proposition 35, Book 2), and of the inequalities
of the Moon’s motion (Propositions 26–35, Book 3). These parts of thePrincipia were
really puzzling for his readers. They were told that a result depended upon the quadrature
of a certain curve, but the method by which this very quadrature could be achieved was not
revealed [Guicciardini, 1999].

As far as Proposition 41 is concerned the following points should be noticed: i) it is
entirely ‘geometrical’, but it can be easily translated into calculus terms; ii) the final result
is easily translatable into a couple of fluxional (or differential) equations; iii) Newton was
aware that a translation into calculus was feasible.

The last point is supported by overwhelming evidence [Brackenridge, 2003]. Firstly,
Newton writes that the demonstration of Proposition 41 depends upon the ‘quadrature of
curvilinear figures’. Secondly, in Corollary 3 he applies the general result of Proposition 41
to the case of an inverse cube force. The question to be answered in this Corollary is: which
trajectories are described by a body accelerated by an inverse cube force? In Corollary 3
Newton gives only the solution in the form of a geometrical construction: he constructs
some spiral trajectories which answer the problem. He could have obtained this result only
by the quadrature (in Leibnizian terms, ‘integration’) of the fluxional (in Leibnizian terms,
‘differential’) equations expressed geometrically in Proposition 41. In Corollary 3 New-
ton does not perform this quadrature explicitly, but simply states the result. He then adds:
‘All this follows from the foregoing proposition [41], by means of the quadrature of a
certain curve, the finding of which, as being easy enough, I omit for the sake of brevity’
[Newton, 1999, 532]. Thirdly, when David Gregory, during a visit he paid to Newton in
May 1694, asked about the mysterious method applied in the solution of Corollary 3, the
Lucasian Professor answered by translating the basic result of Proposition 41 as a fluxional
equation. He applied this equation to the case of an inverse cube force and obtained the re-
sult stated in thePrincipia. As Gregory remarked in a memorandum of this visit, ‘on these
[quadratures] depend certain more abstruse parts in his philosophy as hitherto published,
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such as Corollary 3, Proposition 41’ [NewtonCorrespondence, vol. 3, 386]. There is no
evidence that Newton ever applied Proposition 41 to inverse-square forces. The first ones
to do so in print were Jacob Hermann and Johann Bernoulli in 1710.

10 THEPRINCIPIA (1687): UNIVERSAL GRAVITATION

In order to approach universal gravitation in mathematical terms Newton had to advance
into unknown territory. Until Section 8, Book 1, he had dealt with a body moving in a
central force field. Newton knew that this mathematical model can be applied only ap-
proximately to the planetary system. In practice when one considers a system composed
of two bodies 1 and 2, sufficiently far from other disturbing bodies and sufficiently far one
from the other, and 1 has a much greater mass than 2, then one can approximate 1 as an
immovable centre of force and 2 as a pointmass. This simplified model occurs also in
Section 9, Book 1, devoted to the motion of the line of apsides. It is only in Section 11 that
Newton considers the motion of two, or more than two, bodies which mutually attract each
other; and only in Sections 12 and 13 that he pays attention to the shape of the bodies, and
to the gravitational force exerted by such bodies. These concluding more advanced sec-
tions of Book 1 contain a wealth of results, especially on embryonic perturbation theory
[Nauenberg, 2001; Wilson, 2001].

Book 2 (Table 3) is devoted to the motion of bodies in resisting media. It is rich in
mathematical results: most notably, in the Scholium to Proposition 35 (= 34, in the 2nd
ed.) Newton inaugurates variational methods by tackling the problem of the solid of least
resistance. The concluding Section 9 leads to what Newton conceived of as a refutation
of the vortex theory of planetary motions. Book 2 contains many pages devoted to experi-
mental results on resisted motion. The mathematical parts of Book 2 are very problematic.
Compared with the mathematical methods of the first Book, those of the second were con-
sidered, since Newton’s times, the less satisfactory, and in some cases just mistaken.

In Book 3 (Tables 4 and 5) Newton applied the mathematical results achieved in the
first Book to astronomy. In a sequence of opening propositions he was able to infer from
astronomical data that the planetary motions are caused by a gravitational force. This force
acts instantaneously, in void, and attracts two given masses with a strength proportional
to the product of the masses and inversely proportional to the square of their distance. In
the remaining part of Book 3, Newton, assuming the existence of such a force between
any two masses in the whole universe, was able to give quantitative estimates of diverse
phenomena such as the motion of the tides, the shape of the Earth, some of the inequali-
ties of the Moon’s motion, and the precession ofequinoxes and the trajectories of comets.
In Lemma 5, in dealing with cometary paths, Newton presents a method of interpolation
which was to inspire researches by mathematicians such as James Stirling, Friedrich Wil-
helm Bessel and Carl Friedrich Gauss.

11 REVISIONS (1690S), SECOND (1713) AND THIRD (1726) EDITIONS

During the early 1690s Newton considered radical restructurings of thePrincipia. De-
spite the fact that nothing of these projects appeared in print during Newton’s lifetime, it
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Table 3. Summary by sections of Book 2 ofPrincipia, 1st edition (1687) (pp. 236–400).
The most notable variants are the emendations to Prop. 10 that Newton introduced as a consequence

of Niklaus and Johann Bernoulli’s criticisms (see [Hall, 1980] and Whiteside’s commentary in
[NewtonPapers, vol. 8, 469–697]). Newton was extremely dissatisfied with the treatment of fluid
resistance in Section 7, and this Section was completely rewritten: detailsin [Newton, 1972]; an
English translation of the passages replaced or removed in the 2nd and 3rd eds. is in [Cohen and

Smith, 2001, 299–313]; and an historical commentary on the relevance of such variants is
[Smith, 2001].

Title: On the Motion of Bodies,
Second Book

Sect.1st edition Main variants
1 Point-mass projectile resisted as the velocity.

2 Point-mass projectile resisted as the velocityProp. 10 emended in 2nd ed.
squared.
Use of Taylor series.
Lemma 2 on moments of products, etc. Scholium, Lemma 2: changes relative

to dispute with Leibniz in 3rd ed.

3 Point-mass projectile resisted ask1v + k2v
2.

4 Spiral trajectories.

5 Hydrostatics, density of the atmosphere.

6 Pendulum retarded oscillations.

7 Resisted motion, solid of least resistance,Mostly rewritten in 2nd ed. General
efflux from a vessel. Scholium: emended and moved at

the end of Section 6, values on air
resistance changed.

8 Wave propagation, sound. Scholium on sound changed in
2nd ed.

9 Refutation of vortex theory.

is interesting to consider them since they reveal Newton’s evaluations of his own math-
ematical methods for natural philosophy. For instance we know of projects of gathering
all the mathematical Lemmas in a separate introductory section [NewtonPapers, vol. 6,
600–609; Cohen, 1971, 171–172]. From David Gregory’s retrospective memorandum of a
visit he paid to Newton in May 1694 we learn about projects of expanding the geometrical
Sections 4 and 5, Book 1, into a separate appendix on the ‘Geometry of the Ancients’,
and of adding a treatise on the quadrature of curves as a second mathematical appendix in
order to show the method whereby ‘curves can be squared’ [NewtonPapers, vol. 6, 601;
Cohen, 1971, 193–194, 345–349]. In general, after the publication of thePrincipia, New-
ton showed a concern for two problems. The first was to relate his mathematical methods
for natural philosophy to the tradition of ancient geometry. The second was to relate them
to the new analytical methodof fluxions. Both problems became urgent and indeed an ob-
session for Newton after the inception of the priority quarrel with Leibniz. In fact, during
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Table 4. Summary of preliminaries to Book 3 ofPrincipia, 1st edition (1687)
(pp. 401–404).

First column indicates Hypothesis number. These opening pages of Book 3 were considerably
altered: both in the 2nd and 3rd eds. Newton reworked the wording and the astronomical data. The
nine ‘hypotheses’ which open Book 3, 1st ed., are basic for the development of gravitation theory;
they are, however, quite different in character. The first two hypotheses are methodological rules

which justify the inductive generalization which leads to the establishment of universal gravitation:
from 2nd ed. they became Rule 1 and 2. Newton added two further rules (Rule 3 in 2nd ed., Rule 4
in 3rd ed.) and grouped them together as ‘Rules for the study of natural philosophy’. Hypothesis 3
(dropped in 2nd ed.) might have alchemical overtones. Hypothesis 4 states that ‘the center of the

system of the world is at rest’. Hypotheses 5–9 concern astronomical observations on the planetary
system. It is likely that Newton was happy to get rid of so many occurrences of the term

‘hypothesis’, since in the General Scholium, at the end of Book 3 (2nd ed.), he stated his famous
‘I do not feign hypothesis’.

Title: The System of the World, Third Book

1st edition Main variants

Page 401: Newton states that while Books 1–2
are mathematical, Book 3 is philosophical.

1 (simplicity of nature). → Rule 1 in 2nd and 3rd ed.

2 (similar causes for similar effects). → Rule 2 in 2nd and 3rd ed.

3 (bodies’ tansformations). Related to Cor. 2,
Prop. 6, Book 3.

Dropped in 2nd ed.

New rule 3 introduced in 2nd and 3rd
edition (invariant observed qualities of
bodies can be taken as qualities of all
bodies).

New rule 4 introduced in 3rd edition
(props. gathered from phenomena by
induction should be considered exactly
or very nearly true).

4 (on center of World System). → Hypothesis 1, moved after
Prop. 10, Book 3, in 2nd and 3rd eds.

5 (Jupiter’s moons obey area and Kepler’s → Phenomenon 1 in 2nd and 3rd eds.
3rd law).

Phenomenon 2 introduced in 2nd and
3rd eds. (Saturn’s moons obey area and
Kepler’s 3rd law).

6 (planets orbit around the Sun). → Phenomenon 3 in 2nd and 3rd eds.

7 (Sun’s planets obey Kepler’s 3rd law). → Phenomenon 4 in 2nd and 3rd eds.

8 (Sun’s planets obey area law rel. to Sun). → Phenomenon 5 in 2nd and 3rd eds.

9 (Moon obeys area law rel. to Earth). → Phenomenon 6 in 2nd and 3rd eds.
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Table 5. Summary of Propositions in Book 3 ofPrincipia, 1st edition (1687)
(pp. 405–511).

Book 3 contains 42 Propositions. First column indicates Proposition number. The most important
variant is the addition of the concluding General Scholium in 2nd ed. In the General Scholium

Newton deals with theological and methodological themes (see Snobelen [2001]). In the 2nd and
3rd eds Newton revised a great deal of numerical data: details can be found in [Newton, 1972].

1st edition Main variants

1 Kepler’s area+ 3rd laws prove Jupiter’s
moons 1/r2 attracted by Jupiter.

2 Kepler’s area+ 3rd laws prove Sun’s
planets 1/r2 attracted by Sun.

3 Kepler’s area+ 3rd laws prove Moon 1/r2

attracted by Earth.

4 ‘Moon test’ proves Moon gravitates
towards Earth.

5 Hypothesis 2 proves Sun’s planets and
Jupiter’s moons gravitate towards Sun and
Jupiter respectively.

It (viz. Rule 2) proves the same for
Saturn’s moons.

6 Equivalence of gravitational and inertial
mass proved by pendulum experiments.

7 Gravitation is universal and proportional
to quantity of matter.

8 Mutual gravitation of spherical masses. Corollaries (weights on planets and
planets’ densities) rewritten in 2nd ed.

9 Gravity in the interior of planets.

10 Planetary motions remain unaltered for a
long time.

11 Planetary system’s center of mass is at
rest.

12 Motion of the Sun caused by planet’s
attractions.

13 Planetary orbits are elliptical and area law
valid.

14 Aphelia and nodes of planets are at rest:
Newton claims this is the best test for grav-
itation theory. Corollaries on stability of
stars’ system.

15–16Determination of diameters, aphelia, and
eccentricities of planetary orbits.

17 Moon’s libration.
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Table 5. (Continued)

1st edition Main variants
18–20Oblate shape of planets proved by balanc-

ing of polar and equatorial columns. Esti-
mate of Earth’s oblateness. Weight varia-
tion in function of latitude.

Major variants in 2nd and 3rd eds on
measures of one degree on the merid-
ian and length of seconds pendulum at
different latitudes.

21 Precession of the equinoxes: theory.

22–23Inequalities of Moon, Jupiter’s moons and
Saturn.

24 Tides caused by Moon’s and Sun’s
attraction.

25–35Three Moon’s inequalities: the ‘variation’,
the motion of the nodes, the variation of
the inclination.

Two props by Machin on Moon’s
nodes added in 3rd ed. after Prop. 33.
Scholium, Prop. 35, altered in 2nd ed.:
reference to calculation on Moon’s
apogee motion deleted, Horroxian
model of Moon’s motion briefly pre-
sented, general theory of Moon’s in-
equalities described.

36–37Tides: determination of Sun’s and Moon’s
action on sea.

38 Shape of the Moon.

39 Precession of the equinoxes: numerical
determination.
Lemma 2: result obtained ‘by the method
of fluxions’ [Newton, 1999, 884].

Demonstration altered in 2nd ed.

40–42Determination of cometary orbits.
Lemma 5: interpolation method.

New astronomical data added in 2nd
and 3rd eds.

page 511 Errata. Moved after Chapter Index in 3rd ed.

General Scholium added in 2nd ed.

Alphabetical subject index added in
2nd ed.

the priority dispute, Newton found himself in a double trap. From one point of view, he
wished to use thePrincipia as proof of his knowledge of calculus prior to the publication
of G.W. Leibniz’sNova methodus (1684) (§4). This led him to state most of the propo-
sitions of thePrincipia had been found by means of the ‘new analysis’, even though
they had been published in a different, ‘synthetic’, form. It was easy, he claimed, to re-
vert the synthetic demonstrations into analytical form. On the other hand, Newton was
convinced that his geometricalmathematical way was superior to Leibniz’s reliance on
algorithm.
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It is notable that Newton planned to introduce some scholia, concerning the wisdom
of the ancient Hebrews, Egyptians and Phoenicians, in Book 3. In his opinion, the an-
cient sages possessed a superior knowledge: they accepted atomism, the heliocentric sys-
tem, and even had some awareness of universal gravitation [McGuire and Rattansi, 1966;
Casini, 1984].

None of these projects materializedin the second and third editions of thePrincipia,
which appeared in 1713 and 1726 respectively. The emendations and variations between
these editions have been studied in detail by Koyré and Cohen [Newton, 1972]. Most no-
tably, Newton revised some propositions (Corollary 1 to Proposition 13, Book 1; Propo-
sition 10, Book 2; and large sections of the second Book). Hypotheses 1 and 2, on which
the inductive generalizations of Book 3 are based, were expanded into four ‘rules for the
study of natural philosophy’. Newton also added an alternative geometrical representation
of central force extending Proposition 6, Book 1,and the demonstrations on central force
motion in Sections 2 and 3, Book 1. This new representation is based on the determination
of curvature of the trajectory: the idea is that the total normal component of force at an ar-
bitrary point is proportional to the square of speed and inversely proportional to the radius
of curvature [Brackenridge, 1995]. As we know, this idea was not a novelty in Newton’s
approach to central forces and indeed appeared also in the first edition in Proposition 28,
Book 3 [Nauenberg, 1994].

Notwithstanding these important variants, in broad outline the structure of the first edi-
tion remained unaltered. The number and order of the propositions, as well as the meth-
ods of proof, remained almost unchanged. The most striking differences between the first
and later editions occur at the beginning and at the very end. The second and third edi-
tions contain, in fact, a Preface, signed by Roger Cotes, in which the objections of the
Cartesians and the Leibnizians against the concept of gravitation are refuted. Cotes also
considers the relationships between Newton’s cosmology and religion: he maintains that
the cosmology of thePrincipia avoids the dangers of Cartesian mechanicism and Leib-
nizian metaphysics. According to Cotes—who was speaking on Newton’s behalf—, while
the Continentals risk to reduce the world to a mechanism which can work without God’s
intervention, the cosmology of gravitation requires the wise and providential intervention
of God. These themes are discussed also in aconcluding General Scholium that Newton
appended to the second edition. In these concluding pages he maintains that ‘to treat of
God from phenomena is certainly part of natural philosophy’ [Newton, 1999, 943]. It is
indeed anachronistic to narrowly read thePrincipia as a work on mathematical physics,
since Newton’s natural philosophy is deeply intertwined with theology, with alchemy, with
his belief to be a rediscoverer of an ancient, forgotten, knowledge. Recent scholarship has
established that Newton inserted many half-hidden hints to his heretical anti-trinitarism in
the General Scholium [Snobelen, 2001]. The General Scholium contains Newton’s famous
pronouncement that on the cause of gravity he would not ‘feign hypotheses’.

12 THE IMPACT OF THEPRINCIPIA

To evaluate the impact of thePrincipia is a momentous task. From one point of view,
one could say that its influence has not expired yet, since Newtonian mechanics is still
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adopted in many fields of science and since many problems faced by Newton—such as
the three-body problem—are still open questions. However, such a statement is possible
only by underevaluating the changes in the conceptions of mechanical principles, and in
the sophistication of mathematical techniques, that occurred after Newton’s death.

Basic concepts, such as the conservation of the angular momentum (of a system of par-
ticles) and the conservation of energy, were lacking from thePrincipia. Indeed, several
mistakes that Newton did in studying rigid and fluid body dynamics (e.g., in his sup-
posed refutation of the Cartesian vortex theory in Section 9, Book 2, and in his study
of precession of equinoxes in Book 3) were due to his lack of understanding of these
fundamental principles. Further, during the 18th century extremal principles, such as the
principle of least action or that of virtual velocities, were proposed by Continental math-
ematicians as alternative foundations to mechanics. These alternatives do not belong to
the Newtonian tradition, nonetheless they played a major role in the development of what
came to be called ‘Newtonian mechanics’. They rather belong to the conceptual frame-
work of G.W. Leibniz (1646–1716). In fact, as early as 1687, Leibniz began reinter-
preting thePrincipia in terms of his own cosmology (based on vortex theory), physics
(where conservation of energy was adumbrated), matter theory (where infinite divisibil-
ity and elasticity, rather than atomism and hard impacts were basic), and mathemati-
cal language (carried on in terms of differential and integral calculus) [Truesdell, 1960;
Bertoloni Meli, 1993].

The mathematical language in which Newton wrote his work became soon obsolete. Af-
ter the works of mathematicians such as Pierre Varignon (1654–1722), Johann Bernoulli
(1667–1748), Leonhard Euler (1707–1783), Alexis-Claude Clairaut (1713–1765), Jean le
Rond d’Alembert (1717–1783), Joseph Louis Lagrange (1736–1813) and Pierre Simon
Laplace (1749–1827), analytic mechanics was carried on in terms of ordinary and partial
differential equations, and variational calculus, rather than on Newtonian geometric limit
procedures [Blay, 1992]. This is not said to detract anything from the Newtonian achieve-
ment. Indeed, one can just think that before thePrincipia natural philosophers were able
to mathematize just parabolic motions, the unresisted pendulum and uniform circular mo-
tions. In thePrincipia Newton was modelling topics such as the perturbations of planets,
the motion of tides, and the motion of projectiles in resisting media.

The greatness of Newton’s mathematical achievement was recognised by all his con-
temporaries, even by his worse enemies. On the other hand, the physics of gravitation met
first with skepticism, especially on the Continent. How could a force operate at astronomic
distances, in void and instantaneously? According to Continentals, such as Leibniz, Huy-
gens and Johann Bernoulli, a mechanical explanation—analogous to Cartesian vortices—
of the propagation of this action was needed. They thought that Newton had developed a
beautiful mathematical theory about anunsound physical hypothesis. The success of the
Principia, and its acceptance on the Continent, depended mostly upon two factors: the
predictive success of its mathematical models, the presence of many fruitful mathematical
open problems. Even people who did not endorse the physics of gravitation were struck by
these two aspects. In the decades following Newton’s death, thanks to gravitation theory, it
was possible to predict planetary shapes, planets’ deviations from purely Keplerian ellip-
tical motions, and the return of comets. At the middle of the 18th century the Newtonian
paradigm was accepted by most astronomers, and the worries about gravitation faded away,
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even though the nature of an acting at a distance instantaneous interaction was not better
understood. The fertility of the Principia as a repertoire of open mathematical problems
should not be underestimated. In dealing with advanced topics, Newton had employed ob-
scure, even flawed, mathematical methods. The more advanced parts of Newton’s work be-
came a source of inspiration for many 18th-century mathematicians. Attempts to improve
on Newton’s mathematical treatment of the three-body problem, of the determination of
the solid of least resistance, or of the attraction of ellipsoids of revolution, carried on by
men such as Euler, d’Alembert and Lagrange changed the scene of mathematics.

After their work thePrincipia’s mathematical methods ceased to be of interest for prac-
tising mathematicians. At the end of the 18th century thePrincipia was read only by a
handful of erudite historians, even though knowledge of the first three sections of Book 1
and the first propositions of Book 3 was often required to university students [Warwick,
2003]. This is perhaps inevitable: a classic is a book that everybody would like to have
already read. This is indeed a pity, since those who have read the great master know how
beautiful is his geometrical language and how many powerful mathematical insights are
still contained in hisPrincipia.
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CHAPTER 6

JAKOB BERNOULLI, ARS CONJECTANDI(1713)

Ivo Schneider

This book marks the unification of the calculus of games of chance and the realm of the
probable by introducing the classical measure of probability. Justified by Bernoulli’s law of
large numbers, it contains a program to mathematize the realm of the probable, including
what now is called the social domain.

First publication. Ars conjectandi, Opus posthumum. Accedit tractatus de seriebus infinitis,
et epistola Gallicè scripta de ludo pilae reticularis, Basel: Thurnisii fratres, 1713. 306+
35 pages.

Photoreprint. Brussels:Editions Culture et Civilisation, 1968.

New edition. In Die Werke von Jakob Bernoulli, vol. 3 (ed. and comm. B.L. van der Waer-
den and K. Kohli), Basel: Birkhäuser, 1975, 107–286.

Partial English translations. 1) With the Latin original, of chs. 1–3 of Part II inThe
doctrine of permutations and combinations, being an essential and fundamental part
of the doctrine of changes, as it is delivered by Mr. James Bernoulli, [. . .] and by
the celebrated Dr. John Wallis (trans. Francis Maseres), London: B. and J. White,
1795. 2) Of Part IV (trans. Bing Sung) as Harvard University, Department of Sta-
tistics, Technical Report No. 2 (1966); chs. 1–4 also available on the Web under
http://cerebro.xu.edu/math/Sources/JamesBernoulli/ars_sung/ars_sung.html.

Full French translation. L’art de conjecturer: suivi du Traité des séries infinies et de la
Lettre sur le jeu de paume (ed. Jean Peyroux), Paris: Blanchard, 1998.

Partial French translations. 1) Of Part I asL’Art de conjecturer. . . avec des observations,
éclaircissemens et additions. . . 1re partie (trans. L.G.F. Vastel), Caen: [anonymous],
1801. [Includes also part of C. Huygens,De la manière de raisonner dans les jeux de
hazard.] 2) Selection with Latin original inJacques Bernoulli et l’Ars conjectandi: doc-
uments pour l’étude de l’émergence d’une mathématisation de la stochastique (trans.
Norbert Meusnier), Mont Saint Aignan: Université de Rouen Haute Normandie, Institut
de Recherche sur l’Enseignement des Mathématiques, 1987.

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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Nearly complete German translation. Wahrscheinlichkeitsrechnung (Ars conjectandi)
(trans. R. Haussner), Leipzig: Engelmann, 1899 (Ostwalds Klassiker der exakten Wis-
senschaften, nos. 107 and 108). [Repr. Frankfurt/Main: Deutsch, 1999, 2002.]

Partial Italian translation. Of Part I as (trans. P. Dupont and Clara Silvia Roero) ‘Il trat-
tato “De ratiociniis in ludo aleae” di Christiaan Huygens con le “Annotationes” di Ja-
cob Bernoulli (“Ars conjectandi”, Parte I)’,Memorie della Accademia delle Scienze di
Torino, (5) 8 (1984), 1–258.

Partial Russian translation. Of Part IV in J. Bernoulli: On the law of large numbers [in
Russian] (trans. J.V. Uspensky, ed. A.A. Markov), Moscow: 1913. [Repr. (ed. with notes
and commentaries by Yu.V. Prohorov), Moscow: Nauka, 1986.]

Partial Swedish translation. Of Part I (trans. Carl V. Ludvig Charlier) manuscript, Univer-
sity of Lund, 1919.

Related articles: de Moivre (§7), Bayes (§15), Laplace on probability (§24).

1 BACKGROUND AND STORY OF PUBLICATION

Born in 1755 in Basel as the son of a merchant, Jakob Bernoulli studied theology until
he had received the licentiate in 1676. He left the subject in order to devote his time to
astronomy and mathematics. Before he became professor of mathematics in Basel in 1687
he had travelled in France, the Netherlands, England, and Germany where he had met
with mathematicians like Jan Hudde, John Wallis and Isaac Barrow. In these years he had
become a Cartesian.

After G.W. Leibniz’s publications concerning his form of the calculus in 1684 and 1686
(§4), Jakob and his younger brother Johann (1667–1748) began to contribute to the new
field. Jakob cultivated the theory of infinite series on the basis of preliminary work done
by Nikolaus Mercator, James Gregory, Isaac Newton, and Leibniz. He published five dis-
sertations on series between 1689 and 1704. He considered series as the universal means
to integrate arbitrary functions, to square and rectify curves.

One can only speculate why Jakob Bernoulli started in the mid 1680s to work on the
calculus of games of chance andits extension to decision problems in everyday life. At this
time only a few publications on the calculus of games of chance were available. Bernoulli’s
first source was theDe ratiociniis in ludo aleae by Christiaan Huygens (1629–1695),which
had come out in 1657 in Leiden as an appendix to Frans van Schooten’sExercitationum
mathematicarum libri quinque. At this time the realm of games of chance and the realm
of the probable which concerned opinion, evidence, and argument in practical problems
of everyday life were still completely separated. Bernoulli bridged the gap between these
two realms by combining Huygens’s concept of expectation with a quantifiable concept
of probability understood as degree of certainty in theArs conjectandi (hereafter, ‘AC’).
According to his brother’s and his own statements, he had begun work on the manuscript
of AC in the 1690s, and had resumed work after some interruptions in the last two years
of his life during which he corresponded with Leibniz about the main ideas of his art of
conjecturing.
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Leibniz himself had developed similar ideas independently of Jakob Bernoulli. He was
interested in the creation of a doctrine or a logic of degrees of probabilities and hoped
that, since his many obligations hindered him to do it himself, a mathematician like Jakob
Bernoulli would indulge in the creation of this new theory of probability. When he had in-
formed Leibniz in a letter from October 1703 about his intentions concerning his estimates
of probabilities and especially his law of large numbers Leibniz reacted very critically.
Leibniz’s main criticisms were that the probability of contingent events, which he identi-
fied with dependence on infinitely many conditions, could not be determined by a finite
number of observations and that the appearance of new circumstances could change the
probability of an event. Bernoulli agreed that only a finite number of trials can be under-
taken; but he differed from Leibniz in being convinced by the urn model that a reasonably
great number of trials yielded estimates of the sought-after probabilities that were sufficient
for all practical purposes.

Important sections of the AC were sketched out in Jakob Bernoulli’s scientific diary,
the ‘Meditationes’, from the mid 1680s onwards. When he died in 1705, the AC was not
finished, especially lacking good examples for the applications of his ‘art of conjecturing’
to what he described as civil and moral affairs. Concerning the time that it would have
needed to complete it, opinions differ from a few weeks to quite a few years, depending
on assumptions about his own understanding of completeness. His heirs did not want his
brother Johann, the leading mathematician in Europe at this time, to complete and edit
the manuscript, fearing that Johann would exploit his brother’s work. Only after Pierre
Rémond de Montmort (1678–1719), himself a pioneer of the theory of probability, had
sent an offer via Johann to print the manuscript at his own expense in 1710, and after some
admonitions that theArs conjectandi soon would become obsolete if not published, Jakob’s
son, a painter, agreed to have the unaltered manuscript printed. It appeared in August 1713
together with a tract about infinite series and a letter in French on the ‘Jeu de paume’, a
predecessor of tennis.

A short preface was contributed by Nikolaus Bernoulli (1687–1759), Jakob’s nephew.
He had read the manuscript when his uncle was still alive, and had made considerable use
of it in his thesis of 1709 and in his correspondence with Montmort. He was asked twice to
complete and edit the manuscript. The first time he excused himself by his absence when
he travelled in 1712 to Holland, England and France. After his return Nikolaus Bernoulli
declared himself as too inexperienced to dothe job and in his preface he asked Montmort,
the anonymous author of theEssay sur les jeux de hazard, and Abraham de Moivre (1667–
1754) to complete his uncle’s work.

2 CONTENT AND STRUCTURE OF THE AC

After an attractive title page (Figure 1), theArs conjectandi consists of four Parts (Table 1).
The first Part (pp. 1–71) is based on Huygens’sDe ratiociniis in ludo aleae aleae. The
second Part (pp. 72–137) deals with the theory of permutations and combinations. The
third (pp. 138–209) contains 24 problems concerning games of chance. The fourth and
last (pp. 210–239) is devoted to the application of the art of conjecturing to ‘civil, social,
and economical affairs’. It is followed by a tract on infinite series (pp. 241–306) which is
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Table 1. Contents by chapters of Bernoulli’s book.

Part/Ch. P. Topics
Preface by Nikolaus Bernoulli
1st Part 1 Huygens’s preface to hisDe ratiociniis in ludo aleae.

3 Huygens’s propositions I to III with Bernoulli’s comments.
11 The problem of points in Huygens’s Propositions IV–IX.
20 Huygens’s dicing problems in Propositions X–XII.
38 Bernoulli’s generalization leading to the binomial distribution.
45 Huygens’s Propositions XIII and XIV.
49 Bernoulli’s solution of Huygens’s problems I–V.

2nd Part 72 Introduction to the theory of permutations and combinations.
Ch. 1 74 Permutations.
Ch. 2 82 Combinations of all classes.
Ch. 3 86 Combinations of a particular class; figurate numbers; the general

formula for sums of powers of integers (p. 97).
Ch. 4 99 Properties of the binomial coefficients and the treatment of the

problem of points for two players with equal chances for a win.
Ch. 5 112 Combinations with repetitions.
Ch. 6 118 Combinations with restricted repetitions.
Ch. 7 124 Variations.
Ch. 8 127 Variations with repetitions.
Ch. 9 132 Variations with restricted repetitions.
3rd Part 138 Application of the theory of permutations and combinations to 24

problems dealing with games of chance, including Bassette (pp.
191–199).

4th Part 210 The application of the theory of permutations and combinations in
the social, political and economical domain.

Ch. 1 210 About certitude, probability, necessity and contingent events.
Ch. 2 213 About science and conjecture.
Ch. 3 217 The estimation of the weight of different arguments.
Ch. 4 223 The two ways to determine probabilities, especially by often

repeated trials.
Ch. 5 228 Proof of Bernoulli’s law of large numbers.
App. 1 241 Tract concerning the summation of infinite series and their

application to quadratures and rectifications. [End 306.]
App. 2 (1) ‘Lettre à un Amy, sur les Parties du Jeu de Paume’. [End (35).]
App. 3 – List of Errata.

however without any connection to games ofchance or probabilitytheory and has been
treated in histories of the infinitesimal calculus in the 17th century. A 35-page appendix
with separate pagination deals with the jeu de paume. On the context of the book see
[Todhunter, 1865, ch. 7; Hacking, 1975, chs. 16–17; Stigler, 1986, ch. 2; and Hald, 1990,
chs. 15–16].
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Figure 1. Title page of Bernoulli’s book.

3 HUYGENS’SDE RATIONCINIIS IN LUDO ALEAE
WITH BERNOULLI’S ANNOTATIONS

In the first Part Jakob Bernoulli complemented his reprint of Huygens’s tract by exten-
sive annotations which contained important modifications and generalisations. Bernoulli’s
additions to Huygens’s tract are about four times as long as the original text.

The central concept in Huygens’s tract is expectation. The expectation of a playerA

engaged in a game of chance in a certain situation is identified by Huygens with his share of
the stakes if the game is not played or not continued in a ‘just’ game. For the determination
of expectation Huygens had given three propositions which constitute the ‘theory’ of his
calculus of games of chance. Huygens’s central proposition III maintains:
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If the number of cases I have for gaininga is p, and if the number of cases I
have for gainingb is q , then assuming that all cases can happen equally easily,
my expectation is worth(pa + qb)/(p+ q).

Bernoulli not only gives a new proof for this proposition but also generalizes it in several
ways. In his Corollary 3 he secures the possibility to determine the expectationE if there
arepi cases for gainingai , i = 1, . . . , n, beginning withi = 2 and proceeding toi = 3 and

so on up toi = n asE =
∑n
i=1piai∑n
i=1pi

. Bernoulli, however, did not use the same notation, as

one can see from Corollary 3, which begins with the statement (p. 9):

If I havep cases for gaininga, q cases for gainingb, andr cases for gaining
c this is worth for me as much as if I would havep + q cases for gaining
(pa + qb)/(p+ q) andr cases for gainingc.

Applying Huygens’s proposition III leads to the resultE = (pa + qb+ rc)/(p+ q + r),
from which one can proceed to adds cases for gainingd , and so on.

Differently from Huygens, Bernoulli admitted that the ‘gains’a, b, c, . . . can assume
non-positive values, especially zero. So if in Huygens proposition IIIb is zero thanE =
p
p+q a, or the value of Huygens’s expectation is the product of what Bernoulli will call in

Part IV the measure of probability of an event leading to the gaina anda. If a = 1, as
is assumed in the following by Bernoulli, Huygens’s expectation and the corresponding
measure of probability become numerically but still not conceptionally equal.

Huygens’s propositions IV to VII treat the problem of points, also called the problem
of the division of stakes, for two players;propositions VIII and IX treat three and more
players. Bernoulli returns to these problems in Part II of the AC. In his annotations to
Huygens’s proposition IV he generalised Huygens’s concept of expectation which, like
the shares, is measured in terms of money. Bernoulli wanted to extend the meaning of
share e.g. to include ‘some kind of prize, laurels, victory, social status of a person or thing,
public office, some kind of work, life or death’. Here he remarks that the expectations of
two players have to add up to the total stakes if the corresponding events leading to win
or loss are disjoint and complementary. This is not to be confused with the addition rule
for probabilities. Bernoulli constructs an example where the respective expectations of two
players do not add up to the total stakes.

This is the only instance in the annotations and commentaries to Huygens tract where
Bernoulli uses the word ‘probabilitas’, or probability as understood in everyday life. Later
in Part IV of the AC Bernoulli replaced Huygens’s main concept, expectation, by the con-
cept of probability for which heintroduced the classical measure of favourable to all pos-
sible cases.

The remaining propositions X to XIV of Huygens’s tract deal with dicing problems of
the kind: What are the odds to throw a given number of points with two or three dice? or:
With how many throws of a die can one undertake it to throw a six or a double six? In
proposition XII Huygens solved the problem ‘To find how many dice should one take to
throw two sixes at the first throw’. In his extensive annotations Bernoulli generalizes the
problem in different ways. In the first he does not restrict the number of dice to two or
three. He solves the problem to determine the odds to throw a given number of points with
n dice by an algorithm which he works out up ton= 6.
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The meaning of Huygens’s result of proposition X that the expectation of a player who
contends to throw a six with four throws of a die is greater than that of his adversary is
explained by Bernoulli in a way which relates to the law of large numbers proved in Part
IV of the AC. Bernoulli’s generalization of Huygens’s proposition XI and XII leads to the
problem of finding the expectation or, since the stakes are normalized to the amount 1, the
probability, as introduced in Part IV of the AC, of a player who contends to achieve in a
series ofn independent trials at leastm successes if the chances for success and failure are
asb : c andb+ c= a or the probability of success isb/a and that of failurec/a. Bernoulli
finds inductively that this expectation or probability is

n−m∑
ν=0

(
n

m+ ν
) (

b

a

)m+ν(
c

a

)n−m−ν
. (1)

For this he considers the expectationB(m,n) of the opponent who contends that there will
be no more thanm− 1 successes inn independent trials. He uses the reduction formula

B(m,n)= b ·B(m− 1, n− 1)+ c ·B(m,n− 1)

a
, (2)

where

B(0, n)= 0, B(1, n)= (c/a)n, andB(n,n)= 1− (b/a)n for all n� 1. (3)

He calculatesB(ν,µ), which he tabulates forν � 4 andµ� 6 and extrapolates by incom-
plete induction

B(m,n)=
m−1∑
µ=0

(
n

µ

) (
b

a

)µ(
c

a

)n−µ
. (4)

He indicates how the same result can be achieved with the help of the theory of combi-
nations which was not used by Huygens and which he is going to develop in the second
Part.

Bernoulli’s procedure presupposes the equivalent of the multiplication rule for indepen-
dent events which he formulates most explicitly on p. 44. Following the multiplication rule
he determines the probability of exactlym successes inn independent trials if the proba-
bility of success isb/a and that of failurec/a, and if the order of successes and failures
does not matter as (

n

m

)
bmcn−m

an
=

(
n

n−m
)
bmcn−m

an
. (5)

This is the binomial or, as it was also called later, the ‘Bernoulli’ distribution.
In proposition XIV Huygens wanted to know the odds of two playersA andB the first

of which wins if he throws seven points with two dice and the second if he throws six
points with two dice and if the first throw is conceded toB. If the expectation ofA for the
stakesa is x as often as it isB ’s turn andy as often as it is his own turn, we get the two
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equations

31

36
y = x or y = 36

31
x and

6a + 30x

36
= y with the solutionx = 31

61
a. (6)

Accordingly the odds forA andB are as 31: 30.
Bernoulli comments that this is the first time Huygens is forced to use analysis in order

to find the solution. He maintains, however, that he can avoid analysis in the following
way. He introduces infinitelymany players in succession each having one attempt with
probability b

a
for success andc

a
= a−b

a
for failure for all odd-numbered players and with

probability e
a

for success andf
a
= a−e

a
for failure for all even-numbered players. The

expectations of the first, second, third,. . . players are accordingly

b

a
,
ce

a2 ,
bcf

a3 ,
c2ef

a4 ,
bc2f 2

a5 ,
c3ef 2

a6 ,
bc3f 3

a7 ,
c4ef 3

a8 , . . . . (7)

If one replaces all odd-numbered players by the single playerB and all even-numbered
players by the playerA, then by the addition rule, the expectation ofB is

E(B)=
∞∑
ν=0

b

a

(
cf

a2

)ν
= ab

a2− cf and E(A)=
∞∑
ν=0

ce

a2

(
cf

a2

)ν
= ce

a2− cf . (8)

The odds forA andB are therefore asce : ab.
Proposition XIV was the last in Huygens’s tract. He had added five problems with the

results for problems 1, 3, and 5 but without indicating how he had achieved these results;
problems 2 and 4 are without either result or any hint how to solve them. Huygens liked to
leave to his readers the solution of these five problems, which were far more complicated
than those he had solved in his tract following the example of the mathematical practi-
tioners and reckoning masters of the preceding and his own century who challenged one
another with the most difficult problems. These problems at the end of Huygens’s tract be-
came kind of a training program for all interested in the calculus of games of chance in the
generation after Huygens like Baruch Spinoza, de Moivre, Montmort, Nicolaas Struyck,
and of course Jakob Bernoulli.

Huygens’s first problem can be solved with the same methods applied for the solution of
proposition XIV. However, Bernoulli shows that his method with infinitely many players
and infinite series is not restricted as with Huygens to the periodic case where the same
probabilities of success and failure occur in a certain order. In Huygens’s second problem
one has to find the odds of three playersA, B, andC who draw blindly in the order
ABCABC . . . from a set of 12 chips, 8 black and 4 white, until the first wins by drawing
a white chip. Bernoulli first emphasizes that the problem as stated by Huygens allows for
three different interpretations, each of which is solved following Huygens’s method and
with Bernoulli’s own method of infinite series. Bernoulli solves Huygens’s third problem
first by Huygens’s method of recursion and then by combinatorics. The fourth problem is
solved in the third Part of the AC.

Huygens’s fifth problem is a special case of the gambler’s ruin problem. It asks for the
chances of two playersA andB, the first havingn and the secondm counters and their
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respective chances for winning in every single trial being asp : q , q = 1− p, to be ruined
that is to say to lose all respective counters if the loser of a trial has to give one counter to
the winner. Bernoulli solves this problem for the casem= n= 12 by applying Huygens’s
method with the result that the chances ofA andB are asp12 : q12. In addition, he states
without proof that the chances ofA andB in the general case ofn respectivelym counters
are as (

pnqm − pm+n) : (qm+n − pnqm)
. (9)

4 COMBINATORICS AS THE MAIN TOOL OF THE ART OF CONJECTURING

In the second Part Bernoulli deals with combinatorial analysis, based on contributions of
van Schooten, Leibniz, Wallis, and Jean Prestet. Later when dealing with figurate numbers
he adds the names of Johannes Faulhaber, Johannes Remmelin, and Nicolaus Mercator. In
connection with the general formula for sums of powers of integers he mentions Ismaël
Boulliau, who took some hundreds of pages inorder to find these sums up to the exponent
6. To these we can add a series of authors who dealt with permutations of the letters which
constitute single words or whole phrases under condition that the new words or phrases
make sense or if it are verses that the metric is preserved.

The second Part consists of nine chapters dealing with permutations, the number of
combinations of all classes, the number of combinations of a particular class, figurate
numbers and their properties (especially the multiplicative property), sums of powers of
integers, the hypergeometric distribution, the problem of points for two players with equal
chances to win a single game, combinations with repetitions and with restricted repetitions,
and variations with repetitions and with restricted repetitions.

Evidently Bernoulli did not know Blaise Pascal’sTriangle arithmétique, published
posthumouly in 1665, though Leibniz had alluded to it in his last letter to him in 1705.
Not only does Bernoulli not mention Pascal in the list of authors that he had consulted
concerning combinatorial analysis except for Pascal’s letter to Fermat of 24 July 1654;
it would also be difficult to explain why he repeated results already published by Pascal
in theTriangle arithmétique, such as the multiplicative property for binomial coefficients
for which Bernoulli claims the first proof for himself. His arrangement differs completely
from that of Pascal, whose proof for the multiplicative property of the binomial coefficients
has been judged to be clearer than Bernoulli’s [Edwards, 1987, 134]. It is fair to add that
in the AC, which Bernoulli left as an unpublished manuscript, he was much more honest
concerning the achievements of his predecessors than Pascal in theTriangle arithmétique.
It is also true that Bernoulli was concerned with combinatorial analysis in the AC first of
all because it constituted for him a most useful and indispensable universal instrument for
dealing numerically with conjectures, since ‘every conjecture is founded upon combina-
tions of the effective causes’ (p. 73).

Chapter I deals with permutations stating the rule that there aren! different arrange-
ments or permutations ofn different things andn!/(a!b!c! · · ·) permutations ofa things of
one kind,b of another,c of another, and so on witha + b + c+ · · · = n. In chapter II he
gives the rule for finding the number of combinations ofn different things taken one or
more at a time. Chapter III offers a form of the arithmetical triangle in which the number
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in thenth row andrth column represents the number of combinationsn−1Cr−1 of order
r − 1 formed fromn− 1 different things. Bernoulli identifies these numbers with the figu-
rate numbers and their properties equivalent, for example, tonCr =∑n−r+1

i=1
n−iCr−1. He

states also that the numbers in the(n+ 1)th row beginning with the first column constitute
the coefficients of the binomial(1+ 1)n =∑n

i=0

(
n
i

)
and proves that

nCr =
∏r−1
ν=0(n− ν)∏r−1
ν=0(r − ν)

. (10)

Most of these results can be found in the works of other authors even before Pascal. As
[Schneider, 1993, chs. 5 and 7] has shown, all these results can be found in the published
work of Johannes Faulhaber (1580–1635). Over and above that one can find in Faulhaber’s
works the sums of powers of integers up to exponent 17 in the following form:

n∑
ν=1

ν2s+1=
(

n∑
ν=1

ν

)2

·
[

s∑
i=1

ai

(
n∑
ν=1

ν

)s−i]
for odd exponents (11)

and

n∑
ν=1

ν2s =
n∑
ν=1

ν2 ·
[

s∑
i=1

bi

(
n∑
ν=1

ν

)s−i]
for even exponents, (12)

with appropriate algorithms for the determination of the coefficientsai andbi .
Apart from the fact that this kind of representation of the sums of powers of integers in

form of polynomials in
∑n
ν=1 ν is all but trivial and that Faulhaber had found correspond-

ing formulas for higher sums of powers of integers, it is easy to transform Faulhaber’s
polynomials in

∑n
ν=1 ν into polynomials inn and deduce from them general properties of

the coefficients. However, Faulhaber had not done this.
According to the stocks of the University Library in Basel, Jakob Bernoulli seems not

to have had access to those publications of Faulhaber that contained the formulas for the
sums of powers of integers. But he used his findings concerning combinatorial analysis in
order to develop a general formula for the sums of powers of integers in the following way:
With nCr =∑n−r+1

i=1
n−iCr−1 and the product property of thenCr he can find successively

the sums
∑n
ν=1 ν

c beginning withc= 1 according to

nC2= n · (n− 1)

2
=
n−1∑
i=1

n−iC1=
n−1∑
i=1

(n− i)=
n−1∑
i=1

i or
n∑
i=1

i =
(
n+ 1

2

)
. (13)

In this way he determines the sums of powers of integers up toc = 10 as polynomials in
n which he displays in a table and which he takes as an induction basis for the general
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formula

n∑
ν=1

νc = 1

c+ 1
nc+1+ 1

2
nc + 1

2

(
c

1

)
Anc−1+ 1

4

(
c

3

)
Bnc−3+ 1

6

(
c

5

)
Cnc−5

+ 1

8

(
c

7

)
Dnc−7+ · · · (14)

where A,B,C,D, . . . are the coefficients ofn in
∑n
ν=1 ν

2,
∑n
ν=1 ν

4,
∑n
ν=1 ν

6,∑n
ν=1 ν

8, . . . with the valuesA = 1/6, B = −1/30,C = 1/42,D = −1/30, . . . . He ob-
serves that the sum of the coefficients in each polynomial for

∑n
ν=1 ν

c for all c � 1 must
be 1, which is evident by puttingn= 1 in the respective formulas. This allows him to cal-
culateA,B,C,D, . . . successively. These constants were later called ‘Bernoulli numbers’
by de Moivre and Euler (compare §7 and §13). Bernoulli’s formula for

∑n
ν=1 ν

c played
an important role not only for the demonstration of de Moivre’s form of the central limit
theorem but also for analysis in general.

At the end of chapter III Bernoulli shows forr = 3 how to determine then th term and
the sum of the firstn terms of an arithmetical series of orderr. Even this case of the so
called Newton–Gregory formula can be found already in Faulhaber’sAcademia Algebrae
(1632).

Chapter IV contains further properties of the binomial coefficients such as

nCr = n−1Cr + n−1Cr−1 being equivalent to

(
n

r

)
=

(
n− 1
r

)
+

(
n− 1
r − 1

)
; (15)

this is the combinatorial treatment of the problem of points for two playersA andB with
equal chances for a single win the first lackingn and the secondm wins. The chances of

A to win the whole game are given as
(1

2

)n+m−1 ∑n+m−1
ν=n

(
n+m−1
ν

)
. Pascal’s equivalent

solution of the same problem can be reconstructed from his letters to Fermat in 1654 and
is certainly contained in theTriangle arithmétique.

In chapter V Bernoulli deals with s(r)Cr , the combinations ofr things with repetitions
from s � r different things, for which he gets in a table of combinations with repetition
another arrangement of the arithmetical triangle for terms of which satisfy

s
(r)Cr =

r−1∑
i=0

s−1
(r)Cr−i + 1=

(
s + r − 1

r

)
. (16)

The remaining four chapters deal with combinations with restricted repetitions, varia-
tions without and with repetitions and with restricted repetitions. The most interesting de-
tail is contained in chapter VIII, where he states that the number of variations ofm things
with repetitions out ofn different things is given by the coefficients of the multinomial
expansion

(a1+ · · · + an)m =
∑

0�ri�m
r1+···+rn=m

m!
r1! · · · rn!a

r1
1 · · ·arnn . (17)
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Except for Bernoulli’s general formula for powers of integers, even those results that he
considered as new can be found in the works of other authors, especially in Pascal’sTrian-
gle arithmétique. Nevertheless, his exposition of combinatorics in the AC became the most
popular text in the 18th century [Hald, 1990, 229]. This might be due to its well-structured
presentation and its interweaving with the calculus of games of chance.

5 NEW PROBLEMS AND EXERCISES IN THE THIRD PART

In the third Part Bernoulli gives 24 problems concerning the determination of the modified
Huygenian concept of expectation in variousgames. Here he uses extensively conditional
expectations without, however, distinguishing them fromunconditional expectations. All
the games are games of chance with dice and cards including games en vogue at the French
court of the time like Cinque et neuf, Trijaques, or Basette. He solves these problems
mainly by combinatorial methods, as introduced in Part II, and by recursion.

Typical for the use of conditional expectations are games constructed as a two stage ex-
periment, where the outcome of the first stage determines the conditions for the experiment
at the second stage. The first form of problem 14 is representative for his procedure: Two
playersA andB agree thatA throws a die and in a second stage the same die a number
of times which corresponds to the number of points he achieved with the first throw. They
stake together the amount 1.A will win 1, 1/2, or 0 if the number of points he made at the
second stage is> 12,= 12, or< 12. Bernoulli than determines the six conditional expec-
tations ofA E(A|x), x = 1, . . . ,6, depending on the outcome of the first throw. These are
found by counting the cases leading to a number of points which is 12,= 12, or< 12. So
E(A|1)= 0 because with one throw of a die one can achieve not more than 6 points that
is less than 12 points; and because there isonly one case among 36 in which 12 points can
be achievedE(A|2)= 1

72. From the 216 cases one has with three dice, 25 lead to 12 points
and 56 to more than 12 points; accordingly,

E(A|3)= 25· 1
2 + 56· 1
216

= 137

432
, (18)

etc. The unconditional expectation ofA is thanE(A)=∑6
x=1E(A|x)/6 because there is

just one case for every conditional expectation.
From a methodological point of view these problems do not offer anything especially

new. However, they represent the standard of the problems treated at about the same time
by, for example, Joseph Sauveur, Montmort and de Moivre; some of these problems or
modifications of them reappear in the works of these authors.

6 THE TRANSITION TO A CALCULUS OF PROBABILITIES
IN THE FOURTH PART

This is the most interesting and original Part; but it is the one that Bernoulli was not able to
complete. In the first three of its five chapters it deals with the new central concept of the
art of conjecturing, probability, its relation to certainty, necessity and chance, and ways of
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estimating and measuring probability. Jakob Bernoulli states on the one hand that, at least
for God, chance and with it objective probabilities do not exist in a world the functioning
of which in the past, present, and future is completely known to him down to its smallest
entities. Through a more precise knowledge of the parameters affecting the motion of a
die, for instance, it would be possible even for men to specify in advance the result of the
throw. Chance, in his view and later in the view of Laplace, was reduced to a subjective
lack of information. Thus, depending on the state of their information, an event may be
described by one person as chance, but by another as necessary. The entire realm of events
which are described in daily life as uncertain or contingent in their outcome is such, he
claims, merely because of incomplete information: nevertheless, these too are covered by
his concept of probability which he introduces as follows (p. 211):

For probability is a degree of certainty and differs from it as a part differs from
the whole. If, for example, the whole and absolute certainty—which we desig-
nate by the lettera or by unity—is supposed to consist of five probabilities or
parts, three of which stand for the existence or future existence of some event,
the remaining against, this event is said to have3

5a or 3
5 certainty.

However, the only way to check if the guessed, estimated or calculated probabilities of
events are reliable in practice is to make sufficiently many observations and calculate the
relative frequencies of their outcome. So the denial of objective chance and probabilities
does not prevent Bernoulli’s concept of probability, defined as degree of certainty, from
showing at the same time subjective or epistemic and frequentist or aleatory aspects.

For the mathematical part of theArs conjectandi this ambiguity in Bernoulli’s concept
of probability does not matter, because the numerical value of a probability is a real—in
Bernoulli’s case a rational—number between zero and one, no matter how it is conceived.
For practical applications he introduces the concept of moral certainty of events, ‘whose
probability nearly equals the whole of certainty’.

In chapter 3, ‘About various kinds of arguments and how their weights are estimated for
quantifying the probabilities of things’ the realm of non-additiveprobabilities is touched
[Shafer, 1978, 323–341]. In chapter 4 Bernoulli distinguishes two ways of determining, ex-
actly or approximately, the classical measure of probability. The first presupposes equipos-
sibility of the outcomes of certain elementary events like drawing either one ofn balls
numbered from 1 ton out of an urn. So the probability of drawing a ball of a certain colour
out of an urn filled with balls of different colours is determineda priori by the ratio of the
number of balls of this special colour to the number of all balls in the urn. For the determi-
nation of the probability of an event like a certain person’s dying within the next ten years
a reduction to numbers of equipossible cases which are favourable or unfavourable for the
event is impossible. But according to Bernoulli we can inductively, by experiments, ora
posteriori in his sense, get as close as we desire to the true measure of such a probabil-
ity. The possibility of estimating the unknown probability of such an event by the relative
frequency of the outcome of this event in a series of supposedly independent trials is se-
cured, according to Jakob Bernoulli, by histheorema aureum (‘golden theorem’), which
was called later by S.D. Poisson ‘Bernoulli’s law of large numbers’. The proof of this theo-
rem is contained in chapter 5. In it he had shown that the relative frequencyhnt of an event
with probabilityp = r/t , t = r + s, in nt independent trials converges in probability top.
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More precisely, he had shown that, for any given small positive numberε = 1/t and any
given large natural numberc, for sufficiently largen the inequality

Pr{|hnt − p|� 1/t}
Pr{|hnt − p|> 1/t} > c (19)

holds, which is equivalent to

Pr

{
|hnt − p|� 1

t

}
>

c

c+ 1
or 1> Pr

{
|hnt − p|� 1

t

}
> 1− 1

c+ 1
, (20)

which again is what is now called ‘Bernoulli’s weak law of large numbers’.
For the proof Bernoulli considered the binomial

(
r

t
+ s
t

)nt
= t−nt · (r + s)nt =

ns∑
i=−nr

Ti , Ti =
(

nt

nr + i
)
rns−isnr+i t−nt . (21)

The probability that the relative frequencyhnt does not deviate more than 1/t from p =
r
t
= nr
nt

is than Pr{|hnt − p|� 1/t} =∑n
i=−n Ti .

Bernoulli shows in four lemmas that

1. T0=max{Ti}; (22)

2. T0> T−1> T−2> · · ·> T−nr and T0> T1> T2> · · ·> Tns; (23)

3.
T0

T−1
<
T−1

T−2
<
T−2

T−3
< · · ·< T−nr+1

T−nr
and

T0

T1
<
T1

T2
<
T2

T3
< · · ·< Tns−1

Tns
; (24)

4.
T0

Tn
<

Ti

Tn+i
and

T0

T−n
<

T−i
T−n−i

for i > 0. (25)

It remains to prove that

n∑
i=−n

Ti � c ·
[ −n−1∑
i=−nr

Ti +
ns∑

i=n+1

Ti

]
. (26)

According to lemmas 2 and 4 he gets∑n
i=1Ti∑ns
i=n+1Ti

�
∑n
i=1Ti

(s − 1)
∑2n
i=n+1Ti

>
T0

Tn
· 1

s − 1
and

∑1
i=−n Ti∑−n−1
i=−nr Ti

�
∑1
i=−n Ti

(r − 1)
∑−n−1
i=−2n Ti

>
T0

T−n
· 1

r − 1
. (27)

He can show that for every natural number

n� max

{
n1=m1+ m1s − s

r + 1
, n2=m2+ m2r − r

s + 1

}
, (28)
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wherem1 andm2 are the smallest natural numbers satisfying respectively

m1 � log[c(s − 1)]
log(r + 1)− logr

and m2 � log[c(r − 1)]
log(s + 1)− logs

, (29)

that

T0

Tn
� c(s − 1) and

T0

T−n
� c(r − 1). (30)

With this last step Bernoulli had all the elements in order to show that for everyn satisfying
the above mentioned condition

Pr{|hnt −p|� 1/t}
Pr{|hnt − p|> 1/t} =

∑n
i=−n Ti[ ∑−n−1

i=−nr Ti +
∑ns
i=n+1Ti

] > c (31)

holds, or in his words the following proposition,his ‘theorema aureum’, is valid (p. 236).
He begins it with an explanation:

Finally follows the proposition for which all this has been said. Its demonstra-
tion shall be established only by the application of the aforementioned lemmas
to the present situation. In order to avoid long circumscriptions I shall call
those cases, in which a certain event can occur, favourable or fertile and sterile
those, in which the certain event cannot occur. In the same way [I call] those
experiments favourable or fertile in which one of the fertile cases is seen to
happen, and unfavourable or sterile those in which one of the sterile cases is
observed to happen. Be therefore the number of fertile to the number of sterile
cases in the proportion ofr/s and so to the number of all in the proportion
of r/(r + s) or r/t , which proportion is contained in the limits(r + 1)/t and
(r − 1)/t . It has to be shown that one can make so many experiments that it is
a given number of times, sayc-times, more probable for the number of fertile
observations to fall within these limits than outside, which means that the pro-
portion of the number of fertile to the number of all observations shall not be
greater than(r + 1)/t and not be smaller than(r − 1)/t .

In an appendix Bernoulli treats thejeu de paume as a game of chance by taking the relative
frequency of winning as a measure of the probability of winning a single game.

The title ‘Ars conjectandi’ was suggested by theArs cogitandi, better known as the
Logic of Port Royal, in the very last chapter of which the chances for future contingent
events are equated with the ratios of the associated degrees of probability. One can see
how Bernoulli, beginning from this notion, developed the classical concept of probability,
and how he became the first to set down the prerequisites for consciously formulating a
programme for the mathematization of all the fields of application subject to ‘probabilis’.
The fact that he had no time to illustrate his art of conjecturing by some examples from the
social domain constituted a task that was taken up seriously only generations later.
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7 THE IMPACT OF THEARS CONJECTANDI

Jakob Hermann, a former student of Jakob Bernoulli who was trusted by the family, in-
formed the authors of eloges which appeared in honour of Jakob Bernoulli about the con-
tent of theArs conjectandi and especially the law of large numbers. It can be shown that
already these rather short pieces of information influenced Montmort and de Moivre, who
learned from them that the main concept around which the new doctrine of chances should
be built is that of probability.

Nikolaus Bernoulli, Jakob’s nephew, had tried to apply the findings of his uncle to a se-
ries of concrete problems in law in his dissertationDe usu artis conjectandi in jure (1709).
Montmort included part of his extensive correspondence with Nikolaus Bernoulli on the
new field in the second edition of hisEssay d’analyse sur les jeux des hazard, which ap-
peared late in 1713. Both agreed in their judgement that theArs conjectandi appeared too
late to offer something new for specialists—understandably in the light of their own efforts
to develop the subject. Their judgement has been interpreted as a proof of the lack of im-
pact of Jakob’s work, though both had been beneficiaries of Jakob’s results contained in the
Ars conjectandi. For Jakob’s main theorem, the law of large numbers, Nikolaus Bernoulli
offered a modified proof. Jakob’s law of large numbers stimulated de Moivre, who late in
his life found the first form of the central limit theorem that allows the approximation of
the binomial by the normal distribution (§7.6).

Bernoulli’s program to mathematize the realm of the probable, including what now is
called the social domain, occupied mathematicians throughout the 18th and 19th century
until the advent of mathematical statistics (§56). The peak of this development was reached
in the late Enlightenment when the Marquis de Condorcet and P.S. Laplace held the view
(§24) that the science of the probable is the only reliable guide to decide questions where
we have no certain knowledge like in things concerning the outcome of votes or the relia-
bility of witnesses.
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CHAPTER 7

ABRAHAM DE MOIVRE, THE DOCTRINE OF
CHANCES(1718, 1738, 1756)

Ivo Schneider

TheDoctrine of chances is the first textbook for the calculus of probabilities. It constitutes
the results of the activities of its author as a private instructor of mathematics. It was based
on the concept of probability and its classicalmeasure; it contained in an introductory
theoretical part the main rules, extended the mathematical methods for the solution of its
problems by analytical tools, and offered from the second edition on an approximation of
the binomial by the normal distribution.

First publication. The doctrine of chances: or, a method for calculating the probability of
events in play, London: W. Pearson, 1718. xiv+ 175 pages.

Second edition. London: Woodfall, 1738. xiv+ 258 pages. [Photorepr. London: Cass,
1967.]

Third edition (posthumous). London:A. Millar, 1756. xii+ 348 pages. [Photorepr. New
York, Chelsea, 1967.]

Partial Italian translation. Abramo Moivre la dottrina degli azzardi aplicata ai problemi
della probabilità della vita, delle pensioni vitalizie, reversioni, tontine, ec. transportata
dall’ idioma Inglese, arrichita di note ed aggiunte [. . .] (trans. P. Don Roberto Gaeta
with P. Don Gregorio Fontana), Milan: Galeazzi, 1776. [Translates (De Moivre 1725)
on annuities.]

Partial French translation by P. Crépel in Thierry Martin (ed.),L’Arithmétique politique en
France au XVIIIe siècle, Paris: INED, 2004, to appear. [Of the preliminary discourse.]

Related articles: Jakob Bernoulli (§6), Bayes (§15), Laplace on probability (§24).

1 BACKGROUND AND STORY OF THE PUBLICATION

Abraham Moivre, born on 26 May 1667 as the son of a Protestant surgeon in Vitry-le-
François in the Champagne region of France,spent the first 20 years of his life in France,
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where he was educated in different Huguenot institutions. Presumably influenced by René
Descartes, he had turned to mathematics. By the age of 16 years he had studied amongst
other things the tract ‘De ratiociniis in ludoaleae’ of the Cartesian Christiaan Huygens.
In Paris in the 1680s he was taught mathematics by the private teacher of mathematics
Jacques Ozanam, who might have been seen by Moivre as a model for making his living
when he had to support himself shortly afterwards.

After the revocation of the Edict of Nantes in 1685 hundreds of thousands of Huguenots
left France. Amongst them was Moivre, who went to England where, together with his
brother Daniel, he was granted denization in December 1687 and naturalisation in 1705.
In England he began his occupation as a tutor in mathematics. Here he added a ‘de’ to his
name. De Moivre mastered Isaac Newton’sPrincipia (1687) (§5) very early and became a
true and loyal Newtonian. Trying to make a reputation as a mathematician in the new field
of the infinitesimal calculus, he had a very unpleasant fight with George Cheyne between
1703 and 1705; further, impressed by the superiority of Johann Bernoulli, with whom he
had corresponded between 1704 and 1714, he decided to leave analysis. He then engaged
in the calculus of games of chance and probability theory, which was of great interest for
many of his students and where he hoped for fewer competitors. On de Moivre’s life and
work see [Schneider, 1968].

Next to clients like Francis Robartes it was P.R. de Montmort (1678–1719) who had
raised de Moivre’s interest in the theory of games of chance and probability, with the first
edition of hisEssay d’analyse sur les jeux de hazard (1708). De Moivre published an
article ‘De mensura sortis’ on the subject in thePhilosophical Transactions of the Royal
Society [De Moivre, 1712], to which he had been elected in 1697. The paper was followed
by hisDoctrine of chances (hereafter, ‘DoC’), published in 1718. A second edition (1738)
contained his normal approximation to the binomial distribution, which he had found in
1733. The third edition (1756) contained as asecond part hisA treatise of annuities on
lives, that had been published as a monograph in 1725.

TheDoC is in part the result of a competition between de Moivre on the one hand and
Montmort together with Nikolaus Bernoulli on the other. De Moivre claimed that his rep-
resentation of the solutions of the then current problems tended to be more general than
those of Montmort, which Montmort resented very much. This situation led to some argu-
ments between the two men, which finally were resolved by Montmort’s premature death
in 1719. His grievances are understandable in the light of what de Moivre had achieved
with the ‘De mensura sortis’ and the first edition ofDoC, even if the first edition already
went beyond some of the results achieved by Montmort. However, the second and third edi-
tions of theDoC offered so many new results that Montmort’s contribution justly fell into
oblivion. De Moivre had developed algebraic and analytical tools for the theory of proba-
bility like a ‘new algebra’ for the solution of the problem of coincidences which somewhat
foreshadowed Boolean algebra (compare §36), and also the method of generating functions
or the theory of recurrent series for the solution of difference equations (compare Laplace
in §24). Differently from Montmort, de Moivre offered inDoC an introduction that con-
tains the main concepts like probability, conditional probability, expectation, dependent
and independent events, the multiplication rule, and the binomial distribution.

De Moivre’s greatest mathematical achievement is considered a form of the central limit
theorem, which he found in 1733 at the age of 66. He understood his central limit theorem
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as a generalization and a sharpening of Bernoulli’sTheorema aureum (§6.6), which was
later named ‘the law of large numbers’ by S.D. Poisson.

2 THE INTRODUCTION OF THEDOCTRINE OF CHANCES, AND THE
MATHEMATICAL REQUIREMENTS FOR THE READER AS ANNOUNCED IN

THE PREFACE

The contents of the first and third editions of the book are summarised in Tables 1 and 2;
they give some idea of the scale of the changes. The survey below takes note of all three
editions. For general accounts of the contents and context see [Todhunter, 1865, ch. 9;
David, 1962, ch. 15; Hald, 1990, chs. 19–25].

As is underlined in the introduction, the book has the character of a textbook for au-
todidactic study as well as a companion for private instruction: with its help the reader
should ‘be able to solve a great variety of questions depending on chance’. That there
would remain sufficiently many unanswered questions, especially for those only versed
in ‘common arithmetick’, is indicated by the following sentence: ‘I wish [. . .] that I
could every where have been as plain as in the Introduction; but this was hardly practi-
cable’.

De Moivre begins with the classical measure of probability, ‘a fraction whereof the nu-
merator be the number of chances whereby an event may happen, and the denominator the
number of alls the chances whereby it may either happen or fail’. He gives the summation
rule for probabilities of disjunct events explicitly only for the case of the happening and
the not happening of an event. Expectation is still on the level of Huygens defined as the
product of an expected sum of money and the probability of obtaining it, the expectation of

Table 1. Contents by Problems of de Moivre’s book (first edition, 1718). The Roman
numerals refer to Problems.

Items Page Topics
Dedication Dedication to Isaac Newton.
Preface i–xiv Outline of the book together with the mathematical

prerequisites for its different parts.
Introduction 1 Addition and multiplication theorem for dependent and

independent events; expectation.
I–XIV 9 Different problems solvable with the rules contained in the

introduction, including ones dealing with the games of
Bassette (XII) and Pharaon (XIII).

XV–XXXII 47 Problems solvable by combinatorial methods, including
some dealing with lotteries (XXI and XXII), and of Pharaon
(XXIII).

XXXIII–XLVI 102 The problem of the duration of play, or the ruin problem.
XLVII–LIII 155 Problems solvable by combinatorial methods: includes

Hazard (XLVII, LIII), Whisk (XLVIII), Raffling (XLIX)
and Piquet (LI, LII). [End 175.]
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Table 2. Contents by Problems or Parts ofde Moivre’s book (third edition, 1756). The
Roman numerals refer to Problems.

Items Page Topics
Dedication Dedication to Lord Carpenter.
Preface i Outline of the book together with the mathematical

prerequisites for the different parts of the book.
xi Advertisement.

Introduction 1 Addition and multiplication theorem for dependent and
independent events; binomial distribution.

I–XIV 35 Different problems solvable with the rules contained in the
introduction including problems dealing with the games of
Bassette (XIII) and Pharaon (XIV).

XV–LVII 82 Problems solvable by with combinatorial methods
including ones dealing with lotteries (XXI–XXV), the
games of Quadrille (XXVII–XXXII), Pharaon (XXXIII),
Hazard (XLVI, XLVII), Raffling (XLVIII, IL), Whisk (L),
and Piquet (LI to LV).

LVIII–LXXI 191 The problem of the duration of play or the ruin problem.
LXXII–LXXIII 239 The deviation from the expected value.

242 The approximation of the binomial by the normal
distribution.

LXXIV 254 The probability of a run of given length.
261 ‘Treatise of annuities on lives’; Preface.

Part I 265 Rules and examples covering Problems I–XXXIII,
including single lives, reversions (271), successive lives
(278), survivorship (282), expectation of life (288) and
tables of the values of an annuity under different
conditions (298).

Part II 310 Demonstrations of the main rules in Part I.
Appendices I–VII 329 Dedication of the first edition (1718) to Isaac Newton;

notes to problems VII (app. I), IX (II), and XLV (III); table
of the sums of logarithms together with Stirling’s formula
for n! (IV); reprint of [De Moivre, 1744] on annuities of
lives (VI); tables for the ‘probabilities’ of human life from
Halley, Kersseboom, Parcieux, Smart and Simpson (VII).
[End 348.]

several sums is determined by the sum of the expectations of the singular sums. He defines
independent and dependent events and gives the multiplication rule for both. But whereas
today the criterion for independence of two events is the validity of the multiplication rule
in the DoC, the multiplication rule follows from the independence of the events, which
seems to be a self-evident concept for de Moivre. By a series of concrete cases he derives
the probability that an event with probabilityp happens in the(l + 1)th trial and(l − 1)
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times in the trials before, wherei = 0,1, . . . , n− l, as

pl
n−l∑
i=0

(
l − 1+ i
i

)
(1− p)i, (1)

which is based on the distribution(
l − 1+ i
i

)
pl(1− p)i =

(
l − 1+ i
l − 1

)
pl(1− p)i, (2)

today identified with the negative binomial distribution. Later he applies this solution to
the problem of points (on the division of the stake between the players when a game is
interrupted before the end).

In a similar way de Moivre derives the probability that an event with probabilityp

happens at leastl times inn (independent) trials as

n−l∑
i=0

(
n

i

)
pn−i (1− p)i . (3)

Accordingly he gives the binomial distribution as the probability that an event with proba-
bility p happens exactlyl times inn (independent) trials:(

n

l

)
pl(1− p)n−l . (4)

With these tools ‘those who are acquainted with Arithmetical Operations’ (as de Moivre
remarked in the preface) could tackle many problems, in part already well known but which
he gradually generalized. Because the majorityof the solved problems depends on rules
‘being entirely owing to Algebra’ and to combinatorics, de Moivre tried to convince those
readers who had not studied algebra yet to ‘take the small Pains of being acquainted with
the bare Notation of Algebra, which might be done in the hundredth part of the Time that
is spent in learning to write Short-hand’. Remarks of this kind are typical of the private
teacher of mathematics de Moivre, who was accustomed to ask his clients before he began
with his instructions about their mathematical knowledge.

Some problems, as already stated by Jakob Bernoulli (1654–1705) in hisArs con-
jectandi (§6), can be solved more easily by the use of infinite series. As an illustration
de Moivre offers the problem to determine the amounts each of two playersA andB has to
stake under the condition that the player who throws the first time an Ace with an ordinary
die wins the stake and thatA has the first throw. He considers it as reasonable thatA should
pay 1

6 of the total stake in order to have the first throw,B should pay1
6 of the rest which

is 1
6 · 5

6 for having the second throw,A should pay1
6 of the remainder for having the third

throw, etc. The part thatA has to stake altogether is the sum of a geometrical series with1
6

as the first term and the quotient25
36, which is 6

11 of the total stake. AccordinglyB ’s share
is 5

11 of the total stake. De Moivre claims thatin most cases where the solution affords
the application of infinite series the series are geometrical. The other kind of infinite series
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which relate to the problem of the duration of play are recurrent series the terms of which
can be connected with the terms of geometricalseries, as will be explained later. Other
problems depend on the summation of the terms of arithmetical series of higher orders and
a ‘new sort of algebra’.

It seems appropriate to present now the main results contained in theDoC following the
methods applied for the solution of its problems.

3 GENERATING FUNCTIONS

The problem that induced de Moivre to introduce what was later called by P.S. Laplace
(1749–1827) a ‘generating function’ (§24.4) is a lemma of problem III. It asks after the
number of chances to throw a given numberp + 1 of points withn dice, each of them of
the same numberf of faces. Here the word ‘dice’ or ‘die’ is used in the more general sense
of, for example, a roulette wheel withf sectors.

The exponents of the terms of the function

f (r)= 1+ r + rr + r3+ · · · + rf−1= 1− rf
1− r (5)

represent thef different ‘faces’ with the number of points diminished by 1 on each face.
The coefficient of the term with the exponentp+ 1− n in the development of the function

g(r)= (
f (r)

)n = (
1− rf )n · (1− r)−n =

(
n∑
i=0

(
n

i

)
(−1)irif

)( ∑
j�0

(
n+ j − 1

j

)
rj

)
,

(6)
which is because

p+ 1− n= if + j, i = 0,1, . . . ,
p+ 1− n

f
, (7)

and

(
n+ j − 1

j

)
=

(
p− if

p− if − n+ 1

)
=

(
p− if
n− 1

)
=
(p+1−n)/f∑

i=0

(−1)i
(
n

i

) (
p− if
n− 1

)
.

(8)
So the functiong(r) generates the solution or is the generating function of the number of
chances sought after.

4 A ‘NEW SORT OF ALGEBRA’ IN THEDOCTRINE OF CHANCES

In the preface of the 1756DoC, which is a shortened version of the preface from 1718, de
Moivre remarks: ‘In the 35th and 36th Problems, I explain a new sort of Algebra, whereby
some Questions relating to Combinations are solved by so easy a Process that their solution
is made in some measure an immediate consequence of the Method of Notation’ (p. ix).
He conceded later that one could in any case also reach the solution with comparatively
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less simple and general methods. The use of plus and minus signs for combining probabil-
ities, as an extension from their normal use for real magnitudes, was a decisive step in the
evolution of what he declared with some pride to be his ‘new sort of Algebra’.

In this respect de Moivre met with a much more receptive mathematical environment
when one recalls the objections and resistance to the use of an algebraic calculus for Aris-
totelian logic that continued right up to the middle of the 19th century. On the other hand
De Moivre did not create a new logical calculus nor, like George Boole in hisAn investiga-
tion of the laws of thought (1854), did he establish the requirement for probability theory
to conform to set algebra (compare §36.5).

The idea behind this new sort of algebra is illustrated by de Moivre’s solution of the
following problem: find the probability that, of then first letters of the alphabet in some
order,m should be in their original position,l should not be in their original position and
the remainingn− (m+ l) in arbitrary positions. He proceeded inductively beginning with
the most simple cases by using the following notation (pp. 111 f.):

[. . .] so that, for instancea+ b+ c− d − e, may denote the probability thata,
b, andc shall be in their proper places, and that at the same time bothd ande
shall be excluded their proper places.
It having been demonstrated in what we have said of Permutations and Com-
binations, thata = 1

n
; a + b = 1

n·(n−1) ; a + b + c = 1
n·(n−1)·(n−2) , &c. let

1
n
, 1
n·(n−1) , &c. be respectively calledr, s, t, v, &c. this being supposed, we

may come to the following Conclusions.

b= r,
b+ a = s,

then

1◦. b− a = r − s
c+ b= s for the same reason thata + b= s.
c+ b+ a = t .

2◦. c+ b− a = s − t
c− a = r − s by the first Conclusion.

c− a + b=+s − t by the second.

3◦. c− a − b= r − 2s + t
d + c+ b = t .
d + c+ b+ a = v.

4◦. d + c+ b− a = t − v
d + c− a = s − t by the second Conclusion.

d + c− a + b= t − v by the fourth.
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5◦. d + c− a − b = s − 2t + v
d − b− a = r − 2s + t by the third Conclusion.

d − b− a + c= s − 2t + v by the fifth.

6◦. d − b− a − c= r − 3s + 3t − v.
Here he is using the plus and minus signs on the left-hand side to stand for logicaland
andand not, while the same signs on the right-hand side stand for the usual addition and
subtraction of real numbers. De Moivre’s understanding of algebra as a collection of math-
ematical objects, associated with operationsfor combining them agrees, of course, with
ordinary literal algebra.

5 THE DURATION OF PLAY

One of the problems with a long tradition is that of the duration of play. It resulted from
a generalization of the last problem that Huygens had posed to his readers at the end of
his treatiseDe ratiociniis in ludo aleae (1656). The first to deal with the problem in the
new form seems to be Montmort, and after him Nikolaus Bernoulli. De Moivre concerned
himself with it at about the same time. His formulation of the problem in theDoC of 1718
is nearly the same as he used in the third edition (p. 191):

Two gamestersA andB whose proportion of skill is asa to b, each having a
certain number of pieces, play together on condition that as often asA wins
a game,B shall give him one piece; and that as often asB wins a game,A
shall give him one piece; and that they cease not to play till such time as either
one or the other has got all the pieces of his adversary: now let us suppose two
spectatorsR andS concerning themselves about the ending of the play, the
first of them laying that the play will be ended in a certain number of games
which he assigns, the other laying to the contrary. To find the probability that
S has of winning his wager.

De Moivre solves the problem step by step. He begins with the assumption that bothA and
B have the same numbern of pieces and thatn+ d games are played. Starting fromn= 2
andd = 0 he derives an algorithm for the determination of the probabilitypn+d (S) that
neither player is ruined aftern+ d games. For the most simple casen= 2 andd = 0 one
sees that from the events related to the terms of(p+ q)2= p2+ 2pq + q2 only the term
2pq counts forS, orp2+0(S)= 2pq . Forn= 2 andd = 1 he getsp2+1(S)= 2pq , that is
to say the same value for the probability that neither player is ruined. In the general case
his solution presupposesd even.

It is plausible from the development of

(p+ q)n+d = (p+ q)n(p+ q)d = (p+ q)n[(p+ q)2]d/2 (9)

thatpn+d (R), which is the sum of the terms representing the events that eitherA orB wins
n times in the firstn games, that eitherA or B wins n+ 1 times in the firstn+ 2 games,
. . . , and that eitherA orB wins (n+ d/2) times inn+ d games, is of the form
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pn+d (R)=
(
pn + qn)

[ [d/2]∑
ν=0

βn,ν(pq)
ν

]
, (10)

where theβn,ν are the terms of what de Moivre called a ‘recurrent series’. He had defined
recurrent series in the following way (p. 220 ff.):

I call that a recurring series which is so constituted, that having taken at plea-
sure any number of its terms, each following term shall be related to the same
number of preceding terms, according to aconstant law of relation, such as the
following series

A B C D E F

1+ 2x+ 3xx+ 10x3+ 34x4+ 97x5, &c.

in which the terms being respectively represented by the capitalsA,B,C,D,
&c. we shall have

D = 3Cx − 2Bxx + 5Ax3,

E = 3Dx − 2Cxx + 5Bx3,

F = 3Ex − 2Dxx + 5Cx3,

&c.

Now the quantities 3x − 2xx + 5x3, taken together and connected with their
proper signs, is what I call the index, or the scale of relation; and sometimes
the bare coefficients 3− 2+ 5 are called the scale of relation.

For theβn,ν de Moivre could give not only the scale of relation but also the values of the
βn,ν themselves, which he seems to have found earlier by induction.

De Moivre had competed with Montmort and Nikolaus Bernoulli over the determination
of the general term of a recurring sequence and the sum of a recurrent series in the 1720s;
but he had perfected his theory of recurrent series in hisMiscellanea analytica of 1730.
He repeated the main results in the second and third edition of theDoC, albeit without
demonstrations.

The main idea for finding the general terman of a recurrent sequence((aν)) with known
scale of relation ofr terms is to resolve the((aν)) in a sum ofr geometrical sequences
((bρ,ν)), ρ = 1,2, . . . , r, so thatan =∑r

ρ=1 bρ,n =
∑r
ρ=1bρ,0 · qnρ , where thebρ,0 are the

first terms of the((bρ,ν)) and theqρ the respective quotients. The realization of this idea
amounts in modern terms to the solution of a homogeneous linear difference equation with
constant coefficients by introducing the characteristic equation of the difference equation.
Ther roots of the characteristic equation are the sought after quotientsqρ , ρ = 1,2, . . . , r,
under the condition that these roots are real and different from one another, which is not
specified by de Moivre. The first terms of the geometrical sequences are the solutions of
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the inhomogeneous system ofr linear equations

aν =
r∑
ρ=1

bρ,0 · qνρ , ν = 0, . . . , r − 1. (11)

Already in the first edition ofDoC de Moivre had given a solution for

pn+d (S)= 1− pn+d (R)=
n−1∑
i=1

αn,d/2,i · pn+d/2−iqd/2+i, (12)

where theαn,d/2,i , i = 1, . . . , n−1, are again a recurrent sequence, in the form of a trigono-
metric formula. His competitors were not able to explain it since he had never revealed his
derivation. Obviously he had seen that the coefficients of the respective characteristic equa-
tion for the special casep = q = 1/2 andn even are the same as in the equation

2 cosnα =
n/2∑
i=0

a2i(2 cosα)n−2i , (13)

with which he was familiar long before he published it in thePhilosophical transactions for
1738. He was so proud of this trigonometric representation for the solution of the problem
of the duration of play that he indicated it on a vignette showing the Goddess Fortuna with
a geometrical representation of it. It appears on the title page of all editions of theDoC;
Figure 1 shows that for the first edition.

Already in ‘De mensura sortis’ de Moivre had generalized the problem of the duration
of play to the case where the number of pieces that the two playersA andB hold at the
beginning are different. However, from a methodological point of view the solution of this
generalized problem offers nothing new. In the paper he had also shown that the coefficients
αi in the equation

pn+d (S)=
n−1∑
i=1

αi · pn+d/2−iqd/2+i = c satisfyαi = αn−i , (14)

and that such an equation of degreen+ d can be reduced by an appropriate substitution
to an equation of degree(n + d)/2. He used this property in theDoC in order to solve
problems of this kind: given the number of pieces each player has in the beginning, ‘what
must be their proportion of Chances for winning any one Game assigned, to make it as
probable that the Play will be ended in a certain number of games as not?’.

6 THE APPROXIMATION OF THE BINOMIAL BY
THE NORMAL DISTRIBUTION

In modern terms de Moivre was interested, in a way different from Jakob Bernoulli, in the
determination ofε as a function ofn andd in the equation:

P
(|hn − p|� ε)= d, (15)
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Figure 1. Title page of De Moivre’s first edition.

whereP signifies the probability that the relative frequencyhn of the appearances of an
event inn independent trials does not deviate from its expected valuep by more thanε.
He started with the simplest case the symmetric binomial(p = 1/2) andε = l/n. First he
estimated the maximum termb(m) in the sum
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l∑
i=−l

b(m+ i) (16)
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for largen (= 2m) as

b(m)∼= 2√
2πn

. (17)

In a second step he considered the ratio of a termb(m− l) with a distancel, O(
√
n), from

the maximum to the maximum, for which he found for largen:

ln
b(m± l)
b(m)

∼=−2l2

n
. (18)

De Moivre had worked on these estimations between 1721 and 1733; important for the
final form of these estimations were asymptotic series forn! with n large, to which both he
and James Stirling had contributed and published in 1730. The divergence of these series
was explicitly denied by de Moivre; their asymptotic behaviour was recognized only much
later.

With these estimations de Moivre could give the following approximation for largen:

P

(∣∣∣∣hn − 1

2

∣∣∣∣ � l

n

)
= 2−n

m+l∑
k=m−l

(
n

k

)
∼= 4√

2πn

l∑
k=0

e−2k2/n ∼= 4√
2πn

∫ l

x=0
e−2x2/n dx.

(19)
He did not use this form of representation; especially the last integral was represented,
typical for the Newtonian school, in form of the series

4√
2πn

∞∑
i=0

(−1)i2i l2i+1

i!(2i + 1)ni
. (20)

He saw that this series converges numerically very fast forl = √n/2 and calculated its
values forl = s√n/2 with s 1, 2 and 3. In addition, he gave the corresponding estimations
for the general binomial (for anyp). Schneider [1996] had shown that these estimations
lead to the series

2√
2πpqn

∞∑
i=0

(−1)i l2i+1

i!(2i + 1)(2pqn)i
for P

(
|hn − p|� l

n

)
, (21)

which for l = s√npq is the same as the one found by de Moivre for the case ofp = 1/2.
All this demonstrates that he understood intuitively the importance of what was later called
the standard deviation.

In this way de Moivre could show with his approximation of the binomial through the
normal distribution, which he used in order to avoid the tedious calculations of the co-
efficients of the binomial distribution, that for largen and anε = s

√
npq

n
the probability

P(|hn−p|� ε) is approximately 0.684. . . for s = 1,0.954. . . for s = 2, and 0.998. . . for
s = 3. The approximation of the binomial through the normal distribution with its conse-
quences was the culmination of theDoC from the second edition onwards. He used this
purely mathematical result as a means in order to combine the theory of probability with
natural religion. Most important for such an attempt was his interpretation of the terms
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probability and chance. Chance had for him two connotations. In the first remark to his
central limit theorem he used the term ‘chance’ as an antithesis to law, here statistical law.
The existence of laws of this kind is due toa ‘design’ which according to contemporary
convictions relates immediately to divine providence. Chance in contrast appears as some-
thing which obscures this design by ‘irregularity’. This had to do with the unpredictability
of the outcome in single trials.

In a second remark on the central limit theorem, which appeared only in the third edition
of theDoC, de Moivre illustrated the relationship between chance and law, or design, by
the example of the stability of the sex ratio of newborn in London for a period of more
than 80 years. In an article in thePhilosophical transactions for 1710 John Arbuthnot had
chosen design as the determinant cause for the observed sex ratio effect; but in published
letters to Montmort from 1712 and 1713 Nikolaus Bernoulli had voted for chance. Since
the sex ratio for the whole period could be approximated very well by the ratio of 18: 17
in favour of boys, Bernoulli proposed to throw a ‘die’ of 18+ 17 faces a number of times
equal to the number of births. Armed with his calculations he could claim a very high
probability for the fact that the ratio producedby throwing this die, that is, by chance,
differs very little from the observed sex ratio.

De Moivre tried to combine the two positions by arguing that Bernoulli’s ‘die’ had to
be made by an artist who followed in the execution of it a plan, a design and thus not
chance in Bernoulli’s understanding. According to de Moivre, chance ‘supposes theExis-
tence of things, and their general knownProperties that a number of Dice, for instance,
being thrown, each of them shall settle upon one or other of its Bases’. Accordingly ‘the
Probability of an assigned Chance, that is of some particular disposition of the Dice, be-
comes as proper a subject of Investigation as any other quantity or Ratio can be’. Obviously
this connotation of chance refers to the possible outcome of an event. Chance understood
as irregularity and unpredictability in a small number of trials but not in the long run, is
consistent with an all-wise and all-powerful creator who had not abandoned his creation af-
ter its perfection but rules it permanently in order to guarantee its existence. For de Moivre
probabilities, interpreted as laws which express God’s design, are objective properties of
creation and chance, as an existing property of the material world with its irregular and
unpredictable aspects, is a manifestation of God’s constant involvement in the course of
his creation and so is objective in the sense that it is independent of the human subject and
its level of information.

7 ANNUITIES ON LIVES

The most elaborate version of de Moivre’sAnnuities on lives appeared in the third edition
of the DoC. This shows already that he followed Jakob Bernoulli in treating questions
concerning life insurance, especially annuities on lives as a legitimate part of probability
theory. Nevertheless, he had originally published his work as an independent monograph
[De Moivre, 1725]. His preoccupation with questions concerning interest, loan, mortgage,
pensions, reversions or annuities goes backat least to the 1690s, from which time a piece
of paper, kept in theAutographensammlung in thePreussische Staatsbibliothek in Berlin,
contains de Moivre’s answers to pertinent questions of a client.
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At this time Halley had reconstructed from the lists of births and deaths in Breslau for
each of the years 1687–1691 the demographic structure of the population of Breslau which
he assumed as stationary in form of a life table. Halley’s life table was published in the
Philosophical transactions for 1693, together with applications to annuities on lives. Be-
sides the formulas for the values of an annuity for a single life and for several lives he had
calculated a table for the values of annuities of a single life for every fifth year of age at
an interest rate of 6%. The immense amount of calculation work hindered him from doing
the same for two and more lives. De Moivre solved this problem by a simplification. He
replaced Halley’s life table by a (piecewise) linear function. Based on such a hypothetical
law of mortality and fixed rates of interest, he could derive formulas for annuities of sin-
gle lives and approximations for annuities of joint lives as a function of the corresponding
annuities on single lives. These results were published in his bookAnnuities upon lives
(1725), together with the solution of problems of reversionary annuities, annuities on suc-
cessive lives, tontines, and other contracts that depend on interest and the ‘probability of
the duration of life’.

In the second edition of theDoC part of the material contained in theAnnuities together
with new material was incorporated. After three more improved editions of theAnnuities
in 1743, 1750, and 1752 the last version of it was published in the third edition of the
DoC. In it de Moivre begins with the supposition that the ‘probabilities of life’ ‘decrease
in arithmetical progression’ which hypothesis compared with Halley’s life table ‘will be
found to be exceedingly approaching’. The following 33 problems of thefirst part contain
the solutions or approximate solutions of many contracts covering the whole realm where
the probability of life is involved. Problem I asks for the value of an annuityA for a single
life of given agei compared with an annuityP certain for 86− i = n years at a given
interestr − 1. 86− i years are what de Moivre calls ‘the complement of life’, because
according to the life tables available at his time life, notwithstanding that some people get
older, ends in the average with 86. He gives in part I the solutionA = (1− r

n
P )/(r − 1)

without any further explanation or demonstration. All he does is to repeat the solution in
verbal form and to add a numerical example.In the same way he treats the other problems,
some of which, such as those on survivorship or on the ‘expectation of life’, are not directly
concerned with annuities. After the treatment of these 33 problems de Moivre includes
tables for ‘the present value of an annuity of one pound’ certain fori years,i = 1, . . . ,100,
and tables for the value of an annuity for a single life of given agei according to the
solution of problem I for interests at 3%, 3.5%, 4%, 5%, and 6%. The first part ends with
four additional rules how to use the five tables for annuities certain for other purposes like
finding the ‘amount of the sumS in 7 years at 312 per Cent’.

The second part of theAnnuities on lives in theDoC contained the ‘demonstrations of
some of the principal propositions in the foregoing treatise’. Here de Moivre distinguished
‘real’ lives corresponding to a piecewise linear approximation of a life table from fictitious
lives where the probabilities to survive the next year or to die within the next year are
constant independent of age. With the claim that ‘the combination of two or more real
lives will be very near the same as the combination of so many corresponding fictitious
lives’, and that accordingly the value of annuities on joint lives can be based on fictitious
lives (p. 313), he can easily determine the value of annuities of joint lives as the sums of
geometrical series. However, he concedes later that the transition from real to fictitious
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lives, which he made for the sake of elegance and in order to avoid tedious calculations,
‘creates an error too considerable to be neglected’ (p. 327). So he ends the second part and
with it the DoC with a ‘General Rule for the Valuation of joint Lives’ for the application
of which he gives three numerical examples but no demonstration.

8 IMPACT OF THEDoC

An early reaction to the book which surely counts for the high estimation it was held at
least in England is its exploitation by the Englishman Thomas Simpson, who in hisTreatise
on the nature and laws of chance (1740) just repeated the results achieved in theDoC. The
fact that de Moivre had specialized in the theory of probability, for which he had prepared
appropriate tools and to which he had contributed the solutions of the most interesting
problems posed to him by his competitors and by his clients for some decades, madeDoC,
especially the last edition of 1756, the most complete representation of the new field in the
second half of the 18th century.

This was felt by the leading mathematicians of the next generation. In particular, J.L. La-
grange and Laplace had planned a French translation of the book which however was never
realized. Their interest goes back to de Moivre’s solution of the problem of the duration
of play by means of what he called ‘recurrent series’ and what amounts to the solution
of a homogeneous linear difference equation with constant coefficients. In fact, the most
effective analytical tool developed by Laplace for the calculus of probabilities, the theory
of generating functions, is a consequence of his concern with recurrent series. Indeed, the
most important results of the book reappear inLaplace’s probability theory in a new math-
ematical form and in a new philosophical context (§24). This, more than anything else,
confirms de Moivre’s status as a pioneer in the field and as a predecessor of Laplace.

Another kind of impact was a side-effect of de Moivre’s occupation with the ruin prob-
lem. Here he had found that the determination of the probability that the total game does
not end aftern single games leads to equations of the form

n∑
ν=0

aνx
ν = 0 with aν = an−ν; (22)

Leonhard Euler was to call these equations ‘reciprocal’. De Moivre could show that forn

even the equation could be reduced by a substitution equivalent tox2+ xy + 1= 0 to an
equation of degreen/2, and that for oddn the equation has a root−1. It then follows that

n∑
ν=0

aνx
ν = (1+ x)

n−1∑
ν=0

bνx
ν = 0, where

n−1∑
ν=0

bνx
ν = 0, (23)

is also a reciprocal equation. In this way, all reciprocal equations up to degree 9 can be
solved, with solutions expressed in surds. These results concerning reciprocal equations
were used by Euler to tackle a ‘conjecture about the form of the roots of equations of any
degree’ of 1733.

The actuarial part of theDoC, theAnnuities on lives, had perhaps an even longer impact.
Whereas all his contemporaries depended forthe determination of life expectancies on
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mortality tables based on ever new observational material, de Moivre had propagated a
law of mortality which can be described by a closed function, in his case a linear one. In
the 18th century the first life insurance companies did not base their rates on his linear
approach to mortality; however, in the 19thcentury Benjamin Gompertz found a nonlinear
function, later improved by William Maitland Makeham, which resembled the data of the
best mortality tables with sufficient accuracy. So de Moivre’s idea of a mortality law found
wide acceptance in life insurance mathematics.
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1 BERKELEY’S LIFE AND WORKS

George Berkeley (1685–1753) is best known for his contributions in philosophy, and more
specifically for denying the existence of matter and propounding the idealistic thesis that
only minds and ideas exist, so that in the case of ‘sensible objects’esse est percipi, or to
be is to be perceived. With the publication of his far-reaching critique of the foundations
of the calculus inThe analyst, he also established a name for himself in mathematics. In
fact, the historian of mathematics Florian Cajori called the publication ofThe analyst ‘the
most spectacular event of the century in British mathematics’ because of the impact of
Berkeley’s criticisms [Cajori, 1919, 57].

Berkeley was born in March of 1685 in the village of Thomastown in county Kilkenny,
Ireland. He was educated at Trinity College, Dublin, where he took the degree B.A. in
1704 and was awarded a fellowship at Trinity upon taking the degree M.A. in 1707. His
interest in mathematics was evident from early on, leading to his first publication, a small
collection of mathematical works entitledArithmetica et miscellanea mathematica.

Mathematics was not, however, the principal focus of Berkeley’s intellectual efforts over
the next few years. Between 1709 to 1713 he published three famous works, on which his
philosophical reputation rests. His 1709Essay toward a new theory of vision offered an
account of perceived distance and magnitude in which the mind infers the properties of
tangible objects on the basis of visual cues, but without perceiving properties like distance
immediately. HisTreatise concerning the principles of human knowledge of 1710 set out
his idealistic philosophy in detail, arguing that the concept of ‘material substance’ is at
once absurd and explanatorily useless. He pointed out that even philosophers who posit
the existence of material bodies cannot explain how matter can produce ideas in the mind,
or how purely mental phenomena like ideas could resemble or correspond to non-mental,
material substances. Perhaps his most shocking claim in favor of his metaphysics was his
oft-repeated contention that his principles were in strict accord with common sense and
inimical to skepticism.

ThePrinciples failed to be the success for which Berkeley had hoped. Among those who
read it the consensus opinion was that his conclusions could not be seriously maintained
and that his ultimate goal was either to promote skepticism or show his wit by propounding
paradoxes. Indeed, a prominent London physician, upon reading thePrinciples concluded
that Berkeley was mad and prescribed remedies for his affliction. Berkeley re-cast the
fundamental tenets of thePrinciples as Three dialogues between Hylas and Philonous
(1713), with the hope of presenting his system in a style more accessible to the general
public.

This second formulation of Berkeley’s philosophy was better received, but he still failed
to generate any serious support for his system. He relocated from Dublin to London in
1713, remaining there until 1721 with interruptions for two tours of the Continent. In
1720, toward the end of his second Continental tour, he composed the small treatiseDe
motu which he submitted to the ParisAcadémie des Sciences in competition for a prize
on the nature and communication of motion. The essay applied Berkeley’s strict empiri-
cist epistemology and idealist metaphysics to the consideration of motion, concluding that
terms likeforce lack empirical content except to the extent that they can be translated into
talk about actually or possibly observed motions.
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Berkeley established a literary reputation during his London years, associating with
such figures as Jonathan Swift, Alexander Pope, Joseph Addison, and Sir Richard Steele,
and contributing essays to Steele’s periodicalThe Guardian. When he returned to Ireland
in 1721 Berkeley had hopes of obtaining a preferment in the Church of Ireland, although
complex political and theological factors kept him from realizing this ambition until 1724,
when he was appointed Dean of Derry. This sinecure offered Berkeley the income and
influence to campaign to found a college in America, a project in which he had been in-
terested for some time. He publishedA Proposal for the better supplying of churches in
our foreign plantations, and for converting the savage Americans to Christianity in 1724,
in which he laid out the vision of a college in Bermuda he hoped to fund with private
subscriptions as well as support from Parliament. In 1726 Parliament approved a £20,000
grant for the scheme, but delayed payingout the funds in the face of significant opposition.
Berkeley set sail for Newport, Rhode Island in 1728 in the hope of encouraging Parliament
to act, and he remained in Newport for three years until it became clear that the dream
of founding a college in America had failed. While in Newport he wrote a collection of
dialogues entitledAlciphron, or the minute philosopher in which he defended Christian
doctrine against the claims of freethinkers, or, as he styled them, ‘minute philosophers’.

After his return to England in 1731 Berkeley busied himself with the publication ofAl-
ciphron and other efforts in defense of Christianity, of whichThe analyst was a significant
part. He also sought advancement in the Church, and in 1734 was appointed Bishop of
Cloyne, near Cork. After assuming the bishopric in Cloyne, he made few notable philo-
sophical, mathematical, orliterary contributions.

2 THE PURPOSE OFTHE ANALYST

Berkeley’s publication ofThe analyst took up two themes that had long been of concern
to him, one mathematical and the other theological. Mathematically, it continued the reser-
vations about the foundations of the calculus that Berkeley had voiced in an early essay
‘Of infinites’ that he presented to the Dublin Philosophical Society in 1709 and reprised
in arts. 130–132 of thePrinciples. Theologically,The analyst was part of Berkeley’s bat-
tle against freethinking, and his principal argument intends to show that freethinkers who
deride revealed religion for its mysteries cannot consistently accept the calculus, since it
contains suppositions at least as extravagant and incomprehensible as anything in revealed
religion. This aspect of his criticism is indicated in the full title ofThe analyst, which
characterizes the work asA Discourse addressed to an infidel mathematician; wherein it is
examined whether the object, principles, and inferences of the modern analysis are more
distinctly conceived or more evidently deduced, than religious mysteries and points of faith
and attributes it to ‘The Author ofThe minute philosopher’.

Whether the work was directed at a specific ‘infidel mathematician’ is somewhat uncer-
tain, although there is evidence that Berkeley intended it for Edmond Halley. According
to Berkeley’s 18th-century biographer Joseph Stock, the London physician Samuel Garth
had declined the last rites in his final illness, on the grounds that ‘my friend Dr. Halley
who has dealt so much in demonstration has assured me that the doctrines of Christianity
are incomprehensible and the religion itself an imposture’. According to Stock, Berkeley
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‘therefore took arms against this redoubtable dealer in demonstration, and addressed the
Analyst to him, with a view of shewing, that Mysteries in Faith were unjustly objected to
by mathematicians, who admitted much greater Mysteries, and even falsehoods in Science,
of which he endeavoured to prove that the doctrine of fluxions furnished an eminent exam-
ple’ [Stock, 1776, 29–30]. WhomeverThe analyst was intended to address immediately, its
broader audience was unmistakably those mathematicians who regarded the calculus as a
rigorous and properly founded method that compared favorably with the mysterious tenets
of revealed religion.

3 THE PRINCIPAL ARGUMENTS

The contents of Berkeley’s book are summarised in Table 1, and its title page is Figure 1.
His critique of the calculus contains two quite different sorts of criticisms. On the one
hand, he argues that it violates canons of intelligibility by postulating incomprehensible
entities such as infinitesimal magnitudes or ratios of evanescent quantities. On the other
hand, he claims that the proofs of even the mostelementary results inthe calculus commit
logical errors by employing inconsistent assumptions. We can distinguish these two sorts
of arguments by classifying the former as metaphysical objections and the latter as logical
objections.

The metaphysical criticism of the calculus proceeds by considering the definitions of
its fundamental objects and asking whether these are, indeed, clear and comprehensible.
It was a commonplace among philosophically minded mathematicians of the 18th cen-
tury that their science dealtonly with clearly grasped objects and sharply defined concepts

Table 1. Contents by Sections of Berkeley’s book. viii+ 94 pages.

Sections Description
1–2 Introduction, contrasting religious mysteries with the principles of

‘the modern analysis’.
3–8 The ‘object of the calculus’ considered and its foundational concepts

dismissed as incomprehensible.
9–20 The ‘principles and demonstrations’ of the calculus critiqued,

showing that both Newtonian and Leibnizian procedures seem to
employ inconsistent assumptions.

21–29 Attempt to explain the reliability of the calculus as the result of its
employing ‘compensating errors’ where a finite quantity is
simultaneously overestimated and underestimated, while the errors
balance precisely.

30–47 Various alternative formulationsof the calculus considered and
rejected, since all fail to overcome the fundamental objections.

48–50 and QueriesConclusion and queries: a blanket indictment of the incomprehen-
sible metaphysics and inconsistent reasoning of the ‘modern analysts’
with 67 ‘queries’ ranging over various topics in mathematics and
methodology.
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Figure 1. Title page of Berkeley’s book.

that exclude any obscurity or equivocation. To challenge this presumption, Berkeley be-
gins with an inventory of the fundamental concepts of the Newtonian calculus of fluxions,
specifically Newton’s doctrine of moments and his definition of a fluxion as the velocity
with which a geometric magnitude is produced (moving points producing lines, moving
lines producing surfaces, etc.). He notes that moments are not finite particles, but rather
‘the nascent Principles of finite Quantities’, which are considered not to have any positive
magnitude in themselves yet are capable of forming ratios to one another. Fluxions are not
average velocities taken over a given time, butinstantaneous velocities, defined as the ulti-
mate ratios of evanascent increments of timesand distances: ‘These Fluxions are said to be
nearly as the Increments of the flowing Quantities, generated in the least equal Particles of
time; and to be accurately in the first Proportion of the nascent, or in the last of the evanes-
cent, Increments’ (Section 3). Moreover, higher-order fluxions are introduced by taking the
fluxion itself as a variable quantity and considering the velocity with which it may change.
Berkeley finds this whole apparatus inconceivable and ineradicably mysterious (Section 4):
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Now as our Sense is strained and puzzled with the perception of Objects ex-
tremely minute, even so the Imagination, which Faculty derives from Sense,
is very much strained and puzzled toframe clear Ideas of the least Particles
of time, or the least Increments generated therein: and much more so to com-
prehend the Moments, or those Increments of the flowing Quantitesin statu
nascenti, in their very first origin or beginning to exist, before they become
finite particles. And it seems still more difficult, to conceive the abstacted Ve-
locities of such nascent imperfect Entities. But the velocities of the Velocities,
the second, third, fourth and fifth Velocities, &c. exceed, if I mistake not, all
Humane Understanding. The further the mind analyseth and pursueth these
fugitive Ideas, the more it is lost and bewildered; the Objects, at first fleeting
and minute, soon vanishing out of sight.

The foundations of the Leibniziancalculus differentialis (§4) face a similar objection. Re-
lying on the formulation of the Leibnizian differential calculus in L’Hôpital’sAnalyse des
infiniment petits (1696), Berkeley claims that its postulation of infinitesimal magnitudes is
incomprehensible, and a succession of higher-order infinitesimals compounds the incoher-
ence, since ‘to conceive a Part of such infinitely small Quantity, that shall still be infinitely
less than it, and consequently though multiply’dinfinitely shall never equal the minutest
finite Quantity, is, I suspect, and infinite Difficulty to any Man whatsoever’ (Section 5).

These metaphysical objections are not, by themselves, completely decisive, since even
in Berkeley’s day there were numerous examples of ‘incomprehensible’ magnitudes that
had later become accepted (negative, irrational, and complex numbers being the most
salient examples). But the case is made significantly stronger when he adds logical objec-
tions, purporting to show that the calculus contains ‘Emptiness, Darkness, and Confusion;
nay, If I mistake not, direct Impossibilities and Contradictions’ (Section 8). If the princi-
ples and demonstrations of the calculus are logically flawed by containing incoherent or
contradictory assumptions, then the rigor of its procedures is seriously compromised.

Berkeley’s logical critique begins by evaluating two proofs of fundamental results in
the calculus. The first is Newton’s proof of the rule for determining the fluxion of a prod-
uct as set out in Book II, Section 2, Lemma 2 of thePrincipia (§5, Table 3). Newton
treats the product of two flowing quantities as a rectangle, whose sides areA andB. The
respective moments of these flowing quantities are designateda andb. As Newton ex-
plains, flowing quantities are ‘indeterminate and variable’ and their moments are the in-
stantaneous increments or decrements. To calculate the moment of the productAB he first
considers the case where each flowing quantity lacks one-half of its moment. The result-
ing rectangle has the area expressed by(A− 1/2a)(B − 1/2b), which expands to become
AB−1/2Ab−1/2aB+1/4ab. He next takes the rectangle formed after the flowing quan-
tities have gained the remaining halves of their moments, namely:(A+ 1/2a)(B+ 1/2b).
Expanded, this yields

AB + 1/2Ab+ 1/2aB + 1/4ab. (1)

Subtracting the first product from the second yields the moment of the rectangleAB,
namelyAb+Ba.

Berkeley dismisses this argument as a sham intended to mask the use of infinitesimal
magnitudes. As he notes, the definition of a moment as an increment requires that the
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‘direct and true’ method of computing the moment ofAB is to consider the difference
between it and the augmented rectangle(A+a)(B+b). This requires taking the difference
betweenAB andAB+Ab+aB+ab. The resulting increment or moment isAb+Ba+ab,
which differs from Newton’s result by the additional termab. In effect, Newton takes the
increment of the rectangle(A− 1/2a)(B − 1/2b), and the obvious intention of this move
is to avoid the annoying termab. Berkeley concludes that ‘though much Artifice hath
been employ’d to escape or avoid the admission of Quantities infinitely small, yet it seems
ineffectual’ (Section 11). Taking an increment of a product less thanAB is a handy way to
avoid having to dismiss the termab as infinitely less than either of the termsaB orAb, but
it cannot be made consistent with Newton’s pronouncements on the nature of moments.

Thus Berkeley’s objection not only points out a fundamental error in the Newtonian
proof; it also shows the vanity of Newton’s pretense to have based his methods exclusively
on the consideration of finite magnitudes. Mathematicians of the Newtonian school of-
ten claimed that their method of fluxions was more rigorous than the Leibnizian calculus,
which they accused of employing obscure and extravagant assumptions about infinitesi-
mals. Berkeley, however, has shown that Newton’s own procedures make a mockery of
such pretensions to rigor.

The second part of Berkeley’s logical criticism of the calculus focuses on Newton’s rule
for finding the fluxion of any power, as demonstrated in his treatise ‘On the quadrature of
curves’, first published in 1704. He remarks that in view of the lamentable state of the proof
in the Principia Newton must have suffered ‘some inward Scruple or Consciousness of
defect in the foregoing Demonstration’ and therefore resolved ‘to demonstrate the same in
a manner independent of the foregoing Demonstration’ (Section 12). Berkeley prefaces his
criticism with a lemma that forbids the use of contradictory premises in a demonstration.
As he phrases it (Section 12):

If with a View to demonstrate any Proposition, a certain Point is supposed, by
virtue of which certain other Points are attained; and such supposed Point be
it self afterwards destroyed or rejected by a contrary Supposition; in that case,
all the other Points, attained thereby and consequent thereupon, must also be
destroyed and rejected, so as from thence forward to be no more supposed or
applied in the Demonstration.

He characterizes this principle as ‘so plain as to need no Proof’ and proceeds to show that
Newton’s proof procedure gives the strong appearance of violating it.

Newton’s proof in the ‘Quadrature of curves’ assumes a flowing quantityx and shows
how to find the fluxion of the powerxn. As x flows or increases to(x + o) the powerxn

becomes(x + o)n, which by binomial expansion becomes

xn + nox(n−1) + n(n− 1)

2
o2x(n−2) + · · · . (2)

As a consequence, the increment of the flowing quantityx and that of(x+ o)n stand in the
ratio

o : nox(n−1) + n(n− 1)

2
o2x(n−2) + · · · . (3)
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Dividing both terms in the ratio byo yields the ratio

1 : nx(n−1) + n(n− 1)

2
ox(n−2)+ · · · . (4)

Newton defines the fluxion ofxn as the ultimate ratio between ‘evancescent’ or vanishing
increments,i.e. the ratio that holds as the increments are diminished to nothing. By letting
the incremento vanish and discarding terms that contain it, he obtains 1: nx(n−1) as the
ratio of the flowing quantityx to the powerxn. In other words, the fluxion ofxn is nx(n−1).

Berkeley objects that inconsistent assumptions have been used concerning the quan-
tity o. In the transition from equation (3) to (4) it is assumed thato is positive in order
to carry out the division; but terms containingo can only dismissed from (4) to get the
desired result if it is assumed thato is zero. Commenting on the transition from (4) to the
final result Berkeley remarks (Section 12):

Hitherto I have supposed thatx flows, thatx hath a real Increment, thato is
something. And I have proceeded all along on that Supposition, without which
I should not have been able to have made so much as one single Step. From
that Supposition it is that I get at the Increment ofxn, that I am able to com-
pare it with the Increment ofx, and that I find the Proportion between the two
Increments. I now beg leave to make a new Supposition contrary to the first,
i.e. I will suppose that there is no Increment ofx, or thato is nothing; which
second Supposition destroys my first, and is inconsistent with it. I do never-
theless beg leave to retainnx(n−1), which is an Expression obtained in virtue
of my first Supposition, and which could not be obtained without it: All which
seems a most inconsistent way of arguing, and such as would not be allowed
of in Divinity.

The justice of these charges was a matter of intense debate in Berkeley’s day, but there is
no question that his arguments show that the Newtonian calculus of fluxions isprima facie
unrigorous.

Aside from calling the rigor and coherence of the Newtonian fluxional calculus into
question, Berkeley argued that there was no useful distinction between it and the Leib-
niziancalculus differentialis. This charge had a significantad hominem effect in the con-
text of Newtonians’ claims for the superior rigor of their procedures in comparison with
those of the Leibnizian school. After remarking that Newton’s method is ‘in effect the same
with that used in thecalculus differentialis’ because it requires a ‘marvellous sharpness of
Discernment, to be able to distinguish between evanescent Increments and infinitesimal
Differences’ (Section 17), Berkeley echoes the Newtonian complaints against Leibnizian
infinitesimal differences by arguing that the Leibnizians make ‘no manner of scruple, first
to supposed, and secondly to reject Quantities infinitely small: with what clearness in the
Apprehension and justness in the reasoning, any thinking man, who is not prejudiced in
favour of these things, may easily discern’ (Section 18). The result is that Newtonian crit-
icisms of the Leibnizian calculus are turnedagainst the calculus of fluxions itself, and
the foundations of the calculus are renderedobscure and burdened with apparent self-
contradiction.
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4 RESPONSES TO BERKELEY

The publication ofThe analyst touched off an intense controversy in the British mathemat-
ical community. In the decade after 1734 numerous writings appeared in reply to Berkeley,
all offering interpretations of the calculus designed to overcome his objections. There was
nevertheless considerable disagreement over how to interpret the foundational concepts of
the calculus so as to deflect Berkeley’s criticisms, and some who defended the rigor of the
calculus became involved in disputes among themselves over how best to proceed. Sur-
veying the British mathematical landscape in the aftermath ofThe analyst, Florian Cajori
aptly characterized Berkeley’s arguments as‘so many bombs thrown into the mathematical
camp’ [1919, 57].

Two noteworthy respondents to The analyst were James Jurin and Benjamin Robins,
whose differing approaches led them into a long-running controversy over the nature of
evanescent magnitudes and limiting processes. Jurin’sGeometry no friend to infidelity
(1734) attempted to defend Newton’s reasoning at every turn, even to the point of insisting
that a ratio of evanescent increments could subsist even as the quantities forming the ratio
vanish. On Jurin’s analysis, there is no inconsistency in dividing by an the incremento to
simplify a ratio and then dismissing any remainingo-terms as ‘vanished’.

Robins’sDiscourse concerning the nature and certainty of Sir Isaac Newton’s methods
of fluxions and of prime and ultimate ratios also appeared in 1734 and developed a very
different defense of Newton’s methods. He provided complex exhaustion proofs in the
style of Archimedes to justify the basic techniques of the calculus, considering only finite
differences between finite magnitudes and using arguments byreductio ad absurdum to
establish central results instead of appealing to evanescent increments. On his account of
the matter, Newton’s concise way of expressing himself had given rise to several confusions
and misinterpretations on which Berkeley’s critique was based. Robins published a review
of the Analyst controversy, in which he argued (contra Jurin) that ultimate ratios must
be taken as limits of sequences of finite ratios, not ratios of vanishing quantities. Jurin
replied, and the resulting controversy dragged on for a number of years without definitive
resolution.

Aside from Jurin and Robins, the contributions of Colin Maclaurin and Roger Paman
deserve mention. Maclaurin’sTreatise of fluxions (1742) was written in response toThe an-
alyst and undertook the rigorization of the calculus of fluxions by basing its fundamental
definitions on Newton’s kinematic theory of magnitudes and then deriving the main re-
sults with exhaustion proofs in the style of Archimedes (§10). Thus, Maclaurin conceives
of curves as generated by the motion of points and defines the fluxion of a curve as the
(directed) velocity with which it is generated; in the case of uniform motion this is the
ratio of the distance the point travels to the elapsed time, while foraccelerated motions the
instantaneous velocity becomes the distance the point would travel in a unit time were it to
continue unaccelerated from that instant.

Paman’sHarmony of the ancient and modern geometry asserted appeared in 1745.
Avoiding any talk of motion or acceleration, he worked out an approach to fluxions that
considers only finite differences of magnitudes and bears a surprisingly strong resemblance
to the modern view of the calculus. He introduced the termsminimaius andmaximinus, de-
fined over a class of quantities in a way very similar to the contemporary definitions of
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least upper bound and greatest lower bound. He then put them to much the same use as
these contemporary concepts, defining the fluxion of a curve as the ‘first minimajus’ or
‘last maximinus’ of a sequence of quantities approximating the tangent. Although Paman’s
work was little read, both he and Maclaurin provided responses toThe analyst that show
Berkeley was right about fundamental obscurities in the calculus while also indicating how
to overcome them.
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CHAPTER 9

DANIEL BERNOULLI, HYDRODYNAMICA (1738)

G.K. Mikhailov

Besides introducing the first hydraulic theory of the fluid flow, this book is the most re-
markable general work in theoretical and applied mechanics written in the pre-Lagrangean
period of the 18th century, based on a deep physical understanding of mechanical phenom-
ena and presenting many new ideas for the following scientific progress.
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1 DANIEL BERNOULLI’S LIFE AND WORK

Daniel Bernoulli (1700–1782) belonged to the well-known family of Swiss mathemati-
cians; he was the second son of Johann I Bernoulli (1667–1748). Born in Groningen, he
came as a child, with his father’s family, to Basel where he studied at the University. Dur-
ing almost two years the young Bernoulli tried to practice as a physician in Italy and was
then invited, as a member of the illustrious family solely, to the Saint Petersburg Academy
of Sciences that was organised in 1725. During over seven years of work in Russia he de-
veloped as a great scientist in the field of pure and applied mathematics, confirming the
family’s fame. In 1733 he returned to Basel and lived there permanently thereafter, from
1733 as Professor of Anatomy and Botany, and from 1750 as Professor of Physics. He was
generally recognised, honoured by election at the most prestigious European academies of
Saint Petersburg, Berlin and Paris, as well as at the Royal Society of London. However,
he never accepted flattering invitations from the Berlin and Saint Petersburg sovereigns to
leave Basel again.

Daniel Bernoulli published about 80 works, including 50 papers in the editions of the
Petersburg Academy of Sciences and 10 prize-winning memoirs of the Paris Academy. But
there was only one large treatise—his famousHydrodynamica, which had a complicated
and partially dramatic fate.

2 GENERAL REMARKS

The contents of theHydrodynamica are summarised in Table 1; its full title may be ren-
dered ‘Hydrodynamics, or commentaries on the forces and motions of fluids’. In this book
Bernoulli presented the earliest adequate theory of motion of an incompressible fluid in
tubes (vessels) and fluid outflow through orifices, introducing the notion of the hydro-
dynamic pressure. However, the treatise is not restricted to theoretical hydraulics. In the
subsequent sections, he opens up new branches of physics and mechanics. He develops
the first model of the kinetic theory of gases, approaches the principle of conservation of
energy, establishes a foundation for the analysis of efficiency of machines, and he devel-
ops a theory of hydroreactive (water-jet) shippropulsion, including a solution of the first
problem of motion of a variable-mass system (see section 4 below).

Hydrodynamica contains many profound remarks on the physical background of a
wide range of mechanical effects, and its study remains most edifying also to the mod-
ern reader. Bernoulli’s treatise was to influence the entire development of mechanics and,
especially, of applied mechanics, for at least a century. However, many of his advanced
ideas were far ahead of his time and met an adequate understanding only later. In the
19th century, J.-V. Poncelet called Bernoulli’s treatise ‘the immortalHydrodynamica’ in
1845, and Paul Du Bois-Reymond referred to ‘the enormous wealth of ideas which assures
this work one of the first places in the literature of Mathematical Physics of all ages’ in
1859.

Hydrodynamica is founded mainly on theprinciple of conservation of ‘living forces’
(that is, kinetic energy). Bernoulli preferred to use this principle not in its traditional
form, received with hostility by Newtonians, but in Christiaan Huygens’s formulation that
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Table 1. Summary by Sections of Bernoulli’sHydrodynamica.

Sect. Page Topics
I 1 General introduction: historical survey, general principles of the theory.
II 17 Hydrostatics.
III 30 Fluid velocity at outflow from vessels.
IV 61 Duration of outflow.
V 90 Outflow from permanently full vessels.
VI 111 Fluid oscillation in tubes (vessels).
VII 124 Outflow from submerged vessels, and lost of living forces.
VIII 143 Flow through compound vessels with regard to loss of living forces.
IX 163 Hydraulic machines and their efficiency; mechanical work.
X 200 Kinetic model of air, properties and motion of gases, cannon shooting.
XI 244 Rotational fluid motion and fluid flow in moving vessels.
XII 256 Pressure of moving fluids on the tube (vessel) walls.
XIII 278 Reaction and impact of outflowing jets, propelling ships by jet ejection.

[End 304.]

Bernoulli named theprinciple of equality between the actual descent and potential ascent:
‘If any number of weights begin to move in any way by the force of their own gravity,
the velocities of the individual weights will be everywhere such that the products of the
squares of these velocities multiplied by the appropriate masses, gathered together, are
proportional to the vertical height through which the centre of gravity of the composite of
the bodies descends, multiplied by the masses of all of them’.

As to hydraulics proper, Bernoulli’s considersonly quasi-one-dimensional fluid motion,
reducing any flow to this case by means of thehypothesis of plane sections: he does not
distinguish between tubes and vessels. The principle of conservation of living forces was
used for studying the fluid flow by Bernoulli and Leonhard Euler also earlier. Coincidence
of their results presented independently in the Petersburg Academy of Sciences in 1727
forced Euler to change his scientific plans and to leave this field for his elder colleague
[Mikhailov, 2000]. When Bernoulli developed his work, besides studying many special
cases of flow, he achieved two new fundamental results. He succeeded in explaining the
nature and determining the value of the hydrodynamic pressure of moving fluids on the
wall of tubes and he discovered the principal role of losses of living forces in the fluid flow,
especially at sudden changes of the flow cross-sections. The former gave an instrument to
engineers for calculation of tube strength and the latter served, in addition, a step to the
generalprinciple of conservation of energy. Bernoulli concluded also the sharp discussion
of many years on the impact and reaction of emitting jets, giving the final solution of the
problem.

It should be recognized that the termhydrodynamics introduced by Daniel Bernoulli for
the whole theory of fluid motion is now applied only for the general fluid dynamics, but
is not used for the quasi-one-dimensional (hydraulic) theory of fluid flow that was in fact
developed by Bernoulli.
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3 THE BERNOULLI EQUATION IN THEHYDRODYNAMICA

Bernoulli’s original derivation of the formula,now called the Bernoulli equation, is difficult
to follow for the modern reader and deserves therefore detailed consideration. Drawing
upon Figure 1, he formulates the problem in the following manner (Section XII, art. 5):
‘Let a very wide vesselACEB, which is to be kept constantly full of water, be fitted with
a horizontal cylindrical tubeED; and at the extremity of the tube let there be an orificeo
emitting water at a uniform velocity; the pressure of the water against the walls of the tube
ED is sought’.

In Bernoulli’s notation (see section 6 below), the velocityv2 of the outflow of fluid
(water) from the opening equals

√
a, wherea is the height of the water level in the vessel

above the orifice. If the ratio of the cross-section of the tube to that of the outlet�1/�2
equalsn, then the velocity in the tube isv1=√a/n (in modern terminology,V2=√2ga,
where we use capital letterV for the real velocity, in order to avoid misunderstanding). In
the case that the end section of the tubeFD is completely open, the velocity of the fluid in
it would, obviously, bev2. However, the partial closing of the sectionFD by a cover with
the openingo prevents free escape of fluid, causes its compression, and thereby creates a
pressure in the flow and on the wall of the tube. ‘Thus it is seen’, writes Bernoulli, ‘that
the pressure on the walls is proportional to the acceleration or the increment of velocity
which the water should receive if any obstacle to the motion vanished in an instant, so that
it would be ejected immediately into the air’. Therefore, for determining the pressure on
the wall of the tube, it is sufficient to imagine an instantaneous rupture of the tube wall at
the section under consideration and to determine the initial acceleration of the fluid after
the rupture. Bernoulli assumes that at a certain instant the tube is ruptured at the section
cd (located at the definite distancec from the entrance sectionEG), and calculates the
corresponding acceleration of the fluid motion at this section. He employs for this purpose
hisprinciple of equality between the actual descent and potential ascent.

Figure 1. Bernoulli’s diagram of water-flow.
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Let the velocity of the fluid in the tubeEd be v (= V/√2g), and denote byacdb the
cylindrical drop (of lengthac= dx and volume�1dx) passing through the section of the
rupture during the elementary time intervaldt . During the same time interval, a volume of
fluid equal to that drop will enter the tube through its initial sectionEG. Then the increase
in living forces over the time intervaldt comprises two parts: 1) the fluid volume�1dx

entering the tube through the sectionEG from the wide vesselACEB acquires the living
forceγ�1dxv

2 (that is, 1/2ρ�1dxV
2), whereρ andγ are its density and specific weight,

which Bernoulli does not introduce explicitly into the calculation; and 2) the mass of fluid
in the tubeEd acquires the additional living force 2γ�1cv dv (that is,γ�1cV dV ). Thus
the entire increase of living forces during the time intervaldt is γ�1(v

2 dx+2cv dv). The
actual descent during the same time corresponds to a descent of the volume�1dx from
the level of the free fluid surface in the vessel to the level of the tube (at heighta) and
amounts toγ a�1dx. Setting thepotential ascent equal to theactual descent, one obtains

γ�1(v
2 dx + 2cv dv)= γ a�1dx, or v

dv

dx
= a − v

2

2c
. (1)

However, for any motion, the acting force (pressure) is proportional to the ratio of the
velocity increase over the time element. Thus, in the case under consideration, the pressure
p1 in the tube is proportional to the ratio ofdv to dt = dx/v, that is,

p1= αv dv
dx
, (2)

whereα is a certain constant coefficient. According to the preceding equation,

p1= αv dv
dx

= αa − v
2

2c
. (3)

But at the initial instant the velocityv in the tube is
√
a/n, so that

a − v2

2c
= n

2− 1

2n2c
a and p1= αn

2− 1

2n2c
a. (4)

There remains to find the value of the coefficientα. Since Bernoulli assumes that this
coefficient does not depend on the geometrical parameters, it is sufficient for him to study
the simplest case of the infinitely small holeo, when the fluid in the tube is virtually
motionless and the pressure in the system ‘vessel+ tube’ is hydrostatically distributed.
Under this condition, the pressure in the tube is determined by the height of the column of
fluid a (i.e.,p1= γ a), andn→∞, whenceα = 2cγ . Consequently, Bernoulli obtains for
the pressure in the tube the expression

p1= γ n
2− 1

n2
a. (5)

(In the original text of theHydrodynamica this formula contains neither the specific weight
γ , nor even the letterp denoting the pressure.) This is the form in which theHydrodynam-
ica presented, for the first time, the famous Bernoulli equation for the case of steady flow
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of an incompressible fluid. In order to bring this expression closer to that which now bears
the same name, it can be rewritten taking into consideration thatn=�1/�2, the velocity
of the fluid in the tubeV1 = √2ga/n, the outflow velocityV2 = √2ga, V1�1 = V2�2,
and the pressurep2 at the orifice vanishes. Thus

p1

γ
+ V

2
1

2g
= p2

γ
+ V

2
2

2g
. (6)

Bernoulli did not pay attention to the fact that his reasoning concerned only the case
of steady flow. A general solution for unsteady quasi-one-dimensional flow is given by
Daniel’s father Johann Bernoulli in the second part of hisHydraulica, and the generalized
Bernoulli equation, usually known as the Lagrange–Cauchy equation, was obtained later
in [Euler, 1757].

4 PROPULSION OF SHIPS BY JET EJECTION, AND THE DYNAMICS OF
SYSTEMS WITH VARIABLE MASS

In Section XIII, Bernoulli advances the idea of exploiting the reaction of an emitting water
jet for the propulsion of ships, and studiesthe motion of a hydroreactive craft. This part
of the Hydrodynamica is of interest for two reasons. On the one hand, the subsequent
development of water-jet ship propulsion isgenerally linked to Bernoulli’s suggestion; on
the other hand, Bernoulli was the first to consider here a problem of motion of a body with
variable mass and devise a simple solution based on thelaw of conservation of momentum.

The dynamics of systems with variable mass—of which the motion of a hydroreactive
craft presents a particular case—is an elementary part of general dynamics. Nevertheless,
the basic equations of this branch of dynamics have been rediscovered frequently and have
evoked wide discussion over two centuries. In the 20th century, the dynamics of systems
with variable mass has become especially important in connection with the rapid develop-
ment of rockets and space technology. But, despite their apparent simplicity, the equations
of motion of a particle with variable mass have sometimes defied comprehension even in
the middle of the 20th century [Mikhailov, 1976].

Bernoulli’s idea of water-jet ship propulsionand its elementary theory is explained in
the last part of Section XIII. ‘It entered my mind at one time’, Bernoulli begins, ‘that these
things which I had pondered about the repelling force of fluids while they are ejected [. . .]
can be applied usefully to instituting a new method of seafaring. For I do not see what
should prevent very large ships from being moved without sails and oars by the method
that water is continually elevated to a height and then flows out through orifices in the
lowest part of the ship, contriving that the direction of the water flowing out faces towards
the stern’.

Bernoulli now goes on to calculate the efficiency of this mode of propulsion, starting
from the observation that ‘a ship is retarded continuously by the water drawn in on account
of its inertia, when the same velocity is communicated to it at which the ship is borne,
and while it is communicated, the ship is forced backwards by the reaction of the water,
but at the same time it is pressed forward by the outflow of the same’. Thus he clearly
poses the particular problem of the motion of an object of variable mass (or of variable
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composition of its constant total mass). He has already determined the reaction force of
the outflowing jet, and it remains for him to analyse ‘the resistance of the ship due to
continually receiving into it water from thequiescent basin on which it is moving’. With
the help of thelaw of conservation of momentum and by equating the inflow of water into
the ship to the discharge of the ejecting stream, Bernoulli easily finds the ‘resistance’ to be
(in modern notation)

R = V2ρ�V1, (7)

whereV2 is the velocity of the ship,V1 the relative outflow velocity of water from the
opening in the stern, and� is the area of this opening. Since the reaction force of the
outflowing water isP = ρ�V 2

1 , he finds for the total force propelling the ship

F = P −R = ρ�V 2
1 − V2ρ�V1= ρ�V1(V1− V2). (8)

As has been emphasized, this calculation of the propulsive force of a hydroreactive craft is
the first analysis in mechanics of the motion of an object of variable mass.

The mechanical foundations of the motion of hydroreactive craft were mentioned pub-
licly perhaps only once later on in the 18th century. Discussing Bernoulli’s new idea of
ship propulsion, Benjamin Franklin emphasized that it was necessary to take into account
the resistance of the ‘inertia force’ of the water reaching the ship, which would decrease
the ‘moving power’. Interest in the hydro-jet propulsion of ships began to revive in the
middle of the 19th century, but then usually only Euler’s definition of the reactive force of
a fluid flowing out from a nozzle was cited.

5 SOME OTHER TOPICS

5.1 The principle of conservation of energy. The crucial point of Daniel Bernoulli’s
hydraulics is that he took into account possible losses of a part of the living forces dur-
ing the fluid flow ‘because it often occurs that the motion goes over to other matter’. His
insight into the actual and potential living forces is closely linked to the notion of en-
ergy introduced in the 19th century into thermodynamics and mechanics. A certain general
conservation principle was actually used by Bernoulli, as he assumed the possibility of a
transition ofliving forces (mechanical energy) from the macromotion of fluid not only to
some kind of ‘useless’ internal mechanical motions of the fluid particles, but also to el-
ementary particles moving due to the heat, as well as to various kinds of fine materials
(materia subtilis, insensibilis). Both theprinciple of conservation of energy and theprin-
ciple of conservation of mass are practically applied by him especially when dealing with
physico-chemical reactions.

5.2 The kinetic theory of gases. Bernoulli proposes a kinetic model of air, consisting of
a number of very small (but finite) spherical particles moving in straight lines at very high
velocities. He determines the air pressure on the walls of a vessel in terms of the collisions
of the particles with the walls, that is, their frequencies and their impulses. Assuming that
heat increases the velocityV of particles, he shows that the elasticity (pressure) of the air
is proportional toV 2 and proposes to measure the air temperature (‘aëris calor’) by this
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pressure at constant density, which makes the temperature proportional toV 2, anticipating
in this respect the Kelvin scale of absolute temperature. Taking into account the finite size
of the air particles, Bernoulli obtains also a generalization of the Boyle–Mariotte law in
the spirit of the Van der Waals equation. Unfortunately, Bernoulli’s kinetic theory was
disregarded over more than a century. A similar model was again proposed in the 1850s,
and only in the 1870s the significance of Bernoulli’s theory as a precursor of the new
kinetic theories was understood and generally acknowledged in the context of mechanistic
heat theories.

5.3 Barometrical studies. Having elucidated the principles of his kinetic approach,
Bernoulli discusses the barometric and thermal characteristics of the atmosphere and tries
to come upon a universal relationship between the barometric pressure and the height of a
location above sea level. As a particular problem, the refraction of light in the atmosphere,
due to the change of air density at various heights, is investigated.

5.4 The outflow of gases from vessels. TheHydrodynamica includes the first attempts
to study the flow of gases. Of course, Bernoulli is limited by analysing isothermal gas flows
only, as it was not known at that time whether the air temperature varies during compres-
sion (the notion of adiabatic flow was introduced by Laplace much later). The solutions
obtained are approximate: Bernoulli transfers his hydraulic method to air, considering the
flow as a sequence of steady states: even Louis Navier analysed isothermal gas flow in the
1820s under the same assumptions.

5.5 The work of compressed air and gunpowder gases. Bernoulli discusses the use of
compressed air as a source of movement and evaluates the force of gunpowder gases ac-
cording to the work they can perform. He introduces the notion of the potential living force
of an elastic fluid at rest, ‘wherein nothing else is understood by this than thepotential as-
cent which an elastic body can communicate to other bodies before it will have lost all its
elastic force’. By exploiting this notion, he explains the possibility of driving machines by
means of heated (or cooled) air and discusses the force of ignited gunpowder for projecting
missiles. He notes ‘that the effect of [. . .] one pound of ignited gunpowder for elevating
weights can be greater than that whichone hundred very robust men can accomplish by
continuous labour within one day’s span’.

5.6 The efficiency of machines. Bernoulli presents some general principles for an evalu-
ation of the performance of machines. He limits his analysis of hydraulic machines to their
steady operation, but introduces the fundamental notions ofwork (‘potentia absoluta’) and
efficiency, which are very important for the general theory of machines. In particular, he
estimates the theoretical efficiency of elementary hydraulic machines, taking into account
the loss of work connected with the creation of redundant flow velocities and with water
leakage, the loss of kinetic energy at outflow through orifices, and mentioning the loss due
to mechanical friction. From this point of view, Bernoulli analyses construction of certain
types of pumps, giving recommendations for their improvement. The next large step in the
development of the theory of machines occurs in the first half of the next century and is
due to the French school of applied mechanics, with which the broad use of the notion of
work is traditionally associated.
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5.7 Varia. Discussing problems of fluid flow, Bernoulli touches upon phenomena such
as the water hammer, turbulent character of fluid motion, and cavitation. TheHydrodynam-
ica includes also many pure mathematical problems connected with solving differential
equations, integrations and series.

6 SOME GENERAL REMARKS ON THE STYLE OF THEHYDRODYNAMICA

In reading Daniel Bernoulli’s work, it is necessary to remember that there did not yet exist
any theory of dimensions of physical quantities in the 18th century, and scientists used
different systems of physical units. Bernoulli usually employed a system of physical units
which was based not on three basic units, as in modern times, but only on two, namely on
the units of lengthL and of force (weight)F . Reduction of the number of basic physical
units is equivalent to the introduction of an additional dimensionless quantity. In this case,
this additional dimensionless quantity is the gravitational acceleration. As a consequence,
the dimension of mass[M] does not differ from that of force[F ]. Correspondingly, the
dimensions of densityρ and specific weightγ likewise coincide:[ρ] = [γ ] = [FL−3]. It
also follows directly from the definition of acceleration that the dimension of time[T ] is
[L1/2]. Since velocity is defined as the ratio of a distance to time, its dimension[V ] is
likewise[L1/2].

In works of the first half of the 18th century, velocity is evaluated, as a rule, by a linear
quantity, namely velocity head, and is defined as the square root of the velocity head

√
H

or
√

2H . Bernoulli employs the first option(v =√H) throughout most of hisHydrody-
namica. Therefore, when transforming his formulae written for the given determination of
velocity into their modern form, one must replace in them all quantities according to the
scheme (we use capital letters for the up-to-date defined physical values)

mass→Mg, velocity → V√
2g
, time → T

√
2g. (9)

Curiously, in this physical system of units, the basic equation of dynamicsF =MdV/dT
becomesf = 2mdv/dt , with the coefficient 2, which is strange to the modern reader. The
living force 1

2MV2 is represented in this system as the product of weight or mass by the
square of velocityv2 (= H) without the factor 1/2. In the second case(v =√2H ), the
basic law of dynamics, most deceivingly, retains its familiar formf =mdv/dt , although,
as before, velocity and time have here the dimension[L1/2]; living force as well is repre-
sented in this case in a form familiar to the modern reader, that is, by1

2mv
2. Such a variant

of the system of physical units is employed in theHydrodynamica in some parts of Sec-
tions IX and X, and in the entire Section XIII. Of course, in purely descriptive examples,
Bernoulli evaluates velocity in the familiar way as the distance covered by the object in
unit time.

It should be noted that Bernoulli did not prepare his book carefully enough for the
printer. It is only in this way that we can explain, for example, that there remain in the book
some obsolete, uncorrected cross-references to its separate sections, and Section XIII relies
on a velocity measure which differs from the oneused in all preceding Sections. Correcting
in Section XIII his previous false estimate of the jet impact, Bernoulli did not introduce
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any changes into the text of Section IX, where he had used the erroneous estimate, and
restricted himself to the corresponding statement in art. 15 of Section XIII.

7 EARLY PRAISE AND TROUBLES

Daniel Bernoulli wrote the first version of hisHydrodynamica in Petersburg at the begin-
ning of the 1730s. On his departure from Petersburg in summer 1733, he left behind a copy
of the draft manuscript. The first detailed information on the forthcoming release of the
Hydrodynamica appears in the September 1734 issue of the journalMercure Suisse. In De-
cember 1734 Bernoulli writes to Euler with satisfaction: ‘MyHydrodynamica is now really
being printed by Mr. Dulsecker, and he gives me, besides 30 copies, even 100 thalers of
royalty’. However, in March 1736, Bernoulli writes in desperation: ‘MyHydrodynamica
has fallen into the hands of a man who deals very badly with it: I doubt that it will ever see
the light of day’.

The actual printing of the book seems to have begun only in 1737. It appeared at the
end of April or the beginning of May 1738. In May, Bernoulli sends first copies of the
treatise to Petersburg and asks Euler to inform on his remarks. However, on its way to
Petersburg the book parcel went astray. Expecting Euler to have received a copy of the
Hydrodynamica, Bernoulli asks him repeatedly for advice with a view to a second edition
regarding changes and corrections and calls his attention especially to the last five sections
of the treatise which he believes ‘can contribute not in a small way to the perfection of
physics, mechanics, and so on’.

Bernoulli’s treatise reached Petersburg and Euler only in spring 1739. Euler reports to
Daniel that he has, finally, become acquainted with his book:

Meanwhile I have read through your incomparable Treatise with full atten-
tion and have drawn immense gain from it. I congratulate you, Sir, from all my
heart on the felicitous execution of such adifficult and obscure topic, as well as
on the immortal fame thus gained. The entire execution of the project deserves
all conceivable attention, and all the more so as it is not accessible to rigorous
mathematics, but demands the help of several important physical principles,
which you have known to employ to indescribable advantage[. . .] In the case
of a new edition of this Treatise, I would especially humbly advise you to set
out most topics in some more detail, partly for the reader’s convenience, but
mainly to ensure that the great usefulness to be gained from many investiga-
tions is highlighted more prominently: In fact, I have encountered therein so
many different, important and completely new topics that most of them would
indeed deserve to be treated in separate publications.

By contrast, having become acquainted with Daniel Bernoulli’sHydrodynamica, his
father Johann at once began to prepare surreptitiously his own version of the science of hy-
draulics. The first mention of this work known to us occurs in the letter of Johann Bernoulli
to Euler of 11 October 1738, and Bernoulli sent the first, preliminary part of hisHydraulica
to Petersburg on 7 March 1739, withholding it consciously from his son. Only someone
with such extraordinary insight as Euler could immediately recognize the jewel in Johann’s



Chapter 9. Daniel Bernoulli,Hydrodynamica (1738) 141

Hydraulica after looking through its first part. Moreover, Euler virtually drafted the basis
on which the second, most important part of theHydraulica should be rested in his reply
letter to the elder Bernoulli. The latter could prepare this part and sent it to Euler only
in August 1740. Not waiting for the publication of hisHydraulica in Petersburg, Johann
Bernoulli included it into hisOpera omnia published at the beginning of 1743 (with the
year 1742 on the title page), supplying it here with an extra subtitle:now for the first time
disclosed and directly shown from purely mechanical foundations, 1732.

After Johann Bernoulli’sOpera omnia have appeared, Daniel complains to Euler about
what seemed to him to be an extreme injustice. On 4 September 1743 he writes [Fuss,
1843, 530–532]:

Of my entireHydrodynamica, not one iota of which do in fact I owe to my fa-
ther, I am all at once robbed completely and lose thus in one moment the fruits
of the work of ten years. All propositions are taken from myHydrodynamica,
and then my father calls his writingsHydraulica, now for the first time dis-
closed, 1732, since myHydrodynamica was printed only in 1738. All this my
father has taken over from me, except that he has thought up another method
of determining the increment of velocity, which discovery occupies some few
pages. What my father does not fully ascribe to himself, he contemns, and fi-
nally, to top my misfortune, he inserts your letter, in which my discoveries (of
which I am completely the first and indeed the only author, and which I con-
sider to have exhausted completely) in some measure belittle[. . .] At first it
was sheer unbearable to me; but finally I have taken it all with some resigna-
tion; but also I have conceived a disgust and revulsion for my former studies,
so that I had liefer learned cobbling than mathematics.

The truth seems to be that Johann Bernoulli consciously falsified the dating of his undoubt-
edly very interesting work on fluid dynamicsthat was definitely written between 1738 and
1740, stimulated by his son’sHydrodynamica, and could not even have been conceived as
far back as 1732.

Daniel Bernoulli discussed the preparation of a second edition of theHydrodynamica
already in summer 1738 and at the end of 1740 he negotiated for a new edition of his
treatise in French. However, neither a new Latin edition, nor the French translation of
theHydrodynamica, ever appeared. What is more, Daniel abandoned his further research
in fluid dynamics, possibly changing thereby the subsequent development of this field of
science. The reason was doubtless the heavy psychological trauma inflicted on him by his
father. Thus, from many points of view, the fate of theHydrodynamica was dramatic.
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CHAPTER 10

COLIN MACLAURIN,
A TREATISE OF FLUXIONS (1742)

Erik Sageng

MacLaurin provided a rigorous foundation for the method of fluxions based on a limit
concept drawn from Archimedian classical geometry. He went on to demonstrate that the
method so founded would support the entire received structure of fluxions and the calculus,
and to make advances that were taken up by continental analysts.

First publication. 2 vols., Edinburgh: T.W. and T. Ruddimans, 1742. vi+ 763 pages, pagi-
nated continuously, 40 pages of plates.

Second edition. A treatise on fluxions [. . .] to which is prefixed an account of his life. The
whole carefully corrected and revised by an eminent mathematician. Illustrated with
forty-one copperplates, 2 vols., London: William Baynes and William Davis, 1801.

Full French translation. Traité des fluxions (trans. Pezenas), 2 vols., Paris: Jombert, 1749.

Abridged French translation. Abregé du calcul intégral ou méthode inverse des fluxions:
où l’on explique les moyens de découvrir les intégrales par les quadratures à l’usage
du Collège Royal (trans. Ch. Le Monnier), Paris: Charles-Antoine Jombert, 1765.

Related articles: Newton (§5), Leibniz (§4), Berkeley (§8), Euler on the calculus (§14),
Lagrange on the calculus (§19).

1 COLIN MACLAURIN (1698–1746)

Colin MacLaurin was born in Kilmoden, Argyll, Scotland in February 1698. He entered
the University of Glasgow in 1709, where he studied under Robert Simson, known for
his Elements of Euclid (1756) and his restorations of Apollonius. In 1713, MacLaurin
defended a thesis on the power of gravity, and was awarded the degree of master of arts. In
1717 he was appointed to the chair of mathematics at Marischal College, Aberdeen. During
these years he published two papers in thePhilosophical transactions of the Royal Society;

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
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on the strength of these and of the manuscript to his first major publication, theGeometria
organica, he was admitted to membership of theSociety and was introduced to Newton,
then its President, to whom he dedicated theGeometria, and under whose imprimature it
was printed in 1720.

In November of 1725 MacLaurin accepted the position of deputy and successor for
James Gregory at the University of Edinburgh. He remained a popular and influential Pro-
fessor of Mathematics at Edinburgh until his death in 1746, teaching pure and applied
mathematics, optics, astronomy, and experimental philosophy.A treatise of algebra, pub-
lished posthumously in 1748, is composed of teaching materials used by MacLaurin at
Edinburgh, and of papers on equations with ‘impossible’ (i.e. complex) roots published in
thePhilosophical transactions in 1726 and 1729, in which he extended Newton’s work in
hisArithmetica universalis (1707).

Some time after Newton died in 1727, John Conduit asked MacLaurin to collaborate in
the writing of his biography, but the projectseems to have lost momentum with Conduitt’s
death in 1737. MacLaurin continued with his part of the biography, and was reportedly
dictating the final chapter, which contains a proof of the afterlife, a few hours before his
death in 1746. TheAccount of Sir Isaac Newton’s philosophical discoveries, published
posthumously in 1748, is one of the most accessible yet least trivializing contemporary
popularizations of Newton’s natural philosophy.

MacLaurin took a leading role in preparing the defense of Edinburgh against the high-
land army of Prince Charles Stewart in the Jacobite rebellion of 1745, and when the city
was occupied MacLaurin felt it was safest for him to withdraw into England. He returned,
after a difficult journey both ways on horseback, including a fall and exposure to unpleasant
weather, with what he described as the most dangerous cold he had ever had. He apparently
never entirely recovered, and died on 14 June 1746.

2 THE TREATISE ON FLUXIONS (1742): FOUNDATIONS

2.1 A response to Berkeley

In 1734 George Berkeley had publishedThe Analyst: or, a discourse addressed to an in-
fidel mathematician (§10). Besides objecting to particular demonstrations and procedures,
Berkeley’s criticism of the method of fluxionsamounted to the well substantiated assertion
that it was founded inescapably either on infinitesimals or on a shifting of hypotheses, both
of which were logically indefensible. MacLaurin’sTreatise was begun partly in response
to these criticisms; its contents are summarised in Table 1.

In the Treatise, MacLaurin founded the method of fluxions on a limit concept drawn
from the method of exhaustions in classical geometry, avoiding the use of infinitesimals,
infinite processes, and actually infinite quantities,and avoiding any shifting of the hypoth-
esis. He was motivated by his belief that mathematics, properly understood, is based on
real, actually existent entities, which belief made it impossible for him—as for Berkeley—
to accept a system based on infinitesimals, and by his ideas about the role of mathematics
in religion, both directly, as the ultimate bulwark against the skeptics, and by way of nat-
ural philosophy, the ultimate purpose of whichis to support natural religion. These ideas
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Table 1. Contents by chapters of MacLaurin’s book. The titles of chapters are quoted.
Volume I ends on page 412; Book I continues in Volume II with continuous pagination.

Ch. Page Title
i–vi Preface.

1 Introduction.

51 The Elements of the Method of Fluxions, Demonstrated after the Manner
of the Ancient Geometricians.

51 Book I. Of the Fluxions of Geometrical Magnitudes.

I 51 Of the Grounds of this Method.

II 109 Of the Fluxions of plane rectilineal Figures.

III 131 Of the fluxions of plane curvilineal Figures.

IV 142 Of the Fluxions of Solids, and of third Fluxions.

V 152 Of the Fluxions of Quantities that are in a continued geometrical Progres-
sion, the first term of which is invariable.

VI 158 Of Logarithms, and the Fluxions of logarithmic Quantities.

VII 178 Of the Tangents of curve Lines.

VIII 199 Of the Fluxions of curve Surfaces.

IX 214 Of the greatest and least Ordinates, of the points of contrary Flexion and
Reflexion of various kinds, and of other affections of Curves that are
defined by a common or by a fluxional Equation.

X 240 Of the Asymptotes of curve Lines, the Areas bounded by them and the
Curves, the solids generated by those Areas, of spiral Lines, and of the
Limits of the Sums of Progressions.

XI 304 Of the Curvature of Lines, its Variation, and the different kinds of Contact,
of the Curve and Circle of Curvature, the Caustics by Reflexion and Re-
fraction, the centripetal forces, and other Problems that have a dependence
upon the Curvature of Lines.

XII 413 Of the Method of Infinitesimals, of the Limits of Ratios, and of the Gen-
eral Theorems which are Derived from this doctrine for the Resolution of
Geometrical and Philosophical Problems.

XIII 486 Wherein the nature of the lines of swiftest descent is determined in any
given hypothesis of gravity, and the problems concerning isoperimetrical
figures, with other of the same kind are resolved by first fluxions and the
solutions verified by synthetic demonstrations.

XIV 513 Of the ellipse considered as the section of a cylinder. Of the Gravitation
towards bodies, which results from the Gravitation towards their Particles.
Of the Figure of the Earth, and the Variation of Gravity Towards it. Of the
Ebbing and Flowing of the Sea, and other inquiries of this nature.
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Table 1. (Continued)

Ch. Page Title
575 Book II. Of the Computations in the Method of fluxions.

I 575 Of the Fluxions of Quantities Considered Abstractly, or as Represented by
General Characters in Algebra.

II 591 Of the Notation of the Fluxions, the Rules of the Direct Method, and the
Fundamental rules of the inverse method of Fluxions.

III 615 Of the analogy between circular arches and logarithms, of reducing fluents
to these, or to hyperbolic and elliptic arches, or to other fluents of a more
simple form; when they are not assignable in finite algebraic terms.

IV 664 Of the area when the ordinate and base are express’d by fluents; of comput-
ing the fluents from the sums of progressions, or the sums of progressions
from the fluents, and other branches of this method.

V 693 Of the general rules for the resolution of Problems. [End 754.]

led MacLaurin both to emphasize the importance of sound foundations in such a vital en-
terprise, and to be offended by the suggestion that mathematics is dangerous to religion, or
that mathematicians are liable to lead men to infidelity.

In his introduction, MacLaurin says that geometry has been justly admired for its ev-
idence and demonstration. ‘It acquired this character by the great care of the old writers,
who admitted no principles but a few self-evident truths, and no demonstrations but such
as were accurately deduced from them’ (p. 1). Mathematicians have fallen from this ideal,
notably, as Berkeley has pointed out, with the method of indivisibles and that of divisi-
ble infinitesimals. Newton had rejected infinitesimals, says MacLaurin, and developed his
method in a manner agreeable to the ancients,but so briefly as to be easily misunderstood
(pp. 2–3):

When the certainty of any part of geometry is brought into question, the most
effectual way to set the truth in a full light, and to prevent disputes, is to deduce
it from axioms or first principles of unexceptionable evidence, by demonstra-
tions of the strictest kind, after the manner of the ancient geometricians. This
is our design in the following treatise; wherein we do not propose to alter Sir
Isaac Newton’s notion of a fluxion, but to explain and demonstrate his method,
by deducing it at length from a few self-evident truths, in that strict manner:
and, in treating of it, to abstract from all principles and postulates that may
require the imagining any other quantities but such as may be easily conceived
to have a real existence. We shall not consider any part of space or time as in-
divisible, or infinitely little; but we shall consider a point as a term or limit of a
line, and a moment as a term or limit of time: Nor shall we resolve curve lines,
or curvilineal spaces, into rectilineal elements of any kind [. . .]. The method of
demonstration, which was invented bythe author of fluxions, is accurate and
elegant; but we propose to begin with one that is somewhat different; which,
being less removed from that of the ancients, may make the transition to his
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method more easy to beginners [. . .] and may obviate some objections that
have been made to it.

MacLaurin presents ‘the method of the ancients’ with numerous examples, beginning
with Euclid’s proof by the misnamed method of exhaustion that circles are as the squares
on their diameters. This is not an argument, as its name might suggest, that the areas of
circles can be exhausted by doubling the number of sides of an inscribed polygon an in-
finite number of times while observing that the areas of similar polygons are always as
the squares on their diagonals, so that the exhausted circles—equivalent to infinite sided
polygons—must also be as the squares on their diameters. Rather it is an argument that to
deny the conclusion can be shown to lead, in a finite number of steps, to a contradiction. Its
method of demonstration is characteristic of almost every proof in theTreatise: MacLau-
rin always clinches his argument with a doublereductio ad absurdum, and he never uses
infinite or infinitesimal quantities or infinite processes.

MacLaurin presents numerous examples of Archimedes’s application of this method to
quadratures and cubatures of progressively more complex solids, and in the remainder of
his introduction he narrates the development of these methods up to his time. He says that
geometers have extended Archimedes’s methods but abandoned his foundations, adopt-
ing, as in Bonaventura Cavalieri, indivisible or infinitesimal elements assumed infinite in
number. As a result the higher geometry came to appear to be full of mysteries. MacLaurin
acknowledges, as did Berkeley, the effectiveness and even subtlety of the geometry of infin-
ites, ‘but geometry is best established on clear and plain principles; and these speculations
are ever obnoxious to some difficulties’ (p. 47).

Bonaventura Cavalieri had been sensitive to these difficulties, but he left this Gordian
knot to some Alexander. Now (pp. 49–50)

Sir Isaac Newton [has] accomplished what Cavalierius wished for, by inventing
the method of fluxions, and proposing it in a way that admits of strict demon-
stration, which requires the supposition of no quantities such as are infinite,
and easily conceived [. . .]. In it premises and conclusions are equally accurate,
no quantities are rejected as infinitely small, and no part of a curve is supposed
to coincide with a right line.

Although Newton’s method ‘admits of strict demonstration’, his own demonstrations
were so brief as to be frequently misunderstood, and his method has been misrepresented
as the same as the method of infinitesimals. MacLaurin says that he will explain it and
‘promote the design of the great inventor, by establishing the higher geometry on plain
principles, perfectly consistent with each other and with those of the ancient Geometers’
(p. 50).

2.2 MacLaurin’s formulation

In Chapter I, ‘Of the grounds of the method’, MacLaurin presents his definitions of motion
and velocity. A flowing quantity is called a fluent; its velocity is a fluxion, and is measured
by the increment or decrement that would be generated by the motion in a given time, if
the motion were continued uniformly. All quantities—distance, time, velocity, etc.—are
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represented by line lengths, and the demonstrations are all based on a limit procedure in
which it is shown that quantities or ratios can be made greater than, or less than, or can
approach something closer than any assignable quantity. It is obvious to him that ‘while
a body is supposed in motion, it must be conceived to have some velocity or other at any
term of the time during which it moves’, and he asserts that ‘we can demonstrate accurately
what are the measures of this velocity at any term’. Given this understanding of velocity, he
presents four axioms that he says ‘are as evident as that a greater or less space is described
in a given time, according as the velocity ofthe motion is greater or less’ (pp. 53–54, 59):

Axiom I. The space described by an accelerated motion is greater than the
space which would have been described in the same time, if the motion had
not been accelerated, but had continued uniform from the beginning of the
time. [. . .]
Axiom II. The space described by a motion while it is accelerated, is less than
the space which is described in an equal time by the motion that is acquired by
that acceleration continued uniformly.

Axioms III and IV are analogous to I and II for the case of decelerated motion.
Using these axioms, MacLaurin proves 14 theorems, all with doublereductio ad ab-

surdum, about relations among quantities generatedgiven relations among generating ve-
locities, and vice versa. The chapter culminates with Theorem XIV in which MacLaurin
makes good his claim that we may accurately know the spaces that would be described by
a motion in a given time, if it were continued uniformly from some term (p. 99):

A P D G g a

E M L S c s x e

Theorem XIV. The motion of the pointP being uniform, but the motion of the
pointM continually varied, let the velocity ofP be to the velocity ofM atL,
as a given lineDg is to Lc; let Dg be always toLs, as the spaceDG described
byP in any time, is toLS the space described byM in the same time. Then, by
diminishing the spacesDG andLS continually,cs may become less than any
assignable magnitude.

That is, the ratio of their average speeds over an interval can become closer than any
assignable difference to the ratio of their instantaneous speeds, by diminishing the interval.
It is in the sense of this theorem, says MacLaurin, that we should take Newton’s concept
of the limit of a ratio (p. 101):

Becausecs the difference betweenLs andLc decreases so that it may become
less than any given quantity, how small so ever, whenDG andLS are dimin-
ished continually; it appears that the ratio ofDg to Ls (or of DG to LS) ap-
proaches continually to the ratio ofDg to Lc, so that it may come nearer to this
ratio, than the ratio ofDg to any assignable quantity greater or less thanLc.
For this reason the ratio ofLc to Dg is by Sir Isaac Newton called the Limit of
the variable ratio ofLs to Dg or of LS to DG.
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MacLaurin observes thatLs consists of two parts:Lc, which is invariable and measures
the velocity ofM atL; andcs, which is variable and arises from the acceleration ofM as it
describesLS. cs decreases whenDG andLS are diminished, and vanishes with them. When
EM is determined fromAP by an equation, the ratiosLS : DG or Ls : Dg are reduced to a
rule, and all that is required to determineLc :Dg (the ratio of the fluxions) is to distinguish
between the variable and invariable parts ofLs. ‘It is in this concise manner [by rejecting
the variable part ofLs], that Sir Isaac Newton most commonly determines the ratio of
the fluxions of quantities’, says MacLaurin, ‘but we shall treat more fully of his method
afterwards; and, since there have been various objections made against this doctrine, we
shall demonstrate its principal propositions immediately from the axioms’ (pp. 101–102).

In Chapter II, ‘Of the fluxions of plane rectilinear figures’, MacLaurin proves three
propositions, as usual with a classical doublereductio ad absurdum and no appeal to in-
finite processes or to infinitely small quantities, leading up to finding the fluxion of a rec-
tangle, i.e., of a product. He finds the fluxion of a parallelogram of constant height and
flowing base, reduces finding the fluxion of a triangle to finding the fluxion of an auxiliary
parallelogram, and then finds the fluxion of a rectangle both sides of which flow by divid-
ing it into two triangular areas whose fluxions are found by the previous proposition. He
develops corollaries about the area of the triangle that grows with a uniform acceleration
as the base flows uniformly, and relates this to the uniformly accelerating effect of a con-
stantly applied force like gravity. All this is done without infinitesimals, infinite processes
or actual infinites, in the manner of the ancients, and MacLaurin says that these theorems
constitute the foundation of thedirect methodof fluxions.

As Newton observed in thePrincipia, from the fluxion of a product one can easily de-
rive the fluxion of an arbitrary integral power (§5.4); but MacLaurin derives that fluxion
in another way as well. In his Chapter V, ‘Of the fluxions of Quantities that are in a con-
tinued geometrical Progression, the first term of which is invariable’, MacLaurin states the
following proposition (p. 156):

Proposition VII. The fluxion of any termAN of a geometrical progression, the
first term of which is invariable, is to the fluxion of the second termAP in a
ratio compounded of the ratio of those terms and the ratio of the number of
terms which precedeAN to unit.

That is, if

AS : AP :: AP : AL :: AL : AM :: AM : AN :: etc. (1)

Then

fluxion of AN

fluxion of AP
=

(
AN

AP

)(
4

1

)
. (2)

This is demonstrated by means of the construction shown in Figures 1 and 2. IfAS is per-
pendicular toAP, and the angles atP , L,M etc. are right angles, then by similar triangles,
AS : AP :: AP : AL :: AL : AM :: AM : AN :: etc. MacLaurin keepsS fixed and letsP move
along the axis while all the angles remain right, and uses Euclidean geometry to prove
propositions about the relations among the increments ofAP, AL, AM, etc., traced out by
P , L,M, etc.
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Figure 1. MacLaurin’s Figure 40.

That the fluxion derived in the proposition is in fact equivalent to the fluxion of an inte-
gral power can be seen by lettingAS= a, andAP= ax (so that the index of the progression
is x). Then

AS : AP :: AP : AL :: AL : AM :: AM : AN :: etc. (3)

becomes

a : ax :: ax : ax2 :: ax2 : ax3 :: ax3 : ax4 :: etc. (4)

and

fluxion of AN

fluxion of AP
=

(
AN

AP

)(
4

1

)
(5)

becomes

fluxion of ax4

fluxion of ax
=

(
ax4

ax

)(
4

1

)
= 4x3. (6)

This proposition is also put to extensive use in Chapter VI, ‘Of logarithms, and the
fluxions of logarithmic quantities’. MacLaurin defines logarithms after the manner of John
Napier, and develops the fluxions of and relations among logarithmic quantities. He notes
the relation to exponentials and to the hyperbolic area, and discusses logarithms of different
moduli. He says that areas of all conics are now reduced to the measures of lines, angles
(i.e., trigonometric functions), or ratios (i.e., logarithmic functions), and that all fluents in
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Figure 2. MacLaurin’s Figure 39.

the method of fluxions should be reduced to these measures as much as possible (rather
than, as was usual, having immediate recourse to infinite series).

3 EXTREMA AND INFLECTIONS

Chapter IX treats ‘Of the greatest and least ordinates, of points of contrary flexion and re-
flexion of various kinds, and of other affections of curves that are defined by a common or
by a fluxional equation’. Here and in Chapter V of Book II, MacLaurin gives the most com-
plete treatment of extrema and points of inflection to be found in any 18th-century British
work, and makes the first enunciation of the complete fluxion test for such points, using all
orders of fluxions, and not simply identifying critical points with a first or second fluxion
test, which must then be investigated further by testing neighboring points (pp. 693–695).
Graphing the fluent and the fluxion over the same base, he observes the relationship be-
tween tangents and areas, and he observes that not only the value of the fluxion as its curve
crosses a particular ordinate, but also the way in which the curve of the fluxion crosses the
ordinate gives information about the curve of the fluent at that ordinate. Information about
this fluxional curve is in turn revealed by curves of higher fluxions, and so forth.

MacLaurin also classifies and gives rules for distinguishing various types of inflections,
cusps, and maxima and minima. He continues his treatment of extrema and inflections in
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Figure 3. MacLaurin’s Figure 319.

Book II, using the MacLaurin Series. In this more algebraic treatment, MacLaurin says that
if the ordinateAF=E, AP= x (see Figure 3), and the base is supposed to flow uniformly,
then the ordinate

PM =E + Ė/ẋ + Ëx2/2ẋ2+ ...
Ex

3/6ẋ3+&c. (7)

The equivalence of this form to the modern version of the MacLaurin series will be ap-
parent by placing the origin atA and lettingAF be they-axis, so thatE is f (0), and
understandinġE/ẋ, Ë/ẋ2,

...
E/ẋ3, etc. to be equal tof ′(0), f ′′(0), f ′′′(0) , etc. Likewise

the ordinate

pm=E − Ėx/ẋ + Ëx2/2ẋ2− ...
Ex

3/6ẋ3+&c. (8)

(the signs alternate becausex is understood to be the absolute distanceAP, i.e., it is always
positive).

Now if the first fluxionĖ = 0, then

PM =E + 0+ Ëx2/2ẋ2+ ...
Ex

3/6ẋ3+&c., (9)

and

pm=E − 0+ Ëx2/2ẋ2− ...
Ex

3/6ẋ3+&c. (10)

Therefore, whenAP andAp are small, the ordinatesPM and pm will both exceedAF when
Ë is positive, and will both be less thanAF whenË is negative. IfË is also zero, but

...
E is

not, then a consideration of the series shows that one of the ordinatesPM and pm will be
greater and the other less thanAF. This line of argument leads to the following rule (pp.
694–695):

In general, if the first fluxion of the ordinate, with its fluxions of several subse-
quent orders, vanish, the ordinate is a maximum or minimum, when the number
of all those fluxions that vanish is 1,3,5, or any odd number. The ordinate is
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a minimum, when the fluxion next to those that vanish is positive; but a max-
imum when this fluxion is negative. [. . .] But if the number of all the fluxions
of the ordinate of the first and subsequent successive orders that vanish be an
even number, the ordinate is then neither a maximum nor minimum.

Similar rules are developed for points of inflection.

4 LIMITS OF SERIES, AND THE EULER–MACLAURIN THEOREM

MacLaurin treats ‘Of the Asymptotes of curve Lines, the Areas Bounded by them and the
Curves, the Solids Generated by those Areas, of Spiral Lines, and of the limits of Sums of
Progressions’ in Chapter X. He defines asymptotes and the continual approach to a limit,
and he discusses how to determine whether the area between a curve and its asymptote is
limited or not. He extends this to the volumes of solids of revolution. He notes the analogy
between areas under asymptotic curves and the sums of infinite sequences. He gives rules
for sums of differences and higher order differences, and he shows how to derive numerous
summable sequences from other sequences. His definition of the limit of the sum of an
infinite progression is as follows (p. 289):

As a right line, or figure, may increase continually and never amount to a given
line, or area; so there are progressions of fractions which may be continued at
pleasure, and yet the sum of the terms bealways less than a certain finite num-
ber. If the difference betwixt their sum and this number decrease in such a
manner, that by continuing the progression it may become less than any frac-
tion how small soever that can be assigned, this number is the limit of the sum
of the progression, and is what is understood by the value of the progression
when it is supposed to be continued infinitely. These limits are analogous to the
limits of figures which we have been considering, and they serve to illustrate
each other mutually.

An admirable way in which they ‘illustrate each other mutually’ is in what has come to be
called the ‘Euler–MacLaurin integral test’for the convergence of a series [Mills, 1985].

Chapter XI is ‘Of the curvature of Lines, its Variation, and the different kinds of con-
tact of the Curve and the Circle of curvature, The Caustics by Reflexion and Refraction,
the Centripetal forces, and other problems that have a Dependence upon the Curvature
of Lines’. MacLaurin considers the properties of the curvature of numerous curves, and
applies curvature to the topics of the title of this chapter, especially to centripetal forces,
including planetary motion and the three body problem, and motion in a void and in a re-
sisting medium. The concluding paragraph of this chapter asserts that the principal proposi-
tions of the method of fluxions have now been deduced from plain axioms, and the method
is now as certain and evident as the common geometry. ‘We have insisted on it at so great
length’, says MacLaurin (pp. 411–412),

chiefly because a full account of the manner in which the principal propositions
of the method of fluxions are demonstrated by it, may be of use for removing
several objections that have been lately urged against this doctrine; which has
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been represented, as depending on nice and intricate notions; while it has been
insinuated, that they who have treated of it have been earnest rather to go on
fast and far, than solicitous to set out warily, and see their way distinctly. But
we now proceed to the more concise methods by which the fluxions of quanti-
ties are usually determined.

5 THE METHOD OF INFINITESIMALS,
AND NEWTON’S PRIME AND ULTIMATE RATIOS

In Chapter XII, ‘Of the Method of Infinitesimals, of the Limits of Ratios, and of the General
Theorems which are Derived from this Doctrine for the Resolution of Geometrical and
Philosophical Problems’, MacLaurin explainsthe success of the method of infinitesimals
in spite of its apparently illegitimate neglecting of terms, and explains away the apparent
use of such methods by Newton. In the method of fluxions, he says, if the generating
motion is uniform, the fluxion is measured by the increment acquired in a given time. If
it is accelerated, the increment is resolved into two parts; that which alone would have
been generated if the motion had not been accelerated, and that which was generated in
consequence of the acceleration. Terms neglected in the method of infinitesimals are of the
latter sort, and this is why no error results.

MacLaurin states that however safe this method may be, it is not appropriate ‘to admit
infinitely little quantities, and infinite orders of infinitesimals, into a science that boasts of
the most evident and accurate principles as well as of the most rigid demonstrations’. To
avoid this, he has founded the Method of Fluxions ‘on more unexceptionable postulata’ in
the preceding chapters. Newton avoided infinitesimals, MacLaurin claims, by considering
simultaneous finite increments, and investigating the limiting ratios to which proportions
of these increments approach, as they are supposed to decrease together until they vanish.
Newton determines this limit by reducing the expression of the ratio of the finite increments
to simplest terms, so that part of the expression is seen to be independent of the increment;
‘then by supposing the increments to decreasetill they vanish, the limit readily appears’
(pp. 420–421). MacLaurin says that Newton has been accused of shifting the hypotheses
in such demonstrations, but that this is unjust. He assumes an increment, forms a ratio, and
investigates ‘the ratio of those increments at any term of the time while they had a real
existence, how this ratio varied, and to what limit it approached, while the increments were
continually diminished’. Letting them vanish ‘is a concise and just method of discovering
the limit which is required’. The prime or ultimate ratio ‘strictly speaking’, is not the ra-
tio of any real increments whatever, but the limit of the variable ratio of the increments
(p. 422).

Book I concludes with Chapter XIV, ‘Of the ellipse considered as the section of a cylin-
der. Of the Gravitation towards Bodies, which results from the Gravitation towards their
Particles. Of the figure of the Earth, and the Variation of Gravity Towards it. Of the ebbing
and Flowing of the Sea, and other inquiries ofthis nature’. The initial motivation came
from a prize problem on tides set for 1740 by the ParisAcadémie des Sciences. MacLau-
rin was one of the winners, with an essay whichcontained theorems on ‘level surfaces’
(now called ‘equipotentials’) of attraction of the Earth to an external point lying upon an
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axis. He expanded upon the essay in this chapter; his results contributed notably to the
development of planetary mechanics (compare §18.5 on Laplace). Besides MacLaurin’s
pioneering work on the attraction of ellipsoids, this chapter is interesting for the treatment
of conics as projections of a circle, with their invariant properties established in the case of
a circle and transferred by projection to the general conic.

6 BOOK II

Having treated fluxions geometrically in the first 574 pages of his treatise, so as to facilitate
his foundation of the method ‘in the manner of the ancients’, MacLaurin devotes the last
180 pages to an algebraic treatment in Book II, ‘On the Computations of the Method’. He
does not, however, leave foundational questions behind him, or justify his algebraic proce-
dures solely on their geometric interpretation, but shows that an algebraic interpretation of
the method of fluxions can also be founded on the same sorts of demonstrations, without
infinitesimals or appeals to infinite processes.

In Chapter I MacLaurin addresses Berkeley’s assertion that mathematicians hide un-
clear concepts behind distinct notation. After discussing the generalizing power of algebra
versus geometric constructions, MacLaurin says (p. 576):

It may have been employed to cover, under a complication of symbols, abstruse
doctrines, that could not bear the light so well in a plain geometrical form; but,
without doubt, obscurity may be avoided in this art as well as in geometry, by
defining clearly the import and use of the symbols, and proceeding with care
afterwards.

To this end, MacLaurin says that in the algebraic treatment ofthe method, quantities
are no longer considered as generated by motion, but the respective rates with which they
increase or decrease when they are supposed to vary together are ascertained. ‘By the
fluxions of quantities we shall therefore now understand, any measures of their respective
rates of increase or decrease, while they vary(or flow) together’. To deal with such fluxions
defined in this way, MacLaurin develops algebraic analogs of the four geometric axioms
he presented at the very beginning of the treatise. He then uses these principles to prove
six propositions giving the fluxions of the square, of thenth power, the (n/m)th power,
of products and quotients, and of logarithms, as in his geometric demonstrations, using
no infinitesimal quantities nor appeals to infinite processes. He proceeds by establishing
a finite inequality that holds between expressions involving intervals of the variables and
the proposed value of the fluxion, and then showing that supposing the true value of the
fluxion to differ from that proposed will leadto a contradiction with this inequality when
the interval is taken sufficiently small,amounting in essence to what we would call an
epsilon–delta demonstration (p. 584).

In Chapter III, ‘Of the analogy between circular arches and logarithms, or reducing flu-
ents to these, or to hyperbolicand elliptic arches, or to otherfluents of a more simple form;
when they are not assignable in finite algebraic terms’, MacLaurin presents a collection of
integration techniques (of course, he did not use that term). He reduces fluents to areas of
conics, and to arc lengths of conics. He discusses change of variable, and makes extensive
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use of partial fractions. And he treats fluentsnot expressible even by hyperbolic or elliptic
lengths, which can be expressed by sums or differences of such quantities. More ‘integra-
tion techniques’ are presented in Chapter IV,‘Of the area when the ordinate and base are
express’d by fluents; of computing the fluents from the sums of progressions, or the sums
of progressions from the fluents, and other branches of this method’. Included are what we
call the ‘chain rule’ and ‘integration by parts’; there are numerous theorems and examples
dealing with sequences and interpolation.

In the final Chapter V, ‘Of the general rules for the resolution of problems’, MacLaurin
applies the techniques of Book II to problems and theorems demonstrated geometrically
in Book I. These include extrema, L’Hôpital’s rule, points of contrary flexure, cuspids,
centripetal forces and trajectories, motion on a cycloid, the catenary, solids of revolution,
spherioids and the attraction and shape of the Earth, centers of gravity and of oscilla-
tion, hydrodynamics, isoperimetric problems, optimum angle of vanes and sails, optimum
course of ships, reducing the order of a fluxional equation, the elastica, vibrating chord,
and solid of least resistance.

7 SUMMARY REMARKS

Although MacLaurin’s treatise receives perfunctory praise in all the standard histories of
mathematics, it is often represented as extremely prolix and difficult to understand. His
defense of Archimedes against similar charges is as applicable to his own book (pp. 35–
36):

His method has been often represented as very perplexed, and sometimes as
hardly intelligible. But this is not a just character of his writings, and the an-
cients had a different opinion of them. He finds it necessary indeed to premise
several propositions to the demonstration of the principal theorems; and on this
account his method has been excepted against as tedious. But the number of
steps is not the greatest fault a demonstration may have; nor is this number
to be always computed from those that may be proposed in it, but from those
that are necessary to make it full and conclusive. Besides, these preliminary
propositions are generally valuable ontheir own account, and render our view
of the whole subject more clear and compleat.

To further clarify our view of the whole subject, and to demonstrate that these founda-
tions will support the entire received structure of the method of fluxions and the calculus,
MacLaurin applied the method as he had developed it across the entire range of 18th-
century mathematics. Besides the basic quadratures, cubatures, maximum/minimum, tan-
gents, and rates of change problems of the elementary method, he treated all the challenge
problems and curves of such interest to the continental analysts.He treated mechanics,
elastic and inelastic collision, logarithms and other sequences, curvature and its variation,
caustics, cycloids, the rainbow, centripetal forces, trajectories under all sorts of forces, mo-
tion on various curves, celestial mechanics, the shape of the earth and motion of the tides,
centers of gravity and of oscillation, pendular motion, hydrodynamics, the catenary, tau-
tochrone, and brachistochrone, the general isoperimetric problem, and projective properties
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of the conics. In Book II he presented ‘the computations of the method’, developing and
demonstrating techniques for finding fluxions and fluents of expressions with much greater
facility than one might have expected of the Newtonian notation, and applying these tech-
niques to the problems of the first book. In the process he treated most of the ‘integration
techniques’ encountered in a modern undergraduate calculus course, fluents expressible in
closed form only as elliptic and hyperbolic curve lengths or their sums and differences, and
infinite series with consideration of convergence.

8 IMPACT

The Treatise was generally cited by British fluxionists as the definitive answer to Berke-
ley’s criticism, but MacLaurin had accomplished much more than this. Judith Grabiner has
described MacLaurin’s influence on the Continental analysts in detail. MacLaurin’s work
was cited with admiration by Lagrange, Euler, Clairaut, d’Alembert, Laplace, Legendre,
Lacroix, and Gauss. The influence of MacLaurin’s use of the algebra of inequalities as a
basis for his limit arguments can be seen in d’Alembert, L’Huilier, Lacroix and Cauchy.
MacLaurin corresponded at length with Clairaut about the attraction of ellipsoids, and the
latter in hisLa figure de la terre (1743) acknowledges his debt; MacLaurin’s influence on
this subject can be seen also in d’Alembert, Laplace, Lagrange, Legendre, and Gauss. Of
especial note are his contributions in Chapter XIV to the theory of ‘level surfaces’ (his
name: we now call them ‘equipotential’), which partly draw upon earlier work. He showed
that if we assume the inverse square law of attraction, then the ratio of the attractions of
two homogenous confocal ellipsoids to an external point lying along a principal axis was
the same as the ratio of their masses. His use of geometrical reasoning contrasts strikingly
with contemporary studies of the attraction of ellipsoids that were carried out by Clairaut,
who used techniques from mathematical analysis [Greenberg, 1995, 412–425, 587–601].

In addition, MacLaurin’s use of infinite series in the analysis of functions, especially
with the Euler–MacLaurin formula, was known to Euler, Lagrange, and Jacobi; while his
reduction of fluents to elliptic or hyperbolic curve length was used by d’Alembert and
extended by Euler, and Euler influenced Legendre’s work on elliptic integrals [Grabiner,
1997, 400–403].
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1 BIOGRAPHY OF D’ALEMBERT

A natural son of the chevalier Destouches and Mme. De Tencin, D’Alembert was born on
16 or 17 November 1717 and was placed (rather than abandoned) on the steps of the church
of Saint-Jean-le-Rond in Paris—whence his given name, although much later he preferred
‘Daremberg’, then ‘Dalembert’ or ‘D’Alembert’. He followed his secondary studies at the
Quatre-Nations College in Paris, and later studied law and probably a little medicine. His
first memoir was submitted to theAcadémie des Sciences in Paris in 1739, and he became
a member of that institution in 1741.

TheTraité de dynamique was D’Alembert’s first major work, to be followed by many
others in the 1740s and early 1750s. He was co-editor with Dénis Diderot of theEncy-
clopédie, for which he wrote the introduction (1751) and around 1700 articles, mainly
scientific, the majority of them before the work was banned following his article ‘Genève’
in 1758–1759. He was appointed to membership of theAcadémie Française in 1754 and
quickly became second to Voltaire in the group forphilosophes. In 1772 he became per-
manent secretary of this academy (but not that for sciences). He died of gall-stones on 29
October 1783. On his life, see Hankins [1970].

2 SCIENTIFIC WORKS

A multifaceted enterprise, the edition of the complete works currently being prepared will
consist of around forty volumes of about 700 pages each. It is divided into five series of
comparable size, as follows. Series I: mathematical treaties and memoirs (1736–1756);
Series II: contributions to theEncyclopédie; Series III: mathematical notes and memoirs
(1757–1783); Series IV: mixed, history, literature, philosophy; Series V: correspondence.
The period covered by the first series (roughly as far as theEncyclopédie) can be regarded
as the golden age for mathematics. In abouta decade, the author published six celebrated
treatises, beginning with theTraité de dynamique (1743), as well as two others on fluids,
one on the cause of winds, one on the precession of the equinoxes; and, finally, one on
the ‘system of the world’ in three volumes covering various branches of astronomy and
the shape of the Earth. He published a similar number of important memoirs, notably on
vibrating strings and what we call the fundamental theorem of algebra.

Not to be omitted from his scientific output are D’Alembert’s articles for theEncy-
clopédie, which not only played a popularizing role but sometimes contained new research
or clarified that of others.

Finally, in the period extending from the mid 1750s to his death, despite having fallen
out with the academies of Berlin and Paris, he nevertheless drafted at least 5000 pages
of mathematics, mainly in the form of ‘Notes’. In these he returned to a number of earlier
subjects, but often adding remarkable ideas that posterity has underestimated up to now. We
note in conclusion that scientific ideas are scattered about in various philosophical writings
and in his correspondence, especially in the 170 or so letters exchanged with J.L. Lagrange
(1736–1813) between 1759 and 1783.

We thus have a legacy that is abundant and also diversified: differential and integral cal-
culus, mechanics, hydrodynamics, astronomy, optics, the shape of the Earth and probability
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theory. The name of D’Alembert survives in the mathematics of today: the ‘Dalembertian’
for the wave equation, D’Alembert’s principle in mechanics, D’Alembert’s paradox in hy-
drodynamics, and so on. We mention that, at least in France, the fundamental theorem of
algebra is generally referred to as ‘the D’Alembert–Gauss theorem’. Likewise, the rule
for the convergence of numerical series, whereby the ratioun+1/un of two consecutive
terms is bounded by a number less than unity, is known to students as ‘D’Alembert’s ratio
test’.

However, D’Alembert’s writings have some puzzling characteristics. He often follows
his thoughts and constantly criticizes his contemporaries; his writings are poorly structured
and not pedagogical, much less polished than those of Leonard Euler (1707–1783) for
example; he has his own way of getting to the bottom of things whose profundity can
usually be grasped only at a second reading. He has often been judged severely by history,
although this tendency has been reversed over the last two decades.

3 CONTENTS OF THETRAITÉ DE DYNAMIQUE

We first describe the first edition, then the differences introduced in the second. Their
contents are summarized in Table 1.

The book was published in 1743 by David, the great bookselling and printing house, in
the classical binding approved and favoured by the King. It was presented to theAcadémie
des Sciences on 22 June and given a favourable review by the commissioners P.L. Mauper-
tuis and F. Nicole. It includes a letter to Count de Maurepas, a 26-page preface summariz-
ing and commenting on the main general ideas, and finally the body of the text with all its
trimmings (table of contents, plates, corrections, extract from the records of theAcadémie
des Sciences, royal favour).

Contrary the author’s current custom, the book is clearly structured. Following the
definitions and preliminary notions (pp. 1–2), the first Part is entitled ‘General laws
of motion and equilibrium of bodies’ (pp. 3–48). It consists of three chapters, each of
which is subdivided into articles numbered continuously. These chapters represent the
three great principles on which dynamics is based: I. ‘On the force of inertia’ (arts. 2–
20); II. ‘On composite motion’ (arts. 21–26); III. ‘On motion destroyed or changed by
obstacles’ (arts. 27–49). This last chapter contains, in particular, the theory of equilib-
rium.

The second Part, which is much larger (pp.49–186), is entitled ‘A general principle for
finding the motion of many bodies that act on each other in an arbitrary way, with many
applications of this principle’. It consists of four chapters of disparate length and status:
I. ‘Exposition of the principle’ (art. 50); II.‘Properties of the centre of gravity of many
bodies combined, deduced from the preceding principle’ (arts. 51–72); III. ‘Problems il-
lustrating the application of the preceding principle’ (arts. 73–153); IV. ‘On the principle of
conservation of live forces’ (arts. 154–175). What is today called ‘D’Alembert’s principle’
constitutes the single article of Chapter I. The rest of the second Part consists of what the
author calls ‘applications’.

While the book is structured in a straightforward way in terms of definitions, lemmas,
theorems, laws, corollaries, remarks and problems, it is nevertheless rather difficult to read,
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Table 1. Comparison of the editions of 1743 and 1758 of D’Alembert’s book.

Part of the edition 1743: articles/pages 1758: articles/pages

Title page ‘D’Alembert membre de
l’Académie des sciences.
Chez David, l’aîné’

‘D’Alembert membre de
nombreuses académies.
Chez David’

Dedication To the Count Maurepas To the Count d’Argenson

Permissions, privileges Académie des Sciences, 22
June 1743

Académie des Sciences, 26
April 1758

Warning None Differences between the edi-
tions

Preliminary material ‘Preface’, p. j Augmented ‘Preliminary dis-
course’, pp. j–xxxv

Part 1.‘General laws’.

Ch. I. ‘Inertia’. 2–20/3–22 2–27/3–34

Ch. II. ‘Compound motion’.21–26/22–31 28–33/35–44

Ch. III. ‘Destroyed motion’.27–49/31–48 34–59/44–71
Part 2.Bodies which act upon each other.

Ch. I. Principle’ of D’Alem-
bert.

50/49–52 60–61/72–75

Ch. II. ‘Centre of gravity’. 51–72/52–69 62–86/75–96

Ch. III. ‘Applications’.

Sec. I. ‘Bodies that push by
threads or by rods’.

73–114/69–122 87–144/96–186

Sec. II. ‘Bodies that
oscillate’.

115–120/122–129 145–150/186–200

Sec. III. ‘Bodies that move
freely on rods’.

121–124/129–138 151–155/200–211

Sec. IV. ‘Bodies that push or
collide’.

125–153/138–169 156–185/211–252

Ch. IV. ‘Conservation of live
forces’.

154–175/169–186 186–207/252–272

Further material. A lunar table.

Plates; errata. I–IV; yes I–V; no

for both contemporary and modern readers. This is due to the style of the author, the form
of the figures, the notation (where the same letter often denotes different things), the rela-
tionship between the text and the diagrams, the use of differential notation, and a personal
conception of vocabulary (words such as ‘force’ and ‘power’ do not have the same mean-
ings as today, and even seem to designate physical concepts that we regard as different).
Finally, it must be said that D’Alembert makes little attempt at pedagogy.
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‘D’Alembert’s principle’ (Chapter I of Part II) plays a pivotal role in the book: Part I
paves the way for it and Chapters II–IV of Part II consist of applications [Fraser, 1985].
Moreover, it is this principle that posterityhas universally accepted as one of D’Alembert’s
main contributions to science. To explain it, we begin by quoting the first sentence of the
chapter:

Bodies act as one another in only three different ways that are known to us: by
immediate impulse, as in the case of an ordinary impact; by the interposition
between them of some body to which they are attached; by virtue of mutual
attraction, as in the Newtonian system of the Sun and the Planets.

Estimating that the effects of the last type of action have been sufficiently well ex-
amined, the author restricts his attention to the first two. The ‘General problem’ and the
solution that follow in Chapter I constitute the famous principle. This technical passage is
not so easy to read, but the basic idea is explained, admittedly without too much emphasis,
in the preface, as follows:

Just as the motion of a body which changes direction can be regarded as com-
posed of the motion it had originally and a new motion that it has acquired, so
the motion that the body had originally can be regarded as composed of a new
motion that it has acquired, and another that it has lost. It follows from this that
the laws of a motion changed by obstacles depend only on the laws of the mo-
tion destroyed by these obstacles. For it is obviously sufficient to decompose
the motion of the body before meeting an obstacle into two other motions, one
of which is unaffected by the obstacle while the other is annihilated.

In modern notations, let the vectorn denote the new motion,a the old motion,r the ac-
quired motion, andp or−r the motion lost. Then the above quotation reduces to the state-
ment thatn= a + r, or a = n+ p, where the obstacle does not affectn and annihilatesp.

D’Alembert deduces from it that the determination of all motions reduces to applying
the principle of equilibrium and that of composite motion. That is why it is often said
that D’Alembert’s principle reduces dynamics to statics. The simplest example is that of a
body without elasticity obliquely striking a fixed impenetrable wall: the only component of
motion preserved after the impact is that parallel to the wall, the component perpendicular
to the wall being destroyed (Part I, Chapter III). A typical theorem from Chapter II is as
follows: ‘The state of motion or rest of the centre of gravity of many bodies does not change
under the mutual action of these bodies provided that the system is entirely free, that is, it
is not subject to motion around a fixed point’.

Chapter III, which is by far the longest and takes up more than half of the book, contains
a detailed treatment of 14 problems, divided into Sections as follows: I. ‘Bodies pulled
by wires or rods’ (Problems I–VI); II. ‘Bodies moving in the plane’ (Problem VII); III.
‘Bodies acting on one another via wires along which they can run freely’ (Problem VIII);
IV. ‘Bodies which move or collide’ (Problems IX–XIV). These problems are treated at
unequal length, some being more famous than others. For example, Problem V (arts. 98–
112 in the first edition), on the period of oscillation of a composite pendulum, formed a
part of the immediate prehistory of the problem of the vibrating string.
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In Chapter IV, the author emphasizes the fact that, contrary to the Bernoullis, he does
not assume the conservation of live forces, but that it can be deduced from his principle and
methods. He states that he gives, ‘if not a general proof for all cases, at least a sufficient
number of principles for finding the proof in eachparticular case’. He sketches these proofs
for bodies on wires or rods in the case of elastic impacts, and for fluids.

4 ON THE SECOND EDITION

Let us turn to the differences between the first and second editions. They are easily identi-
fied as D’Alembert lists them in the foreword of the 1758 edition.

Beginning with the context, this time the letter is addressed to the Count d’Argenson,
not to Maurepas. The work was again presented to theAcadémie des Sciences; the report
by Etienne Bézout (1730–1783) and E. Montigny is dated 26 April 1758.

The preface was renamed ‘Preliminary discourse’. It is little changed, but the follow-
ing words are added: ‘some reflections on the question of live forces and an examination
of another important question posed by the Royal Academy of Sciences of Prussia as to
whether the laws of Statics and Mechanics are indeed necessary or contingent?’.

D’Alembert lists on one page the various places where the text has been improved,
simplified or enriched, as in the case of the impact of resilient bodies, for example. He then
draws attention to the 61 notes made by Bézoutat his request ‘to make the work accessible
to a greater number of readers than the first edition’, which is a polite way of saying that
most people had let him know that they had not understood very much!

Finally, it is interesting to note that in 1758, D’Alembert was already planning the fur-
ther development of points of difficulty in the treatise. These writings, already in draft
form, would constitute the first five memoirs in volume I of hisOpuscules mathématiques,
published in 1761, as follows: the motion of a body turning around a moving axis (Mem-
oir 2); additions to the essay on the resistance of fluids (Memoir 4); a theory of oscillation
of floating bodies (Memoir 3); replies to Daniel Bernoulli (1700–1782) and Euler on vi-
brating strings (Memoir 1); and another proof of the principle of composition of forces
(Memoir 5). The nine volumes ofOpuscules (1761–1783) contain many other memoirs
connected with the treatise, as we shall see below.

An unexpected curiosity is the addition of a lunar table, apparently without any relation-
ship to the subject. This has to do with a custom that was prevalent in the 18th century, due
to delays in publication, the price of books and publishing difficulties: when the author of
a treatise had drafted a research memoir on another subject without having arranged for its
publication, he would often insert it as an appendix in the earlier treatise in the course of
printing. This table was suppressed in the1796 edition, and again in the 1990 reprinting.

As D’Alembert points out in the first line of the foreword, ‘this second edition is aug-
mented by more than a third’. One must, however, avoid an error of misinterpretation: this
refers essentially to the same work and not a complete rewrite.

5 THE PLACE OF THETREATISE IN THE WORK OF THE AUTHOR

This question is more difficult than one might think. D’Alembert’s work had numerous
facets, and their unity can be interpolated in different ways. It has recently been shown, for
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example, that the relationship between pure mathematics and the physical sciences in his
work was a very subtle one [Firode, 2001].

TheTraité de dynamique nevertheless permeates a large part of his work, quite explicitly
so in the case of theTraité des fluides, which was published in the following year (1744)
as a continuation of the earlier work. It is also true that the majority of his work on the
physical sciences make use of D’Alembert’s principle, as do theRecherches sur la cause
des vents of 1747 of those on thePrécession des equinoxes two years later, or theEssai
sur la résistance des fluides of 1752. It may be said that, even if these treatises are bursting
with other interesting discoveries, they are also ‘applications’ of the treatise.

At another level, the preface and the basic concepts, which form the essence of the book
and are bereft of the more tedious formulae, pervade the author’s ‘popular’ writings. Some
quite long passages can be found ‘pasted into’ his articles in theEncyclopédie and in the
Mélanges d’histoire, de literature et de philosophie (1753 and later).

There is another aspect, largely ignored by historians of science, and that is that
D’Alembert spent part of the 40 years betweenthe publication of the treatise and his death
in commentating on, improving and somewhat extending every aspect of it, in (parts of)
the memoirs in theOpuscules mathématiques (which include an unpublished ninth volume
whose publication was prevented by his death). Thus memoirs 2, 21 and 22 of volumes I
(1761) and IV (1768) extend the remarkable theory of the motion of arbitrary rotating bod-
ies (possibly without a fixed point) already developed in the researches on the precession
of equinoxes. Also seven or eight circulated memoirs contain explanations, modifications,
variants and alternative proofs of the three great fundamental principles: inertia, compo-
sition of motions and equilibrium. There is also further discussion of the ‘problems’ in
the second part of Chapter III, such as those involving elasticity, impacts and impulses.
Finally, in the numerous memoirs on fluids, in particular 4 (volume I) and above all art. IV
of 51 (volume VI, 1773) and 57 (volume VIII, 1780), one can find new proofs prompted
by questions of J.-C. Borda on the conservation of live forces, a problem already addressed
at the end of the first edition of the treatise (Chapter IV of Part 2).

To appreciate D’Alembert’s thinking on the foundations and methods of mechanics, it is
therefore necessary to take into account all of his work, not just the treatise. But there is no
need to be carried away by an excess of erudition: in the main, these later memoirs confirm
the thinking of the author, reinforcing it and modifying minor aspects, but the great ideas
are already in the first edition of the treatise (1743).

6 POSTERITY OF THETREATISE

When examining the impact of the treatise on both contemporaries and the centuries that
followed, one needs to exercise a certain caution. The book did not by any means pass
unnoticed: its appearance was an event, a fact to which the registers of theAcadémie des
Sciences, the journals and correspondence bear abundant witness. But who actually read
and understood it at the time?

We must not impose our preoccupation with the history of science on the scholars of
the 18th century. Daniel Bernoulli, Euler, Alexis Clairaut (1713–1765) and Lagrange were
much too creative geniuses to have the patience to plough through a book like this treatise,
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at least two thirds of which consists of rather tedious applications that are not structured in
a pedagogical way. It is clear that they read the preface, the essentials of the first part and
the beginning of the second, where the famous principle appears. As to the rest, we shall
never know: probably ratherlittle, and in any case not continuously. Such scholars as those
always read a book with their own projects in mind and rarely put themselves in the place
of their colleague: they content themselves with snapping up those ideas that might prove
to be useful in their own work. Nevertheless, they all grasped the importance, the essential
message, of the book: in particular, theMéchanique analitique (1788) of Lagrange is per-
vaded by these ideas, and that scholar was full of praise for the way in which D’Alembert
had applied his principles to explain the precession of the equinoxes.

Among D’Alembert’s contemporaries, there was one who read theTreatise from begin-
ning to end, studying it with pencil in hand:that was Bézout, and all because D’Alembert
had asked him to annotate the second edition (1758) to make it more accessible to a wider
readership. A careful examination of Bézout’s 61 notes certainly confirms that he had read
and understood theTreatise in depth. Were there any other scholars in the second half of
the Enlightenment who could say the same? One must seriously doubt it: the difficulty
of the book, the time at their disposal and the disparity of their specializations reduce the
number of candidates, although it may be that Bossut, a close follower of D’Alembert and
the author of textbooks on mechanics for gifted students, looked through theTreatise with
some seriousness.

There is no doubt that the book has had a considerable impact on mathematics and
theoretical mechanics, at least in the long term. But this has nearly always been indirect,
as 19th-century authors looked on D’Alembert’s book merely as a stepping stone to La-
grange’sMéchanique analitique. While these scholars, from W.R. Hamilton to Ernst Mach,
had certainly glanced at the original, it is often very difficult to distinguish between direct
and indirect knowledge in their writings. It must be remembered that, from the viewpoint of
the 19th century, a large part of the book is difficult to understand because of the notation,
the rather archaic style, and the idiosyncrasy of D’Alembert’s exposition.

There are to our knowledge two annotated editions, both of which have been translated.
The first was by Arthur Korn (1870–1945); becauseof his original ideas on the causes of
gravitation and the pre-eminence of the communication of motion in mechanics, as well as
the debates among German scholars at the turn of the century, Korn had personal reasons
for his interest in D’Alembert. An examination of his annotations shows that Korn had
understood theTreatise ‘in his way’, strongly marked by the 19th century; and the result
is very different from that which would be required of a modern critical and impersonal
edition. The other annotated translation appeared in the USSR in 1950.

Of course, theTreatise has also attracted the attention of historians of science. Impor-
tant aspects have been studied by R. Dugas, C. Truesdell, T. Hankins, C. Fraser, M. Paty,
A. Firode and V. Le Ru among others, and one can say that the net result of these researches
provides us with a less biased view of the booktoday. The edition of the complete works
now being prepared will offer to a wider readership not only a simultaneous view of both
editions (1743 and 1758), the preliminary drafts and a record of the immediate reception
of the book, but also the benefit of the explanations needed to decipher its more difficult
Sections.
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CHAPTER 12

LEONHARD EULER, BOOK ON THE
CALCULUS OF VARIATIONS (1744)

Craig G. Fraser

In this book Euler extended known methods of the calculus of variations to form and
solve differential equations for the general problem of optimizing single-integral varia-
tional quantities. He also showed how these equations could be used to represent the posi-
tions of equilibrium of elastic and flexible lines, and formulated the first rigorous dynamical
variational principle.

First publication. Methodus inveniendi lineas curvas maximi minimive proprietate gau-
dentes, sive solutio problematis isoperimetrici latissimo sensu accepti, Lausanne and
Geneva: Bousquet, 1744. 320 pages.

Later edition. As Euler,Opera omnia, series 1, vol. 24 (ed. Constantin Carathéodory),
Zurich: Orell Fussli, 1952.

Partial German translations. 1) Chs. 1, 2, 5 and 6 inAbhandlungen über Variationsrech-
nung (ed. Paul Stäckel), Leipzig: Engelsmann, 1894 (Ostwald’s Klassiker der exakten
Wissenschaften, no. 46). 2) App. 1 inAbhandlungen über das Gleichgewicht . . . (ed.
H. Linsenbarth), Leipzig: Engelsmann, 1910 (Ostwald’s Klassiker, no. 175).

Related articles: Newton (§5), Leibniz, Euler and Lagrange on the calculus (§4, §14, §19).

1 INTRODUCTION

Euler’sMethodus inveniendi was the first of a series of books that he wrote on calculus in
the 1740s and the years that followed; notable later works were theIntroductio of 1748 on
infinite series and theInstitutiones of 1755 and 1768–1774 on the differential and integral
calculus (§13, §14). Although theMethodus inveniendi was published in 1744, it was com-
pleted by 1741, and was written when Euler was a young man in his late twenties and early
thirties at the Academy of Sciences in Saint Petersburg. Born in 1707 to a pastor in Basel in

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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Switzerland, he had quickly showed his mathematical abilities, especially under the tute-
lage of Johann Bernoulli (1667–1748). His career fell into three parts, all served under
some kind of monarchical support. The first and third parts were passed at the (new) Acad-
emy in Saint Petersburg: from 1727 to 1741 (when he wrote theMethodus inveniendi), and
from 1766 to his death in 1783. In between he worked at the Academy in Berlin, where he
wrote the other two writings that feature in this book. Apart from this trio, he was extra-
ordinarily prolific, contributing importantly to virtually all areas of mathematics of his day
[Thiele, 1982].

TheMethodus inveniendi is of two-fold interest for historians of mathematics. First, it
was a highly successful synthesis of what was then known about problems of optimization
in the calculus, and presented general equational forms that became standard in the cal-
culus of variations. Euler’s method was taken up by Joseph Louis Lagrange (1736–1813)
20 years later and brilliantly adapted to produce a novel technique for solvingvariational
problems (§16). The two appendices to Euler’s book applied variational ideas to problems
in statics and dynamics, and these too became the basis for Lagrange’s later researches.
Second, in Euler’s book some of his distinctive contributions to analysis appear for the first
time or very nearly the first time: the function concept, the definition of higher-order deriv-
atives as differential coefficients; and the recognition that the calculus is fundamentally
about abstract relations between variable quantities, and only secondarily about geomet-
rical curves. TheMethodus inveniendi is an important statement of Euler’s mathematical
philosophy as it had matured in the formative years of the 1730s.

2 ORIGINS AND BASIC RESULTS

The early Leibnizian calculus consisted of a sort of geometrical analysis in which differen-
tial algebra was employed in the study of ‘fine’ geometry (§4.2). The curve was analysed
in the infinitesimal neighbourhood of a point and related by means of an equation to its
overall shape and behaviour. An important curve that was the solution of several varia-
tional problems was the cycloid, the path tracedby a point on the perimeter of a circle as it
rolls without slipping on a straight line. This curve appeared on the frontispiece of Euler’s
Methodus inveniendi (Figure 1) and was a kind of icon of the early calculus. The cycloid
possessed a simple description in terms of the infinitesimal calculus. Let the generating
circle of radiusr roll along thex-axis and let the vertical distance be measured downward
from the origin along they-axis (Figure 2). An elementarygeometrical argument revealed
that the equation of the cycloid is

(
ds

dy

)2

= 2r

y
, (1)

whereds =√(dx2+ dy2) is the differential element of path length.
The cycloid was most notably the solution to the brachistochrone problem. Consider a

curve joining two points in a vertical plane and consider a particle constrained to descend
along this curve. It is necessary to find the curve for which the time of descent is a mini-
mum. Let us take the origin as the first point and let the coordinates of the second bex = a
andy = b. We assume the particle begins from rest. By Galileo’s law the speed of a particle
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Figure 1.

in constrained fall when it has fallen a distancey is
√
(2gy), whereg is an accelerative

constant. We have the relations

ds

dt
=√

2gy or dt = 1√
2gy

ds =
√

1+ y ′2dx√
2gy

. (2)
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Figure 2.

Hence the total time of descent is given by the integral

T = 1√
2g

∫ a

0

√
1+ y ′2√
y

dx. (3)

The problem of the brachistochrone is to find the particular curvey = y(x) that minimizes
this integral.

Following Johann Bernoulli’s public challenge in 1696 solutions to this problem were
devised by his elder brother Jakob, by Johann himself and by Isaac Newton and G.W.
Leibniz. They all showed that the condition that the time of descent is a minimum leads to
(1) and, with the exception of Leibniz, concluded that the given curve is a cycloid. Johann’s
solution was based on an optical–mechanical analogy that is well-known today from its
description by Ernst Mach in hisDie Mechanik in ihrer Entwicklung historisch-kritisch
dargestellt (1883). Although of interest, his solution did not provide a suitable basis for
further work in the subject.

Jakob Bernoulli’s solution on the other hand was illustrative of the ideas that would
develop into the calculus of variations. He considered any three pointsC,G andD on the
hypothetical minimizing curve, where the points are assumed to be infinitesimally close to
each other. He constructed a second neighbouring curve identical to the first except that
the arcCGD was replaced byCLD (Figure 3). Because the curve minimizes the time of
descent it is clear that the time to traverseCGD is equal to time to traverseCLD. Using
this condition and the dynamical relationds/dt ∝√y Bernoulli was able to derive (1).

Jakob Bernoulli also investigated problems in which the minimizing or maximizing
curve satisfied an auxiliary integral condition. The classical isoperimetric problem was
the prototype for this class of examples. His idea was to vary the curve at two successive
ordinates, thereby obtaining an additional degree of freedom, and use the side constraint to
derive a differential equation. Although Jakob died in 1705, some of his ideas were taken
up by Brook Taylor in hisMethodus incrementorum of 1715. Taylor skillfully developed
and refined Jakob’s conception, introducing some important analytical innovations of his
own. Stimulated by Taylor’s research, and concerned to establish his brother’s priority,
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Figure 3.

Johann, then thirty-eight, also adopted Jakob’s methods and developed them along more
geometric lines in a paper that was published in 1719.

In two memoirs published in the St. Petersburg Academy of Sciences in 1738 and 1741,
Euler extracted from the various solutions of Jakob and Johann Bernoulli, as well as the
researches of Taylor, a general approach to single-integral variational problems. These
investigations were further developed and became the subject of theMethodus inveniendi,
of which the contents is summarised in Table 1. Its title may be translated ‘The method of
finding plane curves that show some property of maximum or minimum, or the solution of
isoperimetric problems in the widest accepted sense’.

Euler realized that the different integrals in the earlier problems were all instances of
the single form ∫ b

a

Z
(
x, y, y ′, . . . , y(n)

)
dx, (4)

whereZ is a function ofx, y and the firstn derivatives ofy with respect tox. He de-
rived a differential equation, known today as the Euler or Euler–Lagrange equation, as a
fundamental condition that must be satisfied by a solution of the variational problem.

Table 1. Contents by Chapters of Euler’s book.

Part Page Content
Ch. 1 1 ‘Method of maximum and minimum’ in general.

Ch. 2 32 Differential equations for the optimizing curve.

Ch. 3 83 Side conditions in the form of differential equations.

Ch. 4 130 Resolution of various problems.

Chs. 5–6 171 Isoperimetric problems.

App. 1 245 Elastic curves.

App. 2 311 Principle of least action. [End 320.]
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Figure 4.

In Chapter 2 Euler developed his derivation of this equation (for the casen = 1) with
reference to Figure 4, in which the lineanz is the hypothetical extremizing curve. The let-
tersM, N , O designate three points of thex-axisAZ infinitely close together. The letters
m, n, o designate corresponding points on the curve given by the ordinatesMm, Nn, Oo.
Let AM = x, AN = x ′, AO= x ′′ andMm = y, Nn = y ′, Oo = y ′. The differential coef-
ficient p is defined by the relationdy = p dx; hencep = dy/dx. We have the following
relations

p = y
′ − y
dx

, p′ = y
′′ − y ′
dx

. (5)

The integral
∫ b
a Z dx was regarded by Euler as an infinite sum of the form· · · + Z,

dx + Z dx + Z′ dx + · · ·, whereZ, is the value ofZ at x − dx, Z its value atx and
Z′ its value atx + dx, and where the summation begins atx = a and ends atx = b. It is
important to note that Euler did not employ limiting processes or finite approximations. Let
us increase the ordinatey ′ by the infinitesimal ‘particle’nv, obtaining in this way a com-
parison curveamvoz. Consider the value of

∫ b
a Z dx along this curve. By hypothesis the

difference between this value and the value of
∫ b
a Z dx along the actual curve will be zero.

The only part of the integralthat is affected by varyingy ′ is Zdx +Z′ dx = (Z+Z′) dx.
Euler wrote:

dZ =M dx +N dy + P dp, dZ′ =M ′ dx +N ′ dy ′ + P ′ dp′. (6)

He proceeded to interpret the differentials in (6) as the infinitesimal changes inZ, Z′, x,
y, y ′, p, p′ that result wheny ′ is increased bynv. From (5) we see thatdp anddp′ equal
nv/dx and−nv/dx. (These changes were presented by Euler in the form of a table, with
the variables in the left column and their corresponding increments in the right column.)
Hence (6) becomes

dZ = P · nv
dx
, dZ′ =N ′ · nv − P ′ · nv

dx
. (7)
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Thus the total change in
∫ b
a Z dx equals(dZ + dZ′) dx or nv · (P + N ′ dx − P ′). This

expression must be equated to zero. Euler setP ′ − P = dP and replacedN ′ by N . He
therefore obtained 0=N dx − dP or

N − dP
dx

= 0, (8)

as the final equation of the problem.
Equation (8) is the simplest instance of the Euler differential equation, giving a con-

dition that must be satisfied by the minimizing or maximizing arc. Noting thatN andP
are the partial derivatives ofZ with respect toy andy ′ respectively, we may write (8) in
modern notation as

∂Z

∂y
− d

dx

∂Z

∂y ′
= 0. (9)

He also derived the corresponding equation when higher-order derivatives ofy with respect
to x appear in the variational integral. This derivation was a major theoretical achievement,
representing the synthesis in one equational form of the many special cases and examples
that had appeared in the work of earlier researchers.

3 FOUNDATIONS OF ANALYSIS

Near the beginning of his book Euler noted that a purely analytical interpretation of the
theory is possible. Instead of seeking the curve which makesW an extremum one seeks
that ‘equation’ betweenx andy which among all such equations when introduced into (1)
makes the quantityW a maximum or minimum (p. 13). He wrote:

Corollary 8. In this way questions in the doctrine of curved lines may be re-
ferred back to pure analysis. Conversely, if questions of this type in pure analy-
sis be proposed, they may be referred to and solved by means of the doctrine
of curved lines.
Scholium 2. Although questions of this kind may be reduced to pure analysis,
nevertheless it is useful to consider them as part of the doctrine of curved lines.
For though indeed we may abstract from curved lines and consider absolute
quantities alone, so these questions at once become abstruse and inelegant and
appear to us less useful and worthwhile. For indeed methods of resolving these
sorts of questions, if they are formulated in terms of abstract quantities alone,
are very abstruse and troublesome, just as they become wonderfully practical
and become simple to the understanding by the inspection of figures and the
linear representation of quantities. So although questions of this kind may be
referred to either abstract or concrete quantities it is most convenient to formu-
late and solve them by means of curved lines. Thus if a formula composed of
x andy is given, and that equation betweenx andy is sought such that, the
expression fory in terms ofx given by the equation being substituted, there
is a maximum or minimum; then we can always transform this question to the
determination of the curved line, whose abscissa isx and ordinate isy, for
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which the formulaW is a maximum or minimum, if the abscissax is assumed
to have a given magnitude.

Euler’s view seems to have been that while it is possible in principle to approach the
calculus of variations purely analytically it ismore effective in practice to refer problems
to the study of curves. This conclusion could hardly have seemed surprising. Each of the
various examples and problems which historically made up the subject had as its explicit
goal the determination of a curve; the selection of such objects was part of the defining
character of this part of mathematics. What is perhaps noteworthy about Euler’s discussion
is that he should have considered the possibility at all of a purely analytical treatment.

The basic variational problem of maximizing or minimizing (4) involves the selection
of a curve from among a class of curves. In the derivation of (8) the variablesx andy
are regarded as the orthogonal Cartesian coordinates of a curve. Each of the steps in this
derivation involves reference to the geometrical diagram in Figure 4 above. In Chapter 4,
however, Euler returned to the point of view that he had indicated at the beginning of
the treatise. In the opening proposition the variational problem isformulated as one of
determining that ‘equation’ connecting two variablesx andy for which a magnitude of the
form (4) (given for the general case where higher-order derivatives and auxiliary quantities
are contained inZ) is a maximum or minimum. In his solution he noted that such variables
can always be regarded as orthogonal coordinates and so determine a curve. The solution
then follows from the theory developed in thepreceding chapters. In the first corollary he
wrote:

Thus the method presented earlier may be applied widely to the determina-
tion of equations between the coordinates of a curve which makes any given
expression

∫
Zdx a maximum or a minimum. Indeed it may be extended to

any two variables, whether they involve an arbitrary curve, or are considered
purely in analytical abstraction.

Euler illustrated this claim by solving several examples using variables other than the
usual rectangular Cartesian coordinates. In the first example he employed polar coordinates
to find the curve of shortest length between two points (Figure 5). We are given the points
A andM and a centreC; it is necessary to find the shortest curveAM joiningA andM. Let
x be the pole angleACM andy the radiusCM. Because the differential element of path-
length is equal to

√
(dy2+ y2dx2) the formula for the total path-length is

∫
dx
√
(yy +

pp), wherepdx = dy and the integral is taken fromx = 0 to x = � ACM. Herex does
not appear in the integrandZ of the variational integral, so thatdZ = N dy + P dp. The
equation (8) givesN = dP/dx so that we havedZ = dP p + P dp and a first integral is
Z+C = Pp, whereC is a constant. SinceZ =√(yy + pp) we have

C +√
(yy + pp)= pp√

(yy + pp), i.e.,
yy√

(yy + pp) = Const.= b. (10)

Let PM be the tangent to the curve atM andCP the perpendicular fromC to this tangent.
By comparing similar triangles in Figure 5 we see thatMm :Mn=MC : CP. SinceMm=
dx/

√
y2+ p2,Mn= y dx andMC = y it follows thatCP= y2/

√
y2+ p2. HenceCP is

a constant. Euler concluded from this property that the given curveAM is a straight line.
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Figure 5.

In the second example Euler displayed a further level of abstraction in his choice of
variables. Here we are given the axisAC with the pointsA andP , the perpendicular line
PM and a curveABM joiningA andM (Figure 6). Given that the areaABMP is some given
constant value we must find that curveABM which is of the shortest length. Euler set the

Figure 6.
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abscissaAP= t , the ordinatePM = y and letx equal the area under the curve fromA toP .
We havedx = y dt and the variational integral becomes

∫ √
(dy2+ dx2/yy) dx. Because

x does not appear in the integrand we obtain as before the first integralZ = C + pP .
Substituting the expressions forZ andP into this integral we obtain

√
(1+ yypp)
y

= C + ypp√
(1+ yypp). (11)

Letting dx = y dt , we obtain after some further reductions the final equationt = c ±√
(bb− yy). Hence the desired curve is the arc of a circle with its centre on the axisAP at

the footP of the ordinate corresponding toM.
A range of non-Cartesian coordinate systems had been employed in earlier mathematics

but never with the same theoretical import as in Euler’s variational analysis. Here one had a
fully developed mathematical process, centred on the consideration of a given analytically-
expressed magnitude, in which a general equational form was seen to be valid independent
of the geometric interpretation given to the variables of the problem. Thus it is not at all es-
sential in the reasoning employed in the derivation of (9) that the lineAZ be perpendicular
to Mm (Figure 4); indeed it is clear that the variablex need not be a length nor even a co-
ordinate variable in the usual sense. As Euler observed in the first corollary, the variables
of the problem are abstract quantities, and Figure 4 is simply a convenient geometrical
visualization of an underlying analytical process.

Euler and later 18th-century analysts broke with the geometrical tradition, but they did
not thereby adopt the point of view of modern real analysis. Euler’s understanding was
very different from our outlook today, in which the expressionZ that is to be optimized
is any quantity whatsoever formulated in terms of the functiony = y(x) and its deriva-
tives. For Euler, the quantities and relations of analysis are always ‘given’: they arise from
definite problems in geometry,mechanics or some other areaof mathematical science. He
developed an abstract interpretation of the variational formalism—the fundamental objects
of study were relations between variables ‘given in analytical abstraction’—but his point of
view was structured as well by tacit assumptions concerning the logical status of the prob-
lems of the subject as things that were given from without. The notion that at the outset
one could consider any expressionZ defined according to logically prior and autonomous
criteria was quite beyond Euler’s conceptual horizons and was foreign to the outlook of
18th-century analysis.

4 LATER DEVELOPMENTS: LAGRANGE, EULER
AND THE CALCULUS OF VARIATIONS

In his book Euler had noted the somewhat complicated character of his variational process
and called for the development of a simpler method or algorithm to obtain the variational
equations. Lagrange’s first important contribution to mathematics, carried out when he
was 19 years old, consisted of his invention of theδ-algorithm to solve the problems of
Euler’sMethodus inveniendi. He announced his new method in a letter of 1755 to Euler,
and published it as [Lagrange, 1762] in the Proceedings of the Turin Society. His algorithm
permitted the systematic derivation of the variational equations and facilitated the treatment
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of conditions at the endpoints. His innovation was immediately adopted by Euler, who
introduced the name ‘calculus of variations’ to describe the subject founded on the new
method. Lagrange’s new approach originatedin his (tacit) recognition that the symbold
was being used in two distinct ways in Euler’s derivation of (8). In (8) and the final step by
which it is obtained,d was used to denote the differential as it was customarily used and
understand in Continental analysis of the period. The differentialdx was held constant; the
differential of any other variable equalled the difference of its value atx and its value at an
abscissa a distancedx from x. By contrast, the differentialsdx, dy, etc. that appear in (6)
were interpreted by Euler as the changes inx, y, etc. that result when the single ordinate
y is increased by the ‘particle’nv. Thus the ‘differentials’dy ′ dp, dp′ equalnv, nv/dx,
−nv/dx; the ‘differentials’dx, dy, dp′′, etc. are zero.

The young Lagrange had the perspicacity to recognize this dual usage and invented the
symbol ‘δ’ to denote the second type of differential change. Using it he devised a new ana-
lytical process to investigate problems of maxima and minima. Although the purpose of his
method was to compare curves in the plane, it was nonetheless introduced in a very formal
manner. The symbolδ has properties analogous to the usuald of the differential calculus.
Thusδ(x+ y)= δx+ δy andδ(xy)= xδy+ yδx. In addition,d andδ are interchangeable
(dδ = δd) as ared and the integral operation

∫
.

The δ-process led to a new and very simple derivation of the Euler equation (8). It is
necessary to determiney = y(x) so that

δ

∫ b

a

Z dx = 0, (12)

whereZ = Z(x, y,p) andp = dy/dx. Applying theδ operation to the expressionZ we
obtain

δZ =Nδy + Pδp. (13)

Note that here all of the ordinates are simultaneously being varied, and not just one, as had
been the case in Euler’s analysis. Because theδ and

∫
are interchangeable we have

δ

∫ b

a

Z dx =
∫ b

a

δZ dx =
∫ b

a

(Nδy + Pδp)dx (14)

and alsoδp= δ(dy/dx)= d(δy)/dx. An integration by parts gives rise to the identity

∫ b

a

Pδp dx =
∫ b

a

P
d(δy)

dx
dx = Pδy|ba −

∫ b

a

dP

dx
δy dx. (15)

Hence the conditionδ
∫ b
a
Z dx = 0 becomes

Pδy|ba −
∫ b

a

(
N − dP

dx

)
δy dx = 0. (16)
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We suppose thatδy is zero at the end valuesx = a, b. (16) then reduces to

∫ b

a

(
N − dP

dx

)
δy dx = 0. (17)

From (17) we are able to infer the Euler equation

N − dP
dx

= 0. (18)

Euler took up Lagrange’s new method in his writings of the 1760s and 1770s. In a paper
published in 1772 he presented what would become the standard interpretation of theδ-
process as a means for comparing classes of curves or functions. We assume thaty is a
function ofx and a parametert , y = y(x, t), where the given curvey = y(x) is given by
the value ofy(x, t) at t = 0. We defineδy to be ∂y

∂t
|t=0dt . (It would be logically more

consistent to defineδy = ∂y
∂t
|t=0t , and require thatt be small. Euler apparently useddt

rather thant so as to indicate explicitly that the multiplicative factor is small.) One way of
doing this, Euler explained, is to sety(x, t)= X(x)+ tV (x), wherey(x)= X(x) is the
given curve andV (x) is a comparison or increment function; hence we haveδy = dt V (x).
In this conception the variation of a more complicated expression made up ofy(x, t) and
its derivatives with respect tox is obtained by taking the partial derivative with respect tot ,
settingt = 0 and introducing the multiplicative factordt . In later variational mathematics
the parameter ‘ε’ would often be used instead of ‘t ’.
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1 INTRODUCTION TO THEINTRODUCTIO

Euler’s book is one of the few books on mathematics that is mentioned by John Carter and
Percy H. Muir in theirPrinting and the mind of Man (1967). There Euler is compared with
Euclid: what Euclid did with hisElements for geometry, Euler did with hisIntroductio for
analysis. It was by means of this textbook that analysis became an independent discipline
within mathematics.

Euler’s biography was noted in §12.1; see also [Fellmann, 1983] and [Thiele, 2000].
During his first stay in Saint Petersburg, up to 1741, he had published many articles and
some books, such as theMechanica [Euler, 1736] andTentamen novae theoriae musicae
(1739). In 1741 he moved to Berlin, where he became professor of mathematics at the
Prussian Academy; the head was Friedrich II (1712–1786), who had reigned since 1740.
In the same year Pierre-Louis Moreau de Maupertuis (1698–1759) came to Berlin, where
he became President of the Academy in 1746. During the years 1744–1766 Euler was
appointed ‘Director of the Mathematical Class’.

The Introductio was not Euler’s first purely mathematical book, for in 1744 he had
published hisMethodus inveniendi lineas curvas, described in §12. Apparently that year
he also completed the new book, which was its successor. It was also the first part of an
‘analytical trilogy’ that was to appear in Saint Petersburg:Introductio, Institutiones calculi
differentialis (1755: §14) andInstitutiones calculi integralis (3 volumes, 1768–1770).

With his Introductio Euler wanted to present a textbook containing all the topics nec-
essary to know before beginning to study the infinitesimal calculus. It is divided into two
‘Books’. Its contents are summarised in Table 1; for a general survey see [Cantor, 1898,
chs. 111 and 115]. The title page is shown in Figure 1.

2 BOOK I, ON ANALYSIS

2.1 The significance of ‘function’. The first Book is explained on its own title page as
‘containing an explanation of functions of variable quantities; the resolution of functions
into factors and their development in infinite series; together with the theory of logarithms,
circular arcs, and their sines and tangents, also many other things which are no little aid
in the study of analysis’. While not the first textbook on analysis, Euler’sIntroductio was
the first to take the concept of function asits ground: ‘A function of a variable quantity
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Table 1. Contents by chapters of Euler’s book.
All titles are translated. Volume I has its own numeration of chapters, pages and articles; volume 2
has two sequences for chapters and articles, one for curves and surfaces respectively. The edition in

theOpera omnia indicates the original pagination, which is used here.

Chap. Page Art. Title
ii–xiii Dedication, preface.

I 3 1 On functions in general.

II 15 27 On the transformation of functions.

III 36 46 On the transformation of functions by substitution.

IV 46 59 On the expansion of functions in infinite series.

V 60 77 On functions of two or several variables.

VI 69 96 On exponential quantities and logarithms.

VII 85 114 On the expansion of exponential quantities and of logarithms in series.

VIII 93 126 On transcendental quantities arising from the circle.

IX 107 143 On the investigation of trinomial factors.

X 128 165 On the use of invented factors in defining the sums of infinite series.
[Infinite products.]

XI 145 184 On other infinite expressions for the arc and the sine.

XII 161 199 On the development of real functions of fractions. [Rational
functions.]

XIII 175 211 On recurrent series.

XIV 198 234 On the multiplication and division of angles.

XV 221 264 On series arising from the development of factors.

XVI 253 297 On the partition of numbers.

XVII 276 332 On the use of recurrent series in investigating the roots of equations.

XVIII 295 356 On continued fractions. [End 320, art. 382.]

I 3 1 On curved lines in general.

II 12 23 On the change of coordinates.

III 23 47 On the division of algebraic curves into orders.

IV 32 66 On the principal properties of lines of any order.

V 41 85 On lines of the second order.

VI 64 131 On the sub-division of lines of the second order in general.

VII 83 166 On the investigation of branches that extend to the infinite.

VIII 99 198 On asymptotic lines.

IX 114 219 On the sub-division of lines of the third order into types.

X 127 239 On the principal properties of lines of the third order.

XI 139 260 On lines of the fourth order.

XII 150 272 On the exploration of the shapes of curved lines.
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Table 1. (Continued)

XIII 156 285 On the characteristics of curved lines.

XIV 166 304 On the curvature of curved lines.

XV 181 337 On curves which have one or several diameters.

XVI 194 364 On the determination of curves from given properties of the ordinates.

XVII 212 391 On the determination of curves from other properties.

XVIII 236 435 On the similarity and affinities of curved lines.

XIX 247 457 On the intersection of curves.

XX 269 486 On the construction of equations.

XXI 284 506 On transcendental curved lines.

XXII 304 529 Solution of some problems pertaining to the circle. [End 320, art. 540.]

I 323 1 On the surfaces of bodies in general.

II 337 26 On the sections of surfaces made by whatever planes.

III 348 52 On the sections of cylinders, cones and globes.

IV 365 86 On the interchange of coordinates.

V 373 101 On surfaces of the second order.

VI 388 131 On the intersection of two surfaces.1 [End 398, art. 152.]

1On the contents page (vol. 1, xvi) this title is misstated as ‘On the mutual intersection of surfaces’.

is an analytical expression composed in any way whatsoever of the variable quantity and
numbers of constant quantities’ (art. 4). The roots of this definition of function can be
traced back to JohannBernoulli (1667–1748).

In art. 7 Euler divided the functions into algebraic and transcendental ones, and in art. 8
the algebraic functions into ‘rational’ and ‘irrational’ functions. (Sadly, the modern English
translator has named the first category ‘non-rational’.) Rational functions are ‘such that the
variable quantity is in no way involved with irrationality; the latter are those in which the
variable quantity is affected by radical signs’. Both kinds can be developed into infinite se-
ries. Euler even allowed generalized exponents, not only positive integers (art. 59). He then
tried to give a full treatment of functions, their transformation as well as their development
into infinite series. Some of the summations of divergent series would not now be regarded
as correct; but Euler saw himself as finding formal relationships between series and their
sum functions, without havingthe full grasp of summability theory as we now understand
it [Ferraro, 1998].

2.2 Exponentials and logarithms. The idea of logarithms came up at the beginning of
the 17th century with John Napier and Jost Bürgi. The main idea was to effect a comparison
between an arithmetical and a geometric series. So at first the facta0 = 1 was not put
forward, which meant that the relationship between basis, exponent and logarithm was not
emphasized.
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Figure 1.
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Euler was the first who held a clear viewof what was needed, in his Chapter 6 ‘On
exponentials and logarithms’ (arts. 96–113). In art 102 he introduced the term ‘basis’.
The exponentz being the variable anda a constant, the expressionaz = y means: ‘This
value ofz, insofar as it is viewed as a function ofy, is called the LOGARITHM ofy, to be
designated by the symbol ‘logy ’. Thus, according to his theory the logarithm depends upon
a constanta, which therefore is called the basis of logarithms. ‘Whatever logarithmic base
we choose, we always have log1= 0’ (art. 103). In the following pages Euler explained the
operations of multiplication, division and root extraction by means of logarithms. He also
mentioned that logarithms normally are transcendental: ‘it follows that the logarithm of a
number will not be a rational number unless the given number is a power of the basea.
Logarithms which are not the powers of the base are neither rational nor irrational, it is
with justice that they are called transcendental quantities’ (art. 105). The logarithms on the
basis of 10 are called the common logarithms; the whole number is the characteristic and
the decimal fraction the mantissa (art. 112).

2.3 The derivation of the number ‘e’ and its importance within logarithms. In the fol-
lowing Chapter 7, ‘Exponentials and logarithms expressed through series’, Euler went on
to show how logarithms could be expressed by infinite series. He was able to derive the
‘most natural and fruitful concept of logarithms’ by means of the series

e= 1+ 1/1+ 1/1 · 2+ 1/1 · 2 · 3+ · · · = 2 · 71828182845904523536028. . .. (1)

(He had already introduced the letter ‘e’ as the basis of natural logarithms in a paper of
1728, and used it especially in [Euler, 1744] on continued fractions.) He called logarithms
calculated on this basis ‘natural or hyperbolic’ (art. 122).

2.4 The trigonometric functions. Until Euler the trigonometric quantities were not
thought to be functions, but as lines in the circle; but he realised the potential of the func-
tional view. For him sine, cosine, and so on were at first transcendental quantities similar to
e but of a different kind; only secondarily were they to be interpreted in terms of arcs of a
circle. His main idea was that when imaginaryquantities were included these trigonometric
functions were dependent on logarithms and exponential quantities. To make calculations
easier, Euler initiated a standard circle, the radius of which was 1.

Euler began with the value ofπ—a symbol that he first used in [1736, art. 287], to
represent half the circumference of a circlewith the radius 1—which he calculated to 126
decimal places. Using the addition theorems

sin(y + z)= siny cosz+ cosy sinz (2)

and

cos(y + z)= cosy cosz− siny sinz, (3)

together with the equation

sin2 z+ cos2 z= 1, or (cosz+√−1 sinz)(cosz−√−1 sinz)= 1, (4)
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he derived after a long calculation several results concerningπ/4 andπ/6; they were not
new but he had deduced them in a new way. Later he also considered the more complicated
seriesπ2/8, π3/32, π4/96, 5π2/1536,π6/960, . . . . (art. 175). He also put forward the
equations

cosv = 1/2
(
ev
√−1+ e−v

√−1)
and sinv = 1/2

√−1
(
ev
√−1− e−v

√−1)
(5)

(art. 138); but, contrary to popular belief, neither here nor anywhere else did he state the
now famous result given byv = π , namely,eπ

√−1+1= 0. He was to introduce the symbol
‘ i ’ for

√−1 much later, in [Euler, 1794].

2.5 Recurrent series. This kind of series, first introduced by Abraham de Moivre
(1667–1754) (§7), plays a major role in theIntroductio. As Euler pointed out in arts. 62–
70, these series arise in rational functions by division: any term is determined by a certain
number of the preceding terms, on the basis of a certain fixed law. In Chapter 13 he tried to
express any recurrent series by means of simpler recurrent series, and he determined their
sums. In Chapter 17 he showed that recurrent series could be useful for the calculation of
the roots of an equation.

2.6 Continued fractions. Known to mathematicians before Euler, he had published on
them first in [Euler, 1744], where he had used the term ‘fractio continua’ for the first time.
There he had given them the following representation:

a + α

b+ β

c+ γ

d + δ

e+ · · ·

. (6)

For him they were a third kind of infinite expression, to join infinite series and infinite
products. He gave the following definition: ‘By acontinued fraction I mean a fraction of
such a kind that the denominator consists of the sum of an integer and a fraction whose
denominator again is the sum of an integer and a fraction of the same kind. This kind of
process can continue indefinitely or can stop at some point’ (art. 357). They consisted of
two kinds of quantities:a, b, c, . . . as ‘denominatores’ andα,β, γ, . . . as ‘numeratores’. He
also transformed especially infinite series into continuous fractions, for example (art. 369):

log2= 1− 1/2+ 1/3− 1/4+ 1/5− · · · (7)

= 1
1

1+ 1

1+ 4

1+ 9

1+ 16

1+ 25

1+ · · ·

. (8)
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Continued fractions have the advantage, that their sums can be approximated quite
quickly, and so form a much more convenient way than summing up the successive mem-
bers of an infinite series. They can also be used for the extraction of roots and for solving
quadratic equations (arts. 377–380). Furthermore, every fraction can be developed into a
continuous fraction. As an example Euler developed(e− 1)/2 into

e− 1

2
= 1

1+ 1

6+ 1

10+ 1

14+ 1

18+ 1

22+ · · ·

. (9)

The case ofπ yielded the fractions

1/0, 3/1, 22/7, 335/106, 355/113, 103,993/33,102, . . . , (10)

where the third is the approximation of Archimedes and the fifth the approximation of
Metius (art. 382).

3 BOOK II ON PLANE AND SURFACE GEOMETRY

The second Book is described as ‘containing the theory of curves and an appendix on
surfaces’. Though it is not as well known as the first Book, it still contained plenty of
ingenious ideas [Boyer, 1956, 179–191]. Euler treated mainly the analytical geometry of
the plane, that is, the theory of curves for about 200 pages; his surface theory was 85 pages.
He explained in great detail not only rectangular but also polar coordinates.

3.1 Classification of curves. At first, Euler tried to use the same arrangement for his
analytic geometry as he had used in his algebraic analysis: he introduced functions that
expressed the nature of the curves relating the ‘abscissa’x and the ‘applicata’y. As in
the case of functions, there were continuous curves and discontinuous curves. In geom-
etry especially continuous curves are of interest. Further, he distinguished algebraic and
transcendental curves; a transcendental curve is expressed by a transcendental equation
(art. 15).

In the case of algebraic equations the degree of the equation is the classifying principle
(art. 51). The general linear equation is the expression of a curve of the first order, while
the general equations of the second degree are the expressions of second-order lines; these
are the conic sections.

In the work following the classification of the curves was determined by means of the
asymptotes. In the case of higher orders of the curves the distinction of the different kinds
gets more and more complicated. Partly following Isaac Newton’s classification, Euler
treated 16 different species for third-order lines and distinguished between more than 100
different cases for fourth-order lines.
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Euler was also interested in analytical expressions of curvature, in special kinds of
symmetries of curves; he introduced polar coordinates, and treated similar and affine
curves.

3.2 Transcendental curves. Only in the last chapter of his theory of curves did Euler
treat curves that did not depend only upon algebraic functions but also upon so-called
transcendental curves: ‘Hence a transcendental line, which is what such a curve is called, is
defined to be one such that the relationship between the abscissa and the ordinate cannot be
expressed by an algebraic equation’ (art. 506). He mentioned logarithms and trigonometric
functions, but there were innumerable other expressions: ‘The number of transcendental
curves is much larger than the number of the algebraic curves’ (art. 507). But he was not
even shocked by curves suchy = (−1)x , y = xx andxy = yx , as well as the equation
cosx = x.

3.3 Surface theory. In quoting Alexis Clairaut Euler referred to curves in space, which
were closely related to surface theory. Buthe did not give a general theory of surfaces;
he just treated several points as the surfaces of solids, the intersection of a surface with a
plane, especially sections of cylinders, cones and spheres, as well as second-order surfaces
and the intersection of two surfaces. This last chapter included the theory of spatial curves.
Only in [Euler, 1767] was he to give a definition of the curvature of a surface at a fixed
point: if f andg are the radii of curvature of the principal sections, andϕ the angle between
an arbitrary normal section and a principal section, then the radiusr of curvature through
that section is given by

r = 2fg

f + g − (f − g)cos 2ϕ
. (11)

4 ON THE IMPACT OF THEINTRODUCTIO

All of the mathematics in Euler’s book was truly pre-calculus introductory; staple mathe-
matics, whether newly minted by the author here or retrieved and developed from former
work by himself and/or others. Thus it was a repository of a mass of useful information
about functions, series, curves and surfacesof many kinds. Only one rather specialised
topic appeared in the book; the partition of numbers into additive parts (ch. 16), a topic
that he had opened up in papers from 1740.

Naturally the book became very well known and used; but such import did not neces-
sarily convey into citations, for the book had became part of the woodwork for training and
consultation in analysis and geometry ratherthan a source for citation. A crest of reception
may be determined in France during the 1790s, following the French Revolution and in-
deed much driven by the educational reformsthat had been set in train, especially the new
engineering school theEcole Polytechnique (1794). Three years later founder professor of
analysis, J.L. Lagrange, published his textbook on analytic functions, a famous work that
is the subject of §19; founded upon the algebraically inspired belief that every function
could be expanded in a Taylor series, several features of theIntroductio lay at least in the
background of the ensuing discourse. Lagrange was succeeded in 1799 as professor by
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S.F. Lacroix, who was then completing a treatment of the calculus and related topics in a
massive three-volumeTraité (1797–1800) that is likewise home to §20. While Lagrange
warmed to the algebra of Euler’s first volume, Lacroix gave both volumes due attention.
Finally, the publication history at the head of this article records a full French translation
appearing in 1796–1797; it was prepared by a junior staff member at the school. We also
note from there that the book had already appeared fully in German.

Thereafter, as other countries began partially to emulate France in instruction in higher
mathematics, further textbooks and treatises began to appear, in various languages, and
Euler’sIntroductio steadily became more of the furniture. But references can still be found
to it both in textbooks and research work of all kinds, as an author appealed to its authority
for some function, series expansion, continued fraction,or property of curve or surface.
The book gained the ultimate accolade of being taken for granted.
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CHAPTER 14

LEONHARD EULER, TREATISE ON THE
DIFFERENTIAL CALCULUS (1755)

S.S. Demidov

In this book Euler gave a detailed and updated account of the calculus in its Leibnizian tra-
dition. In addition to making many applications to series, functions, the theory of equations
and differencing, he modified the theory itself by introducing the differential coefficient.

First publication. Institutiones calculi differentialis cum eius vsu in analysi finitorum ac
doctrina serierum, Berlin: Impensis Academiae Imperialis Scientiarum Petropolitanae,
1755. xx+ 880 pages.

Later editions. 1) Pavia: Galleati, 1787 [with list of works and obituary]. 2) As Euler,
Opera omnia, ser. 1, vol. 10 (ed. G. Kowalewski), Basel: Orell Füssli, 1913.

German translation. Vollständige Anleitung zur Differential-Rechnung (trans. J.A.C.
Michelsen), 3 vols., Berlin and Libau: Lagarde and Friedrich (vols. 1–2), Lagarde
(vol. 3), 1790–1793.

Russian translation. Differentcial’noe ischislenie (trans. and ed. M.Ya. Vygodskii),
Moscow and Leningrad: GTTI, 1949.

Partial English translation. Of Part 1 asFoundations of differential calculus (trans. J.D.
Blanton), New York: Springer, 2000. [Some anachronisms.]

Related articles: Leibniz (§4), MacLaurin (§10), EulerIntroductio (§13), Lagrange on the
calculus (§19), Lacroix (§20).

1 THE SECOND PART OF EULER’S TRILOGY
ON MATHEMATICAL ANALYSIS

Euler’s ‘Differential calculus’ (hereafter, ‘DC’) constitutes the second part of his en-
cyclopedic work on mathematical analysis: the first one was the ‘Introduction to the
analysis of the Infinitesimals’ [Euler, 1748], in two volumes (§13), and the third
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was the ‘Integral calculus’ [Euler, 1768–1770], in three volumes. He started to write
this book already in Saint Petersburg and finished it around 1750 in Berlin, where
it was published under the auspices of the Saint Petersburg Academy of Sciences
[Yushkevich and Winter, 1960, 437–438]. The existence of an early Latin manuscript
‘Calculi differentialis’, conserved in theArchives of the Russian Academy of Sci-
ences in Saint Petersburg (fund 136, inventory 1, opus 183, fols. 1–15) shows that
Euler worked over a very long period to present his modern view of the differen-
tial calculus. An account of his scientific manuscripts dated this one to the 1730s
[Kopelevich et alii, 1962, 41], while A.P. Yushkevich considered that it was writ-
ten even earlier, around 1727 [Yushkevich, 1983, 161]. We consider that its com-
parison with the book of 1755 reveals the evolution of the calculus during these 20
years (to a great extent due to Euler himself) and the modification of his orienta-
tion: while the manuscript reveals his approach to the infinitesimals as a pupil of Jo-
hann Bernoulli, in the book of 1755 he founded the calculus on his own ‘calculus of
zeros’.

The contents of the book are summarised in Table 1. The exposition, which is very suc-
cinct, comprises two Parts, each with its own sequence of numbered chapters and articles.
Despite the diversity of the topics and the impressive size, it is a complete, well organized
treatise. Many of the results are Euler’s own. The first Part is devoted to the differential
calculus and its foundations, and the second Part contains applications of the differential
calculus related to analysis and algebra. At the end of the first Part and in the last chapters
of the second Part he states his intention to write a third Part, devoted to the geometrical ap-
plications of the differential calculus; but he never realizes it. The section of its manuscript
prepared around 1750 was published only in [Euler, 1862].

2 THE DIFFERENTIAL CALCULUS AND ITS FOUNDATIONS

In the extended introduction Euler explains the purpose of calculus, including, in partic-
ular, his famous ‘expanded’ conception of a mathematical function: ‘if some quantities
depend on others in such a way as to undergo variation when the latter are varied, then
the former are called functions of the latter’. This formulation has an extensive character
(‘quae denominatio latissime patet’); it embraces all the ways by which one quantity can
be determined by means of others, and anticipates the definitions of later mathematicians
such as N.I. Lobachevsky and J.P.G. Dirichlet. However, in his book Euler’s conception is
not utilized in practice: functions are mainly considered as analytical expressions, includ-
ing infinite series. His introduction also includes a very concise and schematic historical
essay, a criticism of the foundation of the calculus on the infinitesimals, and a very brief
survey of the book’s contents.

In its first Part Euler exposes the elements of the calculus of finite differences, in-
dispensable for him to build his version of the calculus. In his view the principal ob-
ject is not the differential, but the derivative. But unlike Newton this notion is defined
by Euler without any use of the concept of velocity but purely arithmetically; as he
writes in his introduction, as ‘a ratio of vanishing increments, receiving by some func-
tions, when the variable receives a vanishing increment’. For Euler these vanishing in-
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Table 1. Summary by Sections of Euler’s book. Part 2 starts at Section IIIA.

Sec. Chs. Art. P. ‘Title’ or Description

IA pp. iv–xx ‘Introduction’.

IIA 1–2 1 3 Calculus of finite differences.

IIB 3–4 72 71 Foundation of the differential calculus: calculus of zeros; on
the notions of the differential and the integral, on the differ-
entials of higher orders.

IIC 5–8 152 124 Differentiation of functions: algebraic, transcendental, of
two variables (on necessary conditions thatP(x, y) dx +
Q(x,y) dy be a total differential); successive differentiation
of functional expressions (substitution of variables, etc.).

IID 9 281
–327

241 ‘On differential equations’: differentiation of implicit func-
tions, obtaining different differential equations from a given
finite equation; expansion of the order of the differen-
tial equation to eliminate one of the variables as constant
quantities.

IIIA 1 1 281 ‘On the transformations of series’: necessary information
from the theory of series, on substitutions; transforming a
given series to another one which diverges more quickly.

IIIB 2 19 304 Summation methods of series (differentiation of series,
algebraic transformations, etc.).

IIIC 3–4 44 332 On the presentation of finite differences of the function by its
derivatives, on Taylor series and some of its applications.

IIID 5–7 103 403 Euler–Maclaurin summation formula and its applications.

IIIE 8 198 515 The development of different functions in series by the
method of undetermined coefficients.

IIIF 9 227 546 ‘On the application of differential calculus to the solution of
the equations’; approximate solution of algebraic equation.

IIIG 10–11 250 656 On the application of differential calculus to the study of
maximum and minimum of functions.

IIIH 12–13 251 657 On the valuation of the numbers of the real and the imaginary
roots of algebraic equations.

IIII 14 337 712 ‘On the differentials of functions in some particular cases:
cases when it is impossible to consider the increment on the
function as equivalent to its differential’.

IIIJ 15 355 738 On the indefinite forms 0/0,∞/∞,∞−∞.

IIIK 16–17 367 769 ‘On the interpolation of the functions determined for the nat-
ural values of an argument for the fractional and even irra-
tional values of argument’.

IIIL 18 403
–480

843
–880

‘On the application of the differential calculus to the devel-
opment of fractions’.
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crements became zeros and the derivative of the functionf (x) is considered as the ra-
tio dy/dx, wheredy = 0 anddx = 0. Nevertheless, Euler does not accept the objec-
tion that division by zero has no sense: the ratio 0/0 could equal a definite number,
for ‘It is quite clear from the simple arithmetic; everybody knows that a zero multi-
plied to any numbern gives zero, that is to sayn · 0 = 0, it is why n : 1 = 0 : 0’
(art. 85). In the differential calculusdy/dx ceases to be indefinite. He presents the
rules on the determination of the ratios of the differentials (calculus of zeros) in two
forms (arts. 87–97), rejecting the infinitesimals and corresponding to the passage to the
limit:

a ± ndx = a and, correspondingly,a ± ndx/a = 1; (1)

for n >m: a dxm± b dxn = a dxm (2)

and, correspondingly, (
a dxm ± b dxn)/a dxm = 1. (3)

By considering the finite increment of a functiony(x), when its argumentx receives a
finite incrementω (art. 112), Euler obtains the form

�y = Pω+Qω2+Rω3+ Sω4+ · · · . (4)

Using his principle to banish the infinitesimals, he obtainsdy = Pω. Now, designating
�y as dy andω as the constant valuedx, he obtainsdy = P dx (arts. 114, 118). So
‘if P is found, the ratio betweendx anddy is known’ (art. 120) without searching for the
limit of �y/�x. In such manner Euler obtains in the 5th and 6th chapters of the first Part
the derivatives of the power function, the quotient, the logarithmic function, the sine and
cosine, and so on. So for the formula

d ln x = ln(x + dx)− lnx = ln(1+ dx/x) (5)

(for our symbol ‘ln’ he used ‘l’) he utilizes the expansion

ln(1+ z)= z− z2/2+ z3/3− · · · , (6)

obtained in his earlier ‘Introduction’ [1748, vol. 1, art. 123], and, replacingz by dx/x, he
obtainsd lnx = dx/x.

In a notable passage Euler showed that the indeterminacy of higher-order differentials
could be eliminated by assigning a constant value todx, so thatd dx = dd dx = · · · = 0.
The variablex was now given a special status, equivalent to our practice of assigning as
independent, with the others functionally dependent upon it: in particular,

dy = pdx; thusd dy = dpdx +p d dx = q(dx)2, wheredp= q dx, (7)

and so on for higher ordersdd dy, . . . (arts. 128–130, 251–261). By introducing the func-
tionsp, q , which are to be called ‘differential coefficients’ by S.F. Lacroix (§20), he an-
ticipated J.L. Lagrange’s later emphasis on the central role of the derivative (§19.2) [Bos,
1974, pt. 5; Ferraro, 2004].
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Euler exposes in details the methods for the differentiation of functions of one and many
variables, the rules of the differentiation of functions of some quantities depending on one
argument, proves the theorem on the independence of the value of partial derivatives from
the order of differentiation, demonstrates the theorem on homogeneous functions. He also
presents the necessary condition that the expressionP(x, y) dx + Q(x,y) dy is a total
differential, namely (

dP

dy

)
=

(
dQ

dx

)
. (8)

3 APPLICATIONS OF THE DIFFERENTIAL CALCULUS

In the second Part, Euler examines the applications of the differential calculus in some
problems related to analyses and to algebra. He derives Taylor series and gives several
applications, in particular to the development of various functions in power series, the de-
termination of its numerical values, and the arithmetical solution of algebraic equations
(by a method of determining more exact values of its solution after an initial weak ap-
proximation). He deduces the Euler–Maclaurin summation formula (which he had found
earlier: Mills [1985]), and relates the partial sums to the integrals and the derivatives of its
general term having the form

S(x)=
∫
z dx + 1

2
z+ B2

1 · 2
dz

dx
+ B4

1 · 2 · 3 · 4
d3z

dx3 +
B6

1 · 2 · 3 · 4 · 5 · 6
d5z

dx5 + · · · , (9)

where B2, B4, B6, . . . are the Bernoulli numbers (Euler uses another symbol for
them), S(x) is the sum of thex first terms of the series,z(x) is its general term,
and S(0) = z(0) = 0. Euler utilizes his formula for various numerical series and re-
ceives many wonderful and elegant results (chs. 5–7). The use of asymptotic series
presents a special interest; from them he obtains the value of the constant included in
this formula. In particular, for the harmonic series this constant became ‘Euler con-
stant’.

Another example is this presentation (art. 156) ofπ :

π =
n∑
k=1

4n

n2+ k2 +
1

4n
+ B2

2 · 2 · n2 −
B6

23 · 6 · n10 +
B10

25 · 10· n10 − · · · . (10)

Realising the divergence of this series, in his calculation ofπ Euler restricts the series to
n= 5, terminating the summation in time. As one result he findsπ to twelve digits.

Euler paid great attention to the extrema of a functiony = f (x). He deduces the neces-
sary and sufficient conditions to find them: thus, he studies the sign of the difference

f (x ± α)− f (x)=±α dy
dx

+ α
2

2

d2y

dx2
± · · · (11)

in a sufficiently small neighbourhood of the corresponding value of the argument. At the
same time he utilizes a proposition (which is rigorous only under some restrictions) anal-
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ogous to the principle of banishing the infinitesimals: for sufficiently smallα the absolute
value of some term of the series is bigger of the sum of all the rest terms (art. 254). This
proposition became one of the principles in Lagrange’s foundations of analysis (§19). The
use for the value of the forward difference (f (x ± α) − f (x)) of the Taylor series with
remainder instead of the infinite Taylor series allowed a more precise use of the series
[Yushkevich, 1968, 149].

Euler also studies the extremities of multiple-valued functions and for functions of many
variables. Astonishing is a major mistake, when he considers that a function of two vari-
ables must have its maximum (or its minimum) if it have the maximum (or minimum) ac-
cordingly any argument when the other one is constant (art. 290); Lagrange was to correct
this. Among other applications of the calculus considered by Euler are questions concern-
ing the number of real and imaginary roots of an algebraic equation (his results were based
on the assumption that between two roots of the equationf (x)= 0 there must exist a root
of the equationf ′(x) = 0), and also the analysis of the indefinite forms 0/0,∞/∞ and
∞−∞ (ch. 15).

4 GENERAL REMARKS

We stress an important aspect of the mathematical mentality of the 18th century which
clearly appeared in Euler’s works, especially in this book. For the mathematicians of his
epoch the mathematical notions and operations originated from experience, and through
it they were determined. Hence it was certain that the establishment of a mathematical
statement could be made not only from another statements considered as true, but also, for
example, from some physical considerations. So, an argument in the famous discussion
from the mid 1740s onwards on the nature of arbitrary functions in the solution of the
equation of the vibrating string, where Euler was a principal protagonist, could have not
only mathematical, but also physical nature. This solution is not (only) the concept that
can be determined in such or such manner, but is an expression of the objective nature of
the physical phenomena itself. In this discussion Euler’s position was based on physical
considerations [Truesdell, 1960, pt. 3].

This view is the origin of Euler’s attitudeto incomplete inductions, unexpected for a
modern reader and more appropriate to a physicist. Without any restriction, Euler uses it
even in his DC. For him a regularity determiningn! for entire numbers is quite sufficient
to find (1/2)! = √π/2 (pt. 2, art. 402). M.Ya. Vygodskii thought that ‘for him “an incom-
plete induction” is sufficiently convincing’ [1949, 23]. But Yushkevich did not agree with
this interpretation; for him Euler used an incomplete induction rather as ‘an instrument of
scientific research’ [1968, 113]. Certainly Euler gave the ‘complete’ induction a higher sta-
tus than the incomplete; in number theory the incomplete induction is not sufficient (head
of [Euler, 1741]). In such a branch as mathematical analysis, which was not rigorously
defined and entirely free from mechanics andgeometry (which gave birth to it), it was
possible, according to Euler, to use ‘incomplete induction’ in the proof: he gives many of
such examples.

At the same time, the foundations of analysis were made manifest as an independent
mathematical discipline in Euler’s works,in particular his DC. The lack of geometrical
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and mechanical applications but even geometrical and mechanical illustrations constitutes
a very important special feature of the book. It contains, in its introduction, only one phys-
ical example, about the trajectory of a cannon ball! The entire exposition has an abstract
arithmetico-algebraic character, and not without pride Euler wrote in its introduction: ‘all
the exposition is bounded in the frame of pure analysis, so for the exposition of all the
rules we did not use even one figure’. It ispossible to discuss the methodical quality of
such a kind of exposition, but it was very important for the future development of math-
ematics. In a nearest perspective such an exposition, thanks to the emancipation of the
analysis from geometrical and mechanical ideas, liberates it from erroneous conclusions
imposed by them. In a distant perspective such an exposition, which expressed the ob-
jective tendency to establish the analysis as an independent discipline, was a model for
the future books on analysis and prepared the way for its arithmetization. At the same
time DC became a mine of concepts for several generations of mathematicians in the 18th
and 19th centuries; for example, asymptotic developments, divergent series, and the zeta-
function.
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CHAPTER 15

THOMAS BAYES, AN ESSAY TOWARDS
SOLVING A PROBLEM IN THE DOCTRINE

OF CHANCES(1764)

A.I. Dale

In this paper Bayes published his theorem on prior and posterior probabilities. While its
reception was slow, it has led to the widespreaduse of ‘Bayesian’ to describe an influential
construal of types of probability and statistics statements.
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1 BIOGRAPHY

The scion of a respectable line of cutlers in Sheffield, England, Thomas Bayes, the eldest
of seven children, was born in Bovingdon, Hertfordshire, in 1702. Both place and date of
birth must, however, be viewed with some caution: his birthdate is found by subtracting
his age at death from the year of death (both recorded on the Bayes family vault), while
the birthplace is derived from the known presence of his parents in that town in the late
17th century and their later residence in London. His father Joshua, having been ordained
in London in 1694, moved with his wife Anne (née Carpenter) to Box Lane, Bovingdon.
In 1707 the family returned to London, where, after some years, Joshua became minister
at the Presbyterian Chapel in Leather Lane, remaining there until his death in 1746.

After studying theology at Edinburgh University, Bayes spent some time in London be-
fore accepting a position as minister at the Mount Sion Meeting-house in Tunbridge Wells,
Kent, where he was to remain until his death on 7 April 1761. His remains were taken to
London, and interred in the family vault in Bunhill Fields burial-ground in Moorgate. This
vault, which has been repaired a number of times over the years, now carries the informa-
tion that it was restored ‘In recognition of Thomas Bayes’s important work in probability
[. . . ] in 1969 with contributions received from statisticians throughout the world’. On his
life and work, see [Dale, 2003].

Bayes’s first published work was a tract entitledDivine Benevolence, or, an attempt
to prove that the principal end of the divine providence and government is the happiness
of his creatures (1731). This was followed byAn Introduction to the doctrine of fluxions
(1736), a rebuttal to George Berkeley’sThe Analyst: or, a discourse addressed to an infidel
mathematician (§8). Both works were published anonymously. Although Bayes published
nothing else, manuscripts in the Stanhope ofChevening papers, recently discovered by
David Bellhouse in the county archives in Maidstone, Kent, indicate that Bayes acted as an
‘adviser’ on mathematical writings: other manuscripts are to be found in the Royal Society
and in the Equitable Life Assurance Society in London [Bellhouse, 2001].

Among the Royal Society manuscripts is a letter from Bayes to John Canton comment-
ing on Thomas Simpson’s suggestion, as expressed in his paper in thePhilosophical Trans-
actions in 1755, that the error in astronomical observations could be reduced by taking
several measurements rather than just one. Bayes’s objection was that this would not do if
the measuring instrument were inaccurate—and he was also unhappy with the recommen-
dation that errors in excess as in defect should be taken as equiprobable.

After Bayes’s death his friend Richard Price (1723–1791) arranged for the forwarding,
for reading and publication, of a number of papers to the Royal Society; Bayes had been
elected Fellow in 1742, his proposers being men of considerable scientific weight such as
Martin Folkes, John Eames and Philip, Earl Stanhope. Indeed, D.O. Thomas suggests that
it was his publication of Bayes’s papers that set in train Price’s ‘increasing involvement in
insurance, demography, and financialand political reform’ [Thomas, 1977, 128].

The first of these papers was devoted to the divergence of the Stirling–de Moivre series
expansion of logz! as

(1/2) log2π + (
z+ (1/2)) logz− [

z− (1/12z)+ (
1/360z3

)− (
1/1260z5

)+&c.
]
. (1)
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Although Leonhard Euler had shown, some six years before Bayes’s death, that the series
failed to converge forz = 1, Bayes was apparently the first to note the general lack of
convergence.

Bayes’s two published tracts show him as a man to be taken seriously by both his the-
ological and his mathematical contemporaries.Divine Benevolence prompted a tract in re-
buttal from Henry Grove, and Philip Doddridge, the head of a well-known Nonconformist
academy, gave lectures on it. The tract on fluxions would certainly have brought Bayes
to Earl Stanhope’s notice, and it was perhaps instrumental in the latter’s using Bayes as a
mathematical referee. However it is for posthumously published work on probability that
Bayes is remembered, and it is to this that we now turn.

2 BAYES’S WORK ON CHANCES

Bayes’s main work, the second of the posthumous papers mentioned above, is the important
‘An essay towards solving a problem in the doctrine of chances’. Here are to be found the
origins of the modern ideas of prior and posterior probabilities, concepts on which the
whole theory of Bayesian statistics is based.

The problem with which Bayes concerned himself was the following. Given the number
of times in which an unknown event has happened and failed: required the chance that the
probability of its happening in a single trial lies somewhere between any two degrees of
probability that can be named. The solution, expressed in modern notation, is given in the
tenth proposition:

Let x be the (prior) probability of an unknown eventA. Then

Pr[x1< x < x2 |A has happenedp times and failedq times inp+ q trials]

=
∫ x2

x1

(
p+ q
p

)
xp(1− x)q dx

/∫ 1

0

(
p+ q
p

)
xp(1− x)q dx. (2)

Bayes’s solution of his problem was given essentially as a ratio of areas and evaluated as
an infinite series, and not in terms of the incomplete beta integral given above.

The result most commonly known today as Bayes’s Theorem is however not that given
above, but rather

Pr[Bi |A] = Pr[A|Bi]Pr[Bi ]
/ ∑

i

Pr[A|Bi]Pr[Bi ]. (3)

This version does not appear in Bayes’s work itself, but is found for the first time in a
paper by Pierre-Simon Laplace (1749–1827), ‘Mémoire sur laprobabilité des causes par
les événements’, where the notion of inverse probability was presented (Laplace [1774]:
compare §24.2). Bayes’s geometric approachyields a result for continuous probabilities,
while Laplace begins with an urn containing a finite number of balls andthen passes to
the case of an urn with an infinite number of balls. It would appear that theMémoire was
written in ignorance of theEssay, for it was only in later papers that Laplace acknowledged
Bayes’s seminal contribution [Gillies, 1987]. We would thus still have ‘Bayes’s Theorem’
today even if Price had not submitted Bayes’s manuscript to the Royal Society.
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One of the main philosophical, as opposed to the purely mathematical, aspects of the
Essay, is the question oftime. In his introduction to theEssay Price notes that Bayes gave a
specific definition ofchance (or probability), ‘which in common language is used in differ-
ent senses by persons of different opinions, and according as it is applied topast or future
facts’. Bayes’s definition gives the probability of any event as ‘the ratio between the value
at which an expectation depending on the happening of the event ought to be computed,
and the value of the thing expected upon its happening’. The matter is of particular impor-
tance in the interpretation of conditional probability as it arises in the third, fourth and fifth
propositions in theEssay. We shall say more on this matter later: for a detailed discussion
of the different treatments needed depending upon whether one is concerned with the or-
der in which two events have occurred (or will occur) or the order in which one learns they
have occurred, see the Clero–Bru translation of theEssay listed above.

Basic to Bayes’s proof of his main result is the following postulate: suppose that a level
square table be made in such a way that a ballW thrown upon it has thesame probability of
coming to rest at any particular point as at any other point. Suppose further that, after this
first ball has been thrown onto the table, a further(p + q) throws are made with a second
ball, and that each of these throws results in the success or failure of an eventM according
as the second ball is nearer to or further from a specified side of the table than the first ball.
That is, in modern terminology, a) a single valuex is drawn from a uniform distribution
concentrated on[0,1], and b) a sequence of Bernoulli trials, with success probabilityx, is
generated.

Bayes’s assumption of a uniform distribution as a prior when one is in a state of igno-
rance is not one that has enjoyed universal acceptance, and many authors have suggested
alternative distributions for the representation of such ignorance (see, for example, [Jef-
freys, 1961]). In some cases the choice of a prior is less important than the data in the
determination of the posterior distribution: for instance, L.J. Savage writes in the context
of precise measurement: ‘This is the kind of measurement we have when the data are
so incisive as to overwhelm the initial opinion, thus bringing a great variety of realistic
initial opinions to practically the same conclusion’ [Savage, 1962, 29]. On the other hand,
A. O’Hagan has noted that ‘the prior distribution can be made strong enough to overwhelm
any data’ [1994, art. 3.27].

Three rules were given in theEssay for the obtaining of bounds to the exact probabil-
ity required, their proofs being held over to the sequel paper on ‘A demonstration of the
second rule in the essay towards the solution of a problem in the doctrine of chances, with
improvements’ obtained by Price of Bayes’s bounds [Bayes and Price, 1765]. The first rule
may be written as follows:

Pr[x1< x < x2 | p,q] = (n+ 1)

(
n

p

) q∑
i=0

(
q

i

)(
1

p+ 1+ i
)(
x
p+1+i
2 − xp+1+i

1

)
. (4)

This form of the rule was to be used for largep and smallq , something similar holding for
q large andp small. The second and third rules were to be used whenp andq were both
large.

To some extent, the Rules and their proofs are responsible for the difficulty of theEssay
and theDemonstration. Both Bayes and Price, after giving various approximations to the
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incomplete beta integral, examined the accuracy of their approximations, especial attention
being paid to the maximum error that may be incurred in the making of such approxima-
tions [Hald, 1990, 140].

Abraham de Moivre had proved, in 1733, that thesymmetric binomial distribution, with
probability density

(
n
x

)
(1/2)n, tends, asn→∞, to the normal distribution, and that the

latter could therefore be used as an approximation to a cumulative binomial (§7.6). He
later also showed that the same limit obtained for theskew binomial.

In the course of this work de Moivre essentially found the expansion

2√
π

∫ t

0
exp

(−u2)
du= 2√

π

∞∑
k=0

(−1)kt2k+1

k!(2k + 1)
, (5)

while Price derived the same series in theDemonstration as an approximation to the pos-
terior distribution, the latter being that arrived at in theEssay. This posterior is a beta
distribution, and Price’s results thus anticipated those published by Laplace in a ‘Mémoire
sur les probabilités’ in 1781.

In the results given in both theEssay and theDemonstration relations between integrals
were verified by showing that the corresponding relations held between the integrands.
These latter relations in turn were shown to obtain by examination of the derivatives of the
integrands and the use of monotonicity, a technique that had been profitably employed by
Bayes inAn Introduction to the doctrine of fluxions.

3 PRICE’S APPENDIX

An Appendix to theEssay was provided by Richard Price, in which a prospective use of
the results of theEssay is made. Almost from the start of the Appendix Price applies the
results of theEssay to the occurrence of future events, writing:

Let us first suppose, of such an event as that calledM in the essay, or an event
about the probability of which, antecedently to trials, we know nothing, that it
has happenedonce, and that it is enquired what conclusion we may draw from
hence with respect to the probability of it’s happening on asecond trial. The
answer is that there would be an odds of three to one for somewhat more than
an even chance that it would happen on a second trial.

Direct application of Bayes’sfirst rule yields the desired solution, and Price then writes:

[. . . ] which shews the chance there is that the probability of an event that has
happened once lies somewhere between 1 and (1/2); or (which is the same)
the odds that it is somewhat more than an even chance that it will happen on a
second trial.

While a solution to Price’s problem might beobtained by using Laplace’s Rule of Suc-
cession (e.g. if an event has occurredm times inn trials, the probability that it will occur on
the next trial is(m+ 1)/(n+ 2)) in terms of which the probability of a second occurrence
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of the eventM would be ∫ 1

0
x2dx

/∫ 1

0
x dx = 2

3
, (6)

I do not think that this would be a correct interpretation of the question. For no cognisance
would be taken of the requirement that there should be ‘more than an even chance that it
will happen on a second trial’. It is, however, possible to obtain (6) from Bayes’s theory by
an appropriate interpretation [Dale, 1999, sect. 4.6].

In another example, one that is noteworthy in view of the important role played therein
by the initial event, Price supposes there to be a die of unknown number of faces and
unknown constitution (we may suppose the faces to be numberedn1, n2, . . . , nk , not nec-
essarily distinct). If the faceni (say) appears on the first throw of the die, then we know
only that the die has this face. It is only now, i.e.after the first throw, that we find ourselves
being able to use the results of theEssay, and the occurrence ofni in any future trial is then
an event of whose probability we are completely ignorant. If the faceni appears again on
the second trial, then by a previous example in the Appendix, the odds will be three to one
on thatni is favoured—either through being morenumerous, or (equivalently) because of
the way the die is constituted.

Price now turns to the problem of the probability of the rising of the Sun. Proceeding as
in the die-tossing example, he notes that the first sinking of the sun a sentient person who
has newly arrived in this world would see would leave him ‘entirely ignorant whether he
should ever see it again’. Thus, according to Price, ‘let him see a second appearance or one
return of the Sun, and an expectation would be raised in him of a second return, and he
might know that there was an odds of 3 to 1 forsome probability of this’, and this is then
extended to the case of several occurrences.

After remarking on the probability of causes, Price notes that ‘The foregoing calcula-
tions further shew us the uses and defects of the rules laid down in the essay’. The defects,
as noted by Price, seem to be that the second and third rules ‘do not give us the required
chances within such narrow limits as could be wished’. These limits, however, contract
asq increases with respect top, the exact solution being given by the second rule when
p = q .

While Price is perhaps correctly applying Bayes’s result in the Appendix, he is applying
it to future events. There is no explicit mention in theEssay of the applicability of the result
to the case of a ‘single throw’after experience, and it has been suggested elsewhere [Dale,
1999, sect. 4.6] that Bayes’s result is in accord withnot interpreting this ‘single trial’ in
a prospective sense. However it is not obvious from theEssay itself that Bayes meant his
result to be used only in a retrospective context: Price in fact writes quite explicitly in his
introduction that Bayes’s original intent was to find the probability of an event given a
number of occurrences and failures.

One might also note that Price passes easily from the application of probability in games
of chance (his die-tossing example) to its use in connexion with physical phenomena (the
problem of the rising of the Sun). The matters raised by Price (both in the Appendix and in
his introductory letter) are in fact qualitatively different to those considered in theEssay.
Whether the notion that is applicable in the case of the tossing of a die is also applicable in
the case of natural phenomena could be debated: the analogy would be rejected by some,
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while others would perhaps accept it in connexion with matters such as birth ratios but not
accept it—or at least query its fitness—in matters such as the lottery example discussed by
Price here.

In addition to the remarkable probabilistic result examined here, a number of lesser
gems may be glimpsed. Thus we have a clear discussion of the binomial distribution, and
probing even further one finds, as [Hailperin, 1996, 14] notes, ‘(implicitly) the first occur-
rence of a probability logic result involving conditional probability’. While the mathemati-
cian should also be interested in the evaluation of the incomplete beta-function, he will
note too the use of approximations to various integrals given in theEssay and theDemon-
stration by both Bayes and Price, and the attention paid to the investigation into the error
incurred in the making of such approximations.

4 A POSTHUMOUS PUBLICATION

Various suggestions have been proposed for theEssay not having been published by the
author. The most often assigned cause is modesty, something that seems first to have been
attributed to Bayes by Price’s nephew, William Morgan who, in his biography of his uncle
wrote [Morgan, 1815, 24]:

On the death of his friend Mr. Bayes of Tunbridge Wells in the year 1761 he
[that is, Price] was requested by the relatives of that truly ingenious man, to
examine the papers which he had written on different subjects, and which his
own modesty would never suffer him to make public.

More recently [Good, 1988] has suggested three possible reasons for non-publication:
(a) the tacit assumption of a discrete uniform prior for the number of successes implies that
the (physical) probability of a success in each trial has a continuous uniform prior, (b) these
two priors are essentially equivalent when the number of trials is large and (c) the first ball
is essentially a red herring. Stigler finds a possible reason in the difficulty of evaluating the
integral in the eighth proposition [1986, 130], while more recently he suggests that Bayes
deferred publication because of ‘the lack ofan accepted standard of reference that could
tell [him] how close to certainty is “good enough” ’ [1999, 375].

5 IMPACT AND INFLUENCE OF THE WORK

In the introduction to the first volume of theirBreakthroughs in statistics [Kotz and John-
son, 1992] listed eleven works, up to and including Francis Galton’sNatural inheritance,
that have had lasting and fundamental effects on the direction of statistical thought and
practice. One of these is Bayes’sEssay.

Despite the use of inverse probability tobe found in the work of Laplace and other
19th-century writers, interest in Bayes’s work, and realization of its importance, did not
really manifest itself until the work of authors like I.J. Good, H. Jeffreys, D.V. Lindley,
F.P. Ramsey and L.J. Savage in the middle third of the 20th century (compare §67.3). As a
result of this work, Bayesian statistics rapidly became a serious contender to ‘classical’ or
sampling-theory statistics. The Bayesian approach has a number of features that distinguish
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it from the more classical rubric: the incorporation of prior information, the fact that all
probabilities are subjective, the self-consistency of the method, and the avoidance of having
to invent statistical methods.

The fundamental problem in statistics is inference. The Bayesian approach to this matter
considers prior beliefs about possible hypotheses (prior to any experimentation, that is) and
modifies these in the light of relevant data, yielding posterior beliefs. More specifically,
inference about a parameterθ is effected by using Bayes’s result to find a posterior density
f (θ |x) from a prior densityf (θ) and a likelihoodf (x|θ). This then allows the answering
of questions like ‘Having obtained datax, what can be said about parameterθ?’. Note that
Bayes himself was concerned with inference only about a ‘degree ofprobability’, and not
about an arbitrary parameter.

In a paper read at the sesquicentennial meetings of the Royal Statistical Society,
[Newell, 1984] pointed out that what Florence Nightingale achieved in hospital design
effectively prevented any further development in this field for several decades. In the light
of this assertion the statistician might almost be pleased that Bayes’sEssay received scant
attention until the 20th century.
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This is the first textbook to treat theoretical mechanics in a purely analytic way. Its mathe-
matical importance stems mainly from the application of Lagrange’s new formalization of
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1 OUTLINE OF LAGRANGE’S SCIENTIFIC BIOGRAPHY

Joseph Louis Lagrange (1736–1813) was born at Turin (Piedmont) in Italy and baptized as
Guiseppe Lodovico Lagrangia. He himself wrote his surname de la Grange, La Grange, or
La Grange Tournier in acknowledgment of the French origin of his family [Sarton, 1944;
Itard, 1973]. The year of his birth saw the publication of Leonard Euler’s (1707–1783) first
mathematical textbook,Mechanica sive motus scientia analytice exposita [Euler, 1736],
a work that can be perceived as a ‘semi-analytic forerunner’ of theMéchanique anali-
tique.

Lagrange’s education and early career tookplace entirely in his home town of Turin,
where he spent the first three decades of his life [Borgato and Pepe, 1987]. As early as
1754, at the age of 18, he corresponded withEuler and Giullio di Fagnano (1682–1766)
on mathematical questions. He took up a teaching appointment at the Royal College of
Gunnery in Turin in 1755 and in the followingyear became a Foreign Member of the Berlin
Academy. Even at this early stage he was developing hisδ-calculus, which opened up a new
approach to the calculus of variations without recourse to Euler’s geometric considerations.
Soon afterwards, Lagrange co-founded a scientific society, which later grew into the Royal
Academy of Science of Turin. Its journal,Miscellanea Taurinensia, first appeared in 1759
and contained some of his most important work on the calculus of variations and analytical
mechanics [Lagrange, 1759, 1760a, 1760b, 1770; see Fraser, 1983].

An important influence on his subsequent career was his friendship with Jean le Rond
D’Alembert (1717–1783), whom he met during a visit to Paris 1763 and with whom he
kept in close touch until his death. It was on D’Alembert’s recommendation that Friedrich
II (1712–1786)appointed Lagrange director of mathematics classes of the Berlin Academy,
a post he relinquished on the death of Friedrich in 1787.

Lagrange produced theMéchanique analitique during his time in Berlin. He referred
as early as 1756 and 1759 to an almost complete textbook of mechanics, now lost; a later
draft first saw the light of day in 1764 [Lagrange, 1764]. But it was not until the end of
1782 that Lagrange seems to have put the textbook into an essentially complete form, and
the publication of the book was delayed a further six years [Pulte, 1989, 231].

In 1787, a year before the publication of theMéchanique analitique, Lagrange had taken
up an appointment asPensionnaire vétéran at theAcadémie des Sciénces in Paris at the in-
vitation of Louis XVI. Following the revolution, which saw the closure of the old Royal
Academy, in 1794–1975 he became one of the founder professors of the (short-lived)Ecole
Normale and of theEcole Polytechnique. It is thus no accident that his most important and
influential didactic work in mathematics, such as theThéorie des fonctions analytiques
([Lagrange, 1797, 1813]; see §19), was done at this time [Grattan-Guinness, 1990a, vol. 1,
107–109]. Although Lagrange suffered from a certain exhaustion andpublished little dur-
ing his early years in Paris, he later recovered his former productivity and retained it almost
until his death in 1813 [Delambre, 1814].

Lagrange’s whole biography draws a picture of a man with no interest in political events,
withdrawn and largely detached from external influences, but an extremely productive
mathematician. His extensiveOeuvre not only encompasses analysis (theory of ordinary
and partial differential equations, calculus of variations, theory of functions) and mathe-
matical physics (potential theory, celestial mechanics, the three-body problem), but also in-
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cludes works on algebra, differential geometry, number theory and other branches of math-
ematics [Taton, 1974]. Lagrange abandoned intuitively geometric considerations, which he
systematically avoided in publications such as theMéchanique analitique, thereby estab-
lishing his reputation as a ‘pure analyst’. In the context of discovery, however, he stressed
the heuristic value of geometrical intuition [Grattan-Guinness, 1981, 679]. Thus, when he
warns with pride in the foreword of his great textbook on mechanics (our concern here)
that ‘no figures are to be found in this book’ (p. vi), this can also be taken with a grain
of salt in regard to the origin of the work: it is an important stipulation in regard to the
purification of rational mechanics as a science but not in regard to the heuristics he might
have used in working it out.

2 LAGRANGE’S CONCEPTION OF ‘ANALYTIC MECHANICS’ AS A SCIENCE

Lagrange’s claim to ‘freedom from geometry’ is closely connected to his commitment
to make mechanics into a ‘new branch’ of analysis (p. vi). Before turning to the con-
tents of the book, we would like to go into the question of how it came by its title, and
in which tradition sought thereby to classifyit. At the time of Lagrange, the adjective
‘analytic’ in mechanics was no longer used in the context of the old scientific distinc-
tion between analytic and synthetic methods, as in themetodo risolutivo and metodo
compositivo of Galileo Galilei. Following this distinction, ‘synthesis’ came essentially
to mean the inductive demonstration ofgrounds of explanation, and ‘analysis’ the de-
ductive derivation ofhypotheses of explanation. From the time of Euler, on the other
hand, the objective ‘analytic’ within rational mechanics was used mainly or (see below)
even entirely to designate the introduction of mathematical methods: analytical mechanics
makes use of the (higher) differential and integral calculus or the ‘analysis of the infi-
nite’. Mathematical analysis thus lay behind the naming of analytical mechanics in a dou-
ble sense, first in the formulation and description of its first principles or axioms, and
second as an instrument of derivation, that is, the means whereby empirically demon-
strable consequences can be deduced from the ‘analytical principles’. The latter consti-
tutes the particular meaning of thecalculus of variations (as a part of higher analysis)
for that branch of mathematics. Lagrange’sMéchanique analitique thus also became the
first textbook of mechanics in which the calculus of variations finds extensive applica-
tion.

When understood in this mathematical sense, analytical mechanics has as its ‘synthetic
counterpart’geometrical mechanics, which was likewise further developed in the 19th cen-
tury as a part of theoretical mechanics [Ziegler, 1985]. Of course from the middle of the
18th century, the analytic approach, because its generality and the power of its methods,
gained a strong predominance, especially inview of the canonized definition of theoretical
or ‘rational’ mechanics by Isaac Newton (1643–1727) in hisPrincipia (1687) as an ‘exact’
and ‘established’ science ([Newton, 1726, xvii]; compare §5.11).

While Newton used the still prevalent synthetic (in the geometric sense) methods, Euler
was the first to point out, in stressing the significance of mathematicalanalysis for mechan-
ics, that it could not only lead to true mathematical statements about nature but also to a
‘sufficiently clear and definite knowledge of itself’ [Euler, 1736, vol. 1, 8]. HisMechanica
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was described by Lagrange as ‘the first work [. . . ] in which analysis has been applied to
the science of motion’ (Oeuvres, vol. 11, 243). It is important to observe, however, that
geometric methods retained their importance in most of his later works on mechanics used
by Euler in hisMechanica.

Half a century later Lagrange himself, in theMéchanique analitique, was the first
explicitly to introduce a monism of ‘analytic methodology’ into rational mechanics. He
claimed that non-analytic methods could beuniversally relinquished, thereby turning me-
chanics into a ‘new branch’ of analysis; all ‘geometric’ and even ‘mechanical considera-
tions’ would thus become superfluous (p. vi).

An important factor for Lagrange was theunification of analytically formulated princi-
ples of mechanics: starting froma single principle, namely, his reworking of the principle
of virtual velocities, which was a ‘combination’ of the older form of that principle and
the principle named after D’Alembert, it should be possible to develop in a deductive way
the whole of statics and dynamics (see section 3 below). In this metascientific respect, the
Méchanique analitique is a consistently ‘synthetic’ work, in the old (for example, Galilean)
sense of the word.

Nevertheless the book differs from the great old ‘synthesized’ textbooks of mechanics
in one important respect. As a prelude to an axiomatic construction modeled in Euclid’s
Elements of mechanics based on an explanation of the conceptual assumptions of that
subject, especially the fundamental notionsof space, time, matter or mass, and force, the
systematic part of theMéchanique analitique begins directly with a discussion of analytic
principles and their interrelations. Lagrange’s methodology implied not only the exclusion
of other (non-analytic) mathematical methods, but also of non-mathematical methods. Par-
ticularly conspicuous by their absence from his magnum opus are the philosophical and
scientific reflections on the foundations of mechanics which had up to that time been in-
cluded within textbooks, such as those of Newton, Euler, and D’Alembert [Newton, 1726;
Euler, 1736; D’Alembert, 1743; see Pulte, 2001]. This was an important precedent, since
Lagrange’s textbook was to become a paradigm for analytical mechanics in the first half
of the 19th century. It was a result of this that, at that time, the subdiscipline of mechanics,
although belonging to mathematical physics, was often treated more as a branch of ‘pure’
mathematics, and thus achieved the status of an ‘infallible’ mathematical science [Pulte,
2005].

3 LAGRANGE’S FUNDAMENTAL DEVELOPMENTS UP TO THE FIRST
EDITION OF THEMÉCHANIQUE ANALITIQUE

In the structure of a textbook that claims, in the sense described above, to turn an em-
pirical science like mechanics into a ‘purely’ mathematical one, the determination of the
principle or principles in which the axiomatic-deductive construction is to be based is of
the greatest importance. Lagrange’s attitude in this respect was by no means uniform, but,
in both editions of theMéchanique analitique, subject throughout to variations that we
shall describe in this section. We shall follow Lagrange’s style, referring to the first edition
as theMéchanique analitique, and to the secondedition (1811–1815) as theMécanique
analytique (where we cite the slightly revised fourth edition in theOeuvres).
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Lagrange’s first preference, during his early years at Turin, was for the principle of least
action, formulated by P.L.M. de Maupertuis (1698–1759) and Euler, as ‘the universal key
to all problems both in statics and dynamics’ (letter to Euler of 19 May 1756; seeOeuvres,
vol. 13, 392). In his publications relating to this topic, he first develops his new calculus
of variations on theδ-calculus [Lagrange, 1760a] and then gives an application of it in
mechanics [Lagrange, 1760b]. For thisapplication, he goes directly to theAdditamentum
II of Euler’s Methodus inveniendi (§12) and gives the following general formulation of the
principle of least action [Lagrange, 1760b, 366]:

δ

∫
uds =

∫
δ(uds)=

∫
(δuds + uδ ds)= 0. (1)

A massM with velocityumoves under conservative external forces in such a way that the
energy integral achieves an extremum (not necessarily a minimum),that is, according to
(1), the first variation vanishes. Lagrange isthus proceeding in the variation process from
an iso-energetic variation.

Lagrange generalizes the formulation (1) of the principle of least action not only to
problems withn mass-points but also to problems with constraints and finally to the me-
chanics of solid and fluid continua. The deductive power of the principle is emphasized
above all by his derivation from it, using theδ-calculus, of the theorem on the conservation
of the motion of the centre of mass and the plane theorem (on the conservation of angu-
lar momentum). One of the most important achievements of Lagrange’sApplication is the
derivation [Lagrange, 1760b, 369] from (1) of the so-called Newtonian equations of motion
for a mass subject to conservative central forces (with Cartesian coordinates (�,�,�)):

d
udx

ds
+�dt = 0, d

udy

ds
+�dt = 0, d

udz

ds
+� dt = 0. (2)

It is particularly noteworthy that Lagrange thereby goes beyond Euler’snarrow form of
the principle of least action and considers an application to a system in which conservation
of active force is not generated [Lagrange, 1760b, 384–385]. He therefore takes into con-
sideration awider form of the principle of least action, a form that Maupertuis had in mind
but was not able to specify. In the applications, however, Lagrange always restricts himself
to conservative systems, in which the conservation of living force is guaranteed.

In his ‘Researches on the libration of the Moon’ [Lagrange, 1764] he departs for the first
time from his attempts to axiomatize mechanics on the basis of the principle of least action,
and replaces the principle of Euler and Maupertuis by a generalization of D’Alembert’s
principle. Later, in his book, he describes this generalization as the ‘principle of virtual
velocities’ (p. 12; compare p. 8). He never explained this change ofheart, although the
final unclear relationship between the conservation ofvis viva and the principle of least
action might be seen as a major reason for this: Lagrange is never clear as to whether
this conservation law in his formulation of the energy principle should be regarded as
a hypothesis or (as desired) as aresult. A second reason could be that he regarded the
principle of virtual velocities as fundamental in the domain of statics [Lagrange, 1764,
10], and so it seemed to him that a uniform axiomatization of statics and dynamics might
be easier to achieve on the basis of that principle [Pulte, 1989, 252–261].
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There is support for both reasons in theMéchanique analitique. It is divided into two
parts, statics (pp. 1–157) and dynamics (pp.158–512), and Lagrange sets out to base both
parts solely on the principal of virtual velocities, paying particular attention in the sec-
ond part to the derivation of vis viva-conservation (pp. 205–208) and annexing that of the
principle of least action (pp. 208–212).

Lagrange introduces the principle of virtual velocities in the first edition as ‘a kind of
axiom for mechanics’ (p. 12) forstatics, where it ‘has all the simplicity one might desire
in a fundamental principle’ (p. 10). By statics he means the ‘science of equilibrium of
forces’ (p. 1), as he says right at the beginning. If one now considers a system of mass-
points in a static equilibrium acted on at any given time by forcesP,Q,R, . . . and gives
it a small perturbation, then the individual masses experience ‘virtual’ displacements, that
is, displacements compatible with any connections that may exist between the masses. Let
δp, δq, δr, . . . be their projections on the forcesP,Q,R, . . ., with the sense of direction of
the projection indicated by a suitable choiceof sign. Lagrange labels these displacements
as ‘virtual velocities’ by appealing to a fixed time elementdt . The principle of virtual
velocities (or displacements) now asserts that a system is in equilibrium if the sum of the
‘moments of force’ vanishes (p. 15):

Pδp+Qδq +Rδr + · · · = 0. (3)

He then applies this relation, from ‘Section III’ of theMéchanique analitique, in the treat-
ment of general properties of the equilibrium of point systems (Section III), methods for
solving the resulting equations (Section IV), special problems in statics (Section V), hy-
drostatics (Section VI), problems of equilibrium of incompressible fluids (Section VII) and
problems of equilibrium of compressible and elastic fluids (Section VIII).

Lagrange constructsdynamics in an entirely analogous way (see section 4 below). He
first extends, as in the earlierRecherches [Lagrange, 1764, 10], the principle of virtual
velocities to problems of motion in that, as well as the external forcesP,Q,R, . . ., he
also takes into account on the individual point masses theiraccelerations, which must be
compatible with the connections within the system. Multiplication by the instantaneous
masses yields the forces that the same accelerations would produce in free masses. His
claim is then that under a virtual displacement the ‘moments of the forces’P,Q,R, . . .
must be equal to the moments of these forcesof acceleration, where the sign difference
depends on a convention (today reversed) on the direction of action of theP,Q,R, . . .

(p. 195):

m

(
d2x

dt2
δx + d

2y

dt2
δy + d

2z

dt2
δz

)
=−m(Pδp+Qδq +Rδr + · · ·). (4)

If we depart from Lagrange’s sign convention and write the central forcesP , Q,R, . . .
in Cartesian coordinates, then Lagrange’sgeneral fundamental law of dynamics takes the
following slightly ‘modernized’ form (compare p. 200):

n∑
i=1

[(
Xi −mi d

2xi

dt2

)
δxi +

(
Yi −mi d

2yi

dt2

)
δyi +

(
Zi −mi d

2zi

dt2

)
δzi

]
= 0. (5)
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If n mass-pointsmi with coordinates (xi, yi, zi ) are subjected at any given moment
to forces with Cartesian coordinates (Xi,Yi,Zi ) and each mass-point undergoes a virtual
displacement (δxi, δyi, δzi ), then the sum of the ‘moments’ vanishes according to (5), as
does the ‘virtual work’ of the forces (Xi,Yi,Zi ) reduced by the forces of inertia. In the
case of ‘free’ systems, the principle isreally trivial: the displacements (δxi, δyi, δzi ) can
then be chosen arbitrarily, so that the summands in (5) must vanish individually, which
easily yields the differential equation of motion:

Xi =mi d
2xi

dt2
, Yi =mi d

2yi

dt2
, Zi =mi d

2zi

dt2
(1≤ i ≤ n). (6)

In the case of equilibrium, (5) takes the form

n∑
i=1

[Xiδxi + Yiδyi +Ziδzi] = 0; (7)

or, if one starts with forcesP,Q,R, . . . that are not written in Cartesian coordinates but act
along any linesp,q, r, . . ., one obtains the original Lagrangian formulation (3) for statics
(p. 15):

Pδp +Qδq +Rδr + · · · = 0. (8)

This formula clearly expresses the vanishing of the sum of the moments in the equilibrium
case.

The coordinates (xi, yi, zi ) of the mass-points are subject tom equations (assumed in-
dependent) altogether (p. 227):

Lj (xi, yi, zi )= 0 (1≤ j ≤m,m< 3n). (9)

In this case of holonomous constraints (that is, constraints which can be given in form
of an equation) or even skleronomous constraints (i.e. constraints with time-independent
equations), the displacements (δxi, δyi, δzi ) in (5) are no longer arbitrary but chosen in
accordance with (9). According to the method of the Lagrange multiplier, the differential
equations (6) of the free motion are replaced bythe following equations of motion, which
are today usually referred to as ‘Lagrangian equations of the first kind’ (p. 228):

miẍi =Xi +
m∑
k=1

λk
∂Lk

∂xi
, miÿi = Yi +

m∑
k=1

λk
∂Lk

∂yi
, miz̈i =Zi +

m∑
k=1

λk
∂Lk

∂zi
. (10)

The expressions under the summation sign in (10) can be interpreted physically as the
constraining forces on the massesmi needed to ensure the fulfillment of the conditions (9).
The fact that these equations, from which the multiplicandsλk must be eliminated (as is
always possible under the above assumption), uniquely determine the (xi, yi, zi ) using the
equations (9), was first shown explicitly much later by C.G.J. Jacobi (1804–1851) [Jacobi,
1884, 132–133].

Lagrange himself followed a rather different route. Given them independent conditions
(9) on the 3n time-dependent coordinates (xi, yi, zi ), one can define (3n−m) independent
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variablesqj = qj (t) (today called ‘Lagrangian’ or ‘generalized coordinates’) in such a way
that the equations (9) hold identically and no further constraints are introduced. Using the
so-called ‘generalized forces’Qr given by

n∑
i=1

[
Xi
∂xi

∂qr
+ Yi ∂yi

∂qr
+Zi ∂zi

∂qr

]
= dU
dqr

=:Qr, (11)

whereU denotes thepotential function (which exists in our case), and the further abbrevi-
ation

T := 1

2

n∑
i=1

mi
(
ẋ2
i + ẏ2

i + ż2i
)

(12)

for the totalkinetic energy of the mechanical system, one obtains in place of (10) the
following ‘Lagrangian equations of the second kind’ (p. 226):

d

dt

(
∂T

∂q̇r

)
− ∂T

∂qr
=Qr (1≤ r ≤ 3n−m). (13)

Hereq̇r = dqr/dt is the ‘generalized velocity’.
The derivation of (13) from (5) is one of the most significant achievements of the

Méchanique analitique, since all dynamical problems satisfying the given conditions can
be reduced with the aid of (13) to the determination of the two functions kinetic energy
and potential energy (conferT andU above).

From the point of view of the formal and deductive organization of mechanics, it seems,
generally speaking, entirely plausible that Lagrange described the principle of virtual ve-
locities in thestatics part of his work as ‘a kind of axiom for mechanics’ (collectively)
because it also demonstrates its power indynamics. In Section III of the dynamics part,
Lagrange deduces from (10) the law of conservation of motion of the centre of mass
(p. 201), the law of areas or conservation of angular momentum (p. 205), at least in the
case when the mechanical system is subject to the time-independent constraints (9) and
only governed by central forces, and also the law of conservation of active force (p. 208)
and the principle of least action. The latter struck him as a ‘very remarkable property of
motion’ (p. 211), but was without a teleological meaning for him (p. 196; see Pulte [1989,
252–261]).

As to the ‘principle’ aspect of theMéchanique analitique, we only note here that La-
grange’s application of the principle of virtual velocities and its consequences such as (13)
in subsequent Sections V–X of the dynamics part of his work throw into bold relief the ten-
sion between his formal-abstract approach tomechanics and physical intuition, especially
in the treatment of the mechanics of solid continua and hydrodynamics [Grattan-Guinness,
1990a, vol. 1, 286–287]. This tension, even at the level of a discussion of principles (see
section 5 below), also plays an important role in the reception of the work. Before turning
to this, we give a summary of the contents of the whole work.
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4 CONTENTS OF THE EDITIONS

Table 1 shows the contents of the book, and also of the later editions. Under the heading
‘topic’, the original headings of the individual Sections are translated as literally as possible
in order to highlight the differences betweenthe first edition of 1788 and the second edition
of 1811–1815. The Section headings and contentsof the second, third and fourth editions
are grouped together, with the pagination referring to the two-volume second edition.

Table 1. Summary by Sections of the two editions of Lagrange’s book.

Méchanique Analitique
(1788)

Mécanique Analytique
(2nd–4th editions)

2nd
ed.

Sec. Topic p. Topic p.

Part 1:Statics. Part 1:Statics.

I On the different principles of
statics.

1 On the different principles of statics.Vol. 1,
1

II General formula for the equi-
librium of any system of
forces; with a method of
using it.

12 General formula of statics for the
equilibrium of any system of forces,
with a method of using it.

27

III General properties of equi-
librium deduced from the
preceding formula.

25 General properties of equilibrium of
a system of bodies, deduced from the
preceding formula.

45

IV Very simple method of find-
ing the necessary equations
of equilibrium for any sys-
tem of bodies regarded as
points, or as finite masses,
and underlying given forces.

44 A more general and simpler way
to use the formula of equilibrium,
demonstrated in Section II.

77

V Solution of different prob-
lems of statics.

58 Solution of different problems of
statics.

113

VI On the principles of
hydrostatics.

122 On the principles of hydrostatics. 189

VII On the equilibrium of
incompressible fluids.

130 On the equilibrium of incompress-
ible fluids.

197

VIII On the equilibrium of
compressible and elastic
fluids.

155 On the equilibrium of compressible
and elastic fluids.

231
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Table 1. (Continued)

Part 2:Dynamics. Part 2:Dynamics.

I On the different principles of
dynamics.

158 On the different principles of
dynamics.

237

II General formula for the mo-
tion of a system of bodies
animated by any forces.

189 General formula of dynamics for
the motion of a system of bodies
animated by any forces.

263

III General properties of motion
deduced from the preceding
formula.

198 General properties of motion
deduced from the preceding
formula.

273

IV A simpler method for arriv-
ing at the equations which
determine the motion of
any system animated by any
accelerating forces.

216 Differential equations for the
solution of all problems of
dynamics.

325

V Solution of different
problems of dynamics.

233 General method of approximation
for the problems of dynamics, based
on the variation of arbitrary con-
stants.

345

VI On the rotation of bodies. 337 On the very small oscillations of any
system of bodies. [End 422.]
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VII On the principles of
hydrodynamics.

428 On the motion of a system of free
bodies treated as mass points and
acted upon by forces of attraction.
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VIII On the motion of
incompressible fluids.

437 On the motion of bodies which are
not free, and which interact in an
arbitrary manner.
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IX On the motion of compress-
ible and elastic fluids. [End
512.]

492 On rotational motion. On the rotation
of an arbitrary system of bodies.

211

X On the principles of hydrodynamics.277

XI On the motion of incompressible
fluids.

286

XII On the motion of compressible and
elastic fluids.

337

Note I On the determination of the orbits of
planets.

355

Note II On rotational motion. 357

List of the works of M. Lagrange.
[End 378.]
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5 FUNDAMENTAL DIFFERENCES BETWEEN THEMÉCHANIQUE ANALITIQUE
AND THE MÉCANIQUE ANALYTIQUE AND LATER REVIEWS

Table 1 makes it clear that there are significant differences between the first edition of
Lagrange’s magnum opus on the one hand and the second (and subsequent) editions on
the other, especially in the treatment ofdynamics in Sections IV–XII. These alterations
and their background cannot be studied in detail here. Of continuing importance for us,
of course, is how Lagrange seeks to justify his commitment to pass from ‘self-evident’
analytical principles of mechanics to a ‘purely analytic’ foundation of that subject. In this
context, it is of interest to confirm that all the important extensions of the principle of
virtual velocities, as adoptedby Lagrange, up to round 1850 take as their starting point
Lagrange’s formulation (5), or (7) or (8) in the case of statics.

A first important point for discussion was theaxiomatic status of the principle. In his
later years, Lagrange himself no longer saw it sufficiently self-evident to be adopted as
an axiom, mainly because of a critical analysis by J.-B. J. Fourier (1768–1830) of La-
grange’s formulation of the principle [Fourier, 1798; see Costabel, 1972]. This is clearly
expressed in the second edition (Mécanique analytique, vol. 1, 23), where Lagrange gives
two different ‘proofs’ (so called by him) to compensate for this. The first was an attempt
to provide an incontestable self-evident justification for the static principle by appealing
to simple machines such as the pulley [Lagrange, 1798 andMécanique analytique, vol. 1,
18–26; see Pulte, 1998, 165–166]. The second was undertaken shortly before his death,
in the new edition of theThéorie des fonctions analytiques, again with the intention of
passing in this way from statics to dynamics [Lagrange, 1813, 350–357 and 1847, 377–
385; see Pulte, 1998, 169–172] and thereby rescuing his programme of putting mechanics
on a ‘purely analytic’ basis. This second attempt does not appear again in theMécanique
analytique.

Other attempts at proof that concern Lagrange’s magnum opus but cannot be pursued
here [see Lindt, 1904; Grattan-Guinness, 1990a, vol. 1, 302–308; Benvenuto, 1991, vol. 1,
95–115]. They were undertaken especially by A.M. Ampère (1775–1836) in his [1806],
L.N.M. Carnot (1753–1823) in [1803], A.A. Cournot (1801–1877) in [1827], J. Fossom-
broni (1754–1844) in [1796], [Laplace, 1799], L. Poinsot (1777–1859) in [1806, 1838,
1846], S.D. Poisson (1781–1840) in [1833], and G.C.F.M. de Prony (1755–1839) in [1798].
The main purpose was to reduce the principle of virtual velocities to the lever principle or
the parallelogram law of forces.

The idea, rather strange by today’s standards, of a mechanical principle or axiom that
stands at the head of a deductive system but cannot itself be deduced, opens up a ‘crisis
of principles’ [Bailhache, 1975, 7] that ultimately has its roots in the fact that viewing an-
alytical mechanics in the tradition of Lagrange according to the pure mathematical ideals
of reason and exactness is a misconception that cannot be resolved at the level of princi-
ples or axioms. Jacobi was the first, with hisVorlesungen über analytische Mechanik of
1847–1848 [Jacobi, 1996, 29–39, 59–94; see Pulte, 1998], to make a clear break with this
‘certistic’ tradition and, in the second half of the century, came increasingly to favour the
opinion that such a principle cannot be secured either mathematically or metaphysically,
but rather must be regarded as a hypothetical assumption.
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A second point closely related to the problem ofjustifying the principle concerns itsgen-
eralization to non-holonomic and non-skleronomic systems: Fourier had already pointed
out that Lagrange’s principle, even in the static form (8), fails when the constraints are
given in the form of an inequality rather than an equation (9) [Fourier, 1798, 30], as in the
case of a mass-point movingoutside a surface rather thanon it. (9) must then be replaced
by

Lj (xi, yi, zi)≤ 0 (1≤ j ≤m, m< 3n). (14)

The principle of virtual velocities in Lagrange’s form (8) then generalizes to the assertion
that the total moment or virtual work in the equilibrium case does not vanish but (with a
suitable sign convention) becomes negative (cf. Jacobi [1996, 40], for example):

Pδp+Qδq +Rδr + · · · ≤ 0. (15)

A corresponding generalization of the principle forstatics was proposed, to some extent
without awareness of Fourier’s criticisms and related investigations, in [Cournot, 1827;
Gauss, 1829] and [Ostrogradsky, 1838a]; the first extension to dynamics seems to be due
to [Ostrogradsky, 1838b].

Another desirable generalization was pointed out by Lagrange himself in the first edi-
tion of theMéchanique analitique (p. 198) but later passed over in silence, and this is the
extension of the principle torheonomic systems, where the equations (5) depend on the
time t :

Lj (xi, yi, zi, t)= 0 (1≤ j ≤m, m< 3n). (16)

Poisson argued that the application of the principle (1) in this case introduced only in-
finitesimally small errors and was thus legitimate [Poisson, 1833, vol. 2, arts. 564–573; see
Lindt, 1904, 170f.]; however, Ostrogradsky [1842] advocated the view that in this case the
time should be regarded as a variable and thus (1) should be supplemented by a variation
in the time. It turned out that this is not necessary, and (1) can also be applied in the case of
rheonomic constraint [Schaefer, 1919, 13–14]. But this problem was not effectively cleared
up until the end of the 19th century—compare [Hertz, 1894] (§52), [Voss, 1901] and
[Schaefer, 1919], for example—along with the extension of the principle to problems in
which, as in the case of friction, no force function as in (11) can be given or in which there
are non-holonomic conditions connecting notthe coordinates of the mass-points them-
selves, but those of their first derivatives, in the form of an equation (analogous to (9)), as
in the case of a rolling motion without slipping, say of a sphere on a horizontal plane.

A third point in the century-long discussion of the principle of virtual velocities con-
cerns itsphysical relevance, and thus ultimately that of the whole of analytical mechanics
in the sense of Lagrange. In the tradition of French mathematical physics following La-
grange, there appeared a ‘physicalization’ of mechanics, which found an outlet with Pois-
son in the explicit movement away from Lagrangian and traditionalanalytical mechanics
towards a specific and newphysical mechanics [Duhem, 1980; Grattan-Guinness, 1990a,
vol. 2].

One of the important questions here concerned the nature of the constraints required
to make the moving mass-points satisfy quasi-geometric restrictions of the form (9)
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[Duhem, 1980, 37–46]. This question was later taken up by Jacobi, among others, and ap-
plied to Lagrange’s passage from statics to dynamics via the principle of virtual velocities.
While in the equilibrium case the constraints only have to compensate for the forces such as
weight on the masses at rest, in the case of motion (as Jacobi, unlike Lagrange, proved by
exclusively analytic methods) they also depend on the velocities and they do not in general
satisfy the assumptions made by Lagrange. Finally, in his analytical mechanics Lagrange
had blended forces (such as gravitation) with something ‘entirely heterogeneous’, namely,
pure mathematical conditions of the form (9), and this made it impossible to regard the
general dynamical form of the principle (5) as an extension of the static principles (7)
or (8) as Lagrange claimed [Jacobi, 1996, 85–88]. Jacobi’s main criticism was that La-
grange’s use of this principle totally ignored the physical constitution of the body in favour
of the ‘purity’ of an analytic mechanics which even waived its own justification in order
to remain ‘pure’ [Jacobi, 1996, 193–194]. From the middle of the 19th century, this and
related criticisms led to investing the principal of virtual velocities with a stronger physical
relevance that replaced conditions of the Lagrangian type (9) by external forces with ‘more
realistic’ laws of force or potential and used them in applications of (5).

6 GENERAL ASSESSMENT AND RECEPTION OF THE WORK

In this sketch we have tried to describe Lagrange’s discussion of principles and the na-
ture and reception of theMéchanique analitique in that context. Of course the significance
and influence go far beyond (confer [Cayley, 1857]). It was certainly regarded as the most
important unification of rational mechanics at the turn of the 18th century and as its ‘crown-
ing’ [Dugas, 1955, 332]. This achievement of unification and the abstract-formal nature of
the work, physically reflected in immediate applications, earned the extravagant praise of
Ernst Mach: ‘Lagrange [. . . ] strove to dispose of all necessary considerationsonce and
for all, including as many as possible in one formula. Every case that arises can be dealt
with according to a very simple, symmetric and clearly arranged scheme [. . . ] Lagrangian
mechanics is a magnificent achievement in respect of the economy of thought’ ([Mach,
1933, 445]; see [Fraser, 1990] concerning Auguste Comte). We make a marginal note that
Mach’s own history of mechanics participated strongly in the historical fulfillment which
Lagrange placed at the beginning of his work (pp. 1–12) andcarried much further in the
second edition (Mécanique analytique, vol. 1, 1–26).

But the price Lagrange had to pay for this ‘magnificent achievement’ must not be over-
looked. For all its mathematical elegance, described by W.R. Hamilton as ‘a kind of sci-
entific poem’ [Hamilton, 1834, 134], theMéchanique analitique is a physically and philo-
sophicallysterile work, and necessarily so because it claims to be a ‘purely analytical’ me-
chanics. Lagrange contributed very little towards the conceptual development of theoretical
mechanics and its philosophical foundations [Grattan-Guinness, 1990a, vol. 1, 274–301;
Truesdell, 1960].

Lagrange’s attempt to ‘reduce’ mechanics to analysis and thereby to an algebra of power
series strikes us today as a misplaced endeavour to mathematicize almost entirely an em-
pirical science, and thus to endow it with infallibility, which does not stand up to critical
examination. In this sense Jacobi wrote of theMéchanique analitique as follows: ‘because
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of the significance and authority of thebook, one can be led to accept as true and rigorous
things that are not [. . . ] I have hadpupils who understood the analytical mechanics better
than I, but understanding something is not always a good sign’ [Jacobi, 1996, 29].

A ‘good sign’, however, is that a mathematical work can still be read with profit more
than 200 years after its appearance. The mathematician will appreciate the elegance and
methods of the work while the ‘mechanicist’ will admire the achievements of systematiza-
tion and unification. In that sense theMéchanique analitique can lay claim today to be ‘one
of the outstanding landmarks in the history of both mathematics and mechanics’ [Sarton,
1944, 470].
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CHAPTER 17

GASPARD MONGE, GÉOMÉTRIE DESCRIPTIVE,
FIRST EDITION (1795)

Joël Sakarovitch

On the one hand, descriptive geometry is the culmination of a long and slow evolution
of different graphical methods used for representing space. On the other hand, it is the
fruit of the fertile imagination of a talented geometrician, heir to the age of enlightenment,
committed revolutionary, and brilliant teacher. This ambiguous status between art and sci-
ence undoubtedly confers to descriptive geometry both its charm and specificity. And if
the first goal of Monge was a technical one, Michel Chasles was to consider that the ‘New
geometry’ was born with the Monge lectures.

First publication. In Les Séances des écoles normales recueilliées par des sténographes et
revues par des professeurs, Paris, vol. 1, 49–64 (lecture on 1 pluviose Year III, 1795),
278–285 (9 pluviose), 401–413 (21 pluviose); vol. 2, 149–171 (1 ventose), 338–368
(11 ventose); vol. 3, 61–106 (21 ventose), 332–356 (1 germinal); vol. 4, 87–99 (11 ger-
minal), 291–313 (21 germinal); vol. 7, debates, 28–34 (11 pluviose), 63–74 (16 plu-
viose), 144–151 (26 pluviose).

Later editions. All Paris. 2nd (ed. J.N.P. Hachette), Baudouin, 1799. 132 pages. 3rd (ed. and
suppl. Hachette), Courcier, 1811. 4th (ed. B. Brisson), Courcier, 1820. Further reprs.,
inc. in 2 vols., Gauthier–Villars, 1922.

New edition (cited here). InL’Ecole normale de l’an III, Leçons de mathématiques,
Laplace, Lagrange, Monge (ed. J. Dhombres), Paris: Dunod, 1992, 267–459.

English translation of the 2nd ed. Descriptive geometry (trans. F.J. Heather), London:
Lockwood, 1809. [Various reprs.]

Spanish translation of the 2nd ed. Geometria descriptiva, Madrid: Impreso Real, 1803.

German translations. 1) Lehrbuch der darstellende Geometrie (trans. G. Schreiber),
Freiburg: Herder, 1828. 2)Darstellende Geometrie (trans. G. Haussner), Leipzig: En-
gelsmann, 1900 (Ostwalds Klassiker der exacten Wissenschaften, no. 117).

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
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Italian translation of the 4th ed. Trattato della geometria descrittiva (trans J. Corridi),
Florence: Ricordi, 1838.

Russian translation. Nachertatel’nya geometriı̆ (trans. V.F. Gazé, with the collaboration of
T.P. Kraviets, D.I. Kargine and L.M. Loukowskaïa), Moscow: Academy, 1947.

Related articles: Poncelet (§27), von Staudt (§33), Klein (§42).

1 INTRODUCTION

When Gaspard Monge (1746–1818) gave his first set of lectures on descriptive geometry in
Paris in 1795, no one other than himself had any idea what lay behind this title. In Year III
of the revolutionary calendar, Monge succeededin getting descriptivegeometry introduced
as a discipline that future teachers would have to study at the newEcole Normale. He also
made it the supreme discipline of what was to become theEcole Polytechnique by allotting
it half of the lecturing time [Paul, 1980, chs. 2–3]. Yet this discipline was not as new as it
might have appeared. Coming out of the first lecture given by his colleague at theEcole
Normale, J.L. Lagrange exclaimed, ‘I did not know I knew descriptive geometry’ [de La
Gournerie, 1855, 24].

The best way to find out what descriptive geometry is about is to ‘listen’ to Monge
himself, whose words were carefully recorded by shorthand: ‘The purpose of this art is
two-fold. First it allows one to represent three-dimensional objects susceptible of being
rigorously defined on a two-dimensional drawing. [. . . ] Second [. . . ] by taking the descrip-
tion of such objects to its logical conclusion, we can deduce something about their shape
and relative positioning’ (Programme of his lectures).

In the prologue to his twelve lectures, which were to be the starting-point of the interest
of French mathematicians in geometry and of the upheaval mathematics underwent in the
19th century, Monge defined descriptive geometry as an ‘art’. It is a ‘science’ replied in
echo Michel Chasles (1793–1880) in hisAperçu historique sur l’origine et le développe-
ment des méthodes en géométrie before pursuing word for word with the rest of Monge’s
definition [Chasles, 1837, 189]. But at the same time, Chasles refused to admit that by
itself descriptive geometry had the power to demonstrate fundamental geometrical proper-
ties such as whether a curve is planar or not.

This article is dedicated to this ‘science’ that can demonstrate nothing, or this ‘art’
that can be said to have provoked an upheaval in mathematics. Indeed, the two visions
are not incompatible. As a geometrical methodfor depicting space, descriptive geometry
can be seen both as a graphical technique and as a branch of geometryper se. But rather
than attempting to place descriptive geometry between art and science, it is perhaps more
profitable in the first instance to consider it as a language—which is also what Monge
invites us to do. It is ‘a language necessary for the engineer to conceive a project, for
those who are to manage its execution, and finally for the artists who must create the
different components’ (Programme). It is, as it were, a language to speak ‘space in three
dimensions’, at least when space is populated with objects ‘that can be rigorously defined’.
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2 GASPARD MONGE

2.1 Monge at Mézières

By pure chance in 1764, Monge entered through the back door of one of the most pres-
tigious European engineering schools of the second half of the 18th century, theEcole
du Génie at Mézières. Just turned 18 years, his curriculum in a nutshell consisted in bril-
liant studies in Beaune, his native town, and then at Lyon. During the summer of 1764
he effected a survey of Beaune and drew a plan of it. The school’s second in command,
who happened to be visiting the town at the time, commended Monge for this work and
recruited him to work at Mézières.

Little by little, Monge took over all the science teaching at theEcole du Génie. Begin-
ning as an assistant, he eventually replacedthe mathematics professor, the Abbot Bossut,
and from 1770 he took charge also of the physics lectures. In addition, he taught drawing,
perspective and shadowing, as well as stone cutting. In 1775, he earned himself the title of
‘Royal Professor of Mathematics and Physics’.

After having been elected as correspondent of Bossut at the ParisAcadémie des Sciences
in 1772, Monge participated in several sessions of theAcadémie and came in contact with
the Marquis de Condorcet, A.-A. Lavoisier and A.T. Vandermonde among others. Between
1771 and 1780, he presented eight memoirs, five of which were in analysis (essentially
about partial differential equations), and three on differential geometry. Elected ‘Associate
Geometrician’ of theAcadémie in 1780, he left the Mézières school in 1784 and settled
in Paris. More interested at that time in physics and chemistry than in mathematics, he
actively participated in the studies conducted by chemists in Lavoisier’s immediate circle.
Indeed, he succeeded in obtaining the synthesis of a small amount of water shortly after
Lavoisier.

2.2 Monge’s pedagogical projects

Monge committed himself body and soul to the revolutionary cause, and his political views
were to become more radical in the course of the revolution. The Legislative Assembly
elected him Navy Minister immediately after 10 August 1792 (which marks the fall of the
monarchy), but he handed in his resignation eightmonths later. Nevertheless, he continued
to participate actively in the revolutionary movement and the Public Welfare Committee’s
war effort. But his most important ‘revolutionary’ activity had to do with his participation
in the pedagogical debates of the time and their consequences.

Monge was the main architect of theEcole Polytechnique, and the creation of the school
represents his most striking participation in the pedagogical projects of the Revolution. The
school was destined to become the one training place for military and civil engineers and
thus replaced in role theEcole du Génie at Mézières and theEcole des Ponts et Chaussées
in Paris, both of which it emulated to a large extent. However, the number of students could
not be compared with that of its predecessors under theancien régime: nearly from 400
students were recruited in the first year. The Monge lectures we have been left with and
which are discussed below are those that he gave at theEcole Normale. But it is when
looking at the way he organized his teaching at theEcole Polytechnique that we can best
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Figure 1. Monge, sketched by student L.M.J. Atthalin during a lecture at the
Ecole Polytechnique, 1802 or 1803 (Ecole Polytechnique Archives; photograph by

I. Grattan-Guinness).

assess his intentions concerning descriptive geometry. Figure 1 shows him drawn by a
student there in about 1803.

Starting on 1 germinal (21 March 1795), Monge gave 34 lectures, that were abruptly
interrupted on 7 prairial (26 May). On 8 thermidor (26 July), he resumed his lectures on
descriptive geometry as applied to the cutting of wood and stone, perspective and shadow-
ing, all at the fast rhythm of six sessions a ‘decade’ (the ten-day revolutionary week) until
the beginning of year IV (the end of October 1795). After that date, he entrusted his col-
league Jean Nicolas Pierre Hachette (1769–1834) with the full responsibility of teaching
the descriptive geometry course.

As Monge became more and more involved with the politics of Napoleon, he propor-
tionally disengaged himself from the school. From Napoleon’s Italian Campaign in 1797
up until the time that he proclaimed himself Emperor in 1804, Monge was entrusted with
a large number of official missions. He accompanied Napoleon in Egypt and became pre-
sident of the Egyptian Institute. Elected Senator after the coup of 18 brumaire, Napoleon
made him Senator of Liège in 1803, and he was to become President of the Senate from
1806 to 1807. But in the period of the Restoration (1815–1816) he was excluded from the
Académie and died in July 1818.

3 THE SUBJECT MATTER OF MONGE’S LECTURES

The contents of Monge’s lectures are summarised in Table 1. The lectures begin with a
presentation of the conventions used to represent spatial bodies, then continue with a se-
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Table 1. Summary by Lectures of Monge’s book. The dates are given both in the
Revolutionary and normal calendars.

Dates Lects. Pp. Topics

1 pluviose –
1 ventose, Year III
(20 January –
19 February1795)

1–4, pt. 1;
and
debates

72 Programme.
Preliminary considerations, problems about straight
lines and planes.

1, 11 ventose
(19 February,
1 March)

4,
parts 2–5

46 Planes tangent to curved surfaces. Examples of the
use of three-dimensional geometry to solve planar
geometry problems.

21 ventose
(11 March)

6 46 Intersection of curved surfaces and curves of double
curvature.

1 germinal
(21 March)

7 25 Application of surface intersection to the resolution
of various problems: sphere inscribed in a pyramid,
layout of a point from three sightings.

11, 21 germinal
(31 March,
10 April)

8–9 36 Introduction to differential geometry.

1,11,21 floréal
(20, 30 April,
10 May)

10–12 Theory of perspective and shadowing.
[Published by Brisson in his 1820 edition, 138–187.]

ries of solved problems that are sometimes interlaced with more general considerations.
The theoretical part of the course is subdivided into five chapters: ‘Preliminary consid-
erations’, planes tangent to curved surfaces, curves of double curvature, ‘The application
of surface intersection to the resolution of various problems’, and an introduction to dif-
ferential geometry. In addition, he devoted three lectures to the theory of perspective and
shadowing.

3.1 Preliminary considerations

The first part of the course is very revealing of Monge’s general conception of descriptive
geometry, for it starts with a lengthy lecture on the possible ways of characterizing a point
in spacea priori. He points out that only two planes are required in order to plot spatial
objects as long as one introduces the notion of projection as opposed to that of distance as in
analytical geometry. This is where he presentsthe basic principle of descriptive geometry:
given two orthogonal planes, each point in spacecan be defined in terms of its projections
onto these planes. When the two referenceplanes are folded on top of each other, one
obtains on a flat sheet of paper what is known as the ‘projected point diagram’, that is to
say, the two points in the plane that define the point in space (Figure 2).

The projection method indeed allows one to represent polyhedra, the projections of
which are entirely determined by the projections of their vertices. But for non-specific
surfaces, it is necessary to choose an extra convention and provide the method to construct
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Figure 2. The principle of space representation in descriptive geometry: representation of
a point and of a line segment.

the horizontal and vertical projections of two different generators that go through a single
point in that surface. Monge gives a few examples of surfaces that can be defined in this
way (cylinders, cones and revolution surfaces), and then treats the case of the plane in the
same way. He defines the plane like any other surface, the only difference being that the
generators that define it, straight lines, are simpler. This order of presentation was never
used again in later works.

3.2 Tangential surfaces

The first part of the course ends with eight problems about straight lines and planes: tracing
the line perpendicular to a given plane and passing through a given point, tracing a plane
perpendicular to a given line and passing through a given point, and so on. The second
part focuses on tangential planes and the perpendiculars to curved surfaces. Monge natu-
rally begins with the simplest examples: constructing a tangential plane that goes through
a single point of the surface of a cylinder, then a cone. Then he surprises his public and
the reader by determining the distance between two lines and their common perpendicular.
This question is certainly the most interesting problem of elementary descriptive geometry.
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Figure 3. Distance between two straight lines. First, Monge defines the horizontal and
frontal tracing of the plane containing the first given straight line (AB, ab) that is parallel
to the second line (CD, cd). Then he constructs the contact directrix of the cylinder tangent
to this plane, the axis of which is the line (CD, cd). To do this, he defines the projection
(J, i) from any point (Point (C,c) on the diagram) of this axis onto the plane he has traced.
The contact directrix is of course the line—parallel to the axis—that goes through point
(J, i). It cuts line (AB, ab) at a point that belongs to the common perpendicular, which
is therefore completely defined (PN,pn) since its direction is already known. The true
magnitude of the distance between the two lines, which is not traced on the diagram, turns

out to be the true length of segment [PN,pn].

But while it can be resolved by considering only lines and planes and should therefore be
approached in the preceding section, Monge treats it in terms of the definition of a revolu-
tion cylinder of given axis, tangent to a given plane (parallel to this axis). He presents it,
therefore, as the reciprocal of the construction of the plane tangent to a cylinder (Figure 3).

Similarly, this surprising use of auxiliary surfaces allows Monge to deduce two planar
geometry theorems from spatial geometry constructs. In the first instance, he demonstrates
a theorem of Philippe de La Hire (Figure 4). The principle of Monge’s demonstration con-
sists in considering the planar geometry figure as the planar projection of three-dimensional
space volumes. A circle is seen as the projection of a sphere, the two tangents to a circle
as the generators of a cone. This demonstration, one of the most brilliant examples of the
use of three-dimensional geometry to solve a planar geometry problem, brings one di-
rectly to the theory of poles and polars, which will be at the heart of work of J.V. Poncelet
(1788–1867). Monge generalizes this theorem whilst considering any conical shape. Then,
using the same method, he demonstrates the theorem proving (in modern terms) that the
homothety centers which change two by two three circles are on a line.
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Figure 4. ‘Poles and polars’. The chord joining the points where tangents derived from a
given point enter into contact with a circle pass through a fixed point when the point moves
on a given straight line. Conversely, the tangents derived from the points of intersection of
a straight line� and the circle cut one another at a point that moves along a straight line
if � turns around a fixed point. Let� be the plane defined by the straight line� and the
centre of the circleA. Monge considers the sphere centred at pointA with the same radius
as the circle, and the cones of revolution tangent to the sphere whose vertex moves along
the straight line�. The cones and the sphere admit the same tangent planeP , containing
the straight line� (� is a plane of symmetry of the figure and for the rest of the argument
we may only consider the volumes situated ‘above’�). The pointN whereP comes into
contact with the sphere belongs to all the circles of contact between the cones and the
sphere; these circles are always situated on the planes perpendicular to�. If these volumes
are projected onto�, the circles of contact are projected on the chords of the circle which

pass through N projection ofN , thus making it possible to deduce the theorem.
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Figure 5. Plane tangent to a surface
of revolution passing through a given
straight line. Considering the tangent
plane he is looking for, Monge supposes
it to be rotating according to the motion
that generates the surface of revolution.
The straight line, included in the plane
and labeled (BC, bc) in the Figure, will
then generate a rotational hyperboloid.
Monge first shows that the plane tangent
to the first is also tangent to the second
surface of revolution. He then determines
point by point the intersection of the rota-
tional hyperboloid with the frontal plane
that contains the axis of the first surface
of revolution. He finishes off the con-
struction using the tangents common to
the hyperbole so defined and the directrix

of the first surface of revolution.

Monge ends this section with a far more delicate problem: constructing the plane tangent
to a revolution surface passing through a given straight line (Figure 5). This example, like
the one concerning the distance between two straight lines, is very revealing about Monge’s
teaching. It is mainly for him an opportunityto display the gamut of possible auxiliary
surfaces, to show that they are not limited to planes, cones and cylinders.

3.3 Curves of double curvature and differential geometry

The third part of the course focuses on the intersection of curved surfaces and double cur-
vature curves. Monge takes this opportunity to present the method known as the ‘auxiliary
planes’ method. This consists in having a set of planes intervene, the intersection of these
planes with each surface being geometrically defined so that each of the auxiliary planes
allows one to construct one (and possibly more) points along the curve of intersection (see
Figure 6).

Monge then gives several applications of surface intersection. The two following Lec-
tures, which form the fifth part of the course, do not concern descriptive geometry accord-
ing to today’s nomenclature but some of the results that he had published in some of his
memoirs for theAcadémie. In the first of these lectures, appealing to visual and intuitive
comprehension, he presents the notion of the evolute of a planar curve as the generalization
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Figure 6. Intersection of twocones; auxiliary plane method.

of a circle, the involute playing the role of the centre (Figure 7). Conversely, the construc-
tion of the involute starting with the evolute of a planar curve allows him to introduce the
notions of radius of curvature and center of curvature. He defines the polar surface as be-
ing the envelope surface of planes normal to the curve (Figure 7). At this point, Monge
introduces the notion of developable surface and cuspidal edge. He ends this Lecture by
showing that the perpendiculars to a given surface along a curvature line generate a surface
that can be developed.

3.4 Shadowing and perspective

The theoretical section ends with this complement of differential geometry. However, it
does not end the course on descriptive geometry as a whole.

At the Ecole Normale, Monge ended up only giving the lectures on shadowing and
perspective. But at theEcole Polytechnique, he also taught the applications of descriptive
geometry to stone cutting and carpentry, the drawing up of plans and maps, and the tech-
nical drawing of machines and forarchitecture. At the time, descriptive geometry was thus
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Figure 7. Evolute and involute of a curve; radius of curvature of a gauche curve; its polar
surface.

defined in a much broader way than it is today, covering a very large number of subjects
(see Figures 8 and 9 as examples).

4 THE PRINCIPAL AIMS OF MONGE’S COURSE

4.1 Descriptive and practical geometry

Monge never presented descriptive geometry as a new science of which he might be the
founding father. Quite the contrary, he describes it as ‘having been practiced for a great deal
longer [than Analysis] and by many more people’. He even adds that descriptive geometry
having been practiced ‘by men whose time was precious, the (graphical) procedures were
simplified and, instead of considering three planes, one got—thanks to projections—to
only require two planes explicitly’ (p. 312). Thus, contrary to what is later going to be said
against Monge: the minimalist character of the diagram lines used in descriptive geometry
is not the fruit of a mathematician’s theoretical research but stems from the perfecting of
practices over the years. Although he does not cite any names, he is obviously referring to
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Figure 8. The see-through Saint-Gilles ‘Vis’, or spiral staircase. Etched diagram from the
Ecole Polytechnique Archives, files for year III.

the drawings of stone-cutters and carpenters. The privileged ties that descriptive geometry
enjoys with various graphical techniques is made evident by the abundant examples that
he gives in the foundation course, which is constantly enriched by references to diverse
techniques that are likely to use descriptive geometry.

4.2 Descriptive geometry and analysis

Monge also returns on several occasions in his lectures to the analogies that exist between
descriptive geometry and analysis. He already touches upon this theme in the second Lec-
ture: ‘it is not without reason that we are comparing here descriptive geometry and algebra;
the two sciences are very closely related. There is no descriptive geometric construct that
cannot be transposed in terms of Analysis; and when the problem does not involve more
than three unknowns, each analytical operation can be regarded as the script of a play on
the geometrical stage’ (p. 317).

Monge draws the logical conclusion from this analogy and focuses on it on several
occasions: ‘it is desirable that the two sciencesbe cultivated together: descriptive geometry
can bring to the most complicated analytical operations the obviousness that characterizes
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Figure 9. Architectural drawing. From the drawings portfolio of student J.-B.-C. Dalesme
(1812 promotion),Ecole Polytechnique Archives.

it and, in turn, analysis can bring to geometry the trait of generality which is its essence’
(p. 317). In this parallel Monge’s philosophy is best expressed. He indeed tried to put it into
practice at theEcole Polytechnique where he simultaneously taught descriptive geometry
and analysis as applied to geometry (the latter in [Monge, 1795]).

4.3 ‘Properties of surfaces’

‘My aim [. . . ] is to get you acquainted with the properties of surfaces’, declares Monge
on one occasion in a discussion with his students (p. 321). This sentence is probably the
best description of this set of lectures. Several elements are brought together to achieve this
aim.

First it must be noted that the space imparted in Monge’s lectures to the problems of
lines and planes is very limited. Descriptive geometry begins with the manipulation of
surfaces; it is a tool that allows them to be introduced, conceived, used in proofs and rep-
resented.

Faced with the number of solutions that offer themselves, Monge always chooses the
most graphic. Cylinders, cones, spheres or other hyperboloids fill the space, providing
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matter for the speaker to work from, a support for the listener or thereader’s intuition
and a certain substance for the demonstrations which, without them, would have been less
captivating. The subtle play of auxiliary surfaces, which he manipulates with a consummate
art, allows him to turn the problems around and systematically study each problem and
its reciprocal. Determining the distance between two straight lines as the reciprocal of the
problem of determining the plane tangent to a cylinder is one example. But the most superb
illustration of turning the situation around, and the richest from thegeometrical point of
view, is given in the demonstrations in planar geometry that use descriptive geometry.

Another characteristic element of this course is the way in which Monge expresses the
relationship between geometrical reasoning and its graphical translation, its ‘representa-
tion’. For example, in determining the plane tangent to a surface of revolution (Figure 5),
neither the surface nor the tangent plane or the rotating hyperboloid appears explicitly.
Similarly, in determining the distance between two straight lines, the cylinder, which is
present in the demonstration, is totally absent from the projection diagram (Figure 3); the
only element of the surface that has been kept is the one that effectively plays a role, and
that is the contact line.

Being pared down as much as possible, the drawing does not show the objects but
merely the geometrical constructs used in the reasoning, constructs that would have been
drowned and indecipherable had the various surfaces been represented. The projection
diagram in descriptive geometry forces one to choose the elements that are needed for the
geometric proof. ‘The old geometry bristles with diagrams. The reason is simple. Because
there was a lack of general abstract principles, each problem could only be analyzed from
a concrete standpoint, using the very figure that was the object of the problem. It was only
by looking at this figure thatone might discover the elements necessary for the proof or
the solution one sought’, wrotes Chasles. He even adds, much to the reader’s surprise,
‘no one has surpassed Monge in conceiving and doing geometry without using figures’
[Chasles, 1837, 208]. He points here to one of the riches of Monge’s course and highlights
the paradoxical contribution of descriptive geometry.

By the very content of his lectures, Monge therefore goes far beyond the narrow and
relatively restricting framework he had given himself when, in his introduction, he defined
descriptive geometry as a graphical technique. ‘And if there is someone amongst you whose
[. . . ] heart begins to beat, that is it, he is a geometrician’, he declared during one of the de-
bate sessions (p. 321). There is no doubt that his lectures made the heart of many a student
beat, and thereby he transformed a whole generation ofEcole Polytechnique students into
geometers.

5 THE INFLUENCE OF MONGE’S LECTURES

5.1 The reputation of descriptive geometry

The teaching of descriptive geometry developed rapidly. In France, Hachette was to be the
most ardent promoter of the Monge theory, which he taught not only at theEcole Poly-
technique but also at the ParisFaculté des Sciences and at theEcole Normale from 1810
onwards. He also produced new editions of Monge’s lectures, a work that was translated
into several languages, as the publication history above shows.
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In giving a panorama of the history of geometrical methods from antiquity to his time,
J.-L. Coolidge treats descriptive geometry with circumspection. While recognizing its tech-
nical role, he reduces its scientific value to something of little significance: ‘It is hard
to point to important properties of space figures which were first found by the methods
of Monge or which are more easily proved by those methods than by others’ [Coolidge,
1940, 112–113]. This judgement seems rather excessive even if, in the hopes that Monge
had placed in the new discipline that he had created, there was something of a revolutionary
utopia that was soon to disappear.

Certainly, the theorems on the joining of gauche surfaces or on determining the full
shadow separator of the triangular thread screw have neither revolutionized mathematics
nor bowled over mathematicians. Nevertheless, Monge’s lectures played an important part
in the change in mentality that took place at the beginning of the 19th century among
mathematicians. They became aware that ‘Geometry, which had been looked upon for a
century as powerless by itself and having to draw all its resources and acquisitions from
algebra, could on the contrary be a source of general principles and methods as fertile as
those of algebra, that these methods sometimes had certain advantages in allowing one to
penetrate all the way to the origin of truths and lay bare the mysterious chain that links
them to each other’ [Chasles, 1870, 81].

Three essential ideas appear in Monge’s lectures and will be developed afterwards: the
notion of projection and transformation, the modification of the relationship between al-
gebra and geometry, and the implicit use of what Poncelet was to call ‘the principle of
continuity’ (§27.1.2). Let us briefly consider them.

5.2 Projections and transformations

‘When thinking carefully about the main advantage of descriptive geometry and the coor-
dinate method, and reflecting upon why these branches of mathematics seem to be akin to
absolute doctrines, the principles of which are few but related and linked in a necessary
manner and uniform progression, it is not long before one realizes that this is solely due to
the use they make of projection’ [Poncelet, 1822, 28].

At the heart of descriptive geometry is of course the use of the notion of projection in
order to represent points and surfaces from space. But descriptive geometry also allows one
to make ‘the intimate and systematic link between three-dimensional and planar figures’
[Chasles, 1837, 191]. It is in the handling of reciprocal relationships that the true riches
of the notions of projection and geometrical transformation become really apparent. C.J.
Brianchon, followed by Poncelet, would later successfully cultivate this method, which is
one of the hallmarks of the ‘Monge School’.

5.3 Geometrical intuition

The concern and the desire to regain from algebra the terrain thathad hitherto escaped
geometry are constantly present in the various descriptive geometry treatises and theses
of Monge’s successors. Felix Klein, who declares ‘having been raised [. . . ], thanks to
[his] professor, Plücker, in the Monge tradition’, considers that one of the major contri-
butions of this tradition was ‘the application of geometrical intuition to algebra’ (quoted in
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[Taton, 1951, 240]). He even adds inThe Erlangen Programme [Klein, 1872]: ‘One must
not do away with the prescription that a mathematical problem should not be considered
to have been exhaustively examined as long as it has not become intuitively obvious. To
discover something by means of algebra is indeed a very important step, but it is only the
first step’ (compare §42).

5.4 The principle of continuity

The ‘intimate fusion’ [Poncelet, 1822, xx] of two ways of proving a particular property al-
lows one to bring geometrical intuition to the analytical method.But the fact that analytical
demonstrations, established in the case of realelements, extend to cases in which some of
the elements become imaginary, directly leads Monge to admit that associated geometrical
demonstrations must also be extended under the same conditions. In the theorem about
poles and polars (Figure 3), there are two distinct cases to be considereda priori. The
plane tangent to the sphere and including the given straight line only really exists if the
line does not intersect with the given circle. Monge indeed traces both figures but makes
no distinction in the corpus of the demonstration, apparently taking the fact that the tangent
plane might be real or imaginary as negligible and using for the first time the principle of
continuity.

6 CONCLUSION

Created to ‘pull the French nation out of its hitherto dependence on foreign industry’ (Pro-
gramme, 305), descriptive geometry will paradoxically have had more influence in the field
of mathematics than in the technical world—contrary to Coolidge’s assertion.

Descriptive geometry has been two-faceted from the time it was created. It is on the
one hand an entirely new discipline, a ‘revolutionary’ discipline that acquires a name, and
sees its object and place in mathematics defined in Monge’s lectures. It offers an unprece-
dented manner of tackling three-dimensional geometry or, to be more exact, linking planar
geometry with spatial geometry. It is also revolutionary because of the position it can as-
pire to in the school system, in the trainingof the elite as in general technical training.
But it simultaneously appears as the last stage of a tradition that is losing momentum, as
the ultimate perfecting of previous graphical techniques and in that capacity, marks the
endpoint of an evolutionary process as much as the birth of a new branch of geometry. As
such, it can also be viewed as a transition discipline that allowed a gentle evolution to take
place: from the ‘artist engineer’ of the Old Regime, whose training was based on the art
of drawing rather than scientific learning, to the ‘learned engineer’ of the 19th century for
whom mathematics—and algebra in particular—is going to become the main pillar of his
training.
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CHAPTER 18

P.S. LAPLACE, EXPOSITION DU SYSTÈME DU
MONDE, FIRST EDITION (1796);

TRAITÉ DE MÉCANIQUE CÉLESTE
(1799–1823/1827)

I. Grattan-Guinness

TheTraité was an authoritative statement on celestial and planetary mechanics of its time,
and also an important source on several new mathematical methods. TheExposition gave a
non-technical account of the mechanics and related physics, and gained a wide readership
over several editions.

The changes in publisher below indicate commercial successorship; all volumes were
published in Paris. Revolutionary year dates are converted to the normal system.

Exposition du système du monde
First publication. 1st ed. 2 vols., (printed) Cercle-Social, 1796. 314+ 312 pages.

Later editions. 2nd ed. 1799, Duprat. 3rd ed. Courcier, 1808. 4th ed. Courcier, 1814, 1500
copies. 5th ed. Bachelier, 1824. [Repr. asOeuvres, vol. 6, Imprimerie Royale, 1846.]

Sixth edition. Bachelier, 1835, 1000 copies in octavo and quarto formats each. [Posthu-
mous, using the organisational changes envisaged by Laplace. Repr. asOeuvres com-
plètes, vol. 6, Gauthiers–Villars, 1884 (photorepr. Hildesheim: Olms, 1966). Octavo
photorepr. Fayard, 1984.]

Manuscripts. Of 3rd ed.,Bibliothèque de l’Observatoire, Paris.

German translation. Of 1st ed.,Darstellung des Weltsystems (trans. J.K.F. Hauff), 2 vols.,
Frankfurt am Main: Varrentrapp und Wenner, 1797.

English translations. 1) Of 3rd ed.,The system of the world (trans. J. Pond), 2 vols., Lon-
don: Phillips,1809. 2) Of 5th ed.,The system of the world (trans. H. Harte), 2 vols.,
London: Longmans, 1830.

Spanish translation. Of 6th ed.,Breve historia de la astronomia (trans. J. Panfu and
A.B. Besco), Buenos Aires: Espasa-Calpe, 1947.

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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Traité de mécanique céleste

Volume Year Month Publisher Pages Print-run
1 1799 September? Duprat xxxi+ 368 1500
2 1799 September? Duprat 382 1500
3 1802 December? Duprat xxvi+ 303

Supplement 1808 September? Courcier 24
4 1805 May? Courcier xl + 347

Supplement 1 1806 June? Courcier 63
Supplement 2 1807 July? Courcier 78

5 1823–1825 – Bachelier ix + 420 1000
Supplement 1827 ? Bachelier 30

Reprints. Vols. 1–4 and the three supplements: Bachelier, 1829–1839. 350 copies. All
vols. and supplements: asOeuvres, vols. 1–5, Imprimerie Royale, 1843–1846. Also
asOeuvres complètes, vols. 1–5, Gauthiers–Villars, 1878–1882. [Latter ed. photorepr.
Hildesheim: Olms, 1966; vol. 5 repr. New York: Chelsea, 1966, with Bowditch below.]

Photoreprint. Brussels: Culture et Civilisation, 1967.

Manuscripts. Supplement to vol. 5:Bibliothèque de l’Observatoire, Paris, ms. 1520.

German translation. Of vols. 1–2:Mechanik des Himmels (trans. J.C. Burckhardt), 2 vols.,
Berlin: La Garde, 1800–1802.

English translations. 1) Of Book 1:A treatise upon analytical mechanics (trans. J. Toplis),
Nottingham (printed), London: Longmans etc., 1814. 2) Of vol. 1:A treatise of celestial
mechanics (trans. H. Harte), 2 vols., Dublin: Milliken, 1822–1827. [Vol. 1 also London:
Longmans etc.] 3) Of vols. 1–4:Mécanique céleste by P.S. Laplace (trans. N. Bowditch),
4 vols., Boston: Hillardetc., 1829–1839. [Photorepr. asCelestial mechanics, New York:
Chelsea, 1966 (with obituary moved from vol. 4 to vol. 1).]

Related articles. Newton (§5), d’Alembert (§11), Lagrange (§16, §19), Gauss on astron-
omy (§23), Laplace on probability (§24), Lacroix (§20), Green (§30), Cauchy on real-
variable analysis (§25).

1 BACKGROUND

Born into the bourgeoisie in Normandy, Pierre Simon Laplace (1749–1827) exhibited his
mathematical powers early; in his late teens he went to Paris, where he was based for
the rest of his life [Gillispie, 1998]. He gained the attention of Jean d’Alembert and the
Marquis de Condorcet, and began to work in the calculus and differential equations, dif-
ference equations, and aspects of mathematical probability. Soon after gaining election to
the Académie des Sciences in 1773, he became seriously interested in mathematical as-
tronomy, which was to become his dominant concern. By then two major areas of activity
were evident: in celestial mechanics, the fine details of the motions of the heavenly bodies
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as analysed using especially Newton’s laws and allowing for perturbations; and in plan-
etary mechanics the analysis of their shapes,especially that of the Earth following the
demonstration of its oblateness in the 1740s, and consequent topics such as the motion of
the sea and of tides, and the analysis of projectiles. The main tool was the calculus, in-
cluding series, functions, and difference and differential equations, which themselves were
importantly advanced.

These areas were the chief ones in mathematics of the time; in tackling them Laplace
conjoined with the leaders of the mathematical world, not only his mentors but also Leon-
hard Euler (1707–1783) and J.L. Lagrange (1736–1813), the latter then based in Berlin but
to move to Paris in 1787. His relationship with Lagrange seems to have been correct though
rather formal. Unease is evident in his relationship with his younger kinsman Adrian-Marie
Legendre (1752–1833), especially in planetary mechanics and related mathematical meth-
ods.

Between 1770 and 1800 a mass of work was produced in mathematical astronomy and
the calculus by these three men, and some other figures. Lagrange’s main product was his
Méchanique analitique (§16), published in 1788 in Paris though written during his time
in Berlin. Laplace’s contributions mostly appeared as papers, and also in his first book,
Théorie du mouvement et de la figure elliptique des planètes (1784), whose obscurity owes
much to the failure of the editors of his “collected” works to reprint it. The history of these
developments is very complicated and intertwined: many details can be retrieved from the
Bowditch translation listed above. See also [Gautier, 1817; Wilson, 1980, 1985; Grattan-
Guinness, 1990, chs. 4–6; Grant, 1852], and [Taton and Wilson, 1995] for the general
astronomical background.

2 THE EXPOSITION

A major change in everybody’s life was the French Revolution of 1789. Professionally
Laplace gained status when theBureau des Longitudes was formed in 1795 as the national
organisation to assist practical astronomy and navigation; for he was unofficially its leader
until his death. In addition, when theEcole Polytechnique was founded in 1794 as an elite
school for training civil and military engineers Laplace was one of the founding graduation
examiners (with Lagrange as a founding professor of ‘analysis’); and in 1799, during his
brief period under Bonaparte as Minister of the Interior he both urged the formation of a
governing body for the school and became a very influential member of it.

During those years theExposition was published and theTraité de mécanique céleste
started to appear. In his late forties, Laplaceseems to have felt ready to emulate Lagrange
in writing an authoritative account, in his case of mathematical astronomy together with
some new methods in the calculus. The historyof the writing of both works is obscure, but
apparently Laplace avoided the chaos following the Revolution by “disappearing” from
public life: he sent a copy of theExposition to the Swiss physicist George Lesage in 1797,
and with striking frankness described it as ‘the fruit of my retreat into the country, for the
duration of this unhappy revolutionary government which has cost such tears for the true
friends of France and of humanity’ [Grattan-Guinness, 1990, 1281].

The Exposition had appeared in two volumes in 1796 (Table 1); I cite it by Book and
chapter number as ‘N#M’. The first two Books were descriptive of astronomical phenom-
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Table 1. Contents ofExposition, 1st edition (1796)

Book; chs. Pages ‘Title’

1; 14 vol. 1, 9–168 ‘On the apparent motions of celestial bodies’.
2; 7 vol. 1, 169–237 ‘On the real motions of celestial bodies’.
3; 5 vol. 1, 238–314 ‘On the laws of motion’.
4; 15 vol. 2, 5–198 ‘On the theory of universal gravity’.
5; 6 vol. 2, 199–312 ‘Precis of the history of astronomy’.

ena, indicating cause in at most a general way. Then in Book 3 Laplace reviewed the main
principles of mechanics that he wished to deploy. In Book 4 he worked through much of
the material again in a somewhat more technical manner (for example, tides in 1#13 and
4#10). However, no formulas were given—and also no diagrams, surely another sign of
influence from Lagrange, who felt that their use compromised the rigour and generality of
theories (§16.2). There were also no references, though scientists were named quite fre-
quently. Data were often given: Laplace used the centesimal division of the quadrant into
degrees and decimal division of the day (10 hours, 10 minutes, 100 seconds), but rendered
distances in terms of the toise.

Laplace wished to derive celestial mechanics from the law of universal gravitation with
Newton’s inverse-square law of attraction. However, Newton’s laws and notions were not
given the prominence that might be expected: instead Laplace exhibited the frequent Con-
tinental preferences, especially in Lagrange’s mechanics, for d’Alembert’s principle and
those of least action and virtual velocities (3#2). In a striking passage he chose ‘force’ to
name (mass× velocity), distinguished from ‘accelerative force’ and ‘motive force’.

Most of Book 5 was devoted to the history of astronomy, from ancient to recent times.
As history it is derivative—Laplace might have been advised by his colleague J.B.J. De-
lambre (1749–1822)—but its existence at all is very striking. In the final chapter he put
forward a suggestion which has unfortunately eclipsed much of his other work despite
his clear warning of its speculative character: the ‘nebular hypothesis’, that the Sun had
been enveloped in a vast hot atmosphere that had condensed and cooled down to form
fluid annuli, which in turn condensed into planets; satellites were formed similarly from
the planets’ own atmospheres. Comets were also so formed, but the large eccentricities of
their orbits led most of them to extinction or absorption. Finally, distant light came from
stars, clumped together in milliards in variousparts of the Universe (5#6). He was an enthu-
siast for atmospheres, claiming that all planets possessed them although those with weaker
gravities may lose them (4#9). Further considerations about the immensity of the Universe
included a striking sentence that even hinted towards black holes (vol. 2, 305).

As the publication history show, the book was soon rendered into German, and
there were five later French editions. Laplace changed or updated the text in places
[Eisenstaedt, 1991]; for example, the nebular hypothesis ended up as a final appendixed
note, and free from black holes. Most changes occurred in Book 4; the most substantial
one is noted in section 9 below. But the design in five Books remained, often with little
change of text. Somewhat eccentrically he also maintained the decimal measures, although
the toise gave way to the metre after its introduction in 1799.
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The existence of the later editions reflectsits success; it is nicely written, although the
general readers for whom it seems to have been intended would well have been tested. But
the elite received a short summary, prepared by the engineer (and professor at theEcole
Polytechnique) G. Riche de Prony (1755–1843) for theInstitut de France [de Prony, 1801],
and two years later a course in astronomy started at that school with theExposition as the
set book.

3 THE ‘FIRST PART’ OFMÉCANIQUE CÉLESTE, 1799

At one point in theExposition Laplace mentioned that theMécanique céleste was written
and would be published (vol. 2, 7). It appeared in 1799 in two volumes, constituting its
‘First Part’ and beginning with a very detailed table of their contents. The importance of
the publication was expressed by publisher Duprat in a most singular way: all the sheets
of paper used carried ‘MECANIQUE CELESTE’ as their watermark on the bottom. (The
1840s ‘national’ edition of his works wasto offer a similar homage, with ‘OEUVRES DE

LAPLACE’ and ‘LOI DU 15 JUIN 1842’ on alternating sheets.) As with theExposition (and
also his first book of 1784), the volumes were rendered into German in the early 1800s; and
a French summary was produced, this time by his follower J.B. Biot (1774–1862) [Biot,
1802]. Two further volumes appeared in 1802 and 1805, not so honourably watermarked.

As with theExposition, decimal measures were used (but now including the metre);
with an exception to be noted in section 7, no diagrams were furnished; and many data
were given, often calculated by Aléxis Bouvard, Laplace’s assistant at theBureau. By con-
trast, mathematics was everywhere, often fearfully: Bowditch memorably remarked that
‘Whenever I meet in La Place with the words “Thus it plainly appears”, I am sure that
hours, and perhaps days, of hard study will alone enable me to discoverhow it plainly ap-
pears’ (vol. 4, 62 of obituary). Unlike the earlier work, very few references were provided;
Isaac Todhunter wittily surmised that Laplace ‘supposedthe erudition of his contempo-
raries would be sufficient to prevent them from ascribing to himself more than was justly
due’ [Todhunter, 1861, x–xi]. I cite the work by Book and article number, again in the form
‘N#M’.

Table 2 shows the great ambition of the work: for example, the perturbations of the
satellites of Jupiter (8#11–15), and attention in variousplaces to Uranus, which had been
identified only in 1781. However, the column of page numbers indicates that several chap-
ters were very short. Only a severe selection of features and points can be made here;
several more appear in [Todhunter, 1873, chs. 28–34].

4 MÉCANIQUE CÉLESTE, THE CELESTIAL VOLUME 1

The opening is odd in one respect. Laplace spoke of ‘force’ disturbing bodies from equi-
librium, and seemed to mean (mass× acceleration); but (mass× velocity) was introduced
in 1#5, and the various relationships rehearsed again in 1#24.

An important early theorem was silently obtained from a posthumous paper of 1793 by
Euler on the linear combination of torques. Laplace used it and the theorem of conservation
of areas to claim the existence of the ‘invariable’ plane of the planetary system, defined by
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Table 2. Contents ofMécanique céleste, volumes 1–4 (1799–1805). The original first
page numbers of chapters are given; quotations come from Bowditch.

Chs., arts. Page ‘Titles’ and topics
Part 1, Volume 1 ‘General theories of the motions and figures of the heavenly bodies’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Book 1 ‘On the general laws of equilibrium and motion’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1, 1–3 3 Equilibrium and composition for forces on a point.
2, 4–12 14 ‘On the motion of a material point’.
3, 13–16 36 ‘On the equilibrium of a system of bodies’.
4, 17 47 ‘On the equilibrium of fluids’.
5, 18–23 50 ‘General principles of the motion of a system of bodies’.
6, 24 65 ‘Motion of a system of bodies’; force and velocity.
7, 25–31 70 Motions of any solid body; rotation, axes.
8, 32–37 91 ‘On the motion of fluids’; incompressibility; earth’s atmosphere.
Book 2 Law of gravitation; motions of ‘centres of gravity of the heavenly

bodies’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1, 1–6 111 ‘The law of universal gravity deduced from observation’.
2, 7–15 124 Differential equations for motion of a system of bodies; sphere,

cylinder.
3, 16–25 154 ‘First approximation’ to these motion; ‘elliptical motion’.
4, 25–39 190 ‘Determination of the elements of the elliptical motion’.
5, 40–45 235 Methods of finding motions, ‘bysuccessive approximations’.
6, 46–52 254 ‘Second approximation’ to motions; ‘perturbations’.
7, 53–62 286 ‘Secular inequalities’ of the motions; eccentricities and perihelia.
8, 63–73 321 ‘Second method of approximation’ to motions. [End 368.]
Volume 2, Book 3 ‘On the figures of the heavenly bodies’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1, 1–7 3 ‘Attractions of homogeneous spheroids’ with second-order surfaces.
2, 8–17 23 ‘Development’ of attraction in an infinite series; harmonic analysis.
3, 18–21 50 ‘Figure’ of rotating homogeneous fluid in equilibrium.
4, 22–37 63 Figure of nearly spherical spheroid covered by fluid in equilibrium.
5, 38–43 109 Comparison of theory with observations.
6, 44–46 155 ‘On the figure of the ring of Saturn’.
7, 47 167 ‘On the figure of the atmospheres of the heavenly bodies’.
Book 4 ‘On the oscillations of the sea and atmosphere’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1, 1–12 171 ‘Theory of the ebb and flow of the sea’.
2, 13–14 204 ‘Stability of the equilibrium of the sea’; density relations.
3, 15–20 212 ‘Ebb and flow’ of the tides in ports.
4, 21–43 233 Comparison of theory with observations.
5, 44 294 ‘On the oscillations of the atmosphere’.
Book 5 ‘Motions of the heavenly bodies about their own centres of gravity’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1, 1–14 299 Earth; differential equations, equinoxes; effect of the sea, inclination

of axis.
2, 15–19 356 Moon; libration; ‘motions of the nodes’.
3, 20–22 373 Rings of Saturn; differential equations; also Uranus. [End 382.]
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Table 2. (Continued)

Chs., arts. Page ‘Titles’ and topics
Part 2, Volume 3 ‘Particular theories of the motions of the heavenly bodies’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Book 6 ‘Theory of the planetary motions’; short preface.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1, 1–11 5 Inequalities depending on powers of eccentricities and inclinations

> 2.
2, 12–18 33 ‘Inequalities depending on the square of the disturbing force’.
3, 18′ 55 ‘Perturbations depending on the ellipticity of the Sun’.
4, 19 58 Perturbations of planets because of ‘the action of their satellites’.
5, 20 60 ‘Elliptical part of the radius vector’; mean motion of a planet.
6, 21–23 61 Numerical values of quantities in planetary inequalities.
7, 24–26 86 Numerical values of secular variations of planetary orbits.
8–9, 27–28 95 ‘Theory of’ Mercury, Venus.
10, 29–31 103 ‘Theory of the Earth’s motion’.
11–14, 115 ‘Theory of’ Mars, Jupiter, Saturn, Uranus.
32–38
15, 39–42 147 ‘Equations of condition’ for inequalities to verify numerical values.
16, 44 156 ‘On the masses of the planets and Moon’.
17, 45–46 162 Astronomical tables, and the invariable plane of our system.
18, 47 164 Effects of the fixed stars upon our system.
Book 7 169 ‘Theory of the Moon’; short preface.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1, 1–19 181 Integration of the differential equation of its motion; numerical

values.
2, 20–21 250 Lunar inequalities due to oblateness of Earth and Moon.
3, 22 263 Lunar inequalities due action of the planets.
4, 23–25 273 Comparison of theory with observations.
5, 27–28 289 Apparent long-period lunar inequality.
6, 29–30 296 Secular variations of Moon and Earth maybe due to the Sun.

[End 303.]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supp., 1–5 24 pp. On Poisson’s analysis of second-order perturbations.
Volume 4 General preface, especially on motions of the satellites.
Book 8 ‘Theory of the satellites of Jupiter, Saturn and Uranus’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1, 1–2 2 Satellites of Jupiter.
2, 3–5 8 Inequalities of these satellites depending upon eccentricities and

inclinations.
3, 6–8 20 Inequalities of satellites depending upon eccentricities of orbits.
4, 9–11 32 Inequalities of satellites in latitude.
5, 12–13 50 Inequalities depending upon squares and products of eccentricities

and inclinations.
6, 14–19 59 Inequalities depending upon the square of disturbing force.
7, 20–25 83 ‘Numerical values of the preceding inequalities’.
8, 26 105 ‘On the duration of the eclipse of any satellite’.
9, 27 121 ‘Masses of the satellites, and oblateness of Jupiter’.
10, 28 127 Eccentricities and inclinations of orbits of satellites.
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Table 2. (Continued)

Chs., arts. Page ‘Titles’ and topics
11–15, 135 Motions of the satellites of Jupiter.
29–33
16, 34 169 ‘On the duration of the eclipses of the satellites’.
17, 35–37 173 ‘On the satellites of Saturn’; positions in plane of ring.
18, 38 190 ‘On the satellites of Uranus’.
Book 9 ‘Theory of comets’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1, 1–9 194 General theory of their perturbations.
2, 10–13 216 Perturbations when comet ‘approaches very near to a planet’.
3, 14 229 Their masses, and ‘action upon the planets’.
Book 10 ‘On several subjects relative to the system of the World’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1, 1–10 231 ‘On astronomical refractions’; differential equation.
2, 11 277 ‘On terrestrial refractions’.
3, 12–13 282 Extinction of a planet’s light in Earth’s atmosphere.
4, 14 289 ‘On the measure of heights by a barometer’.
5, 15–16 294 ‘On the descent of bodies which fall from a great height’.
6, 17 306 Special cases of many-body problem.
7, 18–22 313 Motions of planets and comets affected by traversed medium, ‘or by

the successive transmission of gravity’.
8, 23–24 327 ‘Supplement to the theories of planets’; Jupiter, Saturn, Moon.

[End 347.]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supp.1, 65 pp. ‘Capillary attraction’: shape of meniscus; fluid between tubes or

planes; comparison with observations.1–16
Supp.2 80 pp. ‘Fundamental equation’ again; adhesion of fluids; shape of blob of

mercury.

the condition that the angular momentum ofthe system was maximal along its normal
(1#21–22). In 1830 Louis Poinsot was to criticise the analysis for neglecting the areas
created by the rotation of satellites about their planets, and of the planets about their own
axes.

Book 2 was mainly devoted to the motions of the planets about the Sun; Laplace started
with two-body problems, yielding elliptical orbits for planets though more complicated for
comets (2#16–39). Then as the ‘second approximation’ he considered the inter-planetary
perturbations and analysed their ‘secular inequalities’ (that is, the perturbations which did
not depend upon the mutual configuration of therelevant heavenly bodies). Although the
configuration required only trigonometry in the invariable plane for expression, Newton’s
inverse square law caused some horrible expressions in the astronomical variables; so in
the late 1740s Euler had made the wonderful simplification of converting them into infinite
trigonometric series in multiples of the relevant angles [Wilson, 1980]. (They resemble
Fourier series but have a quite different theory.) This procedure became normal especially
for French astronomy, with Lagrange and then Laplace, who gave the basic details in 2#46–
52. One ground for Laplace’s support of them seemto have been his belief that periodic
forces produce periodic effects (explicitlyin 13#1), and therefore needed periodic func-
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tions in the mathematics. To solve the system of associated differential equations he often
deployed a method of ‘successive approximations’ (2#40–45).

A further major question was to prove that the planetary system was stable, which
then meant that the eccentricities and inclinations of the orbit of each planet were strictly
bounded, to that it would neither go out of finite bounds within the ecliptic nor fly out of
that plane. By a brilliant transformation of variables Lagrange had tackled this problem
in 1778 as the motion of many point-masses (§16); modifying the analysis somewhat to
fit the planetary system, Laplace summarised the findings in 2#55–62. Mathematically the
task is demonstrate the reality of the latent roots and latent vectors of matrices linked to
the eccentricities and inclinations of the planets’ orbits; however, not only is this manner
of expression historically anachronistic, but the stability problem itself was crucial in the
development of the spectral theory in the first place [Hawkins, 1975]. By analysing the
quadratic forms that we would associate with these matrices Lagrange and Laplace found
profound but not conclusive results.

Another important perturbation was the apparent resonance in the mean motions of
Jupiter and Saturn, and of three of Jupiter’s satellites. Pioneering the analysis of perturba-
tion terms in powers of eccentricity and/or inclination, Laplace’s studies of the mid 1780s
had been among his early successes [Wilson, 1985], and he summarised his and Lagrange’s
findings in 1#65–72.

5 MÉCANIQUE CÉLESTE, THE PLANETARY VOLUME 2

In Book 3 Laplace turned to questions concerning the shape of the planets, especially the
Earth. He took the potential

∫
B
ρ dv/r of bodyB with densityρ at pointw distantr from

the attracted point, showed that it satisfied Laplace’s equation, and when set in spherical
polar co-ordinates he solved it by spherical harmonics. The language here is modern, and
Laplace’s presentation (in other terms) is familiar (3#1–17) apart from the names (not even
Laplace would have referred to ‘Laplace’s equation’!); but in fact it was anearly account
of the theory, which he had done much to develop since the 1770s. Again there had been
competition, this time mainly from Legendre [Todhunter, 1873, chs. 19–28]; indeed, the
‘Legendre functions’ in the harmonics were known (following William Whewell) during
the 19th century as ‘Laplace coefficients’. Laplace used the power-series expansion (as-
sumed to be convergent) and the generating function, orthogonality, and the expansion of
“any” function in an infinite series of the functions; the associated function occasionally
appeared. The indexes were usually integral, when the functions were polynomial. For
some reason (his attitude to Legendre?) he did not use elliptic integrals.

For mechanics Laplace naturally focused upon the nearly spherical spheroid, and han-
dled its ellipticity by means similar to his method of successive approximations (3#33). His
first application was to determine the ‘figure’ of a homogeneous fluid of constant thickness
covering it and rotating in equilibrium (3#22–37). Much of the analysis dealt with ‘level
surfaces’ (Colin MacLaurin’s name for equipotentials).

To compare his findings with available data for the Earth, Laplace gave statistics a rare
airing in theMécanique céleste, refining earlier studies by R.J. Boscovich (3#39–40). Ac-
cording to theory, the lengthl(θ) of the meridian for a degree of arc at latitudeθ◦ was
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proportional to sin2θ ; so he formed the error expression

E(θ) := l(θ)−Asin2 θ − l(0), (1)

whereA was related to ellipticity in a known way.Should the observations be exact, then
E(θ) = 0; but life was never so kind. Hence he proposed to take the available data at
latitudesθj determined from data of range(nj /2)◦ each side, and calculateA from (1) by
the criteria that ∑

j

nj l(θj )= 0 and
∑
j

∣∣nj l(θj )∣∣ be minimal. (2)

Comparison with the evidence was not too encouraging (3#41–43).
Book 4 was devoted to the closely relatedtopic of sea-flow, where in earlier work

Laplace had pioneered a dynamic analysis, with trigonometric series well to the fore. It
rested on distinguishing three different periodicities: one monthly and partly annual, and
due to the orbit of the Earth; one diurnal, and caused by its rotation; and one semi-diurnal,
largely blamed upon the Moon (4#5–9). Comparison with data again led to discrepancy,
especially for the port of Brest, which had been well studied for the length and heights of
its tides (4#23); but he discussed in detail the difference between tides in syzygy and in
quadrature with Sun and Moon (4#22–42).

In Book 5 of this volume Laplace briefly analysed lunar librations and the motions of
its nodes (5#15–19). The main attack on the Moon would come later; the motivation here
was to consider effects of the rotation of a body about its centre of gravity, the subject
of this Book. He followed with the potential of the ‘ring’ of Saturn [Cooke, 1984, 66–74].
Relying upon observations that claimed it actually to be two concentric rings, he concluded
that each one was a ellipse with small thicknessrotating at its own angular velocity, and that
its material was not distributed uniformly so that its centre of gravity did not coincide with
that of the planet (3#44–46). The latter finding led him later in the volume to analyse the
motion of the rings about their centres (5#20–22). Finally here he analysed the (assumedly
solid) Earth, where he handled the precession and nutation of the polar axis by means of
Euler’s equations for the rotation of such a body about a point; he deduced that the effects
of the sea as a stratum, and of winds, could be ignored (5#12–14).

6 MÉCANIQUE CÉLESTE, THE NUMERICAL BOOKS 6–9

The last two volumes appeared in 1802 and 1805, constituting the ‘Second Part’ of the
work. Laplace dealt with the ‘Particular theories’ of the motions after the generalities and
principles just expounded; but the final Book 10 dealt with various other topics, and so will
be noted in the next section.

Table 2 shows the remarkable panoply of inequalities and perturbations that Laplace
presented in these Books; they were also the venue for the longest trigonometric series,
with coefficients calculated to many decimal places (for example, 6#33 on Jupiter, includ-
ing values for 1950 as well as for 1750). Often these values were small, and a frequent
concern in the analyses was to determine upper bounds for terms containing various pow-
ers of eccentricity and/or inclination. Mathematical novelties occurred much less often;
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but, for example, he explained the role of ‘generating functions’ to approximate to the
elements of the path of a comet (9#5).

The largest single theoretical effort was given over to lunar theory, to which Book 7
was devoted. Various methods had been introduced during the 18th century to analysis
the many perceived perturbations of this nearby object; Laplace principally favoured one
due to d’Alembert in which time was set as a function of the Moon’s true longitude in
the ecliptic, not vice versa. The equations took the form of integral–differential, then un-
usual (7#1); after finding solutions Laplace desimplified them by introducing knowingly
neglected factors such as the effect of theaction of the Sun and of the Earth’s eccentric-
ity upon the Moon’s secular acceleration (7#10, 16). In his analysis of lunar parallax he
allowed for the oblateness of the Earth (7#20–21). He claimed good correspondence with
certain observational data, such as the lunar perigee (7#16).

Another subject of especial difficulty was the theory of comets. In Book 2 Laplace
had conducted a preliminary analysis in which all conic sections were permitted as paths
(2#23); now in Book 9 he again approximated by taking the path to benearly elliptic and
using generating functions to effect quadratures. The analysis is exceptionally laborious, a
point to be considered in the last section below.

7 MÉCANIQUE CÉLESTE, THE MISCELLANEOUS BOOK 10

Some of the material here could have been presented earlier, and may have constituted
afterthoughts or late news. For example, Laplace analysed the path of a projectile falling
to Earth from a great height; a striking feature of this use of Newton’s second law is his
allowance for the rotation of the Earth, where he included components of the force named
now after his successor G.G. Coriolis (10#15–16). One motivation for this excursion into
the stratosphere may have been recent French experience of meteorites; Laplace had won-
dered if they were rocks detached from the Moon, and around 1800 Biot and S.D. Poisson
(1781–1840) had examined the consequences [Grattan-Guinness, 1990, 388–400].

Another speculation concerned one of Newton’s greatest mysteries:how does that grav-
itational force pass between bodies? Laplace presumed that ‘the successive transmission
of gravity’ was carried by an elastic aether, and thereby analysable by the usual equations;
by making assumptions about the (minute) loss of mass by the Sun caused by the attrac-
tions, he found the velocity to be ‘about seven millions of times greater than that of light’
(10#22).

The major feature of this Book was its attention to physics. This analysis of gravitational
involved light from the Sun, and the first and largest part of the Book was an analysis of
atmospheric refraction, an exercise in small effects partly motivated by the ever-improving
accuracy of astronomical instruments. Adopting a form of Newton’s optics, that light was
composed of tiny fast-moving bullets, Laplaceconstrued refraction to be caused by inter-
action with the molecular constituents of the atmosphere by central forces, whose action
function f was known only to decline very rapidlyas distance from source increased.
Such cumulative actionC among molecules was expressed as an integral involvingf ; the
motion was analysed as a differential equation withC among the coefficients. The con-
stitution of the refracting atmosphere had also to be considered; Laplace suggested four
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density functions of altitude (10#1–7). He contented himself with some special cases and
results.

However, much greater ambition attended Laplace’s analysis of the use of the barometer.
In the Book he only related atmospheric pressure to density (10#14); but soon afterwards
he subjected the analysis of the meniscus to an intense molecularist analysis. It appeared
in various papers and especially two supplements to this volume, published in 1806 and
1807 and at 145 pages longer than several of the Books. Uniquely in the entire work, the
first supplement caused several diagrams.

In the first supplement Laplace explained themeniscus in the capillary tubes of barom-
eters and thermometers in terms of action between the molecules of the fluid contained
therein and those in the surrounding glass; in particular, the closer the fluid to the glass, the
stronger the attracting force. Using integrals again to express such cumulative action, he
found a foul differential equation for the shape of the meniscus, to be solved by successive
approximations (supp.1#1–5). He also analysed the shape of fluid trapped between two
glass tubes or between planes (supp.1#6–8). Experimental data on these and other cases,
some obtained at his request, were again not very encouraging (supp.1#15–16). In the sec-
ond supplement he re-derived the basic differential equation, considered the capacity of the
surface of and fluid to bear weight, and especially studied the shape of a blob of mercury
in equilibrium on a horizontal plane.

8 IMMEDIATE INFLUENCE

In these supplements Laplace had moved far away from orthodox celestial mechanics,
though still within the general concerns of planetary mechanics; but he had permanently
changed the balance of his interests. During the 1800s he and the chemist Claude Berthollet
led an unofficial but influential school of physicists and chemists, especially bright young
graduates of theEcole Polytechnique, where molecular modelling was the dominant ap-
proach [Fox, 1974]. Physics and chemistry dominated over mathematics, but Laplace and
his loyal follower Poisson mathematicised phenomena in terms of integrals with integrands
containingf [Grattan-Guinness, 1990, ch. 8]. Optics was the most successful area, with
Etienne Malus the most notable contributor; heat diffusion also fell under the sway (§26.8).

In addition during the later 1800s, Laplacerevived an earlier concern with probability
and mathematical statistics. Including a somewhat unpleasant priority dispute over least
squares regression mainly between Legendre and C.F. Gauss (1777–1855) around 1810, it
culminated with his great treatise of 1812 and theExposition-like summary of 1814 (§24).

However, Laplace still attended to celestial mechanics, especially because of Poisson.
Most of Laplace’s analysis of perturbations in theMécanique céleste had been executed
to the first order in the planetary masses; but he had examined second-order terms occa-
sionally (especially 3#12–18), and in 1807 Poisson examined them in general. The main
consequence of the work was ‘Lagrange–Poisson brackets’ theory of canonical solutions to
the equations of motion, which was quickly produced by these two men [Grattan-Guinness,
1990, 371–386]. In a short supplement to volume 3 of theMécanique céleste published in
1808, Laplace praised Poisson’s finding that the stability of the planetary system was in-
deed not endangered by these effects.
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Laplace’s achievements were prominent ina report on the progress of science since
1789 written by Delambre in 1808 for Emperor Napoléon [Delambre, 1810]; and two years
laterMécanique céleste won, probably easily, a prize in 1810 of theInstitut de France for
the best work of the decade in astronomy and mechanics. It had also begun to have impact
in other countries, especially Britain: not only were translations made or started (as listed
above), but British mathematicians had begun to transfer allegiance from Newton’s flux-
ional calculus to Leibniz’s differential version (§4) and Lagrange’s algebraic alternative
(§19), and interest inMécanique céleste was the main single cause [Guicciardini, 1989,
pt. 3]. Various commentaries began to appear; Thomas Young gave someElementary il-
lustrations (1821) of Book 1 in the form of a free translation rather swamped by his own
opinions; Mary Somerville produced her much appreciated summaryMechanism of the
heavens (1831); and above all for everybody, including the French, was Bowditch’s Amer-
ican translation/edition of volumes 1–4 (1829–1839), still the most informative version.

9 MÉCANIQUE CÉLESTE, THE MISCELLANEOUS VOLUME 5

Laplace’s molecular physics wasnot followed by more successful practitioners of math-
ematical physics: Fourier on heat diffusion (§26) from the late 1800s, and A.J. Fresnel
in optics from the mid 1810s. For the fourth edition (1814) of theExposition Laplace had
added a long new chapter on molecularism; but he omitted it (and two others) from the fifth
(1824), promising a separate book which however was never written and maybe not really
envisaged. Indeed, at his death he was planning the sixth edition with the omitted chapters
reinstated; this decision was fulfilled upon its posthumous appearance in 1835 under the
guidance of his son. Confusingly, theOeuvres edition of 1846 has the fifth edition, but the
Oeuvres complètes of 1884 takes the sixth.

Laplace’s interest in celestial mechanics revived in the 1820s, especially when he pub-
lished the fifth and final volume of theMécanique céleste in six fascicules between 1823
and 1825, with a posthumous supplement in 1827. Once again most of the material had
appeared over the years in papers. As Table 3 shows, he elaborated upon a wide variety
of the concerns of the earlier volumes (though with some inconsistency in the numbering
of Sections). The basic approach was left intact, though with additions such as the loss
of gravitational attraction between two bodies when a third one interposed (16#6). Some
revisions were inspired by others’ work; for example, the rotation of the Earth in view of
contributions made by Poisson (14#2–3). The interest in heat diffusion showed in a discus-
sion of the cooling and the age of the Earth (11#9–10); and in the velocity of sound, which
for Laplace depended upon the specific heats of air (12#7). His increased involvement with
probability and mathematical statistics is evident in several forays: for example, the tides,
where he used a method similar to that described in section 5 above (13#5), and the proba-
bility of the existence of a ‘lunar atmospheric tide’ (13#ch.6; and supp#5, his last piece of
work). He also fulfilled an aim manifest already in theExposition of writing at some length
on the history of astronomy; indeed, in 1821 he had pre-published the historical Book 5 of
the fifth (1824) edition of theExposition as a separatePrécis.

The fifth volume of theMécanique céleste made less impact than its predecessors; per-
haps one reason was Bowditch’s failure to fulfil his intention of translating it. But an-
other cause may lie in the reception of the tendency in celestial mechanics which Laplace
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Table 3. Contents ofMécanique céleste, volume 5 (1823–1827). The second column
gives either the month of the date of publication of a Book or the original first page

number of a chapter.

Ch., arts. Date/pp. Topics
Book 11 3.1823 ‘On the figure and rotation of the Earth’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1, 1 2 Historical notice of work by ‘geometers’ on celestial mechanics.
2, 2–7 22 ‘On the figure of the Earth’.
3, 8 57 ‘On the axis of rotation of the Earth’.
4, 9–10 72 ‘On the heat of the Earth’ and reduction of the day by cooling.

Book 12 4.1823 ‘On the attraction and the repulsion of spheres, and on the laws
of equilibrium and on the motion of elastic fluids’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1, 1 87 ‘Historical notice of researchesby geometers on this subject’.
2, 2–6 100 Attraction of spheres, and repulsion of elastic fluids.
3, 7–12 119 Speed of sound, motion of elastic fluids and of aqueous vapour.

Book 13 2.1824 ‘On the oscillations of fluids which cover the planets’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1, 1 145 Historical notice, especially the ‘ebb and flow of the sea’.
2, 2–4 168 New researches on the theory of seas.
3, 5–11 183 Comparison of analysis with observations of height of seas.
4, 12 213 Ditto with ‘hours and intervals of the seas’.
5, 13 221 On partial flows of nearly daily period.
6, – 230 On partial flows depending upon (lunar distance)−4.
7, 1–2 237 Flow of the atmosphere; remarks on vol. 1, p. 115.

Book 14 7.1824 ‘On the motions of the celestial bodies about their centres of
gravity’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1, 1–4 245 Precession of equinoxes: historicalnotice; formulae for terrestrial
equator.

2, 5–6 278 Libration of the Moon: historical notice; remarks.
3, – 288 Rings of Saturn; historical notice.

Book 15 12.1824 ‘On the motion of planets and of comets’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1, 1 293 Historical notice.
2, 2–5 328 Varia from Book 2: series; Jupiter-Saturn inequality; orbits of

comets.

Book 16 8.1825? ‘On the motion of satellites’.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1, 1 349 Lunar motion; historical notice.
2, 2–3 367 ‘On the lunar theory of Newton’.
3, 4–5 381 On long-period inequalities depending upon the difference

between two terrestrial hemispheres; lunar inequalities.
4, 6 401 ‘On the law of universal attraction’.
5, 7 408 ‘On the motions of the satellites of Jupiter’; historical notice.
6, 8 415 ‘Influence of great inequalities of Jupiter on the motions of its

satellites.
7, 9 417 ‘On the satellites of Saturn and of Uranus’. [End 420.]

Supp., 1–835 pp. 1827To Books 11, 13 and 15: series expansions; lunar atmosphere.
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favoured. We saw in section 4 that, followingEuler and Lagrange, he preferred the use
of trigonometric series to express perturbations and other phenomena. After him the prac-
tice was continued by several compatriots,especially Biot and Poisson, then G. de Pon-
técoulant (the author of his own large treatise,Théorie analytique du système du monde
in four volumes, 1829–1846), and then Urban Leverrier and Charles Delauney. But when
one considers, for example, the latter’s lunar theory of the 1860s, where the astronomical
variables are expressed in series of literally hundreds of terms, and literally hundreds of
pages are needed to analyse their respective orders of magnitude—then one may wonder if
such ‘exactness’ (a favourite Laplace word) was the best way forward.

This question seems to have been in German minds. At all events, they adopted an
alternative strategy: the phenomena are too complicated to handle ‘exactly’; so accept ap-
proximation and proffer compact feasible methods. Two years beforeMécanique céleste
appeared Wilhelm Olbers had given a nice means of approximating to the paths of comets
which contrasts strongly with Laplace’s lucubrations mentioned in section 6. Soon after-
wards Gauss used a method of this kind to analyse the motion of the recently discovered
minor planets, and then of all heavenly bodies [Gauss, 1809], including his treatment of
planetary motions (§23) noted in section 8 in connection with including least squares. In
1834, as a sign of the times for students of celestial mechanics, Bowditch rehearsed both
Olbers’s and Gauss’s contributions in a long appendix to his translation of volume 3.

To sum up, the three reprints ofMécanique céleste in the 19th century reflect its high
status in France, and to some extent elsewhere; alocus classicus for celestial mechanics
on a scale unmatched since Newton, and also a valuable source for a cluster of important
mathematical theories and methods. Nevertheless, nobody ever translated Laplace’s last
three volumes into German.
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CHAPTER 19

JOSEPH LOUIS LAGRANGE,
THÉORIE DES FONCTIONS ANALYTIQUES,

FIRST EDITION (1797)

Craig G. Fraser

In this volume, based upon his first teaching at theEcole Polytechnique, Lagrange both
popularised and extended his view that the differential and integral calculus could be based
solely on assuming the Taylor expansion of a function in an infinite power series and on al-
gebraic manipulations thereafter. He also made some applications to problems in geometry
and mechanics.

First publication. Paris: L’Imprimerie de la République, 1797. 277 pages.

Reprint. As Journal de l’Ecole Polytechnique, cahier 9, 3 (1801), 1–277.

Later editions. 2nd 1813, 3rd 1847. Both Paris: Bachelier. Also as LagrangeOeuvres,
vol. 9, Paris: Gauthiers–Villars, 1881.

Portuguese translation. Theorica das funções analyticas (trans. M.J. Noguiera da Gama),
2 vols., Lisbon: J.C.P. da Silva, 1798.

German translations. 1) Of 1st ed.:Theorie der analytischen Functionen (trans. J.P. Gru-
son), 2 vols., Berlin: Lagarde, 1798–1799. 2) Of 2nd ed.:Theorie der analytischen
Functionen (trans. A.L. Crelle), Berlin: Reimer, 1823.

Related articles: Leibniz (§4), MacLaurin (§10), Euler (§12–§14), Lagrange on mechanics
(§16), Lacroix (§20), Cauchy on real-variable analysis (§25).

1 INTRODUCTION

At the end of the 18th century Joseph Louis Lagrange (1736–1813) published a book in
which he developed a systematic foundation of the calculus, hisThéorie des fonctions ana-
lytiques (1797). Parts of it were further developed in hisLeçons sur le calcul des functions
(1801; revised edition 1806).

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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By 1790 a critical attitude had developed both within mathematics and within general
scientific culture. As early as 1734 Bishop George Berkeley in his workThe Analyst had
called attention to what he perceived as logical weaknesses in the reasonings of the calculus
arising from the employment of infinitely small quantities (§8). Although his critique was
somewhat lacking in mathematical cogency, itat least stimulated writers in Britain and the
Continent to explain more carefully the basic rules of the calculus. In the 1780s a growing
interest in the foundations of analysis was reflected in the decisions of the academies of
Berlin and Saint Petersburg to devote prize competitions to the metaphysics of the calculus
and the nature of the infinite. In philosophy Immanuel Kant’sKritik der reinen Vernunft
(1787) set forth a penetrating study of mathematical knowledge and initiated a new critical
movement in the philosophy of science.

The contents of theThéorie des fonctions analytiques is summarised in Table 1. The
book was divided in three parts, the first part devoted to analysis and the second and third

Table 1. Contents of Lagrange’s book. The original pagination is given.

Page Topics
Part One Exposition of the theory, with its principal uses in analysis.

1 Preliminaries, series developments, and derived functions.

15 Series expansions for algebraic and transcendental functions.

28 Composite functions, exceptional cases.

41 Expression for the remainder.

50 Equations among derived functions.

80 Primitive functions.

91 Functions of several variables.
Part Two Application of the theory to geometry and to mechanics.

Application to geometry.

117 Theory of contacts.

147 Developable curves.

150 Maxima and minima of a function of a single variable.

155 Areas and path-lengths.

161 Differential geometry of surfaces.

187 Maxima and minima.

200 Method of variations.

Application to mechanics.

223 Speed and acceleration.

232 Particle dynamics.

241 Motion in a resisting medium.

251 Constrained motion.

256 Conservation theorems.

271 Impact of bodies, machine performance. [End 277.]
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parts devoted to geometry and mechanics. TheLeçons sur le calcul des fonctions concen-
trated almost exclusively on analysis, and included a detailed account of the calculus of
variations. The material in both books originated in lectures that Lagrange delivered at the
Ecole Polytechnique. He wrote them when he was in his sixties, still an active mathemati-
cian but certainly past his prime creative period of scientific research.

Although Lagrange’s books appeared at the dawn of the new century, they encapsu-
lated the prevailing understanding of analysis, refining conceptions that had been set forth
by Leonhard Euler (1707–1783) in his textbooks of the 1740s and 1750s (§13, §14). La-
grange’s fundamental axiom involving the Taylor-series expansion of a function originated
in a memoir he published in 1774 in the proceedings of the Berlin Academy. Near the
beginning of theThéorie, he stated that Louis Arbogast had submitted a detailed memoir
to the Paris Academy developing these ideas. The memoir was never published, although
Arbogast discussed it in his book [1800]; because it did not appear, and because Lagrange
himself happened to be involved in a study of the general principles of analysis as a re-
sult of ‘particular circumstances’ (presumably his teaching duties), he decided to write a
treatise generalizing and extending his earlier ideas.

Part One of theThéorie begins with some historical matters and examines the basic ex-
pansion of a function as a Taylor power series. There is considerable discussion of values
where the expansion may fail, and a derivation of such well-known results as l’Hôpital’s
rule. Lagrange then turned to methods of approximation and an estimation of the remainder
in the Taylor series, followed by a study of differential equations, singular solutions and
series methods, as well as multi-variable calculus and partial differential equations. He out-
lined and supplemented topics explored in some detail in memoirs of the 1760s and 1770s.

Part Two on geometry opens with an investigation of the geometry of curves. Here La-
grange examined in detail the properties that must hold at a point where two curves come
into contact—the relationships between their tangents and osculating circles. Correspond-
ing questions concerning surfaces are also investigated, and Lagrange referred to Gaspard
Monge’s memoirs on this subject in theAcadémie des Sciences. He derived some standard
results on the quadrature and rectification of curves. The theory of maxima and minima
in the ordinary calculus, a topic Lagrange suggested could be understood independently
of geometry as part of analysis, is taken up. Also covered are basic results in the calculus
of variations, including an important theorem of Adrien-Marie Legendre in the theory of
sufficiency. The topic of the calculus of variations was treated on an analytical level much
more extensively in theLeçons.

The third part on dynamics is somewhat anticlimactic, given the publication nine years
earlier of his major workMéchanique analitique (§16). In this part Lagrange presented a
rather kinematically-oriented investigation of particle dynamics, including a detailed dis-
cussion of the Newtonian problem of motion in a resisting medium. He also derived the
standard conservation laws of momentum, angular momentum and live forces. The book
closes with an examination of the equation of live forces as it applies to problems of elastic
impact and machine performance.

In our account of theThéorie we will concentrate on some of the major original con-
tributions of this work: the formulation of acoherent foundation for analysis; Lagrange’s
conception of theorem-proving in analysis; his derivation of what is today called the La-
grange remainder in the Taylor expansion of a function; his formulation of the multiplier
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rule in the calculus and calculus of variations; and his account of sufficiency questions in
the calculus of variations. Pages of this book, and also from theLeçons, are cited from the
Oeuvres edition.

2 ALGEBRAIC ANALYSIS AND THE FUNCTION CONCEPT

The full title of theThéorie explains its purpose: ‘Theory of analytical functions contain-
ing the principles of the differential calculus disengaged from all consideration of infinites-
imals, vanishing limits or fluxions and reduced to the algebraic analysis of finite quantities’.
Lagrange’s goal was to develop an algebraic basis for the calculus that made no reference
to infinitely small magnitudes or intuitivegeometrical and mechanical notions. In a trea-
tise on numerical equations published in 1798 he set forth clearly his conception of algebra
[1798, 14–15]:

[Algebra’s] object is not to find particular values of the quantities that are
sought, but the system of operations tobe performed on the given quantities
in order to derive from them the values of the quantities that are sought. The
tableau of these operations represented by algebraic characters is what in alge-
bra is called aformula, and when one quantity depends on other quantities, in
such a way that it can be expressed by a formula which contains these quanti-
ties, we say then that it is afunction of these same quantities.

Lagrange used the term ‘algebraic analysis’ to designate the part of mathematics that
results when algebra is enlarged to include calculus-related methods and functions. The
central object here was the concept of an analytical function. Such a functiony = f (x) is
given by a single analytical expression, constructed from variables and constants using the
operations of analysis. The relation betweeny andx is indicated by the series of operations
schematized inf (x). The latter possesses a well-defined, unchanging algebraic form that
distinguishes it from other functions and determines its properties.

The idea behind Lagrange’s theory was to take any functionf (x) and expand it in a
power series aboutx:

f (x + i)= f (x)+ pi + qi2+ ri3+ si4+ · · · . (1)

The ‘derived function’ or derivativef ′(x) of f (x) is defined to be the coefficientp(x) of
the linear term in this expansion.f ′(x) is a new function ofx with a well-defined algebraic
form, different from but related to the form of the original functionf (x). Note that this
conception is very different from that of the modern calculus, in which the derivative of
f (x) is defined at each value ofx by a limit process. In the modern calculus the relationship
of the derivative to its parent function is specified in terms of correspondences defined in a
definite way at each value of the numerical continuum.

Lagrange’s understanding of derived functions was revealed in his discussion in the
Leçons of the method of finite increments. This method was of historical interest in the
background to his programme. Brook Taylor’s original derivation in 1715 of Taylor’s the-
orem was based on a passage to the limit of an interpolation formula involving finite incre-
ments. Lagrange wished to distinguish clearly between an approach to the foundation of
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the calculus that uses finite increments and his own quite different theory of derived func-
tions. In taking finite increments, henoted, one considers the differencef (xn+1)− f (xn)
of the same functionf (x) at two successive values of the independent argument. In the
differential calculus the object Lagrange referred to as the derived function was tradition-
ally obtained by lettingdx = xn+1− xn be infinitesimal, settingdy = f (xn+1)− f (xn),
dividing dy by dx, and neglecting infinitesimal quantities in the resulting reduced expres-
sion fordy/dx. Although this process leads to the same result as Lagrange’s theory, the
connection it presumes between the method offinite increments and the calculus obscures
a more fundamental difference between these subjects: in taking�y = f (xn+1)− f (xn)
we are dealing with one and the same functionf (x); in taking the derived function we are
passing to a new functionf ′(x) with a new algebraic form. Lagrange explained this point
as follows [1806, 270, 279]:

[. . . ] the passage from the finite to the infinite requires always a sort of leap,
more or less forced, which breaks the law of continuity and changes the form
of functions.
[. . . ] in the supposed passage from the finite to the infinitely small, functions
actually change in nature, and [. . . ]dy/dx, which is used in the differential
Calculus, is essentially a different function from the functiony, whereas as
long as the differencedx has any given value, as small as we may wish, this
quantity is only the difference of two functions of the same form; from this we
see that, if the passage from the finite to the infinitely small may be admitted
as a mechanical means of calculation, itis unable to make known the nature of
differential equations, which consists in the relations they give between primi-
tive functions and their derivatives.

In Lagrange’s conception of analysis, one is given a universe of functions, each ex-
pressed by a formulay = f (x) and consisting of a single analytical expression involving
variables, constants and algebraic and transcendental operations. During the 18th century
such functions were called continuous, and theThéorie is devoted exclusively to functions
that are continuous in this sense. (Mathematicians were aware of the possibility of other
sorts of functions, but alternate definitionsnever caught on.) Such functions were naturally
suited to the usual application of calculus to geometrical curves. In studying the curve the
calculus is concerned with the connection between local behaviour, or slope, and global be-
haviour, or area and path-length. If the curve is represented by a functiony = f (x) given by
a single analytical expression then the relation betweenx andy is permanently established
in the form off . Local and global behaviour become identified in this functional relation.

It is also necessary to call attention to the place of infinite series in Lagrange’s system
of analysis. Each function has the property that it may be expanded as the power series (1).
Nevertheless, an infinite series as such is never defined to be a function. The logical con-
cept of an infinite series as a functional object defineda priori with respect to some cri-
terion such as convergence or summability was foreign to 18th-century analysis. Series
expansions were understood as a tool for obtaining the derivative, or a way of representing
functions that were already given.

For the 18th-century analyst, functions are things that are given ‘out there’, in the same
way that the natural scientist studies plants, insects or minerals, given in nature. As a gen-
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eral rule, such functions are very well-behaved, except possibly at a few isolated excep-
tional values. It is unhelpful to view Lagrange’s theory in terms of modern concepts (arith-
metical continuity, differentiability, continuity of derivatives and so on), because he did not
understand the subject in this way.

3 THEOREMS OF ANALYSIS

3.1 Expansions

Lagrange was aware that the expansion of a function as the series (1) may fail at particular
values ofx, and he discussed this point at some length in theThéorie. He reasoned that
the expansion off (x+ i) can contain no fractional powers ofi. He illustrated this conclu-
sion by means of the examplef (x) =√x. Suppose indeed that we had a relation of the
following form for the expansion of

√
(x + i):

√
x + i =√x + ip+ i2q + i3r + · · · + im/n. (2)

This equation establishes a relation of equality between the 2-valued function on the left
side, and the 2n-valued function on the right side, a result that is evidently absurd. Hence
it must be the case that the powers ofi in the expansion of

√
(x + i) are all integral.

Lagrange noted that the ‘generality’ and‘rigour’ of this argument require thatx be
indeterminate (p. 8: it is interesting that he associates generality and rigour, a point of
view characteristic of 18th-century algebraic analysis). In particular cases such asx = 0
we will have fractional powers ofi, but this arises because certain formal features of the
function—in the case at hand the radical

√
x—disappear atx = 0.

3.2 Taylor’s theorem

Lagrange’s understanding of what it meant to prove a theorem of analysis differed from the
understanding which developed in later analysis and which is customary today. To prove
a theorem was to establish its validity on the basis of the general formal properties of the
relations, functions, and formulae in question. The essence of the result was contained
in its general correctness, rather than in any considerations about what might happen at
particular numerical values of the variables.

The derived functionf ′(x) is the coefficient of the linear term in the expansion of
f (x + i) as a power series ini. By definition, the second derived functionf ′′(x) is the
coefficient of i in the expansion off ′(x + i), the third derived functionf ′′′(x) is the
coefficient ofi in the expansion off ′′(x + i), and so on.

In art. 16 Lagrange related the coefficientsq, r, s, . . . in (1) to the higher-order derived
functionsf ′′(x), f ′′′(x), f (iv)(x), . . . . If we replacei by i + o in (1) we obtain

f (x + i + o)= f (x)+ (i + o)p = (i + o)2q + (i + o)3r + (i + o)4s + · · ·
= f (x)+ ip+ i2q + i3r + i4s + · · ·
+ op+ 2ioq + 3i2or + 4i3os + · · · . (3)
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Suppose now the we replacex by x + o. f (x),p, q, r then become

f (x)+ op+ · · · , p+ op′ + · · · , q + oq ′ + · · · , r + or ′ + · · · . (4)

If we next increasex + o by i we obtain (usingx + i + o= (x + o)+ i)
f (x + i + o)= f (x)+ op+ · · · + i(p+ op′ + · · ·)+ i2(q + oq ′ + · · ·)

+ i3(r + or ′ + · · ·)+ · · · . (5)

Equating (3) and (5) we obtain

q = 1

2
p′, r = 1

3
q ′, s = 1

4
r ′, . . . . (6)

The derived functionsf ′(x), f ′′(x), f ′′′(x), . . . are the coefficients ofi in the expansions
of f (x + i), f ′(x + i), f ′′(x + i), . . . . Hence

q = 1

2
f ′′(x), r = 1

2 · 3f
′′′(x), s = 1

2 · 3 · 4f
(iv)(x), . . . . (7)

Thus the series (1) becomes

f (x + i)= f (x)+ if ′(x)+ i
2

2
f ′′(x)+ i3

2 · 3f
′′′(x)+ i4

2 · 3 · 4f
(iv) + · · · , (8)

which is the Taylor series forf (x + i).

3.3 The theorem on the equality of mixed partial derived functions

In art. 86 Lagrange considered a functionf (x, y) of the two variablesx andy. He observed
thatf (x + i, y + o) can be expanded in two ways. First, we expandf (x + i, y + o) with
respect toi, and then expand the expression which results with respect too. The expansion
for f (x + i, y + o) obtained in this way is presented at the top of p. 93:

f (x + i, y + o)= f (x, y)+ if ′(x, y)+ of′(x, y)+ i
2

2
f ′′(x, y)+ iof ′′(x, y)

+ o
2

2
f′′(x, y)+ i3

2 · 3f
′′′(x, y)+ i

2o

2
f ′′′(x, y)

+ io
2

2
f ′′′(x, y)+

o3

2 · 3f′′′(x, y)+&c. (9)

One of the terms in this expansion isf ′′ (x, y), where the superscript prime denotes partial
differentiation with respect tox and the subscript prime denotes partial differentiation with
respect toy, and where the differentiation occurs first with respect tox and second with
respect toy.

However, we could also expandf (x + i, y + o) with respect too, and then expand the
expression which results with respect toi. In the expansion obtained in this way, we again
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have the termf ′′(x, y), except that here the partial differentiation occurs first with respect
to y and second with respect tox. By equating the two series expansions forf (x+ i, y+o)
we are able to deduce that the two quantitiesf ′′(x, y) are equal. In modern notation we
have∂2f/∂x∂y = ∂2f/∂y∂x. Lagrange’s notation system does not allow one to indicate
the order of differentiation, but fortunately the order does not matter.

This result evidently applies to all functionsf (x, y) for all ranges of the variablesx
and y, except possibly at isolated exceptional values. Lagrange considered a couple of
examples. Supposef (x, y)= x√

(2xy + y2). If we differentiatef with respect tox and
then with respect toy we obtain

x + y√
2xy + y2

+ x2y

(2xy + y2)3/2
. (10)

However, if we differentiatef with respect toy and then with respect tox we have

2x + y√
2xy + y2

− (x2+ xy)y
(2xy + y2)3/2

. (11)

Although these two expressions appear to be different, it is not difficult to see that both
reduce to the one and the same expression

3x2y + 3xy2+ y3

(2xy + y2)3/2
. (12)

Lagrange supplied a second example to provide further confirmation of his theorem.

4 METHODS OF APPROXIMATION

4.1 Lagrange’s form of the remainder

In arts. 45–53 Lagrange developed results that belong to the core of any modern course in
real analysis. Indeed, it is likely that this part of the treatise influenced Augustin-Louis
Cauchy when he wrote his famous textbooks initiating modern analysis 25 years later
(§25). However, for Lagrange the results in question were not fundamental: they did not
belong to the foundation of the subject. His purpose rather was essentially practical, to
obtain a result that would be useful in the approximation of functions. Thus he derived an
expression for the remainder in the Taylor series when the series is terminated after thenth
term. The result allowed for a general method for approximating functions by obtaining
the bounds on the error committed if one approximates a function by the firstn terms of
its Taylor expansion.

Lagrange first proved the following lemma. Iff ′(x) is positive and finite throughout
the intervala � x � b, then the primitive functionf (x) satisfies the inequalityf (b) −
f (a)� 0. Consider the expansion

f (z+ i)= f (z)+ if ′(z)+ i
2

2
f ′′(z)+&c. (13)
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For sufficiently smalli, the linear term in the expansion on the right side will dominate the
sum of the remaining terms. Thus iff ′(z) is positive, andi is taken to be a sufficiently small
positive quantity, it follows thatf (z+ i)− f (z) will be positive. Consider the succession
of valuesa, a+ i, a+2i, . . . , a+ni. By assumption,f ′(a+ i), f ′(a+2i), . . . , f ′(a+ni)
are positive. Thus ifi is taken positive and small enough, each of the quantitiesf (a+ i)−
f (a), f (a + 2i)− f (a + i), . . . , f (a+ (n+ 1)i)− f (a + ni) will be positive. (Lagrange
is evidently assuming a uniformity property with respect tof (z + i) − f (z).) If we let
a + (n + 1)i = b and add together all of the quantities, it follows thatf (b)− f (a) � 0.
Hence the lemma is proved.

Lagrange explicitly stated the condition that the derived functionf ′(x) be finite on
the given interval because it was clear from examples that the lemma fails otherwise. In
the Leçons he cited the exampley = 1/(a − z)− 1/a (a > 0) [Ovaert, 1976, 222]. The
derived function is 1/(a− z)2, which is positive everywhere. Nevertheless, for the interval
[0, b] (b > a), it is clear thatf (b)−f (0) is negative. However, in this example the derived
function is infinite atx = a, and so the conditions of the lemma do not hold.

We turn now to Lagrange’s derivation of the remainder in the Taylor power series. He
first introduced a second variablez and wrotex = (x − xz)+ xz. Series (8) becomes

f (x)= f (x − xz)+ xzf ′(x − xz)+ x
2z2

2 · 1 f
′′(x − xz)+ x3z3

3 · 2 · 1f
′′′(x − xz)+ · · · . (14)

We rewrite (14) in the form

f (x)= f (x − xz)+ xP(x, z). (15)

If we differentiate (15) with respect toz we obtain

0=−xf ′(x − xz)+ xP ′(x, z), (16)

so that

P ′(x, z)= f ′(x − xz). (17)

Suppose thatz belongs to the interval[a, b], a � 0. LetN andM be the maximum and
minimum values ofP ′(x, z) on this interval. We have the inequalities

N � P ′(x, z)�M, a � z� b. (18)

It follows thatP ′(x, z)−N � 0 andM − P ′(x, z)� 0 for a � z� b. Applying the above
lemma to the functionsP −N andM − P we obtain

P(x, a)+N(b− a)� P(x, b)� P(x, a)+M(b− a). (19)

Now P(x, z)= 0 if z= 0. Settinga = 0 andb = 1 in (19) we obtain

N � P(x,1)�M. (20)

As z goes from 0 to 1,(x−xz) goes fromx to 0. From (19) and (20) it follows thatf ′(x−
xz) takes on all values betweenN andM. (Lagrange is assuming here thatf ′(x − xz)
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satisfies an intermediate-value property.) Hence for someu with 0 � u � x we have, by
(20),

P(x,1)= f ′(u). (21)

Hence the original series (8) may be written forz= 1 as

f (x)= f (0)+ xf ′(u), 0 � u� x. (22)

(22) expresses what is today called ‘the mean-value theorem’.
Let us now write (14) in the form

f (x)= f (x − xz)+ xzf ′(x − xz)+ x2Q(x, z). (23)

By differentiating each side of (23) with respect toz we easily deduce that

Q′(x, z)= zf ′′(x − xz). (24)

LetN1 andM1 be the minimum and maximum values off ′′(x − xz) for a � z� b:

N1 � f ′′(x − xz)�M1. (25)

Sincez� a � 0, we have

zN1 � zf ′′(x − xz)� zM1, or zN1 �Q′(x, z)� zM1. (26)

From the lemma we conclude that

Q(x,a)+ N1(b
2− a2)

2
�Q(x,b)�Q(x,a)+ M1(b

2− a2)

2
. (27)

Settinga = 0 andb = 1 in (27) there follows

N1

2
�Q(x,1)� M1

2
. (28)

It is clear from (25) and (28) thatQ(x,1)= f ′′(u)/2 for someu ∈ [0, x]. Hence forz= 1
series (8) becomes

f (x)= f (0)+ xf ′(0)+ x2

2 · 1f
′′(u), 0 � u� x. (29)

Lagrange proceeded to extend the reasoning used to obtain (22) and (29) to derive the
equation

f (x)= f (0)+ xf ′(0)+ x2

2 · 1f
′′(0)+ x3

3 · 2 · 1f
′′′(u), 0 � u� x. (30)

As he indicated on p. 49, equations (20), (29) and (30) may be iterated to obtain expressions
for f (x) involving derivatives off of any order evaluated atu for 0 � u� x. He observed
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that there results ‘a theorem which is new and remarkable for its simplicity and generality’.
The theorem gives what is today called ‘the Lagrange form’ of the remainder in the Taylor
series.

By taking the functiong(x) = f (x + z) and applying the preceding result tog(x) we
obtain immediately

f (z+ x) = f (z)+ xf ′(u)= f (z)+ xf ′(z)+ x
2

2
f ′′(u)

= f (z)+ xf ′(z)+ x
2

2
f ′′(z)+ x3

2 · 3f
′′′(u), (31)

&c., where 0� u� x.
Lagrange called attention to the importance of (31) for methods of approximation and

emphasized its utility in geometrical and mechanical problems. Although he gave no exam-
ples, the usefulness of (31) is evident in one of the functions that he introduced earlier, the
exponential functionf (x)= ex . We use it to approximatef (1)= e, following the account
in [Courant, 1937, 326–327]. Forz= 0 andx = 1 (31) becomes

e= 1+ 1+ 1

2! +
1

3! + · · · +
1

n! +
eu

(n+ 1)! , (32)

where 0� u� 1. We have

e = 1+ 1+ 1/2! + 1/3! + 1/4! + · · ·< 1+ 1+ 1/2+ 1/22+ 1/23+ · · ·
= 1+ 2= 3, or e < 3. (33)

Hence the error committed in neglecting the remainder term in (32) will be less than 3/(n+
1)! To obtain an approximation ofe with an error smaller 1/10,000, we observe that 8!>
30,000, and arrive at the estimate

e ≈ 1+ 1+ 1

2
+ 1

3 · 2 +
1

4 · 3 · 2 +
1

5 · 4 · 3 · 2 +
1

6 · 5 · 4 · 3 · 2 +
1

7 · 6 · 5 · 4 · 3 · 2
= 2.71822. (34)

4.2 Mean-value theorem

Lagrange obtained equation (21), the mean-value theorem (a term he never used), from his
fundamental axiom concerning the expansion of a function in a Taylor series. In modern
analysis this result is derived in a different way from the basic properties of continuous
and differentiable functions. Today the mean-value theorem is a cornerstone of the foun-
dation of real analysis. To prove a theorem is toestablish its correctness for each value of
the functional variable. The law of the mean is used in theorem-proving in order to take
whatever property or relation that is under consideration and localize it a given number.
A typical application of this law is found in the modern proof of the theorem on the equal-
ity of mixed partial derivatives (discussed above in section 3.3). One takes a point of the
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plane, establishes the equality in question for finite increments, and then extends this result
to derivatives using the law of the mean. Lagrange’s reasoning involved very different con-
ceptions and assumptions, and indicates the large difference between his perspective and
the modern one.

There is in theThéorie one place where Lagrange’s derivation resembles the proof-
structure of modern analysis. This occurs in art. 134, in the second part of the book devoted
to the application of analysis to geometry. Consider a functiony = f (x), and suppose
thaty andx are the coordinates of a curve in a rectangular coordinate system. LetF(x)

be the area under the curve fromx = 0 to x = x. Using the mean-value theorem and
some reasoning involving inequalities, Lagrange was able to show thatF(x) is a primitive
function forf (x). Of course, this is the result known today as the fundamental theorem
of calculus and Lagrange’s proof is not dissimilar to the reasoning involved in a modern
derivation. It is nevertheless important to appreciate the distinctiveness of his approach.
First, the result is not fundamental nor is it even a theorem of analysis, but an application of
analysis to geometry. Second, the fundamental notion for Lagrange is always the primitive
as an antiderivative, rather thanthe integral as a sum or an area.

5 MULTIPLIER RULE

5.1 Mechanics

The idea for the multiplier rule seems to have originated in an interesting way in Lagrange’s
study of statics in Part One of theMéchanique analitique [1788, 45–49]; compare §16.3.
Suppose that we are given a system of bodies or points, with coordinatesx, y, z; x ′, y ′, z′;
and so on. The system is subject to the constraints or conditionsL= 0,M = 0,N = 0, and
so on. External forces act on each of the points of the system. According to the principle of
virtual velocities (what is know today as virtual displacements or virtual work), equilibrium
will subsist if the following equation holds:

P dp+Qdq +Rdr +&c.= 0. (35)

HereP dp is the virtual work (which he called ‘moment’) that results when the forceP acts
on the pointx, y, z with a corresponding virtual displacementdp. Similar interpretations
hold forQdq , Rdr and so on. On way to proceed to a solution is the following. We set
dL = 0, dM = 0, dN = 0 and use these relations to eliminate some of the differentials
dx, dy, dz; dx ′, dy ′, dz′; . . . (as many differentials are eliminated as there are constraints
dL= 0). If we substitute for the eliminated differentials in (35), we will obtain a relation
in which each of the resulting differentials may be regarded as independent. By equating to
zero the coefficients of these differentials, we obtain the desired equations of equilibrium.

It may well be that the required elimination of differentials is not that easy to carry out.
The method of multipliers provides an alternative way of deriving the conditions of equi-
librium. We multiplydL= 0 by the indeterminate quantityλ, dM by the quantityµ, dN
by the quantityv, and so on. Lagrange asserted that ‘it is not difficult to prove by the theory
of the elimination of linear equations’ that the general equation of equilibrium will become

P dp+Qdq +Rdr +µdM + ν dN +&c.= 0. (36)
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We now equate the coefficient of each of the differentials in (36) to zero; the resulting
equations, in combination with the constraintsdL = dM = dN = · · · = 0, allow us to
eliminate the multipliers and arrive atthe desired equilibrium conditions.

Lagrange provided a rather natural physicalinterpretation of the multiplier constants
λ appearing in (36) [1788, 48–49]. The effect of the constraint is to produce a force that
acts on the point, producing the increment of virtual work or momentλdL. The moments
due to the constraintsL = 0 balance the moments resulting from the external forcesP .
Thus the system can be regarded as subject to the constraintsL = 0, or alternatively it
can be regarded as entirely free with the constraints replaced by the forces to which they
gives rise. In the latter case we obtain the free equation (36). According to Lagrange, this
interpretation provides the ‘metaphysical reason’ why the addition of the termsλdL to the
left side of (35) allows one to treat the system as entirely free in (36)—indeed, ‘it is in
this that the spirit of the method [of multipliers] consists’. Thus the method is justified in
a natural way using physical considerations, in contrast to the analytical approach usually
associated with Lagrange’s mathematics [Fraser, 1981, 263–267].

5.2 Calculus

In arts. 131–184 of theThéorie, Lagrange moved from the domain of mechanics to analysis
in his exposition of methods of maxima and minima in the calculus. Although this investi-
gation occurred in the part of the book devoted to the applications of analysis to geometry,
he noted the independence of the basic problem of optimization from considerations of
curves (pp. 150–151).

In art. 167 Lagrange took up the problem of maximizing or minimizing a function
of the formf (x, y, z, . . .) of any number of variables that are subject to the constraint
φ(x, y, z, . . .)= 0. If we increasex, y, z and so on by the small incrementsp, q andr we
obtain from the constraintφ = 0 the relation

pφ′(x)+ qφ′(y)+ rφ′(z)+&c.+ higher-order terms= 0, (37)

whereφ′(x), φ′(y) andφ′(z) denote as usual the partial derivatives∂φ/∂x, ∂φ/∂y and
∂φ/∂z of φ with respect tox, y andz. To arrive at the equations of maxima and minima
we can neglect the higher-order terms in (37). Becausef is a maximum or minimum we
have as well the condition

pf ′(x)+ qf ′(y)+ rf ′(z)+&c.= 0. (38)

One solution would be to solve (37) forp in terms ofq, r, . . . , substitute the resulting
expression forp in (38), and equate to zero the coefficients ofq, r, . . . . Another solution
is obtained by multiplying (37) by the multipliera and adding the resulting expression to
(38). In the equation which results all of the variablesx, y, z, . . .may be regarded as free,
and the coefficients of each of thep,q, r, . . .may be set equal to zero:

f ′(x)+ aφ′(x)= 0, f ′(y)+ aφ′(y)= 0, f ′(z)+ aφ′(z)= 0, &c. (39)

(39) together with the constraintφ = 0 provide the equations of solution, allowing us to
determine the desired maximizing or minimizing values ofa, x andy.
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Lagrange did not state explicitly the precise reasoning by which he arrived at (39), but
it seems to have developed along the following lines. Multiply (37) bya and add to (38) to
obtain:

p
(
f ′(x)+ aφ′(x))+ q(

f ′(y)+ aφ′(y))+ r(f ′(z)+ aφ′(z))+&c.= 0 (40)

In (40), definea so thatf ′(x) + aφ(x) = 0. The first term in (40) then disappears, and
we can assume that the remaining variablesy, z, . . .may be varied arbitrarily and indepen-
dently. Hence we obtain the equations

f ′(y)+ aφ(y)= 0, f ′(z)+ aφ(z)= 0, . . . . (41)

There are, as is well known today, geometrical ways of justifying the multiplier rule.
Thus it is immediately evident (to anyone, for example, who has drawn a trail line on a
topographical map) that the maximum or minimum off (x, y) along the pathφ(x, y)= 0
will occur when this path runs parallel to a member of the family of contours or level
curvesf = constant. At the point where this is the case the unit normals to the two curves
coincide, and so we obtain equations (39). Such geometrical reasoning was not used by
Lagrange, whose approach in theThéorie was analytical throughout.

5.3 Calculus of variations

In the ordinary calculus it would be possible to do without the multiplier rule, this rule
being a useful but finally unessential technique of solution. In the calculus of variations
the situation is very different: in problems of constrained optimization, where the side
conditions are differential equations, the multiplier rule is the only general method for ob-
taining the variational equations. The situation in the ordinary calculus is similar to that
of the calculus of variations when the side constraints are finite equations. In introducing
the rule in the variational calculus [Courant and Hilbert, 1953, 221] write: ‘Up to now
[i.e. in the case of finite constraints] the multiplier rule has been used merely as an ele-
gant artifice. But multipliers are indispensable if the subsidiary condition takes the general
form G(x,y, z, y ′, z′) = 0, where the expressionG(x,y, z, y ′, z′) cannot be obtained by
differentiating an expressionH(x,y, z) with respect tox, i.e. whereG is anonintegrable
differential expression’.

In art. 181 of theThéorie, Lagrange formulated the multiplier rule for problems of con-
strained optimization in the calculus of variations. In theLeçons he provided an extended
treatment of this subject, including the presentation of detailed examples. The multiplier
rule proved to be an extremely powerful and effective tool, enabling one to derive results
that could only be obtained with considerable difficulty otherwise.

In a variational problem with two dependent variables it is necessary to optimize the
primitive or integral off (x, y ′, y ′′, . . . , z, z′, z′′, . . .) evaluated betweenx = a andx = b.
The solution must satisfy the Euler–Lagrange differential equations, which Lagrange wrote
as

f ′(y)− [
f ′(y ′)

]′ + [
f ′(y ′′)

]′′ − [
f ′(y ′′′)

]′′′ +&c= 0, (42)

f ′(z)− [
f ′(z′)

]′ + [
f ′(z′′)

]′′ − [
f ′(z′′′)

]′′′ +&c= 0. (43)
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(In modern notation the term[f ′(y)]′ is d(∂f/∂y ′)/dx.) To obtain these equations La-
grange used algebraic, analogical reasoning very different from the modern methods of
real analysis.

Suppose now that the variablesx, y, z, . . . satisfy a constraint of the form

φ(x, y, y ′,&c., z, z′,&c.)= 0, (44)

consisting of a differential equation of arbitrary order connecting the variables of the prob-
lem. To obtain the Euler–Lagrange equations in this situation, we multiply (44) by the
multiplier function�(x) (note that� is a function ofx and not a constant) and form the
differential equations

f ′(y)− [
f ′(y ′)

]′ + [
f ′(y ′′)

]′′ − [
f ′(y ′′′)

]′′′ +&c+�φ′(y)
− [
�φ′(y ′)

]′ + [
�φ′(y ′′)

]′′ −&c.= 0; (45)

f ′(z)− [
f ′(z′)

]′ + [
f ′(z′′)

]′′ − [
f ′(z′′′)

]′′′ +&c+�φ′(z)
− [
�φ′(z′)

]′ + [
�φ′(z′′)

]′′ −&c.= 0. (46)

In theLeçons, Lagrange applied the multiplier rule to two examples involving the mo-
tion of a particle descending through a resisting medium. These examples had originally
appeared in Chapter 3 of Euler’sMethodus inveniendi (1744) and concerned the brachis-
tochrone and the curve of maximum terminal velocity (§12.2). Assume they-axis is mea-
sured horizontally and thex-axis is measured vertically downward, and letz equal the
square of the speed. We have the dynamical constraint equation

z′ − 2g + 2φ(z)
√

1+ y ′2= 0, (47)

giving z as a function ofx, y andy ′. In each of the examples in question Lagrange wrote
down the variational equations (45)–(46). Using them and the constraint equation he ob-
tained differential equations for the multiplier function and the trajectory. Because no re-
striction was placed on the end value ofz in the class of comparison arcs, we obtain another
equation, one that allows us to calculate a constant appearing in the expression for the mul-
tiplier.

Lagrange was led by means of his multiplier rule to quite straightforward solutions of
these problems, arrived at independently of the specialized methods that had appeared in
Euler’s and his own earlier writings. It is reasonable to assume that the successful treatment
of such advanced examples would have confirmed in his mind the validity of the rule and
instilled a confidence in the basic correctness of the analytical procedure involved in its
application.

In the later calculus of variations the multiplier rule would assume an even more funda-
mental role and become the basic axiom of the whole subject. Alfred Clebsch (1833–1872)
showed how the multiplier rule can be used to reduce problems with higher-order deriva-
tives to problems involving only first derivatives and side constraints [Clebsch, 1858]. In
the modern subject, any problem with side constraints is known as a Lagrange problem
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and it is solved by means of the multiplier rule. The most general problem of the calcu-
lus of variations can be formulated as such a problem and solved in principle using the
rule.

6 CALCULUS OF VARIATIONS: SUFFICIENCY RESULTS

In arts. 174–178 Lagrange took up the question of sufficiency in the calculus of varia-
tions. Given that a proposed solution satisfies some of the conditions of the problem, it is
necessary to investigate what additional conditions must hold in order that there be a gen-
uine maximum or minimum. Here Lagrange reported on results of Adrien-Marie Legendre
(1752–1833) published as [Legendre, 1788], and added some important new observations
of his own.

For simplicity we consider the case where there is only one dependent variable and
where only the first derivative appears in the variational integrand. In a problem in the
calculus of variation, a proposed solution will be optimal for Legendre if the sign of the
second variation is unchanged (always positive for a minimum, or always negative for a
maximum) with respect to all comparison arcs. Let the increment or variation ofy be the
functionw(x). The second variationI2 is by definition

I2=
∫ x1

x0

(
∂2f

∂y2w
2+ 2

∂2f

∂y∂y ′
ww′ + ∂

2f

∂y ′2
w′2

)
dx. (48)

It is necessary to investigate the sign ofI2. Let v = v(x) be a function ofx and consider
the expression

d

dx
(w2v), (49)

Becausew(x0)=w(x1)= 0 the integral of (49) is zero:∫ x1

x0

d

dx
(w2v) dx = 0. (50)

We introduce some standard abbreviations for the second partial derivatives:

P = ∂
2f

∂y2 , Q= ∂2f

∂y∂y ′ , R = ∂
2f

∂y ′2
. (51)

If we add the integral of (49) to the expression for the second variationI2 given in (48)
there results no change in its value:

I2=
∫ x1

x0

(
(P + v′)w2+ 2(Q+ v)ww′ +Rw′2)

dx. (52)

The integrand is a quadratic expression inw andw′. Legendre observed that it will become
a perfect square if

R(P + v′)= (Q+ v)2. (53)
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Forv(x) satisfying this differential equation the second variation becomes

I2=
∫ x1

x0

R

(
w′ + Q+ v

R
w

)2

dx. (54)

It is evident that the given transformation is only possible ifR = ∂2f/∂y ′2 is non-zero on
the interval[x0, x1]. The proposed solution will indeed be a minimum if on the interval we
have

∂2f

∂y ′2
> 0, (55)

which would become known in the later subject as ‘Legendre’s condition’.
In order to arrive at the expression (54) forI2 and the associated condition (55) on

∂2f

∂y ′2 it is necessary to show that solutions to the differential equation (53) exist and remain
finite on the given interval. In his study of the second variation in theThéorie, Lagrange
called attention to this point and produced examples in which no finite solutions exist (pp.
206–210). Suppose for example thatf (x, y, y ′)= y ′2− y2. In this caseP =−2,Q = 0
andR = 2 and (54) becomes 2(v′ − 2)= v2. By elementary methods this equation may be
integrated to producev = 2 tan(x + c), wherec is a constant. It is clear that ifx1− x0 is
greater thanπ/2, then no solution of (53) will exist.

Lagrange’s exposition of Legendre’s theory was important because it made known to a
wide audience results that likely would otherwise have remained buried in the memoirs of
the ParisAcadémie. Carl Gustav Jacobi (1804–1851), in his ground-breaking paper [1837]
on sufficiency theory, began his investigation with Lagrange’s formulation of the subject.
Lagrange’s discussion of the solutions of (53) also raised new considerations that were
important stimuli for Jacobi’s investigation.

7 CONCLUSION

An important and under-appreciated contribution of the history of mathematics is to pro-
vide insight into the foundations of a mathematical theory by identifying the characteristics
of historically earlier formulations of the theory. The conceptual relativism of scientific the-
ories over history is one of the major findings of the history of science since Thomas Kuhn.
In this respect, history of mathematics possesses a special interest lacking in the history of
other branches of science, because earlier mathematical theories are enduring objects of
technical interest and even of further development.

What is primarily of note in Lagrange’sThéorie, beyond its substantial positive achieve-
ments, is that it developed analysis from a perspective that is different from the modern one.
It did so in a detailed and sophisticated way, with a self-conscious emphasis on the impor-
tance of building a sound foundation. A product of the intellectual milieu of advanced
research at the end of the 18th century, it stands at the cusp between algebraic and mod-
ern analysis. It retains an historical interest for us today that transcends its contribution to
technical mathematics.
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Although the foundation Lagrange proposed did not achieve final acceptance, his con-
ception of analysis exerted considerable influence in the 19th century. Cauchy was able to
adapt many of Lagrange’s results and methods in developing an arithmetical basis for the
calculus [Grabiner, 1981]—while also refuting his belief in the generality of (1) (§25). The
spread of Continental analysis to Britain relied heavily on Lagrange’s writings. The formal
algebraists George Peacock in England andMartin Ohm in Germany were influenced by
his mathematical philosophy. Lagrange’s insistence that analysis should avoid geometri-
cal and mechanical ideas was taken up with some emphasis by the Bohemian philosopher
Bernhard Bolzano. The school of researchers who used operator methods in the theory of
differential equations, François Servois in France, and George Boole and Duncan Gregory
in Britain, took inspiration from Lagrange’s writings on analysis (§36.2). Finally, even
after the consolidation of Cauchy’s arithmetical foundation, Lagrange’s emphasis on the
algorithmic, operational character of the calculus continued to inform writers of textbooks
as well as non-mathematicians such as engineers and physicists who used calculus in their
research and teaching.
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CHAPTER 20

S.F. LACROIX, TRAITÉ DU CALCUL
DIFFÉRENTIEL ET DU CALCUL INTÉGRAL ,

FIRST EDITION (1797–1800)

João Caramalho Domingues

In this encyclopaedic work Lacroix compiled and organized much of the knowledge of the
time on the differential, integral, and finite difference calculi.

First publication. Traité du calcul différentiel et du calcul intégral and Traité des dif-
férences et des séries, 2+ 1 vols. Paris: J.M. Duprat, 1797, 1798, 1800. xxxii+ 524;
viii + 732; viii+ 582 pages. [Available atGallica: http://gallica.bnf.fr.]

Second edition. Traité du calcul différentiel et du calcul intégral, 3 vols. Paris: V.e Courcier,
1810, 1814, 1819. lvi+ 653; xxii+ 820; xxiv+ 776 pages.

German translation of volumes 1 and 2 of the 1st ed. Lehrbegriff des Differential- und
Integralcalculs (trans. J.P. Grüson). 2 vols. Berlin: F.T. Lagarde, 1799, 1800.

Related articles: Euler on analysis and the calculus (§12, §13), Lagrange on the calculus
(§19), Cauchy on real-variable analysis (§25).

1 MATHEMATICAL TEACHER AND WRITER

Sylvestre François Lacroix was born in Paris in 1765, to a modest family. His first teacher
of mathematics was the abbé Marie, but his great educational influence seems to have
been Gaspard Monge, whose free courses he attended at least in 1780. It was Monge
(1746–1818) who secured in 1782 Lacroix’s first teaching post: professor of mathematics
at theÉcole des Gardes de la Marine in Rochefort. He stayed in Rochefort until 1785. His
first attempts at research, from 1779, had consisted of long astronomical calculations, but
in Rochefort, although not abandoning astronomy entirely, he studied partial differential
equations and their application to surface theory. These studies were done under Monge’s
supervision, through continued correspondence.

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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Lacroix was not happy far from Paris and Monge convinced the Marquis de Condorcet
(1743–1794) to employ Lacroix as his substitute at the newly foundedLycée (not to be con-
fused with the subsequent secondary education institutions; thisLycée was a private school
for gentlemen who wished to acquire a generalculture; it had renowned professors who in
fact nominated their substitutes to give all lectures under their direction; Condorcet was in
charge of mathematics). Condorcet became a second great influence for Lacroix. Together
they prepared a new edition of Euler’sLettres à une princesse d’Allemagne. Lacroix started
teaching at theLycée in January 1786. In February 1787 he accumulated that with teaching
at theÉcole Royale Militaire de Paris. It was then that he started gathering material for the
Traité.

In 1787 the mathematics course at theLycée was abolished due to lack of students and
in 1788 theÉcole Militaire was closed. Lacroix was forced to go once again intoexile,
taking an appointment at theÉcole Royale d’Artillerie in Besançon. From there he main-
tained postal contact with Monge, Condorcet, J.D. Cassini, J.J. Lalande, A.M. Legendre
and P.S. Laplace. In 1789 he was elected Condorcet’s correspondent by theAcadémie des
Sciences. Lacroix kept gathering material for his plannedTraité, but in 1792 he complained
in a letter to Laplace about the scientific indigence of Besançon. He also asked Laplace to
send him offprints of some of his memoirs.

Lacroix returned definitively to Paris in 1793, succeeding Laplace asexaminateur of
candidates and students at theCorps d’Artillerie. He was then able to complete theTraité.
Printing started in 1795, although the 1st volume only appeared in 1797. Until his death in
1843 Lacroix followed a brilliant educational career: in 1794 he belonged to theCommis-
sion de l’Instruction Publique, and afterwards he held examiner and/or teaching posts at
theÉcole Polytechnique, École Normale (de l’an III), École Centrale des Quatre Nations,
Faculté des Sciences de Paris (of which he was also dean), and finally at theCollège de
France.

A consequence of his teaching at theÉcole Centrale des Quatre Nations (a sec-
ondary school) was his writing a series of seven textbooks, from aTraité élémentaire
d’arithmétique to a Traité élémentaire du calcul différentiel et du calcul intégral (not to
be confused with the non-élémentaire one that is the subject of this article), although the
last of these was written to be used elsewhere: at theÉcole Polytechnique, where Lacroix
also taught. These textbooks were highly successful throughout the 19th century, reaching
impressive numbers of editions (theArithmétique reached the 20th in 1848; theÉléments
d’algèbre and theÉléments de géométrie both reached the 19th, in 1849 and 1874, respec-
tively) and being translated into several languages.

In spite of an insignificant research career, Lacroix was respected in the mathematical
community, being elected in 1799 as a member of the first class of theInstitut National
(which had replaced theAcadémie des Sciences). According to Taton, when Lacroix started
writing his large treatises and his textbooks, ‘[h]e understood that his so wide erudition and
his so remarkable talent for clarification [mise au point] and presentation would allow him
to make there a work more useful than that he would have achieved had he confined himself
to researches on details’ [Taton, 1953a, 590].
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2 PURPOSES OF THETRAITÉ

As has already been said, Lacroix started gathering material for his treatise in 1787, while
employed at theÉcole Royale Militaire de Paris. Apparently the reason for which he felt
this treatise would be useful, was the enormous gap between the elementary books avail-
able and the research memoirs on calculus subjects. In other words, there was no advanced
(say, modern-day graduate level) textbook on the calculus. The popular works like the
one by Étienne Bézout were too elementary; and the only advanced comprehensive survey
(Euler’s set of works) was getting outdated. It took much time and effort for a young man
living in Paris and wishing to pursue mathematics to read all the necessary works to bridge
the gap between elementary calculus and research-level calculus: those works were mem-
oirs dispersed in academic journals and bookswith low print runs. And for someone living
outside Paris, this would be nearly impossible, due to the lack of good libraries (1st ed.,
vol. 1, iii; 2nd ed., vol. 1, xviii–xix).

Another stimulus was Lacroix’s reading of Lagrange’s memoir [1774] ‘Sur une nouvelle
espèce de calcul relatif à la differentiation et à la intégration des quantités variables’, where
a suggestion was made for a new foundation of the calculus. Lacroix envisioned then a
grand plan: not only to compile all the major methods, but also to choose between different
but equivalent ones or to show how they relate to one another, as well as to give all of them
a uniform hue that would not allow to trace the respective authors. It was clearly intended
to replace Euler’s set of works, but not to be a first introduction to the calculus: ‘such a
voluminous treatise as this one, can hardly be consulted but by people to whom the subject
is not entirely new, or that have an unwavering taste for this kind of study’ (2nd ed., vol. 1,
xx). The result was a monumental reference work: the first edition has around 1800 pages
in total; anencyclopédiste appraisal of the calculus at the turn of the century.

Two features that seem to be unprecedented in mathematical booksshould be pointed
out. One is the remarkable bibliography attached to the table of contents: for each chapter
and section, Lacroix gives a list of the main works related to its subject. All the major 18th-
century works on the calculus are included there, as well as many minor and even some
obscure ones. Typically, in the list for a given chapter/section one will find the correspond-
ing chapters in one of Euler’s three books, some other relevant books (say, Lagrange’s
Théorie des fonctions analytiques, Jacob Bernoulli’sOpera or Stirling’s 3rd-order lines)
and memoirs drawn from the volumes published by theAcadémie des Sciences de Paris,
by the Berlin Academy, by the St. PetersburgAcademy, by the Turin Academy, and so on.
The most cited authors seem to be those that oneexpects: Euler, Lagrange, Laplace, J. Le
R. d’Alembert, Monge; but it is also possible to find references to such authors as Fagnano
(1st ed., vol. 2, v) or Oechlitius (1st ed., vol. 3, viii). As an example, Chapter 2 of the sec-
ond volume, which is dedicated to the calculation of areas, volumes and arc-lengths, has a
bibliography with 20 authors, and about 35 works (excluding some historical references).

Another remarkable feature is the subject index included at the end of the third volume.
Not only it may well be the first subject index in a mathematical book, but it is 34 pages
long (1st ed., vol. 3, 545–578)!
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3 DIFFERENTIAL CALCULUS

Table 1 summarizes the contents of the first volume, dedicated to the differential calculus. It
also compares the first with the second edition, but for now we will only concern ourselves
with the first one.

As has already been said, printing of the first volume started in 1795. It was interrupted
for some time and only concluded in 1797. According to Lacroix (p. xxiv) this meant that

Table 1. Volume I of Lacroix’s treatise.

1st edition 2nd edition (Some) topics
coveredChapter Pages Chapter Pages

Preface. iv–xxix Preface. i–xlviii History of the
calculus.

Table of contents. xxx–xxxii Table of contents. xlix–lvi Contents and
bibliography.

Introduction. 1–80 Introduction. 1–138 Functions, series
and limits; series
expansion of
functions.

Ch. 1: Principles
of differential
calculus.

81–194 Ch. 1: Principles
of differential
calculus.

139–248 Differentiation of
functions;
differentiation of
equations.

Ch. 2: Analytic
uses of differential
calculus.

195–276 Ch. 2: Use of diff.
calculus to expand
functions.

249–326 Differential
methods for
expansion of
functions in
series.

Ch. 3: Particular
values of diff.
coefficients.

327–388 Indeterminacies;
maxima and
minima.

Ch. 3: Algebraic
equations.

277–326 Symmetric
functions;
complex
numbers.

Ch. 4: Curve
theory.

327–434 Ch. 4: Curve
theory.

389–500 Analytic and
differential
geometry of
plane curves.

Ch. 5: Curved
surfaces and
curves of double
curvature.

435–519 Ch. 5: Curved
surfaces and
curves of double
curvature.

501–652 Analytic and
differential
geometry of
surfaces and
space curves.
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he profited little from the lectures Lagrange gave on the same subject at theÉcole Polytech-
niquein 1795–1796 and which gave origin to Lagrange’sThéorie des fonctions analytiques
(§19), also published in 1797. It seems therefore that Lacroix had to develop the suggestion
of [Lagrange, 1774] in a mostly independent way. But there is some evidence that the little
profit was not null.

The first volume starts with a Preface, which includes an explanation of the aims of the
work and the plan for the three volumes, but is mostly taken by a long account of the history
of the calculus (pp. iv–xxiii). After the tableof contents (with bibliography) comes an
Introduction. Its purpose is to give ‘series expansions of algebraic, exponential, logarithmic
and trigonometric functions’ by algebraic means, without recourse to the notion of infinity
(p. xxiv). It is clearly intended to be equivalent to the first volume of Euler’sIntroductio
(§13). It also corresponds, with Chapter 3, to what would be known for some time, at
least in the curriculum of theÉcole Polytechnique, asalgebraic analysis (§25.2). Lacroix
describes it as ‘the intermediary analysis between the elements of algebra proper, and the
differential calculus’ (2nd ed., vol. 1, xx).

Lacroix starts by definingfunction: ‘Any quantity the value of which depends on one
or more other quantities is said to be afunction of these latter, whether or not it is known
which operations are necessary to go from them to the former’ (p. 1). But the example
given for a function in which the necessary operations are not known is the root of a fifth
degree equation. In fact this definition means that a function had to be defined explicitly
or implicitly using the usual mathematical operations. As in Euler (§14.2), it is assumed
that any function has a power-series expansion. The Eulerian classification of functions as
explicit or implicit, algebraic or transcendental is also followed.

Although there is some discussion on limits and convergence of series (pp. 4–18), most
of the Introduction is concerned with power-series expansions of the most common func-
tions. For this a ‘weak’ version of the binomial theorem, stating

(1+ x)n = 1+ nxn−1+ etc. (1)

is proven (for ‘anyn’; the full expansion is given for integern). It is widely used, along
with the method of indeterminate coefficients.

In Chapter 1 Lacroix builds the differential calculus on the basis suggested in [Lagrange,
1774]. First comes the expansion

f (x + k)− f (k)=X1k +X2k
2+X3k

3+ etc. (2)

Then, after establishing the iterative relation between the coefficients and thus renaming
them to

f (x + k)− f (k)= f ′(x)k+ f
′′(x)
2
k2+ f

′′′(x)
1 · 2 · 3k

3+ etc. (3)

the first termf ′(x)k is christeneddifferential ‘because it is only a portion of the difference’
and is given the symboldf (x). ‘For uniformity of symbols [. . .] dx will be written instead
of k’, so that
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f ′(x)= df (x)
dx

(4)

is an immediateconclusion.
Sometimesf ′(x), f ′′(x), etc. are called ‘derived functions’, because of the derivation

process that relates each of them to the previous, but the name they gain on p. 98 (and
which will be used throughout the three volumes) isdifferential coefficients. The differen-
tial notation will also be much more frequent. Overall this foundation for the calculus is
Lagrangian, but much closer to [Lagrange, 1774] than to theThéorie des fonctions analy-
tiques (§19), where differentials have no place.

The results obtained in the Introduction allow easy deductions of the differentials of
one-variable algebraic, logarithmic, exponential and trigonometric functions: it is only nec-
essary to expandf (x + dx) and extract the term with the first power ofdx.

Differentiation of functions of two variables is also inspired by [Lagrange, 1774], but

without resorting to the cumbersome notation Lagrange had employed (u′,′′ for our ∂u3

∂x ∂y2 ).
f (x+h,y+k) is expanded in two steps and in two ways (viaf (x+h,y) and viaf (x, y+
k)), whence the conclusion thatd

2u
dx dy

= d2u
dy dx

. The definition of differential as the first-
order term in the expanded series of the incremented function is extended tou= f (x, y)
giving

df (x, y)= du= du
dx
dx + du

dy
dy (5)

(the∂ notation is still absent, but proper warning is given about the fact thatdu
dx
dx is the

differential ofu regarding onlyx as variable and not to be confused withdu).
Lacroix occupies a considerable amount of space (pp. 134–189) with differentiation of

equations. As in Euler (§14), this is both a manner of dealing with implicit functions and
of preparing the way for the treatment of differential equations in the integral calculus: for
instance, condition equations for exact differentials are first handled here. Lacroix him-
self acknowledges having borrowed much from Euler in this chapter (p. xxiv), and that
influence is clear in its structure and in all that does not relate directly to foundations.

Chapter 1 ends with a section about alternative foundations for the calculus. Both
d’Alembert’s limit approach and Leibniz’s infinitesimals are treated. This is typical of
Lacroix’s encyclopédiste approach: to expound all relevant alternative methods or theo-
ries. It is also an essential instance of that approach because in futurechapters Lacroix will
sometimes need to resort to one or other of those alternative foundations in order to explain
some particular method.

Chapter 2 is dedicated to some analytic questions around the differential calculus. First
comes its employment in expanding functions in series, for which of course Taylor’s the-
orem is central. After this comes an examination of certain cases in which the differential
coefficient ‘becomes infinite’ (as withf (x) = √

x − a for x = a) and why the expan-
sion (2), ‘although true in general’, is not valid in such cases. The explanation for this
rests on the irrationality of the function involved disappearing for certain values of the
variable, dragging a collapse of multiple values of the function. Lacroix attributes this to
Lagrange and in fact it appears in hisThéorie des fonctions analytiques: it may be one of
the few remarks drawn from Lagrange’s lectures at theÉcole Polytechnique that Lacroix
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was able to include in the first volume. This is followed by a discussion of indeterminacies
( 0

0,0×∞, . . .) and how to raise them; and by another on maxima and minima of functions
of one or several variables.

Chapter 3 is an algebraic interlude, on certain matters relating to equations that were ab-
sent from elementary books: a section on symmetric functions of the roots of an equation,
which would later migrate to Lacroix’sComplément des élémens d’algèbre (1st ed., 1800)
and was therefore removed in the second edition of theTraité; and another on complex
numbers (‘imaginary expressions’), includingthe fundamental theorem of algebra, which
would move to the Introduction in the second edition.

The two final chapters are devoted to analytic and differential geometry: Chapter 4 on
the plane; Chapter 5 in the space. Here the influence from Monge is most marked.

What was still generally known as ‘application of algebra to geometry’ was then being
transformed intoanalytic geometry. Monge was the main architect of this change (with an
important suggestion by Lagrange in a 1773 memoir on tetrahedra), but Lacroix played
an important role in its systematization, precisely in thisTraité [Taton, 1951, ch. 3]). As
he explains in the Preface, he tried to keep apart all geometric constructions and synthetic
reasonings, and to deduce all geometry by purely analytic methods. That is why Chapter 4
starts by an extensive study of fundamental formulae for points, straight lines and distances,
to be used in what follows, instead of ‘geometric constructions’. These elementary subjects
were usually regarded as belonging to the realm of synthetic geometry. By the second
edition, Lacroix had published an elementary book that included such matters (Traité de
Trigonométrie [. . .] et d’application de l’Algèbre à la Géométrie) and was therefore able
to suppress this section.

After those preliminaries Lacroix develops the analytic geometry of plane curves, in-
cluding plotting, classification of singular points and changes of coordinates. Changes of
coordinates have several applications, including finding tangents and multiple points. Be-
fore differential geometry properly speaking, comes the application of series expansions
(which because of their approximative nature supply a way of finding tangents and asymp-
totes).

The central part of Chapter 4 is the application of differential calculus (that is, the use of
differential coefficients) to find properties of the curves: their tangents, normals, singular
points, the differentials of their arc-length and of the area under them; and to develop a
theory of osculation and hence of curvature via the osculating circle.

The chapter concludes in a manner very typical of Lacroix: presenting alternative points
of view, namely an application of the method of limits to find tangents and osculating lines
and the Leibnizian consideration of curves as polygons. It is significant that in total this
chapter has five approaches to the search of tangents. In this last section is included a study
of envelopes of one-parameter families of curves, the language alternating between limit-
oriented and infinitesimal. A very important special case is that of the evolute of a given
curve, formed by the consecutive intersections of its normals.

The matter of Chapter 5, a theory of surfaces and space curves, is mostly due to Monge,
according to Lacroix (p. 435). The fundamentalformulae for planes and points, straight
lines and distances in space are followed by a discussion on understanding the shape of
second-order surfaces (namely by planecuts), and by changes of coordinates.
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There is some discussion of contact of surfaces using their series expansions, but the
differential study of a surface is done mainly by taking plane sections through the point
one is considering. Alternatively to comparison of coefficients in series expansions, the
tangent plane through a point with coordinatesx ′, y ′, z′ is determined by the tangents to
the sections parallel to the vertical coordinate planes (these tangents have slopesdz′

dx ′ ,
dz′
dy ′ ,

so that

z− z′ = dz
′

dx ′
(x − x ′)+ dz

′

dy ′
(y − y ′) (6)

is the equation of the plane). Osculating spheres are studied similarly.
Not surprisingly, curvature of a surface on a point is studied through the radii of curva-

ture of plane sections through that point: these have a maximum and a minimum, which
allow to calculate the curvature of any otherplane section. There is no discussion yet of
kinds of curvature or of the possibilities of the centers of curvature being on the same or
on different sides of the surface.

Envelopes of one-parameter families of surfaces are studied as the ‘limits’ of their con-
secutive intersections (these intersections are called, following Monge, ‘characteristics’).
A special case is that in which the generating surfaces are planes: the envelope is then
called a ‘developable surface’.

Three approaches are given to study curves in space (‘curves of double curvature’). But
two of them only briefly (through their projections on the coordinate planes; and through
the series expansions of two coordinates as functions of the third). The bulk of the section
follows Monge in regarding space curves as polygons where three consecutive sides are not
coplanar. This allows not only the study of tangents, osculating planes, and differentials of
arc-length, but also of the developable surface generated by a curve’s normal planes, and
of evolutes.

4 INTEGRAL CALCULUS

Although the second volume of Lacroix’sTraité (Table 2) is the largest of the three, it is
the one that gets less attention from Lacroix in the general Preface at the beginning of vol-
ume I. The integral calculus, being just the inverse of the differential calculus, did not offer
much occasion for reflection: it consisted only of a ‘collection of analytical procedures,
which is enough to order so as to make perceive their connections’ (1st ed., vol. 1, xxvii).
Lacroix proposes then to follow Euler’s ordering in hisInstitutionum calculi integralis
(1768–1770), adding new developments and replacing some methods by more recent ones.

Most of Chapter 1 is dedicated to find antiderivatives of functions of one variable: alge-
braic, rational, irrational, and transcendental(exponential, logarithmic and trigonometric).
There is also some attention to approximation techniques. Term-by-term integration of
power series is both a way of finding exact antiderivatives and of approximating them. But
since the resulting series is not always convergent, a ‘general method’ (taken from Euler’s
Institutionum) is given to approximate integrals byrectangles:
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Table 2. Volume II of Lacroix’s treatise.

1st edition 2nd edition (Some) topics
coveredChapter Pages Chapter Pages

Table of contents. iii–viii Table of contents. vii–xxi Contents and
bibliography.

Ch. 1: Integration
of functions of one
variable.

1–160 Ch. 1: Integration
of functions of one
variable.

1–155 Antiderivatives;
approximate
values.

Ch. 2:
Quadratures,
cubatures and
rectifications.

161–220 Ch. 2:
Quadratures,
cubatures and
rectifications.

156–224 Areas, volumes
and arc-lengths.

(partly
in chs. 3
and 4)

Ch. 3: Integration
of diff. functions
of several
variables.

225–249 Conditions for
integrability.

Ch. 3: Integration
of differential
equations in two
variables.

221–452 Ch. 4: Integration
of diff. eqs. on two
variables.

250–372 Solutions of
ordinary
differential
equations.

Ch. 5: Particular
solutions of diff.
eqs.

373–408 Singular
solutions.

Ch. 6:
Approximate
integr. of diff. eqs.

409–446 Approximation
methods.

Ch. 7: Geometric
applications of
diff. eqs. on two
vars.

447–470 Geometrical
problems.

Ch. 8: Comparison
of transcendental
functions.

471–502 Logarithmic,
trigonometric
and elliptic
functions.

Ch. 4: Integration
of functions of two
or more variables.

453–654 Ch. 9: Integration
of equations on
three or more
variables.

503–720 Partial
differential
equations.

Ch. 5: Method of
variations.

655–724 Ch. 10: Method of
variations.

721–816 Calculus of
variations.
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Y + f (a)(a1− a)+ f (a1)(a2− a1)+ · · · + f (an−1)(an − an−1) (7)

(whereY is the value of
∫
f (x) dx at x = a, and the differencesai − ai−1 are not neces-

sarily all equal).
In this connection a distinction appears betweenindefinite anddefinite integrals, along

with the respective definitions. According to [Cajori, 1919, 272] this was the first time such
definitions were given. However, Lacroix himself attributes them, rather vaguely, to ‘the
Analysts’ (p. 142), presumably [Laplace, 1782].

Chapter 2, dedicated to areas, arc-lengthsand volumes, consists mainly of examples,
since the differentials have already been found in the first volume and the methods of
integration have been studied in Chapter 1. But it ends with a small section on squarable
curves (that is, functions with algebraic integrals).

Chapter 3 is one of the central parts of the volume: ordinary differential equations.
Naturally separation of variables and the use of integrating factors are the main methods of
solution for first-order equations. For second-order equations, integrating factors are also
used, alongside with certain reductions to first order when possible. Linear equations (and
systems of linear equations) get some attention, but Lacroix rejects that name and prefers
to call them just ‘first-degree equations’, since the word linear refers to straight lines, to
which these equations do not relate.

Singular solutions are examined, following Lagrange’s explanation of 1774 (but using
Laplace’s term: ‘particular solutions’; Lagrangehad called them ‘particular integrals’), and
including their geometrical interpretation as envelopes of the families of curves given by
the ‘complete integral’. There also some methods to approximate solutions of first- and
second-order equations, including one that gives them in the form of continued fractions.

Here occurs a very interesting remark, although also very casual. After giving

Y + f ′(a)(a1− a)+ f ′(a1)(a2− a1)+ · · · + f ′(an−1)(an − an−1) (8)

as an approximate solution to a first-order differential equation (analogously to (7),
f ′(ai)= dy

dx
|x=ai being taken from the equation), Lacroix notes that this means that every

first-order equation is possible, that is, that it is possible to assign a solution, ‘either rigor-
ous, or approximate’ (p. 287). This looks like a very crude attempt at an existence theorem.

This chapter also includes some geometrical applications (orthogonal trajectories, for
instance), and one analytical application: the study of transcendental functions (logarith-
mic, trigonometric and elliptic) starting from their differential equations.

The other major chapter in this volume is Chapter 4, on the ‘integration of functions of
several variables’. It starts with a section on ‘total differential equations’: those that involve
all the differential coefficients of some order (in other words, all the partial derivatives of
some order) of the function we seek (either explicitly or implicitly). But almost all of the
chapter is devoted to those that do not: ‘partial differential equations’.

The types of partial differential equations studied are: first order and first degree
(Lacroix still rejecting the word ‘linear’); first order and degree greater than one (by re-
duction to first degree); first degree and any order; and a few cases of second order and
degree greater than one. Singular (i.e., ‘particular’) solutions are once again studied fol-
lowing Lagrange, as Lagrangian is a distinction between ‘complete integrals’ (with as
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many constants as the order of the equation) and ‘general integrals’ (involving arbitrary
functions).

The last part of the chapter draws inspiration from Monge. It includes the ‘geometrical
construction’ of a partial differential equation on three variables (that is, a study of the
surfaces that obey that equation); and a studyof ‘total differential equations’ on three
variables that cannot be integrated (to none of the variables can be assigned a function of
the other two), which result in families of curves that do not form a surface.

The second volume concludes with a chapter on the calculus of variations. Isaac Tod-
hunter, in hisHistory of calculus of variations, summarizes a review of this chapter by
commenting that this subject ‘does not seem to have been very successfully expounded
by Lacroix, and this is perhaps one of the least satisfactory parts of his great work’ [Tod-
hunter, 1861, 27]. He also quotes a complaint from another author (a Mr Abbatt) that on
this subject Lacroix was ‘prolix and inelegant’. Todhunter only saw the second edition of
Lacroix’sTraité, but I think his criticism might apply to the first edition as well.

In this first edition, Lacroix makes no attempt to suit the calculus of variations to the
Lagrangian power-series foundation of the calculus, so he presents Lagrange’sδ-algorithm
in its Leibnizian shape (the rules ofδ-differentiation come from those ofd-differentiation
by plain analogy andδ dy = dδy is justified using infinitesimal considerations).

5 DIFFERENCES AND SERIES

At first glance, the status of the third volume as part of the general work is doubtful: it has a
different title (Treatise on differences and series) and it is a continuation (‘faisant suite’) of
theTraité du calcul différentiel et du calcul intégral. But the numbering of its paragraphs
follows directly that of the second volume, and the subject index at the end is for the entire
set of three volumes.

At the start, Lacroix reminds the reader that in the first two volumes series only occurred
as expansions of functions, and their only purposes were to help study certain properties
of those functions or else to give approximate values of them. In this volume, series are to
be studied for themselves.

It must be noted that Lacroix keeps the 18th-century tradition of not distinguishing
betweenseries andsequences. Both words are used interchangeably.

Chapter 1, occupying more than half the volume, is roughly a discrete version of
the differential and integral calculus. It starts by the basic definitions: given a sequence
u,u1, u2, u3, . . .,

�u= u1− u, �un−1= un − un−1,

�mun−1=�m−1un −�m−1un−1. (9)

Some calculations follow, giving

un = u+ n
1
�u+ n(n− 1)

1 · 2 �2u+ n(n− 1)(n− 2)

1 · 2 · 3 �3u+ etc. (10)

and



288 J.C. Domingues

Table 3. Volume III of Lacroix’s treatise.

1st edition 2nd edition (Some) topics
coveredChapter Pages Chapter Pages

Table of contents. iii–viii Table of contents. vii–xxiv Contents and
bibliography.

Ch. 1: Calculus of
differences.

1–300 Ch. 1: Direct
calculus of
differences.

1–74 Finite
differences;
interpolation.

Ch. 2: Inverse
calculus of
differences of
explicit functions.

75–194 �-integration;
summation of
series;
interpolation.

Ch. 3: Integration
of difference
equations.

195–321 Difference
equations.

Ch. 2: Theory of
sequences drawn
from generating
functions.

301–355 Ch. 4: Theory of
sequences drawn
from generating
functions.

322–373 Generating
functions.

Ch. 3: Application
of integral calculus
to the theory of
sequences.

356–529 Ch. 5: Application
of integral calculus
to the theory of
sequences.

374–411 Summation of
series;
interpolation.

Ch. 6: Evaluation
of definite
integrals.

412–528 Use of series and
infinite products.

Ch. 7: Definite
integrals applied to
the solution of
differential and
difference eqs.

529–574 Transcendental
functions.

Ch. 4: Mixed
difference
equations.

530–544 Ch. 8: Mixed
difference
equations.

575–600 Difference-
differential
equations.

Subject index. 545–578 Subject index. 733–771
Corrections and
additions.

579–582 Corrections and
additions.

601–732 Extra-
typographical
corrections.

�nu= un − n
1
un−1+ n(n− 1)

1 · 2 un−2− n(n− 1)(n− 2)

1 · 2 · 3 un−3+ etc. (11)

These results suggest writing the expressions

un = (1+�u)n and �nu= (u− 1)n (12)
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‘as long as one remembers to change, in the expansion of the first [expression], the expo-
nents of the powers of�u into exponents of the characteristic�, and in the second, to
transform the exponents ofu into indices’. (10) and (11) were of course quite standard, but
their counterparts in (12) come from [Lagrange, 1774], the same memoir where he sug-
gested the power-series foundation for the calculus. Lacroix proceeds following Lagrange
on this formalistic path, thus writing, for example

�nu= (e dudx h − 1)n (13)

(whereu is a function ofx andh =�x), with similar provisions for the exponent. How-
ever, while Lagrange had established thisonly on an analogy basis, Lacroix includes a
proof by Laplace. After this comes a section on interpolation, where formulae derived from
these are applied, alongside with others, mostly polynomial (e.g., Lagrange interpolating
polynomial).

The inverse calculus of differences is presented as a discrete equivalent to the integral
calculus: if�u= f (x,�x) then�f (x,�x)= u is theintegral of f (x,�x).�-integration
is developed as far as possible, using among other tools Bernoulli numbers and ‘second-
order powers’:[p]n = p(p− 1) · · · (p− n+ 1).�-integrals are related to

∫
-integrals in a

similar way to what had been done between differences and differentials:

�mu= 1

(e
du
dx h − 1)n

(14)

(as long asdu
p

dxp
is changed intod

pu
dxp

and du
−p

dx−p into
∫ p
udxp).

Results like (10) relate�-integration to summation of series. The general relation is

Sf (x,�x)=�f (x,�x)+ f (x,�x)− const. (15)

(Sf (x,�x) is the sum; the arbitrary constant introduced by integration must now be re-
moved).

A large part of the chapter is dedicated to difference equations, including known meth-
ods of solution but also reflections on the arbitrary quantities introduced by them (which
need not be constant, unlike those in differential equations) and singular solutions.

The much shorter Chapter 2 is yet another example of the encyclopedic character of
this Traité: much of the matter of chapter 1 is readdressed, this time using an approach,
given in [Laplace, 1782] in theMémoires de l’Académie des Sciences de Paris, based on
generating functions. u is the generating function ofyx if

u= y0+ y1t + y2t
2+ · · · + yxtx + yx+1t

x+1+ etc. (16)

In Chapter 3 integral calculus is applied to series and sequences (namely for summing
series and for interpolation), and vice versa (series are used to evaluate definite integrals).
Definite integrals get much attention here,which motivates some use of the (Eulerian)
notation ∫

xm−1 dx

1+ xn
[
x = 0
x = inf

]
(17)
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(that is, the integral taken from 0 to+∞). Definite integrals are also used to study some
transcendental functions.

Volume 3, and theTraité, conclude with a small chapter on ‘mixed difference equa-
tions’, that is, difference-differential equations: an analytical theory is followed by some
geometrical applications.

6 THE TRAITÉ ÉLÉMENTAIRE AND THE SECOND EDITION OF THETRAITÉ

In 1802 Lacroix, then aprofesseur at theÉcole Polytechnique, published aTraité élémen-
taire du calcul différentiel et du calcul intégral [Lacroix, 1802]. According to the pub-
lisher’s list of works by Lacroix, it was ‘partly taken from’ the largeTraité. It does seem
to be mostly an abridged version of the latter. It is divided into a ‘first part: differential
calculus’, a ‘second part: integral calculus’and an ‘appendix: on differences and series’.
The correspondence between these three parts and the three volumes of the largeTraité is
perfect.

There are certain changes in order, for pedagogical reasons: Lacroix did not expect
the audience of theTraité élémentaire to withstand all the theory of differentiation before
seeing any application. There is also a foundational difference: Lacroix wished a ‘sufficient
degree of rigour and clarity’, but without the lengths entailed by certain unnecessary details
[Lacroix, 1805, 345–346]. For this reason he decided to use limits instead of Lagrangian
power series.

But the main difference, of course, is in depth, as the different intended audiences sug-
gest and the different sizes confirm: 574 8vo pages opposed to 1790 4to of the largeTraité.

A second edition of the largeTraité appeared in 1810 (first vol.), 1814 (second vol.),
1819 (third vol.). New developments were included and its bibliography grew considerably
(although a new graphical arrangement for the table of contents exaggerated this in terms of
number of pages; beware this in Tables 1, 2 and 3 above). Some chapters were subdivided.
A few sections were removed because their subjects had become standard in secondary
education. But mainly new material was accumulated.

7 IMPACT

It is particularly difficult to assess the impact of Lacroix’sTraité, as it is not the kind of
work a mathematician would normally cite.

However, there is a sort of secondary impact that is noticeable: that of theTraité élémen-
taire. Like the other textbooks by Lacroix, itwas hugely successful, having five editions
during the author’s lifetime, and four posthumous ones, up to 1881. It was translated (at
least) into Portuguese (1812, in Brazil), English (1816), German (1817) and Italian (1829).
If we take theTraité élémentaire as a by-product of the largeTraité, then the latter must
partake of the obvious educational influence of the former.

And there is some evidence also for more direct influence, namely on one of Lacroix’s
students at theÉcole Polytechnique: Cauchy (§25). Grabiner [1981] tries to find the techni-
cal origins of Cauchy’s rigorous analysis in 18th-century calculus. And for this, she claims,
Lagrange’s and Lacroix’s books were his principal sources [Grabiner, 1981, 79].
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One specific example: Cauchy’s definition of definite integral comes from 18th-century
techniques for approximation of integrals, particularly one by Euler, reported by Lacroix
((7) above). Cauchy not only clearly used it, but he ‘consistently used Lacroix’s termi-
nology’ [Grabiner, 1981, 151]. This path from Euler to Cauchy via Lacroix suggests that
Lacroix may have been successful in his maingoal: to make the 18th-century calculus, in
all its details, much more easily accessible and fruitful to the 19th-century mathematicians.
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CHAPTER 21

JEAN-ETIENNE MONTUCLA, HISTOIRE DES
MATHÉMATIQUES , SECOND EDITION

(1799–1802)

Pierre Crépel and Alain Coste

The first wide-ranging history of mathematics for a general readership, this book raised the
reputation of the history of mathematics both in its first edition of 1758 and especially in the
substantially augmented second edition that is our main concern. Notable is his attention
to applied mathematics, even some physics, as well as to pure mathematics.

First publication. 4 volumes, partially ed. J.J. Lalande, Paris: Agasse. Vol. 1, an VII (1798–
1799), viii+ 739 pages; vol. 2, an VII, 717 pages+ errata; vol. III, an X (1802), viii+
832 pages; vol. 4, an X (1802), 688 pages. All vols. with plates.

Photoreprint. Paris: Blanchard, 1968 [with new unpaginated four-page preface by Charles
Naux].

First edition. 2 volumes, Paris: Jombert, 1758. xxxvi+ 638; 680 pages. Both vols. with
plates.

Translations. According to a letter by Montucla, German and Dutch translations were
planned [Beaujouan, 1950, 130–131], but they do not seem to have been published.

Related articles: All articles on the 17th and 18th centuries.

1 BIOGRAPHY

Jean-Etienne Montucla was born at Lyon on 5 September 1725 into a family of tradespeo-
ple. He studied at theCollège de la Trinité, the local Jesuit college, where he took Greek
and Latin but also followed an elementary scientific curriculum, mainly under the direc-
tion of the astronomer Père Béraud (the college had an observatory), acorrespondant of
the Académie Royale des Sciences. Concerning Lyon he recalled especially the memory
of old astronomical clock, which one can still see at the cathedral, and of the architectural
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tour de force of Girard Desargues, namely, a house built on a bridge and overhanging water
that was to be destroyed in the 19th century.

Montucla had a flair for languages and privately learned Italian and English, as well as a
little German and Dutch, and even some Arabic. His father died in 1741, followed in 1745
by his grandmother who had looked after him. He went to Toulouse to study law, which
was not possible at Lyon at the time. He lived later in Paris, where he associated with the
intellectuals who met regularly at the house of the bookseller and editor C.A. Jombert, and
made his living by working for theGazette de France.

Montucla’s first published work was anHistoire des recherches sur la quadrature du
cercle [Montucla, 1754], part of which is reproduced as an appendix to theHistoire des
mathématiques. S.F. Lacroix (1765–1843) reissued the book in 1831, augmenting and up-
dating the text. We note that Jombert had already published the work and that the Royal
Privilege included this book in theHistoire des mathématiques, although this did not ap-
pear until four years later. This book on the quadrature of the circle and the support of
Jean d’Alembert were responsible for his nomination as a foreign member of the Berlin
Academy on 3 July 1755. He later compiled with P.J. Morisot-Deslandes a collection of
documents of English origin on inoculation. The publication was in support of the cam-
paign of La Condamine, whose memoir was read at theAcadémie des Sciences on 24 April
1754; however, although approved by the censor on 18 July 1754, Montucla and Morisot-
Deslandes’s book was not published until 1756, on the occasion of the inoculation of the
royal children.

It was in 1758 that Montucla published the two volumes of the first edition of theHis-
toire de mathématiques, and he was already preparing a third on the 18th century. But in
1761 he was appointed to an official position, remote from mathematics, as secretary to the
Burser of the Dauphiné, which also obliged him to leave Paris for Grenoble. He benefited
from this by getting married in 1763. In 1764–1765 he seems to have spent some time at
Cayenne as secretary to the brother of the economist Jacques Turgot. On his return he took
up a position at theSurintendance des Bâtiments (more or less a ministry of fine arts and
architecture) and settled at Versailles, where he lived until the Revolution: he was still in
post in July 1792.

During this period, Montucla published with Jombert a new edition of theRécréations
mathématiques of Jacques Ozanam, which had first appeared in 1694. Montucla did not
care much for Ozanam and rewrote a large part of the book. Like theHistoire des mathé-
matiques, theRécréations deal with many subjects (physics, chemistry and so on). Montu-
cla was not directly credited as the ‘author’, but he was in later editions and in the English
translation of 1803.

In 1784, under the pseudonym ‘M.d.C.’, Montucla translated and published the third
edition of Jonathan Carver’sTravels through the interior parts of North America, which
had appeared in London in 1781, adding notes and a preface. During this period, he con-
tinued working on a future reissue of theHistoire des mathématiques and on a draft of
the Part devoted to the 18th century. Following the Revolution, he had small, badly-paid,
official jobs; his request for a pension was granted thanks to his friend the astronomer
Joseph-Jérome Lalande (1732–1807), and also Lagrange, but only a few months before his
death. He had never been a member of theAcadémie Royale des Sciences, but in the re-
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Table 1. Contents of the second edition of Montucla’s history. The first column gives the
Volume and Part numbers, and the numberof Books for that Part in the Volume.

Vol., Part; Page Topics
Books
1 i–viii Preface by Montucla.
1, 1; 5 1 Ancient Greeks.
1, 2; 4 350 The Far East.
1, 3; 5 480 The 16th century (with Supplement). [End 739.]
2, 4; 9 1 The 17th century (with Supplement).
2 661 Table of contents; index of vols. 1 and 2.
2 712 Additions, corrections, errata for vols. 1 and 2. [End 718.]
3 v–viii Preface by Lalande.
3, 5; 4 1 The 18th century: mathematics, optics, mechanics. [End 832.]
4, 5; 5 1 The 18th century: astronomy.
4 584 Supplements: capstan, geography, quadrature, music, antiquity,

derivations.
4 661 Notice of Montucla by Leblond, modified by Lalande.
4 673 Table of contents; index of vols. 3 and 4. [End 688.]

organization following year III he was designated on 28 February 1796 as a ‘non-resident
associate’ of the mathematics section of the newInstitut National.

The new edition of the first two volumes of theHistoire des mathématiques appeared in
1799, when Montucla also supervised the printing of a large part of Volume III. He died
on 18 December 1799 of a bladder infection, leaving a wife and two children. His friend
Lalande, with several assistants, ensured the publication of the third and fourth volumes in
1802. Montucla left among his papers a great mathematical bibliography of more than 600
pages that was never published, although Lalande made use of it in the fourth volume. On
his life and work, see especially [Le Blond, 1800; Doublet, 1913] and [Sarton, 1936].

2 CONTENTS OF THE BOOK

It is not easy to find one’s way in Montucla’sHistoire des mathématiques. We consider only
the second edition, which encompasses the first. It consists of four ‘Volumes’ and is divided
into five ‘Parts’ that do not correspond to the Volumes. These Parts are themselves split up
into ‘Books’. These are also ‘appendices’, both to the Books and to the Parts. There are
summaries (really continuations of the text) of the first four Parts and Books I and II of the
fifth, but not of Books III–IX, of the fifth Part. The work also contains two ‘prefaces’, one
‘notice’ and a ‘table of contents’ that today would be called an index. A detailed summary
of the whole work may be found on the website http://dalembert.univ-lyon1.fr. Table 1 is
a simplified version. We focus mainly on the second edition, but the first edition will also
be noted.
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3 VOLUME 1 (1758 AND 1799)

A reading of the table of contents shows that theHistoire des mathématiques also contains
a history of theoretical mechanics, as well as of applied mechanics (clocks, steam engines,
and so on), astronomy and optics. In a preface, which he modified in the second edition,
Montucla lists his predecessors, with whom he is generally very severe; he particularly
accuses them of being biased or giving only a simple chronology. He also describes his in-
tended readership as ‘philosophers, professional people, those with a love of the sciences’.
This diversity obliges him to supplement his text, both with brief introduction for the less
initiated (for example, on algebraic curves) and with appendices to many of the chapters
giving details of the proofs for the benefit of professional people.

The title page of the first volume of theHistoire des mathématiques is shown in Figure 1.
The long subtitle promises to give an account of the progress in mathematics from its origin
up to the present day, and the first Part of Volume 1 contains a fairly canonical version of
the history of mathematics in Ancient Greece.Having read sources available at the time,
including Plutarch, Diogenes Läertius and Proclos, he discusses the editions of the great
classics: Euclid, Archimedes and Apollonios. While expressing many reservations on the
credibility of the little anecdotes that traditionally accompany the history of ancient Greek
mathematics, he nevertheless records them faithfully. There is also a lengthy treatment of
Greek music appropriate to the fashionin the academics of the 18th century.

The second Part of Volume 1 is at the same time intriguing and deceptive. The intention
is to give a history of the mathematics of the Arabs, Persians, Turks, Hebrews, Indians and
Chinese. This manifold ambition could not be realized with the sources at his disposal:
while his knowledge of Arabic enabled him to correct the transcription of certain head-
ings and proper nouns, the information contained in the Jesuit literature to which he made
reference is insufficient, especially in regard to India and China. The whole of this Part is
today no more than a curiosity and a testimony to the (lack of) knowledge possessed of the
subject matter in the Enlightenment.

The situation is entirely different in the third Part, which deals with the mathematics
of the 16th and 17th centuries. Montucla’s documentation here is impressive: he seems to
have consulted all the books to which he refers, aside from sometimes having seen only
a second edition and some problems with the Dutch language. As sources of reference,
he relies chiefly on theJournal des savans, the Philosophical transactions of the Royal
Society and theMémoires de l’Académie Royale des Sciences.

The subtitle of theHistoire des mathématiques contains a curious phrase: Montucla de-
clares his intention to describe ‘the disputesthat have arisen between mathematicians’ and
actually organizes his text with this in mind. Thus, in the last Part of Volume 1, which treats
the solution of equations, he devotes several pages to the quarrel between Niccolo Tartaglia
and Geronimo Cardano. This Part is dedicatedto the history of algebra, and he places par-
ticular emphasis on the role of François Viète; while he makes use of John Wallis’sTreatise
on algebra (1685) (compare §2), he is very critical of it.

In the second edition Montucla leaves many chapters unchanged, merely adding various
paragraphs, whereby the total number of pages is increased by around 100. For example,
the Section on the mathematics of the Orient doubles in length.



296 P. Crépel and A. Coste

Figure 1. The title page of the first volume.

4 VOLUME 2 (1758 AND 1799)

The principle of organizing the exposition around ‘disputes’ between mathematicians is to
a large extent maintained: Habakkuk Guldin versus Bonaventura Cavalieri, Gilles Roberval
versus René Descartes, and so on. The ‘pure mathematical’ part of this second Volume
is centred around the history of the cycloid, which he humorously calls ‘the Helen of
the geometers’. He devotes several pages to the competition launched by Blaise Pascal
on this subject; and since the edition by Charles Bossut (1730–1814) of Pascal’sOeuvres
(covering the mathematical works) had appeared in 1779, between the two editions of the
Histoire des mathématiques, Montucla completely rewrote this Section to take account of
this (and in particular of Wallis’s contribution). The mathematical work of Descartes is
described at length and in a fairly positive way, even though Montucla does report the
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quarrels with Pierre Fermat and Roberval. Thomas Harriot’s contribution to the history of
algebraic equations gives him another opportunity to disparage Wallis’s treatise.

After this history of algebra in the first half of the 17th century, the first edition continues
with a chapter on optics. This is changed in the second edition, which proceeds more
logically to the history of mechanics, especially the work of Galileo Galilei on falling
bodies and that of Descartes on collisions, of which he is very critical.

As to the history of optics, the links with Joseph Priestley’s bookThe history and present
state of discoveries relating to vision, light and colours (1772) are close. Priestley wrote
with the first edition of Montucla in front of him, and Montucla prepared his second edition
after reading Priestley’s book, each acknowledging his debt to the other. Montucla devotes
two chapters to the 17th-century optics of Johannes Kepler and Descartes, while Priestley
focuses on the work of Isaac Newton.

Kepler and Galileo are the heroes of the story of astronomy in the 17th century. The
condemnation of the latter enabled Montucla to give vent to an anti-clericism of which
traces are to be found throughout the work. He then returns to the pure mathematics of the
second half of the century, beginning with a grand eulogy on the scientific work of Wallis,
which contrasts with his very negative judgement of the latter’s work on the history of
mathematics.

But the main concern is the invention of differential calculus in the work of Isaac New-
ton and G.W. Leibniz. Montucla preserves a prudent neutrality, expressing equal admira-
tion for these two scholars. As to the mechanics of this period, the Huygens–Catalan con-
tention on problems involving centres of gravity is followed by an exposition of the works
of the Bernoulli brothers and Leibniz and a very long account of Newton’sPrincipia.

As is stated on the title page, theHistoire des mathématiques also contains, dispersed
throughout the text, a history of mathematicians. For each of these, especially the greatest,
who worked in many areas, the question arises of where to put the biography. Montucla’s
solution seems to have been to seek a balancewhereby the biographical notes neither cause
too much disruption of the chronological sequence of the history of ideas, nor follow too
closely on one another. Thus, one finds the notes on Descartes, Newton and Leibniz in the
pure mathematical Sections, those on Kepler and Galileo in the chapters on astronomy, and
that on Christiaan Huygens in the chapter on mechanics. These notes are rather brief and
not of great use today.

5 VOLUME III (1802)

The third and fourth Volumes, together labelled ‘Fifth Part’, comprise a history of 18th-
century mathematics; it caused Montucla new difficulties. In the 18th century, mathemati-
cians grew in number and professionalism, and the memoirs published increased in line
with the number of journals containing them. To the old ones (Journal des savans, Mé-
moires de l’Académie Royale des Sciences and Philosophical transactions) were added
the Mémoires of Berlin, Turin, Saint Petersburg, Göttingen, and so on. Deciding what is
important among the works of one’s own period is always a difficult task. Someone virtu-
ally self-educated like Montucla comes up against problems other than those arising in the
work of earlier centuries, even though he consulted the professionals.
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Volume 3 is divided into four Books, of which the first contains the history of mathemat-
ics in today’s sense and makes up more than half of the Volume. It begins by describing
the state of research on the solution of algebraic equations and the obstacles apparently
encountered by the methods of A.T. Vandermonde and J.L. Lagrange and the calculus of
symmetric functions beginning with the equation of the fifth degree, and the resulting in-
terest in the approximate solution of Newton, as well as those of Johann Bernoulli, Brook
Taylor and Lagrange. He then connects up with one of his favorite themes, the theory of
curves and applications of the differential calculus, a subject that enables him to study the
Newton-Leibniz quarrel and also the attacks of Michel Rolle and George Berkeley and the
defences of Joseph Saurin, Benjamin Robins and Colin Maclaurin.

As he approaches his own era, Montucla changes his method ofexposition. Conscious
of not having mastered all the references, he divides mathematics up into a number of
different areas (he actually notes the beginnings of specialization inside mathematics, even
though the same mathematicians crop up in different areas). In each of these areas, he
chooses one or two general (rather than original) treatises to form the basis of his text,
augmenting these from time to time with references to various memoirs. In the case of
differential equations, for example, he makes explicit use of theTraité de calcul intégral
of Louis Bougainville (1754–1756) and theEléments de calcul intégral of Thomas Leseur
and François Jacquier (1768). The former enables him to recall the works of D’Alembert
and the latter those of Leonhard Euler, but he admits his difficulties in understanding and
summarizing the recent work of the Marquis de Condorcet! He then turns to the theory of
series. After describing in detail the classical works of Newton, Leibniz and the Bernoullis,
even giving some explicit calculations, he mentions the recurrent series of Abraham de
Moivre and continued fractions. As to more recent work, Euler serves as his guide.

Montucla tries to give a survey of other areas of research, but it is clear that he has no
longer been able to read everything, and only cites the Italian mathematicians at second
hand. For the calculus of finite differences, he quickly returns to Bossut’s and J.J. Cousin’s
recent treatises and the articles in theEncyclopédie méthodique.

Lagrange’sThéorie des fonctions analytiques (1797) is Montucla’s source for the theory
of functions. He departs at this point from theexposition of new mathematical theories to
spell out several geometric applications thatarise, for example, in the exchanges between
Bernoulli and Leibniz on geodesic problems and orthogonal trajectories. Montucla thus
returns with a sense of relief to the universe of controversies between mathematicians that
had formed the stylistic setting of the previous Volume. The discussions between Johann
and Jacob Bernoulli occupy several pages.

It is at this point that matters become complicated owing to Montucla’s death. The first
chapter that follows is the one on partial differential equations; Lalande did not feel him-
self capable of reviewing this difficult topic and turned to Lacroix for help. The chapter
is centred around the discussion of priorities between Euler and D’Alembert, and it is not
known whether it is Montucla or Lacroix himself who refers to theTraité de calcul dif-
férentiel et intégral of the latter (1797–1800) as being ‘the newest and most complete’
authority on this question (§20). The Section on the calculus of variations contents itself
with a reference to Lagrange. The last two topics are logarithms (inspection of the tables
and the debate on logarithms of negative quantities) and probability (D’Alembert’s reser-
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vations on the foundations of the theory and their defence by Daniel Bernoulli), along with
its numerous applications to questions of finance, census, medicine, and so on.

It was Fortia d’Urban who supervised the editing of the pages of ‘Book II’ on optics: in
his notes, he gives some idea of the state of the manuscript at the time of Montucla’s death
and of what he has done to prepare it for publication. The table of contents at the beginning
is Montucla’s, but many of the proposed articles were only partially written up. Thus the
very long Section V on achromatic lenses amounted to only 10 pages; Fortia adds another
40, mainly on the work of D’Alembert. To round off Section IV, Fortia transcribes the
relevant passages from Volume II of theRécréations mathématiques retaining Montucla’s
style. Beginning with Section VI of Book II, the editing is again taken over by Lalande,
apparently with fewer scruples in regard to Montucla: he changes the proposed titles in
cases where they seem somewhat inconvenient to him and makes frequent reference to his
own works (‘as I have in myEphémérides’). There is also a Section on the construction
of telescopes, spectacles, microscopes and other instruments without much in the way of
theory. The last Sections bring together a large number of notes on all kinds of inventions,
phantasmagoria, optical spectacles, the oculer harpsichord of Père Castel, and so on; all
this work might be found in a 19th-century magazine on the popularization of science.

It seems likely that ‘Book III’, on mechanics and fluid mechanics, was written by Mon-
tucla himself. The author recognizes that he has a perfect guide to the area in Lagrange’s
bookMéchanique analitique, which appeared in 1788 (§16): ‘there could be no surer guide
or more profound historian, leaving nothing to be desired in the way of history or scholar-
ship’.

Montucla begins with the principles of statics followed by those dynamics, giving pride
of place to explaining the principle of conservation of live forces (forces vives, attributed
chiefly to Huygens) and D’Alembert’s principle. The debate on live forces, which stim-
ulated scientific fashions for 40 years, is a choice morsel for Montucla: its history take
up 50 pages, of which the more theoretical part concludes with the controversy between
P.L. Maupertuis and J.S. Koenig on the principle of least action. As to applications, he
chooses the problem of tautochrones in resistant media, vibrating strings and the discus-
sions between D’Alembert, Euler, Daniel Bernoulli and Lagrange, and finally ballistics via
the work of Benjamin Robins annotated by Euler. Fluid mechanics is treated more briefly,
the author referring to theHydraulica of Johann Bernoulli, theHydrodynamica of Daniel
Bernoulli and theTraité des fluides of D’Alembert. He cites, without giving technical de-
tails, the new methods (partial differential equations) of Alexis Clairaut, D’Alembert and
Lagrange (without mentioning Euler!). A long Section on the hydraulics of rivers borrows
directly from Bossut many pages on the Italian hydraulic engineers, augmented by several
allusions to the works of Forest de Bélidor.

The fourth Book of Volume III deals with machines and is written by Lalande. Af-
ter mentioning human forces and those of horses, and frictional resistances as studied by
Guillaume Amontons, G. Riche de Prony and C.A. Coulomb, he goes on to describe ac-
tual machines: Marly machines and various pumps, steam engines, windmills, steamships
and the first trials of Joseph Montgolfier. He ends with clocks and automata. This Book is
rather untidy throughout.
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6 VOLUME 4 (1802)

Volume 4 contains hardly any pure mathematics but much astronomy, which explains La-
lande’s haste in completing Volume III: to have a greater input in the text. The references
to his ownAstronomie (editions from 1764) are numerous, and one also finds signed notes
and a record of events that took place after Montucla’s death.

The fifth Book is the one concerned with astronomy as such and covers the expected
topics: the system of the world, the stars, and the theory of the Sun. Much space is devoted
to the theory of the Moon and the relevant works of Clairaut, D’Alembert, Euler, Edmund
Halley and John Machin, among others. Eclipses are also studied, along with the solar
transits of Mercury and Venus. The highlight of this Book is the discovery of a new planet
(Uranus) by William Herschel, who is the leading light in Book V.

Book VI deals with physical astronomy. It moves away from mathematics to some ex-
tent, although there are links with refraction and the force of the Earth. But the long history
of the measurement of the arc of the meridian at the pole and at the equator to verify the
flattening of the Earth sometimes contains the story of a journey or even a new item (the
murder of Semiergue). It then returns to thetheory, as developed by Clairaut, MacLau-
rin, D’Alembert and R.J. Boscovich, before analyzing at length theMécanique céleste of
Laplace. This difficult work only began to appear in 1799 (§18), so there is no doubt that
the account is due to Lalande. The Book then returns to classical topics: the aberration
highlighted by the experiments of James Bradley, the precession of the equinoxes and the
nutation of the axis of the Earth following the works of D’Alembert. For the obliquity
of the ecliptic, the author again follows Laplace. As to the means of Jupiter, Saturn and
Uranus, frequent reference is made to the tables of Lalande, and the same goes for the
pages relating to the story of the return of Halley’s comet in 1759.

Book VII is a collection of astronomical tables and calendars, and the last two Books
(VIII and IX) bring together a large number of questions more or less related to navigation.
In Book VIII, these are 1) the construction of boats, their stability, the oars, the sails, and
so on, in which the author analyses the French students of these questions (for example,
Pierre Bouguer, Sébastien Vial du Clairbois and Charles Romme) as well as the French
adaptation of the book by Frederick Chapman; and 2) the maneuvering of boats, the theory
of steering, swaying and pitching, and the way boats are loaded, which are rather more
mathematical: Euler, Clairaut, Bouguer, J.C. Borda and Bossut contributed to the theory.
The analysis of Don Jorge Juan’s treatise, theExamen maritime (1771), sums up recent
progress on these questions.

Book IX, the last, deals with the location of ships: compasses and the calculation of
speeds. At the very end there is a summary of the various methods for solving the problem
of longitude, finishing up with the story of John Harrison, which tones down the rather too
exclusively French aspect of this recent history of navigation.

The Volume ends with six appendices. The first reproduces a report by Borda on a
capstan project of Charles de la Lande. The second is a very brief history of geography,
or rather a history of the discoveries of the navigators with remarks on the Atlantic and on
the discovery of America by the Vikings before Columbus. There is also some information
about maps, in particular a page on the ancient chart of Peutinger. The third appendix,
written by Montucla, is a history, based on the book published in 1754, of attempts to
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square the circle. The fourth appendix returns to music in antiquity and the fifth includes
several pages on ancient philosophers. The sixth gives a summary of L.F.A. Arbogast’s
book Du calcul des dérivations published in 1800. The work ends with a biography of
Montucla arranged by Lalande in1800 from that of Guillaume Le Blond.

7 RECEPTION OF THE WORK

Montucla’sHistoire des mathématiques was circulated widely and both editions quickly
gained a great reputation. It has been paraphrased and even plagiarized, and at least used
as a source on innumerable occasions in the course of the last 250 years. However, we
know of no systematic study of its reception and utilization.

7.1 Reception and utilization of the first edition. It has the distinction of being cited be-
fore its publication in the most celebrated work of the 18th century, theEncyclopédie; it
was first mentioned by D’Alembert in his article on ‘Géométrie’ in volume 7 (1757). It is
used later in over a dozen articles of various types, such as ‘Logarithme’ and ‘Optique’,
both by D’Alembert and the chevalier de Jaucourt. Other passages are copied verbatim in
Yverdon’sEncyclopédie (a Swiss modification of theEncyclopédie) and in theSupplément,
such as the article ‘Conique’.

Reaction in the journals was immediate. Beginning in 1759, long accounts, rather banal
yet very favourable, appeared in theJournal des Savans (259–267, 467–474), theJour-
nal de Trévoux ((1759), 489–512, 1759–1791, 2501–2527 and (1760), 122–150), and the
Mercure de France (January 124–138, February 111–117). Thus the book was ignored by
nobody, from Bossut through Condorcet to Lagrange, and everyone made use of it.

7.2 Immediate reception of the second edition. The second edition likewise did not pass
unnoticed. TheJournal de Paris, a daily newspaper, reported the issue of Volumes 1 and
2 in its edition of 15thermidor of year VII and of Volumes 3 and 4 that of 25prairial of
year X, but only in simple announcements of a few dozen lines. It even gave the price: 31
francs 50 for the first two and 31 francs 30 for the other two. A significant coincidence
is worth mentioning: 1802 also saw the publication of theEssai sur l’histoire générale
des mathématiques by Bossut; this work received much longer reviews in theJournal de
Paris, and also in theDécade philosophique. And, of course, the journalists had to compare
the two histories, to Bossut’s advantage in both cases. They recalled the strengths and
weakness of the first edition of Montucla and the criticism it had suffered in the intervening
40 years, and pointed out the differences in methodology of the two authors. They were
assisted in this by Bossut himself, who devoted three pages to the subject in his own preface
(pp. v–vii), adding that he had not yet seen the second edition. As an example here is a
passage from theJournal de Paris for the 3rd complementary day of year X (1800–1801):

There is no detailed history of mathematics like that of Montucla. Citizen
Bossut informs us that his object is different. In each branch of the sciences,
he considers only the fundamental ideas and their major consequences. As a
result, the picture he paints is infinitely more effective, since in a convincing
way it brings together into one panorama the most magnificent of all the sights,
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the origin of this kind of knowledge, that certainty always accompanies, and
the successive progression of discoveries that have almost completely changed
the face of the earth.

One is led into the belief that the mathematician Bossut had a greater mastery of the subject
than a well-informed amateur like Montucla.

7.3 Subsequent evaluation and utilization. The history of subsequent evaluations comes
more into line with what we have said in our analysis. Whatever they thought of it, histo-
rians of science from Moritz Cantor to George Sarton took it very seriously. In particular,
Volumes III and IV, and even segments of Volume II, enjoy a rather special status: they act
as a kind of intermediary between primary and secondary sources.

TheBiographie universelle of Abbot Feller (1849 edition, volume 6) shows no hesita-
tion in confirming (doubtless for ideological rather than historical reasons) that ‘the last
two volumes, printed after the death of the author under the direction of Lalande, more
often than not provide only a heavy overview of optics and physical astronomy, where
one sometimes finds random judgements’. Finally, in our times, the historian Kurt Vogel
has rightly noted that ‘Montucla had no successor until Moritz Cantor’ [1971, 501]. The
fact remains that Montucla’sHistoire des mathématiques continues to be read and used
up to the present day. After all, as we saw in the publication history, there is a modern
photoreprint.
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DISQUISITIONES ARITHMETICAE (1801)
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Related articles: Dirichlet (§37), Weber (§53), Hilbert on number theory (§54), Hilbert on
mathematical problems (§57), Dickson (§65).

1 INTRODUCTION

September 1801 saw the publication in Leipzig of a scientific work, written in Latin,
with the modest titleDisquisitiones arithmeticae (hereafter ‘D.A.’; in English the title is
‘Arithmetical enquiries’). It was quickly recognized by contemporary experts, especially
in France, as a masterpiece of unprecedented organization, rigour and extent, which trans-
formed number theory from a scattering of islands into an established continent in mathe-
matics.

Its author was the 24-year-old Carl Friedrich Gauss (1777–1855). After studying math-
ematics in Göttingen from 1795 to 1798 Gauss lived as a private scholar in Braunschweig.
He had conceived the idea of writing such a book while still a student in 1796. The execu-
tion of this plan was to be deferred until 1800. The most important source for the history
of the writing of D.A. is the mathematicaldiary kept by Gauss from 1796 to 1814, which
contains a total of 146 entries [Gauss Diary]. The original manuscript of the book is not
extant. A first draft, with the title ‘Analysis Residuorum’ and having the theory of congru-
ences as a key feature, was completed from two fragments discovered by Uta Merzbach in
1975 and published in Volume 2 of theWerke [Merzbach, 1981]. However, Sections 4 and
5, which form more than half of the printed version, are missing from this first draft.

We shall take for granted a familiarity with the most significant dates in Gauss’s life
and work. The reader may compare the lists in [Küssner, 1979, 11–12] and [May, 1972],
as well as the letters compiled in [Biermann, 1990]; see also §23.1.

2 WHAT IS THEDISQUISITIONES ARITHMETICAE ABOUT?

Here is an extract from the Foreword (with elaborations indicated in square brackets):

The investigations described in this book have to do with that part of mathe-
matics which deals with whole numbers [namely, 0,1,−1,2,−2,3,−3, . . .],
with fractional numbers being largelyignored and imaginary numbers [that is,
the irrational complex numbers] left out altogether [. . .] thus the whole num-
bers (and fractions, insofar as they are defined in terms of whole numbers)
form the subject of arithmetic [. . .] so it would seem appropriate to distinguish
two branches of arithmetic, with the above [‘art of counting and calculating’]
regarded as belonging to elementary arithmetic, while all general considera-
tions of the specific relations of whole numbers are a part of higher arithmetic
[‘arithmetica sublimior’] that will be our sole concern here.

Gauss accordingly divided his D.A. into sevenSections (see Table 1). Below ‘art. 25’, say,
will refer to Article 25.

Gauss also noted in the Foreword (and as a reference in art. 44) an eighth Section ‘which
has already been mentioned in a few places in this volume and contains a general treatment
of algebraic congruences of every degree’. Among his papers there is indeed a fragment
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Table 1. Contents by Sections of Gauss’s book.

Sec.; Page Arts. Short ‘Title’ or Description: other included topics
Dedication to Duke of Brunswick–Luneburg (3 pages). Preface (6 pages).
I; 1 1–12 ‘Congruences of integers in general’: least residues.
II; 8 13–44 ‘Congruences of first degree’: uniqueness of prime number

decomposition, polynomials with integer or rational
coefficients.

III; 41 45–93 ‘Power residues’: primitive roots, Fermat–Euler theorem.
IV; 92 94–152 ‘Congruences of the second degree’: quadratic reciprocity law.
V; 165 153–307 ‘Forms and indeterminate equations of the second degree’:

binary and ternary quadratic forms with integer coefficients,
proper and improper equivalence, composition of binary forms
and classes, genera.

VI; 540 308–334 ‘Various applications of the above’: partial fractions, decimal
fractions, primality tests, factorization.

VII; 592 335–366 Cyclotomy: periods, solution by radicals, regular polygons.
[End 665.]

Additions (3 pages), Tables (6 pages), Errata (4 pages).

with the title ‘Caput octavum’ (‘eighth Section’:Works, vol. 2, 212–242), which was com-
pleted for publication.

Among Gauss’s predecessors, L. Euler (1707–1783), J.-L. Lagrange (1736–1813) and
A.-M. Legendre (1752–1833) had already dealt to some extent with certain types of Dio-
phantine equations and achieved considerable success [Weil, 1984, chs. 3–4]. Sections 3–6
of D.A. make brief mention of the work of these authors, especially the comprehensive
Essai [Legendre, 1798], but they contain far more general results using new methods.

Sections 1–4 of D.A. deal exclusively with whole numbers. Their content would now
no longer be described by the Gaussian term ‘higher arithmetic’, but rather as ‘elementary
multiplicative number theory’. An important exception is the so-called ‘Gauss lemma’ on
polynomials, which asserts (in a modern formulation) that the product of two primitive
polynomials (in one unknown with integer coefficients) is again primitive (art. 42).

The fifth Section specifies the Gaussian definition of ‘higher arithmetic’ more precisely,
comprising a study of ‘binary and ternary quadratic forms’, and thus of homogeneous
polynomials of degree two in two or three unknowns, with integer coefficients. Here Gauss
exhibits in detail a very significant and methodical self-restraint. Every binary quadratic
form can be decomposed into linear factors:

ax2+ 2bxy+ cy2 = a−1 · [(ax + by)2− (b2− ac)y2]
= a−1 · (ax + by +√

(b2− ac)y) · (ax + by −√
(b2− ac)y)

. (1)

If, for a, b, c as integers,(b2 − ac) is not a square, then
√
(b2− ac) is irrational. Euler,

Lagrange and Legendre had used these linear factors to good effect without developing a
fully-fledged theory of quadratic forms. Gauss first became acquainted with the work of
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these authors in Goettingen in October 1795. In Section 5 of D.A. he decided to dispense
(almost) completely with the irrational linear factors and to work instead with identities
between polynomials with integer coefficients. This naturally makes an understanding of
Section 5 much more difficult for later readers. It also contains his treatment of continued
fractions.

Why did Gauss adopt this course? Felix Klein (1849–1925) suggested that he had ap-
plied the linear factors and their representation by a lattice in the plane to a heuristic pur-
pose [Klein, 1926, 38–40]. There is certainly no evidence for such a conjecture in Gauss’s
papers and letters, as Klein admitted. It seems likely that in the long run Gauss was moved
to discard quadratic irrationalities by noticing the deficiencies and difficulties in Lagrange
and Legendre.

Section 6 consists partly of applicationsof Sections 1–4, for example to partial frac-
tions and periodic decimals, and partly of applications of Section 5 to the factorization of
integers.

Section 7 deals with the equationxn = 1 and its solutions in the domain of complex
numbers. These solutions are regarded without further comment as points of the complex
plane. They all lie on the unit circle and divide its circumference inton arcs of equal length,
whence the name (due later to J.J. Sylvester) ‘theory of cyclotomy’. Gauss explicitly in-
forms the reader here that, in as much he is applying (algebraic) complex numbers, he
is stepping outside the domain of higher arithmetic, but establishing a narrow connection
with this domain.

In the unpublished eighth Section, Gauss again goes beyond the subject of higher
arithmetic as originally defined. He considers polynomials in one variable with inte-
ger coefficients and congruences between such polynomials modulo a fixed primep

or modulo a pair(p,f (x) mod p), where f (x) is irreducible modp. In modern
terminology, with F q denoting the field ofq = pn elements, Gauss proved that the
polynomial ring Fp[x] = Z[x]/(p) is Euclidean, and he investigated the factor rings
Fp[x]/(f (x) modp) = Z[x]/(p,f (x)). Whenf (x) mod p is irreducible, this factor
ring is a finite fieldF q , andf (x) modp is a divisor of(xq−1− 1) modp. This led to the
theory of finite fields of characteristicp, which might be called ‘the theory of cyclotomy
modulop’. This theory was then developed independently of Gauss by Evariste Galois
(1811–1832) in a paper published in 1830, although it made appeal to Gauss’s concept of
congruence in its theory of ‘imaginary roots’ of congruences.

Gauss himself later introduced algebraic complex numbers as a subject within higher
arithmetic, in which he investigated the numbersa + bi (a andb as whole numbers) and
thus proposed an ‘extension of the field of arithmetic’ [Gauss, 1825, 1831]. The subsequent
development of number theory followed up this extension with great vigour.

After Gauss, L. Kronecker (1823–1891) used D.A. as a model for the most consistent
subject definition of arithmetic. He appealed to Gauss in formulating the programme of
‘general arithmetic’, which discarded algebraic irrationals, described a theory of polyno-
mials in arbitrarily many unknowns with integer coefficients (and their congruences), and
included the theory of algebraic functions. One can indeed replace, for example, the irra-
tional number3

√
2 by the residue class ofX mod (X3− 2).
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3 CONTENT AND RECEPTION OF SECTIONS 1–4

In Section 1 of D.A. Gauss introduced the relation of congruence,

a ≡ b (modm) ⇔ m divides(a − b), (2)

for integersm, a andb. The suggestive symbol ‘≡’ should emphasize the similarity with
the relation of equality. The Latin word ‘modulus’ means ‘measure’ or ‘scale’. The term
‘module (over a ring)’, familiar in modern mathematics, arose from it via a sequence of
changes of meaning.

The idea behind congruences had been known and exploited for a long time: residue
classes modm were familiar as ‘arithmetic progressions with common differencem’, and
congruences were used as a tool in the solution of equations in integers. The notion of
congruence nevertheless exerted a strong influence over a long period. It was extended step
by step to algebraic numbers and polynomials by Gauss (in Section 8 of D.A.) and many
others, including C.G.J. Jacobi (1804–1851), E. Kummer (1810–1893), J.P.G. Lejeune-
Dirichlet (1805–1859), G. Eisenstein (1823–1852) and Kronecker. R. Dedekind (1831–
1916) led the way in shifting the focus from the relationa ≡ b (modm) to the set

M = {
x | x ≡ 0 (modm)

}
, (3)

which he likewise called a ‘module’; knowledge of it is logically equivalent to a knowledge
of the congruence relation:

a ≡ b (modm) ⇔ (a − b) ∈M. (4)

Dedekind’s generalization was in the use of the term ‘module’ to designate any non-
empty setM of complex numbers with the property that ‘fromx, y ∈M it follows that
x − y ∈ M ’, and hence to any additive subgroup ofC. He developed a self-contained
calculus for these modules with four operations (sum, product, intersection and quotient)
and thus obtained on the one hand a powerful tool in the theory of divisibility of algebraic
numbers, and on the other the even more general concept of ‘dual group’, or ‘lattice’ in
modern terminology. It should be mentioned that the notion of module lent conceptual
clarity to Gauss’s composition of quadratic forms in Section 5 of D.A. In all aspects of his
theory of algebraic numbers, Dedekind dealt first with modules and then with the special
case of ideals.

3.1 The following ‘theorem on the ’ was proved in Section 3 (art. 55):
If p is a prime, then there is a numberg such that

1,2, . . . , (p− 1) mod p coincide with 1, g, g2, g3, . . . , gp−2 mod p. (5)

Any suchg is called ‘a primitive root modulop’.

3.2 The following conjecture of Emil Artin(1898–1962) is not yet completely settled: for
any numbera �= −1 that is not a square there are infinitely many primesp such thata is a
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primitive root modulop. The number of such primes less thanx is given by an asymptotic
formula inx.

This conjecture, dating from 1927, was made more precise about 35 years later by
H. Heilbronn (1908–1975) using extensive numerical calculations to obtain an improved
asymptotic formula, which was finally proved in 1967 by C. Hooley under the assumption
of the still unproven generalized Riemann hypothesis.

3.3 The theory of power residues begins in Section 3 of D.A. (art. 60). Letp be a prime,
n� 2,m the greatest common divisor ofn andp−1, and the numbera not divisible byp.
Then we have the following consequence of the theorem in Section 3.1 above:
a is annth-power residue modulop ⇔ n

√
a mod p exists⇔ xn ≡ a (mod p) is

soluble⇔ a is anmth-power residue modulop ⇔ a(p−1)/m ≡ 1 (mod p) (Euler’s
criterion).

Therefore, without loss of generality one can restrict attention to the casen|(p − 1) or
p ≡ 1 (mod n), since only then ism= n. The central and difficult question onnth-power
residues is as follows (in a form barely within elementary number theory): for which of the
infinitely many primesp with p ≡ 1 (mod n) is the congruencexn ≡ a (modp) soluble
for a givena?

3.4 The special casen = 2 of quadratic residues includes all primes (sincep ≡ 1
(mod 2) for p �= 2) and had already been thoroughly investigated by Euler, Lagrange and
Legendre, as Gauss learnt in October 1795 onhis matriculation in Göttingen. He studied
them exhaustively in Section 4 of D.A. The fundamental theorem (‘theorema fundamen-
tale’), or reciprocity law (following Legendre, ‘loi de réciprocité’) for quadratic residues,
is stated in art. 131: ‘Ifp is a prime of the form 4n+ 1, then so will be+p, however, if
p is of the form 4n+ 3, then−p will be a residue or non-residue for every prime which
is a residue or non-residue ofp’. Note that here Gauss is choosing from+p and−p the
number

p∗ := (−1)(p−1)/2 · p ≡ 1 (mod 4), (6)

that is, a number in the sequence−3,+5,−7,−11,+13,+17,−19, . . .. The law can be
expressed symmetrically as follows:p* is a residue ofq ⇔ q is a residue ofp; p∗ is a
non-residue ofq⇔ q is a non-residue ofp, whereq is a positive odd prime�= p.

The question mentioned above has the following answer in the quadratic case. The
congruencex2≡ a (modp) is soluble if and only ifp lies in certain residue classes mod
4a. These classes form a multiplicative group.

The choice ofp∗ is an important canonical standardization which crops up again in
the theory of higher-power residues; it was later used by Gauss himself in the study of
biquadratic (that is, fourth-power) residues in the paper [Gauss, 1825, 1831]. In the light
of these later developments,p∗ could be called a ‘primary number’ (or, in the context of
quadratic number fields, a prime discriminant).p∗ also occurs in the theory of cyclotomy,
namely, as the square of the difference of the two so-called periods of(p − 1)/2 terms
(arts. 356–357). Thus, every square root is an integral linear combination of roots of unity.
This leads to new but non-elementary proofs of the reciprocity law, as Gauss already knew.
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3.5 Who or what in Braunschweig had prompted Gauss to occupy himself with the sub-
ject of Sections 1–4 of D.A.? Very little isknown about this. Küssner [1979, 35ff.] has
drawn attention to the fact that the library of theCollegium Carolinum, which Gauss at-
tended from 1792 to 1795, contained a copy of theTreatise of algebra (London 1685)
by John Wallis (1616–1703). However, it did nothave the works of P. de Fermat (1601
or 1607/08?–1665), Euler, Lagrange or Legendre. But theTreatise could have confirmed
Gauss to study number theory. It deals inter alia with the rational solutions of the equa-
tion t2− du2= 1, whered is a positive non-square number, and an unsuccessful attempt
to prove that this equation always has a positive integer solution. Wallis is mentioned in
art. 202 of the D.A. Wallis had already tried to interpret geometrically the square roots of
negative numbers.

Gauss became interested very early on in the factorization of large numbers. It is known
from his papers that he also carried out such factorizations using the quadratic formsax2+
cy2 [Maennchen, 1918, esp. arts. 6–7]. But unfortunately we do not know how he came
to use quadratic forms for this purpose. I believe that Gauss had come across the very old
formula (

a2+ b2)(
c2+ d2)= (ac− bd)2+ (bc+ ad)2 (7)

in the early days of his youth in Braunschweig (in the literature? in Wallis?), especially as
applied to the unit circle, that is, with

a2+ b2= c2+ d2= 1, (8)

which embraces the addition formulae for sines and cosines. It might further be suggested
that one day he read this formula from right to left and asked himself the question: when
is a factorm of a numberx2+ y2 again the sum of two squares, that is,m = s2 + t2? It
is immediately clear that only the case when the greatest common divisor gcd(x, y)= 1 is
of interest, and that in this case examples show that the answer is in the affirmative. One
thus obtains an efficient method for factorizing the sumx2+ y2. It is a relatively short step
from this sum to sums of the formax2+ cy2, for which one also has a product formula(

ax2+ cy2)(
aX2+ cY 2)= (axX− cyY )2+ ac(xY +Xy)2, (9)

which appears in more general form in arts. 154and 229 of D.A. It is also conceivable that
the young Gauss classified numbersn according to the differencen − ([√n])2, for it is
well known that one only needs to check numbers�√

n as possible factors ofn.
Gauss conjectured the reciprocity law after making extensive numerical observations

on the factorization ofA2 + k (k = 1,2,3,4 and further values) in the period up to the
beginning of 1795 (see the foreword of D.A. and [Maennchen, 1918]). This is evident
from a memorandum made by Gauss in this period and published in [Biermann, 1977], on
the odd prime factors ofA2+1 andA2+4, which, as he suggests, coincide precisely with
the primes of the form 4n+ 1.

The reciprocity law had already been statedby Euler and Legendre, and was formulated
independently by Gauss in March 1795. He found his first proof in April 1796; it forms
the centrepiece of Section 4 of D.A., thus consummating elementary number theory in
a definitive fashion. We find a second proof in Section 5 that goes beyond elementary
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number theory and rests on the theory of quadratic forms. Gauss subsequently gave six
further proofs: the first has been applied by J. Tate in algebraic K-theory [Milnor, 1971,
art. 11].

Ferdinand Minding (1806–1885) compiled the first German textbook,Anfangsgründe
der höheren Arithmetik (1832) in which Sections 1–4 of D.A. were popularized. The first
Russian textbook of number theory, ‘The algebra and calculus of finite quantities’ by N.I.
Lobachevsky (1792–1856), appeared in Kazan in 1834; it was based around Gauss and
Legendre. The doctoral thesis (roughly corresponding to the GermanHabilitationsschrift)
‘Theory of congruences’ by P.L. Chebyshev (1821–1894), which appeared (in Russian)
in Saint Petersburg in 1849, followed Sections 1–4 of D.A. and gave a critical appraisal.
Chebyshev, and H.J.S. Smith (1826–1883) in [Smith, 1859–1865, art. 16], were apparently
the first to accredit Euler with priority in stating the reciprocity law.

The reciprocity law for quadratic residues provided a challenging model for the inves-
tigation of higher-power residues, that is,nth-power residues forn � 3. These investiga-
tions extended beyond elementary number theory, since they required the use ofnth roots
of unity and thus the contents of Section 7 of D.A., as Gauss had already indicated in
his work [1825, 1831] on biquadratic residues.Up to around 1860, the generalization of
Gauss’s results had been regarded as the main aim of number theory. He himself settled
the casen= 4 in pioneering fashion by proving the uniqueness of prime factorization for
the ringZ[i] consisting of the complex numbersa + bi for integersa andb, introducing
primary numbers, and stating the analogue of the theorem given in section 3.4. The case
n= 3 was dealt with by Jacobi and Eisenstein (and also in Gauss’s manuscripts).

The search for higher reciprocity laws was the main motivation for Kummer in his
construction of a theory of ‘ideal numbers’. For further details on developments following
Gauss, see [Smith, 1859–1865], [Dickson, 1919–1923] (§65) and [Neumann, 1980].

The material in Sections 1–4 of D.A. is currently the centre of much interest in cryp-
tography (the technology of encoding and decoding information). Also in this context,
further methods for factorizing large numbers as quickly as possible are being discussed
and developed.

4 CONTENT AND RECEPTION OF SECTION 5

The fifth Section comprises more than half of D.A. and contains a systematic theory of the
binary quadratic forms

f (x, y)= ax2+ 2bxy+ cy2= a−1[
(ax + by)2− (b2− ac)y2]

(a, b, c ∈Z). (10)

In the first place this involves a survey of Gauss’s work from the beginning of his early
studies in Göttingen in 1795 on the results of Fermat, Euler, Lagrange and Legendre. In
the second place he succeeded in an incredibly short time in developing new methods
which elevated the entire theory to a state of super-human perfection. The central problem
for Fermat, Euler, Lagrange, Legendre and Gauss is the following question:

Representation problem. I. What values doesf (x, y) take when, with no loss of gener-
ality, the following general assumptions are made?
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(i) d(f ) := b2− ac, called the ‘determinant’ by Gauss in art. 154 and now known as
the discriminant, is not a square;

(ii) the greatest common divisor gcd(a,2b, c)= 1, whenf is called ‘properly primi-
tive’ by Gauss in art. 226;

(iii) x, y ∈ Z with gcd(x, y) = 1, in which case the equationn = f (x, y) is called a
‘proper representation’ ofn by f .

II. How can one describe all proper representations of a given numbern by the formf
(arts. 158, 180, 205)?

III. By which forms, that are somehow related tof , can a divisor of a numbern =
f (x, y) (with gcd(x, y)= 1) be represented?

Another important problem can be stated as follows.
Composition problem. Given properly primitive formsf andf ′, is there another prop-

erly primitive formF such that ifn= f (x, y), n′ = f ′(x ′, y ′) are proper representations,
then is there a proper representationnn′ = F(u, v)?′

As far as part III of the representation problem is concerned, it was known to Lagrange
and Legendre that every divisorm of n = f (x, y) with gcd(n, d(f ))= 1 has a represen-
tationm= f ′(u, v) by a quadratic formf ′ of the same discriminant asf , d(f )= d(f ′)
[Weil, 1984, ch. 4, sect. 4]. They solved Parts II and III using algorithms involving a fun-
damental understanding of forms with a givendiscriminant: equivalence and reduction
of forms, finiteness of the class number, and the structure of solutions of Pell’s equation
(t2− du2= 1, d > 0).

The representation problem was in some sense solved definitively by Gauss. Firstly, he
showed that in an equationn = f (x, y) with the greatest common divisor gcd(x, y)= 1
all prime factors are either divisors of 2d or belong to certain prime residue classes mod
4d (that depend only ond), and that when gcd(n,2d)= 1 the numbern must lie in certain
residue classes mod 4d that depend ond andf . (Whend < 0, the assumption sgnn= sgna
is added to those mentioned above.) Secondly, these necessary conditions are, in a weak-
ened sense, also sufficient: they guarantee that when gcd(n,2d)= 1, n can be represented
by a form of the same ‘genus’ asf , one of a set of forms of discriminantd determined
by f . This result is demonstrably unimprovable by congruence conditionsalone. The no-
tion of the genus of a form (arts. 228–233) is one of Gauss’s great innovations.

Lagrange and Legendre had also posed the composition problem (in a rather less precise
form) and discussed it with some success in special cases [Weil, 1984, ch. 4]. Gauss settled
the problem in a generality that left nothing to be desired. The composition problem has
an affirmative answer if and only ifd(f )d(f ′)−1 is a rational square (arts. 234–244). For
forms with fixed discriminantd , Gauss obtained a finite commutative group on a suitable
partition of forms into classes (via the so-called proper equivalence, and only this!). This
‘class group’ (a later name) ofd was the first example of a finite group not consisting of
numbers or permutations.

The details of composition theory were notoriously difficult; they were simplified over
the course of the ensuing decades. The firstsmall contribution was made by the French
translator of D.A. (remark to art. 235). Smith reported further significant simplifications in
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[1859–1865, arts. 106–109], in the spirit of the theory of invariants; he developed in about
10 printed pages what had taken Gauss some 25 pages or so in D.A. (arts. 234–243).

On the Continent, the whole theory of composition was refounded by Dirichlet and
Dedekind with the aid of irrational linear factors of forms; in other words, the path taken
by Lagrange and Legendre was followed to the end. This path survives in the modern liter-
ature, in that it places Gauss’s theory in the theory of quadratic number fields. Composition
theory, like other theories of Gauss, shows clearly that his mathematics is the mathematics
of explicit formulae and identities and the considerations of invariance and symmetry that
support it.

5 CONTENT AND RECEPTION OF SECTION 7

The seventh Section concentrates on the equationxn = 1, or xn − 1= 0, wheren is a
prime. Gauss set about solving this equation via a chain of auxiliary equations each of
lowest degree (art. 342). This condition on the degree was new in the theory of equations.

Gauss first showed that the polynomial

Φn(x) := (xn − 1)(x − 1)−1= xn−1+ xn−2+ · · · + x + 1 (11)

cannot be decomposed into factors with rational coefficients (art. 341); that is, in modern
terminology, it is irreducible overQ. He thus showed explicitly for the very first time that
the polynomials of an infinite family are irreducible.

The equationΦn(x)= 0 (where Gauss usedX instead ofΦn(x)) has the property that
its solutions, the so-called primitiventh roots of unity, consist precisely of the powers

ζ, ζ 2, . . . , ζ n−2, ζ n−1 (12)

of an arbitrarily chosen solutionζ . This was already known before the time of Gauss. The
novelty of his insight consisted of ordering the primitiventh roots of unity in a suitable
way:

ζ e(i) (0 � i � n− 2) with e(i)= gi, (13)

g being a primitive root modn (compare (5)).
For any factorizationn− 1= ef , one can constructe new quantitiesη0, η1, . . . , ηe−1,

the so-called ‘periods off terms’. They satisfy an auxiliary equation of degreee with
rational coefficients, while every primitiventh root ζ k satisfies an equation of degreef
whose coefficients depend rationally on the periods. By factorizingf further, one can
obtain new auxiliary equations, and so on until the process terminates.

The solutions ofxn = 1 are represented by the vertices of a regularn-gon in the com-
plex plane. A geometrically interesting case arises whenn is a prime of the form 2m + 1
(a Fermat prime), such asn= 17= 24+ 1. Then all the auxiliary equations have degree 2,
and their solution corresponds to ruler-and-compass constructions. It follows that, for ex-
ample, the regular 17-gon is constructible by ruler and compasses. For the 19-year-old
Gauss, this sensational advance in a problem of more than 2000 years standing came at the
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beginning of the theory of cyclotomy, and convinced him to devote himself exclusively to
mathematics.

Gauss further showed (with some gaps that he specified) that every equationxn−1= 0
(wheren is prime) can be solved via a chain of pure, or binomial, equationsym − a = 0
of lowest possible degree. Prior to Gauss, only the casen= 11 had been settled, by A.-T.
Vandermonde (1735–1796) in his paper [1774]. We are thus concerned with the problem,
of paramount interest up to the middle of the 19th century, of solving ‘algebraic’ equations
by radicals, or, more precisely (as was apparently first recognized by Gauss), by irreducible
radicals.

S.F. Lacroix (1765–1843) commented on the theory of cyclotomy in the third edition
of hisCompléments des éléments d’algèbre (1803). In Kazan, the young Lobachevsky had
occupied himself with D.A. since 1811 under the guidance of M. Bartels (1769–1836), and
in 1813 he wrote a piece ‘on the solution of the algebraic equationxn − 1= 0’.

For N.H. Abel (1802–1829), the seventh Section of the D.A. formed the definitive model
for a theory of soluble equations (compare §29). Galois also oriented himself around the
‘method of Mr. Gauss’. Later, Dedekind had this to say about number theory [1873, 410]:

it soon becomes clear that [. . .] the cyclotomy form an inexhaustable source of
ever newer and more significant advances in number theory. One can say that
almost all subsequent progress [. . .] either owes its inception directly to cyclo-
tomy or, which is in some cases even more remarkable, arises in a previously
unsuspected connection with cyclotomy.

As already mentioned, Gauss had in fact discovered that every square root is an integer
linear combination of roots of unity. Thus we can say with a grain of salt that Section 7
contains Sections 4 and 5.

6 FAME AND REACTIONS

D.A. quickly gained a reputation among specialists and made Gauss famous. Reaction was
first heard in France, then in Germany and Russia. Lagrange wrote as follows to Gauss
in 1804: ‘Your Disquisitiones immediately places you among the first rank of geometers’
(Oeuvres, vol. 14 (1892), 298–299). TheBureau des Longitudes in Paris ordered 50 copies
[Küssner, 1979, 119], and the French translation appeared as early as 1807.

The various parts of D.A. were received in different ways. The correspondence between
Gauss and Sophie Germain (1776–1831) (in GaussWorks, vol. 10, pt. 1, 70–74) showed
that the latter had penetrated so deeply into the book that she was able to investigate inde-
pendently questions on higher-power residues. Legendre reacted in the second (1808) and
third (1830) editions of hisEssai. A part of the theory of cyclotomy appears in the second
edition (arts. 484ff.) along with applications to number theory. On the other hand, Legen-
dre gave no comprehensive treatment of the results in D.A. on quadratic forms, because
Gauss’s methods were so specialized that he could only have included them as part of a
wide detour or as a bald translation of Gauss’s work.

In the first 25 years after its appearance, D.A.essentially exercised only a gradual in-
fluence, and the earliest applications did not visibly go beyond the work of Gauss in either
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method or substance. Further developments in depth were first pursued by Abel, Jacobi,
Dirichlet, Galois, A.-L. Cauchy (1789–1857), C. Hermite (1822–1901) and Eisenstein, and
later by Kummer, Kronecker and Smith as representatives of a new generation. Kummer
mentioned in his speech in commemoration of Dirichlet that the latter kept a well-thumbed
copy of D.A. permanently on his desk. Kummer also said ‘that in more than 20 years af-
ter it appeared, none of the mathematicians alive at the time mastered it completely [. . .]
Dirichlet was the first not only to understand it completely but also to make it accessible to
others’ [1860, 316]. Eisenstein also got intensively to grips with D.A.

Gauss received a noteworthy response from outside the circle of specialists: namely, the
influential philosopher G.W.F. Hegel (1770–1831), who had a copy of D.A. in his private
library [Mense, 1993] along with a paper on number theory by Gauss. Hegel wrote as
follows in his Wissenschaft der Logik (The science of logic) in 1814: ‘Thus the solution
of the equationxm − 1= 0 using the sine, as well as the implicit algebraic solution found
by Gauss by considering the residue ofxm−1− 1 divided bym and the so-called primitive
roots, which form one of the most important extensions of analysis in recent times, is a
synthetic solution, in that the auxiliary notions ofsine and residue are not inherent in the
problem itself’ [Hegel, 1949, 286]. To explain,m is a prime (art. 350 of D.A.), ‘residue’
means residue class modm, and the solutions of the congruencexm−1− 1≡ 0 (modm)
are precisely the prime residue classes modm, on whose structure the investigation of the
primitivemth roots of unity depends.

Nobody who speaks of the number theory and algebra of the last 200 years can remain
silent about their sources in theDisquisitiones arithmeticae of Gauss. Notwithstanding all
the new proofs of results in detail, this work belongs to the ‘eternal canon’ of mathematics,
and thus of human culture.
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CHAPTER 23

CARL FRIEDRICH GAUSS, BOOK ON
CELESTIAL MECHANICS (1809)

Curtis Wilson

In this work Gauss offered new methods of determining the orbital parameters of planetary
motion. They were more compact than those of Lagrange and Laplace, and established
more careful ways of treating questions of precision and observational error.

First publication. Theoria motus corporum coelestium in sectionibus conicis solem am-
bientium, Hamburg: F. Perthes and I.H. Besser, 1809. xii+ 227 pages, 21 tables and
figures.

Later edition. In GaussWerke, vol. 7, Leipzig: Teubner, 1871, 1–282. [Repr. 1905.]

English translation. Theory of the motion of the heavenly bodies moving about the Sun
in conic sections (trans. C.H. Davis), Boston: Little Brown, 1857. [Repr. New York:
Dover, 1963.]

Russian translation. Teorija dwishenija nebesnych tel, obrastschich wokrug Solnca po
konitscheskim setsschenijam (trans. Dogel), Moscow: 1861.

French translation. Théorie du mouvement des corps célestes parcourant des sections
coniques autour du soleil (trans. E. Dubois), Paris: A. Bertrand, 1864.

German translation. Theorie der Bewegung der Himmelskörper welche in Kegelschnitten
die Sonne umlaufen (trans. C. Haase), Hannover: C. Meyer, 1865.

Related articles: Newton (§5), Lagrange on mechanics (§19), Laplace (§18, §24).

1 BIOGRAPHICAL SKETCH

Born into a poor family in Braunschweig, Carl Friedrich Gauss (1777–1855) was sup-
ported in his education and mathematical work till 1807 by ducal stipends. He attended the
University of Göttingen from October 1795 to September 1798. In 1796 he discovered the
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constructibility of the 17-sided regular polygon. His doctoral dissertation (1799) gave the
first proof of the fundamental theorem of algebra. HisDisquisitiones arithmeticae (1801)
would be fundamental for later number theory (§22). His work on the determination of or-
bits began in September 1801. In 1807 he accepted a professorship at Göttingen University
(as director of the Observatory), the position he would occupy till his death.

Among Gauss’s publications after theTheoria motus were his memoir on the hyperge-
ometric series (1812), new demonstrations of the fundamental theorem of algebra (1815,
1816, 1849), a memoir on determining perturbations by considering the perturbing body’s
mass as distributed round its orbit (1818), a new interpretation of the method of least
squares (1823), a memoir on the curvature of surfaces (1828), memoirs on the measure
of the Earth’s magnetic field in absolute units (1832 and later), and investigations in geo-
desy (1842, 1846, 1847). Many of his papers report astronomical observations, or discuss
observational methodology.

2 INCEPTION OF GAUSS’S WORK IN ORBIT DETERMINATION

On 1 January 1801, Giuseppe Piazzi in Palermo discovered a comet or planet in the con-
stellation of Taurus, detectable only telescopically. He observed it through 11 February,
when illness interrupted his observations. He informed three astronomers of his discovery,
and in May sent his detailed observations to J.J. Lalande in Paris, asking that publication
be postponed.

Since the 1770s two astronomers, J.E. Bode of Berlin and Franz Xaver von Zach (1754–
1832) of Gotha, had entertained the notion of a missing planet between Mars and Jupiter.
A numerical series due to J.D. Titius, publicized by Bode in 1772, gave approximate mean
solar distances of the known planets, but predicted a planet in this ‘gap’. It received sur-
prising corroboration in 1781 with the discovery of Uranus, a planet whose nearly circular
orbit had a radius close to the next term after Saturn in the series. In autumn 1800 Zach and
other German astronomers formed a society to promote systematic search for the missing
planet.

In spring 1801 the question arose: might Piazzi’s ‘comet’ be the quarry sought? It must
be re-discovered! From June onward, Zach’s monthly reports in a periodical which he
published, theMonatliche Correspondenz zur Beförderung der Erd- und Himmels-Kunde
(hereafter, ‘MC’) gave an ongoing account of the search.

The July issue reported the efforts of J.C. Burckhardt, in Paris, to put an orbit to Pi-
azzi’s observations. Parabolic orbits, Burckhardt found, were unsatisfactory; circular orbits
could accommodate more of the data. He proposed an approximate elliptical orbit, but in
agreement with P.S. Laplace(1749–1827), held that anaccurate orbit determination would
require more observations.

Through late summer and autumn, cloudy weather prevented a systematic search. In the
September issue, Zach published Piazzi’s revised observations. Gauss, a subscriber to the
MC, set about determining an orbit.

The November issue of theMC contained a review of Piazzi’smemoir on his discovery.
Finding parabolic trajectories hopeless, he had derived two circular orbits with radii 2·7067
and 2· 68626 astronomical units. From the second of these Zach computed an ephemeris
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for November and December. Piazzi named the planetCeres Ferdinandea, thus honoring
Sicily’s ruler.

Zach now received Gauss’s results, and to them devoted his entire report in the Decem-
ber issue. Gauss had computed four different elliptical orbits, each based on a different trio
of observations; the four sets of elements were in near agreement with each other and with
the 19 observations Piazzi had considered undoubtful. (For the second set of elements, the
root mean square errors in longitude and latitude are 7′′ · 33 and 4′′ · 35; for the third set of
elements they are 5′′ · 86 and 2′′ · 60.) Gauss put the planet in January 1801 about a quad-
rant past aphelion; and assigned it a considerably higher eccentricity than had Burckhardt,
so that in December 1801 the planet would be 6◦ or 7◦ farther east than any of the other
proposed orbits implied. He gave positions for Ceres at 6-day intervals from 25 November
to 31 December.

The weather continued unpropitious. As Zachreported in the January 1802 issue of the
MC, in the early morning hours of 7–8 December he clocked a star very close to Gauss’s
prediction for Ceres, but bad weather on the following nights prevented verification.

As he reported in the February 1802 issue, early on 1 January Zach discovered the
planet some 6◦ east of its December position, and through January he followed its motion,
which agreed closely with Gauss’s orbital elements. Wilhelm Olbers (1758–1840) also
re-discovered the planet, reporting the fact to the newspapers, where Gauss read about it.
Gauss’s ellipse, exclaimed Zach, was astonishingly exact. ‘Withoutthe ingenious efforts
and calculations of Dr. Gauss, we should probably not have found Ceres again; the greater
and more beautiful part of the achievement belongs to him’.

3 GAUSS’S EARLY WORK ON ORBIT-DETERMINATION

Of Gauss’s earliest orbit-computations, only sparse indications remain. After the re-
discovery of Ceres, and one by Olbers in March 1802 of another planet, Pallas, for which
Gauss also computed an orbit, he wrote an account of his procedures [Gauss, 1809], which
he sent to Olbers in August 1802. We review these procedures, for comparison with the
mature methods of theTheoria motus (hereafter, ‘TM’).

As Gauss informed Olbers in an accompanying letter, the surmise leading to his new
method had come to him five years earlier, on first reading Olbers’sAbhandlung über die
leichteste und bequemste Methode die Bahn eines Cometen aus einigen Beobachtungen
zu berechnen (1797). Gauss’s first steps were Olbersian; in a general way his procedures
would remain so.

Olbers, a well-known comet-finder, had searched the literature for a convenient method
of determining cometary orbits. The direct algebraic routes proposed by J.L. Lagrange
and Laplace led to seventh-degree equations and other algebraic complications. Laplace’s
method, in A.-G. Pingré’s view the best (Cométographie, 1784), required an initial deriva-
tion of a mean geocentric position with its first and second time-derivatives; Olbers ques-
tioned its expediency. In fact, small, hardly avoidable errors in the derivatives could lead
to large errors in the computed results.

With borrowings from predecessors, Olbers devised a simpler procedure. The first step
was to obtain an approximate solution, using linear or quadratic equations, some rigorous,
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the others nearly so. Secondly, the approximate solution was to be refined. Gauss adopted
this two-stage approach. The focus was not so much on rigor in formulas as on the delicate
fitting of computed elements to data.

Both Gauss and Olbers started by assuming that the orbit of the comet or planet lay
in a plane passing through the Sun’s centerS, and that the plane of the Earth’s orbit also
containedS. Three observed positions(P,P ′,P ′′) of the orbiting body were taken as data.
Let their heliocentric rectangular coordinates be(x, y, z), (x ′, y ′, z′), (x ′′, y ′′, z′′), and let
twice the triangular areasPSP′, P′SP′′, P ′′SP, be

n′′ = rr ′ sin(v′ − v), n= r ′r ′′ sin(v′′ − v′), n′ = r ′′r sin(v′′ − v), (1)

wherer, r ′, r ′′ are the threeradii vectores, andv, v′, v′′ the three longitudes in orbit. (To
facilitate comparisons, here and later we substitute the symbols ofTM for those of the
summary [Gauss, 1809].) The assumptions imply that

0= nx − n′x ′ + n′′x ′′, 0= ny − n′y ′ + n′′y ′′, 0= nz− n′z′ + n′′z′′. (2)

Analogous propositions hold for the projections of the areasn,n′, n′′ onto the three coor-
dinate planes.

At this point Olbers, followed by Gauss, introduced the further assumption that the
radius vector from Sun to heavenly body at the timeτ ′ of the second observation cuts the
chordPP′′ in the ratio of the times(τ ′′−τ ′) : (τ ′−τ ). The analogous proportion is assumed
for the Earth. This means that the triangular areasn,n′′ (and also�ESE′, �E′SE′′, where
E,E′,E′′ are the three positions of the Earth) are proportional to the time-differences,
whereas by Kepler’s areal rule it is the correspondingsectors that are thus proportional. As
Olbers pointed out, the approximation is best whenτ ′ falls midway betweenτ andτ ′′. On
the foregoing assumption Gauss obtained expressions forδ andδ′′, the projections ofEP
andE′′P′′ onto a plane through the Earth’s center parallel to the ecliptic, in terms ofδ′, the
projection ofE′P′ onto the same plane:

δ = tanβ ′ · sin(α′′ −L′)− tanβ ′′ sin(α′ −L′)
tanβ · sin(α′′ −L′)− tanβ ′′ sin(α −L′) ·

τ ′′ − τ
τ ′′ − τ ′ · δ

′, (3)

δ′′ = tanβ · sin(α′ −L′)− tanβ ′ sin(α −L′)
tanβ · sin(α′′ −L′)− tanβ ′′ sin(α −L′) ·

τ ′′ − τ
τ ′ − τ · δ

′, (4)

whereβ,β ′, β ′′ are the geocentric latitudes, α,α′, α′′ the geocentric longitudes of the body
in the three observations, andL′ the heliocentric longitude of the Earth in the second
observation. Olbers obtained a single equation, the quotient (3)–(4).

Olbers used his equation to compute, for an arbitrarily chosen value ofδ, the value of
δ′′ given by (3)–(4). Since

δ = EP cosβ and δ′′ = E′′P′′ cosβ ′′, (5)

the corresponding values ofEP andE′′P′′ can then be found. Then, sinceSE andSE′′ are
known from solar theory, and the anglesSEP andSE′′P′′ from observation and solar theory,
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trianglesPSE andP′′SE′′ can be solved, and theradii vectores r = SP, r ′ = SP′, r ′′ = SP′′,
together with the chordPP′′, computed.

At this point Olbers invoked a relation in parabolic motion that Leonhard Euler had
established in 1743:

(r + r ′′ + PP′′)3/2− (r + r ′′ − PP′′)3/2= 6κ(τ ′′ − τ ), (6)

whereκ is a constant such that time measured asκτ adds up to 2π in a sidereal year. This
relation enabled Olbers to compute the time interval(τ ′′ − τ ) implied by his choice ofδ.
With a second choice ofδ, he repeated the calculation; and then, by interpolation, obtained
values ofδ, δ′′ agreeing with the observed time interval.

Although the Eulerian relation had been generalized to all conic sections by Lambert,
Gauss did not employ it. He applied the standard formula for a conic to the positions
P,P ′,P ′′:

1

r
= 1

p

[
1− e cos(v − π)], 1

r ′
= 1

p

[
1− e cos(v′ − π)], 1

r ′′
= 1

p

[
1− e cos(v′′ − π)],

(7)
wherep is the semi-parameter,e the eccentricity, andπ longitude of the aphelion. Mul-
tiplying these three equations by sin(v′′ − v′), sin(v − v′′), sin(v′ − v) respectively and
adding, he obtained, after some transformations,

n− n′ + n′′
−n′ = −2r ′

p
· sin1/2(v′′ − v′)sin1/2(v′ − v)

cos1/2(v′′ − v) . (8)

To substitute forp, Gauss used the known theorem:

�(area)

�m
= a

3/2 · √p
2

, (9)

where�(area) is the area swept out by the radius vector,�m is the concomitant change
in mean anomaly, anda is the semi-major axis (for an elliptical or hyperbolic orbit). From
(8) it can be deduced that

p = 4gg′′

a3(m′ −m)(m′′ −m′) =
4gg′′

A3(M ′ −M)(M ′′ −M ′)
, (10)

whereg′′ = sectorSPP′; g = sectorSP′P′′; m,m′,m′′ are the mean anomalies of the body
in its three positions;A is the semi-major axis of the Earth’s orbit (usually taken as the
unit); andM,M ′,M ′′ are the three mean anomalies of the Earth in its three positions. The
equality of the two denominators follows from Kepler’s third law. From (8) and (10), Gauss
obtained the approximate relation

R′

δ′

(
1

R′3
− 1

r ′3

)
= 2

A3(M ′ −M)(M ′′ −M ′)
· [ππ

′π ′′]
[πEπ ′′] , (11)
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whereR′, r ′ are theradii vectores of the Earth and of the celestial body in the middle
observation, and

[ππ ′π ′′]
[πE′π ′′] =

tanβ ′ sin(α′′ − α)− tanβ · sin(α′′ − α′)− tanβ ′′ sin(α′ − α)
tanβ · sin(L′ − α′′)− tanβ ′′ sin(L′ − α) . (12)

In his letter to Olbers, Gauss called equation (11) ‘the most important part of the whole
method and its first foundation’. If the time-differencesτ ′ − τ , τ ′′ − τ ′, τ ′′ − τ , as well
asn,n′, n′′, are viewed as infinitely small quantities of the first order, he stated that (11)
will be correct down to quantities of the second order of smallness, provided thatτ ′ is
midway betweenτ andτ ′′, otherwise to quantities of the first order. Every quantity on the
right-hand side of (11) is known from observation or solar theory. Using (11) along with
the formula

R′/δ′

R′/r ′
=

√
1+ tan2β + R

′2
δ′2

+ 2
R′
δ′

cos(λ′ −L′), (13)

which is a near approximation to the cosine law applied to�E′SP′, accurate to the second
order of smallness. Gauss proceeded by a ‘cut and try’ process with rapid convergence to
values forr ′ andδ′ satisfying both (11) and (13).

Given satisfactory values forr ′ andδ′, (3) and (4) can be used to find the corresponding
values ofδ andδ′′, and thencer andr ′′ . What remains is to determine the orbital elements.
The coordinates ofP,P ′,P ′′, now known, together with the Sun’s position(0,0,0), lead
straightforwardly to values for�, the longitude of the ascending node, andi, the orbit’s
inclination; and the values of(r, v), (r ′, v′), (r ′′, v′′) substituted into equations (7) yield
values forp,π, e. Gauss preferred, however, to obtainp from the equation∫ v′′

v

r2dv =A3/2(M ′′ −M)√p, (14)

using approximations due to Roger Cotes to evaluate the integral on the left. He then ob-
tainedπ ande from the first and third of equations (7), and with the values so obtained
computed the middle observation to provide a check on the entire computation.

In his ‘Summarische Übersicht’ of the book [Gauss, 1809] described several methods
of refining the orbital elements initially found. For instance,δ andδ′′ could each be altered
by a small amount, the elements re-determined in each case, and the middle observation
re-computed. Interpolation would then lead toelements giving a more accurate value of
the middle observation.

More than anyone earlier, Gauss was focussing on close fitting of computed results to
observations. InTM he will introduce new procedures, eliminating reliance on (2) and
(3) and the ‘cut and try’ procedure used in resolving (11). His focus on fitting results to
observations will remain.

4 THE DETERMINATION OF ORBITS INTM

The contents of Gauss’s book are summarized in Table 1; on its background and genesis
see [Reich, 1998, 2001]. Reserving our review of Book I till later, we turn to Section 1
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Table 1. Contents by Sections of Gauss’s book. xii+ 227 pages. The titles are translated.

Sect.; arts. Title
Preface.

Book I General relations between those quantities by which the motions of the
heavenly bodies about the Sun are defined.

1; 1–46 Relations pertaining simply to position in orbit.
2; 47–77 Relations pertaining simply to position in space.
3; 78–109 Relations between several places in orbit.
4; 110–114 Relations between several places in space.
Book II Investigation of the orbits of heavenly bodies from geocentric

observations.
1; 115–163 Determination of an orbit from three complete observations.
2; 164–171 Determination of an orbit from four observations, of which two only are

complete.
3; 172–189 The determination of an orbit satisfying as nearly as possible any number

of observations whatever.
4; 190–192 On the determination of orbits, taking into account the perturbations.

of Book II, which treats the problem that Gauss calls ‘the most important in this work’—
the determination of an orbit wholly unknown, starting from three complete observations.
(An observation is complete if it furnishes two coordinates specifying the body’s place
on the celestial sphere at a given time: its longitude and latitude, or its right ascension
and declination.) In the case of orbits nearly coinciding with the ecliptic—dealt with in
Section 2 of Book II—Gauss derives the orbit from four observations, two complete and
two of longitude merely.

In both cases, the initial problem is reduced to the solution of two equations,X = 0,
Y = 0, in two unknowns,x andy (art. 119). The latter need not be orbital elements, but
must be so connected with the elements as to permit their deduction. Nor needX andY
be explicit functions ofx andy, but they must be so connected withx, y that, from given
values ofx, y, the functionsX,Y can be computed. Gauss’s principal concern (art. 120)
is thatx, y be so selected, andX,Y so arranged, thatX,Y may depend in the simplest
manner onx, y, and that the elements may follow easily fromx, y. A further concern is
how values ofx, y closely satisfying the equations may be had without excessive labor.
From such approximations, values ofx, y having all needful accuracy can generally be got
by linear interpolation.

For determining an orbit quite unknown, the observations should be fairly close to-
gether: the accuracy of the approximations increases when the heliocentric motion be-
tween observations is less. But then the influence of observational error increases; hence
a compromise must be struck. The 47-day spread among Piazzi’s observations of Ceres,
encompassing only 3◦ of heliocentric motion, proved quite satisfactory for determining the
orbit.

Leading to Gauss’s new method were the following considerations. In art. 114 he shows
that, if the mutual ratios of the three double areasn,n′, n′′ were known, then the exact
values ofδ, δ′, δ′′ would be given algebraically, without ‘cut and try’ procedures. Thus it is
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exactly true that

aδ′ = b+ c n
n′
+ d n

′′

n′
. (15)

Here a = (0.I.2), b = −(0.I.2)D′, c = (0.O.2)D,d = (0.II .2)D′′, where the symbol
(0.1.2) has the same meaning as[ππ ′π ′′] in (11) above; the expressions symbolized by
(0.O.2), (0.I.2), and (0.II.2) are derived through replacement ofα′, β ′ in (0.1.2) by the
Earth’s heliocentric longitude and latitude in the first, second, and third observations, re-
spectively; andD,D′,D′′ are the Earth–Sun distances in the same three observations.

To determineδ′ by (14), we must substitute approximations for the ratiosn : n′, n′′ : n′.
Suppose we use the ratios of the time intervals for this purpose (art. 131). Gauss lets
θ, θ ′, θ ′′ stand fork(τ ′′ − τ ′), k(τ ′′ − τ ), k(τ ′ − τ ), respectively, wherek is a constant
for all bodies orbiting the Sun (art. 1); thusθ, θ ′, θ ′′ are as the sectorsP ′SP′′,PSP′′,PSP′.
Next he definesη,η′, η′′ so thatnη = θ,n′η′ = θ ′, n′′η′′ = θ ′′. If n,n′, n′′ are regarded as
quantities of the first order of smallness, Gauss tells us thatη− 1, η′ − 1, η′′ − 1 will, gen-
erally speaking, be quantities of the second order; thereforeθ/θ ′, θ ′′/θ ′ will differ from
n/n′, n′′/n′ by quantities of the second order. Nevertheless, he finds the proposed substi-
tution ‘wholly unsuitable’.

In the expression forδ′ drawn from (14), each term will have as denominator the quan-
tity a = (0.1.2), which is of the third order of smallness. In the numeratorsc = (0.O.2)D
andd = (0.II .2)D′′ are of the first order. Hence an error of the second order in the substi-
tutions forn/n′, n′′/n′ produces an error of order zero in the values ofδ′: the error can be
larger than the quantities sought.

Much of the error comes from assumingn′ proportional toθ ′ while assumingn andn′′
proportional toθ andθ ′′ : η′ is distinctly larger than eitherη or η′′. For, as the orbit is ever
concave toward the Sun, the whole sectorPSP′′ bears a larger ratio to its trianglePSP′′ than
do the component sectorsPSP′,P′SP′′ to their triangles. Let (15) be written in the form

aδ′ = b+ cn+ dn
′′

n+ n′′ · n+ n
′′

n′
, (16)

wheren′ occurs only in the final factor. It can be shown that

n+ n′′
n′

= 1+ θθ ′′

2ηη′′rr ′r ′′ cos 1/2(v′′ − v′)cos1/2(v′′ − v)cos 1/2(v′ − v) . (17)

By contrast, the proposed substitution,(θ + θ ′′)/θ ′, is equal to 1.
As a remedy, Gauss takes forx, y the quantities

P = n
′′

n
, Q= 2

(
n+ n′′
n′

− 1

)
r ′3, (18)

and rewrites (16) as

aδ′ = b+ c+ dP
1+ P

(
1+ Q

2r ′3

)
. (19)
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If now for P,Q we substitute the approximationsP = θ ′′/θ ,Q= θθ ′′, the parenthesis on
the right of (19) will err by an error of only the fourth order. If the radius vectorSP′ divides
the chordPP′′ in the middle, the value ofδ′ will differ from its correct value by an error of
the second order, otherwise by an error of the first order. Gauss’s new procedure, based on
the considerations just explained, isdescribed and illustrated in arts. 136–171.

5 THEMES AND TOPICS OF BOOK I

TM begins with a statement of the planetary laws of ‘our own Kepler’, but in a Newtonian
form applicable to all conic sections, and viewed as a consequence of the Sun’s gravita-
tional attraction. In art. 1 Gauss introduces a constantk for all bodies orbiting the Sun: it
is an expression of Kepler’s third law:

k = g

t
√
p(1+µ) = 0.01720209895, (20)

whereg is twice the area swept out by the radius vector,p is the parameter of the conic,
and 1+ µ the sum of the masses of the Sun(= 1) and orbiting body. Gauss’s value ofk,
based on the orbital constants of the Earthaccepted in his day, is retained today to define
the astronomical unit of distance.

Section 1 concerns ‘relations pertaining to position in orbit’; with separate treatments
for the ellipse (arts. 6–17), parabola (arts.18–20), and hyperbola (arts. 21–29). We restrict
our comments to the elliptical case.

Following a policy adopted about 1800 by the FrenchBureau des Longitudes, Gauss
in TM measures anomalies in elliptical orbitsfrom perihelion, as is necessarily done in
parabolic and hyperbolic orbits. ‘Kepler’s equation’ takes the form

M =E − e sinE, (21)

with a minus sign on the right rather than the plus sign used by Kepler.M is the mean
anomaly, expressible askt/a3/2 if as in most cases the massµ of the orbiting body can
be neglected. The eccentric anomaly, linkingM and the true anomalyv, is defined by

tan1
2E =

√
1−e
1+e tan1

2v. The radius vector given in terms of it isr = a(1− e cosE), more
convenient for integrations or differentiations than the formula in terms of the true anomaly
(compare (7) above).

‘Kepler’s problem’ refers to the determination ofE for a given value ofM; direct pro-
cedures are unavailable, (21) being transcendental. Rather than using a series expansion
as does [Laplace, 1799, Bk. II, ch. 3, art. 22], Gauss recommends solving the equation
E =M + e sinE by trial (art. 11). Supposeε nearly enough approximatesE to permit
refinement by linear interpolation. Let

∂ logsinε

∂ε
= λ, ∂ loge sinε

∂e sinε
= µ. (22)

Then a more correct value ofE will be ε+ x, where

x = µ

µ+ λ(M + e sinε− ε). (23)
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Here as throughoutTM Gauss assumes use of 7-place logarithms to base 10; in most calcu-
lations these yield results precise to 0· 1 arcsecond, equal or superior to the observational
precision attainable in the early 1800s.

Gauss is the first to supply, in arts. 30–32 ofTM, rules governing the propagation of
error in computations. Numbers taken from logarithmic or trigonometric tables, he points
out, are liable to an error amounting to half a unit in the last figure; e.g., 0.00000005 in
7-place tables. When such approximate quantities are combined by addition or subtraction,
the possible errors add. In multiplication or division, the maximum error is increased or
diminished in the same ratio as the quantityitself. Suppose, for instance, that the true
anomalyv is to be computed from the eccentric anomalyE by

log tan
v

2
= log tan

E

2
+ log

√
1+ e
1− e . (24)

If the maximum error in taking a logarithm or antilogarithm from the tables isω, the
possible error in computing log tan(v/2) will be 2ω, and in obtainingv/2 will be

3ω∂(v/2)

∂ log tan(v/2)
= 3ω sinv

2λ
, (25)

whereλ is the modulus of the logarithms used. The maximum error inv will be twice as
great. With 7-place logarithms to base 10, this error is 0′′ · 0712.

When e is close to 1, obtaining precise enough values of the true anomaly from the
time orvice versa requires special methods. Gauss provides these in arts. 33–46, with an
auxiliary table to facilitate their application.

Section 2 treats ‘relations pertaining simply to position in space’. The position of the
orbit must be specified with respect to the orbital plane, and the position of the orbital plane
with respect to a coordinate system, ecliptic or equatorial. Gauss introduces the practice of
giving the orbital longitude of the perihelion as the sum of the longitude of the ascending
node (where the planet crosses the ecliptic from south to north) and the angular distance
between the ascending node and the perihelion. The problems dealt with here include pas-
sage from heliocentric to geocentric position orvice versa, with or without account being
taken of aberration, nutation, and parallax.

Section 3 concerns ‘relations between several places in orbit’. The most important prob-
lem resolved here is that of determining the orbit when tworadii vectores are given in
magnitude and position, with the time for the planet to describe the intermediate space.
Gauss inTM develops entirely new formulas for this problem (arts. 87–105), eliminating
the approximate integrals he had used earlier. In outline his procedure is as follows.

Let

f = v
′

2
− v

2
and g = E

′

2
− E

2
, (26)

wherev, v′ are the true anomalies andE,E′ the eccentric anomalies in the two positions.
The anglef is known, being half the angle between the tworadii vectores, whereasg is
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unknown. Next let √
r ′
r
+

√
r
r ′

2 cosf
= 1+ 2�; (27)

here� can be computed from the known quantitiesr, r ′, andf . Gauss shows that the semi-
transverse axis will be

a = 2(�+ sin2 1
2g)cosf

√
rr ′

sin2g
. (28)

The difference in mean anomaly,M ′ −M, can be shown to be

kt

a3/2
=E′ − e sinE′ −E + e sinE = 2g− sin2g+ 2 cosf sing

√
rr ′
a
, (29)

wheret is the known time for the planet to move from the first to the second position.
Substituting the value ofa from (28) in (29), and putting

kt

23/2 cos3/2f (rr ′)3/4
=m, (30)

which is evidently a known quantity, Gauss obtains

±m=
(
�+ sin2 1

2
g

)1/2

+
(
�+ sin2 1

2

)3/2(
2g− sin2g

sin3g

)
. (31)

Here the plus or minus sign is used according as sing is positive or negative. In (31)g is
the only unknown quantity. Note thatm and the two terms on the right are proportional,
respectively, to the area of the elliptical sector contained between the tworadii vectores,
the area of the triangle formed by theradii vectores and the chord, and the area of the
elliptical segment cut off by the chord. The artifices whereby Gauss obtainsg from (31)
and then deduces the orbital elements fromg are a high point ofTM for sophistication and
elegance.

In Section 4, concerning ‘relations between several places in space’, Gauss shows how
to determine the inclination of the orbital plane to the ecliptic or other reference plane,
and the longitude of its ascending node, from two complete observations, and develops
systematically the consequences of the equations

0= nx − n′x ′ + n′′x ′′, 0= ny − n′y ′ + n′′y ′′, 0= nz− n′z′ + n′′z′′, (32)

these being the point of departure for all orbit-determinations.

6 SECTIONS 3 AND 4 OF BOOK II: THE METHOD OF LEAST SQUARES;
PERTURBATIONS

In Section 3 Gauss undertakes to provide a derivation of the method of least squares.
A.M. Legendre had described the method in hisNouvelles méthodes pour la détermina-
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tion des orbites des comètes (1806), without offering a derivation. Gauss’s derivation will
gain wide acceptance in the 19th century, but [Gauss, 1823] will himself repudiate it.

Consider a theory depending onν constantspi to be determined observationally, and
let µ observationsMj be applied to this purpose, whereµ > ν. Were thepi known, we
could compute the valuesVj to which theMj should approximate. LetVj −Mj = vj .
Gauss assumes a probability functionϕ(vj ) exists giving the probability forvj to have any
particular value. Then (assuming the observations independent) the probability that theMj
have particular valuesvj is ∏

j

ϕ(vj )=
∏
j

ϕ(Vj −Mj). (33)

The most probable distribution of errors among theMj can be obtained by maximizing
(33), or equivalently, the function∑

j

logϕ(vj )=�. (34)

By Bayes’s rule of inverse probability(§15.2), Gauss shows that, once theMj are as-
certained by observation, the maximization of (34) can be used to determine ‘the most
probable’ values of thepj ; for eachpi we put

∂�/∂pi = 0, or
∑
j

∂vj

∂pi

1

ϕ(vj )

dϕ(vj )

dvj
= 0. (35)

Here, however, we need an analytical formula forϕ. Gauss makes the assumption that,
if any quantity has been determined by several direct observations, made under the same
circumstances and with equal care, the arithmetical mean of the observed values affords
the ‘most probable’ value, and so obtains the formula

ϕ(v)= h√
π
e−h2v2

. (36)

But in a later paper [Gauss, 1823] rejects this formula as merely hypothetical, and gives a
new justification of the method based on the principle of minimal variance.

Section 4 deals with the role of perturbations in orbit determination. Gauss opposes
taking them into account in an initial orbit-determination. After a good many observations
have accumulated, perturbational analysiscan become important for the refinement of or-
bital elements. It was so for Pallas and Juno, which are strongly perturbed by Jupiter.

7 THE IMPACT OFTM

TM received highly laudatory reviews from B.A. von Lindenau inMC (August 1809) and
F.W. Bessel inJenaische Allgemeine Literatur-Zeitung (April 1810). In Paris J.B.J. De-
lambre failed to comprehend Gauss’s solution (31) of the sector-triangle problem (Con-
naissance des temps, 1812).
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Four minor planets were identified between 1801 and 1807; the fifth was discovered in
1845. The frequency of discovery then increased dramatically, especially after introduc-
tion of photographic methods. Orbit-determination has thus remained a lively subject, and
Gaussian procedures are still at the forefront, although allegiance to the Laplacian method
(improved in important respects) has also persisted [Marsden, 1985, 1995]. Note from the
beginning of this article that three translations ofTM appeared in the 1860s.

TM’s more general influence was to give a new emphasis to computational efficiency,
to tracking error through calculations, and tothe delicate fitting of theory to data. This
Gaussian thrust had its chief initial effect among German astronomers, who under the
leadership of Bessel, with the aid of German instrument-makers, brought astrometry to
new levels of precision.
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Stephen M. Stigler
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relatively wide public.
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die Wahrscheinlichkeiten (trans. N. Schwaiger from the 6th ed.), Leipzig: Duncker
& Humblot, 1886. 3) 2) revised asPhilosophischer Versuch über die Wahrschein-
lichkeit (trans. H. Löwy with notes by R. von Mises), Leipzig: Akademische Verlags-
gesellschaft, 1932 (Ostwald’s Klassiker der exakten Wissenschaften, no. 233).
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1 THE MONT BLANC OF MATHEMATICAL ANALYSIS, AND ITS FOOTHILLS

In an 1837 review of the 3rd edition (1820) of Laplace’sThéorie analytique des proba-
bilités (hereafter, ‘Théorie analytique’), the British mathematician Augustus de Morgan
wrote that ‘Of all the masterpieces of analysis, this is perhaps the least known; [. . . it] is
the Mont Blanc of mathematical analysis’, he added, ‘but the mountain has this advantage
over the book, that there are guides always ready near the former, whereas the student has
been left to his own method of encountering the latter’ [de Morgan, 1837a, 347]. We could
develop this metaphor further: theThéorie analytique emerged from a long series of slow
processes and once established, loomed over the landscape for a century or more.

Three great treatises on probability had appeared towards the beginning of the 18th
century; Pierre Remond de Montmort’sEssay d’analyse sur les jeux de hazard 1708, 2nd
ed. 1713, Jacob Bernoulli’s posthumousArs conjectandi (1713: see §6), and Abraham De
Moivre’s Doctrine of chances (1718, 2nd ed. 1738, 3rd ed. 1756; see §7). There were later
short treatments, largely based upon De Moivre, by Thomas Simpson (1740, reprinted
1792), Samuel Clark (1758), and Charles F. Bicquilley (1783). The Marquis de Condorcet
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published his monumentalEssai sur l’application de l’analyse à la probabilité des déci-
sions rendues à la pluralité des voix in 1785, a work that was influential in the history
of mathematical social science but unimportant to the development of probability. The
youthful A.-M. Ampère published a separate tract on the gambler’s ruin problem in 1802.
Other than these, and a handful of works of principal interest to gamblers, there was no
new serious monograph on probability in any language between De Moivre’s of 1718 and
Laplace’s of 1812. The intellectual landscape was not entirely barren of probability: there
were a number of innovative memoirs by Simpson, Bayes, Lagrange, Daniel Bernoulli,
and others. But in probability these were only foothills.

2 LAPLACIAN PROBABILITY

The biography of Pierre Simon Laplace (1749–1827) was reviewed briefly in §18.1. He
published the first edition ofThéorie analytique in 1812, at the age of 63 years. It rep-
resented the culmination of a professional lifetime of concern for the topic, and all of its
text consisted of reworked versions of his earlier work. Laplace’s prodigious abilities in
the mathematical sciences were recognizedearly on, by his teachers in Normandy and by
Jean d’Alembert in Paris when he was only20. He was elected an Associate Member of
theAcadémie des Sciences at age 24, already publishing deep and innovative memoirs on
the mathematics of difference and differential equations, on the theory of gravitation and
celestial mechanics, and on the theory of probability [Stigler, 1978]. He had contemplated
writing a book on probability theory as earlyas 1780, when he published his second long
memoir on the subject; but during the 1780s, he was (with a few notable distractions) drawn
to problems in celestial mechanics. Inspired by work of J.L. Lagrange demonstrating the
theoretical stability of the solar system, Laplace attacked the outstanding example of the
three-body problem, showing that the observed inequalities in the motions of Jupiter and
Saturn were consistent with the stability of the system. His success led him to undertake
his magisterialTraité de mécanique céleste (1798–1805, 1823–1827: see §18).

Laplace’s first important contribution to probability theory was a memoir [Laplace,
1774] on the probability of the causes of events. We would now describe this as Bayesian
inference, although all evidence suggests it was entirely independent of Bayes’s posthu-
mously published 1763 essay, which seems to have gone unnoticed until the late 1770s
(§15). In any case Laplace went far beyond Bayes and along quite different lines [Stigler,
1986a, 1986b]. He succinctly formulated the general problem: how could one learn about
cause from effect; and how could the relative probabilities of an exhaustive list of causes
be found from observing the effect and knowing the probability of that effect under each
and every possible cause? Taking a uniform prior distribution over the possible causes for
granted (as a ‘Principe’), Laplace [1774] gave a general solution and examined in detail a
binomial sampling model, including giving a demonstration of the asymptotic normality
of the posterior distribution of the probability of success, a proof and result that foreshad-
owed much of his later work, including what has been called Laplace’s method for the
asymptotic approximation of definite integrals.

Laplace then addressed the problem of the mean; that is, when different astronomical
observations of the same quantity are subject to error, how can they be best combined
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to give a single determination of the quantity? He derived a symmetric exponential den-
sity from simple axioms and characterized the optimal estimate as that which minimized
the posterior expected error, proving this was equivalent to choosing the median of the
posterior distribution of the quantity. This would be a serious candidate as the first well-
established result in mathematical statistics. He wrote two subsequent memoirs on these
topics, one in 1777 that remained unpublished until resurrected in [Gillispie, 1979], and
one in 1780 (published 1781).

Several of Laplace’s memoirs of the 1780s on analysis (such as [1782] and [1785] on
series and generating functions) were close to probability. Some of these were more explic-
itly probabilistic (on the asymptotic approximation of definite integrals); and in [Laplace,
1786] he published a short work on demography, where he developed the theory of the
ratio method of estimating a population based upon records of births, deaths, or marriages,
using a census of a few sample districts. But in the years after 1805 he returned to proba-
bility more systematically. In 1733 De Moivrehad derived the normal probability density
as an approximation to the binomial distribution (§7.6); in 1776 Lagrange had both gener-
alized this to the multinomial distribution and shown how De Moivre’s method of gener-
ating functions could be made more systematic and applied to sums of continuous random
quantities in addressing the problem of the mean. In effect Lagrange had introduced the
‘Laplace’ transform, and given a small dictionary from which onemight recognize the
probability density of an arithmetic mean from its Laplace transform. In a few simple
cases in 1785, and more definitively in [Laplace, 1810, 1811] he took this idea further, in-
troducing ‘Fourier’ transforms where he showed how one could exploit the trigonometric
representation of the complex exponential to arrive at an inversion formula for transforms.

In 1807–1809 Laplace worked on a long memoir that he must have seen as bringing
his earlier work on asymptotic approximation of integrals and integral transforms to a
logical conclusion, proving a quite general ‘Central limit theorem’ (to use the modern
name, due to Georg Polya): a sum of a large number of independent random variables
will have approximately a normal distribution, almost regardless of the distribution of the
individual summands. It was a grand generalization of De Moivre’s result, which was itself
a central limit theorem when the summands were permitted to take only the values of either
0 or 1. The proof in [Laplace, 1811] was analytically a triumph of great power, even though,
as de Morgan would later write of Laplace’s mathematics in general, ‘it gave neither finish
nor beauty to the results’.

While that memoir was in press, already typeset for theAcadémie’s volume for 1809,
Laplace was evidently startled to receive a copy of the treatise on celestial mechanics,
Theoria motus corporum coelestium (1809) by C.F. Gauss (1777–1855) (§22). There he
saw Gauss’s development of the method of least squares and its connection to the normal
distribution: Gauss showed that if for a simple sample the arithmetic mean was optimal,
then the errors must be normally distributed, and in that case the general optimality of
least squares must follow. The proof was elegant but the assumption by hypothesis of the
superiority of the arithmetic mean would have been uncongenial to Laplace (he had proved
that for other distributions the arithmetic mean wasnot best as early as1774). Still, this
derivation of the method of least squares, with the central point being the relationship of
the method to the normal distribution, must have hit Laplace like a bolt. He rushed a short
supplement to his paper to the press; it appeared at the very end of theAcadémie’s volume
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for 1809, published in 1810. In the supplement [Laplace, 1810] restated his central limit
theorem more elegantly than in the original memoir, cited Gauss, and showed how his
theorem provided a much more palatable basis for the assumption of normally distributed
errors: each error might itself be a sum of more elementary constituents. In later literature
this would be called the hypothesis of elementary errors. With his supplement safely to
press, Laplace went to work more seriously. In 1810–1811 he produced a further memoir
[Laplace, 1811] that remade error theory and would form the core of the statistical portion
of Théorie analytique.

3 PUBLICATION OF THETHÉORIE ANALYTIQUE

The contents of the first edition (1812) of theThéorie analytique are summarised in Ta-
ble 1. The book carried an effusive dedication, ‘A Napoléon-le-grand’. Laplace proba-
bly first met Napoleon Bonaparte in the 1780s, when he would have examined him at
the Ecole Militaire; in 1798 Napoleon had appointed Laplace to be Minister of the In-
terior, immediately after the Coup of the 18Brumaire (when Napoleon ousted the rul-
ing Directory, replacing it with theConsuls de la Republique with himself as chief Con-
sul). But that appointment only lasted sixweeks, after which Laplace was replaced by
Napoleon’s brother Lucien. Evidently, once power was consolidated there was no need
for a prestigious but inexperienced scientist in the government. In his memoirs written
at Saint Helena, Napoleon tendentiously stated that Laplace had brought the spirit of
the infinitesimal into governmental councils, but there seems to be no doubt that he was
only appointed as a short-term figurehead, aplace-holder while Napoleon consolidated
power.

The bookThéorie analytique itself was a mixture of old and new. Book One was a
lightly rewritten version of earlier memoirs; Part I was little altered from a 1782 memoir on
series, while Part II was derived from memoirs of 1785, 1786, and other early publications.
Intellectually the organization could be defended: the mathematical tools were developed
before they were deployed. But strategically the arrangement was unfortunate. Any reader
who started with Book One without a talent and a taste for extremely difficult mathematics
would likely have put the book aside before encountering any discussion of probability.
On the other hand, a reader who followed a guide such as de Morgan would recommend
and skipped to Book Two, prepared to go lightly over some sections at first reading—
that reader would be rewarded with an astonishing advance over anything that had come
before.

4 LAPLACE’S THÉORIE AND MATHEMATICAL STATISTICS

Readers of De Moivre’sDoctrine of chances, whose posthumous third edition had appeared
over half a century before, would have recognized some parts of Laplace’s Chapters 1
and 2 of Book Two, but little else in the entire work. Some past results of Laplace’s own
were simply dusted off and presented cryptically, such as his derivation from 1780 of the
expectation of a cleverly defined random probability density,

E
[
f (x)

]= 1

2a
log

(
a

|x|
)
, for |x|� a, (1)
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Table 1. Summary by Chapters ofThéorie analytique des probabilités (1812).
Most titles are translated.

Ch. (pp.) Topics

Book I Calculus of generating functions.

Part I General considerations.

1 (46) Generating functions of one variable: interpolation of series, integration of
linear differential equations, transformation of series.

2 (38) Generating functions of two variables: interpolation of series in two vari-
ables, integration of linear partial difference equations, equations in many
variables, passage from finite differences to infinitely small differences.

Part II Theory of asymptotic approximations.

1 (21) Approximation of integrals of factors raised to high powers.

2 (26) Approximate integration of linear equations in finite and infinitely small
differences.

3 (51) Various applications ofthe preceding methods.

Book II General theory of probabilities.

1 (12) General principles of this theory: definitions and assumptions.

2 (86) The probability of events composed of simple events whose possibilities
are given: lotteries, balls and urns, games, a derivation of a symmetric error
distribution.

3 (29) Laws of large numbers: central limit theorems.

4 (45) The probability of errors in a mean taken of a large number of observations,
and the most advantageous method of taking a mean. Inversion of Fourier
transforms, the asymptotic normality of linear estimators, the large sample
optimality of least squares, the bivariate asymptotic normality of pairs of
linear estimators and the optimality of least squares in that case, asymmetric
error distributions, the problem of choosing a mean investigated from the a
posteriori point of view.

5 (14) The application of the calculus of probabilities: to the probability of subtle
differences in meteorology or astronomy or physiology, to Buffon’s needle.

6 (39) The probability of causes or of future events; ratio estimation of
population size.

7 (6) The effect of unknown deviationfrom equality of probabilities of
composite events.

8 (11) The mean duration of lives, of marriages, and of associations of more than
two people.

9 (13) Some consequences of the probability of future events for computing
mortality tables and insurance calculations.
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Table 1. (Continued)

Ch. (pp.) Topics
10 (14) On moral expectation; logarithmic utility and Daniel Bernoulli’s appli-

cation to the St. Petersburg problem.

11 (added in
2nd ed.) (16)

The application of probability to questions of evidence and testimony.

Additions I–III
in 2nd ed. (23)

Wallis’s infinite product forπ , and two direct demonstrations of results
from Book I.

that he suggested as a candidate for an error distribution at the end of Chapter 2. In Chap-
ter 3 he reprised some of the analysis of his earlier memoirs in 1785 and 1786 on the normal
approximation to the integrals of functions raised to high powers, with applications. But
with Chapter 4 there was no more rehashing of ancient work; the mature Laplace was now
in full stride.

In the previous year Laplace had published an extensive memoir on what we would now
call the asymptotic theory of linear estimation, building on the ideas that had been inspired
by his reading of Gauss. Chapter 4 gave a vigorous re-presentation of this work, and it
was a tour de force. Taking advantage of the development of Book One, he was able to
present his central limit theorem in just a few pages, for the case of a sum of independent
identically distributed errors, for a general discrete error distribution. That part of the text
could be read as a tutorial for the use of the Fourier transform in probability, preceding first
for a symmetric uniform distribution over a bounded set of integers, where trigonometric
identities gave a simple solution via his inversion formula, to the more general case, where
another step of asymptotic approximation was required. And with the case of identically
distributed summands established, he moved on to deal with general weighted sums of the
form

∑
i aiYi .

We can succinctly summarize Laplace’s procedure as follows, in modernized notation.
LetYi = αXi+εi , where theX’s are taken as known, fixed numbers, theY ’s as observed,α
as unknown and to be estimated, and theεi as random errors in the observations, supposed
symmetrically distributed about zero. Then any linear estimator ofα of the form∑

miYi∑
miXi

will estimateα with error

∑
miεi∑
miXi

, (2)

itself symmetrically distributed about zero. Since such weighted sums were shown to be
asymptotically normally distributed, with mean error zero, one could compare choices of
weightsmi simply by comparing the variances of the limiting distributions. As Laplace
noted, the scheme with the smallest variance would have the smallest probability of being
outside any error bounds you might choose. And, as he showed, the weights given by the
method of least squares, namelymi = Xi would give that smallest variance! He went on
to show that the same property of least squares would hold for linear models with two
unknowns, that is,

Yi = αXi + βWi + εi. (3)
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This included finding the bivariate asymptotic normal distribution of the two estimators.
He then showed that the same optimality would hold for asymmetric error distributions.
All of this was accomplished in only 28 pages.

It is worth pausing to emphasize the novelty in this work. Gauss had noted in 1809
that when error distributions were exactly normal, least squares estimators would maxi-
mize what we now call the likelihood function—the density of the observedY ’s. Nearly
a decade later in two memoirs of 1821 and 1823, Gauss would cast off his earlier ap-
proach and prove what is now called ‘the Gauss–Markov theorem’: that among all linear
estimators whose mean error was zero, the least squares estimators had smallest variance
regardless of the error distribution. Laplace had shown a result that was nearly the same as
this latter one and in some respects more satisfactory: among all linear estimators whose
mean error was zero, the least squares estimators had smallest variance regardless of the er-
ror distributionif the number of observations was quite large. The conclusion was weaker
in being only asymptotic; it was stronger in that because Laplace could conclude the least
squares estimators were normally distributed, they would be superior to any other linear
estimator in the class inevery sense, not merely as having smaller mean squared error. In
that respect he improved upon Gauss’s latermemoirs a decade prior to Gauss’s work!

In the remaining 15 pages of this remarkable chapter, Laplace reconsidered the linear
estimation problem from a Bayesian perspective. Echoing his memoir of 1774 but in a
much more complex setting, he showed the posterior distribution of the coefficients was
asymptotically normal, and that for this asymptotic distribution least squares was again
optimum.

After Chapter 4, the remainder ofThéorie analytique seems anticlimactic. There were
strong results for special problems, but the methods were no longer a surprise to the reader,
and many of the results reprised those of memoirs from 1774 to 1786. A special problem in
astronomy was treated in Chapter 5, and a generalization of Buffon’s needle was presented.
Laplace’s analysis of the asymptotic theory of the ratio estimator of population from a
Bayesian perspective can be found in Chapter 6. In his 1774 memoir he had noticed that
uncertainty about the balance of a coin (what if the probability of a face was not known to
be 1/2, but only known to be in the interval[1/2− ε,1/2+ ε]?), could have an unforeseen
effect upon the probabilities of complicated bets. This was traced out here in Chapter 7.
Chapter 8 analyzed mortality tables; Chapter 9 looked at life insurance. And in Chapter 10,
the last of the first edition, he explored the use of Daniel Bernoulli’s logarithmic utility
functions in problems like the St. Petersburg Paradox.

In 1814 Laplace issued a second edition with three changes: the dedication to Napoleon
was removed (reflecting the changed political climate), a 106-page introduction was in-
cluded, and a chapter on the application of probability to questions of evidence and testi-
mony and three short technical appendices were added. Two supplements, on the applica-
tion of probability to the natural sciences and to geodetic operations, were issued in 1816
and 1818. In 1820 the third and final edition was published; it differed from the second by
the addition of the two previously issued supplements and a third supplement on the appli-
cation of probability to surveying. In 1825 a fourth supplement appeared, written mostly
by Laplace’s son; it was included with copies of the third edition sold after 1825.
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5 THE ESSAI PHILOSOPHIQUE

The long introduction that Laplace added to the second edition was also published sepa-
rately in the same year, asEssai philosophique sur les probabilités. Its contents are sum-
marised in Table 2. ThisEssai was extremely popular and influential; unlike theThéorie
analytique, it required no guide and was widely read and quoted. TheEssai was itself the
product of years of thought by Laplace; four different versions saw publication even before
the first edition appeared! It was to theThéorie analytique much like his 1796Exposition
du systême du monde was to theMécanique céleste (§18): it presented the ideas of the
Théorie analytique to a broad popular audience while serving as a synopsis of the full trea-
tise, in part mirroring it in organization. Much of theEssai is as elegantly written as any
work in popular mathematics, although translations seldom reflect that elegance. It was in
theEssai that Laplace gave his famous statement of what has been called Laplacian deter-
minism, that physical laws in principle predetermined all physical action at all levels for
all time (p. 2):

If an intelligence, at a given instant, knew all the forces that animate nature
and the position of each constituent being; if, moreover, this intelligence were
sufficiently great to submit these data to analysis, it could embrace in the same

Table 2. Summary by Parts ofEssai philosophique sur les probabilités (1814).
The titles are translated.

Pages Topics

1–36 Philosophical essay on probabilities.

2–7 On probability.

7–19 General principles of the calculus of probabilities.

19–22 On expectation.

22–36 Analytical methods of thecalculus of probabilities.

37–96 Applications of the calculus of probabilities.

37–38 On games.

38–40 Unknown inequalities that can exist among probabilities supposed equal.

41–49 The laws of probability which result from the indefinite repetition of events.

49–60 The application to research on phenomena and their causes.

60–64 Choosing a mean among observations.

64–70 Tables of mortality, and the mean durations of life, marriages, and other
associations.

70–73 Gains and losses depending uponthe probability of events.

73–76 The choices and decisions of assemblies.

77–83 Some illusions in the estimation of probabilities.

83–89 The different means of approaching certainty.

89–96 The history of probability.
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formula the movements of the greatest bodies of the universe and those of the
smallest atoms: to this intelligence nothing would be uncertain, and the future,
as the past, would be present to its eyes.

And two pages later he reconciled this with the application of probability to physical phe-
nomena:

The regularity which astronomy shows us in the movements of the comets
doubtless occurs in all phenomena. The curve described by a simple molecule
of air or water vapor is regulated in a manner just as certain as the orbits of the
planets; the only difference between these is that introduced by our ignorance.
Probability is relative in part to this ignorance, and in part to our knowledge.

In some places Laplace was defeated in his attempt to convey a sense of mathematical
objects in prose. His verbal description of a generating function was opaque to a non-
mathematician but at least descriptive. But what would a non-mathematician make of his
evocation of the normal density? After struggling with this problem he finally settled on
the following in the third edition: ‘The probability of the errors remaining in each element
is proportional to the number whose hyperbolic logarithm is unity, raised to a power equal
to the square of the error, taken as negative, and multiplied by a constant coefficient which
can be considered as the modulus of the probability of the errors’ (p. 92).

Five separate editions of theEssai were published in France during Laplace’s life, two
in 1814 (the first in quarto, the second octavo), a third in 1816, a fourth in 1819 (serving
also as the introduction to the third edition ofThéorie analytique), and a fifth in 1825.
An unaltered posthumous sixth edition appeared in 1840. Each of the first five editions
shows extensive revision as well as the addition of new material; for example, the third
edition added a discussion of the relationship of associationist psychology to errors of
observation. A thoroughly annotated scholarly edition based upon the fifth edition of 1825
was published in 1986, edited by Bernard Bru.

Laplace’s summary of theEssai, and indeed of his body ofwork on probability, may
not be accurate as judged by those few who have actually read it all; but it has struck a
resonating chord in generations of students and philosophers since (p. 95):

We have seen in this essay that the theory of probabilities is essentially only
common sense reduced to calculation;it helps us to judge accurately what
sound minds perceive by a sort of instinct, often without being able to give a
reason.

6 THE LEGACY

TheThéorie analytique was widely known and immensely influential, but it was not widely
read, and it probably sold poorly. The secondand even the third editions were evidently
cobbled together from unsold copies of the first edition. The dedication to Napoleon
of course had to be dropped in 1814, and that may have been the impetus for what
few additional changes were made. Starting with the second edition there were new ti-
tle pages and the long introduction, a single added chapter and appendix, and, as noted
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in [Todhunter, 1865, 495–497], seven cancelled replaced pages, those containing embar-
rassing misprints (such as the over-estimate of the birthrate on p. 391, leading to a conse-
quent 50% excess for the population of France: 42,529,267 instead of the more reasonable
28,352,845). The third edition added three supplements and revised the introduction, but
the text was otherwise unaltered, and bound copies, even those including the 1825 fourth
Supplement, still betray the cosmetic natureof the only changes in the form of the stubs of
pages inserted for the seven cancels. This suggests that the first printing was too large, or
the sales quite small, or both of these. Has any other great work gone through three editions
with so little change?

Rather than wide sales (or even, given its difficulty, wide readership), the book became
known through its effect upon a small number of major scholars, some of whom pro-
duced more accessible treatments. The first of these was S.F. Lacroix’sTraité élémentaire
du calcul des probabilités, published in 1816, with several later editions. Other available
French treatises were written by Siméon Poisson in 1837 and Augustin Cournot in 1843
(himself influenced by Lacroix, as Bru has documented); and Irénée Jules Bienaymé devel-
oped Laplace’s theory further in a number of important memoirs from 1838–1852 [Heyde
and Seneta, 1977]. In England, Laplace’sThéorie analytique was a standard reference at
Cambridge, and de Morgan based hisEncyclopedia Metropolitana article [1837b] on the
Théorie analytique; the separate edition of that article in 1849 could be considered a trea-
tise. Victor Bunyakovsky’s book of 1846 made Laplace’s work available in Russia, where
it influenced Michel Ostrogradsky and Pafnuty Chebyshev.

Gauss had been a catalyst to the surge of Laplace’s activity that had produced the
Théorie analytique, and Gauss himself would have been one of its more important read-
ers. Indeed, his reconsideration of least squares between 1821 and 1823 can be best in-
terpreted as a reaction to the new developments that Laplace assembled in theThéorie
analytique. The two approaches, Laplace’s with his emphasis upon asymptotic approxima-
tion and Gauss’s with his preference for exact mathematics, were mutually reinforcing at
the time and dominated the discussions of mathematical statistics for a century. In proba-
bility, Laplace’sThéorie analytique andEssai stood as unchallenged beacons well into the
20th century, even if the influence of the former was generally through secondary accounts
and subsequent extensions by others.
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CHAPTER 25

A.-L. CAUCHY, COURS D’ANALYSE(1821) AND
RÉSUMÉOF THE CALCULUS (1823)

I. Grattan-Guinness

In these two books Cauchy laid out a theory of limits, and upon its basis he constructed the
basic theory of real-variable functions and of the convergence of infinite series; and also
the calculus, in the approach that eventually was to dominate all others.
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Related articles: Lagrange on the calculus (§19), Lacroix (§20), Cauchy on complex-
variable analysis (§28), Fourier (§26), Riemann on trigonometric series (§38), Can-
tor (§46).

1 FROM STUDENT TO PROFESSOR

Cauchy’s father was Secretary of the Senate, and came to know J.L. Lagrange and P.S.
Laplace as senators; so these senior mathematicians were aware early on of the talented
son. He entered theEcole Polytechnique in 1805, and after the two-year course proceeded
in 1807 to theEcole des Ponts et Chaussées for a further three years. During this time
he had direct contact with Gaspard Riche de Prony (1755–1839), as professor at the first
school and Director of the second. Following the usual practice, Cauchy then entered the
Corps des Ponts et Chaussées as an engineer, and was involved with various projects,
including the large canal and port system being constructed in Paris. But his mathematical
researches had already started, and his career was to gain artificial boosts with the fall of
Napoléon in 1815.

It is a great irony that Cauchy was born in 1789, the year of the French Revolution; for
until his death in 1857 he held unswervingly to the Bourbon monarchy and to the Catholic
faith that they upheld. Thus, upon their Restoration in 1815 he profited greatly from his
adherence. A reform of theEcole Polytechnique included his appointment as a professor
there, along with fellow Catholic A.M. Ampère; they replaced his former professors de
Prony and S.D. Poisson (1781–1840), who became the graduation examiners for mathe-
matics. Further, theAcadémie des Sciences was restored under its pre-revolutionary name
(after functioning since 1793 as a class of theInstitut de France), and in an event unique in
its history Cauchy and the clock-maker A.L. Bréguet were appointedwithout election to re-
place two dismissed colleagues of Napoléon, Gaspard Monge and Lazare Carnot. Cauchy
was also made an adjunct professor at theFaculté des Sciences in Paris, and sometimes he
substituted as Professor of Physics at theCollège de France.

Everything was going extraordinarily well for Cauchy during the Restoration. Indeed,
in a manner showing few parallels the man and the mathematician were in total harmony:
God in heaven, the King on the Throne, truths in science, and (especially for our context)
rigour in mathematics as much as possible. He even introduced the systematic numbering
of formulae in an article or a chapter of a book. During the Bourbon reign from 1816 to
1830 he produced material that takes up about 12 of the 27 quarto volumes of his collected
works, and most of the best stuff. He became so prolific that from 1826 he published
Exercices de mathématiques, his own journal in that he was sole author: averaging about
32 pages per month, it appeared regularly until 1830, for a reason explained in Section 5.

Among biographies the most valuable is [Belhoste, 1991]. The older one, [Valson,
1868], is compromised by Catholic hagiography; but it contains valuable information, in-
cluding on manuscripts in hisNachlass, most of which was destroyed by the family in 1937
when theAcadémie des Sciences refused to accept it as a collection.

Cauchy’s marriage in 1818 into a publishing family of de Bure (‘Booksellers of the
King’) even provided the outlet for his books, including the two under discussion here.
Both were based upon his teaching at theEcole Polytechnique, which is reported in detail
in [Gilain, 1989]. He and Ampère taught their respective cohorts for both years, Cauchy
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starting in even-numbered years. On the books and their context see [Grattan-Guinness,
1990, chs. 10–11] and [Bottazzini, 1992]. TheCours d’analyse covered limits and con-
tinuity, functions and infinite series, while theRésumé continued with the calculus. The
reaction of the school will be noted in section 6, when the impact and Cauchy’s own career
after 1830 are reviewed.

During this period Cauchy was also developing complex-variable analysis, which ap-
pears to a small extent in both books; an account is provided in (§28). Both subjects are
discussed in [Bottazzini, 1986, chs. 2–5].

2 THE COURS D’ANALYSE: ‘ALGEBRAIC ANALYSIS’
AND THE THEORY OF LIMITS

Table 1 summarises theCours d’analyse, using the original page numbers; to estimate
those in theOeuvres edition subtract about 20%. Early inhis introduction Cauchy charac-
terised ‘algebraic analysis’ as concerning types of (real- and complex-) variable functions,
convergent and divergent series, ‘the resolution of equations, and the decomposition of ra-
tional fractions’ (pp. i–ii). Later he stated some of the main features; curiously he did not re-
fer to the theory of limits, which grounded his approach. It appeared in the ‘preliminaries’,
where some opening chat about number and quantity was followed by the notion of vari-
able, and this crucial definition: ‘When the values successively attributed to the same vari-
able approach indefinitely a fixed value, so as to differ from it as little as one might wish,
this latter is called thelimit of all the others’ (p. 4). Clearly he intended passage both over
real numbers and over integers, and, more importantly, with no restriction over themanner
of passage: by zig-zag around the limiting value as well as approach solely from below
and solely from above. He adopted the symbol ‘lim.’ (p. 13), which had been introduced
in 1786 by the Swiss mathematician Simon l’Huilier, whose theory of limits was rendered
both cumbersome and constrained by separate treatments of (only) monotonic passage.

Cauchy also noted that more than one limiting value might obtain, when a double
bracket was used: thus ‘arc.sin((a))’ denoted all values of this function, with ‘arc.sin (a)’
for the smallest value (pp. 7–8). He then ran through cases of values for various simple
functions; and in Note 1 he rehearsed the properties of real quantities at a length surprising
for a book at this level. Twice there he mentioned of an irrational number that ‘one can
obtain it by rational numbers of ever more approximate values’ (pp. 409, 415); but he did
not envision this as adefinition.

Cauchy’s use of limits gave great status tosequences of quantities; and one of his main
techniques in proof was to show the existence of mean values between the maximum and
minimum of a sequence. He proved various existence theorems for given sequences (for
example on p. 15, that (

∑
r ar/

∑
r br ) lay within the range of values of the sequence

{ar/br}); Note 2 elaborated upon the feature. Such theorems helped to secure the basic
properties of limits, such as preserving the arithmetical operations (lim sum= sum lim,
and so on). He also surpassed his predecessors in recognising, and as a fundamental matter,
that a limiting value mightnot obtain; for example and importantly, ‘adivergent series does
not have a sum’ (p. iv).

Cauchy devoted ch. 2 to a topic which may surprise: ‘infinitely small and infinitely large
quantities’. They were defined as variablespassing though sequences of values which took
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Table 1. Contents of theCours d’analyse. Chapters are followed by Notes.

Ch./ Page Topics
Note

‘Introduction’ (8 pages): aims, some main features.

‘Preliminaries’: real quantities; mean values.
1 1 ‘On real functions’: general; simple and compound.
2 19 ‘Infinitely small and large quantities’; continuous functions; singular values.
3 26 ‘On symmetric and alternating functions; first-order equations.
4 70 ‘Determination of entire functions’ (polynomials); interpolation.
5 85 ‘Determination of continuous functions’ in one variable.
6 103 Convergent and divergent real series; tests; some summations.
7 123 ‘On imaginary expressions and their moduli’.
8 173 ‘On derivatives and imaginary functions’ (of, for example, variables).
9 240 ‘On imaginary convergent and divergent series’; some summations.

10 274 ‘On the real and imaginary roots of algebraic equations’.
11 329 ‘Decomposition of rational fractions’.
12 365 ‘On recurrent series’.
1 380 ‘On the theory of positive and negative quantities’.
2 403 Formulae involving inequalities and mean values of quantities.
3 438 ‘On the numerical resolution of equations’.
4 460 Expansion of an alternating function.
5 521 Lagrange’s interpolation formula extended to rational functions.
6 525 ‘On figured numbers’ (binomial coefficients).
7 530 ‘On double series’: convergence.
8 537 Expansions of multiple (co)sines in power series of (co)sines.
9 548 Infinite products: definition, convergence. [End 576.]

respectively zero and infinity as limiting values: 1/4, 1/3, 1/6, 1/5, . . . was (his only)
example of the first case, and 1,2,3, . . . of the second. Then he proved various theorems
on the orders of infinitude to which variables may be subject. The mathematics as such
is unobjectionable; but his use of the adverb ‘infinitely’ is unfortunate, especially for a
student reader, since these quantities have no necessary connection with infinitesimals as
used in the Leibnizian calculus (compare §4.2).

3 THE COURS D’ANALYSE: CONTINUOUS FUNCTIONS AND INFINITE SERIES

Cauchy’s next topic was ‘the continuity of functions’:f (x) ‘will remain continuous with
respect to the given limits’ x0 andX (> x0) ‘ if, between these limits, an infinitely small
increase of the variable always produces an infinitely small increase of the function itself ’,
with a re-statement for continuity ‘in the vicinity of a particular value of the variable x ’
(pp. 34–35). Various theorems followed easily, for functions of one and several variables.
However, the intermediate value theorem, that

for any valueb such thatf (x0) < b < f (X), f (x)= b (1)
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for at least one value ofx betweenx0 andX, was problematic. Uncharacteristically, in
the proof he described a ‘curve’ given byy = f (x) changing values in the plane, and
inevitably hitting the liney = b at least once (pp. 43–44). A more refined proof was given
in Note 3, where he partitioned the range of values ofx and sought the zero by successive
approximation; but, as with his remark aboveabout irrational and rational numbers, the
existence of the required limiting value was assumed rather than established.

Cauchy also proved various theorems on the comparative rates of increase or decrease
of values of functions. They came into play in ch. 5 on the convergence of infinite series,
specified in terms of the passage of thenth partial sum ‘sn’ to values asn increased and
the ‘remainder’ term ‘rn’ approached zero as its limiting value (pp. 123–131): I quote his
terms and symbols because he popularised them here. One main consequence were con-
vergence tests, sufficient conditions upon the terms for convergence (and divergence) to
occur. He gave the tests which we now call root, ratio, condensation, logarithmic, prod-
uct and alternating, and proved them for series with the terms of the same and of mixed
signs. In a somewhat vague way his tests used upper limits of sequences of values rather
than simple limiting values. Some results had been known before, but usually against an
imperfect understanding of convergence itself and often concerned with (supposed)rates
of convergence. The theory was complemented by comparable studies of double series
and infinite products (Notes 7, 9). Elaboration of these tests, and the brother theorems on
functions, constituted a notable part of the influence of this book [Grattan-Guinness, 1970,
appendix].

But in this chapter also lay trouble, or at least a theorem which has led to much discus-
sion of Cauchy’s doctrine: if an infinite series of continuous functions converged tos in the
vicinity of some value ofx, thens was also continuous there. The proof worked by show-
ing that whenx increased by an ‘infinitely small’ amount, then the incremental increase or
decrease on bothsn andrn was small, and thus that it was also small ons (pp. 131–132).
The trouble is that, for example, Fourier series (then new: see §26) seemed to contradict
this theorem when the represented function was discontinuous. Some commentators, such
as [Laugwitz, 1987], have defended Cauchy’s proof on the grounds that he used sequences
of values via his construal of infinitesimals, and also that he defined continuity over the
interval of values ofx betweenx0 andX, and did not specify point-wise continuity. My
view is that neither here nor elsewhere did he grasp the special needs ofmultiple-limit
processes required by the distinction between point-wise continuity and continuity over an
interval, and that this theorem involves it:x varies but so doesn, and the relationship be-
tween the two processes needs careful attention which came only decades later with Karl
Weierstrass and his followers [Grattan-Guinness, 1970, ch. 6]. In section 4 I shall mention
another theorem where such refinements are lacking.

For the binomial theorem Cauchy broke with tradition in establishing it independently
of the calculus; instead he used functional equations, which had gained status recently
especially because of their use in Lagrange’s conception of analysis. He found that the
solution for continuous functionsφ of

φ(x + y)= φ(x)φ(y) wasφ(x)=Ax, A constant (2)

(pp. 107–109). Then he showed that the binomial series(1+x)n (n not necessarily integral)
also satisfied(2)1 for |x|< 1 (pp. 165–172).



346 I. Grattan-Guinness

Some aspects of complex-variable analysis were also presented, as much as possible by
analogy with real variables; for example, continuity of a function and convergence of series
(chs. 8–9). Complex (‘imaginary’) numbers themselves, construed algebraically (ch. 7),
played a central role in proof of the fundamental theorem of algebra (ch. 10). Effected on
the polynomial equationf (x)= 0 of degreen, with x and all coefficients complex (maybe
real), it fell into three parts: show that all the roots were real or complex; hence that it
could be written as a product of linear complex (maybe some or all real) factors; and that
the number of these factors equalled the degree off (x). The proof relied much on the
continuity of the real and imaginary parts off (x) formed after convertingx into complex
polar coordinates; being positive in value under certain circumstances and negative in oth-
ers, then, by the intermediate value theorem, they took the value zero for at least one value
of x. He was influenced by the second (1816) proof by C.F. Gauss, but with continuity
defined his own way.

4 THE RÉSUMÉ: A NEW VERSION OF THE CALCULUS

Apart from some minor anticipations by, for example, Ampère, Cauchy’s treatment of
quantities, functions and infinite series in theCours d’analyse was revolutionary; that is,
other views had to go. Among those, his special target was Lagrange’s founding of the
calculus on Taylor’s series, and indeed the whole aim of algebraising mathematics (§19).
In his introduction Cauchy wished to give methods ‘all the rigour that one demand in
geometry, so as never to draw upon reasoning drawn from the generality of algebra’ (p. ii).
He admired here the (supposed) rigour of Euclid, not geometry as such;like Lagrange, he
also gave no diagrams in his book, for his approach was not grounded in either geometry
or algebra. He was presenting ‘mathematical analysis’ (p. v), the umbrella discipline based
upon limits and mean values and careful definitions and arguments based upon them.

This change from Lagrange isespecially clear in theRésumé of Cauchy’s lectures on
the calculus at theEcole Polytechnique, which appeared in 1823. The book exhibited his
rigour even in its design and printing. This devout Catholic presented his account in40 lec-
tures, 20 on the differential calculus followed by 20 on the integral calculus—an important
religious number,not corresponding to the actual number of lectures that he actually de-
livered at the school [Gilain, 1989, 51–96]. Moreover, each lecture was printed onexactly
four pages—the theory of limits applied to printing, doubtless intentionally. Until noticing
this property, which is not repeated in the reprint in Cauchy’sOeuvres, I was puzzled by the
concatenation of topics in some lectures. Table 2 is not sufficiently detailed to demonstrate
this point, but it shows the range of topics treated.

Building on the notions given in theCours d’analyse (lects. 1–2), Cauchy started with
a continuous function and considered the behaviour of its difference quotient�f (x)/�x

as the forward difference�x moved towards zero. Should there be a limiting value, then
it was the ‘derived function’, written ‘f ′(x)’—Lagrange’s term and symbol, but in a com-
pletely different mathematical context (lect. 3: he also used ‘y ′’). He courted further per-
plexity by using another traditional calculus word in a new sense (lect. 4). Setting�x = αh
with h finite, then if�f (x)/α converged at all, its value was the ‘differential’df (x). Thus

df (x)= f ′(x) dx; (3)
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Table 2. Contents of Cauchy’sRésumé. Each lecture is exactly four pages in the original
printing. A more detailed table is given in [Grattan-Guinness, 1990, 748].

Lectures Topics

‘Warning’ (3 pages): aims; status of Taylor’s series.

1 Variables, limits, infinitesimals.
2–4 (Dis)continuous functions; derivative and differential.
5 Differentials, including of complex-variable functions.
6–7 Optimae; mean value theorem.
8–9 Partial derivatives and differentials.
10–11 Optimae problems; multipliers.
12–15 Higher-order derivatives and differentials; total differentials.
16–18 (Total) differentials for functions of several variables.
19–20 Polynomial functions; partial fraction expansions.
21–23 Definite integral; evaluations; complex integral.
24–25 Indeterminacy of integrals; ‘singular’ integral.
26–27 Indefinite integral; definition and properties.
28–31 Integration of some basic functions.
32 ‘Passage’ from indefinite to definite integral.
33–34 Differentiation under the integral sign; double integral.
35 Parametric and successive Differentiation of integrals.
36–38 Taylor’s and other series; convergence.
39 Exponential and logarithmic functions.
40 Term-by-term integration of infinite series.

Addition 12 pages: mean value theorems; order of infinitesimals.
Addition 4 pages: Taylor’s and MacLaurin series.
Addition 6 pages: partial fraction expansions. [Finally omitted.]

further,

if f (x)= x, thendx = h; ∴ df (x)= f ′(x) dx, (4)

as usual, at least in notation. The mathematics as such is correct; but pity the poor students
seeing old symbols with new clothes, especially infinitesimals taking finite values. Never-
theless, this new sense of differential is part of Cauchy’s eventual influence [Taylor, 1974].
In this first part of his book he reworked the basic fabric of the differential calculus: partial
and total differentials and derivatives, and conditions for optimae including multipliers for
constraints.

Cauchy’s treatment of the mean value theorem is notable in two respects. Firstly, in the
proof of a lemma ‘we designate two very small [positive] numbersδ, ε’ (lect. 7, (3)), the
début of these famous letters. In fact they appear rather rarely in Cauchy’s work since he
often worked with the associated sequences. Secondly, he also gave the novel extension of
the theorem for the quotient of two functions (addn. 1).

The second score of lectures, on the integral calculus, was equally blessed with nov-
elties; some results were elaborated or added inExercices papers of 1826 and 1827. The
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integral was a sum, but not of (traditional) infinitesimals; again restricting himself to con-
tinuous functions over a range of valuesx0 � x � X, Cauchy selected a finite number of
intermediate valuesx1, . . . , xn−1, formed the sum

∑
r (f (xr−1)(xr−xr−1)), and wondered

if it converged to some value as the number of chosen points ever increased. If so, then the
limit was written ‘

∫ X
x0
f (x) dx ’ (lect. 21); but while the concept of the integral as limit of a

sum was clear, the symbol ‘dx ’ was meaningless. Indeed, it was worse; for he substituted
from (3)2 to write ‘

∫
hf (x)’ (after equation (9))!

Cauchy then showed that the limiting value did not depend upon the sequence of par-
titions used to reach it, or on the choice ofxr−1 as the values ofx for f (x) in the sum
(lect. 21). (Soon he will imitate this procedure to define the integral of a function of a com-
plex variable: see §28.7.) He proved the mean value theorem (lect. 26), but not the second
theorem, which is due to Ossian Bonnet in mid century; however, he claimed the theorem

‘
∫ X

x0

φ(x) · χ(x) dx = φ(ξ)
∫ X

x0

χ(x) dx’ (5)

for continuous functionsφ(x) andχ(x), with ξ lying betweenx0 andX (lect. 23, (13)). He
also laid out the basic theory of double and repeated integrals (lects. 34–35), and evaluated
the integrals of various simple functions. He also presented a few properties of the complex
integral, but spared the students from the residue calculus (§28.4).

Two theorems were of especial importance. One was the ‘fundamental theorem’, not
Cauchy’s name though for the first time a proper theorem as such in his hands: for a con-
tinuous and finite-valued function

‘d/dx
∫ x

x0

f (x) dx = f (x)’ and ‘d/dx
∫ X

x

f (x) dx =−f (x)’ (6)

(lect. 26). Even this success was only half, as hefailed to prove the converse relationship,
about

∫
f ′(x) dx.

The other result was the convergence of Taylor’s series, whose status was chal-
lenged. Instead of grounding Lagrange’s algebraic empire, it now suffered the indignity
of exp(−1/x2), of which all the derivatives were zero atx = 0, so that it tookno expan-
sion at all about that value. Cauchy mentioned this finding at the end of lect. 38, with a
remark that the expansion of any other function aboutx = 0 could not be unique; in a
profound contemporary paper he gave more examples of such functions and explored the
resulting dichotomy between functionsand power-series [Cauchy, 1822].

The convergence of Taylor’s series now needed examination. By integrating
∫ x
x0
f (x) dx

successively by parts, Cauchy obtained the integral form of the remainder aftern terms and
analysed its smallness; he then used the mean value theorem to convert it to the differential
form (lects. 35–36). While neither result was new, their role in the issue of convergence
was freshly thought out; in particular, the requirement that all preceding derivatives be
continuous.

The limitations of the theory inCours d’analyse concerning multiple variables and lim-
its is evident here also. For example, Cauchy called integrals ‘singular’ if the integrand
went to infinite values and/or if the interval was infinite, and in both cases took limiting
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values of each limit of the integral without considering simultaneous or successive action:
for example, respectively

‘
∫ a−εµ

a−ε
f (x) dx’ and ‘

∫ −1/εµ

−1/ε
f (x) dx’, µ > 0 and constant (7)

(lect. 25, (1)–(4); compare lect. 24, (3)–(4)). Again, he proved that a convergent infinite
series of functions was still convergent after integration term by term. The proof depended
upon the mean value theorem for integrals, which gave for the integral of the remainder
term: ∫ X

x0

rn dx =Rn(X− x0), (8)

whereRn (my symbol) was the value ofrn for some value ofx betweenx0 andX (lect. 40,
(7)). But the smallness of the integral required the uniform smallness of its integrand, which
Cauchy did not notice. Similarly, in the discussion of differentiating and integrating under
the integral (lect. 33) he unconsciously assumed the integrand to be uniformly continuous
on occasion.

5 REACTIONS AT THEECOLE POLYTECHNIQUE: CAUCHY’S LATER BOOKS

In theRésumé Cauchy construed∫
f (x) dx as the solution of the differential equationdy = f (x) dx (9)

(lect. 26, (11); lect. 27, (1)); and in a lecture course at theEcole Polytechnique in 1824
he entertained the second-year students with a wonderful extension of this conception by
examining the existence of the solution of

dy = f (x, y) dx (10)

in the same way, taking a partition of values ofx and forming the corresponding sum. This
is the method now named after him and Rudolf Lipschitz; and the reason why ‘Cauchy’
does not stand alone is the reaction of the school, who terminated the course as too difficult
and forbad completion of the printing of the notes. They disappeared until the late 1970s,
when the historian Christian Gilain found 136 printed folios and published them with an
excellent introduction [Cauchy, 1981]. I do not discuss them further here, therefore; but the
attitude of the school to his teaching requires discussion.

Clearly Cauchy was erecting a beautiful mathematical structure in these two books; but
was he meeting student requirements? An event on 12 April 1821 provides the answer.
Each lecture period lasted 90 minutes, comprising 30 minutes of discussion of previous
material followed by an hour’s lecture; but Cauchy seems always to have taken all 90
minutes as his own, and on that day, giving the 65th of the prescribed 50 (sic) lectures
on analysis, he continued for another 20 minutes on a new topic; so the students whistled
at him and walked out. This was a most serious matter in a military institution, and the
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students were sent to barracks; but in an extensive correspondence with the minister, the
governor also severely criticised the professor for delivering ‘a luxury of analysis no doubt
appropriate for papers to be read at theInstitut; but superabundant for the teaching of
students at this school’ [Grattan-Guinness, 1990, 713].

This event seems to have been the last straw of dissatisfaction with the professor; yet,
apart from the cancellation of the 1824 lecture notes, no change occurred. From 1826 to
1829 graduation examiner de Prony strongly attacked the courses of his former student, but
again no major alterations were made [Grattan-Guinness, 1990, 1337–1340]. No evidence
survives of the professor’s reactions: Cauchy stopped only when his beloved monarch was
deposed in the Revolution of July 1830 (in which the students were prominent in the fight-
ing); he abandoned all his posts and stopped theExercices, and joined the royal family into
exile as tutor in mathematics of the Bourbon pretender to the throne [Belhoste, 1991, chs.
9–10]. The failure of the school during the 1820s to alter his teaching practice may have
been due to the same cause: political life in France had tensioned considerably after the
assassination in 1820 of the Duc de Berry, the monarch presumptive and father of the later
pretender, and maybe Cauchy’s fanaticism for them provided protection.

Further, Cauchy could argue that he had been fulfilling his requirement of providing
printed courses. In addition to the cancelled sheets, he published two volumes of lectures
on differential geometry [Cauchy, 1826, 1828], again put out by the family firm. The first
and main volume (22 lectures, 400 pages) surely went far beyond taught material (or at
least, one so hopes), with a detailed analysis of tangents and tangent planes, osculation and
curvature, curves in space, and so on, all based upon limits. An outstanding feature was a
new theory of orders of contact of curves at a pointP , grounded in his theory of infinites-
imals (instead of Taylor’s series) in terms ofthe angle between the lines of intersection of
each curve with a circle with centreP (lect. 9). The second volume (4 lectures, 123 pages)
dealt with integration matterssuch as rectification of curves, quadrature of surfaces, and
cubature of solids.

Again, with theRésumé apparently sold out, Cauchy planned to write two much larger
volumes on the calculus, though only the one on the differential calculus appeared [Cauchy,
1829] before his roof fell in. At 289 pages it was over four times longer than its predecessor,
but mostly considerable elaborations of theRésumé, especially concerning functions of
several real variables and of a complex variable; much of the new material came in an
addition, on methods of approximating to the roots of an equation by using truncated Taylor
series.

So the professor fulfilled much of his obligations, at least as he saw them. However,
none of his four books ever entered the list of textbooks recommended to the students of
the school.

6 THE GRADUAL INFLUENCE OF CAUCHY’S DOCTRINE

When Cauchy left Paris he was stripped of his chair at theEcole Polytechnique. His courses
were taken over at first by his assistant G.G. Coriolis, and his post by C.L.M.H. Navier.
Both men were engineers, and did not develop many of Cauchy’s main notions. But after
Navier’s death in 1836 the post went to J.M.C. Duhamel and from 1840 to Charles Sturm,
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who were more sympathetic to them. In particular, after its posthumous publication in the
late 1850s Sturm’s ownCours d’analyse was very influential, with editions until 1929.

Cauchy himself followed the royal family around Europe, especially Italy; and he gave
a short version of theCours d’analyse in Turin, which was published there as [Cauchy,
1833]. He gained some Italian followers, and some of his material appeared in Italian.
Upon his return to France in 1838 he refused to sign an oath of allegiance to the ruling
administration and so could not take up any positions; but such obligations were removed
after the 1848 revolution, and from 1849 until his death in 1857 he taught mathematical as-
tronomy at theFaculté des Sciences. Publicity for his doctrine, therefore, passed to others’
hands: in particular, between 1840 and 1868 fellow Catholic and his former student at the
Faculté the abbot Moigno (1804–1884) produced several volumes on the calculus, and also
on the calculus of variations and parts of mechanics, based upon his previous teaching.

So here are some markers for the adoption of Cauchy’s doctrine; but the other tra-
ditions maintained good positions, especially the Leibniz–Euler differential and integral
version with the differential coefficient (§14). A good example is Britain, for it had main-
tained Newton’s fluxional calculus until the 1800s, when switches were made especially
to Lagrange’s algebraic approach, and also to some extent to Leibniz and Euler. The fur-
ther move to Cauchy was fitful [Rice, 2001]. An important author is Augustus de Morgan
(1806–1871), who outlined the theory of limits in hisElements of algebra (1835), and
treated mathematical analysis in a mammothDifferential and integral calculus (1842).
He made some acknowledgement to Cauchy, but not very often; and while he handled
continuous functions and the calculus in broadly Cauchyesque terms, he also included a
long chapter on divergent infinite series. Again, William Whewell argued for the merits
of limits, but he had in mind his Trinity College predecessor Isaac Newton more than any
Frenchman.

An important case for Cauchy’s doctrine is Germany (then, the German states). As is
shown at the head of this article, theCours d’analyse was translated twice, the first one
quite early in 1828; theRésumé was not translated, but Cauchy’s doctrine was adopted in
that decade, initially by MartinOhm in Berlin. Further, Cauchy’s later books mentioned
in Section 5 appeared in the 1840s thanks to C.H. Schnuse, who translated many other
French mathematical books including some of the Moigno material. Some young German-
speaking mathematicians applied the doctrine notably; already in the 1820s J.P.G. Lejeune-
Dirichlet and the Norwegian N.H. Abel. However, as elsewhere the other traditions of the
calculus remained widely taught. Dirichlet’s work inspired Bernhard Riemann’s contribu-
tions to mathematical analysis (§38.2).

The most striking case is Karl Weierstrass (1815–1897). From the late 1850s he was
professor at Berlin, and arguably the leading mathematician of the world. The influence
of his 30 years’ lecturing is immense (although, as was mentioned in §0.3.2, he never
published his courses, so that there is no one text which qualifies for an article in this book).
For complex-variable analysis he introduced a new foundation based upon power-series
expansions, and so was in competition with Cauchy; but in real-variable analysis he and
his students not only adopted all parts of Cauchy’s doctrine but also refined them in various
ways: for example,multiple limits and the consequences for continuity and convergence,
existence theorems and definitions of irrational numbers [Grattan-Guinness, 1980]. He also
popularised the use of Cauchy’s ‘ε’ and ‘δ’. So Cauchy was super-vindicated, as it were;



352 I. Grattan-Guinness

but the origins of Weierstrass’s approach lie buried in his obscure school-master days of the
1840s and 1850s [Dugac, 1973] and relate much to elliptic functions, a topic on which—
rarely—Cauchy published little.

A curious case is Russia. As we see at the head of this article, some of theRésumé
was available already in 1831 thanks to B.Ya. Bunyakovsky, and theCours d’analyse was
translated in 1864 (but published in Leipzig). Before the 1870s Russia was not a signif-
icant country for mathematics; but Bunyakovsky and especially M. Ostrodgradsky had
contributed notably to aspects of mathematical analysis, and Cauchy’s doctrine played a
role [Yushkevich, 1968, ch. 14].

It seems clear that the ultimate supervention of Cauchy’s doctrine over its competitors,
especially for those mathematicians concerned with rigour and proof, was inspired above
all by thecritical spirit which he had elevated far above the levels available in other tra-
ditions: systematically if–then mathematics, sufficient and/or necessary conditions for the
truths of theorems, and especially the fundamental theorem of the calculus at last a pukka
theorem, even if he only started half of it in (4). But the “victory” was a gradual one—
a fascinating but little-studied international story towards which this section supplies only
notes.
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CHAPTER 26

JOSEPH FOURIER, THÉORIE ANALYTIQUE DE
LA CHALEUR (1822)

I. Grattan-Guinness

This book contains the first extended mathematical account ofheat diffusion, itself the
first major mathematicisation of a branch of physics outside mechanics. The mathematical
importance lay mainly in Fourier series and integrals.

First publication. Paris: Firmin Didot, 1822. xxii+639 pages.

Photoreprints. Breslau: Köbner, 1883. Paris: Gabay, 1988.

Reprint. As Oeuvres, volume 1 (ed. G. Darboux), Paris: Gauthier–Villars, 1888.

English translation. The analytical theory of heat (trans. A. Freeman), Cambridge: Cam-
bridge University Press, 1878. [Photorepr. New York: Dover, 1955.]

German translation. Die analytische Theorie der Wärme (trans. B. Weinstein), Berlin: J.
Springer, 1884.

Spanish translation. Teoría analatica del calor (trans. D. Redondo Alvarado), Madrid:
Universidad Politécnica, 1992.

Other translations. Japanese (trans. H. Yoshida from the English translation), Tokyo: 1993.
Chinese (trans. Z. Gui), Hefe: 1994.

Related articles: Cauchy on real-variable analysis (§25), Riemann on trigonometric series
(§38), Baire and Lebesgue (§59), Bochner (§74).

1 EDUCATION AND EMPLOYMENTS

Somewhat unusually for a mathematician, Jean Baptiste Joseph Fourier (1768–1830) fol-
lowed an eventful career outside his intellectual activities [Herivel, 1975, pt. 1; Dhombres
and Robert, 1998, chs. 2–6]. The initial causewas the French Revolution of 1789. At the
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time he was living in his home town of Auxerre; he seems to have conducted himself ho-
nourably, and so was arrested in 1794 though soon released. He was soon nominated by a
neighbouring town to be its student at theEcole Normale in Paris, newly established for the
training of teachers. Despite employing eminent professors such as Joseph Louis Lagrange
(1736–1813), Pierre Simon Laplace (1749–1827) and Gaspard Monge (1846–1818), poor
planning and insufficient funding led to its closure after four months. However, he had
made enough impression to be appointed as a junior teacher at theEcole Polytechnique,
another new institution with which Lagrange, Laplace and Monge were also involved, but
one that was to endure.

Fourier doubtless hope to emulate his seniors in his career; but in 1798 he was chosen,
seemingly by Monge, to join Bonaparte’s expedition to Egypt. Fourier played a prominent
role in the civil and academic sides of the occupation; in particular, he led one of scien-
tific teams to examine the ancient ruins and artefacts. He stayed until the defeat by the
British in 1801, when he returned to Paris and theEcole Polytechnique. However, Bona-
parte saw better uses for the administratively gifted, and in 1802 appointed him Prefect of
thedépartement of Isère, based at Grenoble.

The region was backward, on the border with Italy. Fourier served it until 1815, with
great energy and distinction. He revitalised both education and industry, and launched
projects such as the draining of a large area of marshland. Yet he also found time to work
on the vast report on the studies of Egypt, helped by some periods in Paris (four days away
by carriage). His main contribution to the multi-volumeDescription de l’Egypte was a
preface, widely admired for its style upon its publication in 1809.

2 THE CHRONOLOGY OF FOURIER’S RESEARCHES

In addition, somehow during this period Fourier also made most of his main scientific
contributions, many of them quickly. He never stated the precise stimulus to mathematicise
heat diffusion; apart from the novelty, and maybe experiencing Egyptian heat followed by
French Alpine cold, a source could have been a pioneering but shaky short paper published
in 1804 by Laplace’s follower J.B. Biot. At all events, Fourier had written a substantial
manuscript by 1805, and presented an enormous one to the scientific class of theInstitut
de France in December 1807. It contained the diffusion equation for several solid bodies
of finite dimension, solutions by various forms of Fourier series (to use the modern name)
and by the function we now call the Bessel functionJ0(x), and some experimental results
[Fourier, 1807].

Laplace and Lagrange were among the examiners, and they reacted sceptically for dif-
ferent reasons, explained in sections 3 and 4 below. (Monge was also a member, and pre-
sumably welcomed the paper.) Nevertheless, a prize problem was proposed by the class
for 1811, and Fourier submitted a still longer piece [Fourier, 1811] which rehearsed the
previous one but also contained the solution by Fourier integrals of the diffusion equation
for infinite solid bodies, and some physical aspects of heat (apparently motivated by dis-
cussions with Laplace). He won the prize, but the report of the commission (which again
included Laplace and Lagrange) was critical ofsome aspects; thus publication in the jour-
nal for papers submitted to the class bysavants étrangers seemed distant, especially as it
had not appeared since 1806 anyway. So he concentrated on a third version, as a book.
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But politics came in to Fourier’s life again, this time over the abdication and then return
of Emperor Napoléon in 1814–1815. Fourier’s position was especially tricky because of his
Prefecture; in 1815 he accepted Napoléon’s “promotion” to the prefecture of thedéparte-
ment of Yonne based at Lyon, but he resigned in protest over policy before Napoléon’s
Hundred Days were over. He moved to Paris, without a post. But now contacts from the
Ecole Polytechnique helped: a former student, now Prefect of thedépartement of the Seine,
appointed him head of the Bureau of Statistics. Fourier improved his personal situation
quickly; he was elected to the restoredAcadémie des Sciences in 1817, and five years later
even to the influential post of asecrétaire perpétuel. His book also appeared then. He also
managed to get his 1811 paper published in theMémoires of the Académie in 1824 and
1826, although he had not been a member when he won the prize. The 1807 paper re-
mained unpublished; an edition of it is included in [Grattan-Guinness and Ravetz, 1972],
along with parts of the 1805 predecessor.

In 1816 Fourier published a paper announcing the imminent appearance of a book on
both the mathematical and the physical aspects of heat [Fourier, 1816]; but six years were to
pass before a book was published, and it covered only the mathematical sides. In the ‘pre-
liminary discourse’ he stated that its writing and printing had taken a long time (p. xvii).
Table 1 summarises not only the book but also comparable passages in the two main earlier
papers; all three sources are cited below by article numbers.

3 HEAT DIFFUSION, INTERNAL AND SURFACE

In somewhat tedious detail, Fourier began by exploring the known properties and parame-
ters for the study of heat diffusion. There were three main ones of the latter: conduction
internally within a solid body (‘K ’) and externally through its surface or boundary into the
environment (‘h’); and specific heat (‘C ’) (arts. 26–39). Assuming them to be constant, he
used them to define quantity of heat at a point or section of the body. He took the flow of
heat to be uniform, and temperature change linear with respect to distance. He drew upon
Newton’s law of cooling, that the flow of heat through a domain was proportional to the
temperature difference across it (arts. 64–68; 429, no. 3). But he became aware of its falli-
bility and altered parts of arts. 31–38 of thebook while on proof; the original text is found
in the copy in theBibliothèque Nationale, Paris [Grattan-Guinness, 1990, 1330–1332].

To mathematicise the phenomenon Fourier used the standard differential and integral
calculus in the version developed by Euler with the differential coefficient (§14). In his first
example a straight bar (‘prism’) of square cross-section with (tiny) side 2l diffused both
internally and externally; when in thermal equilibrium its temperature at pointx distant
from endO wasv, with the environment set at temperature 0. At the infinitesimal slice
with facex and constant thicknessdx, 8lh dx.(v - 0) entered into the environment, while

h

�����K��������
O x h dx

4l2K
[
d(dv/dx)+ dv/dx]− 4l2K dv/dx, or 4l2K d(dv/dx) (1)
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Table 1. Contents of Fourier’s book, compared with the 1807 and 1811 papers.
The numbers are of articles: 91–94 of the book were mis-numbered 84–87, but are corrected here,
as in all later editions. Since Fourier made various small and large changes in text, the comparisons
are somewhat gross, especially for arts. 1–80. A blank indicates that there is no corresponding text.

1807 1811 Book Topics
1 pp. i–xxii ‘Preliminary discourse’: physical properties of

heat; mathematics.
Preface 3, 1 1–21 Aims, results; heat constants and properties.
15–16 2 22–56 Conductivity; specific heat; action of heat.
17–18 4–6 57–72 Communication and linearity of heat diffusion.
19–22 7–8 73–80 Steady-state diffusion in bar.

81–91 Heating in closed spaces.
92–100A Diffusion in three dimensions; at a point.

23–24 9–10 101–110 Diffusion equation for ring; special solution.
25–28 11–14 111–131 Equations for sphere, cylinder, infinite bar, cube.
29–31 15 131–162 General diffusion equation; surface diffusion;

special cases.
32–47 16–20 163–189 Diffusion equation for lamina; Fourier series;

infinite “matrix”.
48–49 21, 30 190–206 Solution for lamina.
50–84 21–29 207–237 Series for general function; properties.
76–94 31–37 238–236 Diffusion in ring.
1–13, 95–96 38–43 247–282 n-body model.
97–114 [44]–50 283–305 Diffusion in sphere; surface diffusion; non-

harmonic series.
116–139 51–56 306–320 Diffusion in cylinder;J0(x).
140–151 57–61 321–332 Steady-state diffusion in infinite bar; multiple

series.
152–158 62–65 333–341 Diffusion in cube; multiple series.

66–72 342–364 Diffusion in infinite body; Fourier integrals.
73–79 364–385 Laplace’s solution of the diffusion equation.

386–395 Highest temperature in infinite body.
396–433 Fourier integral and other solutions to differential

equations.

passed through the slice from its neighbour. Thermal equilibrium ensured that the two
quantities were equal; so the diffusion equation took the form

8lh dx(v− 0)= 4l2K d(dv/dx), or d2v/dx2= (2h/Kl)v (2)

(arts. 74–75). In a novel move Fourier also derived(2)2 by considering the quantity of
heat in the bar fromO to x, thereby obtaining an integro-differential equation and differ-
entiating it with respect tox (art. 73). The interest was in using only one slice instead of
two.
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In the dynamic situation over time, the difference between the two quantities in(2)1
during a constant infinitesimal intervaldt would balance the rise in temperaturedv, so that

4l2K d(dv/dx) dt − 8lh dx.v dt = CD4l2 dx dv. (3)

∴ Kd2v/dx2− (2h/l)v = CDdv/dt, (4)

whereD was the (constant) density of the body, and the ratios of differentials were under-
stood aspartial differential coefficients ofv as a function of bothx and of t . Curiously,
Fourier did not show (4), but he found its analogue for the ring, wherex was the angular
variable (arts. 102–105).

These two cases applied to bodies of one dimension, when both coefficients of conduc-
tivity obtained. For continuous solid bodies such as the cube, Fourier showed that interior
conduction in three spatial variables was expressed by the equation

‘dv/dt = (K/CD)(d2v/dx2+ d2v/dy2+ d2v/dz2)’ (5)

(arts. 126–128). The distinctive feature of (4) and (5) among the partial differential equa-
tions then known was the second-order derivation with respect tox and the first-order fort .
In steady state it became Laplace’s equation (as we now call it) (arts. 121–123).

Surface diffusion required a separate equation, which Fourier found by equating the
internal flow adjacent to the surface with the external flow from it into the environment;
for example, for the cube of side 2l centred at the originO flow over timedt through and
out of a surface infinitesimal rectangle perpendicular toOx with sidesdy anddz gave

−K(dy dz)(dv/dx) dt = h(dy dz)(v− 0) dt; (6)

∴ hv +K dv/dz= 0 whenx =±l (7)

(art. 129). For the general (smooth) surface he showed that at a point with direction ratios
(m,n,p)

K(mdv/dx + ndv/dy + pdv/dz)+ h
√
m2+ n2+ p2v = 0 (8)

(arts. 146–154). Mathematically such equations had already appeared in hydrodynamics;
but this one represented physical flow, and in itself was a source of influence (section 8
below).

Neither in his analysis nor in the general discussion did Fourier make any commitments
as to the nature of heat; he took it just as a phenomenon, with cold as its opposite. Here he
was in accord with the Swiss physicist Pierre Prevost, whom he visited in Geneva (not far
from Grenoble) in 1804 and also corresponded [Weiss, 1988]. However, in 1807 this stance
disappointed Laplace, who had recently launched an ambitious programme of molecular
mathematical physics (§18.8); in 1810 he re-derived the diffusion equation in this way,
construing heat as central action betweenmolecules which was known only to decline
rapidly with distance from source, and cumulative action expressed as an integral involving
it. Fourier neither affirmed nor rejected this method.
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4 FOURIER SERIES AND THEIR FUNCTION

The mathematical task for Fourier was to solve the diffusion equation (2) for one-
dimensional bodies, or some version of the internal equation (5) for solid bodies with (7)
serving as a boundary condition. In both cases the initial temperature distribution function
was also used.

Fourier always solved (5) by the method of separating the variables, leading to an or-
dinary differential equation in a spatial variable. To that end he used infinite trigonometric
series, producing solutions such as

v =
∞∑
r=0

(ar cosrx + br sinrx)exp−Kr2t . (9)

The initial datav = f (x) whent = 0 led in (9) to

f (x)=
∞∑
r=0

(ar sinrx + br cosrx), (10)

with the coefficients given by

πar =
∫ π

−π
f (x) cosrx dx whenr �= 0, 2πa0=

∫ π

−π
f (x) dx, (11)

and a formula corresponding to(11)1 for thebr . All these results were known by 1807: the
discussion in the book was long (arts. 163–237), and the formulae turned up later for the
special bodies.

I have used our familiar symbols for summation, subscripts and definite integrals; and
Fourier is an important source of their growth in popularity. He used subscripts much more
systematically than normal at that time; and heinvented the notation ‘

∫ b
a ’ for the definite

integral as an elaboration of Leibniz’s symbol (arts. 222, 231; first published in his paper
[1816]).

Two major issues about the series are discussed now. The first concernsrepresentability.
(10) had been known before Fourier, especially to Euler and Lagrange, but they had rarely
been advocated as a general solution to a differential equation; much preferred was the
functional form, wheref appeared explicitly rather than buried in integrals (11), or if
necessary that by infinite power series. When Fourier put them forward in 1807 Lagrange
objected that (10) could not be general since the series were periodic; further, the sine
and cosine series were also respectively oddand even. Fourier had already dealt well with
feature in the manuscript, and repeated it in notes for Lagrange: for all three kinds of series
‘=’ in (9) and (10) pertained only over the interval specified for the physical problem, over
which the integrals were defined; outside it function and series (usually) parted company.
He even found three different series for the functionx/2 over 0� x � π , and drew them
over several periods (1807, art. 68). This geometrical of thinking, typical of Fourier and
maybe showing influence from Monge, lay outside the algebraic realm of Lagrange, who



360 I. Grattan-Guinness

never accepted the answer. While the same examples were given in the 1811 paper and the
book (art. 225) Fourier omitted most of the diagrams, maybe to make the point less clear
and so more acceptable.

The point is important, for without it further questions about the series need not be
asked. For example, it had affected Daniel Bernoulli’s advocacy of the series (on physical
grounds only) in the famous debate in the mid 18th century on the vibrating string problem
(§59.1), where others had preferred the functional solution. Fourier knew that background,
and commented rather briefly upon it (art. 230).

The second issue isgenerality. In order to compete with other methods, Fourier had
to show that discontinuous functions could be represented. This was duly done, though
with the jumps joined by vertical lines in the diagrams in the 1807 paper, thus making the
functions contiguous (an example appears in the book at art. 232). But he did not envision
the ‘Gibbs phenomenon’, where the verticalline has to be extended a little on both sides of
the jump [Hewitt and Hewitt, 1979]: it arisesfrom distinguishing repeated from multiple
limits, which nobody in Fourier’s time fully grasped (compare §25.3).

The best solution to the problem of generality would be a proof of their convergence,
and to the function. Fourier offered one in his book (arts. 415–416; 279 on the conver-
gence of the full solution (9)); but it was defective in claiming that “any” functionf (x)
should satisfy(10)2. Initial resolution would come from other hands near the end of his
life (section 7).

5 CALCULATING AND INTERPRETING THE COEFFICIENTS

Fourier gave two methods. The second was the (now) usual oneof multiplying through
(10)2 by cosrx and integrating between−π andπ (arts. 223–224 for sine and cosine
series); in a later paper Fourier thanked S.F. Lacroix (who had also been a member of his
1807 jury) for pointing out that Euler had used it before him. But his first method was quite
different:f (x) and the trigonometric functions were expanded in their Taylor series and
the coefficients of powers set equal. An infinitude of linear equations resulted; the solution
(11)1 was finally obtained after a monstrous bag of clever tricks with finite and infinite
series and products.

This is the pioneer effort in the theory of infinite matrices [Bernkopf, 1968]; but why
was it preserved in the 1811 paper and the book (arts. 207–221; 171–177 for the function
f (x)= 1) when the much more convenient alternative was also available? Partly, no doubt,
Fourier did not want to lose some interesting mathematics. However, he had also spotted a
defect with the other method: it worked even if terms were missing from the series, whence,
if the corresponding coefficients were not zero,the resulting series was incorrect [Grattan-
Guinness and Ravetz, 1972, 237–239]. This feature was not to be noticed again until the
1890s onwards, when it was resolved in terms of completeness of function spaces: Fourier
noted it briefly in his book (arts. 424–425), where he also gave the so-called ‘Parseval
formula’ (art. 235, no. 2) without however noting any connection between the two points.

This first method may also have been preserved because of a feature of the physics. In
his first attempt to mathematicise heat diffusion Fourier had used the known method of dis-
crete modelling: for example, thecontinuous ring was replaced byn equal separate mass
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set in the corresponding circle and exchanging heat and cold. He found a set of simultane-
ous ordinary differential equations, which he solved by separation of variables, leading to
finite trigonometric series in the angular variable (1807, arts. 1–13). The continuous case
was found by lettingn→∞; but he found the false solution of steady temperature, and so
started again with the differential modelling [Grattan-Guinness and Ravetz, 1972, 81–82].
This analysis was preserved in the 1811 paper and the book (arts. 247–282), even though it
had become nostalgia. The cause of error was a mis-specification ofK: perhaps because of
this mishap, in the later versions he indicated the units and dimensions of all his physical
parameters (art. 161), pioneering the dimensional analysis of scientific theories [Macagno,
1971]. In his empiricist spirit mentioned in section 3, Fourier did not use either (10) or this
finite predecessor to argue that heat was a waval phenomenon, even though this view was
gaining some adherents at that time [Brush, 1976, ch. 9].

A related question was the definability of the integrals in (11). Fourier construed them
geometrically as areas (arts. 220, 229, 415–417) rather than the algebraic Lagrangian in-
verse of the derivative, but he did not analyse area itself (compare A.-L. Cauchy in §25.4).

6 NON-HARMONIC SERIES, AND THE BESSEL FUNCTION

Fourier had to make two important modifications to his solutions. One concerned solid
bodies: the coefficients in the trigonometric terms were themselves unknown, to be deter-
mined from the surface condition (7). They turned out to be the rootsnr of transcendental
equations inn, such as

tannX = nX(1− hX) (12)

for the sphere of radiusX (arts. 284–288; compare 328 for the infinite bar). The associated
solution, later called ‘non-harmonic’, was

v =
∞∑
r=0

(ar cosnrx + br sinnrx)exp−Kn2
r t. (13)

It was essential for the physics to show that (12) possessed only real roots; for other-
wise the exponential time terms in (13) would not decay ast→∞. Luckily Fourier was
in familiar territory, for already in his Auxerre days he had generalised Descartes’s rule of
signs into an upper bound for the number of roots of a polynomial equation lying within a
given interval of values [Grattan-Guinness and Ravetz, 1972, 8–12]. Here he used geomet-
rical illustrations to show that (12) and its kin possessed an infinitude of real roots; but the
banishment of complex roots was not completely secured.

The other main change occurred when Fourier analysed diffusion in the cylinder. Cast-
ing the diffusion equation in cylindrical polar co-ordinates, separation of variables led to
the differential equation for the functionu(x) of the axial variablex

d2u/dx2+ (1/x) du/dx + (mCD/K)u= 0, (14)

with m to be determined by consideration of surface diffusion (7). This time the series did
not work; so he followed the tradition of solution by power-series inx, and after a virtuoso
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manipulation of analytical techniques he foundmany of the basic properties of the function
J0(x) which we now name after F.W. Bessel: not only the series expansion but also its
generating function the integral form, orthogonality, the expansion of “any” function in a
series of such functions, and a good though again not conclusive argument for the reality
of the associated roots. Again this was doneby 1807; it received a substantial statement
in the book (arts. 306–319), together with emphasis on series expansions of functions in
general (art. 424; 428, no. 6).

7 THE LAPLACE AND FOURIER INTEGRALS

Not achieved by 1807 was the analysis of diffusion in an infinite body. Series would not
do, not only in view of their finite periodicity but especially because the methodology of
surface diffusion embodied in (7) failed, since that kind of body had no such surface.

As part of his response to Fourier’s paper, Laplace showed in 1809 that the solution of
the diffusion equation (4) in such circumstances was proved by anintegral; in the notation
of (9),

√
πv =

∫ ∞

0
f

(
x + 2s

√
t
)
exp

(−s2)
ds, wheref (x)= v(x,0). (15)

This solution is not to be confused with the (rather mis-named) ‘Laplace transform’.
With this big hint, Fourier found in time for the 1811 prize paper his own integral solu-

tion. The initial conditions yielded the integral formula now named after him, in versions
such as

2πf (x)=
∫ ∞

−∞
f (u) du

∫ ∞

−∞
cos

(
q(x − u))dq. (16)

His proof relied upon rather hair-raising tricks with infinitesimals to convert sums into inte-
grals (arts. 344–346). He also gave versions of (16) over positive and negative values ofx;
and, as with the series, he gave sine and cosine forms. To some extent he distinguished mul-
tiple from repeated integrals. Both solutions, especially his own, were discussed at length
in the book (arts. 348–384, 396–413). Noting the similarity of form between the kernels
of the diffusion equation and of his integrals, he also obtained integral solutions to more
general linear partial differential equations with constant coefficients by using differential
operators (arts. 401–404), an approach which had gained some currency. However, Cauchy
rejected such methods, replacing the solutions with forms using complex-variable Fourier
integrals; he had found (16) for himself in 1817, and his use of the integrals added much
to their early prestige.

8 LATER WORK AND RECOGNITION

As well as organising the publication of his 1811 paper and book when based in Paris,
Fourier published some papers on both mathematical and physical aspects of heat theory.
One notable rise in prestige came in 1820 when he applied Fourier integrals to the cooling
of a large sphere to estimate the age of the Earth. Laplace found another value from an
analysis using spherical harmonics, but praised Fourier’s contribution.
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This was pointed approbation, as Laplace’s faithful follower S.-D. Poisson (1781–1840)
was then reworking much of Fourier’s physics in Laplacian molecularist manner. He solved
the diffusion equation either by Laplace’s (15)or in Lagrangian style by taking the terms
of Fourier’s series as coefficients of a power series, forming the integral now named after
him [Grattan-Guinness, 1990, ch. 12]. Most of his cases were desimplifications of some
of Fourier’s, such as diffusion in a bar made in two parts of different materials, and of the
sphere into an environment with non-constant temperature. His best contribution was an
excellent argument of 1826 for the reality of the roots of a class of transcendental equations
including (12).

Fourier also wrote on radiant heat and its motion within liquids, and in 1823 he con-
ducted experiments on thermo-electric effects with H.C. Ørsted in the latter’s visit to Paris.
Later he declared the intention of writing a separate book on the physical aspects of heat
theory, presumably including the experiments on heat diffusion which he had reported in
his 1807 and 1811 papers [Grattan-Guinness and Ravetz, 1972, ch. 20]; but no manuscript
of it exists in hisNachlass.

Fourier also planned a book on the theory of equations and related topics (including
what we recognise now as linear programming), and the publishable material appeared
posthumously by his follower C.L.M.H. Navier [Fourier, 1831]. He was attracting the inter-
est of several members of the new generation of mathematicians, with 1829 a particularly
good year. A Swiss immigrant, Charles Sturm, improved to an equality his old theorem on
the upper bound of roots of a polynomial within a given interval of values (section 6). Au-
guste Comte began his first major set of lectures advocating ‘positive philosophy’, much
inspired by Fourier’s philosophical stance over heat; the published version (1836–1842)
was dedicated to him. Finally, a recent German visitor, J.P.G. Lejeune-Dirichlet, partly in-
fluenced also by Cauchy’s recent improvementof rigour in mathematical analysis (§25),
produced a classic proof of the convergence of Fourier series under the sufficient condi-
tions that the function possess only a finite number of turning values, discontinuities and
(later) points of infinitude (§38.2).

Dirichlet also proved one of Fourier’s stated solutions of a diffusion problem; and others
to became interested in that subject included theRussian visitor Michel Ostrogradsky, and
compatriots J.M.C. Duhamel and Gabriel Lamé [Bachelard, 1928]. The analyses usually
deployed the series and/or integral solutions, which were appearing also in other applica-
tions; for example, with Navier in elasticity theory.

During the 1820s Fourier also offered some striking thoughts on statistics in connec-
tion with his directorship of the Bureau. Among other activities, he helped secure a new
chair in ‘Egyptology’ at theCollège de France for his protégé from Grenoble days, Jean
Champollion. By the time of his death in 1830 this non-standard and innovative scientist
had become establishment.

9 ON THE LATER IMPACT

Fourier’s book became a standard source for both students of heat diffusion and of
Fourier series and integrals, and solution of linear differential equations in some generality
[Burkhardt, 1908]. It began to be used abroad: a particularly notable example is William
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Thomson; when aged 16 years in 1840 he took the book as holiday reading, and was soon
writing papers on it. Responding warmly to Fourier’s positivism (as Comte had called it),
he was inspired by the handling of diffusion to envision flow as a major notion in math-
ematical physics (compare §40). An important stimulus for the series was suggested by
G.S. Ohm in 1843: refining Bernoulli on the vibrating string problem, he took the terms to
denote super-harmonics in acoustics, a move picked up later by Hermann von Helmholtz,
Lord Rayleigh, and many others (§45). On the pure side, Dirichlet’s proof led to an impor-
tant stream of researches, especially Bernhard Riemann’s essay of 1854 on trigonometric
series (§38) and then on to set theory and measure theory (§59) [Paplauskas, 1966].

By the 1860s Fourier’s book was part of the furniture. As shown at the head of this
article, in the 1870s and 1880s it received two translations, a photoreprint, and a reprinting
as the first of the two volumes of an edition of his scientific writings. Only George Green’s
masterpiece of 1828 on potential theory (§30) matches it for later re-issue of a publication
of that time. Indeed, both books have enjoyed reprints in modern times.
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CHAPTER 27

JEAN VICTOR PONCELET, TRAITÉ DES
PROPRIÉTÉS PROJECTIVES DES FIGURES,

FIRST EDITION (1822)

Jeremy Gray

Poncelet’s book is the source of the launch of the modern study of projective geometry,
after the work of various 17th-century authors had not generated sufficient momentum to
sustain the subject through the 18th century. He produced a new way of thinking about
plane figures that emphasised the properties they have in common with their shadows and
played down their metrical properties. He claimed to find many remarkable transformations
between figures that enabled complicated figures to be simplified and geometry to work at
a new level of generality.

First publication.Traité des propriétés projectives des figures: ouvrage utile à ceux qui
s’occupent de la géométrie descriptive et d’opérations géométriques sur le terrain,
Paris: Bachelier, 1822. xlvi+ 427 pages. Print-run: 800 copies.

Second augmented edition. 2 vols., Paris, Gauthier–Villars, 1865–1866.

Related articles: Monge (§17), von Staudt (§33), Riemann on geometry (§34).

1 PONCELET’STRAITÉ

1.1 Principles

Jean Victor Poncelet (1788–1867) discovered many of the key ideas in his book during
the two years he was a prisoner of war in Saratov, having been captured by the Russians
during the Napoleonic army’s retreat from Moscow; as we shall see, this contributed to the
book’s highly idiosyncratic character. Its impactis all the more remarkable because several
of his fundamental ideas and methods were judged by his contemporaries to be unsound,
and many of the details of his work had to be replaced entirely.

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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Poncelet arranged for 800 copies of the book to be printed at Metz at his own expense,
hoping, as he said towards the end of his life, no other ambition ‘but to reach the working
class and the youth of our schools’ [Poncelet, 1862, vi]. Its contents is summarised in
Table 1.

Table 1. Contents by Chapters of Poncelet’s book. ‘a/b’ signifies Section a, Chapter b.

Chap. P. Topics

Preface i History of the author’s researches.

iii Cauchy’sAcadémie report on the manuscript, 5 June 1820.

Introd. xvii–
xlvi

Status of geometry: synthetic proofs, principle of continuity. Literature
review: mainly Greek and French authors (Pappos, Desargues, Monge).

1 1 ‘General principles’.

1/1 3 Central projection; projective relations.

1/2 26 ‘Secants and ideal chords’ of conic sections; poles and polars. Orthogo-
nality; reciprocal points.

1/3 51 Principles of ‘projection of plane figures’. Centres of projection; some
special cases.

Notes 71 1) On imaginary limit circles. 2) On a particular projection.

2 76 ‘Fundamental properties of straight lines, of conic sections and of
circles’.

2/1 76 Rectilinear geometry and transversals.

2/2 99 In- and escribed figures to conic sections. Reciprocal poles and polars.

2/3 126 ‘Centre of similitude’ in general, and for two circles. Intersecting and
touching circles. Similar conic sections.

3 155 ‘On systems of conic sections’.

3/1 156 ‘Centre of homology’; projection of plane figures, especially conic
sections. Applications.

3/2 191 ‘Complete system’ of secants and tangents common to two coplanar
conic sections. Systems of them with common secants and tangents.

3/3 228 Double contacts of conic sections; related problems.

4 256 ‘On angles and on polygons’.

4/1 256 Angles of which the corners bear upon the focus, the perimeter of conic
sections, or any point of the plane.

4/2 290 On polygons in- and escribed to other polygons or to conic sections.

4/3 329 Theory when directrices are curves of any order, and where certain angles
are constant. Applications.

Suppl. 360 Projective properties of figuresin space. Homology, continuity.

417 Table of contents. [End 426.]
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In its first chapter Poncelet brought up the key idea: central projection. This is most
simply thought of as casting the shadow of a figure in one plane onto another plane by
means of a point source of light. The shadow of a straight line is another straight line. The
shadow of a circle is some sort of conic section, and with a little work one can see that the
shadow can be an ellipse, a parabola, or a hyperbola. Conversely, the shadow of any conic
may be a circle, and this suggests that at least some properties of conics can be proved by
considering only the circle. But what properties of a conic could these be? It is a familiar
experience that a line and its shadow may be of different lengths, and that the shadow of an
angle may be an angle of a different size, soshadows do not have the same shape as their
originals. The metrical properties of figures are not preserved by projection. The challenge
for Poncelet was to find significant properties of figures that are not metrical.

Poncelet found such properties in the incidence of figures. If one line crosses another,
then their shadows will cross. If a line touches a curve at some point, then the shadow
of the line will touch the shadow of the curve at the corresponding point. If a line cuts a
curve in two points, then the shadow of the line will cross the shadow of the curve in two
points, from which it follows (with a little work) that the property of being a conic section
is a projective property. These were elementary observations, discovered and doubtless
forgotten several times in the previous centuries. While still in Saratov, however, Poncelet
had found a striking new result, known ever since he published it as Poncelet’s porism,
and which influenced his decision to continuewith his researches. For a valuable modern
account of this porism, also known as ‘Poncelet’s closure theorem’, see [Bos et alii, 1987].

Poncelet’s porism concerns two conic sections, one inside the other. It says: pick a point
A on the outer conic, draw a tangent from it to the inner conic, and continue until it meets
the outer conic again, at the pointB, say. Repeat the construction, drawing a tangent from
B to the inner conic and continuing it until it meets the outer conic again, at the pointC

say, and carry on doing this. Then either you never return to the pointA, or the construction
closes up after a finite number of steps, and in this case it will always close up after that
many steps no matter what choice you make of the initial point. (The word ‘porism’ is
traditionally attached to construction problems having, as here, an unexpected number of
solutions.) We know from his notebooks that Poncelet initially discovered his porism at the
end of an immense series of calculations, exactly the sort of long laborious method that he
found it impossible to remember; it seems that his realisation that the result might have a
much simpler proof when treated by the methods of projective geometry inspired him to
develop those methods.

1.2 Projections

With the porism as his motivation, Poncelet proceeded to push the study of the effects
of central projection much further than anyone had taken it before. In the preface to the
Traité he explained that he regretted that the generality of algebra was not matched by
a similar generality in geometry. In algebra, and in analytic geometry when geometry is
treated algebraically, quantities represented by letters may be added and multiplied without
regard to their sign, but in pure geometry it matters whether a point falls inside or outside a
segment. Geometric arguments fall into a number of separate cases accordingly, and, as he
put it, ‘one is forced to reproduce the entire series of primitive arguments from the moment
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where a line and a point have passed from the right to the left of one another, etc.’ (p. xxii).
To avoid this while not surrendering to the algebraists, Poncelet took a radical step. One
may savour it in his own words (pp. xxii–xxiii):

Let us consider an arbitrary figure in a general position and indeterminate in
some way, taken from all those that one can consider without breaking the
laws, the conditions, the relationships which exist between the diverse parts of
the system. Let us suppose, having been given this, that one finds one or more
relations or properties, be they metric or descriptive, belong to the figure by
drawing on ordinary explicit reasoning, that is to say by the development of an
argument that in certain cases is the only one which one regards as rigorous. Is
it not evident that if, keeping the same given things, one can vary the primitive
figure by insensible degrees by imposing on certain parts of the figure a con-
tinuous but otherwise arbitrary movement, is it not evident that the properties
and relations found for the first system, remain applicable to successive states
of the system, provided always that one has regard for certain particular modi-
fications that may intervene, as when certain quantities vanish or change their
sense or sign, etc., modifications which it will always be easy to recognizea
priori and by infallible rules? [. . . ]

Now this principle, regarded as an axiom by the wisest mathematicians, one
can callthe principle or law of continuity for mathematical relationships in-
volving abstract and depicted magnitudes.

One only sees what a radical idea this was when one sees how Poncelet employed it. In
the second chapter of the book he took a conic and a chord (a straight line segment defined
by a line meeting the conic at two pointsA andB say). This chord has a midpoint, call
it C. Now, varying the figure by insensible degrees, move the line to a new positionA′B ′
parallel to the old one, and locate the midpoint of the new chord, which may be calledC′.
Continue in this fashion, and an infinite sequence of chords is obtained, together with their
midpoints which, it is not difficult to prove, all lie on a straight line that crosses the conic
at two points,P andQ, say. Now continue to move the line that cuts out the chord, always
keeping it parallel to itself, until it lies entirely outside the conic. Even in this position, said
Poncelet, having regard for certain particular modifications, there will still be a chord, this
chord will have a midpoint, and this midpoint will also lie on the linePQ. So, according
to Poncelet, by means of the law of continuity one may talk of a conic having a chord on
a line even when that line does not seem to meet the conic. This eliminates the need for
two proofs, one when the line really does meet the conic and one where it does not (as
one must say if one does not agree with Poncelet’s approach). The chord lying outside the
conic he agreed could be called imaginary, thesecant ideal; but he insisted that it could be
said to meet the conic in ideal points having a real midpoint. Poncelet did show, however,
that if the conic is an ellipse there is a uniquehyperbola one can draw (satisfying certain
requirements glossed over here) with this crucial property: if a line defines an imaginary
chord of the ellipse with a midpoint at a specific point, then the line defines a real chord of
the hyperbola with its midpoint at the same specific point.
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1.3 Continuity

Poncelet had presented exactly this line of reasoning in the memoir of 1820, which he
submitted to theAcadémie des Sciences for publication. As was the custom of the time,
the memoir was sent out to referees, in this case a panel of three: F. Arago, S.D. Poisson
and A.L. Cauchy in the chair. They found much to like in the work, but they had this to say
about the law of continuity (as reprinted in theTraité, ix):

This principle, it should be said, is only a bold induction, by means of which
one can extend theorems, initially established with certain restrictions, to the
case where these restrictions no longer hold. Applied to curves of the second
degree, it leads the author to exact results. Nonetheless, we think that it should
not be admitted generally and applied indifferently to all sorts of questions in
geometry, nor even in analysis.

As author of the report, Cauchy went on to show how everything Poncelet wanted from
his law of continuity could be provided by some simple algebra involving complex num-
bers (compare §25.3). If one chooses coordinate axes, then a conic and a line may be rep-
resented by equations. Solving these equations simultaneously, one finds the coordinates
of the two points where the line meets the conic. In the case where the line ‘really’ does,
these coordinates are real numbers, and in the case where the line does not ‘really’ meet
the conic (and Poncelet spoke of an ideal line and an imaginary chord) the coordinates are
complex numbers. In either case, however, the coordinates of the midpoint are real num-
bers, and indeed the midpoint so obtained does lie on the linePQ. But this was algebra,
and Poncelet wanted geometry. He had no intention of abandoning his project, which he
sincerely believed had advantages for students, and instead he kept the method, made it
fundamental to theTraité, and simply repeated the report in its entirety at the front of the
Traité, between the Preface and the Introduction—one of the most ostentatious cases in
mathematics of deliberately not taking advice.

The first use that Poncelet had for his extended sense in which a line may meet a conic
was to the theory of poles and polars, which was a topic already known to geometers,
having its roots in Apollonius’s study of conic sections. Given a conicC and a pointP
outside it, draw the two tangents fromP to the conic, touching atT andT ′ say. The line
TT ′ is called the polar line of the pointP and the pointP is called the pole of the line. If
the pointP moves along a straight linel it can be shown that the corresponding polar lines
all pass through a common point,Q say. This common pointQ is called the pole of the
line l, which is said to be its polar line. To Poncelet there was no need to distinguish the
case where the pole is inside or outside the conic, and he simply proclaimed the theory of
poles and polars as an application of his law of continuity.

Now the theory of poles and polars is a striking one, for it allows one to replace a line
in a figure by a point simply by introducing an arbitrary conic and proceeding, as above,
to replace the point with its polar line. One may also replace a line with the point that
is its pole, and it was already known before Poncelet wrote hisTraité that this process
of replacement replaces collinear points with concurrent lines and concurrent lines with
collinear points. It is also clear that if the replacement process is conducted twice, it returns
the original figure: a point has a polar line and the pole of that line is the original point. The
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full import of this idea, called the method of reciprocal polars (or, today, duality) because
it puts points and lines in a reciprocal relationship, was to be drawn by many later writers
and to become a cornerstone of the theory of projective geometry, but even in Poncelet’s
Traité it is a striking example of a non-metrical geometric property. It is clear from the
construction, for example, that the central projection of a conic, a point, and its polar line
will be a conic, a point, and a line which is the polar line of that point.

Central projection has a number of unexpected properties. It was a familiar fact from the
theory of central focussed perspective in painting that a line in one plane may correspond
to a line seemingly infinitely far away in another plane. In this way intersecting lines in one
plane may appear as parallel lines in the otherplane, and parallel lines may be correctly
depicted as ones that intersect. Loose talk of this kind did not strike any mathematician of
the 19th century as problematic, but merely as a convenient way of speaking about a simple
geometrical fact. Applied to poles and polars, the pole of a line at infinity with respect to
a conic is the centre of that conic, and the polar line of the centre of a conic is the line at
infinity. This is one of the ways in which talk about a line at infinity enabled geometers to
eliminate the need for discussing special cases of certain important results.

But Poncelet did not confine his use of the law of continuity to cases where it was
intuitively clear what was going on and where alternative, if more conventional, methods
to the same end might seem to lie close at hand. He used in ways that posed successively
higher levels of difficulty for any conventional understanding. Not only did a line and
a conic always meet, in his enlarged sense of the term, whether or not they seemed to;
Poncelet also asserted that a conic and a line can be transformed by a central projection
into a circle and a line at infinity. However, sending a conic and a line to a circle and a line
at infinity by a projection, or even a sequence of projections, is distinctly problematic. As
with the earlier example, it is one thing if the line and the conic do not ‘really’ meet. Then
Poncelet’s claim can be proved by conventional means. But if they ‘really’ meet, the claim
is, by conventional standards, false. Onceagain, Poncelet bought generality by stretching
the meaning of the term ‘meet’. He did so in order that theorems about a conic and a line
(and therefore the theory of reciprocal polars) can be reduced to theorems about a circle
and a line at infinity.

Still worse, Poncelet proclaimed that his law of continuity allowed him to treat two con-
ics simultaneously in remarkable ways. The study of the central projection of two conics
at once was a new idea of his, and he proclaimed that any two conics may be projected
into two circles. This would have struck all his readers as palpably false, for two conics
may cross in four points, but two distinct circles may only cross in two points. In theTraité
Poncelet argued his way round this problem by showing that two of the common points are
real, and two are ideal. In the same spirit he proclaimed the special case that two conics
tangent to each other at two points are projectively equivalent to a pair of concentric cir-
cles. This is equally bizarre, for there seems to be no way in which the points of tangency
can be made to disappear. The mathematician who reached for algebra to try to understand
what Poncelet was saying would discover, after quite some work, that the only way this
can be done is to project the curves not from a real point but from a point with complex
coordinates! Such an analysis, which would have raised more problems than it could solve
for most of the 19th century, was not available to Poncelet’s readers, who were left with
only one alternative to following his account, and that was to reject the work entirely.
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Readers who persisted would discover that the bulk of the novelty in Poncelet’s work
consisted of theorems about pairs of objects: either a conic and a line or two conics (as, for
example, the porism). There were theoremsabout conics touching each other, and how to
find the central projection transforming one given figure into another. These bore on a clas-
sical problem, completely solved by Newton using projective methods almost in passing in
hisPrincipia mathematica (1687), of how to find a conic given five pieces of information:
for example, how to find a conic through five given points, or through three given points
and having a given tangent at a given point. The book ends with a variety of construction
problems, including the porism, and some remarks about the projective study of quadric
surfaces in space.

If one could grant the ‘law of continuity’ and follow it to the striking conclusions that
Poncelet deduced using it, then it permitted a huge simplification of the resulting theory.
Configurations could be as simple as possible: a circle and a line at infinity, or, perhaps,
two concentric circles. This simplification enabled Poncelet to prove a large number of
new results in geometry, and so establish once and for all that there were interesting and
valuable non-metrical properties of figures. In short, his achievement was to show that
there was a new way of doing mathematics. His methods were not well designed, his
fundamental simplifications were notacceptable, but his new subject was.

2 JEAN VICTOR PONCELET AND THE OTHER FRENCH GEOMETERS

Part of the explanation for this extraordinary state of affairs lies in the character of Pon-
celet himself and the circumstances in which he wrote the book. (For a biography, see
[Tribout de Morembert, 1936].) He was a graduate of theÉcole Polytechnique, which had
been founded in 1794 as part of the educational reforms unleashed by the French revolu-
tion. The aim of theÉcole Polytechnique was to train would-be engineers for the specialist
engineering schools, and after 1804 it became a military school, and many of its gradu-
ates were associated with the successes of theNapoleonic army. This gave further status
to mathematics within French higher education. While at theÉcole Polytechnique from
1807 to 1810, Poncelet came under the influence of Gaspard Monge, one of the founders
and the first Director of the school, and of his disciples who were inspired by Monge’s
vision of geometry. Poncelet graduatedfrom the school in 1810 and moved to the military
engineering and artillery school at Metz until1812; he joined the army as a lieutenant of
the engineers just in time to take part in Napoleon’s defeat outside Moscow in 1812. He
was wounded and left for dead at the battle of Krasnoy, but recovered enough to spend two
years as a prisoner of war in Saratov.

To keep up his spirits and those of his fellow prisoners, Poncelet tried to remember what
he had learned at theÉcole Polytechnique; he published his extensive notebooks in later
books [Poncelet, 1862, 1864]. He found he could remember basic results, but not those
requiring long laborious methods and what he called ‘abstract and spiny proofs’. His fun-
damental idea of using central projection wasa generalisation of a technique emphasised
by Monge. Monge had introduced new methods into the study of descriptive geometry,
making use of vertical and horizontal projections of figures in three-dimensional space
onto the so-called plan and elevation planes. This was fundamental to the use of geome-
try in architecture and the design of fortifications, and it led in his hands to some simple
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useful mathematics, but it was not a profound mathematical discovery (§17). The power of
central projection animated Poncelet’s search for the simple general methods that led him
to write the flawed masterpiece that is hisTraité, and which he hoped, as he wrote in his
[1862], would make geometry ‘useful to the working class and the youth of our schools;
[and] inspire them with a love of the eternal truths of science’.

On his return from Russia in 1814 Poncelet of course discovered that others had not
been idle, and that some of his results were already known. By 1820 he had managed to
write up the introductory part of his new system of ideas as a Memoir, in which the ‘law
of continuity’ allowed him to eliminate much of the technical work he had learned to de-
spise while a prisoner-of-war. He knew very well that the algebraic route to these theorems
was long and laborious, for his notebooks were full of such proofs. So the response of
Cauchy, Arago and Poisson, all men much more influential than he in the mathematical
life of the times, angered him but did not make him re-think his programme. He placed
it at the front of hisTraité simply to show that he had no intention of taking their ad-
vice.

His bold approach appealed to those who liked geometry, a group that included many
former pupils of Monge and others attracted to his synthetic, geometric style of reasoning.
But it was less popular with those drawn to the algebraic or analytic branches of mathe-
matics, and many of these people were in positions of influence at theÉcole Polytechnique,
the specialist engineering schools, or theCollège de France. The result was that Poncelet
felt his work marginalised and undervalued.He did not deal with this fact of academic life
very efficiently, however, and this led him into disputes even with those who might have
otherwise admired his work, most notably Joseph Diaz Gergonne (1771–1859).

Gergonne, like Poncelet, was much influenced by Monge, but from 1795 he was a pro-
fessor in Nîmes and there he set up the first journal devoted exclusively to pure mathe-
matics, theAnnales de mathématiques pures et appliquées, which ran from 1810 to 1832.
During its life it was a major source of articles on projective geometry, and many of the
technical terms in the subject appeared there first, often in articles by Gergonne himself
(‘duality’ is one such example). But Gergonnewas more sympathetic to algebraic methods
in geometry than Poncelet wished, and the two clashed over questions of priority. In the
end Poncelet took his articles to other journals, including the German journalJournal für
die reine und angewandte Mathematik, recently founded by A.L. Crelle in 1826.

The principle of duality had been used by another geometer, C.J. Brianchon (1783–
1864), as early as 1806 to deduce the dual of Pascal’s theorem. Pascal’s theorem says: If
A, B, C, D, E, F are six points on a conic, and the linesAB andDE meet at the pointP ,
the linesBC andEF meet at the pointQ, and the linesCD andFA meet at the pointR, then
the pointsP ,Q, andR lie on a line. To state Brianchon’s dual result we use the convention
that the symbolab stands for the point common to the linesa andb. Brianchon’s theorem
says: Ifa, b, c, d , e, f are six lines touching a conic, and the line joiningab andde is the
line p, the line joiningbc andef is the lineQ, and the line joiningcd andf a is the line
r, then the linesp, q , andr meet in a point.

In fact, as the geometers of the time realised, duality allows one to take any projective
theorem and not only to state the dual result but also to obtain its proof by dualising the
proof of the original result step by step. The dual result might coincide with the original
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one, or it might be the converse result, but often it is new, as was the case with Brian-
chon’s dual of Pascal’s theorem. Inspired by the fecundity of duality, in 1825 Gergonne
proclaimed it as a fundamental principle of plane projective geometry. He argued that it
was always possible to take a statement in projective geometry, switch the terms point and
line, switch the terms collinear and concurrent, and obtain a new statement. In his view
this could always be done, whether or not there was a conic section present. Poncelet dis-
agreed, and the resulting dispute, which was as much about priority in the use of duality as
about its inner nature, ran through a number of issues of Gergonne’sAnnales before it pe-
tered out. It is interesting to note that mathematically, Poncelet is correct: duality in plane
geometry is always duality with respect to a conic. But in the three-dimensional geometry
A.F. Möbius later showed that there are dualities (in this case between points and planes in
space) that do not require or invoke a conic.

Gergonne then weakened his own position by making a mistake upon which Poncelet
pounced. Gergonne considered the process of taking a curveC and a fixed conicE. Each
tangent to the curveC is a line, and that line has a pole with respect to the conicE. These
poles form a new curveC′, which is the dual of the curveC. He stated that if the curveC
is defined by a polynomial equation of degreen then so is the dual curve. This is true for
conics, which are curves of degree 2; but, as Poncelet saw at once, this is false for curves
of higher degree. For example, one may in general draw 6 tangents to a cubic curve from a
point not on it (allowing, as one must, for imaginary tangents). The dual of that situation is
6 collinear points on the dual curve, showing that the degree of the dual curve is 6, not 3.

Gergonne was content to admit the mistake, and to dismiss it with the introduction of
a new term to handle what was going on; but Poncelet saw that in correcting Gergonne’s
mistake he had been led to a genuine difficulty. If a cubic curve has a dual of degree 6, a
similar though more complicated argument shows that a curve of degree 6 has a dual of
degree 30. But it is clear that the dual of the dual of the curveC can only be the original
curveC. Since 3 is not equal to 30, there is a paradox to be resolved. Poncelet was not able
to resolve it, although he did suspect, correctly, that specific properties of a curve, such
as double points and cusps, can lower the degree of the dual. It was left to the German
mathematician Julius Plücker to come to the same realisation and prove it, thus opening
the way to the projective study of curves of higher degree and the classification of their
singular points.

Plücker’s marriage of projective and algebraic geometry was a great success. Building
as it did on earlier, equally algebraic work by Möbius, it established two things: the power
of projective methods to open up new and neglected areas of geometry, and the fact that
projective geometry had passed from France to Germany and from synthetic to a mixture
of synthetic and more algebraic methods. By this time Poncelet was ready to leave the field
he had done so much to create. He had been persuaded by Arago in 1824 to become the
professor of mechanics applied to machinesat the military school in Metz, and he took to
the task energetically (one reason why he published rather tardily on geometry and became
embroiled in priority disputes). By the time he moved to Paris in 1837 his interests had
shifted completely to experimental mechanics, and projective geometry was left to make
its way without him until the 1860s.
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3 MICHEL CHASLES

Poncelet had shown conclusively that there was an extensive body of non-metrical re-
sults in geometry. But his methods, resting as they did on his ‘law of continuity’ were
by and large not acceptable to his contemporaries. The man who rescued the subject for
later generations was Michel Chasles (1793–1880), who had retired in his thirties on a
sufficient private income to study mathematics and its history. In 1829 he won a prize
from the Belgian Academy of Sciences for a philosophical examination of the differ-
ent methods of modern geometry, in particular the theory of reciprocal polars. Chasles
argued that the theory of projective geometry rests essentially on the notion of cross-
ratio, which is preserved by an projective transformation. The cross-ratio of four points
A, B, C, D in order on a line can be defined in many ways. Here we take it to be
the ratio of ratios(AB/CB)/(AD/CD)= (AB/BC)/(AD/DC), which can be re-written as
(AB · CD)/(AD · CB). This was an idea introduced but not stressed by Poncelet, who ob-
served that it could be found in the writings of the Hellenistic geometer Pappus and in
modern writers. But Poncelet preferred to rely on the concept of a harmonic division,
which is the special case when the cross-ratio equals−1, and the pairs of pointsA, B, and
C, D are related this way:(AB/BC)=−(AD/DC). In this case, the pointsA andC are
said to harmonically separate the pointsB andD. This is the case that occurs naturally, so
to speak, for example in poles and polars and complete quadrilaterals.

Before publishing his prize essay as a book Chasles expanded both the historical in-
troduction and the notes on recent work, and his famousAperçu historique was published
as [Chasles, 1837]. It became and remains thefirst source to consult when thinking about
the history of projective geometry, although it is not without its faults (Chasles could not
read German). It brought him nothing but success. He was elected to the FrenchAcadémie
des Sciences in 1839 as a corresponding (i.e. junior) member. In 1841 he was appointed
to theÉcole Polytechnique, where he taught geodesy, astronomy, and applied mechanics
until 1851, and from 1848 he had a personal chair at the Sorbonne where he taught higher
geometry. He was therefore ideally positioned to replace Poncelet’s extraordinary methods
with his own more rigorous ones, and that is what happened. In the French context, his
use of cross-ratio, developed at length in hisThéorie de géométrie supérieure (1852) with
nothing more exotic than imaginary points, did a lot to establish that projective geometry
was a legitimate, rigorous discipline in no way dependent on the law of continuity, the
theory of ideal points, and other mind-stretching devices used by Poncelet.

In the 1860s Poncelet, now in his seventies, began to feel that his major work on geom-
etry had not been sufficiently appreciated. He re-issued theTraité with a few new passages
and a second volume of old and new related material [Poncelet, 1862, 1864], and shortly
before published a two-volumeApplications d’analyse et de géométrie, which comprised
not only his notes from his time as a prisoner-of-war but a lengthy series of commentaries
about all who had, or more often had not, appreciated his work. The most interesting ad-
dition to theTraité is his recognition that Girard Desargues had had many of these ideas
before him. This had been hidden from Poncelet in 1822 by the lamentable publication his-
tory of Desargues’s masterwork, which had disappeared apparently without trace, leaving
only the somewhat scattered comments in the literature to show that it had ever existed.
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But in 1845 Chasles had found a hand-written copy made by de la Hire in 1679, and so
Poncelet could appreciate what Desargues had done.

The modern historical consensus is undoubtedly that Poncelet brought projective geom-
etry back to life in France. That judgement is fair, even though the methods of projective
geometry that succeeded are at least as much Chasles’s creation. Chasles also followed
tradition by giving the major share of the credit for originality to Monge, with portions
also for Brianchon and Gergonne. What that view plays down is that it was Poncelet and
only Poncelet who had the vision of a new theory of geometry, as general in its methods as
algebra, and which did not need algebra to proceed. This revivified geometry had its own
important problems, and a productive method of dealing with them, based on the ingenious
use of transformations to reduce the general figure to a simple one. This vision surpassed
that of Monge, and if it did not succeed until it was domesticated, a process due in France
to Chasles and to others in Germany, it was begun by Poncelet alone. Poncelet’s impor-
tance to the development of mathematics is secure, but there has been very little historical
work done on him, apart from a serviceablebiography [Tribout de Morembert, 1936]; and
much could be done, because he also had adistinguished career as an engineer.
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1 BACKGROUND TO THE 1814 MEMOIR

Cauchy’s biography was sketched in §25.1, 6, in connection with his founding of real-
variable analysis in the 1810s and 1820s; for a full study, see especially [Belhoste, 1991].
On these two memoirs, and their context, see especially [Smithies, 1997].

In discussing these writings of Cauchy and his contemporaries, we shall modernise
their notations and terms a little; for example, as a rule we shall say ‘complex’ rather than
‘imaginary’, and write ‘i ’ for

√−1 and ‘∂f
∂x

’ rather than ‘df
dx

’ for partial derivatives. We

shall also use Joseph Fourier’s notation ‘
∫ b
a
f (x) dx ’ for the definite integral, although

Cauchy did not deploy it until about 1822.
Towards the end of the 18th century, there was considerable interest in finding ways

to evaluate definite integrals, especially when no primitive function was available. Euler
[1781] evaluated integrals such as∫ ∞

0
xm−1e−px cosqx dx (1)

by using substitutions involving complex functions; Laplace [1782] used similar devices
to evaluate a family of integrals such as∫ ∞

0

cost + t sint

1+ t2 dt. (2)

From 1809 onwards Laplace used this method of‘imaginary substitutions’ several times,
mainly for integrals arising in his work on probability theory. This triggered a lively ex-
change of views with S.D. Poisson (1781–1840), who maintained in a number of papers
that the method should be regarded only as a kind of induction, useful for discovering new
results, but that these should be confirmed more directly; Laplace defended the method by
appealing to the widely accepted principle of the generality of analysis, but eventually had
to admit that direct confirmation was desirable.

It seems not unlikely that Cauchy’s 1814 memoir was stimulated by a suggestion from
Laplace that Cauchy should investigate the method of imaginary substitutions. In his intro-
duction Cauchy refers to the use of the method by Euler and Laplace as a kind of induction
from the real to the imaginary, and announces that he proposes to establish it by a direct
and rigorous analysis.

2 ‘CAUCHY’S THEOREM’ FORESHADOWED

The memoir is divided into two Parts (Table 1) and is cited by Sections. Cauchy opens
Part I by considering a functionf (z) of a variablez, which in turn is a function, generally
complex-valued, of a pair(x, y) of real variables, and shows that

∂

∂y

[
f (z)

∂z

∂x

]
= ∂

∂x

[
f (z)

∂z

∂y

]
. (3)

(He actually usedy as a function of the real variablesx andz.) His proof assumes that the
functions can be differentiated as often as necessary, even whenz takes complex values,
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Table 1. Contents of the 1814 memoir.
The pages in theOeuvres printing are given, as it is much more accessible. The first column

indicates Parts by roman numerals, Sections therein by the normal ones, and the supplements by
ordinals. Cauchy wrotey as a function of real variablesx andz.

Page Description

329 ‘Introduction’: review of the findings.

I 336 ‘On the equations which authorise the passage from the real to the
imaginary’.

1 336 ‘General explanation of the method’: Cauchy–Riemann equations.

2 339 ‘First application’: integrands include exp(−x2k), xn andz.

3 349 ‘Second application’: integrands includeax, xz, xn−1 and
exp(−x2− (m2/x2)).

4 357 ‘Third application’: integrands includeex sinz andex cosz.

5 369 ‘Fourth application’:ax2 andxz.

6 362 ‘On the separation of the exponential’ from other functions: examples.

II 378 ‘On the difficulties which the integration of differential equations can
offer’.

1 378 ‘Double integrals’ with an ‘indeterminate form’ due to infinite values of
the integrand.

2 388 Difference in the values taken by the associated repeated integrals in
these cases.

3 400 Converting indefinite to definite integrals with infinite integrands.

4 406 ‘On the value, in finite terms’, of the difference in Section 2 above.

5 420 ‘First application’ to Part 1, Section 2 with indeterminacy; examples.

6 463 ‘Second application’ to Part 1, Section 3.

7 465 ‘Third application’ to Part 1, Section 6.

1st 477 ‘Developments’ of Part 2: discussion of two groups of evaluation.

2nd 493 (Supposed) reconciliation of one of his integrations with Legendre’s.
[End 506.]

and takes for granted the equality of mixed partial derivatives such as∂2z
∂x∂y

and ∂2z
∂y∂x

;
behind this lies the usual 18th-century concept of a function as being given by an analytic
expression, and thus having a derivative except perhaps at isolated singular values of the
variable (compare §19).

We shall not follow Cauchy’s discussion in detail; instead we shall restrict our attention
to one important special case (Section 2). Thiswill, it is hoped, clarify the structure of his
argument. We shall takez= x + iy, whereas Cauchy makes the more general assumption
that z = M(x,y) + iN(x, y), whereM andN are real-valued. In our special case, (3)
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reduces to
∂

∂y
f (z)= i ∂

∂x
f (z). (4)

If

f (z)= P(x, y)+ iQ(x, y), (5)

whereP andQ are real-valued, our equation becomes

∂P

∂y
+ i ∂Q

∂y
= i ∂P
∂x

− ∂Q
∂x
. (6)

Equating real and imaginary parts, we obtain

∂P

∂x
= ∂Q
∂y

and
∂P

∂y
=−∂Q

∂x
, (7)

the well-known ‘Cauchy–Riemann’ equations, which actually first appeared in print in an
essay by Jean D’Alembert in 1752 (Section 1).

If we now integrate these equations over the domainx0 � x �X, y0 � y � Y , and note
that the double integrals can be evaluated as repeated integrals in either order, we obtain

∫ Y

y0

[
P(X,y)− P(x0, y)

]
dy =

∫ X

x0

[
Q(x,Y )−Q(x,y0)

]
dx (8)

and ∫ X

x0

[
P(x,Y )−P(x, y0)

]
dx =−

∫ Y

y0

[
Q(X,y)−Q(x0, y)

]
dy. (9)

It is at the point corresponding to this stage that Cauchy terminates his argument in the
general case; in our special case we shall pursue it a little further. If we addi times the first
equation to the second one, we shall obtain, with a little rearrangement, the equation

∫ X

x0

[
P(x,Y )+ iQ(x,Y )− P(x, y0)− iQ(x, y)

]
dx

=
∫ Y

y0

i
[
P(x, y)+ iQ(X,y)−P(x0, y)− iQ(x0, y)

]
dy, (10)

which we can immediately recognise as saying that
∫
f (z) dz, when taken round the sides

of the rectangle, is equal to 0. In fact, what we have obtained, is ‘Cauchy’s theorem’ for
the special case of a rectangle (Section 2, later footnote). His results in the general case
can be interpreted in a similar way as being equivalent to ‘Cauchy’s theorem’ for a kind of
general curvilinear quadrilateral.

There are two reasons for Cauchy terminating his argument where he does. Firstly, he
is systematically splitting every complex equation into its real and imaginary parts, thus
avoiding the use of complex integrands, a procedure that he did not regard as permissible
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until about 1819. Secondly, he is carefully avoiding the use of any geometrical language, as
he continued to do, following Lagrange’s example, until 1825. In spite of these precautions,
he was able to use his results to obtain the usual consequences that follow more naturally
from the full form of ‘Cauchy’s theorem’.

The remainder of Part I of the memoir is mainly devoted to applying his results to the
evaluation of definite integrals, often over an infinite interval. For instance (Section 2),
Cauchy shows that ∫ ∞

0
e−x cosax dx = 1

2

√
πe−a2/4. (11)

Most of his applications rest on the special casez= x + iy that we examined.
Cauchy’s avoidance of complex integrandshas the interesting consequence that he

cannot use the familiar device of replacing cosax, wherea > 0, by eiax , ensuring that
eiaz = eia(x+iy) is small in absolute value wheny is large and positive. Instead, in the final
Section of Part I, he describes a special device, which he calls ‘the separation of exponen-
tials’, to get round the difficulty (Section 6).

3 AN ARGUMENT FORESHADOWING THE NOTION OF PRINCIPAL VALUE

An important section of Part II is concerned with the relation between an integral of the
form

∫ b
a φ

′(x) dx and the functionφ(x) in cases whereφ′(x) has an infinity in the interval
(a, b). At this time it would generally be assumed that the integral was equal to the differ-
enceφ(b)− φ(a) between the values ofφ(x) at the ends of the interval; that it was equal
in some sense to the sum of the infinitesimalsφ′(x) dx was regarded as a theorem that had
to be proved. Some paradoxes had arisen in this context over the years; in a typical case,
Lagrange [1804, lecture 8] considered the function

φ(x)= 1

a − x −
1

a
, (12)

wherea > 0. Hereφ(0) = 0 andφ′(x) = 1/(a − x)2 > 0; on the other hand,φ(x) < 0
whenx > a, contradicting the idea thatφ(x) was the sum of the positive infinitesimals
φ′(x) dx. Lagrange concluded that in this case the principles of the differential calculus
were defective.

Cauchy remarks that ifφ(x) varies ‘in a continuous manner’ in the interval(a, b), we
shall indeed have ∫ b

a

φ′(x) dx = φ(b)− φ(a), (13)

as we should, his phrasing adumbrates his later definition of continuity for real-valued
functions ([Cauchy, 1821]: see §25.4). He suggests that ifφ(x) suffers an abrupt change
of value whenx passes throughX, we should argue as follows; ifξ is small and positive,
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we shall have approximately

∫ b

a

φ′(x) dx =
∫ X−ξ

a

φ′(x) dx +
∫ b

X+ξ
φ′(x) dx

= φ(b)− φ(a)−� (14)

where�= φ(X + ξ)− φ(X − ξ) is a correction term, which we shall write, more accu-
rately, as

�= lim
ξ→0+

[
φ(X+ ξ)− φ(X− ξ)]. (15)

For example, in the integral
∫ 4
−2

dx
x

the correction term will be

lim
ξ→0+

[
ln ξ − ln(−ξ)]= ln(−1), (16)

giving the integral the value log2 (Section 3). Cauchy’s argument here foreshadows his
later formal definition [Cauchy, 1822] of the principal value of an integral whose integrand
has an infinity.

4 THE FIRST HINTS OF THE RESIDUE THEOREM

We recall that Cauchy’s proof of the main theorem of Part I depended on the fact that a
double integral can be evaluated as a repeated integral in either order. In this section of
Part II he tackles the problem of what happens when both repeated integrals exist but are
unequal (Section 2). Cauchy begins with an integral of the form

∫ 1

0

∫ 1

0

∂φ

∂y
dx dy, (17)

whereφ(x, y) becomes indeterminate when(x, y)= (0,0).
When the two repeated integrals are unequal, the differenceA between them may be

thought of as a correction term, say

A=
∫ 1

0
dy

∫ 1

0

∂φ

∂y
dx −

∫ 1

0
dx

∫ 1

0

∂φ

∂y
dy (18)

=
∫ 1

0
dy

∫ 1

0

∂φ

∂y
dx −

∫ 1

0

[
φ(x,1)− φ(x,0)]dx. (19)

He then uses an argument like the one he used for single integrals in the last section; this
time he cuts out a small rectangle next to the singularity. His conclusion, in modern terms,
amounts to saying that

A=− lim
ε→0+ lim

δ→0+

∫ ε

0
φ(ξ, δ) dξ. (20)
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Since Cauchy did not then have an efficient notation to indicate the order in which re-
peated limits are to be taken, his statement of the result is rather clumsier, but clear enough
(Section 3).

As an example, let us take

φ(x, y)= y

x2+ y2 (21)

for 0 � x � 1, 0� y � 1. It is easily verified that the correction term isA=−π/4−π/4=
−π/2, and the repeated limit is

− lim
ε→0+ lim

δ→0+

[
arctan

ε

δ

]
=−π

2
, (22)

as it should be (Section 2). A formula for the correction term in the general case where the
singularity is at an interior point of the domain of integration is easily found.

We now return to the argument we used earlier to obtain the value of
∫
f (z) dz taken

round the sides of a rectangle. If we write, as before,

f (z)= P(x, y)+ iQ(x, y), (23)

and try to integrate the Cauchy–Riemann equations over the rectangle, there will be a
correction term for each ofP andQ (Section 3). That forP will be

A=
∫ Y

y0

dy

∫ X

x0

∂P

∂y
dx −

∫ X

x0

dx

∫ Y

y0

∂P

∂y
dy

= −
∫ Y

y0

dy

∫ X

x0

∂Q

∂x
dx −

∫ X

x0

dx

∫ Y

y0

∂P

∂y
dy

= −
∫ Y

y0

[
Q(X,y)−Q(x0, y)

]
dy −

∫ X

x0

[
P(x,Y )− P(x, y0)

]
dx. (24)

Similarly, the correction term forQ will be

B =
∫ Y

y0

[
P(X,y)− P(x0, y)

]
dy −

∫ X

x0

[
Q(x,Y )−Q(x,y0)

]
dx. (25)

Combining the two equations, we see that

A+ iB =
∫ Y

y0

[
f (X+ iy)− f (x0+ iy)

]
i dy −

∫ X

x0

[
f (x + iY )− f (x + iy0)

]
dx

=
∫
f (z) dz (26)

taken round the sides of the rectangle (Section 5). We have thus found an expression for this
integral involving the correction terms forP andQ, i.e. essentially involving the correction
term forf (z)= P + iQ.
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Cauchy’s next move is to investigate the effect of the simplest possible singularity; he
supposes thatf (z) has a simple pole atz = α + iβ , say, and no other singularities. He
expressesf (z) in the formF(z)/G(z), whereF(z) is well behaved andG(z) has a simple
zero atα + iβ , and writes

F(α + iβ)/G′(α + iβ)= λ+ iµ. (27)

If z= (α+ ξ)+ i(β + η), whereξ andη are small, then

f (z)= λ+ iµ
ξ + iη + u(z), (28)

whereu(z) has no singularity; the correction term forf (z) will therefore be the same as
that for

φ(ξ + iη)= λ+ iµ
ξ + iη (29)

at ξ + iη = 0 (Section 4). Using earlier results, we get the answer 2πi(λ + iµ), which
we can recognise at once what Cauchy was later to call the residue off (z) at the pole
z= α + iβ .

As before, we have restricted ourselves to the special casez= x + iy, whereas Cauchy
works through the details of the general casez =M(x,y)+ iN(x, y). This involves him
in some very complicated calculations for the correction terms. Nevertheless, he finds that
whenf (z) has a simple pole, the correction term forf (z) = F(z)/G(z) is still equal to
2πiF (α+ iβ)/G′(α+ iβ), exactly as before; thus, to his expressed surprise, it is indepen-
dent of the functionsM andN (Section 4, after equation (22)). This seems to indicate that
he has not yet fully understood the situation.

The remaining portions of the memoir are mainly concerned with the application of
Cauchy’s results to the evaluation of definite integrals. In particular, he evaluates a large
family of principal-value integrals, a typical one being

∫ ∞

0

sinax

sinbx

dx

1+ x2 =
π

e

ea − e−a
eb − e−b , (30)

where 0< a < b. In his report as one of the referees of the memoir, Legendre asked why
the conditiona < b was required; Cauchy emphasised in his reply that it was necessary for
his proof that

sina(x + iy)
sinb(x + iy) ·

1

1 · (x + iy)2 (31)

should be small in absolute value for largex andy (Suppl. 2).
We can sum up the achievement of the 1814 memoir briefly by saying that in it Cauchy

has proved a primitive form of ‘Cauchy’s theorem’ and taken the first steps towards the
theory of residues.
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5 THE NOTES ADDED BEFORE PUBLICATION

Before the 1814 memoir was ultimately published in 1827, Cauchy adjoined a group of
footnotes to it; these seem to date from about 1825. Their main thrust is that he aban-
dons his earlier rule only to consider integrals with real integrands; we have already seen
that many of his results can be stated more simply if complex integrands are admitted.
He remarks that throughout the memoir many pairs of real equations can be replaced by a
single complex equation. There are also some simplifications in the proofs of his results.
For instance, in considering integrals of the form

∫∞
0 xn−1F(x) dx in Part I, he originally

worked in terms of the real and imaginary parts ofF(x), which led him to some very com-
plicated expressions; he now works directly with the expression

∫∞
0 (x − ib)n−1F(x) dx

(Section 2, equation (11)). Again, he now found it possible to dispense with the special
device of ‘separation of exponentials’ that he had introduced to cope with integrals of the
form

∫
f (x)cosax dx, and to work directly with

∫
f (x)eiax dx (Section 6, equation (32)).

6 THE BACKGROUND OF THE 1825 MEMOIR

At the beginning of our discussion of Part II of the 1814 memoir we mentioned the para-
doxes that occasionally arose in identifying

∫ b
a φ

′(x) dx with φ(b) − φ(a) whenφ′(x)
has an infinity in the interval(a, b). Poisson [1820] is concerned with some of these. He
suggests that the validity of the equation

∫ 1

−1

dx

x
= (2n+ 1)πi (32)

could be re-established by making the change of variable

x =−(cosρ + i sinρ) (33)

and replacing the limits−1 and 1 by 0 and(2n+ 1)π ; here he has encountered a situation
where, as we should put it, the value of a definite integral depends on the path along which
it is evaluated. He treats the integral

∫ 1
−1 dx/x

m in a similar way for a positive integerm.
In another example Poisson considers the integral

y =
∫ ∞

−∞
cosax

b2+ x2 dx (34)

wherea > 0 andb > 0, and examines the effect of the substitutionx = t + ki, wherek is
a real constant. He finds that

y = π
b
e−ab, where 0< k < b (35)

but

y = π

2b

(
e−ab − eab), wherek > b. (36)
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Table 2. Contents of the 1825 memoir. 68 pages.

Art(s) Description

1 Introduction: singular integrals.

2–3 Concept of complex-variable function ‘f (x + y√−1)’ and its integral.

4–8 Case when function takes infinite values: evaluation of its integral, residues.

9–11 Curves in the complex plane specified by values of(x, y); straight line.

12 Residues: evaluation of integrals, many particular cases.

13 Infinitude of residues; evaluations.

14–15 Further evaluations, including summation of infinite series.

16 Curve defined in contiguous sectors specified by different functions.

17–18 Multiple complex integrals; example from hydrodynamics.

In effect, the path of integration has been moved from the real axis to a parallel straight line.
Cauchy mentions [Poisson, 1820] in his paper [Cauchy, 1822] on principal-value integrals,
and it looks very much as if this paper of Poisson’s was the stimulus that provoked Cauchy
into writing the 1825 memoir (Table 2).

7 DEFINITE INTEGRALS BETWEEN COMPLEX LIMITS

Cauchy begins the 1825 memoir with a first attempt at a direct generalisation of his 1823
definition of the definite integral of a function of a real variable (§25.4). He says that, with
z = x + iy, then

∫ X+iY
x0+iy f (z) dz should be the limit (or one of the limits) of sums of the

form

[
(x1− x0)+ i(y1− y0)

]
f (x0+ iy0)+

[
(x2− x1)+ i(y2− y1)

]
f (x1+ iy1)

+ · · · + [
(X− xn)+ i(Y − yn)

]
f (xn + iyn), (37)

where the sequences(x0, x1, . . . , xn,X) and(y0, y1, . . . , yn, Y ) are monotonic (either in-
creasing or decreasing) and the differences(xk − xk−1) and(yk − yk−1) tend to zero asn
increases indefinitely (art. 2). The monotonicity requirement is obviously copied from the
real-variable case.

Cauchy seems to realise at once that this definition is not specific enough; hence the
phrase ‘one of the limits’. To remedy this defect, he suggests the following way of con-
structing such sequences: letx = φ(t), y = ψ(t), whereφ(t) andψ(t) are continuous
monotonic functions fort0 � t � T , φ(t0) = x0, ψ(t0) = y0, φ(T ) = X, ψ(T ) = Y , and
write xk = φ(tk), yk =ψ(tk), where(t0, t1, . . . , tn, T ) is a monotonic increasing sequence.
The sum introduced above now becomes an approximating sum for the integral

∫ T

t0

[
φ′(t)+ iψ ′(t)]f [

φ(t)+ iψ(t)]dt, (38)
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which we take to be
∫
f (z) dz along the path defined byx + iy = φ(t)+ iψ(t) for t0 �

t � T .
This change in the way he defines the integral is typical of the whole memoir; through-

out it, Cauchy seems to be changing his mind as he proceeds. This perhaps gives one some
insight into the working of his mind.

8 THE MAIN THEOREM OF THE 1825 MEMOIR

In the next section of the memoir Cauchy assumes thatf (x + iy) is finite and continuous
for x betweenx0 andX andy betweeny0 andY . He takes it for granted thatf ′(x +
iy) exists and is continuous, His announced aim is to prove that the value of the integral∫ X+iY
x0+iy0

f (z) dz is independent of the choice of the functionsx = φ(t) andy = ψ(t); in
other words, that the integral will have the same value for all monotonic paths fromx0+ iy0
toX+ iY . There is an analogy here with his recent proof that the integral of a real-variable
function is independent of the sequence of partitions used in defining it (§25.4).

Essentially Cauchy gives three proofs for his result. The second proof is couched in the
language of the calculus of variations; supposing that the functionsx = φ(t) andy =ψ(t)
are given small variationsδx andδy, he obtains

δ

∫ T

t0

(x ′ + iy ′)f (x + iy) dt =
∫ T

t0

[
(x ′ + iy ′)δf (x + iy)+ f (x + iy)δ(x ′ + iy ′)]dt = 0

(39)
(art. 3). In other words, a small variation in the path of integration has a zero affect.

His first proof spells out the second one in much more detail. His third argument is a
remark that the result could have been foreseen, sincef (x + iy)(dx + i dy) is an exact
differential; that is, if we write

f (x + iy)(dx+ i dy)=U dx + V dy, (40)

then
∂U

∂y
= ∂V
∂x

= if ′(x + iy). (41)

Whether he intended this remark as an alternative proof is not clear. In more modern terms,
his argument seems to involve the continuous deformation of the path of integration, sug-
gesting a (not quite rigorous) homotopy argument; it was made more rigorous in a brief
note by M. Falk in 1853.

9 TAKING SINGULARITIES INTO ACCOUNT

Cauchy next attacks the problem of what happens whenf (z) has a singularity at a point
lying between two paths along which the integral

∫ X+iY
x0+iy0

f (z) dz is evaluated, so that the
conditions for the two values of the integral to be equal are no longer satisfied (arts. 4–
5). Here again he gives several alternative treatments, appearing to change his mind while
preparing the memoir. At this stage he adopts some suggestions made to him by a young
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Russian mathematician, M.V. Ostrogradsky (1801–1862), who was working in Paris at the
time; his assistance is acknowledged by Cauchy in his introduction to the memoir.

Cauchy deals first with the case where the singularity is a simple pole, giving it two sep-
arate treatments. In the first of these he uses an approximation argument, getting involved
with some complicated, expressions, which he ploughs through in his usual manner. In the
second treatment he splitsf (z) into two parts, one if which is a simple rational expression
(now sometimes called the principal part of the function), reproducing the behaviour of
f (z) near the singularity, and the other a well-behaved function, which makes no contri-
bution to the difference between the integrals. We omit the details, only remarking that the
device of splitting the function in this way appears to come from Ostrogradsky, who had
used a similar device in an unpublished paper dated 24 July 1824 and was working closely
with Cauchy at the time [Yushkevich, 1965].

Cauchy then goes on to deal with the case where the pole off (z) between the paths is
a multiple one (arts. 6–7). Again he gives two treatments; in the first one he again uses Os-
trogradsky’s device of splitting a function into a rational principal part and a well-behaved
function, and in the second he gives an alternative approximation argument of ferocious
complexity. Again we omit details, remarking only that the inclusion of this approximation
is odd, since the use of the principal part enables him to evaluate some auxiliary expres-
sions explicitly; it looks as if the second proof for a simple pole and the first proof for a
multiple pole were inserted at a late stage in the preparation of the memoir. In every case
he concludes that the difference between the integrals is±2πif0, wheref0 is precisely
what he was later to call the ‘residue’ off (z) at the singularity.

10 THE USE OF GEOMETRICAL LANGUAGE

Shortly after proving these results Cauchy suddenly introduces, without any prior warning
except for a brief mention in his preliminary abstract, some geometrical language in de-
scribing his results (art. 9). In this essay we have used it freely in our discussion of both
the 1814 and the 1825 memoirs, but up to this point Cauchy had carefully avoided it; as
with Lagrange, he had mistrusted its use, feeling that it would tend to disguise the general
validity of analytic methods. From this point onward, he began to use it, occasionally to
start with, and in later papers more and morefreely. He seems to feel, indeed, that some
of the ideas appearing in his present context can be expressed more concisely by admitting
some geometrical terminology; it enables him, for instance, to say that a singularity lies
‘between’ two paths.

He approaches geometrical ideas byremarking that, if one eliminatest from the equa-
tionsx = φ(t), y = ψ(t), one will obtain an equation of the formF(x, y)= 0; if (x, y)
are regarded as rectangular coordinates in the plane, this equation will represent a curve
joining the points(x0, y0) and(X,Y ). He also goes on to say that the complete path may
be made up of several portions defined by different functions, provided only that each sep-
arate portion satisfies his conditions (art. 16). We also remark that he does not use the full
force of J.R. Argand’s geometrical representation [1806] of complex numbers; he never
mentions the geometrical interpretations for addition and multiplication.

The remainder of the memoir need not concern us in detail; he gives numerous illustra-
tive examples of the evaluation of particular definite integrals and the derivation of identi-
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ties between them. He also examines some cases where the functionf (z) has an infinite
number of singularities, using them for the summation of certain infinite series.

We see that in this memoir Cauchy has achieved primitive versions of all the basic
results of complex function theory, but there was still some way to go for these results to
be put in a digestible form.

11 LATER DEVELOPMENTS

It is a well known phenomenon in the history of mathematics that, when the initial proofs
of major theorems are at all complicated, it will be the task of the pioneer’s successors
to improve and simplify the results and develop their ramifications. In Cauchy’s case he
was in great part his own successor. In 1826 he began to publish a series of papers in his
own journalExercices de mathématiques, in which he defined the residue of a function at
a singularity and built up a calculus of residues. At first he treated the residue theorem for
rectangles as fundamental; from 1827 onwards he shifted the emphasis from rectangles to
circles, which enabled him to improve his treatment of the behaviour of a functionf (z)

for large|z| and eventually, in the first of two memoirs presented to the Turin Academy in
1831, to give simple proofs of convergence for the Maclaurin and Taylor series of analytic
functions; he also discussed power series representing implicit functions, such as the La-
grange series. In his second Turin memoir, Cauchy proved the residue theorem for a simple
closed curve: he also introduced what he called the ‘index’ of a function with respect to a
contour, a notion closely related to what was later to be called its winding number.

After 1831 Cauchy used his complex analysis to obtain existence theorems for differen-
tial equations and for other applications. However, he contributed nothing essential to the
general theory until he resumed giving regular lectures after the 1848 revolution.

One naturally asks how these memoirs of Cauchy and their immediate sequels were
received. At first they aroused very little interest, for the exciting growth of the theory of
elliptic and related functions was found much more attractive than Cauchy’s ideas. Apart
from a few minor notes by G. Piola, B. Tortolini and one or two others on the residue
calculus, the first contributions to the general theory were P.A. Laurent’s 1843 paper in the
Comptes rendus of the Paris Academy on the power series expansion for a function with
an isolated essential singularity, and Liouville’s 1844 theorem, also in theComptes rendus,
that a bounded analytic function is necessarily a constant; as Cauchy promptly pointed
out, both results are easy consequences of his work. Victor Puiseux’s important memoir in
Liouville’s Journal de mathématiques on algebraic functions came out in 1850.

We saw earlier that in both the 1814 and the 1825 memoirs, and indeed for a long
time afterwards, Cauchy took it for granted that a continuous function, even of a complex
variable, has a derivative, which in general will also be continuous. It was not until Cauchy
resumed regular lecturing, probably about 1851, that he realised that an expression of the
formP(x, y)+ iQ(x, y), whereP(x, y) andQ(x,y) are arbitrary continuous functions of
the pair of real variables(x, y), has to be regarded as a continuous function ofz= x + iy,
and that for it to be differentiable as a function ofz, it must satisfy the Cauchy–Riemann
equations. His detailed conclusions can be found in [Cauchy, 1853]. Riemann made the
same point in his 1851 Göttingen dissertation (§34).
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The atmosphere changed substantially with the appearance of Riemann’s dissertation
and the growing influence of Weierstrass’s Berlin lectures after 1857, together they brought
about a tremendous development of complex function theory. In particular, Cauchy’s work
on complex analysis began to be understood and appreciated at its true value; the first
connected account of Cauchy’s ideas appeared in a memoir by C. Briot and J. Bouquet in
theJournal de l’École Polytechnique in 1856, followed by their book on doubly periodic
functions of 1859 and a book by F. Casorati in 1868. From then onwards Cauchy’s work
on complex function theory was generally accepted as a fundamental contribution to the
structure of the subject.
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CHAPTER 29

NIELS HENRIK ABEL, PAPER ON THE
IRRESOLVABILITY OF THE QUINTIC

EQUATION (1826)

Roger Cooke

This paper represents one of several early attempts to prove the nonexistence of an algo-
rithm for solving an equation of fifth or higher degree by algebraic operations alone.

First publication. ‘Beweis der Unmöglichkeit, algebraischer Gleichungen von höheren
Graden als dem vierten allgemein aufzulösen’,Journal für die reine und angewandte
Mathematik, 1 (1826), 65–84.

French translation. In Œuvres complètes, Christiania: Grøndahl, 1839, vol. 1, 5–24. Also
in Œuvres complètes, 2nd ed., Christiania: Grøndahl, 1881, vol. 1, 66–87.

English translation. In Peter Pesic,Abel’s proof: an essay on the sources and meaning of
mathematical unsolvability: Cambridge, MA and London: MIT Press, 2003, 155–180.

Related articles: Cauchy on analysis (§25, §28).

1 INTRODUCTION: EQUATIONS IN GENERAL

1.1 Linear equations and negative numbers

Although many of the problem-solving methods we now know as algebra are very ancient,
the explicit statement of the notion of an equation, that is, the equivalence of two formally
different expressions for the same unknown quantity, was first formulated by Diophantus
of Alexandria (dates uncertain) in the second or third century CE. As Bashmakova and
Smirnova note [1997, 132], ‘Diophantus was the first to deduce that it was possible to
formulate the conditions of a problem as equations or systems of equations; as a matter of
fact, before Diophantus, there were no equations at all, either determinate or indeterminate.
Problems were studied that we can now reduce to equations, but nothing more than that’.

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
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Diophantus’s work was known to the Muslim mathematicians of medieval times, who
also knew of the work of the Hindu mathematicians of the sixth and seventh centuries,
and equations are classified and studied explicitly in the work of the Muslim mathemati-
cian al-Khwarizmi in the ninth century. The distance from all this early algebra to what
is known today as elementary algebra is considerable. The chief difference is the absence
of symbolism, and particularly parameters, in the early years to systematize the discus-
sion. Equations were stated in words. It is now possible, using parametersa andb, to state
the generic linear equation in one unknown asax + b = 0 and its solution asx = −b/a.
Although this statement could have been easily explained to al-Khwarizmi, there are two
reasons why he could not have made it. First, as already mentioned, he did not have the
concept of parameters; second, he did not use stand-alone negative numbers, only sub-
tracted numbers. As a result, he was forced to explain himself by using many examples.
It is of particular interest that linear equations in full generality cannot be solved without
the use of negative numbers. Mathematicians are therefore forced to make sense of such
numbers, or else admit that not every linear equation has a root.

1.2 Quadratic equations: irrational, imaginary, and complex numbers

Solving quadratic equations requires the extraction of square roots, and these lead to other
objects not recognized as numbers in the Greektradition. Al-Khwarizmi, who considered
only what we call linear and quadratic equations, classified them into six types: ‘squares
plus numbers equal roots’, ‘squares plus roots equal numbers’, ‘squares equal roots plus
numbers’, and three other forms in which a term is missing, the latter including the case
of what we call linear equations. Since some square roots could be known only approxi-
mately as numbers, al-Khwarizmi gave geometric solutions of quadratic equations. Here
again, one sees that equations force the consideration of certain kinds of numbers (irra-
tional square roots) that the Greek mathematicians would have referred to asmagnitudes
rather thannumbers.

The representation of magnitudes as line segments was arithmetized to an extent by
René Descartes (1596–1650), who in hisGéométrie showed how to represent the product
of two line segments as a line segment by choosing a fixed segment to represent unity;
he also gave a geometric representation for the square root of a number (§1). In all but
name, Descartes’s approach made it possible to think of irrational magnitudes as numbers;
and a generation later Isaac Newton (1642–1727) defined a number to be the ratio of one
magnitude to another magnitude of the same kind, arbitrarily taken as a unit. Newton clas-
sified numbers as integers, fractions, and surds [Whiteside, 1967, 7]. Worse things than
irrationalities arise in the case of quadratic equations, however, since the procedure for
finding the roots sometimes involves the square root of a negative number. Since the roots
of such equations are not what we now call real numbers, it was possible to ignore these
cases without forgoing the solution of any equation that was regarded as solvable.

1.3 Cubic and quartic equations

Later Muslim mathematicians, such as Omar Khayyam (1056–1130), similarly classified
equations containing the third power of the unknown and showed how a solution of such
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an equation could be represented as the intersection of two conic sections, but a formula
for the solution involving only rational operations and root extractions was not found until
the 16th century.

This discovery produced two striking effects. First, it was soon followed by a formula
for solving the general quartic equation. Second, it turned out that the solution of an equa-
tion with real coefficients always required the extraction of the square root of a negative
number when there are three real roots. The formula given by Girolamo Cardano, Niccolò
Tartaglia, and others, for example, when applied to the equationx3 + 6= 7x, gives the
solution

x = 3

√
3+

√−100

27
+ 3

√
3−

√−100

27
. (1)

Mathematicians could and did call such solutionsimpossible. However, that impossibility
left unsolved an equation that definitely did have solutions (namelyx = 1,x = 2,x =−3).
Because there were real solutions in this case, known as the ‘irreducible’ case, an effort
was made to find them.

François Viète (1540–1603), who was also the first to state explicitly the fact that the
coefficients of a polynomial are symmetric functions of its roots, succeeded in solving this
case using only real numbers by appeal to the trigonometric formula

4 cos3 θ − 3 cosθ = cos(3θ). (2)

Viète’s solution, however, was not algebraic, since it involved transcendental functions.
The problem of what to do with square roots of negative numbers was investigated by
Rafael Bombelli (1526–1573) and others in the 16th century, and some progress was made
by John Wallis (1616–1703) and others in the 17th century in providing a geometric inter-
pretation for what we now call complex numbers. As in the cases of negative and irrational
numbers, the problem of which numbers one can sensibly talk about—to use a mathemat-
ical colloquialism, the problem of which mathematical objectsexist—arose from the need
to make sense of an algebraic formula. There is a natural inclination to make sense of
any operation that arises naturally in a formula. That natural impulse has led to the accep-
tance of negative, irrational, and imaginary quantities as numbers capable of being added,
subtracted, multiplied, and divided, and obeying (most of) the usual laws of arithmetic.

One bit of ‘transcendentalism’ has always remained in the irreducible case, however:
While the extraction of the square root of a complex number can be reduced to the extrac-
tion of the square roots of positive real numbers, the situation is different for cube roots. It
is not possible to reduce the extraction of the cube root of a complex number to algebraic
operations involving only real numbers. The equations for the real and imaginary parts of
the cube root of a complex number are themselves cubic equations having in general three
real roots, and hence belong to the ‘irreducible’ case. They can, however, be expressed us-
ing cube roots of real numbers and trigonometry. More generally, thenth root of a complex
number can be expressed as thenth root of its absolute value times a complex number of
unit length whose polar angle is 1/n times the polar angle of the given number. As Ayoub
[1980, 254–255] notes, mathematicians have been content to take the existence of roots in
the complex numbers as given.
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1.4 The ‘fundamental theorem of algebra’

Because of the algebraic/trigonometric representation of roots of complex numbers, it was
clear that any algebraic formula requiring only rational operations and root extractions
would not lead to any new numbers beyond the complex numbers. It came to be generally
believed that any polynomial equation with complex roots would have a solution in the
complex numbers (the property now known as algebraic closure of the complex numbers).
The first explicit statement of this theorem occurs in the bookL’invention nouvelle en
l’algèbre (1629, Amsterdam), written by Albert Girard (1595–1632). Girard came to the
conclusion that an equation of degreen with real coefficients hasn roots in the complex
numbers. One can imagine that the conviction that complex roots exist for all equations
was reinforced by the tacit assumption that aformula involving only rational operations
and root extractions could be found which, when applied to the coefficients, would produce
a solution.

1.5 A general technique for solving equations

The method of solving quadratic equations is known as completing the square. That is,
given the equationx2− ax + b = 0, one makes the substitution,x = y + a/2, to get the
equationy2= a2/4− b, which is solvable by extraction of the square root. For the general
cubic equationx3− ax2+ bx − c = 0, the substitutionx = y + a/3, similarly produces
a cubic equation iny in which the square term is missing, and that transformation formed
a crucial part of Cardano’s solution of the cubic. This generalization of completing the
square, however, does not ‘complete the cube’, since the linear term, in general, remains.
The quest for a way to complete the cube and any higher power was begun by Ehrenfried
Walther von Tschirnhaus (1652–1708), who thought at first that he had succeeded. In 1677
he wrote to Leibniz [Leibniz, 1850, 429]:

In Paris I received some letters from Mr. Oldenburg, but from lack of time have
not yet been able to write back that I have found a new way of determining
the irrational roots of all equations [. . .]. The entire problem reduces to the
following: we must be able to remove all the middle terms from any equation.
When that is done, and as a result only a single power and a single known
quantity remain, one need only extract the root.

Tschirnaus claimed that then− 1 middle terms of the equation

xn − a1x
n−1+ · · · + (−1)n−1an−1x + (−1)nan = 0 (3)

could be eliminated by a substitution of the form

y = xn−1+ b1x
n−2+ · · · + bn−2x + bn−1, (4)

when the coefficientsb1, . . . , bn−1 are suitably chosen. Such a transformation is now called
a Tschirnhaus transformation. It provides the basis for a proposed method of solving any
equation, by induction on the degree. Assuming one can solve all equations of degreen−1
or less, one can expressx in terms ofy with coefficients that are algebraic functions of
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the coefficientsb1, . . . , bn−1. When this expression is substituted into (3) and the radicals
cleared, the result is an equation iny with coefficients that are polynomials in theb’s. Then
by setting all the middle coefficients equal to zero and solving for theb’s, one is to obtain
an equation of the formyn = C. After y is found by extracting thenth root, the original
equation will have been solved, sincex is already expressed in terms ofy. Tschirnhaus
illustrated with the case of the cubic equationx3− qx − r = 0, takingy = x2− ax − b.
He noted thaty satisfied the equation

y3+ (3b− 2q)y2+ (3b2+ 3ar − 4qb+ q2− a2q)y

+ (
b2− 2qb2+ 3bar + q2b− aqr − a2qb+ a3r − r2)= 0. (5)

Thus one could eliminate the square term and the linear term by first choosingb = 2q/3,
and then solving fora in the quadratic equation

qa2− 3ra + q2/3= 0. (6)

At the very least, Tschirnhaus had found a second solution of the general cubic equation,
independent of those given earlier by the Italian mathematicians of the preceding century,
and his method certainly seemed to be general. The devil was in the details, however, and
those details involved horrendously complicated computations when applied to higher-
degree equations.

It appears that Tschirnhaus obtained (3) by solving forx in terms ofy, substituting, and
then removing the radical by squaring. There is, however, a more general way of obtaining
it. If the roots of the original cubic equation are, say,u, v, andw, andf is any polynomial,
the coefficients in the equation[

y − f (u)][
y − f (v)][

y − f (w)]= 0 (7)

are symmetric polynomials inf (u), f (v), andf (w), and hence also symmetric inu, v,
andw. They can therefore be expressed as polynomials in the coefficients of the original
equation and the coefficients of the polynomialf—as was shown conclusively by Edward
Waring (1734–1789) in 1762—so thatit is not necessary to knowu, v, andw in advance
in order to write down (7). Whenf is the quadratic used by Tschirnhaus, (7) is precisely
(5). When this procedure is applied in general, as Tschirnhaus proposed, the equations
obtained by setting the middle coefficients equal to zero are of degrees 1, 2, . . . , n−1 in the
coefficients off , and can be solved for those coefficients, just as Tschirnhaus had claimed.
As an algorithm, however, the process turns out to involve an infinite loop. The coefficients
in all but the first of the equations to be solved aremixed, that is, expressions of the form
bibj occur. When such an equation is solved for oneof these two variables, the other occurs
as part of the expression for the firstunder a radical sign. Hence the next equation to be
solved contains, in addition to the variable not solved for previously, a fractional power of a
polynomial containing that variable. When that radical is cleared out, the resulting equation
is, in general, ofhigher degree than the original equation. Hence the proposed algorithm
requires an even stronger algorithm in order to function. This effect appears even in the
case of the quartic equation. However, since the quartic can be reduced to a quadratic by
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removing only two of its coefficients, it is still possible to use a Tschirnhaus transformation
to solve it.

Despite its ultimate failure, Tschirnhaus’s method revealed a great deal about the
process of finding solutions of equations. If indeed there is a method of solving every
polynomial equation by algebraic operations, then all the steps in Tschirnhaus’s procedure
could be carried out, even though they would not constitute an inductive procedure for
solution. One feels intuitively that if there were an algorithm for systematically solving
all equations, it ought to have been the one proposed by Tschirnhaus. Thus, the sugges-
tion that there are equations that cannot be solved algebraically arises from Tschirnhaus’s
work. Whether or not mathematicians of the time had the same feeling, it was clear that
more data, more particular examples, were needed in order to distill a general approach
to the solution of equations. But a gain had been made: the work of Tschirnhaus, and Gi-
rard had focused attention on the importance of the symmetric polynomials in the roots. In
the light of these advances, mathematicians again turned their attention to the problem of
solving the quintic equation.

2 THE PROBLEM OF THE QUINTIC, 1700–1800

2.1 Finding a solution

It was Viète who took the important step of using parameters to discuss equations, thereby
providing an essential element in the statement of the general problem. After Viète, only a
minimal change in notation is needed to write the generic quintic equation as

x5− ax4+ bx3− cx2+ dx − e= 0. (8)

The problem faced during the 18th century was to find a sequence of rational opera-
tions and root extractions, which, applied to the coefficients, would produce a solution. To
illustrate the idea, consider the general quadratic equation

x2− ax + b= 0. (9)

The general formula that solves this equation can be reduced to the following sequence of
operations:

t1= a2− 4b, t2=√t1=
√
a2− 4b, t3= a + t2

2
= a +

√
a2− 4b

2
. (10)

Here each operation is either a rational operation on the preceding results and the coeffi-
cients, or a root of a preceding result. The solution of the general cubic and quartic equation
can similarly be reduced to such a sequence of rational operations and root extractions, al-
beit a much longer and more complicated sequence. Although no one actually wrote out
the proposal in these explicit terms, the challenge to the 18th-century mathematicians was
to produce such a sequence for the equation (8).



Chapter 29. Niels Henrik Abel, paper on theirresolvability of the quintic equation (1826) 397

2.2 Euler

In the paper [1738], and again in [1762], Leonhard Euler (1707–1783) tried his hand at
solving equations of arbitrary degree. The first time, generalizing from the case of equa-
tions of degrees 2, 3, and 4, he asserted that the solution of an equation of degreen could
be expressed in the form

x = n
√
A1+ n

√
A2+ · · · + n

√
An−1, (11)

whereA1, . . . ,An−1 are the roots of an equation of degreen − 1, called by Euler the
resolvent. The program is that of Tschirnhaus, and the difficulty is the same: Finding the
coefficients of the resolvent is not always easier than the original problem. In his second
attempt, Euler assumed a solution of the form

x =w+A n
√
v +B n

√
v2+ · · · +Q n

√
vn−1, (12)

wherew is a real number andv and the coefficientsA, . . . ,Q are to be found by forming
the analog of (6) and comparing with the original equation. This approach, and a similar
approach of Étienne Bézout (1730–1783), also does not lead to any solution of the general
quintic equation.

In between these two efforts Euler [1749] considered the existence of roots, showing
that an equation whose degree is a power of 2 can be split into two equations of equal
degree and incidentally stating the conjecture that the roots of an equation of degree higher
than 4 cannot be found with a finite number of algebraic operations.

2.3 Lagrange

A decade after Euler’s second attempt,Joseph-Louis Lagrange (1736–1813) wrote a long
survey [1772–1773] of the methods known up to his time for solving general equations.
Regarding Tschirnhaus’s general method, he noted the following (Œuvres, vol. 3, 305):

To apply, for example, Tschirnhaus’s method to the equation of degree 5, one
must solve four equations in four unknowns, the first being of degree one,
the second of degree 2, and so on. Thus the final equation resulting from the
elimination of three of these unknowns will in general be of degree 24. But,
apart from the immense amount of labor needed to derive this equation, it is
clear that after finding it, one will be hardly better off than before, unless one
can reduce it to an equation of degree less than 5; and if such a reduction
is possible, it can only be by dint of further labor, even more extensive than
before.

Lagrange devoted a large amount of space to analysis of the cases when the resolvent
equation can be reduced below the degree of the equation it is derived from, based on the
ingenious trick of expressing a root of the resolvent in terms of the roots of the original
equation and simply counting how many different values the root of the resolvent must
assume (in general) when the roots of the original equation are permuted among them-
selves. He showed, for example, that the resolvent for a general quartic equation, which is
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formally of degree six, can be written as the product of three quadratic polynomials whose
coefficients have the form(MP +NQ)/(P 2+Q2) and (M2+N2)/(P 2+Q2), where
M,N , P , andQ are expressions of degree 4 in the roots of the quartic assuming only three
different values when the roots are permuted. Therefore the resolvent will reduce to a cubic
equation. In this idea, he laid the egg that later hatched out as Galois theory. However, a
considerable amount of pecking by Ruffini, Cauchy, Abel, and Galois, was needed before
the shell broke, as we shall see.

2.4 Gauss

Carl Friedrich Gauss (1777–1855) began his mathematical career with his 1799 disserta-
tion, in which he proved the fundamental theorem of algebra. He preceded his proof with a
thorough examination of earlier attempts to prove this theorem and mentioned incidentally
Euler’s 1749 conjecture on theimpossibility of solving the general quintic by algebraic
operations. He commented (Werke, vol. 3, 17),

Against this the argument may be advanced that after the efforts of so many
mathematicians, there remains verylittle hope of finding the general solution
of arbitrary algebraic equations, so that it seems more and more likely that
such a solution is absolutely impossible and contradictory. This may seem less
paradoxical if we note thatwhat is ordinarily called a solution of an equation
is properly speaking merely a reduction of the equation to pure equations. But
here the solution of pure equations is not proved, only assumed [. . . ]. It may
not be difficult to prove the impossibility with complete rigor for the quintic,
and I shall expound my own research on this matter at more length elsewhere.

2.5 Ruffini

The first claim of a proof that it is impossible to find a formula for solving all quintic
equations by algebraic operations is due to the Italian scholar Paolo Ruffini (1765–1822),
published in the same year, 1799, when Gauss wrote his dissertation. Ruffini’s education
covered a number of areas, including both mathematics and medicine. In his argument
Ruffini made use of Lagrange’s counting of the number of values a function can assume
when its variables are permuted. Unfortunately, he assumed that the radicals that arise in
the course of solving the equation are rational functions of the roots, and this assumption
requires proof [Bryce, 1986]. He was unsuccessful in getting the proof recognized by the
French Academy, the acknowledged center of mathematical life at the time, even though
he revised the proof twice to make it clearer.

2.6 Cauchy

One French mathematician who did recognize Ruffini’s achievement and regarded his
proof as valid was Augustin-Louis Cauchy (1789–1857). In 1812 Cauchy read an essay
on symmetric functions before the Academy. This paper was later published as [Cauchy,
1815]. He proved the important fact that a function ofn variables that assumes fewer values
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than the largest prime number less thann when the roots are permuted, actually assumes
at most two values. This result was a key fact used by Abel in his proof.

3 NIELS HENRIK ABEL

The author of this attempt to demonstrate the impossibility of solving the quintic equation
algebraically was born in 1802, into a family of very limited means. At the time Norway, as
a dependency of Denmark, was suffering economically from the British efforts to eliminate
or neutralize the Danish Navy to keep it out of the hands of Napoleon. In addition, his father
was engaged in political activity, agitating for Norwegian independence, and seems to have
been a heavy drinker as well, contributing to the family’s poverty. In 1815, the year after
control of Norway shifted to Sweden, Abel and his older brother were sent to the Cathedral
School in Christiania (Oslo). As most of the good teachers from the Cathedral School had
gone to provide the teaching staff at the University of Christiania in 1813, Abel found few
good teachers there and was not inspired. However, in 1817, a new mathematics teacher,
Bernt Holmboe, arrived, and was to prove a constant friend and mentor to Abel. When
Abel’s father died in 1820, Holmboe helped the young student to obtain a scholarship to
continue his education.

The following year Abel entered the University of Christiania. That same year, thinking
he had succeeded in solving the quintic equation, he sent a paper to the Danish mathemati-
cian Ferdinand Degen, who asked him for a specific example of his method. Working out
such an example revealed the mistake to Abel, and a few years later, he wrote the first draft
of an impossibilityproof, published privately in 1824 by Grøndahl (Œuvres, vol. 1, 28–34).
In this proof Abel recognized the importance of filling in the gap in Ruffini’s work. Un-
fortunately, his proof that the intermediate radicals in a supposed solution by formula can
be expressed as rational functions of the roots suffers from some vagueness also, and the
version that he finally published in theJournal für die reine und angewandte Mathematik
was greatly expanded, with fuller explanations of the use of permutations.

Degen had advised the talented young man to devote himself to elliptic functions, and
this area, and its generalization to integrals of completely general algebraic functions
formed the vast majority of Abel’s life work and perhaps the most profound theorem of
the early 19th century, calledAbel’s theorem at the suggestion of his rival in elliptic func-
tions C.G.J. Jacobi (1804–1851) (§31). In 1825, after two years of intensive study of the
German and French languages, Abel went on a tour of Denmark, Germany, and France,
carrying some of his papers by way of introduction. The trip was only a partial success; he
met Crelle, whoseJournal für die reine und angewandte Mathematik provided the outlet
for most of his work. He was less successful in his attempts to meet Gauss, A.M. Legendre,
and others, and the referees from the French Academy (Cauchy and Legendre) took little
interest in the brilliant paper containing Abel’s theorem. (This paper was published only in
1841, after considerable urging by Jacobi.) Abel returned home in 1827, in debt. He died
in 1829 at the age of 26, his best work still unrecognized [Stubhaug, 2000]. Ironically, the
Paris Academy awarded him a prize for his work on elliptic functions the following year.
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4 CONTENTS OF THE MEMOIR

In the introduction Abel states the problem:To express the roots of the equation as alge-
braic functions of the coefficients. Nowadays, this definition would appear circular, since
the modern definition of an algebraic functiony of variablesx1, . . . , xn is simply a function
that satisfies an equationp(x1, . . . , xn;y)= 0, wherep is a polynomial in its arguments.
What Abel meant, however, was shown by his definitions in the first section of the paper:
it should be possible to writey as the end of a chain of operations, each of which is either
a rational operation or the extraction of a root of prime order. (Roots of composite order
can be obtained by a succession of extractions of roots of prime order.)

In the first section Abel classifies algebraicoperations according to the levels of nesting
of roots that it contains. A function whose construction requires only the extraction of roots
of rational functions of the variables is of order one. One whose construction requires the
extraction of roots of expressions of orderµ − 1 or lower is of orderµ. An algebraic
function is precisely a function having some finite order, and Abel then showed that a
general algebraic functionv of orderµ could always be written in the form

v = q0+ p1/n + q2p
2/n + q3p

3/n + · · · + qn−1p
(n−1)/n, (13)

wherep is an algebraic function of orderµ− 1, andn is a prime number. The apparently
missing coefficientq1 in (13) was subsumed into the functionp. Abel justified this trans-
formation by saying that one could always replacep by qn1p, giving a separate argument
in the case whenq1= 0. William Rowan Hamilton (1805–1865) was later to point out that
doing so could increase the order of this term, sinceq1 might itself be of orderµ.

The brief second section is devoted to proving that when the expressionv in (13) is
assumed to be a root of an algebraic equation and is substituted for the unknown in the
equation, the resulting algebraic expression, when reduced to the form (13), has all coeffi-
cients 0. The argument that proves this fact is extremely clever, and amounts to considering
the simultaneous zeros of the polynomialszn−p and the polynomial that results from the
original substitution. (These polynomials have at least the common zerop1/n.) At the end
of this section, Abel concludes that the solutioncan be given in a form in which all the
algebraic functions involved are rational functions of the roots. The phrasecan be is to be
emphasized here. Not every representation of a root will have this property.

The longer third section is devoted to a detailed proof of the result of Cauchy quoted
above. In the brochure he had printed in 1824, Abel had merely given a reference to
Cauchy’s work; here he reproduces the relevant parts of Cauchy’s paper, with credit to
Cauchy.

The very brief final section wraps up the proof by showing that the hypothetical solution
leads to an equation in which one side has 120 different values when the roots of the quintic
are permuted, while the other side has only 5 values. This contradiction establishes the
theorem.

5 RECEPTION OF THE MEMOIR

The underlying basis of this work—the theory of groups of permutations—was still not
fully worked out. Lacking this elegant context, Abel’s proof, like Ruffini’s, suffers from
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a certain vagueness as to what is necessary or possible in a hypothetical solution. As a
result, Abel’s proof did not gain universal recognition. Both proofs, reclothed in modern
notation, can be found in [Ayoub, 1980], who also points out that it is possiblea priori
that every equation of degree five might be solvable by radicals, without there being any
single formula for doing so. The impossibility proofs of Ruffini and Abel were directed
at the stronger hypothesis of a single formula. Of course, it is now possible to exhibit
particular quintics that cannot be solved by radicals, so that even the weaker hypothesis
is refuted. Évariste Galois (1811–1832), who knew of Abel’s work, clarified the matter,
making the important distinction between normal and non-normal subgroups, or, as he
called them, proper and improper decompositions of the group (into cosets). In 1832 the
Prague Scientific Society declared the proofs of both Ruffini and Abel unsatisfactory and
offered a prize for a correct proof [Ayoub, 1980, 274].

In 1839 Hamilton published what the Americannumber theorist and historian of math-
ematics Leonard Eugene Dickson called ‘a very complicated reconstruction of Abel’s
proof’, discouragingly burdened with primed subscripts and superscripts [Hamilton, 1839].
As mentioned above, Hamilton noted that it was crucial to Abel’s proof that the coefficient
q1 in (13) is 1. This was a gap in Abel’s proof, although Ayoub [1980, 272] notes that it
can be repaired; and indeed, Hamilton did repair it. After surveying cubic and quartic equa-
tions, Hamilton turned to the quintic, saying that ‘the opinions of mathematicians appear to
be not yet entirely agreed respecting the possibility or impossibility of expressing a root as
a function of the coefficients by any finite combination of radicals and rational functions’.

In Hamilton’s proof, as in Abel’s, the crucial fact is that all the successive functions
obtained in a hypothetical solution must be expressible as rational functions of the roots,
admitting a definite number of values as the roots are permuted. Hamilton devoted many
pages to writing out all the possible forms of rational functions of three and four variables
having specified numbers of values when their arguments are permuted. For the quintic, he
showed that there are only two basic types of rational functions having fewer than 6 values
when the arguments are permuted, one being the product of the differences of two variables
(two values), the other a polynomial of degree 4 in one of the variables (five values).

The ideas of both Abel and Galois were developed further by Laurent Wantzel (1814–
1848) and Enrico Betti (1823–1892). Wantzel, who in 1837 had shown the impossibility of
doubling the cube or trisecting the angle using ruler and compass, showed in [1845] that it
is impossible to solve all equations in radicals. Nowadays all of these impossibility results
are derived from group theory. In 1852 Betti published a number of theorems elucidating
the theory of solvability by radicals. An analytic (not algebraic) solution of the quintic was
published in 1844 by Ferdinand Eisenstein [Patterson, 1990].

Abel’s proof came just after the basic tool for answering the question—the symmetric
group—had been introduced. Independently of the correctness of his proof by modern
standards, his skillful employment of that tool showed its importance and pointed the way
toward a full understanding of what is involved in the solution of equations by radicals.
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CHAPTER 30

GEORGE GREEN, AN ESSAY ON THE
MATHEMATICAL ANALYSIS OF ELECTRICITY

AND MAGNETISM (1828)

I. Grattan-Guinness

Although published very obscurely, this bookbecame recognised as a major text in poten-
tial theory after gaining publicity from the 1850s. The integral theorem and function which
came to carry Green’s name gained especial attention.

First publication. Nottingham: ‘printed for the author’, 1828. ix+ 72 pages.

Photoreprints. Berlin: Mayer und Müller, 1890. Goteborg: Ekelöf, 1958. Nottingham: The
University, 1993.

Reprints. In Journal für die reine und angewandte Mathematik, 39 (1850), 75–89,44
(1852), 356–374,47 (1854), 161–211. [Repr. inMathematical papers (ed. N.M. Fer-
rers), London: Macmillan, 1871, 1–115. Edition repr. Paris: Hermann, 1903; New York:
Chelsea, 1970.]

German translation. Ein Versuch, die mathematische Analysis auf die Theorieen der Elek-
trizität und des Magnetismus anzuwenden (trans. A.J. von Öttingen and A. Wangerin),
Leipzig: Engelsmann, 1895 (Ostwald’s Klassiker der exakten Wissenschaften, no. 61).

Related articles: Laplace on celestial mechanics (§18), Fourier (§26), Thomson and Tait
(§40), Maxwell (§44).

1 GREEN’S LITTLE-KNOWN ENTRÉE

One of the major publications in the mathematics of the 19th century was also one of the
most obscure. In Nottingham, a once pleasant small town then succumbing to the effects of
the Industrial Revolution, the book appeared by private subscription, with 52 named sup-
porters [H. Green, 1946, 549–552]; the print-run is unknown. While the town was growing
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commercially, it was no intellectual centre; so the book made no impact until its posthu-
mous (re)discovery, when its importance was quickly recognised. Disclosure of the life of
its author has occurred much more recently, especially with the biography [Cannell, 1993];
but noNachlass has been retrieved, and no likeness is known. So his life is exceptionally
obscure.

However, Green’s personal roots are clear, as the family was an example of the com-
mercial transformation of the period. He was born sometime in July 1793 to a baker after
whom he was named; he was to be first of four children. Several years later his father es-
tablished a corn mill at Sneinton, then a village not far from the town, and for much of his
life Green worked in it; indeed, he inherited it after his father’s death in 1829, soon after
the publication of his book.

No precise information exists on Green’s education or the development of his math-
ematical ability. The Nottingham Subscription Library contained a respectable stock of
scientific publications, including even some foreign material. There were men of scientific
training in the town, most notably John Toplis, headmaster of a school, who had translated
the first Book of Laplace’sTraité de mécanique céleste (1799) (§18) in 1814 and was well
aware of British inferiority inmathematical research. Green did not study at his school but
may well have had contact with him. At all events, the references and surrounding remarks
in his book showed that he had not only become aware of Laplace and several other French
authors but had also read several of their works. In particular, one of Laplace’s leading
followers had produced a result that may well haveinspired Green to his research in the
first place [Grattan-Guinness, 1995].

2 POISSON’S ‘SIMPLIFYING’ THEOREM

The domination of mathematics by the French from the 1780s until the time of Green’s
book is quite extraordinary; most work of importance was coming out of Paris. Moreover,
the atmosphere there was professional to a degree previously unknown; new and old insti-
tutions of higher education, and chances of employment as a scientist on a scale unavail-
able elsewhere [Grattan-Guinness, 1990]. One of the new generation to profit from these
circumstances was Siméon-Dénis Poisson (1781–1840), associated with theEcole Poly-
technique (founded in 1794) all his adult life and active in other educational institutions;
and unceasing in his research efforts, most of which focused upon the main topic of the
time, the calculus and its applications to mathematical physics (including mechanics). By
and large he was conservative throughout his career in that he took as his mentors Laplace
and J.L. Lagrange (1736–1813).

One of Poisson’s main innovations occurred in the mid 1820s when he attempted the
novelty of mathematicising magnetic bodies [Poisson, 1826]. He treated a magnetic body
M as composed of separate dipoles and analysed the strength of its attraction to internal and
to external monopoles. In his first paper he found a theorem which converted triple integrals
over the volume of M to double integrals over its surface, which he regarded merely as a
‘simplification’ of certain formulae. An English translation of a summary version of the
paper appeared in theQuarterly journal of science as [Poisson, 1824], and Green may
well have seen it: while no mathematical details were provided, it could have excited his
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curiosity. When the full paper appeared, he must have been inspired by the theorem, novel
at the time and indeed not fully understood by its author. Green realised that this result was
not just simplification: far more profoundly,it related properties inside a body to properties
on its surface and vice versa.

3 GREEN’S THEOREM IN GREEN’S BOOK

Whether or not this result was his source, Green prepared his book on the mathematicisa-
tion of electricity and magnetism. The preface is dated March 1828; Poisson’s paper was
published at the end of 1826, and could have been in Britain by, say, the spring. If indeed
Poisson was his inspiration, Green could have written the book in around a year—a fine ef-
fort, and not impossible to imagine given the undoubted flow of rich ideas. At 81 pages, the
book was quite short; for example, about the length of Poisson’s first paper. After a preface
and some pages of ‘Introductory observations’, it divided into three Parts: ‘General prelim-
inary results’ and then applications to electricity and to magnetism (see Table 1). The page
numbers refer to the edition in his collected works, as it is the most accessible version.

Early in the first Part Green produced a theorem of the same kind as Poisson’s, but
with proper understanding of its physical significance. For two ‘continuous functions’
U(x,y, z) andV (x, y, z)

∫
dx dy dzUδV +

∫
dσ U

(
dV

dw

)
=

∫
dx dy dzV δU +

∫
dσ V

(
dU

dw

)
, (1)

where ‘δ’ was the Laplacian operator (an unusual choice of symbol, perhaps made by his
printer), ‘dσ ’ an element of the surface, all integrals were stated with only one integral sign
‘
∫

’, and round brackets indicated partial ‘differential co-efficients’ (a practice brought in
by Euler). The form of the theorem (1) became known as ‘symmetric’. As with Poisson,
Green’s proof was effected by integrating by parts, in his case on

∫
dx dy dz

{(
dV

dx

)(
dU

dx

)
+

(
dV

dy

)(
dU

dy

)
+

(
dV

dz

)(
dU

dz

)}
, (2)

to produce each side of (1) (pp. 24–26). But he did not follow Poisson in modifying the
proof to allow for non-convex surfaces by taking such integrals over convex parts as ap-
propriate.

When ‘singularities’ inU (or V ) occurred at pointsG, examination showed that terms
of the form−4πU(xG,yG, zG)were needed on the appropriate side of the equation (p. 27);
Green also inserted a term of this kind when the attracted point was internal to the body in
question (p. 40). These modifications suggest that he was aware of Poisson’s modification
of Laplace’s equation for interior points of attraction; dating from 1813, Poisson had used
it again in a succeeding paper on magnetisation [Poisson, 1827], which Green mentioned
on p. 6.

These theorems, especially (1), helpedGreen specify ‘the potential function’, as he
called it (p. 9), and now named after him, namely:
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Table 1. Summary of Green’s book. The pagenumbers pertain to the edition in [Green,
1871]. Those to the left start off the Parts. LE= expansion of the potential function in a

series of Legendre functions.

Pages Topics and methods
3 ‘Preface’. Survey of results in mathematics and physics: Cavendish,

Poisson, Laplace.
9 ‘Introductory observations’. ‘Potential function’, ‘Laplace’s equation’;

summary of results to come.
19 ‘General preliminary results’. Laplace’s and Poisson’s equations; Green’s

theorem.
27 Surface and interior potentials; Green’s function, its existence and

uniqueness.
42 Applications to electricity.

42 ‘Leyden phial’: equation for its geometry; several linked phials.
50 Two spheres: LE; ‘electric density’; case of one external point.
55 Spheres joined by a ‘fine wire’; density across a thin spherical shell.
57 Density on thin spherical shell containing small circular orifice.
61 ‘[L]ong metallic wires’ joining spheres in the atmosphere.
63 Density for conducting bodies in electrical equilibrium; LE.
68 Potential for a straight ‘line’.
69 Electricity in imperfectly conducting body in magnetic field.
75 Ditto for electrical field; equipotential surfaces.

83 Applications to magnetism.
83 Potential function for ‘very small body’; LE.
87 Magnetic equilibrium for ‘any body’; potential function as volume and

surface integrals.
95 Magnetism of hollow spherical shell; LE.

100 Potential of an infinite planar plate of uniform thickness; LE.
106 Magnetic distribution in a wire; theoretical calculation and Coulomb’s data.

[End 115.]

It only remains therefore to find a functionV ′ which satisfies the partial dif-
ferential equation, becomes equal to [a given function]V̄ ′ when [the point]p
is upon the surfaceA, vanishes whenp is at an infinite distance fromA, and
is besides such, that none of its differential co-efficients shall be infinite, when
the pointp is exterior toA.

(p. 12: note that the prime does not denote differentiation andV ′(∞) is not clearly speci-
fied.) He claimed that the function was unique (pp. 31–32), although he assumed without
argument that it was proportional to 1/r for large distancer (for example, p. 33); the
uniqueness question was to inspire much perplexed analysis later. He also gave a symmet-
rical form for the relationship between two such functions (pp. 37–39), launching what has
become known as ‘reciprocity relations’.



Chapter 30. George Green,An essay on the mathematical analysis of electricity (1828) 407

A key result followed: the relationship between density ‘(ρ)’ at a point of the surface
and the potential gradient there (p. 32):

0= 4π(ρ)+
(
dU

dw

)
. (3)

The form of this equation recalls Fourier’s handling of surface heat diffusion (§26, (7));
perhaps he knew theThéorie analytique de la chaleur (1822).

Works in (mathematical) physics which Green explicitly mentioned included Henry
Cavendish’s studies of the early 1770s (pp. 3–4, but not used later), and Poisson’s papers
of the 1810s on electricity as well as the later ones on magnetism (pp. 4, 6). In his introduc-
tion he compared Fourier with Poisson and A.L. Cauchy on methods of solving differential
equations in hydrodynamics (pp. 7–8), which suggests that he had read the comparison
made in [Fourier, 1818]. On mathematical methods, maybe the specification of continu-
ous functions in his theorem reflects awareness of the reforms of the calculus then being
effected by Cauchy (§25). A passing reference to Lagrange’s follower L.F.A. Arbogast
shows his familiarity with French techniques using differential operators (p. 103; compare
p. 77); he may have learnt of them from the second edition (1810s) of S.F. Lacroix’s large
treatise on the calculus (§20), for he cited it by page number for another result (p. 113).

The means of Green’s access to these—indeed, any—sources is unknown. Perhaps
English-language journals read in the subscription library or elsewhere had given him the
references, although mathematical literaturewas less well covered than that of the other
sciences. Presumably he had sufficient funds to buy some books and papers: the interna-
tional market had long been well organised, and suffered interruption only during the last
years of Napoléon in the 1810s.

4 GREEN’S APPLICATIONS TO ELECTRICITY AND MAGNETISM

In the rest of the book Green gave a variety of applications and examples of his theorems in
electrical or magnetic situations; they are curiously little-studied. Among the ‘preliminary
results’ (3) and its kin feature more than (1). Table 1 lists the topics and methods covered;
a few features will be brought out here.

Assuming that potential functions always existed (pp. 78, 92), Green favoured treating
them as given by the solution of ‘Laplace’s equation’ (his pioneering use of this name)
for points external to the body in question. He developed them in a series of Legendre
functions (to use the modern name); Book 3 of Laplace’sTraité de mécanique céleste
(1799) (§18.5) was cited on several occasions as his source. He often truncated this and
other power-series to the first or second term when the increment variable was small (for
example, pp. 43, 112–113). Some of his cases extended or varied upon those treated by
Poisson; like his predecessor, he seems not to have carried out any experiments himself.
He also did not discuss the new subject of electromagnetism at all; thus he seems to have
been ignorant of A.M. Ampère’s contour theorem of 1826.

Green assumed that electricity and magnetism required one fluid each, and he inter-
preted their ‘density’ at a point as their quantity there (for example, p. 55). Apart from
simple cases, he determined it from potential functions and equations such as (3).
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In the second Part of the book Green considered various cases of electricity. The first
one was the ‘Leyden phial’, both on its own and with several deployed ‘in cascade’. As-
suming from experimental evidence that exterior and interior potential were each constant,
he linked them by Taylor’s series truncated to the first term across the thickness of the glass,
within which Laplace’s equation obtained.At one point Green modified this equation by
allowing for the curvature of the equipotential surface (p. 45), so that it became

d2V̄

dω2
= 4πρ̄

(
1

R
+ 1

R′

)
, (4)

whereρ̄ was the surface density at a point andR andR′ the principal radii of curvature
there. Perhaps he had read Gaspard Monge or some follower on differential geometry,
though Lacroix’s treatise might have provided enough information. Green’s use of (4) has
been little noticed; the equation was rediscovered on various later occasions [McAllister
and Pedersen, 1988].

A variant upon Poisson was to consider two electrified spheres joined by ‘an infinitely
fine wire’, when some simple forms for potential functions were found (pp. 55–56); a
harder case was taken with a ‘very thin spherical shell, in which there is a small circular
orifice’, which could be considered as planar when simplifying the form of the integral to
show that small density would obtain there (pp. 57–61). Green then analysed phenomena
involving ‘long metallic wires, insulated and suspended in the atmosphere’; for example,
when joining two spheres (pp. 63–65).

In all these cases Green presumed electrical conduction to be perfect; next he allowed
for imperfection, which he likened to the effect of friction in mechanics (p. 70). His main
example concerned the production of magnetism within a rotating body, where he drew
upon [Barlow, 1825] for data (p. 75).

Green passed on to magnetism proper for the last Part of his book. He first determined
potential for ‘a very small body’ (p. 83), perhaps like the monopole which had served a
major role in Poisson’s analysis; again Legendre functions were used. He then imitated
Poisson in studying the ‘magnetic state’ of any body, and for once he used his theorem
(1) to convert the potential function to a surface integral (p. 89). His last case dealt with
magnetism in ‘cylindric wires’, where differential operators and complex variables led
him to a closed form for density from which hecould calculate values to set against the
experimental data found by C.A. Coulomb as recorded in J.B. Biot’sTraité de physique
(1816) (pp. 111–115). The French influence remained central.

5 GREEN’S LATER RESEARCHES

All congratulations to Green for research and development; but his capacity for marketing
and publicity was infinitesimal. The use of a subscription list was then becoming some-
what old-fashioned, as the market for science books and journals in Britain had grown
significantly, albeit not to Parisian levels. He does not seem to have sent copies to leading
scientists: for example, James Ivory (1765–1842), a leading student of equipotential sur-
faces who had disputed on precisely this topic recently with Poisson in thePhilosophical
magazine. Nor did he summarise its main results in that journal, or theQuarterly journal
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of science, who surely would have taken a piece. Although the title page shows that copies
were available from a few booksellers in London and Cambridge as well as in Nottingham,
it is very unlikely that many customers parted with the requested 7 shillings and sixpence.

However, around 1830 Green did start to develop a career. After inheriting the mill from
his father he appointed a manager, so giving himself more time for other activities. He made
contact with one of his subscribers, the local scientific dignitary and mathematician Sir
Edward ffrench Bromhead (1789–1855),member with Charles Babbage and John Herschel
of the Analytical Society at Cambridge in the mid 1810s. Bromhead not only encouraged
Green’s work but also helped secure for him a Cambridge education at his own old college,
Gonville and Caius. After four years’ study there Green took the Mathematical Tripos
examination in 1837, coming fourth Wrangler (with J.J. Sylvester ranked second); during
much of 1839–1840 he was a fellow at the college. Colleagues for parts of this period
included two other outsider mathematicians: Robert Murphy, who knew of his book and
seems to have been the first to cite it; and Matthew O’Brien. Presumably his desire for this
sort of career had caused him not to marry a local lace-dresser, Jane Smith, with whom he
had seven children between 1824 and 1840.

During the 1830s Green produced nine research papers, most of them published in the
Transactions of the Cambridge Philosophical Society, to which Bromhead had introduced
him. They constituted a distinguished contribution to mathematical physics, typical for
its time in exploiting analogies between types of phenomena and theories. Even though
they appeared in orthodox journals, they did not gain the measure of attention that they
deserved, though it is known that he sent some offprints to C.G.J. Jacobi.

In his first study Green handled the equilibrium of fluids in terms of Legendre functions.
In the text he gave a more explicit formulation of Dirichlet’s principle, and included the
solution of the differential equation by a method now known as ‘WKB’, the initials of the
surnames of three independent rediscoverers in 1926. He also considered the effect of the
surrounding air on the motion of the pendulum, and in two other papers he handled the
motion of waves in canals. In one of these he putforward the Dirichlet principle, which
was to assume great status in potential theory when J.P.G. Lejeune-Dirichlet (1805–1859)
began to use it from around the same time. When examining ‘the reflection and refraction
of sound’, he gave the first detailed study of total internal reflection. In two papers on optics
he followed the tradition of taking the phenomena as occurring in the elastic aether, and
considered effects in both non-crystalline andcrystalline media; some of his results related
to work by Cauchy.

However, in all this writing Green only mentioned his book twice [1871, 120, 171], and
gave no indication of its importance. After his death in 1841 it seems to have disappeared
from sight and mind.

6 THE DISCOVERY OF THE BOOK

However, one little touch of publicity saved Green’s book. He had given a few copies of it
to the Cambridge coach Gowland Hopkins, who passed on a couple to his student William
Thomson (1824–1907) in 1845. The young man recognised the importance of the book
very quickly, and soon afterwards he shared it with colleagues in Paris. One of them was
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Joseph Liouville, who also edited a mathematical journal; Thomson arranged for a reprint
of the book not there but in theJournal für die reine und angewandte Mathematik run by
A.L. Crelle, where the three Parts appeared in 1850, 1852 and 1854.

Despite this languid reappearance the word soon spread (the main results were of course
in the first Part), and the theorem and function became standard concerns for potential the-
orists. When Green’s book became well known it was clear that he had brought in a new
phase the branch of mathematics that became known after him as ‘potential theory’. Prior
to the book various figures, especially Laplace and Lagrange and a few special results due
to C.F. Gauss, had produced results usually concerning equipotential surfaces, extending
those for potentials at points on principal axes of a body as established by Isaac New-
ton. Poisson had gone somewhat further, and more than he realised, with his ‘simplifying’
theorem. Now after Green’s book the subject possessed new ways to handle many kinds
of phenomena in mechanics and physics involving continuous bodies [Bacharach, 1883].
From the mathematical point of view surface integrals rose substantially in status from
previous obscurity (and similarly for planar cases, line integrals were enhanced); one im-
portant consequence was the devising of further theorems of the kind of (1) [Cross, 1985],
such as Stokes’s (which is due to Thomson: §58.2).

Thomson also played an important role as researcher. In particular, he was inspired by
the book to develop his ‘method of images’ for determining potentials; and when he and
P.G. Tait produced their famousTreatise on natural philosophy (§40) they discussed (1)
and included an extensive account of potential theory and Green’s work, in the context of
statics [Thomson and Tait, 1879, ch. 1, app. B; ch. 6, arts. 482–550]. However, progress
was not straightforward: in particular, in 1870 Karl Weierstrass showed by means of a
counter-example that the proof of Dirichlet principle was defective, for the optimal value
that it located was not necessarily the one desired. This finding led to a huge complication
of methods in potential theory.

An edition of Green’s works was produced in1871, and was reprinted in Paris thirty
years later. The book itself was reprinted in Germany in 1890, and appeared in German
translation five years later. This was a lot of publicity; of writings from the 1820s only
Fourier’s book on heat diffusion seems to have enjoyed a similar measure during that pe-
riod. The transformation of classical mathematical physics into quantum physics and rel-
ativity theory in the 20th century did not eclipse his contributions; on the contrary, they
gained new life. Green’s theorem (a name due to Thomson and Tait) and function (Bern-
hard Riemann and Carl Neumann) have remained staple diet for applied mathematics until
our time, and will doubtless last.

In the last 30 years aspects of Green’s life and career have been rehabilitated. The bi-
ography [Cannell, 1993] formed part of a string of activities in Nottingham started in 1973
to restore the mill to working order; a science centre was installed there in 1985. A special
honour was made in the bicentenary year, 1993; conferences were held in Nottingham and
London, and after the latter event a plaque was unveiled in Green’s memory in the floor of
the nave of Westminster Abbey, close to the tomb of Isaac Newton and to the plaques for
Michael Faraday, Clerk Maxwell, and his first publicist William Thomson, Lord Kelvin.
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CHAPTER 31

C.G.J. JACOBI, BOOK ON
ELLIPTIC FUNCTIONS (1829)

Roger Cooke

This treatise was the first systematic exposition of elliptic functions using the new tech-
niques made available by the theory of analytic functions of a complex variable. Niels
Henrik Abel was also an important pioneer.

First publication. Fundamenta nova theoriae functionum ellipticarum, Königsberg: Born-
traeger, 1829. 192 pages.

Reprint. In Werke, vol. 1, Berlin: Reimer, 1881 [repr. New York: Chelsea, 1969], 49–239.

Related articles: EulerIntroductio (§13), Cauchy on complex-variable analysis (§28).

1 ELLIPTIC INTEGRALS

The success of the calculus in solving physicalproblems through the formulation and solu-
tion of differential equations gave a high value to the computation of integrals. Very early
on, a wide variety of integrals that can be expressed by elementary functions were dis-
covered. The treatment of such integrals was unsystematic, however, due to the absence
of the concept of an inverse function. For example, the relation that would nowadays be
expressed as the indefinite integral∫

dx√
2x − x2

= arccos(1− x)+C (1)

was written by G.W. Leibniz as the equation

a =
∫
dx : √2x − xx, (2)

wherex is the versed sine ofa. That is,x = 1−cos(a). This way of expressing the integral
points up an important feature of the modes of thought of mathematicians up to the end
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of the 18th century. They recognized variables and relations between them, but the strict
separation between independent and dependent variables was not clear. The functions we
now call the inverse trigonometric functions were not an object of study in themselves.
Another obvious feature missing from (2), namely the limits of integration in the definite
integral, was introduced (by Joseph Fourier) only in the 1810s.

The mathematical treatment of integrals involving the square root of a quadratic polyno-
mial was greatly simplified by the familiarity of the trigonometric functions. The success
in this area often served as a guide in the study of the more complicated integrals known
as elliptic integrals, and even today provides a framework for understanding the issues in-
volved in the historical development of the topic. For that reason, we shall begin with a
brief discussion of the elementary integrals leading to transcendental functions.

To obtain a complete understanding of integrals whose worst irrationality is the square
root of a quadratic polynomial only two problems needed to be solved. The first was to
classify all the essentially distinct kinds of integrals of the form∫

R
(
x,

√
ax2+ bx + c )

dx, (3)

whereR(x, y) is a rational function ofx andy. The second was to eliminate restrictions
on the domain of the integrand by allowing complex values. The first step was easily taken.
Merely completing the square and then making simple linear substitutions made it possible
to restrict consideration to only three different kinds of quadratics, namely 1− x2, x2− 1,
and 1+x2 . The second step, which was taken only piecemeal until the 19th century, made
it possible to reduce all three of these cases to one case.

One important place where integrals of this type arise is in the rectification of a circle.
Given the circle whose equation isx2+ y2= 1, the length of arc from the point(0,1) to
the point(x, y) is given by integrating the differential of the arc length, denotedds and
given by

ds =
√

1+
(
dy

dx

)2

dx = dx√
1− x2

. (4)

The classical problem of bisecting or trisecting an angle is equivalent to the same prob-
lem for arcs of a circle. For that reason, a problem of fundamental geometric signifi-
cance was the problem of dividing an arc inton equal pieces. The solution of this prob-
lem depends on the formula cosθ + i sinθ = eiθ . It shows, in particular, that the real
part of thenth root of eiθ is cos(θ/n), so that expressing the trigonometric functions
of θ/n in terms of those same functions ofθ becomes a problem having an interest-
ing mathematical application. In particular, applying the binomial theorem to the equa-
tion eiθ = (eiθ/n)n shows that cos(θ/n) is an algebraic function of cosθ . For example,
cosθ = 4(cos(θ/3))3− 3 cos(θ/3). The particular form of the algebraic function makes it
possible to construct certain regular polygons with straightedge and compass (for exam-
ple, the heptakaidecagon, or regular 17-sided rectilinear figure) and to prove that others
(for example, the nine-sided nonagon) cannot beso constructed. The possibility of con-
structing the heptakaidecagon was discovered by C.F. Gauss in 1796,and the impossibility
of constructing the nonagon was proved by Pierre Laurent Wantzel in 1837.
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The periodicity of the trigonometric functions plays an important role in the division
problem. Once it is known that there is a polynomialp(x, y)= q(x)− y of degree 3 inx
(for example) such thatp(cos(θ/3),cosθ) ≡ 0, the fact that cos(θ + 2π) = cosθ shows
that

p

(
cos

(
θ + 2mπ

3

)
,cosθ

)
≡ 0 (5)

for all integersm. It follows that the roots of the equationp(x,cosθ) = 0 must be
cos((θ + 2mπ)/3) for m = 0,1, and 2. Therefore it is a simple matter to construct these
roots. Although the division problem for elliptic integrals is more complicated, the ulti-
mate solution of the division problem for these integrals was to be based on the double
periodicity of the inverse functions, exactly as in (5).

Because of the importance of these relations between functions one of whose argu-
ments is a multiple of the argument of the other, the division problem became an important
topic in the study of integrals of algebraic functions. Since the variables in (4) is simply
arcsin(x), obviously the variablez = ns = narcsin(x) will satisfy dz = nds, so that, if
z= arcsin(y), then

dy√
1− y2

= dz= ndx√
1− x2

. (6)

This last relation is the differential equation satisfied by the functiony = sin(nθ) in terms
of the independent variablex = sinθ . Differential equations of this type were the avenue of
approach to the multiplication/division problem for general algebraic integrals. Leonhard
Euler, in particular, was impressed by the fact that the relation betweenx andy expressed
by this equation was analgebraic relation, even though neither indefinite integral was an al-
gebraic function of its argument. One can see that this general division/multiplication prob-
lem can be solved using the law of addition for arguments in the trigonometric functions,
and these were well known by the time calculus was invented. The problem of dividing an
arc into any number of equal pieces was thus seen to be a matter of solving a polynomial
equation, although the equation could not always be solved using only straightedge and
compass, or even using only a finite number of arithmetic operations and root extractions.

This brief discussion of elementary integrals highlights three important questions that
would naturally be asked when more complicated integrals came to be considered: a) How
many essentially distinct integrals of a given type exist? b) How are such integrals to be
multiplied and divided by integers? (In other words, how is the analog of (6) to be solved?)
c) What are the analogs of the trigonometric functions for such integrals? The answer to
the third question would of course provide the answer to the second.

A large number of examples of integrals involving the square root of a quadratic were
incorporated in Euler’s treatiseIntroductio in analysin infinitorum (1748) (§13) and in
his Institutiones calculi integralis (three volumes, 1768–1770). Such integrals arise in very
simple physical problems, such as the motion of a harmonic oscillator (an undamped, freely
vibrating spring, for example), described by the differential equationy ′′ +ω2y = 0. Since
the independent variable does not appear explicitly, the substitutionp = y ′, y ′′ = pdp

dy
,
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leads to

pdp+ω2y dy = 0, so thatp2+ω2y2= C2, which yieldsx =
∫

dy√
C2−ω2y2

. (7)

Here both mathematical and physical considerations suggest that the integral is somehow
‘backwards’, that one should be regardingx, rather thany, as the independent variable.
That is to say, they confirm what Leibniz already knew: that this equation asserts thaty

is a trigonometric function ofx. The mathematical difficulty is that the integrand has a
singularity at the pointsy =±C/ω. In order forx andy to have a physical interpretation,
y must be confined to the finite interval between these two values. Mathematically, how-
ever, nothing preventsy from being outside that range. The physical difficulty is thatx

represents time, which should always be an independent variable. The physical difficulty
can be handled by writing

y = C
ω

sin(ωx −K) instead ofx = 1

ω

(
arcsin(ωy/C)+K)

. (8)

The mathematical question, however, remains. In the 18th century Euler began using imag-
inary substitutions to handle problems of this sort. In the present case the substitution
y = iu, makes it possible to expressx as i

ω
log(ωu/C + √

1+ (ω2u2/C2) ). The need
for imaginary quantities, which naturally arises when square roots occur in an integrand,
shows that a complete understanding of such integrals requires the theory of analytic func-
tions of a complex variable. Until this theory was developed in the early 19th century by
C.F. Gauss and especially A.L. Cauchy (§28), the full understanding of even these elemen-
tary integrals was delayed.

Euler was an analyst par excellence, who manipulated symbolic expressions with great
ease. But the creation of the proper language for discussing algebraic integrals of this type
required something more thanthe introduction of symbols forimaginary quantities. That
extra ingredient was the geometric interpretation of complex numbers as the Euclidean
plane and the definition of integrals over paths in the complex plane. That realization came
to Gauss and others in the early 19th century. In the meantime, a number of physical and
geometric problems led to still more complicated algebraic integrals. For example, the
equation of motion of a frictionless oscillating pendulum, namely

y ′′ +ω2 siny = 0 (9)

can be handled just like the equation of the vibrating spring discussed above, leading to the
equation

dx = dz√
C2−ω2 sin2 z

= 1

C

dz√
1− k2 sin2 z

, (10)

wherez= y/2 andk = ω/C. The substitutionu= sin(z) changes this differential into

dx = 1

C

du√
(1− k2u2)(1− u2)

. (11)
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The integrands that appear in (10) and (11) are the standard forms of what is now called
the elliptic integral of first kind, a name bestowed by A.M. Legendre (1752–1833), who
classified all integrals involving at worst the square root of a cubic or quartic polynomial
into three distinct types of elliptic integrals. The wordelliptic arose because the rectifica-
tion of the ellipse leads to such an integral (of second kind). Elliptic integrals arise in the
study of the rotation of a rigid body, and a complete understanding of the special cases of
this motion studied by Euler and Lagrange requires an analysis of such integrals.

2 ELLIPTIC INTEGRALS FROM FAGNANO TO LEGENDRE

2.1 Fagnano and Euler

The first person to have considered the problem analogous to division and multiplication
for more general integrals seems to have been Count Giulio Carlo de’ Toschi di Fagnano
(1682–1766), a diplomat and amateur mathematician who worked on the problem of rec-
tifying complicated curves. He found a number of cases in which the difference of two
arcs of a conic section could be expressed as an elementary integral resembling (11). He
then extended this work to higher-order curves such as the lemniscate, whose equation is
(x2+ y2)2 = 2(x2− y2), or, in polar coordinates,r2 = 2 cos(2θ). The element of arc of
such a curve is given in polar coordinates by

ds =√
2 sec(2θ)dθ =√2dθ/(1− 2 sin2 θ)1/2. (12)

The substitutionu = tanθ makes the element of arcds =√2du/
√

1− u4. The division
problem naturally arises for this curve, just as it does for a circle, and that means solving
the analog of (6). In a 1718 paper entitled ‘Metodo per misurare la lemniscata’ Fagnano
was able to solve the differential equation

dz√
1− z4 =

2du√
1− u4

in the form
u
√

2√
1− u4

= 1

z

√
1−

√
1− z4 (13)

and thereby find an algebraic solution of the problem of doubling or bisecting an arc of
the lemniscate. By such methods he was able to show how to divide a quadrant of the
lemniscate into various numbers of equal parts, of the form 2mp, wherep = 3 or p = 5,
and also of the form 2× 3m.

In 1750 the now elderly Fagnano sent his collected mathematical works to the Berlin
Academy, hoping for election to membership. The person called upon to judge them was
Euler, who realized the importance of what Fagnano had done and in [Euler, 1761] noted
the analogy with the corresponding equation that results when the fourth powers are re-
placed by squares, and in particularthe fact that the relation betweenx andy was once
again algebraic, even though in this case the indefinite integrals were not only not alge-
braic, but not even elementary transcendental functions. Apparently having proceeded by
inspired guessing, Euler gave the general solution of this differential equation in the case
m= n= 1 as

x2+ y2+ c2x2y2= c2+ 2xy
√

1− c4. (14)
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Thus, even though the individual integrals are not algebraic, or even elementary tran-
scendental functions, the general solution of the differential equation is of the form
P(x, y; c) = 0, whereP is a polynomial in its three arguments. Ifψ(x) denotes an in-
definite integral of the function 1/

√
1− x4, then this function is neither algebraic nor

an elementary transcendental function. Nevertheless the relationsψ(x)+ ψ(y) = K and
P(x, y; c) = 0 are equivalent. Euler showed in fact that the expression 1− x4 could be
replaced by a completely arbitrary fourth-degree polynomial. The general integral of the
equation would still be a polynomial inx andy containing an arbitrary parameter. Euler
remarked that this property would cease tohold when polynomials of higher degree were
allowed, since the general integral of the reciprocal of the cubic polynomial 1+ x3 (which
is the square root of a sixth-degree polynomial) contains terms involving the arctangent and
also terms involving the logarithm, and there is no algebraic relationship between these two
functions. Here we find Euler at the very edge of applicability of his techniques. He knew
a considerable amount about the logarithm of a complex number, in particular that its real
part is a logarithm and its imaginary part an arctangent, but he apparently did not realize
that the introduction of complex variables would have allowed him to express this integral
as a simple logarithm.

Through this general solution Euler made a connection between differential equations
of this type and algebraic addition theorems for the integrals. Specifically, he noted that the
equation could be written as∫

dx√
X
+

∫
dy√
Y
=

∫
db√
B
, (15)

whereb is a constant. This remark was to play an important role in the future development
of the subject, leading Legendre to the addition formula for elliptic functions and Abel to
the discovery of a general theorem guaranteeing the validity of an equation of this type in
which the limits of integration on the right are algebraic functions of those on the left.

2.2 Legendre

The form of elliptic integrals that is nowadays best known was adapted by Jacobi from
Legendre. Pursuing the first of the tasks noted above, Legendre sought to determine the
number of essentially distinct integrals one could generate from formulas of the form∫

R
(
x,

√
ax4+ bx3+ cx2+ dx + e )

dx. (16)

Legendre’s result was that such integrals were of three basic types, which he called first,
second, and third kinds. Each integral contained an unspecified constant, which he called
its modulus. The integral of third kind contained a second parameter in addition to the
modulus, which he called theparameter. By a trigonometric substitution he was able to
present the general elliptic integral of first kind in the form

F(φ)=
∫

1

�
dφ, where�=

√
1− c2 sin2φ. (17)
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Using the functionF of (17), he noted that the solution of the differential equation

dφ√
1− c2 sin2φ

+ dψ√
1− c2 sin2ψ

= 0 (18)

could be written in the formF(φ) + F(ψ) = F(µ), whereµ is a constant. He gave its
general solution, obtained, as he said, ‘by Euler’s method’, in the form

cosφ cosψ − sinφ sinψ
√

1− c2 sin2µ= cosµ. (19)

From this last relation Legendre derived the addition formula for elliptic functions of first
kind. To be specific, he showed that ifF(φ)+ F(ψ)= F(µ), then

sinµ= sin(φ)cos(ψ)�(ψ)+ cos(φ)sin(ψ)�(φ)

1− c2 sin2φ sin2ψ
. (20)

As was mentioned above in connection with elementary integrals, having an algebraic
addition formula of this type provides a complete solution of the multiplication/division
problem for such integrals, and Legendre was quick to point out this fact. He used the
notationψ = φn to denote the solution of the differential equation

ndφ√
1− c2 sin2φ

= dψ√
1− c2 sin2ψ

(21)

such thatφn = 0 whenφ = 0. He showed, for example, that

sinφ3= 3 sinφ − 4(1+ c2)sin3φ + 6c2 sin5φ − c4 sin9φ

1− 6c2 sin4φ + 4c2(1+ c2)sin6φ − 3c4 sin8φ
. (22)

The addition formula gives an algebraic solution of the problem of dividing an elliptic in-
tegral of first kind into equal pieces. In general, as Legendre showed, the equation for sinφ

in terms of sinφn is of degreen2. The analogy with the trigonometric integrals was now
apparent, and Legendre accordingly gave the variableφ the name ofamplitude. In writing
the equation (20), in which the functionF is stripped away, he was effectively regarding
the elliptic integral as the function inverse to the amplitude. However, while he certainly
recognized the amplitude as a variable, he did notthink of it as being a ‘dependent’ variable
determined by the value of the integral. The explicit recognition of that relationship, first
made by N.H. Abel, was of great importance in the subsequent development of the subject.
Legendre’s work also could have benefited from a more generous use of complex variables.
He allowed the parameter in an elliptic integral of third kind to be imaginary, but did not
explore the possibility that the amplitudeφ might be complex. Sinceφ is interpreted as the
upper limit of an integral, doing so would have meant integrating over complex paths. That
could have been done in the mid 1820s, as Cauchy had defined such integrals (§28). Al-
though Jacobi realized what a great liberation this step meant, neither Abel nor Jacobi used
contour integrals as we now know them. Their use of complex variables during the 1820s
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tended to be formal, glossing over certain subtleties, such as the different branches of the
square root, for example. Integrating over contours would have forced them to clarify such
matters.

2.3 Transformation of elliptic functions

In classifying elliptic integrals into the minimum number of distinct kinds, Legendre made
a remarkable discovery connecting two elliptic integrals with different moduli. For inte-
grals of first kind this discovery can be written as

F(c′, φ′)= 1+ c
2
F(c,φ), (23)

where

c′ = 2
√
c/(1+ c), that is, c= 2− (c′)2− 2

√
1− (c′)2

(c′)2
, and

(24)
sin(2φ′ − φ)= c sinφ.

By iterating the transformations in these last equations, he produced an entire scale of al-
gebraic relations among elliptic integrals with different arguments. It thus appeared that
these integrals were much richer in symmetries than the trigonometric functions and their
inverses. Legendre did not yet know how much richer. He valued the relation (23) espe-
cially because of its computational implications. Starting withc′ and iterating the proce-
dure a finite number of times made it possible to express the functionF(c′, φ′) in terms of
an integral where the modulus is as small as desired. But when the modulus is negligible,
the integral is approximately equal to its upperlimit. Thus, transformation of the integral
makes it possible to approximate it by a multipleof the upper limit of the transformed inte-
gral, and both the modulus and the upper limit of the transformed integral are computable
as elementary functions of the original modulus and upper limit. Legendre called the dou-
bly infinite sequence of moduli and functionsgenerated by iterating the operation (23) in
both directions ascale (échelle).

3 GENESIS OF THEFUNDAMENTA

3.1 Legendre’s treatise

Legendre published his results on elliptic integrals in hisExercices de calcul intégral
(1811). In the early 1820s he decided to write an extensive treatise on elliptic functions,
giving the main mathematical results and applications in the first volume and tables of the
values of these functions in the second volume. In 1825, just as he was about to complete
his treatise, he noticed yet a secondscale of transformations, namely

F(α,ω)=mF(c,φ), (25)
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where

1− α2 sin2ω= (1− c2 sin2φ)

(
1− (k/m)sin2φ

1+ k sin2φ

)2

, (26)

k = 1
4(m− 1)(m+ 3), 1<m< 3, and the modulic andα are given by

c2= (m− 1)3(1+ 3/m)

16
and α2= (m− 1)(1+ 3/m)2

16
. (27)

Legendre was very pleased with this result, even though it meant that he would have
to rewrite much of his nearly completed treatise. The scale of moduli that resulted from
this transformation converged to zero much faster than those in the scale he had discovered
previously, making a more rapid approximation of the integral possible. Moreover, the
parameterm that defined each transformation could be obtained from the initial modulus
c by solving a fourth-degree equation. He also noticed that the substitutionm �→ 3/m
resulted inc2 �→ 1− α2 andα2 �→ 1− c2. In other words, each modulus was replaced by
what he called the ‘complement’ of the other. Lastly, he noticed that two different scales,
starting from different moduli and amplitudes, would stand in the relation

F(cr,φr )

F (br,ψr)
= 3

F(c,φ)

F (b,ψ)
. (28)

What is remarkable, considering that he noticed relation (28), is that Legendre appar-
ently did not notice the connection this second scale of transformations has with the di-
vision problem for integrals of first kind. He had derived the scale by beginning with the
transformation

sinω = sinφ
m+ hsin2φ

1+ k sin2φ
(29)

and later takingh= ((m−1)/2)2. He thought that the restriction 1<m< 3 was necessary
in order to keep the moduli between 0 and 1. Evidently, he did not notice that the range
−3<m<−1 would have the same effect, that the amplitudeω would still be an increasing
function ofφ whenm < 0 if sinφ were replaced by−sinφ in relation (26), and that the
result would be the relation

∫ ω

0

dt√
1− α2 sin2 t

= |m|
∫ φ

0

dt√
1− c2 sin2 t

. (30)

The substitutionm �→ −3/m in a second application of the transformation betweenω and
a new variableθ would then exactly reverse the roles of the two moduli, resulting in an
algebraic relation betweenφ andθ equivalent to the equation

∫ θ

0

dt√
1− c2 sin2 t

= 3
∫ φ

0

dt√
1− c2 sin2 t

. (31)
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Legendre no doubt believed that he had solved the division problem by producing the
addition theorem (20) for the amplitudes; thus, he probably was not looking at this aspect
of his new scale.

3.2 Jacobi’s early discoveries

Legendre’s treatise bears a nominal date of 1825, but the first volume did not actually
appear until January 1827. Eight months after it appeared Legendre was astounded to find
that Jacobi had discovered this second scale of transformations, and apparently many others
besides.

In a letter written to editor H. Schumacher on 13 June and published in theAstronomi-
sche Nachrichten in September 1827, Jacobi gave the formula (24), using homogeneous
coordinates in place ofm andk so as to reduce the number of radicals, and he pointed out
the connection between the transformation problem and the division problem expressed by
(26). As he noted, this transformation made it possible to solve the equation (26), which
amounts to the ninth-degree equation (22), by purely algebraic operations. First one finds
m in terms ofc (a fourth-degree equation), then solves the equation (24). Replacingm

by −3/m and solving (24) again (with new variables) then leads to (26), thereby making
the trisection problem theoretically solvable by a finite number of algebraic operations.
There is no doubt that Jacobi had both discovered Legendre’s second scale independently
of Legendre and gone a step further, producing a similar transformation that divides the
elliptic integral by 5.

In a letter to Legendre dated 12 April 1828 Jacobi described the route by which he had
obtained these results. He used the differential form (11) rather than (10), and asked when
it was possible to obtain an equation of the form

dy√
(1− αy)(1− α′y)(1− α′′y)(1− α′′′y) =

dx

M
√
(1− βx)(1− β ′x)(1− β ′′x)(1− β ′′′x)

(32)
by a transformation of the formy =U/V , whereU andV are relatively prime polynomials
in x of degree at mostn, wheren is an odd integer. Here the parameters containingα

are regarded as given, whileM and theβs are regarded as adjustable so as to obtain the
equation (32). In March 1827 he had worked out thatU andV must satisfy an equation of
the form

(V − αU)(V − α′U)(V − α′′U)(V − α′′′U)
=M(1− βx)(1− β ′x)(1− β ′′x)(1− β ′′′x)(1− γ1x)

2 · · · (1− γ2n−2x)
2, (33)

which contains a total of 4n+2 adjustable parameters (in addition to the 2n−1 coefficients
of U andV that can be chosen independently, there are 2n+ 3 adjustable parameters on
the right-hand side of (33)). The squared factors on the right actually constitute the poly-
nomial {U dV

dx
− V dU

dx
}2, as Jacobi showed easily. The equations that have to be satisfied

break up into four sets, and from them Jacobi was able to work out the transformation for
n= 3. Looking long and hard at the form of this transformation, he conjectured a general
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form for the second modulus that would hold for any integer. When he tested his conjec-
ture withn = 5, he found that it worked. These two cases formed the content of his first
letter to Schumacher, sent on 13 June. Apparently, he wanted to work out a general proof
that his formula would work for any integern, and so he waited until August to send a
statement of his conjecture to Schumacher and to Legendre. These letters, as he admitted,
were disingenuous, since he couched his conjecture as a theorem. He was sure it was true,
but had no proof as yet. As he stated in the 12 April letter [Works, vol. 1, 415–416],

You expressed the wish that I would give the train of ideas that led me to my
theorems. However, the route that I followed was not mathematically rigorous.
Once the discovery was made, it was possible to replace it by a different route
leading rigorously to the same results. Thus, I write what follows in confidence.
The first discovery that I made (in March 1827) was the equationT/M =
V dU/dx − U dV/dx. From that equation I realized that the problem was a
determinate problem of algebraic analysis for an arbitrary integern, since the
number of arbitrary constants equals the number of conditions. Using unde-
termined coefficients, I constructed the transformations corresponding to the
numbers 3 and 5. Since the quartic equation that the first of these led me
to had nearly the same form as the equation for trisection, I suspected some
relation between the two. By a stroke of luck, I noticed the complementary
transformation that leads to the multiplication in both of these cases. At that
point, I wrote my first letter to M. Schumacher, since the method was gen-
eral and had been verified by examples. Later, examining the two substitutions
z = (ay + by)/(1+ cy2) andy = (a′x + b′x3)/(1+ c′x2) in the form given
in my first letter, I saw that whenx = sinam(2K/3), z must vanish, and since
b/a is positive in the given form, I concluded thaty must also vanish. In this
way, I found the factorization by induction, which being confirmed by exam-
ples, I gave the general theorem in my second letter to Mr. Schumacher [. . .]
Since all this was confirmed by examples, I made bold to send a first letter to
you, which you received with such graciousness. The proofs were discovered
only later.

Since Jacobi did not provide the general proof and Schumacher was not a specialist in
this area, the latter appealed to Gauss for advice. Gauss, of course, recognized that the
result was correct, since he had been in possession of similar results for two decades or
more. However, he had been considering the writing of a treatise of his own on this topic
and was annoyed that Schumacher had compromised his claim to priority by showing him
Jacobi’s results. Schumacher then pressed Jacobi to provide the proof [Ore, 1957, 185–
188].

3.3 Abel’s first memoir

It is likely that while working on the proof Jacobi chanced to see a memoir of Niels Henrik
Abel, which appeared in Crelle’sJournal für die reine und angewandte Mathematik as
[Abel, 1827]. Abel derived Legendre’s addition formula for elliptic integrals of first kind
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in the form

φ(α + β)= φ(α)f (β)F (β)+ φ(β)f (α)F (α)
1+ e2c2φ2(α)φ2(β)

, (34)

where

α =
∫

1√
(1− c2x2)(1+ e2x2)

dx, (35)

f (α)=
√

1− c2φ2(α), F (α)=
√

1+ e2φ2(α), and x = φ(α). (36)

(The integral in (35) goes from 0 tox.) It was this last device, regarding the limit of in-
tegration as a function of the value of the integral, that ultimately revealed why Jacobi’s
transformations work. Abel also was interested in the division problem, and he particu-
larly wanted to do for the lemniscate what Gauss had done for the circle: prove that a
straightedge-and-compass division of it intom equal arcs is possible for any power of
2 times a prime of the form 2n + 1. (It is easy to see thatn must be zero or a power of 2
if this number is prime. Such numbers are calledFermat primes, and only 5 are known to
exist.) He succeeded in doing so by allowing the variables to be complex numbers. In that
way, he discovered the double periodicity of the inverse functions. As remarked above, this
double periodicity made it possible to construct explicitly the roots of the polynomial that
expressedφ(nα) in terms ofφ(α). To take the casen = 3 as typical, it was known (see
(22)) that there are polynomialsp(x) andq(x) of degrees 9 and 8 respectively such that
the identityp(φ(α)) − φ(3α)q(φ(α)) ≡ 0 holds. Ifω and� are two independent basic
periods ofφ(α), it follows that the nine roots of the equationp(x)− φ(3α)q(x)= 0 must
beφ(α + (mω+m′�)/3), wherem andm′ range from 0 to 2 independently.

If Jacobi looked at this paper, he could not have helped noticing this device. Of course,
he might have discovered it independently. In any case, he certainly used the device in his
proof, which he posted on 18 November and Schumacher published in December. This
article contained the first introduction of thefamous Jacobi elliptic functions. He wrote
x = sinam�, when� = ∫ x

0
dx√

(1−x2)(1−k2x2)
. To construct his transformation in terms of

the roots of the polynomial involved, Jacobi made use of the fact that the functionx has
period 4K in order to prove that his conjectured formula for the transformed amplitude is
correct.

Actually, from Jacobi’s formula for�, there is no easy way to allow this variable to
exceedK. However, ifφ = am� is defined first, using (17), it is easy to see that bothφ
and� tend to infinity together, and each is a well-defined function of the other. Jacobi used
this slight ambiguity in the meaning of� without comment.

3.4 The rivals

In his third letter to Schumacher, published in December 1827, Jacobi said that he would
give the proof ‘assuming certain auxiliary considerations that have already been published
in part elsewhere’. This phrase is conveniently ambiguous; it probably alludes to Abel’s
paper, but avoids mentioning it outright. Abel noticed Jacobi’s work, and in a follow-up to
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his two long papers in Crelle’sJournal, he pointed out that Jacobi’s formula followed from
one of his. Jacobi was aware that his rival was formidable and that he could not afford to
spend two years doing nothing but writing histreatise. While working on it, he published a
steady stream of papers in Crelle’sJournal containing most of the contents of the treatise,
thereby establishing an uncontested claim to the discovery of theta functions, one of the
handiest tools in algebraic function theory. The brilliance of Jacobi’s mind showed itself at
its finest when he was able to use the fact that a certain product of theta functions has no
vanishing Taylor coefficients to prove Euler’s famous theorem that every positive integer
is the sum of at most four squares. The rivalry between the two young geniuses never
developed; sadly, Abel died in 1829, aged 26.

As for Legendre, he was content to let the young ones work out their ideas, knowing
he could not possibly keep up with them. In general, Jacobi’s results were written more
or less in Legendre’s style and hence were easier for the old man to understand. He did
not understand Abel’s approach, and considered that his own role was to serve as the her-
ald announcing their discoveries to the mathematical world. He performed that role well.
Jacobi, however, understood Abel clearly, and was happy to translate what Abel wrote
into language that Legendre could understand. He may have done so too well. In a letter
to Legendre dated 12 January 1828 he made all too plain the connection between Abel’s
work and the new notation that he introduced in his own proof, saying that he needed to use
certain formulas given first by Abel. Jacobi did not actually admit to getting this idea from
Abel, but he also did not explicitly claim independent discovery of it. Legendre expressed
his displeasure diplomatically, saying only that he regretted that Jacobi did not have the
sole claim to the credit for the proof [Jacobi,Works, vol. 1, 420]:

To establish the principle of your proof, you say, you must have recourse to the
analytic formulas for multiplicationgiven for the first time by M. Abel. This
admission demonstrating your candor, a characteristic of true talent, pains me
slightly; for, while giving due credit to M. Abel’s beautiful work, ranking it,
however, well below your own discoveries, I could wish that the credit for the
latter, that is, their proofs, belonged entirely to you.

4 THE AUTHOR

It is time formally to meet our author. Carl Gustav Jacob Jacobi was born in Potsdam on
10 December 1804, the son of a prosperous Jewish banker named Simon Jacobi. His elder
brother Moritz became an architect, physicist and engineer of note. Carl showed outstand-
ing aptitude in languages and mathematics at an early age and completed the normal school
course at the age of 12. Since he could not enter a university before the age of 16, he had
four years to devote to absorbing yet more languages and his primary love, mathematics.
Like his great contemporary and rival Abel, he made a profound study of Euler’sIntroduc-
tio in analysin infinitorum and worked on the problem of the quintic equation (§29). He
entered the University of Berlin in 1821, at a time when it had not yet distinguished itself.
Although he was only 17, his own independent study was more than sufficient preparation
for the career he was to follow. By 1825, despite the prejudice against Jews—maybe ex-
acerbated in his case by his own abrasive personality—he was teaching at the University
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of Berlin. Klein, in his history of 19th-century mathematics, notes that Jacobi was the first
Jewish professor in Germany [1926, 109]. It is true that Jacobi had converted to Christian-
ity in 1825, but such conversions had not always been sufficient to overcome the prevailing
antisemitism.

In 1827, as already noted, Jacobi sent Legendre a letter containing his discoveries in
elliptic functions. Legendre’s enthusiastic response and Jacobi’s continuing first-rate re-
search started a brilliant career. He was an inspiring lecturer, who received regular promo-
tions and was made a full (‘Ordinarius’) professor in Königsberg by 1832. He enriched
many areas of mathematics, including differential geometry, mechanics, differential equa-
tions, and number theory.

But three personal misfortunes clouded Jacobi’s life somewhat. He lost his inherited
wealth in a general depression; and in 1842 he developed diabetes, incurable and untreat-
able in his day. Finally, in the revolutionary year of 1848 he made an unwise political
speech that generally alienated all parties. The result was a denial of his petition to teach at
the University of Berlin and the revocation of the supplemental allowance that had made it
possible for him to live there. The Prussian government eventually realized Jacobi’s value
for its own prestige and relented to the extent of allowing him to give lectures at the Univer-
sity of Berlin. However, weakened no doubt by diabetes, he contracted influenza in early
1851 and then smallpox, from which he died on 18 February.

5 CONTENTS OF THE WORK

The 185 pages of this treatise are summarised in Table 1. It was divided into 66 paragraphs,
representing 27 topics grouped into two major chapters. The first chapter (Sections 1–34)
discusses the transformation of elliptic functions, the second (Sections 35–66) is devoted
to various series and product representations of them.

Jacobi explained his reasons for publishing this work as a treatise in his preface:

About two years ago, wishing to study the theory of elliptic functions in more
detail, I entered upon investigations of extreme importance, in that they seemed
to give the theory an entirely new form and to provide a remarkable advance in
the universal art of analysis. Having succeeded beyond my expectations, due to
the difficulty of the matter, in bringing this research to a conclusion, I commu-
nicated it to the mathematical community with its main points in abbreviated
form and without proof, then soon afterwards with the proofs added, since
the latter were urgently to be desired and the results, being newly discovered,
could not be taken on faith. At the same time I was eager to publish a system-
atic exposition of the investigations I had undertaken. It is to satisfy this desire
at least in part that I have undertaken to publish the foundations upon which
my investigations are based. We now commend these new foundations of the
theory of elliptic functions to the indulgence of the mathematical community.

The first seven Sections of the work contain the exposition of the complete theory of
transformation of elliptic integrals of first kind, together with examples and tables of the
various transformations. The examples of division and multiplication that occur as special
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Table 1. Contents by Sections of Jacobi’s book. 192 pages.

Sections Topic
Chap. 1 Transformation of elliptic functions.
1, 2 The general transformation problem.
3, 4 The principles of transformation.
5–9 Given an expression dy√±(y−α)(y−β)(y−γ )(y−δ), reduce it to the simpler form

dx

M
√
(1−x2)(1−k2x2)

.

10–12 Transformation of an expression dy√
(1−y2)(1−λ2y2)

into another similar form

dx

M
√
(1−x2)(1−k2x2)

.

13, 14 A transformation of order three.
15 A transformation of order five.
16 A transformation applied twice results in a multiplication.
17 A new notation for elliptic functions.
18 Fundamental formulas in the analysis of elliptic functions.
19 Complex values of elliptic functions. The principle of double periodicity.
20 The analytic theory of transformation of elliptic functions.
21–23 Proof of the analytic formulas for the transformation.
24 Different transformations of the same order. Two real transformations, the

larger modulus to the smaller and the smaller to the larger.
25 Complementary transformations. How transforming one modulus to another

produces a transformation of the complementary moduli.
26, 27 Transformations supplementary to multiplication.
28 General analytic formulas on the multiplication of elliptic functions.
29–34 The effect of the modular equations.
Chap. 2 The theory of expansion of elliptic functions.
35–38 The expansion of elliptic functions in infinite products.
39–42 The expansion of elliptic functions in series of sines and cosines of a

multiple of the argument.
43–46 General formulas for expanding the functions sinn am

( 2Kx
π

)
and

1/sinn am
( 2Kx
π

)
in series of sines and cosines of multiples ofx.

47, 48 Series expansions of the different kinds of elliptic integrals.
49, 50 Indefinite elliptic integrals of third kind reduced to the special case in which

the amplitude equals the parameter.
51, 52 Series expansion of the elliptic integral of third kind. How to express the

latter conveniently by means of new transcendental functions.
53–55 Addition of the argument, amplitude, and parameter in elliptic integrals of

third kind.
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Table 1. (Continued)

Sections Topic
56–60 Reductions of the expressionsZ(iu) and (iu) to real arguments.

Reduction of general elliptic integrals of third kind with complex argument,
amplitude, and parameter.

61 Elliptic functions are quotients. The functionsH and that form their
numerators and denominators.

62–66 Series expansion ofH and . A third expansion of the elliptic functions.

cases, and which played so important a role in Jacobi’s entry into this field, are noted
explicitly. The next two Sections introduce hisnotation for the inverses of the integrals,
after which complex variables are introduced, and the double periodicity of the functions
as functions of a complex variable is noted. The theory of transformation is then revisited
in this new context, resulting in large numbers of formulas over the next six Sections.
The first of the two parts is brought to a close by a discussion of the significance of the
differential equations for complementary moduli and the complete integrals.

The second half of the work is devoted to a large variety of representation theorems
for elliptic functions. Being analytic, these functions have local Taylor series expansions.
Being periodic, they have natural Fourier series. Jacobi began with infinite-product expan-
sions and followed with the Fourier expansions of elliptic functions of first kind, then the
analogous expansions for functions of second and third kinds. The most revolutionary and
profound part of the entire work, however, was his global representation of these functions
as quotients of theta functions. Jacobi introduced these functions as products, and after
many preliminary transformations of them finally gave the series representations

 

(
2Kx

π

)
= 1− 2q cos2x + 2q4 cos4x − 2q9 cos6x + · · · ;

H

(
2Kx

π

)
= 2q1/4sinx − 2q9/4 sin3x + 2q25/4 sin5x − · · · ,

(37)

whereq = e−πK ′/K . These series are remarkably well adapted to such representations,
since they converge very rapidly and have the kind of periodicity that makes their quotient
doubly periodic. For example, as Jacobi showed in Section 61,

sinam
2Kx

π
= 1√

k

H(2Kx/π)

 (2Kx/π)
. (38)

Theta functions were to prove enormously important in the future, right down to the present
day, and whole treatises have been devoted to them. Jacobi himself, two decades later,
showed how neatly they could be used to express the parameters of the motion of a rigid
body free of external torque, and their analogues in several variables were the key tool
needed to solve the Jacobi inversion problem, a problem formulated by Jacobi in 1832 on
the basis of Abel’s general theorem on algebraic integrals. (It was Jacobi who suggested
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both the namesAbel’s theorem and the nameAbelian integrals involved in the Jacobi in-
version problem; this was solved in part by A. Göpel and J.G. Rosenhain in the 1840s, and
definitively and independently by Bernhard Riemann and Karl Weierstrass around 1855.)
The recognition that a representation validglobally, for all values of the independent vari-
able, was possible through the use of quotients of theta functions fully justified the phrase
‘new foundations’ that Jacobi had chosen for his title.

6 SIGNIFICANCE OF THE WORK

Jacobi’s treatise represents a clear and thorough exposition of the theory of elliptic func-
tions at the point where it had just crossed the threshold into its proper context, the complex
domain. The properties possessed by elliptic integrals and their inverses as functions of a
complex variable, especially the property of double periodicity, were now shown to be of
great importance; and the inspiring power of theta functions in the study of these functions
was clearly established. Still, the full resources of the theory of analytic functions of a com-
plex variable had not yet been applied to them, and consequently elliptic functions were
understood very imperfectly. In the five years preceding the publication of the works of
Abel and Jacobi in this area Cauchy had been making brilliant advances in the general the-
ory of analytic functions of a complex variable and publishing his results in hisExercices
d’analyse, which Abel purchased and read eagerly. Cauchy’s invention of contour integrals
over paths in the complex plane, which occurred in 1825, is a good example (§28).

However, Abel’s most far-reaching result had been obtained before he went to Paris.
Neither Abel nor Jacobi mentioned Cauchy in connection with elliptic functions. The ap-
plicability of Cauchy’s work to elliptic functions was not yet clear, and Cauchy hardly ever
touched upon it in his many publications. Probably the first real contact between the two
topics occurred in 1846, when Cauchy discovered branch points and their connection with
periodicity of the inverse function of the integral. Cauchy did not connect the multivalued-
ness of the integral to that of the integrand (perhaps because the integral is multivalued in
an important case where the integrand is not, namely the case of the Cauchy kernel). The
‘neglect’ of Cauchy by Abel and Jacobi could not have been due to ignorance, since Abel
certainly knew of Cauchy’s work, and Jacobi, in an article on the roots of polynomials [Ja-
cobi, 1827] praised Cauchy and Fourier for having introduced integrals between arbitrary
limits.

This treatise is a ‘period piece’, marking a stage in the maturation of the theory of el-
liptic functions. It was a radical departure from the just-completed treatise of Legendre,
but it was to be supplanted two decades later by new approaches to the study of algebraic
functions in the work of Riemann and Weierstrass. Nevertheless, its importance was recog-
nized for a generation afterward, even after Weierstrass had greatly streamlined the theory.
When Jacobi’s collected works were published, Carl Borchardt, and then after his death,
Weierstrass, took the trouble to republish it, correcting what Weierstrass described as its
‘numerous misprints, misstatements, and computational errors’.

Both Riemann and Weierstrass were led to important discoveries by working on the
Jacobi inversion problem, which had been stated by Jacobi in connection with his analysis
of Abel’s theorem, and the solution of the inversion problem had been achieved only by
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generalizing theta functions to several variables. The work of Abel and Riemann showed
that algebraic curves of the same genus can be treated in a unified manner. In particular,
one could move one of the roots of a fourth-degree polynomial to infinity and replace that
polynomial with a cubic. Such an approach allowed Weierstrass to derive the important
properties of elliptic functions from the mere factof their double periodicity. Even after the
more sophisticated approaches of Riemann and Weierstrass came to be applied, however,
Jacobi’s treatise remained a valuable source of the concrete examples on which the more
general theories were modeled. The theta functions that Jacobi introduced proved to be
an extremely fertile source of information, and have been generalized greatly in the 20th
century. What might appear to be a more modest innovation, the Jacobi elliptic functions,
are still important in applications. In his two-volume treatise on analytic function theory,
the late Einar Hille devoted a long chapter to elliptic functions, remarking [1959, vol. 2,
144], that

So far the functions of Weierstrass have been kept in the foreground, but neither
are they the oldest elliptic functions discovered, nor are they the ones best
suited for applications to arithmetic, geometry, and mechanics. The functions
introduced by Jacobi antedate those of Weierstrass by some thirty years, and
the student cannot afford to ignore them.

Elliptic functions have found a niche in the general theory of algebraic functions, one
of the most important in applications, as therecent proof of Fermat’s Last Theorem amply
demonstrates. Perhaps the fact that they are a special case of the general theory accounts for
the neglect of this topic in the extensive 450-page report [Brill and Noether, 1893] on the
development of algebraic functions rendered to theDeutsche Mathematiker-Vereinigung.
In that report Legendre was mentioned only once and only in passing. HisTraité was not
mentioned at all, nor was Jacobi’sFundamenta. On the other hand, a very full account is
given in Volume 2 of theEncyclopädie der mathematischen Wissenschaften, published two
decades later [Fricke, 1913].

The person best able to judge Jacobi’s work was the aged Legendre, who had spent a
good portion of his life trying to bring some order into the theory of elliptic functions. In
his time the subject was in its infancy, and like all infantile scientific theories, the theory
of elliptic functions was most in need of classification and taxonomy. These Legendre had
provided, showing how to reduce any elliptic integral to a sum of three standard kinds.
The reason why just these three kinds occur could not be explained fully until the time of
Riemann and Weierstrass; but the fact of their existence provided a framework in which
further work could be done. (Further, when itwas done, two of the resulting three kinds of
integrals were not exactly what Legendre had defined: see Fricke [1913, 189].) Legendre
was extremely generous in his praise of the work of Abel and Jacobi; he was indeed very
glad to see that his 40 years’ work on this subject, which effectively created the subject
of elliptic functions as an area for research, would not be forgotten. All this he expressed
both at the Paris Academy and to other scholars, including Alexander von Humboldt, who
wrote to Jacobi on 2 April 1828 [Pieper, 1987, 47]:

I am most profoundly happy for the great respect you have attained among the
leading mathematicians of our time through your excellent work. I have sent
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Herr Le Gendre’s letter, which is full of lavish praise for your discovery, to
the Minister of Culture, and I plan to present a copy of it to the Academy of
Sciences this week. For me it is a pleasant duty to give you this proof of my
liveliest interest in your work.

What would have become of the Jacobi–Abel rivalry had Abel lived is impossible to
know. What is certain is that after Abel’s death Jacobi worked diligently to assure that
all due credit should be given to Abel for his epoch-making paper on general algebraic
integrals. In his memorial tribute to Jacobi in 1852, Dirichlet commented thus [Jacobi,
Works, vol. 1, 13],

Given that Abel and Jacobi improved the theory simultaneously in two differ-
ent directions, it appears that Fate wished to divide the honor of the advances
to be made equally between the two young rivals; for the manner in which each
soon extended the discovery of the other leaves no doubt that either of them
would have achieved the entire advance alone.
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CHAPTER 32

HERMANN G. GRASSMANN,
AUSDEHNUNGSLEHRE, FIRST EDITION (1844)

Albert C. Lewis

This book contained the basis for what came to form vector analysis and linear algebra.
Though its direct influence on these subjects developed slowly, it played a seminal role in
some key works by others. Grassmann died in 1877 just as his work was gaining recogni-
tion.

First publication. Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik,
dargestellt und durch Anwendungen auf die übrigen Zweige der Mathematik, wie auch
auf die Statik, Mechanik, die Lehre vom Magnetismus und die Krystallonomie erläutert,
Leipzig: Otto Wigand, 1844. xxxii+ 279 pages.

Manuscript. Versions are described in [Grassmann,Works], but theNachlass is no longer
extant.

New edition. As Hermann Grassmanns gesammelte mathematische und physikalische
Werke, vol. 1, part 1 (ed. F. Engel), Leipzig: Teubner, 1894–1911. [Photorepr. New
York: Chelsea, 1969; New York and London: Johnson Reprint, 1972.]

French translation. La science de la grandeur extensive: la ‘Lineale Ausdehnungslehre’
(trans. D. Flament and B. Bekemeier), Paris: Blanchard, 1994.

English translation. A new branch of mathematics: the Ausdehnungslehreof 1844 and
other works (trans. L.C. Kannenberg), Chicago and La Salle, Illinois: Open Court, 1995.

Spanish translation. Teoría de la Extensión. Nueva disciplina matemática expuesta y
aclarada mediante aplicaciones (trans. E. Oscar Roxin), Buenos Aires: Espasa-Calpe
Argentina, 1947.

Related articles: Hamilton (§35), Thomson and Tait (§40).
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1 A FAMILY OF MATHEMATICIANS

The principal influence in the mathematical education of Hermann Grassmann (1809–
1877) was his father, Justus Günther (1779–1852), who was a Gymnasium teacher in
Szczecin (Stettin), Pomerania (now a part of Poland). He attended university to study
theology and philology but on the way toobtaining qualification as a teacher turned to
mathematics as his life’s main work. Of his twelve siblings, Grassmann appears to have
worked most closely with his younger brother Robert and the two may have collaborated
to some degree on foundational and philosophical aspects of theAusdehnungslehre; how-
ever, it appears that they went somewhat separate ways after 1844, Robert going on to
pursue logic and the philosophy of science.

Like his father, Grassmann remained aGymnasium teacher for the whole of his ca-
reer. Though he sought university positions, this was mainly for their academic envi-
ronment; with respect to compensation and prestige, his school-teaching position pro-
vided at least as well as a university position would have. In addition to the mathe-
matical work following upon theAusdehnungslehre that is described below, Grassmann
made significant contributions to physics and philology. He published textbooks in math-
ematics, German and Latin, the most important mathematically being theLehrbuch der
Arithmetik in 1861 whose general logical structure and proofs were utilized by Giuseppe
Peano in his work on the foundations of the number system in 1889 (§47.4). In be-
tween Grassmann produced a major dictionary on Sanskrit. Though less available and
not intended for a wide audience, his school programs (series of formal treatises by
teachers intended as pedagogical resources) on these same topics and others reveal as-
pects of the philosophical approach that underlay much of his more widely known
work.

The main source of information on Grassmann’s life and work is [Grassmann,Works];
the present account draws upon the biography in vol. III, part 2, if no other source is given.
A comprehensive introduction to Grassmann and theAusdehnungslehre in particular is
provided by the proceedings of the conference held on the island of Rügen, not far from
Szczecin, on the occasion of the sesquicentenary of theAusdehnungslehre [Schubring,
1996a]. The place of theAusdehnungslehre in the development of vector analysis, includ-
ing an account of competition between vectors (Grassmann, J.W. Gibbs) and quaternions
(W.R. Hamilton and followers) is given in [Crowe, 1967]; see also (§35).

2 DIALECTICS AND THE THEORY OF TIDES

One of the major influences on Grassmann by his own account was the theologian
F. Schleiermacher, one of his professors at Berlin University. Hermann and his brother
Robert read Schleiermacher’sDialektik in 1840, and there are signs of the influence of
that work in theAusdehnungslehre. It is possible that, through Robert, Hermann was also
influenced by the German philosopher J.F. Fries [Schubring, 1996b]. Grassmann’s first
mathematical work, that decisively launched him into a career in mathematics, was a trea-
tise on the theory of tides [Grassmann, 1840]. Though it was composed in 1840 as a part
of his examination for entry into the teaching profession, it was not published until the
Werke edition in 1911 when its relevance as a precursor to theAusdehnungslehre became
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evident. In addition to exhibiting an understanding of the theory of tides as based on the
work of J.L. Lagrange and P.S. Laplace, Grassmann presented a new way of casting the
mathematics involved. To take a simple example, the acceleration at a point represented by
the coordinatesx, y, andz, for example, were traditionally represented by three equations
expressing the three components of acceleration:

d2

t2
x =X+X1+X2+· · · , d2

t2
y = Y +Y1+Y2+· · · , d2

t2
z=Z+Z1+Z2+· · · . (1)

Grassmann introduced what has since been called a vector notation, which reduced these
to the single equation:

d2

t2
p =̇ P +̇Q +̇R +̇ · · · . (2)

Conceptually for Grassmann this involved considerably more than simply a change
of notation: the view is shifted from purely numerical relationships to geometrical ones.
Though in some respects this offered a greater simplicity, it raised the issue of recogniz-
ing different types of equality and types of addition and multiplication (signaled by the
dots above the operators in this last equation) depending on the different types of entities
(points, lines and areas for example), and the operations between various combinations
of these entities. This challenging complication was very probably a factor that led to the
greater abstraction of theAusdehnungslehre, in particular to the universal algebra aspect of
its ‘theory of forms’ [Lewis, 1996a].

In the Ausdehnungslehre Grassmann attempted to provide a foundation that involved
also a style of presentation unusual in the tradition of mathematical works in that it tried to
reflect his actual path of discovery rather than just a formal presentation of the results of
discovery. His ‘foundation’ was more philosophical than logical from the point of view of
the direction the subject took since his time. Apparently bolstered by Schleiermacher’s di-
alecticism, Grassmann held that the identity and unity of mathematics came from a system
of contrasts at all levels: from mathematics vis-à-vis philosophy and the other sciences,
to the presentation of the different types of multiplication [Lewis, 1977]. For example,
he posits four principal branches of mathematics that correspond to contrasting types of
elements and modes of generation of those elements. Grassmann’s exposition of this clas-
sification, in which he places the calculus of extension, is summarized in Table 1.

Table 1. Grassmann’s classification.

Mode of generation
positing and connecting single generation

Type of
element

equal algebraic-discrete
(number theory, arithmetic)

algebraic-continuous
(functions, calculus)

different combinatorial-discrete
(combinatorial analysis)

combinatorial-continuous
(calculus of extension)
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3 THE NEW BRANCH OF MATHEMATICS

TheAusdehnungslehre was the first Part of a planned larger work announced on the gen-
eral title page:Die Wissenschaft der extensiven Grösse oder die Ausdehnungslehre, eine
neue mathematische Disciplin dargestellt und durch Anwendungen erläutert von Hermann
Grassmann. The second Part was to address non-linear aspects, though it is not very clear
what they might have been as it never appeared. The contents of the first Part are summa-
rized in Table 2.

It is not easy to do justice in a translation to Grassmann’s original vocabulary. As a
linguist he was attentive to the choice of terms chosen for the new concepts and expressed
a strong preference for using words that shared etymological roots with everyday German
language. A translation could adopt a modern usage to make the text as accessible as pos-
sible to a modern mathematical reader or it could tend towards using unusual terms by
today’s standards that would convey something of the novelty Grassmann’s readers pre-
sumably encountered. Thus, in English Grassmann’s ‘Strecke’ might be rendered ‘directed
line segment’, ‘displacement’, ‘sect’, even ‘vector’; however ‘stroke’ or ‘stretch’ might be
more faithful to his stylistic intentions. The following sketch of some of the topics raised in
theAusdehnungslehre attempts to convey his style while also giving an indication in mod-
ern language of several results that can be immediately recognized as part of the standard
literature today. The informed reader may see, even in this very selective synopsis, key

Table 2. Contents by chapter of Grassmann’s book.

Chapter Page Contents
Foreword v Grassmann’s first steps towards a new branch of

mathematics.
Introduction xix–xxxii, 1 The conception of theAusdehnungslehre as a science;

the general theory of forms.
I.1 15 Addition and subtraction of displacements.
I.2 47 Outer multiplication of displacements.
I.3 74 Connection of extensive magnitudes of higher step.
I.4 90 Outer division and number magnitude.
I.5 114 Equalities and projections.
II.1 130 Addition and subtraction of elementary magnitudes of

first step.
II.2 147 Outer multiplication, division and shadow of

elementary magnitudes.
II.3 182 Regressive product.
II.4 229 Relations between various relations (e.g., shadow and

projection; the shadow of a product).
Note 266 On the open product.
Table of contents 275–279
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results of linear algebra and the unfolding of what has since been named the Grassmann or
exterior algebra.

Grassmann made a distinction between the subject of geometry, as conceived in the
early 19th century as the science of space, and a purely mathematical, abstract founda-
tion for that geometry. HisAusdehnungslehre, or calculus of extension, was to be that
foundation, and it might be noted that geometry is otherwise not represented in the above
classification table. This new branch has an algebraic or combinatorial aspect, though it
is capable of dealing with continuous geometrical entities. Unlike ordinary algebra it is
capable of representing geometrical dimension and, as an abstract theory, is not confined
to the three dimensions of physical space [Lewis, 1997]. For example, the general result
is obtained that if a field (‘Gebilde’) or system of order (‘Stufe’) a and one of orderb are
contained in a field of orderc, but in no field of order less thanc, then the first two fields
will intersect in a field of order at leasta + b − c. In three-dimensional geometry, where
the point, line, plane, and solid are fields of order 1, 2, 3, and 4 respectively, this result is
exemplified by their various intersection possibilities.

The Ausdehnungslehre also combines the two approaches to geometry: synthetic and
analytic. As an example of this, consider the vertexγ of a triangle whose other vertices
α andβ move in fixed linesA andB, and whose sides oppositeα, β andγ pass through
three fixed pointsa, b, andc respectively. It is known that the vertexγ describes a conic. In
theAusdehnungslehre the equation of the conic can be written as follows where, it should
be noted, the expression is of degree two inγ :

γ aBcAbγ = 0. (3)

The product of two points is the line joining them, and the product of two lines is their point
of intersection. Hence the productγ aB represents the vertexβ while γ aBcA represents
the vertexα. The product of three points is the triangle formed by them and thus when the
three are collinear, as in this case forα, b, andγ , their product is zero (art. 147).

The simplest rules underlying these geometrical examples are established from general
rules of connection or operation (‘Verknüpfung’) in the following way. A connection of first
order, including what Grassmann termed its synthetic and analytic forms, follows the usual
arithmetic rules of commutativity and associativity. The next higher order of connection,
is determined by the property of distributivity to the next lower order. Thus if∩ represents
the first order connection and� the second order connection, the relationship between the
two is expressed by Grassmann as:

(a ∩ b)� c= (a � c)∩ (b � c). (4)

The particular sorts of addition and multiplication (as well as their converses subtraction
and division) used will be written hereafter in theAusdehnungslehre in the usual arithmetic
way. Multiplication, however, is associative but not necessarily commutative, only right
and left distributive over addition.

Displacements (‘Strecken’) are extensives of the first order and a system of first order
is generated by addition and subtraction of a displacement or parts of a displacement.
Displacements can be generated independently of each other, that is in such a way that one
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cannot be expressed as a sum of the others (art. 19). Systems of higher order are constructed
by addition of mutually independent displacements. If

p1= a1+ b1+ · · · and p2= a2+ b2+ · · · (5)

are two displacements expressed as sums of independent displacements, then their addition
is represented by

p1+ p2= (a1+ a2)+ (b1+ b2)+ · · · . (6)

Grassmann demonstrates that a system of orderm can be generated from any collection of
m independent displacements, and in the course of this he presents what is now recognized
as one of the main theorems dealing with dimension of a vector space: if a system of order
m is generated bym independent extensives then the system cannot contain a system of
independent extensives of order greater thanm (art. 20).

Chapter One concludes with examples of applications in mechanics along the lines of
those outlined in his earlier work on the theory of tides. Here Grassmann reiterates that
brevity is not the most important advantage of his new subject, rather it is that each calcu-
lational step is a ‘pure expression of the corresponding conceptual step’ (art. 27).

Multiplication is introduced in the next chapter and motivated by considering a linear
displacement being shifted along another in the same fixed plane and thereby sweeping
out a parallelogram. Two such areas will have the same sign ‘if, in passing from the di-
rection of the moved displacement to the direction of that constructed by the motion, both
inflect to the same side (for example, to the left), but opposite signs if they are oppositely
inflected’ (art. 28). Considered as a connection between the moved displacement and fixed
displacement, this notion is shown to have the distributive properties described above and
thus to qualify as multiplication. With this as a concrete example, Grassmann proceeds to
formally develop the general notion of ‘outer multiplication’ which, in addition to the left
and right distributive properties and associativity, have the properties thatab =−ba and
aa = 0 for extensivesa andb. One of the applications making use of this multiplication is
to solve systems of linear equations (arts. 45, 46).

Chapter Three extends the notion of addition. Up to this point the extensives being added
were of the same order whether displacements(first order) or products of displacements
(higher orders). Here Grassmann develops what it means to add extensives of different
orders and makes the definition hinge on their common factors of lower order. He regards
his most dramatic application of the ideas of this chapter to be in moment problems in
mechanics where the collective moment of several forces with respect to a point can be
represented as the sum of all the individual moments with respect to that point.

The analytic connection corresponding toouter multiplication is outer division. In
Chapter Four the general procedure for defining division is followed, namely as the deter-
mination of one factor in terms of the product and the other factor. Here there are pitfalls
in looking to arithmetic for too much guidance even if the results in the end appear closely
analogous. The main difference is that the numerical magnitudes for Grassmann are de-
veloped as quotients of extensives rather than built up from discrete numbers as arithmetic
might be built up from the integers.
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The last chapter of Part I is concerned with solving equations involving the entities
developed thus far. It introduces the process of projection (‘Projektion’) or its more general
version, shadow (‘Abschattung’).

Part II deals with ‘elementary magnitudes’and resembles in some aspects A.F. Möbius’s
barycentric calculus. Though developed independently of Möbius and in a more general
way, it too can be interpreted geometrically as a system consisting of weighted points
in space and operations on them. The elementary magnitude of weight zero is shown to
be interpretable as a displacement. Theoperations from Part I are given a meaning for
these elementary magnitudes and a new product is introduced. Grassmann first reminds
us that the outer product was essentially characterized as having a non-zero result when
the factors were mutually independent (i.e. ‘outside’ of eachother) and zero if they were
dependent. The new, regressive (‘eingewandte’) product allows for the possibility of a non-
zero result for dependent factors. Since higher-order factors can have lower-order common
components there is actually a range of regressive products corresponding to the range of
possible orders. The key to establishing rules for this multiplication is the relation between
the orders of the step common to the factors and the order of the nearest step covering
the factors. Here Grassmann gives the relationship which, in modern linear algebra, would
express the relationship between dimensions of subspaces: the dimension of the sum of two
subspaces plus the dimension of their intersection is equal to the sum of their dimensions
(art. 126).

Grassmann’s definition of division with respect to a ‘system’ considers that ifBC =A
thenC, written as the expressionA/B, can be regarded as a quotient but only with the
understanding that the ‘complete’ quotient involves a component which is dependent on
B (art. 141). This complete quotient, which he writes asA/B + 0/B, has been taken by
later commentators as an expression of abstraction (i.e. an equivalence class). John Venn
noted in hisSymbolic logic that this notion anticipated almost exactly the same form of
expression in Boole ([Venn, 1881, 204]; compare §36.7).

The final section of the work is entitled ‘Note on open products’ (art. 172) and con-
tains what J.W. Gibbs referred to as ‘the key to the theory of matrices’ [Gibbs, 1891, 81].
Gibbs argued that the later work of Cayley and Sylvester in developing an algebra of ma-
trices was anticipated, and even treated in a more general fashion, in this ‘note’ to the
Ausdehnungslehre.

4 A MUTED RECEPTION

Grassmann sent copies of his new publication to several mathematicians including the
Frenchman B. de Saint-Venant (whose work Grassmann had read), and the most renowned
mathematician of the time, C.F. Gauss. Not knowing Saint-Venant’s address, Grassmann
sent the book through A.L. Cauchy who seems never to have sent it on; at least Saint-
Venant later informed Grassmann that he had never received it. It was of some concern
to several mathematicians acquainted with theAusdehnungslehre that shortly afterwards
Cauchy presented his ‘clefs algébriques’, which bore a striking resemblance to parts of
Grassmann’s work. Though the issue of possible plagiarism was brought before the French
Academy of Sciences, there was no resolution of the question. Gauss, on the other hand,
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courteously replied that he had skimmed through the book but because of the press of
other work he could not find the time that evidently would be required to fully understand
it. Grassmann’s friend Möbius, whose work was so closely related to his program, had to
admit that he found theAusdehnungslehre too philosophical. No reviews or notices of the
work were published.

Möbius did, however, encourage Grassmann to submit something for the Jablonowski
Science Society prize, which was offered in 1845 for a work that would help demonstrate,
in effect, the feasibility of the geometrical calculus envisioned by Leibniz whereby geomet-
rical objects and their relationships were represented by simple symbols without reference
to the magnitudes of lines or angles. Grassmann’sGeometrische Analyse (published with
an introduction by Möbius in 1847; reprinted inWorks, vol. I, part 1) won the prize, and
the fact that he was the only contender did not detract from the boost that this gave to the
Ausdehnungslehre upon which his prize work drew. It was on the basis of this work, for
example, that Luigi Cremona in Italy publicized Grassmann’s work in 1860.

The only mathematician whose work came close to competing with Grassmann’s was
that of the Irishman W.R. Hamilton. As the discoverer of quaternions in 1843 (§35) he
was an attentive reader when he came across theAusdehnungslehre in 1853. Hamilton’s
annotated copy is in the Graves Collection in the library of University College London,
bound with Hamilton’s copy of Möbius’sDer barycentrische Calcul (1827).

Copies of the 1844 edition are rather scarce since the publisher shredded their stock
of unsold copies fairly soon. It should be kept in mind that the means for communicating
mathematical research in Europe in the 1840s were limited compared with the situation a
few decades later when journals and societies began to proliferate.

5 EVENTUAL RECOGNITION

On the basis of numbers of publications Grassmann could appear to have turned away
from theAusdehnungslehre after its publication and towards philology, and Sanskrit studies
in particular. Though this might be understandable in view of the poor reception given
theAusdehnungslehre, he actually managed to revise its presentation and demonstrate its
applicability in a wide range of subjects. Inhis search for such applications in the 1850s
he made some significant contributions to colorimetry. In 1861 he published a completely
rewritten version that dispensed with the philosophical, pedagogicalunderpinnings that he
tried to integrate into the original presentation. (This version is often listed as 1862, the title
page date, but it is known that Möbius received a copy in October 1861. It is reprinted in
Works, vol. I, part 2.) In particular, he utilized a Euclidean style of presentation, precisely
what he had tried to avoid in 1844. This streamlined version provided an introduction to
theAusdehnungslehre for many who never looked at or even knew about the first version.
Hermann Hankel made extensive and admiring use of the 1861 version in his influential
Theorie der complexen Zahlensysteme (1867). From Hankel, Felix Klein came to learn of
Grassmann, and Klein in turn brought Grassmann to the attention of Alfred Clebsch. He
and, especially after his death in 1872, his students were a significant force in propagating
the ideas of theAusdehnungslehre. Among them, in addition to Klein, were Paul Gordan,
Alexander Brill, Olaus Henrici, Max Noether, and Ferdinand Lindemann [Tobies, 1996].
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Thus Grassmann, in the last years of his life, saw theAusdehnungslehre being recognized.
He revived the original version in a new edition that appeared posthumously in 1878.

After Grassmann died in 1877 his work gradually became known beyond Germany.
The English mathematician W.K. Clifford predicted in 1878 that theAusdehnungslehre
‘will exercise a vast influence upon the future of mathematical science’ [Clifford, 1878].
The American philosopher and mathematician C.S. Peirce published a note relating Grass-
mann’s external and internal products to quaternions and to Peirce’s own algebras [Peirce,
1877–1878]. Paul Carus, founding editor of the Open Court Press in the United States,
was a student of Grassmann in Szczecin, and claimed inspiration from Grassmann’s math-
ematical work in his own work on the unity of science and religion [Carus, 1889]. In 1898
the Englishman Alfred North Whitehead based hisA treatise on universal algebra largely
on applications of Grassmann’s calculus of extension to various geometries. Thanks to
these and other seminal writings, by the end of the 19th century theAusdehnungslehre
was generally recognized as one of the principal mathematical treatises in the history of
mathematics.

At the instigation of Klein, Grassmann’s mathematical and physical works were col-
lected together in theWerke, a model of a scholarly edition. Even if the principal editor,
F. Engel, was not particularly sympathetic to Grassmann’s full program, he enlisted the
help of the most qualified ‘Grassmannians’ of the time in producing a worthy monument
and resource. Its annotated edition of the 1844Ausdehnungslehre, for example, provides a
collation with the 1878 version.

Much of theAusdehnungslehre of 1844, especially if seen from the standpoint of the
1861 rewriting, contains abstract notions, such as a not necessarily commutative ring, that
are generally thought of as 20th-century constructions. Gian-Carlo Rota enjoyed telling
how the ‘discoveries’ of his and some other modern mathematicians working in com-
binatorics were, as he determined by his own reading of the 1861 version of theAus-
dehnungslehre, actually rediscoveries [Stewart, 1986]. One commentator has remarked that
practically all Grassmann lacked relative to the more modern developments was the lan-
guage of sets [Fearnley-Sander, 1979]. In addition to so many ideas ahead of their time,
the formal aspect of Grassmann’s approach, relying as it does on the implicit definition
of mathematical entities, can be viewed as a move in the direction of modern axiomatics.
But, as indicated above, it seems that Grassmann himself would likely not have favored
characterizing the nature of mathematics solely in terms of axiomatic developments. Like
many other classical works in the history of science, the 1844Ausdehnungslehre carries
within itself a separate world with a life of its own.
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CHAPTER 33

KARL GEORG CHRISTIAN VON STAUDT,
BOOK ON PROJECTIVE GEOMETRY (1847)

Karin Reich

In this book Staudt tried to ‘purify’ the principles of projective geometry by removing all
metrical notions. Thereby he also raised synthetic geometry to a new level. He laid empha-
sis on involution, with his influential quadrilateral construction. Together with Poncelet,
Gergonne and Steiner, he belongs to the founders of projective and synthetic geometry.

First publication. Geometrie der Lage, Nürnberg: Verlag von Bauer und Raspe (Julius
Merz), 1847. Also Nürnberg: Verlag Fr. Korn, [no date]. vi+ 216 pages.

Italian translation. Geometria di posizione (trans. M. Pieri), Turin: Fratelli Bocca, 1889.

Related articles: Monge (§17), Poncelet (§27), Klein (§42), Hilbert on geometry (§55).

1 BACKGROUND AND BIOGRAPHY

Building upon some aspects of the descriptive geometry of Gaspard Monge (1746–1818)
and his followers, Jean Victor Poncelet (1788–1867) developed a new view of geometry
in his Traité des propriétés projectives des figures of 1822, with his emphasis upon poles,
polars, reciprocal polars, duality and classes of curves (§27). While Poncelet thought that
he was the first who had recognized the importance of duality, Joseph Diaz Gergonne
(1771–1859) claimed priority. The main contribution of Jakob Steiner (1796–1863) was
the projective generation of the conic sections, in his book [Steiner, 1832]. None of these
geometers was able (or maybe willing) to present a consequent development of projective
geometry, nor were their theories free from metrical considerations. It was von Staudt was
the first who adopted a fully non-metrical approach.

Karl Georg Christian von Staudt was born on 24 January 1798 in Rothenburg ob der
Tauber, south of Würzburg in southern Germany. He studied at the University of Göttin-
gen, matriculating on 5 May 1819, when Carl Friedrich Gauss (1777–1855), professor of
astronomy and director of the observatory, became his main teacher. At first mainly inter-
ested in astronomy, von Staudt received a doctorate degree from the University of Erlangen
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in this field in 1822. In the same year he qualified as a mathematics teacher at the University
of Munich. At first he taught at a secondary school in Würzburg, but he also gave lectures
at the University. During this time he published an essay [Von Staudt, 1825] on the section-
ing of the circle following the method of Gauss. In 1827 Staudt moved to Nürnberg where
he gave lectures at a secondary school and at the polytechnical school. He also published
an article [Von Staudt, 1831] on curves of the second order, which was his first step in the
direction of his later researches. In 1835 he was appointed professor of mathematics at the
University of Erlangen, a position that he held until his death on 1 June 1867. On his life
see especially [Böhmer, 1953].

2 VON STAUDT’S ‘GEOMETRY OF POSITION’

2.1 A tough textbook. The book under notice here was von Staudt’s initial publication
in projective and synthetic geometry. It is not clear why it came out from two different
Nürnberg publishers, one with an undated title page. The texts of the two printings are
identical, and the author dated his preface to August 1847.

Although in that preface von Staudt conveyed the impression that he was publishing
a textbook, he rendered his theory in a very strict form, so it is hard to read and under-
stand. There are no illustrations, applications, sketches, or references to other work, nor
is a foundation laid down on axioms; and many new technical terms are used, not al-
ways with explanation. His title, ‘Geometry of position’, surely alludes to that of Lazare
Carnot’s pioneering volumeGéométrie de position of 1803. The contents of the book are
summarised in Table 1; on its historical context and initial influence, see especially [Kötter,
1898, pts. 2–3].

Von Staudt was convinced that his geometry of position was a pure projective geometry,
more fundamental than other forms of geometry in being free from metrical considerations
or of measurement, especially distance and congruence, and notions dependent upon them,
such as cross-ratio. His work has a topological feel, as its title implies, although he left
intuitive the underlying assumptions (compare §76).

2.2 Preliminary definitions. In chs. 1–4 von Staudt introduced the elements of his
geometry, that is, angles, points, lines, surfaces and planes, and solids. He discussed ‘bun-
dles of straight lines’ (‘Strahlenbündel’), co-punctual collections of straight lines in space;
a planar section of such a bundle was a ‘bushel’ of straight lines (art. 22). Among other no-
tions, a solid angle was part of a half-bundle (art. 11), and a bushel of planes was specified
by the property of sharing a common straight line (art. 23).

Ch. 5 was devoted to vanishing elements such as vanishing points, the vanishing line and
the vanishing plane. This means that in thecase of two straight lines, placed on the same
plane, either they intersect in a point; or they are parallel lines, that is, they have a common
direction and intersect in an infinitely distant ‘vanishing’ point. Von Staudt assumed that
the locus of all vanishing points in a plane was a vanishing straight line; all vanishing
points and lines were located on an infinitely distant plane (arts. 54–57). He also worked
with parallel bundles of straight lines (art. 42). His theory assumed Euclid’s parallel axiom
(art. 31).
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Table 1. Contents by chapters of von Staudt’s book.

Ch. Page Art. Topics
iii–vi Preface, contents.

1–2 1 1 ‘Bundles’ and ‘bushels’ of straight lines. Plane-bushels. Space-
and surface-angles.

3 13 31 ‘On parallels’.
4 18 43 ‘On n corners,n edges and polyhedra’.
5 23 54 ‘Infinitely distant elements’.
6 30 66 ‘Law of reciprocity’.
7 36 79 ‘On n corners,n edges etc. in another denotation’
8 43 93 ‘Harmonic configurations’.

9–10 49 103 ‘Projective relationships between uniform configurations’.
10 60 121 ‘Projective relationships between fundamental configurations

of the second level, and between spatial systems’.
11 72 139 ‘On lines, surfaces, and configurations related to them’.
12 81 153 ‘Division of closed lines, surfaces, etc. into such of even and

into such of odd order’.
13–14 90 169 ‘On plane figures and configurations related to them’; and for

bodies.
15–17 110 197 ‘Reversion elements’, ‘Involution’ and ‘Involutory systems’.
18 131 234 ‘Polar systems in the plane and in the straight-line bundle’.
19 137 246 ‘Curves and conic surfaces of the 2nd order’.
20 149 264 ‘Projective relationships between curves of the 2nd order’.
21 165 284 ‘On the number of common points and tangents of two curves

of the 2nd order’.
22–23 172 296 ‘On lines of the 2nd order in general’; exercises.
24 190 318 ‘Polar systems in space’.
25 197 328 ‘Surfaces of the 2nd order’.
App. 203 336 Similarity and affinity between figures. [End 216, art. 360.]

2.3 The ‘principle of duality’. Von Staudt called it ‘law of reciprocity’ (ch. 6); it is
a main idea in projective geometry. According to him (and his predecessors) points and
planes are dual terms; in any theorem one can interchange the words ‘point’ and ‘plane’,
and also ‘connection’ and ‘intersection’, and obtain a new theorem. Poncelet initiated the
practise of writing dual theorems in two parallel columns on the page, and Steiner also
adopted it. In his foreword von Staudt pointed out that the law of reciprocity is a very
useful and attractive feature for pupils in understanding geometry; so he too presented
many theorems and exercises this way, for example (arts. 66, 67):

α1) Through two pointsA, B a straight
line AB is determined, through which
both points go. [. . .]

α2) Through two planesA,B a straight
line AB is determined, in which the two
planes intersect. [. . .]

δ1) Through two straight lines, which
have a point in common, lay a plane.

δ2) Find the point of intersection of two
straight lines that lie in some plane.
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2.4 Harmonic points and projective relationships. Among the ‘n-corners’ and ‘n-
edges’ that von Staudt studied, quadrangles and quadrilaterals were the most interesting.
Four coplanar points (vertices), no three of which were collinear, and their six connecting
lines were said to form a complete quadrangle, if two straight lines which have no vertex
in common, intersect in a diagonal point; there were three diagonal points which are not
collinear. So each point of a quadrangular set was uniquely determined by the remaining
points. Equivalent properties were true for the dual case of quadrilaterals. On this basis it
was possible to define a ‘harmonic configuration’ (‘harmonisches Gebilde’): four collinear
points, of which two are a pair of opposite vertices of a complete quadrilateral and the
other two are the intersections of their diagonals with the other two diagonals (art. 93).

Two fundamental one-dimensional configurations were defined as projective when the
harmonic configuration of one of them could be set into one–one correspondence with
the harmonic configuration of the other (art.103). This definition of projectivity was very
original since it did not involve the notion of distance; it could easily be extended to spatial
systems (ch. 10). His main theorem stated that a projectivity was determined when three
points on one of the straight lines and the corresponding three points on the other straight
line were given (art. 110).

Further, von Staudt defined a collineation as apoint–point relationship, transforming a
straight line into a straight line while preserving harmonic configurations. A collineation
was determined when two corresponding quadrilaterals were given (arts. 123–130). He also
considered collineations in the case of spatial systems (arts. 132–136). The correlation is
a second kind of a two-dimensional projectivity; there is a point-straight line relationship
or the correlation between planes, using the relationship of four points in general position
on a plane to four corresponding points or straight lines on another plane or on the same
plane.

2.5 Involutions and polarity. The term ‘involution’ was due to Gerard Desargues in the
17th century. Von Staudt defined involution as a correspondence between the elements of
one configuration to the other and vice versa, so that one returned to the original elements
(art. 213). In this case the two configurations were called ‘involutory’. There were involu-
tory systems that were also collinear; non-collinear involutory systems were called ‘polar
systems’ (art. 226). In a plane polar system every point in relation to a straight line was
called a ‘pole’, and every straight line in relation to a point a ‘polar’. Of special interest
were the so-called ‘polar triangles’, which were determined by the polars of the vertices
and the poles of the sides (arts. 236–243). He proved the following theorem: if there is a
polar triangle in a plane and a pointP , not located on any side of the triangle together with
a straight linep, not coinciding with any of the vertices, then a polar system is determined
(art. 237). This result laid the basis for a detailed theory of conic sections and second-order
surfaces in general.

2.6 Conic sections. Von Staudt discussed conic sections either as loci of self-conjugate
points or as an envelope of self-conjugate straight lines (arts. 247–248); thus a conic com-
prised not only the locus of a point but also the corresponding tangents. The conic was an
ellipse when the curve did not have a common point with the vanishing line of the plane;
it was a parabola, when the curve touched this vanishing line in one point; and it was a
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hyperbola, when the curve intersected the vanishing line in two points. Every complete
n-corner inscribed in a second-order curve defined a completen-lateral, its sides being the
polars of the vertices and the vertices being the poles of the sides (art. 250).

In the following pages von Staudt treated many details about the properties of triangles,
5-corners, and so on; for example, the vertices of those located on a second-order curve
as well as special properties of second-order curves as projective relationships, common
points, and tangents of two curves. In his lastchapters he investigated polar systems in
space and second-order surfaces, including a neat system of classifying types of singular
points on space curves (points of inflection, cusps and horn angles) using plus and minus
signs (art. 205).

3 ON VON STAUDT’SBEITRÄGE ZUR GEOMETRIE DER LAGE

About ten years later von Staudt presented avoluminous continuation under the above title,
publishing it in three volumes in 1856, 1857 and 1860. He gave a projective foundation of
the complex number field and developed the first complete theory of imaginary points, lines
and planes in projective geometry [Fano, 1907,pt. 4]. In detail, he defined an elliptic point
involution as a complex point; the same involution with the opposite sense was defined
as the conjugate point. There were corresponding definitions of complex lines and planes.
The ‘cast’ or ‘throw’ (‘Wurf ’) was a number defined by four collinear points, four lines of
a pencil, or four coaxial planes. He managed to create an algebra of throws, defining their
sums and products, although the ‘numbers’ involved were just signs for representation that
were defined in geometrical terms (0, 1 and∞ are usually used for three points). He also
devised a means of defining homogeneous coordinates of the points of space by means of
his harmonic configuration [Torretti, 1978, 143–146].

Von Staudt’s notions usually drew upon preceding ones in interesting and often novel
ways. He was ‘the most original and profound of the projective geometers of the German
school. [. . .] his great passion [. . .] was for unity of method’ [Coolidge, 1945, 61].

4 IMPACT

As we have stressed, von Staudt is not easy to read, and the reception of his books was
not rapid. But their importance was recognized, especially for making clearer than had
anyone else the gulf between metrical and projective notions. Arguably his best received
contribution was the harmonic configuration (section 2.4); it became known as ‘the quadri-
lateral construction’, and was used in investigations of properties, especially invariance, of
cross-ratios (a notion that von Staudt himself avoided, as we saw).

Von Staudt’s work entered a rich melee of developments in geometries, where the non-
Euclidean versions were also gaining much attention (§39.3–4, [Schönflies, 1909]; [Scriba
and Schreiber, 2000, ch. 7]). An important representative of these joint concerns is Felix
Klein (1849–1925), who removed von Staudt’s dependence upon Euclid’s parallel axiom,
and added limit-points to his theory (compare [Klein, 1926, 132–140]; and §46.2). Von
Staudt’s work played a role in David Hilbert’s first thoughts on geometry in the early 1890s
(§55.3).
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Among Italians Corrado Segre (1863–1924) extended projective geometry in various
ways, including consideringn-dimensional spaces and using bicomplex numbersi andj
whereij = j i and i2 = j2 = −1 [Segre, 1889]; while around 1897 Mario Pieri (1860–
1913) axiomatised von Staudt’s geometry, including axioms to handle continuity without
invoking any new primitive notions [Marchisotto, 1995]. Another line of influence there
was his use of collineation (section 2.4), which gave a possible new basis for projective
geometry. Thereafter von Staudt became part of the heritage for Italian geometry ([Bot-
tazzini, 2001]; compare §62).

However, supporters of synthetic geometry always had to confront algebraic projec-
tive geometers such as A.F. Möbius and then Julius Plücker, and their followers. From the
1820s they had been using algebra to express and study certain properties, such as con-
struing non-intersecting curves as intersecting at points given by complex numbers, and
indeed in due course reworking von Staudt’s complex projective geometry itself [Kötter,
1898, esp. chs. 23, 33, 36 and 37; Fano, 1907].

The figure upon whom von Staudt’s influence was most marked was Theodor Reye
(1838–1919). He even gave his ownbook virtually the same title:Die Geometrie der
Lage (2 volumes, 1866–1868). Reye’s initial source was Karl Culmann (1821–1881), who
guided him towards von Staudt’s work, and he adopted parts of both men’s theories. He
treated linear manifolds of projective planepencils and of collinear bundles or spaces, and
founded point-series geometry. His book, much easier to read than von Staudt’s, became
so well known that it had five editions, up to 1923. In his foreword Reye emphasized the
high quality, importance, and elegance of von Staudt’s contributions to synthetic geometry.
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CHAPTER 34

BERNHARD RIEMANN, THESIS ON THE
THEORY OF FUNCTIONS OF A COMPLEX

VARIABLE (1851)

Peter Ullrich

In his doctoral thesis, Riemann contributed to the foundations of complex function theory
with the notion of a function of a complex variable and a discussion of the concept now
called a Riemann surface. He characterized functions not by analytic expressions but by
their properties, such as the nature and location of their singularities; and in application he
gave his mapping theorem, that each simplyconnected (bounded) domain can conformally
be mapped onto the unit circle. His approach met stiff competition from a quite different
approach launched around the same time by Weierstrass.
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Related articles: Cauchy on complex-variable analysis (§28), Jacobi (§31), Poincaré (§48).

1 THE THEORY OF FUNCTIONS OF A COMPLEX VARIABLE
BEFORE RIEMANN

1.1 Complex numbers. Complex numbers had entered mathematics in 16th-century
Italian algebra in connection with the resolution of equations of the 3rd and 4th degree as
purely formal expressions. Even in 1702 Gottfried Wilhelm Leibniz (1646–1716) would
call them a ‘subtle and wonderful resort of the divine spirit, a kind of hermaphrodite be-
tween existence and non-existence’. One motive to give these numbers a firmer place was
the conviction that they could be used in order to find roots for any (non-constant) poly-
nomial equation. This ‘fundamental theorem of algebra’, at first only hypothetical, was
stated in 1629 by Albert Girard (1595–1632) and in 1637 by René Descartes (1596–1650)
(§1).

The extension of non-algebraic functions to complex arguments, however, turned out to
be a delicate enterprise. In the years 1712–1713 a controversy arose between Leibniz and
Johann Bernoulli (1667–1748) on the values of thelogarithms of negative and imaginary
numbers, which was not resolved. Only in 1749 did Leonhard Euler (1707–1783) show
that both Leibniz and Bernoulli were wrong with their (implicit) assumption that the rules
for the calculation of logarithms of positive real numbers still hold for other arguments,
and he showed that in the complex domain the logarithm becomes multi-valued. One year
earlier, in his textbookIntroductio, Euler had published his famous formula

eix = cosx + i sinx, (1)

which sets up a connection between the exponential and the trigonometric functions for
complex arguments (§13.2.4).

1.2 Elliptic and Abelian integrals. In 1742 Euler also gave an idea of a proof of the
fundamental theorem of algebra. But what pushed forward even more the theory of func-
tions of a complex variable was the research that he started in 1752 on elliptic integrals,
namely, integrands of the form

∫
1/
√
p(t) dt , wherep(t) is a polynomial of degree� 3.

The primitives of these integrands could not be written in closed form, but it was known
that, in the case of real coefficients inp, their inverse functions have a real period. The fact
that they also have a second, complex period was not stated by Euler but found, indepen-
dently, by Carl Friedrich Gauss (1777–1855) in 1797 and, later on, by Niels Henrik Abel
(1802–1829).

Although Gauss did not publish his results, and Abel and Carl Gustav Jacobi (1804–
1851) would at first reduce complex quantities to pairs of real ones, their later papers
explicitly referred to complex functions of a complex variable that were expressed, for ex-
ample, as infinite series or infinite products. In particular, these functions appeared when
Abel and Jacobi generalized their studies to ‘Abelian integrals’ (as baptizised by Jacobi),
that is, integrals of the type

∫
q(f (t), t) dt : heref is an algebraic function fulfilling a

relation P(f (t), t) ∼= 0, whereP is a non-zero polynomial in two variables (compare
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§31.5). Even more, in 1834 Jacobi felt forced to consider functions of several complex
variables.

These Abelian integrals and the functions pertaining to them were a highly prestigious
area of research during the 19th century. Both Karl Weierstrass and Bernhard Riemann set
up their research on functions of complex variables in order to find means of handling such
objects; for example, to obtain an analytic description of algebraic curves.

1.3 Augustin Louis Cauchy (1789–1857). Another source of the theory of complex
functions was the wish to determine values of real integrals: (certain) pairs of real inte-
grals were interpreted as one complex integral (for example, with the help of (1)).

Cauchy was the first to develop a theory of such complex integrals (§28). In his ‘Mé-
moire sur les intégrales définies’ (1814, published 1827) he considered only pairs of inte-
grals with real limits; but in his bookletMémoire sur les intégrales définies prises entres
des limites imaginaries (1825) he defined complex path integrals in a way analogous to real
ones and explained how this notion can be reduced to real path integrals. He also stated
his theorem concerning the vanishing of the integral of a complex differentiable function
along a closed path in this paper. In a paper of 1826 he extended this theory to the calculus
of residues, which has always been the most important way to calculate real integrals with
the help of complex path integrals.

By Cauchy’s integral formula one can express the value of a complex (differentiable)
function ƒ at a point by means of an integral along a path running once around that
point; for example, along the boundary∂Br(c) of a discBr(c) centered at the pointc,
namely:

f (c)= 1

2πi

∫
∂Br (c)

f (z)

z− c dz. (2)

This is first stated in a paper of 1831 ‘Sur la mécanique céleste et sur un nouveau calcul
appelée calcul des limites’, but became known to a wider audience only in 1841.

Cauchy did not study the multi-valuedness of the integrand (only that of the integral),
and so missed a chance to use algebraic theory to understand the nature of branch points.
But his younger compatriot Victor Puiseux (1820–1883) did enter this territory with papers
of 1850 and 1851, just when Riemann was preparing his thesis, and produced a theory
similar to analytic continuation [Brill and Noether, 1894, 190–202].

1.4 Carl Friedrich Gauss. Cauchy, however, was not the first with his researches. Al-
ready Euler, Pierre Simon Laplace (1749–1827) and Siméon Denis Poisson (1781–1840)
studied integrals in the complex domain; but their efforts were rather heuristic. By contrast,
a letter written to Friedrich Wilhelm Bessel (1784–1846) on 18 December 1811 shows that
Gauss was then in possession of the Cauchy integral theorem (and also of the complex
plane). During his lifetime, however, he did not publish his results either on elliptic func-
tions or on integration in the complex domain.

Gauss had taken his doctorate in 1799 with a thesis on the fundamental theorem of
algebra, in which he gave a proof, correct up to the current foundations of topology, the
first one not attempting to construct the required root but just trying to show its existence.
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During the next half century he published a further three proofs; the second one of 1816
is strict even by modern standards [Gauss, 1890]. Furthermore, in his paper [Gauss, 1825]
on the making of maps, submitted for a competition at the Royal Academy of Sciences at
Copenhagen, he proved that the maps of plane areas to plane areas that preserve angles and
orientation locally around each point are precisely the complex differentiable functions of
a complex argument; however, he did not use the language of complex analysis.

1.5 Karl Weierstrass (1815–1897). Although eleven years older than Riemann, Weier-
strass started to publish his results on complex analysis in mathematical journals only three
years after Riemann had written his doctoral thesis. They were both concerned with its ap-
plications to elliptic and Abelian integrals; indeed, Weierstrass had been inspired partly by
the work on elliptic functions of his teacher at Münster University Christoph Gudermann
[Manning, 1975]. His starting point for the definition of a function of acomplex variable
was power series (as they had been earlier in the works of Abel and Jacobi). As early as
1841–1842, but then unpublished, he was able to show first fundamental results for these
series, for example his theorem on double series: that a uniformly convergent series of
power series converges again to a power series. Furthermore, he explained even that early
how one can define global functions from locally convergent power series by the process
of analytic continuation [Ullrich, 2003].

At this stage of his life Weierstrass was alittle-known school-teacher. But from the mid
1850s onwards he gained great fame as professor in Berlin University, with influential lec-
ture courses and also a modest number of publications. We shall discuss the consequences
in section 5, after we pick up Riemann’s career.

2 BIOGRAPHY OF RIEMANN

In his short life Bernhard Riemann (1826–1866) contributed in fundamental ways to many
areas of mathematics, especially real- and complex-variable analysis, analytic number the-
ory and several areas of mathematical physics. Born to a Protestant minister in Breselenz
south–east of Hamburg, he studied at Göttingen and Berlin Universities between 1846 and
1851. At Göttingen he came under the influenceof Gauss: he became an extraordinary
professor there in 1857 and full professor (actually in astronomy and mechanics) in 1859,
when he succeeded J.P.G. Lejeune-Dirichlet (1805–1859), who himself had more or less
succeeded Gauss. Always frail in health, Riemann spent periods from 1862 onwards in
Italy with his family (he married that year and had a daughter), where he made impor-
tant contacts with Italian mathematicians, as we shall see in section 6. Nevertheless, he
died there in July 1866, a few months before his 40th birthday. There is no fitting biogra-
phy, though the recollections [Dedekind, 1876] are precious. Many aspects of his work on
analysis are reviewed in [Laugwitz,1996]; see also [Bottazzini, 1986, ch. 6].

Riemann is represented in this book by his work prepared for doctorates at Göttingen
University. For hisHabilitation, the higher doctorate, in 1854 he wrote two essays, one
on the foundations of geometry and the other on trigonometric series. He did not publish
them, but they both made huge impacts when they appeared in 1867 under the editorship of
his friend and fellow Gauss student Richard Dedekind (1831–1916) (§38, §39). Dedekind
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seems also to have arranged the reprint at that time of the writing that is our concern here:
theDissertation that Riemann had submitted in 1851.

3 THE THESIS

Riemann seems to have chosen the topic of complex analysis for himself. At Berlin he was
introduced by Dirichlet to the writings of the French analytic school, in particular Cauchy.
There he also seems to have begun studying [Gauss, 1825]. The personal influence of
Gauss at Göttingen, however, is not really clear: Dedekind [1876] gives the impression
that Riemann had finished his thesis without any direct advice from Gauss, whereas Enrico
Betti (1823–1892) claimed that Riemann formed the idea of his cuts in a private conversa-
tion with Gauss. At any rate, the only two sources cited in the thesis are [Gauss, 1825] and
[Gauss, 1828]. Riemann appears to have defended it in December 1851.

3.1 Foundations of the complex-variable function. Compared to his forerunners Rie-
mann offered a new foundation for the subject in his thesis, starting out not from an analytic
expression but just from assuming that the complex functionw = u+ vi of the complex
variablez = x + yi was differentiable (he said ‘continuous’, and ignored the question of
existence of the derivative). The value of the derivative was given by

du+ dvi
dx + dyi =

( du
dx
+ dv
dx
i) dx + ( dv

dy
− du
dy
i) dy i

dx + dy i ; (3)

and it would be independent of the values ofdx anddy if and only if the coefficients of
dx anddy i were equal, so that

du

dx
= dv
dy

and
dv

dx
=−du

dy
. (4)

(He wrote the differentials as ‘d ’s; in the editions of his works they are rendered as ‘∂ ’s.)
It also followed that bothu andv satisfied Laplace’s equation (arts. 1–4).

Riemann’s approach brought complex function theory to well-known areas of real-
variable mathematics: conformal mapping, especially in the paper [Gauss, 1825], which
he cited; and all sorts of applications, especially potential theory. On the other hand, the
equations in (4) implied that a complex (differentiable) function is already determined by
its real part. They are now associated with him and Cauchy, but they play a still greater role
in this new theory than they did in the Cauchy’s, where their failure stimulated the study
of singular integrals (§28, (7)). Interestingly, [Cauchy, 1851] had obtained (4) directly by
letting z slide to the limit down thex and they axes, shortly before approving for the
Académie des Sciences a paper by Puiseux mentioned in section 1.3; Riemann did have
some knowledge of recent work by Cauchy and Puiseux.

3.2 The Riemann surface. The next step was quite original (even if in some notes left
behind by Gauss one can find first attempts in this direction). In order to consider elliptic
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or Abelian integrals one has to handle algebraic and therefore often multi-valued func-
tions. Instead of just treating each value separately in a purely analytical way, Riemann
launched the idea of covering (parts of) the (finite)z planeA multiply by surfaces that
are now named after him.A now took a finite surface (‘Fläche’) T over it, upon which
complex points could sit. He imposed the condition that the (one-layer) parts of the surface
(‘Flächentheile’) do not meet along a line. From this he deduced that on both sides of a
line in the complex plane the number of parts of the surface lying above the plane is the
same; he also discussed how the different parts fit together and form winding points (‘Win-
dungspunkte’), that is, points about which a neighbouring point would have to complete
m � 2 revolutions on the surface before returning to its starting position. In order to lay
the basis of an integration theory on these surfaces he introduced the concept of ‘crosscuts’
(‘Querschnitte’); they divided the surface into simply connected (‘einfach zusammenhän-
gende’) parts, upon which functions admitted unique integration (arts. 5–6). The connec-
tivity (‘ Ordnung des Zusammenhangs’) of a surface was the minimal number of crosscuts
that would disconnect it.

The account is awe-inspiring but cryptic in the extreme; the topology was left entirely
intuitive, and the scope of the approach uncertain, especially relative to the properties of
functions that were then known. Exegeses of the theory would occupy mathematicians for
generations, with an important stimulus coming in the 1890s from Henri Poincaré (com-
pare §48) and in 1913 from Hermann Weyl (1885–1955) (section 5).

3.3 Functions and potentials. The rest of the thesis was devoted to the study of func-
tions on these surfaces, their characterisation and also their construction (arts. 7–11).
To this purpose, he relied on potential theory, especially relationships between surface
and contour integrals, as handled by George Green (§30) and others from the 1830s and
William Thomson a decade later (compare §40), and to some extent already in the elec-
trodynamics produced in the 1820s by A.-M. Ampère, and in some results of Gauss. It is
not clear how much of this earlier work Riemann knew, though he had definitely studied
[Gauss, 1839]; in particular, Green’s popularity dates largely from the 1850s. In any case
Riemann conceived of these integrals in terms of (usually) continuous functions defined
over surfaces and coverings and their boundaries.

Returning to (4), Riemann found conditions for the finitude and continuity ofw over
a surface; in particular, he proved the theorem on removable singularities named after
him (art. 12), and also the consequences for behaviour when a discontinuity occurred at
a valuez′ of z within a surface, whenw could be expressed in terms of finiteinverse
power series in (z− z′) (arts. 12–14). From this he deduced the expansion of the surface
at a branching point, as shown by Puiseux during the previous year. He was entering some
recent Cauchyesque territory concerningsingularities of functions, though Riemann made
no mention of it; of course Cauchy used no notions corresponding to the surface. Among
other results, he showed that ifw satisfied (4) and was not a constant function over some
surface, then it could not be constant along any line within it (art. 15).

Riemann then claimed that the integral

∫ [(
dα

dx
− dβ
dy

)2

+
(
dα

dy
+ dβ
dx

)2]
dT (5)
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defined over any part ofT , took a minimum value for functionsα that were discontinuous
only at isolated points at most, and were zero on the boundary ofT (art. 16). Again he was
in known territory; Green had made a similar claim in the 1820s, and later Riemann himself
called it ‘Dirichlet’s principle’ when he heard it used in Dirichlet’s lectures. While he
surpassed all predecessors in considering extensions of (5) to crosscuts and other variants
(arts. 17–18), and the types of discontinuity to which complex functions may be suspect
(art. 19), his use of (5) was to become a huge bone of contention in analysis, as we shall
see in section 5.

Nearing the end, Riemann reflected upon his theory, especially that it did not rely on an-
alytic expressions for functions of a complex variable but on their properties. This move let
him reduce ‘the number of determining components of a function’, to quote the title given
to the passage (art. 20) in the table of contents (which mostly stems from Riemann but is
not printed in the first two publications of the thesis). As an application of his approach he
gave a ‘worked-out example’, showing thattwo simply connected plane surfaces can al-
ways be made to correspond in such a way that each point of one corresponds continuously
with its image in the other, and so that corresponding parts are ‘similar in the small’, or
conformal; tacitly assuming that the complex plane was not under consideration, he took
the unit circle around the origin as the reference surface for what is nowadays called the
‘Riemann mapping theorem’ (art. 21).

4 RIEMANN’S PUBLICATIONS FROM 1857

The thesis had at least one contented reader:university examiner Gauss. who wrote a terse
but positive report [Remmert, 1993; Laugwitz, 1996, 124]. But there may not have been
many more readers: although aDissertation was a printed booklet, it was not usually pub-
lished or publicised in the normal way; the candidate had to pay for the print-run, and sales
and marketing were executed on an infinitesimal scale. So the first printing of Riemann’s
thesis consisted only of the obligatory copies he had to hand in at Göttingen University,
and a few copies for personal use.

But when Riemann passed hisHabilitation examination in 1854, he gained the right to
lecture at the university, and during the remaining 12 years of his life his teaching included
courses on complex analysis, function theory in general, elliptic functions, and differen-
tial equations. The contents of the thesis became known to a wider public especially from
1857. One paper published that year dealt with ‘Gauss’s series’, that is, the hypergeometric
function, cast in complex variables [Works, 67–87], which Gauss had handled in 1813; Rie-
mann extended his treatment to an axiomatically defined class of functions that he called
‘P ’. Also that year he published three short notes inJournal für die reine und angewandte
Mathematik on the main ideas of his thesis: the concept of complex function and (Riemann)
surface; integration on multiply connected domains; and the determination and especially
the definition of functions by given conditions [Works, 88–100]. He followed straight on
with a long paper on Abelian functions that made wide use of the thesis [Works, 100–144].

Two years later Riemann plunged into analytic number theory, and surfaced with his
most famous conjecture, still unresolved. It concerns the location in the complex plane of
the zeroes of the zeta function [Works, 145–153].
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5 THE REACTION OF WEIERSTRASS

In his main article of 1857 Riemann indicated how to solve the problems concerning
Abelian integrals; he knew, from an article of 1854, that Weierstrass was also working
on them. Weierstrass had prepared another paper on this topic, but he withdrew it from
the printer, not only because Riemann was prior to him but also since it was by no means
obvious how to translate the results found by one of them into the language of the other.
According to a story told by Arnold Sommerfeld (1868–1951), Weierstrass started an in-
tense study of Riemann’s doctoral thesis only in the 1870s, and he found difficulties with
the latter’s physical intuition [Bottazzini, 2002; Ullrich, 2003].

The difference between the two approaches isparticularly evident in their areas of com-
mon concern. For example, Weierstrass based his notion of analytic function on the princi-
ple of analytic continuation; Riemann, on the other hand, did use it sometimes, but only as
a technical tool [Neuenschwander, 1980]. To handle multi-valuedness, especially regard-
ing Abelian functions, Weierstrass reacted against Riemann’s surfaces and created a theory
of ‘analytic configurations’, where he took collections of pairs of variables related by such
functions and examined their various properties, sometimes using parametric representa-
tions of the variables [Ullrich, 2003].

In addition to such dissimilarities, there was one direct refutation, concerning Dirich-
let’s principle. Rumours against its use had been around at least as early as the late 1850s,
but Riemann did not attach great importance to its specific use in his existence proofs.
However, in 1870 Weierstrass made public a counter-example to the assumption that in-
tegrals like (5) took a minimum among the possible functions, so that arguments based
upon it were not secure. The consequences were felt most severely among practitioners of
the principle in potential theory in mathematical physics, but it also bore upon complex-
variable analysis; indeed, a further bringer of bad news was Riemann’s student Emil Prym.

6 THE POSITIVE RECEPTION OF RIEMANN’S THESIS

From the late 1850s Riemann began to gain followers abroad, in particular in Italy where
the state of his health forced him to retreat [Bottazzini, 1977]. His closest context there,
indeed friend, was Betti, who published a translation of the thesis in 1859 and began to
explore the topological wonders of the surfaces. Another fan was Felice Casorati (1835–
1890), whoseTeorica delle funzioni di variabili complesse of 1868 included not only mod-
ern theories but also a substantial historical account.

The most influential supporter of Riemann’s approach was the Göttingen professor Fe-
lix Klein (1849–1925), an enthusiast for geometry—for example, the newly fashionable
non-Euclidean kinds (compare §42). His own researches in function theory drew on sev-
eral aspects of Riemann’s work or their consequences as drawn by others [Gray, 1986]. In
addition to his technical work he published a short book explaining to a broader mathemat-
ical audience Riemann’s treatment of algebraic functions [Klein, 1882].

More general publicity was given during the 1890s by the newly formedDeutsche
Mathematiker-Vereinigung, which began the admirable practice of including survey ar-
ticles in its yearlyJahresbericht. The third volume contained a book-length account of
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algebraic functions, and Riemann featured more than any other single figure (includ-
ing Weierstrass), with detailed summaries of the thesis and the 1857 papers [Brill and
Noether, 1894, pts. 3–4]. They also reported on some Riemann manuscripts [ch. 5C];
and in 1902 one of the authors, Max Noether, co-edited a supplement to Riemann’s col-
lected works, which Dedekind and Heinrich Weber had produced in editions of 1876 and
1892, where a lot of pertinent manuscript material was published, especially some lecture
courses.

Meanwhile, Klein’s influence is evident again when from the mid 1890s he began to
organise theEncyklopädie der mathematischen Wissenschaften. The second Part of the
second ‘volume’ was devoted to complex analysis, and its opening article was given to the
American mathematician W.F. Osgood (1862–1943), whohad written hisDissertation at
Göttingen in 1890 on Abelian functions. Osgood [1901] exemplifies well the pragmatic
view of the varying approaches that many complex analysts seem to have adopted; using
each one according to the context as fitted mood or method. He started with Cauchy on
series expansions but soon brought in Riemann surfaces, and provided a substantial part
on ‘the geometric function theory’; but he then followed with a comparable one on Weier-
strass’s approach. The final part dealt with functions of several complex variables, where
Weierstrass and his followers were the only ones that had the adequate tools at hand at that
time.

In his article Osgood announced that he was preparing a monograph on the subject;
a largeLehrbuch der Funktionentheorie appeared in 1907, and thereafter in four further
editions up to 1928, the fourth onwards appearing in two volumes. Once again Riemann
fared well, with a substantial chapter on his surface, and other topics featured well. One
was the ‘logarithmic potential’, which was the name that had been given since the 1870s
to solutions of Laplace’s equation in the plane.

Riemann’s use of the Dirichlet principle was seen in a brighter light at that time. Klein
had already tried to corroborate Riemann’s results by appealing to physical intuition. Now
Henri Poincaré (1854–1912) proved the solvability of Dirichlet’s problem under fairly gen-
eral conditions [Poincaré, 1899], and David Hilbert (1862–1943) finally proved a precise
version of Dirichlet’s principle which is sufficiently general to allow for the usual function-
theoretic applications [Hilbert, 1900, 1904].

The final vindication of Riemann’s thesis, however, was given by Weyl in a lecture
course at Göttingen University from which he drew bookDie Idee der Riemannsche Fläche
[Weyl, 1913]. Using the recently developed set-theoretic topology (compare §46), he gave
a formal definition of a Riemann surface, even a re-interpretation or even a re-writing of
Riemann’s original ideas; the essays in the recent edition of [Weyl, 1913] depict the large
distance between Riemann’s thesis and its modern reading.

7 A COMPLEX OF THEORIES

From around 1880 or so three traditions in complex analysis, especially function theory,
were evident [Markushevich, 1955, 1996; Neuenschwander, 1981]. Cauchy’s theory of the
integral was still powerful, as a growing body of theorems about contours and residues in-
side or on them; but his general view of the functions was becoming subsumed under either
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Weierstrass’s strict use and control of power series, or Riemann’s ‘geometric imagination’
(K. Weierstrass) about surfaces and their cuts. Even the French mathematicians began to
take serious note of these German alternatives [Neuenschwander, 1998].

Seen from the mathematical point of view, these approaches are equivalent, supposing
that one has a correct proof of the Cauchy integral formula (2) for differentiable complex
functions. This was not the case until in 1883 Edouard Goursat (1858–1936) gave a sound
proof. After some simplifications by Goursat himself in 1899 and by Alfred Pringsheim
(1850–1941) in 1901, it was reduced to the fact that the path integral along the bound-
ary of a triangle vanishes for each function which is complex differentiable throughout
the closure of the triangle. Therefore from that time onwards a fusion of all approaches
to complex analytic functions—Cauchy’s, Weierstrass’s or Riemann’s—was possible as
far as mathematical arguments were concerned. It took, however, still some decades in
the 20th century until this fusion was completed also in textbooks. Even the posthumous
one of Adolf Hurwitz (1859–1919) edited by Richard Courant (1888–1972) shows the dif-
ference; Hurwitz had followed Weierstrass,while Courant was with Riemann [Hurwitz,
1922].

8 CONCLUDING REMARK

The issues between Riemann’s and Weierstrass’s approaches are quite stark; few other
branches of mathematics show such wide divergences in possible manners of basic treat-
ment. Klein captured the dissimilarity beautifully [1926, 246]:

Riemann is the man with the shining intuition. Through his all-embracing ge-
nius he surpasses all his contemporaries. When his interest is awakened, he
starts afresh, without being led astrayby intuition and without acknowledging
the coercive pressure of systematisation.
Weierstrass is in the first place a logician; he advances slowly, systematically,
step by step. Where he works, he strikes for the definitive form.
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CHAPTER 35

WILLIAM ROWAN HAMILTON,
LECTURES ON QUATERNIONS(1853)

Albert C. Lewis

This, the first book devoted to quaternions, appeared ten years after their discovery by
Hamilton. Later, many of his most useful concepts were separated from their quaternion
context and were reformulated as a part of vector analysis. The key work in this transfor-
mation was E.B. Wilson’sVector analysis (1901).

First publication. Lectures on quaternions containing a systematic statement of a new
mathematical method of which the principles were communicated in 1843 to the Royal
Irish Academy: and which has since formed the subject of successive courses of lectures
delivered in 1848 and subsequent years, in the halls of Trinity College, Dublin: with
numerous illustrative diagrams, and with some geometrical and physical applications,
Dublin: Hodges and Smith; London: Whittaker and Co.; Cambridge: Macmillan and
Co., 1853. lxxii+ 736 pages.

Reprint. Cornell Library Digital Collections (http://historical.library.cornell.edu). [Preface
only in Mathematical papers, vol. 3.]

Related articles: Grassmann (§32), Heaviside (§49).

1 FROM PRODIGY TO SAGE

Sir William Rowan Hamilton (1805–1865), born and raised in Ireland, was one of the
most brilliant students to have passed through Trinity College, Dublin. He mastered many
languages, ancient and modern. He appears to have been largely self-taught in mathematics
though guided by a tutor. At Trinity from 1823 to 1827 he was exposed to the newest
mathematics that emanated mainly from France, especially by P.S. Laplace, J.L. Lagrange,
S.D. Poisson, and S.F. Lacroix. He had barely completed his intended program of studies
when he was offered the prestigious appointment of Astronomer Royal of Ireland. Though
he was not inclined to the practical aspects required for the job, he gained the aid of his four

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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sisters who lived with him at the Dunsink Observatory and who managed the household
and performed many if not most of the astronomical duties; and the post provided more
time for his mathematical researches than the conventional teaching position for which he
originally aimed.

Hamilton’s initial fame beyond Dublin came from work on systems of light rays done
already in 1824. The experimental verification of his prediction of the conical refraction of
light in 1833 brought him the highest honors, including a knighthood in 1835. Another en-
during work from this early period of his life was what came to be called the ‘Hamiltonian
function’, which has proven of fundamental importance in physics. It was also during this
period that he began the pursuit of the elusive triple number system that led to his discov-
ery of quaternions in 1843 and to the book featured here. Though quaternions, with their
promise of so many fruitful applications, was to take much of his attention in later life, he
devoted himself to many other matters.

From 1837 to 1846 Hamilton was president of the Royal Irish Academy. Far from being
an exclusively honorary post, this entailed an intimate involvement in its administration and
in the development of wide-ranging projects relating to Irish history and culture. After he
resigned this post he was widely praised for his achievements in the Academy, not least for
his diplomatic skill at resolving disputes among members. He was spurred by the discovery
of the planet Neptune in 1846 to study perturbation theory. One result was his invention of
the hodograph, an elegant geometrical representation of planetary paths which was taken
up with some interest by William Thomson (Lord Kelvin) among others. Hamilton later
learned that A.F. Möbius had discovered the notion earlier, as he acknowledged in the
Lectures (p. 614).

In 1856 Hamilton became interested in an entirely different subject, which he termed
‘the Icosian Calculus’. This was an algebra capable of describing the paths connecting the
vertices of a dodecahedron. From this came the general idea of determining what have
come to be known as ‘Hamilton circuits’. Further details can be found in the principal
secondary sources on his life [Graves, 1882–1891] and [Hankins, 1980].

2 THE ORIGIN OF QUATERNIONS

During the 1830s Hamilton maintained an interest in a problem that a number of math-
ematicians regarded as one of the most important unsolved issues of the time: How can
the system of number pairs, represented by complex numbers, be extended to triples of
numbers in such a way as to preserve the same operational properties? For example, a
complex numberz= a + bi can be represented in the Euclidean plane by the directed line
segment from the origin to the point with real number coordinates(a, b). On multiplyingz
by i (=√−1), the result would be the segment from the origin to(−b, a) which can be
regarded as the result of rotating the original segment 90◦ counterclockwise about the ori-
gin. The problem could thus be put in a geometrical and somewhat more general fashion:
How can this mathematical operation, represented by rotation about a point in the plane,
be extended to rotation about a line in three dimensions? Expressed this way the answer
turns out to be that four numbers, not three, are required.

In his early work Hamilton assumed, not unnaturally, that the task was one of finding
the appropriate system of triples of numbers, and it was only after many unsuccessful ef-
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forts that the possibility of a quadruple of numbers presented itself. In one of the famous
moments in the history of mathematics, the idea came to him—as hecarefully recorded
immediately afterwards—while on Brougham Bridge in Dublin, on his way to attend a
Council meeting of the Academy on 16 October 1843. His construction consisted of ad-
joining three entities,i, j, k, to the real numbers. These can be multiplied according to the
rules which he jotted down at the time in a notebook:

i2= j2= k2=−1, ij = k, jk = i, ki = j and ijk =−1. (1)

The hypercomplex number can be formed asa+bi+ cj +dk, wherea, b, c, andd are real
numbers. Though this new number, Hamilton’squaternion, suggests that it might best be
suited for a four-dimensional spatial representation—and indeed in the early 20th century
there were attempts to make use of it in relativity theory—Hamilton himself exploited it
for a wide range of three-dimensional applications, his original motivation.

Before taking up Hamilton’s development of quaternions in the Lectures proper, men-
tion should be made of his path of discovery which he described at length and in several
places, including in the Preface of theLectures. In his view the discovery is intimately tied
to his notion of algebra as the science of pure time. As he describes it in the Preface, he
tended to approach the whole subject less in a ‘symbolical’ fashion than in a ‘scientific’
fashion. Influenced by ‘the Kantian parallelism between theintuitions of Time and Space’,
and by geometry as the science of space, he feltthat viewing algebra as the science of pure
time had a high suggestive value that could easily lead to a purely symbolical calculus if
and when one chose to follow that symbolical route. Hamilton’s detailed documentation of
his creative path has been the basis of several historical analyses, some of which attempt
to use it to draw lessons about the nature of mathematical discovery in general [Hankins,
1980, ch. 6; Pickering, 1995, ch. 4].

There are a number of predecessors for Hamilton’s work whom he acknowledges in
the Preface. The most significant one for laterdevelopments is ‘the very original and re-
markable work’ of H.G. Grassmann whoseAusdehnungslehre or calculus of extension of
1844 (§32) he read just as theLectures was being completed. Hamilton noted that, though
Grassmann had a non-commutative multiplication of directed lines, he was not in posses-
sion of quaternions since he admitted to not succeeding in extending the complex numbers
to three dimensions or in building a theory of angles in space (Preface, p. 62). It seems
that Hamilton had quaternions predominately on his mind as he read Grassmann and over-
looked the fact that, as later readers recognized, Grassmann’s response to these issues was
considerably more general than his own.

3 THE LECTURES

After the inspiration of October 1843 Hamilton published a number of very substantial
papers over the next ten years describing the new entities, including two series of papers,
one in eighteen installments in thePhilosophical magazine and another, left incomplete
after ten installments, in theCambridge and Dublin mathematical journal. (These papers
are reprinted in the edition [Hamilton,Papers].) In 1848 he conducted a series of lectures at
Trinity College, Dublin, and these formed the basis for hisLectures volume of 1853. While
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this was a most productive time for Hamilton with respect to developing and propagating
the quaternions, he was also undergoing some traumatic personal experiences: his favorite
sister, Eliza, died in 1851, and he had been following closely the health and well being
of his greatest love in life, Catherine Disney Barlow, who attempted suicide in 1848. One
of his biographers, Thomas Hankins, paints a picture of someone who was clearly deeply
affected by these and other personal setbacks but who could appear totally unfazed by them
when it came to carrying on with his work.

The contents of Hamilton’sLectures are summarised in Table 1. His path from con-
sideration of progression in time, through working with number triplets, to quaternions, is
given with substantial technical detail in the Preface. In fact, the Lectures themselves have
been, as he puts it, ‘drawn up in a more popularstyle than this Preface’ and were intended,
at least initially, to be fairly faithful to what was actually presented by Hamilton ‘in suc-
cessive years, in the Halls of this University’. However, as the table of contents reveals, the
lengths of the ‘Lectures’ increased steadily, culminating in Lecture VII, which is over 300
pages long. As he admitted, substantially more ‘calculation’ was added than would actu-
ally have been presented in the lecture hall. Nevertheless, he maintains that ‘something of

Table 1. Contents by Lectures of Hamilton’sbook. Parentheses around the Preface’s page
numbers distinguish them from the main body. Square brackets indicate an unnumbered

page.

Lecture Page Sect. Art. Contents (sample topics)
Preface, pp. ([1])–(64) Time, number triplets, quaternions.
Contents, pp. [ix]–lxxi [No pages correspond to numbers i to viii.]

Lec. I 1 i 1 Addition and subtraction of lines and points.

Lec. II 33 vi 37 Multiplication and division in geometry; squares
and products ofi, j, k.

Lec. III 74 xi 79 The quaternion; tensor and versor.

Lec. IV 130 xxvi 121 Powers and roots of quaternions;
√−1 as a par-

tially indeterminate symbol.

Lec. V 186 xxxvi 175 Multiplication of three lines in space; value ofijk
andkji.

Lec. VI 241 xlvi 251 General associative property of multiplication;
spherical representations.

Lec. VII 381 lxi 394 Addition and subtraction; distributive principle of
multiplication. [End cxvii, 689.]

App. A 701 Gauche (i.e. non-planar) polygons inscribed in
second-order surfaces. [Paper published in 1850.]

App. B 717 Gauche polygons inscribed in second-order sur-
faces. [Paper published in 1849.]

App. C 731 A ‘rapid outline of the quaternion analysis’. [End
736.]

Errata, unnumbered leaf Thirty-seven errata, most quite minor.
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the style of actual lecturing has been here and there retained’ throughout (Preface, p. 63).
Apparently to help the reader, if not the author, to gain control over the growing mass of
material, Section numbers came into play at a later stage, ‘too late to be incorporated into
the text’ as Hamilton writes (p. lxxi). Thus the 117 Sections, which act as an intermediate
level of division between the 7 Lectures and689 articles, occur only in the Table. There is
no index, but the copious table of contents serves as an analytic guide. This glimpse into
what was evidently a struggle to keep the book under control illustrates a general trait: as
biographer Hankins put it, ‘Hamilton could not keep his published works on quaternions
within reasonable bounds’ [Hankins, 1980, 365].

Hamilton’s previous course of lectures was an introduction to astronomy and his first
lecture in this new series—evidently the only one in theLectures to adhere at all closely to
what he might have actually said in the lecture hall—makes the transition by drawing upon
relative positions of planets to introduce the notion of a difference of points as an ordinal
expression of relative position. ‘And because, according to the foregoing illustrations, this
sign or mark (Minus) directs us toDRAW, or to conceive as drawn,a straight line con-
necting the two points, which are proposed to be compared as to their relative positions, it
might, perhaps, on this account be called theSIGN OF TRACTION’ (p. 10). This sentence
succinctly exhibits something of Hamilton’s style. Also, it shows his care in giving new
concepts correspondingly new names even at the risk of overloading the reader. In this
case, in the interest of reducing the number of new terms, ‘subtraction’ is soon used in-
stead. In the next dozen pages, however, more terms come into play—almost at the rate of
one per page—such as ‘vection’, ‘revection’, ‘provection’, and ‘transvection’ to describe
various possible motions of a point along a line. Besides the subtraction of two points, the
other key notion of the first Lecture is the geometrical meaning of sum of a line and a point.
If B − A is conceived as the line fromA to B, then the sum(B − A)+ A results in the
pointB.

The second Lecture concerns a general division and multiplication that are the analytic
and synthetic cardinal operations correspondingto the ordinal operations of subtraction and
addition introduced in the previous Lecture.The term ‘cardinal’ comes from the analogy
that, given an expression such asβ = n + n (Greek letters will represent directed line
segments), we can ordinarily regard the quotientβ ÷ n as the cardinal number 2. The
defining expressions are:β ÷ α = q andq × α = β . This last equation shows how the
quotientq can be regarded as an operator that produces one directed line segment from
another. Ifq is a ‘tensor’, or signless number, then it affects only the length ofα. If q
is a sign (+ or −) it changes the direction ofα. If it is a real number thenq may have
the effect of changing both the direction and length. If it is a ‘vector-unit’ (or ‘quadrantal
versor’), i, j, k, then the effect is to turnα right-handedly through 90 degrees in a plane
perpendicular to the vector-unit. Hamilton points out that a multiplication of a vector-unit,
sayi, by itself results in a rotation of 180◦, i.e. the same as multiplying by−1 (reversing
its direction) ori2=−1.

Continuing with further examples in Lecture III, Hamilton broadens the conception
of multiplication to include any two vectors (directed line segments) and also introduces
exponentiation of vectors. He shows that these operations, as well as the quotient,q , of two
vectors described above, can be characterized by four numbers, namely the tensor (a pure
number or scalar, written as Tq) and three directions. This entitles the result to be called a
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quaternion. Most of the previous examples can thus be recognized at this stage as special
cases of quaternions.

Lectures IV and V begin to reveal the nature of the quaternion itself and further proper-
ties of quaternion multiplication. Demonstrations of the non-commutative and associative
properties of multiplication are given for more general cases, though not yet in the most
general case. (A demonstration of its distributivity over addition is also promised, but this is
delayed until Lecture VII as Hamilton feels the need to explore multiplication more before
taking up addition.) His arguments throughout are geometrical. He makes use of ‘arcual
constructions’ in which ‘representative arcs’ and ‘representative angles’ on the sphere are
‘intimately connected’ with versors though ‘distinct from them’. This approach may have
been deemed particularly appropriate since these Lectures followed on ones devoted to as-
tronomy where spherical geometry figured prominently. Thus the product of two versors is
represented ‘by the external vertical angle of a spherical triangle, whose base angles, taken
in a determined order, represent those two versors themselves’ (p. 385). In Lecture VI, for
example, he describes the ‘symbol of operation’q( )q−1 ‘in which q may be said to be
theoperating quaternion, as denoting the operation of causing the arc which represents the
operand quaternion, and whose symbol is supposed to be inserted within the parentheses,
to move along the DOUBLED ARC of the operator, without any change of eitherlength
or inclination (like the equator on the ecliptic in precession)’ (p. xxviii). Lecture VI also
contains the general proof of associativity of multiplication.

Finally Lecture VII introduces addition of the various entities thus far introduced. For
example, the addition of a scalar and a vector is shown to be a quaternion. Hamilton first
justifies this for the case of a unit scalar and a unit vector by considering 1+ k. If each
term is multiplied on the right byi the results arei andki = j . Thus

1+ k = (i + ki)÷ i = (i + j)÷ i, (2)

and this last expression has a meaning that has been already established, namely the quo-
tient of two vectors which has been shown to be a quaternion (pp. 387–388). Conversely, it
is shown that a quaternion,q , is decomposable into a scalar and a vector. The operations of
taking the scalar and vector are written as Sq and Vq respectively. The vector of the prod-
uct of two vectors is shown to have length equal to the area of the parallelogram formed by
the two vectors and a direction perpendicular to the plane of the parallelogram (the modern
cross product). The product changes sign if the factors are interchanged (pp. 416–417). It is
only in art. 450 that the ‘quadronomial form’ is formally introduced whereby a quaternion
can be expressed in general as a sum of four terms,q =w+ ix + jy + kz, wherew, x, y,
andz are numbers. If a second quaternion is written asq ′ =w′ + ix ′ + jy ′ + kz′ then their
sum or difference is formed by the following:

q ± q ′ = (w±w′)+ i(x ± x ′)+ j (y ± y ′)+ k(z± z′). (3)

The two quaternions are equal if and only if the system of four equations holds:w = w′,
x = x ′, y = y ′, andz= z′. In spite of this introduction of an algebraic approach, the presen-
tation remains geometrically oriented. Many illustrations of the use of quaternions to rep-
resent geometric figures and their intersections, in particular the conics and their surfaces
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of revolution such as the ellipsoid, are given. Relations to trigonometry and goniometry
(functions of angles) are developed.

In the middle of Lecture VII is a brief accountof the form in which Hamilton originally
discovered and expressed the quaternions (arts. 530–536). The ‘quadronomial’ form was
central in that early stage and the geometrical connections developed gradually from it. He
cites here the contribution made by his friend J.T. Graves in propagating some of these early
results. Functions of quaternions are also introduced in Lecture VII, including exponential
and logarithmic. Hamilton describes what is now referred to as the nabla or del operator,
which he had introduced in 1846, and the Laplace operator:

∇ = i d

dx
+ j d

dy
+ k d

dz
, and ∇2=−

(
d2

dx2 +
d2

dy2 +
d2

dz2

)
. (4)

Hamilton constructs what he called ‘biquaternions’, entities of the formq ′ + √−1q ′′
whereq ′ andq ′′ are ‘real quaternions’ and the

√−1 is ‘theold andordinary imaginary of
algebra’ (p. 638). Two non-zero biquaternions may have a product of zero. (The term ‘bi-
quaternion’ was to be used later by W.K. Clifford in a different sense.) The Lecture includes
discussion of connections of quaternions with coordinates, determinants, trigonometry, se-
ries, linear and quadratic equations, differentials, integration, and continued fractions. Ad-
ditional examples are given of quaternion representations of the differential geometry of
curves and surfaces in three-dimensions.

4 RECEPTION AND SUBSEQUENT DEVELOPMENT

The Lectures probably did not sell many copies, but at least Hamilton had his printing
costs largely covered by a grant of £300 from Trinity College. In itself the work probably
cannot be regarded as a significant influence. Many, if not most, of the topics covered in the
Lectures were previously published by Hamilton in journal articles. Though theLectures
did go beyond these publications, the fact that the subject matter was not regarded as new
may help to explain why no special note was taken of it in the literature when it first
appeared. Hamilton realized that theLectures were, in spite of his original intentions, not
suitable as an introduction for the beginner and that a new plan was called for. We know that
one of England’s most renowned scientists of the time, John Herschel, in spite of repeated
efforts to make his way through it, only managed the first three Lectures [Hankins, 1980,
359–360].

Hamilton thus started on theElements of quaternions, which grew as he worked on
it from a small manual to a tome of over 800 pages when it finally came to print after
his death, thanks to his son William Edwin Hamilton. A second edition, with notes and
appendices by his colleague C.J. Joly, appeared in two volumes in 1899 and 1901. The
Lectures was also supplanted by P.G. Tait’sElementary treatise on quaternions in 1867.
Tait (1831–1901) was educated in mathematics at Cambridge University and, though his
main interest was in physics, became Hamilton’s closest follower and advocate. His treatise
appeared in two further editions and was translated into French and German. An even more
elementaryIntroduction to quaternions appeared in 1873 as a joint work with P. Kelland
and went through several editions. In 1905 Joly felt there was a need forA manual of
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quaternions wherein he reluctantly ‘abandoned Hamilton’s methods of establishing the
laws of quaternions’ while diplomatically recognizing that Hamilton’sLectures ‘have a
charm all their own’ [Joly, 1905, v]. TheLectures thus stand less as an influence than as an
historically important record of Hamilton’s intentions at a key stage of development of his
quaternions.

5 QUATERNIONS VERSUS VECTORS: J.W. GIBBS AND E.B. WILSON

A major impetus to the propagation of quaternions came from James Clerk Maxwell’s use
of them in hisTreatise on electricity and magnetism (1873) (§44). It was from reading
Maxwell that the British scientist Oliver Heaviside (1850–1925) and the U.S. mathemat-
ical physicist Josiah Willard Gibbs (1839–1903) of Yale University came independently
to critically study quaternions and to develop analternate system, vector analysis. Gibbs
was also influenced by Grassmann’s calculus of extension, first published in 1844 [Gibbs,
1891]. His lithographed pamphletElements of vector analysis (1881–1884) was privately
printed but received rather wide circulation, even abroad in Europe. Heaviside’s work, ini-
tially published in the journalElectrician in 1882 and 1883, was less well known (compare
§49), and Gibbs became the main target of the quaternion supporters. Their theme was set
by Tait who, in 1890 in the Preface to the third edition of hisElementary treatise, stated that
‘Gibbs must be ranked as one of the retarders of Quaternion progress, in virtue of his pam-
phlet onVector analysis; a sort of hermaphrodite monster, compounded of the notations of
Hamilton and Grassmann’.

The controversy between the vector and quaternion camps is unusual in the history of
mathematics in its intensity and international scope, comparable to the dispute between the
followers of Isaac Newton and G.W. Leibniz over the origins and best form of the calculus.
In addition to many publications from both sides, quaternionists founded an International
Association for Promoting the Study of Quaternions and Allied Systems of Mathematics,
which published bulletins between 1900 and 1913 [Crowe, 1967]. It should be noted that
the dispute was not over the crediting of discoveries; Gibbs and other vector adherents
claimed only to have a better way of achieving the same useful applications. In particular
they noted that the functional usefulness of many of Hamilton’s operators, such as the
scalar and vector operators, S and V, could be obtained more easily without introducing
the quaternion.

The modest size (83 pages) and compact style of writing in Gibbs’s work stand in con-
trast to Hamilton’s overwhelming prolixity. Furthermore, Gibbs never took the time to
develop his pamphlet into a textbook in spite of the increasing popularity of his system.
Instead this task fell to a former student at Yale, Edwin Bidwell Wilson (1879–1964). Wil-
son had studied quaternions as an undergraduate at Harvard University under J.M. Peirce.
In building upon what were in effect Gibbs’s lecture notes, Wilson also drew upon other
works, including Heaviside’s, to produce a book of 436 pages that set the pattern, with
respect to notation and use, for virtually all subsequent works in vector analysis. HisVec-
tor analysis appeared, with a preface by Gibbs, in 1901 and was soon followed by several
further printings. Initially published by Scribner’s in New York, after Yale University Press
was founded in 1908 it produced the second edition in 1909, incorporating corrections, and
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several subsequent printings up to the Dover reprint of 1960. In spite of this substantial en-
largement over Gibbs’s booklet, Wilson’s work was still designed as a textbook and not a
treatise on the state of the subject. Each of its seven chapters included exercises. A compar-
ison with the content of Hamilton’sLectures can only be made indirectly since Wilson’s
principal source, Gibbs, appears to have been informed about quaternions mainly through
Tait’s Treatise [Crowe, 1967, 155–158].

Wilson opens with definitions of vector and scalar quantities and the basic operations
between them, paying careful attention to naming and symbolizing conventions. He uses,
for example, bold letters (or ‘Clarendon type’ as he terms it) for a vector and ordinary
type for the same letter for its scalar magnitude. (Heaviside had employed this practice and
name earlier: see §49.2) Three mutually perpendicular unit vectors,i, j ,k and vectors as
linear combinations of these are introduced. Thus a connection to the Cartesian rectangular
coordinate system is immediately established.

In Chapter II the direct and skew products of vectors appear, writtenA · B andA × B
for vectorsA andB, which have since taken on the names of dot and cross product respec-
tively. Their correspondence to Hamilton’s scalar and vector components of the product
of two quaternionsa andb, Sab and Vab, would have been obvious to a reader versed
in quaternions. Chapters III and IV deal with the differential and integral calculus of vec-
tors, and define the notions of derivative, divergence, curl, and scalar and vector potentials.
Hamilton is credited with the introduction of the∇ symbol for derivative—one of the few
passages where Hamilton’s work is explicitly mentioned.

Linear functions of vectors are the subject of Chapter V. A key concept is the ‘dyad’
defined as a juxtaposition of two vectors, as inab. Taking the dot product on the right with
a vectorr produces another vectorr ′ = ab · r that is, in this example, the product of a vec-
tor a and a scalar. The dyad plays a key role in the remaining two chapters which concern
applications in mathematical physics and geometry, the main motivation for the subject as
far as Gibbs and Wilson were concerned. There is a Section on the propagation of light in
crystals that may have helped make a link to the ongoing discussions resulting from the
Michelson–Morley experiments in the United States on the nature of the aether. Rotations
and strains are represented by dyadic expressions (i.e. linear combinations of dyads). In
particular, a dyadic reducible to the formi′i + j ′j + k′k , where each of the triplesi′, j ′,k′
andi, j ,k are right-handed rectangular systems of unit vectors, represents a rotation and is
called a ‘versor’. Here and elsewhere Hamilton’s terminology is echoed. One Section of
the last chapter is devoted to the representation of quadric surfaces by means of dyadics.
Another Section, on curvature of surfaces, is exceptional in that it makes more use of pure
vectors than of dyadics. Wilson included all the topics covered by Gibbs except appli-
cations to crystallography and the theory of orbits, topics to which Gibbs devoted much
attention. Nevertheless, as he describes in his reminiscences of Gibbs [Wilson, 1931], they
had virtually no interaction regarding the preparation of the book.

Of the four reviews of Wilson’s work cited in [Crowe, 1967, 229], only one was unfa-
vorable, claiming that the work should have been quaternionic. That reviewer asserted that
the dyad’s strong operational resemblance to the quaternion undermined any claim that the
‘new’ methods were really new. Furthermore, the dyad lacked the ‘geometric significance’
of the quaternion [Knott, 1902]. Most readers appear to have understood that indeed very
little of this was essentially new. However, dyads were soon encompassed in the theory of
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matrices while the role of quaternions in mathematics evolved into something somewhat
less grand than Hamilton envisioned.
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CHAPTER 36

GEORGE BOOLE, AN INVESTIGATION OF THE
LAWS OF THOUGHT ON WHICH ARE FOUNDED
THE MATHEMATICAL THEORY OF LOGIC AND

PROBABILITIES (1854)

I. Grattan-Guinness

In this book Boole’s algebra of logic received its definitive form. Influence was slow to
develop, and then some changes in the algebra were made by others; but the theory became
part of the fabric of logic, and also of computing in modern times. The book also contains
a notable contribution to probability theory.

First publication. Cambridge: Walton and Maberly; London: Macmillan, 1854. [ix]+ 424
pages.

Manuscript. Boole Papers, Royal Society Archives, London [ch. 22 missing].

Photoreprints. New York: Dover, 1958. Amherst, New York; Prometheus Books, 2003
(introd. by J. Corcoran).

Reprint. Collected logical works, vol. 2 (and only; ed. P.E.B. Jourdain), Chicago: Open
Court, 1916. [Repr. 1940 and 1952.]

Italian translation. Indagine sulle legge del pensiero su cui sono fondata le teorie mate-
matiche della logica e della probabilità (trans. M. Trinchero), Turin: Einaudi, 1976.

French translation. Les lois de la pensée (trans. S.B. Diagne), Paris: Vrin, 1994.

Related articles: Laplace on probability(§24), Grassmann (§32), Whitehead and Russell
(§61), Kolmogorov (§75).

1 A SELF-MADE MATHEMATICIAN

The range and depth of the achievements of George Boole (1815–1864) are especially re-
markable when one notes not only the shortness of his life but also the disadvantageous
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circumstances of his background. He was born to an intelligent tradesman who however
was so poor that George had to become the main breadwinner in his 20th year when he
opened a school. Nevertheless, he found time to teach himself advanced mathematics,
and also Greek, Latin, French and German, especially in order to read important works.
His research papers began to appear in the early 1840s, and his principal interest soon
turned to an English specialty: the ‘calculus of operations’, now called ‘differential oper-
ators’, where differentiation was represented by the letter ‘D’, higher-order differentiation
by ‘D2,D3, . . .’, integration by ‘D−1’, and so on. This tradition had developed under the
influence of the algebraisedcalculus propounded by J.L. Lagrange (§19), initially by some
French mathematicians; but from the 1810s this algebra and related topics were prosecuted
in England by Charles Babbage and John Herschel as part of the revival of research mathe-
matics there. Boole was to become a major figure in this movement in the next generation;
as we see, it was to affect his work on logic.

Boole’s interest in logic was very unusual for a mathematician, but it grew out of a
strong renaissance on the subject that had suddenly started in 1826 with the publication of
Richard Whately’sElements of logic. The many reactions led him to produce four more
editions in a decade; among innovations was an important extension of syllogistic logic
called ‘quantification of the predicate’, due to George Bentham in 1827 but the subject of a
priority dispute during the early 1840s between the Scottish philosopher William Hamilton
and Augustus de Morgan (1806–1871), the only other mathematician apart from Boole to
mathematicise logic (section 7). Their non-discussion stimulated Boole to write up his first
account of his theory, in the short bookA mathematical analysis of logic ([Boole, 1847],
hereafter, ‘MAL’).

Through these years Boole continued with his school-teaching; but a chance for ad-
vancement came in the mid 1840s when the Queen’s University of Ireland was set up, with
Colleges in Belfast, Cork and Galway. Despite his lack of formal qualifications Boole was
appointed Professor of Mathematics at Cork; after a delay in the organization of the Uni-
versity caused by the potato famine in Ireland, he took up the post in 1849 and held it until
his death in 1864. He was very isolated mathematically; in particular, for some reason he
seems to have had little contact with W.R. Hamilton (not to be confused with the philoso-
pher named above). Boole’s second book on logic, the subject of this article, was written
in Cork; it is cited as ‘LT ’.

Among biographical sources, the most significant is [MacHale, 1985]; [Diagne, 1989]
may also be consulted. Some interesting obituaries were published; two are reprinted in
the collection [Gasser, 2000] of old and new writings on his life and logic. See also the
partial edition [Boole, 1952] of his papers andmanuscripts on logic and probability theory.
Recently an edition of his manuscripts on logic has appeared [Boole,Manuscripts]: it also
contains an extensive primary and secondary bibliography for Boole, a property evident
likewise in the collection [Agazzi and Vassallo, 1998], which is largely concerned with
philosophical aspects of Boole’s mathematics. The mathematical sides of Boole’s logic are
reviewed historically in [Panteki, 1992, chs. 5–8] and in somewhat modernised terms in
[Hailperin, 1986, pt. 1].
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2 BOOLE’S INITIAL ‘ANALYSIS’ OF LOGIC

The priority dispute triggered Boole to write his first book; but its content was much in-
fluenced by his researches on differential operators. Partly drawing upon his work of his
friend the Cambridge mathematician Duncan Gregory, he produced a long paper on these
methods which he submitted to the Royal Society in 1844. After wondering about rejecting
the manuscript they published it [Boole, 1844], and then awarded him a Gold Medal for
his achievement!

This theory was one of the early algebras in which the ‘objects’ were neither numbers
nor geometrical magnitudes; and it had met controversy in its algebraic laws, such as iden-
tifying powers with orders (that is, D2 for D on D, not D times D). Aware of the mystery,
Boole (and before him Gregory) tried to bring light by highlighting the principal desir-
able properties of functionsπ andr of D on functionsq, r, . . ., and using them in solving
various differential equations.

Three years laterMAL appeared. In it Boole offered a novel approach to logic in the
form of an algebra of the mental actx of choosing some property, and complementarily
of forming the class of objects satisfying the property. An assumed universe 1 was thereby
divided into complementary partsx and (1− x), and the desired laws forx were formed
as closely as possible to those for the D algebra; namely, and using his notations from both
sources,

1844 paper Name MAL
πrq = rπq commutative law xy = yx, (1)
π(q + r)= πq + πr distributive law x(u+ v)= xu+ xv, (2)
πlπmq = πl+mq ‘index law’ xn = x, (3)

wherel,m andn (� 2) were positive integers [1844, 225; 1847, 17–18].
The point of distinction between the two algebras was (3), where the same name was

used but the laws differed; indeed(3)2 was previously unknown in mathematics (apart
from anticipations in Leibniz, then unpublished). The procedures in the two theories were
quite distinct; the task for logic was to cast propositions into algebraic form, and then to
deduce logical consequents, usually in the form of relating one of he properties (x, say)
as a function of the others. To this end Boole found several remarkable expansion and
elimination theorems. We shall describe them and the above laws from their appearance in
his second book, the subject of this article.

3 BOOLE’S MATURE ‘INVESTIGATION’ OF LOGIC

LT seems to have been completed at Cork in 1852; after printing in Dublin during the
following year, it appeared early in 1854 from his Cambridge and London publishers. His
opening act was to stress differences fromMAL, especially for the ‘more general’ methods
and wider remit; here both similarities and differences will be mentioned. Its contents are
summarised in Table 1.

In both books Boole showed that he saw his algebraised logic asapplied mathematics.
The title ofMAL shows it already; and in the main text ofLT he stated his aim as not only
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Table 1. Contents by chapters of Boole’s book.

Chs. Page Contents

1 1 ‘Nature and design of the work’; logic and probability theory.
2–3 24 Laws of logic; interpretations as mathematical acts or as classes; basic

properties.
4 52 ‘Division of propositions’ into ‘primary’ and ‘secondary’ (asserting

truth).
5–8 66 Methods of deduction: expansion theorems, ‘interpretation’,

elimination.
9 130 Simplification of methods, and short cuts.
10–12 150 Methods for secondary propositions.
13–14 185 Selected passages for logical analysis.
15 226 ‘On the Aristotelian logic’.

16–18 243 ‘Theory of probabilities’; methodsand examples.
19 295 ‘Of statistical conditions’ (linear programming).
20–21 320 Examples concerning causes and judgments.

22 399 ‘Constitution of the intellect’. [End 424.]

‘to investigate the fundamental laws of those operations of the mind by which reasoning
is performed’ but also ‘to give expression to them in the symbolic language of a Calculus’
(p. 1). It came clear that the proposed theory was normative; he did not try to treat the
mysterious depths ofactual thought.

The basic properties of mental operations were laid out in chs. 2 and 3 although, in a
change fromMAL, the lettersx, y, . . . were taken much more often to refer to classes than
to mental acts. Throughout he tookclasses in the traditional part-whole sense, not within
the set theory of Georg Cantor, still decades away (§46); further, the phrase ‘letx repre-
sent “all men,” or the class “men.” ’ (p. 28) should not be over-interpreted as anticipating
quantification theory.

Among the manners of combination, addition was defined only between disjoint classes,
giving the clause ‘let+ stand for “and ” and “or” ’ (p. 33)—odd to read in a logic book.
Although Boole did not say so, hemight have wished to avoid defining multi-classes, where
the members of the overlap were counted twice. At all events, his restriction of addition
was not well received, as we shall see in section 7.

Boole symbolized intersection by concatenation ‘xy ’, as in algebraic multiplication,
and the laws (1)–(3) were duly emphasized. He defined complementation ‘x − y ’ wheny
was a sub-class ofx, and associated with ‘except’ (pp. 29–34). He assumed various—or
maybe overlooked—further laws for these operations, especially associativity; and he did
not have a symbol for negation, so that he could not properly express the proof-method by
contradiction.

The over-arching class was now called ‘universe of discourse’ (p. 42); and an improve-
ment overMAL was that it was not taken to be absolutely universal, for then truth by
content merges with truth by form (for example, ‘London is a city’ and ‘London is a city
or London is not a city’ are both true, but for different reasons). Such a restriction had been
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imposed by logicians for centuries in some way or other; Boole made it canonical here.
He symbolized his universe as ‘1’, and its complementary class as ‘0’; but he fell into an
unclear aspect of part-whole theory in calling it ‘Nothing’ but not really differentiating it
from no thing (pp. 47–48). However, it allowed him to derive from(3)2 the ‘principle of
contradiction’, also to be called ‘the law of duality’ (pp. 49–51):

x(1− x)= 0; curiously, x+ (1− x)= 1 (4)

was not presented despite its equally ancient linkage to the law of excluded middle (com-
pare p. 76).

In ch. 3 Boole also allied his basic laws and the consequent properties with ‘the laws
of the operations of the human mind’, partly rehearsing the material again in the conclud-
ing ch. 22 ‘On the constitution of the intellect’. With regard to language, he associated
classes with nouns and adjectives: ‘good, good men= good men’, ‘white men= men
white’ (pp. 32, 44) and so on. Like most logicians until modern times, he did not explore
the logic of adverbs.

Next Boole introduced a ‘division of propositions’ into ‘primary’ ones concerned with
things, and ‘secondary’ ones which dealt with propositions; for example (his), ‘the sun
shines’ and ‘it is true that the sun shines’ (pp. 52–53). To us this seems to be the distinction
between a language and its metalanguage, but this was to be fully grasped only 80 years
later (see §71 on Gödel). Further, in a rather ungainly way he treated hypothetical com-
pound propositions as secondary (p. 53). ApropositionX was grasped by ‘an act of mind’
x to be true for some periodx of time (p. 165: note two uses for ‘x ’); if X were true all
the time, then ‘x = 1’, and if false, never (‘x = 0’). The basic laws and properties were
maintained (chs. 11–12); for example,xy now denoted the time during which bothX and
Y were true simultaneously. While the algebra is unexceptionable, the philosophical status
of time in a theory of mental acts seems problematic.

A major difference fromMAL was the status of syllogistic logic. In the earlier book it
had provided many of the examples analysed; here it débuts only on p. 226, in the last of
the chapters on logic. Boole had realized inthe meantime that he hadadvanced his algebra
of logic far beyond the Aristotelian tradition.

4 THE ALGEBRAIC METHODS OF DEDUCTION AND ELIMINATION

Given a collection of logical premises, one main aim of Boole’s logic was to choose one
of the given properties as subject and find, as the logical deduction, its relationship to
the other properties. The algebra fulfilled this aim by means of expansion theorems and
algebraic means of eliminating properties (ch. 5). For example, for a function ‘φ(xy)’ of
two mental acts (or of classes) the expansion was

‘φ(xy)= φ(00)(1− x)(1− y)+ φ(01)y(1− x)+ φ(10)x(1− y)+ φ(11)xy’; (5)

the coefficients were calculated simply by giving the values 0 or 1 as appropriate tox

andy. (5) was a linear expansion, which Boole expressed generally as ‘a1t1+ a2t2+&c.’
(p. 93).
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The function could take various values, with four outcomes for its coefficients (ch. 6,
where he used only the classical interpretation of the letters). For the value 1, set the asso-
ciated term= 0, and offer the resulting equation as one of the deductions); for 0, drop the
term; 0/0 gives the indeterminate portion of the solution, where one adjoins to the associ-
ated term (u, say) the indeterminate class ‘v’ and read ‘uv’ as the overlap); finally, for and
any other value, including 1/0, put the term= 0 and present that proposition as a condition
under which the solution obtains).

For example, a proposition about types of beasts came out as

x = yz; thus, as subject, 1− y = (z− x)/z. (6)

The expansion of (6)2 gave as solution

1− y = (1− x)z+ v(1− x)(1− z), with x(1− z)= 0 (7)

as side condition, because the coefficients of the terms were respectively 1, 0/0 and−1/0;
in additionxz took the coefficient 0 and so disappeared (p. 94).

Boole did not notice that some of his deductionsalso admitted singular solutions involv-
ing, for example, the empty class [Corcoran and Wood, 1980]. This is disappointing, since
he emphasized such solutions in his work on differential equations, and they exemplified
his basic law (3) of logic; on the one hand (like anx) they were solutions but on the other
hand (like a 1− x) not part of the general solution.

Expansion (5) had already been presented inMAL: new inLT was a theory of ‘elimina-
tion’ (ch. 7) based upon the theorem that any logical functionf (x) satisfied the equation

f (0)f (1)= 0; for two variables ‘φ(1,1)φ(1,0)φ(0,1)φ(0,0)= 0’, (8)

and so on. Therebyx (or x andy) were removed from the deduction, leaving a relationship
between the other variables. One of his examples (p. 105) removed the indeterminate class
v by treating the proposition

y − v(1− x)= 0 as a function ofv; then (7)1 gaveyx = 0. (9)

However, elimination ofv from vx = vy leads only to 0= 0. Then followed an account of
‘reduction’ (ch. 8), where a collection ofn equationsVr = 0 was handled by conversion to
the single equation

∑
r

arVr = 0, ar arbitrary constants, or to
∑
V 2
r = 0. (10)

A novel feature of Boole’s algebra was his use ofinterpretation: the equation(s) ex-
pressing the premises should be interpretable, and the logical consequence also; but the
intervening lines of deduction need not take an interpretation, nor need the values of the
coefficients be other than 0,v or 1; hence the role ofx(1− z) in the side condition (7)2.
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5 BOOLE’S TREATMENT OF PROBABILITY THEORY

The major difference betweenMAL andLT was the appearance in the latter of probabil-
ity theory; it took up chs. 16–21, at over 150 pages. Around 1849 he had realized that
compound events could be handled in his logic as con- and/or disjunctions of simple ones,
and so their consequences determined by his laws and expansions theorems and any atten-
dant probabilities calculatedaccordingly. By these means he hoped to bring a new level of
generality to the theory (p. 265) with probability logic [Hailperin, 1986, pt. 2].

Boole’s construal of probability was epistemic: ‘the wordprobability, in its mathemat-
ical acceptation, has reference to the state of our knowledge under which an event may
happen or fail. [. . . ] Probability is expectation founded upon partial knowledge’ (p. 244).
However, he did not always distinguish the probability of a conditional proposition from
conditional probability.

In a remarkable chapter ‘on statistical conditions’ Boole considered situations in which
the values of some or all probabilities may be known only approximately, or to within
some upper and/or lower bounds. In his first case he showed that the probability of a dis-
junction of events was less than the sumof the probabilities of each event (pp. 297–299),
an inequality now named after him as part of his modest influence on the subject. Some of
the more elaborate later cases led him to aspects of linear programming, which was not to
develop as a mathematical topic for nearly a century although his was not the first antici-
pation [Grattan-Guinness, 1994]. A few scientific examples and case studies were tackled,
but no religious ones, not even buried in sentences. This last silence merits discussion.

6 THE RELIGIOUS CONNOTATION OF BOOLE’S LOGIC

For Boole an important aspect of his logic was its connection with religion. During his
adult career British Christianity was in a state of considerable ferment, with the strong
rise of Dissenting versions competing witheach other and with the established Church of
England. Boole belonged to one of these factions: ecumenism, which advocated the One
and Only God in contrast to establishment Trinitarianism. This stance was reflected in
his logic by the status of the universe 1, to be divided into its components. The link was
exhibited inLT, though without announcement and so overlooked by most readers. The
clearest evidence is provided in ch. 13, where he provided logical analyses of propositions
due to Samuel Clarke and Benedict Spinoza concerning the necessary existence of ‘Some
one unchangeable and independent Being’ (p. 192). He also alluded to his position in print
very discreetly a few lines from the end of the book, where he referred to ‘those who
profess an intellectual allegiance to the Father of Lights’, one of the standard Dissenter
names of the Godhead (not God as Orthodoxedly construed). He greatly admired the book
Philosophie— Logique (1855) of Father A. Gratry, who larded his own version of logic
with religious fervour.

To Boole, and also to his wife Mary (whom he married in 1855) the hero was Fred-
erick Denison Maurice (1805–1872), who advocated ecumenism with great force in mid
century and so was dismissed from his chair of Divinity at King’s College London. Boole
spent parts of several summer vacations in England in his last years, studying in London
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libraries—and on the Sundays he attended Maurice’s services. The strength of his admi-
ration was exhibited in his last days. Late in November 1864 he walked to the University
in the rain without protection, and after lecturing in wet clothes he soon developed pneu-
monia. As he lay at home on his deathbed, he asked that a portrait of Maurice be set up
alongside.

This interpretation of Boole’s logic was influential only upon his widow, who continued
to prosecute it and especially the educational aspects of his philosophy after his death. In
penury after his death with five young daughters to bring up, she obtained employment for
some years from Maurice in Queen’s College, an establishment for female education that
he had established in London.

7 BOOLE’S GRADUAL INFLUENCE

After publishingLT Boole put out a few papers on probability theory, but not on logic.
However, he attempted a more general book on the subject, and also one on the philoso-
phy of mathematics; neither was finished, but the major manuscripts have recently been
published, along with some others from earlier periods [Boole,Manuscripts]. No radical
revision of theory emerges from these sources, but in his planned book on logic he elabo-
rated on the relationships between logic and reasoning: interestingly, the religious side was
not rehearsed.

After 1854 Boole largely went back to the differential and integral calculus, producing
successful textbooks in differential and difference equations (1859 and 1860, and later
editions); his wife helped to check the accuracy of the solutions to exercises. The books
related in part to his teaching at Cork (in contrast to logic, which he seems never to have
taught). Indeed, this side of his research work was far better appreciated than his logic,
which was regarded as an interesting curiosity but marginal to mathematicians’ concerns.
Further, of the two booksMAL gainedmore of the modest attention. This was the opinion
of de Morgan, the other major British figure of the time working on the algebraisation of
logic, in his case on the symbolization of various aspects of syllogistic logic and especially
its extension with a logic of relations [Merrill, 1990]. He and Boole had quite a lengthy
correspondence [Smith, 1982], but on matters logical they tended to talk past each other
[Corcoran, 1986].

GraduallyLT picked up a public. In particular, it was the text used by the first se-
rious reader of Boole’s logic, the mathematician and economist Stanley Jevons (1835–
1882). While broadly happy with Boole’s theory, especially with the new laws for logic,
he disliked expansion theorems and especially the restriction of union to disjoint classes.
They conducted a (non-)correspondence in1863 and 1864, shortly before Boole’s death
[Grattan-Guinness, 1991]. Jevons concentrated upon the meaning of ‘+’ and the class
expression ‘(x + x)’: for Jevons it equalledx, while for Boole it was not interpretable,
although his expansion theorems showed that the (interpreted) equationx+ x = 0 took the
solutionx = 0. In another change, Boole’s temporaltheory of secondary propositions was
in effect replaced by the propositional calculus, in 1877 by Hugh MacColl, and two years
later by Gottlob Frege.

Boole’s most loyal follower was John Venn, mainly in his bookSymbolic logic (1881,
1894: the origin of this name, by the way); however, even this Cambridge Reverend did
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not adopt the religious connotations (nor did he adopt Boole’s reading of probability the-
ory). With other logicians Jevons’s view prevailed, especially when the American logician
C.S. Peirce came to the same conclusion soon afterwards, in a combination of a modified
Boolean system and an elaboration of De Morgan’s logic of relations. This theory was ex-
tended by the German mathematician Ernst Schröder, in a vast collection ofVorlesungen
über die Logik der Algebra (1890–1905). A few other mathematicians and philosophers
took interest; for example, in Russia [Styazhkin, 1969, ch. 6]. Sometimes the interest was
furthered in conjunction with reactions to the algebra of Hermann Grassmann ([Peckhaus,
1997, ch. 6]; and §32). The 1916 edition ofLT by P.E.B. Jourdain (who added a few notes
and an index) made the book more available.

But after and even during Schröder’s mammoth efforts algebraic logic rather floundered,
becoming eclipsed within symbolic logic itself by the mathematical logic developed by
Frege and especially by Giuseppe Peano andhis followers A.N. Whitehead and Bertrand
Russell ([Grattan-Guinness, 2000, esp. chs. 2–7]; see also §61). The name ‘Boolean alge-
bras’ was introduced by the American logician H.M. Sheffer in 1913, referring to them
just as algebras as such. They had become partof the furniture of logic, especially for the
propositional calculus: the applications to electrical circuit theory, to communication and
computing, and to neurophysiology started only from the late 1930s onwards.

And here lies a great irony. Part of Boole’s philosophy was the claim that the mind can
grasp the general from a few instances of the particular, rather than accumulate the general
only from accumulations of individual cases, the view then advocated especially by J.S.
Mill. Boole seems to have formed his position during (and maybe because of) his early
experience as a teacher; he never took an interest in Charles Babbage’s long saga to create
a mechanical computing machine, for it was based merely on repetition. Now Babbage’s
work presaged the modern computer, which is the chief source of the ubiquity of Boole’s
name today!
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TheVorlesungen, based upon Lejeune-Dirichlet’s lectures delivered in 1856–1857 in Göt-
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1 A POSTHUMOUS TEXTBOOK

Johann Peter Gustav Lejeune Dirichlet (1805–1859) played a decisive role in propelling
German mathematics to the forefront of European science. Born in Düren, he went as early
as 1822 to Paris, then the center of mathematical research, where he followed lectures at
the Collège de France and theSorbonne. His early acquaintance with the analytic works
of French mathematicians, such as Joseph Fourier, constitutes one of the two main compo-
nents of his formation (compare §39.2). The other one is a life-long and deep involvement
with Disquisitiones arithmeticae by C.F. Gauss (1777–1855), which provided inspiration
to him both for its mathematical themes and rigorous reasoning [Gauss, 1801] (§22). Hav-
ing been made aware of Dirichlet’s work through Alexander von Humboldt, in 1826 Gauss
mentioned a small memoir by Dirichlet on higher arithmetic to the secretary of the math-
ematical section at the Berlin Academy of Sciences, Johann Encke. Gauss wrote that it
revealed an excellent talent [Gauss,Works, vol. 12, 70]:

The phenomenon pleases me all the more as examples of somebody who is
acquainted with these topics are rare—I know almost none in Germany—and
as I am convinced that this is also one the best means to sharpen mathematical
talent for other, very different, branches of mathematics. And it would be all
the more distressing if his homeland, Prussia, lets itself be outstripped and if
France were to appropriate for itself this excellent talent.

Such recommendations provided Dirichlet with a position in Breslau (1827), then in Berlin
(1828–1855), at the Military School and the University, before succeeding Gauss at the
University of Göttingen in 1855. Sixty years after Dirichlet’s death, Felix Klein still empha-
sized the lasting importance of Dirichlet’s lectures in shaping mathematical training in Ger-
man universities and in providing a model of what a course should be [Klein, 1926–1927,
96]. They inspired and motivated a variety of mathematicians such as Gotthold Eisenstein,
Leopold Kronecker, Bernhard Riemann, Paul Bachmann—and Richard Dedekind (1831–
1916).

In letters and commentaries to his edition, Dedekind has described in some detail the
elaboration of theVorlesungen. ‘At the time your father moved from Berlin to Göttingen
during the autumn 1855’, he explained to Walter Lejeune-Dirichlet in 1876 [Scharlau,
1981, 51–52]:

I was already a Privatdozent, but I welcomed the fortunate opportunity and at-
tended his lectures; I did not take any notes during them, in order to listen more
carefully, and the highly penetrating presentation inspired me to write down in
the shortest manner its most essential moments, at home, from memory. When
I had become gradually more acquainted with your father, I showed him from
time to time these exercise books: as he himself never wrote down his lectures
and entertained the idea of publishing at least those on number theory, my
notes were welcomed by him as giving an approximate overview of the extent
of the various parts and he often discussed this draft with me.

After Dirichlet’s early death in 1859 prevented him from fulfilling his project, Dedekind
took over the task of publishing the winter course of 1856–1857, which, ‘although be-
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ginning with the elements, was chiefly devoted to the theory of quadratic forms and han-
dled it more completely thanin the preceding years’ [Dedekind, 1864]. He used his ‘ex-
tremely short’ daily notices alluded to above, ‘which contained almost only the key parts
of the proofs’; but he also followed Dirichlet’s wish to add several complements in order to
round off the textbook to form a more satisfying unity, working assiduously on the project
for about three years ([Haubrich, 1992, 158], drawing upon the correspondence between
Dedekind and the publisher Vieweg).

Let us leave the floor to [Dedekind, 1864] to sketch the contents of the book:

[T]he first section deals with divisibility, the second with the congruence of
numbers, the third with quadratic residues; in the fourth the elements of the
theory of binary quadratic forms are presented and the fifth contains the so-
lution, first given by Dirichlet, of the problem of determining the number of
classes in which the binary quadratic forms of given determinant are distrib-
uted. Besides the main course, properly speaking, Dirichlet had a supplemen-
tary course in which some important auxiliary results, pertaining to other fields,
were proved; this separation has been preserved, in order not to interrupt the
course of thought of the fifth section which would not be easy for a beginner
to grasp; the content of this auxiliary course is given in the first three supple-
ments. The following supplements (IV–IX) are additions, through which the
editor has tried to round off the domain of the material handled in the sense
indicated above.

These supplements mainly reproduced papers by Dirichlet or other known results.
For the subsequent editions, Dedekind made a few changes to the main text, and added

explicit references to the literature. He explained these additions by his wish to ‘awake in
the reader an image of the progress of science,the truths of which, both deep and distin-
guished, form a treasure which is the imperishable fruit of an authentically noble compe-
tition among European peoples’ (preface of the 1871 edition), a stance which acquires a
particular resonance, written as it was in the middle of the Franco-Prussian war. Moreover,
Dedekind added an important supplement in 1871, cut in two in 1879 and 1894); they
treated the composition of forms, a crucial but extremely difficult topic in Gauss’s book,
which served here as a ground for Dedekind’s own theory of algebraic numbers and ideals.
The contents of the first edition are summarised in Table 1.

2 THE SIMPLIFICATION OF GAUSS’SDISQUISITIONES ARITHMETICAE

As Henry Smith remarked at the beginning of his report on number theory for the British
Association for the Advancement of Science, Gauss’sDisquisitiones was still in the 1850s
the classical source for the theory of numbers, together with Adrien-Marie Legendre’s
more elementaryThéorie des nombres (1830) [Smith, 1859–1865, 38]. However, its syn-
thetic approach, loaded with lengthy computations, as well as the complexity of its subject
matter, made it a daunting Everest for most mathematicians. Dirichlet entertained a deep
relation to this book all during his life and in a number of his research papers tried to give a
‘clear and appropriate elaboration’ [Kummer, 1860, 332] of various aspects and to transmit
the core of the book to a larger audience. In Hermann Minkowski’s words [1905, 151]:
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Table 1. Contents by Sections of the lectures. xiii+ 414 pages.

Ch. or Suppl. Sections Short description of the contents
Preface
Chapter I. 1–2 Product of several numbers, commutativity.
Divisibility of
numbers

3 Divisibility.
4–7 G.c.d. and l.c.m.
8–10 Prime numbers, divisors.
11–14 Euler Phi function.
15 Divisors ofm!
16 ‘Looking back’.

Chapter II.
Congruence

17–20 Congruences, residues, generalized Fermat theorem.
21–26 Congruences with unknowns.
27 Wilson’s theorem.
28–31 Power residues, primitive roots.

Chapter III.
Quadratic residues

32–39 Quadratic residues and non-residues, Legendre
symbol.

40–41 Primes with−1 or 2 as quadratic residue.
42–44 Reciprocity law, content and first proof.
45–47 Jacobi symbol.
49–51 Second proof of reciprocity law.
52 Linear forms containing primes.

Chapter IV. 53 Binary quadratic forms.
Quadratic forms 54–56 Transformations of forms, equivalence.

57–58 Two-sided forms.
59–63 Division of forms into classes, representation of

numbers, reductions of the problem of classification.
64–67 Forms with negative determinants.
68–71 Particular cases.
72–85 Forms with positive determinants, associated roots,

periods of reduced forms, Fermat–Pell equation.
Chapter V.
Class number of
binary quadratic
forms

86 Numbers properly represented by primitive forms.
87 Number of representations.
88–90 Fundamental equation.
91 Decomposition into two squares.
92–95 Further work on the fundamental equation.
96–97 Expression of the class number.
98-105 Fundamental equation for positive determinant.
106–110 Formulas for the class number.

Supplement 1 111–116 Lemmas for ch. V arising from the theory of circle
division.

Supplement 2 117–119 Limiting value of some infinite series.
Supplement 3 120 Connection between area and number of lattice

points.
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Table 1. (Continued)

Ch. or Suppl. Sections Short description of the contents
Supplement 4 121–126 Genera of quadratic forms, representation of numbers,

characters.
Supplement 5 127–131 Power residues for composite moduli.
Supplement 6 132–137 Primes in arithmetical progressions.
Supplement 7 138–140 Results from the theory of circle division.
Supplement 8 141–142 Approximation of quadratic surds and Fermat–Pell equation.
Supplement 9 143–144 Convergence and continuity of some infinite series.

Dirichlet did not study this work once or several times only, he never stopped
his entire life recalling to his mind again and again the stock of deep thoughts
which it contains. Sartorius von Walthershausen said once: exactly as certain
priests wander around with their prayer book, Dirichlet used to go on all his
travels only in company of a much read, battered copy of the Disquisitiones
Arithmeticae.

The simplifications introduced in theVorlesungen with respect to theDisquisitiones are
manifold and operate at several levels. One,for instance, is in the order of presentation:
while Gauss introduced congruences from the start and deduced the greatest common di-
visor of two numbers from their factorization into primes [Gauss, 1801, arts. 16 and 18],
Dirichlet begins with the properties of divisibility of integers, and derives the unique fac-
torization theorem from the Euclidean algorithm (Sect. 8). Indeed, he even summarizes his
first chapter by saying that ‘the whole structure rests on a single foundation, namely the
algorithm for finding the greatest common divisor of two numbers’ (Sect.16); this way of
bringing out the principles, in most cases very simple, on which proofs or theories are con-
structed, is quite characteristic of Dirichlet’s practice andoccurs also in more complicated
contexts.

For instance, the eighth supplement is devoted to the study of the Fermat–Pell equation
T 2 −DU2 = 1, forD not a square. A key lemma for the existence of integral solutions
of this equation is the proof that there are always infinitely many pairs of integersx and
y such thatx2−Dy2< 1+ 2

√
D. This lemma can be derived from the approximation of

the irrational
√
D arising from its expansion in continued fraction. But a simple alternative

lies in another ‘Dirichlet principle’, the pigeonhole principle: for eachm and for each
integral value ofy between 0 andm, it is easy to find a unique value ofx such that 0
� x − y√D < 1. Dividing the interval between 0 and 1 intom segments of length 1/m,
one sees that two of these couplesx, y, for differenty, should be in the same interval
(pigeonhole principle). A solution ofour inequality is thus found, whatever them chosen,
thereby providing an infinity of them.

Another type of reworking concerns the most celebrated result of theDisquisitiones,
the law of quadratic reciprocity. It states that, forp andq any two odd primes, an integer
is a quadratic residue (that is, is congruent to a square) modulo one of them if and only
if it is also a quadratic residue modulo the other—except ifp or q are both of the form
4n+ 3, in which case a number is a quadratic residue modulop if and only if it is not a
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quadratic residue moduloq . Complementary laws exist also forp = 2 and to decide mod-
ulo which numbers−1 is a quadratic residue. This law, which Gauss called ‘fundamental’,
was proved for the first time, twice, in theDisquisitiones. Dirichlet chooses to present first
a third, shorter, proof, also due to Gauss, and based on the so-called Euler criterion, namely
the fact that a numberD prime top is a quadratic residue modulop or not, according as
D(p−1)/2 is congruent to 1 or−1 modulop (Sects. 43–44). He then gives Gauss’s first
proof based on a complete induction, but again simplifies the lengthy original discussion
involving numerous cases by using a generalization of the Legendre symbol, the Jacobi
symbol (Sects. 48–51).

However, the most striking effects of Dirichlet’s trimming concern the theory of
quadratic forms. He chooses to concentrate on the problem of equivalence of forms (con-
sidering only briefly the more general situation studied by Gauss of one form containing
another), and drops completely the marginal case of forms of determinant 0. But then he
sketches in a crystal clear manner what has since then become the standard steps for the
study of forms: ‘to decide whether two given forms of the same determinant are equiva-
lent and hence members of the same class; to find all substitutions that send one of two
equivalent forms into the other’(Sect. 59), reducing to them the classical problem of the
representation of numbers by forms (Sect. 60). Two quadratic forms are said to be equiva-
lent (or in the same class) if one can be deduced from the other by a linear transformation
of the variables, with integral coefficients and determinant±1. A crucial ingredient in the
classification of forms, at least since J.L. Lagrange, is the theory of reduction: any bi-
nary quadratic form of determinantD is equivalent to a so-calledreduced form, with the
same determinant and with coefficients satisfying simple inequalities; for a givenD, these
inequalities can be valid only for a finite number of forms, hence there is only a finite num-
ber of reduced forms and thus a finite number of classes of forms for a given determinant.
For negativeD, there is essentially exactly one reduced form per class, but this is no longer
the case for positive determinants. Reduced forms for a given positive determinant can be
distributed into periods of reduced forms of the same class. Dirichlet noticed that by asso-
ciating to a binary quadratic formax2+ 2bxy+ cy2 of positive determinantD = b2− ac
the (complex) roots of the equationax2+ 2bx + c = 0, one can derive most of the facts
about reduction from the study of these roots; in particular, from their expansion into con-
tinued fractions. It is this presentation, simpler and more evocative than the computations
on the coefficients of forms used by Gauss, that Dirichlet chooses in his fourth section. He
also simplifies other aspects of the theory of forms by using analytic methods, as we will
see in the next section.

As Haubrich has aptly described it, Dirichlet was considered a master of proof analysis,
that is the art of reflecting on proofs in order to understand and to simplify their functioning
and presentation; according to C.G.J. Jacobi, ‘[Dirichlet] alone, not I, not Cauchy, not
Gauss, knows what a complete rigorous mathematical proof is, but we know it only from
him’ (quoted in [Haubrich, 1992, 14, note 53]). Again, Kummer commented that, for the
Vorlesungen as for his other arithmetical works, ‘one recognizes in general that the methods
through which Dirichlet has simplified number theory and made it more easily accessible,
are created essentially out of a fundamental study of more general theories; the proofs of
statements do not rely on special and accidentaldeterminations, but usually on the essential
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properties of the number-theoretical concepts concerned and thus communicate even in
particulars a knowledge of the general’ [Kummer, 1860, 333].

3 ANALYSIS AND ARITHMETIC

According to Dirichlet, ‘the characteristic feature of [t]his method [to simplify the theory
of forms with positive determinant] is that it brings irrational numbers into the circle of our
ideas’ (Sect. 72). As mentioned above, analysis and Gauss’s number theory were two key
features for Dirichlet’s mathematical orientation and the synthesis of these two was one of
his most celebrated contributions to mathematics. According to Kummer [1860, 327]:

In his mind striving to unity everywhere, he could not let these two spheres
of thought alone without exploring their internal relations, in which he looked
for and indeed found the knowledge of many deeply hidden properties of num-
bers. His applications of analysis to number theory, which resulted from it, are
distinguished from all other previous analogous attempts, mainly because in
them analysis has been adopted into the service of number theory in such a
way that it not only bears a few accidental isolated results but should provide
necessarily the solutions of certain general classes of arithmetical problems,
which are still inaccessible by other paths.

Two main applications of these ideas, dating from the end of the 1830s, are present
in the Vorlesungen: the computation of the class number of forms for a given non-zero
determinant and the theorem according to which ‘each unbounded arithmetic progression
kx + m, whose initial termm and differencek are relatively prime, contains infinitely
many primes’ (Sect. 137). The first is the core of the fifth chapter (with the help of the first
supplements), the second fills the sixth supplement.

The point of departure for the second result—used without justification by Legendre in
his attempt to prove the reciprocity law—is the equality, due to Euler, between the product∏
p(1− 1/ps)−1, taken only over primesp, and the series

∑
n n

−s , taken over all integers
n, for s > 1. As the series diverges whens goes to 1, the product should diverge too,
which means that there should exist an infinity of primes. To adapt this idea to primes
belonging to arithmetical progressions with differencek, Dirichlet introduces theL-series,
L=∑

ψ(n), whereψ(n) is a multiplicative function such thatL absolutely converges: in
the application to arithmetical progressions,ψ(n) is defined, forn prime tok, asn−s × a
product of roots of unity associated with the various prime factors ofk. The series can also
be expressed, fors > 1, as a product over the primes (not dividingk), and an adequate
combination of the logarithms of the variousL-series equals, up to a convergent series,
a series of inverse powers taken over all the primes belonging to the progression under
consideration. To establish the theorem, it is thus required to prove the divergence of the
total expression, and thus to study the behaviour of the variousL-series near 1. When
all the roots of unity are 1, the correspondingL-series is the arithmetical series, up to a
finite factor, and diverges. The case where complex roots of unity appear can be settled
easily once the other cases are dealt with. The most delicate case is then when the roots
of unity entering the definition of theL-series are all real (that is,±1). If the differencek
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is itself a prime number, an evaluation of the series can be made through Fourier analysis
or integral calculus; but in general, Dirichlet needs to identify theL-series with one of the
factors entering the expression of the number of classes of quadratic forms for a specific
determinant, linked to certain divisors ofk: as this class number is a non-zero integer, this
L-series does not vanish. Putting together these facts for the variousL-series proves the
theorem.

The expression for the class numbers occupies the final chapter of theVorlesungen and
constitutes the main addition to Gauss’s results in the core of the text. Again, it relies on
the consideration of specific series, here of the type∑ ∑

ψ
(
ax2 + 2bxy + cy2)s with functionsψ(n) as above, (1)

the sum being taken over quadratic forms of a given determinant and over integral values of
x andy satisfying certain conditions. The double sums are evaluated through two different
groupings, one of them being such that the limit of the components whens goes to 1 does
not depend upon the quadratic form considered, but only upon the determinant, which
makes the class number for this determinant appear. The result, and the path followed,
varies notably according as the determinant is positive or negative. For instance, if the
determinantD is negative, odd, without square divisors and of the form 4n+1, the number
of classes for the corresponding quadratic forms ish(D) = ∑4

0(s/|D|), where(s/|D|)
denotes the Jacobi symbol (Sect. 106). For a positive determinantD with otherwise the
same properties, one finds

h(D) log
(
T +U√D)=−(

4− 2

(
2

D

)) 1∑
0

(
n

D

)
logsin

nπ

D
, (2)

whereT andU are the smallest solutions of the Fermat–Pell equationT 2 − DU2 = 1.
Establishing these formulas and others uses several lemmas about the convergence of series
and about integration; they are generally relegated to the various supplements.

The study ofL-series and their variants (later also for a complex variable) became an
important topic in number theory. In theVorlesungen, besides the results just mentioned,
they are also used to prove for instance that forms are equally distributed among gen-
era (supplement IV) and other recondite questions arising from theDisquisitiones. As the
quotes given above testify, the exploitation of such analytic techniques and the intervention
of transcendental functions may appear as positive features, underlining the unity of math-
ematics. However, they will appear to be a drawback to the tenants of the programme of
arithmetization who will, on the contrary, try to eliminate them from proofs of arithmetical
results.

4 DEDEKIND’S SUPPLEMENTS X AND XI:
TOWARDS THE THEORY OF IDEALS

In the second edition (1871) Dedekind added atenth supplement, which was supposed to
handle another difficult part of theDisquisitiones, the composition of forms. Again, Gauss
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had defined and studied through complicated formulas what it means for three quadratic
formsF , f andf ′ to say thatF is composed off andf ′; the concept of composition is
inherited by classes (and also genera) of forms and Gauss then uses it critically to prove
some important statements of the theory of genera. Dirichlet hadsimplified the approach
by limiting himself to defining a concept of composition for two so-called concordant bi-
nary quadratic forms (that is, having the same determinant and coefficients(a, b, c) and
(a′, b′, c′) such thata, a′, andb + b′ are relatively prime). Dedekind presents this ap-
proach (Sects. 145–149) and shows that the classes of certain quadratic forms of a given
determinant form a group, explicitly linking this terminology to that ‘introduced by Ga-
lois in algebra’ (Sect. 149: the supplement continues the Section numbering of the first
edition). He then derives some classical applications to the theory of genera, as well as
Gauss’s second proof (the third in theVorlesungen) of the law of quadratic reciprocity.

From the following Section on, however, Dedekind’s aim is ‘to introduce the reader to
a higher domain, where algebra and number theory are linked most intimately together
[. . .] The concepts [brought forward here] lead in the algebraic direction towards the prin-
ciples of Galois, on the arithmetical side towards Kummer’s creation of ideal numbers’
[Dedekind, 1871, 400–401]. The main concept alluded to here is that of a (number) field
(Körper), defined in the now familiar way as a system of numbers ‘which has the property
that the sums, differences, products and quotients of any two of these numbers still be-
long to the same system’ [1871, 400]. The following paragraphs define and study algebraic
numbers (which generate these fields), algebraic integers, modules (used to generalize the
concept of congruence), and last, but not least, ideals and classes of ideals (Sect. 163).
Dirichlet’s theorem on the structure of units is set in this perspective (Sect. 166) and a
computation is provided for the (finite) number of classes of ideals in a number field (Sect.
167), the supplement ending with some details for the case of quadratic number fields.

According to Dedekind’s preface to this1871 edition, the general theory of ideals was
intended ‘to throw some light on the main subject of the whole book from a higher per-
spective’; but he admitted to Rudolf Lipschitzsome years later that he ‘had believed, that
the inclusion of this research in Dirichlet’s Zahlentheorie would be the safest means to win
a larger circle of mathematicians to work in this field’ [Dedekind,Works, vol. 3, 464]. His
apparent failure, and his own dissatisfaction with the theory, pushed him to rewrite it in
the subsequent editions and develop it in a separate autonomous 11th supplement. (On the
important technical changes between 1871 and 1894, see Edwards [1980] and Haubrich
[1992].) In the last edition, this supplement occupies almost a third of the whole book!
Dedekind shared with Dirichlet (and even more explicitly with Riemann) a predilection for
conceptual as opposed to computational analyses, but his was increasingly set-theoretical
and structural, following thelines of his other foundational writings. Despite Dedekind’s
early hopes, the complex posterity of his more personal supplements, and their undeniable
influence, tended to be almost independent of that of theVorlesungen.

5 THE INFLUENCE OF THEVORLESUNGEN

The four successive editions of theVorlesungen alone testify to its success during the last
decades of the 19th century. It was not limited to the German-speaking countries (or those,
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like Italy, where a translation was made readily available). For instance, Edouard Lucas
indicates in his ownThéorie des nombres of 1891 that theVorlesungen were one of his
main sources. In the same vein, George B. Mathews thanked Dedekind in the preface of
his introduction on number theory for allowing him ‘to make free use of his edition of
Dirichlet’s Vorlesungen’. Browsing through the number-theoretical papers of the 1880s
and 1890s reveals recurrent references to some version of theVorlesungen for the basic
theorems of the field.

For Dirichlet, ‘the variety of methods which serve for the proof of one and the same the-
orem was a main attraction of number theory’ [Dedekind, 1864]; and indeed, theVorlesun-
gen often offered many vistas of the questionstreated. Besides the analytical techniques,
for instance, one finds in the third supplement an estimate of the connection between the
area of a plane figure and the number of lattice points it contains, which would serve as a
point of departure for the future geometry of numbers (Sect. 120). Indeed, the variety dis-
played in theVorlesungen is matched by the variety of the number theorists to whom they
appeal. For instance, the copy of the 1871 edition at theBibliothèque de mathématiques
de Jussieu in Paris is bound together with reprints and letters of Théophile Pépin and An-
dré Desboves, representative authors of theNouvelles Annales, a journal mainly addressed
to students, engineers and high-school teachers and defending an elementary approach to
number theory.

But, in a striking parallel with Dirichlet’s own use of theDisquisitiones to educate
himself, theVorlesungen will also help to train the younger, more turbulent, generation of
number theorists. Around 1880, Heinrich Weber drew the attention of Dedekind to a very
promising high school pupil, Minkowski, ‘who leaves for the university next year and has
worked his way completely on his own in analysis and number theory, which he has studied
in the first edition of your Dirichlet–Vorlesungen’ [Strobl, 1985, 144]. This involvement
would lead Minkowski towards Gauss’sDisquisitiones and a life-long interest in quadratic
forms and the development of the geometry of numbers. In his tribute on Dirichlet for
the 100th anniversary of his birth, Minkowski underlines nonetheless, exactly as Hilbert
did in theZahlbericht, the contrast between Gauss’s and Dirichlet’s number theory on one
hand and the more recent trends of algebraic number fields, and chooses to present the
results of Dirichlet which fit the best into this framework. But in his conclusion, he states
[Minkowski, 1905, 162–163]:

In his lectures Dirichlet treated withpredilection these domains, in the con-
struction of which he himself has richly participated. His exposition was thus
so penetrating because it appeared as if he was about to create the whole edifice
there for the first time; it was captivating to the highest degree to follow him
in this work. He developed the material in the most natural way. No artifice
occurred as adeus ex machina to lead tragically tangled knots to unexpect-
edly happy solutions. [. . .] And we today, when we strive more than ever to
recognize and represent science in its simple truth, are we not members of the
Dirichlet school?
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CHAPTER 38

BERNHARD RIEMANN, POSTHUMOUS THESIS
ON THE REPRESENTATION OF FUNCTIONS

BY TRIGONOMETRIC SERIES (1867)

David Mascré

In this work, prepared for a doctoral defence in 1854 but published only after his death,
Riemann both refined the understanding of the integral but especially opened a new era
in the handling of Fourier series. His explorations led to new insights into functions and
infinite series, and led to the creation of set theory.

First publication. ‘Über die Darstellbarkeit einer Funktion durch eine trigonometrische
Reihe’,Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen,
13 (1867), 87–132. Also Göttingen: Dieterich, 1867.

Manuscript. In Riemann’sNachlass, Göttingen University Library Archives.

Reprints. In Gesammelte mathematische Werke (ed. H. Weber and R. Dedekind), 1st ed.,
Leipzig: Teubner, 1876, 213–253. Also in 2nd. ed., 1892, 227–271. [This ed. repr. with
additions Berlin: Springer, 1990.]

French translation. In Bulletin des sciences mathématiques, (1) 5 (1873), 20–48, 79–96.
[Repr. in Riemann,Oeuvres mathématiques (ed. L. Laugel), Paris: Gauthier–Villars,
1898, 227–279.]

Partial Spanish translation by J. Ferreirós in (ed.),Riemanniana selecta, Madrid: Consejo
Superior des Investigaciones Cientificas, 2000, 41–60.

Related articles: Cauchy on real-variable analysis (§25), Fourier (§26), Cantor (§46),
Lebesgue and Baire (§59).

1 BACKGROUND

Starting with the work of Joseph Fourier (1768–1830) (§26), the question of the representa-
tion of functions by trigonometric series constitutes one of the main lines of mathematical
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analysis through the 19th century. If the works of A.-L. Cauchy, J.P.G. Dirichlet and P. Sei-
del are milestones in the understanding of the problem, it is in one ofHabilitation theses
(1854) of Bernhard Riemann (1826–1866), presented to the University of Göttingen, that
the ideas that contained the bases of the theories can be found. Under an apparently modest
title ‘On the developability of a function by a trigonometric series’, it lays the foundations
of what will open a new epoch in real-variable analysis. Three years earlier he had sub-
mitted an essay on analytical functions [Riemann, 1851] for his first doctorate (§34) and
in 1854 he presented anotherHabilitation thesis ‘Über die Hypothesen welche zugrunde
der Geometrie liegen’ ([Riemann, 1867]: see §39). He did not publish either thesis; they
appeared in 1867 under the control of his friend Richard Dedekind (1831–1916).

Composed of three parts, Riemann’s thesis on series is a masterpiece of balance and
concision. Shuttling between history and reflection, it binds together intrinsic analysis of
problems and historical study of their genetic development. It is a perfect example of a
thought in which the work of theoretical elaboration is not dissociated from a historic
reflection on the origins and genesis of concepts. It is the testimony of a thought where the
technical character of demonstrations is masked by the beauty and the depth of intuition.

This genetic and lively conception of mathematical development is perfectly reflected
in the choice of the plan of the thesis. The first part (arts. 1–3) treats the history of the
representation of an arbitrary trigonometric series by a function. Then follows second part
(arts. 4–6) on the study and definition of the notion of integral. The third part, by far the
richest, concerns the general study of the representability of function by these series (arts.
7–13).

2 RIEMANN’S HISTORICAL ANALYSIS OF THE INTEGRAL AND
TRIGONOMETRIC SERIES

The historical account presented by Riemann is not a simple retrospective. More than a
restitution, it is a synthetic overview constituting an authentic conceptual re-appropriation
of the ideas discovered by his predecessors. Here history is not separated from thought
but intimately linked to it. Its invocation, in the best German university tradition, aims at
grasping an intelligent view of the past, in order to find a synthetic and global overview,
with the aim of summarizing its logic and to point out its guidelines. His purpose was to
enhance the essential novelty of each of the great steps of the development that, notwith-
standing the historical incidents, were to lead to the theory at this first stage of achievement
where he received it. Riemann articulates these steps around three great historical figures
presented as the main actors of this story: Euler, Fourier and Dirichlet. Dirichlet especially
had a decisive influence on Riemann, not only by teaching Riemann elements of analysis
during his study in Berlin, but as a mentor too, by helping Riemann during the autumn of
1852 to write his thesis on trigonometric series. This is testified by a letter from Riemann
to his father: ‘The other morning Dirichlet was with me for nearly two hours. He gave me
notes that I need for myHabilitationsschrift and they are so complete that my work has
been made considerably easier. Otherwise I could have spent a long time searching for
many things in the library. He also read all my thesis with me and was very kind to me’
[Dedekind, 1876, 546].
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According to Riemann, Fourier made the most important contribution. His merit is not
only due to the priority of his discovery (on this point, he refutes a claim made by S.D. Pois-
son of priority for J.L. Lagrange) but especially to the depth of his views: ‘It was owing
to Fourier that the true nature of trigonometric series was recognized in a perfectly correct
way; since that time they have been frequently used in mathematical physics for the repre-
sentation of arbitrary functions, and in each particular case one saw readily that the Fourier
series actually converged to the value of the function; but it took a long time for this impor-
tant theorem to be proved in all generality’ (art. 2). Thanks to Fourier, we have access for
the first time to anexact andcomplete understanding of thenature of trigonometric series.
It is summarised in Fourier’s formulas

f (x)= a0

2
+
+∞∑
n=1

(an cosnx + bn sinnx), where 0� x � 2π (1)

and

a0= 1

π

∫ 2π

0
f (x), an = 1

π

∫ 2π

0
f (x)cosnx dx and

(2)

bn = 1

π

∫ 2π

0
f (x)sinnx dx.

The progress did not lay so much in the calculation procedure for the coefficients—already
known to Euler and Lagrange—than in the systematic form of the coefficients and the
understanding of representability as marked by ‘=’. Indeed, Fourier is the first to consider
the whole:f is analysed by means of (2) and synthesised by means of (1). Analysis and
synthesis are two indissociable and complementary moments of harmonic analysis.

But when are we in a position to integrate the function and in which cases does the
series of coefficients thus obtained converge effectively towardsf (x)? The question is far
from being solved, and a large part of mathematical research revolves surrounds it in the
19th century. If this is right in the specific case dealt with by Fourier, it is a long way from
leading to a general and comprehensive theory. The problem lays foremost on the question
of knowing under which general conditions the integration formula should be applied: can
it be applied to any arbitrary function, or should different classes be distinguished? As Jean
Cavaillès remarked [1938, 52]:

Hence the focus laid, during the whole period, on studies on integration: for
Dirichlet, not only the calculation of the coefficients but also their convergence
is subordinated to it. The issue is toknow which conditions fulfilled by the
arbitrary function are sufficient for a certain integration to be possible. What is
the result for the behavior of a function of the property to be representable by
a trigonometric series? Lastly, is there a one-to-one representation?

Fourier himself did not fully demonstrate the convergence of his series [1822, arts.
415–416], though he showed that for particular functions the series converges towards
them. But is it true in general? The urgency of a reply seems all the more important that
Fourier himself claimed that ‘a trigonometric series, with coefficients thus determined, can
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represent any arbitrary function’ [Sachse, 1880, 47]. This is a requirement of the theory,
linked to the manner itself in which the coefficients were obtained. Cauchy [1827] tried to
give a demonstration of this fact. He failed, as he will later admit, but it gives Riemann the
opportunity to bring a first precision.

Cauchy had supposed that any periodic functionf (x) could be extended into an ana-
lytical functionf (x) bounded over the whole plane [1827, 603]. As Riemann noticed, this
is only true whenf (x) is constant. He observes that Cauchy only needed to extendf (x)

within the real part of an analytical functionF(x + iy), defined and bounded in the upper
half-planey > 0, which can be established either by complex methods or by Fourier series.
In fact, the proof by complex methods can be found in the thesis ([Riemann, 1851]: see
§34). Incidentally, there appears a first connection between complex methods and Fourier
series. It is the first step to succession of the coming results, which will ceaselessly con-
firm the constant interaction between real and complex analysis. This enables Riemann to
demonstrate the equivalence between the works started by Fourier and Cauchy (art. 2):

Cauchy supposes that in a periodic function given arbitrarily,x is replaced by
a complex argumentx + iy, this function is finite for any value ofy, but this
is only valid if the functionf (x) is equal to a constant value. However, it is
easily noticed that this supposition is notnecessary for further conclusions.
It suffices to have a functionφ(x + iy) finite for all positive values ofy and
whose real part becomes equal, fory = 0, to the given periodic functionf (x).
If this supposition, which is indeed right, is first agreed on, the path started by
Cauchy leads straight to the aim, as inversely this proposition can be deduced
from the theorem on the Fourier series.

But it is about another inaccuracy of Cauchy that Riemann supplies the most interesting
contribution. Cauchy’s strategy consisted in reducing the study of the convergence of the
Fourier series into that of another one, which was easier to study and clearly convergent.
According to Cauchy, the Fourier series converges because the ratio between its general
term and(sinnx)/x tends towards 1 whenn tends towards∞. But he had erred by stat-
ing that series with terms in such a relation simultaneously converge or diverge. This led
Riemann to the fruitful distinction between absolutely convergent series (first class) and
conditionally convergent ones (second class). For the latter, showed Riemann, the sum ob-
tained by modifying the order of the terms can equal any finite number. This led him to a
fundamental conclusion (art. 3):

Laws of finite sums may only be applied to series of the first class; those only
may be considered as the set of their terms; whereas those of the second class
may not. This is a circumstance that had escaped the mathematicians in the last
century, mainly for the reason that seriesthat progress according to increasing
powers of a variable belong, generally speaking (that is to say to the exception
of some specific values of this variable), to the first class.

However, and this is the vital point: ‘The Fourier series, obviously, does not necessarily
belong to the first class: it was therefore impossible, as Cauchy had vainly tried to do, to
deduce its convergence from the lawaccording to which terms decrease’.
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This is the explanation of the famous counter-example exhibited in [Dirichlet, 1829]
against Cauchy’s argument. Dirichlet had rightly noted ‘that it is easy to give the example
of series whose terms are not all positive, such that one is convergent, the other divergent,
but that the ratio of the corresponding terms tends to+1’ [1829, 158], and offered the
example

+∞∑
n=0

(−1)n√
n

and
+∞∑
n=0

(−1)n√
n

[
1+ (−1)n√

n

]
. (3)

The correct method, as Dirichlet had already showed, lay in studying the convergence of
the sum of the firstn terms in the Fourier series, or, and this amounts to the same, the
integral

1

2π

∫ π

−π
f (α)

sin 2n+1
2 (x − α)

sin x−α2

dα (4)

when n tends towards infinity. In the case where the functionf (α) is continuous,
monotonic and finite, the integral obviously converges towardsf (x). But Dirichlet had
gone even further by succeeding in demonstrating, on the basis of the rules already iden-
tified by Cauchy, that the result could be extended to functions monotonic by parts. To do
this, all he had to do was to invoke the additivity of the integral and the rule of convergence
under the summation sign:

1) The integral of a function within an interval being the sum of the integrals over a
finite number of partial intervals in which the first one is subdivided,f can take a
finite number of minima and maxima.

2) If the integral
∫ x
a f (t) dt converges whenx tends towardsb, a singular point forf

(i.e. point wheref is either discontinuous or infinite), then the integral tends towards
a determined limit, equal to

∫ b
a f (t) dt . In particular, in the case whenf has a right-

hand and a left-hand limit inb, the two integrals
∫ b−0
a f (t) dt and

∫ c
b+0f (t) dt are

correctly defined and∫ c

a

f (t) dt = 1

2

{ ∫ b−0

a

f (t) dt +
∫ c

b+0
f (t) dt

}
. (5)

With those results in mind, Dirichlet’s theorem became immediately obvious. One can
represent by a trigonometric series each 2π -periodic function that remains periodic in the
interval[−π,π] and does not have infinitely many discontinuities or maxima and minima.

Riemann summarised Dirichlet’s proof by reasoning directly on his integral. The proof
was based on the following facts:

lim
n→∞

1

2π

∫ c

0
f (β)

sin(2n+ 1)β

sinβ
dβ = π

2
f (0) ∀c such that 0< c� π

2
; (6)

and

lim
n→∞

1

2π

∫ c

b

f (β)
sin(2n+ 1)β

sinβ
dβ = 0 ∀b, c such that 0< b < c� π

2
, (7)
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where the functionf is supposed to be always increasing or always decreasing within the
limits of these intervals (art. 3):

Indeed, these two conditions suffice, in the case where the function does not change an
infinite number of times from increasing to decreasing steps, to decompose the integral

1

2π

∫ π

−π
f (α)

sin 2n+1
2 (x − α)

sin x−α2

dα

into a finite number of terms, one of which converges towards1
2f (x + 0), another towards

1
2f (x − 0), and all the others towards 0, whenn increases to the infinite.

This provides an explanation of Dirichlet’s result, which Riemann summarized as fol-
lows (art. 3):

A trigonometric series can represent every periodic function with the period 2π which

1) is integrable throughout,

2) does not have infinitely many maxima and minima,

3) takes on the mean value of its two limiting values wherever its value changes
abruptly, that is, it is such thatf (x)= (f (x + 0)+ f (x − 0))/2.

This last condition, added by Riemann, is in fact necessary. Indeed, ‘a function which
has the first two properties and not the third can obviously not be represented by a trigono-
metric series: the trigonometric series which would represent it outside the discontinuities
would differ from it at the point of discontinuity itself’ (art. 3). For if condition 2) is not
valid, the conclusion about Dirichlet’s integral is not valid; if instead 1) is dropped, where
the integral is understood in Cauchy’s sense, it is not possible to determine the coefficients
of the Fourier series. However, none of the first two given conditions is irreducible, as
Dirichlet had already noted [1829, 169]:

we would still have to consider the case where the suppositions we have made
on the number of solutions of continuity and on the number of minima and
maxima values cease to occur. These particular cases can be compared to those
we have just considered [. . .] But the point, if it is to be performed with all the
desired clarity, requires some details linked to the fundamental principles of
infinitesimal analysis, which will be exposed in another note.

This finding implied a general revision of the theory of integration, a promise which
neither Dirichlet nor his successors made. Hence a mixed feeling, with a hint of disap-
pointment, clouds Riemann’s final judgement: ‘Knowing if and when a function which
does not fulfil the first two conditions is representable through a trigonometric series, this
is what remains open in Dirichlet’s research’ (art. 3).

Nevertheless, the theory carried the first marks of achievement—which was all the more
considerable in that, for Riemann, it was destined to cover most of nature’s phenomena
(art. 3):

This work of Dirichlet has given a solid basis to a great number of impor-
tant analytical researches. By highlighting a point on which Euler had erred,
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he has succeeded in solving a question which had bothered so many eminent
mathematicians for over seventy years (since 1753). In fact, the problem was
completely solved for all cases which present themselves in nature alone, be-
cause however great may be our ignorance about how the forces and states
of matter vary in space and time in the infinitely small, we can certainly as-
sume that functions to which Dirichlet’s research did not extend do not occur
in nature.

We might be surprised by the manner in which Riemann puts aside the possibility of
such a case just after he has considered extending his results to functions more irregular
than those specified by Dirichlet. But Riemann still points out other possible extensions,
as fundamental and even more unexpected: those which enable to connect the theory of
Fourier series not only to physics but also to the theory of numbers.

The connection is all the more important that it shows the existence of connections as
profound as unexpected between analysis and arithmetic [Knobloch, 1983, 323]. This was
a fine idea, of which G.W. Leibniz, Leonhard Euler and Carl Jacobi had already given
some illustrations, with numerous repercussions; for example, for Riemann a few years
later when he discovered one of the keys to the theory of theta functions.

3 RIEMANN ON THE INTEGRAL

Too closely dependent on the definition of the integral given by Cauchy, the path opened
up by Dirichlet could therefore not be pursued further, without triggering a profound re-
vision of the concept. Here was the evidence of an internal obstruction, directly linked
to the uncertainties that were still reigningover certain fundamental points of the infin-
itesimal calculus. This led Riemann to his crucial question: ‘what do we understand by∫ b
a
f (x) dx?’ (art. 4).
The response that Riemann gives to that question consists of the definition of the in-

tegral that carries his name. This is the topic of the second part of the thesis. ‘The pos-
itive part of Riemann’s thesis starts indeed with a new definition of the integral, whose
properties enable him to show both one of the fundamental lemmas, and directly, some
of the main results, such as the theorem stating that when the function is integrable in
this new sense, the coefficients of the new trigonometric series effectively converge to-
wards zero’ [Cavaillès, 1962, 53]. The originality of Riemann’s approach lays in the
transformation which it operates, as rightly pointed out by Lebesgue [1906], by turning
the operating process given by Cauchy to calculate the integral of a continuous function
into the starting point of the definition of the integral of any function [Hawkins, 1970,
ch. 1]. ‘Cauchy’s definition (which was also adopted in his work of 1829) was applica-
ble when the integrandf (x) is continuous in the interval of integration or presents at
most a finite number of points of discontinuity. However it ceased to be valid if these
points are infinite in number. But it was precisely this case that interested Riemann’
[Sachse, 1880, 243]. By treating it, Riemann gave a first illustration of the principle of
conservative extensions, which in fact enabled him to clearly define the notion of inte-
gral.
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Riemann’s method of defining the integral of a function between two pointsa andb
was to divide the interval[a, b] into n parts[xi−1, xi] with a = x0 < x1 < · · · < xn−1 <

xn = b; to consider in each of the partitions thus formed any pointyi = xi−1+ εiδi (where
0< εi < 1 andδi = xi − xi−1 is the difference between two successive values); and to
examine how the sumS =∑n

i=1 δif (yi) thus obtained depends on the choice of the partial
intervalsδi and fractionsεi . Then ‘the value of this sum will depend on the choice of the
intervalsδ and of the magnitudesε. If it has the property that, regardless of the choice
of δ and ε, it approaches indefinitely a fixed limitA as all δ’s become infinitely small,
then this value is called

∫ b
a f (x) dx ’. But if the sumS tends towards no limit, the notation∫ b

a
f (x) dx ‘cannot have any meaning’. A natural extension of this definition occurs when,

asf (x) becomes infinitely large asx tends to a valuec, there nevertheless exists the limit
of

∫ c−α1
a

f (x) dx + ∫ b
c+α2

f (x) dx asα1 andα2 tend to zero (art. 4).
This new point of view allowed an effective extension of the notion of integral of

Cauchy, in the sense that some functions to which Cauchy’s definition is not applicable
are Riemann integrable. It also led to a determination of the necessary and sufficient con-
ditions for the existence of the integral for a finite-valued functionf . Considering the
oscillationωi of the function within intervalδi (that is, the difference between the upper
and lower limit of the values taken by this function over this interval), Riemann noticed
that the necessary and sufficient condition forS to have a limit, that is forf to be inte-
grable, is that ‘the total sum of intervalsδi in which the oscillationsωi are> σ , regardless
of the value ofσ , can be made as arbitrarily small by an appropriate choice ofd [= supδi]’
(art. 5). Fifty years later in hisLeçons sur l’intégration, Henri Lebesgue will discover the
necessary and sufficient condition for the integrability of functions, and demonstrate that a
function is integrable in the Riemann sense if and only if its set of points of discontinuity
is of measure zero (§59.6).

Meanwhile, Riemann’s definition supplied an adequate instrument for a kind of gen-
eralisation which neither Dirichlet nor (after Riemann) [Lipschitz, 1864] had managed to
reach. In fact, even a series possessing a dense set of discontinuities can be integrable.
Riemann gives the example of the series

f (x)=
+∞∑
n=1

(nx)

n2
where(x)=

{
x −m if |x −m|< 1/2
0 whenx =m+ 1/2;

(8)

it is convergent at every point and continuous everywhere except at pointsx = p/(2n) (an
irreducible fraction) where it leaps byπ2/(16n2) (art. 6). The discontinuities form a dense
set, but there are only finitely many jumps> h in every finite interval, as can easily be seen
by noting that

{
n:

π2

16n2
> h

}
=

{
n: n <

√
π2

16h
= π

4
h−1/2

}
. (9)

So the function is integrable.
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4 THE PROBLEM OF THE UNIQUENESS OF THE REPRESENTATION

Having refined the concept of integrability, Riemann took up to the central point of his re-
search: the determination of the representability of functions by Fourier series. Preceding
studies, he says, have followed this scheme:if a function has such and such properties,
then it can be expanded in Fourier series. But ‘We must proceed from the inverse question:
if a function is representable by a trigonometric series, what consequences does this have
for its behavior, for the variation of its value with the continuous variation of the argu-
ment?’ (art. 7). He was the first to distinguish clearly the problem of representing a given
functionf (x) by a trigonometric series from its converse problem: that is, explaining the
consequences for the behavior off (x) asx changes continuously of its representability by
a trigonometric series. Dirichlet’s finding gave Riemann a sufficient condition for the first
problem; Riemann discovered necessary conditions for the second. The question, today
still open, of finding necessary and sufficient conditions for a 2π -periodic functionf (x)
to be equal for all realx to its Fourier series, was probably one of his major aims.

In order to do so, Riemann considered the following series

�=
+∞∑
n=0

An = a0

2
+
+∞∑
n=1

(an sinnx + bn cosnx). (10)

For each value ofx for which the series� converges, he sees thatf (x) is its limit. Recall-
ing a characterisation given by Cauchy [1827], he notes that a necessary condition for�

to converge is that limn→∞An = 0. Two cases may then occur, depending on the fact that
limn→∞An = 0 for all values ofx or at the exception of some of them.

In the first case, the Fourier coefficients converge to zero. (Formally, this means that

lim
n→∞(an sinnx + bn cosnx)= 0 ∀x ∈ [a, b] ⇒ lim

n→∞an = lim
n→∞bn = 0, (11)

which will only be proved by Cantor: see [Cooke, 1993], and compare §46.) The key to
the demonstration lies then in the exhibition of an auxiliary function. Riemann takes it as

F(x)= C +C′x + A0x
2

2
+
+∞∑
n=1

An

n2 , (12)

which is obtained by formally integrating twice�. The advantage of this function is that
it allows a simultaneous treatment of the problem of the representation and the problem
of the convergence of the series. The function is clearly continuous and integrable. Three
lemmas then enable him to establish the necessary condition for the representation (art. 8):

LEMMA 1. If the series converge to f (x) and if α and β decrease to zero in such a way
that their ratio remains finite, then

F(x + α + β)− F(x + α − β)− F(x − α + β)+ F(x − α − β)
4αβ

(13)

converges towards f (x).



500 D. Mascré

LEMMA 2. The function

F(x + 2α)+ F(x − 2α)− 2F(x)

2α
(14)

converges towards zero as α tends towards zero.

LEMMA 3. Designate by b and c two arbitrary constants such that b < c and by λ(x) a
function continuous between b and c, whose first derivative has the same properties and
whose second derivative does not have an infinite number of maxima and minima. Then

lim
n→∞n

2
∫ c

b

F (x)cosn(x − a)λ(x) dx = 0. (15)

This theorem has become known ashis ‘localisation theorem’.
Riemann now focusses upon representability (art. 9). He obtains two theorems:

THEOREM 1. If a 2π -periodic function f (x) can be represented by a trigonometric series
whose terms ultimately became infinitely small for every value of x , then there must be a
continuous function F(x), on which f (x) depends, such that

F(x + α + β)− F(x + α − β)− F(x − α + β)+ F(x − α − β)
4αβ

(16)

converges towards f (x) when α and β become infinitely small and their ratio remains
finite. Moreover,

lim
n→∞n

2
∫ c

b

F (x)cosn(x − a)λ(x) dx = 0, (17)

where λ(x) is assumed to be a function continuous between b and c and null at b and c,
whose first derivative has the same properties, and whose second derivative does not have
an infinite number of maxima and minima.

THEOREM 2. Conversely, if these two requirements are fulfilled, then there exists a
trigonometric series in which the coefficients ultimately and which represents the function
wherever the series converge.

THEOREM 3. Let b < x < c and let r(t) be a function such that r(t)= r ′(t)= 0 for t = b
and t = c, and such that r(t) and r ′(t) varies continuously between these values. Suppose
moreover that r ′′(t) does not have infinitely many maxima and minima and that r(t)= 1,
r ′(t) = 0, r ′′(t) = 0 for t = x while r ′′′(t) and r ′′′′(t) are finite and continuous. Then the
difference between the series

�=
+∞∑
n=0

An = b0

2
+
+∞∑
n=1

(an sinnx + bn cosnx) (18)
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and the integral

1

2π

∫ c

b

F (t)
d2(sin 2n+1

2 (x − t))/sin x−t2

dt2
r(t) dt (19)

converges towards zero when n increase indefinitely. Therefore, the series (18) converges
or not according to whether � approaches a fixed limit or not as n increases indefinitely.

In this way, studying the general convergence of the series reduces to examining the
behaviour of a particular integral. Theorems 1 and 2 give the necessary conditions for a
given functionf (x) to be represented by a trigonometric series that hasf (x) as its gen-
eralized Riemann sum. In fact,f (x) is the generalized second derivative ofF(x) as given
in (16). The result is the more impressive because Riemann did not frame any hypothesis
about the form of the coefficients in the series (18). Consequently, the results remain true
even when the coefficients are not coefficients of Fourier series. The consequences of the
distinction between Fourier series and trigonometric series will first appear clearly with
[Cantor, 1872]; see also [du Bois-Reymond, 1880].

In art. 12 Riemann considers the second case, where the coefficients of Fourier become
infinitely small with 1/n for a value ofx without this happening for all values. In that case
the series does not necessarily converge towards zero for allx. But the result remains valid.
To see this, it suffices to substitutex+ t andx− t in the definition of�. Summing term by
term, we indeed obtain the series whose terms tend to zero asn increases for every value
of t and to which we can therefore apply the results obtained.

5 THE FINAL ARTICLE: EXAMPLES ILLUSTRATING THE DIVERSITY AND
COMPLEXITY OF TRIGONOMETRIC SERIES

Riemann did not consider all cases that are excluded from Dirichlet’s conditions, but lim-
ited himself to a few important examples. Art. 13 is in that sense a kind of final fireworks,
where Riemann raises more problems than he was apparently able to solve. As Laugwitz
put it, ‘Special examples serve here to investigate the scope of concepts’, especially of
continuity and piecewise differentiability [Laugwitz, 2000, 188].

As far as functions with an infinite number of maxima and minima are concerned, Rie-
mann asserts that there are functions that are integrable in the wide sense that are not
representable by Fourier series: for instance,

f (x)= d

dx

(
xν cos

1

x

)
, where 0< ν <

1

2
, (20)

which satisfies∫ 2π

0
f (x)cosn(x − a) dx ≈ 1

2
sin

(
2
√
n− na + π

4

)√
πn(1−2ν)/4 (21)

and whose series of Fourier coefficients is therefore divergent. This proves that a Fourier
series of an integrable function in the wide sense may be divergent. Inversely, following a
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comment probably considered by Riemann, but which Fatou [1906] will later demonstrate,
a trigonometric series may be everywhere convergent without its sum being integrable on
any interval. For instance, the function

f (x)=
+∞∑
n=2

sinnx

logn
(22)

is everywhere convergent, whereas its sum is neither Riemann nor Lebesgue integrable
[Lebesgue, 1906, 124].

Riemann then considers non-integrable functions, whose associated series may con-
verge on a dense set. The result is a multitudeof equally fundamental examples. The first
one is the function

f (x)=
+∞∑
n=1

(nx)

n
(23)

(where the function(x) represents the difference betweenx and the closest integer), de-
fined for every rational value ofx and which is representable (which Riemann just indicates
without proving it) by

f (x)=
+∞∑
n=1

d ′n − d ′′n
nπ

sin 2πnx, (24)

whered ′n is the number of odd divisors andd ′′n the number of even divisors ofn. This
function exists almost everywhere and its oscillation is infinite over any interval, so it is
nowhere Riemann integrable. It is nevertheless Lebesgue integrable, and the previous ex-
pression is none other than its development as a Fourier–Lebesgue series. It links the theory
of series to problems of arithmetic, and may have suggested to Cantor of the importance of
an arithmetical approach to analysis (see Cantor [1883, arts. 4 and 10]; and compare §46).

Riemann then considers even stranger examples such as the series
∑+∞
n=1

(nx)

n2 . All of
its jumps are negative and the sum is infinite, so that it is not Riemann integrable; but the
continuous parts of the function(nx) gives a positive derivative which ensures its conver-
gence.

Probably independently of Riemann, [Jordan, 1881] will deduce the existence of
functions with bounded variation and however discontinous on any interval, for in-
stance the series

∑+∞
n=1

(nx)

n3 . Similarly, Riemann gives two series,
∑+∞
n=1 cn cosn2x and∑+∞

n=1 cn sinn2x, where thecn are positive quantities decreasing to zero, but for which the
series

∑+∞
n=1 cn diverges.

Lastly, Riemann takes
∑+∞
n=1 sinn!πx, which converges at all rational points (as well

as in some irrational points, which he tries to show) whereas its coefficients do not tend
towards zero. This shows that the trigonometric series can also converge infinitely between
any two arbitrarily close arguments if its coefficients do not ultimately become infinitely
small.

At the same time, Riemann wonders about the existence of continuous functions that
may be nowhere differentiable. As testified by [Weierstrass, 1872], he gave

∑+∞
n=1

sinn2x
n2
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to his students as a possible candidate. It was indeed logical, when considering the for-
mal derivative of this function

∑+∞
n=1 cosn2x, to see there the limit of the Gauss sums∑+∞

n=1 exp[in2(x+ iy)] (y > 0). But neither Riemann nor Weierstrass was able to establish
rigorously the expected result. In fact, the proof will only be given in [Hardy, 1916], where
the non-differentiability of the function is established, first over the irrationals, then over a
certain class of rationals, then lastly at any point other than those of the formx = π 2p+1

2q+1 ,
p andq integers [Gerver, 1971, 32–55].

Then Weierstrass [1872] shows another example of such a function,

F(x)=
+∞∑
n=1

bn cosanπx, (25)

where a is a sufficiently large odd integer. Forb positive and strictly smaller than 1
(0< b < 1), the series is uniformly convergent, and the function thus defined is therefore
continuous. If we haveab < 1, the derivative ofF(x) is

F ′(x)=−π
+∞∑
n=1

(ab)n sinanπx; (26)

but if ab > 1+3π/2,F(x) no longer has a derivative. Indeed, the existence of a derivative
would require that the differential quotient� = |(F (x + h)− F(x))/h| remains inferior
to ε for all values|h|< α, ε being arbitrary andα a given number. Fairly simple transfor-
mations show that, in this given case, the hypothesis

|h|< 3

2am
leads to �>

3

2am

(
2

3
− π

ab− 1

)
(ab)m. (27)

Thus limh→∞�=+∞, and the functionF(x) is nowhere differentiable. In fact the con-
ditionsa < 1 andab� 1 suffice to ensure non-differentiability [Hardy, 1916].

We stress the beauty of this final part: real fireworks of examples, a goldmine of ma-
terial where later mathematicians will continuously dig: in a way, most of real-variable
analysis of the later 19th and 20th centuries has sprung from here in one way or another.
But Riemann was not in a position to deal in a general manner with functions containing
an infinite number of maxima and minima; for their definition would have required that,
for a given valueσ , a partitioningd could always be chosen in order to ensure that the
conditions for the integrability were effectively satisfied. On this issue, his thesis left a
number of points unresolved, which is presumably why he decided to postpone its release
(the rather scrappy form of art. 13 suggests this hypothesis). It remains that its publication
in 1867 gradually opened the way to an incredible number of new theories: definition of the
integral, characterization of integrable functions and introduction of sets of zero Lebesgue
measure, study of general trigonometric series, formal integration, relations between real
and complex methods in Fourier analysis, fractal objects, scale factors, pseudo-functions
and smooth functions, oscillating integrals, andcondensation of singularities: these are all
concepts and techniques that directly issued from Riemann’s idea and founded what will
become in the next decades the vast field of modern real-variable analysis.
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1 BERNHARD RIEMANN (1826–1866)

Bernhard Riemann was the son of a German pastor. He led a sheltered life, and originally
intended to follow his father into the Church; but his extraordinary talent for mathematics
soon took him in that direction, and he studied mathematics in Göttingen and Berlin from
1846 to 1851. His doctoral thesis, published in 1851, is one of the founding texts in the field
of complex analysis (§34), and in a series of papers that followed he established himself
as one of the most profound conceptual thinkers in mathematics in the entire 19th century.
He became an associate professor at Göttingen in 1857 and a full professor in 1859. His
influence continues to be felt today, not least in the subject of Riemannian differential
geometry, which derives from the thesis under discussion here. Indeed, it could be argued
that Riemann’s lecture ‘On the hypotheses that lie at the basis of geometry’ did more to
change our ideas about geometry and physical space than any work on the subject since
Euclid’s Elements. Yet by the time it was published in 1867, as one of three of Riemann’s
papers in theGöttingen Nachrichten, its author had died of pleurisy in Selasca, near Lake
Maggiore in Italy, in 1866, at the age of 39.

2 THE LECTURE

This posthumous work was originally given as a lecture to the Philosophy Faculty of the
University of Göttingen in 1854, in partial fulfilment of the requirements for the award
of a Habilitation, the German qualification needed before one could teach at a German
university. Candidates had also to submit a written thesis, and to offer three topics for a
lecture. Riemann offered this title as the third of his list of three, and did not expect to be
called to speak on it; but the senior examiner was Carl Friedrich Gauss (1777–1855), and
geometry had been a life-long interest of his. Gauss was to announce himself very pleased
with what he heard.

The essay opens with a remark about a darkness that lies at the foundations of geometry,
and which, in Riemann’s opinion, is not illuminated by the usual axiomatic presentation.
This darkness obscures the connections between what is assumed, which is the notion of
space and of constructions in space. It has persisted from Euclid to A.M. Legendre, to name
only the most famous of recent authorities, perhaps because the idea of multiply extended
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magnitudes has not been discussed. Once this is done, said Riemann, it will be seen that
even among three-dimensional extended magnitudes there is no unique choice, and so the
nature of space itself becomes empirical.

This is a remarkably bold opening, promising nothing less than the overthrow of Euclid-
ean geometry as the source of all geometricideas. It is a challenge not just to the scope
and reach of mathematics in 1854, but to whatever philosophy orthodoxy might have pre-
vailed in Göttingen at the time; as we shall see, Riemann had a deep immersion in German
philosophical thought of the day.

A multiply-extended magnitude—or manifold (‘Mannigfaltigkeit’), as he also called
it—is not an unintuitive concept. A one-fold extended magnitude, or one-dimensional man-
ifold, is a curve. Points on a curve require one measurement or coordinate to determine their
position. If a curve moves along a line it sweeps out a surface or two-dimensional manifold,
in which points require two coordinates to specify their position. Riemann said that exam-
ples of multiply-extended magnitudes are the positions of perceived objects and colours.
There is no need to stop with three-dimensional manifolds, and indeed Riemann contem-
plated extended magnitudes of arbitrary multiplicity. So, roughly speaking and without
looking for complications, a multiply-extended magnitude is something that is captured or
measured by using a certain number of coordinates.

Once a position of a point in ann-dimensional manifold is given by stating itsn coor-
dinates, the question arises of determining its distance from any other point in the mani-
fold. Evidently this must be measured along a path that lies entirely in the manifold. Rie-
mann noted that Gauss had shown how to do this in general for surfaces in space, and that
his methods readily generalised to any number of dimensions. However, the formula that
Gauss had used, while natural and correct for the problem he studied, was in general too
simple, and it would be necessary to consider more complicated formulae.

To see why, consider a sphere in space. We may suppose the sphere is the sphere of
unit radius, and that points on it are specified by their familiar latitudeφ and longitudeθ ,
thus: (cosθ cosφ, sinθ cosφ, sinφ). An increase inθ of a small amountδθ moves a point
on the sphere on a circle of radius cosφ through an amount cosφ dθ . An increase inφ
of a small amountδφ moves a point in a perpendicular direction through an amountδφ.
Following one move by another moves a point through an amountds given by Pythagoras’s
Theorem asds2= dφ2+ cos2φ dθ2. We may, if we wish, imagine this length is measured
by an infinitesimally small ruler curved to fit the surface of the sphere. Now, we know it is
correct to use Pythagoras’s Theorem because we are assuming we know how to measure
distances in the ambient three-dimensional space, to wit, by the three-dimensional version
of Pythagoras’s Theorem. To find the distance between two points on a sphere we choose
the shortest route between them, which we know to be an arc of a great circle joining them,
we divide it up into a series of very short arcs, we estimate the lengths of these arcs using
the formula just given, and we add up these arcs (which is done by integration).

Now suppose we consider just a surface, and forget entirely that it lies in space. Riemann
wanted to define distances on such a two-dimensional manifold by copying what he could
of Gauss’s approach. He indicated the main way of doing it, which is to assume you can
define distances between nearby points by a formula like the one supplied by Pythagoras’s
Theorem. It should involve the coordinates of the points, which are, shall we say,(x, y)

and(x + dx, y + dy). It will be some expression in thedx ’s anddy ’s, and the coefficients
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of this expression may well involvex andy, as they did in the example of the sphere.
But there is no reason to assume that the expression will resemble one derived from using
Pythagoras’s Theorem, so Riemann merely notices that from his perspective such formulae
reveal a concealed assumption. To find the shortest distance between two points, one must
then consider all paths joining them, a task Riemann did not describe how to confront.

The upshot of all this is that measuring distances in a space is something that Riemann
said was part of geometry, and he indicated that one way of doing this would be to write
down expressions in the coordinates and their differentials and then invoke the calculus.
This is why what he outlined forms a significant shift in our ideas about differential geom-
etry. But the underlying idea is very simple. One has a geometry whenever one has a space
of points (a manifold) and a way of measuring distance between points, which would be
the case if one always knew the distance between infinitesimally close points. So what one
wants is a manifold and an infinitesimal ruler.

It was evident to Riemann that one might write down a vast number of different formulae
for distance even given the same set of points. Presumably each formula would lead to a
different geometry on that space of points, so the question was how to proceed given such a
bewildering array of alternatives. There was anatural special case to consider. In the plane
and on the sphere one may measure lengths by a rigid infinitesimal ruler, which may be
put in any position. If the ruler is imagined to be an edge of an infinitesimal rigid body,
however, then it is not true that it may be put anywhere on the surface of a pear-shaped
surface, for example, because an infinitesimallysmall ruler adapted to fit the tightly curved
dome-shaped region at the top of the pear will not fit the fatter, but still dome-shaped,
region at the base, and still less is it adapted to the saddle-shaped region in the middle.

Surfaces where just one ruler will do, a ruler which one can imagine being one side
of an infinitesimally small two-dimensional solid body, have particularly simple formulae
for distance, and Riemann proposed to single them out. Among surfaces these include the
plane and the cylinder, which cannot be distinguished when only small patches are looked
at (which is why printing can be done from a cylindrical drum to a flat piece of paper) and
spheres of all radii. These are among the surfaces with constant curvature, to use a term
introduced by Gauss in a celebrated memoir [Gauss, 1827]. The plane and the cylinder
have zero curvature. A sphere of radiusR has curvatureR−2; so very large spheres have
very nearly zero curvature, as one would expect. But it is also possible for a surface to have
negative curvature. Surfaces of this kind are locally saddle-shaped. Riemann observed that
if one draws triangles (whose sides are geodesics, i.e. curves of shortest length) on these
surfaces and measures the sum of their angles, asimple rule emerges. On a surface of zero
curvature the angle sum differs by zero fromπ . On a surface of constant positive curvature
the angle sum differs by a positive amount fromπ . On a surface of constant negative
curvature the angle sum differs by a negative amount fromπ .

But Riemann, as we have observed, wished todiscuss surfaces without reference to
any ambient space. His inspiration here was Gauss’s discovery of curvature, which Gauss
showed was something that could be determined from quantities measured in the surface
alone. Indeed, Riemann’s whole insight into geometry may be summarised by saying that
it is about the intrinsic properties ofn-dimensional manifolds, and that the study of how
a manifold inherits properties from a larger ambient space should be reformulated accord-
ingly. Now, when one studies a surface intrinsically, one only has coordinates (but not a
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surface embedded in three space). As with latitude and longitude, the coordinates may be
thought of as specifying points in a plane, which is a map of the surface in exactly the sense
that the pages of an atlas are maps of the surface of the Earth. So, for example, to describe
a sphere one might well choose thepoints of the plane, and measure distance according to
the formula

ds =
√
dx2+ dy2

1+ ( 1
4r2 )(x

2+ y2)
. (1)

This corresponds to saying that the plane is the tangent plane to the sphere of radiusr at the
North Pole, and the pointP in the plane with coordinates(x, y) corresponds to the point
on the sphere which is found by joining the pointP to the south pole by a straight line.
Happily, starting from this formula it follows from Gauss’s formula for intrinsic curvature
that the space being described is indeed a space of constant curvature 1/r2.

This little formula for ds above conceals a remarkable statement. If one replaces
1/(4r2y) by a negative quantity, say, for simplicity,−1, the formula for distance becomes

ds2= (
dx2+ dy2)

/
(
1− (

x2+ y2))
, (2)

which only makes sense whenx2 + y2 < 1. But inside this region, which is the interior
of the circle of radius 1, the formula for distance describes a two-dimensional space of
constant negative curvature−4. There can be no doubt that Riemann knew this perfectly
well, even though he did not draw attention to it. Its momentous significance will be made
clear below.

At this stage in his lecture and in the paper, Riemann had outlined a programme ac-
cording to which any geometry is to be thought of as a space (ann-fold extended magni-
tude) and distances in the space are to be measured by an infinitesimal ruler. Among these
geometries, those whose distances are determined by infinitesimaln-dimensional bodies
have the simplest formulae and should be studied first. He now proposed to show how this
could be applied to the study of space.

Riemann first observed that, on the assumption that the infinitesimal measuring rod
may be put anywhere, and so space has everywhere constant curvature, then the sum of the
angles in a triangle is known once it is known in a single triangle. This recalls a famous
trichotomy in the investigations of non-Euclidean geometry, discussed by most writers on
that subject including (if erroneously) Legendre. If the parallel postulate is removed from
the assumptions of Euclidean geometry, there are three possibilities for the sum of the
angles of a triangle. Either the angle sum is always greater thanπ , or it is equal toπ ,
or it is always less thanπ . For future reference, let us follow historical usage and call
these the hypothesis of the obtuse angle, the right angle, and the acute angle respectively
Further work shows that the first alternative is untenable. The second alternative is, of
course, Euclidean geometry, which no one opposed. The third alternative is consistent with
the remaining assumptions of Euclid, and forms the distinctive feature of non-Euclidean
geometry. It is noteworthy, however, that Riemann never discussed this possibility in these
terms.

Riemann next distinguished between the metrical aspects of ann-dimensional manifold
and what he obscurely called the relations ofextent. These may be understood as being
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global, topological, or geometric in nature. The cylinder and the plane are alike metrically,
but differ in their relations of extent. The point Riemann observed is that there is a dis-
tinction between a space being infinite and being unbounded. The sphere, for example, is
not infinite, but it is unbounded—it has no boundary, it does not come to a stop. All the
evidence is that space is unbounded, but that does not mean, said Riemann—the first time
anyone had thought to say this—that it is infinite. All finite universes considered in astron-
omy and cosmology before had been bounded, usually by what was called the sphere of
the fixed stars.

Riemann next observed that if actual space is of constant curvature, it must be of very
nearly zero curvature. This is because astronomical observations have set bounds on the
curvature. But if it is not of constant curvature then it is difficult to say anything about it
at all. Finally, he observed that the empirical understanding of the metrical properties of
space may break down in very small regions, and if this were to open the way to simpler
explanations of natural phenomena we should suppose that they do. Indeed, the universe
may not form a continuous (i.e. infinitely divisible)n-fold extended magnitude but may be
a discrete manifold instead. He then concluded this remarkable paper with the hope that
the study of space in such generality may prevent progress from being impeded by too
narrow views, and would open the way to the study of phenomena otherwise difficult, if
not impossible, to explain.

3 THE INTELLECTUAL CONTEXT

Most historians of mathematics have always sought to place Riemann’s lecture within de-
bates about the foundations of geometry, by which they mean the early investigations of
non-Euclidean geometry, and this is indeed a reasonable thing to do. But there are other cur-
rents as well. Very few names are mentioned in the lecture. That of Gauss appears, because
of his work on the differential geometry of surfaces in 1827 and some of his remarks about
complex numbers, which Riemann plainly regarded as a species of two-fold extended mag-
nitude. Legendre’s name appears as someone who had not lifted the darkness lying over
geometry, and that is a nod towards the study of non-Euclidean geometry because his argu-
ments against it were all flawed, as Gauss knew and Riemann would easily have seen if he
read them. The only philosopher whose name appears is that of Johann Friedrich Herbart
(1796–1841). On the other hand, among the names of mathematicians which do not appear
are those of Janos Bolyai (1802–1860) and N.I. Lobachevsky (1792–1856), the founders
of non-Euclidean geometry, which suggests very strongly that Riemann had not read them.

Let us first deal with Herbart and Riemann’s involvement with German philosophy.
Herbart had briefly been a professor at Göttingen, from 1805 to 1808 and from 1833 to his
death in 1841. In between he was Kant’s successor in Königsberg, and his philosophy is
notable for its interest in Kantian approaches at a time when German philosophy was dom-
inated by varieties of idealism. His most important book was the two-volumePsychology
as knowledge newly founded on experience, metaphysics, and mathematics (1824–1825).
In this book he argued that philosophy was fundamental to psychology, not the other way
round as had come to be suggested elsewhere. Herbart was critical of attempts to interpret
Kant in psychological terms, and proposed instead a metaphysical theory of the ego and
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the soul. This theory allowed him to explain, at least to his own satisfaction, how thoughts
and feelings were ultimately reducible to basic presentations which led a dynamic life that
generated the activity of the mind. According to this theory nothing was innate, everything
was learned from experience.

The details of this dynamical system was to be understood through mathematics, and
although Herbart provided few clues as to how this could actually be done, his dynamical
system of the mind did suggest a novel, and much richer description of the world than the
prevailing one. Herbart regarded every sensation as operating over time, and being formed
of a sequence of momentary stimuli. Residues of these stimuli will be retained in the mind,
and can be recalled. The perception of space, Herbart believed, form sequences that can be
read in either direction. We acquire such experiences through our senses in many different
ways: by our eyes, our fingers, our ears. These are woven together into the presentation of
two-dimensional space; depth, Herbart believed, was an inferred quality. Time series are
inevitably to be read in only one way, so our perception of time differs from our perception
of space, but both series of presentations are infinitely divisible (we can imagine residua in
our minds that are closer together than any residua actually present).

The influence of Herbart on Riemann can be traced through writings in Riemann’s
Nachlass that were published for the first time in Riemann’sWerke of 1876, when the
lecture was reprinted. Riemann set a high value on Herbart’s work. As he put it, ‘The
author is a Herbartian in psychology and epistemology (methodology and eidolology);
in most cases however he cannot agree with Herbart’s natural philosophy and the meta-
physical disciplines (ontology and synechology) referring to it’ (Works, 540; quoted in
[Scholz, 1982, 414]). Synechology covers space, time, and motion, in particular intelligi-
ble space, the mental construct that makes the explanation of matter possible. This shows
that Bertrand Russell’s confident ascription in 1897 of Riemann’s ideas to his appreciation
of Herbart was misplaced. It is not Herbart’s description of space (which remained intrin-
sically three-dimensional) that Riemann amplified, but his ideas about epistemology and
the acquisition of knowledge.

Herbart had characterised natural science as the attempt to comprehend nature by pre-
cise concepts. Such concepts determine what is probable, and if predictions based on these
concepts fail the concepts must be modified. He was inclined to think that the way concepts
change over was a strong argument against the Kantian categories. Riemann agreed. He
wrote that it is only because concepts originate in comprehending what is given in sense-
perception that ‘their significance can be established in a manner adequate for natural
science’ (emphasis in original:Works, 554). So, if all concepts arise by the transformation
of earlier concepts, they need not be deriveda priori, as were the Kantian categories. Rie-
mann agreed with Herbart that the Kantiancategories presumed too much. The idea that
space was an empty vessel into which the senses ought to pour their perceptions Herbart
had called ‘completely shallow, meaningless and inappropriate’ (quoted in [Scholz, 1982,
422]).

Riemann distinguished crucially between the space concept, and a particular space that
is used to describe real events. A conception of the world is correct, he wrote, ‘When the
coherence of our ideas corresponds to the coherence of things’, which in turn is obtained
‘from the coherence of phenomena’ (Works, 555). Herbart’s philosophical programme
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sought to establish philosophy as a science existing in a to-and-fro relation with the sci-
ences in which speculation about concepts led to an ever-deepening process of education.
Riemann’s view of science was very similar, being heavily conceptual. As Scholz shows,
Riemann’s views on mathematics were deepened and clarified by his extensive studies of
Herbart’s philosophy. In particular, Riemann might never have formulated his profound
and innovative concept of a manifold had he not immersed himself in Herbart’s work.

We know from Dedekind’s memoir of Riemann that when the time for the Habilitation
exam came up, Riemann was working in Wilhelm Weber’s physics laboratory, occupied
with no less than gravitation, electricity, magnetism, and light [Dedekind, 1876]. What all
these phenomena were known to have in common in 1854 was their transmission across
vast distances at enormous speeds. Riemann apparently sought to explain this by imagining
that the fabric of space was in some way subtly altered, and distortions in it spread like
ripples. He was not able to work this up into a coherent theory, but it seems clear that this
idea of conceptually rethinking the nature of space in a direct physical context accounts for
many features of the lecture. It underlines the avowedly empirical nature of the lecture, it is
in line with Riemann’s attempt to make proposals that allow one to explain phenomena, and
it explains the somewhat anti-Newtonian rhetoric. After all, the transmission and nature of
gravity were problems which Newton himself had the grace to admit he could not elucidate.

There were therefore good scientific and philosophical reasons for Riemann to be think-
ing of geometry as the study of the metricalrelations of a space, and that these should
be regarded as largely arbitrary but subject tocritical analysis. These reasons in turn ex-
plain why Riemann’s way of thinking about the nature of space is so profoundly different
from many of the ideas connected with non-Euclidean geometry, and why the link to non-
Euclidean geometry is so hard to find in the lecture.

Investigators into non-Euclidean geometry in the 18th and early 19th centuries took
the postulates of Euclid’sElements for granted, except for the parallel postulate. They
then sought to deduce the parallel postulate as a theorem from the other assumptions. This
heavily axiomatic approach was not Riemann’s at all, and indeed he criticised it right at the
start of the lecture. But it does not follow that Riemann had no interest in non-Euclidean
geometry, or that he was completely unaware of what had been done on it before 1854.
However, it is very hard to determine exactly what he did know.

As to what he could have known, he might have known that Gauss and his circle of
intimates in the world of astronomy had been prepared for some years to entertain the idea
that space departed slightly from Euclidean geometry. The remark in the lecture that the
resolution of this question might exceed the current range of telescopes suggests rather
strongly that Riemann was aware that the curvature of space was a topic of discussion in
Göttingen. On the other hand, the fact that Riemann was surprised that Gauss chose the
topic he did for the lecture suggests that Riemann was unaware of just how interesting
Gauss had found the topic all his life, which might mean that the two men had not talked
about it very much. The fact that the names of Bolyai and Lobachevsky do not come up
in the lecture does not tell us much either, because it could simply be that Riemann had
enough sense not to antagonise the philosophers who would decide if he was good enough
to pass his Habilitation. It was clear at thetime that if anyone could accept the views of
Bolyai and Lobachevsky it was at best a few imaginative mathematicians and astronomers.
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It is true also that the work of Bolyai was most obscurely published, in a little-known
book [F. Bolyai, 1832]. That said, Gauss had a copy, which Bolyai’s father had sent him
personally; but if for whatever reason Riemann did not know it, he was unlikely to have
heard of the work at all. The work of Lobachevsky was more accessible, however, for
apart from his extensive Russian articles (surely known only to Gauss in Göttingen at
the time) there was an article in French in Crelle’sJournal, and a self-standing booklet
written in German and published as [Lobachevsky, 1840], of which Gauss had a copy.
These works did not convey to the reader the full sense in which Lobachevsky wished to
rethink geometry by founding it on the idea of motion, but the booklet did at least make the
new geometry plausible. However, they received little comment in the reviewing journals,
and what was said was hostile (and inaccurate).

There is every reason, therefore, to doubt that Riemann ever read the work of
Lobachevsky, and no reason at all to suppose he knew of Bolyai’s. But there are pas-
sages in the lecture that make more senseif compared with what was generally known
about investigations into the parallel postulate. One might almost claim that the only inter-
esting thing in all Legendre’s many editions ofEléments de géométrie (1794 and later) as
its attempts on the parallel postulate. So to single him out as a terminus in investigations
in the foundations of geometry from Euclid to 1854 is both fair to Legendre’s revival of
axiomatic approaches to geometry, as opposed to Cartesian ones, and surely a nod to his
work on the parallel postulate. There Legendre had established anew G.G. Saccheri’s re-
sult that if the parallel postulate is struck down there are precisely three possibilities for
the angle sum of a triangle, and the angle sum of all triangles is known in all cases if it is
known in one [Saccheri, 1733]. So when Riemanndistinguished between the three types
of constant curvature (positive, zero, and negative) on just such grounds, he was knowingly
entering the topic of non-Euclidean geometry.

Riemann had no problem accepting the geometry on a surface of constant curvature as
the geometry on a sphere. This is incompatible with the assumption in Euclidean geom-
etry that all lines can be indefinitely extended, but not only was Riemann hostile to the
axiomatic treatment of geometry, he was also willing to believe that space was not infinite
in extent either.

Plane geometry, the geometry of a space of zero curvature, naturally posed no problems
for Riemann. That left the case of a surface of constant negative curvature, and simultane-
ously a geometry which differs from Euclidean geometry only in assuming that the angle
sum of a triangle is always less thanπ . The oddly tricky object here is the surface of con-
stant negative curvature. Spherical geometry is obvious to anyone who has seen a sphere.
Could there be a surface analogous to the sphere, but infinite in extent, and of constant
negative curvature? The best anyone had ever found was a bugle-shaped surface, known as
a pseudosphere, which [Minding, 1839] had shown had constant negative curvature. But
it resembled the cylinder rather than the plane, and, which is worse, it came to an end in
one direction, where it had a rim beyond which is could not be extended. This made it
a very poor model for a rival to Euclidean geometry. If anything, it suggested to anyone
who connected it to non-Euclidean geometry, that there might be a contradiction in the
hypothesis of the acute angle after all. It is more likely, however, than no-one made the
connection, because when the Italian mathematician Delfino Codazzi (1824–1873) studied
the pseudosphere he established results about the trigonometry of triangles on this surface
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which showed immediately that the angle sum of these triangle was less thanπ [Codazzi,
1857]. However, he did not notice this, and this simple observation had to wait for a further
11 years.

This is the importance of Riemann’s description of a space of constant negative curva-
ture. He did not exhibit it as a surface in three-dimensional Euclidean space. Nor need he
have done: such an approach was what he was trying to get away from. He presented it as
a cartographic map, defined inside a circle, and with a metric closely analogous to maps
of a sphere on a plane. This presents it entirely rigorously, and it is as natural a geome-
try as any other in Riemann’s scheme of things. What is striking is that before Riemann
no-one seems to have known how to describe an unbounded, infinite surface of constant
negative curvature which the study of non-Euclidean geometry seemed to require. But it
must also be said that Riemann’s presentation was extremely cryptic, because he simply
gave a formula for the appropriate metric that can be interpreted in the way just described.

The man who put non-Euclidean geometry astraditionally defined (which means by
the tradition which had generally sought to show that it could not exist) together with
Riemann’s ideas, and who therefore put non-Euclidean geometry securely on the map, was
another Italian, Eugenio Beltrami (1835–1900). What had alerted mathematicians in the
1860s to the possible validity of non-Euclidean geometry was the discovery that Gauss
had been sympathetic to the enterprise. After Gauss’s death the vast treasure trove of his
unpublished papers gradually began to be explored. This revealed many things that had
not been known before and galvanised thecommunity into producing an edition of his
Collected Works and also of his extensive correspondence. The publication of his letters
to Schumacher [Gauss, 1860–1865] showed very clearly the extent of Gauss’s belief in the
possibility that space might be non-Euclidean, it also drew mathematicians’ attention to
the original publications of Bolyai and Lobachevsky’s.

4 BOLYAI AND LOBACHEVSKY AND THE DISCOVERY OF
NON-EUCLIDEAN GEOMETRY

Beltrami had read [Lobachevsky, 1840] in Hoüel’s French translation of 1866, having
picked up the thread by reading some of what Gauss had said. In that work, and in Bolyai’s
Appendix of 1831, the progress of ideas is more-or-less the same (so much so in fact that
historians have worked hard to establish that there was no possibility of plagiarism or of
either man receiving any help from Gauss). This account therefore follows Lobachevsky’s
account, which is clearer and was more influential. First, a novel definition of the paral-
lel to a given linel through a given pointP in a given plane is provided. It is the linem
throughP such that all lines below it eventually meetl and all lines above it never meet
l (Figure 1). There are two lines, one in each direction. It is fundamental to the work of
Lobachevsky and Bolyai that this definition does define something new, distinct from the
Euclidean definition, and that exploring the consequences of this definition will never lead
to a contradiction, but this fundamental assumption is neither discussed not vindicated.
Lobachevsky merely pressed on, and Bolyainoted theorems which were true whether the
definition differed from the Euclidean one or not. It was therefore open to critics of their
work to dismiss it as the consequences of what would surely turn out to be an untenable
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Figure 1. Lobachevsky’s account of parallels.

hypothesis, but there is little evidence that the work had readers at all, let alone ones pre-
pared to be so temperate in their judgement. The few reviewers that Lobachevsky ever had,
whether in German or in Russian, simply dismissed his work as incomprehensible and full
of mistakes, which suggests that they read it convinced in advance that it must be wrong.

Once the new definition of parallels is granted, theorems followed. Given a family of
lines all parallel to each other (in the same direction), there is a family of curves crossing
these parallels at right angles. Lobachevsky named these curves ‘horocycles’, a name they
still retain. If a single horocycle is pickedout and the whole figure rotated about one of the
parallel lines, the horocycle sweeps out a bowl-shaped figure which Lobachevsky called
the horosphere. Lobachevsky (and Bolyai) then proved the striking result that even if the
three-dimensional space in which the bowl sits is non-Euclidean, the inherited geometry
on the bowl is Euclidean geometry. So just as the sphere is a natural model of spherical
geometry in Euclidean space, so the horosphere is a natural model of Euclidean geome-
try in non-Euclidean space. Lobachevsky then used the relation between the horosphere, a
tangent plane to it, and the family of parallel lines to deduce trigonometric formulae for tri-
angles in the (non-Euclidean) tangent plane. These formulae were closely analogous to the
formulae of spherical trigonometry, which was reassuring, and they collapsed to the for-
mulae of plane trigonometry for small triangles. This permitted the implication that small
regions of space might be indistinguishable for non-Euclidean space and only astronomical
regions could be shown to be different. Lobachevsky even proposed tests, but they proved
inconclusive.

Lobachevsky’s results should have struck fair-minded readers as plausible, if in need
of sounder foundations. Bolyai had a differentstrategy. He cryptically outlined the way
differential geometry could be done in non-Euclidean space, and challenged his readers to
propose a geometric task that could not be carried out in the new setting. What is most
notable, however, is that both men described a new geometry of three-dimensional space,
thus showing exactly what was being said that would be a new geometry of the universe.
This was something that Gauss, for all his sympathy with the idea, had never done (at
least, no unambiguous evidence survives). Their work only met with general acceptance,
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however, after the work of Riemann, and that of Beltrami, Felix Klein (1849–1925) and
Henri Poincaré (1854–1912) to be described below. It was by then also available in French,
thanks to the energy of Houël, and it was also put into English by G.B. Halsted at the
end of the 19th century. Other articles by Lobachevsky originally written in Russian were
translated into German at the instigation of two German mathematicians, Friedrich Engel
and Paul Stäckel, who also wrote the mostthorough accounts of the life of work of Bolyai
and Lobachevsky [Engel and Stäckel, 1895–1913], upon which all subsequent scholarship
is largely based.

5 BELTRAMI, POINCARÉ, AND KLEIN ON NON-EUCLIDEAN GEOMETRY

Beltrami’s judgement on this was exactly right. He sought first to convince himself of the
truth of what Lobachevsky had said, and then to find a real substrate for it, rather than to
introduce new entities and concepts. His ideason this were already well advanced before
he read Riemann’s lecture, but he was delayed because the eminent Italian geometer Luigi
Cremona (1830–1903) was concerned that the work might contain a vicious circle. Cre-
mona’s worry was not trivial, he was concerned that ordinary Euclidean analysis was built
into the fabric of the calculus,and yet the calculus was being used to establish the valid-
ity of a novel geometry. However, once Beltrami read Riemann he had the confidence to
proceed. He would also have seen the description of a manifold of constant negative curva-
ture, but he had something new to say: a detailed description of the geometry of a space of
constant negative curvature, which Riemann had not discussed at all. Beltrami proceeded
to show that the geometry of this space was exactly that described by Lobachevsky, thus
removing any doubts about the foundations of the subject and the possibly impermissible
interpretation of the definition of parallel lines [Beltrami, 1868].

Beltrami’s description of non-Euclidean geometry differs in one crucial respect from
that latent in Riemann’s account. Beltrami decided that it would be more useful if the
coordinates were chosen that curves of shortest length in non-Euclidean two-dimensional
space appeared as straight lines inside the disc. He later showed that such coordinates
can always be chosen if the space has constant curvature, but not otherwise. He defined
a metric (an infinitesimal ruler) inside the disc by suitably modifying the metric on the
sphere, and used it to deduce Lobachevsky’s trigonometric formulae for triangles. From
these formulae he deduced that the angle sums of triangles are always less thanπ . He gave
formulae for the circumference and area of a circle and explained what horocycles are in
the new setting. In an immediately subsequent paper he showed how to generalise all these
results ton-dimensional non-Euclidean geometry. There he mentioned Riemann’s name
for the first time, and explicitly attributed the formula for the metric on a space of constant
negative curvature to him.

Beltrami’s account was soon re-interpreted by Klein, a young German mathematician
on his way to becoming not, as he undoubtedly hoped in 1871, a great mathematician, but a
good mathematician and a great organiser of mathematics (§42). In two papers Klein [1871,
1873] showed how Beltrami’s description fitted into projective geometry, which by then
was the fundamental geometry. Projective geometry is the study of the properties a figure
shares with all its shadows, so being a straight line is a projective property, but being a line
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segment of a certain length is not. Projective geometry was taken to be more fundamental
than Euclidean geometry because any property a figure shares with its shadows, and which
therefore makes no reference to the conceptsof distance, is also a property in metrical,
Euclidean geometry, but the converse is obviously false.

Klein’s proof that non-Euclidean geometry was but a special case of projective geometry
not only demonstrated the power of projective geometry, it placed non-Euclidean geome-
try securely in a simple geometric framework for those with little appetite for Riemann’s
grand vision of geometry. It was followed adecade later, in 1880, by the independent re-
discovery by Poincaré of non-Euclidean geometry, which was memorably recalled by him
in [Poincaré, 1908]. He recognised almost byaccident that a certain complicated figure
he was studying in connection with another topic entirely was identical with the Beltrami
description of non-Euclidean geometry. His original problem suggested a different map,
in which non-Euclidean two-dimensional space is depicted inside a disc in a way which
renders angles correctly, although straight lines are now drawn as arcs of circles meeting
the boundary of the disc at right angles. This account makes it easier to see the distance-
preserving transformations (or congruences) of non-Euclidean geometry, which are not
apparent in the projective Beltrami–Klein version. Amusingly enough, it is the Poincaré
version that describes the geometry latent in Riemann’s formula, although it is almost cer-
tain that Poincaré had not read Riemann’s lecture at that point in his career.

6 THE LATER RECEPTION OF NON-EUCLIDEAN GEOMETRY

The work of Beltrami, Klein and finally Poincaré put an end to most mathematicians’
doubts about non-Euclidean geometry, although one or two remained unsure of the new
world they found themselves in. Philosophers were harder to convince, Frege being an
extreme case who believed all his life that since there is only one universe there can be
only one geometry (Euclidean) and that any alternative is but a fantasy [Frege, 1969]. All
therefore agreed that the question of which geometry was true, Euclidean or non-Euclidean
geometry, was an empirical one which, nonetheless, would inevitably be resolved by de-
ciding that Euclidean geometry was correct for all practical purposes.

Riemann’s vision of geometry had, however, been far broader, and it was to lead slowly,
and not always directly, to the dominant view of the 20th century, which interprets gravity
in geometric terms (compare §52). The complicated story that leads from Riemann to Ein-
stein, Weyl and the general theory of relativity has still not been fully traced by historians
of mathematics, but many of the main features are in place. A number of mathematicians
wrote papers solving various of the formidable technicalities of dealing withn-dimensional
geometries of variable curvature. In 1916, inspired by Einstein and Grossmann’s new the-
ory of general relativity (§63), another Italian mathematician, Tullio Levi-Civita introduced
a profound idea which made it possible to discuss when a vector moves on a curve in space
without changing its direction. This was the first time a significant geometric idea had been
added to Riemann’s theory of manifolds, and it speedily found its way into the general rel-
ativity. But this gap from 1867 to 1916, nearly 50 years, should give us pause.

In all that period there was remarkably little exploring higher-dimensional Riemannian
geometry. Riemann had indicated what the constant curvature two-dimensional manifolds
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are, and one might have supposed that the generalisation to three dimensions could have
been proposed and energetically studied. However, the major paper in this area did not
come until 1898, when it was treated by Luigi Bianchi, and even then there was not a
great swirl of activity. Indeed, in the period after 1909, when Albert Einstein began to look
for a way to extend the ideas of special relativity to include gravity (§63.2), there was no
textbook in any language on the differential geometry of manifolds of dimension greater
than 2, and almost all differential geometry was about curves and surfaces in ordinary
three-dimensional Euclidean space.
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Related articles: Newton (§5), Lagrange on mechanics (§16), Fourier (§26), Green (§30),
Hertz (§52), Kelvin (§58).

1 THE PLACE OFT &T ′ IN THOMSON’S WORK

William Thomson (1824–1907; Sir William from 1866 and Lord Kelvin from 1892) lived
nearly his entire life in Glasgow. From1845, when he became Professor of Natural Phi-
losophy at Glasgow University at the age of twenty one, after completing his degree at
Cambridge, Thomson had been pursuing solutions to physical problems in a rather unique
way, developing two subjects in parallel: electricity and heat. On his life and career, in-
cluding the writing ofT&T′, see [Smith and Wise, 1989].

Concerning electricity, to obtain the total force acting between two charged conducting
spheres, Thomson employed the engineering concept of work (or ‘mechanical effect’) to
characterize the entire system in terms of the work done to charge it, thus its work content
or its total potential (soon to be potential energy). The total force was then given imme-
diately by the rate of change of this work content for changes in the distance between the
spheres, i.e., by the derivative of the potential, its gradient [Thomson, 1845, 1869]. Trivially
simple in retrospect, the solution had eluded even S.D. Poisson until Thomson effectively
cracked it in three lines. Both this method of solution and another based on Thomson’s geo-
metrical ‘method of images’ owed much to the work on electricity of George Green, whose
Essay on the mathematical analysis of electricity and magnetism of 1828 (§30) Thomson
had rediscovered in 1845. Green (and C.F. Gauss independently, whose work Thomson
knew) had introduced an abstract ‘potential’ function for representing force as a gradient,
along with a variety of theorems about potentials (for example, ‘Green’s theorem’) that
went well beyond what Gauss and Thomson had done. But it was the physical notion of
the total work contained in a system that became Thomson’s central concept for his con-
tinuing development of mathematical physics, and indeed for the treatment of potential
theory that would enterT&T ′.

Thomson employed this concept of work to translate Michael Faraday’s exciting re-
searches on fields of electric and magnetic lines of force into Fourier’s analytic mathe-
matics of heat conduction. He treated Faraday’s lines passing through media of varying
inductive capacity as analogous to lines of heat flux passing through media of varying con-
ductivity, so that Poisson’s equation for electric and magnetic forces would have the same
solutions as Fourier’s continuity equation for heat conduction (§26). Using an existence
and uniqueness proof for solutions to an extended continuity equation, Thomson [1848a]
showed that the lines of force in the field arranged themselves so as to minimize a func-
tion that could be interpreted as the work content of the system. On this picture, a piece
of soft iron near a magnet would be attracted into the field because the conducting power
of the iron for lines of force tended to concentrate or focus the lines to pass through the
iron, thereby reducing the work content of the field. This conduction picture, or flow anal-
ogy, with its extremum principle governing the entire field, supplied the first mathematical
alternative to the action-at-a-distance picture of P.S. Laplace, Poisson, Gauss, and Green.
It reified work content as the physical entity that constituted the field, providing a mathe-
matical foundation for what he would call ‘mechanical energy’ in 1851, with work as its
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measure. And it was on this mathematico-physical foundation that Clerk Maxwell would
build his first theory of electric and magnetic fields in 1855, ‘On Faraday’s lines of force’
[Darrigol, 2000, 113–136].

The second major path that Thomson trod concerned the nature of heat and of the work
done by heat engines. He and his engineering brother James became involved with the
issues from the early 1840s, when they learned of Sadi Carnot’s work of 1824 onThe
motive power of fire (through an English translation of Emile Clapeyron’s mathematical
treatment of 1837, which introduced the ‘Carnot diagram’). Only in Paris in 1845 was
Thomson able to locate the original, a rediscovery as important for energy physics as that
of Green’sEssay. Carnot had understood the steam engine by analogy to a waterfall driving
a waterwheel. Just as a weight of water falling through a height produced the work done by
the wheel, so a quantity of heat ‘falling’ from high to low temperature produced the work
of the engine. Thomson used this scheme to produce the first version of his absolute scale
of temperature, according to which one degreeis the temperature difference between the
high and low temperature reservoirs of a reversible heat engine, or ‘Carnot engine’, if the
fall of one unit of heat produces one unit of work [Thomson, 1848b].

This basic scheme for defining absolute units in terms of work would continue in the ul-
timate Kelvin scale of temperature, but its original version was flawed from the beginning
because Thomson had already heard James Joule in 1847 present his experiments showing
that work could be converted into heat, simply by stirring water, which raised its temper-
ature. Joule’s measurements showed that the work done was linearly proportional to the
temperature rise and therefore to the heat produced, rather than proportional to the square
of the heat produced, as it should have been on a reversed waterfall analogy, in which the
temperature difference would be produced by doing work to raise the heat. According to
Joule, the work done by an engine derived not from the fall of heat but from the conversion
of heat. For in his view heat was itself nothing other than the motion of molecules, orvis
viva, produced by work and convertible back into work as part of the universal conservation
of vis viva.

Although Thomson shared with Joule the general belief in conservation of work con-
tent, it would take him three years, working with Joule, his brother James, and fellow Scot
W.J.M. Rankine, to reconcile that belief with the apparently inevitable losses that attended
every fall of heat, the operation of all real engines, and, indeed, all physical processes
whatever. The familiar result was hisdynamical theory of heat of 1850–1851 and the two
laws of thermodynamics, asserting that mechanical energy is always conserved in physical
processes and equally that mechanical energy is always being dissipated, or lost to mankind
for the production of work, in those same processes [Thomson, 1850–1851]. ‘Mechanical
energy’ now explicitly consisted of two forms,‘statical’ and ‘dynamical’, which at Rank-
ine’s suggestion became ‘potential’ and ‘actual’ in 1852 and then ‘potential’ and ‘kinetic’
in 1862, during the writing ofT &T ′.

These two major developments, field theory and thermodynamics, changed the foun-
dations of mathematical physics. Together with the simultaneous but largely independent
work of Hermann von Helmholtz on conservation of force (1847) and Rudolf Clausius on
thermodynamics (1850), they established the primacy of work content (energy) in physics.
But more was required. The molecular motions constituting heat in the dynamical theory
remained undefined; likewise the fields of electricity and magnetism required a mechanical
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basis, presumably in the luminiferous ether that was supposed to ground the wave theory of
light and radiant heat. And this ether had to interact intimately with normal matter in order
to explain how molecular motions could radiate waves of heat and light into the ether.

From the early 1850s Thomson sought a solution to all of these problems in a sub-
stratum conceived as a continuous, frictionless fluid or ‘aer’ (a-eth-er) whose motions and
distributions would explain the properties of both ether and matter. Heat, light, and electro-
magnetism would all find a dynamical explanation, as would interactive phenomena like
the magnetic rotation of polarized light and thermo-electricity, together with speculative
possibilities like thermo-magnetism and thermo-elasticity [Knudsen, 1976]. For much of
the rest of his long life, Thomson avidly pursued this unifying dynamical theory. Most
prominent among his attempts were the theory of vortex atoms and the vortical structure
of an elastic ether. Hydrodynamics was to be the foundation of all physical science. But
a major gap remained. Not only hydrodynamics, but mechanics in general, had not yet
received a systematic reformulation commensurate with the physics of work and energy.
T&T ′ would take up that task.

2 COLLABORATION WITH TAIT

Thomson’s collaboration with Peter Guthrie Tait (1831–1901) began in 1861 after Tait
returned to Edinburgh to become professor of natural philosophy. Like Thomson in Glas-
gow, Tait lived virtually his whole life in Edinburgh, aside from his mathematical training
at Cambridge and four years as professor of mathematics at Belfast (where Thomson’s
brother James was professor of engineering). While Thomson was already famous in both
scientific and broader circles when the collaboration began, Tait was just beginning his
career, having published only nine papers since his degree at Cambridge in 1852 with the
highest mathematical honors obtainable. He had begun work on an elementary textbook
suitable for his new course on natural philosophy, and Thomson agreed to join the project.
The lack of such a book was widely felt. With enunciation from many quarters of ideas
of conservation of ‘energy’, whether as powers, forces, work, duty, mechanical effect, me-
chanical value, or labouring force [Kuhn, 1959], the need to restructure how natural philos-
ophy was conceived and taught had often been expressed. Thus Thomson and Tait hoped,
as Tait put it, to ‘astonish the world with [. . .] what it has not yet seen, a complete course
of Natural Philosophy, Expl & Mathematical’ [Smith and Wise, 1989, 352].

The original plan called for three volumes, the first two experimental, the third mathe-
matical. The experimental volumes, fairly straightforward in content, would support a de-
scriptive course of lectures with demonstration experiments. The mathematical volume, the
unique one, Tait predicted ‘would go over Europe like a statical charge’. Gradually, how-
ever, the mathematical part swallowed the experimental as Thomson continually inserted
mathematical notes (small print) into the descriptive discussions (large print). This printing
convention mirrored the division of his own natural philosophy course, with separate hours
for popular demonstration lectures and for more advanced mathematical treatment. As the
small print engulfed the large, the first volume, intended to be short and popular, became
over 700 pages of kinematics and abstract mechanics, missing even planned chapters on
properties of matter, sound, and light. The second volume, intended to cover heat, mag-
netism, electricity, and electrodynamics and to ‘finish up with a great section on theone
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law of the Universe, the Conservation of Energy’, never saw print of any size. Neverthe-
less,T &T ′ would make this one law the basis for all of mechanics, and indeed for all of
natural philosophy, conceived as ultimately dynamical[Knott, 1911, 176–182].

The process through which the book actually gotwritten over six years tells a great deal
about the experience of reading it. Tait was to be responsible for most of the drafting with
Thomson contributing ideas, revisions, expansions, and notes that Tait could incorporate.
An orderly exchange should have taken place through such means as notebooks mailed
back and forth between Glasgow and Edinburgh and then through joint correction of the
proofs, an arrangement which should have produced the three short volumes in little more
than a year. Tait might have managed it, even though notebooks sometimes got mislaid.
Thomson, however, could never accommodate himself to such order. He sent scraps of this
and that, a letter that was half manuscript on absolute units and half railing about papists,
or nothing at all for months while he was engaged with the Atlantic telegraph or traveling
with his very ill wife to health spas on the Continent. Worse, when he did return corrected
proofs, he sometimes added more on a sheet than it had originally contained.

The resulting text was (and is) sometimes difficult to follow and not always rigorous;
its contents is summarized in Table 1. But it was also full of insights, new formulations,
and suggestive directions for the new physics. Two overriding characteristics are apparent.
First, atoms, in the sense of discrete hard balls, nowhere appear, for Thomson was by then
dead set against such entities and already pursuing the continuum theory of vortex atoms
and the ether, built on ‘the hypothesis that space is continuously occupied by an incom-
pressible frictionless liquid acted on by no force [sic], and that material phenomena of
every kind depend solely on motions created in this liquid’ [Thomson, 1869]. Force was to
be explained by underlying motions. The newdynamics, therefore, could not be a reduc-
tive mechanics of atoms and forces, in the tradition of Newton, Laplace, Helmholtz and
most contemporary continental theorists. Secondly, at every opportunity,T&T ′ insisted
on a practical, common-sense understanding of the mathematics they employed. Their me-
chanics, even when abstractly formulated, was a mechanics grounded in machinery and
engineering.

3 KINEMATICS

Appropriate to the ultimate goal of establishing a physics of motions, and in agreement
with modern French and British usage,T&T ′ separated the purely geometrical science of
motion,Kinematics, from considerations of matter and force, which they calledDynamics
and divided into statics and kinetics (thus kinetic energy, kinetic friction, etc.). Kinemat-
ics derived from the French engineering tradition from Lazare Carnot, G. Monge, and
A.-M. Ampère to the contemporary writers on mechanics for theEcole Polytechnique such
as J.M.C. Duhamel and C. Delaunay. It had been adopted at Cambridge in 1841 in a com-
plementary pairing of textbooks on machines that separated thePrinciples of mechanism
(geometrical) by Robert Willis fromThe Mechanics of engineering (causal) by William
Whewell. Willis’s pure mechanism, or kinematics, concerned the changes of motion al-
lowed by the various possible connections between parts of machines (for example, rod
and crank, or rack and pinion), yielding a taxonomy of joints and motions. The analysis
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Table 1. Summary by Sections of theTreatise on natural philosophy.

Page Section contents

v Preface; Natural philosophy defined; survey of Vol. I (no more published)

Division I. Preliminary notions
Chapter I. KINEMATICS (160 pages)

1 Geometry of motion; velocity and acceleration, angular motion, relative motion.
36 Simple harmonic motions, composite motions; Fourier analysis.
56 Curves produced by mechanism; analysis of curvature; bending.
98 Analysis of strain: strain ellipsoid, shear, heterogeneous strain, non-rotational

strain.
124 Equation of continuity; freedom and constraint; generalized coordinates.
137 Appendices: Green’s theorem extended; Laplace’s spherical harmonics.

Chapter II. DYNAMICAL LAWS AND PRINCIPLES (144 pages)
161 Definitions of dynamical terms; Newton’s laws of motion; D’Alembert’s principle.
187 Energy: Newton; conservation; virtual velocities as energy principle; least

constraint.
206 Impulsive motion and extremum theorems on energy.
231 Hamiltonian dynamics: principles of least action and varying action; equations of

motion; characteristic equation; use in optics.
251 Lagrangian dynamics: equations of motion; Hamilton’s form; examples.
270 Disturbance of equilibrium; dissipative systems.
282 Kinetic stability: hydrodynamical; projectile; principle of varying action and

examples.
305 Chapter III. EXPERIENCE(16 pages)

Observation and experiment; hypotheses; least squares.
321 Chapter IV. MEASURES ANDINSTRUMENTS(16 pages)

Time, space, mass, force, and work; their instruments.

extended to the kinds of curves that could be produced by mechanism, such as epicycloids
and conchoids. Thus kinematics, considered as geometry, embodied the view that a curve
should be understood in terms of the process of generating it by the motion of a point, rather
than simply as a static object described by an algebraic equation. Similarly, surfaces were
generated by the motion of a line. This view correlated well with Isaac Newton’s fluxional
calculus as opposed to J.L. Lagrange’s abstract algebraic calculus, a happy circumstance
for Thomson and Tait.

A good example of the kinematics ofT&T ′ is their presentation of a non-reentrant hy-
potrochoid (see Figure 1) as the composition of two circular motions. They note that it is
‘of very great importance in modern physics’ with respect to the rotation of the plane of
polarized light and that it is ‘the path of a pendulum-bob which contains a gyroscope in
rapid rotation’ (pp. 50–51). Thomson’s ether vortices lie in the background. More gener-
ally, the geometrical form, the mechanism to produce it, and the physical phenomenon are
closely interrelated. This example is the last in a 20-page section on simple harmonic mo-
tions. It concludes with five pages of small print on Fourier analysis, of whose importance
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Table 1. (Continued)

Page Section contents
Division II. Abstract dynamics

Chapter V. INTRODUCTORY(5 pages)
337 Abstract dynamics: perfectly rigid or elastic solids; frictionless, incompressible

fluids.
Chapter VI. STATICS OF A PARTICLE–ATTRACTION (70 pages)

342 Equilibrium of forces, geometrical theorems for spherical shells.
363 Potential energy, potential, Laplace and Poisson’s equations, equipotential

surfaces.
373 Surface theorems and Green’s problem. Method of images.
388 Ellipsoidal bodies; spherical harmonics; Green’s method as energy formulation.

Chapter VII. STATICS OF SOLIDS AND FLUIDS(316 pages)
412 Equilibrium of a rigid body: forces and couples.
427 Flexible cord; elastic wire: torsion and flexure, spiral springs, planks, hoops.
475 Elastic plate: synclastic & anticlastic stress; potential energy; equation of bent

surface.
506 Elastic solid: stress and strain; potential energy; 21 coefficients of elasticity; equa-

tions of equilibrium; torsion of prisms (Saint-Venant); spheres and spherical har-
monics.

590 Hydrostatics. Equilibrium: floating body, ellipsoid of revolution;rotating ellipsoid.
618 Digression on spherical, polar, zonal, etc. harmonics, with figures and tables.
633 Digression on potential theory with respect to figure of Earth and sea.
649 Corrected equilibrium theory of the tides.
669 Figure of the rotating Earth: as heterogeneous liquid; Laplace’s interior density

hypothesis; precession and nutation; abrupt changes of density.
689 Rigidity of the Earth: tides in an elastic solid; effect of solid tides on liquid tides;

conclusions: Earth more rigid than glass; little fluid in the Earth.
705 Appendix: equations of equilibrium of elastic solid deduced from principle of

energy.
711 Appendix: secular cooling of the Earth. [End 727.]

the phenomena of sound waves, telegraph signals, and the cooling of the Earth (some of
Thomson’s favorite subjects) are said to provide only a feeble idea.

After learning a great deal about curves rolling on surfaces and a variety of geometrical
theorems from Leonhard Euler and Gauss, the diligent student would come to another
subject crucial to any treatment of the ethereal continuum, the description of strains in
solids and liquids. Adopting the macroscopic approach of their close friends Stokes and
Maxwell, as opposed to the microscopic (atoms and forces) treatments of Cauchy and other
continental mathematicians,T &T ′ led their readers through strains produced by dilation,
shear, and rotation, along with the mathematical techniques for describing them in terms
of the strain ellipsoid, principle axes, and Green’s 21 coefficients of what would today be
a strain tensor, all carried out in the lengthy form of Cartesian component equations.
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Figure 1. A hypotrochoid, that is, the path of a pendulum-bob containing a gyroscope in
rapid rotation (p. 50).

In short, in their first chapter of 160 pages on kinematics,T &T ′ provided a compendium
of the latest mathematical techniques for describing motions, concluding with appendices
on Green’s theorem and on the important spherical harmonics of Laplace. What they did
not include, and the source of a ‘thirty-eight year war’ between the two authors, was the
quaternion algebra of Sir William Rowan Hamilton, on which vector analysis was soon to
be based (§35.5). By the time their collaboration began, Tait had already published three
articles on quaternion investigations of Jean Fresnel’s wave surface and of electrodynamics
and magnetism and would effectively becomethe heir of quaternions after Hamilton’s
death in 1866. HisElementary treatise on quaternions appeared in 1867. He expected to
use them throughoutT &T ′ as an instrument of simplification and mathematical insight;
but to Thomson they came wrapped in Hamilton’s Idealist metaphysics, and their symbolic
form obscured the object of the analyst’s attention. It was a blind spot that many later
analysts found puzzling at best [Knott, 1911, 119–175, 185].

4 DYNAMICS OF ENERGY

A closely related curiosity is that althoughHamilton had reformulated mechanics in 1834–
1835 on the basis of extremum principles, and although he was well known to natural
philosophers (physicists) as a mathematician, his approach was not taken up in mathe-
matical physics until it appeared inT&T ′, after Tait showed Thomson its relevance. The
reasons for the previous long delay are surely to be sought in the fact that the extremum
principles had not been seen as operating on anything physically real, but provided only ab-
stract methods for deriving some new and physically uninteresting equations of motion to
replace the perfectly functional equations obtained by Lagrange. In short, the mathematics
waited for the physics of energy to provide the missing reality.

To appreciate the task that Thomson and Tait faced in rewriting mechanics as the dy-
namics of energy, it is helpful to recall that no agreement existed on the proper foundations
of mechanics. Newton’s three laws of motion were not even cited in French works and
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while British texts did give three laws they were usually not Newton’s. The relation of sta-
tics (causes of equilibrium) to dynamics (causes of motion) was equally problematic. The
great Lagrange, in hisMéchanique analytique (1788), had begun from the generalization
of Newton’s third law for a many-body system known as ‘d’Alembert’s principle’, which
states that the applied forces must be in equilibrium with the reversed effective forces, that
is, the reversed accelerating forces or reaction forces (§11). Putting this statement into Jean
Bernoulli’s general condition of equilibrium for static systems,the variational principle of
virtual velocities, Lagrangereduced all problems of dynamics to statics, and he derived
from this condition the ‘Lagrangian’ equations of motion. Interestingly, some important
French textbooks, such as that of Poisson, followed his reduction of dynamics to statics
but did not employ his equations of motion.

In Britain, Cambridge textbooks by Whewell, J.H. Pratt, and S. Earnshaw dismissed
the entire Lagrangian apparatus, beginning by rejecting the view that static forces were
identical with forces producing motion and, in Whewell’s case, continuing with a rejection
of the principle of virtual velocities, even for equilibrium. In Scotland the French had
a much stronger following, so that Thomson and Tait could follow Scottish tradition in
treating dynamics and statics on the same basis (motion produced and motion destroyed).
But Lagrange’s reduction of dynamics to statics violated their ultimate goal of explaining
force by underlying motions. They aimed rather at treating statics as a special case of
dynamics, the dynamics of energy.

To work their energy revolution, then, Thomson and Tait would go back beyond La-
grange to seek authority in the unrivaled hero of British science, Newton. In reading his
Mathematical principles of natural philosophy, they discovered that he had interpreted his
third law of motion, the action-reaction law, in a way that would allow them to read it not
as an action and reaction of forces, or an exchange of momenta, but as an exchange of en-
ergies. The key to this reading was the view Thomson had been developing for years, that
force should be understood simply as a convenient expression for the rate of doing work.
Newton’s third law, on this understanding, was just the law of conservation of energy. From
it, they believed they could derive the whole of dynamics, including statics. They would
reverse Lagrange while restoring Newton, fashioning theirTreatise as theMathematical
principles of the modern era, through the energy principle (p. 200):

The whole work done in any time, on any limited material system, by applied
forces, is equal to the whole effect in the forms of potential and kinetic energy
produced in the system, together with the work lost in friction. This principle
may be regarded as comprehendingthe whole of abstract dynamics, because
[. . .] the conditions of equilibrium and of motion, in every possible case, may
be immediately derived from it.

Here work lost by friction is not actually lost but produces the motions of heat. Lack-
ing any specific knowledge of these ‘inscrutably minute motions’—or those of electricity,
magnetism, light, or chemical affinity—they included sliding friction as a place-holder for
them until the ‘universally conservative character of all dynamic action’ could be scruti-
nized more thoroughly (p. 195).
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5 EXTREMUM PRINCIPLES

While the grand claim to be able to derive the equations of motion from the energy principle
alone conveys Thomson and Tait’s enthusiasm for a new dynamics, it was overextended.
To be valid, as they in fact proceeded to show, it required that the conservation principle
be treated as a variational principle, equivalent (for conservative systems) to Lagrange’s
principle of virtual velocities, which considers all possible infinitesimal displacements that
the system might be made to undergo and locates the actual motion where the variation
vanishes. This variational condition places an additional requirement on the conservation
principle, yielding the equations of motion. In its variational form the energy principle
led quite naturally to a whole series of maximum/minimum theorems on what was now
the kinetic energy of mechanical systems, theorems that had been established by Euler,
Lagrange, and others up to the mid-19th century. These theorems, including extensions by
Thomson himself, had always been closely related to the extremum principle thatT&T ′
would now use to complete thedynamics of energy and to gain access to Hamilton, namely,
the principle of least action.

It was Tait who finally sat Thomson down and showed him in three simple pages (pre-
served in Thomson’s notebook) that Hamilton’s procedures were all about energy and that
they followed naturally from least action. The principle of least action, developed by P.L.
Maupertuis and Euler in the mid 18th century (§16.3), had been rejected by Lagrange and
Laplace as too metaphysical and was said byT &T ′ to have been ‘regarded rather as a
curious and somewhat perplexing property of motion, than as a useful guide in kinetic
investigations’ (p. 231). It would now gain a perfectly straightforward meaning: the time
integral of the kinetic energy of any conservative mechanical system over its natural path
from one configuration to another (its ‘action’) must be a minimum, or its average kinetic
energy multiplied by the time must be minimum. In variational terms this meant that the
variation of the action integral over all paths that the system might be guided to take be-
tween the same end points had to vanish, from which followed immediately the variational
form of the energy principle, and therefore the Lagrangian equations of motion (p. 253).

Hamilton had converted these equations into a form that could now be seen to directly
manifest the role of energy. The Lagrangian equations are second-order partial differential
equations. In his system of generalized coordinates, there aren equations, one for each of
then degrees of freedom in the system, and the coordinates and their corresponding mo-
menta are not regarded as independent. The Hamiltonian equations consist of 2n first-order
equations given in pairs, in which the generalized coordinates and momenta are regarded
as independent and play symmetrical roles. For a conservative system, the time rate of
change of any coordinateqi (or momentumpi) is given by the positive (or negative) par-
tial derivative of the energyE with respect to the corresponding momentum (or coordinate)
(p. 254):

dqi/dt = ∂E/∂pi and dpi/dt =−∂E/∂qi. (1)

These elegant ‘canonical equations’ clearlymade energy the central entity on which hung
the description of the entire system.

Hamilton had passed from the principle of least action to a related principle with quite
different properties, the principle of varying action. While the variation involved in least
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action concerns virtual, or guided paths near the natural path with the same end points
and the same constant energy; varying action considers only natural paths but with varying
end points and varying energy. Hamilton’s procedure yielded a differential equation of the
first order and second degree governing what he called the ‘characteristic function’. It is
again the action but expressed in terms only of the end points and the energy. To solve
the equation would usually be difficult, but in principle, knowledge of the characteristic
functionA would immediately give the momenta and the time at the end points by simple
differentiation (p. 236):

pi = ∂A/∂qi and t = ∂A/∂E. (2)

Repeatedly calling this result ‘remarkable’,T&T ′ noted that Hamilton had made great use
of it for the three-body problem in planetary astronomy and for a general theory of optical
instruments, or geometrical optics, to which they hoped to return in a later volume. By the
time they wrote, a number of other mathematicians had long been working with and ex-
tending the Hamiltonian variational schemes and their applications, most famously C.J.G.
Jacobi, but also J. Liouville, Arthur Cayley, and George Boole, among others. In their
second edition (1879) the Lagrangian and Hamiltonian affairs were thoroughly revised,
cleaned up, and extended to include such things as ‘ignoration of coordinates’. This tech-
nique was developed by the Cambridge mathematician E.J. Routh for eliminating from
the explicit description of a system in Lagrangian or Hamiltonian terms any coordinate
corresponding to a constant momentum. For example, the gyroscopic motion that was sup-
posed hidden inside the pendulum bob that produced Figure 1, could be treated simply as
a constant of the motion and ignored in the equations of motion. The technique was crucial
for obtaining external macroscopic descriptions of systems like the ether whose internal
motions were unknown.

6 ABSTRACT DYNAMICS

With their principles in place, Thomson and Tait launched into their comprehensive treat-
ment of all natural philosophy by attacking the part that would allow them to deal only with
the first law of energy, its conservation, and not the second, its inevitable dissipation. They
would treat initially only the equilibrium dynamics, or statics, of abstract matter, meaning
perfectly rigid or perfectly elastic solids and frictionless, incompressible fluids. And again,
only macroscopic characteristics would enter, consistent with the view that the dynamics
of a continuum would ultimately explain all physical phenomena. They aimed, first, to
teach physically useful methods of mathematical analysis and, second, to show how tradi-
tional formulations could (and should) be expressed in terms of energy. Proceeding in the
geometrical order of point, line, surface, and body, they would take up particles, cords and
wires, plates, and solids and fluids.

The statics of a particle gave Thomson andTait the occasion to survey the theory of
potentials for the inverse-square forces of gravity, electrostatics, and magnetostatics. Their
discussion goeslittle further than the work of Green, Gauss, and Thomson from the 1840s.
It gives, however, a concise discussion of Green’s potential theory and surface theorems,
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the method of images, the attraction of ellipsoids, and of the application of spherical har-
monic analysis. Of courseT&T ′ made the mathematical theory of potentials into the phys-
ical theory of potential energy.

The same thing should be said of the entire statics. Thus the equilibrium of a wire bent
and twisted into a spiral spring and slightly stretched, could be described by two couples
of flexure and torsion, and these couples could be represented simply by differential coef-
ficients of the potential energy of the spring (pp. 446–451). Of course this would have to
be true in general. The great value ofT &T ′ lay in their showing how to express the energy
for such systems and to relate it to the stresses. Their statics of solids and fluids is full of
such mathematical techniques and corresponding theorems, which it will not be possible
to survey here.

Of particular interest, however, both mathematically and physically is the long section
on hydrostatics as applied to the figure of the Earth and the sea, including tides in the
sea and in the Earth. The most extensive previous work on these subjects had been done
by Laplace (§18.5).T &T ′ made important corrections to Laplace’s famous equilibrium
theory of the lunar and solar tides (based on water covering a spherical solid earth with no
interruptions of land) to arrive at a more accurate theory. More interestingly, they extended
his work on how the figure of the Earth could be obtained from the equilibrium of rotating
spheroidal shells of originally molten matter, matter that increased in density with depth
and pressure inside the Earth. Considerations of precession, nutation, tides in the sea, and
tides in the Earth led them to a striking conclusion: the Earth must be more rigid than steel
and contain littlefluid (pp. 689–690).

For the second edition of 1879–1883, their friend and editor of the abstract dynamics,
George Darwin (1845–1912), a son of Charles, would make extensive additions and cor-
rections to this entire hydrodynamical theory without, however, changing the conclusion.
His appended analysis of the retarding effects of tidal friction was incorporated even into
H.G. Wells,The time machine (1895).

7 RECEPTION

Thomson and Tait’s long-awaitedTreatise on natural philosophy never progressed beyond
the abstract dynamics of systems in equilibrium and contained nothing of the new physical
theories that motivated it in the first place, namely, electromagnetism and thermodynamics;
nevertheless, it immediately became a defining textbook for the physics of energy. Widely
reviewed and praised in Britain, it was quickly translated by the German founder of energy
physics, Hermann Helmholtz (with G. Wertheim), as a ‘handbook’ of theoretical physics,
meaning not only a manual but also a guidebook. As Helmholtz wrote in his preface with
respect to Thomson’s penetrating intellect, the book leads the reader ‘into the workshop of
his thoughts’ where with the aid of his gifted collaborator he sorted out the ‘tangled and
intractable material’ in the new analytic framework.

It was perhaps at Cambridge University, the center of mathematical education in Britain,
that T &T ′ played its most important role in establishing a new practice of mathemati-
cal physics, especially when joined with Maxwell’sTreatise on electricity and magnetism
of 1873 (§44) and Lord Rayleigh’sTheory of sound (1877–1878) (§45). Together, the
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three textbooks defined ‘dynamical theory’. Based on energy and articulated mathemati-
cally through Lagrangian and Hamiltonian techniques, dynamical theory aimed to describe
physical processes at the level of experimentally accessible parameters independent of spe-
cific hypotheses about underlying physical reality, but always on the assumption that the
reality consisted in motion. It constituted the program of Cambridge mathematical physics
for the remainder of the century [Warwick, 2003, 324; Buchwald, 1985, 225–228; Wise,
1982].
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1 A NEW THEORY OF VALUE

Stanley Jevons (1835–1882) passed a busy and unusual career in his short life. While best
remembered for his work in economics [Schabas, 1990; Peart, 1996], he made notable con-
tributions also to aspects of physics, logic, and the philosophy of science [Jevons, 1874].
After some early years in Australia, he studied at University College London and was Pro-
fessor of Political Economy there from 1876 after holding posts at colleges in Manchester
and Liverpool.

Jevons’sTheory of political economy is the result of research continued after his pre-
sentation in October 1862 before the Section F (‘Economic Science and Statistics’) of
the British Association for the Advancement of Science at Cambridge of his ‘Notice of a
general mathematical theory of political economy’ [Jevons, 1866]. In spite of its title, this
paper did not contain any formulae, but the germs of his more explicit mathematical results
were clearly present already [Grattan-Guinness, 2002].

The contents of Jevons’s book are summarised in Table 1. He was explicitly inspired
by Jeremy Bentham’s so-called ‘utilitarianism’ [Bentham, 1789], which can roughly be
summarised in the following three (not wholly coherent) principles: i) During his lifetime,
Man maximises his utility (or, if one so wishes, happiness), which depends on ‘his plea-
sures and pains’; ii) Man’s individual behaviour must be based on good instruction and
adequate legislation and iii) The ultimate goal of society is maximisation of total happi-
ness of all people together. Jevons went even so far as to declare (Theory, 44): ‘Pleasure
and pain are undoubtedlythe ultimate objects of the Calculus of Economy’. Among the
different ‘circumstances’ relating to pleasure and pain envisaged by Bentham, Jevons se-
lected in particular their intensity and duration as subjects for his analysis (without much
further clarification, however) and he passed without any comment from the duration of
the pleasure of some good to its quantity consumed.

Further, it must be observed that in 1871 Jevons was much more sceptical about the
possibility to measure utility and to add utilities than in 1879 [Stigler, 1950, 317]. This
feature appears from a passage in the first edition (p. 12) which he suppressed in the second:
‘I confess that it seems to me difficult even to imagine how such estimations [of utility] and
summations can be made with any approach to accuracy. Greatly though I admire the clear
and precise notions of Bentham, I know not where his numerical data are to be found’.
Eventually, Jevons arrived at his own conception of utility, as we shall see. Utility will
become a precisely defined notion relating to goods and services.

A good’s utility, Jevons affirmed (p. 51), is not an intrinsic quality of it, but merely the
expression of the good’s relation with mankind’s pleasures and pain. It can be measured
by a person’s happiness; therefore it may differ between individuals. For every individual
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Table 1. Contents by Chapters of Jevons’sbook. The titles of the chapters are given in
italics.

Ch.: Page Titles and Description

I: 3 Introduction. Mathematical character of the science; Confusion between
mathematical and exact sciences; Capability of exact measurement;
Measuring feeling and motives.

II: 33 Theory of pleasure and pain. Pleasure and pain as quantities.

III: 44 Theory of utility. Law of the variation of utility; Total utility and degree of
utility; Variation of the final degree of utility; Distribution of commodity in
different uses; Theory of dimensionsof economic quantities; Distribution of
a commodity in time.

IV: 79 Theory of exchange. Dimension of value; The law of indifference; The theory
of exchange; Symbolic statement of the theory; Analogy to the theory of
the lever; Complex cases of the theory; Competition in exchange; Failure
of the equations of exchange; Negative and zero value; gain by exchange.
Numerical determination of the laws of utility.

V: 162 Theory of labour. Quantitative notions of labour; Symbolic statement of
the theory; Dimensions of labour; Relation of the theories of labour and
exchange; Relations of economic quantities; Joint production.

VI: 198 Theory of rent. Symbolic statement of the theory; Illustrations.

VII: 212 Theory of capital. Quantitative notions concerning capital; Expression for
amount of investment; Dimensions of capital, credit and debit; Effect of the
duration of work; Illustrations of the investment of capital; General expres-
sion for the rate of interest; Dimension of interest; Advantage of capital to
industry.

VIII: 254 Concluding remarks. Populations; Wages and profit; ‘Obnoxious influence
of authority’. [End 267.]

consumer, he distinguishedtotal utility arising from a good anddegree of utility, which has
to do with the increase of utility caused by a (small) increase of the total quantity of the
good and will be explained below.

Let the total quantity of food an individual consumes during a certain period be divided
into ten increments indicated by roman numbers in Figure 1 (Fig. 3 on p. 55). If he were
given only increments I and II he would possibly not starve, but obviously remain far from
satiation. Increment III would therefore be very welcome and increase the individual’s
utility by a considerable quantity, measured by rectanglepp′q ′q . The next increment’s
contribution is still considerable too, but somewhat less thanpp′q ′q ; subsequent incre-
ments contribute lesser and lesser; the last one only slightly. Total utility is measured by
the total surface of the ten rectangles. The law expressed by this figure is considered to be
so generally felt by everyone that it apparentlydoes not need further explanation or proof.

A mathematical problem is: what is measured along they-axis of Figure 1? Jevons
prudently gave no answer, but went on to the ‘continuous case’ (p. 58), with infinitesimally
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Figure 1. Law of Varying Utility.

small increments; see Figure 2 (Fig. 4 on p. 58). On the horizontal axis again the quantity
of food is measured; on the vertical one he placed the ‘degree of utility’, and explained this
as follows (pp. 58–59):

When the quantityoa has been consumed, the degree of utility corresponds
to the length of the lineab; for if we take a very little more food,aa′, its
utility will be the product ofaa′ andab very nearly and more nearly the less
is the magnitude ofaa′. The degree of utility is thus properly measured by the
height of a very narrow rectangle corresponding to a very small quantity of
food, which theoretically ought to be infinitesimally small.

The length ofab is equal to the surface ofaa′b′b divided by the length ofaa. Where this
surface may be considered as a small increment of total utilityu and the length ofaa′ as a
small increment of the total quantityx of food consumed, he concludes that the degree of
utility is represented by the fraction�u

�x
. Because utility is considered to vary with ‘perfect

continuity’, a small error is made in assuming it to be uniform over the whole increment.
This error can be avoided ifx is considered to be infinitesimally small. This leads to ‘The
degree of utility is, in mathematical language,the differential coefficient du

dx
of u considered

as a function ofx, and will be itself another function ofx ’ (pp. 60–61, italics in original). It
is stated as a general law that the degree of utility is a decreasing function ofx. The degree
of utility of the last infinitesimally small unit consumed has a special name: ‘final degree
of utility’; it will play an important role below. Mathematically, ifn is the total quantity
consumed (see Figure 2), then the final degree of utility is measured by the length ofnq .
Note that these graphs may differ considerably from individual to individual.
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Figure 2. Degree of Utility.

We end this section by observing that an individual’s total utility enjoyment of consum-
ing the quantityn is measured in Figure 2 by the surfacebetween the two co-ordinate axes,
line nq and the graph of the degree of utility. One might also say that this total utility will
be obtained by integrating the degree of utility, as a function of the quantityx, from 0 to
n. In this set-up, total utility is therefore a derived notion; analysis does not start from it.

2 THE LAW OF EXCHANGE AND THE TRADING BODIES

According to Jevons, exchange takes place in markets. With this term is not meant some
real place with real provisions to expose the goods for sale. It is rather a group of persons
in business relations to transact intensively in one or more goods, for instance the world
copper market. Jevons investigates traders’ behaviour in what he calls ‘perfect markets’.
A market is ‘theoretically perfect only when all traders have perfect knowledge of the
conditions of supply and demand, and the consequent ratio of exchange’ and ‘there can
only be one ratio of exchange of one uniform commodity at any moment’ (p. 87). The
stock exchanges, for instance, and other well-organised markets may be considered as
good approximations of perfect markets. For obvious reasons, Jevons chose to analyse in
first instance this type of market.

One of the most important elements in the analysis of exchange is value. There are
several different notions of value, Jevons argued: ‘value in use’, expressed by total utility;
‘urgency of desire for more’, measured by the ‘final degree of utility’; and as a third,
pivotal notion ‘purchasing power’ or value in exchange of a good, i.e. the ratio of the
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quantity of that good and the quantity of another good exchanged for it. The latter notion
has everything to do with prices. It has cost economists a lot of time to realise firstly that
the price of a good is not determined by its intrinsic properties, and secondly that the price
of a good is always measured in another good.The latter fact means that the quantities,
however great or small, of two goods exchanged must always have the same proportions in
the same market. This brought Jevons to his ‘Law of Indifference’ (to quote his later name
for it): ‘The last increments in an act of exchange must be exchanged in the same ratio as
the whole quantities exchanged’ (p. 94). Letx andy be these quantities; then the law of
indifference may be expressed as follows:

dy

dx
= y
x
. (1)

Now we have all elements for Jevons’s theory of exchange. We cannot give due to all
the subtle details with which he dealt with in his book; unfortunately, it happens too often
that economic theories are belittled on the basis ofunkind simplifications which are then
considered as representing the whole theory (see, for instance, Mirowski [1989]). So, if
the reader wished to blame Jevons for being insipid, we should be blamed actually for
misrepresenting his results.

With this proviso, we start with the simplest case. Let there be two individuals, A and B,
who want to exchange corn and beef. A holds a quantitya of corn and no beef; B a quantity
b of beef and no corn. If human nature’s principles are correctly represented above, it is
certain that exchanging a little corn for beef and beef for corn will increase both persons’
total utility, since both will then give up a ‘lastincrement’ of one good for a ‘first increment’
of another (see Figure 1). How far will this exchange be continued? Jevons answers: ‘The
ratio of exchange of any two commodities will be inversely as the final degrees of utility
of the quantities of commodity available for consumption after the exchange is effected’
(pp. 95–96). He goes at length into this main proposition of the theory of exchange. Just as
the other pioneers do, he presents as central argument that when the exchangers are in this
point of equilibrium further exchange of small quantities of beef and corn will bring about
a decrease of total utility forboth. There is a paradoxical element in Jevons’s exposition
in the sense that he considers the price of a good measured in the other one, the reciprocal
of the exchange rate, as more or less known to the exchangers, while at the same time this
ratio is determined by the situation of equilibrium. This becomes clearer in his symbolic,
mathematical statement of the theory.

Individual A, Jevons stated, will not be satisfied unless the following equation holds
good:

φ1(a − x) · dx =ψ1y · dy, (2)

whereφ1 andψ1 denote individual A’s final degrees of utility for corn and beef as func-
tions of the quantity of these goods. (Jevons did not write ‘ψ1(y)’.) Note that final degrees
of utility are here functions of a single variable: the quantity of the concerning good itself.
All pioneers made this simplification, which means that total utility is an additively sepa-
rable function of the quantities of the goods consumed. (The idea of generalising this was
already in the air (for example in [Edgeworth,1881, 20 ff.], where, incidentally, total util-
ity is chosen as the basic concept, from which marginal utility is derived.) The quantities
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exchanged of corn and beef are, respectively,x andy. A’s quantities consumed are then
a − x andy. Because of the law of indifference we have again

dy

dx
= y
x
. (3)

This ratio can be interpreted as the price of beef in corn.
If equation (2) holds good, is it not beneficial to A (in terms of utility) to exchange more

corn for beef in quantities of the same proportion as (3), the only proportion admissible in
this ‘market’? This follows from the fact that, paraphrasing Jevons’s mathematics,

φ1(a − x − dx) · dx > ψ1(y + dy) · dy, (4)

that is, utility lost, the left-hand member, exceeds utility gained.
Similarly, with self-evident symbols, B will be satisfied when

ψ2(b− y) · dy = φ2x · dx. (5)

Combining (2), (3) and (5) yields (p. 100):

φ1(a − x)
ψ1y

= y
x
= φ2x

ψ2(b− y) . (6)

These two equations with two unknowns,x andy, formulate Jevons’s basic result in the
theory of exchange. They do not just form ananalogy in mathematical form of assertions
already discussed verbally. This would not be enough for economics to be a veritable sci-
ence. As all other sciences it must reason byequations that have a real meaning, to reach
the position of a systematic science. Jevonsstarted making economics a science in this
sense.

Of course, equations (6) cover a very restricted situation only. They must be generalised
in at least three directions. Firstly, goods exchanged are not always infinitely divisible,
as assumed above; for instance, milk and tables cannot be dealt with similarly. Secondly,
more than two goods are often involved in an exchange; moreover there is a very special
commodity, namely labour, whose exchange deserves special attention. Thirdly, normally
the number of exchangers in a market is much more than two.

Here we shall restrict ourselves to the last point because Jevons tried to solve it in a
highly original but controversial way. In his set-up parties A and B are not necessarily
individuals in the normal sense; the term ‘trading body’ is used to refer to them. A trading
body may denote both a single individual and a group of individuals, for instance all the
inhabitants of a certain country or all entrepreneurs in a certain branch of industry. In order
to arrive at a formula like (6) above for all types of trading bodies, Jevons refers to his
‘Principle of fictitious means’ [1874, vol. 1, 422 ff.]. According to this principle, scientific
laws that are theoretically correct for individual units separately are ‘practically valid’ for
aggregates as well. (But his principle is dubious: in physics, for instance, it is easily refuted
by the fact that the behaviour of oxygen molecules individually in a certain space, in terms
of velocity is quite different from the characteristics of these molecules’ aggregate, oxygen
gas in terms of pressure and temperature; Boyle’s law, for instance, has no micro analogue.)
In hisTheory, 90, he stated it thus:
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Thus, our laws of Economy will be theoretically true in the case of individuals
and practically true in the case of largeaggregates; but the general principles
are the same, whatever the extent of the trading body considered. We shall be
justified then, in using the expression with the utmost generality.

A modern version of Jevons’s trading body is the fiction of the ‘representative agent’,
supposed to act in much the same way as individuals do. A representative consumer, for
example, is assumed to consume an amount of every good equal to the average amount
consumed in the entire economy. The micro, per capita data are then simply multiplied by
the number of consumers, and the products are put directly into the aggregate equations.
This econometric practice may have some limited uses, provided that its numerical conse-
quences are understood [Van Daal and Merkies, 1985, ch. 7]. The problems with the idea
of a representative agent are that it is basically tautological and that it suppresses many
individual differences that are of the essence of economic life. The idea is unrealistic and
results in unrealistic models.

3 CONCLUDING REMARKS

The mathematics of Jevons was of the level of the average English scientist of his time.
He was more interested in practical applications of mathematics to science rather than in
mathematics as such. In the 1870s and 1880s rigourà la Cauchy (§25) and Gauss did not
yet worry most scientists, and it was quite normal to treat differentials and differences in the
same way, as we have seen above. In this connexion the following citation from the preface
to the second edition (1879) of theTheory: ‘In short, I do not write for mathematicians, nor
as a mathematician, but as an economist wishing to convince other economists that their
science can only be satisfactorily treated on an explicitly mathematical basis’ (pp. xiii–xiv).

We pose a question that is still haunting economic theory: Will a situation as depicted
by a solution of equations (6), or a generalization of them really be reached when start-
ing from some initial situation, and how will it be reached? Indeed, such a solution is an
equilibrium in the sense that, once reached no trader can change his position for a better
one while taking account of the prices as determined by ratios likey/x. It is, however, a
moot question whether two individual persons always will end up in a situation described
by (6). If A and B are not in the same position as to power and if there are no institutions
that prevent the one from abusing the other, than the outcome might be different, as the
reader can easily imagine. If however A and B are multi-person trading bodies then there
must also be more institutions in the markets, to increase the probability of a fair outcome
of exchange.

Finally, we mention that Jevons’s economic work was not restricted to theTheory of
political economy. In particular, in a work published two years after his death as [Jevons,
1884],Investigations in currency and finance, he founded a theory on business cycles on
the solar cycles.

Three years after Jevons’s book appeared, there was published in ParisPrincipe d’une
théorie mathématique de l’échange by Léon Walras (1834–1910). In spite of the different
presentation, Jevons recognised a confirmation of his own ideas on utility. Walras [1874]
immediately acknowledged Jevons’s priority, while the latter regretted not to have deduced
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demand functions from his functions of final degree of utility. Some years later both had
to acknowledge that the priority Walras acceded to Jevons had to be passed back fur-
ther, namely to Hermann Heinrich Gossen (1810–1858), whose book [Gossen, 1854] went
nearly unnoticed until Jevons and Walras did justice to it. All this made a fine story in the
Introduction to the second edition of Jevons’sTheory (pp. xxvi–xl).

In Britain F.Y. Edgeworth, inMathematical psychics [1881], continued Jevons’s inves-
tigations regarding the problem of bilateral monopoly, and generalised utility functions. In
his private publications, and later in hisPrinciples of economics (1890), Alfred Marshall
gave a different but esoteric orientation to the research started by Jevons: the curve of the
price demanded points indirectly to marginalutility under the reservation that the marginal
utility of money remains (approximately) constant[Marshall, 1920, Book IV, Chapter VI
and Mathematical Appendix VI].

The expression ‘neo-classical’ was suggested by Thorstein Veblen in [1900] to desig-
nate essentially Marshall’s theory. Later authors used it to indicate the tradition of mar-
ginalist work, in particular that of its founding fathers, Jevons, Menger and Walras.
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CHAPTER 42

FELIX KLEIN’S ERLANGEN PROGRAM,
‘COMPARATIVE CONSIDERATIONS OF

RECENT GEOMETRICAL RESEARCHES’ (1872)

Jeremy Gray

Klein’s Erlangen Program was his review of contemporary methods in geometry. It be-
came, some 20 years later, the work from which a new generation of mathematicians came
to see how geometry was being done and to appreciate the importance of group theory in
the study of geometry. The reason for this delay, and also for its subsequent and contin-
uing impact, was the novelty with which Klein re-united the disparate fields of geometry
through his emphasis on the role of groups of geometric transformations.
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1974 (Ostwalds Klassiker der exakten Wissenschaften, vol. 253).]
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1 ON THE BIOGRAPHY OF KLEIN

Christian Felix Klein was born in Düsseldorf, Germany, on 25 April 1849. His father was
a local government officer; his mother, to whom Klein attributed the intellectual liveliness
of his home, came from an industrial family in Aachen. Klein had a conventional German
schooling in a Gymnasium, supplemented by some family friends and contacts who appre-
ciated his quickness of mind, and he entered the University of Bonn at the age of sixteen
and a half years, intending to study mathematics and natural science. However, the instruc-
tion there was at a very low level, until he had the good fortune to become Plücker’s assis-
tant. Julius Plücker (1801–1868) had followed a distinguished career as a mathematician,
writing on the algebraic geometry of curves and resolving some of the central problems in
projective geometry and duality. He then transferred his attention to experimental physics,
and was one of the first to discover cathode rays, for which he was awarded the Royal So-
ciety of London’s Copley Medal in 1866. He then switched back to pure mathematics and
introduced the study of what is called ‘line geometry’. Here the emphasis is on assigning
coordinates to lines in space and defining configurations of lines by means of equations in
these coordinates.

Klein was responsible for the demonstrations in Plücker’s lectures on experimental
physics, but he also assisted him with his researches in line geometry, which became
the topic of his doctorate, which he finished in December 1868. Plücker had died, un-
expectedly, in May that year, leaving his two-volume book on line geometry unfinished,
and Klein was the ideal person to finish it. He therefore left Bonn and went to work with
Rudolf Clebsch (1833–1872)in Göttingen, because Clebsch was undoubtedly the leading
German geometer of his generation, and a stimulating figure around whom many others
gravitated. A measure of how fast Klein had risen is given by the remarkable fact that even
by the end of 1868 he had never heard a lecture on the integral calculus!

In Göttingen Klein learned more geometry than physics, and seeking to broaden his
intellectual horizons travelled to study in Berlin, as almost all German mathematicians
did at that time. There he could attend seminars in the largest and most powerful univer-
sity for mathematics in the world, dominated by Leopold Kronecker, Ernst Kummer and
Karl Weierstrass. The experience, however, was not congenial: the Berlin mathematicians
placed more emphasis on mathematical analysisthan Klein did, and paid more attention to
rigorous arguments and special cases than Klein was ever to do. What redeemed the trip
was his meeting the Norwegian mathematician Sophus Lie (1842–1899). Lie was a few
years older than Klein, and like him lacking in the mathematical sophistication expected
in Berlin. But they were united in the appreciation of geometry, in particular projective
geometry and line geometry, and increasingly in the belief that they had new and valuable
things to say in mathematics.

Klein and Lie began to do original research together, and together travelled to Paris to
learn from the mathematicians there, especially the young geometer Gaston Darboux, and
the group theorist Camille Jordan. Klein’s trip was cut short by the outbreak of the Franco-
Prussian war, and he returned home to serve in the German Army, acquire typhoid and be
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invalided out, and make the acquaintance of one Friedrich Althoff, who was later to be the
Minister of Education for Prussia and a considerable help to Klein in his academic career.

By 1871, Klein was back in Göttingen, where he concluded hisHabilitation that Janu-
ary. He was torn between mathematics and physics, but Clebsch’s influence was decisive
because it was on his recommendation that Klein was appointed as a full Professor of
Mathematics in Erlangen in autumn 1872, at the remarkably young age of 23. As was the
custom, Klein had to present an Inaugural Address. This address was on the teaching ac-
tivity he planned and the nature and purpose of an education in mathematics at all levels
from school to university. It is commonly confused with the Erlangen Program, but that
was not the Address [Rowe, 1983]. Rather, the Erlangen Program was a pamphlet printed
by Deichert in Erlangen and distributed to those who came to the Inauguration. A few
copies were doubtless distributed to friends and colleagues abroad, and to some libraries,
because that was customary at the time; but theinformal nature of the publication partially
accounts for the negligible response to the Erlangen Program in 1872.

2 THE ERLANGEN PROGRAM

Klein chose the title to his essay carefully: he intended first to review, and then to compare,
a number of recent researches in different areas of geometry. He claimed no novelty for
the way he treated specific topics; what was original was the unified viewpoint he offered
and its suggestions for the direction of future work. This viewpoint centred on the group-
theoretic classification of the different geometrical methods then in use, and this emphasis
owes a lot to Lie’s influence. The Program was written while Klein was in daily contact
with Lie, and reviewing its origins as he did when it was reprinted in his Collected Works
he wrote that Lie was very much persuaded of the merits of the idea [1921, 411].

It is easiest to understand this idea in its paradigm example: the way non-Euclidean
geometry appears as a sub-geometry of projective geometry. This was only done in an Ap-
pendix to the Erlangen Program, but it was developed at length in two papers published
in 1871 and 1873 in the journal that Clebsch and others had recently founded, theMath-
ematische Annalen. Klein had learned of non-Euclidean geometry from Otto Stolz when
in Berlin, but initially had had a hard time understanding it, and then in persuading Weier-
strass of the value of his new point of view.

Inspired by a serendipitous reading of a paper by the English mathematician Arthur
Cayley, who had had a glimmer of the same idea, Klein argued as follows. The model of
non-Euclidean geometry developed by Eugenio Beltrami draws the entire non-Euclidean
plane inside a circle, and it draws straight lines in non-Euclidean geometry as straight
lines inside the circle (§39.5). This suggested to Klein that the allowable transformations
of figures in non-Euclidean geometry ought to be those which are projective transforma-
tions mapping the circle to itself, because they will automatically map each straight line
to a straight line. Now, a non-Euclidean transformation is one that maps a line segment in
non-Euclidean geometry to another line segment of equal non-Euclidean length. Projective
geometry, on the other hand, can map any two points to any two points; the most impor-
tant property of projective transformations is that they map four points on a line to four
points on a line if and only if the four points have the same cross-ratio. For Klein’s idea to
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work, he had to find a way of expressing non-Euclidean distance, which only involves two
points, in terms of the four point projective invariant, cross-ratio. He did this by observing
that two points inside the circle define a non-Euclidean straight line that meets the circle in
two more points, thus giving him four points. It remained for Klein to define non-Euclidean
distance between the original two points in terms of the cross-ratio of the four points, and
this he did by a straightforward technical argument.

The upshot of all of this was that Klein hadtwo geometries, projective geometry and
non-Euclidean geometry, and each geometry had afamily of allowable transformations. In
fact, each of these families is what is technically called a group of transformations. More-
over, the space of non-Euclidean geometry is a subspace of projective geometry, consisting
of the points inside a fixed but otherwise arbitrary conic (for convenience, a circle) and the
transformation group of non-Euclidean geometry is a subgroup (in the technical sense of
the term, to be defined below) of the transformation group of projective geometry. So, sim-
ply but accurately, non-Euclidean geometry could be called a sub-geometry of projective
geometry.

Klein began the Erlangen Program by alluding to the recently discovered relation be-
tween the metrical and projective properties of figures, but in the more natural case of
Euclidean geometry. Then came the geometry, as he called it, of reciprocal radii vectores,
today called inversive geometry, and then birational geometry, which will be defined below.

Having introduced the main geometries, Klein then introduced the group concept. This
was not widely known in 1872. His presentation, as he himself noted when the work was
reprinted in the 1890s, was less than perfect: the only property of a group that he insisted
upon was closure. Perhaps the simplest example of a group is the integers with the op-
eration of addition. More generally, and in modern terms, a set of objects forms a group
if:

– closure holds: any two objects can be combined to form a third which also belongs to
the group (in symbolsA+B = C);

– there is an identity object, often denotede, with the property that the combination of
any object with the identity returns that object (A+ e=A);

– every object, sayA, in the group has an inverse, usually denoted−A, which is an
object such that the combination of an object and its inverse is the identity (A+−A=
e); and

– the so-called associative law holds:A+ (B +C)= (A+B)+C.

A subgroup is a subset of a group that is also a group. The integers form a group because
the sum of two integers is a group, the integer0 is the identity element, the inverse of the
integern is the integer−n, and the associative law holds:k + (m+ n)= (k +m)+ n. In
Euclidean geometry, the group of all distance-preserving transformations consists of the
familiar rotations, translations, reflections and their composites.

Klein may have skimped on the definition of a group because he did not do something
later generations were to do, namely he did not distinguish between an abstract group and
a transformation group. For groups whose elements are transformations it is, for example,
automatic that the associative law holds, and it is usually easy to see if a set of transforma-
tions contains an identity element and an inverse for every element. But these imperfections
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should not obscure the magnitude of the point Klein was insisting upon. No-one had dis-
puted for centuries that geometry, any geometry, involved the use of transformations, for
example to replace a figure with an equivalent but simpler one, or to choose more con-
venient co-ordinate axes. Klein shifted mathematician’s attention from the figures to the
transformations, and argued that geometry was about groups as well as the properties of
shapes.

In Sections 1–3 of the Erlangen Program, Klein discussed the use of the group concept,
in particular the idea of one group being a subgroup of another. This enabled him to fix
a space and vary the group, either to introduce a new geometry or to recognise a known
one in an unexpected setting. This enabled him to distinguish usefully between the invari-
ants of one group and another, and therefore between their geometrical properties, as the
paradigm example of non-Euclidean geometry and projective geometry demonstrates. But
Klein also pointed out that spaces could notonly be of any dimension, but the points of
one could be objects in another: one might study the space of all lines in a projective plane,
or the space of all conics. This transition took one into what his contemporaries called
higher geometry, which Klein had learned from Plücker and then greatly extended. The
example of introducing imaginary elements (those described by complex coordinates) was
mentioned explicitly, and motivated by the desire to bring geometry into line with algebra.

In Section 4, Klein discussed a way in which two seemingly distinct geometries can be
shown to be the same. This is the method of transfer, as he called it, which applies when
there is an invertible transformation,t say, between two spacesA andA′, with transforma-
tion groupsB andB ′ respectively. The map betweenB andB ′ that sends an elementb of
the groupB to the elementtbt−1 (wheret−1 is the inverse oft) in the groupB ′ transfers
the group acting on the spaceA to the spaceA′. If the action of the transferred group is
identical with that of the groupB ′—for which the technical term is isomorphic—then the
geometries could reasonably be said to be equivalent. Similarly, such a transfer can intro-
duce a geometry onto a space by allowing one to transfer the action of a group on a space
to the action on a new space.

Klein gave the example where the spaceA is a projective line and the groupB is that
of the rational transformations. The points of the projective line have coordinates of the
form [x, y] where[x, y] and[x ′, y ′] represent the same point if and only if there is a non-
zero rational numberk, say, such thatx = kx ′ andy = ky ′, and the expression[0,0] does
not represent any point of the projective line. A projective transformation is of the form
[x, y] → [ax + by, cx + dy], with ad − bc �= 0. This group also acts on binary forms,
which are expressions of the formαx2+βxy+γy2, so the geometry of the projective line
is the same as the study of binary forms. Now, the line is obviously a geometrical object,
but the space of binary forms is not, and this was, for Klein one of the advantages of the
Erlangen Program: it enabled one to introduce the resources of geometry into a branch of
mathematics previously regarded as purely algebraic.

Klein then discussed the transfer of the projective geometry of the plane onto a quadric
by stereographic projection. As a good 19th-century geometer, he did not care if the spaces
were real or complex: his example is easier for us to understand if the space is real and the
quadric is a hyperboloid of one sheet. The transfer map picks as a centre of the projection
a point on the hyperboloid, and maps the two straight lines of the hyperboloid through
that point onto points at infinity in the image projective plane. Any other point of the
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hyperboloid is mapped onto the projective plane by the line joining it to the centre of
projection. Thus elementary plane projective geometry and the geometry of a quadric with
a marked point are the same. In Section 5, the same process of transfer was illustrated in
more elaborate spaces, and Klein carefullypointed out now that it is not enough that the
spaces have the same dimensions; the group actions must also agree.

In Section 6 Klein looked at inversive geometry. In the plane (or, respectively, space)
this is the geometry of circles (respectively, spheres) in the plane, and the allowed trans-
formations are those mapping circles to circles (respectively, spheres to spheres), which
can also be characterised algebraically. Theinversive geometry of the plane, he pointed
out, is identical to projective geometry on a quadric, while the inversive geometry of space
coincides with the projective geometry on a quadric in projective five-dimensional space.

Section 7 of the Erlangen Program was devoted to mention of Lie’s sphere geometry.
This was an ingenious way of studying all spheres in three-dimensional space, by showing
that the geometry was equivalent to the geometry of all lines in three dimensional space.
Lie’s line-sphere transformation turned out to have implications for differential geometry
that enabled both Klein and Lie to have interesting new results in the early 1870s. Section
8 was yet more ambitious; Klein indicated that one might hope for a birational geometry of
space, where the transformations are quotients of polynomials; andfor topology (which he
called ‘analysis situs’), where the transformations are invertible continuous maps. He even
held out the prospect of a geometry of all invertible differentiable maps, which would map
(in modern language) the tangent space of a surface to itself. This idea led him in Section 9
to the study of contact transformations, which was to become a major theme of Lie’s work
in future years.

The 10th and final Section was devoted to some a few short remarks about other possi-
bilities. One was the study of manifolds of constant curvature; another was derived from a
comparison with the Galois theory of equations, leading to the suggestion that it would be
fruitful to pass down a chain of subgroups.

The Erlangen Program ended with a series of seven notes of varying length and signifi-
cance. Note 5 was on the ‘so-called non-Euclidean geometry’, as Klein cautiously contin-
ued to call it in order to avoid debates with non-mathematicians. Note 6 discussed Klein’s
work on line geometry, and clarified the tricky point that the projective geometry of space
with respect to a fixed quadric does not impose a geometry on the quadric itself. The final
Note hinted at a theme of growing importance to Klein: the geometrical interpretation of
the invariants associated to a binary form.

The central message of the Erlangen Program is that every geometry is to be thought of
as a space and a group of transformations acting on that space that preserve the essential
features of that geometry. These might be metrical, as they are in Euclidean geometry or
non-Euclidean geometry, the property of being a circle (inversive geometry in the plane)
or of being a straight line (projective geometry). Two implications follow from this insight.
One is that all the different geometries known at that date can be thought of as special
cases in a hierarchy of geometries, thus re-unifying geometry, a subject that Klein thought
had diversified too much. The other is that, by the principle of transfer, seemingly different
geometries can be seen to be essentially the same, and a space can perhaps be given a
geometry where previously it had none.
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3 THE RECEPTION OF THE ERLANGEN PROGRAM

For an interesting pair of contrasting views of the question of the influence of the Erlangen
Program see [Birkhoff and Bennett, 1988] and [Hawkins, 2000, 34–42]; and works cited
there give even more strongly contrasting views. It seems that the Erlangen Program met
with a slow reception until the 1890s, by whichtime Klein’s status as a major mathemati-
cian at the University of Göttingen had a great deal to do with its successful re-launch. By
that time too a number of mathematicians had done considerable work broadly in the spirit
of the programme, although the extent to which they were influenced by the programme,
or were even aware of it, is not at all clear.

Klein’s remarkably active life may be divided into a number of phases. Almost from
his arrival in Bonn in 1865 he was devoted to research. This phase ended with his collapse
in 1882 from acute nervous exhaustion brought on by his attempt to match the achieve-
ments of the French mathematician Henri Poincaré (1854–1912) on a topic of mutual in-
terest (complex function theory, group theory, and non-Euclidean geometry). By 1886
Klein had recovered his health, but his research became less original and more didac-
tic. He had worked his way back into the subject with his famous book on the icosahe-
dron [Klein, 1884], which is a recapitulation andreworking of earlier ideas. Thereafter he
liked to work as a collaborator and a supervisor, with a gifted and usually younger col-
league working through the detailed, technical aspects that had never been Klein’s forte. In
1892, when Klein became a senior professor at Göttingen, he began to move slowly away
from research and to pursue the organisational side of mathematics. Klein now became
the most influential mathematician ‘behind the scenes’ and was extraordinarily success-
ful in establishing Göttingen as the pre-eminent University for mathematics in the world.
He made a number of inspired hirings, David Hilbert among them, organised a series of
important investigations into the teaching of mathematics,and oversaw the production of
a 23-volumeEncyklopädie der mathematischen Wissenschaften (‘Encyclopaedia of math-
ematical knowledge’), which was also partly translated into French, including wholesale
up-datings and re-writings as appropriate. Klein’s position, and the large number of stu-
dents he had passing through Göttingen, undoubtedly contributed to the new reputation of
the Erlangen Program.

It was at this stage, motivated by a desire to make his early work, including the Erlangen
Program, better known and to remind the mathematical community of his old association
with Lie, that Klein sought to republish their early work together. Since 1872 Lie had gone
on to build up a vast theory of groups of continuous transformations of various kinds; but
however much it owed to the early experiences with Klein, and however much Klein may
have assisted Lie in achieving a major professorship at Leipzig University in 1886, it is
doubtful if the Erlangen Program had guided Lie’s thoughts. Lie was far too powerful and
original a mathematician for that. By the 1890s he was also suffering from the early stages
of an illness that alarmed many who knew him, for he became more and more prone to fits
of anger.

Whatever the reason, Klein’s attempts to involve Lie in the re-edition of the Erlangen
Program back-fired terribly. Lie took the occasion of the publication of the third and final
volume of hisTheorie der Transformationsgruppen to say in the preface [Lie, 1893, 17]:
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I am not a student of Klein’s nor is the reverse the case, even if it comes closer
to the truth. [. . .] I value Klein’s talent highly and will never forget that part
he had in accompanying my scientific efforts from the beginning. I believe,
however, that he does not always distinguish sufficiently between induction
and proof, between the introduction of a concept and its utilization.

Remarks like this shocked the German mathematical community, and embittered the last
few years of the relationship between Klein and Lie, who died in 1899. Nevertheless
Klein was generous enough in 1897 to persuade the Physico-Mathematical Society of
Kazan in Russia (who had just published a translation of Klein’s essay) to award its first
Lobachevsky prize to Sophus Lie for that volume of hisTheorie der Transformationsgrup-
pen.

Another mathematician who had done more on the connections between groups and
geometry than Klein ever managed was Poincaré. He had almost certainly come to the
idea that groups, and groups of transformations in particular, were fundamental mathemat-
ical objects independently of Klein. By 1880 he was clear that to speak of a geometry is
to speak of a group, and he studied non-Euclidean geometry in this spirit (using a more
metrical, less projective version of it, which is one reason any influence of the Erlangen
Program is unlikely). As Poincaré put it: ‘In fact, what is a geometry? It is the study of
the group of operations to which one can subject a body without deforming it’. Poincaré
went on to pioneer the introduction of group theoretic and geometric methods into com-
plex function theory; he introduced vast classes of new functions into mathematics, some
named ‘Fuchsian’ after the German mathematician Lazarus Fuchs, whose work had been
a starting point for Poincaré’s own, and somePoincaré called ‘Kleinian’ largely because
Klein had objected to the name ‘Fuchsian’.

But if the achievements of Lie and Poincaré had not been much inspired by the Erlangen
Program, they were nonetheless powerful arguments for the value of bringing together
group theory and geometry. What they did not do was exemplify the merits of the idea of
a hierarchy of geometries, or of transferring a geometry from one space to another. Klein
could justifiably claim some prescience in the Program, provided he did not insist too much
on the details. It was in this attenuated, more general sense that the Erlangen Program was
to exert a new influence.

Klein now oversaw the translation of the Erlangen Program into several languages (see
the publication history at the head of this article). The young Italian Gino Fano, who had
visited Göttingen, was persuaded to translate it into Italian (compare [Fano, 1907]). One
of Klein’s American students, M.W. Haskell, translated the Program into English.

Three stages in the shifting fortunes of geometry will help us understand the later life
of the Erlangen Program. In 1899 David Hilbert proposed the first new departure in ways
of thinking about geometry that went significantly beyond the Kleinian view (§55). In his
Grundlagen der Geometrie he argued for an axiomatic presentation of geometry and for a
comparison between geometries treated as systems of axioms. This left no prominent posi-
tion for group theory. However, when Einstein came up with his special theory of relativity
in 1905, Klein was very happy to see that it fitted directly into his Erlangen Program. The
feeling that the Erlangen Program somehow captured the ‘meaningful’ geometries was in-
stalled in the modern theory of differential geometry, which grew up in the years following
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Einstein’s introduction of his general theory of relativity, by the work of Elie Cartan, Her-
mann Weyl, and others (§63). They showed that it made sense to define various forms of
geometric structure on a manifold, corresponding to measurements taken in different but
overlapping regions of the manifold, and that when this is done the infinitesimal structures
that result are almost exactly those described in the Erlangen Program. The limited choice
of groups that can arise derives from the work of Sophus Lie, but the association of a group
with a geometric property is Klein’s original vision greatly generalised and transferred to
a new setting. The result is a potent vision of mathematics that embraces modern teaching
and modern research, and continues to reflect well upon the Erlangen Program.
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CHAPTER 43

RICHARD DEDEKIND, STETIGKEIT UND
IRRATIONALE ZAHLEN (1872)

Roger Cooke

This short work marks a significant epoch in the movement known as the arithmetization
of analysis, that is, the replacement of intuitive geometric notions byconcepts described in
precise words.

First publication. Braunschweig, F. Vieweg & Sohn, 1872. 31 pages. [Repr. 1892, 1905
and 1912, and then posthumously.]

Reprint. Gesammelte mathematische Werke (ed. R. Fricke and others), Braunschweig:
Vieweg, 1930 (repr. New York: Chelsea, 1969), 315–334.

English translation. Essays on the theory of numbers (trans. W.W. Beman), Chicago: The
Open Court Publishing Company, 1901 (repr. New York: Dover, 1963), 1–27. [Repr. in
F.W. Ewald (ed.),From Kant to Hilbert. A source book in the foundations of mathemat-
ics, 2 vols., New York and Oxford: Clarendon Press, 1996, 766–779.]

Russian translation. Neprerivnost’ i irratsionalnie chisla (trans. S. Shatunovskii), Odessa:
1908.

Italian translation. Essenza e significanza dei numeri, Continuità e numeri irrazionali
(trans. and ed. Oscar Zariski), Rome: Alberto Stock, 1926, 119–153.

Related articles: Riemann on trigonometric series (§38), Cantor (§46), Dedekind on the
integers (§47).

1 INTRODUCTION: THE PROBLEM OF INCOMMENSURABLES

This essay has been frequently reproduced, often in conjunction with hisWas sind und was
sollen die Zahlen? (translated asThe Nature and meaning of numbers), which is described
in §47. Dedekind wrote this essay to clarify a foundational problem that had lain beneath
the surface of analysis since the time of Descartes. The roots of the problem go back to the
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earliest mathematics that we now recognize as formally deductive, to the problem of in-
commensurables, first raised in the fourth century BCE. The Pythagoreans had discovered
that some ratios of lines, such as the diagonal and side of a square or regular pentagon,
could not be expressed as ratios of integers. In order to save the theory of geometric pro-
portion, a definition ascribed to Eudoxus of Cnidos was adopted by Euclid, based on the
idea that a given multiple of one geometric object (length, area, volume, or weight) must
be less than, equal to, or greater than a given multiple of another object of the same type.
One could then construct a theory of proportionality by defining the proportiona : b :: c : d
to mean that, for any positive integersm andn, whatever relation (ma < nb, ma = nb,
ma > nb) holds betweena andb must also hold betweenc andd . In this way it was pos-
sible, in effect, to assert that two geometric ratios are equal without having to say what a
geometric ratiois. Nowadays the missing definition could be supplied by defining a ratio
to be an equivalence class of pairs of geometric objects. Obviously such a definition would
not have occurred to the mathematicians of Euclid’s time, and they were content to say that
two quantitieshad a ratio without saying what the wordratio meant in isolation.

The solution given by Eudoxus sufficed for the purposes of geometry, and was soon
simplified sufficiently to be used easily in proofs; but it introduced a separation between
numbers and space that seemed insurmountable. The continuous and the discrete seemed
to be irreconcilable. A distinction was made betweennumber and (continuous)magnitude.
For good reasons, Euclid gave separate discussions of the theory of arithmetic proportion
in Books VII–IX and geometric proportion in Books V–VI.

The rise of algebra in the Islamic world a millennium ago and in European mathematics
during the 16th century brought this problem once more to the fore. In general one expected
the solution of an equation to have a numericalrepresentation, but in many cases the alge-
braic operations to be performed could be represented only geometrically. Omar Khayyam,
for example, had shown how to solve many cubic equations by intersecting conic sections,
but never fulfilled a promise he had made to present numerical solutions of these equations.
In fact, attempts to do so merely lead back to the original cubic equation. It appeared that
the unknowns and constants in equations had to be interpreted asmagnitudes rather than
numbers, in order for a solution to be found. The interpretation of a magnitude as a line,
and the product of two magnitudes as an area forced Omar Khayyam to adhere to a dimen-
sionally homogeneous notation, in which each term contained the same number of factors.
Each single factor represented a length, the product of two factors an area, the product of
three factors a volume, and he said explicitly that the square of a square was meaningless.
Pierre Fermat, who invented analytic geometry independently of Réné Descartes, always
observed these rules of dimensionality in his equations. The problem was that geometric
magnitudes had never been systematized in terms of arithmetic rules, since they had never
been thought of as numbers.

It was finally Descartes who removed the need for dimensional homogeneity in the
terms of an equation by showing how to interpret the product of two lengths as a length.
He chose a fixed lengthI as a unit and defined the productab as the length that satisfies
the proportionI : a :: b : ab. A modern mathematician would say that Descartes had made
equivalence classes of directed line segments into the field of real numbers. However, such
an interpretation would have been nonsense toDescartes. He was concerned with getting a
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geometric representation of algebraic operations, and would not have thought of applying
the termnumber to the result.

The success of Descartes’s analytic geometryand the calculus whose invention followed
close on its heels led to the subject now called ‘analysis’. This was an amalgam of algebra
and geometry, but included also numerical interpretations of its results. In particular, one
of the great advantages of analysis was the existence of Taylor series to make possible the
approximate computation of transcendentalfunctions such as the exponential and trigono-
metric functions. But the route to these series went through algebra and calculus and was
therefore not purely numerical. Moreover, the infinitesimal arguments used were contro-
versial for some time. Theorems such as the mean-value theorem of calculus depended on
a notion of continuity to guarantee that a curve containing points on both sides of a line
must intersect the line. But, as the Pythagoreans had shown, the numerical version of this
theorem was false: the point of intersection might very well not correspond to any number.
It was incorrect to call the intersection an irrationalnumber, since there was no articulated
theory of irrational magnitudes that allowed them to be added or multiplied like numbers.
Algebraic rules such as

√
ab =√a√b applied to magnitudes byfiat, but were difficult to

prove, even geometrically; and no one had produced any corresponding arithmetic rules, or
even a non-tautological definition of the squareroot of a non-square integer. Any such defi-
nition first of all begged the question of theexistence of the object defined; and if existence
is granted by appeal to geometry, the rules for treating lengths as numbers still needed to
be formulated and proved correct.

Such was the situation that confronted Dedekind when he began teaching in Zürich in
1858. Irrational magnitudes could be compared with (rational) numbers, and thus must in
some sense behave like numbers, but no one had given a definition of what we now call
a real number and shown how such numbers were to be added and multiplied indepen-
dently of the geometric interpretation Descartes had given. Dedekind was interested in the
problem because of the pedagogical implications of these gaps in the literature, and also
because of his abiding interest in foundational issues.

2 THE AUTHOR

Richard Dedekind was born on 6 October 1831 in Braunschweig, the son of a professor at
the Collegium Carolinum; his mother’s father was also a professor there. He never married,
and he lived with his unmarried sister for most of his life. He attended the Collegium
Carolinum from 1848 until 1850, when he entered the University of Göttingen. There he
studied with Gauss, receiving the doctoral degree as the last student of Gauss in 1852.
Since his education had proceeded at a rapid pace, Dedekind naturally had some gaps
to fill. Over the next few years he filled these gaps, receiving hisHabilitation alongside
Bernhard Riemann in 1854. He then began teaching at Göttingen. Gauss died the following
year and was replaced by J.P.G. Lejeune-Dirichlet, who became agood mentor for both
Riemann and Dedekind. Riemann, however, was the senior partner of the two younger
mathematicians, and Dedekind earnestly sought to learn about elliptic functions from him.

In 1858 Dedekind was chosen for a chair at theZürich Polytechnikum and began teach-
ing there in the fall of that year. It was to be his lot to be involved in editing the collected
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papers of his three great mentors Gauss, Dirichlet, and Riemann, and some of his ideas
were no doubt inspired by this work. He introduced the concept of an ideal in a ring in
his 1871 edition of Dirichlet’slectures on number theory. Inhis history of 19th-century
mathematics, Felix Klein objected that the word ‘ideal’ was a misnomer, since the kinds
of principal ideals that Dedekind was interested in were quite ‘real’, having a concrete
representation as the set of all multiples of a fixed element [Klein, 1926, 322].

Dedekind was also interested in foundational and philosophical questions. He made the
acquaintance of the young Georg Cantor in 1874, and was very much in sympathy with the
freedom of definition Cantor was trying to introduce into mathematics, so much so that he
became both a founding contributor and a champion of set theory ([Ferreirós, 1999], and
§46). His principal works are his edition of Dirichlet’sVorlesungen über Zahlentheorie first
in 1863: §37) and aTheorie der ganzen algebraischen Zahlen of 1879, which contained
most of his original contributions to modernalgebraic number theory [Dedekind, 1964].

Dedekind became a member of several academies of sciences, including those at Paris
and at Göttingen. He died in Braunschweig on 2 February 1916.

3 DEDEKIND’S VIEW OF THE PROBLEM OF CONTINUITY

This problem of continuity persisted even after A.L. Cauchy and Bernard Bolzano had
removed some of the difficulties connected withthe use of infinitesimal arguments (com-
pare §25). It was a problem of interpretation. If the final output of a problem was to be a
computable quantity, then the algebraic symbols from which the quantity was constructed
required some numerical interpretation. But it was manifest that wherever continuity ar-
guments were invoked an appeal was being made to geometric intuition. Such was the
problem that Dedekind faced, starting in 1858. As he said in the introduction to his pam-
phlet:

As professor in the Polytechnic School in Zürich I found myself for the first
time obliged to lecture upon the elements of the differential calculus and felt
more keenly than ever before the lack of a really scientific foundation for arith-
metic. In discussing the notion of the approach of a variable magnitude to a
fixed limiting value, and especially in proving the theorem that every mag-
nitude which grows continually, but not beyond all limits, must certainly ap-
proach a limiting value, I had recourse to geometric evidences. [. . .] The state-
ment is so frequently made that the differential calculus deals with continuous
magnitude, and yet an explanation of this continuity is nowhere given. [. . .] It
then only remained to discover its true origin in the elements of arithmetic and
thus at the same time to secure a real definition of the essence of continuity.
I succeeded Nov. 24, 1858, and a few days afterward I communicated the re-
sults of my meditations to my dear friend Durège with whom I had a long and
lively discussion [. . .].

Dedekind did not regard his discovery as anything but a commonsense clarification that
anybody could have made (see his 1876 letter to Rudolf Lipschitz, quoted below). For 14
years he made no attempt to publish the result, and then published it merely as a tribute to
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his father on the occasion of 50 years in service. Dedekind took for granted the validity of
the geometric intuition on which much of calculus had been based. His meditations were
concerned with formulating the geometric principle involved in precise language. As he
discovered when he succeeded, the principle was in fact a tacit assumption of geometry
made by all geometers since Euclid, and no one had suspected that this assumption was
being made over a period of more than two thousand years. In putting a better foundation
under the calculus, Dedekind also helped to shore up the foundations of geometry.

4 DEDEKIND’S SOLUTION OF THE PROBLEM

In the preface to his essay, Dedekind paved the way for the introduction of a new kind
of number. The ground for such a creative act, he argued, had been broken previously as
mathematicians invented negative, fractional, and imaginary numbers. In the first section of
the essay (properties of the rational numbers) Dedekind mentioned in passing some work
he himself had done, which is now recognized as one of the foundations of modern alge-
braic number theory, inventing the abstract object known as anumber field (‘Zahlkörper’),
which is a ‘system’R such that the four arithmetic operations can always be performed
on any two ‘individuals’ ofR, the only exception being division by zero. The use of the
words ‘system’ and ‘individuals’ is significant, as mathematicians would now much more
naturally use the words ‘set’ and ‘elements’ or their synonyms.

Dedekind’s work was no small contribution to abstract set theory, which had not yet
crystallized in his work and that of Eduard Heine and Cantor (compare §46). He remarked
in his preface that he had just received Cantor’s paper generalizing Riemann’s uniqueness
theorem for trigonometric series representations [Cantor, 1872] and was pleased to note
that Cantor was using an axiom of continuity compatible with his own. As a matter of fact,
Cantor defined a real number, which he called a ‘numerical magnitude’ (‘Zahlgrösse’), as
what is now called a Cauchy sequence of rational numbers, identifying the real number
defined by two such sequences if the difference between the sequences tended to zero. It
is difficult to see similarities in the two approaches, except that both involved inserting
newly created numbers among the rational numbers. Cantor, however, agreed that the two
approaches were compatible, saying to Dedekind that ‘only in the conceptual introduction
of [real numbers] is there any difference. I am fully convinced that the essence of continuity
consists of what you have presented’.

The first Section concludes with a discussion of the three order properties of rational
numbers, in which Dedekind was to find the secret of defining the whole set of real num-
bers: 1) The transitivity of the ‘greater than’ relation; 2) infinite divisibility (between any
two rational numbers there exist infinitely many rational numbers); and 3) the separation
property, which says that each rational numbera separates the whole class into two dis-
tinct sets of numbers, those that are smaller thana, and those that are larger. By the first
property, each number of the first class is smaller than each number of the second class,
and the numbera itself could then be assigned to either class, as either the largest number
in the first class or the smallest number in the second.

In the second Section, on the comparison of the rational numbers with the points of a
straight line, Dedekind drew the formal analogy between these properties and the order
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properties of a geometric line: 1) the relation ‘right of’ is transitive, that is, ifp is right of
q andq is right of r, thenp is right of r; 2) for any two points on a line there are infinitely
many points betweenthem; and 3) each pointp on a line divides the line into two classes,
those to the left ofp and those to the right, and the pointp can be assigned to either class as
the rightmost point of the first or the leftmost point of the second. Selecting an origin and
a unit of length on the line (and a positive direction, although Dedekind did not mention
this fact) would establish a real correspondence between these two sets of order properties,
so that each rational number would correspond to a point on the line, and the two classes
into which the number separates the set of rational numbers would correspond to the two
classes into which the corresponding point separates the line.

In the third Section of the essay, on the continuity of the straight line, Dedekind reaped
the harvest of these seemingly simple considerations, which, as he said (pp. 9–10),

are so familiar and well known to all that many will regard their repetition quite
superfluous. Still I regarded this recapitulation as necessary to prepare properly
for the main question. For, the way in which the irrational numbers are usually
introduced is based directly upon the conception of extensive magnitudes—
which itself is nowhere carefully defined—and explains number as the result
of measuring such a magnitude by another of the same kind. Instead of this I
demand that arithmetic shall be developed out of itself.

In a footnote he pointed out that this appeal to measuring one magnitude by another of
the same kind fails when applied to complex numbers. And, he said, in any case the idea
could be made clear onlyafter a theory of irrational numbers was constructed. By making
these commonplace remarks explicit, Dedekind was at last able to exhibit the hidden as-
sumption of geometry that had been used in both geometry and analysis for centuries. That
property was the converse of the third property listed above (pp. 11–12):

I find the essence of continuity [. . .] in the following principle:If all points
of the straight line fall into two classes such that every point of the first class
lies to the left of every point of the second class, then there exists one and only
one point which produces this division of all points into two classes. [. . .] As
already said I think I shall not err in assuming that everyone will at once grant
the truth of this statement; the majority of my readers will be very much disap-
pointed in learning that by this commonplace remark the secret of continuity
is to be revealed. To this I may say that I am glad if everyone finds the above
principle so obvious and so in harmony with his own ideas of a line; for I am
utterly unable to adduce any proof of its correctness, nor has anyone the power.
The assumption of this property of the line is nothing else than an axiom by
which we attribute to the line its continuity, by which we find continuity in the
line. If space has at all a real existence it isnot necessary for it to be continu-
ous; many of its properties would remain the same even were it discontinuous.
And if we knew for certain that space was discontinuous there would be noth-
ing to prevent us, in case we so desired, from filling up its gaps, in thought,
and thus making it continuous; this filling up would consist in a creation of
new point-individuals and would have to be effected in accordance with the
above principle.
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These last few sentences represent an attempt to forestall the probable objection that
one cannot simply invent mathematical objectsex nihilo. By imagining the completion of
a disconnected space, Dedekind was arguingthat in fact mathematicians had been doing
precisely that for millennia. They hadassumed that the familiar continuity properties of
space were synthetica priori knowledge, as Kant would have said. Dedekind was saying
that, on the contrary, nothing whatever was known about physical spacea priori, and that
the space studied in geometry was a creation of the human mind. By arguing that mathe-
maticians had been creating points of a linead hoc, he was justifying a similar creation of
irrational numbers.

Having exhibited the geometric principle that had been used in analysis, Dedekind
showed in the fourth Section, which is devoted to the creation of irrational numbers, how
this same principle could be applied to obtain a concrete representation of the irrational
numbers. He defined acut in the rational numbers to be any separation of them into two
classes such that every number in the first class is smaller than every number of the second
class. He noted that each rational number produces such a cut, in fact two cuts, ‘which,
however, we shall not look upon as essentially different’. He then showed how to define a
cut corresponding to the square root of a non-square positive integerD, by assigning to the
second class every positive rational number whose square is larger thanD, and all other
numbers to the first class. By considering the mapping

x �→ x(x2+ 3D)

3x2+D = y (1)

he showed that the first class had no largest element and the second class no smallest
element. (If the square of the positive numberx is less thanD, theny is also positive and
larger thanx and has square less thanD; if x is positive and its square is larger thanD, then
y is also positive and smaller thanx and has square larger thanD.) Dedekind concluded
this section by showing that the cuts of the rational numbers form a system with the same
order properties as those already listed for the line (assuming the identification of the two
cuts produced by a rational number).

The very short fifth Section, treating the continuity of the real numbers, was devoted to
proving that cuts made in the system of cuts of the rational numbers did not lead to any
new objects, that is, that every cut of the enlarged system was produced by a unique cut
in the original system of rational numbers, so that the real numbers thereby created were
complete.

The sixth Section (operations with the real numbers) gave an outline of the way in which
one could make the cuts of the rational numbers into a number system. Dedekind gave the
details only for addition, and left it to the reader to imitate the argument so as to define the
other operations of arithmetic, noting that this procedure made it possible at last to prove
arithmetically the rules for operating with square roots and other similar rules, which had
been taken for granted in the past. He recognized that his definition was somewhat cum-
bersome and suggested a way of streamlining it by consideration of intervals. By showing
that the endpoints of intervals can be simply obtained by cuts, he came very close to for-
mulating explicitly what is now called theleast upper bound property of the real numbers,
which asserts that every set of real numbers that has an upper bound has a smallest upper
bound.
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In the seventh and last Section, on infinitesimal analysis, Dedekind gave the application
to calculus by proving that an increasingbounded function approaches a limiting value.
This example and the corresponding proof thatthe oscillations of a variable approaching a
limit must tend to zero were, he thought, sufficient to show how his definition of continuity
could be used to derive infinitesimal analysis.

5 RECEPTION OF THE WORK

As is often the case with a difficult problem, once a modicum of clarity has been reached
through a rather arduous process, it becomes possible to simplify the entire presentation.
Such a simplification, for example, had occurred with the Eudoxan definition of geometric
proportion, and a simplification of Dedekind’s postulate in the form of the least upper
bound axiom was soon introduced into analysis. Dedekind had, in modern terms, provided
a model of a structure that has the properties of a number system and at the same time
those of a geometric line. That was the kind of object real analysis required. Dedekind’s
language is revealing; he knew that he was creating new numbers, but he was careful to
say that his cutscorresponded to the numbers, not that theywere the numbers:

Whenever, then, we have to do with a cut [. . .] produced by no rational number,
we create a new, anirrational number [. . .] which we regard as completely
defined by this cut [. . .]; we shall say that the number [. . .] corresponds to this
cut, or that it produces this cut. From now on, therefore, to every definite cut
there corresponds a definite rational or irrational number [. . .].

One of the burdens of pointing out a common oversight is that people who have been
making the oversight fail to see that any difficulty is being overcome. Euclid had shown
how to treat proportion geometrically, and Descartes had shown how to represent the prod-
uct of two lines as a line. Surely combining the work of these two, one would have thought,
gave a sufficient basis for treating the real line as a set of numbers. So, at least, believed
Lipschitz, a competent mathematician to whom Dedekind sent a copy of his work in 1876.
Lipschitz did not see what the fuss was about, and he objected to Dedekind’s claims of
originality [Scharlau, 1986, 58]:

I must say that I do not deny the validity of your definition, but that I am
nevertheless of the opinion that it differs only in form, not in substance, from
what was done by the ancients. I can only say that I consider the definition
given by Euclid:rationem habere inter se magnitudines dicuntur, quae possunt
multiplicatae sese mutuo superare [magnitudes are said to have a ratio if they
are capable of exceedingeach other when multiplied] and so forth, to be just as
satisfactory as your definition. For that reason, I wish you would drop the claim
that such propositions as

√
2
√

3= √
6 have never been proved. I think the

French readers especially will share my conviction that Euclid’s book provided
necessary and sufficient grounds for proving these things [. . .]. To quote Jacobi,
these questions touch an analyst’s heart very deeply, and I only hope you are
not angry with me.
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Dedekind was not offended, but also not convinced. He replied [Scharlau, 1986, 64–65]:

I have never imagined that my concept of the irrational numbers has any par-
ticular merit; otherwise I should not have kept it to myself for nearly fourteen
years. Quite the reverse, I have alwaysbeen convinced thatany well-educated
mathematician who seriously set himself the task of developing this subject
rigorously would be bound to succeed [. . .]. Do you really believe that such
a proof can be found in any book? I have searched through a large collec-
tion of works from many countries on this point, and what does one find?
Nothing but the crudest circular reasoning, to the effect that

√
a
√
b = √ab

because(
√
a
√
b)2 = (√a)2(√b)2 = ab; not the slightest explanation of how

to multiply two irrational numbers. The proposition(mn)2 = m2n2, which is
proved for rational numbers, is used unthinkingly for irrational numbers. Is
it not scandalous that the teaching of mathematics in schools is regarded as
a particularly good means to develop the power of reasoning, while no other
discipline (for example, grammar) would tolerate such gross offenses against
logic for a minute? If one is to proceed scientifically, or cannot do so for lack of
time, one should at least honestly tell the pupil to believea proposition on the
word of the teacher, which the students are willing to do anyway. That is better
than destroying the pure, noble instinct for correct proofs by giving spurious
ones.

Lipschitz was correct in his belief that the French mathematicians would regard Euclid’s
argument as sufficient. Dedekind, an early enthusiastic proponent of set theory, made the
first attempt to derive arithmetic from logic and set theory in his essayWas sind und was
sollen die Zahlen? (1888) (§47). In this essay Dedekind noted that Jules Tannery had,
apparently independently of him, discovered the idea of a cut, but had attributed it to a
remark of Joseph Bertrand, to the effect that an irrational number is defined by the set of
rational numbers less than and greater than it.To Dedekind, this neglect of detail concealed
a fatal flaw, in the form of references to measuring one number by another.

The consensus of mathematical opinion has sided with Dedekind in this debate. It has
been considered necessary to lay down very systematically the rules for operating with real
numbers, and they are now characterized as an ordered field satisfying the Dedekind postu-
late (or, equivalently, as a complete Archimedean-ordered field). The powerful influence of
these thirty-odd pages is amply attested by a number of facts. The work itself went through
five editions in its first half-century. The influence of Dedekind’s ideas was so profound
that when his collected works were published in 1931, the editors wrote at the end of this
essay, ‘The argument in this classical work is so well known that we consider it permis-
sible to dispense with commentary’. The method of Dedekind cuts was repeated almost
word for word in many standard textbooks of real analysis throughout the 20th century
(for example, [Hardy, 1908] and [Rudin, 1953]). To be sure, references to Dedekind cuts
have become less common of late; Cantor’sapproach, which defines a real number as an
equivalence class of Cauchy sequences of rational numbers, seems to be more common,
since the same argument can be adapted to embed any metric space as a dense subset of
a complete space. The late Einar Hille, who worked for a time with Gustav Mittag-Leffler
in Stockholm, reported that the latter exploded in exasperation when he told him he had
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used Dedekind cuts to define the real numbers [Hille, 1980]. More often than not, authors
no longer share the worry that caused Dedekind and Cantor to arguefor the possibility of
creating new numbers out of the rational numbers. In most of the now-current textbooks
one finds the real numbers treated axiomatically, with Dedekind’s postulate replaced by
the least upper bound axiom. The existence and uniqueness of such an object are generally
ignored, as a topic of interest only to philosophers of mathematics, with which the mathe-
matician need not be troubled. However, the recent textbook [Strichartz, 1995] discusses a
variety of ways of constructing the real numbers, including Dedekind cuts.

Dedekind’s clarity remained a model for other mathematicians to use when creating
new objects. One such object, for example, was the set of countable ordinal numbers, that
is, ordinal numbers of types I (finite) and II (countably infinite). All attempts to enumerate
the second class in an explicit way lead to confusion, and some way of finding a canonical
representative of each such ordinals in terms of standard mathematical objects would be
highly desirable. The Russian mathematician Nikolai Luzin made many attempts to do so
in his unpublished notebooks, and in one note in the archives of the Russian Academy of
Sciences he attempted to imitate Dedekind’s construction of the real numbers by defining
a countable ordinal number to be a well-ordered subset of the rational numbers between 0
and 1 [Cooke, 1993]. Luzin said:

An irrational number is defined as the symbol for a pair of classesA andB
into which the set of rational numbers is decomposed by virtue of some def-
inite rule. Irrational numbers are considered equal if they are symbols for the
same pair of classes. After this definition is made, the elementary properties
of irrational numbers are established, and finally one can speak of thetotality
of all irrational numbers. Since the work of Russell, a route that is to some
extent analogous has become feasible in the theory oftransfinite numbers of
second type. [Then follows the definition of a second-type transfinite ordinal
as a well-ordered infinite set of rational numbers between 0 and 1, with order-
isomorphic sets identified.] Looking closer, we observe a certain difference
between the definition of an irrational number and a transfinite number of sec-
ond type. Although both definitions have the rational numbers as their point
of departure, an irrational number is defined as a pair of classes [. . .] while
a transfinite number of second type is a class whose elements are no longer
rational numbers, butsets made up of rational numbers.

Thus Luzin used Dedekind’s technique as a model for creating transfinite ordinal numbers,
and also as the touchstone by which he judged the result and found it wanting. The fact that
Luzin thought of it at all is testimony to the extent to which Dedekind’s ideas had become
a paradigm for creating new numbers.

While Dedekind’s ideas have added clarity to mathematical analysis and the philosophy
of mathematics, they have been subject to attack from two opposite sides. On the one side,
a group of mathematicians with a deep interest in philosophy and logic, the intuitionists,
has pointed out that one cannot always decide whether one rational number is larger than
another, so that Dedekind’s use of ordering to define real numbers does not work in gen-
eral. For example, it is not known whether the number(−1)n, wheren is the quintillionth
decimal digit of the positive 15th root of 2, is a positive number; and it is not likely ever
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to be known. From the opposite side, there are attacks from practical-minded people of all
stripes, who disdain philosophy and deny that the notion of infinite precision implied by a
geometric line, which Dedekind was trying to formulate in words, can have any meaning
at all. For such people, the ‘construction’ of the real numbers, whether by Dedekind cuts
or otherwise, fits the verdict that Paul Gordan pronounced on one proof of the Hilbert basis
theorem: ‘This is no longer mathematics, it is theology’ [Kowalewski, 1950, 25]. Such a
view was forcefully expressed by Norman David Mermin: ‘Bridges would not be safer if
only people who knew the proper definition of a real number were allowed to design them’
[Mermin, 1979].

In the last analysis, the geometric intuition from which the idea of continuity and the
idea of an infinitely precise real number arise does not mesh well with the finite, verbal
aspect of mathematics that is adapted for logical inference and computation. Yet it is reas-
suring to know that a precise verbal description of an intuitive geometric idea does exist,
to which one can have recourse when intuition becomes doubtful. To have provided that
description is the lasting achievement of Dedekind’s pamphlet.
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1 EDUCATION AND CAREER

James Clerk Maxwell was born in Edinburgh on 13 June 1831. His father was descended
from a long line of Scottish baronets and had been trained as a lawyer. In 1841 he entered
the Edinburgh Academy, where he was a contemporary of Peter Guthrie Tait. In 1847 he
entered the University of Edinburgh and followed the lectures of the Professor of Natural
Philosophy, James David Forbes, and theProfessor of Logic, Sir William Hamilton (not
to be confused with the inventor of quarternions). In 1850 he left for Cambridge, and in
1854 came second in the Mathematical Tripos (hereafter, ‘MT’) and first ex-aequo for the
Smith’s Prize. In addition to his intensive mathematical education, mainly in the hands of
the private coach William Hopkins, he probably came under the influence of George Stokes
(1819–1903), the Lucasian Professor of Mathematics; and William Whewell, the Master of
Trinity College. In 1850 he also made the acquaintance of William Thomson (1824–1907,
later Lord Kelvin), the young Professor of Natural Philosophy at Glasgow, who certainly
became a model for him.

Maxwell’s career as a teacher began at Cambridge in 1855 as Fellow of Trinity College.
In the following year he became Professor of Natural Philosophy at Aberdeen. He had to
resign in 1860, following changes in the university system, and was an unsuccessful candi-
date for the Chair of Natural Philosophy at Edinburgh (obtained by Tait). In the same year,
however, he was appointed Professor of Natural Philosophy at King’s College, London. He
left this position in 1865, probably in order to devote himself fully to scientific research.
Over the next few years, he spent most of his time at his ancestral home in Scotland, re-
siding in London in the winter months. It was during this period that he wrote hisTreatise
on electricity and magnetism. In 1871 he was appointed to the new Chair of Experimental
Physics at Cambridge and the Directorship of the Cavendish Laboratory. He occupied this
position until his death on 5 November 1879.

In 25 years of activity, Maxwell published about a hundred scientific papers. While his
main claim to fame lies in his work on electromagnetism and the kinetic theory of gases,
he was interested in almost all branches of physics, both mathematical and experimental,
and especially in mechanics, geometry and optics. In 1857 his essay on the rings of Saturn
earned him the Adams Prize at Cambridge, and in 1860 he won the Rumford Medal of the
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Royal Society for his work on colour vision. He was made a Fellow of the Royal Society
in 1861, and subsequently became a member of several other learned societies. He also
published two books aimed at popularizing advanced topics, theTheory of heat (1871) and
Matter and motion (1877), and a very full edition of the unpublished manuscripts of Henry
Cavendish on electricity (1879).

2 MATHEMATICAL THEORIES OF ELECTRICITY AND MAGNETISM
IN THE FIRST HALF OF THE 19TH CENTURY

One generally thinks of the mathematical treatment of electric phenomena as beginning
with two memoirs on electrostatics by Siméon Denis Poisson (1781–1840) in 1812 and
1813. He based his study of conditions of equilibrium for electricity in a conductor on
the Newtonian law of force between two (small) electrified spheres established by Charles
Coulomb in the 1780s:

F ∝ ee
′

r2 , (1)

whereF was the force between the spheres,e ande′ their respective electric charges, and
r the distance between their centres. Using results of P.S. Laplace and J.L. Lagrange on the
theory of gravitation, he found a close agreement between his analytic study and experi-
mental observation. Like Coulomb, he assumed that electricity was being composed of two
electric fluids. In 1826 and 1827, he also described a mathematical theory of magnetism
based on Coulomb’s law for magnetic action and the hypothesis that the magnetization of
a body results from the separation of two magnetic fluids in the interior of each molecule
[Grattan-Guinness, 1990, 496–514, 948–953, 961–965].

Poisson made frequent use of a functionV which was later, under the name ‘potential’,
to play an important role in the work of George Green (§30) and C.F. Gauss. The value of
V at a pointM is determined from the distribution of electricity by the integral formula

V =
∫∫∫

ρ

r
dx dy dz, (2)

whereρ is the volume density of the electric charge at a pointM ′ at a distancer fromM.
The coordinates of the electric force on a unit positive electric were given by

Ex =−dV
dx
, Ey =−dV

dy
, Ez =−dV

dz
. (3)

In the memoir of 1813, he showed thatV satisfied the local differential equation, later
called ‘Poisson’s equation’, at every point of the space:

d2V

dx2 +
d2V

dy2 +
d2V

dz2
=−4πρ. (4)

The phenomenon of the action of an electric current on a magnetized body, discovered
by Hans Christian Oersted in 1820, attracted the attention of many experts. In the same
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year, André-Marie Ampère (1775–1836)established by experiment the actions of repulsion
and attraction between two conducting wires carrying an electric current, and explained all
magnetic actions as deriving from this last phenomenon by supposing magnetic bodies
to be composed of molecular electric currents. He coined the terms ‘electrostatics’ and
‘electrodynamics’ to distinguish the study of forces on bodies carrying electricity at rest
and in motion. Ampère’s electrodynamic theory, which finally appeared in a memoir of
1826, was based on a new Newtonian formula expressing the interaction between two
elements of current:

F = ii ′ dl dl
′

r2

(
sinα sinβ cosγ − 1

2
cosα cosβ

)
, (5)

wherer was the distance between the elements of current,i and i ′ the intensities of the
currents passing through them,dl anddl′ are their lengths, andα,β, γ angles expressing
their relative orientation. He also established the equality of the magnetic actions exercised
by an electric circuit and a magnetic shell occupying a surface bounded by the circuit
[Grattan-Guinness, 1990, 917–968].

In 1831 Michael Faraday (1791–1867) established the existence of the phenomenon of
electromagnetic induction, but it was not until 1845 that Franz Neumann gave it a math-
ematical treatment. Appealing to the electrodynamic theory of Ampère and a qualitative
law announced by Emil Lenz in 1834, he established, in the case of two closed circuits in
relative motion, an expression for the electromotive force of induction as a function of a
‘potential’ P . This theory established a connection with the electrodynamic theory, since
the electrodynamic force on one of the circuits is obtained by differentiatingP with respect
to the spatial coordinates [Darrigol, 2000, 45–49, 400–401].

In a memoir published in 1846, Wilhelm Weber attempted to unify all of the electric
and magnetic phenomena under a Newtonian formula of interaction between two charged
particles. To integrate electrodynamic actions and electromagnetic induction, this formula
incorporated the first and second derivatives of their distance with respect to time, so as to
give:

F = ee
′

r2

[
1− 1

C2

(
dr

dt

)2

+ 2r

C2

(
d2r

dt2

)]
, (6)

wheree ande′ were the charges of the two particles,r their distance apart, andC a constant
whose importance will appear below. Weber also adopted the hypothesis, proposed by his
colleague Gustav Fechner, according to whichan electric current is composed of a double
flux of positive and negative fluids of equal and opposite rates of flow. Weber was thus able
to deduce both Ampère’s formula for the interaction between two elements of a circuit and
the expression for the electromotive force of induction given by Neumann [Darrigol, 2000,
54–66, 402–405].

3 FARADAY AND THOMSON ON THE NOTION OF FIELD

From 1831 to 1852, Michael Faraday published his ‘Experimental researches on electric-
ity and magnetism’ in thePhilosophical Transactions of the Royal Society. These papers
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contain not only an impressive series of experimental discoveries, but also a collection of
heterodox theoretical concepts on the nature of these phenomena expressed in terms of
lines of force and fields.

In 1838, in the 11th series of his ‘Experimentalresearches’, Faraday explicitly rejected
the idea of an electrostatic action exercised directly at a distance and attempted to prove that
electric induction is propagated by contiguous particles of the insulating medium around
the bodies (the ‘dielectric’). Moreover, the electric charges observed on the surface of the
conductors resulted, according to him, not from an accumulation or deficiency of electric
fluid, but from the polarization of the dielectric. To substantiate these claims, he showed in
particular that the inductive action between the two surfaces of a condenser depends on the
nature of the dielectric separating them, a property called its ‘specific inductive capacity’
[Gooding, 1978].

In 1845, Faraday announced the discovery of an effect of magnetism on polarized light,
today called the ‘Faraday effect’. A few months later he discovered diamagnetism, and
devoted the years that followed to the study of this phenomenon and the development of
new theoretical concepts. He disagreed with Weber, for whom diamagnetic bodies possess
a polarization opposite to that of paramagnetic bodies. For Faraday, on the other hand,
the behaviour of different substances resulted from thelocal tendency of the surrounding
space, the ‘field’, to minimize the perturbation introduced by the bodies and their capacity
to conduct the lines of forces more or less well than the surrounding medium. According to
case, they move towards the ‘strongest’ places(where the lines of force were most dense)
or the ‘weakest’ [Gooding, 1981].

While Faraday’s experimental discoveries earned him great admiration from his con-
temporaries, his theoretical ideas were received more with perplexity than enthusiasm. The
notions that he developed drew upon visual descriptions of the state of the space surround-
ing the bodies, which seemed to be purely qualitative and devoid of the precision necessary
for a mathematical treatment.

In 1845, the young Thomson published an article in which he showed that Faraday’s
experiments on the inductive capacity of dielectrics were compatible with the mathematical
theory of electrostatics constructed by Poisson. He deduced Faraday’s results from the
hypothesis of a polarizationat a distance of the dielectric medium under the influence of
the electrified surfaces of the condenser, on the model of reasoning used by Poisson for
magnetism. However, in another part of his text, he also asserted that Faraday’s physical
ideas ‘may be made the foundation of a mathematical theory’ equivalent to the classical
theory. His line of argument appealed to a mathematical ‘analogy’ between the propagation
of heat and an electrostatic system, published in 1842, to envisage a mathematical theory
of electrostatics modelled on the theory of heat of Joseph Fourier (§26) [Smith and Wise,
1989, 203–236].

In the years that followed, Thomson developed new concepts and mathematical methods
that converged with the theoretical notions of Faraday. First he interpreted the ponderomo-
tive force on an electric or magnetic body as resulting from the tendency of the system to
minimize its ‘mechanical effect’ (or ‘potential energy’). Then he showed, using Green’s
theorem (§30.3), that the potential energy of an electrostatic or magnetic system can be re-
garded as being distributed over the whole space rather than confined to the surface of the
bodies. Finally, he developed a programme for reducing electric and magnetic phenomena
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to the mechanical state of the aether in the wave theory of light, especially by means of
numerous dynamical analogies and illustrations. In 1856, he even asserted that the Fara-
day effect proved that magnetism resulted from rotational motions of the aether with axes
coinciding with the lines of magnetic force [Smith and Wise, 1989, 237–281, 402–412].

4 MAXWELL AND THE THEORETICAL REFORM OF ELECTROMAGNETISM

Maxwell began his researches on electromagnetism following the completion of his stud-
ies at Cambridge in 1854. They were aimed at constructing, at a theoretical level, a unified
mathematical theory of electric and magnetic phenomena that would express the meth-
ods and ideas of Faraday as an alternative to the theory of Weber. This programme was
announced in his first article, ‘On Faraday’s lines of force’, in 1856 [MaxwellPapers,
vol. 1, 155–229] and continued in two other major texts, ‘On physical lines of force’ (‘PL’)
in 1861–1862 [ibidem, 451–513] and ‘A dynamical theory of the electromagnetic field’
(‘DT’) in 1865 [ibidem, 526–597]. According to a famous passage in its preface, theTrea-
tise (1873) represented the outcome of this programme.

The reference to Faraday in Maxwell’s work has often masked the role played there
by the texts of Thomson, and above all the search for the continuity with the mathemat-
ical theories of Poisson, Ampère and Neumann.Rather than a ‘mathematical translation’
of Faraday’s texts, Maxwell’s theoretical programme comprised a reform of those clas-
sical mathematical theories within the theoretical framework constructed by Thomson in
the course of the previous decade. Maxwell’s originality vis à vis Thomson lay in the sys-
tematic implementation of this programme, extending it to electrodynamic phenomena and
introducing into the mathematical theory notions of Faraday not used by Thomson, notably
the duality of quantity and intensity and the electrotonic state.

Maxwell’s publications were pervaded by a tension between the problem of treating
new analytic expressions as empirically founded and that of associating them with descrip-
tions of the physical process whereby the medium is supposed to propagate electric and
magnetic actions. In 1856, he used an analogy between systems of attraction following the
inverse-square law and the motion of an incompressible fluid to introduce new mathemati-
cal structures, explicitly avoiding the presentation of a ‘physical theory’ of the phenomena.
In 1861, on the other hand, he presented a hypothetico-deductive argument exhibiting a
medium composed of molecular vortices as a possible cause of the phenomena. In 1865
he took a middle course in describing a theory based on a set of eight ‘general field equa-
tions’, which were at the same time introducedas ‘deduced from experimental facts’ and
associated with ‘dynamical illustrations’.

Moreover, the article of 1856 contained some problems and gaps that later publications
attempted to resolve. On the one hand, he gave no account of the connection between the
electrostatic and electrodynamic theories since the treatment of the latter was limited to the
magnetic effects of closed circuits. On the other hand, the hypothesis of an electromagnetic
medium present in a ‘so-called vacuum’ raised the problem of its co-existence with the
aether in the wave theory of light.

The third Part of PL contains a solution of both of these problems. Maxwell first as-
sumed the existence of a new form of electric current consisting of a variation in the elec-
tric polarization (or displacement) in a dielectric and deduced a law of magnetic effects
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equally applicable to both open and closed circuits. He then gave an argument showing
that his electromagnetic medium coincides with the aether in the wave theory of light. He
made particular appeal to the close agreement between experimental measurements of the
speed of light and a quantityv equal to the ratioC/

√
2, whereC is the constant appearing

in Weber’s formula (6).
In 1865, Maxwell expressed these two solutions in a new form. First, a combination

of two of the general field equations implied a new representation of the magnetic effects
of closed circuits, according to which the current of conduction in a conducting wire is
extended by a current of displacement in the dielectric to form a closed‘total current’. Then
he obtained a wave equation from certain field equations from which he again deduced a
speed of propagation equal tov. He thus concluded not only that ‘light and magnetism
are affections of the same substance’ but also that ‘light is an electromagnetic disturbance
propagated through the field according to the electromagnetic laws’. With this last assertion
was born the ‘electromagnetic theory of light’ properly speaking [Siegel, 1991].

5 THE PUBLICATION, FUNCTIONS AND STRUCTURE OF THETREATISE

Around 1860, the rapid development of the telegraphic industry in Britain created an in-
creasing need for knowledge, both theoreticaland experimental, of electricity. This is at-
tested by the central role of Thomson in the installation of the submarine telegraphic cable
between Britain and the United States, which was completed in 1866 [Smith and Wise,
1989, 649–683]. In 1861, the BAAS created, on Thomson’s initiative, a committee charged
with defining a standard of electric resistance for use in industry, which Maxwell joined in
1862. From this work he gained the perspective of a precise experimental measurement of
v, expressing the ratio of the electromagnetic and electrostatic units of electricity, thereby
justifying its conjectured equality withthe speed of light [Schaffer, 1992, 1995].

From the middle of the 1860s, several British universities began teaching this new
knowledge and scientific practice, creating chairs of experimental physics and associated
teaching laboratories [Gooday, 1990]. These innovations also affected the University of
Cambridge. In July 1867, it was decided to remodel the MT with a particular view to in-
cluding the study of electricity, magnetism and heat. Thanks to a donation by the seventh
Duke of Devonshire, the Chancellor of the University and a relative of Henry Cavendish,
it was decided in 1870 to create a new chair of experimental physics and the now famous
Cavendish Laboratory (‘CL’) [Sviedrys, 1970].

Maxwell played an important part in the reforms at Cambridge. Between 1866 and
1873, he was five times an examiner for the MT and the chief setter of questions on the
new subjects. His nomination in March 1871 for the new chair of experimental physics
and the directorship of the CL show that he was regarded as the principal British scientific
expert on these subjects after Thomson, and also one of the chief architects of the current
reforms in Cambridge [Harman, 1995, 33–37].

The publication of theTreatise on electricity and magnetism in 1873 was a direct re-
sult of these reforms. Maxwell announced his project in 1867, only a few months after the
announcement of the reform of the MT, and the book was published in March 1873, just
two months after the first session under the new regime. The publication of an advanced
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work of reference on the subject was an essential ingredient of the success of the reform
at Cambridge [Achard, 1998]. The book was also closely connected with theTreatise on
natural philosophy (‘TNP’) by Thomson and Tait (§40). Both books were published by
the Clarendon Press (‘CP’), publishers to the University of Oxford; the arrangement al-
lowed Thomson and Tait to set electromagnetism aside. Throughout the preparation of his
work, Maxwell kept up a correspondence with the professors at Glasgow and Edinburgh
[Harman, 1995, 24–33].

This context explains at least two functions of theTreatise: to describe the chief instru-
ments and methods of measurement of the phenomena, for the benefit of experimenters
and engineers; and to give an account of the sophisticated techniques for the mathematical
treatment of electricity and magnetism, mainly for the students of the MT. To these must
be added a third function, more familiar to us because of the reference to Faraday in the
preface: to promote Maxwell’s own theoretical ideas, which were still little known, even in
Britain. The contents of his book are summarized in Table 1.

This situation leads us to wonder how Maxwell tried hard to reconcile such different
aims in his book. It has recently been shown that students and teachers preparing for the
MT could study certain chapters of the treatise without first assimilating the theory of
the electromagnetic field. The same was true for engineers and experimenters interested
in the techniques of electric and magnetic measurement [Warwick, 2003, 286–317]. As
indicated by Maxwell in his preface, the chapters dealing with these various ‘numerical’
and experimental aspects are placed atthe end of each of the four parts of theTreatise.

Paradoxically enough, Maxwell’s theoreticalinnovations were mainly concerned with
the early chapters, on the ‘elementary parts of the theory’. But in conformity with the
style of his earlier theoretical papers, he introduced the new ideas progressively, without
disrupting the exposition of the main resultsof the classical mathematical theory.

6 MATHEMATICAL STRUCTURES IN THETREATISE

The title of the preliminary chapter applies only to the first six articles, which are devoted to
the dimensional theory of physical quantities in an ‘absolute’ system of units based on the
unity of length, time and mass. The rest of thechapter described ideas and mathematical
results regarded by Maxwell as representative of his theory of the field.

In his earlier papers, Maxwell made frequent use of vector functions expressing prop-
erties of the electromagnetic field. But he expressed their relations in terms of Cartesian
coordinates, showing no predilection for the theory of quaternions as studied and devel-
oped by Tait since 1857 (§35.4). In November 1870, during his second spell of work on
the book, he declared to Tait his intention to ‘leaven [his] book with Hamiltonian ideas’.
In the following year, he published an article on the ‘mathematical classification of the
physical quantities’, which contained the essentials of his preliminary chapter.

In the Treatise, Maxwell distinguished the ‘ideas’ favoured by the quaternions from
their ‘operations and methods’ (art. 10). For him, they provided a ‘primitive and natural’
means of expressing the relations between vectorial entities without recourse to Cartesian
axes. Thus he insisted on the distinction between scalars and vectors and reserved a special
type of symbol for the latter (the ‘German letters’). On the other hand, he totally ignored
the affiliation between quaternions and complex numbers.
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Table 1. Contents by chapters of Maxwell’s book.
The second volume starts with Part III. The titles are those placed at the heads of the chapters;

sometimes they differ from those in the table of contents (1st edition, and 2nd edition 1st volume).
The numbers given are those of the first articles. In the 2nd edition (1881), discussed in section 11

below, I-1 and I-2 contain some alterations; the chapters I-3, I-4, I-5 and I-9 were entirely rewritten.

Chapter(s) Subject or/and ‘Title(s)’ (first art.)
Preliminary ‘On the measurement of quantities’ (1).
I Electrostatics
I-1 ‘Description of phenomena’ (27).
I-2 to I-4 Mathematical theory of electrostatics: ‘Elementary mathematical theory

of statical electricity’ (63), ‘Systems of conductors’1 (84), ‘General
theorems’ (95).

I-5 ‘Mechanical action between electrified bodies’2 (103).
I-6 to I-8 Geometrical descriptions of the electrostatic field: ‘On points and lines

of equilibrium’ (112), ‘Forms of the equipotential surfaces and lines of
induction in simple cases’ (117) ‘Simple cases of electrification’ (124).

I-9 to I-12 Analytical procedures: ‘Spherical harmonics’ (128), ‘Confocal quadric
surfaces’ (147), ‘Theory of electric images and electric inversion’ (155),
‘Theory of conjugate functions in two dimensions’ (182).

I-13 ‘Electrostatic instruments’ (207).
II Electrokinematics
II-1 to II-3 Fundamental phenomena and laws: ‘The electric current’ (230),

‘Conduction and resistance’ (241), ‘Electromotive force between bodies
in contact’ (246).

II-4 & II-5 Electrolysis: ‘Electrolysis’ (255), ‘Electrolytic polarization’ (264).
II-6 to II-8 Mathematical theory of conduction: ‘Linear electric currents’ (273),

‘Conduction in three dimensions’ (285), ‘Resistance and conductivity in
three dimensions’ (297).

II-9 & II-10 ‘Conduction through heterogeneousmedia’ (310), ‘Conduction in
dielectrics’ (325).

II-11 & II-12 Measurements of electric resistance: ‘The measurement of electric
resistance’ (335), ‘On the electric resistance of substances’ (359).

III Magnetism
III-1 ‘Elementary theory of magnetism’ (371).
III-2 & III-3 Magnetic notions: ‘Magnetic force and magnetic induction’ (395),

‘Magnetic solenoids and shells’ (407).
III-4 to III-6 Magnetic induction: ‘Induced magnetization’ (424), ‘Particular

problems in magnetic induction’ (431), ‘Weber’s theory of induced
magnetism’ (442).

III-7 & III-8 Magnetic observations: ‘Magnetic measurements’ (449), ‘On terrestrial
magnetism’ (465).
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Table 1. (Continued)

Chapter(s) Subject or/and ‘Title(s)’ (first art.)
IV Electromagnetism
IV-1 to IV-4 Electromagnetic phenomena: ‘Electromagnetic force’ (475),

‘Ampère’s investigation of the mutual action of electric currents’ (502),
‘On the induction of electric currents’ (528), ‘On the induction of a
current on itself’ (546).

IV-5 to IV-8 Dynamical theory of the electromagnetism: ‘On the equations of
motion of a connected system’ (553), ‘Dynamical theory of
electromagnetism’ (568), ‘Theory of electric circuits’ (578),
‘Exploration of the field by means of the secondary circuit’ (585).

IV-9 & IV-11 Fundamental equations: ‘General equations of the electromagnetic
field’ (604), ‘Dimensions of electric units’ (620), ‘On energy and stress
in the electromagnetic field’ (630).

IV-12 to IV-14 Particular cases: ‘Current-sheets’ (647), ‘Parallel currents’ (682),
‘Circular currents’ (694).

IV-15 to IV-19 Electromagnetic instruments andmeasurements: ‘Electromagnetic
instruments’ (707), ‘Electromagnetic observations’ (730), ‘Comparison
of coils’ (752), ‘Electromagnetic unit of resistance’ (758),
‘Comparison of the electrostatic with the electromagnetic units’ (768).

IV-20 & IV-21 Electromagnetism and light: ‘Electromagnetic theory of light’ (781),
‘Magnetic action on light’ (806).

IV-22 & IV-23 Continental theories of the electromagnetism: ‘Ferromagnetism and
diamagnetism explained by molecular currents’ (832), ‘Theories of
action at a distance’ (846).

12nd ed.: ‘On electrical work and energy in a system of conductors’.
22nd ed.: ‘Mechanical action between two electrical systems’.

Maxwell’s usage of quaternions in the text reflects this attitude. Such expressions appear
occasionally, usually at the end of an article, to express an important formula initially
derived in Cartesian form. More rarely, heindicated the possibility of condensing a long
argument by the use of quaternions (for example, in art. 522).

Table 2 shows the operations employed by Maxwell. He never wrote a full quaternion,
formed as the sum of a scalar part and a vectorpart; thus he was already very close to the
modern usage in vector analysis, which was introduced later by two readers of theTreatise,
J.W. Gibbs and Oliver Heaviside ([Crowe, 1967, 127–139]; and compare §35.5 and §49).

Another advantage of the quaternions lay in the fact that they could be used to introduce
the operator∇, whose usefulness in mathematical physics had been demonstrated by Tait.
This operator is formally defined as follows (art. 17):

∇ = i d
dx

+ j d
dy

+ k d
dz
, (7)



574 F. Achard

Table 2. Operations of the quaternion calculus used by Maxwell in theTreatise.
α andβ are vectors,k is a scalar.

Nature of the operation Quaternion
notation

Vectorial analysis
equivalent

Sum of two vectors. α + β α + β
Product of a scalar and a vector. kα kα

Scalar part of the product of two vectors. S · αβ −α · β
Vectorial part of the product of two
vectors.

V · αβ α × β

Table 3. Operations on scalar and vectorial functions used by Maxwell.
� is a scalar function,σ is a vectorial function.

Name of the operation Quaternion notation Vectorial analysis equivalent
‘Slope’ of�. ∇� ∇�
‘Convergence’ ofσ . S · ∇σ −∇ · σ
‘Curl’ of σ . V · ∇σ ∇ × σ
‘Concentration’ of�. ∇2� −∇2�

wherei, j andk were unit vectors along the three axes of Cartesian coordinates. It can thus
be manipulated like a vector. Maxwell went on to list some operations involving∇ on a
scalar or vector function, giving them names that reflect an appropriate geometric property
(Table 3).

In what follows, we shall use the notation of modern vector analysis, along with that
depicted in Tables 4 and 5 in section 9 below, which summarizes Maxwell’s usage in Part
IV, ch. 9 of letters to identify the principal equations of the field. The main entities of the
field and these equations are listed in Tables 4 and 5, but I shall use them from now on.

Maxwell also made a distinction between two types of ‘physical’ vector quantities,
‘forces’ (called ‘intensities’ in the secondedition) and ‘flux’ (arts. 12–14), constituting
a new version of the intensity/quantity dualityintroduced in 1856. This classification, de-
rived from hydrodynamics,distinguished vector functions respectively expressing a motion
of material (the flux through a unit of surface) and the tension that caused it (the gradient of
pressure). In electromagnetic theory, it expressed the distinction between, on the one hand,
the electric and magnetic forces prevailing at a point of the space and, on the other hand,
the electric and magnetic polarizations of the medium or current that they generate at that
point. The local numerical relation between a force and the flux it produced depends on the
nature of the medium. In the case of an isotropic medium, it is expressed by a relation of
vector proportionality (equations(F), (G) and (L)). Finally, Maxwell associated with each
type of entity a specific type of mathematical operation. Force was simply integrated along
a line to obtain the work effected upon a body. Flux was used in double integrals over a
surface to express the quantity that traverses it.

Maxwell went on to describe the properties ofline integrals and surface integrals (arts.
16–24). In this last section, he announced two mathematical results that had played a cen-
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tral role in the development of his theory since 1856, especially in the expression of integral
laws in the form of local equations, namely, Theorems III and IV (arts. 21 and 24), today
called ‘Ostrogradsky’s theorem’ and ‘Stokes’s theorem’ respectively. They form a part of
a long sequence of results on multiple integrals going back to the beginning of the century
[Cross, 1985]. Reverting to the notation used by Tait, Maxwell also expressed these results
in terms of quaternions (art. 25).

7 ELECTROSTATICS AND ELECTROKINETICS

The first chapter in the part on electrostatics contained an empirical introduction to the
fundamental concepts and laws of the theory. Maxwell introduced the notion of electricity
as a measurable physical quantity (arts. 27–34), independent of the hypothesis of electric
fluids (arts. 35–37). He stated Coulomb’s law in the same way (arts. 38–43) and defined the
key entities of electrostatics (arts. 44–50). At the end of the chapter he described the plan
of the chapters that follow, along with his ‘theory of electric polarization’ on the nature of
charge and electric current as an alternative to the theory of fluids (arts. 59–62).

In the second chapter the classical electrostatic results were derived from Coulomb’s
law, introducing occasionally some of the ideas of field theory. Thus Maxwell defined the
notion of electric displacement as ‘the quantity of electricity which is forced in the direction
of [the electromotive force] across a unit of area’, and wrote down equation (F) (art. 68).
He also gave Poisson’s equation in generalized form:

d

dx
·K dV
dx

+ d

dy
·K dV
dy

+ d

dz
·K dV

dz
+ 4πρ = 0, (8)

incorporating the coefficientK of capacity of the medium derived from experiments of
Faraday (art. 83). This equation is equivalentto equation (J) if one assumes equations (F)
and (3).

The fourth chapter was chiefly devoted to two theorems, attributed to Green and Thom-
son respectively, which Maxwell interpreted physically in accordance with the field theory.
He also stated them in the generalized form ofequation (8). In the fifth chapter, he set out
to explain the interactions between electrified fields by a distribution of stress from the sur-
rounding medium rather than by a direct action at a distance and to emphase his agreement
with the writings of Faraday (arts. 105–109). Finally, he admitted to not having taken the
next step in the search for a physical explanation of the phenomena: to account for this dis-
tribution of stress in the medium in terms of ‘mechanical considerations’ (arts. 110–111).

The ‘theory of electric polarization’ described at the end of the first and fifth chapters
(arts. 60–62, 111) asserted, in conformity with ideas put forward by Faraday, that electric
charge manifests the discontinuity between the polarized state of a dielectric and the non-
polarized state of a conductor. It also stated that ‘the motions of electricity are like those
of an incompressible fluid’. This means that electric current always forms closed curves in
accordance with the equation

∇ ·C= 0 (9)
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(which follows from equation (E)). Moreover, Maxwell emphasized that the ‘total’ electric
current is composed of the ‘ordinary’ current of conduction, which predominates in con-
ductors, and that the variation of electric displacement, which predominates in dielectrics
(whence equation (H)). Finally, he stated that the passage of electricity through a medium
generated a state of constraint that loosens and reforms at a frequency more or less rapid
depending on the nature of the medium. It is this discontinuity of states of constraint at
the surface separating two media that is manifest in the electric charge [Buchwald, 1985,
20–40].

The second Part, on ‘electrokinematics’, was essentially an exposition of the classical
mathematical theory of electric current. Maxwell treated electric current as a phenomenon
that is empirically observed and quantitatively measured by a galvanometer (art. 240),
without any consideration of its physical nature, and mentions Ohm’s law (which corre-
sponds locally to equation (G)) and the Joule effect (arts. 241–242). In Chapter 10, the
expression (H) of the total current in a dielectric, as consisting of a current of conduction
and a variation of displacement, was used to give an account of the phenomenon of electric
absorption (arts. 328–334).

8 MAGNETISM AND ELECTROMAGNETISM

The third Part was taken up mainly with a description of the classical theory of magnetism.
The early chapters nevertheless contained an introduction to certain ideas and results be-
longing to field theory, chiefly in the appearance of ‘magnetic induction’ as a complement
of the classical notion of ‘magnetic force’. Following Thomson, Maxwell first defined
magnetic induction as the magnetic force exercised on a unit magnetic pole lying in an
infinitesimal circular cavity. In this case, magnetic induction was expressed in terms of
magnetic force by equation (D) (art. 399). He thus deduced, in particular, that the integral
of the surface of magnetic induction over a closed surface is always equal to zero (art. 402).
Thus

∇ ·B= 0. (10)

He also defined a vectorU, called the ‘potential vector’ of magnetic induction, such that,
for any surface (S) bounded by a closed curve (C):∫∫

(S)

B · dS=
∮
(C)

U · dl. (11)

He then used Stokes’s theorem to deduce the local equation (A) (art. 405). In the fourth
chapter, Maxwell suggested that, according to ‘Faraday’s method’, magnetic induction rep-
resents the polarization of a medium under theaction of a magnetic force and is expressed,
in an isotropic medium, by equation (L) (art. 428).

In the early chapters of the fourth part Maxwell tackled in turn the magnetic effects
of electric currents and the phenomenon of induction. But he specifically emphasized the
contrast between the second chapter, on the theory of Ampère, and the first and third chap-
ters, which were dominated by ‘Faraday’s method’, that is, the field theory (arts. 493, 502,
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528–529). While Ampère’s theory proceeded from an initial decomposition of the system,
the action on a circuit being calculated as thesum of the actions of each element of current,
Faraday’s method began with the system taken as a whole, the electromagnetic laws being
expressed in terms of properties of the global field. This contrast between mathematical
methods reflected that between the physical hypotheses.

In the first chapter, the equivalence of the magnetic effects of an electric circuit and a
magnetic sheet enabled Maxwell to express the action on an electric circuit placed in an
arbitrary magnetic field (arts. 489–492). At the end of the chapter, he stated a law bearing
on the distribution of the magnetic force as a function of that of the electric currents: ‘the
line-integral of the magnetic force’ round a closed curve(C) is equal to 4πi, where i
denoted the electric current that flows through an arbitrary surface (S) bounded by (C)
(arts. 498–499). That is, ∮

(C)

H · dl = 4πi. (12)

This law was expressed locally by equation (E). Maxwell stated also that the electric cur-
rent considered here is made up of both a variation of electric displacement and a current
of conduction, so thatC satisfies equation (H) already used in the second part.

In the third chapter, Maxwell appealed to the work of Faraday and to a series of exper-
iments devised by the Italian physicist Riccardo Felici to state the law of electromagnetic
induction: ‘the total electromotive force acting around a circuit at any instant is measured
by the rate of decrease of the number of lines of magnetic force which pass through it’
(arts. 536–541). This last notion was also called ‘the magnetic induction through the cir-
cuit’. This yields the analytic form of the law of induction,

e=− d
dt

( ∫∫
(S)

B · dS
)
, (13)

where (S) was a surface bounded by a closed circuit (C). Although Maxwell attributed the
discovery of this law of induction to Faraday, he mentions briefly its ‘convergence’ with the
mathematical theories of induction developed by Neumann, then by Helmholtz, Thomson
and Weber (arts. 542–545).

9 THE DYNAMICAL THEORY OF ELECTROKINETIC PHENOMENA,
AND THE GENERAL EQUATIONS OF THE ELECTROMAGNETIC FIELD

The fourth chapter of Part IV contains a consideration of the similarities and differences
between the phenomenon of self-induction of an electric current and the inertia (or ‘mo-
mentum’) of a fluid in motion in a tube. Maxwell concluded by proposing to deduce the
principal structure of the theory of electricity from a dynamical hypothesis that stated that
the phenomena were produced by a connected system in motion lying both in the surround-
ing space and in the conducting bodies (art. 552). According to him, the dynamical theory
of Lagrange (§16) made it possible to avoid any more detailed hypothesis on the nature of
the motions of this system.
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The fifth chapter described the fundamental relations of the Lagrangian theory adapted
to the needs of dynamical arguments by Hamilton, then by Thomson and Tait (§40). In the
sixth chapter, the state of a system of electric circuits was expressed in terms of variables
of the following two types (arts. 568–570). Firstly, the ordinary ‘mechanical’ variables(xi)

described the form and relative position of thecircuits. Secondly, the ‘electric’ variables
(yi) expressed the position of the electricity in motion in the circuits, and their derivatives
(ẏi) with respect to time gave the intensities of the electric current. The kinetic energy
of the system is then the sum of three quadratic functions (art. 571): the ordinary kinetic
energyTm, which depends only on the motions of the circuits,

Tm = 1

2

∑
i

Aiẋ
2
i +

∑
i<j

Bij ẋi ẋj ; (14)

the electrokinetic energyTe , which depends only on the electric currents in the circuits,

Te = 1

2

∑
i

Li ẏ
2
i +

∑
i<j

Mij ẏi ẏj ; (15)

and a third termTme which depended upon the products of one mechanical variable and
one electric variable,

Tme =
∑
i,j

Cij ẋi ẏj . (16)

Maxwell also showed that the coefficients depended only on the mechanical variables (art.
572). Finally, a series of experiments allowed that the termTme be regarded as negligible
(arts. 574–577).

In subsequent chapters, Maxwell considered only phenomena depending on the elec-
trokinetic energyTe. He also defined the concept of theelectrokinetic momentum pi asso-
ciated with each circuit (Ai) by setting

pi = dTe
dẏi

= Liẏi +
∑
k �=i
Mki ẏk. (17)

Using formulae from the fifth chapter, he then expressed the external forces applied to the
system by differentiating the electrokinetic energy (arts. 579–580) and applied these results
in the case of a system compound of two circuits (arts. 581–584). By differentiating with
respect toyi , Maxwell obtained an expression for the electromotive forceY ′i applied to a
circuit (Ai) and not compensated by the resistance of the circuit (art. 579). That is,

Y ′i =
d

dt

(
dTe

dẏi

)
− dTe
dyi

= dpi
dt

(18)

with

Y ′i =Ei −Riẏi, (19)
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whereEi is the external electromotive force andRi the resistance of(Ai). According to
Maxwell, the internal electromotive forceei of induction corresponds to the opposite of
this expression. Thus, in the case of two circuits, the electromotive force of induction in
the circuit(A2) is given by

e2=−dp2

dt
=− d

dt
(Mẏ1+L2ẏ2). (20)

Likewise, the external mechanical forces applied to the circuits were obtained by differ-
entiatingTe with respect to the mechanical variablesxi (art. 580):

X′j =
d

dt

dTe

dẋj
− dTe
dxj

=−dTe
dxj

. (21)

The electrodynamic forceXj on a circuit appeared as the opposite of this expression, and
in the case of two rigid circuits he obtained the formula

Xj = ẏ1ẏ2
dM12

dxj
. (22)

In the eighth chapter, Maxwell used the electrokinetic momentp of a circuit (C) to
define two vector functionsB andU, the electrokinetic momentum at a point, by the equa-
tions

p =
∮
(C)

U · dl =
∫∫
(S)

B · dS. (23)

He immediately identified these new vectorial entities with the notions of magnetic induc-
tion and vector-potential respectively, which were introduced in Part III and were related
by the local equation (A) (art. 592). Maxwell finally derived local expressions for the elec-
tromotive force of induction and the mechanical force as functions ofU andB, and thus
obtained equation (B) for the electromotive force in a conductor moving with a speedv
and equation (C) for the mechanical force on a conductor traversed by a current of density
C (arts. 595–603).

The ninth chapter covered the ‘general equations of the electromagnetic field’, already
introduced in earlier parts of the treatise. Without any recourse to the earlier dynamical rea-
soning, Maxwell then stated equations from (D) to (L) in turn (arts. 605–614). Finally, he
obtained an expression for the vector-potential as a function of the distribution of the elec-
tric currents according to Ampère’s theory of magnetism and under the following condition
on U, today called a ‘gauge condition’ (arts. 615–617):

∇ ·U= 0. (24)

The principal entities and field equations collected at the end of the chapter are shown in
Tables 4 and 5.

Chapter 11 contained expressions for the three types of energy: electrostatic, magnetic
and electrokinetic (arts. 630–636). Appealing to the theory of Ampère, Maxwell proposed
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Table 4. The principal quantities of the electromagnetic field (art. 618). Vectors are
denoted by bold letters, instead of the German letters used by Maxwell.

Vectors
Electromagnetic momentum at a point (or potential-vector). U (F,G,H)
Magnetic induction. B (a, b, c)
Total electric current. C(u, v,w)
Electric displacement. D (f, g,h)
Electromotive force. E (P,Q,R)
Mechanical force. F (X,Y,Z)
Velocity of a point. v (ẋ, ẏ, ż)
Magnetic force. H (α,β, γ )
Intensity of magnetization. I (A,B,C)
Current of conduction. R (p, q, q)

Scalars
Electric potential. �

Magnetic potential. �

Electric density. e

Density of magnetic ‘matter’. m

Physical properties of the medium(isotropic media)
Conductivity for electric currents. C

Dielectric inductive capacity. K

Magnetic inductive capacity. µ

to regard the energy of the field as divided over the whole space into two fundamental
forms (arts. 637–638): electrostatic (potential) energy,

W = 1

2

∫∫∫
(D ·E) dτ ; (25)

and electrokinetic (kinetic) energy,

T = 1

8π

∫∫∫
(B ·H) dτ. (26)

The chapter ended with a consideration of the possibility of explaining magnetic action
by a state of stress in the surrounding medium, in line with the corresponding study of
electrostatic action in part I, chapter 5 (arts. 639–646).

10 THE ELECTROMAGNETIC THEORY OF LIGHT

As in 1865, the main argument in favour of the electromagnetic theory of light lay in
deriving from the general field equations (A),(B), (E), (F), (G), (H) and (L) an expression
which reduced, in the case of a dielectric medium, to the following wave equation for the
vector potentialU (arts. 783–784):
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Table 5. The general equations of the electromagnetic field (art. 619).

Name of the equation (when given) Expression in vectorial analysis

Equation of magnetic induction. B=∇ ×U (A)

Equation of electromotive force. E= v×B− U̇−∇� (B)

Equation of mechanical force. F=C×B− e∇� −m∇� (C)1

Equation of magnetization. B=H + 4π I (D)

Equation of electric currents. 4πC=∇ ×H (E)

Equation of electric displacement. D= 1
4π KE (F)

Equation of the current of conduction.R= CE (G)

Equation of the total current. C=R+ Ḋ (H)

e=∇ ·D (J)2

Equation of induced magnetization. B= µH (L)

m=−∇ · I
H =−∇�

1In the third edition, this equation was rewritten

F=C×B+ eE−m∇�
following a correction proposed by G.F. FitzGerald in 1883.
2This expression is consistent with the Cartesian expression given in art. 612 and with similar ones
used elsewhere in theTreatise (e.g. art. 82); but it is the opposite of the quaternion expression given
in art. 619. The consistent quaternion expression ise=−S · ∇D.

Kµ
d2U
dt2

−∇2U= 0. (27)

Maxwell thereby deduced the existence of ‘electromagnetic disturbances’ whose speed of
propagation was given by

V = 1√
Kµ

. (28)

In the case of air, he showed that this number coincided withv, ‘the number of electrosta-
tics units of electricity in one electromagnetic unit’.

To establish that ‘light is an electromagneticdisturbance’, Maxwell compared the var-
ious experimental measurements ofv, given in the preceding chapter, with those of the
speedVL of light (Table 6). He concluded that his theory, which implied that these two
quantities were equal, ‘is certainly not contradicted by the comparison of these results
such as they are’ (arts. 786–787).

As in 1865, Maxwell claimed that light is a special kind of electromagnetic perturba-
tion, whose law of propagation is expressed by (27). This reasoning allowed him to justify
a strong thesis with minimal hypotheses, since it rests solely on the equality ofv andVL,
along with an acceptance of the general equations of the electromagnetic field. Although,
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Table 6. Comparison of the ratio of electric units with the velocity of light (art. 787).

Velocity of light (metres/second) Ratio of electric units (metres/second)
Fizeau 314 000 000 Weber 310 740 000
Aberration, &c 308 000 000 Maxwell 288 000 000
Foucault 298 360 000 Thomson 282 000 000

Figure 1. Image of an electromagnetic wave (art. 791). It
represents ‘the values of the magnetic force and of the elec-
tromotive force at a given instant in different points of the
ray [. . .] for the case of a simple harmonic disturbance in
one plane’. The ‘magnetic and electric disturbances’ are
transverse to the direction of propagation and perpendicular
to each other. ‘This correspondsto a ray of plane-polarized
light’.

for Maxwell as for his contemporaries, the idea of propagation of ‘electromagnetic distur-
bances’ required the acceptance of the hypothesis of a material support, he made no further
assumptions about its configuration.

The chapter ended by suggesting various paths that experimental research might take in
order to confirm the electromagnetic nature of light by studying the correlation between
the optical and electric properties of various substances, such as relationships between
the refractive index and inductive capacity of transparent dielectric media (arts. 788–789),
the conductivity and opacity of media (arts. 798–805), and also the optical and electric
properties of crystalline media (arts. 794–797). Maxwell also presented a study of plane
waves and polarized light (arts. 790–791). He showed that, in the case of a plane, the
electric and magnetic forces were perpendicular to the direction of propagation of the wave,
agreeing with the hypothesis that light waves vibrate transversely (see Figure 1).

Maxwell did not discuss how electromagnetic perturbations might be produced by an
electric device, suggesting that he saw no easy way of doing this. Moreover, by choosing
in his Treatise to derive a wave equation involving the ‘electrokinetic moment’U rather
than the magnetic forceH as in DT, he seems to be exercising a preference for this en-
tity. This choice introduced a weakness intohis reasoning, since to obtain equation (27)
he had to assume that Poisson’s equation can also be invoked in the non-stationary case
of a phenomenon of propagation (art. 783). As remarked by G.F. FitzGerald (1851–1901)
in 1890, this involved the assumption that electrostatic potential propagated itself instan-
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taneously. It then turned out that this choice was closely connected with the choice of a
‘gauge condition’ on the vector-potential [Hunt, 1991, 117–118].

In the next chapter, Maxwell treated the phenomenon of magnetic action on light. In-
spired by PL, he tried to account for the Faraday effect by supposing that a medium sub-
jected to a magnetic influence was the seat ofmolecular vortices whose axes of rotation
coincide with the lines of magnetic force. By adding a term to the expression for the ki-
netic energy of the system and using an equation of Lagrange given in the fifth chapter,
he arrived at an expression for the angle of rotation of the plane of polarization of the
light as a function of various parameters, including the intensity of the magnetism and the
length of the ray of light passing through the medium (arts. 822–831). As Maxwell was to
remark in 1879, this line of reasoning constituted a ‘hybrid’ theory, since it explains the
magneto-optical phenomenon by supposing that light and magnetism comprise motions of
the aether that interact according to mechanical laws rather than by directly invoking the
electromagnetic theory of light.

11 THE MAXWELLIANS

Maxwell published no theoretical articles on electromagnetism after 1873. But in 1872 the
CP suggested that he write a less mathematical work on electricity and magnetism based on
his great treatise, in the style of Thomson and Tait in theirElements of natural philosophy.
This task, begun around 1874, remained unfinished at the time of his death in November
1879. As well as this, the CP advised him in 1877 that, thanks to the popularity of the
Treatise, it was already time to start work on a second edition. Table 1 above indicates the
changes that he envisaged at that time. Both works were finally edited in 1881 by two of
Maxwell’s collaborators at Cambridge, W.D. Niven and William Garnett. The unfinished
manuscript of theElementary treatise on electricity was completed using sections from the
greatTreatise to cover the material in the first volume (see the publication history at the
head of this article).

Maxwell’s presence at Cambridge did not, however, immediately result in the formation
of a school of research in electromagnetism based on his ideas. Neither his lectures on
electricity and magnetism, aimed at students of the MT and the Natural Science Tripos, nor
his experimental research conducted at the CL, continuing the metrological work begun by
the committee of the BAAS, were chiefly concerned with his field theory. Some graduates,
especially those motivated by theoretical research, progressively assimilated the subtleties
of the field by following intercollegiate courses delivered by W.D. Niven [Warwick, 2003,
286–356].

Speaking generally, theTreatise probably owed its commercial success in Britain to
its value in mathematical and experimental education rather than to a rapid acceptance
of its theoretical innovations. As early as1865, William Thomson had reservations about
Maxwell’s theory, and publicly opposed it in his Baltimore lectures in 1884 (§58). In his
review of theTreatise, Tait [1873] remarked on the opposition to the idea of action at a
distance and the thesis of a ‘connection between radiation and electric phenomena’, but
he ignored essential features such as the physical theories of electric charge and of the
displacement current. This was true also of George Chrystal’s review of the second edi-
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tion [Chrystal, 1882]. Nevertheless, the success of the work certainly contributed to the
dissemination of the field theory.

From the end of the 1870s, several dozen ‘Maxwellians’ began to publish their research
on electromagnetism. Many of these came from MT and the CL, notably Joseph John
Thomson (1856–1940) and John Henry Poynting (1852–1914), who were both students of
Niven. But some of them were related to other British (and American) universities: notably
FitzGerald, former student and professor at Trinity College, Dublin; and Oliver Lodge
(1851–1940), former student of University College London and professor of physics at
Liverpool. The most remarkable case is certainly that of Oliver Heaviside (1850–1925),
self-taught by reading works such as the TNP and, above all, Maxwell’sTreatise (§49).

One of the first extensions of Maxwell’s work lay in explaining electric and magnetic
phenomenon by a mechanical state of the aether. Some authors, such as Lodge, presented
mechanical models to illustrate the production of certain phenomena by the aether [Hunt,
1991, 73–104]. Another direction, particularly favoured by the physicists at Cambridge,
consisted of using the Lagrangian theory and the principle of least action to establish a
mechanical basis for the phenomena without stating precise hypotheses on the arrangement
of the mechanism supposed to produce them [Buchwald, 1985, 54–64].

Although FitzGerald worked on the mechanical models and discussed their merits with
Lodge, he also used Lagrangian methods, notably in an influential article published in
1879. A correspondence between Maxwell’s theory and the optical theory of MacCullagh
led to the incorporation in the electromagnetic theory of light, not only of the phenomena
of reflection and refraction of light, but also of the magneto-optical phenomena of Faraday,
and of John Kerr discovered in 1876 [Hunt, 1991, 15–23; Buchwald, 1985, 73–129].

From 1879, Lodge sought to confirm experimentally the electromagnetic theory of light
by producing light waves by purely electric means. After first asserting the fruitlessness
of such an exercise, FitzGerald retracted in 1882 and thought about conditions necessary
to produce observable electromagnetic waves. Lodge announced the production of electro-
magnetic waves in electric wires in 1888, but his triumph was eclipsed by the experiments
of Hertz [Hunt, 1991, 24–48, 146–151].

Finally, in 1884, Poynting presented his famous ‘theorem’. He deduced from the funda-
mental equations of field theory a mathematical equality interpreted as expressing that the
variation of the energy contained in a given volume per unit time is due to the flux of en-
ergy across the surface that bounds it. According to this interpretation, during the passage
of current in an electric wire, energy moves,not along the wire, perpendicular to it from
the dielectric to the conductor, where it is converted into heat. This interpretation favours
Maxwell’s ideas on electric current rather than the traditional image of an imponderable
fluid in motion [Buchwald, 1985, 41–54; Hunt, 1991, 109–114].

12 THE EXPERIMENTS OF HERTZ AND THEIR IMPACT

Maxwell’s treatise was also read in continental Europe. Towards the end of the 1870s, it
aroused sufficient interest to warrant translations into German and French, which appeared
in 1883 and 1885 respectively. While the treatise disseminated the existence of Maxwell’s
theoretical ideas, it seems that they did not exercise a strong influence on the majority of
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continental research into electromagnetism up to the middle of the 1880s. A theoretical
article of Helmholtz published in 1870, even before the appearance of theTreatise, consti-
tutes the main and most remarkable exception.

Helmholtz presented a theory of electromagnetic action covering the case of open cir-
cuits and taking account of the absence of experimental data on this situation. An expres-
sion for the vector potential involved a parameterk whose value expressed the various pos-
sible options, three different values corresponding to the theories of Neumann, Maxwell
and Weber respectively. All the mathematical laws in Maxwell’s theory can be recovered
by supposing that space is infinitely polarizable [Buchwald, 1985, 177–186].

In July 1879, Helmholtz worked on a problem for a Prize of the Berlin Academy that
was explicitly aimed at testing the validity ofMaxwell’s prediction about open circuits
[Darrigol, 2000, 233–234]. From that date, he encouraged a brilliant student, Heinrich
Hertz (1857–1894), to seek a solution of these problems. Hertz provisionally abandoned
this project, but in 1884 he published a theoretical account affirming the superiority of
Maxwell’s theory.

In 1886, Hertz began some experimental research that led to an impressive series of ar-
ticles published between 1887 and 1889. First he described a device capable of producing
extremely rapid electric oscillations and detecting the electromotive forces that they gener-
ate. He then emphasized the electrodynamic effect generated by the variable polarization
of a dielectric. Then he showed that the propagation of this effect in an electric wire or in
air generated progressive or stationary waves according to the experimental configuration.
In the latter case, the disposition of the sinks and nodes enabled him to show that the speed
of propagation in air is close to that of light. He concluded this study by describing the
spatial distribution of waves, with emphasis on their reflection and refraction [Buchwald,
1994].

These experiments, soon repeated by many physicists, assured the triumph of Maxwell’s
theory and its adherents in Britain. They also had the effect of drawing attention to the work
of Heaviside [Hunt, 1991, 158–168]. Inspired in part by this work, Hertz proposed a new
formulation of Maxwell’s theory in 1890. He also studied the implications of field theory
in the rest of physics by developing his ideas on the foundations of mechanics (§52).

In Germany, there was a spectacular surge of interest in Maxwell’s theory. In the course
of the following decade, several German authors put forward accounts of electromagnetic
field theory which abandoned the traditional representations of chargeand electric current
generally in favour of an agnostic attitude [Darrigol, 2000, 253–262].

13 LARMOR AND THE NOTION OF ELECTRON

In 1894, John Joseph Larmor (1857–1942) published a theoretical article on magnetism
that formed one of the sources heralding the advent of the modern notion of electron (see
§60 on Lorentz). Although originally conceived as an extension of Maxwell’s theory, it
diverged in certain central aspects from the Maxwellian approach.

Larmor’s theory consisted of supposing that matter is made up of ‘isolated singularities
of aether’, carrying an elementary positive or negative charge, which he called ‘electrons’.
He conceived of electric current as being formed by the convection of these electrons, and
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of properties of matter as resulting from their disposition. Thus, not only did Larmor aban-
don the Maxwellian representations of electric charge and current, but he also renounced at
the same time the macroscopic approach characteristic of Maxwell’s work. However, Lar-
mor’s theory did preserve the idea that electric and magnetic actions were propagated via
the aether [Buchwald, 1985, 131–173; Hunt, 1991, 209–239; Darrigol, 2000, 332–343].

Larmor published the second and third parts of his article in 1895 and 1897. Probably
influenced by the work of Lorentz, which he had discovered in the meantime, he developed
his theory of electrons to explain the principal magneto-optical phenomena (the Faraday,
Kerr and Zeeman effects) and the optical paradoxes of bodies of motion. Finally, he gave
a synthetic account of his theory inAether and Matter (1900), which exercised in the
next decade an important influence on electromagnetic research in Britain, especially in
Cambridge [Warwick, 2003, 357–398].
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CHAPTER 45

J.W. STRUTT, THIRD BARON RAYLEIGH,
THE THEORY OF SOUND, FIRST EDITION

(1877–1878)

Ja Hyon Ku

The first comprehensive and systematic mathematical treatise on sound, this book opened
the era of modern acoustics. New methods and notions introduced in it are useful today in
physics and engineering as well as in acoustics.

First publication. 2 volumes, London:Macmillan, 1877–1878. 326+ 303 pages.

Second edition. 1894–1895. 480+ 491 pages.

Reprint of the 2nd ed. London: Macmillan,1926–1929. [Photorepr. New York: Dover,
1945.]

German translation. Die Theorie des Schalles (trans. F. Neesen), 2 vols., Braunschweig:
Vieweg, 1879–1880.

Related articles: Thomson and Tait (§40), Maxwell (§44).

1 RAYLEIGH’S EARLY RESEARCH ON SOUND

Lord Rayleigh (John William Strutt, 1842–1919) was one of the most influential British
scientists in the late 19th and early 20th centuries and the Nobel Laureate of Physics in
1904. He graduated from Cambridge University as senior wrangler of Mathematical Tri-
pos in 1865 and decided to become a scientist regardless of his noble birth. Almost all
his researches were performed at his manor inTerling Place, Essex, except during his pro-
fessorship at Cavendish Laboratory in Cambridge from 1880 to 1884. The range of his
interests covered almost all the subjects of physics including sound, light, electricity, heat,
and gas. His most famous contributions to physics involved the experimental determination
of electrical unit Ohm (during his time as Professor), the formulation of the Rayleigh–Jeans
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law for black body radiation, and the discovery of the inert gas argon, which was honored
by the Nobel Prize.

During all of his scientific research career, Rayleigh remained very interested in acousti-
cal phenomena. He began to investigate acoustical oscillations experimentally and math-
ematically in the 1860s, just after he graduated from Cambridge University as Senior
Wrangler. His interest in acoustics was stimulated by the encouragement of W.F. Donkin
(1814–1869), the Savilian Professor of Astronomy at Oxford University. After reading
theTonempfindungen (‘Sensations of tone’) of Hermann von Helmholtz (1821–1894), he
started experiments with Helmholtz’s resonators [Lindsay, 1945].

Strutt’s early acoustical research soon included mathematical developments, culminat-
ing in the paper ‘On the theory of resonance’. In this paper, of 1870, he introduced conduc-
tivity c, the inverse of hydrodynamical resistance, in analogy with electrical conductivity,
in order to treat the vibrations of air in various tubes. In the same paper he made use of
the notion of velocity potential, which had never been employed, even by Helmholtz, in
treating the problem of resonance. His mathematical treatments were tested by his own and
other researchers’ experimental results in the latter part of this paper. The balance between
theory and experiment was to become one of the main characteristics of his acoustical
research [Ku, 2002]. This paper received favorable acceptance from physicists including
J.C. Maxwell (1831–1879), and his acoustical research was promoted.

In addition to his book Strutt published variouspapers, which are reprinted in [Rayleigh,
Papers]. His masterly paper ‘Some general theorems relating to vibrations’, published in
1873, included three key innovations in vibration theory. First, he proposed an effective
and practical approximation method to find frequencies of various systems of vibration,
which was to be called the ‘Rayleigh–Ritz’ method. Second, he introduced the dissipation
function, which represented the dissipation of energy in a system subject to resistant forces
varying with velocity: it was later recognized as an innovation to treat systems of vibration,
and applied to the analysis of electrical circuits by Maxwell [Hong, 1994, 28, 345–347].
Third, Strutt pursued the extension of the ‘reciprocal theorem’ to generalized vibratory
systems. The reciprocal theorem suggests that when a system includes two parts A and B,
the vibratory force acted at A produces at B the same vibration as would have ensued at
A had the force acted at B. In 1860, Helmholtz had proved the reciprocal theorem only in
those systems vibrating in a non-resistant homogeneous fluid. Strutt deduced that it could
be extended to the cases of vibrating systems such as strings, membranes, and tuning forks
in a resistant medium.

Strutt’s early acoustical investigations werecharacterized by generalized mathematical
analyses and their experimental proofs. His paper ‘On waves’ of 1876 revealed his gen-
eral interest in vibrations and waves. In this paper, he was concerned with water waves,
but his mathematical treatment of some problems was related to other types of vibrations
and waves. He thought that hydraulics, acoustics, optics, electricity and magnetism were
intimately related to each other withregard to vibrations and waves.

2 THE PUBLICATION OFTHE THEORY OF SOUND

While laying a firm foundation for his acoustical research in this way, Strutt began to write
The theory of sound (hereafter, ‘TS’) in December 1872 in the cabin of a boat on the Nile,
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where he was taking a rest cure after an attack of rheumatic fever that had nearly killed
him. His excellent mathematical skills, which were imparted by his coach E.J. Routh, were
highlighted in analyses of mechanical vibrations relating to sound. He aimed at a general-
ized mathematical treatise, which would be abreast of William Thomson’s and P.G. Tait’s
Treatise on natural philosophy (1867) (§40) and Maxwell’sTreatise on electricity and
magnetism (1873) (§44).

When Strutt came back to London in 1873, it was known that he was writing a treatise
on sound, and this attracted high expectations. (At his return, his father passed away and
he succeeded as Third Baron Rayleigh.) Maxwell,for example, told Rayleigh in a letter of
May 1873 that he expected Rayleigh’s treatise would fill the gap in the paucity of English
writings relating to acoustics. After proofreading by H.M. Taylor, Rayleigh’s friend and
competitor in the Mathematical Tripos, the first volume ofTS was published in 1877 and
the second in 1878 by Macmillan.

The academic response to this treatise was beyond expectation. Routh remarked that it
was a wanted book, which he would use as a textbook; he expected that he would learn
a lot from it and that it would contribute to the progress in this area. G.B. Airy, who was
investigating acoustics and hydrodynamics, said that this treatise not only deeply discussed
sound but also dealt with many non-acoustical vibrations, and was therefore applicable to
much more complicated subjects. Above all, Helmholtz, one of the ultimate authorities
on acoustics at that time, reviewed it favorably inNature [Helmholtz, 1878]. He observed
that this book put forth subjects in a coherentand accessible form, and thus would help
acoustical research a great deal, and the methods employed were capable of promoting
further progress in research in this field. He wrote that since it did not include chapters
dealing with the theory of reed pipes, including the human voice and the mathematical
explanation of singing flames, the blowing of organ pipes, and maintained vibrations such
as the action of the violin bow and the Aeolian harp, it should not be considered complete
in these two volumes.

Rayleigh admitted that a third volume wasneeded, and the publishers urged him to
write it, but this was not realized. Instead, a considerable part of what Helmholtz pointed
out was included in the revised and enlarged edition, which was published in 1894 and
1895. Helmholtz’s favorable review allowed the book to be translated swiftly into German:
at his suggestion, F. Neesen translated it in 1878 [Strutt, 1924].

3 THE BOOK AS COMPARED WITH ITS PREDECESSORS

The contents of Rayleigh’s book are summarized in Table 1. Its main purpose was to gather
mathematical investigations of sound conducted up to that time. He said in the preface that
he wrote the treatise in order to correct the situation in which many research papers on
sound were not comprehensive. Having judged that researchers’ inability to access research
materials was blocking the development of this area, he read and analyzed treatises and pa-
pers in periodicals and transactions of academies published in Great Britain, Germany,
France, Switzerland, etc.TS was intended to be a comprehensive mathematical treatise on
sound, and so complete the task which Donkin’s posthumous bookAcoustics (1870) had
not fulfilled because of his sudden death in 1869. Before this work, some acoustical texts
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Table 1. Summary by chapters of Rayleigh’s book. Volume 2 starts at chapter XI.

Chapter Page ‘Title’ or Description
I 1 Introduction.
II 18 Harmonic motions.
III 35 Systems with one degree of freedom.
IV 67 Vibrating systems in general. Generalized co-ordinates, Lagrange’s

equations.
V 97 Vibrating systems in general. Various kinds of forces and systems of

vibration.
VI 127 Transverse vibrations of strings.
VII 188 Longitudinal and torsional vibrations of bars.
VIII 201 Lateral vibrations of bars.
IX 250 Vibrations of membranes.
X 293 Vibrations of plates. [End 326.]
XI 1 Aerial vibrations.
XII 44 Vibrations in tubes.
XIII 65 Aerial vibrations in a rectangular chamber.
XIV 85 Arbitrary initial disturbance in an unlimited atmosphere.
XV 135 Secondary waves due to a variation in the medium.
XVI 156 Theory of resonators.
XVII 204 Applications of Laplace’s functions to acoustical problems.
XVIII 253 Problem of a spherical layer of air.
XIX 280 Fluid friction. [End 303.]

had been published, such as E.E.F. Chladni’sDie Akustik (1802), volume 1 of Thomas
Young’sA course of lectures on natural philosophy and the mechanical art (1807), E.H.
and Wilhelm Weber’sWellenlehre of 1825, Benjamin Peirce’sAn elementary treatise on
sound of 1836, Helmholtz’sTonempfindungen [Helmholtz, 1878], and John Tyndall’sOn
sound of 1867. But these acoustical texts all focused themselves on the description of em-
pirical and experimental findings. In these acoustical texts, mathematical inquiries, which
had been made by mathematicians from various countries, had been treated as subordi-
nate. John Herschel’s article ‘Sound’ for theEncyclopaedia metropolitana in 1830, though
considerably mathematical, was neither comprehensive nor systematic.

Rayleigh’s book fulfilled these aims and did more. Much interested in describing the his-
tory of theoretical investigations on sound by mathematicians, he tried to gather as many
mathematical works on sound as possible and arranged them systematically in the treatise.
His great mathematical abilityenabled him to understand these mathematical investiga-
tions and to arrange them in a systematic order. Consequently, a considerable part of the
theoretical investigation inTS was not the result of the author’s own original research.

In addition, the discussion inTS was not limited to mathematical analyses, since
Rayleigh did not want to conduct mathematical discussion in isolation of experimental
achievements. Thus he collected and presentedextensive materials related to experimental
or empirical researches on sound in the treatise. In fact, he had embarked on his acoustical
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research by performing experiments, and his experimental research continued until the end
of his life. His character as an experimentalist made his book different from other contem-
porary mathematical treatises like Donkin’sAcoustics. When he introduced experimental
achievements, he usually described the processes in detail so that other researchers might
reproduce the results. This feature was exceptional in a scientific treatise in which mathe-
matical analyses were primary. For example, discussing preceding studies on the vibration
of membranes in Chapter 9 [Ku, 2002], Rayleigh described in detail how M.J. Bourget, a
pioneer in experimenting with the vibration of membranes, made an effective paper mem-
brane and did experiment with it (art. 213):

The paper is immersed in water, and after removal of the superfluous mois-
ture by blotting paper is placed upon a frame of wood whose edges have been
previously coated with glue. The contraction of the paper in drying produces
the necessary tension, but many failures may be met with before a satisfac-
tory result is obtained [. . .] If the vibration be sufficiently vigorous, the sand
accumulates on the nodal lines, whose form is thus defined with more or less
precision. Any inequality in the tension shews itself by the circles becoming
elliptic.

TS included all kinds of acoustical information, whether theoretical or experimental.
However, Rayleigh was not satisfied with simply compiling theoretical and experimental
information. He instead sought to make a close connection between theoretical analyses
and experimental facts, valuing a match between them as a good confirmation of his math-
ematical analysis. In many cases, he could not conduct exact mathematical analyses and
had to take some approximation. In such cases, he justified his approximation by provid-
ing empirical and experimental proofs. But when empirical facts or mathematical analyses
did not have their counterparts, he was satisfied with simply putting them together without
unifying them.

4 ON RAYLEIGH’S MATHEMATICAL METHODS IN THE BOOK

One noteworthy feature ofTS lies in his method of analysis. Rayleigh’s typical method
to solve problems was to formulate a differential equation for a given phenomenon. He
was trained in this method through the Mathematical Tripos. He often introduced ideal
conditions and added assumptions or simplified models in order to find a differential equa-
tion describing a system of vibration or wave. Nevertheless, there were many cases in
which solving the equations was difficult because of the limitation of mathematics. In or-
der to overcome such difficulties, one of his most powerful and frequent strategies was the
method of successive approximation.

In Chapter 3, for example, after solving the one-dimensional vibration of an acoustical
system which was restricted to small displacements, Rayleigh extended his discussion to a
general case where the second- and higher-order terms had to be considered. He put kinetic
and potential energies as

T = 1

2
(m0+m1u)u̇

2 and V = 1

2
(µ0+µ1u)u

2, (1)
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whereu is the displacement. The equation of motion was obtained by differentiating the
sum ofT andV ,

m0ü+µ0u+m1uü+ 1

2
m1u̇

2+ 3

2
µ1u

2= Impressed Force. (2)

As this could not be easily solved in this form, he letm1 = 0, so that the mass was inde-
pendent of the displacementu. The equation was reduced to

ü+ n2u+ αu2= 0. (3)

Then an approximate solution obtained by neglecting the last term of the left member,

u=Acosnt (4)

was substituted for the last term neglected in the original equation, and he arrived at the
equation

ü+ n2u=−αA
2

2
(1+ cos2nt). (5)

From this he obtained a modified approximate solution

u=Acosnt − αA
2

2n2 +
αA2

6n2 cos2nt, (6)

which implied that the system produced the vibrations not only of the fundamental angular
frequencyn, but also of the first harmonic angular frequency 2n. Rayleigh justified this
process by pointing out that the higher frequency could be perceived when a tuning fork
was hit violently.

5 RAYLEIGH ON WAVES AND VIBRATIONS

Another outstanding feature ofTS was its great concern with the general theories of waves
and vibrations. Although Rayleigh’s principal purpose for writing this treatise was to
present completely the theoretical analyses of acoustical phenomena,TS included non-
acoustical discussions, since his concern over waves and vibrations was broad. He pre-
sented generalized theories applicable to optical phenomena, electricalvibrations, tides,
water waves, and perturbations of celestial bodies as well as acoustical phenomena. He
preferred generalized discussion, becausenot only they were applicable to various prob-
lems but they also revealed the unity of nature.

Thus, in dealing with acoustical vibrations, Rayleigh frequently discussed other phe-
nomena related to vibrations as well. While examining the difference in motions caused by
violent forces, for instance, he exemplifiedan optical extension of acoustical phenomena
by showing the selective absorption of the two kinds of light. Again, in pressing a close
analogy between optical and acoustical phenomena over the reflection and the refraction of
waves in Chapter 13, he derived the formula of A.J. Fresnel for light polarized perpendic-
ular to the plane of incidence, and obtained the conditions for the total reflection obtained



594 J.H. Ku

by Sir David Brewster. Then he ascertainedthe general conditions for the reflection and
the refraction of waves by mathematical analysis. The result was a general theory which
was applicable to light as well as sound.

In the center of the general treatments were differential equations that were repeatedly
used in the text. For Rayleigh, some differential equations applicable to several problems
linked the corresponding phenomena, and paved the way to general theories. Different
phenomena, which had been regarded as distinct in experiments, could be considered as
closely related owing to common equations of motion. This relation had not been perceived
in experimental acoustics. The mathematical discussion enabled him to understand the
hidden order behind the phenomena. One of the equations that were employed several
times and connected important phenomena was the basic wave equation

d2y

dt2
= a2d

2y

dx2 . (7)

Rayleigh first used this equation when he treated the propagation of the transversal
wave in an infinitely extended string. Yet the same form was found in the description of
both the longitudinal and the torsional vibrations of the rod. These vibrations were caused
by entirely different forces and properties of the media. In this manner, the experimental
results of entirely different areas could be explained on the same mathematical basis.

Another differential equation, which appeared often in volume 2, was Laplace’s equa-
tion (compare §18.5). In Chapter 11, Rayleigh derived the equation with regard to the
velocity potential in discussing aerial vibration generally. In this treatise, this equation was
widely used in treating the transmission of sound in various spaces. Bessel’s equation was
also widely employed in this treatise in describing several vibrations related to the circular
membrane or circular plate. Their specific solutions, whichwere already widely known,
described acoustical and vibrational phenomena in the same way as they did other phe-
nomena. In this fashion, the use of these versatile differential equations helped Rayleigh to
develop general theories.

6 PRESENTING ORIGINAL RESEARCHES

A considerable portion ofTS was devoted to presenting Rayleigh’s original theoretical or
experimental investigations. His originality was most remarkable in Chapters 4 and 5, in
which he treated the general theory of vibration by introducing generalized coordinates.
In Chapter 4 he deduced Lagrange’s equation by using generalized coordinates and by
employing d’Alembert’s principle (§11.3) and the principle of virtualvelocities (compare
§16.3 on Lagrange). He obtained

d

dt

(
dT

dψ̇

)
− dT
dψ

=�, (8)

whereT was kinetic energy,ψ a generalized coordinate, and� the generalized component
of force. In the case of a conservative system, by separating from� those parts depending
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only on the configuration of the system, he changed the equation into

d

dt

(
dT

dψ̇

)
− dT
dψ

+ dV
dψ

=�, (9)

whereV was the potential energy of the conservative system and� was confined only to
the force which was not derived from potential energy. Rayleigh rewrote the equation in
the form

d

dt

(
dT

dψ̇

)
− dT
dψ

+ dF
dψ̇

+ dV
dψ

=� (10)

which included the dissipation functionF , representing the effect which was produced
by friction or viscosity. From the linearity of this equation, he derived Daniel Bernoulli’s
principle of the coexistence of small motions, according to which the second order terms
could be neglected when small vibrations are superposed. Rayleigh showed that this was
applicable to problems of one-dimensional vibration by adding constraints to generalized
problems.

Rayleigh’s original investigations continued in Chapter 5. He treated the cases in which
F was so simple that the general equation of motion could be reduced to the form as for a
system of one degree of freedom. On this condition, he obtained an equation of motion in
the following form

aφ̈+ bφ̇+ cφ =!, (11)

wherea, b, c are arbitrary constants andφ velocity potential. From this he obtained so-
lutions for damped free vibrations by using the condition of! = 0, solutions for violent
vibration depending on!, and simpler solutions for violent vibrations without friction. He
considered the practical example of a stretched string with a harmonic force acting on a
point of it. In the next part of the chapter, Rayleigh deduced the generalreciprocal theorem
from the properties of the corresponding partial differentials and determinants, and applied
it to specific examples. He proved that the reciprocal theorem was applicable to the case
of the existence of the dissipation functionF . He pointed out that the theorem was not
applicable in such cases as the transmission of sound waves during the wind blowing, for
the theorem was applicable only to the vibration around the arrangements of equilibrium.

It was in Chapters 14 to 17 that Rayleigh’s discussions were most original. In Chapter
14, he introduced his own experiment in discussing sound transmission, in order to test the
theory of the interference of sound waves. In the experiment, two 256-Hertz tuning forks
10 yards distant from each other were driven by an intermittent electric current made by
a 128-Hertz tuning fork interrupter. This experiment was first reported inPhilosophical
magazine, published in June 1877. After strengthening the intensities of the sound by the
addition of resonators to tuning forks, he detected the points of silence at places where the
theory indicated, which confirmed his own expectation.

In Chapter 15, Rayleigh put forth his original theory on the secondary waves that are
produced when the plane waves impinge on different media. He deduced that the amplitude
of the secondary waves varies inversely to the distance through the medium and to the
square value of the wavelength, and that while a region in which the compressibility varies
acts like a simple source, a region at which the density varies acts like a double source.
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He illustrated these theoretical arguments by means of harmonic echoes, on which he had
written a paper in 1873.

In Chapter 16, on the theory of resonators, Rayleigh presented the results of mathe-
matical and experimental investigations on resonators he had performed. A considerable
portion of the chapter came from his paper ‘On the theory of resonance’ of 1870.

Chapter 17 included discussion on sound waves that are generated as a reaction to the
vibration of a rigid body and propagate in the air. Referring to George Green (§30.5) and
S.D. Poisson as predecessors, Rayleigh developed his own analytical theory. He solved
Laplace’s equations in various situations, employing such functions as spherical harmon-
ics, Legendre’s functions, and Bessel’s functions. He proceeded from this to the case of
disturbance confined to a small portion of a spherical surface. By using the reciprocal the-
orem, he transformed this problem into that of a sound wave which arrived at any point
on the spherical obstacle from an external source, and he could therefore discuss the ob-
structive effect of a head in the path of the transmission of sound in the air. Then, Rayleigh
discussed the application of the general equations when there was no sound source. He em-
ployed the theory of Bessel functions for the problem of no source at the pole, and applied
the result successfully to the vibration of the gas in a spherical rigid envelope.

In this wayTS included almost all of Rayleigh’s original achievements in acoustics up
to then. Together with other researchers’ work, it constituted a comprehensive system of
acoustics.

7 THE INFLUENCE OF THE BOOK ON ACOUSTICS AND ELSEWHERE

When the first American edition ofTS was published in 1945, American acoustician
R.B. Lindsay said in the ‘Historical introduction’ that the treatise was being used as a
standard text in the acoustical arena, though it was first published more than 65 years ear-
lier [Lindsay, 1945].TS contains such a useful contents for acousticians that, as late as
the 1980s, acoustician Thomas Rossing said: ‘I do not know of a musical acoustician who
does not keep a well-thumbed copy of [Rayleigh’s book] in his/her personal library’. For
R.T. Beyer ‘One can rarely pick up either the book or the collected papers without finding
something of real interest that was previously missed’ [Beyer, 1999, ch. 4]. This enduring
influence of Rayleigh’s book began to take shape shortly after the first publication in 1877.
What madeTS so special to the acousticians?

First of all, the information included inTS was remarkably varied and abundant.
Acousticians found subjects of their researches inTS and could contribute by adding
new elements to Rayleigh’s ideas. They also found invaluable information and materials
which could not be found in other acousticalwritings. As Lindsay [1945] said, it was a
‘mine of information’. For example, in 1886, S.P. Thompson pointed out the superiority of
Rayleigh’s arrangement of the electromagnetically-driven tuning fork as described inTS.
His arrangement with a short magnetic rod placed between the prongs was different from
that of earlier apparatuses, with a U-shaped magnet outside the prongs of the tuning fork.
According to Thompson, Rayleigh’s was a more effective method by which energy was
transmitted to the fork. Soon this arrangementwas adopted by other acousticians in their
own apparatus. And, in 1882, American acoustician John LeConte interpreted his sound
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shadow experiment in water by following Rayleigh’s interpretation. In 1884, D.J. Blaikley
quoted theoretical results inTS in reporting the experiment on the velocity of sound in the
tube and considered Rayleigh an important authority. Before the turn of the century,TS
had become a standard text for acousticians.

In addition, mathematical methods introduced inTS became guides for theoretical
acoustical research in the late 19th and early 20th century. In 1907, for example, by extend-
ing Rayleigh’s mathematical treatment of the scattering of sound by a sphere, J.W. Nichol-
son treated the scattering of sound by a spheroid and a disk. In 1908, E.H. Barton dis-
cussed the propagation of sound in conical pipes by referring to the contents ofTS and
taking such methods presented inTS as method of dimensions and successive approxima-
tion. This proves thatTS had become an exemplar in the area of acoustical research. Many
acousticians tookTS as a starting point of their investigations and no other book could play
the role in this area at that time.

The impact ofTS on the German-speaking scientific community was as strong as on
the English-speaking one. German acousticians could easily refer to the German transla-
tion, Die Theorie des Schalles. In the late 19th and early 20th centuries, many German
acousticians such as Heinrich Kayser, A. Oberbeck, A. Elsas, Max Wien, Georg Stern and
P. Drude viewedDie Theorie des Schalles as a main authority or found a foundation and
information for their research in it.

In this process,TS created a unified image of acoustics in the minds of acoustical re-
searchers and physicists. Before the publication ofTS, acoustical researchers had been
more or less separated in two camps, that is to say, experimentalists and mathematicians.
The experimental tradition was shaped from Chladni’s famous figures and Young’s acousti-
cal discussion in the early 19th century. They gave an impression upon researchers that
‘acoustics’ was an area of experimental research. Many ‘acousticians’ were engaged in
empirically gathering ‘facts’ related to sound. On the other hand, since Newton calcu-
lated the velocity of sound, acoustical phenomena became the concerns of mathemati-
cians. During the 18th and the 19th centuries, mathematicians like d’Alembert, Leon-
hard Euler, Daniel Bernoulli, Lagrange, Poisson, Sophie Germain, Gustav Kirchhoff, and
G.G. Stokes attempted to analyze various vibrating bodies mathematically [Beyer, 1999].
But almost all acoustical texts published beforeTS omitted more or less these mathemati-
cal achievements. Most experimentalists were little concerned with mathematical analyses.
Helmholtz, an acoustical experimentalist and mathematician at once, was exceptional, but
even hisTonemfindungen relegated mathematical analyses to appendices [Vogel, 1993].

The experimental and the mathematicaltraditions were connected and became com-
plementary inTS. Afterwards acoustical researchers followed the style of research mani-
fested there, considering theoretical investigations as closely related to empirical findings.
They became interested in both sides, though some of them did research in only one side.
(For example, the pioneering works on architectural acoustics of the American acoustician
Wallace Sabine in the early 20th century weremainly experimental but reflected both tra-
ditions.) Whether experimentalists or mathematicians, acoustical researchers consultedTS,
and began to recognize that they were working in one field of ‘acoustics’.

The influence ofTS went beyond acoustics and reached general physics and engineer-
ing [Humphrey, 1992]. For Rayleigh created some new mathematical techniques, and his
derivations and developments were used in other fields of physics and engineering later
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[Beyer, 1999, chs. 7–10]. When the reprint of the second edition was issued in 1926, Har-
vey Fletcher of Bell Telephone Laboratories pointed out that this book was being used by
researchers concerned with electric vibrations, especially telephone engineers [Fletcher,
1928]. It was becauseTS included comprehensive problems related to vibrations, not re-
stricting its discussion to audible acousticalvibrations as its title suggested. Rayleigh’s gen-
eral theories expanded in the second edition, including electric vibrations (Chapter 10B),
capillarity (Chapter 20), vortex motion and sensitive jets (Chapter 21). In the new chapters,
equations and concepts which were created in order to express acoustical vibrations were
applied to electrical transmissions, water waves, vortex motion, sensitive jets, and so forth.

One of the non-acoustical areas in which the impact of this treatise was the most note-
worthy was the theory of elasticity. Rayleigh’s mathematical treatment of the motions of
various sonorous objects became a foundation foranalyses of vibrations of solid elastic
bodies. For example, the influence ofTS on A.E.H. Love’sTreatise on the mathematical
theory of elasticity of 1892–1893, which was to become a classic of the theory of elasticity
during the 20th century, was enormous. Rayleigh’s mathematical analyses of vibrations
of various forms of bodies such as rods, circular plates, cylinders, and curved plates were
employed as an essential basis for Love’s discussion.

Rayleigh’s pursuit of generality was one of the main causes of his influence on various
fields. His treatments of acoustical systems inTS aimed at general vibrations and waves,
and they could be easily applied to other problems. Various methods and notions inTS
have become fundamental in physics and other related fields. The Rayleigh–Ritz method,
which is widely used for approximation in quantum mechanics, and the notion of state
density, which is now an essential concept in solid-state physics, could be considered as
representative examples.
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CHAPTER 46

GEORG CANTOR, PAPER ON THE
‘FOUNDATIONS OF A GENERAL SET THEORY’

(1883)

Joseph W. Dauben

In this revolutionary monograph, Georg Cantor set out the earliest detailed version of his
transfinite set theory, including a theory of transfinite ordinal numbers and their arithmetic;
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Italian translation by G. Rigamonti in (ed.), Cantor,La formazione della teoria degli in-
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(§59).

1 CANTOR’S WAY IN

Georg Ferdinand Ludwig Philip Cantor wasborn on 3 March 1845 in St. Petersburg, Rus-
sia. His mother, a Roman Catholic, came from a family of notable musicians; his father, the
son of a Jewish businessman from Copenhagen, was also a successful tradesman with com-
mercial interests extending as far as Latin America. Although the exact circumstances are
unknown, Cantor’s father was raised in a Lutheran mission in St. Petersburg, and he passed
his own deeply religious beliefs on to his son. Later in life, Cantor’s religious convictions
would play a significant role in his steadfast faith in the correctness of his controversial
transfinite set theory, just as his mother’s Catholicism may have made him particularly
amenable to the substantial correspondence he undertook with Catholic theologians over
the nature of the infinite from a theological perspective. On his life and early career see
[Dauben, 1979, especially pp. 271–299]; other biographical studies include [Meschkowski,
1967; Grattan-Guinness, 1971], and [Purkert and Ilgauds, 1985, 1987].

The family moved from Russia to Germany when Cantor was a boy; it was there that he
went to university, where he studied mathematics in Berlin, and briefly at Göttingen. After
receiving his doctorate from the Universityof Berlin in 1868 for a dissertation on the the-
ory of numbers, two years later he accepted a position asPrivatdocent, or instructor, at the
University of Halle. Among his colleagues there was Eduard Heinrich Heine (1821–1881),
who was then working on the theory of trigonometric series. Given an arbitrary function
represented by a trigonometric series, the question of the uniqueness of the representation
was a difficult challenge (essentially set by Bernhard Riemann: §38.4), and Heine encour-
aged Cantor to consider this problem. Heine offered a partial solution in 1870 for the case
of almost everywhere continuous functions, assuming as well the uniform convergence of
the trigonometric series in question. Cantor sought to do away with these restrictions, and
to establish the uniqueness theorem on the most general terms possible.

2 EARLY WORK ON TRIGONOMETRIC SERIES: DERIVED SETS

Cantor at first succeeded in proving the uniqueness theorem for an arbitrary function

f (x)=
∑
n

(an sinnx + bn cosnx) (1)

in the case that the trigonometric series was convergent for all values ofx. But in 1871
he went further, and published a note showing that the uniqueness theorem held even if,
for certain values ofx, either the representation of the function or the convergence of the
trigonometric series were given up, so long as the number of such exceptional pointsx was
finite.



602 J.W. Dauben

Cantor’s major publication on these matters came a year later—a substantial paper
showing that the uniqueness theorem held even in the case of an infinite number of ex-
ceptional points, so long as such points were distributed in a specified way [Cantor, 1872].
It was the exact determination and analysis of this specification that opened the door not
only to his development of the theory of point sets, but to his later theory of the transfinite
ordinal and cardinal numbers as well [Dauben, 1971].

The specification that Cantor introduced in his paper of 1872 concerned the limit points
of an infinite setP . Given any such set, by the Bolzano–Weierstrass theorem it must con-
tain at least one point, any arbitrarily small neighborhood of which contains an infinite
number of points. The set of all such limit points ofP Cantor denotedP ′, the first derived
set ofP . If P ′ also contains an infinite number of points, it too must contain at least one
limit point, and the set of all its limit pointsP ′′ is the second derived set ofP . Continuing
his consideration of derived sets, if for some finite numberν theνth derived setPν is not
an infinite set, then its derived set, the (ν + 1)th derived set ofP,P ν+1, will be empty, i.e.
Pν+1 = ∅. Cantor called such sets derived ‘sets of the first species’, and for such sets of
exceptional points of the first species, he was able to show that his uniqueness theorem for
trigonometric series representations remained valid. As yet, he did not know what to make
of derived sets of the second species, but these would soon begin to attract his attention,
with remarkable and unexpected consequences.

3 CANTOR’S THEORY OF REAL NUMBERS

Meanwhile, Cantor’s introduction of point sets of the first species required that he be able
to specify their structure in a definite way. This in turn meant that he needed a rigorous
concept of the real numbers in general, a subject he also considered in his paper [1872] on
trigonometric series. There he introduced real numbers in terms of convergent sequences
of rational numbers, and realized that he had to take as axiomatic that there was a one-
to-one correlation between the real numbers and the points on the line, namely that the
arithmetic and geometric continuums are comparable. How to account for the continuum
of real numbers was a problem that would continue to haunt Cantor for the rest of his career,
especially in terms of his famous conjecture, the Continuum Hypothesis, namely that the
infinite set of real numbersR was the next higher order of infinite sets after denumerably
infinite sets like the set of all natural numbersN . But in 1872 Cantor was not at a point yet
where he could even formulate this proposition in any meaningful, precise way.

Cantor was not alone in studying the properties of the continuum of real numbers in
rigorous detail. In 1872, the same year in which his paper appeared, the German mathe-
matician Richard Dedekind (1831–1916) also published an analysis of the continuum that
was based on infinite sets (§43). Dedekind articulated an idea that Cantor later made more
precise: that ‘the lineL is infinitely richer in point-individuals than is the domainR of
rational numbers in number-individuals’ [1872, 9].

But neither Dedekind nor Cantor was in a position to say how much richer the infi-
nite set of points in the continuum was than the infinite set of rational numbers. Cantor’s
next contribution to this question was published as [Cantor, 1874], in Crelle’sJournal für
die reine und angewandte Mathematik: five pages on the non-denumerability of the real
numbers.
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Surprisingly, in its title ‘On a property of the collection of all real algebraic numbers’
Cantor mentioned only the algebraic numbers, not the set of all real numbers. Nevertheless,
in this paper he disclosed his revolutionary discovery of the non-denumerability of the
continuum of real numbers. This meant that in an absolute sense some infinite sets were
larger than others, in particular that the set of natural numbersN was of a lower magnitude
of infinity than the set of real numbersR. Cantor’s reasons for not mentioning this result
in the title of his paper may have been due to his fear that any suggestion that the real
numbers were non-denumerably infinite would prove extremely controversial. But what
in particular could have prompted him to choose such an inappropriate title, concealing
one of his most remarkable discoveries, one that in retrospect strikes any mathematician as
among the most important discoveries in modern mathematics?

The answer hinges on one of Cantor’s teachers at Berlin, Leopold Kronecker (1823–
1891), who also edited Crelle’s journal. Having studied with Kronecker, Cantor was well
acquainted with his work in number theory and algebra, and with his highly conserv-
ative philosophical views with respect to mathematics. By the early 1870s, Kronecker
was already vocal in his opposition to any infinitary arguments, including the Bolzano–
Weierstrass theorem, upper and lower limits, and to irrational numbers in general. Kro-
necker’s later pronouncements against analysis and set theory, as well as his adamant in-
sistence upon using the integers to provide the only satisfactory foundation for mathemat-
ics, were simply extensions of these early views [Edwards, 1989]. It is not unreasonable to
suspect that Cantor had good reason to anticipate Kronecker’s opposition to his proof of
the non-denumerability of the realnumbers, which proved they comprised a set infinitely
larger than the set of integers [Dauben, 2005].

There was a positive side, however, to Kronecker’s opposition to Cantor’s work; it
forced Cantor to evaluate the foundations of set theory as he was in the process of creating
it. This concern prompted long philosophical passages in Cantor’s major publication of the
1880s on set theory, our landmark: hisGrundlagen einer allgemeinen Mannigfaltigkeits-
lehre of 1883. It was there that Cantor issued one of his most famous pronouncements
about mathematics, namely that ‘theessence of mathematics lies precisely in itsfreedom’
([Cantor, 1883, 182]: unfortunately the frequent quotations of this motto usually lack the
important word ‘precisely’). This was notsimply an academic or philosophical message
to his colleagues, for it carried as well a hidden and deeply personal subtext. It was, as he
later admitted to David Hilbert (1862–1943), a plea for objectivity and openness among
mathematicians. This, he said, was directly inspired by the oppression and authoritarian
closed-mindedness that he felt Kronecker represented, and worse, had wielded in a fla-
grant and damaging way against those he opposed.

Thus at the very beginning of his career, and even before he had begun to develop any
of his more provocative ideas about transfinite set theory, Cantor was already concerned
about Kronecker’s opposition to his work. Doubtless he knew that more trouble could be
expected in the future.

4 THE DESCRIPTIVE THEORY OF POINT SETS

Meanwhile, Cantor devoted himself to further developing his ideas about point sets that
he had first investigated in the context of representing functions by trigonometric series
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in the 1870s. He published the first of these in 1879, returning to his concept of derived
set as a means of illuminating properties of the continuum. He defined such concepts as
everywhere-dense sets, and showed that everywhere-dense sets were necessarily of the
second species. Conversely, first species setscould never be everywhere-dense. But the
important concept Cantor introduced in this paper was the concept of power: ‘Two setsM

andN are of the same power if to every element ofM one element ofN corresponds, and
conversely, to every element ofN one element ofM corresponds’ ([Cantor, 1879]; cited
from [Cantor,Papers, 141]).

The two cases of greatest interest for Cantor were denumerably infinite sets of power
equivalent to the set of natural numbersN , and continuous, nondenumerably infinite sets
like the real numbersR. He explained the importance of the new concept of power as
follows ([1879], from [Cantor,Papers, 150, 152]):

Theconcept of power, which includes as a special case the concept of whole
number, that foundation of the theory of number, and which ought to be con-
sidered as the most general genuine origin of sets [‘Moment bei Mannig-
faltigkeiten’], is by no means restricted to linear point sets, but can be regarded
as an attribute of anywell-defined collection, whatever may be the character
of its elements [. . .] Set theory in the conception used here, if we only con-
sider mathematics for now and forget other applications, includes the areas of
arithmetic, function theory and geometry. It contains them in terms of the con-
cept of power and brings them all together in a higher unity.Discontinuity and
continuity are similarly considered from the same point of view and are thus
measured with the same measure.

The following year, Cantor wrote the second paper in his series on linear point sets,
which also introduced for the first time his transfinite numbers. Considering an infinite set
P of the second species, it gave rise to an infinite sequence of derived sets:

P ′,P ′′, . . . ,P ν, . . . . (2)

Cantor defined the intersection of all these sets asP∞. But this now led to a new sequence
of derived sets, for ifP∞ was infinite, it then gave rise to the derived setP∞+1. Assuming
all of the subsequent derived sets were infinite, then the following sequence of derived sets
was possible:

P ′,P ′′, . . . ,P ν, . . . ,P∞,P∞+1, . . . . (3)

In the paper of 1880, Cantor’s focus was still on the sets themselves, and not on the ‘in-
finite symbols’ he used to specify each of the successive derived sets beginning withP∞.
Within months, he would begin to identify these symbols as transfinite ordinal numbers.

5 THE GRUNDLAGEN: A GENERAL THEORY OF SETS AND
TRANSFINITE ORDINAL NUMBERS

The major achievement of theGrundlagen was its presentation of the transfinite ordinal
numbers as a direct extension of the real numbers. Cantor admitted that his new ideas
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might seem strange, even controversial, but he had reached a point in his study of the
continuum where the new numbers were indispensable for further progress. Despite his
own doubts at first, he said he felt forced to accept the new numbers as a legitimate and
consistent part of mathematics (p. 165):

So daring as this may seem, I can express not only the hope but the firm con-
viction, that this extension will, in time, have to be regarded as a thoroughly
simple, appropriate, and natural one. But I in no way hide from myself the fact
that with this undertaking I place myself in a certain opposition to widespread
views about the mathematical infinite and to frequently advanced opinions on
the nature of number.

Cantor had finally come to the realization that his ‘infinite symbols’ were not just indices
for derived sets of the second species, but could be regarded as actual transfinite numbers
that were just as real mathematically as the finite natural numbers. As he put it: ‘I will
define the infinite real whole numbers in the following, to which I have been led over the
past few years without realizing that they were concrete numbers of real meaning’ (p. 166).
In order to define his new transfinite ordinal numbers independently of the derived sets of
the second species, Cantor relied upon two principles of generation.

The first principle was the familiar extension of the sequence of natural numbers
1,2,3, . . . , which had its origin in the repeated addition of units. Although this sequence
had no largest element, it was possible to conceive of a new number,ω, which expressed
the natural, regular order of the entire sequence of natural numbers. This new number was
the first transfinite number, the first number following the entire sequence of natural num-
bersν. Having definedω, it was then possible to apply the first principle of generation
again to produce another sequence of transfinite ordinal numbers as follows:

ω,ω+ 1,ω+ 2, . . . ,ω+ ν, . . . . (4)

Again, since there was no largest element, it was possible to introduce another new
number, 2ω, coming after all the numbers in the above sequence, and in fact represent-
ing the entire sequence. Cantor explained his second principle of generation, adding new
numbers whenever a given sequence was limitless, as follows (p. 196):

I call it the second principle of generation of real whole numbers and define
them more precisely: if any definite succession of defined whole real numbers
exists, for which there is no largest, then a new number is created by means
of this second principle of generation which is thought of as thelimit of those
numbers, that is, it is defined as the next number larger than all of them.

By successively applying the two principles of generation, it was possible to produce an
infinite sequence of numbers, the most general term being

ν0ω
µ + ν1ω

µ−1+ · · · + νµ. (5)

To his two principles of generation, Cantor added a ‘principle of limitation’ meant to
impose an order of sorts upon the seemingly endless hierarchy of transfinite ordinal num-
bers. This made it possible to identify natural breaks in the sequence, and to distinguish
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between the first denumerably infinite number class of natural numbers (I), the second
number-class (II), and successively higher classes of transfinite ordinal numbers (p. 197):

We define therefore the second number-class (II) as the collection of all num-
bersα (increasing in definite succession)which can be formed by means of
the two principles of generation:

ω, ω+ 1, . . . , ν0ω
µ + ν1ω

µ−1+ · · · + νµ, . . . , ωω, . . . , α, . . . ,
with the condition that all numbers precedingα (from 1 on) constitute a set of
power equivalent to the first number class (I).

Not only did theGrundlagen establish that the powers of the two number classes (I) and
(II) were distinct, but that (II) was the next larger after (I) (pp. 197–201).

Another important distinction that Cantor drew in theGrundlagen was between number
(Zahl) and numbering (Anzahl). The former was simply the cardinal number or power of
a given set;Anzahl represented both the cardinality and the order of the set in question.
Whereas the two concepts coincided for finite sets, they were remarkably and significantly
different for infinite sets. For example, eachof the following sets of numbers were of the
same cardinality or power, yet each had a distinctAnzahl or order:

(a1, a2, . . . , an, an+1, . . .) = ω, (6)

(a2, a3, . . . , an+1, an+2, . . . , a1) = ω+ 1, (7)

(a3, a4, . . . , an, . . . , a1, a2) = ω+ 2, (8)

(a1, a3, a5, . . . , a2, a4, a6, . . .) = ω+ω = 2ω. (9)

All of the sets on the left are of the same power or cardinality—they have the same cardinal
number—but by rearrangement of the same terms, each gives rise to a differentAnzahl or
ordinal number.

In theGrundlagen, Cantor developed an entire arithmetic for his transfinite ordinal num-
bers. He also discussed their arithmetic properties, above all, that they were not commuta-
tive with respect to either addition or multiplication:

2+ω = (1,2, a1, a2, . . . , an, an+1, . . .)

�= (a1, a2, . . . , an, an+1, . . . ,1,2)= ω+ 2, (10)

2ω= (a1, a2, a3, . . . , b1, b2, b3, . . .) �= (a1, b1, a2, b2, a3, b3, . . .)= ω2. (11)

The distinction between number and numbering brought new insights to the differences
between finite and infinite sets. For finite sets, the two concepts were the same. But infinite
sets were more interesting because sets of the same power could have different numberings.
The numbering of a set was dependent upon the order in which the elements of the set
occurred. Nevertheless, there was a connection between the two: ‘Every set of the power
of the first class is denumerable by numbers of the second number-class, and only by such
numbers’ (p. 169).
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These differences also explained why it was illegitimate to require infinite sets to behave
exactly as did finite sets, and Cantor hoped this might help to eliminate some of the ob-
jections to the infinite in mathematics that had persisted for centuries. Indeed, it provided
an alternative way of defining finite sets: if a set were finite, then its cardinal and ordinal
numbers were the same (pp. 168–169).

6 THE CONTINUUM HYPOTHESIS

One goal of Cantor’s transfinite set theory was to provide a means of resolving the hy-
pothesis, that the set of real numbersR was the next in power following the set of natural
numbersN . Cantor could now reformulate this conjecture more precisely, namely that the
power of the continuum was equivalent to that of the second number class (II) as defined
in theGrundlagen.

Although optimistic that the transfinite ordinal numbers and various distinctions be-
tween different kinds of point sets might soon help to resolve the Continuum Hypothesis,
no solution was forthcoming. Despite Cantor’s vigorous efforts to prove its correctness,
he was greatly frustrated by his inability to do so. Early in 1884 he thought he had found
a proof, but then reversed himself completely and thought he could actually disprove the
hypothesis. Finally, he realized that he had made no progress at all, as he reported in letters
that same year to his friend and editor ofActa mathematica, Gösta Mittag-Leffler (1846–
1927) in Stockholm [Meschkowski, 1967, 240–243; Schoenflies, 1927, 12, 17–18]. All the
while Cantor was facing mounting opposition andthreats from Kronecker, who said he was
preparing an article in which he would show that ‘the results of modern function theory
and set theory are of no real significance’ [Schoenflies, 1927, 5].

7 CANTOR’S NERVOUS BREAKDOWNS

It was in May 1884, quite suddenly, that Cantor suffered the first of his serious nervous
breakdowns that were to plague him for the rest of his life. Although his lack of progress on
the Continuum Hypothesis or stress from Kronecker’s attacks may have helped to trigger
the breakdown, it now seems clear that such events had little to do with its underlying
cause. The illness took over with startling speed and only lasted for somewhat more than a
month. At the time, only the manic phase of manic-depressive psychosis was recognized as
a symptom [Grattan-Guinness, 1971; Charraud,1994]. When Cantor ‘recovered’ at the end
of June 1884, and entered the depressive phase ofhis illness, he complained that he lacked
the energy and interest to return to rigorous mathematical thinking. He was content to take
care of trifling administrative matters at the university, but felt capable of little more.

Although Cantor eventually returned to mathematics, he also became increasingly ab-
sorbed with other interests. He undertook a study of English history and literature, and
became engrossed in a scholarly diversion that was taken with remarkable seriousness by
many people at the time: the supposition that Francis Bacon was the true author of Shake-
speare’s plays. Cantor also tried his hand without success at teaching philosophy instead
of mathematics, and he began to correspond with several theologians who had taken an
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interest in the philosophical implications of his theories about the infinite. This correspon-
dence was of special significance to Cantor because he was convinced that the transfinite
numbers had come to him as a message from God [Dauben, 1977, 2005].

8 TRANSFINITE CARDINAL NUMBERS: THE ALEPHS (ℵ)

Although not presented in theGrundlagen, one additional element of the technical devel-
opment of transfinite set theory needs to be mentioned, as an important part of Cantor’s
on-going efforts to mount a convincing and satisfactory mathematical defense of his ideas:
the transfinitecardinal numbers. The evolution of his thinking about the transfinite cardi-
nals is curious. Although the alephs are probably the best-known legacy of his creation,
they were the last part of his theory to be given either rigorous definition or a special sym-
bol. Indeed, it is difficult in the clarity of hindsight to reconstruct the obscurity within
which he must have been groping, and up to now his work has been discussed here largely
as if he had already recognized that the power of an infinite set could be understood as a
cardinal number.

In fact, beginning in the early 1880s, Cantor first introduced notation for his infinite (ac-
tually transfinite) sequence of derived setsPν , extending them well beyond the limitation
he had earlier set himself to sets of the first species. However, at this time he only spoke of
the indexes as ‘infinite symbols’ with no reference to them in any way as numbers.

By the time that Cantor wrote theGrundlagen in 1883, the transfinite ordinal numbers
had finally achieved independent status as numbers, and were given the familiar omega
notation,ω being the first transfinite ordinal number following the entire sequence of fi-
nite ordinal numbers, i.e. 1,2,3, . . . ,ω. However, there was no mention whatsoever in the
Grundlagen of transfinitecardinal numbers, although Cantor clearly understood that it is
the power of a set that establishes its equivalence (or lack thereof) with any other set, from
which he would eventually develop his concept of transfinite cardinal number. But in the
Grundlagen, he carefully avoided any suggestion that the power of an infinite set could be
interpreted as a number.

Soon, however, Cantor began to equate the two concepts, especially in a lecture deliv-
ered in September 1883 to mathematicians at a meeting in Freiburg. Even so, no symbol
was yet provided for distinguishing one transfinite cardinal number from another. Since he
had already adopted the symbol ‘ω’ to designate the least transfinite ordinal number, when
he finally introduced a symbol for the first transfinite cardinal number, it was borrowed
from the symbols already in service for the transfinite ordinals. By 1886, in correspon-
dence, Cantor had begun to represent the first transfinite cardinal as∗

ω, and the next largest

he denoted
∗
�; but this notation was not very flexible, and within months he realized the

need for a more general notation capable of representing the entire ascending hierarchy
of transfinite cardinals. Temporarily, he used frakturo’s, derivatives from his omegas, to
represent his sequence of cardinal numbers. For a time, he used an assortment of nota-
tions, including superscripted stars, bars, and his frakturo’s interchangeably for transfinite
cardinal numbers, without feeling any need to decide upon one or the other as preferable
[Dauben, 1979, 179–183].

However, in 1893 the Italian mathematician Giulio Vivanti was preparing a general
account of set theory, and Cantor realized it was time to adopt a standard notation. Only
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then did he choose the Hebrew alephs (ℵ) for the transfinite cardinal numbers. He did so
because he thought the familiar Greek and Romanalphabets were too common and already
widely employed in mathematics for other purposes. His new numbers deserved something
distinct and unique—and letters of the Hebrew alphabet were readily available among the
type fonts of German printers. The choice of the alephs was particularly clever, as Cantor
was pleased to admit, becausethe Hebrew aleph was also a symbol for the number one.
Since the transfinite cardinal numbers were themselves infinite unities, the aleph could
be taken to represent a new beginning for mathematics. Cantor designated the cardinal
number of the first number classℵ1 in 1893, but in 1895 changed his mind; from then on,
he usedℵ0 to represent the first and least transfinite cardinal number, the number he had
previously designated by∗ω. From aleph-null, he went on to designate the cardinal number
of the second number class asℵ1, after which there followed an unending sequence of
transfinite cardinal numbers.

9 CANTOR AND THEDEUTSCHE MATHEMATIKER-VEREINIGUNG

During the 1880s Cantor had already begun to lay the strategic foundations for creating an
independent union of mathematicians in Germany. The specific goal of such a union, as he
often made clear in his correspondence, was to provide an open forum, especially for young
mathematicians. The union (as Cantor envisaged it) would guarantee that anyone could
expect free and open discussion of mathematical results without prejudicial censure from
members of the older establishment, whose conservatism might easily ruin the career of
an aspiring mathematician. This was primarily needed in cases where the ideas in question
were at all new, revolutionary or controversial, as Cantor had learned from his experience
with Kronecker.

Cantor labored intensively for the creation of theDeutsche Mathematiker-Vereinigung
[Dauben, 1979, 160–163]. Eventually, agreement was reached and the Union of Ger-
man Mathematicians held its first meeting in conjunction with the annual meeting of the
Gesellschaft Deutscher Naturforscher und Ärzte, which met at Halle in 1891. Cantor was
elected the Union’s first president, and at its inaugural meeting he presented his now fa-
mous proof that the real numbers are nondenumerable using his new method of diagonal-
ization [Cantor, 1891].

The Union was not the end of Cantor’s vision. He also recognized the need to promote
international forums as well, and thus began lobbying for international congresses shortly
after formation of the Union. These were eventually organized through the cooperative
efforts of many mathematicians, and not directly, it should be added, as a result of Cantor’s
exclusive efforts. The first of these was held at Zürich in 1897, the second in Paris in 1900
[Dauben, 1979, 163–165].

10 TRANSFINITE MATHEMATICS AND CANTOR’S MANIC DEPRESSION

Cantor made his last major contributions to set theory in his two-part paperBeiträge [Can-
tor, 1895–1897]. He had used his famous method of diagonalization in [Cantor, 1891] to
show that the cardinal number of any setP is always less than the cardinal number of its
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power-set, the set of all subsets ofP . Now he presented a corollary to this result, namely
that the cardinal number of the continuum is equal to 2ℵ0, and he hoped this result would
soon lead to a solution of the Continuum Hypothesis—which he could now express as
2ℵ0 =ℵ1.

The arguments that Cantor used in his proof of 1891 about the cardinal number of the
power-set of all subsets of any given set, however, led to far different conclusions. Rather
than leading to a resolution of the Continuum Hypothesis, they led directly to discovery of
the paradoxes of set theory, for the fact that there could be no ‘largest’ transfinite cardinal
number immediately raised the question of the cardinality of the set of “all” transfinite
cardinal numbers. Cantor resolved the problem by excluding this possibility entirely; the
aggregate of “all’ transfinite numbers was what he called an ‘inconsistent’ aggregate, and
therefore was simply not to be considered as a ‘set’. Bertrand Russell, in contemplating
this problem, drew far more problematic conclusions, for what he discovered was that a
paradox can be derived in set theory itself by considering those sets that do not include
themselves as members (§61.1).

To understand Cantor’s tenacious promotion and defense of set theory, especially in his
later years after publication of theBeiträge, it is important to appreciate the connection
between Cantor’s faith in God, his mental illness, and his mathematics. Certain documents
suggest that in addition to enforcing periodic intervals of contemplation and withdrawal
from daily affairs, Cantor’s periods of depression were not wholly unproductive. In fact,
he was often able to pursue his mathematical ideas in the solitude of the hospital or quietly
at home. This may all have supported his belief that the transfinite numbers had been
communicated to him from God. In fact, as he noted in the third motto he chose to head the
first part of hisBeiträge, in 1895: ‘The time will come when these things which are now
hidden from you will be brought into the light’.

This is a familiar passage from the Bible, First Corinthians, and reflects Cantor’s belief
that he was an intermediary serving as the means of revelation. It may also be taken to
reflect his faith that despite any prevailing resistance to his work, it would one day enjoy
recognition and praise from mathematicians everywhere. Similarly, he considered the de-
pressive phases of his bouts with manic depression to be periods during which he could
devote himself to deep reflection, uninterrupted meditation, and even mathematics. Follow-
ing a long period of hospitalization in 1908,he once wrote to the British mathematician
Grace Chisholm Young (1868–1944), who then lived in Göttingen ([Meschkowski, 1971,
30–34]; translated in [Dauben, 1979, 290]):

A peculiar fate, which thank goodness has in no way broken me, but in fact
has made me stronger inwardly [. . .] has kept me far from home—I can say
also far from the world [. . .] In my lengthy isolation neither mathematics nor
in particular the theory of transfinite numbers has slept or lain fallow in me.

Elsewhere, Cantor actually described his conviction about the truth of his theory ex-
plicitly in quasi-religious terms. For example, in a letter of 1888 [Dauben, 1979, 298] he
wrote:

My theory stands as firm as a rock; everyarrow directed against it will return
quickly to its archer. How do I know this? Because I have studied it from all
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sides for many years; because I have examined all objections which have ever
been made against the infinite numbers; and above all, because I have followed
its roots, so to speak, to the first infallible cause of all created things.

11 CONSEQUENCES OF THEGRUNDLAGEN FOR LATER MATHEMATICS

Some of the immediate and long-term results of Cantorian set theory are reflected in a
number of works included as ‘Landmarks’ in this volume, notably those by Hilbert, Henri
Lebesgue and René Baire, and Russell and A.N. Whitehead. Additionally, among the most
immediate results of Cantor’s new theory of transfinite ordinal numbers were applications
in real and complex analysis, for example, Mittag-Leffler’s theorem of 1884 that extended
results obtained by Weierstrass on analytic representations of complex functions to mero-
morphic functions. For references for this section, see the superb bibliography in [Fraenkel,
1953].

In France, Emile Borel’s doctoral thesis of 1894 used set theory in applications to prob-
lems of analytic continuation in the theory of complex functions. Among classic results
that Borel reached using transfinite ordinalswas the Heine–Borel covering theorem. At
the International Congress of Mathematicians in 1897 in Zurich, Adolf Hurwitz treated
analytical functions in conjunction with transfinite ordinals and used them to classify an-
alytical functions. Jacques Hadamard gave a general lecture on future applications of set
theory, suggesting that sets of functions were especially intriguing, and predicting that in
partial differential equations and mathematical physics, set theory might be especially use-
ful. Also significant in exploiting set theory in analysis was Maurice Fréchet’s thesis of
1906, ‘Sur quelques points du calcul fonctionnel’.

Mathematicians like Baire, Fréchet, Hilbert, and Marcel Riesz all drew on set-theoretic
notions to develop increasingly abstract concepts of space, as outlined for example in re-
sults on ‘Stetigkeit und abstrakte Mengenlehre’ that Riesz presented at the International
Congress of Mathematicians in Rome in 1908. Finally here, in his bookGrundzüge der
Mengenlehre (1914) Felix Hausdorff included significant new results on order-types, and
topological and metric spaces.

In England, the most important early contributions to develop Cantorian set theory were
made by Russell and Whitehead, P.E.B. Jourdain, Grace Chisholm and William Henry
Young (largely from abroad) and G.H. Hardy. Cantor’s theory of transfinite numbers has
been further extended into the realm of inaccessible cardinals and a host of other highly
refined theories of transfinite numbers. Finally, the legacy of Cantor’s transfinite set theory
that theGrundlagen launched in 1883 has been especially important for the development
of mathematical logic and work on foundations related to the paradoxes of the infinite,
logical paradoxes, and work associated withErnst Zermelo, Bertrand Russell, Abraham
Fraenkel, Kurt Gödel (§71) and Paul Cohen, among many others.
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CHAPTER 47

RICHARD DEDEKIND (1888) AND GIUSEPPE
PEANO (1889), BOOKLETS ON THE
FOUNDATIONS OF ARITHMETIC

J. Ferreirós

These works offered new levels of foundation and formalisation for arithmetic, stressing
particularly the understanding of the method of mathematical induction. They established
the Peano–Dedekind axioms for the natural numbers.

Dedekind
First publication. Was sind und was sollen die Zahlen?, Braunschweig: Friedrich Vieweg

& Sohn, 1888. 54 pages. [Actually issued December 1887.]

Manuscripts. Main manuscript destroyed, but first draft (written1872–1878) preserved
at theNiedersächsische Staats- und Universitätsbibliothek Göttingen, Handschriften-
abteilung, Cod. Ms. Dedekind, III, 1: transcribed in [Dugac, 1976, 293–309]. Also
fragments of a second draft of 1887 [ibidem, III, 1, III].

Later editions. 2nd ed. 1893 (new preface), 3rd ed. 1911 (new preface). Both Vieweg.
[Various photoreprints until the so-called ‘10th ed.’ 1969, prefaced by G. Asser (itself
repr.). Also inGesammelte mathematische Werke, vol. 3, Braunschweig: Vieweg, 1932,
335–391.]

English translations. 1a) ‘The nature and meaning of numbers’ (trans. W.W. Beman), in
R. Dedekind,Essays on the theory of numbers, Chicago, Open Court, 1901, 29–115.
[Several reprs. inc. New York: Dover, 1963.] 1b) Revised by W. Ewald in his (ed.),
From Kant to Hilbert, New York: Oxford University Press, 1996, 790–833. 2)What
are numbers and what should they be? (ed. and trans. H. Pogorzelski, W. Ryan and
W. Snyder), Orono, Maine: Research Institute for Mathematics, 1995.

Russian translation by N.N. Parfentev inIzvestija fiziko-matematicheskogo obtshchestva
Kazan, 15 (1905), 25–103.

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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Italian translations. 1) In Essenza e significato dei numeri (trans. with historico-critical
notes by O. Zariski), Rome: Stock, 1926, 1–18. 2) In R. Dedekind,Scritti sui fondamenti
della matematica (trans. F. Gana), Naples: Bibliopolis, 1982.

Japanese translation. In On number—continuity and the nature of number [in Japanese]
(trans. Kono Isaburo), Tokyo: Iwanami Shoten, 1961.

French translation. Les nombres: que sont-ils et à quoi servent-ils? (trans. I. Milner and H.
Sinaceur, introd. by M.-A. Sinaceur), Paris: La Bibliothèque d’Ornicar, 1978.

Spanish translation. ¿Qué son y para qué sirven los números? (trans. and introd. J. Fer-
reirós), Madrid: Alianza Editorial/UAM, 1998.

Peano
First publication. Arithmetices principia, Turin: Bocca, 1889. 16+ 20 pages.

Later edition. G. Peano,Opere scelte, vol. 2 (ed. and introd. U. Cassina), Rome: Cre-
monese, 1958, 20–55.

English translations. 1) Partial by J. van Heijenoort as ‘The principles of arithmetic, pre-
sented by a new method’, in his (ed.),From Frege to Gödel, Cambridge, MA; Harvard
University Press, 1967, 83–97. 2) Full inSelected works of Giuseppe Peano (trans. and
ed. H.C. Kennedy), London: George Allen & Unwin, 1973, 101–134.

Bilingual Latin–Spanish edition. Arithmetices principia, Oviedo: Pentalfa, 1979.

Related articles: Grassmann (§32), Dirichlet (§37), Dedekind on irrational numbers (§43),
Boole (§36), Riemann on trigonometric series (§38), Cantor (§46), Whitehead and Rus-
sell (§61).

1 DEDEKIND: BIOGRAPHY AND BACKGROUND

Richard Dedekind was born in 1831 in Braunschweig (Brunswick) and educated at the
Collegium Carolinum there (an institution offering courses of a level intermediate between
secondary school and university) before entering the University of Göttingen. He was fol-
lowing in the footsteps of the great C.F. Gauss (1777–1855), of whom he would become
the last doctoral student in 1852. Similaritiescan also be found at the personal level: both
men were sober and upright, somewhat shy; both followed the motto ‘pauca sed matura’,
although no doubt Gauss was more prolific.

Richard was the fourth child of a well-to-do family, son of a lawyer and professor at
the Carolinum. During the student years at Göttingen he stood out in social life as a piano
and cello player, but he also enjoyed Wilhelm Weber’s lectures in physics. It is unlikely
that Gauss that was a powerful influence by personal contact, but he certainly was through
his classic writings. Indeed, the direction of Dedekind’s lifework had been set by the great
German tradition in algebraic number theory,inaugurated by Gauss (§22) and significantly
advanced by Ernst Kummer.

According to Dedekind himself, it was only after hisHabilitation asPrivatdozent in
1854 that he had the experience of entering a high-level research school. His new masters
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were J.P.G. Lejeune-Dirichlet, who followed a call to Göttingen upon the death of Gauss in
1855 (at whose funeral Dedekind was a pall-bearer), and his fellowPrivatdozent Bernhard
Riemann (only 5 years older). Dedekind attended all of their lectures, and some years later
he would see through the posthumous publication of some or all of their work. The influ-
ence of Dirichlet was definitive at the level of rigour, mathematical proof, and the effort to
fill gaps in Richard’s mathematical education. That of Riemann would be particularly im-
portant at the level of abstract methodology and the turn toward a set-theoretical approach
([Ferreirós, 1999]: compare §46).

In 1858 Dedekind accepted a call from the Zurich Polytechnical School, and it was
during his first year in Zurich that he formulated his well-known definition of the real
numbers. By then his main work was in algebraic number theory, but he also elaborated
ideas on the foundations of the number concept. In 1862 he moved back to Braunschweig,
accepting a chair at theCollegium Carolinum, which soon turned into a Technical School,
partly under Dedekind’s guidance in the role of rector. He never accepted calls from any
university, and thus he did not have noteworthy students; nor did he found a school. In
1881 Georg Cantor (1845–1918), with whom he had a remarkable correspondence, tried
to win him for Halle, but even this attempt failed. Dedekind never married, living with his
mother and his sister Julie, a successful writer. He became emeritus professor in 1896, and
he died in the middle of the Great War, in February 1916.

Some time before 1872, Dedekind’s views on the number concept ripened to the point
of seeing the technical possibility of reducing the whole number system (and thus, in his
view, all of pure mathematics) to the basic concepts of set and mapping. This confirmed
him in the logicist beliefs that he is likely to have entertained since the successful reduc-
tion, in 1858, of the real numbers to rationals plus sets. This significant train of thought
followed along the lines of previous ideas of Gauss and Riemann (with noteworthy paral-
lels to M. Ohm, Hermann Grassmann (§32) and Karl Weierstrass), but it went considerably
further. Between 1872 and 1878 he wrote down a series of draft notes which contain all the
most significant and enduring ideas that would be published inWas sind und was sollen die
Zahlen? (hereafter, ‘WSZ’). A remarkable reconstruction of the path leading to this work
is contained in Dedekind’s letter of 1890 toa school-teacher, Hans Keferstein (published
in translation in [van Heijenoort, 1967, 98–103]. The booklet appeared in 1888 (Figure 1),
when he was in his fifties; for a portrait from around that time, see Figure 2.

In the words of Felix Klein, who obviously had a different character, Dedekind was
‘a contemplative nature’: he was a system builder. A key feature of his work is that he
kept constantly intertwining the concepts and methods of his more advanced research,
with those in his foundational writings. Symptomatic is the fact that he first announced
the publication ofWSZ in the second version of his ideal theory in theVorlesungen über
Zahlentheorie ([Dirichlet and Dedekind, 1879]: see §37), and that the third version [Dirich-
let and Dedekind, 1894] contains a good number of footnotes referring back toWSZ. One
may say thatWSZ is linked, in one way or another, to all of Dedekind’s research topics,
including even some ideas that he left unpublished on the foundations of topology and of
projective geometry.
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Figure 1. Title page of Dedekind’s booklet in its first edition. The Greek motto reads
‘aei ho anthropos arithmetidsei’ (‘man is constantly involved in arithmetic’). It con-
stitutes Dedekind’s reply to Gauss and Plato (‘God is always involved in arithmetic’,

or ‘geometry’).

2 PEANO: BIOGRAPHY AND BACKGROUND

Giuseppe Peano (Figure 3) was 27 years younger than Dedekind. Born in August 1858 in
Spinetta (province of Cuneo, in the Piedmont), Peano was the son of a peasant. He studied
at the University of Turin from 1876, taking his doctoral degree in 1880, and remained
there until his death in 1932, working first as an assistant, then from 1890 as extraordinary
professor, finally from 1895 as full professor. During the 1880s he worked in analysis,
probably containing his most important results; particularly noteworthy are the continuous
space-filling Peano curve (1890), and the notion of content (a precedent of measure theory)
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Figure 2. Portrait of Dedekind in his fifties.

developed in the 1880s independently of Camille Jordan. The textbook that he published
in 1884, based on the lectures of his teacher Angelo Genocchi (Calcolo differentiale e
principii di calcolo integrale), already contained a great number of new results of his own.

The years 1889 to 1908 saw Peano’s intensive dedication to symbolic logic, the axiom-
atization of mathematics, and the production of the encyclopedicFormulaire de mathéma-
tiques (5 editions, 1895–1908). This wasan ambitious assembly of mathematical results,

Figure 3. Portrait of Peano in the 1880s.
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compactly presented with the symbolic means of logic, though completely without proofs.
In 1891 he founded with some colleagues the journalRivista di matematica, gathering
around him an important group of followers. Peano was an accessible man, and the way in
which he mingled with students was regarded as ‘scandalous’ in Turin. He was a socialist
in politics, and a tolerant universalist in all matters of life and culture.

Like other logicians of the time, Peano was strongly interested in the Leibnizian dreams
of acharacteristica universalis and acalculus ratiocinator. His development of a powerful,
clear, and flexible logical language was a step in this direction. In the late 1890s, he be-
came increasingly interested in elaborating a universal spoken language. The outcome was
Latino sine flexione, based on Latin and incorporating vocabulary from the main European
languages, with no grammatical inflexions. The last edition of theFormulario (1905–1908)
appeared in this language.

Peano followed closely the work of German mathematicians such as Grassmann, Ernst
Schröder and Dedekind; for example, the 1884textbook presented a definition of the real
numbers by Dedekind cuts, and Peano also studied theVorlesungen über Zahlentheorie.
In 1888 he publishedCalcolo geometrico secondo l’Ausdehnungslehre di H. Grassmann,
containing a study of the operations of deductive logic, which was to be refined and ex-
tended in later years. In 1889 he presented—notably in Latin—a first version of the famous
axioms forN, which he refined in volume 2 of theFormulaire [1898a].

Peano’s work on the natural numbers was at the crossroads of his diverse mathematical
contributions, linking naturally his previous research in analysis with the coming focus
on logical foundations, and being anecessary prerequisite for theFormulaire project. It
aimed at filling the most significant gap in the foundations of mathematics at a time when
the ‘arithmetization’ of analysis had essentially been completed. It is no mere coincidence
that other mathematicians (Gottlob Frege, C.S. Peirce and Dedekind) published convergent
work in the same decade. As far as we know, all of these men worked independently. In
comparison with the rest, Peano’s attempt is better rounded than Peirce’s, but shallower
than those of Frege and Dedekind. Partly because of this last trait, it has been more popular.

In the preface toArithmetices principia, Peano stated that, for proofs in arithmetic, he
was relying on the handbook [Grassmann, 1861], and that the ‘acute’ work of Dedekind
‘was also most useful’ to him (p. vi). However, according to Peano himself, his booklet
was already in print before he first sawWSZ, and Dedekind’s work merely provided ‘moral
proof of the independence’ of his axioms [Peano, 1898b, 243]. This seems plausible also
for internal reasons. Had he studied thoroughly Dedekind’s work before writing his own,
Peano would probably have published a different, deeper study of the subject. As things
happened, under time pressure, he remained content with verifying that Dedekind’s analy-
sis agreed with his own.

Actually, Arithmetices principia can be regarded as a simplification, refinement, and
translation into logical language (the ‘nova methodo’ in its title) of Grassmann’sLehrbuch
der Arithmetik [1861]. Grassmann strived to elaborate a stern deductive structure and he
stressed proofs by mathematical induction and recursive definitions. But curiously, unlike
Peano, he did not postulate an axiom of induction. Thus Peano presented more clearly the
basic assumptions. He also simplified the system by starting with the natural numbers and
not the integers, as did Grassmann. Grassmann’s work was unknown to Dedekind as late
as 1876 (see Lipschitz [1986, 74]); in any case, Dedekind’s early work onN around 1860
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and his first (1863) edition of theVorlesungen (§37) already emphasized mathematical
induction and recursive definitions.

3 DEDEKIND’S THEORY

As Hilbert once said, Dedekind elaborated an ‘extremely sagacious’ construction of the
natural numbers—he had the ‘dazzling and captivating’ idea of grounding the finite num-
bers on the actual infinite [Hilbert, 1905, 1922]. This parallels what happens in his famous
definition of infinity (WKZ, art. 64), which contrasting with all previous analyses defines
the finite as the non-infinite, and establishes that a setS is (Dedekind-)infinite if and only
if there exists a bijective mapping ofS onto a proper part of itself.

The contents of Dedekind’s book are summarised in Table 1. He realized that a general
theory of sets and mappings is a sufficient foundation for the natural numbers, and indeed
the usual set-theoretic definitions ofN exemplify his ideas. Thus the first two sections of
WSZ are devoted to ‘Systeme’ (his technical term for sets, equivalent to Cantor’s ‘Mengen’)
and to mappings (‘Abbildungen’). Although he presented basic results very clearly and
succinctly, Dedekind lacked terminology and notation for the membership relation. Indeed,
he exploited his notation for inclusion to the point of making it equivocal, usinga ⊂ S as
shorthand for{a} ⊂ S and thus fora ∈ S. (Instead of ‘⊂’ he actually used a symbol that
looks like ‘3’.) This would be severely criticized by Frege, but, as a matter of fact, letters
and manuscripts written in 1888 and 1889 show that Dedekind never was unclear as to the
distinction between inclusion and membership, and that he fully realized the ‘dangers’ (his
term) implicit in his equivocal usage of notation.

WSZ was the first work to thematise the concept of mapping and to discuss its basic
theory. This makes the more noteworthy that Dedekind was able to handle it in such a
masterful way. But in fact that was an instance of ‘pauca sed matura’: the concept had been
in use (under a different name) in all of Dedekind’s algebraic work, and it can be traced

Table 1. Contents by chapters of Dedekind’s book. 54 pages.

Chs. Arts. (Short) titles or descriptions
Preface

1–2 1–25 Systems of elements; mapping of a system.

3–4 26–63 Similarity of a mapping; similar systems.

5–6 64–80 Finite and infinite; sequence of natural numbers.

7 81–118 Larger and smaller numbers.

8 119–123 Finite and infinite parts of the number sequence.

9 124–131 Definition of a mapping of the number sequence by recursion
[‘Induktion’].

10 132–134 The class of simply infinite systems.

11–13 135–158 Addition, multiplication, exponentiation of numbers.

14 159–172 (Cardinal) number of the elements of a system.
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back to the late 1850s [Ferreirós, 1999, 88–99]. Also very modern and mature is, e.g., the
treatment of equipollence as an equivalence relation, but again this had a long prehistory
in his algebraic and number-theoretical work. The only shortcoming is that Dedekind did
not differentiate clearly between injectivity and bijectivity: he defined the first concept but
in fact he frequently employed the second.(Maybe he found it trivial and innocuous to
restrict the final set to the image.) A bijective mapping is called ‘similar’ or ‘distinct’—
natural terms to use in conjunction withAbbildung, a word that means ‘representation’.
Such a term suggests a philosophical turn, a theme discussed by Dedekind himself in the
first preface toWSZ.

The most original and profound theoretical development inWSZ consists in the so-
called theory ofchains, elaborated in a section on internal mappings (ch. 4). Having seen
that the structure and operations ofN can be characterized purely in terms of the successor
mappingσ , Dedekind noticed three essential traits of this structure: the mappingσ :N→
N is internal, it is also injective or ‘similar’,and there is a ‘base element’ (denoted 1) such
that 1/∈ σ(N). These three conditions were enough to prove thatN is Dedekind-infinite.
Nevertheless, as he explained in the letter to Keferstein mentioned above, Dedekind soon
realized that the three conditions would also be met by deviant (non-standard) setsN∗
containing unwelcome extra elements, possibly in such a way that proofs by mathematical
induction would not succeed in establishing the result for all members ofN∗. (The 1870s
draft shows traces of this noteworthy argument [Dugac, 1976, 295], which is a forerunner
of model theory.) A fourth condition was needed to fully characterizeN , and this would
be formulated by means of the concept of a chain.

Thus, the concept ofchain of a subset was obtained by analyzing and generalizing
the conditions that an internal mapping must satisfy in order to make proofs by induction
possible. Givenϕ :S→ S andA⊂ S, the chain of subsetA is the intersection of all subsets
K of S such thatA⊂K andϕ(K)⊂K. This is the closure ofA underϕ in S, the smallest
subset ofS containingA and closed underϕ, denoted byϕ0(A). Now, it suffices to add
a fourth condition to the three ones given in the last paragraph:N is the chain of{1},
i.e.,N = σ0({1}). The four conditions characterize thestructure of what Dedekind calls
a simply infinite set, and they turn out to be equivalent to Peano’s axioms. In particular,
the key chain condition is Dedekind’s sophisticated version of the axiom of mathematical
induction (axiom 9 below; the first three conditions are equivalent to the Peano axioms 1,
6, 7, 8).

Dedekind was able to show that all simply infinite sets are isomorphic, that is, that
his characterization ofN was categorical or monomorphic (ch. 10: the result can only
be recovered within a second-order logical framework). On the basis of the concept of
chain, he studied the relations< and�, and derived basic results on finite and infinite
subsets ofN . Most notably, he was the first to offera general theory and justification of
recursive definitions (ch. 9: ‘mappings of the number-series defined by induction’) and to
study primitive recursive functions. He proved the following theorem (art. 126): given any
mappingθ of set� in itself (injective or not), and given an elementω ∈ �, there is one
and only one mappingψ :N→� such thatψ(1)= ω andψ(n′)= θψ(n), wheren′ is the
successor ofn.

Then Dedekind proceeded to introduce by recursive definition the operations of ad-
dition, multiplication, and powering, establishing their properties in a perfectly rigorous
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way. Furthermore, he employed the theorem of art. 126 as a basis to justify the intro-
duction of the finite cardinal numbers (ch. 14). To do so, he offered a proof that a set is
(Dedekind-)finite if and only if there exists an initial segmentZn = {x: x ∈ N andx < n}
equipollent to the given set. In his approach (art. 159), this required to show that, ifS is an
infinite set, then each initial segmentZn can be mapped ontoS, and conversely. Dedekind
remarked that proving the converse, evidentas it might seem, was ‘complicated’, and in
fact his proof relied implicitly upon the axiom of choice.

One of the distinguishing characteristics ofWSZ is that Dedekind proceeded to inves-
tigate the required concepts in great generality. While all he needed for his limited topic
was chains of an element under a bijective mapping (as the setsN\Zn always are), his
theory of chains studied chains of arbitrary sets under arbitrary mappings. In this way, he
obtained an extremely useful tool for the development of set theory, but he failed to spell
this out for his readers. And here we find a little mystery withinWSZ: the exposition of
chain theory (ch. 4) ends with a proposition that establishes (in generalized form) the cru-
cial lemma for proving the Cantor–Bernstein theorem, a lemma that Cantor himself had
formulated.

The Cantor–Bernstein theorem is a very basic result in the theory of cardinalities: if
setA is equipollent to a part ofB, andB is equipollent to a part ofA, thenA andB are
themselves equipollent. Dedekind was aware of the importance that this result had for his
correspondent Cantor and for general set theory. Cantor searched for a proof in vain since
1882, but his student Felix Bernstein succeeded in 1897. Dedekind’s proof is simpler and
more elegant, and he obtained it during 1887 while preparing the final draft forWSZ (see
Werke, vol. 3, 447–448). It seems clear that it was not inadvertently that he presented the
crucial lemma in art. 63, leaving the proof for his readers. But Cantor failed to appreciate
the implications and the real scope of Dedekind’s results in chain theory [Ferreirós, 1993;
1999, 239–241].

4 PEANO’S THEORY

The contents of Peano’s bookletArithmetices principia are summarised in Table 2. His
main aim was to elaborate a perspicuous logical notation, adequate to the goal of sym-
bolically rewriting all known mathematics. In his view, this would enable him to avoid
‘the ambiguity of language’ and would thus provide the key to a satisfactory solution of

Table 2. Contents by chapters of Peano’s booklet.

Page(s) Chs. (Short) titles or descriptions

iii–xvi Preface: notations of logic.

1 1–2 Numbers and addition; subtraction.

6 3–6 Maxima and minima; addition; multiplication; powers; division.

12 7 Various theorems; rational numbers.

14 8–9 Rational and irrational numbers.

17 10 Systems of real numbers. [End 20.]
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the question of the foundations of mathematics. The first version of his axiom system in-
termingled the principles of the logic of identity (restricted to number objects—axioms
2 to 5) with the famous five axioms (p. 34). To facilitate reading, I have slightly mod-
ernized Peano’s logical notation, replacing some dots by parentheses and employing the
symbol ‘∧’ for conjunction (‘and’):

1. 1∈N .

6. a ∈N.⊃ .a + 1∈N .

7. a, b ∈N.⊃ .(a = b.= .a + 1= b+ 1).

8. a ∈N.⊃ .a + 1−= 1.

9. [k ∈K ∧ 1∈ k ∧ x ∈N ∧ (x ∈ k.⊃ .x + 1∈ k)].⊃ .N ⊃ k.
The second occurrence of ‘=’ in 7. denotes ‘if and only if’ and would now be rendered by
‘↔’; in 8., ‘−=’ means ‘�=’; the last instance of ‘⊃’ in 9. denotes set inclusion.

‘1 ∈ N ’ was read, alternatively, ‘1 is a number’ and ‘1 belongs to (the class)N ’. As
one can readily notice, the logical symbolism was systematically given a dual reading, on
the one hand as elementary logical operations, on the other as basic set-theoretical oper-
ations. (The tradition of doing so began with Boole 50 years earlier: see §36.) Moreover,
the principle of comprehension was presupposed in Peano’s notation. As is well known,
this principle was responsible for the contradictions, paradoxes or antinomies discovered
around 1900 (§61.1). The contradictory principle of comprehension was also implicit in
Dedekind’s work (see especiallyWSZ, art. 60). Related to all of this, Peano’s axioms are
meant to be formalized in second-order logic, not the first-order logic which we usually
employ since the time of Hilbert’s program.

In later presentations Peano [1898a] reduced his system to five axioms, treating the
principles of identity as logic, and he chose to take 0 as the base element. Meanwhile,
Peano [1891] offered five ‘primitive propositions’ that are ‘due to Dedekind’ (p. 86; see
p. 84), though at first sight they seem just a modification of Peano’s original system. (He
admitted that he had altered the chain principleβ , bringing it closer to his own induction
principle; he seems never to have grasped the great generality of Dedekind’s theory of
chains.) On the basis of that declaration, itis frequently stated that Peano simply took his
axioms from Dedekind, and acknowledged to have done so in [1891].

But this interpretation is contrary to Peano’s own statements, and it overlooks the differ-
ences between the system in [Peano, 1891] and those in this booklet and [1898a]. Closer
scrutiny reveals that in [Peano, 1891] he formulates the axioms as conditions on a setN ,
its subsets, and a successor function. Meanwhile, when the axioms are presented in the
other two works they are formulated more elementarily as conditions on theelements of a
set. This seems to be the way Peano himself understood the main difference between his
analysis and that of Dedekind (see also [1891, 88] and [1898b, 243]).

It deserves to be mentioned that, like [Grassmann, 1861], Peano’sArithmetices prin-
cipia not only deals with the natural numbers. Having presented all of the basic arithmeti-
cal operations, Peano goes on to discuss several topics in order to ‘better show the power of
this [new] method’. First he offers a selection of number-theoretical results (without proof,
art. 7) and then he introduces the rational andthe real numbers. The rationals are rendered
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as ratios of two natural numbers (art. 8), the reals as formal ‘limits’ of sets of rationals,
essentially following Dedekind’s definition by means of cuts (art. 9): the treatment of the
real numbers was the most unsatisfactory aspect of [Grassmann, 1861]. Finally, art. 10 dis-
cusses basic results in the topology of the real numbers, belonging to the theory of ‘what
Cantor callsPunktmenge (ensemble de points)’, on the basis of the concepts of interior, ex-
terior and limit point. Some of these results were new; many years earlier, in unpublished
work unknown to Peano, Dedekind had also defined the concepts of interior, exterior and
boundary [Ferreirós, 1999, 138–139].

As we see, at first sight Peano’s treatise may look more modern than Dedekind’s, be-
cause he employs the language of logic, and with notations that have been extremely influ-
ential. Nevertheless, Dedekind’s account of the foundations of the natural number system
was much more detailed. An example is the issue of recursive definitions. Peano uses them,
like Grassmann and others, although they do not comply with his own explicit restrictions
on definitions. Only in Dedekind we find a general account and justification of recursive
definitions (art. 126; see above), established as a foundation for the introduction of the
arithmetical operations. Likewise, in Dedekind we find detailed arguments to the effect
that the chosen axioms are actually sufficient to characterizeN . And, while Peano’s axiom
of induction is a direct rendition of the customary principle, Dedekind subsumed it under
the very general and powerful theory of chains.

Those same reasons have the side effect that Dedekind’s work becomes more difficult
for a general reader than Peano’s. There is, finally, one important difference between both
works, which this time makes Peano’s clearlycloser to us: while he uses clearly and very
explicitly the modern axiomatic terminology, Dedekind carefully avoided the very word
‘axiom’. As to the reason for this, in my viewthat was because of the logicist project, the
way that Dedekind (and Frege too) understood it. The defining conditions ofN were not
axioms, but perfectly legitimate logical stipulations, from which all relevant arithmetical
results follow. In particular, all existential presuppositions would have been previously
guaranteed on the basis of logic alone. The one existential assumption that Dedekind was
unable to justify, in spite of his good efforts inspired by Bolzano, is the axiom of infinity
[Ferreirós, 1999, 244–248, 252–253].

5 APPRAISAL AND IMPACT

While even today some authors regard Dedekind’s approach as ‘formal’ and too abstract,
others welcome it as a key instance of structural reasoning in mathematics. In spite of his
critical attitude toward the set-theoretical approach, Hermann Weyl stated that Dedekind’s
booklet had marked an epoch in the development of mathematical thought [Weyl, 1918, 16;
also pp. 35–36]. This seems to have been a Göttingen theme, probably fostered by Hilbert
himself (compare §55). In his crucial paper on the axiomatization of set theory, Ernst
Zermelo [1908, 200] referred to it as the ‘theory created by Cantor and Dedekind’. While
his early work in set theory had focused only on Cantor’s work, from 1905, probably under
the influence of Hilbert, Zermelo had made a close study of Dedekind’s contributions.

The impact ofWSZ has been a matter of some contention during recent years. When it
was published, Dedekind was already very famous as a number theorist, and his booklet
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received considerable attention. Peano referred to it while presenting his axiom system for
N , remarking on the essential equivalence of their characterizations (p. vi). Subsequently
he offered an elaboration of Dedekind’s views in his own symbolism [Peano, 1891], and
in the Formulaire he reproduced excerpts from Dedekind’s work in the original German,
reviewing its most important steps [1898a, 218–219]. Indeed, followers of Peano such as
Rodolfo Bettazzi and Cesare Burali-Forti relied extensively on Dedekind’s work during the
1890s.

Hilbert paid attention toWSZ immediately after its appearance, and in 1891 he would
refer to it in his lectures, apparently endorsing Dedekind’s views [Hallett and Majer, 2004].
Frege commented on the work in detail in hisGrundgesetze, critically as usual; but he
acknowledged that it was the most complete and noteworthy recent contribution to the
foundations of mathematics [Frege, 1893, vii]; on Frege’s critical stance, see [Tait, 1996].

Schröder included an enthusiastic detailed review ofWSZ in volume 3 of his lectures
on logic. He made it one of the ‘most important objectives’ of his work to incorporate
Dedekind’s essential ingredients (especially the theory of mappings and chains) into gen-
eral logic, namely under the theory of relations [Schröder, 1895, 346–352]. Indeed, lectures
9 and 12 in this volume deal with Dedekind’s most general ideas. Bertrand Russell read
Dedekind’s work long before his acquaintance with Peano and Frege [Garciadiego, 1992];
while his reaction to important aspects of it was negative, perhaps the topic of Dedekind’s
role in the emergence of Russell’s logicist ideas should be more carefully explored.

In good measure, the fortune of Dedekind’s work reflects the stormy development of
logic and foundations during those days. Exaggeratedly abstract for most of his contempo-
raries, its abandonment of intuition for the sake of deductive rigor was even ‘horrendous’
(‘grässlich’) to Paul du Bois-Reymond (as recorded by young Hilbert in a visit in 1888 to
Berlin; see [Dugac, 1976, 203 and 93]). In a letter to Klein, Dedekind himself made jokes
about the negative reception that he expected [Dugac, 1976, 189].

By contrast, within a few years the book would be criticized for presenting things too
quickly and easily, and for not making explicit the elementary logical basis of the whole
theory (see, for example, [Frege, 1893, 1–3]; and also Russell (§61) and other logicians of
the next generation). Praised by a few—especially Frege, Peirce, and above all Schröder
and Hilbert—for having established a deep, hidden connection between arithmetic and
logic, and indeed for demonstrating the logicist thesis, soon it would be severely criticized
in the wake of the discovery of logical and set-theoretical paradoxes (compare [van Hei-
jenoort, 1967]passim). At any rate, Dedekind’s approach to the natural numbers, stripped
from the logicist reading he made of it, fared much better than others. There was no prob-
lem to absorb it within axiomatic set theory, as happened already in Zermelo’s key paper
of 1908.

A surprising feature ofWSZ is the total lack of references to Cantor’s epoch-making
work on transfinite set theory. In this writer’s opinion, that was completely intentional
and due to strained relations between both mathematicians. (Immediately after publication
of WSZ, Cantor wrote to him defending some ‘priority rights’: the letter has not been
preserved, but the issue is mentioned in Dedekind’s letter to Weber of 24 January, 1888,
in Werke, vol. 3, 489.) In fact, Cantor and his work was present in absence several times
throughout the work. We have already commented on the most noteworthy instance, the
case of art. 63 and the Cantor–Bernstein theorem. Another very striking instance comes
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out in art. 161, which contains the definition ofcardinal numbers. A footnote here indicates
that Dedekind will restrict his definition to finite cardinals ‘for reasons of simplicity and
clarity’, which obviously suggests that it would not be difficult to apply his treatment to
more general cases. This can only mean a definition of transfinite cardinals based on the
corresponding ordinals. So Dedekind is implicitly referring to Cantor’s work (especially
[Cantor, 1883], upon which see §46) and to the possibility of reworking it in analogy with
his approach to the natural numbers. This would be done many years later in the context of
axiomatic set theory.

A third instance of Cantor’s presence in absence can be found by comparing the pre-
served 1887 draft and the final text. Dedekind eliminated a few words from his draft of
the preface: having criticized those who take for simple complicated concepts like that
of cardinality, he had written ‘(in opposition to Cantor)’ (Cod. Ms. Dedekind III, 1, III:
‘Gegensatz zu Cantor’). The reason why he chose to avoid this reference is unknown, but
probably he wanted to avoid quarrels and disputes (this desire is explicit in the 1888 letter
to Weber, mentioned above).

The impact of Dedekind’s theory of sets, mappings and natural numbers in 20th-century
axiomatic set theory deserves special mention. It began with the path-breaking paper
[1908] by Zermelo. As is well known, Zermelo’s axiomatization was intimately tied with
his defence and reworking of the well-ordering theorem [Moore, 1982]. In order to produce
a proof of well-ordering as simple and direct as possible, avoiding advanced concepts in
set theory, Zermelo drew on the theory of chains and generalized it to deal with the transfi-
nite case. His axiomatic system was based ona careful analysis of the work of Cantor and
Dedekind, and he remarked that the axiom of infinity was ‘essentially due to Dedekind’
[Zermelo, 1908, 204]. Indeed, what Zermelo does here is to postulate the existence of a
simply infinite set in the sense of Dedekind.

Chain theory was also employed by Thoralf Skolem in his new proof (1920) of Leopold
Löwenheim’s famous satisfiability result. Precisely the use of chains made it possible to
fill a serious gap in Löwenheim’s original proof, published five years earlier. The theory
was employed again in 1922 by Casimiercz Kuratowski, in order to show how to eliminate
the use of transfinite numbers, which by then was customary in mainstream mathematics,
while these numbers had not yet been incorporated into axiomatic set theory! [Kuratowski,
1922, 76–108]. Generally speaking, the axiomatic treatment of the (finite) ordinals and of
transfinite induction is closely related to the work of Dedekind.
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CHAPTER 48

HENRI POINCARÉ, MEMOIR ON THE
THREE-BODY PROBLEM (1890)

June Barrow-Green

Drawing on his work on the qualitative theory of differential equations, in this memoir
Poincaré developed a theory of periodic solutions that opened up an entirely new way of
thinking about dynamical problems. It is famous both for containing the first description of
mathematical chaos and for providing the basis for his acclaimedLes méthodes nouvelles
de la mécanique céleste (1892–1899).

First publication. ‘Sur le problème des trois corps et les équations de la dynamique’,Acta
mathematica, 13 (1890), 1–270.

Reprint. In Œuvres de Henri Poincaré, vol. 7, Paris: Gauthier–Villars, 1952, 262–479.

Related articles: Newton (§5), Laplace (§18), Lyapunov (§51), Birkhoff (§68).

1 INTRODUCTION

Henri Poincaré (1854–1912) was educated at theÉcole Polytechnique and theÉcole Na-
tionale Supérieure des Mines, and received his doctorate from the University of Paris in
1879. In 1881, after two years in charge of the analysis course at the University of Caen, he
moved to the University of Paris, where from 1886 he occupied successively the chair of
Mathematical Physics and Probability, and the chair of Mathematical Astronomy and Ce-
lestial Mechanics. He wrote more than 30 books and almost 500 papers, the most important
being on function theory, geometry, topology, differential equations, celestial mechanics,
electromagnetic theory, and the foundations of science.

Poincaré rose to international prominence during the early 1880s with his discovery
of Fuchsian functions. During the same period, motivated by an interest in some of the
fundamental questions of mechanics, in particular the problem of the stability of the solar
system, he began his pioneering research on the qualitative theory of differential equations,
work that laid the foundations for the memoir on three-body problem (hereafter, ‘TBP’).

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.

627



628 J. Barrow-Green

Through his work on Fuchsian functions and on the theory of differential equations he was
led to recognise the importance of the topology (or as it was then called, ‘analysis situs’)
of manifolds; so in the 1890s he began to study the topology of manifolds as a subject
in its own right, effectively creating the new field of algebraic topology. Meanwhile, he
continued to work and publish on celestial mechanics, the three volumes onLes méth-
odes nouvelles de la mécanique céleste (‘New methods of celestial mechanics’; hereafter,
‘CM’), appearing in 1892, 1893 and 1899. Central to his success, both in topology and
celestial mechanics, was his remarkable capacity for geometric visualisation. In the early
years of the 20th century he became known to a much wider audience through his books
of essays on the philosophy of mathematics and science.

The three-body problem is one of the most celebrated problems in celestial mechanics
[Gautier, 1817]. Like many good problems, it is easy to state: three particles move in space
under their mutual gravitational attraction; given their initial conditions, determine their
subsequent motion. As is often the case with such problems, its importance lies as much
in the mathematical advances generated by attempts at its solution as in the actual problem
itself, and since its formulation by Isaac Newton many leading mathematicians have been
attracted to it. But of the numerous papers published—more than 800 appeared between
the years 1750 and 1900—none has continued to excite more attention thanTBP.

2 ORIGIN AND SIGNIFICANCE OF THE THREE-BODY PROBLEM

The three-body problem established its place within the mathematical canon on the publi-
cation of Newton’sPrincipia in 1687 (§5.10). From then on it became important to verify
whether Newton’s law of gravitation was capable of rendering a complete understanding of
how celestial bodies move in three-dimensional space. This involved determining the rel-
ative motion ofn bodies attracting one another according to the law. Newton himself had
solved the two-body problem and so the three-body problem became the focus for attack.

Although Newton had been able to use geometry to solve the two-body problem, it
rapidly became clear that the three-body problem required an analytical approach. Since
each of the three particles has three position components and three velocity components,
the problem is a system of order 18, and it can be represented by a system of nine second-
order differential equations. But if these equations are to be solved exactly then 18 integrals
of motion need to be found. By the end of the 18th century, largely as a result of the work
of Leonhard Euler (1707–1783) and Joseph Louis Lagrange (1736–1813), 11 integrals
had been discovered, and in 1843 Carl Jacobi (1804–1851) found a 12th. Jacobi was also
responsible, together with Sir William Rowan Hamilton (1805–1865), fordeveloping new
methods for integrating the differential equations of a general dynamical system that turned
out to be particularly useful in the context of the problem (compare §40.5).

Towards the end of the 1870s the American mathematical astronomer George William
Hill (1838–1914) published two papers on the lunar theory that had a profound influence
on the development of celestial mechanics in general and the three-body problem in partic-
ular. The key to Hill’s success lay in his treatment of periodic solutions—one of his papers
included the first new periodic solutions of the three-body problem since Lagrange’s dis-
covery of special periodic solutions in 1772—and this aspect of his work had a profound
influence on Poincaré.
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As the 19th century wore on and the impossibility of finding an exact solution to the
problem looked increasingly likely, mathematicians shifted from searching for integrals to
improving the approximations that resulted from the solution of the differential equations
being given as infinite series. This involved attempting to eliminate the secular terms in
the expansion in order to try to confine it to series in which the time only occurs within
the arguments of the periodic terms. The difficulty of the problem also led mathematicians
to consider a special simplified case. In thiscase—which was originally formulated by
Euler and later termed the ‘restricted’ three-body problem by Poincaré—two of the bodies,
known as the primaries, revolve around their centre of mass in circular orbits under the
influence of their mutual gravitational attraction and so form a two-body system in which
their motion is known. A third body, generally known as the planetoid, assumed massless
with respect to the other two, moves in the plane defined by the two revolving bodies and,
while being gravitationally influenced by them, exerts no influence of its own. The problem
is then to ascertain the motion of the third body. Apart from its simplifying characteristics,
the restricted problem also provides a good approximation for real physical situations,
such as the problem of determining the motion of the Moon around the Earth, given the
presence of the Sun. In the context ofTBP, the restricted problem is important since it is
the formulation upon which Poincaré based most of his work.

Potential solvers were also attracted tothe three-body problem because of its intimate
link with the fundamental question of the stabilityof the solar system. That is, the question
of whether the planetary system will always keep the same form as it has now, or whether
eventually one of the planets will escape from the system or, perhaps worse, experience a
collision. If the Sun and the planets are considered as point masses—which is a reason-
able approximation given that they are all virtually spherical and that their dimensions are
extremely small when compared with the distances between them—and if only gravita-
tional forces are taken into account, i.e. all other forces such as solar winds or relativistic
effects are ignored, then the solar system can be modelled as a ten-body problem. Over the
centuries many mathematicians and astronomers have been drawn to the stability problem.
Two of the most notable were Lagrange and Pierre-Simon Laplace (1749–1827) (§18.4);
both made significant advances, with Laplace believing that he had actually proved stabil-
ity. Poincaré retained a fascination for the stability problem throughout his life [Poincaré,
1898] and he made no secret of the fact that it was an important spur behind much of his
work in TBP.

3 POINCARÉ’S WORK BEFORETBP

Almost from the beginning of his career Poincaré had been concerned with the fundamen-
tal problems of celestial mechanics, and many of the papers that he published during the
1880s relate to his interest in the subject. Arguably the most important is his acclaimed
four-part memoir on curves defined by differential equations [Poincaré, 1881, 1882, 1885,
1886a], in which he initiated the qualitative theory of differential equations in the real do-
main. These papers are full of new ideas, many of which form the basis for results inTBP.
The three-body problem featured prominently, and Poincaré was quite clear about its moti-
vating role. When he began this work, research was, in effect, centred on studying the local
properties of a solution to a differential equation; his approach was radically different. He
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looked beyond local analysis and brought a global perspective to the problem by under-
taking a qualitative study of the function in the whole plane. His objective was to provide
a geometric study of the solution curves of a first-order differential equation, and indeed
it was his geometrical insight that became oneof the hallmarks of his research on differ-
ential equations. What was new and important was his idea of thinking of the solutions in
terms of curves rather than functions, and it was this which marked a departure from the
work of his predecessors whose research had been dominated by power-series methods.
Since Poincaré’s interest in the qualitative theory of differential equations was driven in
part by his interest in the question of the stability of the solar system, he recognised the
importance of considering the global properties of real as opposed to complex solutions,
the latter having been the focus of earlier investigators.

Poincaré also produced several papers in which he addressed either a particular aspect of
the three-body problem or a connected problem of celestial mechanics. These contain his
initial researches into periodic solutions and his early investigations into the convergence
of trigonometric series used in celestial mechanics. There are also papers in which he
developed ideas and techniques which he used inTBP but which were generated in a more
general context, such as his thesis on first-order partial differential equations and the paper
[Poincaré, 1886b] on asymptotic series.

4 THE PUBLICATION OFTBP

TBP was published in 1890, but its journey to press began some five years earlier. In 1885
notices appeared announcing a mathematics competition to celebrate the 60th birthday
of King Oscar II of Sweden and Norway. The organiser of the competition and one of
the judges was the Swedish mathematician Gösta Mittag-Leffler (1846–1927); the other
judges were Karl Weierstrass (1815–1897) and Charles Hermite (1822–1901). Four ques-
tions were set, of which one, posed by Weierstrass, required a solution to then-body prob-
lem. The question, which reflected Weierstrass’s long-standing interest in the problem,
asked for a solution under the particular conditions that no collisions occur.

For Poincaré the competition acted as a stimulus to synthesise many of the ideas on
which he had been working for several years. He had been interested in the question of the
stability of the solar system for some time and had been building up a battery of techniques
with which to launch an offensive. Many of these techniques originated in his research
on the qualitative theory of differential equations in which he had first discussed the idea
of stability. For the competition he had intended to tackle then-body problem by start-
ing with the general three-body problem and then extending his results, but the inherent
difficulties led him to focus his attention almost exclusively on the ‘restricted problem’.
Despite not solving then-body problem, his work on the restricted problem was recog-
nised as outstanding and in January 1889 he was awarded the prize. The following year
TBP was published as the winning entry in the competition.

A combination of royal patronage and carefully planned public relations meant that
the competition gained recognition stretching well beyond the world of mathematics. In
the numerous obituary notices and commentaries on Poincaré’s œuvre, not only isTBP
singled out for particular acclaim but the point is often made that it was as a consequence
of winning the Oscar prize that Poincaré’s fame became so widespread.
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However, this widely applauded memoir is in fact very different from the version that
actually won the prize. In the introduction to the published memoir, Poincaré mentioned
that he had revised the essay for publication, but gave no indication of the nature and
extent of his alterations. However, the discovery of a printed copy of the original essay
personally annotated by him reveals all the revisions; in particular, it shows that some of the
principal results for which the memoir is best known today are nowhere to be found in the
original essay. More importantly, it shows that these new results are not simply extensions
of previously existing ones; rather, they derive from Poincaré’s discovery of a significant
error, which he had made only a few days before the essay was due to be published. As
a result of this discovery he was forced to rewrite a substantial proportion of the essay,
a process that considerably delayed the ultimate publication of the memoir. Although the
existence of the error was known to some of his contemporaries, its seriousness has only
been recognised more recently [Barrow-Green, 1997]. It is now known that it was only as
a result of correcting the error that Poincaré made his discovery of chaos.

Poincaré was naturally distressed by the discovery of the error and even questioned
whether his original essay was still worthyof the prize. Although there was no question of
the prize being rescinded, he had to pay for the reprinting of the memoir, the cost of which
was considerably more than the prize he had originally won.

5 THE CONTENT OFTBP

The contents of Poincaré’s memoir are summarised in Table 1. He adopted an unprece-
dented qualitative approach to the problem and its intrinsic dynamics. By using qualitative
methods and focusing on how solutions behaverather than using quantitative methods and
trying to find explicit formulae, he brought about a fundamental change in the way mathe-
maticians thought about the problem.

Core toTBP is Poincaré’s theory of periodic solutions. Having studied Hill’s papers,
he had seen the advantage of using periodic solutions to deal with problems of a general
dynamical type, and inTBP he exploited this advantage to the full. In the first Part he dis-
cussed the underlying theory both from an analytical and from a geometric perspective. As
a result the error occurs in both the geometry and the analysis. Its full implications became
clear in the second Part of the memoir when he dealt with the application of the theory to
systems with two degrees of freedom, in particular the restricted three-body problem.

In Poincaré’s formulation of the restricted problem the position of the planetoid in phase
space was described by two linear and two angular variables,x1 andx2, andy1 andy2

respectively, the latter taking the period 2π . The variables were connected by the integral
of conservation of energy (art. 15):

F(x1, x2, y1, y2)= C. (1)

He put the differential equations into Hamiltonian form

dxi

dt
= ∂F
∂yi
,
dyi

dt
=− ∂F

∂xi
, i = 1,2, (2)
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Table 1. Summary by Sections of Poincaré’s memoir.

Section ‘Title’; other included topics
Arts; pp.

–; 3 ‘Introduction’.

1.1 ‘General properties of differential equations’.

1–4; 38 Notations and definitions. Method of majorants; application to partial differ-
ential equations. Integration of linear equations with periodic coefficients.

1.2 ‘Theory of invariant integrals’.

5–8; 42 Properties of the equations of dynamics. Definition, transformation and use
of invariant integrals. Recurrence theorem.

1.3 ‘Theory of periodic solutions’.

9–14; 88 Existence of periodic solutions; characteristic exponents. Periodic solu-
tions of the equations of dynamics. Calculation of characteristic exponents.
Asymptotic solutions, including of the equations of dynamics.

2.1 ‘The case with two degrees of freedom’.

15; 15 Geometric representations.

2.2 ‘Study of asymptotic surfaces’.

16–19; 47 Statement of the problem. First, second, third approximation.

2.3 ‘Miscellaneous results’.

20–22; 38 Periodic solutions of the second class. Divergence of Lindstedt’s series. Non-
existence of single-valued integrals: denseness of periodic solutions.

2.4 ‘Attempts at generalisation’.

23; 5 Then-body problem.

which, in accordance with the qualitative theory that he had previously developed, he re-
garded as defining flows on a three-dimensional surface. His brilliant insight was to recog-
nise that rather than considering the flow in the entire three-dimensional space, it was much
more convenient to consider the first return map induced by the flow on a two-dimensional
surface of sectionS transverse to the flow (art. 8). (Today such surfaces of section are
known as ‘Poincaré sections’.) This map is defined by choosing a pointM on S at which
S is intersected by a flow line; then the image ofM under the map is the pointM ′ at
which that flow line first intersectsS again. Thus in the three-dimensional space a pe-
riodic solution corresponds to a closed curve, but under the map a 2π -periodic solution
corresponds to a fixed point and a 2πk-periodic solution corresponds to a cycle of pe-
riod k.

To form the power series expansions of the solutions to the equations Poincaré used
the mass of the smaller of the primaries,µ, as the parameter. This is because whenµ= 0
the problem reduces to the Kepler problem, that is, attraction by a single fixed centre, and
he could employ the strategy of starting with a particular solution for whichµ= 0 before
varyingµ analytically to see if solutions existed for very small values ofµ.
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Poincaré developed the HamiltonianF in powers ofµ,

F = F0+µF1+µ2F2+ · · · , (3)

whereF0 depends only onx andF1,F2, . . . are periodic functions of period 2π with
respect toy (art. 16). He supposed that whenµ = 0 there existed periodic solutions of
the form

xi = φi(t), yi =ψi(t). (4)

He then showed that there also existed periodic solutions of the form

xi = φi(t)+ ξi , yi =ψi(t)+ ηi, (5)

where

ξi = Si exp(αkt), ηi = Ti exp(αkt). (6)

The Si andTi were periodic functions oft , and theαk are certain constants which he
called ‘characteristic exponents’ (art. 10). Importantly, he realised that it was the form of
the characteristic exponents that indicated the stability of the solutions. If the characteristic
exponents are imaginary then the periodic solution is stable, otherwise it is unstable. In his
discussions on stability Poincaré used the definition proposed by Siméon-Denis Poisson
(1781–1840), that the motion of a point is regarded as stable if it returned infinitely often
to positions arbitrarily close to its initial position.

As Poincaré recognised, one of the great advantages of periodic solutions is that they
provide a natural starting point for studying and classifying other nearby solutions. And it
was by studying solutions only slightly differing from a given periodic solution that he was
led to his remarkable discovery of asymptotic solutions: solutions which either slowly ap-
proach or slowly move away from an unstable periodic solution (art. 13). He showed that in
the three-dimensional solution space of the restricted problem, these asymptotic solutions
generate families of curves which fill out surfaces and which asymptotically approach the
curve representing the generating unstable periodic solution, and that these surfaces corre-
spond to curves in the transverse section. In order to gain an understanding of the behaviour
of these asymptotic solutions, Poincaré investigated the nature of the curves on the trans-
verse section. This investigation required what was to be another important topic inTBP,
and one particularly significant with regard to the error: the theory of invariant integrals
(art. 6–8).

Although Poincaré was not the first to recognise the existence and value of invariant
integrals—they are earlier encounteredin the work of Joseph Liouville (1809–1882) and
Ludwig Boltzmann (1844–1906)—he was responsible for developing the general theory
that revealed that the existence of an invariant integral is a fundamental property of Hamil-
tonian systems of differential equations. His theory of invariant integrals also led him to
his renowned recurrence theorem: that given a region of phase space, however small, there
will be trajectories which traverse it infinitely often (art. 8). In other words, at some future
time the system will return arbitrarily close to its initial situation and will do so infinitely
often.
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Poincaré concluded his discussion of invariant integrals with a series of theorems char-
acterised by their geometric nature (art. 8), and in the original version ofTBP it was in one
of these theorems that the fundamental error in his geometry had occurred. He had failed
to take proper account of the exact geometric nature of a particular curve. He thought that
he had proved a particular curve was closed when, as he later realised, it was actually self-
intersecting. In essence he had failed to take into account the full range of possibilities
consistent with the constraints imposed by the existence of the invariant integral.

The error was reflected in Poincaré’s analytical description of the asymptotic solutions.
When he had originally calculated the series expansions for these solutions, he had as-
sumed that the series were convergent. But, as he subsequently discovered, the series were
actually divergent (art. 13); they belonged to the class of series now known as asymptotic
and for which he himself had provided the first formal definition [Poincaré, 1886b].

In Poincaré’s geometric representation of the restricted problem, a generating unstable
periodic solution and its accompanying familyof asymptotic solutions are represented in
the three-dimensional solution space by a closed curve and two asymptotic surfaces (art.
16). To understand the behaviour of the asymptotic solutions, he sought the exact equations
(in infinite series expanded in powers of the parameterµ) for the asymptotic surfaces. He
considered the intersections of the surfaces with a transverse section and proceeded by
successive stages of approximation (arts. 17–19).

In his original analysis, Poincaré was led to the mistaken result that the intersections
of the asymptotic surfaces with the transverse section were represented by closed curves
and hence that the asymptotic surfaces were closed. Furthermore, inherent in this result
was the implication of stability in the sense that the solutions remained confined to a given
region of space. In other words, he believed that he had proved that for sufficiently small
values of the parameterµ there was, relative to a given unstable periodic solution, a set
of asymptotic solutions which could be considered stable, that these solutions were well
behaved and that they could be completely understood.

In his revised analysis, Poincaré first proved that the series for the asymptotic solutions
were not convergent. He then established that the curves representing the asymptotic sur-
faces were not closed but self-intersecting and,moreover, they intersected infinitely often
(art. 19). He called the trajectories that passed through the point of intersection ‘doubly
asymptotic’. (Later, inCM, he called them ‘homoclinic solutions’, and the points of inter-
section are now known as ‘homoclinic points’.) Poincaré’s description inTBP of doubly
asymptotic trajectories is the first mathematical description of chaotic motion in a dynam-
ical system. Although he drew little attention to the behaviour that he had discovered and
made no attempt to draw a diagram, he was profoundly disturbed by his discovery, and
almost a decade elapsed before he published anything further on the subject.

The penultimate chapter ofTBP contains supplementary results connected with the
three-body problem. The first of these is a proof of the existence of periodic solutions
making more than one revolution around the origin (art. 20). This is notable for including
Poincaré’s conjecture concerning the denseness of the periodic solutions: that given any
particular solution to the restricted problem it should be possible to find a periodic solution
(which may have an extremely long period) such that the difference between the two solu-
tions is as small as desired for any given length of time, providing no escape or collision
occurs. Poincaré did not prove the conjecture himself but it was later shown to be true.
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The chapter also contains a proof of the non-existence of any new integral of the re-
stricted problem (art. 22) that was an important complement to a result published by Hein-
rich Bruns (1848–1919) in 1887 which showed that no new algebraic integral of the gen-
eral three-body problem could exist. Also important is Poincaré’s discussion of the purely
trigonometric series known as Lindstedt’s series (art. 21). This series, which contains no
secular terms, was named after the Swedish astronomer Anders Lindstedt (1854–1939)
who had sought to show that it could be used to solve a particular form of second-order dif-
ferential equation. Poincaré demonstrated, contrary to what had previously been thought,
that the series were not uniformly convergent for all the values of the arbitrary constants of
integration they contain, although his discussion was incomplete as he gave no considera-
tion to the circumstances under which convergence could occur.

In the final chapter (art. 23), Poincaré provided a brief discussion on the difficulties in
generalising his earlier results to then-body problem. He showed, for example, how, in
a particular case, an increase from two to three in the number of degrees of freedom led
either to the problem of ‘small divisors’ or to inscrutable integrals. Either way the problem
was intractable.

6 POINCARÉ ON CELESTIAL MECHANICS AFTERTBP

Poincaré’s bookCM (1892–1899) contains the principal ideas fromTBP but in a more
fully explained and developed form. A greater number of applications of the theory are
included, as well as a substantial amount of new material, with the attention being as much
on the general three-body problem as on the restricted problem. The first volume includes
an amplified treatment of periodic solutions, asymptotic solutions and the non-existence
of new uniform integrals. The second volume is devoted to the perturbation methods of
mathematical astronomers; while the third volume, which is characterised by Poincaré’s
geometrical ideas, contains a discussion of invariant integrals and stability. In the third
volume he returned for the first time to the subject of doubly asymptotic solutions, further
developing the theory and discovering a second more complex type of solution. These
new solutions, which he called ‘heteroclinic solutions’, are associated with two unstable
periodic solutions rather than one, and are correspondingly more complicated.

Poincaré also published several short papers of a general nature on the three-body prob-
lem and on the stability of the solar system. These papers embrace a greater practical
perspective thanTBP and were a well judged response to the need for a more popular pre-
sentation of his ideas. They include a synopsis of the memoir specifically designed to be
accessible to astronomers and those whose interest in the three-body problem was moti-
vated by practical considerations, as well as an almost completely descriptive exposition
of results relating to the restricted three-body problem [Poincaré, 1891a, 1891b].

7 THE RECEPTION OFTBP

As the winning entry in the Oscar competitionTBP attracted considerable attention, and
it met with an enthusiastic reception. There was, however, one detractor, the astronomer
Hugo Gyldén (1841–1896) who mistakenly believed that he had already discovered similar
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results. But despite the positive response, it is conspicuous that almost all of the reviews
of the memoir failed to include any discussion of Poincaré’s doubly asymptotic solutions;
typical is the detailed account ofTBP by Edmund Taylor Whittaker (1873–1956) which
appeared as part of his BAAS report on the three-body problem [Whittaker, 1899]. An
exception was provided by Hermann Minkowski (1864–1909) who, in his review for the
Jahrbuch, openly acknowledged the difficulties associated with the solutions [Minkowski,
1893].

However, despite its warm reception,TBP did create problems for many of its readers.
Not only was it fiercely demanding and full of new mathematics; the difficulties were
compounded by Poincaré’s customary lack of detail. Astronomers in particular struggled
with it: even Hill was led to criticise publicly some of the results. Although, as Poincaré
himself showed, little of Hill’s criticisms stood up to rigorous scrutiny, they reveal just
where many of the problems lay.

In 1891 some interesting observations on particular results inTBP were made by Lord
Kelvin (1824–1907) who, having had the memoir brought to his attention by Arthur Cayley
(1821–1895), was especially struck by the relationship between some of Poincaré’s results
and some conclusions of his own. In particular, he drew attention to the similarity between
Poincaré’s conjecture concerning the denseness of the periodic solutions and a proposition
of Maxwell concerning the distribution of energy.

One of the first of Poincaré’s ideas fromTBP to emerge in a different context was that of
his recurrence theorem. The theorem appeared to demonstrate the futility of contemporary
efforts to deduce the second law of thermodynamics from classical mechanics, and in 1896
a debate took place between Ernst Zermelo (1871–1953), who believed that Poincaré’s
theorem disproved the absolute validity of the second law, and Boltzmann, who believed
in the correctness of Poincaré’s theorem but disputed Zermelo’s application of it. Although
Zermelo and Boltzmann’s debate came to an end within a year, the controversy continued
to arouse interest and eventually became one of the sources for the foundation of modern
ergodic theory.

8 THE RESOLUTION OF THE THREE-BODY PROBLEM AND SOME LATER
DEVELOPMENTS

With the publication ofTBP work on the three-body problem intensified. The specification
of the problem in the Oscar competition had included the assumption that no collisions
between the bodies would take place and Poincaré had based his analysis accordingly.
But if a complete solution to the problem was to be found then collisions had to be taken
into account. Since collisions are described bysingularities in the differential equations,
this raised questions of regularisation.Could the singularities be removed by a change
of variable so that the motion could be followed through the point of collision? Could
singularities other than collision singularities exist?

In 1896 Paul Painlevé (1863–1933) proved not only that the only singularities are col-
lisions but also that a mathematical solution to the three-body problem could be found
providing it was possible to define preciselythe initial conditions corresponding to a colli-
sion. The person who found that solution was Karl Sundman (1873–1959), an astronomer



Chapter 48. Henri Poincaré, memoir on the three-body problem (1890) 637

at the Helsinki Observatory. In 1907 Sundman completely defined the initial conditions for
both binary and triple collisions. Not only were Sundman’s results quite remarkable: the
methods he used were surprisingly simple. Essentially they depended on the application
of an extension to a well-known theorem of Augustin Louis Cauchy (1789–1857) on the
existence of solutions to differential equations (§25.5).

Although the significance of Sundman’s achievement was recognised by his contempo-
raries, within about a decade it was almost completely forgotten. This neglect can be partly
attributed to the practical limitations of his results. The rate of convergence of the series
which he had derived was extremely slow and so for practical purposes the classical diver-
gent series were thought to be more useful. In addition, the results that Sundman obtained
furnished no qualitative information aboutthe nature of the motion. He had provided a
mathematical solution but not one which revealed general information about the form of
the trajectories; hence it left unresolved many issues surrounding the problem.

An important complement toTBP was provided by Alexander Lyapunov (1857–1918)
in his qualitative investigation of 1893 intothe theory of the stability of motion (§51). The
subject of stability was also taken up byTullio Levi-Civita (1873–1941), who drew upon
both Poincaré’s and Lyapunov’s ideas.TBP was also a signal influence on the work of
Jacques Hadamard (1865–1963) on the theory of geodesics on surfaces of positive and of
negative curvature, of Ivar Bendixson (1861–1935) on ordinary differential equations, and
of Elie Cartan (1869–1951) on the theory of invariant integrals.

But the mathematician most influenced byTBP andCM was undoubtedly George Birk-
hoff (1884–1944). Incorporating a vigorous use of topology, Birkhoff both generalised and
extended Poincaré’s ideas; and, like Poincaré, he made the periodic motions play a cen-
tral role in his theory. Birkhoff’s deep study of Poincaré’s work is evident from his first
publication devoted to theoretical dynamics in which he introduced the idea of ‘recurrent
motion’ as a natural extension of periodic motion [Birkhoff, 1912]. But the result which
ties him irrevocably with Poincaré, and the one for which he is arguably most famous, is his
resolution of Poincaré’s last geometric theorem [Birkhoff, 1913] in which he confirmed the
existence of an infinite number of periodic solutions for the restricted three-body problem
for all values of the mass parameterµ. The essential ideas of this paper, together with many
other ideas derived from Poincaré,can be found in Birkhoff’s acclaimed bookDynamical
systems [Birkhoff, 1927] (§68).

In addition, the question of the convergence of Lindstedt’s series provided the start-
ing point for some remarkable 20th-century developments. Poincaré had shown that, apart
from some exceptional cases, the series were divergent. There was, however, one proviso.
He had made it clear that he had not given a rigorous proof for the cases when the fre-
quencies can be fixed in advance. With the work of A.N. Kolmogorov, V.A. Arnold and
J. Moser, which began in the 1950s, it is now known that in these latter cases the majority
of the formal series solutions are in fact convergent. Their results form the basis for what
is now known as Kolmogorov–Arnold–Moser (KAM) theory which provides methods for
integrating perturbed Hamiltonian systems valid for infinite periods of time. Of particular
significance is the fact that KAM theory conclusively establishes the existence of conver-
gent series solutions for then-body problem.

Despite the success ofTBP it is conspicuous that during the early years of the 20th
century no serious attempt was made to investigate further the behaviour of Poincaré’s
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asymptotic solutions. This can largely be explained by the inability to undertake a quanti-
tative analysis due to lack of computing power. But with the arrival of the modern digital
computer such an analysis has now become possible, with the result that the last 30 years
has seen an explosion of research into non-linear systems with the concomitant unfolding
of the mathematical theory of chaos.

Finally, there is another reason why Poincaré’s asymptotic solutions may have been
ignored: their apparently random behaviour did not fit in with the then widely accepted
Laplacian model of a clockwork universe. Indeed, it may be that this belief in some kind of
ultimate order was partly responsible for Poincaré himself missing the chaotic behaviour
in his original essay.
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CHAPTER 49

OLIVER HEAVISIDE, ELECTRICAL PAPERS
(1892)

Ido Yavetz

In this book Heaviside brought together his main writings on circuit theory and the induc-
tive properties of wires, and his thoughts on electromagnetism. He also extended operator
and vector algebras.

First publication. 2 volumes, London:Macmillan, 1892. 560+ 587 pages.

Photoreprint. New York: Chelsea Publishing Company, 1970 [with correction of errata].

Related articles: Hamilton (§35), Thomson and Tait (§40), Maxwell (§44).

‘Familiarity with the working out of physical problems breeds contempt for
the idea of requiring a special demonstration of the possibility of what seems
to be necessary’ (vol. 1, 148).

1 GENERAL OUTLINE OF THEELECTRICAL PAPERS

Oliver Heaviside was born in London in 1850, and died in Torquay in 1925. His formal
schooling ended when he was 15 years old. By his own account he did not obtain much
scientific knowledge from it—arithmetic, a smattering of trigonometry, and an introduction
to Euclidian geometry that he abhorred to the end of his days. He was, however, a voracious
reader, and spent considerable time in public libraries. There, among other things, he made
his first acquaintance with the work of J.C. Maxwell (1831–1879). At the age of sixteen, he
obtained a telegraph operator’s job, with the help of Sir Charles Wheatstone—his uncle on
his mother’s side. His interest in the principles of telegraphy became the motivation behind
much of his scientific work. Heaviside never attended any institution of higher learning.
His outstanding achievements in mathematics, physics, and engineering science were the
fruits of self-education in a professional age that made such an endeavor nearly impossible.
For more details on Heaviside’s biographyand eccentric character, see [Nahin, 1988] and
[Yavetz, 1995, ch. 1].

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
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The two volumes of Heaviside’sElectrical papers contain papers that he wrote between
1872 and 1892. They encompass the results of his most creative scientific years, and also
reflect his remarkable process of self-education. What the title does not reflect is that the
two volumes possess a far greater degree of formal cohesion and continuity of subject
matter than one might expect from a collection of scientific papers. As he pointed out in
the preface to the first volume (p. vi):

[. . .] it had been represented to me that I should rather boil the matter down
to a connected treatise than republish in the form of detached papers. But a
careful examination and consideration of the material showed that it already
possessed, on the whole, sufficient continuity of subject-matter and treatment,
and even regularity of notation, to justify its presentation in the original form.
For, instead of being, like most scientific reprints, a collection of short papers
on various subjects, having little coherence from the treatise point of view, my
material was all upon one subject (though with many branches), and consisted
mostly of long articles, professedly written in a connected manner, with unifor-
mity of ideas and notation. And there was so much comparatively elementary
matter (especially in what has made the first volume) that the work might be
regarded not merely as a collection of papers for reference purposes, but also
as an education work for students of theoretical electricity.

TheElectrical papers offer an advanced exposition, as well as many novel contributions
to two basic themes: the theory of electromagnetic field dynamics due to Maxwell (§44),
and an extension of linear circuit theory to the case of continuous transmission lines. The
following pages focus upon Heaviside’s mathematical innovations, namely, his contribu-
tions to the formulation of vector algebra, and his controversial version of the operational
calculus. However, he developed the first of these topics in close connection to his study of
field electrodynamics, and the second in equally intimate connection to his circuit analysis.
His mathematical thinking was always closely guided by the physics and engineering prob-
lems that he engaged; theElectrical papers reflect the growth of his mathematical ideas in
association with their applications.

Generally, the main chapter headings in the two volumes are the original titles of the
articles that Heaviside published in various periodicals. Many of these articles stretched
into series—some of them hundreds of pages in length. These series were originally pub-
lished in separate sections, which were also retained when republished in the two volumes
of Electrical papers.

The articles in volume I may be grouped as follows. Arts. 1–23, pp. 1–195, were first
written between 1872 and 1883. One article containing a particularly interesting discussion
of the propagation of currents in transmission lines, was written in 1882 but published for
the first time here (art. 20, pp. 141–179). The others were published (number of articles
in parentheses) inEnglish mechanic (1), theTelegraphic journal (2), thePhilosophical
magazine (10),The electrician (4), andThe Journal of the Society of Telegraph Engineers
(5). They contain discussions of various problems pertaining to telegraphy. Some, mostly
the earlier papers, provide circuit-theoreticalanalysis of end-instruments in telegraphic
systems, namely, transmitters, receivers, andbatteries. The later papers in this group con-
centrate mainly on the propagation of signals along telegraph lines.
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Arts. 24–30, pp. 195–560. Of these, Art. 29 (pp. 416–428), published in March 1885 in
The Journal of the Society of Telegraph Engineers, is exceptional: Heaviside’s contribution
to an on-going debate on ‘The seat of the electromotive forces in the Voltaic cell’, quoting
the title of an address given by Oliver Lodge—the main protagonist in this debate—at the
1884 Montreal meeting of the British Association for the Advancement of Science [Lodge,
1884]. The next six articles reflect a shift both in his publication style and subject matter:
an extensive survey and re-formulation of the elements of Maxwell’s electromagnetic field
dynamics, and only very short, incidental comments on circuits and transmission lines.
Taken together, they constitute a Maxwellian treatise running well over 300 pages. In this
context Heaviside began to develop vector algebra, as what he considered to be the proper
mathematical language for the discussion of three-dimensional force fields.

Volume II is considerably less organized and more difficult to describe. While writing
the papers that were later collected in it, Heaviside had become embroiled in a very bitter
dispute with William Henry Preece, the chief engineer of the British Post Office. Preece
succeeded in pressuring the editor ofThe electrician into discontinuing Heaviside’s on-
going series ‘On electromagnetic induction and its propagation’. He transferred material
that he intended for this series into another series, ‘On the self-induction of wires’, that he
had been publishing at the same time in thePhilosophical magazine. This series was pre-
maturely terminated also, owing partially, perhaps, to further disruptive efforts by Preece.
The ban did not last long, and Heaviside managed to publish nearly all the material in new
papers, so that very little was actually suppressed. However, the two discontinued series
had been carefully planned to present a double-ended exposition of Maxwell’s theory and
transmission line analysis. In one series Heaviside planned to show how under various re-
strictions Maxwell’s equations reduce to characteristic circuit equations; in the other series
he planned to show how circuit laws may be generalized into Maxwell’s field equations.
As he explained (vol. 2, 76):

In another place (Phil Mag., Aug., 1886 and later) the method adopted by me
[. . .] was to work down from a system exactly fulfilling the conditions involved
in Maxwell’s scheme, to simpler systems nearly equivalent, but more easily
worked. Remembering that Maxwell’s is the only complete scheme in exis-
tence that will work, there is some advantage in this; also, we can see the
degree of approximation when a change is made. In the following I adopt the
reverse plan of rising from the first rough representation of fact up to the more
complete. This plan has, of course, the advantage of greater intelligibility to
those who have not studied Maxwell’s scheme in its complete form; besides
being, from an educational point of view, the more natural plan.

The premature discontinuation of the series, and the publication of their material in dif-
ferent frameworks, practically destroyed Heaviside’s ambitious plans for publication. He
never forgave the damage he suffered at Preece’s hands, and never missed an opportunity
to put in a bad word for him. The lesser degree of organization of Volume II is in large
measure explained by these events.

The volume is dominated by three long series:
Art. 35, pp. 39–154, fromThe electrician (April 1886 – December 1887). Sections 25–

31 are the direct continuation of ‘On electromagnetic induction and it’s propagation’ from
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Volume 1. The new publication scheme that wascut short by Preece begins with Section 32,
and comes to an abrupt end in Section 47.

Art. 40, pp. 168–323, fromPhilosophical magazine (August 1886 – July 1887) ‘On
the self-induction of wires’. The second half of Heaviside’s publication plan, only the first
seven sections of this series had been published; the eighth first appeared here. Further
material originally intended for this series was to appear in other papers.

Art. 43, pp. 375–467, fromPhilosophical magazine (February – December 1888) ‘On
electromagnetic waves, especially in relation to the vorticity of the impressed forces; and
the forced vibrations of electromagnetic systems’. This six-part series contains most of
the material that had been denied publication in the previous two. The style, however,
is quite different, being very technical and mathematically more demanding. Here Heav-
iside solved electromagnetic equations by expressing them operationally, expanding the
operational expressions in Bessel functions and Fourier series, and then transforming the
expanded expressions back into terms of time and the space coordinates.

Two other articles are of special interest for the present discussion.
Art. 42, pp. 355–374, fromPhilosophical magazine (December 1887) ‘On resistance

and conductance operators, and their derivatives, inductance and permittance, especially
in connection with electric and magnetic energy’. This paper was Heaviside’s first concen-
trated attempt to outline the ideas that are now known as ‘Heaviside’s operational calculus’.

Art. 44, pp. 468–485, fromPhilosophical magazine (January 1889) on ‘The general
solution of Maxwell’s electromagnetic equations in a homogeneous isotropic medium. Es-
pecially in regard to the derivation of special solutions, and the formulae for plane waves’.
In physical subject matter, this article relates to arts. 31 and 43; mathematically, the style
follows that of the latter. The solutions of the equations are written operationally, and then
interpreted by expanding them into power series of the differential operator and its inverse.
This procedure was later to become Heaviside’s main approach to the operational calculus.

The remainder of the volume engages in various problems of circuit theory, electro-
magnetic fields and waves, and questions regarding units and nomenclature in electromag-
netism. Particularly remarkable is art. 52, pp. 521–574, fromPhilosophical transactions of
the Royal Society (1892) ‘On the forces, stresses, and fluxes of energy in the electromag-
netic field’. Over a mere 54 pages, Heaviside produced a systematic introduction to vector
algebra, a general discussion on the dynamics of stresses and strains in elastic and dissi-
pative media, and an advanced study of electromagnetic field dynamics. The presentation
is highly condensed, notationally idiosyncratic, and the paper was considered unusually
hard to follow by Heaviside’s contemporaries, among them accomplished mathematical
physicists like H.R. Hertz, George Francis FitzGerald (1851–1901), and Horace Lamb.

2 THE ALGEBRA OF VECTORS

The modern reader of Heaviside’sElectrical papers should not have difficulty in dealing
with Heaviside’s introduction and use of vector algebra; for by and large it is the vector
algebra that we now learn. From him we have adopted the convention of using bold letters
to signify vectors. The dot and the diagonal cross that signify the scalar and vector products
(respectivelyA · B andA × B) are due to Willard Gibbs (1839–1903) (§35.5). Heaviside
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did not like that, and preferred to write the scalar product of the vectorsA andB simply
as ‘AB’. The vector product he wrote, following W.R. Hamilton (1805–1865) and Peter
Guthrie Tait (1831–1901), as ‘VAB’. Another difference that does not really create too
much of an inconvenience is Heaviside’s general tendency to avoid the symbol∇ for the
vector operator (d/dx, d/dy, d/dz) in equations that express physical ideas, and to employ
instead the expressions div(A), conv(A), and curl(A) to denote what we usually write out
as∇ · A, −∇ · A and∇ × A respectively. The words ‘div’ and ‘curl’ are still widely
associated with the first and third, and only ‘convergence’ is no longer current for negative
divergence.

In some ways, the appearance of vector algebra is the natural and undramatic culmina-
tion of a very long history [Crowe, 1967]. The practice of breaking directed magnitudes
like velocity into components is as old as the pseudo-Aristotelian ‘Mechanical problems’.
Here the parallelogram rule for the combination of directed magnitudes is explicitly and
correctly spelled out [Aristotle, 1953, 381–387]. If this book was composed in the late
4th century B.C., as many experts estimate, then the historical roots of vector algebra are
very old indeed. The remarkable thing about vector algebra as we currently know it, is
that it did not emerge from a direct attempt to formalize such widely familiar applications.
Instead, it made its first appearance in the context of Hamilton’s highly innovative and idio-
syncratic invention of quaternions (§35). Hamilton believed that quaternions are destined
to become the universal language of mathematical physics. Tait agreed, and following in
Hamilton’s footsteps composed a concise textbook on quaternions ([Tait, 1867]: compare
§35.4). In their quaternionic context, however, vectors possessed formal properties that
proved awkward for application to physical problems. It was then left for Gibbs and Heav-
iside to extract the vector from its quaternionic foundations, and establish it on its own
formal grounds. For Heaviside the need to dothis became apparent in the course of read-
ing Maxwell’s theory of electromagnetic field dynamics. What Maxwell saw in Hamilton’s
quaternions, and how he employed them in hisTreatise on electricity and magnetism, he
expressed quite openly [1892, vol. 2, 257]:

In this treatise we have endeavoured to avoid any process demanding from the
reader a knowledge of the Calculus of Quaternions. At the same time we have
not scrupled to introduce the idea of a vector when it was necessary to do so.

Among the various properties of Quaternions we note that in the relationshipij = k, i and
j do not represent the same mathematical idea. Rather, the second index,j , represents
the transformation of a scalar magnitude into a vector along they-axis, while the first,i,
rotates this vector by 90◦ about thex-axis, bringing it into alignment with thez-axis. As
long as this peculiarity is kept in mind, it should be clear from the foregoing thatijk =−1,
ikj = 1, and so on. Heaviside was justifiably annoyed by this double use. But it may be
noted that no deep-rooted contradiction lies at the bottom of this apparent inconsistency;
for it can be avoided by interpreting the quaternionq as

∑3
n=0 qnen, where

e0=
(

1 0
0 1

)
, e1=

(
0 −i
−i 0

)
, e2=

(
0 −1
1 0

)
and
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e3=
(−i 0

0 i

)
, (1)

with i standing for
√− 1.

Following these observations, a quaternionq may be defined as a four-part entity, that
consists of a scalar component,q0, and three space componentsq1, q2, q3. It may be written
alternatively as

q = (q0, q1, q2, q3)= q0+ iq1+ jq2+ kq3= q0+ q, (2)

whereq0 is a scalar andq a space vector.
The properties of quaternion multiplication may now be extracted in a straightforward

manner from the definitions above, with the understanding that ifa is a scalar quantity then
ia = ai. It turns out that ifp andq are quaternions, then

pq = (p0+ p)(q0+ q)= p0q0+ p0q+ q0p− [p1q1+ p2q2+ p3q3]
+ [
i(p2q3− p3q2)+ j (p3q1− p1q3)+ k(p1q2−p2q1)

]
. (3)

The modern reader will recognize the two expressions in square brackets as the scalar
and vector products of standardvector algebra. Quaternionmultiplication contains these
two, and may appear, therefore, as a manner of unifying them under a single generalized
operation. Note, however, that if the scalar component of quaternionp is 0, then by the
foregoing rules of quaternion multiplication:

p2=−p2. (4)

This is all as should be, so long as quaternions are regarded as extending the concept
of imaginary numbers. If, however, the vector component of the quaternion is meant to
represent a physical entity, like fluid flow or an electromagnetic field, the fact that its square
is negative represents an awkward feature, with no straightforward physical meaning in
most cases. As Heaviside wrote in one of his earliest sketches of vector algebra (vol. 2, 3):

It is a matter of great practical importance that the notation should be such
as to harmonize with Cartesian formulae, so that we can pass from one to the
other readily, as is often required in mixed investigations, without changing
notation. This condition does not appear to me to be attained by Professor
Tait’s notation, with its numerous letter prefixes, and especially by the−S
before every scalar product, the negative sign being the cause of the greatest
inconvenience in transitions.

In later work, Heaviside as well as Gibbs, used this to indicate that regardless of their
pure mathematical merits, quaternions areill-suited as means for expressing physical ideas
mathematically (EMT, vol. 1, 138):

In Quaternions, the square of a unit vector is−1. This singular convention is
quaternionically convenient. But in the practical vector analysis of physics it
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is particularly inconvenient, being indeed, an obtrusive stumbling-block. All
positive scalars products have the minus sign prefixed; there is thus a want
of harmony with scalar investigations, and a difficulty in readily passing from
Cartesians to vectors and conversely. My notation on the other hand, is ex-
pressly arranged to facilitate this mutual conversion.

When he wrote the last paragraph, Heaviside was already fully immersed in the volatile ar-
guments between Tait—self-appointed champion of quaternions—and the vectorial targets
of his wrath, specifically Gibbs. The polemical context of the last observation becomes
clearly evident by the following introductory remarks (EMT, vol. 1, 136):

‘Quaternion’ was, I think, defined by an American schoolgirl to be ‘an ancient
religious ceremony’. This was, however, a complete mistake. The ancients—
unlike Prof. Tait—knew not, and did not worship Quaternions. The quaternion
and its laws were discovered by that extraordinary genius Sir W. Hamilton.

This entertaining example of Heaviside’s distinct love of absurd humor may also serve
to emphasize the extreme care with which such remarks must be read. The last sentence,
despite its proximity to an acidic joke, may well have been meant in earnest. On an earlier
occasion, before the quaternionic debate reached such hightones, he wrote (vol. 2, 557):

Nevertheless, apart from practical application, and looking at it from the purely
quaternionic point of view, I ought to also add that the invention of quater-
nions must be regarded as a most remarkable feat of human ingenuity. Vector
analysis, without quaternions, could have been found by any mathematician by
carefully examining the mechanics of the Cartesian mathematics; but to find
out quaternions required a genius.

No sarcasm precedes this observation. It concludes a matter-of-fact exposition of vector
algebra that contains a level-headed assessment of the relative merits and disadvantages
of quaternions. When in similar mood, Heaviside did not dwell so heavily on the nega-
tive sign of the scalar product. In some cases, the negative sign could actually be given a
sensible interpretation. For example, the quaternionic working of the differential operator
∇ = (i d/dx + j d/dy + k d/dz) obtains a simple meaning in Heaviside’s preference for
expressing the physical significance of this operator with the words convergence, diver-
gence, and curl. For ifA is the quaternion(0,Ax,Ay,Az), then the quaternionic product

∇A =−
(
dAx

dx
+ dAy
dy

+ dAz
dz

)
+ i

(
dAz

dy
− dAy
dz

)
+ j

(
dAx

dz
− dAz
dx

)

+ k
(
dAy

dx
− dAx
dy

)
(5)

=−S∇A+ V∇A in the Hamilton–Tait notation, (6)

≡ ∇ · A +∇ ×A in modern, Gibbs–Heaviside algebraic notation, (7)

= conv(A)+ curl(A) in Heaviside’s preferred terms. (8)
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For Heaviside, who was responsible for many terminological innovations both in
physics and mathematics, terminology and formalism were never ends in themselves; he
consistently insisted that they must be shaped by the meaning they are intended to serve.
He was well aware of the∇ operator and its formal properties, but he usually preferred
to address it by explicit reference to the meaning of its application to vector fields. The
scalar part of the quaternion product above expresses the convergence, or flow of flux into
an infinitesimal space rather than the divergence, or flow out of it, and hence he expressed
it as conv(A). In this case, the (−) sign represents no difficulty, and accordingly Heavi-
side made nothing of it (vol. 1, 271). On this occasion, he pointed out the potentially more
disturbing double use ofthe Hamiltonian indicesi, j , andk, to mean sometimes space
orientations, and sometimes rotations about given axes.

In his early discussions of vector algebra, Heaviside tended to emphasize that quater-
nions were important because in them, for the first time ever, the three-dimensional space
vector was given center stage, instead of being hidden under a mass of Cartesian manip-
ulations. At the same time, he noted, the quaternionic product does not lend itself to easy
physical interpretation, while the physically meaningful and widely applicable scalar and
vector products must be isolated from it artificially. From these observations he concluded
quite naturally that it would be useful to establish vectors and their basic operations on their
own, independently of quaternions. In his earliest explicit reference to the need of creating
an algebra of vectors (published inThe electrician in December 1882) he expressed all of
these concerns at length (vol. 1, 207):

In mathematical investigations relating to electromagnetism, it often happens
that the equations assume such a very complex form that the real meaning of
the relations expressed by them becomes hidden away, as it were, beneath a
tangled mass ofx, y, z’s, and can only be recognised by groping about from
one equation to another [. . .] A very remarkable system of mathematics was
invented by Sir W. Hamilton, called Quaternions, which may be described as
the calculus of vectors. Owing to the universal presence of vectors in physical
science, it is exactly fitted to express physical relations. Instead of breaking up
vectors into three components, working with them as scalars, and then, when
required, compounding them again to get back to vectors, (a most roundabout
method), in the calculus of vectors we may fix our attention upon the vectors
themselves, and work with them direct. [. . .] the calculus of Quaternions ought,
then, one would say, to speedily supplant the ordinary methods in physical ap-
plications; in fact, it should have done so already. But it has not. Does this arise
from mere Conservatism—the hatred of having to leave the old ways even for
better? Although this may be partly true, it cannot be the whole truth. Against
the above stated great advantages of Quaternions has to be set the fact that the
operations met with are much more difficult than the corresponding ones in
the ordinary system, so that the saving of labour is, in a great measure, imag-
inary. There is much more thinking to be done, for the mind has to do what
in scalar algebra is done almost mechanically. At the same time, when work-
ing with vectors by the scalar system, there is great advantage to be found in
continually bearing in mind the fundamental ideas of the vector system. Make
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a compromise: look behind the easily-managed but complex scalar equations,
and see the single vector one behind them, expressing the real thing.

Tait was not the only one who objected to the new algebra, and even among those who
considered that emphasis on vectors is useful, not all found Heaviside’s treatment of them
attractive. FitzGerald, one of very few individuals who succeeded to befriend the reclusive
Heaviside, wrote to him in on 4 February 1889 (Heaviside Collection, Institute of Electrical
Engineers, London): ‘I am rather sorry you have not been content to work with the ordinary
quaternions notation. It makes a very great difficulty to many people who want to look over
and pick out the points in your work’. On 26 September 1892 he wrote again:

I hope you will succeed in making the ordinary mathematical physicists think
in vectors although I do not think your notation an improvement. You see I
was very ‘big’ on Tait and get very much [bothered] by your omission ofS [in
front of a scalar product] and when one gets bothered every time one naturally
takes a dislike to the botheration.

Despite such early difficulties, vector algebra became a sweeping success in short order.
Nowadays, university programs in physics and mathematics routinely include a course on
vector algebra. Quaternions, on the other hand, are much less well known, although there
are some modern enthusiasts.

3 HEAVISIDE’S OPERATIONAL CALCULUS

Heaviside developed his operational calculus piecemeal for well over 20 years from the
late 1880s. Just as his development of vector algebra reflects the desire to find a natural
language for the discussion of force fields, so the operational calculus reflects a desire for
treating the differential equations that arise in circuit and field theory in a way that reflects
their physical meaning. A practical mathematician, he always put high value on the ability
to obtain explicit solutions for the equations of mathematical physics. For this reason he
always admired the power contained in the Fourier series approach to the solution of partial
differential equations (§26). He felt, however, that all too often one loses the physical
meaning of the equations amidst Fourierian manipulations (vol. 2, 389–390):

Whilst it is impossible not to admire the capacity possessed by solutions in
Fourier series to compactly sum up the effect of an infinite series of successive
solutions, it is greatly to be regretted that the Fourier solutions themselves
should be of such difficult interpretation. Perhaps there will be discovered
some practical way of analysing them into easily interpretable form.

In the operational methods that he slowly developed, Heaviside found a partial rem-
edy for such concerns. To properly appreciate this, a brief discussion of simple circuits is
required.

The analysis of any electrical circuit is guided by two basic principles, usually referred
to as Kirchhoff’s circuit laws: 1) The sum of all currents entering a circuit element must be
equal to the sum of all currents leaving the circuit element, or simply, the sum of all currents
entering and leaving a circuit element must be zero; and 2) The sum of all voltage drops
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over any closed loop must be zero. The first law is the electrical analogue of the principle
of matter conservation, stating that in all interactions electrical charge is conserved; the
second is analogous to Newton’s third law of motion, with voltage drops playing the role
of active forces. The dynamical analogy between electrical systems and mechanical ones
is a central notion that guided much of Heaviside’s work on the theory of electrical circuits
and electromagnetic fields.

The basic elements of all circuits are voltage and/or current sources, resistors, inductors
(coils), and capacitors. Voltage and currentsources act as active agents that attempt to push
current through a circuit; resistors, inductors, and capacitors are reactive elements, that
impede the development of current and voltage, each in its own peculiar way. Generally,
then, according to Kirchhoff’s second law, when a voltage source is coupled to a circuit,
opposed voltages will appear over the reactive elements of the circuit so that together they
exactly counterbalance the impressed voltage. The formulation of this general statement
in explicit electrical terms requires the relationship between current and voltage over the
components that make up the circuit. Using Heaviside’s designations, where the voltage
and current in a circuit areV andC, while the resistance, inductance, and capacitance are
R, L, andS, these relationships are

VR =−R ·C, VL =−L · dC/dt and C =−S dVS/dt. (9)

The negative signs are there to signify that the voltage drops over the elements are opposed
to the direction of current pushed by the impressed voltage.

The simple circuit in Figure 1 contains an inductor (coil), a capacitor, and a resistor, all
in series with a voltage source of intensityE. Kirchhoff’s first law requires that the same
current,C, flows through each of the elements at any given time. His second law requires
that

E + VL + VS + VR = 0, (10)

whereE is the impressed voltage (generally a function of time). Using the relationships
for current and voltage over the individual elements, this may be turned into a differential
equation for the voltage over the capacitor at any time, namely:

−E = VS +RS dVS/dt +LS d2VS/dt
2. (11)

Figure 1. Circuit diagram.
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This equation obtains a specific solution once the state of the capacitor is specified for a
given point in time (for example, att = 0, both current and voltage over the capacitor are
also 0). Solutions to such equations were well known by Heaviside’s time, and he employed
them regularly whenever required.

Also normal was the practice of abbreviating the differential operator by a single letter,
and treating it as ‘algebraic’, namely as if it were a mere number, with the usual com-
mutative and associative properties (compare §36.2 on George Boole). Heaviside always
followed this practice, treating it as no more than mere shorthand, an aid to memory in the
sense of his observation (vol. 1, 196) that

[. . .] as for the use of symbols, they are merely a sort of shorthand to assist the
memory, which even those who openly contemn mathematical methods are
glad to use so far as they can make them out—in the expression of Ohm’s law
for instance, to avoid spinning a long yarn.

Heaviside made this observation at the beginning of his first series of papers dedicated
to the study of electromagnetic field dynamics. The mention of Ohm’s law, however, is
strangely prophetic of how a mere shorthand developed in Heaviside’s hands into a calculus
of operators. Usingp to denote the time derivative, the defining relationships for resistance,
inductance, and capacitance may be written as

VR =−R ·C, VL =−Lp · dC and C =−Sp · VS. (12)

Treatingp as ‘algebraic’, to use Heaviside’s words, the capacitance relationship may be
rewritten asVS = −(Sp)−1 · C; and now, Kirchhoff’s voltage law for the simple circuit
above becomes

E = (R+Lp+ 1/Sp)=Z(p) ·C. (13)

or alternatively,

C =E/Z(p), (14)

Z(p) is not a normal function, for it contains the operations of differentiation as well as the
inverse of differentiation, the latter not yet properly defined. Ignoring this for a moment,
the mere form of the operational voltage law appears like a generalized Ohm’s law, relating
voltage to current through a ‘generalized resistance’ for which Heaviside later coined the
term ‘impedance operator’. Ohm’s law was the oldest and most familiar principle to the
telegraphists and electricians among whom Heaviside began his career in electrical science
and engineering. They knew that when resistors were connected in series, their combined
resistance,Rt , could be calculated as

∑
i Ri , where the summation extends through all

the individual resistors. Equally well known was that when connected in parallel, the total
resistance could be obtained from

1/Rt =
∑
i

1/Ri. (15)

Now consider two circuits, each containing a combination of resistors, capacitors, and
inductors, with operational impedancesZ1 andZ2 (both of which are functions ofp, the
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differential operator). The two circuits may be connected together with a voltage source
either is series, or in parallel. From the basic Ohm’s law like property of operational im-
pedances, and by straightforward application of Kirchhoff’s laws it follows that for the
series connectionZt = Z1+Z2, and that for the parallel connection,Z−1

t = Z−1
1 +Z−1

2 .
It turns out, then, that operational impedancescombine precisely like regular resistances.
In the Philosophical magazine for December 1887, Heaviside published his first attempt
to put together an introduction to what was gradually becoming for him a calculus of op-
erators. He stressed the latter property of operational impedances (vol. 2, 355):

The resistance-operatorZ is a function of the electrical constants [. . .] and of
d/dt , the operator of time-differentiation, which will in the following be de-
noted byp simply. As I have made extensive use of resistance-operators and
connected quantities in papers, it will be sufficient here, as regards their origin
and manipulation, to say that resistance-operators combine in the same way as
if they represented mere resistances. It is this fact that makes them of so much
importance, especially to practical men, by whom they will be much employed
in the future. I do not refer to practical men in the very limited sense of anti-
or extra-theoretical, but to theoretical men who desire to make theory prac-
tically workable by the simplification and systematisation of methods which
the employment of resistance-operators and their derivatives allows, and the
substitution of simple for more complex ideas.

Heaviside had reasonable cause for stressing the importance of the formal similarity be-
tween operational impedances and standard resistances. Proper use of this similarity could
help to streamline writing down the characteristic equations of various circuits. However,
practically minded people eventually desire explicit solutions of such equations, and as yet
the operational formulation did not help at all. As he testified, he had been using resistance
operators to express the equations of variouscircuits long before he wrote the exposition
in 1887. To solve these equations he used Fourier series or Bessel functions depending on
the specifics of the problem (for example, vol. 2, 176–177). Had this remained the state
of affairs, one may doubt that the 1887 paper would have been written. Its publication is
probably due to the sentence immediately following the above quotation regarding resis-
tance operators and their derivatives: ‘In this paper I propose to give a connected account
of most of their important properties, including some new ones, especially in connection
with energy’.

The new property referred to is what laterbecame known as ‘Heaviside’s expansion
theorem’. It transformed the formal operational expression of differential equations into a
systematic means for extracting their explicit solutions. Motivation for the expansion the-
orem appears to reside again in the generalized Ohm’s law that operational impedances
associate with electrical circuits. In a circuit containing standard resistance only, if the im-
pressed voltage is given, then the current at any time may be calculated by simple division.
Now consider a voltage sourceE impressed att = 0 upon a circuit containing capacitive
and inductive elements in addition to standardresistive ones. If a specific mathematical
meaning could be associated with the formal division ofE by the operational impedance
Z(p), then the operational Ohm’s law of this circuit would become the explicit solution
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for the current at any subsequent time. In the expansion theorem Heaviside found what
appeared to be the beginning of a general answer to this question.

Demonstration of the expansion theorem is too lengthy for this brief account; proofs
may be found in texts on the operational calculus. The remarkable thing about Heaviside’s
original discussion, is that the expansion theorem emerges out of energy considerations
pertaining to the analysis of electrical circuits (vol. 2, 372–373). The form of the expansion
theorem that he presented in his 1887 paper states that if a steady voltage sourceE is
impressed att = 0 on an electrical circuit characterized by operational impedanceZ(p),
then the current at any subsequent time is given by

C(t)= E

Z(0)
+

N∑
i=1

E

pi
dZ
dp
|p=pi

epit , (16)

where thepi are the algebraic roots ofZ(p)= 0. Herep is treated as a complex number,
not as the operation of deriving with respect to time, and the expression yieldsC as an
explicit function of time. In (16) the expansion theorem is limited to cases whereZ(p) can
be written as

∏
i (p − pi). If higher powers of any of the expressions in parentheses exist,

then the expansion theorem is not valid in the form (16). Heaviside showed later how to
generalize the expansion theorem to include such cases as well.

In principle, then, the expansion theorem provides a mechanical procedure for obtain-
ing the solution of the circuit’s differential equation. An additional advantage is that the
expansion solution automatically takes account of the initial conditions that must be dealt
with separately in the usual manner of solving the differential equation. In practice, how-
ever, application of the expansion theorem proves tedious, and only common sense and
experience can help to decide whether its use for specific problems is advantageous.

Heaviside may have appreciated these limitations, for when he wrote ‘On electromag-
netic waves’ (art. 43 above), he adopted a different approach. He wrote the field equations
operationally, expressed the solutions in symbolic operational form, and then re-expressed
them as combinations of Bessel functions with operational arguments. Great care needed to
be taken in so doing, because the operational arguments could not be taken to behave like
mere numbers under all circumstances (vol. 2, 446). Heaviside showed that certain physical
conclusions can be extracted from these expressions while still in their operational form.
Then he gave some examples of how the series may be converted, element by element, into
explicit functions of time and space. Key to this procedure was the realization that when
the operator

√
p operates on a function whose value is 1 fort � 0 and 0 otherwise, the

result is (πt)−1/2 (see, for example, the note to vol. 2, 446–447).

4 ON HEAVISIDE’S LATER WORK

After Electrical papers was completed, Heaviside devoted much time in the 1890s to de-
velop further his operational calculus. The main product of this endeavor was a series of
three long papers ‘On operators in physical mathematics’ that were intended for publica-
tion by the Royal Society (to which Heaviside had been elected Fellow in 1891). Only
the first two were published: the third was turned down in the face of stern objections
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raised by mathematicians to his unconventional and potentially problematic use of diver-
gent series. He eventually published the full mathematical content of all three papers in the
second volume of his compendiumElectromagnetic theory (dedicated to the memory of
FitzGerald), amidst many caustic remarks about closed-minded Cambridge mathemati-
cians [Heaviside, 1899]. From the formal pointof view, his most important addition to the
work that he began in theElectrical papers was the use of the unit function (now generally
referred to as ‘the Heaviside unit function’ or ‘unit’) to resolve the non-commutative na-
ture of differentiation and integration, effectively turning the latter into a proper algebraic
inverse of the differential operatorp [Yavetz, 1995, appendix 4.2]. Overall, however, his
quest for a complete operational calculus proved far more difficult than the formulation of
vector algebra, and in some ways remained elusive [Lützen, 1979].

When all is said and done, Heaviside did not succeed in tying all the elements of his
operational calculus into a tight formal framework as he did with vector algebra. He did,
however, succeed to provide through it an innovative and powerful set of techniques for
solving differential and partial differential equations with constant coefficients. His work
on the operational calculus motivated a great deal of subsequent research in this field of
practical and applied mathematics.
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CHAPTER 50

WALTER WILLIAM ROUSE BALL,
MATHEMATICAL RECREATIONS AND

PROBLEMS OF PAST AND PRESENT TIMES,
FIRST EDITION (1892)

David Singmaster

In recent years, it has become recognized that recreational mathematics is an interesting
branch of mathematics with a long and fascinating history, revealing much about mathe-
matics and popular culture. Ball’s book was one of the first substantial books devoted to
recreational mathematics.

First publication. London: Macmillan, 1892. 12+ 240 pages.
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1914 (‘Chapter XVIII has been re-written’). 7th ed. 1917 (Ch. XI replaced by two new
chapters). 8th ed. 1919. 9th ed. 1920. 10th ed. 1922, 14+ 366 pages; repr. 1926, 1928,
1931, 1937. 11th ed. (rev. H.S.M. Coxeter), 1939, 16+ 418 pages; repr. 1940, 1942,
1944, 1947, 1956, 1959, 1962, 1963, 1967. 12th ed. (rev. Coxeter), Toronto: University
of Toronto Press, 1974, 18+ 428 pages. 13th ed. (rev. Coxeter: very few changes), 18
+ 428 pp., New York: Dover, 1987.

French translation. Récréations et problèmes mathématiques des temps anciens et mod-
ernes (trans. J. Fitz-Patrick from the 3rd ed. 1896, ‘Revue et augmentée par l’auteur’),
1st ed., Paris: Hermann, 1898. 2nd ed. (from the4th ed., additions by A. Hermann, Fitz-
Patrick, and others), 3 vols., 1907–1909. [Repr. with changes 1926–1927. Photorepr. in
1 vol. Paris: Gabay, 1992. Vols. 1 and 2 available on-line at http://gallica.bnf.fr.]

Italian translation. Ricreazioni e problemi matematici dei tempi antichi e moderni (trans.
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Zanichelli, 1910.
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German translation? A letter from ‘An old pupil’ after Ball’s death says the book was
translated into German; but I have found no trace of this, and [Ahrens, 1910–1918]
does not mention it.

1 HISTORICAL BACKGROUND

Recreational problems are scattered throughthe mathematical literature from the begin-
nings of recorded mathematics. The first general work to include a number of mathemat-
ical puzzles isThe Greek anthology, compiled by Metrodorus about 510, which includes
44 simple problems. There are no answers in the manuscripts. The problems include ‘aha’
problems (for example, Pythagoras’s age), cistern problems, and ass and mule problems
[Singmaster, 1984–1985].

The first collection of mathematical recreations is thePropositiones ad acuendos ju-
venes, a manuscript reasonably attributed to Alcuin of York around 800, though it was also
attributed to Bede. Alcuin [c.800] has 53 numbered problems with answers (the Bede ver-
sion has three extra ones). Some problems have several answers, but only one is given and
there are no real explanations for any of the problems. Several problems occur here for the
first time ever: e.g. the river crossing problems of the man with a wolf, a goat and some
cabbage; that of the three jealous couples; or, for the first time in Europe, the hundred fowls
problem. It is clear that the author has compiled his problems from earlier sources which
we generally do not know.

Several major mathematical works have devoted much space to problems that are now
considered recreational, notably the following, which are available in various versions:

– Chiu Chang Suan Ching (Nine chapters on the mathematical art) (around 150).

– Aryabhata (I),Āryabhat
�
ı̄ya (499);

– Mahavira,Gan
�

ita-sāra-sangraha (850);

– Bhaskara (II),Bijaganita andLilavati (both 1150);

– Leonardo Fibonacci,Liber abbaci (1202, though all extant copies are from the second
edition of 1228); and

– Luca Pacioli,Summa de arithmetica geometria proportioni & proportionalita (1494).

Traditionally, books on mercantile arithmeticincluded a number of miscellaneous recre-
ational problems, including simple divinations.

The first large work devoted to recreational mathematics is another work of Luca Paci-
oli, hisDe viribus quantitatis [Pacioli, c.1500], which is only now receiving the attention it
deserves. This is a manuscript of 618 pages in Bologna, apparently compiled during 1496–
1509. Agostini [1924] described the 81 arithmetic problems in Part 1. Part 2 contains 134
geometrical problems, including some topological puzzles. Part 3 contains several hundred
proverbs, poems, riddles and tricks (that is, physical recreations, conjuring, etc.). There is
no standard English version of the title: I suggestOn the powers of numbers. Though the
manuscript is clearly written, the microfilm version is sometimes faint.
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The text presents the usual difficulties of manuscripts of the time. Many of the geo-
metric problems refer to diagrams, which are missing. I find it very difficult to understand
the geometric problems, and only around 1998 did I realise that Pacioli gives the earliest
known examples of several classical topological puzzles. Much of the difficulty has been
rectified by the publication of a transcription of the text, but this omits the unique marginal
drawing of a string puzzle on folio 206r and the transcription has some errors. Dario Uri
has photographed the entire manuscript and enhanced the images to produce a more legi-
ble version of the text on a CD. He has discovered that these problems include the earliest
known discussion of the Chinese Rings, previously first known to be in Cardano, as well
as about a dozen other such puzzles in their earliest known forms. Bill Kalush has discov-
ered several earliest examples of magic tricks. We now feel this is definitely the earliest
recreational mathematics book—except that it was never published.

Girolamo Cardano and Niccolo Tartaglia include much recreational material in their
works in the mid 16th century. The first known book on conjuring appeared in 1584 and
contained some mathematical divinations and some topological puzzles. From this time a
flood of conjuring books has appeared, and many contain some recreational mathematics.

The first recreational mathematics book to be published was [Bachet, 1612], which also
starts the tradition of longevity of such books—it is still in print! It has only 35 arithmetical
problems and a few others like the river crossing problems, but it deals with them in some
detail and with some mathematical technique and notation.

Following and copying much from Bachet and also from Tartaglia and Cardano is [van
Etten and Leurechon, 1624]. The authorship is considerably disputed: van Etten’s name
is on the book, but since 1643 it has been attributed to Jean Leurechon, who may have
been van Etten’s teacher. It might have been a joint effort. This bookstarted another tra-
dition, passing through many versions—at least 67 in four languages between 1624 and
1706—and has been attributed to about eight different authors as well as ‘anonymous’. My
bibliography of it occupies 19 pages, so I cannot include it here.

The book is an example of another tradition in the field: it includes many physical
recreations. For example, it is thought to be the first to think of a telegraph, based on the
specious belief that two magnetic needles would always stay aligned, and the first use
of the word thermometer. It also includes optical and magnetic phenomena, geographical
and astronomical puzzles, an ear trumpet, perpetual lamps, tricks with sound, games, ae-
olipiles (a pneumatic instrument), colossal statues, giants, dialling, ballistics, etc., etc. As
can be seen, the material is very miscellaneous, and there is little attempt to explain any
mathematics.

From this point on, there are many works which cover mathematical and physical recre-
ations. The best known are those of Schwenter, Schott, Witgeest, Ozanam, Guyot and
Hooper. But these tended to be miscellaneous collections with little coherence except that
some group their problems in sections, such as Arithmetic, Geometry, Optics, Dialling,
Cosmography, Mechanicks, Physicks, Pyrotechny. Of these only Ozanam [1694] attempts
to systematise the material and to use mathematical notation and thinking. His books also
exemplifies the longevity and multiplicity of recreational books: there were at least 29 edi-
tions in two languages (my bibliography on thisoccupies 10 pages), and an English version
was reissued as late as 1854. In about 1723, the work was expanded to four volumes and
much interesting material was added, particularly a section on conjuring and puzzles, but
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this material was deleted in a new four-volume version in 1778. Ozanam also is the most
extreme example of another common property of recreational books: it was massively pi-
rated and copied.

In the mid 19th century, a massive number of books for boys (and sometimes girls) and
for general amusement appeared in England, typical titles beingThe boy’s own book; The
girl’s own book; The boy’s own conjuring book; The magician’s own book; Philosophi-
cal recreations, or, winter amusements; Endless amusement; andRational amusement for
winter evenings. They all include sections on mathematical puzzles and games, generally
fairly randomly arranged, with minimal solutions or mathematics. The impetus for this ex-
plosion of recreational books may have come from France, since one of the books states it
is a translation fromLe magicien des salons, but it is not clear which work that is. There
are several similar French works, but the examples that I have seen contain very little in
the way of mathematical puzzles and recreations.

2 THE LATE 19TH CENTURY

It is not until the end of the 19th century that fresh approaches occur, in France, Ger-
many and England, with the works of Lucas [1882–1894], Ball’s own book from 1892,
[Hoffmann, 1893] and [Schubert, 1898]. The work of Ahrens [1910–1918] rounds off this
period. Let us survey these works before examining Ball.

2.1 (François-) Édouard (-Anatole) Lucas (1842–1891) was a teacher at variouslycées
and produced only a few papers until 1875, when he began to put out about a dozen papers
per year on number theory and geometry. In 1879 he began publishing articles on games
and started a popular series of 13 articles inRevue scientifique (1879–1883), followed by 16
articles inLa nature (1886–1890). They formed the basis of his four-volume work [Lucas,
1882–1894]. He died unexpectedly in his prime: at a banquet, a piece of a dropped plate
scratched his cheek and he died five days later of blood poisoning. He inspired a generation
of recreational mathematicians in France, much in the way that Martin Gardner was to do in
the 20th century. He also had historical interests and was an editor of Pierre Fermat’s works.

In Lucas’s book each chapter is based on a single idea. He develops many topics not pre-
viously covered in any book, and thoroughly systematizes and generalizes them. Volume
1 (1882) has only eight chapters, whose titles I paraphrase: River crossing problems; ‘The
game of bridges and islands’ (basic graph theory, starting with the Bridges of Königsberg);
Labyrinths; The eight queens problem, etc.; Solitaire; Binary numeration; Chinese rings;
and Taquin (the fifteen puzzle). His other volumes include chapters on Kirkman’s school-
girls, Hamilton’s icosian game, Calculating machines, Mathematical games, Roulette, Per-
petual calendars, The four colour problem, and Walking machines. Much of the material
is relatively recent and he frequently adds new data, regularly citing colleagues who have
made suggestions and improvements. But he was also a bit of a prankster, and he may
have invented some of these colleagues. For example, he seems to have invented the story
that the Chinese rings were used to lock chests in Norway, attributed some of the ideas to
‘ex-students’; and he never admitted his invention of the Tower of Hanoi in print.

At the end of volume 1, Lucas has an ‘Index bibliographique’ of 11 pages listing 190
items, starting with one 15th-century item. However, he never mentions publishers, hardly
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ever gives first names and often omits the author’s first initial. His knowledge is sometimes
a bit vague—he cites [van Etten and Leurechon, 1624] seven times under five different
authors and twice anonymously! Each volume has a detailed table of contents, but no
index.

2.2 ‘Professor Louis Hoffmann’ was the pseudonym of Angelo John Lewis (1839–
1919), a London barrister with an interest in conjuring. He wrote a series of articles on
magic forEvery boy’s annual that were collected asModern magic (1876), which is con-
sidered the foundation of modern conjuring. He went on to write about two dozen books on
magic, games, puzzles and recreations, becoming the best known author on these subjects
in late-19th-century England.

Hoffmann [1893] is the first substantial book devoted to puzzles. The chapters are, in
my paraphrasings: Dexterity puzzles; Trick orsecret puzzles; Dissections; Arithmetical
puzzles; Word puzzles; Puzzles with counters; Matchstick puzzles; Wire puzzles; ‘Catch’
puzzles; Miscellaneous puzzles. The mechanical trick and wire puzzles are real novelties,
many of them having first appeared in the late 19th century. There are only a few refer-
ences, and these are to suppliers of puzzles. There is a detailed table of contents, but no
index. Hoffmann gives a short description of ‘Elementary properties of numbers’, which
even asserts that any prime of the form(4k + 1) is a sum of two squares, and he uses
straightforward algebra to solve the arithmetic problems; but the book really marks the
division of mechanical puzzlesfrom mathematical recreations.

2.3 Hermann Cäsar Hannibal Schubert (1848–1911) was a secondary school teacher in
Hamburg. His work on enumerative geometry was the subject of one of Hilbert’s problems
of 1900, which was given rigorous proofs in 1912 and 1930 (§57). He also edited a series
of textbooks for school and lower university use, and compiled collections of problems.
In 1891–1894 he produced a series of columns on recreational topics in theNaturwis-
senschaftlichen Wochenschrift. He collected them inZwölf Geduldspiele (1895) and then
expanded it intoMathematische Mussestunden [Schubert, 1898]. It has gone through at
least 13 editions, the last(?) being in 1967.The second edition appeared in three volumes
in 1900 and in an abbreviated one-volume form in 1904. Both versions had third editions,
in 1907–1909 and 1907 respectively.Later editions were one-volume works, but steadily
expanded in size. Ahrens says he has seen another printing of the three-volume form [1918,
vol. 2, 417].

Mathematische Mussestunden is a good workman-like book, with considerable cover-
age. Schubert rarely gives any references, his bibliography contains only 14 items, and
there is no index and only a brief table of contents; all of this lessens its value to the histo-
rian. I find it a bit dry, but its long popularity in Germany shows it was suitable for many
readers.

2.4 Wilhelm Ernst Martin Georg Ahrens (1872–1927) spent a few years teaching at
higher schools, but in 1904 he retired to his native Rostock and devoted himself to writing.
The first edition of hisMathematische Unterhaltungen und Spiele appeared in one volume
in 1901. The second edition comprised two volumes, the first published in 1910, but the
second delayed until 1918.
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Ahrens’s book is the most detailed history of recreational mathematics. He is knowl-
edgeable about early printed books, medieval and earlier writings and has some knowl-
edge of Arabic and Japanese material, and he gives detailed references. For example, his
discussion of the history of the Josephus problem occupies 30 pages and he then devotes
23 pages to its mathematics. His bibliography is 57 pages with 762 items, starting with
[Alcuin, c.800]. He gives details of later editions, but not publishers. He even lists the 22
items that he had not personally seen and wondered if they existed—and at least six do.
Ahrens had the immense advantages of following Lucas, Schubert and Ball and of not hav-
ing to teach, so he was able to go far beyond his predecessors. He has a very comprehensive
16-page index of names, including all the authors in the bibliography, and an eight-page
index of topics. In view of the immense value of this book, it is amazing that it has never
been reprinted. In 1988, the publisher Teubner told me that they were planning to do so,
but it has not yet happened.

3 WALTER WILLIAM ROUSE BALL (1850–1925)

Now we turn to our author. Walter William Rouse Ball was born in Hampstead, London
on 14 August 1850, as the only son of Walter Frederick Ball. It is not known when or why
he adopted the style ‘Rouse Ball’. He attended University College School and University
College London, where he won the gold medal in Mathematics and first-class honours
in Logic and Moral Philosophy in 1869. He entered Trinity College Cambridge in 1870,
and was Second Wrangler and First Smith’s Prizeman in 1874. He then went to study
law at the Inner Temple in London and was called to the Bar there, but only practised as
an equity draftsman and conveyancer. However he wroteThe student’s guide to the Bar
(1878), which went through at least seven editions. He was elected a Fellow of Trinity in
1875. He deputised for W.K. Clifford at University College London in 1877.

Rouse Ball returned to Trinity as Lecturer in 1878 and remained until (semi-)retiring in
1905. He served as Assistant Tutor, Director of Mathematical Studies, Tutor, Senior Tu-
tor, Chairman of the College Education Committee and Secretary of the College Council.
Around 1919 he founded the Pentacle Club for conjuring.Granta once advertised a new
game called ‘Rous-ball’. Ball was devoted to making Trinity a great centre of mathematics:
after he became Senior Tutor in 1898, he organizedthe administration to give free rein to
researchers. Bertrand Russell, G.H. Hardy,James Jeans, E.T. Whittaker, Arthur Eddington,
J.E. Littlewood, G.W. Watson, G.I. Taylor, G.H. Darwin and Sydney Chapman were some
of the products of his era.

Ball married Alice Mary in 1885, who died in December 1919; apparently there were no
children. Whittaker [1925] says that Ball and his wife soon won the reputation of being the
best tutor and tutor’s wife around. The Balls built the house, ‘Elmside’, 20 (now 49) Grange
Road, in about 1890. Still called ‘Elmside’, it is now used by Clare Hall as a residence. Ball
built a maze in his garden, which is described and illustrated inMathematical recreations
and essays, from the fourth edition (1905) onwards; but there is now no trace of the maze.
Ball’s editor H.S.M. Coxeter told me that the maze was only made of posts and strings,
which were changed every few weeks so each student had a different maze to run. Ball died
in the house on 4 April 1925, and was buried in the Ascension Burial Ground (formerly
St. Giles’ Cemetery) in Huntingdon Road.
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Ball began writing about the time that he came to Cambridge, starting with the afore-
mentioned student’s guide in 1878. Almost all of his 15 some books deal with the history
of mathematics or Cambridge or Trinity College; but he also wrote anElementary algebra
(1890), andAn Introduction to string figures (1920), based upon a lecture to the Penta-
cle Club. HisA short account of the history of mathematics (1880) went through at least
six editions and was translated into French, Italian and Spanish. With J.A. Venn he also
produced five volumes ofAdmissions to Trinity College, Cambridge (1911–1916).

Ball made an extensive collection of portraits of mathematicians, perhaps the largest
in the world. It was exhibited at the Napier Tercentenary Exhibition in Edinburgh, and
a catalogue appears in theHandbook of the Napier tercentenary celebration (1914). The
albums of these photographs are in Trinity Library, catalogued as ‘Adv. Alb. 2–10’. They
look like a most interesting resource and it would be splendid to have them published.
A wall-plaque commemorates him in Trinity College Antechapel, but few of his papers are
in the College Library.

4 THE PUBLICATION OF BALL’S BOOK

The contents by editions of the book are displayed in Table 1. The bibliography is more
complicated than initially appears. [van Etten and Leurechon, 1624] and [Ozanam, 1694]
nominally have more editions; but most of these are reprintings of the same text, and there
are really only about six forms of the first work and three of the second. By contrast, Ball
lived until after the 10th edition and he made changes in almost every one. Even between
the fifth and the ninth editions, where the basic structure of the book remained fairly static
and the number of pages did not change, therewere usually some substantial changes of
content. One exception is the ninth edition, which appears to be a reprint of the eighth with
only one deletion of about half a page. So the historian needs to examine each edition up
through the 12th—to find, for example, that the river crossing material has six different
forms! The French translation is considerably augmented, both by Ball and by others, so it
also needs to be examined.

Though a competent historian, Ball only gives footnote references in this book. These
are quite explicit and thorough, but one wishes for a bibliography. The table of contents
is reasonably detailed and there is a moderate index. Like Lucas, he suffered from the
fact that non-European mathematics was not well known in Europe, despite the work of
many orientalists who had already translated much of the basic material. Ball generally
cites only back to [Bachet, 1612], sometimes mentioning Tartaglia; and he cites [van Etten
and Leurechon, 1624] only once. Under the three Greek classical impossible problems and
under mazes, he cites various Greek and Latin authors, usually from late editions. Only in
the material onπ does he make any references to Arabic, Indian and Chinese material, or
even to Fibonacci. Overall, Ball is not as useful asAhrens for tracing older history, but his
book is invaluable for its period, as we will now see.

5 EXAMPLES OF NEW MATERIAL IN THE BOOK

5.1 General Kayles. One has a row or a circle of objects and one can remove one object
or two (or perhaps more) adjacent ones. Two players alternate and the one who removes the
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Table 1. Contents by editions of Ball’s book.
The book divides into two parts, at ‘The Mathematical Tripos’. The numbers indicate the number of

pages devoted to the chapter (or chapters) devoted to the topic. Some material has been shuffled
around between chapters so that this table does not always reflect the pages devoted to a topic. Each

unlisted edition is essentially the same as its predecessor.

Editions 1 3 4 5 7 8 10 11 12
Arithmetical recreations. 28 37 39 42 42 42 42 75 74

Geometrical recreations. 24 34 36 39 39 39 39 53 54

Polyhedra. 32 32

Mechanical recreations. 19 22 26 26 26 26 26

Chess-board recreations. 28 28 28 28 32 31

Magic squares. 14 19 26 32 32 24 24 29 29

Bees and their cells. 8 8

Map-colouring problems. 20 21

Unicursal problems. 28 30 31 23 23 23 23 26 28

Kirkman’s school-girls. 31 31 31 31 32

Combinatorial designs. 41

Miscellaneous problems. 34 34 38 23 23 23 40 27 26

The Mathematical Tripos. 39 36

Calculating prodigies. 28 28 28 29 28

Calculating machines. 8 8

Three classical problems. 23 23 24 23 23 23 23 24 22

The parallel postulate. 20 20 20

Insolubility of the quintic. 6 6 6

Mersenne’s numbers. 15 15 15 15

String figures. 32 32 32 16

Astrology. 16 16 16 15 15 15

Cryptographs and ciphers. 30 29 29 29 29 32 31

Hyper-space. 12 13 13 14 14 14

Time and its measurement. 17 20 21 21 21 21

Matter and aether theories. 15 18 22 23 23 23

Index. 7 8 10 10 10 10 7 8 10

Total. 240 276 388 492 492 492 366 418 428

last object wins. It is based on an old physical game where one throws a stick at a row of
pins. As a mathematical game, it seems to originate about 1897 with the puzzlers S. Loyd
or H.E. Dudeney, but Ball’s fifth edition (1911) seems to be the first to propose the general
version withp counters in a circle and one can take up tom adjacent counters.
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5.2 Exploration problems. These are problems of getting into or across a desert where
one can carry more food than one needs for a day, so one can pass on food to another, or
one can leave caches of food at depots to be picked up later. We have recently observed that
versions of this appear in [Alcuin, c.800] and [Pacioli, c.1500]. Again, Ball’s fifth edition
(1911) is the first with a systematic study. He distinguishes two forms of the problem, with
n explorers who can carry food ford days:

a) Without depots, they can get one mannd/(n+ 1) days into the desert and back.

b) and more common: with depots permitted, they can get a mand(1/1+ 1/2+ · · · +
1/n)/2 days into the desert and back.

5.3 Fore and aft puzzle. Consider the part of a 5× 5 board consisting of two 3× 3
subarrays at diagonally opposite corners. They overlap in the central square. One square
has 8 black men and the other has 8 white men,with the centre left vacant. One can move a
man horizontally or vertically toward theopposite corner, either by moving to an adjacent
empty space or by jumping over a man of the opposite colour to an empty space. This is
given in Ball’s first (1892) and third (1896) editions, where he states that he believes he was
the first to publish the puzzle, but ‘that it has been since widely distributed in connexion
with an advertisement and probably now is well known’. He drops this assertion in the fifth
edition (1911). Hoffmann [1893] says the puzzle is on sale in the United Kingdom and that
there is an 1894 US patent, but I have not found any mention of it before 1892.

5.4 Chessboard placing problems. In the third, fourth and fifth editions Ball initiates a
number of questions and extends previous questions on the maximum or minimum number
of pieces one can place on a chessboard under various restrictions; that is, generalizations
of the eight queens problem. These problems are still being actively studied.

5.5 Geometric fallacies. In his first edition Ball says he seems to be the first to publish
‘Every triangle is isosceles’ and ‘A right angle is obtuse’.

5.6 Variant of the Josephus problem. The original problem is to arrangen good guys
andn bad guys in a circle and count off byk so that the bad guys are eliminated. Dudeney
gave examples where different counts and starting points would eliminate either the good
guys or the bad guys. In his fifth edition (1911) Ball asks if this can happen with different
counts and the same starting point and gives examples forn= 2,3,4; for example, G B G
G B G B B, counted by 5s and 9s. The 10th edition (1920) gives a solution for anyn due
to a Mr. Swinden.

5.7 Salary puzzle. It is better to get a rise of £5 every half year than £20 every year.
This appears in the 3rd edition (1896) as a question ‘which I have often propounded in past
years’, and I myself have found no earlier mention of it.

5.8 Magic tours. Ball’s fifth edition (1911) seems to be the first to give a magic square
of order 8 where the numbers form a king’s tour.
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5.9 Water in wine versus wine in water. If one takes a spoonful of water and adds it to a
container of wine, then takes a spoonful of the mixture and returns it to the water container,
is there now more water in the wine or winein the water? In the third edition (1896) Ball
says this is a question ‘which I have often propounded in past years’. I have no earlier
specific reference, but a reminiscence of Lewis Carroll (1832–1898) by Viscount Simon
says it was a favourite problem with him. Simon entered Wadham College Oxford, in 1892
and met Carroll after that time.

5.10 1089. Take a three-digit number, with first digit smaller than its last, and subtract
it from its reversal. Then add the result to its reversal and you get 1089. The first statements
of this fact in this decimal version seemto be in Ball’s French edition (1898) and in the
fourth edition (1905). Surprisingly, the English monetary version, solved by £12 18s 11d,
preceded this—for example in the first edition,where Ball cites an 1890 appearance which
says it has been ‘current in well-informed City-circles for some months’ and gives a general
solution for any monetary system of three levels. I have now seen another 1890 version of
the £ s d version. (I believe that I have seen a reference around 1881, but I cannot trace
it.) The French translator of Ball adds that the result in baseb is (b− 1)(b+ 1)2. Carroll’s
nephew, S. Dodgson Collingwood, writing in1899, thought Carroll invented the problem
in the £ s d form, which is possible.

6 CONCLUDING REMARK

Like Lucas, Schubert and Ahrens, Ball was greatly involved with creating new problems
and in reporting on new problems from colleagues. He was also fortunate in living for a
long time. These points account for the constant changes in the book and its wide coverage,
which make it especially valuable for the history of this period. These facts and Ball’s fluent
and friendly presentation are the keys to the book’s immense popularity. It has inspired
several generations of English-speaking school students to take up mathematics and, in
Coxeter’s sympathetic revisions, it remains as popular now as it was when it first appeared.
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CHAPTER 51

ALEXANDR MIKHAILOVICH LYAPUNOV,
THESIS ON THE STABILITY OF MOTION (1892)

J. Mawhin

This memoir is recognized as the first extensive treatise on the stability theory of solutions
of ordinary differential equations. It is the source of the so-called Lyapunov first and second
methods.

First publication. Ob’shchaya zadacha ob’ustoichivosti dvizheniya [The general problem
of stability of motion], Kharkov: Kharkov Mathematical Society, 1892. 250 pages. [Doc-
toral dissertation, University of Kharkov.]

Second edition. Moscow and Leningrad: Academy of Science, 1935. [With a portrait, ad-
ditions from the 1907 French version, Russian translation of [Lyapunov, 1897] and an
obituary by V.A. Steklov.]

Third edition. Moscow and Leningrad: GITTL, 1950. [With a portrait, and the papers [Lya-
punov, 1893a, 1893b, 1897].]

Fourth edition. As Collected works, vol. 2, Moscow: Academy of Science, 1956, 7–263.
[Contains all published papers of Lyapunov on the stability of solutions of ordinary
differential equations, and an unpublished list of the seven theses adjoined to the disser-
tation.]

All the above editions appeared in Russian.

French translation by E. Davaux, ‘Problème général de la stabilité du mouvement’,An-
nales de la Faculté des Sciences de Toulouse, (2) 9 (1907), 203–474. [Revised and cor-
rected by the author, with additional note. Repr. Princeton: Princeton University Press,
1949 (Annals of Mathematics Studies, no. 17); also Paris: J. Gabay, 1988.]

English translation. The general problem of the stability of motion (trans. A.T. Fuller), in
International journal of control, 55 (1992), no. 3 (Lyapunov centenary issue). [Also
published separately, London: Taylor and Francis, 1992. Contains editorial by Fuller,
the biography [Smirnov, 1992] and bibliography [Barrett, 1992].]

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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Related articles: Lagrange on mechanics (§16), Thomson and Tait (§40), Poincaré (§48),
Birkhoff (§68), Volterra (§73).

1 THE AUTHOR

Alexandr Mikhailovich Lyapunov was born in 1857, the son of the astronomer Mikhail
Vasilievich Lyapunov, who worked at Kazan University before becoming the director of a
Lyceum in Yaroslavl. Lyapunov’s brother Sergei was a composer; another brother, Boris,
was a specialist in Slavic philology and became a member of the Soviet Academy of Sci-
ence.

Lyapunov received his elementary education at home before graduating from the Gym-
nasium of Nizhny Novgorod and entering at the Physics and Mathematics Faculty of Saint
Petersburg University, where P.L. Chebychev greatly influenced him. He graduated in 1880
and obtained his master’s thesis in 1884 onThe stability of ellipsoidal forms of equilibrium
of a rotating liquid. He taught mechanics as aPrivatdocent at Kharkov University and
published there in 1892 his classical memoirThe general problem of the stability of motion
(in Russian), defending it the same year as a doctoral dissertation at Moscow University.

In 1893 Lyapunov became a professor at Kharkov and made researches on mathemati-
cal physics, in particular on the Dirichlet problem, and the calculus of probability. In 1901,
he was elected as a member of the St. Petersburg Academy of Science, taking the seat that
had remained vacant for seven years since the death of Chebychev. In 1917, with the hope
of improving the health of his wife, who suffered from a serious form of tuberculosis, Lya-
punov moved to Odessa, where he taught at the university. But his wife died on 31 October
1918, and he shot himself, surviving his wife by only three days. For more biographical
information, see [Grigorian, 1974; Smirnov, 1992].

Lyapunov’s work on thestability of solutions of ordinary differential equations started
with his doctoral dissertation of 1892 (subsequently referred asDissertation) and covered
a period of ten years. The nine other contributions, listed in [Barrett, 1992], give a few
additions to the general theory of stability and substantial complements to the study of
linear second order equation with periodic coefficients.

2 THE AIM AND THE INSPIRATION OF THEDISSERTATION

The object of Lyapunov’sDissertation is clearly indicated in thePreface:

In this work are exposed some methods for the resolution of questions concern-
ing the properties of motion and, in particular, of the equilibrium, which are
known under the denominations of stability and instability [. . .]. The problem
consists in knowing if it is possible to choose the initial values of the solutions
xs small enough so that, for all values oftime following the initial instant,
those functions remain, in absolute value, smaller than limits given in advance,
as small as we want. When we can integrate our differential equations, this
problem does not present real difficulties. But it would be important to have
methods which would allow to solve it, independently of the possibility of this
integration [. . .].
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Then he analyzes and criticizes the ‘linearization method’ usually adopted in stability ques-
tions, since the pioneering work of J.L. Lagrange, P.S. Laplace (§18.4) and S.D. Poisson,
by authors like W. Thomson and P.G. Tait (§40), E.J. Routh, and N.E. Zhukovski:

The procedure usually used consists in neglecting, in the considered differen-
tial equations, all the terms of order greater than one with respect to the quan-
tities xs and to consider, instead of the given equations, the linear equations
so obtained. [. . .] But the legitimacy of such a simplification is not justified a
priori and [. . .] if the solution of the simplified problem can give an answer to
the original one, it is only under certain conditions, which, generally, are not
indicated.

Then Lyapunov mentions his principal source of inspiration:

The unique tentative, as far as I know, of rigorous solution of the question be-
longs to M. Poincaré, who, in a remarkable memoir‘Sur les courbes définies
par les équations différentielles’, and in particular in the last two parts, con-
siders stability questions for differential equations of the second order as well
as close questions relative to systems of the third order. Although M. Poincaré
restricts himself to very special cases, the methods that he uses allow much
more general applications and can still provide many new results. This is what
will be shown in what follows because, in a large part of my researches, I have
been guided by the ideas developed in the quoted Memoir.

Finally, Lyapunov explicits the aim of hisDissertation:

The problem that I have posed to myself, in starting the present study, can be
formulated as follows: to indicate cases where the first approximation really
solves the stability question, and to give procedures which would allow to solve
it, at least in some cases, when the first approximation is no more sufficient.

3 LYAPUNOV’S CONCEPT OF STABILITY

The contents of Lyapunov’sDissertation are summarised in Table 1. The first Chapter,
entitled ‘Preliminary analysis’, contains precise definitions of the used concepts and the
development of the general methods applied in the two subsequent chapters. The solution
with initial valuex0 at initial time t0 of the ordinary differential system (written here, in
contrast to Lyapunov, in vector notation)

dx/dt =X(x, t), (1)

is denoted byx(t, t0, x0).
To define and study the concept ofstability of a solutionξ(t) of (1), Lyapunov first

observes that the substitutionx→ ξ + x reduces the question to the stability of the zero
solution of a system of the type (1) satisfyingX(0, t)≡ 0. He calls this zero solutionstable
if for eachε > 0 and eacht0, one can findη > 0 such that for eachx0 with ‖x0‖� η and



Chapter 51. Alexandr Mikhailovich Lyapunov, thesis on the stability of motion (1892) 667

Table 1. Contents by Sections of Lyapunov’s dissertation.
The numbers of pages in the rows for the Chapters refer to the French/English translations (1907

and 1992) respectively; in other rows Section numbers are given. DE= differential equations.

Sections Topics and methods
6/4 Preface. Concepts of stability and instability. Earlier work: Thomson–Tait,

Routh, Joukovsky, Poincaré. Summary of the memoir.
58/51 Chapter I. Preliminary analysis.
1–5 Generalities on the considered question. Stability, unstability. Solutions of DE

by power series.
6–10 On some systems of linear DE. Characteristic numbers. Normal systems.

Regular systems.
11–13 On a general case of DE of perturbed motion. Convergent series solutions of

DE. The first method.
14–16 Some general propositions. Positive and negative definite functions. The

second method.
124/110 Chapter II. Study of steady motions.
17–21 Linear DE with constant coefficients. Construction of a Lyapunov function.

Canonical systems.
22–41 DE of the perturbed motion. Sufficient conditions for stability and instability.

Inversion of the Lagrange–Dirichlet stability theorem. Linearization with one
zero root or two imaginary roots.

42–45 Periodic solutions of the perturbed motion.
72/72 Chapter III. Study of periodic motions.
46–47 Linear DE with periodic coefficients. Floquet theory.
48–53 Some propositions on the characteristic equation. Second-order equation.

Canonical systems.
54–64 Study of the DE of the perturbed motion. Sufficient conditions for stability

and instability. Linearization with one characteristic factor equal to one.
Linearization with two imaginary characteristic factors of modulus one.

65 A generalization.

all t � t0, one has‖x(t, t0, x0)‖< ε. This is essentially the continuous dependence of the
solution on initial conditions,for all values of t larger than the initial one.

The zero solution is calledunstable if it is not stable. The related concept ofuniform
stability, in whichη is independent oft0, was to be introduced in 1933 by K.P. Persidskii.
At the end of Chapter I, Lyapunov gives a refinement of the concept of stability, called
todayasymptotic stability, in which, in addition to stability, he requires thatx(t, t0, x0)→ 0
whent→+∞ for eacht0 and each sufficiently small‖x0‖.

After having proved, by the method of majorants, the existence of convergent series for
the solutions of (1) of sufficiently small norm, defined over an arbitrary interval of time,
Lyapunov introduces a term still used today,although maybe in a slightly more restricted
sense: the set of all procedures of study ofthe stability depending upon the rendition of
solutions of the perturbed motion in the form of infinite series, is called thefirst method.
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Thesecond method consists in all types of procedures which are independent of obtaining
solutions of the differential equations of the perturbed motion.

4 THE FIRST METHOD OF LYAPUNOV

As one can writeX(x, t)= P(t)x +R(x, t), whereR(x, t)=O(‖x‖2), the linear system

dx/dt = P(t)x (2)

is called thelinearization or thevariational equation of (1) around the zero solution. The
first step consists in studying the stability of its trivial solution, in order to deduce possible
information on the stability of the trivial solution of (1).

For this, Lyapunov introduces the concept ofcharacteristic number of a functionx(t)
such thatx(t)expλ1t→ 0 andx(t)expλ2t→∞ ast→+∞, for someλ1 andλ2. Then,
a numberλ0 exists such that, for eachε > 0, x(t)exp(λ0 + ε)t→∞ andx(t)exp(λ0 −
ε)t→ 0 whent→+∞. λ0 is called thecharacteristic number of the functionx(t). An
equivalent definition

λ0 := λ(x,expt)=− lim sup
t→+∞

(
log

∣∣x(t)∣∣/t), (3)

has been given in 1930 by O. Perron, who proved that the set of characteristic numbers of
the linear system (2) contains at mostn distinct elements. The negative of the Lyapunov
characteristic numbers and their analogues for discrete dynamical systems play, under the
name of Lyapunovexponents, an important role in the recent researches on chaos.

WhenP is constant or periodic, the sum of its characteristic numbers is equal to

− lim sup
t→+∞

(1/t)
∫ t

t0

�[
trP(τ)

]
dτ (4)

and Lyapunov callsregular a system satisfying this condition. Their study has been con-
tinued by O. Perron, N.G. Cetaev and Persidskii. An important subclass of regular sys-
tems introduced by Lyapunov are thereducible systems, that is, systems (2) which can
be reduced to a system with constant coefficients through a transformation of the type
x =Q(t)y, whereQ(t) is of classC1, bounded on[t0,+∞[ together with the determinant
of its reciprocal. They have been studied by N.P. Erugin and I.Z. Shtokalo.

Lyapunov is then ready to state and prove the basic theorem of his first method:If
the linearized system is regular and if all its characteristic numbers are positive, then the
unperturbed motion is stable, and moreover the perturbed motion tends asymptotically to
the unperturbed one when t tends to +∞.

5 THE SECOND METHOD OF LYAPUNOV

Lyapunov then proceeds to his second method, whose aim is to extend the Lagrange–
Dirichlet stability theorem to not necessarilyconservative systems. In his words (Sec. 16):
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Everybody knows the theorem of Lagrange on the stability of equilibrium in
the case where a potential exists, as well as the elegant proof which has been
proposed by Lejeune-Dirichlet. This last proof rests upon considerations which
can be used to prove many other analogous theorems.

J.P.G. Lejeune-Dirichlet(1805–1859) had proved in 1846, by qualitative arguments, that
an equilibrium of an autonomous conservative mechanical system is stable if it is a strict
minimum of the potential functionV . Lagrange’s earlier proof, based upon linearization,
was insufficient (compare §16).

After introducing and analyzing the concept of positive definite or negative definite
functionV (x, t) (a positive definite V (x, t) is bounded below by a continuous increasing
functionϕ(‖x‖) vanishing at 0), Lyapunov proves his fundamental result:the trivial so-
lution of system (1) is stable if one can find a definite function V (x, t) whose derivative
along solutions of (1) 〈

V ′x(x, t)
∣∣X(x, t)〉+ V ′t (x, t) (5)

has a fixed sign opposite to that of V , or is identically zero, in some neighborhood of the
origin. The idea of the very simple proof goes back to Dirichlet, and consists, givenε > 0
andt0, in takingη > 0 such thatV (t0, x0) < ϕ(ε) whenever‖x0‖< η. AsV (t, x(t, t0, x0))

is nonincreasing, assuming the existence of a firstt1> t0 such that‖x(t1, t0, x0)‖ = ε leads
to a contradiction.

Lyapunov also observes that if, in addition,V has an infinitesimal upper bound and a
defined derivative along solutions of (1), then the zero solution is asymptotically stable.
He also proves in this setting two sufficient conditions forinstability, in terms of properties
of some Lyapunov functions. They will be refined by many authors, starting with Cetaev
in 1934.

Those types of functionsV are nowadays called Lyapunovfunctions, and a lot of energy
has been used to find ways of constructing them. Much emphasis has been put also on
finding suitable types of stability implying the existence of a suitable Lyapunov function
(converse theorems), in the hands of Persidskii, I.G. Malkin, J.L. Massera, J. Kurzweil,
N.N. Krasovskii and E.A. Barbashin. The second method of Lyapunov, which is also useful
to study various types ofasymptotic behavior of solutions of differential equations, is often
referred as Lyapunov’sdirect method.

6 THE CASE OF AUTONOMOUS SYSTEMS

In Chapter two (‘Study of steady motions’), Lyapunov applies his second method to the
special case where the linear approximation has constant coefficients. He first reproves
the simple case where the stability or instability follows from the linear approximation.
Incidentally, he rediscovers independently some results of Poincaré’s Ph.D. thesis of 1879.

Lyapunov observes (Sec. 35) that the Lagrange–Dirichlet theorem on the stability of a
mechanical systems in the presence of a potential

gives a sufficient condition for stability, consisting in the fact that the potential
must reach a minimum at the equilibrium position. But, in proving that this
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condition is sufficient, this theorem does not allow to conclude to the necessity
of the same condition. This is why the following question can be raised: will
the equilibrium position be unstable if the potential is not minimum? In this
general form, this question is not solved up to now. But, under some assump-
tions of rather general character, one can answer it in a precise way.

After a century of research, despite substantial advances, the situation of this problem
can still be described exactly in Lyapunov’s words, except whenV is analytical, for which
case V.M. Palamodov has proved in 1995 the converse of the Lagrange–Dirichlet theorem.
See [Rouche et alii, 1977] and [Hagedorn and Mawhin, 1992] for references.

Lyapunov then analyzes in detail the situations where the characteristic equation of the
linear approximation has one zero root and the other ones have negative real parts, and the
case where it has two purely imaginary roots, the other ones having negative real parts.
Those cases are known nowadays ascritical, for the linear approximation is no more suf-
ficient to decide of the stability of the trivial solution. He has considered the case of two
zero roots for the characteristic equation in a manuscript which has only been published
posthumously [Lyapunov, 1963], and completed by V.A. Pliss in 1964. One finds in Lya-
punov’s treatment the germ of the theory ofcenter manifolds, a fundamental tool for many
contemporary researches on ordinary differential equations and dynamical systems.

On this occasion, Lyapunov also states and proves his famous theorem on theexistence
of a family of periodic solutions near the origin in the presence of a first integral. Consider
an autonomous differential system

dx/dt =X(x), (6)

whereX is analytic,X(0) = 0, X(0) has a pair of imaginary eigenvaluesα1 = iω,
α2 = −iω for someω > 0 and the other eigenvalues such thatαk/α1 is not an integer
for 3 � k � n (nonresonance condition). Assume moreover that the system (6) admits a
first integralG with non-vanishing Hessian on the spaceE spanned by the eigenfunctions
associated to±iω. Then Lyapunov proves thatfor each sufficiently small ε there exists a
unique T -periodic solution x(t; ε) near E with period T (ε) close to 2π/ω lying in the set
G(x)−G(0)= ε2 and such that x(t; ε)→ 0 and T (ε)→ 2π/ω as ε→ 0.

An example of J. Moser shows that the non-resonance condition on theαk is necessary,
but in 1973 A. Weinstein proved that it is superfluous in the case of a Hamiltonian system
with the Hessian of the Hamiltonian definite at zero.Global versions of the Lyapunov the-
orem on families of periodic solutions havebeen obtained in the 1980sfor the Hamiltonian
case, following Rabinowitz in 1982, who used modern techniques of critical point theory.
References on the modern local and global developments of Lyapunov’s work on periodic
solutions can be found in [Starzhinskii, 1977; Mawhin and Willem, 1989]. Those results
are important in celestial mechanics.

7 THE CASE OF PERIODIC SYSTEMS

The last chapter of Lyapunov’s monograph (‘Study of periodic motions’) concentrates on
the case where the system (1) depends periodically ont . Then its linearized system (2) has
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periodic coefficients, say of periodω. He starts by recalling the classical Floquet theory for
such systems, stating (except for the matrix notations) that the principal matrix solution of
(2) (for whichY (0)= I ) can always been written in the form

Y (t)=Q(t)etM, (7)

for someω-periodic nonsingular matrixQ(t) and some constant matrixM, whose char-
acteristic roots are called thecharacteristic exponents of (2). Consequently, for all values
of t ,

Y (t +ω)= CY(t), whereC = eωM, (8)

and the characteristic roots ofC are called thecharacteristic multipliers of (2). Their ex-
plicit determination is of course in general impossible, but Lyapunov proves a number of
their properties, in particular thatthe characteristic multipliers of the adjoint system to (2)
are the reciprocal of the characteristic multipliers of (2). He also finds useful information
on the characteristic multipliers when the coefficients of the system satisfy some symmetry
conditions, and when (2) is Hamiltonian.

Lyapunov also initiates the study of thesecond-order linear equation

y ′′ + p(t)y = 0, (9)

with ω-periodic coefficient p(t), and finds explicit conditions uponp providing important
information on its characteristic multipliers. He proves thatif 0 �= p � 0, the characteristic
multipliers of (9) are real, one larger than one and the other one smaller than one. On the
other hand, if 0�= p � 0, and if

ω

∫ ω

0
p(t) dt � 4, (10)

the characteristic multipliers of (9) are imaginary and have modulus one. Those re-
sults have been generalized and refined by many authors, including O. Haupt, G. Hamel,
G. Borg, I.M. Gelfand, V.B. Lidskii, M.G. Krein, V.A. Yakubovich, V.M. Starzhinskii
and H. Hochstadt. Many refinements of Lyapunovinequality (10) have been obtained
[Yakubovich and Starzhinskii, 1972].

Finally, Lyapunov combines his general results of Chapter 1 with his studies of linear
periodic systems to prove that,when (1) is ω-periodic in t , its trivial solution is asymptoti-
cally stable when all the characteristic multipliers of its linearization have moduli strictly
smaller than one, and is unstable if one of them has modulus strictly larger than one. Like
in the autonomous case, he also discusses in length some difficultcritical cases, where one
characteristic multiplier is equal to one or where two characteristic multipliers are imagi-
nary and of modulus one.

8 THE INFLUENCE OF POINCARÉ’S WORK ON LYAPUNOV’SDISSERTATION

We have seen that, in the preface of hisDissertation, Lyapunov generously acknowledges
Poincaré’s influence. In a footnote to his preface, he quotes Poincaré’s King Oscar Prize
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memoirSur le problème des trois corps et les équations de la Dynamique (1890) (§48),
as well as the first volume of theMéthodes nouvelles de la Mécanique céleste (1892), just
published during the printing of theDissertation. Describing later in the preface his method
of development of solutions of ordinary differential in power series, Lyapunov mentions in
a footnote that

the series under study have been considered, under special conditions, in my
memoir ‘Sur les mouvements hélicoïdaux permanents d’un corps solide dans
un liquide’ (Communications de la Société mathématique de Kharkow, 2e
série, t. I, 1888). I have learned after that M. Poincaré had considered those
series, under the same hypotheses, in his Thesis ‘Sur les propriétés des fonc-
tions définies par les équations aux différences partielles’ (1879).

This connection is made explicit in Chapter 2, Sec. 24. In this chapter, Lyapunov under-
lines the pioneering contributions of Poincaré in his series of memoirs ‘Sur les courbes
définies par une équation différentielle’ (1881–1886), to what is called to-day the problem
of determining the conditions under which an equilibrium of a planar differential system is
acenter, i.e. is surrounded by a one-parameter family of closed orbits. Other results of this
series of memoirs are also mentioned in Sec. 64 of Chapter 3. Furthermore, in a footnote
ending Sec. 45 of Chapter 2, devoted to periodic solutions, Lyapunov observes:

The question of periodic solutions of nonlinear differential equations is also
considered, although with another viewpoint, in the last memoir of Poincaré:
‘Sur le problème des trois corps et les équations de la Dynamique’ (Acta Math-
ematica, t. XIII).

In Chapter 3, when he states his theorem that a linear canonical system with periodic
coefficients has a reciprocal characteristic equation, Lyapunov mentions in a footnote of
Sec. 51 that

his theorem is also indicated by M. Poincaré in his memoir ‘Sur le problème
des trois corps et les équations de la Dynamique’ (Acta Mathematica, t. XIII,
p. 99–100) [. . .]. But I knew it before the publication of this memoir and, in
February 1900, I have communicated it, in the previous form, at the Mathemat-
ical Society of Kharkow, with other propositions related to the characteristic
equation (Communications de la Société mathématique de Kharkow, 2e série,
t. II; report of the meetings).

Summarizing, we see that Lyapunov’s work has been influenced by Poincaré’s, and of-
ten overlaps with Poincaré’s further contributions. On several occasions, and specially in
dealing with the question of stability, Lyapunov transforms into powerful general methods
some remarks, made by Poincaré in special situations.

If there is common material in the work of Poincaré and Lyapunov, many differences
attend their approach and style. Poincaré’s insight is mostly geometrical, and Lyapunov’s
one essentially analytical. Further, it is striking to see how organized is Lyapunov’sDisser-
tation, in contrast to [Poincaré, 1892–1899], which is a patchwork of descriptions of tools
and results, with an amazing and wide scope. The comparison between those two giants
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of differential equations is somewhat reminiscent of that between Bernhard Riemann and
Karl Weierstrass in their approaches to complex function theory (§34); their followers have
taken advantages of both styles.

9 THE EARLY RECEPTION OF THE WORK OF LYAPUNOV ON STABILITY

The third volume of Emile Picard’s famousTraité d’analyse [Picard, 1893–1896] is al-
most entirely devoted to the study of differential equations. In Chapter VIII he describes
Poincaré’s theory of periodic solutions, with a somewhat more extended discussion of the
existence of periodic solutions of an autonomous differential systemaround an equilib-
rium. Some of his incorrect conclusions were mentioned to Picard by Lyapunov, in a letter
of 20 January 1895 (reproduced as Appendix III of [Mawhin, 1994]) in which Lyapunov
provides a nice summary in French of hisDissertation, and informs Picard about his own
results on periodic solutions. Lyapunov notices that Picard’s reasoning about the existence
of periodic solutions near a situation of equilibrium is not conclusive, except in the pres-
ence of a first integral. In 1897, Picard presents to the FrenchAcadémie des Sciences a note
of Paul Painlevé, which exhibits a counter-example to Picard’s claim, but again proposes
too optimistic an existence condition. Lyapunov is not mentioned. Despite Lyapunov’s and
Painlevé’s remarks, the sections devoted to the periodic solutions near an equilibrium re-
main unaltered in the subsequent editions of Picard’sTraité.

In the second edition (1908) of Volume III of hisTraité, however, Picard adds a section
to Chapter VIII entitled ‘De la stabilité et de l’instabilité des intégrales de certaines équa-
tions différentielles; théorème de M. Liapounoff sur l’instabilité de l’équilibre’. He refers
only to a note of Lyapunov published in Liouville’s journal [Lyapunov, 1897], summariz-
ing some of the concepts and results of theDissertation, and giving new instability condi-
tions based upon the second method. In his work ‘Sur certaines propriétés des trajectoires
en Dynamique’, crowned by theprix Bordin of the Académie in 1896 and published the
next year in the same issue of Liouville’s journal as Lyapunov’s note, Jacques Hadamard
(1865–1963) studies the stability and asymptotic behavior of the trajectories of a mechan-
ical system, through auxiliary functions similar to Lyapunov’s ones. Hadamard mentions
that the condition he has found for the instability of the equilibrium of a conservative me-
chanical system, was obtained by Lyapunov in 1892, in a memoir ‘unfortunately written in
Russian, an extract of which having been published in the journal of Jordan in 1897, whose
existence was unknown to me when I communicated the above remarks to the Académie
des Sciences’. See [Mawhin, 1994] for more details and references.

In Italy, T. Levi-Civita already mentions Lyapunov’s memoir in a paper of 1897 which
criticizes, like Lyapunov, the work of the British school based upon unjustified lineariza-
tion. Inspired by classical mechanics, Levi-Civita requires, in the Lyapunov-like defini-
tion of stability introduced in his main work of 1901, that the conclusion holds forall
values oft , and not only in the future. He calls this concept theunconditional Dirichlet-
type stability, to distinguish it from Lyapunov’s. Another important aspect of Levi-Civita’s
contributions is his detailed study of the stability of ‘transformations’, i.e. of mappings,
anticipating the modern theory of dynamical systems [Dell’Aglio and Israel, 1989].
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10 THE LATER DEVELOPMENT OF LYAPUNOV STABILITY

The contributions of Lyapunov to stability were considered important enough by French
mathematicians to be included in some of their traditional large treatises on analysis pub-
lished in Paris by Gauthier–Villars, such as the second edition (1910–1915) of Edouard
Goursat’s famousCours d’analyse mathématique. (The last treatise in this tradition seems
to be theCours d’analyse de l’Ecole Polytechnique of J. Favard, 1960–1963.) After Bour-
baki’s influence, Lyapunov stability theory was expelled from general treatises of analysis;
but it is found, besides the specialized monographs, in most books on ordinary differential
equations.

In the former Soviet Union, the interest in Lyapunov theory seems to start around 1930,
with the work of Cetaev on instability, of Persidskii on the first method and of Malkin
on the second method. The first treatise on Lyapunov stability was published by Cetaev
immediately after the SecondWorld War [Cetaev, 1946], and has seen four editions. It has
been followed, besides many research papers, by some sixty monographs on stability and
its application to mechanics and control theory, among which one must mention the classics
[Malkin, 1952; Letov, 1955; Zubov, 1957; Krasovskii, 1959; Aizerman and Gantmacher,
1963; Barbashin, 1967].

In the United States G.D. Birkhoff, Poincaré’s brilliant follower, makes significant con-
tributions to dynamical systems between 1912 and 1945 (§68), but Lyapunov’s work on
stability in only briefly mentioned in one ortwo memoirs. The introduction of Lyapunov
theory there is due to a topologist and algebraic geometer of Russian origin, Solomon
Lefschetz, who starts, during the Second World War, a new career devoted to differen-
tial equations and control theory. He creates a strong interest in stability theory among
American mathematicians, as exemplified by the publication of about twenty monographs;
following the first one, by Richard Bellman [Bellman, 1953], one should notice [Cesari,
1959; LaSalle and Lefschetz, 1961; Lefschetz, 1965; and Bhatia and Szegö, 1970]. In Eu-
rope and Japan, the books [Hahn, 1959; Yoshizawa, 1966; Rouche et alii, 1977] have been
very influential and are now classical.

The techniques of Lyapunov have been successfully applied to other classes of equa-
tions, like integral or functional–differential equations, differential or evolution equations
in Banach spaces, non-linear parabolic equations, and to discrete dynamical systems and
difference equations. Lyapunov’s techniques and results have important applications in
mechanics, control theory, chaos theory, mathematical biology, population dynamics and
economics. More than a century after its publication, Lyapunov’sDissertation remains an
invaluable source of inspiration for mathematicians specialized in differential equations,
dynamical systems and their applications. Its first English translation was published in
1992.
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CHAPTER 52

HEINRICH HERTZ, POSTHUMOUS BOOK ON
MECHANICS (1894)

Jesper Lützen

Offering a mechanical foundation of physics that avoided force as a basic concept, this was
the first book on mechanics to make use of Riemannian geometry in configuration space.
In the philosophical introduction Hertz described physical theories as (mental) images of
the natural world.

First publication. Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt (ed.
P. Lenard), Leipzig: Barth, 1894. xxxii+ 312 pages.

Manuscripts. Several drafts and the almost finished manuscript in Hertz’s hand are pre-
served at theDeutsches Museum, München.

Reprint. As Gesammelte Werke, vol. 3, Leipzig: Barth, 1910.

Photoreprint. Vaduz: Sändig, 1984.

English translation. The principles of mechanics presented in a new form (trans. D.E. Jones
and J.J. Walleye), London: Macmillan, 1899.[Photorepr. New York: Dover, 1956.]

Related articles: Newton (§5), d’Alembert (§11), Lagrange on mechanics (§16), Riemann
on geometry (§39), Thomson and Tait (§40), Maxwell (§44), Hilbert on geometry (§55).

1 EDUCATION AND EMPLOYMENTS

Heinrich Hertz (1857–1894) was one of the last physicists who made lasting contributions
to both theoretical and experimental physics (for a book-length biography see [Fölsing,
1997]). His unusual talents in both theoretical and practical matters were manifest already
during his childhood. Top student in his school class, he was particularly gifted in mathe-
matics and languages, especially Arabic, and in the afternoons he enjoyed to work at his
carpentry bench and at his lathe. In an attempt to combine his theoretical and practical
interests he matriculated at the Dresden Polytechnic in 1876 as a student of constructional
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engineering. After one semester his studies were interrupted by a one-year draft to the rail-
road troops. When he resumed his studies at the Polytechnic in Munich he soon decided to
switch to physics, and after one year there he moved on to the leading physics laboratory
of the time, that of Hermann von Helmholtz (1821–1894) at the University of Berlin.

At this time Helmholtz was engaged in electromagnetic research. His main objective
was to decide if electromagnetic phenomena could best be described by Wilhelm We-
ber’s theory of action at a distance or by Clerk Maxwell’s field theory (§44). Hertz soon
embarked on experimental research that came out in favour of Maxwell’s theory. It earned
him a prize from the University. Simultaneously he followed courses in theoretical physics,
including three in mechanics given by C.W. Borchardt, G.R. Kirchhoff, and Ernst Kum-
mer. Having earned his doctorate with a thesis on the currents induced on a rotating sphere
by a magnet, he continued to work as Helmholtz’s assistant. While at Helmholtz’s labora-
tory, he did experimental and theoretical research on a variety of subjects such as electro-
magnetism, elastic deformations, evaporation, the tides, a new dynamometer, floating plas-
tic plates and cathode rays. This research resulted in 11 publications.

During the years 1883–1885 Hertz held a post asPrivatdozent at the university in Kiel.
Since there were no laboratory facilities at this small university, his research during this
period on electromagnetism and hydrodynamics was purely theoretical. In the summer
semester of 1884 he held a public series of lectures entitled ‘Modern ideas on the constitu-
tion of matter’. His carefully written notes from these lectures have recently been published
by Albrecht Fölsing [Hertz, 1999]. They give a very well informed and thoughtful survey
of the contemporary ideas about the constitution of the ether and of ponderable matter;
and they reveal that already at this time Hertz thought of theoretical explanations of micro-
scopic physical phenomena as images.

In 1885 Hertz was in a position where he could choose between advancing to a pro-
fessorship in Kiel or to move to a professorship at the Polytechnic in Karlsruhe. He chose
Karlsruhe because it provided laboratory facilities. During the following four years he
made the best of these facilities to make his most celebrated research: in particular, he
succeeded in producing electromagnetic waves with a wavelength short enough to demon-
strate that they behave like light [Buchwald, 1994]. To many physicists, including Hertz
himself, this was a final proof of Maxwell’s electromagnetic field theory.

Hertz became almost instantaneously world famous and was offered the prestigious
chair of theoretical physics at Berlin University, as Kirchhoff’s successor, but he declined
it in favour of a professorship at the University of Bonn which allowed him to continue
experimental research. However, Hertz was to make little use of this possibility, for in-
stead he finished two theoretical papers on electromagnetism. The first contained a rather
axiomatic treatment of Maxwell’s equations in their now familiar form, while the second
dealt with electromagnetism of moving bodies in a way that was soon surpassed by Hen-
drik Lorentz’s theory of the electron (§60) and Albert Einstein’s theory of relativity (§63).
After a brief experimental study of cathode rays Hertz turned to theoretical mechanics.

2 MECHANICS, A RACE WITH DEATH

At the end of March 1891 Hertz wrote to Felix Klein that he had begun to think about
mechanics, in particular about the theory of energy. He promised to contribute a paper
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on this subject to a projected publication and anticipated that it would require between a
half and a full year of work. In fact it took Hertz almost three years to finish his research.
There were several reasons for this delay. First, he expanded the work from a paper on the
concept of energy to a monograph containing a complete reorganization of the foundations
and principles of this science. Second, his teaching, his duties as a head of a research
laboratory, his duties as a physics celebrity, and finally his fatal illness prevented him from
working full time on the project. Third, he found it very time consuming to write this
logically tightly knit theoretical book that he sometimes characterized as his mathematical
work. While he was working on it he was often depressed from the lack of progress, and
he admitted in a letter of 19 May 1893: ‘I often think I should not have begun it’ [Fölsing,
1997, 500].

In 1892 Hertz contracted an infection of the nose, and soon it spread to other cavities
of his head. Although various treatments helped temporarily, the painful disease made
him unfit for work during prolonged periods. He also gradually realized that the infection
could be fatal, and at several occasionshe doubted that he would live to see the book
on mechanics to the end. Yet, on 3 December 1893 he sent two-thirds of the manuscript
off to the Barth Publishing House, with whom he had negotiated a favourable contract.
According to Hertz the last third of the manuscript still needed ‘a final touch’. However,
his condition rapidly worsened, blood poisoning supervened, and on 1 January 1894 he
died only 36 years old.

Hertz had paid his assistant Philipp Lenard to make a copy of the manuscript, and after
Hertz’s death Lenard saw the book through press, making a few minor final touches to the
last third of the manuscript. The book appeared in the summer of 1894.

3 WHY MECHANICS?

From a modern perspective it may seem strange that a young and celebrated physicist, who
had just made a decisive break through in one of the hottest areas of physics would turn
to a classical subject such as mechanics. But for Hertz and his contemporaries this was a
rather natural next step. With varying vigour Maxwell had suggested that the electromag-
netic field should somehow be explained in mechanical terms as matter in motion. Hertz’s
axiomatic treatment of Maxwell’s theory almost completely avoided any allusion to such
a mechanical reduction, but that does not mean that he did not endorse a mechanistic re-
ductionist program. Indeed, his opening words of thePrinciples of mechanics were: ‘All
physicists agree that the problem of physics consists in tracing the phenomena of nature
back to the simple laws of mechanics’. Moreover, he declared that a mechanical expla-
nation of electromagnetism ‘seems to be nearlyrealized’. Thus, for Hertz mechanics was
the fundamental discipline of physics to which all other disciplines, including electromag-
netism, should ultimately be reduced. However, he shared a feeling widespread among his
contemporaries that there was something rotten in the foundations of mechanics. During
the decades preceding his book several criticalworks had appeared: in particular, Hertz
owed much to Mach’sDie Mechanik in Ihrer Entwickelung historisch-kritisch dargestellt
of 1883. Several mathematicians and physicists such as William Thomson and P.G. Tait
(1867, 1879–1883: see §40), Kirchhoff (1876–1877) and Carl Neumann (1888) wrote new
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treatises in order to provide a more satisfactory foundation for mechanics. However, the
many lectures on mechanics that Hertz had attended as a student had reinforced his feeling
that the problems had not been solved in a satisfactory way.

One of the main problems that were up for debate was the role of unobservable atoms
and molecules and the forces at a distance assumed to act between them. A group of pos-
itivist and phenomenologically oriented physicists and chemists believed that if physics
was based on a concept of energy, one could avoid making appeal to unobservables and
forces at a distance. When Hertz began his work on mechanics he had such an energetic
image of nature in mind. However, he soon rejected energy as an insufficiently clear basic
notion and convinced himself that physics could not do without unobservables.

Already in his 1884 lectures in Kiel Hertz had argued that field theories of mediated
action could explain all the effects that were usually attributed to distance actions, and in
connection with his experiments on electromagnetic waves he expressed the opinion that
their most important consequence was to show that electromagnetism is not due to actions
at a distance but is propagated in time through space. In a speech in 1889 he explained how
gravity was now the only apparent action at a distance left in physics, and he suggested
that even this force might turn out to be of a field-theoretical nature.

The contemporary opinion was that fields were to be described as mechanical states in
an all-pervasive medium, the ether. Its nature was according to Hertz the ‘all-important
problem’ of physics. However, he felt that one could only begin to understand the ether
after one had removed all imperfections from the principles of mechanics. Thus, he con-
sidered hisPrinciples of mechanics as a critical new foundation of mechanics necessary
for the study of ordinary matter and in particular of the ether. He hoped it would eventually
lead to the understanding of all interactions and ultimately of all natural processes, at least
all non-living processes.

4 IMAGES OF NATURE

The contents of Hertz’s book are summarised in Table 1. In the philosophical introduc-
tion he argued that we have no way of knowing how nature really works. In particular,
he agreed with the positivist phenomenologists that we cannot know which unobservable
elements really exist. Yet he argued, that any reasonable theory of nature must contain un-
observables. So the best we can do is to make ourselves (mental) images of nature. Such an
image must correspond to the nature external to our minds in such a way that ‘the necessary
consequents of the images in thought are always the images of the necessary consequents
in nature of the things pictured’ (p. 1). In other words, an image must be able to predict
nature correctly. If an image satisfies this requirement Hertz called it ‘correct’. There need
not be any other resemblance between nature and an image of nature, and we have no way
of knowing if there are other similarities between the two.

As a second requirement of an image Hertz asked that it be ‘(logically) permissible’, a
notion akin to consistency. There may be many permissible and correct images of nature. In
order to chose between them Hertz required that one should prefer the most ‘appropriate’.
The most appropriate image is the one that is 1) the most distinct (pictures most essen-
tial relations) and 2) the simplest (containing the least number of empty or superfluous
relations).
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Table 1. Summary by Chapters of Hertz’s book.

Chapter Page Topics
xii–xxxii Preface by Hermann von Helmholtz.

Introduction 1–49 Philosophy of images and analysis of the three competing
images of mechanics.

Book 1 51 Geometry and kinematics of material systems.
1 53 Time, space, and mass.
2 55 Positions and displacements of points and systems.
3 69 Infinitely small displacements and paths of a system of material

points.
4 88 Possible and impossible displacements. Material systems.
5 100 On the paths of material systems.
6 119 On the straightest distance in holonomic systems.
7 137 Kinematics.

153 Concluding note on Book 1.
Book 2 155 Mechanics of material systems.
1 157 Time, space, and mass.
2 162 The fundamental law.
3 170 Motion of free systems.
4 199 Motion of unfree systems.
5 235 Systems with concealed masses.
6 286 Discontinuous motion.

306 Concluding note on Book 2.
309 Index to definitions. [End 312.]

Most of the introduction deals with a comparison between three images of mechanical
nature: 1) The ordinary Newtonian–Laplacian image, which operates with four basic con-
cepts: time, space, mass and force; 2) The energetic image, which also operates with four
basic concepts: time, space, mass and energy;and 3) Hertz’s image, which operates with
only three basic concepts: time, space and mass.

As emphasized above, Hertz had by 1890 come to the conclusion that forces acting at
a distance had no place in physics; so it was a natural consequence that his mechanics
had to do without them. However, he went much further in his book, for he completely
excluded the concept of force (be it acting at a distance or through a medium) and the
related concept of potential energy as a fundamental notion. It is obvious that if an image
of nature can do without forces or potential energy, such an image must be simpler than,
and thus preferable to, an image including such inessential idle wheels. This is how one
might expect that Hertz would argue in favour of his own image of mechanics. However,
rather than emphasizing its simplicity, he stressed its permissibility.

Hertz referred to many logical problems encountered in usual mechanics, and he con-
cluded that the concept of force was to blame for most of them. In this situation textbooks
typically added clarifying comments in order to dispel the confusion. However, he sharply
pointed out that one cannot get rid of inconsistencies by adding new relations, but only by
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leaving out something from the image. In particular, according to Hertz one could get rid
of the inconsistencies of mechanics by leaving out the concept of force as a basic concept.

In order for different parts of a mechanical system to be able to interact, Hertz allowed
what he called ‘connections’. These are purely geometric relations expressible as first-
order homogeneous differential equations in the coordinates. Contrary to Newton’s second
law, these differential equations do not involve time. This is probably why Hertz preferred
connections to forces. Moreover, he admitted that we cannot give a correct image of nature
without admitting other unobservables. However, contrary to the unobservables of the two
other images, force and potential energy, which are of an entirely other nature than the
other three basic notions of time, space and mass, Hertz’s image operated with concealed
mass, which was supposed to be entirely similar to ordinary mass. The only difference is
that the concealed masses are not directly connected to our sensory apparatus.

Thus to Hertz a mechanical system consists of a number of ordinary mass-points con-
nected to each other and to a system of concealed masses. He did not deal with continuum
or fluid mechanics except for a passing remark to the effect that such systems could be
dealt with by going to the limit.

5 GEOMETRY OF SYSTEMS OF POINTS

Most books on mechanics begin with a chapter on the motion of one point mass. Hertz
on the other hand, began head on with systems. This is a natural consequence of his ex-
clusion of forces. Indeed, there is not much one can say about the motion of one point
when it cannot move in a force field. Still, Hertz treated systems of points in a way that
paralleled the way one usually described onepoint. To that end he introduced a differen-
tial geometric formalism that he called a geometry of systems of points. A system ofn

point masses is described by the rectangularcoordinates and the mass of each of its point
masses. Letx3µ−2, x3µ−1, x3µ denote the rectangular coordinates of theµth point mass
and letm3µ−2=m3µ−1=m3µ denote its mass. If the system is displaced such that the co-
ordinatexµ is increased by the valuedxµ then Hertz defined the length of the displacement
ds by

ds2= 1

m

3n∑
µ=1

mµ dx
2
µ, (1)

wherem is the total mass of the system. Hertz also described the system by generalized
coordinates, that is a set of parametersq1, q2, . . . , qr , which completely determines the
configuration of the system. In terms of such generalized coordinates the line element (1)
will be expressed as a more general positive quadratic form

ds2=
r∑
ρ=1

r∑
σ=1

aρσ dqρ dqσ . (2)

Hertz’s geometry of systems of points is a Riemannian geometry of configuration space
with the metric defined by (1) or (2). Hertz’s colleague in Bonn, Rudolf Lipschitz, had
already in 1872 suggested an even more far-reaching geometrization of mechanics, but
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Hertz was the first physicist who used such a geometric formalism that allowed him to
describe a system as one point in a higher dimensional space.

Hertz continued to define the angle(s, s′) between two displacementsds andds′ by the
formula

mds ds′ cos(s, s′)=
3n∑
µ=1

mµ dxµ dx
′
µ, (3)

or in generalized coordinates

mds ds′ cos(s, s′)=
r∑
ρ=1

r∑
σ=1

aρσ dqρ dq
′
σ . (4)

The notion of angle allowed him to define the curvature of a path of the system by

c= dε
ds
, (5)

wheredε denotes the angle between the directions of the path at the beginning and at the
end of a path elementds.

Hertz supposed that the different point masses of a mechanical system are related
through ‘connections’ that can be expressed in the form of first-order homogeneous dif-
ferential equations in the coordinates of the system

3n∑
ν=1

Xινdxν = 0, ι= 1,2, . . . , i, (6)

or in generalized coordinates

r∑
ρ=1

qχρ dqρ = 0, χ = 1,2, . . . , k, (7)

whereXιν andqχρ are functions ofx1, x2, . . . , x3n andq1, q2, . . . , qr respectively. This
system of differential equations may be integrable such that the connections can be ex-
pressed in integral form

Fι(x1, x2, . . . , x3n)= Cι, ι= 1,2, . . . , i, (8)

or

Fχ(q1, q2, . . . , qr)= Cχ, χ = 1,2, . . . , k. (9)

In such cases Hertz named the system ‘holonomic’. In a holonomic system it is possible
to reduce the number of coordinates to 3n− i(r−k) free coordinates, that is, to coordinates
that are not constrained by any of the equations (6)–(9).

The motion of a rolling ball can be described by connections like (6) and (7), but these
differential equations cannot be integrated in the form (8) and (9). In order to allow for
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such motions Hertz allowed non-holonomic systems. He was not the first to make the
distinction between holonomic and non-holonomic systems, but he was the first to suggest
the name ‘holonomic’, still in use to day. Moreover, his lucid analysis of the problems one
encounters when dealing with non-holonomic systems made his book the origin of much
of the subsequent work on such systems.

A displacementds of a system was called ‘possible’ if it satisfies the connections, and
a path is possible if it consists of possible displacements. Among all possible paths of a
system Hertz singled out the ‘straightest’ (arts. 151–154). It consists of straightest line
elementsds, i.e. line elements that have a smaller curvature (5) than all other possible line
elements with the same starting point and starting direction. Using Lagrange’s method of
multipliers Hertz derived the differential equations

r∑
σ=1

qχρq
′′
σ +

r∑
σ=1

r∑
τ=1

(
∂aρσ

∂qτ
− 1

2

∂aστ

∂qρ

)
q ′ρq ′τ +

k∑
χ=1

qχρ�χ = 0, ρ = 1,2, . . . , r. (10)

Here�χ are Lagrangean multipliers and ‘′’ denotes differentiation with respect to the
curve length along the path. This equation combined with the equation (7) of connection
gives a system of second-order differential equations for the straightest path.

Towards the end of the first book Hertz introduced the concept of time and also kine-
matic concepts such as velocity, momentum and acceleration that depend on time. They
are examples of what he called a ‘vector quantity’, that is ‘any quantity which bears a
relation to the system and which has the same kind of mathematical manifold as a conceiv-
able [that is, not necessarily possible] displacement of the system’. In order to conform
to the usual Lagrangian and Hamiltonian formalisms of mechanics, Hertz introduced so
called components of a displacement (or another vector quantity) along a coordinate. They
correspond to what we now call ‘covariant components’ of the vector. He seems to have
arrived at this notion independently of the simultaneous development of tensor calculus in
the mathematics community [Reich, 1994].

Hertz also introduced the energy of a system. In his image all energy is kinetic energy. It
can be expressed by the same quadratic form asds with the differentialsdx (dq) replaced
by the corresponding time derivativesẋ, (q̇):

E = 1

2

3n∑
ν=1

mνẋ
2
ν =

1

2
m

(
∂s

∂t

)2

= 1

2
m

r∑
ρ=1

r∑
σ=1

aρσ q̇ρq̇σ . (11)

In terms of the energy, the component of the momentumpρ of the system along the coor-
dinateqρ can be expressed by

pρ = ∂E
∂q̇
. (12)

This is the usual Lagrangean definition of the generalized momentum, and it explains why
Hertz defined the components along a coordinate in the way that he did.
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6 DYNAMICS

At the beginning of the second Book on dynamics, Hertz introduced his only law of motion.
It was intentionally formulated in conformity with Newton’s first law: ‘Fundamental Law.
Every free system persists in its state of rest or of uniform motion [that is, with constant
speedds/dt ] along a straightest path’.

Introducing timet as the independent variable into the equation (10) of the straightest
path, and using thatv = ds/dt is a constant, Hertz deduced the following equation of
motion for a free system:

m

[
r∑
σ=1

aρσ q̈σ +
r∑
σ=1

r∑
τ=1

(
∂aρσ

∂qτ
− 1

2

∂qστ

∂qρ

)
q̇σ q̇τ

]
+

k∑
χ=1

qχρQχ = 0, ρ = 1,2, . . . , r.

(13)
Here for abbreviation he setmv2�χ =Qχ . From this equation of motion he could derive
Lagrange’s equations, which in the case of a holonomic system can be written

d

dt

(
∂E

∂q̇ρ

)
− ∂E

∂qρ
= 0, (14)

where theqρs are free coordinates. Further he could deduce Hamilton’s equations,
D’Alembert’s principle, energy conservation, and many of the other well known princi-
ples of mechanics.

In many cases (for example, the solar system) observable mechanical systems do not
seem to move according to the fundamental law.Hertz called such systems ‘unfree’. He
postulated that every unfree system is only a part of a larger free system, whose remaining
part is concealed. In such cases the problemconsists in describing the motion of the ob-
servable unfree system without direct reference to the motion of the concealed subsystem.
He showed how this is possible in special cases, in particular when the connections be-
tween the observable and the concealed parts of the system can be expressed as the sharing
of a generalized coordinate. In this case he defined the concept of the force impressed by
the concealed system on the observable system. Its component alonga shared coordinate
is equal to the Lagrange multiplierQχ in (13) to which the coupling gives rise. In this
way Hertz was led to the same equations of motion (for example, d’Alembert’s principle)
for the unfree system as in ordinary mechanics. However, where the forces entering into
the equations of ordinary mechanics are basic quantities, they are only derived quantities
in Hertz’s mechanics, resulting from the coupling of the unfree system with a concealed
system. And where one of these equations such as d’Alembert’s principle is taken as a
basic law of motion in ordinary mechanics,every one of them is in Hertz’s mechanics
mathematical consequences of the simpler fundamental law.

Finally, Hertz defined a special type of unfree systems acted on by forces, the so-called
conservative systems. The concealed subsystem of such a system have some coordinates,
called the parameters, that are shared with the observable system. They give rise to the
coupling. All the other coordinates of the concealed system are assumed to be cyclic co-
ordinates, that is coordinates that do not enter explicitly into the expression of the line
elementds, or equivalently into the expression of the energy; the corresponding velocities
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q may, or rather must, enter into these expressions. Moreover the energy of the concealed
system is assumed to be approximated sufficiently well by a quadratic form in the cyclic
velocities. Now, if the observable and the concealed system interact at all there are non-
cyclic coordinates (parameters) of the concealed system and in that case the non-cyclic
velocities must enter into the quadratic form expressing the energy of the concealed sys-
tem. However, if the cyclic velocities of the concealed system are much larger (and the
masses of the concealed system is much smaller) than the velocities (and masses) of the
observable system, the velocities correspondingto the parameters only give a small contri-
bution to the energy of the concealed system. Thus, in that case the system is conservative
in Hertz’s sense.

In a conservative system Hertz defined the potential energy of the observable unfree part
as the (kinetic) energy of the concealed part. Therefore the sum of the kinetic and the po-
tential energy is conserved and Hertz could derive the usual formulation of Lagrange’s and
Hamilton’s equations for conservative systems. Moreover, for holonomic conservative sys-
tems he could derive the usual integral variational principles such as the principle of least
action and Hamilton’s principle and theentire Hamilton formalism. For non-holonomic
systems, however, Hertz emphasized and demonstrated that the integral variational princi-
ples fail when they are formulated in their natural form. A few years later, in 1896, Otto
Hölder showed that a slight reformulation can save the principles even for non-holonomic
systems.

Hertz was not the first to utilise the special properties of cyclic coordinates. In partic-
ular E.J. Routh had shown in 1877 that one canignore cyclic coordinates if one replaces
the ordinary Lagrangian function with a modified Lagrangean. This corresponds to the in-
troduction of apparent forces or apparent potential energies. The same idea was used by
Helmholtz in two papers on thermodynamics from 1884 and 1886, in which he introduced
the idea of adiabatic cyclic systems, which provided Hertz with the technical basis for his
treatment of forces and potential energy. Even before Hertz, J.J. Thomson had suggested
that one should be able to explain all forces as the result of ignoring cyclic coordinates, or
as he put it: ‘From this point of view all energy is kinetic’ [Thomson, 1888, 14].

This was precisely Hertz’s standpoint. However Hertz declared that he only heard of
Thomson’s radical standpoint at a late stage in his work on mechanics. Yet, one might
ask: what was new in Hertz’s image of mechanics as compared with the ideas put forward
by Helmholtz and Thomson? The main novelty was that Hertz developed mechanics from
scratch without using the concept of force. Helmholtz and Thomson, on the other hand,
had appealed to the usual formulation of mechanics that introduced forces at the outset.
‘I endeavour from the start to keep the elements of mechanics free from that which von
Helmholtz only removes by subsequent restriction from the mechanics previously devel-
oped.’ he wrote in his preface.

Hertz’s book gave a new and mathematically very clear deduction of the principles of
mechanics from a new minimal system of assumptions. In this way he was also able to
clarify the mutual logical connection between the different principles. In particular, he in-
sisted that his method showed how a priori and empirical elements entered into the various
principles. The concept and properties oftime and space were according to him, a priori
intuitions in Immanuel Kant’s sense. The fundamental law of motion, on the other hand



Chapter 52. Heinrich Hertz, posthumous book on mechanics (1894) 687

was empirical in nature, and according to himthe only empirical element of his mechan-
ics. Thus, for him the question of correctness (in the sense of his image theory) of his
image of nature was simply reducible to the question of the correctness of this one law. Of
course history proved his analysis wrong. Indeed, only 11 years later Einstein and Hermann
Minkowski changed our understanding of time and space, that is precisely the elements of
mechanics that according to Hertz werea priori and unalterable (compare §63).

7 RECEPTION AND IMPACT

The reviews of Hertz’sMechanics are listed in [Baird et alii, 1998, 284]. When reading
them one must keep in mind that in addition to being reviews of a book they were often
formed as eulogies of its recently deceased author who most physicists had considered
as Helmholtz’s natural successor as the leader of the German physics community. This
probably made the reviews more positive than they would otherwise have been. Criticisms
were often formulated as questions that the world was now unable to ask the author. The
following quotation from Boltzmann is typical: Hertz ‘created a strikingly simple system of
mechanics based on very few but to be sure logically quite natural principles. Regrettably,
at the same moment his voice fell silent forever, leaving unanswered all the thousand open
questions that surely I am not the only one to have on my mind’ [Boltzmann, 1900, 84].

The reactions to Hertz’s mechanics were broadly the same. Most reviews listed the
following merits: Its philosophical sophistication, its rigorous mathematical structure, its
avoidance of forces, and its intuitively pleasing formulation of the fundamental law of
motion. As its main weakness most reviews mentioned its complete neglect of the problem
of how to account for the actual motion of even simple systems in nature, such as those that
the usual image of mechanics describes by way of forces. In Hertz’s image this problem
boils down to the problem of constructing a concealed system and a system of connections
to the observable system, such that the fundamental law applied to the total system will
give the observable part a motion that correspond to its observed motion in nature. To
Hertz this question was probably equivalent to the question of the nature of the ether. The
book was supposed to clarify the basis for this question, but Hertz explicitly reserved a
discussion of the problem of the ether itself to later experimental work. Still, it is natural
that reviewers asked themselves this question and were disappointed not to find the answer
in Hertz’s book.

Most reviewers, including Helmholtz, who wrote a preface to Hertz’s book, suspected
that if it was at all possible to find a concealed system that would account for the observed
motions of natural systems, it would be so terribly complicated that it would be hard to
argue that this image of the world was simpler than the traditional image. G.F. FitzGerald
even wondered how it would be possible to avoid entanglements of the connections of the
system. Moreover, he criticized Hertz’s use of ‘space of multiple dimensions’ since ‘this
represents the real by the unattainable’ [FitzGerald, 1895]. Philosophically minded physi-
cists and philosophers such as Mach, Pierre Duhem and Henri Poincaré criticized Hertz
for his hypothesis about the existence of concealed masses. Still, Mach praised Hertz’s
presentation of mechanics as the one that best lived up to his ideals. Duhem, on the other
hand, regarded Hertz’s book as the last step in a series of misconceived British mechanistic
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explanations of physics. ‘Hertz’s mechanics is less of a doctrine than a project or a pro-
gram of a doctrine’. When Duhem wrote this in 1903 many philosophers and physisists
had abandoned the mechanistic reductionist program either for an electromagnetic world
view, or for an energetic or phenomenological approach.

Still, several physicists, in particular Boltzmann, a late adherer to the mechanistic world
view, encouraged the physics community to pursue Hertz’s ‘programme for the future’.
He discussed technical details with the mathematician Alexander Brill, and instructed his
student Paul Ehrenfest to write his thesis on the motion of rigid bodies in a fluid from
a Hertzian point of view. Moreover, in 1916 F.X. Paulus in Vienna showed how one can
construct concealed systems that couldaccount for simple forces [Paulus, 1916].

But by and large Hertz’s program was followed by very few. The reason is to be found
in the completely new turns that physics tookabout a decade after Hertz’s book appeared.
They made his mechanics appear more as a brilliant conclusion of an era of classical
physics, rather than as a program for future research in physics.

Yet Hertz’s book had substantial influence on the development of science and philos-
ophy. The use of differential geometry was soon transferred to ordinary mechanics by
Lorentz in 1902, and it had a profound influence on the advanced presentations of mechan-
ics later in the 20th century. Moreover, Hertz’s clear distinction between observable nature
and the theories (images) we make of it probably facilitated the highly abstract formalism
of quantum mechanics with its sharp distinction between the formalism and the observ-
able consequences. Finally, Hertz’s philosophical introduction was a source of inspiration
for philosophers, in particular Ludwig Wittgenstein [Barker, 1980], and for scientists. For
example, David Hilbert conceived of hisGrundlagen der Geometrie of 1899 (§55) as a
geometric parallel to Hertz’s clear development of the foundations of mechanics, and he
considered his own requirements of an axiomatic system, consistency, completeness and
independence, to correspond to Hertz’s requirements of an image: permissibility, correct-
ness and simplicity [Corry, 1997].
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CHAPTER 53

HEINRICH WEBER, LEHRBUCH DER ALGEBRA
(1895–1896)

Leo Corry

As the last important textbook on algebra published in the 19th century, Weber’sLehrbuch
presents a faithful image of algebraic knowledge as then conceived. Although many of the
abstract concepts that became central to the structural conception of algebra after 1930
were well known to Weber, they play a relatively secondary role here: algebra was still the
discipline of polynomial equations and polynomial forms.

First edition. 2 vols., Braunschweig: Vieweg, 1895–1896. 772+ 876 pages. Vol. 3 pub-
lished separately asElliptische Funktionen und algebraische Zahlen, 1891. 764 pages.

Second edition. Vols. 1–3: Braunschweig: Vieweg, 1898–1908.

Reduced edition in one volume. Braunschweig: Vieweg, 1912. [Photorepr. New York:
Chelsea, 1961.]

French translation of the 2nd edition. Traité d’algèbre supérieure (trans. J. Griess), Paris:
Gauthier–Villars, 1898.

Related articles: Dirichlet (§37), Hilbert on number theory (§54), van der Waerden (§70).

1 BACKGROUND

The discipline of algebra underwent significant changes between the last third of the 19th
century and the first third of the 20th century. They comprised the addition of important
new results, new concepts and new techniques, as well as meaningful changes in the way
that the very aims and the scope of the discipline were conceived by its practitioners. Over
the 19th century algebraic research had meant mainly research on the theory of polynomial
equations and the theory of polynomial forms, including algebraic invariants. The ideas
implied by Evariste Galois’s works became increasingly visible and central after their pub-
lication by Joseph Liouville in 1846. Togetherwith important progress in the theory of
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fields of algebraic numbers, especially in the hands of Leopold Kronecker and Richard
Dedekind (§37), they gave rise to an increased interest in new concepts such as groups,
fields and modules.

A very popular textbook of algebra since the middle of the century was theCours
d’algèbre supérieure by Joseph Serret, which underwent three editions in 1849, 1854 and
1866. In these successive editions it graduallyincorporated the techniques introduced by
Galois, and became the first university textbook to publish a full exposition of the theory.
Still, it continued to formulate the main results of Galois theory in the traditional language
of solvability dating back from the works of Joseph-Louis Lagrange and Niels Henrik Abel
at the beginning of the century (§29); in doing so, it did not even include a separate dis-
cussion of the concept of group. A second contemporary textbook was Camille Jordan’s
Traité des substitutions et des équations algèbriques, which already included a more elab-
orate presentation of the theory of groups but still treated this theoryas subsidiary to the
main task of discussing solvability conditions for polynomials [Jordan, 1870].

A completely different image of algebra is embodied much later in Bartel L. van der
Waerden’s textbookModerne Algebra [van der Waerden, 1930, 1931]. Here we are pre-
sented for the first time with a discipline at the center of which stands the general idea
of an abstract algebraic structure that is instantiated in various particular species such as
groups, rings and fields calling for being elucidated with the help of a standard set of tools
(§70). This is the image that came to dominate research in the 20th century.

Weber’sLehrbuch der Algebra stands midway between these two poles. It incorporates
an entire body of new individual ideas and techniques developed along the 19th century,
and in doing so it provides a full picture of what algebraic knowledge looked like at the
time. In spite of the knowledge it adds over books like Serret’s or Jordan’s, the picture
of algebra it presents does not differ essentially from theirs. On the other hand, in spite
of including a great deal of material that would eventually be incorporated as the basis of
van der Waerden’s presentation, it does not envisage the kind of fundamental change in
conception thatModerne Algebra intended to imply.

2 HEINRICH WEBER’S CAREER

Heinrich Weber (1842–1913)studied in Heidelberg and Leipzig. He habilitated in Königs-
berg in 1866, and taught there until 1883, except for the years 1870 to 1875 when he was
professor at the ETH Zürich. He later spent several years at the Charlottenburg Technolog-
ical Institute (near Berlin) and in Marburg, and was full professor in Göttingen between
1892 and 1895. Finally he moved to Strasbourg, where he remained until his death in 1913
[Schappacher and Volkert, 1997].

Weber’s Königsberg years were the most productive of his successful career. The tra-
dition of analysis and mathematical physics developed in this university, under the leader-
ship of Carl Gustav Jacobi, Franz Neumann and, somewhat later, Friedrich Richelot, was
a main force behind the increasing dominance attained by Germany in the mathematical
world over the 19th century. Weber was but one of the outstanding mathematicians whose
names came to be connected with that school. The early careers of Adolf Hurwitz, Her-
mann Minkowski and David Hilbert were also later associated with this institution and their
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works were decisively influenced by its tradition. Weber’s mathematical activities spanned
many different domains of mathematics such as algebra, number theory and mathematical
physics. In his historical account of the development of mathematics in the 19th century,
Felix Klein described Weber as the most versatile representative of that trend, of which
Klein himself so proudly felt part and which sought to elaborate the interconnections be-
tween mathematical domains such as the theory of invariants, the theory of polynomial
equations, the theory of functions, geometry and the theory of numbers [Klein, 1926, 275].

Weber’sLehrbuch was only one among several important works that he published and
reached a wide mathematical audience. For instance, together with J. Wellstein he put out a
widely-readEnzyklopädie der Elementar-Mathematik [Weber and Wellstein, 1903–1907].
He also collaborated with Richard Dedekind in two further important projects. One was
a seminal article on the theory of algebraic functions [Dedekind and Weber, 1882]. The
other one was the edition of Bernhard Riemann’s mathematical papers, published in 1892.
It is very likely that without Weber’s active help, Dedekind would have never completed
the edition.

When the first edition of Volume I of theLehrbuch der Algebra appeared in 1895,
Weber was well aware of the latest advances in algebra, and in particular of the possibility
of formulating new algebraic concepts in purely abstract terms. As a matter of fact, in
[Weber, 1893] he had been the first to publish abstract definitions of both groups and fields
within the framework of a single article. Moreover, his research on algebraic functions in
collaboration with Dedekind shows that he was deeply acquainted with the latter’s theory
of ideals, a theory that played a central role in the rise of the structural approach to algebra.
And yet, when the time came for presenting the current state of knowledge in the discipline,
he chose to present such concepts as playing only a relatively marginal role within it.

3 THE INTRODUCTION TO THELEHRBUCH

In the preface to the first volume of theLehrbuch Weber explained that the development of
algebra over the preceding decades had rendered the existing textbooks obsolete and had
brought about the need for a new coherent presentation of results and their applications.
Among the books he had in mind were Serret’sCourse and Jordan’sTraité. The aim of his
first volume was to present the ‘elementary parts of algebra’; namely, all that may be sub-
sumed under the designation of ‘formal algebraic manipulation’ (‘Buchstabenrechnung’),
beginning with the rules for the determination of the roots of an equation and finishing
with an exposition of Galois theory. Weber explicitly acknowledged Dedekind’s influence
in consolidating his long-standing interest in algebra. This influence acted mainly through
the notes of Dedekind’s Göttingen lectures of 1857–1858 on Galois theory, the manuscript
of which Weber had had the opportunity to read.

The problem of finding the roots of polynomial equations dominates a considerable
portion of the book. Like all previous books in algebra, the whole theory of polynomials
appears here as conceptually dependent ona thorough knowledge of the properties of the
various systems of numbers. The fashion in which these systems are introduced in order to
provide the necessary conceptual infrastructure differs considerably, however, from previ-
ous ones in that it is strongly based on the notion of set (‘Mannigfaltigkeit oder Menge’).
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Following Dedekind, Weber introduced the concept in what we would call today a naive
formulation: a system of objects or elements of any kind, such that for any given object
one can always say whether it belongs to the set or not. Weber also introduced additional,
related concepts such as ordered sets, discrete and dense (‘dicht’) sets (exemplified by the
integers and the rationals), cuts (‘Schnitte’) and continuity (‘Stetigkeit’)—all of them as
previously defined by Dedekind.

Within this framework of ideas, the rational numbers are introduced as a dense but
discontinuous set and the real numbers as the set of cuts of the rationals. In spite of its
markedly abstract orientation, Weber’s definitions of the various number systems essen-
tially differ from what became the standard in20th-century mathematics. He conceived
these systems as well-known, specific mathematical entities whose properties, although
originating in free acts of creation of the human spirit, are given once and for all in ad-
vance. In the image of algebra embodied in Weber’s book, the algebraic properties of num-
ber systems do not derive from those of some more basic or underlying abstract algebraic
structures. Rather it is the other way around: algebra is based on the given properties of the
number systems.

The introduction of theLehrbuch closes with a remark on the formal manipulation of
symbols. One can distinguish two main formsof the latter: identities and equations. Alge-
bra, wrote Weber, is the discipline whose aim is the resolution of equations. This statement
is not mere lip-service to the prevailing views. The contents of the book faithfully reflected
this declared central role of equations, whereas other issues, such as the study of groups,
appear as conceptually subsidiary to this aim. In fact, besides groups, no other abstract al-
gebraic concept (fields, modules, rings, etc.) is systematically investigated in theLehrbuch.

4 THE THREE VOLUMES

The layout of theLehrbuch is outlined in Table 1. The first volume comprises three Books.
The first two deal with the classical theories of polynomial equations. Within this frame-
work, Chapters III and IV provide interesting evidence of the attachment of Weber to 19th-
century images of algebra. Thus, for instance, in Chapter III, the concept of root of an
equation is discussed in terms that may be classified as ‘analytic’: limits, continuity,ε–δ
arguments, and so on. Arguments of this kind would later be excluded from standard, struc-
tural presentations of algebra. Likewise, Chapter IV deals with ‘symmetric functions’ that
had been used by Lagrange in his early research on solvability of polynomial equations.
Later, the gradual development of Galois theory as the main tool for studying solvability of
polynomial equations eventually rendered symmetric functions a rather dispensable tool,
yet Weber included a treatment of them in theLehrbuch as part of a tradition of which his
approach to algebra was part and parcel. Under the conception of algebra characteristic
of this tradition, a treatment of the theory of polynomial equations should include every
particular technique devised to deal with their solvability, as he indeed did here.

In Book II one finds additional discussions that are analytic in character, and that would
be excluded from later textbooks of algebra. This is the case, for instance, of the theorem of
Sturm discussed in Chapter VIII. It concerns the question of how many real roots of a given
polynomial equation lie between two given real numbers. This, and further similar prob-
lems, are solved with the help of derivativesand other analytical tools. Likewise, Weber
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Table 1. Contents by Chapters of Weber’s volumes.

Volume 1 772 pages. Introduction (pages 1–25).

Book 1 The foundations (pages 25–270).

I Rational functions.

II Determinants.

III Roots of algebraic equations.

IV Symmetric functions.

V Linear transformations. Invariants.

VI The Tschirnhaus transformation.

Book 2 The roots (pages 271–490).

VII Reality of roots.

VIII Sturm’s theory.

IX Evaluation of roots.

X Approximate evaluation of roots.

XI Continued fractions.

XII The theory of roots of unity.

Book 3 Algebraic magnitudes (pages 491–772).

XIII Galois theory.

XIV Application of groups of permutations to equations.

XV Cyclical equations.

XVI Cyclotomy.

XVII Algebraic solution of equations.

XVIII Roots of metacyclic equations.

Volume 2 876 pages. Book 1Groups (pages 3–162).

I General theory of groups.

II Abelian groups.

III Groups of cyclotomy fields.

IV Cubic and biquadratic Abelian fields.

V Constitution of the general groups.

Book 2 Linear groups (pages 163–350).

VI Groups of Linear substitutions.

VII Invariants of groups.

VIII Groups of binary linear substitutions.

IX Polyhedric groups.

X Groups of congruences.
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Table 1. (Continued)

Book 3 Applications of group theory (pages 351–552).

XI General theory of metacyclic equations.

XII Inflection points in third-order curves.

XIII Double tangents in fourth-order curves.

XIV The general theory of fifth-degree equations.

XV Groups of linear ternary substitutions.

XVI The problem of forms of the group G168 and the theory of seventh-degree
equations.

Book 4 Algebraic numbers (pages 553–876).

XVII Numbers and functionals of an algebraic curve.

XVIII Theory of algebraic fields.

XIX Relations between a field and its divisors.

XX Lattice of points.

XXI Number classes.

XXII Cyclotomic fields.

XXIII Abelian fields and cyclotomic fields.

XXIV Number class of cyclotomic fields.

XXV Transcendental numbers.

Volume 3 764 pages. Book 1.Analytical part (pages 1–320).

I The elliptic integrals.

II Theta functions.

III Transformations of theta functions.

IV The elliptic functions.

V The modular functions.

VI Multiplication and division of elliptic functions.

VII Theory of transformation equations.

VIII The group of transformation equations and the fifth-degree equation.

Book 2 Quadratic fields (pages 321–412).

IX Discriminants.

X Algebraic numbers and forms.

XI Ideals in quadratic fields.

XII Rings (‘Ordnungen’) in quadratic fields.

XIII Equivalence according to groups of numbers.

XIV Composition of forms and ideals.
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Table 1. (Continued)

XV Signature (‘Geschlecht’) of quadratic forms.

XVI Number class in quadratic fields.

Book 3 Complex multiplication (pages 413–562).

XVII Elliptic functions and quadratic forms.

XVIII Galois group of class equations.

XIX Calculation of class invariants.

XX The multiplication equation in the complex multiplication.

XXI The norm of class invariantsf (ω).

XXII Cayley’s derivation of the modular functions.

Book 4 Class fields (pages 563–622).

XXIII The cyclotomic field.

Book 5 Algebraic functions (pages 623–764).

XXIV Algebraic functions of one variable.

XXV Functionals.

XXVI Numerical values of algebraic functions.

XXVII Algebraic and Abelian differentials.

discussed well-known approximation techniques: interpolation and Newton’s method are
mentioned among others in Chapter X. Chapter XI deals with roots of unity: no mention
whatsoever, however, is made of their group-theoretical properties.

Galois theory is finally introduced in Book III, after nearly five hundred pages of dis-
cussion on the resolution of polynomial equations. First, a field of numbers is defined as a
set of numbers closed under the four operations. Indeed, the concept is extended to fields
of functions or to any set closed under the fouroperations of addition,multiplication, sub-
traction and non-zero division (pp. 491–492). However, although Weber referred here to
his own article of 1893, in which he had insisted upon the potential interest involved in
studying finite fields, in theLehrbuch, he considered only (infinite) fields of characteristic
zero. In no way did he research fields as an autonomous concept with intrinsic interest,
even at the relatively elementary level that he did for groups.

Groups are mentioned for the first time as late as p. 511. But even here one does not find
a general treatment of groups; this is left for later chapters. At this stage, Weber considered
substitutions of one root of a function with another, substitutions that may themselves be
composed to form a group, and, more specifically, a finite group (p. 513). Weber defined
here a group of permutations—a concept which he used in the next chapter—and the Galois
group of a given field.

Chapter XIV shows the application of groups of permutations to the theory of equations.
First, Weber showed that any permutation may be decomposed into transpositions and cy-
cles. He then defined some additional, basic concepts: subgroups (‘Teiler’), and the cosets
(‘Nebengruppen’) determined by a given permutation, as well as the index of a subgroup
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of permutations. He explicitly stated that the aim of this whole section was to improve our
understanding of the issues dealt with in the preceding chapter (p. 529). Thus the focus of
interest does not lie in the study of the properties of the group of permutations as such, but
only insofar as it sheds light on the theory of equations.

In the following chapters, Weber analyzed particular cases of equations using the in-
sights provided by the already developed theory. The exposition culminates towards the
end of the book, in Chapter XVII, where the algebraic solution of equations was systemat-
ically discussed. Weber acknowledged the centrality of this problem for the contemporary
development of algebra, and the important contribution of group theory to its better under-
standing. Thus, he wrote (p. 644):

One of the oldest questions which the new algebra has preferentially addressed
is that of the so-called algebraic solution of equations, meaning the represen-
tation of the solution of an equation through a series of radicals, or their cal-
culation through a series of root-extractions. The theory of groups sheds much
light on this question.

It is in this section that Weber proves that the alternating group is simple—a result needed
for the proof of the impossibility of solving the general fifth degree equation in radicals
(pp. 649–652).

A thoroughly abstract definition of group, similar to that of Weber’s own 1893 article,
appears only in the second volume of theLehrbuch. After the basic concepts of the theory
of groups were introduced in the first four chapters of the second volume in a general
and abstract way, Weber stated the object of the abstract study of groups. His formulation
stresses the need he felt to explain to contemporaries the meaning of the very use of abstract
concepts of this kind (p. 121):

The general definition of group leaves much in darkness concerning the nature
of the concept [. . . ]. The definition of group contains more than appears at first
sight, and the number of possible groups that can be defined given the number
of their elements is quite limited. The general laws concerning this question
are barely known, and thus every new special group, in particular of a reduced
number of elements, offers much interest and invites detailed research.

Weber also pointed out that the determination of all the possible groups for a given
number of elements was still an open question. It had been recently addressed by Arthur
Cayley, but only for the lowest orders.

In the following chapters, Weber discussed special instances of groups (groups of char-
acters, groups of linear substitutions, polyhedric groups) and presented some applications
of group theory, such as Galois theory, invariants, and others. The last part of the second
volume deals with algebraic number theory. Following Dedekind, the fields considered are
only fields of numbers, rather than abstract ones.

The third volume of theLehrbuch appeared in 1908; it embodied a second edition of
Weber’s book on elliptic functions and algebraic numbers, first published in 1891. It dealt
with the reciprocal interrelations between problems and techniques of the theory of fields
of algebraic numbers and of the theory of elliptic functions. It is important to notice that
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a complete description of contemporary images of algebra cannot fail to stress the im-
portance of the connection established in this third volume between these two domains,
algebra and the theory of elliptic functions. The kinds of conceptual and technical inter-
connections that were pursued by mathematicians like Weber during the second half of
the 19th century in relation to algebraic problems cover a much broader spectrum than the
later, structural image of algebra may lead us to assume. This third volume touched upon
some important portions of that spectrum. The existence of these kinds of interconnec-
tions underscored the difficulties inherent to the use of one and the same term, ‘algebra’,
to denote the disciplines known by this name in the 19th and 20th centuries.

5 IMPACT

If one considers together the ideas appearing in [Weber, 1893] and in hisLehrbuch, then
one finds a complex picture of his conception of algebraic knowledge. It comprises ele-
ments of both classical 19th-century conceptions as well as more modern ones (compare
[Corry, 1996]). The central issue of the first volume of theLehrbuch was the resolution of
polynomial equations, and its presentation remains similar to those of those appearing in
earlier textbooks of algebra. All the concepts and techniques related to Galois theory (in
particular, the concepts of group and field) are introduced, to a large extent, only as ancil-
lary to that central issue. By the end of the century, group theory was the paradigm of an
abstractly developed theory, if there was any. Research on groups had increasingly focused
on questions that we recognize today as structural, and, at the same time, the possibility of
defining the concept abstractly had been increasingly acknowledged. More importantly, the
idea that two isomorphic groups are in essence one and the same mathematical construct
had been increasingly adopted: Weber [1893] exemplifies clearly this trend. Yet in his book
group theory plays a role that, at most, may be described as ambiguous regarding the over-
all picture of algebra. For, although in its second volume, the theory of groups is indeed
presented as a mathematical domain of intrinsic interest for research and many techniques
and problems are presented in an up-to-date, structurally-oriented fashion, the theory ap-
pears in the first volume as no more than a tool of the theory of equations (albeit, it is now
clear, a central one). Weber’s book, and much more so his 1893 article, bring to the fore
the interplay between groups and fields abstractly considered more than any former, simi-
lar work. However, in spite of this, the classical conceptual hierarchy that viewed algebra
as based on the essential properties of the number systems is not called into question in
any of these two works.

Weber’sLehrbuch became the standard German textbook on algebra and underwent
several reprints. Its influence can be easily detected, among others, through the widespread
adoption of a large portion of the terminology introduced in it. But not all of his terms
were widely adopted. Thus for instance we find in his book the term ‘metacyclic’ groups
(vol. 1, 646), which denoted the group of an equation that can be fully solvable by radicals,
or ‘Ordnung’ (following Dedekind) to denote a ring of algebraic numbers.

At any rate, the image of algebra conveyed by Weber’s book was to dominate the alge-
braic scene for almost 30 years, until van der Waerden’s introduction of the new, structural
image of algebra. But obviously, influential as the latter was on the further development
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of algebra, it did not immediately obliterate Weber’s influence, which can still be traced
to around 1930 and perhaps even beyond. One can notice this by looking at several books
published in the 1920s, such as Leonard Eugene Dickson’sModern algebraic theories
[Dickson, 1926] and Helmut Hasse’sHöhere Algebra [Hasse, 1926]. But the clearest sign
long-standing influence of theLehrbuch on algebraic activity, especially within Germany,
is provided by the publication in 1924 of another textbook by Robert Fricke. He wrote it
upon the request of Weber’s publisher in Braunschweig, F. Vieweg, after theLehrbuch had
sold out. In spite of the relatively long time since the original publication, and the many
important advances in algebraic research since then, Fricke chose to essentially abide by
the conception of algebra embodied in Weber’s presentation. He stressed this very clearly
in the name he chose for his own textbook:Lehrbuch der Algebra—verfasst mit Benutzung
vom Heinrich Webers gleichnamigem Buche.
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CHAPTER 54

DAVID HILBERT, REPORT ON ALGEBRAIC
NUMBER FIELDS (‘ ZAHLBERICHT ’) (1897)

Norbert Schappacher

In this report Hilbert summed up the current state of knowledge in algebraic number the-
ory, at the same time enriching and organising the subject in ways that were to influence
developments for decades. However, the reception of the work has been somewhat mixed.

First publication. ‘Die Theorie der algebraischen Zahlkörper’,Jahresbericht der Deutschen
Mathematiker-Vereinigung, 4 (1897), 175–546.

Later edition. In Hilbert, Gesammelte Abhandlungen, vol. 1, Berlin and Heidelberg:
Springer, 1932 (repr. 1970), 63–363. [Some modernised spelling, errata worked into
the text; further corrections include some indicated in the copy of theJahresbericht
that Olga Taussky-Todd used at the Technical University Vienna when working on the
Gesammelte Abhandlungen. – Thanks to C. Binder for pointing this out.]

French translation. By M.A. Levy as ‘Théorie des corps de nombres algébriques’,Annales
de la Faculté des Sciences de l’Université de Toulouse (1909: publ. 1910), 3rd. fasc.

English translation. The theory of algebraic number fields (trans. I.T. Adamson, intro. by
F. Lemmermeyer and N. Schappacher), Berlin: Springer, 1998.

Manuscript. None exists, but Hilbert’s personal copy with a few annotations is held in his
Nachlass (Göttingen University Library Archives).

Related articles: Gauss (§22), Dirichlet (§37), Weber (§53), van der Waerden (§70).

1 A REPORT AND ALMOST A TEXTBOOK

This report by David Hilbert (1862–1943) was his first major writing after moving in 1895
to Göttingen University from the university in his home town of Königsberg. At Göttingen,
he soon built up a reputation as the leading mathematician of his generation, with massive
contributions to various mathematical disciplines; three others are discussed in this volume
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(§55, §57 and §77). He also gave highly influential lecture courses, including in physics
from the 1900s, and directed a number of doctoral students which was then unprecedented
for a mathematician.

Hilbert’s so-called ‘Zahlbericht’ of 1897 was one of the reports on the state of math-
ematical disciplines commissioned by theDeutsche Mathematiker-Vereinigung (hereafter,
‘DMV’) which was founded in 1890, during the first years of its existence; the first ten
volumes of theJahresbericht der DMV contain thirteen such reports. Hilbert and Hermann
Minkowski (1864–1909) were asked on the occasion of the DMV meeting at Munich in
September 1893 to write a joint report covering all of number theory. They decided to di-
vide up the work, leaving to Minkowski subjects like continued fractions, quadratic forms,
and the geometry of numbers. Both started working on the report in 1894. In the end, only
Hilbert’s part was completed, on 10 April 1897, but Minkowski did comment on Hilbert’s
manuscript and read the galley proofs.

Unlike most of the other reports commissioned by the DMV, Hilbert’sZahlbericht goes
beyond the mere business of stocktaking. It gave a remarkably systematic and lucid treat-
ment of algebraic number theory, thereby firmly establishing this discipline as a major
domain of pure mathematics and providing at the same time its principal reference book
for more than twenty years after its appearance, and leaving its mark on textbooks in this
area until today. Already in a letter of 31 March 1896 Minkowski had predicted that the
report would ‘certainly be greeted by general applause, and will push Dedekind’s and Kro-
necker’s works very much to the background’ ([Minkowski, 1973, 80]: compare §53). But
it should be noted that Hilbert’s own most far-reaching number-theoretic works, where he
envisaged general class field theory while studying nothing but the arithmetic of quadratic
extensions, appeared only after theZahlbericht, in 1899 and 1902.

The advanced character of the report made it obviously inaccessible for a broader read-
ership. Hilbert taught a course in the winter of 1897–1898 where he emphasized quadratic
number fields, and he subsequently encouraged Julius Sommer [Blumenthal, 1935, 398],
who had followed these lectures, to write a textbook which dwells on quadratic and cu-
bic fields as an introduction to algebraic number theory [Sommer, 1907]. Similarly, his
American doctoral student L.W. Reid (1899 thesis on class number tables for cubic fields)
published a strongly example-oriented textbook treating exclusively quadratic extensions
[Reid, 1910]. Hilbert contributed to it an introduction where one reads: ‘The theory of
numbers is independent of the change of fashion and in it one does not see, as is often
the case in other departments of knowledge, one conception or method at one time given
undue preeminence, at another suffering undeserved neglect’. We will briefly discuss in
section 3 below how Hilbert actually chose among the various ‘conceptions and methods’
that existed in the literature on which he had to report.

2 THE PREFACE: NUMBER THEORY AND ARITHMETISATION

One reason for its great impact, apart fromits striking expositional quality, was the fact
that Hilbert was able to present current (algebraic) number theory as a leading mathemati-
cal discipline in tune with what he saw as the dominating values of the time. In his strong,
sweeping preface, he not only recapitulates that number theory through its very origin is
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marked by the ‘simplicity of its foundations, the precision of its concepts, and the purity of
its truths’, but also lists many interrelationsof number theory with various other branches
of mathematics, claiming in the end that ‘if I am not mistaken, the whole modern devel-
opment of pure mathematics takes place principally under the badge (‘Zeichen’) of num-
ber’. And Hilbert alludes explicitly to the ‘arithmetisation’ of function theory by Richard
Dedekind (1831–1916), Karl Weierstrass and Georg Cantor (§46, §47), and to studies in
the axiomatisation of geometry, of which he was soon going to be the champion himself
with his 1899 essay on the foundations of geometry (§55).

Hilbert did not here allude to Leopold Kronecker (1823–1891), who had been the first
to suggest in print (in 1887) a programme of explicitly ‘arithmetizing’ all of pure math-
ematics, but with the exclusion of geometryand mechanics [Boniface and Schappacher,
2001, intro.], thereby implying a separation of number theory and analysis from geometry.
Hilbert had still faithfully echoed this separation in his 1891 lectures on projective geome-
try [Toepell, 1986, 21], a separation which Dedekind shared as well, and which can even be
considered as being handed down from Gauss. However, in the preface to theZahlbericht
he emphasized the similarity of all mathematical disciplines once they are treated ‘with
that rigour and completeness [. . . ] which is actually necessary’.

As to the style of theZahlbericht, it is meant to reflect the mature state of the theory of
algebraic number fields. Hilbert tried to avoid Ernst Kummer’s ‘formidable computational
apparatus, so that here too Riemann’s principle be realised according to which the proofs
ought to be forced not by calculations, but by pure thought’.

Kronecker’s programme of arithmetisation hadalso been inspired by the desire to have
number theory and its genuine methods—which, for Kronecker, were thought to be found
essentially in C.F. Gauss—govern pure mathematics. Likewise Hilbert’s report, in its own
way, consciously and successfully portrays (algebraic) number theory as a model theory
for pure mathematics, both in content and in form. It not only came out different in style
from all the other reports commissioned by the DMV, but effectively created a new special
type of technical mathematical treatise, marked by the exceedingly stringent overall logi-
cal organization of virtually all 19th-century literature in algebraic number theory. Hilbert
delicately differentiated betweenHilfssätze (only of momentary importance in the argu-
ment at hand), continuously numberedSätze, andSätze whose statements were printed in
italics and were supposed to be major starting-points for future developments. With these
distinctive literary features, theZahlbericht echoes, from the turn of the 20th century, the
role played by Gauss’sDisquisitiones arithmeticae 96 years earlier (§22). To be sure, the
mathematical-historical context in 1897 was very different from the one that Gauss’s book
had changed so profoundly in 1801, and the very theory of integers in an arbitrary alge-
braic number field, which constitutes the subject of theZahlbericht, is entirely a creation
of the 19th century. Yet, both works represent, each one in its time, major inthronisation
rites performed by number theorists for the ‘Queen of Mathematics’ before the eyes of
their mathematical colleagues.

3 DEDEKIND VERSUS KRONECKER, ARITHMETIC VERSUS ALGEBRA

There are several features of theZahlbericht which mark the time when it was written and
which may surprise the unsuspecting modern reader. In the 1860s and 1870s, algebraic
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number theory had been the fairly solitary domain of research of a few individuals, among
whom Dedekind in Braunschweig and Kronecker in Berlin stood out as the most visible
and influential.

An alternative, completelyviable and general approach by Egor Ivanovitch Zolotarev
(1847–1878)—his second proposal for an algebraic number theory—was published only
in 1880, after the author’s death, and was incorrectly thought by both Dedekind and Kro-
necker to yield as incomplete a theory as Zolotarev’s first proposal from his 1874 Russian
thesis. This, added to the fact that Zolotarev had been an outsider to the German arithmeti-
cal community, was probably why Hilbert did noteven mention Zolotarev in his references.

Dedekind developed his ideal-theoreticapproach in three subsequent editions (1871–
1894) of supplements 10 (or 11) ofhis edition of Dirichlet’slectures on number theory
(§37); it was to become one of the major sources of inspirations for the theory of com-
mutative rings by Emmy Noether (1882–1935) in the 1920s. Kronecker is known to have
thought about general algebraic number theory as of the 1850s, and he finally published
an extensive account of his attempt at a unified theory for both algebraic number theory
and the arithmetic theory of algebraic functions in one or several variables in 1882 [Kro-
necker, 1882]. This publication also contains numerous hints at the evolution of his ideas,
especially in the case of number fields, and their relations to other authors.

Then, in the 1880s and 1890s, energetic younger people were entering the subject—
on the one hand Kronecker’s pupil Kurt Hensel, and on the other hand Adolf Hurwitz
(1859–1919) and Hilbert, both of whom cared little about the methodological preferences
of either Dedekind or Kronecker in this areaof research. According to Otto Blumenthal,
Hilbert told later that once he and Hurwitz went for a walk in Königsberg where ‘one of
us presented Kronecker’s proof for the unique decomposition into prime ideals, the other
Dedekind’s, and we would find both awful’ [Blumenthal, 1935, 397]. In several papers
of the mid 1890s, while using Dedekind’s notions of (number) field and ideal, Hurwitz
defined ideals via finite sets of generators, and used a basically Kroneckerian approach via
polynomials in several unknowns to derive theunique decomposition of ideals into prime
ideals. This was much to Dedekind’s chagrin, who criticized this approach—which he had
actually tried and developed himself earlier—as lacking methodological and conceptual
purity [Dedekind, 1895]. Hilbert also published on this circle of ideas in 1894, giving a
certain priority to Galois number fields; see our comments on Part 2 of the report in the
next section.

In the Zahlbericht, ideals are defined in Dedekind’s style as sets of algebraic integers
which are closed under linear combinations with algebraic integer coefficients (art. 4).
But both for the uniqueness of decomposition into prime ideals in arbitrary number fields
(arts. 5–6), and for the proof that the ramified primes are precisely the divisors of the
discriminant (arts. 10–13), Hilbert adopts essentially the Kronecker–Hurwitz method and
mentions Dedekind’s approach only in a reference.

In her comment of 1930 made for Dedekind’sGesammelte Werke [Dedekind, 1895,
58], Noether strongly endorsed Dedekind’s criticism of Hurwitz, and she pointed out how
long it had taken Dedekind’s point of view to enter standard courses and textbooks. She
did not mention Hilbert’sZahlbericht there, but Olga Taussky-Todd later remembered her
criticising it, and claiming that Emil Artin, too, had accused Hilbert of having ‘delayed
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the development of algebraic number theory by decades’. This may very well have been
directed at the non-Dedekindian features of the text [Brewer and Smith, 1981, 82, 90].

More generally, Hilbert’sZahlbericht makes even less use of unifying notions from
abstract algebra than one might have expected from a text written in the last decade of the
19th century. Thus, while the notion of (number) fields and their arithmetic is at the very
heart of Hilbert’s concept of algebraic number theory, and even though Hilbert does use the
word ‘(Zahl)ring’ for orders in algebraic number fields, this does not mean that he employs
here parts of our current algebraic terminology; rather than referring to a general algebraic
structure, the word ‘ring’ is used for certain sets of algebraic integers. Even more striking
for the modern reader is that Hilbert does not employ general abstract notions from group
theory that could have unified the discussions of various situations which we immediately
recognize as analogous. For instance, he did not heed Minkowski’s advice, given in a letter
of 21 July 1896 [Minkowski, 1973, 83] to group together at the beginning of art. 100 all
lemmata about finite Abelian groups needed in the proof of the so-called Kronecker–Weber
theorem (Satz 131).

Similarly, no formal notion of quotient group is used in theZahlbericht, even though
the concept of factor group had been first defined and used by Otto Hölder as early as 1889
and discussed in the second volume of Heinrich Weber’sLehrbuch der Algebra of 1896
(§53). Thus, when we would say that ‘G/H is cyclic of orderh’, Hilbert writes elaborate
prose such as ‘The members ofG are each obtained precisely once when we multiply the
members ofH by 1, g, . . . , gh−1 whereg is a suitably chosen member ofG’; see, for
example, Sätze 69, 71 and 75. It is remarkable to note by comparison that the 33-year-
old Kronecker, while generalizing Gaussian periods to roots of unity of composite order,
encountered subgroupsH of (Z/mZ)∗ such that the quotient(Z/mZ)∗/H is cyclic, and
added that this property is ‘at the same time so characteristic that it could be used as the
definition’ of such subgroups ([Kronecker, 1856, 33f]; I thank B. Petri for pointing this out
to me).

4 CONTENT AND STRUCTURE

The contents of theZahlbericht are summarised in Table 1. We have already made a few
comments on its first Part, which contains the basic arithmetic theory of a general finite
extension of the field of rational numbers: integers, ideals, discriminant, units, ideal classes,
the relationship of the class number with the residue ats = 1 of the zeta-function of the
field, Zahlringe, that is, orders.

The second Part deals with the decomposition of primes in a Galois extension: decom-
position group and inertia group, and the corresponding subfields. This theory had been
essentially developed but not published by Dedekind, and later independently worked out
and published by Hilbert in 1894. Georg Frobenius and Dedekind in their correspondence
of February 1895 vented their anger about the fact that Hilbert had failed to acknowledge
Dedekind’s priority, even though Dedekind had sent Hilbert an offprint in June 1892 ex-
plicitly indicating his unpublished work. But Dedekind never published a complaint about
Hilbert like the one he wrote against Hurwitz [Dedekind, 1895]. The exposition of this
theory in theZahlbericht (arts. 36–47) follows Hilbert’s 1894 paper to a large extent.
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Table 1. Summary of Hilbert’s report. 372 pages.

Chs. Arts. Thms. Topics

Preface. Modern number theory and its role in mathematics.

Part 1:Theory of a general number field.

1 1–3 1–5 Number fields; algebraic integers; norm, different,
discriminant, integral basis.

2 4–6 6–16 Ideals; decomposition into prime ideals; forms (in
Kronecker’s sense).

3–4 7–13 17–37 Congruences mod. an ideal; the discriminant and its divi-
sors; the fundamental equation and unit form of a number
field.

5 14–16 38–41 Relative extensions of number fields.

6 17–21 42–48 Units of a number field.

7 22–29 49–57 Ideal classes; class number and the residue of the zeta-
function ats = 1; characters of an ideal class.

8–9 30–35 58–66 Classes of forms; orders; modules.

Part 2:The Galois number field.

10–11 36–47 67–80 Decomposition in the presence of the Galois group acting;
decomposition and inertia groups and fields; powers of the
prime divisors of different and discriminant.

12–13 48–52 81–87 Subfields, densities of primes, and composita.

14 53 89 Class group generated by primes of degree one.

15 54–58 90–94 Relative cyclic extensions.

Part 3:The quadratic number field.

16–20 59–90 95–116 Quadratic and norm residue symbol; genus theory;
analytic class number formula. Class fields and complex
multiplicationnot treated in the report.

Part 4:The cyclotomic field.

21–22 91–98 117–127 Degree, integral basis, discriminant, decomposition, units
and circular units.

23 99–104 128–131 All Abelian number fields are cyclotomic.

24 105–112 132–138 Normal bases and root numbers (‘Gauss sums’).

25 113–115 139–140 Eisenstein’s reciprocity law forlth powers.

26–27 116–124 141–146 Cyclotomic analytic class number formula; cyclotomic
theory applied to quadratic fields.
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Table 1. (Continued)

Part 5:Kummer’s number field.

28–30 125–135 147–152 Power and norm residue, local symbols, logarithmic
derivatives of units; prime ideals with prescribed characters.

31–34 136–165 153–167 The regular Kummer field; ideal classes, genus theory;lth
power reciprocity; product formula for norm residue
symbols.

35 166–171 Re-arrangement of the preceding theory of the regular
Kummer field, avoiding logarithmic derivatives.

36 172–173 168–169 Fermat’s Last Theorem for regular prime exponents.

At the end of the second Part, one finds a series of theorems first stated and proved in
this generality in theZahlbericht, and which are remarkable for their later impact: Satz
89–94. In Satz 89, Hilbert gives anon-analytic proof for the fact that the ideal class group
is generated by the classes of prime ideals of degree 1. This theorem and its proof have
apparently not received the attention they deserve; it took 80 years to see that the proof had
to be completed in a technical point [Washington, 1989].

Hilbert’s Satz 90, itself a literal generalization of a slightly more special result and
proof of Kummer’s, has become a household name since the introduction of Galois coho-
mology in the 1950s. This reinterpretation—which transforms Hilbert’s explicit statement
into the triviality of a first cohomology group:H 1(G,K∗) = 1—along with the substan-
tial generalisation from cyclic to abelian extensionsK/k (and many even more substantial
generalizations or analogues in later developments), was first initiated by Noether in her
work on what was then called the ‘Principal Genus Theorem’ [Noether, 1933]. To be sure,
she translated into the calculus of cross product algebras; the further translation into Galois
cohomology came later [Lemmermeyer, to appear].

Satz 91 on the existence of relative units was to be the first in a series of generalizations
of Dirichlet’s Unit Theorem; and Sätze 92–94 have been forerunners of important results
in class field theory. For slightly more detailed comments on these and other mathematical
points, see the introduction to the English translation of theZahlbericht by Lemmermeyer
and Schappacher.

The third Part of theZahlbericht deals with quadratic fields. Gauss’s genus theory (Satz
100) is treated via the Hilbert symbol, that is, the local norm residue symbol that is the
main systematic novelty that Hilbert introduced into the treatment of algebraic number
theory: he shifted the emphasis from the question, whether a given element is anlth power,
to the question of whether it is the norm of an element in a certain extension of degreel.
Quadratic reciprocity (Satz 101) is also couched in terms of Hilbert’s symbol. This Part also
contains the analytic class number formula in the quadratic case, as well as a discussion of
arbitrary orders in quadratic fields and their relation to quadratic forms.

The theory of cyclotomic fields follows suit in the fourth Part, including the theory of
circular units, and together with Hilbert’s proof of the so-called Kronecker–Weber Theo-
rem (Satz 131) to the effect that every abelian extension of the rational numbers is con-
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tained in a suitable cyclotomic field. Hilbert had actually been the first mathematician to
have published (in 1896) a complete proof of this conjecture by Kronecker [Neumann,
1981, 125].

Then follows a largely original discussionof normal bases and what Hilbert calls their
‘associated root numbers’, that is, generalized Gaussian sums. The prime decomposition
of Gaussian sums was obtained in fair generality by Ludwig Stickelberger. Hilbert quotes
this article, but only in the context of quadratic fields and not in this section where he
derives his own results towards the decomposition of root numbers (Satz 133, 134) and
never gives more than a special case of Stickelberger’s theorem (Satz 138), which was
already known to C.G.J. Jacobi and Kummer. Helmut Hasse’s incidental complaint about
‘Hilbert’s inconceivably not giving [Stickelberger’s result] in his Zahlbericht’ (letter to
Harold Davenport, 22 February 1934) indicates how much later number theorists relied on
Hilbert’s report as a comprehensive reference for the 19th-century literature. The subject
of root numbers has developed into an active field of research only in the last 30 to 40
years.

TheZahlbericht culminates in the longfifth and last Part onthe Kummer number field.
Hilbert describes it in the preface as

the theory of those fields which Kummer took as a basis for his researches into
higher reciprocity laws and which on this account I have named after him. It is
clear that the theory of these Kummer fields is the highest peak reached on the
mountain of today’s knowledge of arithmetic; from it we look out on the wide
panorama of the whole explored domain since almost all essential ideas and
concepts [. . . ] find an application in the proof of the higher reciprocity laws.

Concretely, the Kummer field is obtained by adjoining to the rational number field all
lth roots of unity and anlth root of an element of this cyclotomic field which is not an
lth power. The theory works all the way for regular prime numbersl. It is especially in
this Part that Hilbert’s struggles with Kummer’s formidable ‘computational apparatus’. In
fact, he does the whole theory twice over: the first time around (essentially arts. 131–165),
he defines the local norm residue symbol directly and uses Kummer’s device of logarith-
mic derivatives of circular units to deriveits relevant properties at the bad places. The
major stepping stone on the way to the general reciprocity law is Eisenstein’s reciprocity
law which relates a rational to an arbitrary cyclotomic integer. Although this presentation
already reduces ‘Kummer’s computational devices to a small amount’ (art. 166), Hilbert
then does go on to rearrange the theory ‘in a way, completely avoiding those computa-
tions’ (arts. 166–171). The trick is to use the product formula to recuperate the information
needed at the bad places from those at the good ones. Either way, the reciprocity laws are
developed along with genus theory for the Kummer fields, and Hilbert treats genus theory
via ‘characters’ defined in terms of suitable local norm residue symbols. This feature as
well as several technical improvements account for the difference, and in fact superiority
of Hilbert’s presentation over Kummer’s genus theory.

TheZahlbericht ends with a proof of Fermat’s ‘last theorem’ (in a generalized form) for
regular prime exponents (art. 172), and other special cases of it (art. 173).
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5 LATER REACTIONS

Later commentators have reacted differently to Hilbert’sZahlbericht in general and to his
treatment of Kummer’s achievements in particular. Major number theorists of the follow-
ing generation like Erich Hecke and Hasse either learned their number theory from the
Zahlbericht or used it as a standard reference. Even mathematicians like Felix Hausdorff
and Hermann Weyl, whose principal research interests were far from number theory, were
influenced by it. Hausdorff for instance, in his letter of congratulations to Hilbert’s 70th
birthday, wrote: ‘My preferred dish among all the delicate things you have served us is the
Zahlbericht. It is the most lucky blend of past, present, and future (the three dimensions of
time, according to Hegel): the perfect command and exposition of the past, the solution of
new problems, and the most refined prescience of things to come’.1

In his 1922 praise of ‘The algebraist Hilbert’, Otto Toeplitz(himself not a number the-
orist) went as far as writing that ‘Hilbert has extracted from Kummer’s difficult works
overflowing with inductive material, which few before him had read, and which only few
will now have to read after him and thanks to him, a universe of general facts and theses’
[Toeplitz, 1922, 73]. Hasse in 1932 (in Hilbert,Gesammelte Abhandlungen, vol. 1, 529)
and Emil Artin in 1962 [Artin, 1965, 549] acknowledged, more soberly than Toeplitz, the
conceptual simplification and clarification of Kummer’s theory obtained by Hilbert. On the
other hand, in section 3 above we have mentioned and tried to interpret Noether’s criticism
of theZahlbericht from the 1930s.

In 1975, André Weil wrote [Kummer, 1975, 1]:

The great number-theorists of the last century are a small and select group
of men. . . . Most of them were no sooner dead than the publication of their
collected papers was undertaken and in due course brought to completion. To
this there were two notable exceptions: Kummer and Eisenstein. Did one die
too young and the other live too long? Were there other reasons for this ne-
glect, more personal and idiosyncratic perhaps than scientific? Hilbert domi-
nated German mathematics for many years after Kummer’s death. More than
half of his famousZahlbericht [. . . ] is little more than an account of Kummer’s
number-theoretical work, with inessential improvements; but his lack of sym-
pathy for his predecessor’s mathematical style, and more specifically for his
brilliant use ofp-adic analysis, shows clearly through many of the somewhat
grudging references to Kummer in that volume.

Even though the polemical evaluation of Hilbert’s toiling as ‘inessential improvements’
clearly reflects Weil’s personality, as does the intentional anachronism to speak of ‘p-adic
methods’ in the middle of the 19th century, his opinion is surely best understood in the
context of the renaissance of Kummer’s ideas and techniques in the wake of the develop-
ment of Iwasawa theory, which started in the 1960s and continues to this very day. But all

1‘Meine Lieblingsspeise unter all den Delikatessen, mit denen Sie uns bewirtet haben, ist der Zahlbericht.
Das ist die glücklichste Mischung zwischen Vergangenheit, Gegenwart und Zukunft (den drei Dimensionen der
Zeit, nach Hegel): vollendete Beherrschung und Darstellung des bereits Geleisteten, Lösung neuer Probleme, und
feinstes Vorgefühl für die kommenden Dinge’ (Göttingen University Library Archives, Cod. Ms. Hilbert 452c,
Nr. 15, 21 January 1932). I thank Walter Purkert for having communicated this letter.
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these fairly recent developments did of course occur on the firm basis of a well-established
algebraic number theory (and class field theory), to the consolidation of which no other
single publication has contributed more than Hilbert’sZahlbericht.
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CHAPTER 55

DAVID HILBERT, GRUNDLAGEN DER
GEOMETRIE, FIRST EDITION (1899)

Michael Toepell

In mathematics it was this influential work that led by its axiomatic method to a new
thinking in all mathematical fields in the 20th century. In addition, following in the traces
of Euclid, it became the classical textbook for geometry in educating mathematicians and
mathematics teachers for nearly the whole century.

First publication. Part 1 ofFestschrift zur Feier der Enthüllung des Gauß–Weber-Denkmals
in Göttingen, Leipzig: Teubner, 1899. 92 pages.

Manuscripts. Main manuscripts are preserved in theNiedersächsische Staats- und Univer-
sitätsbibliothek, GöttingenCod. Ms. D. Hilbert (see Table 2 below).

Later editions. 2nd 1903, 3rd 1909, 4th 1913, 5th 1922, 6th 1923, 7th 1930, 8th 1956, 9th
1962, 10th 1968, 11th 1972, 12th 1977, 13th 1987, 14th ed. (ed. M. Toepell), 1999. All
Teubner. [3rd-7th eds. in the series ‘Wissenschaft und Hypothese’, vol. 7. 8th, 9th and
11th eds. ed. P. Bernays. 10th, 12th and 13th eds. unchanged from the preceding eds.
14th ed. with commentaries and extensive bibliography.]

French translation. ‘Les principes fondamentaux de la géométrie’ (trans. L. Laugel),An-
nales scientifiques de l’Ecole Normale Supérieure, (3) 17 (1900), 103–209.

English translation. The foundations of geometry (trans. E.J. Townsend), Chicago: Open
Court, 1902. [Repr. 1947. 2nd ed. (of the 10th ed.; trans. L. Unger) La Salle, Ill.: Open
Court, 1971.]

Related articles: Grassmann (§32), Riemann on geometry (§39), von Staudt (§33), Klein
(§42), Hertz (§52), Hilbert on algebra (§54), Einstein (§63), Hilbert and Bernays (§77).

1 A NEW DIRECTION OF MATHEMATICAL THOUGHT IN 1899

Well into his scientific career, David Hilbert (1862–1943) published most his decisive and
influential work in 1899. It was surprising to his contemporaries that it did not deal with

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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his common topics, algebra or number theory, but with geometry. The work impressed
methodically by its conscious lack ofintuition, of perception of space (Anschauung) and
geometric experiments. This was absolutely unusual at that time.

Hilbert contributed to a better understanding of the coherence of geometric and alge-
braic structures, continuing some ideas laid out in Felix Klein’s ‘Erlanger Programm’ 1872
(§42). With this work the foundations of geometry was established as a field of research in
itself.

David Hilbert, born on 23 January 1862 in Königsberg i.Pr. (nowadays Kaliningrad in
Russia) to a country judge, studied mathematics and physics at the universities of Königs-
berg, Heidelberg, Leipzig and Paris. He took his doctoral degree in 1884 at Königsberg
with Ferdinand Lindemann (1852–1939), who was well known for his proof of the tran-
scendence ofπ . After his Staatsexamen in 1885 and hisHabilitation in 1886 Hilbert
becamePrivatdozent, in 1892ausserordentlicher Professor and from 1893ordentlicher
Professor at the University of Königsberg. In 1895 Klein managed to obtain Hilbert for
Göttingen University, where he lived until his death on 14 February 1943.

Beginning with his dissertation about algebraic invariants, up to 1899 Hilbert was well-
known in mathematics as an expert on algebraic theory of invariants and on number theory
(§54). From 1904 he became concerned with integral functions, mathematical physics and
logic, he discovered new fundamental results in these fields. In the meantime he had an
intense and profound geometric period. Let us trace his thoughts in this respect. What
happened at that time of the beginning of modern mathematics?

Towards the end of the 19th century a remarkable change came about in the field of the
foundations of geometry. Whereas geometry had hitherto been based on empirical facts, it
was now seen as a purely formal deductive system. Hilbert was not the first so to act, but
he perfected this method in his bookGrundlagen der Geometrie. It also helped to lead him
to study mathematical logic in the early 1900s (compare §61).

2 FOURTEEN EDITIONS IN 100 YEARS

The contents of Hilbert’s book are summarised in Table 1. It first appeared in June 1899 in
a Festschrift commemorating the unveiling of the Gauss–Weber-Monument in Göttingen;
he did not give a lecture on that occasion. The 5th edition appeared in 1922 in the year of
his 60th birthday, the 9th edition in 1962 for his centenary, and the 12th edition in 1977 for
the bicentenary of C.F. Gauss’s birth.

The centenary of the book in 1999 was an occasion to revise and complete the book.
So aJubiläumsausgabe appeared, containing contributions that summarize the pre-history
and the further development in the last hundred years, as well as documents and registers,
which complete and organize the book. It contains a remarkable exercise book on the foun-
dations of projective geometry written when Hilbert was still a school-boy, an appreciation
of the omitted projective geometry, a critical comparison of all the 13 editions, a register
of literature and names, numerous photographs, title-pages and facsimiles. For a mathe-
matical university-level textbook in modern times it is quite unusual in appearing over 100
years in 14 editions.
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Table 1. Summary by Sections ofGrundlagen der Geometrie (1899).

Sect.; pp. ‘Title’: other included topics

I; 4–19 ‘The five groups of axioms’: connection, of order, of parallels, of
congruence, of continuity; consequences.

II; 19–26 ‘The compatibility and the mutual independence of the axioms’:
compatibility, independence, non-Euclidean and non-Archimedian
geometry.

III; 26–39 ‘The theory of proportion’: complex number-systems, arithmetic of
segments.

IV; 40–49 ‘The theory of plane areas’: equal areas, equal content, measure of area.

V; 49–71 ‘Desargues’s theorem’: provability, new segment arithmetic, algebraic laws.

VI; 71–77 ‘Pascal’s theorem’: provability, non-Archimedean number sets.

VII; 78–88 ‘Geometrical constructions based upon the Axioms I–V’: geometric
constructions with a ruler and a transferer of segments.

–; 89–92 ‘Closing word’; table of contents.

3 SEEING THE MASTER IN HIS WORKSHOP: HILBERT’S MANUSCRIPTS

Hilbert’s method immediately gave a new direction to mathematical thought in the 20th
century. Its impact on contemporaries has been studied and further developed in numerous
publications (A. Schmidt in [Hilbert,Papers, vol. 2, 404–414]; [Freudenthal, 1957]; and
B.L. van der Waerden in the foreword of the later editions of theGrundlagen). However,
up to the 1980s little wasknown about the origins of the book, or about the developments
that led him to it. Written in Hilbert’s typical concise manner, the book itself offers nearly
no information on this subject.

According to the biographies [Blumenthal, 1935; Reid, 1970; Dehn, 1922; Weyl, 1944],
Hilbert appeared to have worked almost exclusively with algebra and questions concerning
the theory of numbers in the years prior to 1899. His publications on the theory of invari-
ants suggest as much. With theGrundlagen der Geometrie, however, he presented to the
public a thoroughly mature work about an entirely different subject. In 1935 Otto Blumen-
thal (1876–1944), Hilbert’s first assistant in Göttingen, wrote in his biographical sketch of
Hilbert that the book ‘has brought up to its author a world-wide reputation, whereas up to
that time he was appreciated only among experts. It is worth tracing the grounds for this
success and the development of Hilbert’s ideas’ [Blumenthal, 1935, 402].

How did Hilbert arrive at his creation? What kind of preparatory work did he find? What
works did he study? Which problems had particularly stimulated him? These matters were
not investigated during the following 50 years. One reason is that his manuscripts were not
made accessible until 1973, 30 years after his death. The catalogue covers over 700 items,
among them letters from roughly 500 correspondents and about 50 manuscripts of his own
lectures. Now it was possible not only to describe the mere content of the book but also to
follow Hilbert’s way of constructing it [Toepell, 1986a]. From our viewpoint the principal
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Table 2. Pertinent manuscripts

Abbr. Manuscripts of Hilbert’s lectures Semester Cod.

PG Projektive Geometrie. Summer 1891 535

GG Die Grundlagen der Geometrie. Summer 1894 541

FK Ueber den Begriff des Unendlichen (Ferienkurs). Easter 1898 597

EG Grundlagen der Euklidischen Geometrie. Winter 1898–99 551

SG Elemente der Euklidischen Geometrie
(Ausarbeitung von Hans von Schaper).

March 1899 552

correspondents are Felix Klein, Hermann Minkowski (1864–1909), Ferdinand Lindemann,
Adolf Hurwitz (1859–1919) and in later times Albert Einstein (1879–1955).

A first complete set of axioms before Hilbert was constructed in [Pasch, 1882], who
also set up the axioms of order that C.F. Gauss had already postulated [Contro, 1976].
Manuscripts of four Hilbert lecture courses form the basis of his development (Table 2).

Hilbert’s first lectures on geometry dealt withProjektive Geometrie (1891, hereafter
‘PG’). They dealt with the properties that are invariant under projections. Then came a
manuscript on non-Euclidean geometry, axiomatically formulated;Die Grundlagen der
Geometrie of 1894 (‘GG’). The third source relates to an Easter vacation course in 1898,
Ueber den Begriff des Unendlichen (‘FK’); it seems to form the kernel of the later book.
From it emerged the detailed manuscript on Euclidean geometry, written in the winter
semester 1898–1899:Grundlagen der Euklidischen Geometrie (‘EG’). Finally, the elab-
orationElemente der Euklidischen Geometrie (‘SG’), was prepared by Hilbert’s assistant
Hans von Schaper from the preceding lecturesin March 1899; and from that text Hilbert
developed the book, which was published in June 1899.

These sources made it possible to demonstrate the origins of the book, and also to trace
the steps that Hilbert had omitted from his publications. These concern, first of all, the role
of intuition (perception,Anschauung), of experience and experiments, as well as questions
of projective geometry, which are omittedfrom the book. We also see the close connection
between Hilbert’s biography and the genesis of axiomatic thinking.

4 FOUNDATIONS OF PROJECTIVE GEOMETRY:
HILBERT’S EXERCISE-BOOK (1879) AND LATER

Of the time when Hilbert was a schoolboy there are two exercise books of special interest
for us. One of them, from 1879 (published in 14th ed., 327–345), deals with projective
geometry and the point of intersection theorems, and can be seen as the starting point
of his geometric studies. It deals with the theorems of Menelaos and Ceva; cross ratios;
arithmetic, geometric und harmonic means; the complete quadrilateral; polar theory; the
position of the five remarkable points of a triangle; and the theorems of Pascal and Brian-
chon.

Unlike the later manuscripts this exercise book is tidy, with the diagrams drawn rather
exactly. The sections about the harmonic points and rays and about Pascal’s theorem were
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to be elaborated in Hilbert’s later lectures on projective geometry in summer 1891. That
manuscript, PG, comprises over 100 pages. He began with a fundamental survey, dividing
geometry into three parts, a division that he consistently followed in later years (funda-
mental, but not mentioned in theFestschrift).

On Intuitive geometry Hilbert included school geometry, projective geometry and the
Analysis Situs (topology); the aim was aesthetic, pedagogical and practical. From 1920
Hilbert delivered a lecture course several times on ‘Anschauliche Geometrie’, which was
published as [Hilbert and Cohn-Vossen, 1932]. OnAxioms of geometry ‘This part investi-
gates, which axioms are used in the established facts in intuitive geometry and confronts
these systematically with geometries in which some of these axioms are dropped’; this was
epistemological (‘erkenntnistheoretisch’) in intent. These considerations led him to investi-
gate independence and to his own geometries in the manuscript GG of 1894. InAnalytical
geometry, ‘from the outset a number is ascribed to the points in a line and thus reduces
geometry to analysis’; this was ‘scientifically mathematical’ (‘wissenschaftlich mathema-
tisch’).

In 1891 Hilbert still based ‘geometry’ on experiments and ontological facts. He begins
his lecture: ‘Geometry is the theory about the properties of space. [. . . ] It is based on the
simplest experiment that can be carried out, namely drawing’ [Toepell, 1986a, 21]. As a
consequence Hilbert excluded computing and numbers.

Hilbert mentioned theGeometrie der Lage (1847) of K. von Staudt (§33), following
its pure methods in order to keep projective geometry free from axiomatic and analytic
influences. In the first part Hilbert followed Theodor Reye’sGeometrie der Lage (1866,
3rd edition 1886), and in the second part Jakob Steiner’s lectures on synthetic geometry as
edited by H. Schroeter (1866, 3rd edition 1898).

At the end of September 1891, Hilbert heard a lecture on geometry given by Hermann
Wiener at the annual congress of natural scientists in Halle [Wiener, 1891]. Thereby Hilbert
became acquainted with the general validity of the axiomatic method and in particular with
the possibility of developing projective geometry by taking as axioms Pascal’s and Desar-
gues’s theorems on point of intersection. According to [Blumenthal, 1935, 402], Hilbert
uttered these famous words in a Berlin waiting-room on the return journey from Halle to
Königsberg: ‘One should always be able to say, instead of “points, lines and planes”, “ta-
bles, chairs and beer mugs”’. If this report is reliable, already in 1891 he saw the intuitive
part of geometrical concepts as being mathematically irrelevant. But only seven years later
he did express that view in a correspondingly radical formulation.

5 GEOMETRY AS A SYSTEM OF AXIOMS (1894)

A key point for Hilbert was the construction of a system ofindependent axioms. After the
study of the role of the axiom of parallels with Gauss, J. Bolyai and N.I. Lobachevsky,
it was at least Hermann Grassmann who demanded in 1844 not to have any unnecessary
axioms (§34). Giuseppe Peano was the first to speak of the concept ofindependence of
axioms [Peano, 1889, 57].

In the summer semester of 1894 Hilbert gave his lectures on non-Euclidean geometry
under the titleDie Grundlagen der Geometrie (‘GG’). He wanted to produce the purest
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possible exact system of axiomatic, non-Euclidean geometry, concluding with Euclidean
geometry. He prefaced his manuscript witha bibliography of over 40 items (most un-
usual in Hilbert’s work) available in German. Amongst others he named Pasch, H. von
Helmholtz, Lobachevsky, Bernhard Riemann, Peano, W. Killing, Sophus Lie, R. Clebsch,
Lindemann, A.F. Möbius, von Staudt, Reye, B. Erdmann and Wiener. He mentioned Ital-
ian works as far as they were translated, such as [Peano, 1891]. But he did not mention
the important axiomatic studies [Peano, 1889] or [Fano, 1892]. Peano’sSui fondamenti
della geometria (1894) had only just come out, as also Giuseppe Veronese’sFondamenti di
geometria a più dimensioni (1891) in German, asGrundzüge der Geometrie von mehreren
Dimensionen (1894) just been translated. In 1899 Hilbert mentioned non-Archimedian
geometry that Veronese tried to construct; in the first to the sixth editions of hisFestschrift
he noted Veronese’s remarkable historical appendix.

The manuscript of 1894 was a further step to theFestschrift. Contrary to 1891, Hilbert
avoided any explicit definition of geometrylike ‘Geometry is the theory about the proper-
ties of space’. Otherwise physical properties,like the falling principles, would belong to
geometry, too. So he wrote: ‘Among the phenomena, or facts of experience that we take
into account observing nature, there is a particular group, namely the group of those facts
which determine theexternal form of things. Geometry concerns itself with these facts’
[Toepell, 1986a, 58]. He even regarded the axioms asfacts: ‘These unprovable facts have
to be determined in advance and we term them axioms’.

Here Hilbert still stood at the same level with Pasch, who likewise derived his axioms
from ‘experience’. However, Hilbert also questioned whether the axioms arecomplete or
independent: ‘Our colleague’s problem is this: which are the necessary and sufficientcon-
ditions, independent of each other, which one mustposit for a system of things, so that
every property of these things corresponds to a geometrical fact and vice versa, so that by
means of such a system of things a complete description and ordering of all geometrical
facts is possible’. In addition, he took up an idea from Heinrich Hertz’sDie Prinzipien der
Mechanik (1894), which in geometry leads to the use of space intuition (‘Raumanschau-
ung’) only in the sense of a possible intuitiveanalogy (§52.6).

Whereas Pasch [1882] divided his axioms into eight axioms for lines and four for planes,
Hilbert now arranged his axioms according torelations, an order he had already touched
on in 1891. He first separates the axioms of connection and order. Following the practice
of von Staudt and Möbius, he now ascribed rational numbers to the point on a line with the
help of the construction of the fourth harmonic element. In order ‘to prevent a gap’ in the
transition to the real numbers, he stated an axiom ofcontinuity; from Pasch he adopted the
formulation given by Karl Weierstrass.

Subsequently the fundamental theorems of projective geometry were derived. Then
Hilbert focussed upon the projective system. This led to the axioms of congruence, and
the determination of metrics to hyperbolic and parabolic geometries. The second part was
based on the non-axiomatically constructedVorlesungen über Geometrie of Clebsch as
edited by Lindemann in 1891. A main problem for Hilbert was to select and to formulate
the suitable axioms.

In retrospect it is remarkable that Hilbert states the axiom ofcontinuity straight after the
first two groups of axioms. Together with theintroduction of numbers this, for him, was
‘of high epistemological significance’. He had not anticipated from the outset the early
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introduction of numbers. In the second part of the lectures he often proceeded analytically,
dividing geometry in three different parts in a way that was logical but for his axiomatic
system impure, which he wished to avoid in future. In this regard he noted: ‘If I lecture
again, it will be on Euclidean geometry’ [Toepell, 1986a, 104]; and so he did, in 1898.
Thus it can be understood why he added the axioms of continuity at theend and thus
showed how dispensable they were.

How could Hilbert get algebraic laws by geometrical means, or by axioms? This is
possible by the power of the intersection theorems of Desargues and Pascal. They enabled
him to establish asegment arithmetic (that is, an arithmetic of geometrical entities) without
an axiom of continuity. In 1894 he had not even mentioned the intersection theorems and
consequently had not examined their importance. Thus [Wiener, 1891], which had been
seen as decisive by Blumenthal, was not applied in this way by Hilbert before 1898!

In addition, Hilbert viewed continuity as one of the assumptions ofprojective geometry.
As he tried to avoid continuity, the projective studies disappeared from hisGrundlagen der
Geometrie. Other reasons for the transition from projective to Euclidean geometry were
that the order relation of threeelements had proved unsuitable in projective geometry, and
that the principle of duality is not valid inthe geometry that he outlined in 1894. Due
to Hilbert’s book of 1899, in the following decades projective geometry also gradually
disappeared in school geometry.

6 A VACATION-COURSE FOR TEACHERS:
THE KERNEL OF THEFESTSCHRIFT (1898)

At Easter in 1895 Hilbert accepted the chair at Göttingen and up to 1897 he concerned
himself principally with number theory. So his concern with the foundations of geometry
rested for more than three years, until he was inspired to take it up anew by a letter of 30
January 1898 sent by Friedrich Schur to Klein. Hilbert wrote in March 1898 to Hurwitz:
‘This letter, which [Artur] Schoenflies introduced to us in a lecture to the mathematical
society, has given me the inspiration to take up again my old ideas about the foundations of
Euclidean geometry. It is remarkable how many new things can be discovered in this field’
[Toepell, 1985, 641].

The manuscript (FK) of an Easter vacation course of 1898,Ueber den Begriff des Un-
endlichen (‘On the concept of infinity’), covers just 27 pages; but it forms the nucleus of
the Festschrift. As we see from the introduction to this course, the contact with teachers
and school-mathematics was Hilbert’s personal request. He addressed himself especially to
the teachers as ‘the most competent collaborators’; perhaps they who especially stimulated
him to study the foundations of geometry. A reviewer even postulated that theGrundlagen
der Geometrie should be used as a textbook in school geometry, like a new Euclid. Indeed,
it became a fundamental textbook in university geometry in the 20th century.

In this course Hilbert introduced his audience to the most up-to-date research questions.
For the first time he constructed the axioms in what was subsequently to be their usual se-
quence. Then he directed the teachers to practical problems: the geometrical constructions
based on the theorems of congruence. For example, the constructibility of the intersecting
point of two circles required an axiom of continuity, whose independence was subsequently
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examined. Also he asked for the first time, which axioms were dispensable if one assumed
Desargues’s and Pascal’s theorems in place of some axioms that were used to prove these
theorems.

In this manuscript the arrangement of the laterFestschrift is already apparent: axioms,
proofs of independences, segment arithmetic, Desargues’s theorem, Pascal’s theorem, and
problems concerning constructibility. We can also trace how Hilbert developed his ideas
in two directions: to avoid assumptions ofcontinuity, and to construct plane geometry
independent ofspatial assumptions. Once Hilbert’s basicconcept had been established, a
number of individual problems came into focus on which he now worked intensively. That
led him to the careful system in theFestschrift.

7 LECTURES AND AN ELABORATION ON EUCLIDEAN GEOMETRY
(1898–1899)

In the winter semester of1898–1899 we readin the announcements of lectures in Goettin-
gen: ‘Elemente der Euklidischen Geometrie: Prof. Hilbert, Montag und Dienstag 8–9 Uhr,
privatim’. So, two hours per week. Hilbert began: ‘Concerning the content of the lectures,
we shall study the theorems of elementary geometry, which we all learned at school: the
theory of parallels, the theorems of congruence, the equality of polygons, the theorems
about the circle etc. in the plane and the space’ [Toepell, 1986a, 144].

The manuscript EG contains an exhaustive discussion of those areas that were mostly
treated in brief in the vacation course. Thelogical meaning of the axioms was studied
by construction of arithmetical models. Amongst these were proofs of independence for
axioms of the first two groups. In accordance tothe theme of the lectures, Hilbert examined
in detail the studies of congruence that werepossible without using continuity. Much of this
was omitted in theFestschrift, including (unusually in his writings) anhistorical survey of
the parallel axiom that follows, then the detailed presentation of anon-Euclidean geometry
and the introduction ofideal (infinite) elements.

Comparing this lecture with that of 1894, it is plausible when Klein remarked of the
Festschrift that ‘compared with earlier studies its main object is to state the importance
of the axioms of continuity’ [Klein, 1914, 402]. Freudenthal [1957] asserted that ‘The
so-called axioms of continuity are introduced by Hilbert to show that actually they are
dispensable’. Because of this important result, Hilbert introduced them at the end.

In March 1899 Hilbert’s assistant von Schaper had elaborated these lectures as the text
Elemente der Euklidischen Geometrie (SG). It contains numerous remarks, motivations
and examples, which were omitted in the concise presentation of theFestschrift.

Here Hilbert began with the fundamental concepts. He did not explain it as in the lec-
tures ‘es giebt ein System von Dingen, die wir Punkte nennen’ (‘there is a system of things,
that we call points’), but formulated it with abstract rigour: ‘Zum Aufbau der Geometrie
denken wir uns drei Systeme von Dingen, die wir Punkte, Geraden und Ebenen nennen’. In
theFestschrift he omitted even the words ‘zum Aufbau’ and ‘uns’ and wrote: ‘Wir denken
drei verschiedene System von Dingen’; Leo Unger translated this as ‘Consider three dis-
tinct sets of objects’ in the second English edition of 1971.

‘With these lion-claws the navel-string between reality and geometry is cut through’
[Freudenthal, 1957, 111]. Geometry seems to awake to its own existence, independent of
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any physical reality. Some months before Hilbert had still seen the axioms as ‘very simple
[. . . ] original facts’ (SG), whose validity is experimentally provable in nature.

What Hilbert formulated may have been new in Germany, but it was “in the air”. Already
seven years earlier Fano wrote: ‘At the basis of our study we put some variety of entities of
some nature; entities that we shall call, for brevity, points, but independently, well agreed,
of their actual nature’ ([Fano, 1892, 108f]; see [Toepell, 1999b, 295]). In the two years
following (1892–1894) Fanohad been in Göttingen.

Concerning the further development it is interesting that the elaboration included studies
of some theorems of Legendre that Hilbert published only thirty years later in the seventh
edition (art. 10, 39–45; see [Toepell, 1986a, 208]).An eight-page introduction to projective
geometry by means of ideal elements was also omitted by Hilbert from theFestschrift
[Toepell, 1986a, 212–215].

8 THE ALGEBRAISATION OF GEOMETRY: THE FIRST EDITION IN JUNE 1899

In spring 1899 Hilbert once more revised his lectures, for theFestschrift. Now he con-
centrated his wide-spread investigations upon questions of independence and especially
Desargues’s and Pascal’s theorems in special chapters.

Hilbert’s aim from the outset seems to be the algebraisation of geometry. In 1894 he
still was satisfied with the introduction of coordinates by means of the Möbius grid. At the
end he established that it must also be possible tocalculate with these numbers ascribed to
geometrical objects. Hence the algebraic laws of fields (‘Körpergesetze’) were required.

While Pasch had spoken of primitive propositions ‘directly based on observation’, from
which he derived all the remaining theorems, for Hilbert therelations between the objects
of intuition provide the starting point, as in his manuscript of 1894. Having perceived both
the starting-point and the aim, it remains only to find the way. Like Euclid, Hilbert proceeds
axiomatically. Here the question arises, which axioms are required?

While the axioms of incidence were largely clear, those of order were somewhat prob-
lematical. Hence, because of infinite elements, difficulties attended projective geometry.
Proceeding to Euclidean geometry, the concept of congruence could be introduced without
hesitation. But then appeared the problem of the intersection theorems, of the axioms of
parallels, of the Archimedian axiom, and of continuity—all aspects that are not mutually
independent. As the details demonstrated, it was not easy for him to find a suitable way
through this maze of axioms.

9 THE FURTHER DEVELOPMENT OF HILBERT’S
GRUNDLAGEN DER GEOMETRIE

9.1 Continuously revised. The development of Hilbert’sGrundlagen der Geometrie
was not finished with the first edition. The complete content was continuously revised,
especially during his lifetime. He considered new results, gave hints in articles and im-
proved his own formulations. The most incisive changes went through the seventh edition
(1922), the last edition to appear in his lifetime. The comparison of all editions reveals
many differences, elaborated in [Toepell, 1999a].
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9.2 Independences. Also by fine and small differences we see Hilbert’s effort to choose
his words carefully. For example, sometimes in the first edition he spoke of ‘Grundthat-
sachen’ (‘fundamental facts’), but in latereditions of ‘Grundsätzen’ (‘fundamental theo-
rems’). While he wrote in the first edition that ‘none of the axioms can be deduced from the
remaining ones’ (art. 10), later he weakenedthis to state that ‘no essential part of any one
of these groups of axioms can be deduced from the others’. As Schmidt remarked, Hilbert
preferred conceptual understanding and intuition to logical economy [Hilbert,Papers, vol.
2, 407]. An excellent (but not a categorical one) system of geometrical axioms that are
absolutely independent, was constructed by Oswald Veblen in his dissertation in 1904.

Some modifications of axioms and theorems led to further enlargements. So for example
supplement I goes back to a modification of axiom II.4 of Pasch, as suggested by van der
Waerden (14th ed., 241f.). A further example is the theorem of four points by E.H. Moore
(p. 6), which in the first edition still was an axiom. The proof of theorem 9 (p. 10), which
for Hilbert was a proof ‘without significant difficulty’ (up to the 8th ed., 10) was delivered
by G. Feigl only 25 years later (14th ed., 242; [Toepell, 1999a, 297]).

9.3 Axioms of congruence. According to Hilbert the axioms of congruence have been
‘the most important and most difficult group’ [Toepell, 1986a, 161]; so he had special in-
terest in the functions of these axioms and less in the axiom of parallels. In his review of
theFestschrift Henri Poincaré concluded: ‘Lobachevsky and Riemann rejected the postu-
late of Euclid, but they preserved the metrical axioms; in the majority of his geometries,
Professor Hilbert does the opposite’ [Toepell, 1999a, 297]. That means that he tried to re-
ject the metrical axioms. Out of his study of axiom III.5, the so-calledUmklappungssatz
(‘reflection theorem’), emerged ‘Appendix II’. This axiom plays an important role in the
proof of Desargues’s theorem in the plane (14th ed., arts. 22–23).

It is remarkable that the whole theory of congruences was shortened from about 20
pages in von Schaper’s elaboration to six pages in theFestschrift. At the same time Hilbert
generalized the title from ‘Grundlagen der Euklidischen Geometrie’ to ‘Grundlagen der
Geometrie’.

9.4 Axiom of completeness. The coronation of Hilbert’s axioms of continuity is the ax-
iom of completeness. The first time that he embedded it in hisGrundlagen was in May
1900, in the French edition, after he had called attention to it already in a discourse ‘Über
den Zahlbegriff’ on 12 October 1899. Out of this talk, which appeared in theGrundlagen
as appendix VI from the third to the seventh edition, emerged supplement I.2 by Bernays
in later editions. With this axiom of completeness the non-isomorphic systems became cat-
egorical (that is, all systems fulfilling the axioms are isomorphic). This ‘axiom about ax-
ioms’, whose ‘logical structure is complicated’ (Bernays), is called by Freudenthal [1957]
an ‘unlucky axiom’, but Richard Baldus thought it to be ‘the most original achievement by
Hilbert in axiomatics’. In the first edition of the English translation of 1902 it reads: ‘In
other words, the elements of geometry form a system which is not susceptible of extension,
if we regard the five groups of axioms as valid’ (p. 25).

This axiom ofcompleteness was discussed exhaustively and repeatedly changed [Toe-
pell, 1999a, 299f]. The axioms ofcontinuity conclude the system. Out of postulating them
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at the beginning emerged Hilbert’s appendix IV (1902,Über die Grundlagen der Geome-
trie).

9.5 Theories of proportions and areas. What Hilbert did in the third chapter, the theory
of proportions, could have been, in the words of [Freudenthal, 1957], ‘a Greek ideal: a pure
geometric approach’ by constructing a coordinate geometry with respect to a field which
does not have to be Archimedian—‘an original idea with a powerful effect’, removing
the second stain in Euclid’sElements. Earlier contributions are due to von Staudt (1847
and later) and Schur (1891, 1894, 1898). A simplification was delivered by Adolf Kneser
(1901, 1904) and further ones were possible by the proofs of Gerhard Hessenberg in 1905
and Johannes Hjelmslev two years later.

The theory of plane areas in chapter IV turns out to be, in Hilbert’s words, ‘the suppos-
edly most interesting application’ of the axioms I to IV and ‘one of the most remarkable
applications of Pascal’s theorem in elementary geometry’ because he did not need any ax-
iom of continuity. In chapter V and VI he coordinated the affine plane by the affine form
Desargues’s theorem. The role of this theorem came into focus.

Not long after the first edition, F.R. Moulton in 1902, T. Vahlen in 1905 and Vahlen
and J.H.M. Wedderburn in 1907 constructed further and also simpler non-Desarguesian
geometries. Hilbert took up the Moulton example in (7th ed. (1930), 86f.). A systematic
treatment of non-Desarguesian geometries started in the early 1930s with the contributions
by Ruth Moufang, who developed the algebraic theory ofalternating fields.

9.6 Theorems of Desargues and Pascal. The so-callednew segment arithmetic came
out of the question how far Desargues’s theorem is able to replace the axioms of congru-
ence. This new geometry, in which the commutative law of multiplication does not hold,
opened ‘the view to a very large, still not investigated area’ [Dehn, 1922], which in the fol-
lowing decades led tonon-commutative algebra. On the further development in the field
Grundlagen der Geometrie from around the last editions published in Hilbert’s lifetime,
see (14th ed., 365–384). For Schur in 1901 ‘the most important result’ of theFestschrift
was chapter VI, in which Hilbert showed that the proof of Pascal’s theorem without the use
of the axiom of congruence III.5 is only possible with the aid of Archimedes’s axiom.

9.7 Elementary geometric constructions. A remarkable station in the history of elemen-
tary geometric constructions is the last final VII, the constructions with ruler and scale. The
development can be seen in an impressive manner by means of the problem of construct-
ing the missing centre of a circle [Toepell, 1999a, 312–314]. Euclid solved the problem
by using a compass and a ruler, Abu al-Wafa (10th century) and Albrecht Dürer in 1525
reduced their tools to a ruler and a compass with a fixed opening. G. Mohr in 1672 and
L. Mascheroni in 1797 used a compass alone, while J.H. Lambert in 1774 and Steiner
in 1833 required only a ruler and a fixed circle with its centre, and A. Adler deployed
parallel- or angle-rulers in 1890. These developments lead straight to Hilbert and his stu-
dent Michael Feldblum, who showed the possibility of solving the problem with a ruler
and a so-called ‘transferer of segments’, in later editions with ruler and scale, a transferer
of a single fixed segment.
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10 A SURVEY OF THE INTERSECTION THEOREMS AND THE MOST
IMPORTANT RESULTS

The role and function of the intersection theorems are of highest importance for the whole
book. Table 3 lists Hilbert’s decisive results; the first steps in his manuscripts are set in
brackets. Besides this the following results of the historical investigations seem to be the
most important.

Firstly, it is a little-known fact that Hilbert studied the foundations of geometry as early
as1891, and perceived carefully the development in this field. Secondly, a key role is due to
Schur, who was responsible for the decisive stimulation of Hilbert in early 1898, which led
to an intensive period discussing the foundations of geometry. Thirdly, the significance of
intuition (Anschauung) for Hilbert was much more important than his publications suggest.
Finally, projective geometry plays a remarkable role in the pre-history of theGrundlagen
der Geometrie. We can trace it back until Hilbert’s time as a schoolboy. For him projective
geometry always belonged to the foundations of geometry, but there are different reasons
why he omitted it from the book.

Table 3. Results for intersection theorems.
Abbreviations. L= axioms I and II; L2= axioms I and II for the plane; III= axioms of congruence;

IV = axiom of existence of parallels (14th ed., 28); IV∗ = existence and uniqueness of parallels
(ibidem, 83); V= Archimedian axiom; Des= Theorem of Desargues; Pas= Theorem of Pascal.

Theorem Hilbert’s stages and results 1898–1899

Source FK EG SG GG, 1st ed.

Desargues (1648): L⇒ Des FK 19

Schur (1898): L III⇒ Pas FK 19 SG 74

Hilbert: L2 III IV ⇒ Pas (FK 23) (EG 92) SG 108 III art. 14

Hilbert: L2 III IV ⇒ Des (FK 19) SG 108 V art. 22

L2 �⇒ Des EG 30 SG 28

L2 IV V �⇒ Des SG 146

L2 III 1–4 IV∗ V �⇒ Des V art. 23

L2 IV Des⇒ new segment arithmetic EG 102 (SG 147) V art. 24

L2 Des⇒ L (EG 34) (SG 32) V art. 30

L IV* V ⇒ Pas SG 146 VI art. 31

L IV* �⇒ Pas FK 26 SG 147 VI art. 31

L IV Pas⇒ every intersection theorem(FK 27) EG 104 SG 167 VI art. 31

Hessenberg (1905): L2 IV* Pas⇒ Des VI art. 35
(from 3rd ed.)

Hjelmslev (1907): L2 II ⇒ Pas (EG 106) III art. 14
(from 3rd ed.)
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11 REACTIONS AND CONCLUSION

The Festschrift led to the world-wide reputation of Hilbert. The first written congratula-
tions came from Minkowski, Hurwitz and Aurel Voss. One of the first public reactions
to the epistemological background can be found in a lecture by Otto Hölder a month af-
ter publication, on 22 July 1899. The philosophical discussion about the nature of axioms
with Gottlob Frege led to Hilbert’s decisivearticle ‘Ueber die Grundlagen der Logik und
Arithmetik’ in 1905, a philosophicalProgrammschrift, which was reprinted as appendix
VII of the book from the third to the seventh editions. Other texts are discussed in [Toepell,
1999a, 316–320].

The book had some consequences for physics, which gained Hilbert’s attention from
the 1900s onwards. For during the 1910s there was a remarkable connection between Ein-
stein and Hilbert. Seeking the roots and sources of Einstein’s ideas in geometry, we are led
back to the time of his being a student of Minkowski at the Polytechnical High School in
Zurich—especially in 1899, when he had read the proof-sheets of Hilbert’s work. Accord-
ing to his letters we may assume that he understood the immense power of this book and it
should not take too long for initiating Einstein as well. Maybe Einstein learnt from Hilbert
to free himself from empirical restrictions in geometry. This led 12 years later to the idea
to think of spatial curvature not only in a Euclidean or non-Euclidean form but also in a
form emerging out of gravitational forces (§63).

It is not at all obvious that the conception of theGrundlagen der Geometrie emerged
from a vacation course for teachers; the significance of intuition seems to be entirely sub-
ordinate. Also in his further publications Hilbert argued as a rule for theaxiomatic method.
Hence he was frequently seen as a formalist. However, he never once used ‘formalism’ to
characterise his philosophical position, and hismanuscripts and letters show his intense
concern with intuition and its significance for geometry. Regarding his attitude in later
years we see how little Hilbert freed himself fromintuition. He perceived that the consis-
tency of his axiomatic system depends after all on what it means.

One hundred years after Hilbert’s first edition, the famous geometer Gian-Carlo Rota
wrote [Rota, 1999, 19]:

Today, synthetic geometry is still the downside. For today’s students of alge-
braic geometry, points, lines and surfaces are a manner of speaking, shorthand
terms for algebraic concepts. But the call to reality is making itself felt. Com-
puter scientists have shown us how little we know about solid angles, how
much we need to know about polyhedra. The visual geometry of Euclid, De-
sargues, Ludwig Schläfli and Eugenio Cremona is about to make a triumphal
comeback. Geometers of today will be well advised to recover their bearings
by reading Hilbert’sGrundlagen der Geometrie.
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CHAPTER 56

KARL PEARSON, PAPER ON THE CHI SQUARE
GOODNESS OF FIT TEST (1900)

M.E. Magnello

This paper contains the first mathematical account for a goodness of fit test that could
be used for any shape curve including, for example, Poisson, binomial and Mendelian
distributions, rather than simply the normal distribution. Together with other papers of
the time by Pearson and colleagues, it raised substantially the practice of mathematical
statistics.

First publication. ‘On the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed to
have arisen from random sampling’,Philosophical magazine, (5) 50 (1900), 157–175;
correction in(6) 1 (1901), 670–671.

Reprint. In Pearson,Early statistical papers, Cambridge: Cambridge University Press,
1948 (repr. 1956), 339–357.

Related articles: Laplace (§24), Fisher (§67), Shewhart (§72).

1 EDUCATION AND EMPLOYMENT

The education of Karl Pearson (1857–1936) began when he had French lessons at the
age of four at his home on the Camden Road, London. A couple of years later he and his
brother Arthur went to a small school in Harrow established by a William Penn; eventually,
the boys attended University College London School on Gower Street. When Karl was 15
years old, his father was looking for a good Cambridge Wrangler to prepare him for the
Mathematics Tripos. Less than a year later, Karl went up to Hitchin, where he stayed for
five months receiving tuition from the Reverend Louis Hensley. Very unhappy there, he
left on 1 July 1874 to go to Merton Hall, Cambridge to be coached in mathematics under
John Edward Rendall Harris, John P. Taylor and the great mathematics Cambridge tutor
John Edward Routh. He stayed for a year from mid July 1874 until 15 April 1875, when
he received an Open Fellowship from Kings College, Cambridge.

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
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Though Pearson was not a very healthy child, he came to life in this environment and
his health improved: he found the highly competitive and demanding system leading up
to the Mathematical Tripos was the tonic he needed. His tutors included Arthur Cayley,
William Herrick Macaulay, George Stokes, Percival Frost, Isaac Todhunter and James
Clerk Maxwell. Pearson graduated with honours in January 1879, being the Third Wrangler
in the Mathematics Tripos; subsequently, he received a Fellowship from King’s College,
which gave him financial independence for seven years, and was made an Honorary Fel-
low in 1903. Immediately after he graduated, he read philosophy and medieval languages
before going to Germany where he studied physics and metaphysics under Kuno Fischer,
Hermann von Helmholtz, Gustav Kirchhoff and Heinrich Quincke in Heidelberg, and then
the law in Berlin.

Between 1879 and 1884 Pearson applied for mathematical posts in Dundee, Leeds,
Manchester and Sheffield. He read law at Lincoln’s Inn and was called to the Bar in 1881,
but practiced for only a very short time. Hetook on a temporary job teaching mathematics
at King’s College, London in 1883 when the professor fell ill. Then June 1884 he accepted
the Goldsmid Chair of ‘Mechanism and Applied Mathematics’ at University College Lon-
don (hereafter, ‘UCL’), succeeding the German-born mathematician Olaus Henrici (1840–
1918). Henrici’s predecessor was the philosopher and mathematician William Kingdon
Clifford (1845–1879), whose book, theCommon sense of the exact sciences, Pearson was
asked to finish after Clifford’s early death; it appeared in 1885. During Pearson’s first six
years at UCL he taught modern geometry, mathematical physics, statics, dynamics, hy-
drodynamics, magnetism, sound, electricity and elasticity theory (his speciality) to engi-
neering students. As well as publishing several research papers, he completed Todhunter’s
A history of the theory of elasticity and the strength of materials (1886–1893).

Being ambitious, Pearson also took up the Gresham Chair of Geometry at Gresham
College in the City of London in 1890, and held it for three years, concurrently with his
post at UCL. He delivered a total of 38 lectures between the spring of 1891 and the summer
of 1894. These Gresham lectures signified a turning point in his career when he began to
teach the geometry of statistics and especially when he helped the Darwinian zoologist
W.F.R. Weldon (1860–1906) with his data on marine organisms [Magnello, 1996].

2 CHRONOLOGY AND CURVE FITTING

The development of Pearson’s work on curve-fitting and finding a goodness of fit test for
asymmetrical distributions may be seen as his reaction to the status accorded to the normal
distribution at the end of the 19th century. The idea that empirical data should conform
to the normal distribution was borne out of the use by Adolphe Quetelet (1796–1874) of
the arithmetic mean for hisl’homme moyen: Quetelet’s deterministic outlook led him to
believe that deviations from the ideal type were flawed and thus a product of error. This in-
terpretation of error arose from the theistic argument that order and perfection of nature in
the universe were due to the existence of a divine Creator (i.e., ‘the argument from design’).
Thus, any error that arose in nature could only be viewed as flawed, as it would have in-
terfered with the Deity’s plan and purpose of the universe. In fact, Quetelet had made one
of the earliest attempts to fit a set of observational data to a normal curve in 1840 that
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Francis Galton (1822–1911) began to use in 1863. Wilhelm Lexis (1837–1914) devised
the Lexican Ratio L as a goodness of fit test to determine if an empirical distribution con-
formed to the normal distribution [Lexis, 1877], whilst Francis Ysidro Edgeworth provided
a goodness of fit test that was based on a normal approximation to the binomial distribution
[Edgeworth, 1885]. Though many other 19th-century scientists attempted to find a good-
ness of fit test, such as the American statistician Erasmus Lyman de Forest and the Italian
Luigi Perozzo, they did not give any underlying theoretical basis for their formulas.

Pearson’s interest in curve fitting was fuelled by Weldon’s work on the Plymouth shore
crabs when Weldon found that one of his distributions of data was asymmetrical, while
the rest of his data were normally distributed. Since Weldon’s data produced a bimodal
curve instead of the normal curve, Pearson wanted to find another way to interpret the
data without trying to normalise it as Quetelet and Galton had done. Pearson and Weldon
thought it was important to make sense of the shape of the distribution without distorting
its original shape, as it might have revealed something about the creation of new species.
Pearson adapted the mathematics of mechanics, using themethod of moments, to construct
a new statistical system to interpret Weldon’s data since no such system existed at the time.
This system allowed Pearson to analyze data of all kinds of shapes, and enabled him to
move beyond the limitations of the normal curve.

Beginning in 1892, Pearson deployed higher moments, that is, integrals of the form∫
f (x)xn dx for n > 2, wheref is some function andx a distance measured from a given

point. These moments had been used in statistics around the 1850s by Jules Bienaymé
(compare section 3 below) and Pafnuty Chebyshev, and 20 years later by A.A. Markov;
but Pearson learnt of them from graphical statics, when determining moments on a loaded
continuous beam with the help of a theorem proved in 1857 by the French engineer Emile
Clapeyron [Pearson, 1890].

In mechanics, the moment of a force about a point, such as a fulcrum, is the product
of the magnitude of that force by its perpendicular distance from that point. In statistics,
moments are averages, and force was replaced by a frequency curve function (such as the
percentage of the distribution within a given class interval).

In his Gresham lecture on statistics [Pearson, 1893] showed that the first moment of any
set of lines at unit distance from each other is the sum of their lengths multiplied by their
respective distances from a parallel straight line about which he found the moment—that
is, it is the mean. The second moment is the sum of their lengths multiplied by the squares
of their distances, the square of the standard deviation: Pearson called it the ‘squared stan-
dard deviation’, which R.A. Fisher (1890–1962) termed the ‘variance’ in 1918. The third
moment is the sum of their lengths multiplied by the cubes of their distances, and is used
to find a measure of skewness of a distribution. The fourth moment is found by multiply-
ing the lengths by the fourth power. The fourth moment measures how flat or peaked is
the curve of the distribution; for it he coined the word ‘kurtosis’ (from the Greek word for
bulginess), It had three further components: (a) if data clustered or peaked around the mean
(he called the peakedness ‘leptokurtic’); or (b) if it spread out across the distribution, the
curve ‘platykurtic’, for it resembled the shape of a platypus; or (c) if it produced a normal
curve, this was termed ‘mesokurtic’.

After Pearson examined Weldon’s asymmetric curves derived from his crab data in
Naples, he realised that an objective method of measuring the goodness of fit was a desider-
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atum for distributions that did not conform to the normal curve. Pearson’s earliest consid-
eration of determining a measure of the goodness of fit test came out of his lecture on 21
November 1893 when he introduced the sixth moment as a measure of a goodness of fit.
At the start of 1894 he produced the forerunner to his chi-square goodness of fit test. He
demonstrated how to find

∑
s/y, wheres equalled the difference between the observation

polygon and the theoretically expected curve andy its corresponding ordinate. Since Pear-
son thought this measure ‘was awkward to get’, he decided that it would be preferable to
measure the ratio of the whole area between the theoretically expect curve and the polygon
(of observational data); he counted all the value as positive which equalledW and then
measure the total areaA under the curve. Hence

W/A=
(∑

errors of fit
)/(∑

ordinates
)
=

∑
s
/ ∑

y, (1)

which he thought was a reasonably measure of the goodness of fit. On Christmas Day in
1896, he wrote to Galton that he wanted to develop a goodness of fit test for asymmetrical
distributions for biologists and economists. He reached a resolution in 1900, when he found
the exact chi-square distribution from the family of Gamma distributions and devised his
chi-square (χ2,P ) goodness of fit test.

For Pearson, the object of the chi-square goodness of fit test was to find ‘a criterion
of the probability on any theory of an observed system of errors, and apply it to the de-
termination of goodness of fit in the case of frequency curves’. This was to be used to
determine how well an observed or empirical distribution could be fitted to a theoretical
frequency distribution. Prior to this test, the usual procedure involved comparing errors of
observation, to a table of distributions based on the normal curve, or graphically by means
of a plotted frequency diagram. From the basis of these comparisons, error theorists main-
tained that ‘an experimental foundation has been established for the normal law of errors
[. . . ] having deduced the normal curve of errors, they gave as a rule some meagre data of
how it fits the observation’ (p. 171).

The statistical framework of Pearson’s chi-square is a tripartite system, for it not only
incorporates a probability distribution and a goodness of fit test, but it also includes a
statistical technique that Pearson introduced in [1904] when he extended his goodness of
fit test to manifold classifications for the analysis of contingency tables. He termed this
technique the ‘chi-square contingency coefficient’ to test differences between observed
cell frequencies and theoretically expectedcell frequencies. Fisher [1922] renamed it the
chi-square statistic (§67).

The chi-square goodness of fit test and the chi-square test of association for contin-
gency tables are built on two different hypotheses. The hypothesis of the goodness of fit
test of the 1900 paper tests a hypothesis that the relative frequencies of mutually exclu-
sive observed events follow a specified frequency distribution, and seeks to determine if
the observed distribution (constructed from observational data) conforms to the theoretical
distribution, which could be the normal, the Poisson, binomial or Mendelian distributions.
The chi-square test of association in [Pearson, 1904] seeks instead to determine if an asso-
ciation exists between two discrete variables (such as Mendelian alleles) in a contingency
table.
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3 THE MATHEMATICAL DERIVATION

The derivation of the chi-square distribution has its roots in themethod of least squares,
which had been derived from the theory of errors by astronomers in the middle of the 19th
century. The astronomers arrived at the method of least squares when they realised they
needed to choose from alternative estimators (that is, other measures of dispersion) and
they came up with the first deviation of the distribution of a sum of squares

∑
(X̄ −X)2

or
∑
x2: this provided the mathematical basis for the chi-square distribution. The chi-

square distribution is produced by generating a random collection of a series of these square
deviational values (that is,

∑
x2).

Pearson’s chi-square distribution can be regarded as the culmination of the least squares
theory applied to discrete distributions. Gamma distributions were used by Pierre Simon
Laplace for his work in error theory in the early 19th century (§24). Though Laplace had
not obtained the distribution of the sum of squares nor the usual gamma distributions for the
continuous chi-square distribution, he found instead a distribution of the precision under-
lying a Bayesian hypothesis gave the observations. Moreover, Pearson had, after the event,
‘provided all the necessary mathematical techniques for Bienaymé to obtain the distribu-
tion of chi-square as an asymptotic result without the assumption of normality’ [Lancaster,
1966].

Bienaymé’s extension of the work of Laplace in his 1838 Bayesian study of the lunar
form of multivariate variables has been taken to show that ‘he had very nearly anticipated
Pearson’s work on the normal approximation to the multinomial’ [Lancaster, 1966]. Four-
teen years after Bienaymé extended Laplace’s work, he used the gamma distribution of the
sum of square in the least squares theory. When Pearson derived the sampling distribution
of theχ2 in large samples, he found that it was a specialised form of his Type III distri-
bution that he derived in 1896. Both of these distributions are positively skewed, unless n
increases and then theχ2 distribution will approach the normal distribution as its limit.

Thusχ2 = constant is the equation of a generalised ellipsoid, and is the surface of a
frequency of the system of errors or deviationsx1, x2, . . . , xn. The value given toχ , which
covered the whole of the generalised space, ranged from 0 to∞. As soon as the observed
deviational value, the standard deviation and the correlation of errors were known, the
value ofχ could be found. Pearson then determined the probability (P ) of the ellipsoid
and found a value ofP for a series of values ofχ2 for different cases. The value ofP
could be determined onceχ2 had been calculated and when the sample size or ‘number
of independent observations’ (or what is termed todaydegrees of freedom) n′ = n− 1 was
found.

Pearson first considered cases in which the theoretical probability is knowna priori. He
took

χ2= S (m
′ −ms −µ)2
ms

, (2)

wherem′ = observed (or empirical) frequencies in a distribution,ms = theoretical (or ex-
pected) a distribution knowna priori, µ the population mean, andS marks summation.
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A more contemporary formula for the chi-square goodness of fit test is

χ2=
∑
(O −E)2/E for observed valuesO and expected valuesE. (3)

However, when the theoretical distribution had to be judged from the sample itself, it must
be determined if the sample represents a random system of deviations from the theoretical
frequency distribution of the general population, but this distribution has to be inferred
from the sample itself. Pearson thus modified the test for distributions not knowna priori.

4 SOME LATER DEVELOPMENTS

4.1 The founding of Biometrika. With theP , χ2 measure, it was then possible to de-
termine whether an empirical frequency curve could describe effectively the sample drawn
from the given population (that is, the theoretical curve). If it were a bad fit, then this
curve could be used to describe other samples from the same population and when the
value for theχ2 test increases, the fit becomes worse. Whilst Pearson used the chi-square
goodness of fit test initially for games of chancein a binomial distribution and for data
from Hugo de Vries’s buttercups for asymmetrical distributions, Weldon was to make the
earliest use of the chi-square goodness of fit test for a Mendelian distribution. The ensuing
and sometime vitriolic debates between Pearson and Weldon and the early Mendelians,
especially William Bateson, about using statistical methods for problems of biology, led
them to establish the journalBiometrika in November 1900, seven months after the land-
mark paper was published. Weldon then published there a paper [Weldon, 1902] on using
the chi-square goodness of fit test on a Mendelian distribution using Mendel’s data in the
second volume ofBiometrika. Pearson [1927] later used the chi-square goodness of fit test
for Poisson distributions [Magnello, 1998].

4.2 Minimum chi-squared. After Pearson introduced the chi-square goodness of fit test
in 1900, several authors tried basing estimation onχ2 (see especially [Engledow and Yule,
1914]). Two years later the biometrician Kirstine Smith first used the phrase ‘minimum
χ2’, though only in tables where brevity was necessary [Smith, 1916]. Fisher also used the
minimumχ2 for he often compared the method with his own maximum likelihood.

4.3 Yates’s chi-square correction for continuity. This adjusts the formula for Pearson’s
chi-square test for small sample sizes by subtracting 0.5 from each observed value in a
2× 2 contingency table [Yates, 1934]. This formula is mainly used when at least one cell
of the table has an expected frequency less than 5.

5 CONCLUDING REMARKS

Pearson’s work on curve fitting meant that he needed a criterion to determine how good
the fit was, which led him to devise different goodness of fit tests. This idea underpinned
the infrastructure to his statistical theory and encompassed his entire working life as a
statistician; it began in 1892 when he introduced the sixth moment as a measure of a good-
ness of fit for Weldon’s crab data, continued throughout the 1890s, culminated with this
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1900 landmark paper when he devised the chi-square goodness of fit test, and ended with
the last paper, written when he was 79 years old [Pearson, 1936]. This paper, published
posthumously two months after his death, was written in response to [Fisher, 1922] on
maximum likelihood as a means of curve fitting that he had introduced in 1921. Though
Fisher regarded Pearson’s chi-square goodness of fit test as his most important contribution
to statistics, he challenged Pearson’s method of moments system for curve fitting when he
introduced maximum likelihood. The likelihood of a parameter is proportional to the prob-
ability of the data; as a function it usually has a single maximum value, which Fisher called
the ‘maximum of likelihood’.

Throughout the 20th century Pearsonian statistics exerted a major influence on the de-
velopment of various disciplines and continues to play a pivotal role in industry, educa-
tion and in the biological, behavioural, medical, social and human sciences. His statistical
methods transformed biological and medical statistics in the 20th century, especially owing
to his students Major Greenwood and Austin Bradford Hill; for example, the latter went
on to create the first randomised clinical trials in modern therapeutic medicine. Another
student, Charles Spearman, was also influenced by Galton’s ideas of measuring individ-
ual differences in human abilities; his early ideas on intelligence testing used Pearson’s
product-moment correlation and method of principal components to create a new statisti-
cal method, known as ‘factor analysis’, which reduces a set of complex data into a more
manageable form and makes it possible to detect structures in the relationship between
variables. With this new tool, Spearman went on to create the first psychometric theory
of intelligence with his two-factor theory, which measured general and specific abilities.
Other psychometricians devised a battery of aptitude, psychological and other psychomet-
ric tests.

The first statistical quality control test forindustry was devised by Pearson’s student
William Sealy Gosset, who used the pseudonym‘Student’; his work inspired Fisher to
create a statistical system for the analysis of small samples (that is, analysis of variance),
thereby introducing experimental design and randomisation into statistical theory. Fisher’s
statistical innovations inaugurated the second phase in the development of modern math-
ematical statistics through his development of inferential statistics; the distinctive feature
of the newer form of statistics involved the formal testing of hypotheses and parameter es-
timation by using properties of consistency, unbiasedness, efficiency and sufficiency. The
foundations of Fisher’s method had not only been built upon Pearson’s statistical work,
but Fisher’s [1922] paper represented a translation of Pearson’s statistical language and
became the vernacular of contemporary mathematical-statistical theory (§67), even though
many of Pearson’s statistical methods and his language remain a part of contemporary
statistical theory.
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CHAPTER 57

DAVID HILBERT, PAPER ON ‘MATHEMATICAL
PROBLEMS’ (1901)

Michiel Hazewinkel

In this remarkable paper, based upon a lecture delivered to the International Congress of
Mathematicians in Paris in 1900, Hilbert outlined a range of problems for mathematicians
to address in the century about to start. Indeed, they were to have a marked influence on
the development of severalbranches of mathematics.
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American Mathematical Society, 1976, 1–34. Also available at http://aleph0.clarku.edu/
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Russian translation. In P.S. Alexandrov (ed.),Problemi Gilberta, Moscow: Nauka, 1969.
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1 INTRODUCTION

In August 1900, at the occasion of the second International Congress of Mathematicians
in Paris, David Hilbert (1862–1943), then all of 38 years young, gave his lecture on ‘math-
ematical problems’. That lecture and even more the written version of it has been of great
influence on the development of mathematics in the 20th century, or so it would seem. It
stems partly because of the stature of the lecturer, which was still to grow considerably in
the decades to come; partly because the problems were well chosen; partly because they
breathed a coherent view of what mathematics is all about; and perhaps most of all be-
cause of the incurable optimism in it all, a flat denial of Emil Du Bois-Reymond’s claim
‘Ignoramus et ignoramibus’.

The full published version (see above) contains 23 problems. Of these Hilbert discussed
only 10 in the lecture itself (numbers 1, 2, 6, 7, 8, 13, 16, 19, 21, 22). The 23 problems,
together with short, mainly bibliographical comments, are surveyed below using the short
title descriptions from the full versions.

Three general references are [Alexandrov, 1979] for all 23 problems; [Browder, 1976]
for all problems except 2, 3 and 16; and [Kantor, 1996] for all problems except 4, 9 and 14,
and with special emphasis on developments from 1975 to 1992. Two semipopular accounts
of the problems, their solutions or solution attempts, and the people who worked on them
are [Gray, 2000] and [Yandell, 2002]. The account below is mostly based on [Hazewinkel,
2000], and the references quoted there.

2 THE PROBLEMS

PROBLEM 1. Cantor’s problem on the cardinal number of the continuum.

More colloquially also known as thecontinuum hypothesis, it can be stated as ‘Every
uncountable subset of the real numbers,R, has the same cardinality asR’, or as the state-
ment ‘2ℵ0 = ℵ1’.

It was solved by Gödel [1939] and Cohen [1963], in the (unexpected) sense that the
continuum hypothesis is independent of ZFC, theZermelo–Frankel axioms of set theory
complete with the axiom of choice. This means that one can add the continuum hypoth-
esis to ZFC without introducing inconsistencies (that were not already present) (Gödel);
one can also add the negation of the continuum hypothesis (Cohen) without introducing
inconsistencies. Gödel and Cohen also showed that the axiom of choice is independent of
ZF.

Perhaps even more important than the solution of the problem itself are the techniques of
Cohen forcing and Boolean-valued models that resulted. These have ‘uncountably’ many
applications by now.

PROBLEM 2. The compatibility of the arithmetical axioms.

This was solved (in a negative sense) by Gödel [1931] with the so-called ‘Gödel incom-
pleteness theorem’. It roughly says that in every system that is strong enough to do a rea-
sonable amount of arithmetic there are statements that are not provable within that system
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and whose negation is also not provable. For a popular account, see [Nagel and Newman,
1959]. Positive results (using techniques that Hilbert would not have allowed) are due to G.
Gentzen in 1936 and P. S. Novikov in 1941 (A.S. Essenin-Vol’pin in [Alexandrov, 1979],
G. Kreisel in [Browder, 1976]).

PROBLEM 3. The equality of the volumes of two tetrahedra of equal bases and equal
altitudes.

More precisely, the problem was to show that two such polyhedra can be transformed
into each other by cutting and pasting (as isthe case for triangles, the analogous problem
in dimension 2). This is the origin of the name ‘scissors congruence problems’.

It was solved in the negative sense by Hilbert’s student Max Dehn in 1900, actually be-
fore Hilbert’s lecture was delivered [Dehn, 1901], and at least partially already in [Bricard,
1896]. As it turned out, there is besides the volume one more quantity that remains invari-
ant under cutting and pasting, theDehn invariant. In higher dimensions the same problem
can be studied and there are theHadwiger invariants. In dimension 3 the Dehn invariant is
the only extra invariant besides volume, i.e. tetrahedra with the same Dehn invariant and
the same volume are scissors congruent; this is due to J.P. Sydler in 1965 [Sah, 1979].

PROBLEM 4. Problem of the straight line as the shortest distance between two points.

This problem asks for the construction of all metrics in which the usual lines of pro-
jective space (or pieces of them) are geodesics. The first work on this was by Hilbert’s
student G. Hamel in [Hamel, 1903]. In particular, he pointed out that the problem needed
to be made more precise, and that one should ask for allDesarguesian spaces in which
straight lines are the shortest distances between points. Nowadays, the problem is con-
sidered (basically) solved in the form of the following (generalized) Pogorelov theorem:
Any n-dimensional Desarguesian space of classCn+2, n� 2, can be obtained by the BB
construction, that is, a technique based upon integral geometry for obtaining Desarguesian
spaces due to Blaschke [1936] and Busemann [1961]. The differentiability class restriction
is necessary, for otherwise there are Desarguesian spaces that do not come from the BB
construction; see [Szabo, 1986], which is also recommended as a very good survey of the
fourth problem, and also [Pogorelov, 1973, 1979].

PROBLEM 5. Sophus Lie’s concept of a continuous group of transformations without the
assumption of the differentiability of the functions defining the group.

This was solved in [Gleason, 1952] and [Montgomery and Zippin, 1952], in the form
of the theorem ‘Every locally Euclidean topological group is a Lie group and even a real
analytic group’. For a much simplified but non-standard treatment see [Hirschfield, 1990].
The cases of compact topological groups and commutative topological groups were han-
dled earlier by J. von Neumann in 1933 and L.S. Pontryagin in 1934.

This is perhaps the only one of Hilbert’s problems that did not give rise to a host of sub-
sequent investigations and problems and concepts. This happens but rarely. As M. Davis
writes in his discussion of the first problem in [Browder, 1976], after Gödel’s work there
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was some 20 years of stagnation in set theory; but this period served to set people think-
ing about computability, recursiveness and the like, a most important development that
prepared ground for modern computer science and vast new parts of logic.

PROBLEM 6. Mathematical treatment of the axioms of physics.

This is very far from solved in any way, though there are many (bits and pieces of)
axiom systems that have been investigated in depth. A.S. Wightman has given an exten-
sive discussion of Hilbert’s own ideas, von Neumann’s work and much more in [Brow-
der, 1976]. There are, for instance, theWightman axioms (also calledGärding–Wightman
axioms) and theOsterwalder–Schrader axioms of quantum field theory; and von Neu-
mann’s axiomatization of quantum mechanics [von Neumann, 1932] (§69), following
work of P. Nordheim and Hilbert himself. More recently there is the definition of topo-
logical field theories and conformal field theories, sources of very fruitful interactions
between mathematics and physics [Lawrence, 1996; Sawin, 1996; Segal, 1988, 1991;
Turaev, 1994, ch. 2; Witten, 1988]. Note that these are notreally axiomatizations from
the ground up (like Euclidean geometry) but are more aptly termed ‘relative axiomatiza-
tions’ in that they take an existing body of knowledge (like, say, differential topology) as
given.

Quite early in the 20th century, in direct response to Hilbert’s questions, there were
Hamel’s axiomatization of mechanics in 1903, Constantin Carathéodory’s axiomatizations
of thermodynamics in 1909 and of special relativity in 1924, and another independent
axiomatization of special relativity by A.A. Robb in 1914. Finally, there was R. von Mises’s
axiomatization of probability (a field specifically mentioned by Hilbert in his elucidation
of problem 6) followed by the definitive axiomatization by Kolmogorov [1933] (§75).

Preliminary to the axiomatization of quantum mechanics there was the development
of Hilbert space, operators, infinite matrices, eigenvalues and integral equations. Hilbert
remarked that he developed this theory on purely mathematical grounds and even called it
‘spectral analysis’ without any idea that it would later be much related to the real spectra
of physics [Reid, 1970, p. 183].

PROBLEM 7. Irrationality and transcendence of certain numbers.

The numbers in question are of the formαβ with α algebraic andβ algebraic

and irrational; for instance 2
√

2 and eπ = i−2i . The problem was solved in 1934 by
A.O. Gel’fond and Th. Schneider (theGel’fond–Schneider theorem). For the general
method, theGel’fond–Baker method, see R. Tijdeman in [Browder, 1976]. A large part
of [Fel’dman and Nestorenko, 1998] is devoted to this problem and related questions.

It is interesting to note that in a lecture given in 1919 Hilbert remarked that he was
optimistic to see the Riemann hypothesis solved in his lifetime, that perhaps the youngest
member in the audience would see the solution of the Fermat problem, but that no one in

the audience would see the transcendence of 2
√

2 [Gray, 2000].
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PROBLEM 8. Problems of prime numbers.

This one is usually known as theRiemann hypothesis and is the most famous and im-
portant of the unsolved conjectures in mathematics. The Riemann zeta-function of the
complex variables is given for Re(s) > 1 by ζ(s)=∑∞

i=1n
−s and it has an analytic con-

tinuation to the wholes-plane to a meromorphic function with one simple pole ats =−1
with residue 1; and zeros fors =−2,−4, . . ., referred to as ‘trivial zeros’. The Riemann
hypothesis now says that all other zeros are of the form 1/2+ iτ (using the Gauss plane
notation for a complex number). It is known that the first 1.5 billion zeroes (arranged by
increasing positive imaginary parts) are simple and lie on the critical line Re(s)= 1/2 [van
de Lune et al., 1986]; also that more than 40% of the zeros satisfy the Riemann hypothesis
[Selberg, 1942; Levinson, 1974; Conrey, 1989].

The zeta function in algebraic geometry,ζX(s), is a meromorphic function of a com-
plex variables that describes the arithmetic of algebraic varietiesX over finite fields or
of schemes of finite type over the integers. IfX is Spec(Z), then one recovers the Rie-
mann zeta function; ifX is of finite type overSpec(Z), then there result the Dedekind zeta
functions for the corresponding number fields.

André Weil formulated a number of far-ranging conjectures concerning zeta functions
of varieties over finite fields, and proved them for curves. After the necessary cohomologi-
cal tools for this were developed by A. Grothendieck (mostly), M. Artin and J.-L. Verdier,
these conjectures were proved by [Deligne, 1974, 1980]; for details see [Parshin, 1993].

PROBLEM 9. Proof of the most general law of reciprocity in any number field.

Consider the question of whether an integera is a quadratic residue modulo a prime
numberp or not, wherea is not divisible byp. I.e. the question is whethera can be written
in the form (b2+ kp) for some integersb andk or not. In the first case write( a

p
)= 1, in

the second( a
p
)=−1. This is the definition of the Legendre symbol. The Gauss reciprocity

theorem now says that for two different odd prime numbers(
p
q
)(
p
q
)= (−1)

p−1
2

q−1
2 .

In 1927 Artin [1928] gave reciprocity laws for general number fields. A great gener-
alization of the Gauss reciprocity law had already been established by Hilbert himself in
1895 and 1896; see [Stepanov, 1992] for more details and also for information as to how
the question of reciprocity laws leads to (Abelian) class field theory, the subject of prob-
lem 12 below. The analogous question of reciprocity laws for function fields was settled in
[Shafarevich, 1950] as theShafarevich reciprocity law.

PROBLEM 10. Determination of the solvability of a Diophantine equation.

A Diophantine equation in a finite number of variables is an equationP(x1, . . . , xn)

whereP is a polynomial over the integers. It is solvable if there are integral solutions.
For instance, the Fermat equationxn + yn = zn for a given natural numbern which has
infinitely many solutions forn= 1 and 2 and no solutions for largern. (Hilbert referred to
this problem in the preamble of his paper.) The problem asks for a finite sequence of tests
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(that can be applied to any such equation) to determine whether a Diophantine equation
has solutions or not.

The solution is negative: Yu. Matiyasevich showed in 1970 that there is no such al-
gorithm. This is a fairly immediate consequence of the main theorem in the field: Every
listable set of natural numbers is Diophantine. For a description of the various concepts
(though the meaning is intuitively rather clear), see Davis and others in [Browder, 1976].

One consequence of the main theorem is that there exists an integral polynomial such
that the positive values of this polynomial on the natural numbers are precisely the prime
numbers [Putnam, 1960]. This result made many mathematicians doubt that the main the-
orem, at that time still a conjecture, could possibly be true. For a discussion of various
refinements and extensions of the problem, see [Pheidas, 1994].

PROBLEM 11. Quadratic forms with any algebraic numerical coefficients.

This problem asks for the classification of quadratic forms over algebraic number fields.
More precisely, a quadratic form over a (number) fieldK is an expression of the form∑
i�j qI,j xixj in the variablesx1, . . . , xn with coefficients inK. Two such formsq and

q ′ are equivalent if there is an invertible linear substitutionx ′i =
∑
i�j ti,j xj such that

q(x1, . . . , xn)= q ′(x ′1, . . . , x ′n). The problem is to classify quadratic forms up to this equiv-
alence. This was solved in [Hasse, 1924] by theHasse–Minkowski theorem and theHasse
invariant. The theorem says that two quadratic forms over a number fieldK are equivalent
if and only if they are equivalent over all of the local fieldsKp for all primesp of K. For
instance forK =Q, the rational numbers, two forms overQ are equivalent if and only if
they are equivalent over the extensionsR, the real numbers, and thep-adic numbersQp
for all prime numbersp. This reduces the problem to classification over local fields, which
is handled by the Hasse invariant (apart from rank and discriminant). It is interesting to
note that the definition of the Hasse invariant uses the Hilbert symbol and thus links to
reciprocity from problem 9. For much more information on the theory of quadratic forms,
see [O’Meara, 1971; Malyshev, 1991].

PROBLEM 12. Extension of Kronecker’s theorem on Abelian fields to any algebraic realm
of rationality.

The Kronecker–Weber theorem says that themaximal Abelian (meaning Abelian Galois
group) extensionQab of the rational numbers is obtained by adjoining toQ all the roots
of unity. This has two parts: on the one hand it gives an explicit construction ofQab; on
the other hand it calculates the Galois group Gal(Qab/Q). The second part has been nicely
generalized for any number field (and also more generally). This is the topic of class field
theory, which started with [Takagi, 1920]; since then the subject has gone through several
incarnations; on some of them see [Cassels and Fröhlich, 1967; Artin and Tate, 1961; Weil,
1973; Hazewinkel, 1975; Neukirch, 1986]. The first part, on explicit generation, fared less
well except for the ‘complex multiplication’ case and local fields [Lubin and Tate, 1965];
but see also [Holzapfel, 1995].

Nowadays there is great interest in and great progress on ‘non-Abelian class field
theory’ in the form of the conjectured Langlands correspondence. In the local case
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(now proved forGLn) this is a correspondence between representations of degreer of
Gal(Ksep/K), or rather a dense subgroupWK of it called the Weil group and certain repre-
sentations ofGLr (K). HereKsepis the separable closure ofK. For the global caseGLr (K)
is replaced byGLr (A), whereA is the ring of adèles ofK. The correspondence is also sup-
posed to satisfy a number of strong extra properties. In caser = 1 Abelian class field theory
is recovered. No less than four invited lectures dealt with the Langlands correspondence at
the latest International Congress of Mathematicians in 2002 [Li et alii, 2002]. Also there
have been fiveSéminaire Bourbaki reports on the matter in recent years, giving another
indication of how important the matter is considered to be [Carayol, 2000; Laumon, 2002];
and Gaitsgory and Harris in [Li et alii, 2002].

PROBLEM 13. Impossibility of the solution of the general equation of the seventh degree
by means of functions of only two variables.

This problem is nowadays seen as a mixture of two parts: a specific algebraic (or ana-
lytic) one concerning equations of degree 7, which remains unsolved, and a ‘superposition
problem’: can every continuous function inn variables be written as a superposition of con-
tinuous functions of two variables? The latter problem was solved in [Arnol’d, 1957] and
[Kolmogorov, 1956]: each continuous function ofn variables can be written as a composite
(superposition) of continuous functions of two variables.

A composite function is one obtained by substituting other functions for the variables in
the first functions. So, as an example,f (x, y, z)= F(g(x, y),h(z, k(y, z))) is a function
of three variables that is a composite of functions of two variables. Thus, for instance, all
rational functions in any number of variables, can be obtained as composites ofx + y,
x − y, xy andx/y.

The picture changes drastically if differentiability or analyticity conditions are imposed.
For instance, there are analytic functions ofn variables that cannot be written as composites
of analytic functions of fewer variables.

The reason that the two parts of the problem occur together is that by Tschirnhausen
transformations the general equation of degree 7 can be reduced to something of the form
X7 + xX3 + yX2 + zX + 1= 0 (but no further), and the solutions of this equation as
functions ofx, y andz were considered to be candidates for functions of three variables
that cannot be written as composites of functions of two variables.

PROBLEM 14. Proof of the finiteness of certain complete systems of functions.

The precise form of the problem is as follows: LetK be a field in between a fieldk and
the field of rational functionsk(x1, . . . , xn) in n variables overk: k ⊂K ⊂ k(x1, . . . , xn).
Is it true thatK ∩ k[x1, . . . , xn] is finitely generated overk? The motivation came from
positive answers (by Hilbert for instance) in a number of important cases where there is a
group,G, acting onkn andK is the field ofG-invariant rational functions. A counterexam-
ple, precisely in this setting of rings of invariants, was given by Nagata [1959]. However,
in the invariants case finite generation is true if the group is reductive; this is for instance
the case ifG is semisimple andk is of characteristic zero [Mumford, 1965].
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PROBLEM 15. Rigorous foundation of Schubert’s enumerative calculus.

The problem is to justify and to make precise H. Schubert’s ‘principle of conservation
of numbers’ under suitable continuous deformations. Mostly intersection numbers are in-
volved; for instance, to prove rigorously that there are indeed 666,841,048 quadric surfaces
tangent to 9 given quadric surfaces in space [Schubert, 1879]. There are a great number of
such principles of conservation of numbers in intersection theory [Danilov, 1990] and co-
homology and differential topology. Indeed, one version of another of this idea is often the
basis of definitions in singular cases.

In spite of a great deal of progress, there remains much to be done to obtain a true
enumerative geometry such as Schubert dreamt of. In fact, more is required than just a good
intersection theory that takes care of multiplicities. One also needs to give the collection
of, say, all quadric surfaces in space the structure of something like an algebraic variety,
i.e. something to which intersection theory can be applied. This is a fundamental subfield
of algebraic geometry, starting with the question, which goes back to Bernhard Riemann,
as to on how many parameters a given kind of structure depends (how many moduli are
needed in the phraseology of the 19th century, which explains the terminology ‘moduli
space’ in algebraic geometry).

PROBLEM 16. Problem of the topology of algebraic curves and surfaces.

Even in its original formulation, this problem splits into two parts. The first part con-
cerns the topology of real algebraic varieties. For instance, an algebraic real curve in
the projective plane splits up in a number of ovals (topological cycles) and the ques-
tion is which configurations are possible. For degree 6 this was finally solved in 1970
by D.A. Gudkov (see [Gudkov, 1992] for this and more). There are severe constraints on
the configurations that are possible; early important work on this is due to Ragsdale [1906].
However, her conjectures have been fairly recently disproved by Itenberg and Viro [1996].

The second part concerns the topology of limit cycles of dynamical systems. A first
problem here is theDulac conjecture on the finiteness of the number of limit cycles of
vector fields in the plane. For polynomial vector fields this was settled in the positive sense
by Yu.S. Il’yashenko in 1970. For this and much more see [Arnol’d and Il’yashenko, 1988;
Il’yashenko, 1991; Il’yashenko and Yakovenko,1995; Roussarie, 1998].

PROBLEM 17. Expression of definite forms by squares.

The problem is the following. Consider a rational function ofn variables over the reals
which takes nonnegative values in all points where it is defined. Does it follow that it can
be written as a sum of squares (of rational functions)? This was solved in [Artin, 1927], by
inventing the theory of formally real fields; this subject has found other applications since.
For a definite function on a real irreducible algebraic variety of dimensiond the Pfister
theorem says that no more than 2d terms are needed to express it as a sum of squares
[Pfister, 1967].
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PROBLEM 18. Building up of space from congruent polyhedra.

In its original formulation this problem has three parts.

(18a): show that there are only finitely many types of subgroups of the groupE(n)

of isometries ofRn with compact fundamental domain. This was solved in [Bieberbach,
1910]; the subgroups in question are now calledBieberbach groups.

(18b): the tiling of space by a single polyhedron which is not a fundamental domain as
in (18a); more generally, also nonperiodic tilings of space. Amonohedral tiling is a tiling in
which all tiles are congruent to one fixed tileT . If moreover the tiling is not one that comes
from a fundamental domain of a group of motions one speaks of ananisohedral tiling. In
one sense this sub-problem was settled in [Reinhardt, 1928], who found an anisohedral
tiling in R3; and in [Heesch, 1935], who found a non-convex anisohedral polygon in the
plane that admits a periodic monohedral tiling. The tile of Heesch was actually produced
as a roof tile, and such tiles form the covering of the GöttingenRathaus. There also exists
convex anisohedral pentagons [Kershner, 1968].

This circle of problems is still is a very lively topic today (see [Schulte, 1993] for a
recent survey). For instance, the convexpolytopes that can give a monohedral tiling ofRd

have not yet been classified, even for the plane.
One important theory that emerged is that of the Penrose tilings and quasi-crystals [de

Bruijn, 1997]. As another example of one of the problems that emerged, it is still un-
known which polyominos tile the whole plane [Golomb, 1996]. Apolyomino is a con-
nected figure obtained by takingn identical unit squares and connecting them along com-
mon edges.

(18c): densest packing of spheres. This is still unsolved in general. The densest pack-
ing of circles in the plane is the familiar hexagonal one (see [Thue, 1910], and the com-
pletion of this work by Fejes Tóth [1940]). Conjecturally (indeed, the Kepler conjecture
of 1610) the densest packing in three-space is the lattice packingA3, the face-centred
cubic. This packing is indeed the densest lattice packing (Gauss), but conceivably there
could be denser non-lattice packings, as canhappen in certain higher dimensions. In
1998 T.C. Hales and S.P. Ferguson announced a proof of the Kepler conjecture. How-
ever, only two of the eight papers involved have been published so far, both in 1997. The
announced proof relies heavily on the computer checking of some 5000 special cases, a
situation not dissimilar to that of 30 years ago with regard to the four-colour conjecture.
Still there are grounds that the proof will turnout to be substantially correct [Oesterlé,
2000].

The Leech lattice is conjecturally the densest packing in 24 dimensions. The densest
lattice packings in dimensions 1–8 are known. In dimensions 10, 11, 13 there are packings
that are denser than any lattice packing [Conway and Sloane, 1988].
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PROBLEM 19. Are the solutions of the regular problems in the calculus of variations al-
ways necessarily analytic?

This problem links to the 20th problem through the Euler–Lagrange equation of the
variational calculus ([Gelfand and Fomin, 1963]; and compare §19). The variational prob-
lems meant are of the form: find a functionu : �̄→ R that is of classC1(�) ∩ C2(�)

and is such that among all functions of this class the integral
∫
�
F(x,u(x),p(x)) dx is

minimal, and such thatu satisfies a Dirichlet type boundary conditionu(x) = ϕ(x) for
x ∈ ∂�. Here� is a bounded open set inRn, � is its closure,∂� is its boundary, and
p(x) = (∂u/∂x1, . . . , ∂u/∂xn). The functionF is given and satisfies the regularity (and

convexity) conditionsF ∈ C2 and( ∂
2F

∂pi∂pj
) > 0.

The corresponding Euler–Lagrange equation is

n∑
i,j=1

Fpipj (x,u,p)
∂2u

∂xi∂xj
+

n∑
i=1

(Fpiupi + Fpixi )= Fu. (1)

Positive results on the analyticity for nonlinear elliptic partial equations were first obtained
by [Bernstein, 1904] and in more or less definite form in [Petrovskij, 1939].

PROBLEM 20. The general problem of boundary values.

In 1900, the general theory of boundary value problems and generalized solutions to dif-
ferential equations, as Hilbert wisely specified, was very incomplete. The amount of work
accomplished since is enormous in achievementand volume and includes generalized so-
lution ideas (weak solutions) such as thedistributions of Dirac, Sobolev and Schwartz
[Vladimirov, 1989] and, rather recently for the nonlinear case,generalized function alge-
bras, to avoid the difficulty that distributions do not have a good multiplication [Ober-
guggenberger and Rosinger, 1991; Rosinger, 1990, 1998].

PROBLEM 21. Proof of the existence of linear differential equations having a prescribed
monodromy group.

Consider a system ofn first order linear differential equationsy ′(z) = A(z)y on the
Riemann sphereP1 whereA(z) is meromorphic. Let� be the set of poles ofA(z). Such
a system has ann-dimensional spaceS of solutions. Following a solution along a loop
around one of the poles by analytic continuation gives a possibly different solution. This
gives a representation of the fundamental groupπ1(P1\�)→ GLn(C), the monodromy
representation of the system of differential equations.

The question is now whether every representation of the fundamental group comes
from a system of differential equations where it is moreover required that all the poles
of A(z) are simple. For a long time it was thought that this was true by the work
of L. Plemelj, G. Birkhoff and I. Lappo-Danilevskij; but then in 1989 A. Bolibrukh
found counterexamples. However, if extra apparent singularities are allowed: singular-
ities where the monodromy is trivial, there is a positive solution [Beauville, 1993;
Anosov and Bolibrukh, 1994].
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As formulated by Hilbert the 21st problem had to do with annth order linear differential
equation of Fuchsian typey(n)+a1y

(n−1)+· · ·+any = 0 which means thatai has at most
a pole of orderi. Here the answer is again negative if no apparent singularities are allowed
and positive if this is allowed. In the modern literature the question is studied in the form of
connections on a bundle over any Riemann surface or even in far more general situations
[Röhrl, 1957; Deligne, 1970].

PROBLEM 22. Uniformization of analytic relations by means of automorphic functions.

This is the uniformization problem, that is, representing (most of) an algebraic or an-
alytic manifold parametrically by single-valued functions. For instance(sint,cost) and

( 2u
u2+1

, u
2−1
u2+1

), with t andu complex variables, both parametrize the Riemann surface of

z2+w2= 1. The (complex) dimension one case was solved by H. Poincaré and P. Koebe
in 1907 in the form of theKoebe general uniformization theorem, namely that a Riemann
surface topologically equivalent to a domain in the extended complex plane is also con-
formally equivalent to such a domain; and thePoincaré–Koebe theorem or Klein–Poincaré
uniformization theorem [Gusevskij, 1993]. For higher (complex) dimensions these ques-
tions are still largely open, as they are also for a variety of generalizations.

PROBLEM 23. Further development of the methods of the calculus of variations.

As in problem 19 the problem is to find curves, surfaces,. . . that minimize certain
integrals. Many problems in physics are formulated this way. Hilbert felt that the cal-
culus of variations had been somewhat neglected and had a number of precise ideas of
how to go further. Though there were already in 1900 a great many results in the calcu-
lus of variations [Kneser, 1900], very much more has been developed since both as re-
gards what may be termed the classical calculus of variations [Gelfand and Fomin, 1963;
Moiseev, 1993], and numerous more modern offshoots such as optimal control [Pon-
tryagin et alii, 1962; Lions, 1968] and dynamic programming [Bellmann, 1957]. One
notes also the calculus of variations in the large started in [Morse, 1934]; the the-
ory of minimal differential geometric objects such as geodesics, minimal surfaces and
Plateau’s problem [Gromoll et alii, 1992;Osserman, 1969; Dao and Fomenko, 1987;
Yang, 1994]; variational inequalities [Kinderlehrer and Stampacchia, 1980]; and links with
convex analysis [Ekeland and Teman, 1973].

Treating variational problems as optimization problems in infinite dimensional (func-
tion) spaces brings a unifying perspective [Ioffe and Tihomirov, 1989].

3 CONCLUDING REMARKS

As is only natural, the idea of having another new stimulating list of problems for the
21st century has arisen. There was such an attempt in 1974 at the occasion of the review
of the then current status of the Hilbert problems, and there are 27 groups of problems
in the proceedings of that meeting [Browder, 1976]. They do not seem to have been all
that successful as a guide to research. More recently, Stephen Smale formulated a list
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[Smale, 1998]. Still more recently, the seven millennium problems were formulated by
the new Clay Institute of Mathematics (see [Devlin, 2002] for a popular account, and go
to http://www.claymath.org for the official descriptions of these seven problems: some of
these are very well written indeed). Six of them are far more deeply imbedded in techni-
cally sophisticated mathematics than were the original Hilbert problems. The seven are: the
Riemann hypothesis; Yang–Mills theory and the mass gap hypothesis (quantum mechan-
ics); the P versus NP problem (mathematical programming, combinatorial optimization);
the Navier–Stokes equations (fluid mechanics); the Poincaré conjecture (topology of man-
ifolds); the Birch and Swinnerton–Dyer conjecture (arithmetic algebraic geometry); and
the Hodge conjecture (algebraic geometry).

Each question carries prize money of 1 million dollars. It remains to be seen whether
they will do as much as is hoped to attract brilliant young people to research mathematics.
Perhaps not. For much of the 20th century there may have been a sort of general perva-
sive feeling that there is something like a vast, potentially complete, unique (rigid) edifice
constituting mathematics. And perhaps thataccounts for the feelingsof (foundational) anx-
iety that one senses when reading accounts of the progress of mathematics on the Hilbert
problems.

Today seems to be less a period of problem solving, nor a period of large theory build-
ing. Instead we seem to live in a period of discovery where new beautiful applications, in-
terrelations and phenomena appear with astonishing frequency. It is a multiverse of many
different axiom systems, of different models of even something as basic as the real num-
bers, of infinitely many different differential structures on the space-time,R4, that we live
in. It is a world of many different chunks of mathematics, not necessarily provably compat-
ible, at least until we come up with new ideasof what it means to be provable. Nor need all
of mathematics be compatible. Meanwhile mathematicians go happily about the delightful
business of discovering (or inventing) and describing new beauty and insights.
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CHAPTER 58

LORD KELVIN, BALTIMORE LECTURES ON
MATHEMATICAL PHYSICS ((1884), 1904)

Ole Knudsen

Kelvin gave a comprehensive, if somewhat idiosyncratic, survey of 19th-century work on
mathematical elasticity theory as applied to the luminiferous ether and the wave theory of
light.

First publication. William Thomson,Notes of lectures on molecular dynamics and the
wave theory of light, Baltimore: Johns Hopkins University, 1884. 328 pages+ index.
[A hand-written, verbatim report of the lectures, reproduced by the so-called ‘papyro-
graph’ process and sent to the members of the audience; printed version in [Kargon and
Achinstein, 1987, 7–263].]

Second publication. Lord Kelvin,Baltimore lectures on molecular dynamics and the wave
theory of light. Founded on Mr A.S. Hathaway’s stenographic report of twenty lectures
delivered in Johns Hopkins University, Baltimore, in October, 1884: followed by twelve
appendices on allied subjects, London: C.J. Clay and Sons, 1904. xxii+ 694 pages.

German translation. Vorlesungen über Moleculardynamik und die Theorie des Lichtes
(trans. B. Weinstein), Leipzig and Berlin: Teubner, 1909.

Related articles: Green (§30), Thomson and Tait (§40), Maxwell (§44), Lorentz (§60),
Einstein (§63).

1 BIOGRAPHY

William Thomson, Lord Kelvin (1824–1907) was educated at the Universities of Glas-
gow and Cambridge, where he graduated as second wrangler and first Smith’s prizeman in
1845 (see also §40.1). After spending some months in Paris working in Victor Regnault’s
laboratory on the thermal properties of steam, he became, in 1846, professor of natural
philosophy in Glasgow, a position he held until his retirement in 1899. He is known today
for his formulation of the two laws of thermodynamics and his invention of an absolute

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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scale of temperature (the Kelvin scale); in his own time he was famous for his work on
the Atlantic telegraph for which he received a knighthood in 1866. He was raised to the
peerage in 1892, choosing the name ‘Kelvin’ from a river that runs through the Glasgow
University campus; in the following this name will be used throughout.

2 MATHEMATICAL FIELD THEORY

Kelvin’s first important work was in the mathematical theory of electricity and magnetism
[Knudsen, 1985; Smith and Wise, 1989, chs. 7 and 8]. His main inspiration came from
J.B.J. Fourier and Michael Faraday; he also admired the work of George Green (§30).
From [Fourier, 1822], which he read as a 16-year old undergraduate, he saw how a highly
developed mathematical theory of heat conduction could be created when based solely on
macroscopic, observable quantities like temperature and quantity of heat, without recourse
to dubious hypotheses on the nature of heat and molecular action (§26). In [Faraday, 1839–
1855] he was impressed by the attempt to replace action-at-a-distance theory of electricity
and magnetism by the concept of contiguous action, the embryo of the field concept (vol.
1, 360-364, 380). This dual inspiration led to Kelvin’s discovery in 1842 [Thomson, 1872,
1–14] of the analogy between Fourier’s mathematical description of the temperature distri-
bution in a steady heat flow and electrostatic potential (both satisfy the Laplace equation)
and likewise between heat flux and electric force (both are proportional to the gradient of,
respectively, temperature and potential).

The analogies allowed Thomson to translate results that are almost self-evident in heat
conduction into not so evident propositions in electrostatics, and vice versa. The analogies
also lay behind his invention of the method of electric images that furnished a synthetic,
geometrical method of constructing solutions for potential and electric force in a system
of conducting surfaces and point charges [Thomson, 1872, 144–146]. Finally, the heat
analogy played a fundamental role in making Faraday’s non-mathematical field-theoretical
concepts mathematically respectable. Faraday had thought that his discovery of dielectric
effects and his description of these as caused by local actions propagated through the di-
electric material would conflict with the mathematical electrostatics of C. Coulomb and
S.D. Poisson as based on action at a distance. In 1845 Kelvin argued that the mathematical
equivalence between electrostatics and heat conduction showed that there was no a priori
reason why opposing physical views—action at a distance or action propagated through
a field—could not lead to identical mathematical theories. He went on to show, drawing
on Poisson’s theory of magnetic polarisation, that the heat analogy could be extended to
dielectric actions, media with different dielectric constants being represented by media of
different conductivities for heat [Thomson, 1872, 26–37].

Kelvin continued to work on mathematical field theory until about 1856 when he be-
came absorbed in the Atlantic telegraph cable enterprise. He published in 1848 a formula-
tion of the Dirichlet principle and applied it afterwards to electrostatics and hydrodynamics
where he showed that the function that it states to be a minimum is the energy of the system
([Thomson, 1872, 139–143]; see [Cross, 1985, 140–141] and [Knudsen, 1985, 159–161]).
The earliest formulation of the Stokes integral theorem is found in a letter of 2 July 1850,
from Kelvin to G.G. Stokes [Cross, 1985, 143–144]; Kelvin had collaborated with Stokes
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on a series of notes on hydrodynamics and corresponded frequently with him till Stokes
died in 1903 [Wilson, 1990]. He also worked with Stokes on the mathematical theory of
magnetism in which he drew on the mathematical analogy between the magnetic field and
the velocity field of an incompressible fluid. He found the two different representations
corresponding to the modern vectorsB andH which satisfied respectively the conditions
divB = 0 and curlH = 0, the ‘solenoidal’ and ‘lamellar’ distributions, as he called them
because the first described the magnetic field from a distribution of Ampèrean currents and
the second that from a distribution of magnetized sheets [Smith and Wise, 1989, 263–275;
Knudsen, 1985, 161–164].

3 THE ETHER AS AN ELASTIC SOLID

A.J. Fresnel’s theory of light as transverse waves had caused mathematicians like
A.L. Cauchy and Green to develop a mathematical theory of stress and strain in an elastic
solid and to attempt with some, but not total,success to make the theory comprise optical
effects such as reflection, refraction, and double refraction. Kelvin’s friend Stokes took part
in this attempt: in 1845 he published a paper on the mechanics of fluids and solids [Stokes
Papers, vol. 1, 75–129] containing a Section entitled ‘Reflections on the constitution, and
equations of motion of the luminiferous ether in vacuum’ [ibidem, 124–129]. Stokes’s
elasticity theory inspired Kelvin to a paper entitled ‘On a mechanical representation of
electric, magnetic, and galvanic [electromagnetic] forces’, published in 1847 [Thomson
Papers, vol. 1, 76–80], where he described a new mathematical analogy in which the elec-
tric force from a point charge was represented by the elastic displacement in an elastic
solid in equilibrium under the action of straining forces on its surface, while the magnetic
force from a small magnetic dipole, and the electromagnetic force from an electric current
encircling an infinitesimal area, both were modeled by thecurl of the displacement, that
is, by the differential rotation of a volume element of the solid. This opened a vision of a
grand theory in which not only optics, but the whole of electricity and magnetism as well,
would be subsumed under a mechanical theory of the ether as an elastic solid, a vision that
would haunt Kelvin for the rest of his life; as he said in a letter to G.F. FitzGerald in 1896:
‘I have not had a moment’s peace or happiness inrespect to electro-magnetic theory since
Nov. 28, 1846. [. . .] All this time I have been liable to fits of ether dipsomania, kept away
at intervals only by rigorous abstention from thought on the subject’ [Thompson, 1910,
vol. 2, 1065].

4 THE PHYSICAL FOUNDATION OF THEBALTIMORE LECTURES

From the mid 1850s Kelvin’s work on the Atlantic telegraph and his other commercial
engagements, as well as his collaboration with P.G. Tait on their jointTreatise on natural
philosophy (1867: see §40), kept the dipsomania at bay for more than 15 years. When
preparing aReprint of earlier papers [Thomson, 1872], he wrote a great number of foot-
notes and additional Sections, which brought on a few sporadic attacks; but it was his
lectures at Baltimore in 1884 and his subsequent 20 years’ work of revision of them for the
1904 edition that turned his occupation with the ether into something like an obsession.
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The physical basis of the original lectures as well as the 1904 revision consisted in an at-
tempt to use continuum mechanics to describe transverse waves in an elastic solid ether and
to couple these with the internal vibrations ofmolecules embedded in the ether and having
discrete mechanical degrees of freedom, in order to see how far such a theory could repro-
duce quantitatively known optical effects. Already in 1884 this approach was beginning to
be outdated. Maxwell’s electromagnetic theoryof light was, at least in principle, accepted
by a number of physicists and became so much more universally after Heinrich Hertz’s
experiments on electromagnetic waves in 1889. It did not preclude mechanical theories of
the ether—a number of such attempts were made by younger disciples of Maxwell [Hunt,
1987; Buchwald, 1985; Darrigol, 2000, ch. 5]—but it made attempts to understand light
as a purely mechanical phenomenon without a similar mechanical understanding of elec-
tromagnetic fields seem outdated. By 1904 Kelvin’s views on the ether and on Maxwell’s
theory were completely obsolete. His stubborn refusal to accept Maxwell’s concept of dis-
placement current and his insistence that electrostatic action had to be propagated as con-
densational waves in the ether had left him hopelessly behind the newer trend in physics
where dynamical explanations or models had been replaced by consistent mathemati-
cal structures that could reproduce known relations of physical systems [Knudsen, 1985;
Wise and Smith, 1987]. In his 1904 review of theBaltimore lectures J. Larmor said that
‘30 years ago’ Kelvin’s work ‘would probably have been received with universal acclaim’,
but that ‘most of us are now wedded to the electric theory of light [. . .] which forms a con-
sistent scheme of the relations of electricity and radiation’ [Wise and Smith, 1987, 323].

5 THE CONTENTS OF THEBALTIMORE LECTURES

As is indicated in the title above of the 1904 edition, the lectures were delivered in Johns
Hopkins University, Baltimore, in October 1884: the contents of that edition are sum-
marised in Table 1. They take the form of a treatise on the mathematical theory of elasticity
in Sections distinguished by the caption ‘molar’, and intertwined with Sections, labeled
‘molecular’, which treat the mechanical vibrations of systems having a denumerable num-
ber of degrees of freedom.

Everywhere the strict mathematical treatment is interrupted by examples, applications
of the abstract theory to optics in particular, accounts of experiments, remarks on Kelvin’s
high opinion of Green, Stokes and Lord Rayleigh, his dislike of the style of J.L. Lagrange
(§16) and of Poisson, his arguments against Maxwell’s theory, and other asides occurring
to him during the lectures. Dated footnotes and insertions between square brackets bear
witness to insights obtained by Kelvin during the period of revision. Out of this tangled
mass of material it is, however, possible, from the ‘molar’ Sections of Lectures II–IV, to
distil a consistent elasticity theory. In the following discussion a modernized notation will
be used.

Kelvin begins by postulating the potential energy per unit volume,E, of a strained
elastic solid as a quadratic function of the six elements of the symmetric strain tensor:

eij = 1

2

(
∂ui

∂xj
+ ∂uj
∂xi

)
, (1)
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Table 1. Contents by Lectures of the 1904 edition. This table follows the original list on
pp. ix–xxi, but with many reductions. In the first column the lectures take roman

numerals, then the appendices take capital letters.

Page Topics
I 5 Introductory: Wave theory of light. Ordinary and anomalous dispersion.

‘Electromagnetic theory of light’. Direction of vibrations. Refraction and
reflection. Double refraction.

II 22 Molar: Dynamics of elastic solid. General equations of motion. Molecular:
Dynamics of a row of connected particles.

III 34 Molar: Dynamics of elastic solid. Molecular: Variations of complex serial
molecule.

IV 41 Molar: Equations of motion of elastic solid. ‘Electromagnetic theory of
light’ wants dynamical foundation. Condensational waves travelling
outwards from a point.

V 52 Molar: Vibrations of air round a tuning fork. Molecular: Vibrations of
serial molecule. Fluorescence.

VI 61 Molar: Ratio of rigidity to compressibility. Velocity of groups of waves
through transparent substances. Molecular: Vibrations of serial molecule.

VII 71 Molecular: Vibrations of serial molecule. Metallic reflection. Double
refraction.

VIII 80 Molar: Solutions for distortional waves. The blue of the sky. Molecular:
Fluorescence and phosphorescence; refraction; anomalous dispersion.

IX 94 Molar: Interference. Loss of energy in waves. Dynamics of absorption, of
anomalous dispersion. Molecular: seven vibrating particles. Refraction;
refractive index.

X 108 Molar: Energy of waves. Fourier’s theorem. Deep-sea waves. Molecular:
Polarization by reflection, double refraction. Anomalous dispersion,
fluorescence, phosphorescence, and radiant heat, discoverable by
dynamics alone.

XI 122 Molar: Aelotropy. Green’s 21 moduli of elasticity. His full theory. Most
general plane wave.

XII 135 Molar: Three sets of plane waves; wave-surface with three sheets. Energy
of condensational waves in ether. Molecular: Mutual force between atom
and ether. Dispersion; refractivity. Critical periods. Continuity in
undulatory theory.

XIII 163 Molecular: Vibrator of seven periods. Dynamical wave machine. Molar:
Aelotropy resumed. Dynamics for wave surface. Molecular: Sellmeier’s
dynamical theory of dark lines. Photographs of anomalous dispersion by
Henri Becquerel.

XIV 185 Molecular: Motion of ether with embedded molecules. Molar:
Mathematical investigation of spherical waves in elastic solid.
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Table 1. (Continued)

Page Topics
XV 220 Molecular: Excitation of synchronous vibrators in molecule by light.

Molar: Compressibility. Double refraction; stress theory.
XVI 260 Molar: Mechanical value of sunlight; density, rigidity of ether.

Velocities, number, and masses of stars.
XVII 279 Molecular: Molecular dimensions. Kinetic theory of gases. Dynamics

of the blue sky. Vibrations of polarized light are perpendicular to plane
of polarization.

XVIII 324 Molar: Reflection of light. Fresnel’s laws, Green’s theory. Opacity and
reflectivity of metals.

XIX 408 Molecular: 7 mutually interacting particles, numerical solution. Molar:
Navier–Poisson doctrine disproved. Molecular: Interactions between
atoms and ether. Molar: Adamantinism. Double refraction.

XX 436 Molecular: Chiral rotation of plane of polarization. Molar: Chiral
inertia in wave-motion. Magneto-optic rotation. Molecular:
Electro-etherial theory of velocity of light.

A 468 On the motion produced in an infinite elastic solid by the motion
through the space occupied by it of a body acting on it only by
attraction or repulsion.

B 486 19th-century clouds over the dynamical theory of heat and light.
C 528 On the disturbance produced by two particular forms of initial

displacement in an infinitely longmaterial system for which the
velocity of periodic waves depends on the wave-length.

D 532 On the clustering of gravitational matter in any part of the universe.
E 541 Aepinus atomized.
F 569 Dynamical illustrations of the magnetic and the helicoidal rotatory

effects of transparent bodies on polarized light.
G 584 Hydrokinetic solutions and observations.
H 602 On the molecular tactics of a crystal.
I 643 On the elasticity of a crystal according to Boscovich.
J 662 Molecular dynamics of a crystal.
K 681 On variational electric and magnetic screening.
L 688 Electric waves and vibrations in a submarine telegraph wire. [End 694.]

whereu = (u1, u2, u3) is the displacement from equilibrium of a volume element at the
point r = (x1, x2, x3). That is,

E = 1

2

6∑
i,j=1

cij eiej . (2)

Here thee’s have been renumbered so thate11 = e1 etc. and 2e23 = e4, 2e31 = e5,
2e12= e6. If we renumber the six elementstij of the stress tensorT in the same way,
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then we have

ti = ∂E
∂ei

=
6∑
j=1

cij ej . (3)

In principle there are 36 elastic constantscij , but since they are symmetric their number
reduces to 21 in the most general case and may be reduced even further if the properties
of the elastic body have some kind of symmetry. In the simplest case of a homogeneous
and isotropic elastic solid (such as the free ether must be supposed to be) there are only
two independent elastic constants, which may be chosen in various ways. Kelvin uses
two different choices that he denotes respectively A, B andm, n; here we will choose
the more familiar so-called Lamé constantsλ, µ. In this case (2) and (3) become respec-
tively:

E = 1

2
λ

(
3∑
i=1

eii

)2

+µ
3∑

i,j=1

e2
ij (4)

and

tij = ∂E

∂eij
= λϑδij + 2µeij , whereϑ =

3∑
i=1

eii andδij is the Kronecker symbol. (5)

The general equations of motion for an elastic solid of mass densityρ are, in the absence
of external forces,

ρ
∂2ui

∂t2
=

3∑
j=1

∂tij

∂xj
. (6)

In the homogeneous and isotropic case these become, by insertion of (5),

ρ
∂2u
∂t2

= (λ+µ)∇(∇ · u)+µ∇2u. (7)

The general solution to this equation can be split in two different waves such thatu =
u1+ u2, where

ρ
∂2u1

∂t2
= µ∇2u1, where∇ · u1= 0, (8)

and

ρ
∂2

∂t2
(∇ · u2)= (λ+ 2µ)∇2(∇ · u2), where∇ × u2= 0. (9)

This split can, as Kelvin proves, be made in one and only one way. The first wave,u1,
is a transversal (Kelvin calls it ‘distortional’) wave with velocity√(µ/ρ), while u2 is
a longitudinal (Kelvin says ‘condensational’) wave with a different velocity of√[(λ +
2µ)/ρ]. Although it is the transversal waves that are relevant for the theory of light, Kelvin
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devotes some time in Lectures IV to VI to the study of longitudinal waves exemplified with
sound waves round a tuning fork.

Kelvin then treats the theory of light in depth from Lecture VIII to the end. Using the
mathematical theory of transversal waves outlined above, he often mingles these purely
‘molar’ results with results from the purely ‘molecular’ Sections, reflecting his belief that
optical effects can only be explained satisfactorily by coupling transversal ether waves with
the vibrations of material molecules. Already in his introductory Lecture I he presents a
‘rude mechanical model’ of ponderable matter consisting of rigid spherical shells within
each other, connected by springs, and with a massive central nucleus connected by springs
to the innermost shell (pp. 12–13). In Lecture II he introduces a different mechanical model
called a ‘serial molecule’, consisting of a linear arrangement of particles connected by
springs and he investigates the dynamics of this system, which is more amenable to exact
calculations than the more realistic sphericalmolecule, throughout the succeeding lectures.
Molecules of one or the other kind embedded in the ether, having requisite frequences of
internal vibrations, will explain dispersion as well as anomalous dispersion (Lecture IX,
X, XII, XIII) and may also be applied to such phenomena as fluorescence and phosphores-
cence (Lecture IX), and optical rotation (Lecture XX). In Lecture XX, which was rewritten
in 1903 after the electron had been universally accepted as a universal constituent of matter,
the molecular vibrators become ‘electrionic’ vibrators, ‘electrion’ being Kelvin’s preferred
word for what everybody else denoted as ‘electron’. Kelvin’s theory of ‘electrions’ is more
fully explained in Appendices A and E.

As Table 1 shows, the appendices consist of a motley of reprints of earlier writings;
some of them (Appendices F and G) date back to the 1850s and 1860s, but most contain
fairly recent work. Appendix B is Kelvin’s famous Friday Evening Lecture to the Royal
Institution in 1900 on the two clouds obscuringthe ‘beauty and clearness of the dynamical
theory, which asserts heat and light to be modes of motion’. The first cloud is caused by
the Michelson-Morley experiment of 1887 showing that the ‘ether wind’ required by the
theory of aberration of light is non-existent. Although the contraction suggested by G.F.
FitzGerald and H.A. Lorentz seems to furnish an escape from this conclusion, ‘we must
still regard Cloud No. I. as very dense’. The second cloud comes from the Boltzmann–
Maxwell doctrine in the kinetic theory of gases according to which the internal energy
in a gas will be distributed equally between all degrees of freedom in the gas. This so-
called ‘equipartition theorem’ leads to a relation between the ratio of the specific heat
at constant pressure to that at constant volume and the number of degrees of freedom.
This relation is verified experimentally for four monatomic gases (mercury vapour, argon,
helium, and krypton) if these are considered as having three degrees of freedom per atom,
but fails hopelessly if one notes that each of them has a large number of spectral lines
and so must have a correspondingly large number of vibrational degrees of freedom per
atom. Kelvin quotes Lord Rayleigh as saying that what is wanted ‘is some escape from
the destructive simplicity of the general conclusion’ and he ends his talk by stating that
‘the simplest way of arriving at this desired result is to deny the conclusion’. Within a few
years Kelvin’s two clouds were to be dispelled by, respectively, Albert Einstein’s relativity
theory of 1905 (compare §63) and the same man’s quantum theory of specific heats of
1906.
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6 CONCLUSION

In the history of physics Kelvin’sBaltimore lectures has been seen, ever since its appear-
ance, as a desperate rearguard fight of the last prominent adherent of an uncompromisingly
mechanical world view against newer trends in theoretical physics such as Henri Poincaré’s
conventionalism or the electromagnetic world view that had become increasingly fashion-
able round the turn of the century [Darrigol, 2000, ch. 9]. Even in Britain, where Kelvin
enjoyed an enormous respect, the Lectures met with little acclaim, as Larmor’s review
quoted above witnesses. The general reaction seems to have been one of polite indiffer-
ence, and it is hard to point to a physicist whose work was influenced by the book. Yet
for the historian it is of interest as a monument to the many attempts earlier in the 19th
century to create a mechanical theory of light and matter and their interactions, and to the
successes and failures of these attempts.
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CHAPTER 59
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1 INTEGRALS AND FUNCTIONS IN THE 19TH CENTURY

The concepts of function and integral lie at the heart of much of the development of analy-
sis in the 19th century. The notion of a function became ever more abstract as the century
progressed. It began the century as essentially the concept described by Johann Bernoulli
at the beginning of the preceding century: ‘anexpression formed in any manner from vari-
ables and constants’. The undefined phrase ‘in any manner’ was to be understood in a
particular context of mathematical objects. It would not have occurred to Bernoulli’s con-
temporaries, for example, to regard the price of a load of grain as a function of its volume
or weight. The rules for forming expressions were restricted to algebraic formulas and
the family of elementary transcendental functions defined by exponential, logarithmic, and
trigonometric functions. The transformation of this notion into its more modern, abstract
form is the result of influences from many areas, such as complex analysis, geometry, and
algebra.

1.1 Trigonometric series

One of the main influences, whose effects can be seen at many crucial moments, is the
representation of quantities by trigonometric series. To explain why trigonometric series
forced an enlargement of the concept of a function when power series did not, one need
only note that if a power series

∞∑
n=0

cn(z− z0)n (1)

converges at any pointz=w, then it converges at all pointsz such that|z− z0|< |w− z0|
and represents an analytic function inside that region. Convergent power series of this type
allow all the ordinary operations of algebra and calculus to be performed termwise. As long
as mathematicians allowed only these operations, they were effectively considering only
convergent power series. G.W. Leibniz’s discovery of power-series representations for ex-
ponential, logarithmic, and trigonometric functions provided grounds for believing that all
mathematical problems of any interest could be solved using such functions. Thus, except
for a few anomalies noted by Euler and Daniel Bernoulli in the 1740s, where trigono-
metric representations seemed more natural, Bernoulli’s definition seemed adequate at the
beginning of the 18th century.

The anomalies just mentioned from the mid 18th century gave an advance glimpse of
the problems that would have to be faced if trigonometric series became a major tool for
solving differential equations. One way of describing the situation is to say that a trigono-
metric series could represent different analytic functions in different domains. In studying
the equation satisfied by the displacementsof a vibrating string Daniel Bernoulli (1700–
1782) had considered the problem of finding a functionu(x, t) that would satisfy the one-

dimensional wave equation∂
2u

∂t2
= c2 ∂2u

∂x2 together with the appropriate initial and boundary
conditions that would represent the case of a string clamped at two points, stretched into
an arbitrary shape, and released from a position of rest. These restrictions are expressed
(in modern notation) bythe boundary conditionsu(0, t)= 0= u(L, t) and the initial con-
ditionsu(x,0)= f (x), ∂u

∂t
= 0. Daniel Bernoulli claimed that the coefficientscn could be
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chosen so that the function

u(x, t)=
∞∑
n=1

cn cos(nπct/L)sin(nπx/L) (1)

would satisfy all these conditions. (He did not explicitly state the time terms.) The indi-
vidual terms certainly satisfy all of them except the equationu(x,0) = f (x). Bernoulli
thought one could choose thecn so thatf (x) = ∑∞

n=1 cn sin(nπx/L). His former col-
league at the Petersburg Academy of Sciences, Leonhard Euler (1707–1783), was not so
sure, since the right-hand side always represented an odd function of period 2L. Suppose
the formula by which the functionf (x) was defined did not satisfy these two conditions.
How could this representation be valid over onlypart of the domain and represent not the
function itself but its odd periodic extension outside the domain? To be sure, a power series
such as the geometric series may represent its formula only over a limited range, but that
is because the series itself diverges outsidethat range. Such is not the case with the Fourier
series. The notion of ‘forming an expression from variables and constants’ turned out to
be less clear than had been believed, since two ways of doing so could coincide over one
interval and differ over another.

In the early 19th century Joseph Fourier (1768–1830) made use of trigonometric se-
ries representations to discuss the diffusion of heat in physical bodies and also introduced
integrals of the type

u(x, t)=
∫ ∞

0
f (s)e−s2t cos(xs) ds (2)

(notation slightly updated) in order to satisfy the heat equation∂u
∂t
= ∂2u

∂x2 . What made these
trigonometric series and integrals the object of intense scrutiny was their ability to repre-
sentdifferent functions, functions defined piecewise, as we would now say. Moreover, find-
ing the coefficients of the trigonometric series to represent a function, as Fourier showed,
meant integrating the product of the function with a trigonometric function. (Fourier gave
an alternate way of computing the coefficients; see §26.5.) How was this to be done? In-
tegration had been regarded as the inverse ofdifferentiation. Integrating a power series
was a matter of invoking a simple formula. But in these new applications the function had
somehow to be presented. One could not, without circularity, use the series to present the
function and then use the function to compute the coefficients of the series. Such a problem
did not arise when only power series were used to represent functions, since the coefficients
of the series could be determined, usually from a differential equation that the function had
to satisfy. Indeed, Karl Weierstrass argued that one could use a differential equation or a
system of such equations as the definition of an analytic function. But the method of using
trigonometric series to solve equations was based on getting terms that satisfied the differ-
ential equation witharbitrary coefficients and then using the initial or boundary conditions
to find the coefficients. Hence a new concept of integration was needed as well. As long as
functions were explicit formulas, integration could simply be the inverse of differentiation;
but the kind of initial positions for a vibrating string and initial temperature distributions
could obviously not be expected to be one of the familiar functions. A way would need to
be found to integrate such functions.
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1.2 Functions and their integrals

As A.L. Cauchy (1789–1857) discovered, the need to study functions of a complex vari-
able also demanded a new definition of the integral. He provided such a definition in 1823,
treating the integral as a limit of finite sums rather than the sum of infinitesimal prod-
ucts (§25.4). Yet he did not seek the most general conditions under which the limit of the
approximating sums could exist, but contented himself with integrating continuous func-
tions, another concept whose definition he reformed. As we now know, when the integral
is restricted to this class of functions, no modifications are needed in the fundamental the-
orem of calculus. Before Cauchy a function had been called continuous if it was defined
by a single analytic formula of the type envisaged by Bernoulli. In 1821 Cauchy replaced
this definition with the requirement that ‘f (x + a)− f (x) decreases indefinitely witha’,
an informal way of stating what is still today the definition of continuity. It should be
remembered, however, that the most general functions anyone had considered up to that
time were sums of trigonometric series. No one at the time could have guessed how much
arbitrariness such a function could exhibit in its behavior. Efforts during the 1820s were
concentrated on proving that the Fourier series of a function really does represent the func-
tion. The most notable result was due to J.P.G. Lejeune-Dirichlet (1805–1859),who proved
in 1829 that convergence holds for a function having only a finite number of maxima and
minima and a finite number of discontinuities.

It occurred to Dirichlet that even when the Fourier series of a function converged to
the function, there might nevertheless beother trigonometric series that also converged
to it. Dirichlet suggested that Riemann study this question. While engaged in this study
in 1854, Bernhard Riemann (1826–1866) examined Cauchy’s notion of integral in more
detail, especially the conditions under which the approximating sums would have a limit,
so that the integral could be defined. The condition he gave made it possible to integrate
many more functions than analysts had ever imagined could be of use. For example, an
integrable function could be discontinuous on a dense set of points. Riemann offered the
example of the function

f (x)= (x)+ (2x)
4

+ (3x)
9

+ · · · , (3)

where(a) = a − n, n being the integer closest toa. (Whena is half of an odd integer,
(a) is set equal to zero.) When this work was published in 1867, after Riemann’s death, it
appeared that the integral defined by Riemann was sufficiently general for all purposes of
analysis (§38). It was at least possible to prove that if a trigonometric series converges to
an integrable function at every point, it must be the Fourier series of that function. That is,
its coefficients must be given by the integral formulas used to calculate the coefficients of
the Fourier series.

However, this very result pointed to a difficulty with the Riemann integral. One of
Fourier’s derivations of the formulas for the coefficients was purely formal; it involved
assuming that the series could be integrated term by term. That assumption, if true, would
automatically have guaranteed the uniqueness of the series. The delicate analysis that Rie-
mann had to perform in order to prove uniqueness underlined the need for conditions under
which such termwise integration was possible. Uniform convergence, which is still taught
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to undergraduates as a sufficient condition, was of use only in cases where the sum of the
series is itself continuous; but the main usefulness of Fourier series occurred precisely in
cases when the sum was not continuous.

In demonstrating the possibility of integrating discontinuous functions, Riemann had
created the need to classify functions according to their degree of discontinuity. A step in
that direction was taken by Gaston Darboux (1842–1917) in an article on discontinuous
functions [Darboux, 1875]. He refined the Riemann integral by considering its upper and
lower sums (now called the Darboux sums). Relying on the existence of discontinuous in-
tegrable functions, Darboux was able to construct continuous functions that do not have a
derivative at any point. This paper marks an abrupt departure from geometric intuition to
verbal reasoning based on general premises. As Darboux said, ‘in the presence of such sin-
gular propositions’ it was necessary ‘to bring the greatest possible rigor to the proofs and
allow only the best-established propositions’ to be invoked. These nowhere-differentiable
continuous functions, and their opposite number—discontinuous functions that neverthe-
less have the intermediate-value property—formed what Lebesgue was later to refer to as
a ‘sort of chamber of horrors’ [Gispert, 1995, 46]. Unlike 20th-century mathematicians,
Darboux had no intention of introducing such monstrosities into analysis; he used them
only to show by contrast what the proper objects of analysis were.

By redefining the notion of continuity Cauchy had provided mathematicians with a
much larger class of functions than had previously been available. It was, however, not
clear precisely what functional relations could exist between variables. Even late in the
19th century, Weierstrass never accepted Cauchy’s abstract approach to analytic function
theory, insisting that the proper definition of analytic functions was through power series
(whose coefficients, as noted above, could be generated by the requirement of satisfying a
differential equation). Weierstrass’s point of view was that in order to verify that a function
is continuous or has a derivative, one must first have a definition of the function. Where is
that definition to come from, if not from a power series? As he said in 1885, ‘No matter how
you twist and turn, you cannot avoid using some analytic expressions’. To “tame” Cauchy’s
abstract notion of continuity Weierstrass showed in 1885 that any continuous function on
a finite interval could be uniformly approximated by a polynomial, and, if periodic, by a
trigonometric polynomial of the same period. Since allphysical quantities are presented
with some unavoidable error of measurement,he had effectively shown that there was no
loss of generality in thinking of any variable as the sum of a series of polynomials or
trigonometric functions. An obvious consequence of his approximation theorems was that
the property of being the limit of a sequence of continuous functions was no more general
than that of being the limit of a sequence of polynomials or the sum of a trigonometric
series. But the question remained:What kind of function is the limit of a sequence of
continuous functions?

Besides the absence of useful criteria for termwise integration, still other problems arose
with the Riemann integral in connection with the fundamental theorem of calculus. In the
1870s Weierstrass and Darboux gave examples of trigonometric series converging uni-
formly to functions that do not have a derivative at any point. For such functions there
could be no question of recovering the function by integrating its derivative. In addition, in
1881 Vito Volterra gave an example of a continuous function having a derivative that was
not integrable, thereby raising the question of the proper hypotheses for the fundamen-
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tal theorem of calculus to an even more urgent level. Finally, the problem Riemann had
set out to solve when he reinvestigated the integral—whether the coefficients of a conver-
gent trigonometric series are determined by its sum when the sum is integrable—remained
open in the case when the set of points where the series is not known to converge is not of
Cantor’sfirst kind.

1.3 Early set theory

In the course of extending Riemann’s study of the uniqueness of trigonometric series rep-
resentations, Georg Cantor (1845–1918) investigated the exceptional setsE such that one
can prove uniqueness of a trigonometric series representation without assuming anything
about convergence at points ofE. Such sets have been called ‘sets of uniqueness’ (A. Zyg-
mund in the 1930s). Riemann had studied this problem by formally integrating the series
twice, thereby producing a continuous functionF(x), from which information about the
original series was deduced via a generalized second derivative. By looking carefully at
this function Cantor showed that such an exceptional set could be any set offirst kind,
that is, one of its derived sets of finite order is empty (§46.2). (The derived set of a set is
its set of limit points; by successively repeating the passage to the set of limit points, one
gets derived sets of higher order.) The derived set was the first step on the road to a com-
plete classification of sets according to their complexity by counting the number of times
one must perform a countable union or intersection in order to reach a given set, starting
from the open and closed sets. This classification, although it did not at first seem cogent
to many mathematicians, lurked in the background during the process of refining the no-
tions of function and integral. As it finally turned out, the two efforts—to characterize the
functions analysis could integrate, and to classify sets, made a very fruitful alliance, each
validating the importance of the other.

The geometric interpretation of the integral as an area meant that each generalization
of the concept of integral provided an automatic enlargement of the class of plane figures
whose areas could be computed and an enlargement of the class of curves whose lengths
could be computed. When mathematicians began to think in terms of sets rather than geo-
metric figures, the question whether every linear set could be assigned a length and every
planar set an area became a natural one. Thus, the concepts of function and integral were
intimately bound up with questions of length and area. The creation of a comprehensive
theory of functions that would systematically lay out the permissible definitions of func-
tions and say which ones could be integrated would bring with it a classification of linear
and planar sets and their lengths and areas respectively. In order to be of use, such a theory
would have to incorporate reasonable criteria for term-by-term integration of a convergent
sequence and provide a clear set of hypotheses under which a continuous function is the
integral of its derivative. Moreover, since the invention of set theory, the very structure of
the real line on which analysis takes place had changed. Where analysts had previously
discussed points and intervals, there was now the completely abstract notion of aset of
points, and there seemed to be no natural limits on the means by which such a set could
legitimately be defined.

In this context the Riemann integral was inadequate for the needs of analysis, and an-
alysts began the search for an improved theory. For an integral the desiderata were the
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following properties: 1) it should be defined for a sufficiently wide class of discontinuous
functions; 2) it should admit an interpretation as ‘the area under the curve’ (or as volume,
in the case of double integrals). An auxiliary problem to be solved was to characterize the
continuous functions that have a derivative and define the integral so that such a function
is the integral of its derivative.

Some early progress on this last problem was made by Ulisse Dini during the late 1870s,
when he showed that a functionf (x) such thatf (x)+ Ax + B is piecewise monotonic
for all but a finite number of values ofA has a derivative on a dense set. (The reason for
including the superfluous constantB is not clear.) Dini had thereby exhibited monotonicity
as a possible sufficient condition for a derivative to exist. Hermann Hankel had made an
attempt to characterize the discontinuous integrable functions in 1870 by defining a func-
tion to be ‘pointwise discontinuous’ if for each positive numberε the set of pointsx such
that|f (x+ h)− f (x) > ε| for arbitrarily smallh contains no intervals [Hankel, 1870]. He
believed, and believed he had proved, that such a function met Riemann’s sufficient con-
dition for integrability, that is, that the discontinuities of such a function could be enclosed
in a set of intervals of arbitrarily short total length.

The problems to be addressed focused on four areas: 1) determining which functions
can be the limit of a sequence of continuous functions; 2) determining which functions can
be assigned an integral and which sets can be assigned a length, area, or volume; 3) estab-
lishing sufficiently nonrestrictive conditions for term-by-term integration of a sequence of
functions; and 4) clarifying the conditions under which a continuous function has a deriv-
ative of which it is the integral. These were the problems addressed and largely answered
in the three works under discussion.

Several mathematicians, including Axel Harnack, Otto Stolz, Giuseppe Peano, and Can-
tor, introduced the notion of the content of a set in connection with integration [Hawkins,
2001, ch. 3]. The idea was that when a region was partitioned into sufficiently small rec-
tangles, the total area of the rectangles that intersect the boundary of the set should become
arbitrarily small. In this way a distinction between measurable and nonmeasurable do-
mains arose. Camille Jordan, in particular, noted the important fact that a finite union of
measurable domains should also be measurable.

The one-dimensional version of this work was carried out by Émile Borel in his
1894 dissertation on the convergence of general series of complex functions of the form∑∞
n=0An(z−an)mn . The principles used in this work were applied in a monograph [Borel,

1898] that Borel wrote because, as he said in the preface, it was becoming more and more
difficult to read research papers knowing only the portions of the theory that were regarded
as ‘classical’. He specifically mentioned the need for an exposition of the theory of sets,
which occupies the first three of the six chapters of the monograph. Chapter 3 of this mono-
graph contains the elementary parts of the theories now called descriptive set theory and
measure theory. The descriptive set theory consisted of the definition of closed (‘relative-
ment parfait’) and perfect (‘absolument parfait’) sets, and the proof that every closed set
consists of the union of a perfect set and a countable set. The measure theory amounted to
the proof that no interval(a, b) can be covered by intervals of total length less thanb− a.
(The proof of this result uses the Heine–Borel theorem.) In this monograph Borel stated
axiomatically what he demanded of the concept of measure, specifically that it be finitely
subtractive and countably additive.
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The only sets that Borel guaranteed measurable at the time, however, were the topo-
logically simplest: the closed sets, and all countable sets, and he was not at all clear in
describing just which sets are measurable, except for saying in a footnote that one could
easily establish the consistency of his axioms by techniques analogous to those he had used
in his earlier arguments. The lack of clarity appeared starkly [1898, 48]. On the one hand,
Borel defined sets to be measurable if their measure could be defined by his preceding
definition. In modern terms, he was asserting that a set is measurable if it belongs to the
smallest class that contains all closed sets and is closed under countable unions and set dif-
ferences. In his honor, and because of thisstatement, that class is now called theBorel sets.
On the other hand, he also said that there might be other sets to which measure could be
assigned, and he defined a set to have measure ‘at leastα‘ if it contained a measurable set
of measureα and ‘at mostα ‘if it was contained in such a set, ‘without worrying whether
the set is measurable or not’. Thus he also appears to have defined inner and outer measure
and what are now called theLebesgue-measurable sets.

To Borel’s definition Artur Schoenflies, writing a generally favorable report on the de-
velopment of set theory for theDeutsche Mathematiker-Vereinigung in 1900, objected that
‘the question whether a property is extendable from finite to infinite sums cannot be settled
by positing it but rather requires investigation’ [Hawkins, 2001, 107].

2 THE AUTHORS

Enter now our two authors. Henri Léon Lebesgue, was born on 28 June 1875 in Beauvais.
His father worked in a print shop and his mother was a schoolteacher. He studied at the
École Normale from 1894 to 1897 and remained for further study until 1899. He received
the doctorate in 1902 and spent the following year lecturing at theCollège de France under
a Peccot Foundation Fellowship. In 1910 he became a lecturer at the Sorbonne. During the
Great War he worked on ballistic problems. In 1919 he became professor at the Sorbonne
and in 1921 professor at theCollège de France, where he remained for the rest of his life.
He died on 26 July 1941.

René-Louis Baire was born 21 January 1874 in Paris, the son of a tailor. At the age
of 12 he won a scholarship that enabled him to study at theLycée Lakanal. In 1892 he
entered theÉcole Normale, where his written work was quite good. Unfortunately, while
proving the continuity of the exponential function during an oral examination, he began
to see difficulties with the proof. This lapse damaged his prospects, and he determined to
take the examination over. However, it did set him a topic that he found to be of great
interest, which guided his research over the next few years. After passing the examination,
he won another scholarship for study in Italy, where he met Vito Volterra. For his results
on discontinuous functions he received the doctorate in 1899, with a somewhat reserved
recommendation by his examining committee, which consisted of Darboux, Appell, and
Picard. He taught at Montpellier starting in1901, and in January/February 1904 he gave
the Peccot course at theCollège de France, which led to the monograph to be discussed
here. When he returned to Montpellier, he underwent a spell of depression, accompanied
by esophageal constrictions which made every meal a trial [Dugac, 1976, 309].

In 1905 Baire began teaching at Dijon. The rector of the Dijon Academy noted in 1908
that Baire’s health seemed to be fragile, rendering him neuarasthenic and incapable of
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teaching with the vigor he would have wished.The esophageal constrictions grew worse
over time, and the last 20 years of his life were spent in nearly constant pain. In June 1932
he suffered a particularly bad attack. His sister-in-law came to see him on the shore of Lake
Geneva, where he had gone to live; she believed his symptoms were largely nervous ones.
On 1 July he was taken to a psychiatric hospital some 100 kilometers away, where he died
on 5 July [Dugac, 1976, 313].

3 LEBESGUE’SLEÇONS SUR L’INTÉGRATION ET LA RECHERCHE DES
FONCTIONS PRIMITIVES (1904)

Lebesgue worked out his theory of measure and integration in a series of research an-
nouncements in theComptes rendus between 1898 and 1901. Although his work was pub-
lished before Baire’s monograph, the original research on which both were based was
essentially simultaneous, and Lebesgue took a keen interest in Baire’s study of the repre-
sentation of discontinuous functions, on whichhe also wrote a paper. Lebesgue’s approach
was very hesitant, as Cantor’s set theory had by no means ‘caught on’. In particular, Charles
Hermite had opposed the publication of one of his research announcements [Hawkins,
2001, 120–122]. Lebesgue’s doctoral thesis, entitledIntégrale, longueur, aire, was pub-
lished in theAnnali di matematica in 1902. During the academic year 1902–1903 he was
invited to lecture at theCollège de France which gave him the opportunity to reflect further
on his previous work and settle a few open questions involving the fundamental theorem
of calculus. The fruit of that year was the monograph we are about to discuss. Its contents
are summarised in Table 1. The later edition of 1928 expanded to 11 chapters.

In the preface Lebesgue explained the need for the new, abstract definition of a function.
As he wrote,

One may well wonder, it is true, whether there is any interest in studying such
complications, and whether it might not be better to limit ourselves to the study
of functions that require only simple definitions. Such an approach has only
advantages in the case of an elementary course; but, as will be seen in the fol-
lowing lectures, if we wished to limit ourselves always to these good functions,
we would have to give up on the solution of a number of easily stated prob-
lems that have been open for a long time. It was the solution of these problems,
rather than a love of complications, that caused me to introduce in this book a
definition of the integral that is more general than that of Riemann and contains
the latter as a special case.

After explaining that his new integral was just as simple as that of Riemann and pro-
vided simpler proofs of many theorems, even those stated only for the Riemann integral,
Lebesgue continued,

As applications of the definition of the integral I have studied the problem of
finding primitive functions and rectifying curves. To these two applications,
I would have liked to add another, of great importance: the study of the expan-
sion of functions in trigonometric series. However, while teaching the course
I was able to give only such incomplete indications of this topic that I did not
consider it worthwhile to reproduce them here.
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Table 1. Contents by chapters of Lebesgue’sLeçons sur l’intégration.The pages of the
two editions are indicated. The square brackets for chapter VII enclose the extra part of

the title in the second edition.

Ch. 1st 2nd Title

I 1 1 The integral before Riemann.

II 15 15 Riemann’s definition of the integral.

III 36 36 Geometric definition of the integral.

IV 49 49 Functions of bounded variation.

V 64 68 Finding primitive functions.

VI 85 92 The definite integral found using primitive functions.

VII 98 105 [The definite integral of] Summable functions.

Note 131 On sets of numbers. [End 136.]

VIII 141 The indefinite integral of summable functions.

IX 174 Finding primitive functions. The existence of derivatives.

X 202 Totalization.

XI 252 The Stieltjes integral.

Note 314 Appendix on transfinite numbers. [End 340.]

The implied promise in this last paragraph was to be fulfilled two years later with the
publication of Lebesgue’s monograph on trigonometric series (section 6).

The inclusion of ‘primitive functions’ in the title of the work emphasizes one of its
major aims: to resurrect the fundamental theorem of calculus as a basic tool in the context
of an integral more general than those previously considered. In the historical résumé of
the first chapter Lebesgue took the original definition of the integral to be the inverse of
differentiation. He looked very carefully at the exact usage of the termfunction by his
predecessors, saying that

in reality the correspondences considered by Cauchy remained those that could
be defined using analytic expressions. For, after defining functions, Cauchy
adds, ‘Functions are calledexplicit if the equation connectingx andy is solved
for y andimplicit otherwise’. The fact that the correspondences are defined by
analytic expressions is never used in Cauchy’s reasoning, so that the properties
obtained by Cauchy carry over directly, along with their proofs, to functions
satisfying Riemann’s definition.

In a footnote at this point he adds:

I do not mean that Cauchy’s definition is less general than Riemann’s: at
present no Riemannian function is known that does not have an analytic
representation. All I am saying is that, if there do exist functions satisfying
Riemann’s definition but not Cauchy’s, they are not excluded from Cauchy’s
arguments.
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Looking back at Lebesgue’s language from the perspective of another century, we must be
careful to remember that he used the wordanalytic in a special sense that he himself was to
define later; in particular, he didnot mean analytic in the senseof representation by power
series.

In Chapter 2 Lebesgue gave a detailed discussion of the Riemann integral, including the
conditions for integrability of a function. Riemann had shown that the following condition
was necessary and sufficient:for each ε > 0 there exists a partition of the interval of inte-
gration such that the total length of the intervals on which the oscillation of the function is
larger than ε can be made as small as desired. Lebesgue showed that this condition could
be more elegantly stated by saying that the set of discontinuities of the function formed a
set of measure zero.

Lebesgue followed this analytic discussion with a geometric discussion in Chapter 3,
first defining what is now called the Jordan content of a planar region and proving that
a nonnegative function is Riemann integrable if and only if the region below its graph is
‘squarable’, that is, has a well-defined Jordan content.

Lebesgue’s aim, however, was to restore the fundamental theorem of calculus to the
place it had lost as a result of the examples of Darboux and Volterra. To that end, Chapter 4
was devoted to the study of functions of bounded variation and the rectification of curves.
With that background, Lebesgue took up the search for primitive functions (functions hav-
ing a given function as derivative) in Chapter 5. He began by noting that the indefinite
integral of a Riemann-integrable function is of bounded variation and has the integrand as
its derivative at each point where the integrand is continuous. He then called attention to
Riemann’s example of an integrable function whose discontinuities are dense, showing that
the indefinite integral of this function had a derivative equal to the function at all points ex-
cept rational numbers whose denominators (in lowest terms) are even. From the conclusion
of Chapter 2 and the fact that the indefinite integral has a derivative at each point where
the integrand is continuous, as Lebesgue pointed out, it followed that the nondifferentiable
continuous functions of Weierstrass and Darboux could not be the indefinite integrals of
Riemann-integrable functions.

The problem of differentiability, it will be recalled, had been addressed by Dini, who had
noticed its connection with monotonicity. It was Dini who introduced the fourderivates of
a functionf (x), that is, the upper and lower limits of the difference quotient

f (x + h)− f (x)
h

(4)

ash tends to zero from the right or left. Lebesgue studied the question of whether and how
these four derivates determine the functionf (x). He showed that if all four numbers were
bounded, then the function was completely determined (up to an additive constant) if its
upper right derivate was prescribed except on a set of measure zero. Defining the mean
value of the functionf (x) to be

lim
h↓0

1

2h

∫ x0+h

x0−h
f (x) dx (5)
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at each pointx0 where this limit exists, Lebesgue showed that an integrable function is a
derivative (at every point) if and only if themean value exists at each point and is equal to
the function. It was precisely at this point that he considered the Riemann integral inade-
quate. For, as he said, it was always possible to find a primitive whose derivative isf (x)

at each point where this function is continuous (either the upper or lower Riemann integral
has this property). But, he said, the problem was indeterminate, since two distinct primi-
tives did not necessarily differ by a constant. To make the problem determinate, he simply
required the primitive to have bounded derivates. The solutions already noted still exist,
but now, because of his earlier theorem, any two primitives differ by a constant. Having
given more than fair coverage to the Riemann integral with these lengthy preliminaries,
Lebesgue was at last ready to present his own integral.

In Chapter 6 Lebesgue approached the problem through primitive functions, defining
a function to besummable if it was the derivative, except on a set of measure zero, of
a function having bounded derivates. He showed, with an extra hypothesis, what is now
referred to as the monotone convergence theorem:If a sequence of integrable functions
increases to an integrable function, the integral of the limit is the limit of the integrals of
the terms of the sequence.

Only in his seventh and last chapter did Lebesgue finally develop his integral as it is
now generally presented, by defining measure and showing that it is countably additive
(see, for example, [Burkill, 1951]). The route followed was very similar to many modern
presentations, and was generalized later by C. Carathéodory to abstract measure spaces
without the need to introduce any essentially new ideas.

4 RECEPTION OF LEBESGUE’S BOOK

The thoroughness with which Lebesgue had investigated the connection between length,
area, and primitive functions, and the great generality that his integral allowed in handling
termwise integration were powerful factors in favor of his approach to analysis. As already
noted, however, many other mathematicians had developed generalized integrals, some (in
particular, W.H. Young) very close to the one Lebesgue himself had created. The very
generality of his integral was at first considered a disadvantage. Two decades later, when
his integral had become an established part of the curriculum and his book required a
second edition, Lebesgue recalled the reception his work had met in the early days:

Although the first edition seemed to someaudaciously and gratuitously filled
with rather scandalous novelties, it was the work of a timid man who had ded-
icated six of the seven chapters that he wrote to an exposition of earlier work
before embarking on the work that was considered revolutionary. That was
done not as the machinations of a propagandist seeking recruits for the revolu-
tion, but only to reassure himself. Indeed, he believed, and still believes, that in
order to do anything useful one must travel over paths that have been opened by
previous work, that doing otherwise carries too much risk of creating a science
having no relation to the rest of mathematics.

For this second edition Lebesgue updated what he had written earlier. (At the time of the
earlier writing, for example, he had not known whether any non-measurable sets existed;
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Giuseppe Vitali constructed an exampleof one in 1905.) He also added four new chapters,
mostly to provide an exposition of what hadbeen learned about absolutely continuous
functions and the Lebesgue–Stieltjes integral.

What caused Lebesgue’s integral to ‘catchon’ was its usefulness in connection with
much other work, especially Hilbert’s work on integral equations, which required square-
integrable functions. When combined with the work of Maurice Fréchet, who had cre-
ated the notion of an abstract metric space, Lebesgue’s integral generated a whole class of
spaces, theLp spaces, that became basic objects for harmonic analysis, thereby conferring
immortality on Lebesgue’s creation. A sketch of that development will be given in connec-
tion with Lebesgue’s book on trigonometric series, to be discussed below. First, though,
we turn to the related work of Baire.

5 BAIRE’S LEÇONS SUR LES FONCTIONS DISCONTINUES (1905)

Although the French mathematicians of the1870s showed little interestin the bizarre coun-
terexamples of Darboux, and Darboux himself soon stopped studying them and never used
them, there was interest in such examples, especially in Germany, where the Weierstrassian
tradition of rigor was ascendant. It was two decades later when this topic attracted the in-
terest of the young René Baire, who noticed what had already been pointed out by Thomae,
K.H.A. Schwarz, and Dini: a function of twovariables that is continuous in each variable
separately need not be continuous in the two variables jointly. But where Darboux had at-
tempted only the most rudimentary classification of discontinuous functions into those that
were integrable and those that were not, Baire took full advantage of the set theory that had
been developed in the meantime and used the set of discontinuities as an indicator of other
properties of a function. In particular he considered the question of which discontinuous
functions can be the limit of a sequence of continuous functions and thereby arrived at
the famous Baire classification of functions. In contrast to the reception Darboux had en-
countered, Baire found a great deal of interest in his work. As Gispert [1995] says, ‘In the
early years of the 20th century these “most general functions” were no longer the marginal
objects they had been in the 1870s. Thirty years after [the work of] Darboux, the theory
of sets and the powerful new techniques it provided for studying sets of points had begun
to shift the standards in the theory of functions’. An indication of this interest is shown by
the fact that Émile Picard (1856–1941) found Baire’s thesis worthy of mention in a lecture
given on 5 July 1899 at Clark University in Worcester, Massachusetts [Picard, 1905, 20].
Three months earlier Picard had written a report on Baire’s thesis [Dugac, 1976, 339–341],
and he now said publicly what he had written privately:

Among the latest work on these delicate questions, I would like to spend a
minute discussing a memoir of M. Baire containing some unusual results. The
author has succeeded in finding a necessary and sufficient condition for a func-
tionf (x) of a real variable to be represented by a simple series of polynomials;
the statement of this result requires certain notions on the discontinuity of a
function with respect to a set of points: a function may be pointwise or totally
discontinuous relative to the set. The condition obtained is that the function
be pointwise discontinuous with respect to every perfect set. [See below for
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the definition.] M. Baire also poses an unusual question about linear partial
differential equations. Consider the equation

∂f

∂x
+ ∂f
∂y

= 0; [(6)]

if I were to ask which functions satisfy this equation, I would no doubt be told
that only functions ofx − y satisfy them. M. Baire is not completely sure of
that; he notes that the theory of change of variables assumes the continuity
of the derivatives used; if one assumes only that the derivatives∂f

∂x
and ∂f

∂y
of the unknown functionf exist, one cannot perform the classical change of
variables. A delicate analysis is required to establish that a functionf , assumed
to be continuous with respect to the variablesx andy jointly and to satisfy (6),
is a function ofx − y. The conclusion is in doubt iff is continuous only with
respect to the two variables individually.

Standing on the brink of the 20th century and seeing the beginnings of the new de-
scriptive set theory and measure theory, Picard rendered the following prophetic judgment
[Picard, 1905, 24]:

Some questions are of purely philosophical interest and will probably never
have the least utility for mathematics, for example, to know whether priority
belongs to cardinal or ordinal numbers, that is, whether the idea of number
proper is anterior to that of rank or vice versa. But, the matter is different in
other cases. Thus, it is probable that M. Cantor’s theory of sets, which we have
already encountered twice, is about to play a useful role in problems that were
not posed expressly to be an application of the theory. Therefore let us not
begrudge the arduous work on the idea of number and function, for the theory
of functions of a real variable is the true basis of mathematical analysis.

The useful role that Picard saw for set theory was already beginning to take shape as
he wrote these words. His prediction may have been evoked by noticing the heavy use that
Baire was making of Cantor’s set theory. Baire’s book is summarised in Table 2.

Mathematical writing from the early 20th century frequently seems to treat discontinuity
as if it were a positive property, rather than merely the absence of continuity. In the preface
of his book, for example, Baire asked, ‘Is it not the duty of the mathematician to begin by

Table 2. Contents by chapters of Baire’s book.

Chapter Page Title

I 1 The elementary study of discontinuous functions.

II 23 Well-ordered sets and transfinite numbers.

III 50 Subsets of the line.

IV 69 Functions of one variable.

V 99 Functions ofn variables. [End 127.]
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studyingin abstracto the relations between these two concepts of continuity and discon-
tinuity, which, while mutually opposite, are intimately connected?’. A few years later the
Moscow mathematicians N.V. Bugaev, P.A. Florenskii, D.M. Egorov, and N.N. Luzin were
writing similarly about developing a theory of discontinuous functionsin parallel with the
theory of continuous functions, as if the two things were opposite in the sense that the two
gloves of a pair are opposite.

The five chapters of Baire’s little masterpiece are very single-mindedly aimed at giving
a complete answer to one simple question:What is a necessary and sufficient condition for
a function of a finite number of real variables to be the pointwise limit of a sequence of
continuous functions? Until the last chapter, Baire restricted himself to finite-valued func-
tions of one variable. Only after the basic ideas were made clear in this ‘tamer’ context did
he relax the restrictions and consider extended-real-valued functions of several variables.
Much of the material in this book is now classical; some of it indeed constitutes an exposi-
tion of the work of Cantor. Starting with simple examples of discontinuous functions that
are the sums of series of trigonometric functions in Chapter 1, Baire introduced the basic
concept of set theory with which Cantor had begun: the derived set. Exactly as Cantor had
done with sets of uniqueness, Baire showed that a function whose set of discontinuities is
of Cantor’s first kind is the limit of a sequence of continuous functions. He then devoted
Chapter 2 to the introduction of transfinite ordinal numbers in order to define the derived
sets of infinite order. Having developed the necessary ordinal arithmetic, he returned to
the definition of derived sets in Chapter 3, including here the examples of nowhere-dense
perfect sets that are now a classical part of the real analysis curriculum and concluding this
chapter by proving that every closed subset of the real numbers is the disjoint union of a
perfect set and a countable set.

With this now classical material established, Baire returned finally to the main question
in Chapter 4, proving that the limit of a sequence of continuous functions of one vari-
able is continuous at all the points of a dense set. Such a function is said to bepointwise
discontinuous, yielding the rather strange-sounding implication that a continuous function
is pointwise discontinuous. This notion had been introduced in [Hankel, 1870], who had
defined the jump of a function at a point in a manner essentially equivalent to what is
now called the oscillation of the function at the point. He defined a function to be point-
wise discontinuous if the set of points where its jump is larger than each fixed positive
number is nowhere dense. The opposite of pointwise discontinuity for Hankel was total
discontinuity—discontinuity at a dense set of points, as in the example given by Riemann.
It follows from his definition that the set of discontinuities of a pointwise-discontinuous
function forms what is now called a set of first Baire category (introduced by Baire in
Chapter 4), and hence that its complement is dense. Like Darboux a few years later, Han-
kel believed that the proper business of analysis was confined to the comparatively well-
behaved pointwise-discontinuous functions. Baire’s work provided some support for this
position.

In Chapter 4 Baire showed that this condition must also hold on every perfect subset of
the line. He then proved the sufficiency of pointwise discontinuity, but only for functions
assuming only the values 0 and 1 (in other words, the characteristic functions of sets).
In the final chapter, as mentioned above, the sufficiency and necessity of the condition is
shown for functions of several variables, whether finite- or infinite-valued.
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In this work Baire had shown by implication what kinds of functions could be repre-
sented as the sum of a series of continuous functions. Since representations by orthogonal
polynomials and trigonometric polynomials were becoming more numerous every day,
he had performed an important service by exhibiting a structural characterization of the
class of functions that one would need to integrate in order to obtain the coefficients of
these representations. The simple example of a Cantor set of positive measure, which is
pointwise discontinuous on every perfect set, yet not Riemann integrable, shows that the
Riemann integral is not adequate even for that purpose, even waiving the requirements of
the fundamental theorem of calculus and simple conditions for termwise integrability of a
sequence.

6 RECEPTION OF BAIRE’S BOOK

Perhaps because he thought no one would be interested in functions too general to be
represented as sums of trigonometric series, Baire had omitted from his monograph one of
the chapters of his thesis, namely the classification of all functions into a hierarchy indexed
by the countable ordinal numbers, each class consisting of the functions that are limits of
sequences of functions of lower index, but not themselves equal to any such function. As
Picard noted in the lecture quoted above, Baire showed definitively that a function (having
possibly infinite values at some points) is the pointwise limit of a sequence of continuous
functions if and only if it is pointwise-discontinuous on each perfect set. This property
came to be known as theBaire property, and formed an important focus of research for the
founder of the Russian school of descriptive set theorists, Luzin.

Lebesgue, Baire’s contemporary and to some degree rival, took a deep interest in the
questions that Baire had studied. He published a long memoir in order to clarify the whole
subject [Lebesgue, 1905]. Lebesgue defined theanalytically representable functions to
be those that could be constructed by a countable number of repetitions of algebraic and
pointwise limit operations starting from the polynomials (or continuous functions). While
admitting that only the simplest of these had actually been used in the mathematical litera-
ture, he showed that there were non-analytic functions even among those that are Riemann-
integrable. Thus it appeared that integration could lead to functions of seemingly unimag-
inable complexity. Alternatively, one could look at the question from the other side and
assert, as some mathematicians have done, that the integral was ‘overdesigned’ for any
applications it might have. Descriptive set theory was ‘caught in the middle’. All the func-
tions analysts were using belonged to the first Baire class, and the ingenuity of Luzin’s
students was taxed to produce explicit examples of functions belonging to the third or
fourth Baire class. On the other hand, the example of the characteristic function of a non-
Borel-measurable subset of Cantor’s set, which is continuous on the complement of the
Cantor set, and hence Riemann integrable, shows that even Riemann integration is capable
of dealing with functions that do not admit an analytic representation. (However, it is easily
shown that every Lebesgue-measurable function is equal, except on a set of measure zero,
to a function that belongs to the second Baire class.)

The importance of Cantor’s theory of sets in all this work is obvious, but one also can
look at the whole situation from the opposite side. An important early objection to Cantor’s
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work was that it was all intricate philosophical machinery, from which nothing of mathe-
matical importance could be deduced. Hermite, a model of politeness and tact, expressed
essentially this thought to Gustav Mittag-Leffler, when the latter asked him to supervise the
translation of Cantor’s work into French in 1883. And, as Picard’s 1899 lecture indicated,
the theory had by no means proved its usefulness to the French mathematicians by the end
of the 19th century. The work of Borel, Lebesgue, and P. Fatou did much to provide the
important applications that the theory needed in order to gain respectability.

7 LEBESGUE’SLEÇONS SUR LES SÉRIES TRIGONOMÉTRIQUES (1906)

A new theory, even an elegant one, will attract only temporary interest unless it solves some
interesting problems. Unresolved questions regarding trigonometric series representations
had played a large role in driving real analysis to higher levels of abstraction; and these
questions were, as Lebesgue and others discovered, a rich field for applications of the
Lebesgue integral. Although Lebesgue had been working on such problems while giving
his first Peccot course, he had not found time or space enough to give a thorough exposition
along with his lectures on the integral. Lebesgue began the process of applying this integral
to trigonometric series when he gave a second Peccot course in 1904–1905; the notes from
this course provided the material for his second book, a 125-page gem full of subtle and
illuminating facts about trigonometric series representations. Thebook, divided into an
introductory section and five chapters, is summarised in Table 3.

The introduction summarizes the material on the Lebesgue integral that will be needed
for the applications, in particular the dominated convergence theorem for a finite interval
and the fact that translation is continuous, as we would now say, in the metric of Lebesgue-
integrable functions.

Much of Lebesgue’s first chapter is historical, reviewing the use of trigonometric series
by Euler in astronomy, by Daniel Bernoulli in mechanics, and by Fourier in heat diffusion.
As the title indicates, this chapter is primarilyconcerned with methodsof finding the coeffi-
cients of a trigonometric series to represent a given function. Lebesgue reviewed carefully
the Euler–Fourier method of computing the coefficients by integration, an 18th-century
method of interpolation used by A. Clairaut and J.L. Lagrange, and Fourier’s power-series

Table 3. Contents by chapters of Lebesgue’sLeçons sur les séries trigonométriques.

Ch. Page Title

1 Introduction. Properties of functions.

1 17 Determination of the coefficients of the trigonometric series representing a
given function.

2 33 Elementary theory of Fourier series.

3 55 Convergent Fourier series.

4 84 Arbitrary Fourier series.

5 110 Arbitrary trigonometric series. [End 125.]
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method, which involved sets of linear equations in infinitely many variables. He then de-
fined Fourier series, for summable (Lebesgue-integrable) functions only, as series whose
coefficients are given by the Euler/Fourier formulas, using the tilde sign, which he at-
tributed to Hurwitz, to write

f (x)∼ 1

2
a0+ (a1 cosx + b1 sinx)+ (a2 cos2x + b2 sin2x)+ · · · , (7)

which he said could be read as ‘f (x) has the Fourier series12a0+ (a1 cosx + b1 sinx)+
· · ·’. For functions having nonabsolutely convergent integrals, which had been considered
by earlier authors, he referred to the corresponding series asgeneralized Fourier series. The
crucial point, he said, was to determine whether the tilde sign in (7) could be replaced by
an equals sign. Despite physical arguments intended to justify this replacement, Lebesgue
said, no such argument could replace a mathematical proof.

Chapter 2 takes up the problem of convergence of Fourier series. Starting with a number
of examples of particular series, Lebesgue arrives at what appears to be a rather weak result,
namely that a function having a derivative of bounded variation on the intervals of some
partition of the interval of periodicity has a convergent Fourier series. Weak as it appears,
this result allows Lebesgue to deduce the Weierstrass approximation theorem mentioned
above, and to prove that for any continuous function on the unit circle in the complex
plane there exists a harmonic function in the unit disk having the given function as its
boundary values (the Dirichlet problem). He concludes this chapter with a proof that the
Fourier series of a function having right- and left-hand limits at a point cannot converge to
any value other than the average of those limits and shows finally that the solution of the
Dirichlet problem is unique.

Convergence continued to be the main topic in Chapter 3. Lebesgue proves the now-
standard result that the Fourier coefficients of an integrable function tend to zero. He makes
frequent use of the expression

∫ π
2

δ

∣∣ψ(t + δ)−ψ(t)∣∣ dt, (8)

which plays a role in the most delicate of the standard criteria for convergence of a Fourier
series, known asLebesgue’s condition. Lebesgue presents a variety of such criteria, for
which he cited criteria of Dini,Jordan, Dirichlet, and R. Lipschitz as precedents. He then
gives the example of a summable but not Riemann-integrable function representable by a
Fourier series. In a section of ‘miscellaneous applications’ Lebesgue gives the inversion
formula for the Fourier integral of an integrable function of bounded variation, as well as
the Poisson summation formula connecting the Fourier integral of an integrable function
on the line with the Fourier series of the periodic function that is obtained by summing the
integrable function at evenly-spaced points.

In Chapter 4 Lebesgue considered divergent Fourier series, giving Paul Du Bois-
Reymond’s example of a continuous function whose Fourier series diverges at certain
points and also an example of a Fourier series that converges non-uniformly to a con-
tinuous function. He then took up the study of summation methods for divergent series,
discussing in detail the methods of S.D. Poisson, Riemann, and L. Fejér. All this material
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is now regarded as standard and basic in the study of Fourier series. The next section con-
siders the allowable termwise operations on Fourier series; in particular, Lebesgue proves
what is now called ‘Parseval’s equality’ for the Fourier coefficientsof a continuous periodic
function and speculated whether one could deduce anything about the Fourier series of a
product of two functions having convergent Fourier series. He also shows that a Fourier
series can always be integrated termwise, whether or not the series converges. The in-
tegrated series necessarily converges to the indefinite integral of the function having the
given Fourier series. Then follows a section of geometric applications, containing in par-
ticular the elegant proof that any simple closed rectifiable curve of lengthL can enclose
an area at most,L2/(4π), equality holding only in the case of a circle (the isoperimetric
inequality).

The fifth and final chapter takes up the subject of general trigonometric series, with co-
efficients given arbitrarily and not generated by any integrable function. Cantor had shown
that the coefficients of any trigonometric series that converges on an interval must tend
to zero. Even though Kronecker had shown how to deduce all of Cantor’s results without
the need to prove this result (he showed that the theorems proved without the assumption
can be deduced from the same theorems proved with the assumption), Lebesgue could not
resist showing that this theorem, now known as the Cantor–Lebesgue theorem, holds even
when one assumes only convergence on a set of positive measure. Although this result
plays no important role in the uniqueness theory for trigonometric series in one variable,
it turned out many decades later that the two-variable analog of the theorem is of crucial
importance in the theory of uniqueness for trigonometric series in two variables [Cooke,
1971]. Lebesgue then gave a discussion paralleling, with commentary, that given by Rie-
mann in 1854, and ending with the uniqueness theorem proved by Cantor, and an example
(due to Fatou) of a convergent trigonometric series that is not a Fourier series, namely

∞∑
n=2

sinnx

logn
. (9)

In the final section Lebesgue discussed a technical point concerning an auxiliary function
introduced by Riemann in the course of his proof of uniqueness, suggesting that it would
be of interest to relax the restrictions imposed on this function.

8 RECEPTION OF LEBESGUE’S SECOND BOOK

Simultaneously with this work of Lebesgue, Fatou was studying the Dirichlet problem
with summable functions rather than continuous functions as boundary values. To Fatou
belongs the credit for realizing the importance of square-summability. Given a Fourier
series (7) generated by a square-summable functionf (t), Fatou considered the function
u(r, t) in polar coordinates in the unit disk defined by the convergent series

u(r, t)= 1

2
a0+

∞∑
n=1

(an cosnt + bn sinnt)rn. (10)
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Fatou showed thatu(r, t) tends to the functionf (t) asreit approacheseit along any non-
tangential path. It was Frigyes Riesz (1880–1956) who saw the important connection be-
tween square-summable functions and the space Hilbert had used in the theory of integral
equations. He realized that the uniform metric Fréchet had introduced for the space of con-
tinuous functions could be generalized to what is now called theL2 metric, and he showed
that the trigonometric functions formed a complete orthogonal system in this space (the
Riesz–Fischer theorem). By 1910 Riesz had introduced the full set of spaces now known
as theLp spaces. A little later G.H. Hardy combined the work of Riesz and Fatou, in-
troducing the subspace ofLp consisting of those functions that are the boundary-values
of analytic functions in the unit disk ([Hardy, 1915]: actually, he showed only that the
norm of the function is an increasing function of the radius). These spaces are now called
Hp spaces. The spacesLp andHp proved to be of enormous mathematical interest, and
questions involving the convergence of the Fourier series of functions belonging to one
or another of them were the subject of hundreds of papers during the 20th century. Per-
haps the problem of greatest interest was formulated by Luzin in his 1914 doctoral thesis
‘Integration and the trigonometric series’. Luzin conjectured that the Fourier series of a
square-integrable function converges except on a set of measure zero. The proof of this
conjecture was finally given by L. Carleson in 1965.

9 JOINT EFFECT OF THESE THREE WORKS

The work of Lebesgue and Baire correspond roughly to two aspects of function theory:
measure theory, and the descriptive theory. The descriptive theory is in a definite sense the
more basic of the two, since measure and integration theory needs to delineate the classes
of measurable sets and functions before measure and integration can be defined. For this
purpose the Baire classification of functions is useful, as is the hierarchy of Borel sets.
However, the full power of these classifications is not needed, since, by an elementary
result of measure theory, every Lebesgue-measurable set differs from a set in the second
Borel class by a set of Lebesgue measure zero, and every measurable function is equal
almost everywhere to a function of the second Baire class. This amount of descriptive the-
ory is included in every course of measure theory, and the further details of Baire’s work
are often omitted. Of the two areas, the metric (measure) theory has been by far the more
influential. Although many areas of mathematical analysis make use of the Lebesgue inte-
gral and no analyst can afford to be ignorant of it, the finer points of descriptive set theory
are considered a subject for specialists. Descriptive set theorists, however, have made an
attempt in recent years to close the gap betweenthe two, showing that their techniques can
be used to produce metamathematical theorems ruling out any simple characterization of
the sets of uniqueness for trigonometric series [Cooke, 1993; Kechris and Louveau, 1987].
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CHAPTER 60

H.A. LORENTZ, LECTURES ON ELECTRON
THEORY, FIRST EDITION (1909)

A.J. Kox

In these lectures Lorentz presents the principles and some major applications of his elec-
tron theory, especially his atomistic theory of electromagnetism that is based on the exis-
tence of elementary charged particles (‘electrons’) that interact with each other and with
electromagnetic fields.

First edition. The theory of electrons and its applications to the phenomena of light and
radiant heat. A course of lectures delivered in Columbia University, New York, in March
and April 1906, Leipzig: Teubner, 1909 (Sammlung von Lehrbüchern auf dem Gebiete
der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, vol. 29). 332
pages.

Second edition. 1916. 343 pages. [Photorepr. New York: Dover, 1952. Also asSelected
works, vol. 5 (ed. N.J. Nersessian and H.F. Cohen), Nieuwerkerk a/d IJssel: Palm Pub-
lications, 1987.]

Russian translation of the 2nd edition. Teoriia elektronov i ee primenenie k iavleniiam
sveta i teplovogo izlucheniia, Leningrad and Moscow: GTTI, 1934.

Related articles: Maxwell (§44), Kelvin (§58), Einstein (§63).

1 BIOGRAPHY

Hendrik Antoon Lorentz was born in Arnhem, the Netherlands in 1853. After completing
his studies at the University of Leyden he obtained his doctorate in physics in 1875 on
a dissertation dealing with the reflection and refraction of light. Two years later he was
appointed Professor of Mathematical Physics at the University of Leyden, a position that
he would hold for the rest of his career. In 1902 he shared the Nobel Prize for physics with
his Amsterdam colleague Pieter Zeeman for their work on the relation between magnetism
and light, one of the major successes of which was the discovery (by Zeeman) and the
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explanation (by Lorentz) of the Zeeman effect, the splitting of spectral lines in several
components under the influence of an external magnetic field.

As his career developed, Lorentz became oneof the undisputed world leaders in theo-
retical physics. Typical for his status is that he chaired all of the famous Solvay Congresses
that took place during his lifetime. His chairmanship was applauded by all, and led Albert
Einstein to call him a ‘living work of art’. For a review of his life and work, see [McCor-
mmach, 1973].

2 LORENTZ’S CONTRIBUTIONS TO ELECTROMAGNETISM

If one looks at the development of Lorentz’s work, one is impressed in the first place by the
wide range of topics on which he worked and to which he made important contributions:
for example, kinetic theory, thermodynamics, radiation theory and quantum theory. But
among these there is one topic that stands out and that appears again and again in his
writings: the theory of electromagnetism. Already in his dissertation one can discern the
beginnings of a systematic research program that would unfold in the following years.
One of the innovative aspects of the dissertation is that Lorentz applies the relatively new
theory of J.C. Maxwell (§44) to the phenomena of reflection and refraction of light. In this
view, light consists of electromagnetic transversal waves that propagate in a medium, called
the electromagnetic ether. Earlier, light had been treated as waves in a medium, the ‘light
ether’, that had properties similar to those of an elastic solid. Apart from unifying electrical
and magnetic phenomena, Maxwell’s theory had the advantage that the light ether and the
electromagnetic ether became the same substance, doing away with the awkward problem
of longitudinal waves, predicted in the elastic-solid theory but never observed.

A second important aspect of Lorentz’s approach to electromagnetism is that he treated
matter as atomistic: matter consists of small particles, some of which may be charged,
surrounded by ether. In so far as they are charged, the particles exert an influence on the
ether. This disturbance propagates through the ether and manifests itself as electromagnetic
action as soon as it reaches charged or magnetized matter. Thus, a separation between
ether and matter is achieved, where matter is the source or the recipient of electromagnetic
action and ether serves as the medium in which the action propagates. This separation,
only implicit in Lorentz’s early work, would become sharper as the theory developed.
Whereas at the beginning the ether was still treated as a mechanical system—in a major
paper [Lorentz, 1892] derived Maxwell’s equations from a Lagrangian principle for the
ether—it gradually loses all mechanical properties except one: its immobility. Maxwell’s
equations are then simply postulated, in a Hertzian vein.

A third characteristic of Lorentz’s approach is his introduction of what he himself called
the ‘hypothesis of a single mobile particle’. First introduced in a treatise on dispersion phe-
nomena of 1879, this hypothesis postulates that atoms can contain many charged particles,
at least one of which is harmonically bound to a center. The periods of the vibrations
such a particle can perform—and thus the frequency of the radiation emitted by it—are
influenced by electromagnetic fields. Thus first the phenomenon of dispersion and later
the experimentally discovered Zeeman effectcould be explained in a satisfactory way. At
first, the name ‘ions’ was used, but after the identification of the intra-atomic particles with



780 A.J. Kox

the charged particles found in cathode rays, the name ‘electron’ became common, and
Lorentz’s electromagnetic theory became known as the ‘theory of electrons’.

Of all the assumed mechanical properties of the ether, its immobility was by far the most
important and at the same time the most problematic. From astronomy there was strong ev-
idence that the ether was not dragged along by the Earth; in particular, the phenomenon of
stellar aberration could only be explained if one took the ether to be stationary. Attempts
to find other ether models that could account for the astronomical observations failed. On
the other hand, a whole series of electromagnetic experiments, the best known of which
is the famous Michelson–Morley experiment, failed to show any indication of the Earth’s
supposed motion through the ether. In the latter experiment, an interference method was
used to measure the ‘ether wind’, the phenomenon that the speed of light would have dif-
ferent values parallel and perpendicular to thedirection of the Earth’s motion. In general,
all electromagnetic phenomena should depend on the speed of the Earth through the ether
because the Maxwell equations change form when transformed from an ether-based refer-
ence frame to one that moves with respect to the ether. In modern words, one says that the
Maxwell’s equations are not invariant under Galileo transformations, the transformations
that connect frames that move uniformly with respect to each other.

For Lorentz the whole problem of the motion of the Earth through the ether was of
utmost importance. Indeed, in an unpublished manuscript from 1900 in which he describes
his scientific development, he explicitly mentions that his idea to make a sharp distinction
between the ether and matter was inspired by the hope than in this way a consistent theory
of optical phenomena in moving bodies could be developed.

In fact it would be the struggle with this particular problem that led Lorentz to de-
velop his most powerful tools in the theory ofelectromagnetism. In a series of papers he
tried to find a general and systematic method to reduce phenomena in moving systems to
equivalent ones in resting systems. This led him to his so-called ‘theorem of correspond-
ing states’, which allowed him to explain the negative outcome of several electromagnetic
experiments. But the Michelson–Morley experiment defied his efforts. At his wit’s end, he
saw no other possibility than the introduction of the so-called contraction hypothesis: all
material bodies that move through the ether will be shortened in their direction of motion
by a fraction that depends on the speed with which they move with respect to the resting
the ether. Lorentz made the hypothesis plausible by postulating a similarity in behavior be-
tween electric forces and the forces that keep material bodies together. Finally, in [Lorentz,
1904], he succeeded in drawing up a unified theory in which the contraction hypothesis fol-
lows in a natural way from the theorem of corresponding states. It is in this paper that the
transformations are derived that connect phenomena in moving systems to corresponding
ones in stationary system, the transformations now known as the ‘Lorentz transformation’.
The main conclusion of the paper was that it is impossible to detect the motion of the Earth
through the ether using electromagnetic (including optical) experiments. Note the timing
of Lorentz’s paper: this was one year before Albert Einstein published his special theory
of relativity in which the Lorentz contraction and the Lorentz transformation were given a
totally different interpretation.
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3 THE LECTURES

Having reached this apparent endpoint, and having been invited to lecture at Columbia Uni-
versity in New York in 1906, it is not surprising that Lorentz chose the theory of electrons
as his topic and decided to present a comprehensive and didactically composed overview of
this, his life’s work. He also decided to rework the lectures into a book. He accomplished
this task so beautifully that even today it is a joy to study the book. As the lectures are
presented,The theory of electrons is a masterly exposition of everything the theory could
accomplish. The contents are outlined in Table 1.

Lorentz summarised the approach taken in the lectures thus (p. 8):

If we want to understand the way in which electric and magnetic properties
depend on the temperature, the density, the chemical constitution or the crys-
talline state of substances, we cannot be satisfied with simply introducing for
each substance these coefficients, whose values are to be determined by ex-
periment; we shall be obliged to have recourse to some hypothesis about the
mechanism that is at the bottom of the phenomena.
It is by this necessity, that one has been led to the conception ofelectrons,
i.e. of extremely small particles, charged with electricity, which are present
in immense numbers in all ponderable bodies, and by whose distribution and
motions we endeavor to explain all electric and optical phenomena that are not
confined to the free ether.

This is the first true exposition of electrodynamics from an atomistic point of view: every
discussion starts with the microscopic Maxwell equations, that is, the equations that hold
for systems of atoms and electrons. Why is that important? It is for the simple fact that for
those systems there are onlytwo fields, instead of the usual four ones. Microscopic charged
particles are only subject to the electric forced and the magnetic forceh (in Lorentz’s no-
tation). Obviously, these fields are strongly fluctuating on the scale of atoms and electrons;
to derive the equations for macroscopic bodies an averaging or smoothing operation has
to be carried out. It is at that stage that the other well-known fields appear: the electric
displacement and the magnetic induction. Thismicroscopic approach and the conceptual

Table 1. Contents by chapters of Lorentz’s book.

Chapter Page Topics

1 1 General principles. Theory of free electrons.

2 68 Emission and absorption of heat.

3 98 Theory of the Zeeman effect.

4 132 Propagation of light in a body composed of molecules. Theory of the
inverse Zeeman effect.

5 168 Optical phenomena in moving bodies.

231 Notes [End 329], index.
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simplification that it brought about was characterized by Einstein as an ‘act of liberation’
[Einstein, 1957].

After having discussed the fundamentals of his theory, Lorentz guides the reader
through its most important applications, such as the absorption and emission of light, the
theory of the Zeeman effect, and the propagation of light in molecular bodies. The dis-
cussion is crystal clear, with technical details that would interrupt the flow of the argument
relegated to a series of notes at the end of the book. The final chapter is devoted to the prob-
lem of optical phenomena in moving bodies, and it is here that we are confronted with the
conceptual clash between Lorentz’s ether-based approach and Einstein’s special relativity.
Lorentz essentially repeats the argument from his 1904 paper, showing that all attempts at
an experimental determination of the motion of the Earth through the ether are doomed to
fail. He also comments on the relation between his theory and special relativity thus (pp.
229–230):

His [Einstein’s] results concerning electromagnetic and optical phenomena
[. . . ] agree in the main with those we have obtained in the preceding pages, the
chief difference being that Einstein simply postulates what we have deduced
with some difficulty and not altogether satisfactorily, from the fundamental
equations of the electromagnetic field. [. . . ] Yet, I think something may also
be claimed in favour of the form in which I have presented the theory. I cannot
but regard the ether, which can be the seat of the electromagnetic field with its
energy and its vibrations, as endowed with a certain degree of substantiality,
however different it may be from all ordinary matter.

Indeed, the formalism developed by Lorentz is practically identical to Einstein’s results;
in particular, the experimental predictions that could be tested at the time were identical.
This held in particular for the outcome of measurements of the velocity dependence of the
mass of the electron. Ironically, because theymade the same predictions, Einstein’s and
Lorentz’s theories were commonly grouped together as the ‘Einstein–Lorentz theory’, to
distinguish them from other theories of the structure of the electron, such as the one by
Abraham. That this name is a misnomer becomes immediately obvious when we look at
the foundations of both theories. The theory of electrons is a classical ether-based theory,
in which Maxwell’s equations in their usual form are only valid in a reference frame that
is at rest with respect to the ether. On the other hand, special relativity postulates the uni-
versality of the principle of relativity: the physical equivalence of all reference frames that
move uniformly with respect to each other. That it is impossible to make an experimental
distinction between two such frames was theoutcome of the theory of electrons, whereas
in special relativity it wasimplied by the principle of relativity.

A final word is needed about Lorentz and the ether. The state of mind that he expressed
so clearly in the quotation above would remain with him for the rest of his life. Although
he realized that the existence of the ethercould not be shown using electromagnetic ex-
periments and that it in fact served no physical purpose whatsoever, he maintained that he
could not see how waves propagate in vacuum and how the same vacuum could be the seat
of electromagnetic field energy. He felt that one needed a substrate in the same way one
needs a peg if one wants to hang up one’s hat. By the time of his death in 1928, Lorentz
was one of the few physicists left who held that view.
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4 A NOTE ON HIS IMPACT

If a single work epitomizes Lorentz’s life’s work, it is hisTheory of electrons. (The second
edition of 1916 contained a small number of changes in the main text and some additions to
the footnotes and in the notes section.) This book is the endpoint of a life’s work, complet-
ing what was started as early as 1875 in his dissertation. It is an ironic twist of history that
the book appeared just when Einstein’s special theory of relativity, which in effect super-
seded Lorentz’s work, was gaining more and more support in the physics community (com-
pare §63). Still, that does not detract from its great value and influence. The approach taken
and the methods used in giving microscopic descriptions of electromagnetic phenomena
are still valid and have proven to be extremely useful. Modern-day electromagnetic theory,
as it is taught at universities, owes much to Lorentz’s work. If we are not always aware
of this, then it is perhaps because modern physicists have, in Einstein’s words, ‘absorbed
Lorentz’s fundamental ideas so completely that they are hardly able to realise to the full
the boldness of these ideas and the simplification which they brought into the foundations
of the science of physics’ [Einstein, 1957].
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CHAPTER 61

A.N. WHITEHEAD AND BERTRAND RUSSELL,
PRINCIPIA MATHEMATICA , FIRST EDITION

(1910–1913)

I. Grattan-Guinness

In this mammoth work the authors gave a detailed account of mathematical logic and set
theory, and argued that ‘all’, or at least much, mathematics could be built upon it. While
the reactions were negative as well as positive, the book helped to stimulate much work on
logic and the foundations of mathematics.

First publication. 3 volumes, Cambridge: Cambridge University Press (hereafter, ‘CUP’),
1910–1913. 666+ 742+ 491 pages. Print run: 750, 500, 500 copies.

Manuscripts. Main manuscript destroyed, but some rejected folios, a concordance index
and relevant correspondence held in the Bertrand Russell Archives, McMaster Univer-
sity, Canada. NoNachlass for Whitehead.

Later editions. 2nd edition, 3 volumes, 1925–1927, CUP. 674+ 772+ 491 pages. Various
photoreprints until the 1960s, then 1997. Pirate photoreprint: Taipei: Rainbow Bridge
Publishing Company, 1955(?).

Abridged version. Principia mathematica to *62, 1962, CUP.

Part German translation. Einführung in die mathematischen Logik (trans. H. Mokre), Mu-
nich and Berlin: Drei Masken, 1932. [Repr. Vienna: Medusa, 1984. The introductory
material of the two editions.]

Related articles: Cantor (§46), Dedekind and Peano (§47), Gödel (§71), Hilbert and
Bernays (§77).

1 THE REDUCTIONIST HERITAGE

Principia mathematica (hereafter, ‘PM’) was the cumulation of nearly a decade of work by
its authors that brought to a climax some decades of a search both for rigour in mathemat-
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ical proof and examination of the relationship between mathematical logic and the closest
attendant branches of mathematics. A.N. Whitehead (1861–1947) and Bertrand Russell
(1872–1970) argued in this book for aposition that, following the philosopher Rudolf Car-
nap (1891–1970) in the late 1920s, is called ‘logicism’; namely, that their logic, together
with set theory, supplied not only all the means of deduction required in mathematics but
also its objects, starting out from definitions of cardinal and ordinal integers in terms of
‘classes’ (to quote the technical term then commonly used).

Russell set most of the main guidelines for logicism. He had graduated from Cam-
bridge University in 1894 in mathematics and philosophy, and for the rest of the decade
he united the two disciplines in a search for the reasons why mathematical knowledge was
secure. Starting off withAn essay on the foundations of geometry (1897), he then moved
to arithmetic and some aspects of mathematical analysis. He was working within neo-
Hegelianism, the prevailing Cambridge philosophy of a strongly idealist character which
asserted that all be in the mind, especiallythe ‘synthesis’ of opposing thesis and antithe-
sis. He was not satisfied with any of the systems obtained, and during 1899 he followed
his philosopher friend G.E. Moore in replacing that philosophy with an opposite empiri-
cism, which minimised the role of abstract objects in knowledge [Griffin, 1991]. But this
transformation left the mathematical basis still wanting—until a magic morning on Fri-
day 3 August 1900 at the First International Congress of Philosophy, when he learnt of a
programme in progress at Turin under the direction of Giuseppe Peano (1858–1932).

Although never a student, Peano knew well the lecture courses of Karl Weierstrass
(1815–1897) at Berlin University, in which Weierstrass sought to improve the level of
rigour in arithmetic and mathematical analysis, refining the aims already set by A.L.
Cauchy (§25): special emphasis was laid upon careful definitions, and provision of all
details of proof. Peano tried to underpin arithmetic by offering axioms using new prim-
itives from which integers could be defined, but he was only partially successful (§47).
He also greatly increased the formalisation of and symbolism for mathematics; and also
the ‘mathematical logic’ (his name) with which a theory was expressed. He formulated
the classical two-valued logic based upon the law of excluded middle (‘LEM’), that every
proposition is either true or is false, and incorporated both the propositional and the predi-
cate calculi with quantification. His programme consisted in rendering both this logic and
mathematical theories in axiomatic forms, and expressing as precisely as possible the basic
concepts, definitions and proofs of theorems [Borga et alii, 1985; Rodriguez-Consuegra,
1991, ch. 5]. He and his three main followers spent that Paris morning in August 1900 de-
scribing aspects of the project: Alessandro Padoa in person, Cesare Burali-Forti and Mario
Pieri with read papers.

The Peanists (as they were known) made great use of the set theory of Georg Cantor
(1845–1918). This too had grown out of Weierstrass’s programme, and provided not only
much machinery for mathematical analysis but also an (apparently) natural link to logic
via the association between a ‘propositional function’ (Peano again) such as ‘x is an even
number’ and the class of even numbers, and quantification represented by relationships
between classes such as intersection and inclusion.

Cantor and the Peanists were the two principal influences upon Russell. His first reaction
was surprise that Peano’s logic did not included a logic of relations; so he promptly sup-
plied one in 1900, adapting logical and set-theoretic notions as appropriate—and largely
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ignoring the tradition of such a logic among the algebraic logicists, especially C.S. Peirce
and Ernst Schröder [Brady, 2000]. (Relationsare propositional functions of more than one
variable; below ‘propositional function’ will include relations also.) Then, he noticed that,
while the Peanists laid out mathematical and logical notions (with symbols) in separate
columns, set-theoretic notions could appear in both of them; so early in 1901 he decided
that no division existed, and formulated his logicist thesis that all mathematical notions
were already logical ones. So at least the vision was complete and clear; everything came
down to classes, which themselves were definable within mathematical logic.

But soon after the joy came sorrow; within a few months Russell found a paradox in set
theory. Cantor had a proof that the cardinality of any class was less than that of the class
of all its sub-classes, and by adapting it to the class of all classes Russell found that the
class of all classes that did not belong to themselves belonged to itselfif and only if it did
not do so. The italicised clause, a bi-implication, underlies the seriousness of the result;
in a system based upon logic of all subjects, the foundations were themselves susceptible
to contradiction. The apparently natural association of propositional function and class, or
the LEM, was lost.

By the time of this discovery Russell was well into writing a large book outlining this
position, which appeared in 1903 from the Cambridge University Press asThe principles
of mathematics [Russell, 1903]. The logicist thesis was stated in terms of conditionals: ‘if
p thenq ’, wherep andq were propositions drawing only uponlogical (and set-theoretic)
notions. He characterised this logical form as ‘pure mathematics’—a non-standard and
most misleading use of this name. His paradox were presented, with others including those
of the greatest ordinal and cardinal number (each was both equal to and larger than itself),
and a tentative solution was offered [Garciadiego, 1992]. He also publicised the work of
Gottlob Frege (1848–1925), who had already formulated a version of logicism, restricted
to arithmetic and some mathematical analysis; Russell had not read his work until after
completing the bulk of his book. Frege’s logical system was also susceptible to Russell’s
paradox.

2 COLLABORATION, AND FALLOW YEARS

What to do now? A great vision was in place, but the ground floor had collapsed, and the
tentative solution did not work.

Also present in Paris in 1900 had been Whitehead, formerly a tutor of Russell and author
of a recent survey of several modern algebras, especially Hermann Grassmann’s (§32), in
his (misnamed) bookUniversal algebra (1898). Also impressed by Peano and drawn to
Cantor, Whitehead had taken up transfinite arithmetic; but around 1904 he joined Russell
in the aim of expounding logicism in full symbolic Peanist detail while also Solving those
damned paradoxes. Throughout the following years Whitehead was still at Cambridge, but
in 1905 Russell had a house built near Oxford, and much of his research was done there.
Following a bad practice, I shall refer just to ‘Russell’ below, though Whitehead was often
also involved in the moves [Lowe, 1985].

The paradoxes dominated Russell’s efforts for some years. He tried many possibilities,
some based upon analysing Cantor’s proof method for the power-class theorem, but with-
out success; either some version of the paradox would recur, and/or else some part of the
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mathematics was lost. But one important advance was finding in 1905 the means of ex-
pressing mathematical functions in terms of propositional ones, with his theory of definite
descriptions. Inspired by the need for mathematical functions to be single-valued (+√x is
a function but

√
x is not) he offered conditions for this property to be satisfied contextually

within a proposition: at least and at most one object fitted the description involved, and
moreover had (or did not have) some property asserted in that proposition. These condi-
tions had already been suggested by Peano for mathematics; Russell saw their bearing on
language more generally. His insight was that, in connection with negation, ‘the’ had to
be handled like a quantifier; just as the trueproposition ‘not all numbers are even’ is dis-
tinguished from the false ‘all numbers are not even’, so the negation of ‘the present King
of France is bald’ is not ‘the present King of France is not bald’, both of which are false,
but ‘it is not the case that the present King of France is bald’, which is true (as also is ‘it
is . . . not bald’). Thereby the LEM was preserved. Mathematical expressions were to be
construed this way: for example, the (false) proposition 2+ 3= 56 becomes ‘the value of
2+ 3 is 56’.

Thus treatment of descriptions soon led Russell to a ‘substitutional’ theory, which as-
sumed only propositions and their truth-values and individuals; but for wares reasons, in-
cluding a form of his paradox, it was abandoned. Retaining the theory of descriptions, from
1907 Russell went back to propositional functions with normal variables and quantifica-
tion, and he and Whitehead worked out their logicist system. Parts of the developing theory
were written up by Russell as papers in theAmerican journal of mathematics, with more
philosophical aspects being rehearsed inMind and elsewhere.

3 THE WRITING AND CONTENT OFPM

The project was divided up into Parts, with one author taking the initial responsibility
for its content, which would be checked and criticised by the other, and possibly back
again. Russell wrote out the final version for printing; the manuscript (which they destroyed
soon after publication) seems to have contained at least 6000 folios, with each theorem
and proof written on a separate folio. By the autumn of 1909 the manuscript of the first
three volumes was ready for Cambridge University Press; funding was obtained from the
Royal Society of London to support printing costs. The title ‘Principia mathematica’ had
been chosen around 1906; maybe it alluded to their Trinity College predecessor Newton
(§5), but another candidate was their empiricist leader Moore, whosePrincipia ethica had
appeared in 1903. Table 1 lists the logical/mathematical topics covered, and shows that
Peano and Cantor dominated [Grattan-Guinness, 2000, ch. 7]; the authors did not even
reach the calculus, although it had been treated, in a prosodic manner, in Russell’sThe
principles.

The opening Part dealt with the propositional and predicate calculi, including both in-
dividual and functional (and relational) quantification. It is the best known and least clear
portion of PM. The difficulty concerns incoherence of expression; it largely sprang from
the inherited Peanist belief that logic was an absolutely general discipline, so that (as we
now say) there was no room to talkabout it. For example, the LEM, which is (and was)
normally construed as a metalogical principle, was taken instead to be the proposition
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Table 1. Summary by Sections ofPrincipia mathematica (1910–1913).
The titles of the Parts, and numbers of pages (omitting the introductions) were: I. ‘Mathematical

logic’ (251); II. ‘Prolegomena to cardinal arithmetic’ (322); III.‘Cardinal arithmetic’ (296);
IV. ‘Relation-arithmetic’ (210); V. ‘Series’ (490); VI. ‘Quantity’ (257). ‘+’ indicates surviving

pertinent manuscripts.

Section; pages (Short) ‘Title’ or Description: other included topics
IA: *1–*5; 41 ‘Theory of deduction’: Propositional calculus, axioms.
IB: *9–*14; 65 ‘Theory of apparent variables’: Predicate calculus, types,

identity, definite descriptions.
IC: *20–*25,+; 48 ‘Classes and relations’: Basic calculi: empty, non-empty and

universal.
ID: *30–*38,+; 73 ‘Logic of relations’: Referents and relata, Converse(s).
IE: *40–*43; 26 ‘Products and sums of classes’: Relative product.
IIA: *50–*56; 57 ‘Unit classes and couples’: Diversity; cardinal 1 and ordinal

2.
IIB: *60–*65; 33 ‘Sub-classes’ and ‘sub-relations’: Membership, marking

types.
IIC: *70–*73; 63 ‘One-many, many-one, many-many relations’: Similarity of

classes.
IID: *80–*88,+; 69 ‘Selections’: Multiplicative axiom, existence of its class.
IIE: *90–*97; 98 ‘Inductive relations’: Ancestral, fields, ‘posterity of a term’.
IIIA: *100–*106; 63 ‘Definitions of cardinal numbers’: Finite arithmetic,

assignment to types.
IIIB: *110–*117; 121 ‘Addition, multiplication and exponentiation’ of finite

cardinals: inequalities.
IIIC: *118–*126; 112 ‘Finite and infinite’: Inductive and reflexive cardinals,ℵ0,

axiom of infinity.
IVA: *150–*155,+; 46 ‘Ordinal similarity’: Small ‘relation-numbers’ assigned to

types.
IVB: *160–*166; 56 ‘Addition’ and ‘product’ of relations: Adding a term to a

relation, likeness.
IVC: *170–*177; 71 ‘Multiplication and exponentiation of relations’: Relations

between sub-classes, laws of relation-arithmetic.
IVD: *180–*186; 38 ‘Arithmetic of relation-numbers’: Addition, products and

powers.
VA: *200–*208,+; 97 ‘General theory of series’: Generating relations, ‘correlation

of series’.
VB: *210–*217; 103 ‘Sections, segments, stretches’: Derived series, Dedekind

continuity.
VC: *230–*234; 58 ‘Convergence’ and ‘limits of functions’: Continuity,

oscillation.
VD: *250–*259,+; 107 ‘Well-ordered series’: Ordinals’, their inequalities,

well-ordering theorem.
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Table 1. (Continued)

Section; pages (Short) ‘Title’ or Description: other included topics
VE: *260–*265,+; 71 ‘Finite and infinite series and ordinals’: ‘Progressions’, ‘series

of alephs’.
VF: *270–*276; 52 Compact, rational and continuous series: Properties of

sub-series.
VIA: *300–*314; 105 ‘Generalisation of number’: Negative integers, ratios and real

numbers.
VIB: *330–*337; 58 ‘Vector-families’: ‘Open families’, vectors as directed

magnitudes.
VIC: *350–*359; 50 ‘Measurement’: Coordinates, real numbers as measures.
VID: *370–*375; 35 ‘Cyclic families’: Non-open families, such as angles.

‘p∨not-p’ in the calculus. Substitutes for the distinction were made for certain circum-
stances, for example, taken from Frege,p merely considered and" p when asserted with
a truth-value.

The most serious casualty of these conflations was implication (‘if. . . then’), which
became muddled with inference,entailment and logical consequence. An example is logi-
cism itself: instead of the conditional form ‘"p⊃ q ’ of The principles, they seems to have
had in mind its inferential cousin ‘"p ⊃ "q ’, but they never made it clear. Among other
conflations, that between a (quantifiable) variable and a schematic letter was not made, nor
was a rule of substitution offered; and both axioms and rules of inference were bundled
together under the Peanist title ‘primitive propositions’.

The paradoxes were avoided (Solved?) by the ‘vicious circle principle’, which stated
that any object defined in terms of a class of objects cannot belong to that class. Thus an
object could belonged only to a class which was one ‘type’ up, classes only to classes
of classes, and so on, including for classes of ordered pairs, ordered trios, and so on.
A class was defined from an appropriate propositional function contextually in a proposi-
tion, and the ‘order’ was specified by determining which variables were quantified within
that function. Self-membership of any class was avoided, thereby stopping paradoxes from
being formed. In addition, there was a hierarchy of types of propositions, so that proposi-
tional paradoxes, such as the ancient one involving ‘this proposition is false’, could also be
Solved: ‘this’ was no longer self-referential, and the truth-value of the proposition lay in
the type above that of the proposition to which it referred.

The mathematical treatment was based upon defining cardinals and ordinals as classes
of equipollent classes and of well-order series respectively, starting out with their zeroes
defined respectively as the class of the empty class and of the empty relation. However,
type theory caused mathematical objects to be sited in different places; for example, the
numbers 2, 5/78 and

√
13 were in different types, so that they could not be handled to-

gether arithmetically. So Russell reluctantly proposed an ‘axiom of reducibility’, which
assumed that for any propositional function there existed a logically equivalent one free
from quantifiers; arithmetical operations were thereby restored, but type theory was trun-
cated.
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Further, the reconstruction of Cantor’s transfinite arithmetic needed an axiom of infinity,
which required that the bottom type be composed of an infinitude of individuals. Even then,
the construction of Cantor’s theory was only partial; for only a finite number of types was
allowed, so that the numbersωω andℵω and beyond could not be defined anyway. But
Moore’s empiricism had interfered already: these individuals, basic structureless objects,
could not be abstract, and they were hardly logical, so they had to be physical. Thus the
axiom was an empirical proposition; but then mathematical logic becamea posteriori. To
minimise this defect, Russell stipulated that when the full roster of individuals was not
required, only one of them was to be assumed; however, Whitehead had forgotten this
rule when preparing the exegesis of cardinal arithmetic for volume 2 of the book, and
several sections had to be rewritten on proof during 1911, with a new preface written by
Whitehead.

A final difficulty was the axiom of choice, to use the name given to it by Ernst Zermelo
after he introduced it in 1904 to prove Cantor’s well-ordering theorem. Slightly earlier that
year Russell had himself recognised the need for this axiom, when trying to define the
multiplication of an infinitude of numbers in terms of classes of classes, and called it the
‘multiplicative axiom’. There was a strong debate about these axioms; their various forms,
the places for their need, and the philosophical legitimacy ofits non-constructive character
[Moore, 1982].PM includes a fine account of its forms and role as understood around
1910, for it posed an extra philosophical worry for Russell: the mathematical logic inPM
wasfinitistic, in both the length of propositions and of proofs, but this axiom allowed the
execution of aninfinitude of independent operations, so thatits expression within its logic
was very problematic.

But there was much to please as well as to worry inPM. The use of relations was quite
virtuoso; in particular, the logic of relations was deployed widely to express all sorts of
properties, often starting out from that between the argument and the value of a mathe-
matical function. A high point occurs in volume 2 with a superb generalisation of ordi-
nal arithmetic, which Russell had conceived soon after learning Peano’s system: relation-
arithmetic’, a calculus of “numbers” defined as classes of ‘ordinally similar’ relations of
which the orthodox arithmetic of ordinals based upon well-ordering relations was a special
case.

Missing was a treatment of geometry, which Whitehead promised to write alone as
volume 4 [Harrell, 1988]; much of the material in the last sections of volume 3 had been
prepared for its benefit. Aspects of projective, metrical and descriptive branches were to
be treated, together with a ‘construction of space’ based upon the logic of relations that he
had already outlined in a paper of 1906 [Grattan-Guinness, 2002]; apparently three- and
four-place relations would be deployed extensively. He seems to have written quite lot of
this volume; but he gave it up around 1918, and the manuscripts were destroyed after his
death in 1947. But even had it been finished, some significant geometry would have still
been missing; for example, differential geometry.

4 REACTIONS BY RUSSELL AND HIS BRITISH FOLLOWERS

PM was quite widely read and used, at least in parts [Grattan-Guinness, 2000, chs. 8–
9]. The audience included not only logicians (a small community at that time) but also
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philosophers (normally the logic, sometimes also the logicism) and some mathematicians
(among whom the interest was rather slight, so that, for example, the importance ofPM
in the development of set theory is little recognised). On logicism the three troublesome
axioms gained much attention, the limited coverage of mathematics rather little.

After the appearance ofPM, apart from Whitehead’s volume 4 both he and Russell
largely abandoned logic(ism) for philosophy, of very different kinds. Russell maintained
the same Moorean empiricism in his epistemology; and logical techniques, especially those
involving relations, played a prominent role.Our knowledge of the external world as a
field for scientific method in philosophy (1914) was very influential. In 1919 he published
a popularIntroduction to mathematical philosophy, which treated the main features of
PM (geometry was avoided): definition of integers, order relations and ordinals, Canto-
rian transfinite arithmetic, limits and continuity, the axioms of choice and of infinity, type
theory and the paradoxes (where he confessed that assuming the existence of at least one
individual was ‘a defect in logical purity’:[Russell, 1919, 203]). By contrast, the account
of logic itself was rather cursory.

In that year Russell also resumed his friendship with his pre-War student Ludwig
Wittgenstein (1889–1951), who in the interim had written a philosophical work which was
to appear with an introduction by Russell asTractatus logico-philosophicus (1921, 1922).
While not concerned with logicism (he had nothing to say about infinite sets, for example),
Wittgenstein had realised that Russell’s logic and logicism had become mixed together. So
he tried to characterise logic independently, in an extensional manner with the connectives
construed as functorial compounds of truth-values and logical propositions defined as tau-
tologies or contradictions. In his introduction Russell reacted against the ensuing monism
and envisioned a hierarchy of languages,each of which could talk about those below as
well as about the world. It was one of his greatest philosophical suggestions; yet he never
appreciated its significance. Only two years later he prepared new material for a second
edition ofPM, a repeat of the first one with proposed revisions, but hierarchies of theory
played no role. The changes included some use of truth functions, although the notion of
tautology was not used.

For some reason Cambridge University Press reset the first two volumes (unchanged?);
Russell was helped in their reading by Frank Ramsey (1903–1930), who then outlined his
own version of logicism that was even more extensional than Russell’s revision. He even
defined the universal and existential quantifiers as infinite conjunctions and disjunctions
respectively, with no concern over the horizontally infinitary logic that could be involved.
He used the notion of tautology to propose away in which the axioms of reducibility and
of infinity could be rendered logical (in his sense). He also pointed out that some paradoxes
were concerned with naming as such rather than with mathematics, and followers of this
distinction have regarded them as irrelevant to logicism.

After Ramsey’s early deathPM did not gain much interest in Britain, though Susan
Stebbing (1885–1943) flew his flag against the continuing opposition of philosophers at
Oxford and Cambridge. Russell himself revived his academic life in the mid 1930s, and
reprintedThe principles in 1937 with a new preface; however, and regrettably not for the
only time, he misstated logicism as anidentity thesis between mathematics and logic! The
centre of gravity of Anglo-Saxon attention had long shifted across the Atlantic.
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5 THE RECEPTION OFPM IN THE UNITED STATES

Russell’s logical programme had aroused the curiosity of some American mathematicians
already in the 1900s. After its publicationPM stimulated much interest, especially with
a two-month visit made by Russell in the spring of 1914 to Harvard University where he
gave two lecture courses, one working thoughPM and the other heraldingOur knowledge.
(Extensive notes were taken by a graduate student called T.S. Eliot.) One important re-
action was negative: the recent graduateC.I. Lewis (1883–1964) noted the confusions in
the various uses of implication and proposed to distinguish the material from its ‘strict’
versions. Thereby he became the main founder of modal logics.

Lewis’s sensitivity to this issue was typical of interested Americans. One reason was
the development there of model theory [Scanlan, 1991], where (meta) properties of for-
mal systems was a main focus. Over the years E.V. Huntington (1874–1952) included
parts ofPM among his bestiary of mathematical theories; and H.M. Sheffer (1882–1964),
a fellow student of Lewis at Harvard, was concerned with features of formal systems
(such as introducing the neither-nor connective now named after him, in a paper of 1913
which also inaugurated the name ‘Boolean algebras’). In a review of 1926 of the sec-
ond edition ofPM Sheffer stated this conundrum more generally than anyone else: ‘In
order to give an account of logic, we must presuppose and employ logic’, and he saw
no way out of this ‘logocentric predicament’ [Sheffer, 1926, 228]. Yet despite the Amer-
ican sensitivity to this issue, the breakthrough to full metalogic was to lie in European
hands.

6 GERMAN-SPEAKING CONTRIBUTIONS

When Russell met Peano in 1900 David Hilbert (1862–1943) was beginning his own stud-
ies of the foundations of mathematics, after his work on geometry (§55). The fruits were
not great, and he largely stopped in 1905; but a second phase began in 1917, with the
‘metamathematical’ study of foundations, set theory the articulation of ‘proof theory’ that
was to flower into the 1930s (§77).PM had a welcome place at first; from 1918 it fur-
nished the axioms of the calculi, and until reflecting upon the three troublesome axioms
Hilbert thought that its reduction of mathematics to that logic was successful. But then
the differences of approach became clearer, and the acrimonious disagreement of the late
1920s over foundations between Hilbert and the intuitionist L.E.J. Brouwer (1881–1966),
who introduced the insulting name ‘formalism’ for Hilbert’s stance that unfortunately has
become standard, came to eclipse logicism as a general philosophy of mathematics. How-
ever, the logic ofPM had secured a good place, and maintained it. For philosophers
the situation was less warm; several of a neo-Kantian or phenomenological hue, such
as Ernst Cassirer and Gerhard Stammler, doubted that mathematics was no longer syn-
thetic a priori. There was also some posthumous appreciation of Frege’s contribution to
logic and their ramifications for the philosophy of language (more than of his logicism, in
fact).

The other main German-speaking centre of attention lay with the Vienna Circle of
philosophers, where Carnap was especially significant. From the mid 1920s he not only
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formulated Russell’s version of logicism but also tried to formalise the epistemology of
Our knowledge in a way which Russell had never attempted; the main outcomes were two
books, the forgottenAbriss der Logistik mit besondere Berücksichtigung der Relationsthe-
orie und ihre Anwendungen (1929), where the word ‘logicism’ was proposed (‘logistic’
had been widely used since the mid 1900s, but to refer both to Peano’s and Russell’s posi-
tions); and the famousDer logische Aufbau der Welt (1928).

But the greatest impact upon logicism came from a young graduate of the University
of Vienna, Kurt Gödel (1906–1978), who in 1931 proved his famous theorem that any
axiomatised theory encompassing number theory with quantification over integers could
never be fully axiomatised, and that the establishment of its consistency needed a richer
theory. This paper is the subject of §71 below; we note here that the theorems refuted hopes
for completeness and consistency that had been stated in the introduction ofPM, and also
that the central importance of the distinction between logic and metalogic was clarified in
the paper.

Gödel was a founder of the importance of this distinction, doubtless partly guided by its
presence in Hilbert’s proof theory. Its other main father-figure was the Pole Alfred Tarski
(1901–1983), who came to it by a somewhat different route much less linked to logi-
cism orPM. But Russell’s paradox had also played a role in the work of Jan Łukasiewicz
(1878–1956) and Stanisłav Leśniewski (1886–1939), the leaders of a strong development
of formal logic in Poland from the late 1910s [Wolenski, 1989]. Łukasiewicz was led partly
by the paradox to consider three- and many-valued logics (not to be confused with Lewis’s
modal logics), while Lésniewski started out from two different readings of the paradoxical
argument to generate two large-scale formal systems; a largely extensional ‘Mereology’
and an intensional ‘Ontology’. Outside this circle, in the 1920s Leon Chwistek (1884–
1944) anticipated Ramsey on the two kinds of paradox, and also tried to rebuildPM while
drawing also upon aspects of metamathematics.

7 LOGIC(ISM) AFTER GÖDEL

After the absorption of Gödel’s theorem, the meta-questions posed about mathematical and
logical systems had to be changed. From many later works, those of the Harvard logician
W.V. Quine (1908–2000), nominally a student of Whitehead at Harvard in the early 1930s,
make a fitting conclusion. He too set up large-scale logical systems using set theory; but
in the post-Gödelian atmosphere he did not try to reduce everything solely to logical no-
tions, and indeed became a major actor in exploring the plurality of relationships available
[Quine, 1969].

The aims of Whitehead and Russell had been refuted by Gödel, and questioned from
other points of view earlier; but many valuable technical procedures and philosophical is-
sues had been profitably examined. For example, Gödel might not have envisioned his the-
orem on the limitations of such endeavours. And the irony of 1922 continued; for even into
his nineties Russell was still trying, and failing, to understand the significance of Gödel’s
theorem [Grattan-Guinness, 2000, 592–593].
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CHAPTER 62

FEDERIGO ENRIQUES AND OSCAR CHISINI,
LECTURES ON ‘THE GEOMETRICAL THEORY

OF EQUATIONS AND ALGEBRAIC
FUNCTIONS’ (1915–1934)

A. Conte

In these extensive volumes Enriques and Chisini gave a detailed and authoritative account
of algebraic geometry. Thanks especially toEnriques’s approach to mathematics, they in-
cluded much historical information about the subject. They built much upon the Italian
tradition in it; but a polemic with Francesco Severi was to develop, mainly over questions
concerning rigour.

First publication. Lezioni sulla teoria geometrica delle equazioni e delle funzioni alge-
briche, 4 volumes, Bologna: Zanichelli, 1915, 1918,1924, 1934. xiv+ 398, 713, 594,
viii + 274 pages. [Vols. 1–3 have only Enriques as author, and are ‘edited by Dr. Oscar
Chisini’; vol. 4 carries both names as authors.]

Photoreprint. 2 volumes, Bologna: Zanichelli, 1985.

Related articles: Riemann (§34, §39).

1 THE AUTHORS

Federigo Enriques, together with Guido Castelnuovo (1865–1952) and Francesco Severi
(1879–1961), make up a famous triad of great masters who shaped the Italian school of
algebraic geometry in the 20th century. Enriques was born in Livorno in 1871 and re-
ceived his degree at theScuola Normale Superiore of Pisa with Eugenio Bertini in 1891.
After remaining in 1892 in Pisa, he moved in 1893 to Rome, where he started his scien-
tific collaboration with Castelnuovo; and in 1894 to Turin, in order to study with Corrado
Segre. That same year, after becoming freedocent, he started to teach at the University
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of Bologna; in 1897 he won the competition for the chair of Projective and Descriptive
Geometry, and he stayed until 1923. Then he moved on the chair of Higher Geometry at
the University of Rome, joining both Castelnuovo and Severi, who had been professors
there since 1891 and 1922 respectively.

Enriques was an eclectic personality, whose interests were not confined to algebraic
geometry but took in also the foundations, psychology and philosophy of mathematics
together with the history and philosophy of science. His main contribution to algebraic
geometry was the classification of algebraicsurfaces, probably the most outstanding legacy
of the Italian school of algebraic geometry, which he achieved in a long series of papers
running from 1896 to 1914, some of them in collaboration with Castelnuovo, who con-
tributed too some of its essential tools, such as the proof of the Riemann–Roch theorem for
surfaces and his celebrated criterion of rationality. The genesis of the classification can be
traced in the letters of Enriques to Castelnuovo [Enriques, 1996], whilst its final version is
to be found in [Enriques and Campedelli, 1932]and in the posthumous volume [Enriques,
1949] edited by Castelnuovo.

Enriques had a fascinating personality, which attracted the best students to build a
large and important school, whose more important members were, besides Chisini, Luigi
Campedelli (1903–1978), Fabio Conforto (1909–1954), Giuseppe Pompily (1913–1968),
Alfredo Franchetta (1916– ) and the Belgian Lucien Godeaux (1887–1975). In a broader
sense can be counted among Enriques’s students also the Pole Oscar Zariski (1899–1986);
he spent the years 1921–1927 in Rome, where he was deeply influenced by the type of
problems that Enriques was studying (and atEnriques’s suggestion changed his name from
the original ‘Ascher Zaritski’), even if he followed eventually Castelnuovo’s vision of al-
gebraic geometry. Afterwards Zariski moved to Harvard University, where he created one
of the most important schools of algebraic geometry of the last century.

In 1938 Enriques fell victim, like all Jewish professors, of the racial laws of the fascist
régime and was compelled to quit the University. He was not even allowed to put his name
on [Enriques and Conforto, 1939], which appeared under the only name of Conforto. He
died in Rome in 1946.

Oscar Chisini was born in 1889 in Bergamo, near Milan, as the son of an army offi-
cer. The career of the father brought the family to Bologna at the end of the century, and
it was in this town’s very ancient University that he received his degree in 1912. Having
showed a very bright intellect, Enriques asked him to collaborate in the drafting of the
presentLezioni even though he was still very young and in the first stages of the study
of algebraic geometry. This collaboration was to last more than twenty years. Chisini’s
career started as free docent in 1918; thenhe won the competition for a chair in 1923,
and taught first at Cagliari and then in Milan, where he remained until his retirement in
1959, and died in 1967. He was profoundly influenced by the collaboration, and most of
his research interests started out from topics covered by it: among others, the theory of
singularities both of curves and surfaces, and the related questions ofdegeneration, with
ingenious applications to branch curves of multiple planes and their ‘limit forms’; the
realization of a visible model of the fundamental group of the complement of an alge-
braic curve in the complex projective plane,called by him ‘characteristic braid’ (‘treccia
caratteristica’) of the algebraic curve, and related to the ‘braid group’ studied also in the
1930s by Emil Artin and his school; and the topological approach to topics such as the
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theory of correspondences and that of intersection multiplicities between two algebraic
curves.

2 THE LECTURES

The Lezioni are noteworthy from many points of view: first of all, for their monumental
size (more than 2000 pages); then for being a true work of collaboration, following En-
riques’s habit of involving his best students in the editing of his treatises—as he will do
with Campedelli for [Enriques and Campedelli, 1932] and with Conforto for [Enriques
and Conforto, 1939]; and finally for the peculiar way in which they were created [Manara,
1968]:

Chisini related that the work itself hadbeen conceived almost completely in a
‘peripatetic’ fashion , as he used to say: that is, by strolling under the porticoes
of Bologna with Enriques; even the most complicated formal arguments [. . .]
had not been conceived at a desk; at the most, Enriques stopped and wrote with
the tip of his umbrella on the pavement of Bologna’s porticoes, while they were
strolling along.

Their four volumes, published between 1915 to 1934, built up a complete treatise on the
theory of algebraic curves, which are studied from all possible points of view: synthetic-
projective, analytic-differential and topological-transcendental. Moreover, they not only
collected all the principal results of the theory, but gave also a massive amount of specific
examples, treated in all details, and lengthy historical notes, tracing the origins of the var-
ious parts of the theory. To grasp their content, the best way is to follow the advice of the
authors (vol. 1, xiii–xiv) and read the titles of the Books and Chapters. These are given in
Table 1.

3 THE METHODS AND THE CONTENT

TheLezioni are written in the classical style of the Italian school of algebraic geometry go-
ing back to Luigi Cremona (1830–1903), depending on the methods of projective geometry
and on that unrivalled knowledge of the behaviour of algebraic curves and surfaces sitting
in projective spaces which was peculiar of the great masters of the school, and unsurpassed
in Enriques. Moreover, besides the ‘geometric algebra’ of Cremona, Corrado Segre and
Castelnuovo, the innovative element in Enriques and Chisini’s approach is the importance
that they attribute, as already remarked, to the topological-transcendental vision of the the-
ory of algebraic curves.

As to the method followed by the authors, probably its most charming aspect is the
heuristic approach, which consists essentially in the ‘exhibition, next to the truths, of the
paths—often different—that led there, without excluding from the comparison of methods
any partial or imperfect procedures, and rather with the precise intention of letting them
correct and clarify themselvesmutually, making clear how much is missing in each partial
conception of the theories’ (vol. 1, x). From this premise it follows naturally the necessity
of a strong historical approach in order, as Enriques will repeat in his last work [Enriques,
1949, x],
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Table 1. Summary by Books and Chapters of Enriques’s and Chisini’s lectures. The four
volumes divide thus: Books I–II; III–IV; V; and VI.

Bk., ch.; pp. ‘Title ’
I; 148 ‘Introduction’.
I,I; 50 ‘The equationsf (x)= 0 and the groups of points on the line’.
I,II; 72 ‘The fundamental interpretations of the equationf (x)= 0: curves and

correspondences’.
I,III; 26 ‘Note on the meaning of the expression “in general” and on the

computation of constants’.
II; 239 ‘The principle of correspondence and its applications’.
II,I; 64 ‘The involutions and the finite groups of projectivities on the line’.
II,II; 122 ‘Elementary theory of plane curves’.
II,III; 53 ‘Note on algebraic functions and on the real representations of the

imaginary’.
III; 306 ‘The elementary theory of plane curves based on polarity’.
III,I; 72 ‘Polarity and covariant curves’.
III,II; 112 ‘The problem of intersections and the Plückerian characters of curves’.
III,III; 42 ‘The plane cubic’.
III,IV; 80 ‘Appendix: reality and continuity; enumerative geometry’.
IV; 359 ‘The singularities of algebraic curves’.
IV,I; 74 ‘Singularities and Puiseux series developments’.
IV,II; 58 ‘Singularities with respect to quadratic transformations’.
IV,III; 86 ‘Singularities with respect to the differential calculus’.
IV,IV; 141 ‘Appendix: singularities of skew space curves and of surfaces’.
V; 568 ‘Curves and algebraic functions of one variable’.
V,I; 120 ‘Linear series on a curve’.
V,II; 80 ‘The geometry of plane curves and Cremona transformations:

historical evolution of ideas’.
V,III; 224 ‘Curves and transformations’.
V,IV; 84 ‘Correspondences between curves’.
V,V; 60 ‘On the theory of skew space curves’.
VI; 264 ‘Elliptic and abelian functions’.
VI,I; 104 ‘Elliptic integrals and functions’.
VI,II; 46 ‘Abelian integrals’.
VI,III; 114 ‘The problem of inversion and Abelian functions’.

not only to give to the expounded theories a logical structure, but also [. . .]
to give an historical perspective of their coming into being. In this way one
wants to offer to the reader, not just the gift of something perfect that one is
allowed to look at from the outside, but rather the vision of an acquisition and
an advancement, the reasons for which one must understand and which the
reader is invited to re-learn by himself and for himself, finding in the book a
working tool.
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The importance of the many examples and particular cases discussed then follows; of-
ten it lies upon their historical significance, which is one of the reasons why theLezioni
are still a valuable source for scholars in the theory and classification of algebraic curves.
For example, one can look into volume II, book III, chapter III on the plane cubic, or
into volume III, book V, chapter V on skew space curves. Each chapter gives all exist-
ing information on its topic(s), expounded with clear and complete geometric arguments.
From this point of view the question of rigour(the Achilles’s heel of the Italian school)
should be viewed in a new light; for Enriques ‘historical errors, paradoxes and sophisms
acquire special interest, in that they often pointed out the way to more important discov-
eries’ (vol. 1, x). The same criterion is applied to the question of the generality of the
results (vol. 1, x–xi):

The research criterion so splendidly taken advantage of by Abel—to pose prob-
lems in their most general aspect in order to discover their true nature—set the
course of Analysis, which wanted to liberate the knowledge of qualitative re-
lationships from the accidental complications of calculations; this is precisely
that course of maximum realization for the geometric theory of equations and
algebraic functions. But the precept of generality has received another interpre-
tation among contemporary geometers [. . .] The maxim has been established
that every theorem must always be enunciated in the most general form to
which it is susceptible [. . .] It is proper to recognize that this habit has dimin-
ished the powerful effectiveness of the finest masters, and deserves to be seri-
ously opposed. Since, in the first place, anoverly abstract statement succeeds
in obscuring the true significance of the theorem, hiding its origins, and—in
the second place—it charms young scholars with easy, purely formal, general-
izations. [. . .] Every problem has in a way its own proper degree of generality,
and that degree is the first in which the problem itself reveals its true nature
[. . .].

In order to give an example of a typical theorem of theLezioni and of its wording, take
a famous theorem of Enriques himself on the quadrics going through the canonical curve
associated to an algebraic curve (vol. III, 106):

THEOREM. A curve of genus p > 4, non hyperelliptic, has as canonical curve a Cp−1
2p−2

belonging to a linear system of dimension (p− 1)(p− 2)− (3p− 3) of quadricsQ of the
projective space Sp−1, and is in general defined as the base curve of this system. The only

exceptions are when it contains a g1
3, and then the Cp−1

2p−2 lies on a rational ruled normal

scroll of order p − 2 common to all Q’s; and—for p = 6—also the case when the C5
10

contains a g2
5 and lies therefore on a Veronese surface, through which go all the Q’s.

The meaning of the theorem is that a canonical curveC of genusp and degree(2p−2)
sitting in the projective spacePp−1 of dimension(p−1) is always the set-theoretical inter-
section of the quadrics (= hypersurfaces of degree 2) going through it, unlessC is trigonal
(= contains ag1

3) or isomorphic to a plane quintic (= contains ag2
5), and in these two ex-

ceptional cases the quadrics throughC set-theoretically intersect respectively in a rational
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normal ruled scroll of degreep − 2 or a Veronese surface (= the surface ofP5 represent-
ing the linear system of conics ofP2) containingC. The proof is based on a classically
beautiful geometric argument which cleverly uses the classification of rational curves and
surfaces in projective spaces, with a final application of the theorem of Riemann–Roch for
algebraic curves.

This theorem has aroused much interest up to our times for its great importance in the
theory of special divisors on algebraic curves. For the subsequent results of Petri in 1922
and 1925, Babbage in 1939, and Saint-Donat in 1974, together with an appreciation of its
importance and full bibliographical references, see [Arbarello et alii, 1985, Chapter III,
art. 3].

4 THE IMPACT

TheLezioni was a great success from the start and became quickly the standard reference
work, all over the world, for everything connected with algebraic curves. Indeed, nowhere
else one could find, explained in all details and supported by a lot of examples and his-
torical notes, topics such as the correspondence principle, the theory of intersections, the
theory of singularities, and the full theory oflinear series, with its many applications. In
the meantime, before and after the publication of the third volume of theLezioni, Sev-
eri published his own two treatises which deal mostly with algebraic curves. The first
one [Severi, 1921] is a German translation (dueto Eugen Löffler) of a lithographed text
produced in Padova in 1908, to which Severi added various appendixes. In particular, Ap-
pendices F (devoted to the theory of the moduli of curves) and G (on the classification of
non-degenerate space curves), totalling together about 100 pages, are very important for
the future developments of the higher theory of algebraic curves. In the second treatise
Severi [1926] announced the ambition ‘to collect, coordinate and complete, where neces-
sary, everything that is important in the field of algebraic geometry’. However, only the
first volume appeared. Concerned with the geometry of linear series on curves, it covered
more or less the same topics as volume III of theLezioni, but it aimed to offer a much more
rigorous and systematic exposition of the geometry of algebraic curves than that given by
Enriques and Chisini.

There was an implicit polemic involvedhere; and it became explicit in 1934–1935, when
Severi criticized as unrigorous the treatment in Chapter III of Book I of theLezioni of the
so-called ‘Plücker–Clebsch criterion’, which stated that a system ofr algebraic equations
in r unknowns with coefficients depending rationally in various parameters, is in general
compatible if it admits a finite number of solutions for a particular set of values of the
parameters. In the harsh discussion which followed Severi went so far to raise the accusa-
tion that ‘in the treatise [. . .] the proofs of fundamental theorems are only approximate’.
Enriques replied sharply that Severi’s approach was unnecessarily and excessively abstract
and general. For more details on this polemic, see [Brigaglia and Ciliberto, 1995, 64–67].

As a matter of fact, Severi’s bold attempt to give sound foundations to algebraic geome-
try also revealed itself to be unfruitful; one had to wait until after 1945 for the work, based
on abstract algebra, of Zariski and his school, and especially of André Weil, Jean-Pierre
Serre and Alexander Grothendieck, to find a fully satisfactory solution to the foundational
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problems. These attracted the main efforts ofresearchers in algebraic geometry during
the 1950s and 1960s, so that the interest for the classical results of the Italian school di-
minished almost to zero. However, starting from the beginning of the 1970s, there was a
revival, still active, which led in particular to an enormous activity in the theory of algebraic
curves, which looks now completely different from the form left by Castelnuovo, Enriques
and Severi. In this process the appreciation for theLezioni rose again (including the pho-
toreprint of 1985 listed above), and it is now universally recognized as the masterpiece it
is, putting itself as an example to follow even for the most recent and advanced books on
the subject. For example, ‘These volumes are written in the spirit of the classical treatises
on the geometry of curves, such as Enriques–Chisini’ [Arbarello et alii, 1985, vii].
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CHAPTER 63

ALBERT EINSTEIN, REVIEW PAPER ON
GENERAL RELATIVITY THEORY (1916)

T. Sauer

This paper was the first comprehensive overview of the final version of Einstein’s general
theory of relativity after several expositions ofpreliminary versions and latest revisions of
the theory in November 1915. It includes a self-contained exposition of the elements of
tensor calculus that are needed for the theory.

First publication. ‘Die Grundlage der allgemeinen Relativitätstheorie’,Annalen der
Physik, 49 (1916), 769–822. Also published separately, Leipzig: Barth, 1916.

Later editions. Various reprints of the separately printed version, 5th reprint in 1929.
Also in the 3rd and later editions of the anthology H.A. Lorentz, A. Einstein
and H. Minkowski,Das Relativitätsprinzip, Leipzig: Teubner, 1919. Also inPub-
lished writings of Albert Einstein, Readex Microprint, 1960, item 78. Also in K.
von Meyenn (ed.),Albert Einstein’s Relativitätstheorie. Die grundlegenden Arbeiten,
Braunschweig:Vieweg, 1990. First edition repr. with annotations inCollected papers
of Albert Einstein, vol. 6, Princeton: Princeton University Press, 1996, 283–339 (Doc.
30). German and English reprints of theCollected papers version also available online
at http://www.alberteinstein.info (2003).

English translations. 1) By S.N. Bose inThe principle of relativity. Original papers by A.
Einstein and H. Minkowski, Calcutta: University of Calcutta Press, 1920, 89–163. 2) By
W. Perrett and G.B. Jeffery (without the first page) in H.A. Lorentz et alii,The principle
of relativity, London: Methuen, 1923 (repr. New York: Dover, 1952), 109–164.

French translations. 1) By M. Solovine in Einstein,Les fondements de la théorie de la
relativité générale. Théorie unitaire de la gravitation et de l’électricité. Sur la struc-
ture cosmologique de l’espace, Paris: Hermann, 1933, 7–71. 2) By F. Balibar et alii in
Einstein,Oeuvres choisies, vol. 2, Paris: Editions du Seuil, Editions du CNRS, 1993,
179–227.
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Italian translation. By A. Fratelli in Einstein,Come io vedo il mondo. La teoria della
relatività. Roma: Newton & Compton, 1988, 114–185.

Russian translation. In Einstein,Sobranie naychnykh trudov, vol. 1, Moscow: Izdatel’stvo
Nauka, 1965, 452–504.

Spanish translation. By F. Alsina Fuertes and D. Canals Frau, in Albert Einstein,La rela-
tividad (Memorias originales), Buenos Aires: Emecé éditores, 1950, 115–213.

Manuscripts. A manuscript of 46 pages is in the Schwadron collection at the Hebrew Uni-
versity, Jerusalem; available online at http://www.alberteinstein.info, Call No. 120–788.

Related articles: Newton (§5), Riemann on geometry (§39), Maxwell (§44), Hertz (§52),
Kelvin (§58), Lorentz (§60).

1 THE SPECIAL THEORY OF RELATIVITY

Some ten years before the first review of thegeneral theory of relativity, Albert Einstein
(1879–1955) had published his famous paper ‘On the electrodynamics of moving bodies’
[Einstein, 1905]. That paper introduced what later became to be called ‘the special theory
of relativity’. It presented a conceptual analysis of the notions of space and time, with a
critical reassessment of the meaning of simultaneity at its core. Its most salient features
are length contraction and time dilation in a system that is in uniform relative motion to an
observer with a speed comparable to that of light.

The 1905 paper was not a very sophisticated paper on the mathematical side. Its author
had obtained a diploma as secondary school teacher for mathematics and physics at the
Zurich Polytechnic in 1900 [Pais, 1982; Fölsing, 1998]. His science education had been
excellent, with laboratory work in the most up-to-date facilities, and first-rate mathematics
teachers such as Adolf Hurwitz (1859–1919), Carl Friedrich Geiser (1843–1934), and Her-
mann Minkowski (1864–1909). If more recent advances in theoretical physics were some-
what neglected by his physics teacher Heinrich Friedrich Weber (1843–1912), the young
Einstein made up for it in extensive autodidactic studies. Fascinated by laboratory expe-
rience, he seems to have skipped more than one of his mathematics lectures, though, and
obtained his knowledge when preparing for examinations with the help of lecture notes
that had been carefully worked out by his more mathematically inclined friend Marcel
Grossmann (1878–1936).

After initial attempts to start a traditionalacademic career had failed, Einstein composed
his theory of special relativity in the evening hours after office work as a technical expert,
especially for electrotechnology, at the Patent office in Bern. Mathematically, the break-
through of special relativity came in a representation using only standard techniques of
elementary calculus. Maxwell’s electromagnetic equations were written component-wise,
notwithstanding the fact that compact vectornotation had already been well developed, if
not standardized, in electrodynamics and hydrodynamics by the end of the 19th century
(§35.5).

The subsequent generalization of the special theory of relativity to a generally covari-
ant theory of gravitation proceeded in three major steps, namely 1) the formulation of the
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equivalence hypothesis in 1907, 2) the introduction of themetric tensor as the crucial math-
ematical concept for a generally relativistic theory of gravitation in 1912, and 3) the dis-
covery of the generally covariantfield equations of gravitation in 1915. See [Norton, 1984;
Stachel, 1995, and 2002, sec. V; and Renn et alii, forthcoming]; for further references, see
the literature cited in these works, and on specific aspects also volumes 1 [Howard and
Stachel, 1989], 3 [Eisenstaedt and Kox, 1992], 5 [Earman et alii, 1993], and 7 [Goenner et
alii, 1999] of the Einstein Studies series. TheCollected papers of Albert Einstein are cited
hereafter as ‘CPAE’.

2 THE EQUIVALENCE HYPOTHESIS

In 1907, Einstein saw himself confronted with the task of reflecting on the consequences
of the relativity principle for the whole realm of physics. He was asked to write a review
article ‘On the relativity principle and the conclusions drawn from it’ [Einstein, 1907]. The
reinterpretation of the concept of simultaneity in special relativity was hinging on the finite-
ness of the speed of light for signal transmission. It was therefore clear that the Newtonian
theory of gravitation posed an embarrassment. In Newtonian mechanics, the gravitational
force is an action-at-a-distance force and thus contradicts the fundamental assumption of
special relativity that no physical effects can propagate with a speed superseding a finite
value. In reflection on this difficulty, Einstein took a decisive turn. He linked the problem
of the instantaneous propagation of the gravitational force in Newtonian physics to the
problem of generalizing the principle of (special) relativity to non-uniform relative mo-
tion. In a reinterpretation of Galileo’s lawof free fall, according to which all bodies in a
gravitational field undergo the same acceleration regardless of their weight, Einstein for-
mulated the so-called ‘equivalence hypothesis’. According to this hypothesis, there is no
conceivable experiment that could distinguish between processes taking place in a static
and homogeneous gravitational field and those that are only viewed from a frame of refer-
ence that is uniformly and rectilinearly accelerated in a gravitation free space. The value
of this hypothesis was a heuristic one. It enabled Einstein to investigate the effects of grav-
itation in a relativistic theory by analyzing the corresponding processes if interpreted from
an accelerated frame of reference.

Already in 1907, Einstein drew three important consequences from the equivalence hy-
pothesis. He concluded that the time and hence also the speed of light must depend on the
gravitational potential. Consequently, thefrequency of light emitted from the sun should be
shifted towards the red, and light rays passing through a gravitational field would be bent.
He also concluded that every energy should have not only inertial but also gravitational
mass.

Incidentally, this is also the time when Einstein began to use the term ‘relativity the-
ory’ (‘ Relativitätstheorie’) in print; for example, [Einstein, 1907, 439]. The term had first
been used in print in the same year by Paul Ehrenfest (1880–1933), after Max Planck
(1858–1947) had earlier introduced the term ‘Relativtheorie’. A suggestion by Felix Klein
(1849–1925) in 1910, to use the perhaps more appropriate term ‘invariant theory’ (‘Invari-
antentheorie’), was not taken up [CPAE, vol. 2, 254].

While the equivalence hypothesis of 1907 provided a point of departure for a gener-
alization of the theory of relativity and for a new field theory of gravitation, Einstein
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did not present a solution to the problem of instantaneous propagation of the gravita-
tional force. While he remained rather silent on the topic of the relativity principle for
some years, these questions were taken up by others. For example, Hermann Minkowski
(1864–1909) and Henri Poincaré (1854–1912) proposed Lorentz-covariant generalizations
of Newton’s law of gravitation. More importantly, Minkowski also gave the theory of rel-
ativity a more sophisticated mathematical representation. Reflecting on the symmetry of
the Lorentz transformations in [Minkowski, 1908], he used elements from matrix theory to
give the equations a four-dimensional representation and to interpret the Lorentz transfor-
mations as rotations in a four-dimensional vector space. In a report of his work to the 80th
general assembly of physicians and scientists inCologne, he illustrated this interpretation
by the often-quoted words: ‘From this hour on, space by itself, and time by itself, shall be
doomed to fade away in the shadows, and only a kind of union of the two shall preserve
an independent reality’ [Minkowski, 1908, 105]. His four-dimensional representation was
taken up by Arnold Sommerfeld (1868–1951) who developed a four-dimensional vector al-
gebra and vector calculus; and by Max Laue (1879–1960) who focused upon the tensorial
representation of the stress-energy-momentum complex.

3 THE METRIC TENSOR

Einstein resumed work on the subject again in 1911. By then he had been appointed ‘Ordi-
nary’ (full) professor of physics at the German University in Prague. In a series of papers
he developed a theory of the static gravitational field, following the heuristics of the equiv-
alence assumption of static homogeneous gravitational fields to systems in uniform and
rectilinear acceleration [Einstein, 1911, 1912a, 1912b]. His work was boosted by a compe-
tition with Max Abraham(1875–1922), who had picked up on Einstein’s idea of a variable
speed of light and had suggested a dynamic theory of gravitation. Abraham had proposed
a field equation where the d’Alembertian acting on the speed of lightc was proportional to
the scalar mass density. In the course of the debate it quickly became clear that with vari-
ablec Abraham’s equation was Lorentz covariant at best in some ill-defined infinitesimal
sense and could hardly been interpreted consistently. But Abraham had demonstrated to
Einstein the technical power of a four-dimensional representation, and had prepared him
to take the second big step of introducing the metric tensor.

The second indication of where to go next inthe course of generalizing the relativity
principle came from the analysis of rotatingframes of reference. The heuristic assumption
of the equivalence hypothesis implied that also centrifugal and Coriolis forces should be
interpreted as gravitational forces. Looking at the invariant

dx2+ dy2+ dz2− c2dt2 (1)

in rotating frames of reference would produce terms of the form 2ωdx dt ′, where the angu-
lar velocityω would have to be interpreted as a gravitational potential, just as in the theory
of static gravitation the speed of lightc(x, y, z) had assumed the role of a variable gravi-
tational potential. Since moreover the measuring rods for determining the circumference,
but not the diameter, of a rotating disk are Lorentz contracted, the analysis of a rotating
disk already pointed to a breakdown of Euclidean geometry.
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4 EINSTEIN’S COLLABORATION WITH MARCEL GROSSMANN

At some point around this time, Einstein remembered Geiser’s lectures on Gaussian surface
theory that he had studied through the notes of his friend Grossmann. It occurred to him
that the invariant line element of differential geometry might be the key to finding a proper
mathematical representation for his problem. Fortunately, Einstein had just accepted a call
to the Zurich Polytechnic where Grossmann had become professor of geometry in 1907.
Einstein asked Grossmann for help in studying the mathematical literature, and the two
embarked on an intense collaboration. About this collaboration, he wrote in October 1912
[CPAE, Doc. 421]:

I am now working exclusively on the gravitation problem and believe that I can
overcome all difficulties with the help of a mathematician friend of mine here.
But one thing is certain: never before in my life have I troubled myself over
anything so much, and I have gained enormous respect for mathematics, whose
more subtle parts I considered until now, in my ignorance, as pure luxury.

The question that Einstein put to Grossmann was to identify the mathematics connected
with the invariance of a four-dimensional infinitesimal line element

ds2=
4∑

µν=1

gµν dx
µ dxν. (2)

A research notebook with calculations from that time documents Einstein’s and Gross-
mann’s cooperation [Norton, 1984; Renn and Sauer, 1999; Renn et alii, forthcoming]. It
is in this so-called ‘Zurich notebook’ thatwe find the first written instance of the met-
ric tensor for(3+ 1)-dimensional space-time ([Renn and Sauer, 1999, 96]; see also Call
No. 3-006, image 39, on http://www.alberteinstein.info (2003)for a facsimile). Realizing
that the vector calculus for Euclidean space in curvilinear coordinates is formally equiv-
alent to the calculus of a general manifold equipped with an invariant infinitesimal line
element, Grossmann sawthat the task was to generalize the four-dimensional vector calcu-
lus developed by Minkowski, Sommerfeld, Laue, and others using methods of an altogether
coordinate independent calculus. Scanning the literature, Grossmann soon found the nec-
essary mathematical concepts in [Riemann, 1892] onn-dimensional manifolds (§39), in
[Christoffel, 1869] on quadratic differential forms, and in [Ricci and Levi-Civita, 1901] on
their so-called ‘absolutedifferential calculus’.

It seems that Einstein and Grossmann quickly saw how to formulate, in outline, a gen-
erally covariant theory with the metric tensorgµν representing the gravito-inertial field. In
the following discussion, I will give all formulas in a notation that is both slightly modern-
ized and made consistent over the various texts discussed. In particular, I will abbreviate
coordinate derivatives by subscript commas, use the Einstein summation convention of
summing over repeated indices, and denote functional derivatives byδ rather than∂ . In
their joint publications, Einstein and Grossmann also used Greek letters to denote con-
travariant vectors and tensors rather than superscript indices.

Einstein and Grossmann found generally covariant equations of motion of a material
point of invariant massm for a given metric fieldgµν in the absence of non-gravitational
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forces as

δ

{∫
Ldt

}
= δ

{
−m

∫
ds

}
= 0, (3)

with a particle LagrangianL=−mds/dt . In a generalization to a continuous distribution
of matter characterized by an energy-momentum tensor for pressureless flow of dust,

T µν = ρ0
dxµ

ds

dxν

ds
, (4)

the equation of motion turned into

(√−ggσµT µν),ν − 1

2

√−ggµν,σ T µν = 0, whereg := det(gµν). (5)

The latter equation is an explicit expression for the vanishing of the covariant divergence
of the mixed tensor density

√−gT νσ . As such it is closely related to the conservation of
energy-momentum, as can be seen by integratingT µν over a closed 3-surface and invok-
ing Gauss’s surface theorem. In Einstein’s interpretation, the first term of (5) gave the
conservation law for special relativity for constantgµν , and the second part consequently
represented the energy-momentum flow due to the gravitational field. This interpretation
led Einstein to believe that the gravitational force components are given bygµν,σ . The task
remained to find a field equation for the metric tensor field, i.e. a tensorial generalization
of the Poisson equation.

5 COMING CLOSE TO THE SOLUTION, OR SO IT SEEMS

From Riemann’s and Christoffel’s investigations, Grossmann and Einstein learned that the
crucial mathematical concept was the Riemann curvature tensor{ik, lm} given in terms of
the Christoffel symbols of the second kind (given in the original notation),{

µ ν

τ

}
= gτλ(gµλ,ν + gνλ,µ − gµν,λ), (6)

as

{ικ, λµ} =
{
ι λ

κ

}
,µ

−
{
ι µ

κ

}
,λ

+
{
ι λ

ρ

}{
ρ µ

κ

}
−

{
ι µ

ρ

}{
ρ λ

κ

}
(7)

(see Figure 1). Since the right-hand side of the field equation would be given by the stress-
energy tensor of matter, a tensor of second rank, the left-hand side of the field equation
also had to be a two-index object. But the obvious candidate, the Ricci tensor

Rµν = {µκ,κν}, (8)

would not produce a field equation that was acceptable to Einstein and Grossmann at the
time. Although a field equation,

Rµν + κTµν = 0, (9)



808 T. Sauer

Figure 1. Top portion of page 14L of the ‘Zurich Notebook’ (Einstein Archives Call No. 3-
006). Next to Grossmann’s name Einstein writes down the Christoffel symbols of the
first kind, and the fully covariant Riemann tensor(ik, lm) which he calls a ‘tensor of the
fourth manifold’ (‘Tensor vierter Mannigfaltigkeit’). Einstein then begins to investigate the
Ricci tensor by contracting with the contravariant metricγkl . © The Hebrew University of

Jerusalem, Albert Einstein Archives; reproduced with permission.

with some constantκ was considered as a candidate, they dismissed it because they were
unable to recover familiar Newtonian physics in the weak field limitgµν = ηµν +hµν with
ηµν = diag(1,1,1,−1), |hµν | # 1 and|hµν,ρ | # 1.

The dismissal of the candidate (9) has been a major puzzle for historians for a long
time. Since in the vacuum caseTµν ≡ 0, (9) is equivalent to the final field equations of
general relativity (see (23) below), Einstein and Grossmann had come by a hair’s breadth
to arriving at general relativity already at this point, or so it seems. However, a closer
analysis of the Zurich notebook revealed that Einstein had to overcome more conceptual
difficulties before he was ready to accept a generally covariant theory [Renn and Sauer,
1999; Renn et alii, forthcoming].

6 THE ENTWURF THEORY

After giving up the attempt to base a field equation on the Riemann curvature tensor,
Einstein and Grossmann constructed a field equation that was closer to their heuristic re-
quirements of energy conservation and recovery of the Poisson equation in the Newtonian
limit. The idea was to take the expression(gαβgµν,β ),α , which would clearly reduce to the
d’Alembertian and Laplacian operators in the weak field and static limits and substitute it
for T µν in the second term of (5). If additional terms of higher order could be identified
such that this expression could be transformed into a total divergence, energy-momentum
conservation in the form of (5) would automatically be satisfied. The field equations they
found read

1√−g
(√−ggαβgµν,β )

,α
− gαβgτρgµτα gνρβ

+ 1

2
gαµgβνgτρ,αg

τρ
,β −

1

4
gµνgαβgτρ,αg

τρ
,β =−κT µν. (10)
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In the early summer of 1913, Einstein and Grossmann proceeded to publish their find-
ings in a little booklet under the titleOutline [‘Entwurf’] of a generalized theory of rel-
ativity and of a theory of gravitation [Einstein and Grossmann, 1913]. As the title page
indicated, it was divided into two parts, a physical part for which Einstein signed as re-
sponsible, and a mathematical part for which Grossmann signed as author.

The Entwurf theory, as it is frequently called in modern historical literature, was a
hybrid theory, if viewed from our modern understanding of general relativity. It presented a
mathematical apparatus of tensor calculus that allowed to formulate a theory in a generally
covariant manner, and it gave generally covariant equations of motion. Just as in the final
theory of general relativity, the crucial concept was the metric tensor that was interpreted
as representing a gravito-inertial field. All these elements were later to be found in the final
version of general relativity. The only thing that was missing were generally covariant field
equations.

The hybrid character of theEntwurf theory is reflected in a certain ambivalence that
Einstein showed with respect to their achievement. Initially, and also again and again over
the following two years, he expressed himself rather pleased with the theory. He had set-
tled on theEntwurf equations as acceptable equations and began to elaborate their conse-
quences. From an unpublished manuscript we know that together with his friend Michele
Besso (1873–1955) he calculated the advance of the planetary perihelia. For Mercury, it
was well known that the observed perihelion advance was in discrepancy with the value
calculated on the basis of Newtonian mechanics, and this anomaly was the most prominent
quantitative failure of classical gravitation theory. Not surprisingly, they found a value for
Mercury that was significantly off the observed value: theirs even came with the wrong
sign [Earman and Janssen, 1993].

Notwithstanding Einstein’s acceptance of theEntwurf equations, he also indicated that
the restricted covariance of these equations was a ‘black spot’ of the theory. His initial
heuristics clearly did not imply any reason for a restricted covariance of the theory. In
further reflection, Einstein convinced himself, however, that this restricted covariance was,
in fact, to be expected. He devised an argument to the effect that indeed no generally
covariant field equations were physically admissible. The argument was first published in
an addendum to a reprint of theEntwurf in theZeitschrift fur Mathematik und Physik.

Einstein considered a hole in four-dimensional space-time, i.e. a finite region with van-
ishing stress-energyTµν ≡ 0. LetG(x) denote a solutiongµν(x1, x2, x3, x4) of the field
equations, and perform a coordinate transformation within the hole, i.e. consider a coordi-
nate systemx ′ that coincides smoothly with the original coordinate systemx at the bound-
ary of the hole. In the primed coordinates the transformed fieldG′(x ′) is the solution to the
transformed field equations. But if the field equations are generally covariant, thenG′(x)
is also a solution to the original field equations. We hence arrive at two distinct solutions in
the same coordinate systemx for the same distribution of matterTµν . Einstein concluded
that generally covariant field equations cannot uniquely determine the physical processes
in a gravitational field. Consequently, one had to restrict the admissible coordinate systems
to what he began to call ‘adapted coordinates’.

Already in theirEntwurf, Einstein and Grossmann had stated that the most urgent un-
solved problem of their theory was the identification of the covariance group of their field
equations. The solution to this question was made possible by a variational reformulation
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of the theory. It was the topic of their second joint publication [Einstein and Grossmann,
1913].

As acknowledged in a footnote, the hint of trying a variational approach came from
Paul Bernays (1888–1977), a student of David Hilbert (1862–1943) in Göttingen. The idea
was that a variational formulation might helpto identify the group of ‘adapted coordinates’
since it would be easier to identify the invariance group of the scalar action integral than the
covariance group of the explicit tensorial field equations. Einstein and Grossmann indeed
succeeded to cast theEntwurf theory in a variational formulation,

δ

{∫
Ld4x

}
= 0, (11)

with a Lagrangian

L=√−g
(

1

4
gαβgτρ,αg

τρ
β − κL(mat)

)
, (12)

where the matter partL(mat) was not included explicitly.
Considering variations adapted to the hole consideration, they were now able to identify

the condition for ‘adapted coordinates’ governing the covariance group of theEntwurf as

Bσ =
(√−ggαβgσµgµν,β )

,να
= 0. (13)

With their second jointpaper, the collaboration between Einstein and Grossmann came
to an end. In spring 1914, Einstein moved to Berlin taking up a position as a member of
the Prussian Academy of Sciences in Berlin, a move that relieved him of his teaching load
as professor at the Zurich Polytechnic.

7 THE 1914 REVIEW ARTICLE ON THEENTWURF THEORY

In summer 1914, Einstein felt that the new theory should be presented in a comprehen-
sive review. He also felt that a mathematical derivation of the field equations that would
determine them uniquely was still missing.

Both tasks are addressed in a long paper, presented in October 1914 to the Prussian
Academy for publication in itsSitzungsberichte [Einstein, 1914]. It is entitled ‘The formal
foundation of the general theory of relativity’; here, for the first time, Einstein gave the
new theory of relativity the epithet ‘general’ in lieu of the more cautious ‘generalized’ that
he had used for theEntwurf.

The paper is divided into five sections, and thus anticipates the structure of the final 1916
review. An introductory section on the basic ideas of the theory is followed by a section
on the theory of covariants. This section replaced Grossmann’s mathematical part of the
joint Entwurf paper and gives an account of the elements of tensor calculus employed in
the theory. A third section discusses the theory for a given metric field. It introduced the
stress-energy-momentum tensor and discussed the conservation laws associated with the
vanishing of its divergence, as well as the equations of motions and the electromagnetic
field equations.
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The fourth section gave a new derivation of theEntwurf equations. Einstein here tried to
give a derivation that supposedly rendered them unique. He reiterated the hole considera-
tion and introduced adapted coordinates. The variation is now done in a generic manner for
the gravitational partH of the LagrangianL. In order to fix the Lagrangian, Einstein as-
sumes to be a homogeneous function of seconddegree in the coordinate derivativesgµν,σ of
the metric, and picks from the allowed combinations the one that conforms to the adapted
coordinate condition.

In a final, short section Einstein discussed approximations of the theory, recovered the
Newtonian limit and predicted both gravitational light bending and red shift.

8 THE DEMISE OF THEENTWURF AND THE BREAKTHROUGH TO
GENERAL COVARIANCE

Einstein had known that theEntwurf equations produced the wrong perihelion advance
for Mercury since 1913. A second set-back that undermined his confidence in the theory
came in spring 1915 when Tullio Levi-Civita(1873–1941)carefully studied Einstein’s long
Academy paper and found fault with its derivation of the field equations. After an intense
epistolary exchange in March and April 1915, Einstein had to admit that his proof of the
tensorial character of the left hand side of the field equations for admissible coordinate
transformations was incomplete [CPAE, vol. 8, Doc. 80].

In September 1915, Einstein realized that the Minkowski metric in rotating Cartesian
coordinates is not a solution to theEntwurf equations. Earlier checks of this condition
appear to have been flawed by trivial algebraic mistakes that conspired to convince him
of the validity of this heuristic requirement [Janssen, 1999]. The final blow came quickly
afterwards when Einstein discovered that the alleged uniqueness of the field equations in
his derivation of the Academy paper did not hold up.

At this point, Einstein began to reconsider alternatives for the gravitational field equa-
tions. He reflected on considerations that he had done previously in his search for theEn-
twurf equations. A closer analysis of the Zurich notebook indeed revealed that in the fall of
1915, Einstein reconsidered the same candidates for field equations as he had done in 1912
[Norton, 1984; Renn and Sauer, 1999; Renn et alii, forthcoming]. The return to general
covariance is documented in four communications to the Prussian Academy, presented on
4, 11, 18 and 25 November, and each published a week later in theSitzungsberichte.

In the first communication, Einstein announced that he had lost his faith in theEntwurf
equations and wrote: ‘In this pursuit I arrived at the demand of general covariance, a de-
mand from which I parted, though with a heavy heart, three years ago when I worked
together with my friend Grossmann. As a matter of fact, we were then quite close to that
solution of the problem, which will be given in the following’ [Einstein, 1915a, 778].

Einstein now split the Ricci tensor into two parts,

Rµν = {µκ,κν} =Nµν +Mµν, (14)

where

Nµν =−
{
µ ν

κ

}
,κ

+
{
µ κ

ρ

}{
ρ ν

κ

}
, (15)
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and

Mµν =−
{
µ κ

κ

}
,ν

+
{
µ ν

ρ

}{
ρ κ

κ

}
. (16)

Since
{µ κ
κ

} = (ln√−g ),µ is a vector for all transformations that leaveg invariant

(unimodular substitutions),Mµν is a covariant derivative of a vector, and hence all quanti-
ties in (14) are tensors under such substitutions.

The field equations of the first November communication were now given as

Nµν =−κTµν. (17)

Even though Einstein explicitly reverted to the general covariance of the Riemann–
Christoffel tensor, the field equations of this communication are not generally covariant,
but only under unimodular coordinate transformations.

The restricted covariance is immediately obvious also from the variational formulation
that Einstein provided. Looking again at the geodesic equation,

d2xτ

ds2
+

{
µ ν

τ

}
dxµ

ds

dxν

ds
= 0, (18)

as the equation of motion for a point particle in a given gravitational field, he now conceived

of the negative Christoffel symbols$σµν =−
{µ ν
σ

}
as the components of the gravitational

force rather than the simple coordinate derivatives of the metricgµν,σ . These quantities
now entered into the gravitational part of the Lagrangian as

L= gστ$ασβ$βτα − κL(mat). (19)

(compare (12)). He observed that weak fields now allow to go to the Newtonian limit, and
that the transition to rotating frames of reference is admissible since the corresponding
coordinate transformations have unit determinant.

Not only was the covariance of the theory restricted to unimodular transformations;
Einstein also showed that energy-momentum conservation demanded that a coordinate re-
striction, (

gαβ
[
ln
√−g ]

,β

)
,α
=−κT , (20)

had to be satisfied. Since, in general, the trace of the energy-momentumtensorT = gµνTµν
does not vanish, (20) implies that coordinates cannot be chosen arbitrarily. In particular,
(20) implies that one cannot set

√−g ≡ 1.
At this point, it needs to be mentioned that Einstein’s return to general covariance in

November 1915 was done in a hasty competition with Hilbert [Sauer, 1999]. Einstein had
given a series of lectures on theEntwurf theory in Gottingen earlier in the summer, and
Hilbert had then closely studied Einstein’s theory over the fall. Apparently, Hilbert had
found fault with Einstein’s derivation of the field equations, too, and Einstein had heard
about Hilbert’s criticism through Sommerfeld [CPAE, vol. 8, Doc. 136]. When he received
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proofs of his first November communication, he forwarded them to Göttingen, and it seems
that Hilbert responded immediately with a report about his own progress. At the time
Hilbert believed in an electromagnetic world-view and had been working on combining
Einstein’s gravitational theory with a generalized version of Maxwellian electrodynam-
ics suggested by Gustav Mie (1868–1957). Mie had proposed a theory of matter where
non-linear, but Lorentz-covariant generalizations of Maxwell’s equations should allow for
particle-like solutions in the microscopic realm. It seems likely that Hilbert had informed
Einstein about the basic characteristics of his approach which aimed at a unification of
Einstein’s and Mie’s theories.

The second of Einstein’s four famous November communications, in any case, dis-
cussed the possibility of a purely electromagnetic origin of matter [Einstein, 1915b]. Since
in classical electromagnetism, the stress-energy-momentum tensorT µν is given in terms
of the electromagnetic field tensorFµν as

T µν = 1

4π

(
FµαFνα −

1

4
gµνFαβFαβ

)
, (21)

it is readily seen that its traceT vanishes identically. Einstein now entertained the possibil-
ity that on a microscopic level all matter might be of electromagnetic origin. In this case,
the right-hand side of the coordinate condition (20) would vanish and hence coordinates
with constantg would be admissible. In this case, Einstein argued, one could take the fully
covariant equations

Rµν =−κTµν, (22)

that he had already considered earlier in (9) and reduce them to the field equations (17) by
choosing coordinates for whichg ≡ 1.

The field equations (22) still differ from the final field equations, but for the vacuum
case,Tµν = 0, they are already equivalent. Einstein therefore was able to compute on the
basis of (22) the correct unaccounted perihelion advance by looking at the field of a point
mass in second approximation. The calculation produced the correct value of 43′′ per cen-
tury without any arbitrary or ad hoc assumptions. In the computation Einstein could take
advantage of his having calculated the advance before for theEntwurf theory. The new
field equations, in fact, only involved a modification of his earlier calculations [Earman
and Janssen, 1993]. Einstein published these results in his third November communication
[Einstein, 1915c].

With the success of the perihelion calculation, the return to general covariance was
definite. The final step [Einstein, 1915d] was to add a trace term to the matter tensor to
obtain field equations of the form

Rµν =−κ
(
Tµν − 1

2
gµνT

)
. (23)

With the trace term added, the postulate of energy-momentum conservation no longer pro-
duced a coordinate restriction since it was now automatically satisfied by (23).
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Equations (23) are the final field equations of the generally relativistic theory of gravi-
tation, as we know them today. They are frequently referred to as the ‘Einstein equations’
of general relativity.

With the exception of the first November communication, where he had given the La-
grangian (19) for the field equations (17), Einstein had not discussed the subsequent field
equations in a variational approach. The closure of providing a variational formulation was
contributed by Hilbert in his own approach to a generally covariant theory of gravitation
and electromagnetism [Hilbert, 1915]. Since he was being kept informed by Einstein about
the latter’s progress, he rushed ahead and presented an account of his own version to the
Göttingen Academy for publication in itsNachrichten on November 20. Page proofs of
Hilbert’s original paper show that the version submitted for publication on November 20
still differed from the version that was eventually published. But it did already suggest to
base the theory on a variational principle and emphasized that the Lagrangian must be a
scalar function for general coordinate transformations.

In the printed version of Hilbert’s paper, the Riemann curvature scalarR is taken to
be the gravitational part of the Lagrangian; and it is stated, albeit not derived by explicit
calculation, that a variation of the action

A=
∫ √−g(

R− κL(mat))d4τ, (24)

with respect to the metric tensor componentsgµν would produce the gravitational field
equations

Rµν − 1

2
gµνR =−κ 1√−g

δL(mat)

δgµν
, (25)

which is an equivalent version of Einstein’s field equation (23). (25) may be transformed
to (23) by looking at the trace of (23) and substitutingR =−κT into it. The equivalence
then follows from the non-trivial identification of

1√−g
δL(mat)

δgµν
= Tµν. (26)

In the latter step, Hilbert and Einstein differed considerably since Hilbert axiomatically
tookL(mat) to be a function exclusively of the electromagnetic potentialAµ, the electro-
magnetic fieldFµν =Aµ,ν −Aν,µ, and the metric tensor componentsgµν ,

L(mat) = L(mat)(Aµ,Fµν, gµν), (27)

in accordance with his electromagnetic world view. Einstein, however, had entertained the
hypothesis of an electromagnetic origin of matter only for a few days. With his fourth
November communication at the latest, he had given up that hypothesis again and was
allowing for an unspecifiedTµν in his final version of the theory.
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9 THE 1916 REVIEW PAPER

Ever since Levi-Civita had found a gap in Einstein’s covariance proof of theEntwurf equa-
tions, Einstein had meant to update or rewrite his 1914 Academy article on the general
theory of relativity. With the return to general covariance, the success of explaining the
perihelion advance of Mercury, and the new field equations (23) of the fourth November
communication, he decided to write an altogether new account of the general theory of
relativity.

The new review was received by theAnnalen der Physik on 20 March 1916, some four
months after the last November paper. It is the landmark subject of this article. Its structure
is not much different from the earlier 1914 Academy article. It is again divided into five
Sections:

[A.] Fundamental considerations on the postulate of relativity;

[B.] Mathematical aids to the formulation of generally covariant equations;

[C.] Theory of the gravitational field;

[D.] Material phenomena;

[E.] [Newtonian limit and observable consequences].

In an introductory paragraph Einstein called the theory to be expounded in the review
‘conceivably the farthest-reaching generalization’ of the special theory of relativity. While
the latter is assumed to be known to the reader, he sets out to develop especially all the
necessary mathematical tools’—and I tried to do it in as simple and transparent a manner
as possible, so that a special study of the mathematical literature is not required for the
understanding of the present paper’ (p. 769).

Nevertheless, in this first paragraph Einstein did mention Minkowski’s formal equiva-
lence of the spatial and time coordinates, the investigations on non-Euclidean manifolds
by Gauss, Riemann, and Christoffel, and the absolute differential calculus of Ricci and
Levi-Civita. Echoing a theme of Felix Klein’s but also of later commentators, he wrote
that especially the absolute differential calculus had provided mathematical means which
simply had to be taken up—as if he had not struggled hard for years to apply them in a
physically meaningful way. He also acknowledged Grossmann’s help again in studying the
mathematical literature and in searching for the gravitational field equations.

The first Section then introduces the postulate of general covariance, arguing to a large
extent from purely epistemological considerations. Einstein denounces the existence of
an absolute space by considering two massive bodies far away both from other masses
and from each other and in relative rotation along their line of connection. If one body
were observed to be of spherical shape and the other to be an ellipsoid, then Newtonian
mechanics would have to attribute the cause for the different shapes in a rotation relative to
absolute space. But this is unsatisfactory because a causal agent is introduced which itself
can never be an object of causal effect nor of observation. Hence, one is forced to attribute
the cause for this change of shape to the distant masses of the fixed stars, an argument that
follows Mach’s critique of classical mechanics.
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The second argument is the equivalence hypothesis based on Galileo’s empirical law
of free fall. Next, Einstein discusses the rotating disk to argue for the fact that in general
relativity coordinates no longer have an immediate metric meaning. A fourth argument
in this Section was new and replaced the earlier hole consideration. The hole argument
had supposedly proven that no generally covariant field equations could be given a phys-
ical meaning in accordance with our notions of causality and the demand that the field
equations are determined uniquely by the energy-matter distribution. Einstein did not ex-
plicitly retract the argument but gave a new consideration, known as the point coincidence
argument. He argued that what we observe in physical experiments are always only spatio-
temporal coincidences. If all physical processes would consist in the motion of material
points, we could only observe those events where two or more of their worldlines coin-
cide. Then the coordinates of the four-dimensional space-time manifold are merely labels
for those coincidences, and no coordinate system must be preferred over any other. The
implicit objection to the hole argument that invalidates its conclusion is that the different
metric fieldsG(x) andG′(x) obtained by dragging the metric tensor over the hole, do not,
in fact, represent different physical situations since they agree on all point coincidences.

In the second, mathematical Section, Einstein summarily develops the elements of ten-
sor algebra and tensor calculus. He introduces contravariant and covariant vectors and gen-
eral tensors that are defined by the transformation laws of their components. He introduces
the algebraic operations of external multiplication and contraction, and of raising and low-
ering of indices. Among the properties of the metric tensor, he discusses the invariance of
the volume element

√−g d4x. He repeats the derivation of the geodesic equation, intro-
duces Christoffel’s symbols and discusses covariant differentiation by considering invari-
ance along the geodesic line. He mentions the fact that the covariant derivative of the metric
vanishes and derives a number of explicit formulas for the differentiation of contravariant,
covariant and mixed tensors. The last paragraph introduces the Riemann–Christoffel curva-
ture tensor and discusses its splitting into two parts, as in (14). Perhaps the most noteworthy
point of the Section, compared to earlier expositions of the mathematical foundations of
general relativity, is what came to be called the ‘Einstein summation convention’. It is in
this section that for the first time in print he introduced the convention that in any tensor
expression a summation over two repeatedindices is implied without writing down the
summation sign.

The third Section derives the gravitational field equations. They are given as

$αµν,α + $αµβ$βνα =−κ
(
Tµν − 1

2
gµνT

)
, (28)

√−g = 1. (29)

Somewhat surprisingly, from a modern point of view, Einstein did not give the field equa-
tions in a generally covariant form. Instead, he fixed the coordinates by condition (29)
in all equations that he gave in the Section. He emphasized, though, that this is a mere
specification of the coordinates introduced for convenience. The introduction of the field
equations, in fact, proceeded by arguing that the vanishing of the Ricci tensorRµν is the
unique equation that determines the metric field in the absence of masses if we demand
that the expression depends only ongµν and its first and second derivatives and moreover
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on the latter terms only linearly. The possibility of adding a term proportional togimR,
equivalent in the vacuum case (but not of adding a cosmological term proportional togim),
is mentioned in a footnote.

The Lagrangian for the variational form of the field equations in vacuum is given as

L= gµν$αµβ$βνα, (30)

together with the explicit stipulation of condition (29). The introduction of the matter term
proceeds by defining the stress-energycomplex of the gravitational field as

κtασ =
1

2
δασ g

µν$αµβ$
β
να − gµν$αµβ$βνσ , (31)

an expression that is not a tensor under general coordinate transformation, in accordance
with the fact that the field energy associated with the gravito-inertial field is not a localiz-
able quantity. Usingtασ , Einstein rewrote the field equation (28) as

(
gσβ$αµβ

)
,α
= κ

(
tσµ −

1

2
δσµt

)
, (32)

and demanded that the non-gravitational energy-momentum tensorT σµ enters in the equa-
tion on the same footing astσµ . The latter requirement is equivalent to demanding that a
divergence equation, (

tσµ + T σµ
)
,σ
= 0, (33)

holds for the total energy of the system.
While the derivation of the field equations differs considerably from earlier accounts,

the fourth and fifth Sections take up materialfrom earlier expositions. In these sections,
Einstein discussed Euler’s hydrodynamic equation with an energy-momentum tensor

T αβ =−gαβp+ ρuαuβ, whereuα = dxα/ds, (34)

for non-dissipative, adiabatic liquids, characterized by the two scalars of pressurep and
densityρ. Electrodynamics is governed by Maxwell’s equations in generally covariant
form, and, in the last Section, Einstein discussed the Newtonian approximation of weak
fields, Minkowski flat boundary conditions, and slow motion of the particles. In the con-
sideration of the Newtonian limit the constant may be related to the gravitational constant
G by comparison with Poisson’s equation asκ = 8πG/c2. Einstein explains a subtlety of
the Newtonian limit that had played a role in his earlier dismissal of generally covariant
equations. In the first Newtonian approximation only theg44 components enter into the
equations of motion, even though the postulate

√−g = 1 demands that the other diagonal
components are non-trivial of the same order. The first-order diagonal components, how-
ever, do enter into the geodesic equation for a light ray passing in a centrally symmetric
gravitational field. For this reason, the predicted expression for the light bending of a light
ray grazing the edge of the Sun, came out with a factor of 2, compared to earlier consid-
erations that were based on the equivalence hypothesis alone. The slowing of clocks in a
gravitational field and the gravitational red shift of spectral lines is discussed explicitly, but
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the calculation of the perihelion shift for Mercury obtained in second approximation of a
spherically symmetric field is only mentioned with reference to the pertinent November
communication.

10 EARLY RECEPTION OF THE FINAL VERSION OF GENERAL RELATIVITY

The first exact solution to the field equations—and to date the most important one—was
found almost immediately after Einstein had published his field equations (23) by the as-
tronomer Karl Schwarzschild (1873–1916). He computed the field first of a mass point and
then of a spherically symmetric mass distribution of total massm. His solution allowed
to compute the light bending of light rays and the planetary perihelion motion without
approximation [Schwarzschild, 1916]. The solution is regular everywhere except at the
origin but at a radiusrS = 2Gm/c2, now called the Schwarzschild radius, the time co-
ordinate changes its sign relative to the spatial coordinates. This coordinate singularity is
responsible for what came to be known as the black hole horizon and its interpretation
presented a major difficulty for many years.

While more exact solutions were found over the following years, approximation
schemes played an equally important role for an interpretation of the theory. An approx-
imate solution was discussed by Einstein in the summer of 1916 in a first paper on grav-
itational waves. The existence of gravitational waves was expected in a field theory of
gravitation by analogy to the electromagnetic case. Einstein’s first paper on this topic was
marred by a mistake which made him conclude that waves should exist that do not transport
energy. The error was corrected in a second paper of 1918. Until now, the topic of gravi-
tational waves is an active field of research and their existence has been shown indirectly
only in 1974 through the energy loss of binary pulsars (Nobel prize 1993). Experimental
efforts to observe gravitational waves directly are still underway.

The question of energy transport in gravitational waves is connected to the question of
identifying an expression for the gravitational field energy and a corresponding conserva-
tion law. The question was debated in the years 1916–1919 by a number of mathematicians,
most importantly by Felix Klein. The final solution came with Noether’s theorems on the
connection of conservation laws and symmetries of the variational formulation. These the-
orems were anticipated for a special case in Hilbert’s 1915 paper and published in its
general form in 1918 by Emmy Noether (1882–1935).

Einstein tried to encourage experimental efforts aimed at testing the two main predic-
tions of the theory. A confirmation of the gravitational red shift was difficult to determine
due to the many competing effects that result in a shifting or broadening of solar or stellar
spectral lines. An unequivocal confirmation of the gravitational red shift only came in 1960
in a controlled terrestrial experiment making use of the Mossbauer effect (concerning the
gamma-ray spectrum).

But the results of a British expedition led by Arthur Eddington (1882–1944) to test
the predicted gravitational light bending during a solar eclipse on 29 May 1919 in Sobral,
Brazil, and on the island of Principe in the Gulf of Guinea, reached Europe later in the
fall of that year. The results confirmed Einstein’s prediction, and within weeks of their
publication in the popular media, Einstein turned into a world celebrity and the theory of
relativity into a household term.
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A popular, non-technical accountof both the special and general theories of relativity
that Einstein had written as [Einstein, 1917]became a best-seller. A fourth edition in 1919
was reprinted in a fifth through tenth edition in 1920 and saw a fourteenth edition in 1922. It
was also translated into many languages. The increased interest in Einstein’s theory is also
witnessed by an uncountable number of more or less popular accounts and other books and
articles dealing with relativity. A bibliography of relativity from 1924 lists close to 4000
entries [Lecat, 1924].

The consequences of both special and generalrelativity began to be discussed in many
circles. Early interpretations of general relativity from a philosophical point of view had
been published by Moritz Schlick (1882–1936) and Hans Reichenbach (1891–1953). In
the early 1920s philosophical interpretations of relativity came to abound; the analysis in
[Hentschel, 1990] carries a bibliography of over 3000 items. The public interest in Ein-
stein’s new theory was not always untainted by political partisanry. Antisemitic attacks
against Einstein not only focussed on his person or on his political and pacifist stance but
also targeted his theory as well. As earlyas 1920, antisemitically motivated objections
against the theories of relativity were expressed in a public meeting at the Berlin Philhar-
monic in summer 1920, and again at the first post-war meeting of the Society of German
Scientists and Physicians in Bad Nauheim in September 1920. On the other hand, Ein-
stein began to be recognized worldwide as a leading physicist. He received international
invitations and honors, and began to travel extensively giving talks about his theory at a
time when post-war German science was still boycotted by many scholars and scientific
institutions.

11 GOING ON AND BEYOND GENERAL RELATIVITY

For Einstein, the victory of the breakthrough to general covariance in November 1915 was
not to be regarded as establishing a final theory that would not be subject to further re-
visions. Already in 1917, he modified the gravitational field equations by adding a term
proportional toλgµν to (23). The modification was motivated in the context of a cosmo-
logical consideration. Einstein wanted toavoid the stipulation of boundary conditions at
infinity in order not to have to account for inertial effects that might not have been caused
by masses, in accordance with what he called Mach’s principle. He suggested to consider
the cosmological model of a spatially closed and static universe but had to modify the field
equations by introducing the cosmological constantλ in order to allow for the possibility
of such a solution. An alternate vacuum solution to the modified field equations advanced
by Willem de Sitter (1872–1934) soon showed, however, that the new field equations did
not automatically satisfy Mach’s principle as had been Einstein’s hope.

In 1919, Einstein entertained the possibilityof a gravitational field equation where the
trace term in (23) would be added with a factor of 1/4 instead of 1/2. The modification was
motivated by considerations concerning the constitution of matter and implies that it is no
longer the covariant divergence ofTµν that is automatically vanishing but rather its trace.
Other modifications of the field equations or generalizations of the underlying Riemannian
geometry were investigated by Einstein and others in the followingdecades in attempts to
find a geometrized unification of the gravitational and electromagnetic fields.
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In fact, a geometric interpretation of the general theory of relativity, if considered at
all, originally pertained only to the geodesic equation. Until 1916, the Riemann and Ricci
tensors were only interpreted as algebraic invariants. A geometric interpretation in terms of
parallel transport of tangent vectors was elaborated in the following years mainly through
the work of Levi-Civita and Hermann Weyl (1885–1955).

In the course of elaborating the geometric meaning of general relativity, it was Her-
mann Weyl who took the first steps to go beyond a purely (semi-)Riemannian framework
for general relativity and, at the same time, first proposed a truly geometrized unification of
the gravitational and electromagnetic fields. First published independently, it was also in-
corporated into the third edition of his widely read exposition of general relativity ([Weyl,
1918]; see [Scholz, 2001]). In accordance with more general philosophical concerns about
the foundations of mathematics, Weyl’s point of departure was the observation that in Rie-
mannian geometry, no integrable, or path-independent comparison of vector directions at
different points of the manifold is possible, whereas the length of a vector remains unaf-
fected during parallel transport. In order to realize a true ‘infinitesimal geometry’ (Nahe-
geometrie), Weyl introduced an additional geometric structure, a length connection, i.e. a
linear differential formϕ that governed the transport of vector lengthsl by the definition

δl ≡ (∂l/∂xi) dxi + lφi dxi ≡ 0. (35)

At the same time, the Riemannian metricgµν had to be replaced by the class of confor-
mally equivalent metrics[g], where two representatives of a class are connected through
g̃µν = λgµν with a scalar functionλ. For consistency, the length connectionϕ has to be
transformed, too, as̃ϕi dxi = ϕi dxi − d logλ. For these transformations, Weyl introduced
the term ‘gauge transformations’.

The (semi-)Riemannian manifold with metric tensor fieldgµν was hence generalized
to a manifold with conformally equivalent classes[g], [ϕ] of (semi-)Riemannian metrics
and length connections. The geometric meaning of this generalization was realized by
investigating the affine connection, governing the parallel transport of vectors. It turned
out that the curvature associated with the length connection, i.e. the exterior derivative of
f = dϕ (in coordinates,fij = ϕi,j − ϕj,i ) could be interpreted as the representation of the
electromagnetic field tensor [Scholz, 2001, esp. pp. 63–69].

Einstein’s reaction to Weyl’s theory was highly ambivalent. Fascinated by the mathe-
matical analysis, he quickly pointed out that the theory was unacceptable from a physics
point of view since it implied, for example, that the wavelength of light emitted by radi-
ating atoms should depend on the prehistory of the atom, contrary to experience. Despite
this argument, Weyl’s theory proved extremely influential as the first (more or less) suc-
cessful attempt to achieve a geometric unification of the gravitational and electromagnetic
fields. During the 1920s, many attempts were tried to achieve a unification of gravitation
and electromagnetism by generalizing Riemann geometry. These investigations both stim-
ulated and profited from parallel developments in differential geometry.

With the advent of quantum mechanics in 1926, the discovery of the weak and strong
interactions and the proliferation of elementary particles in nuclear and subnuclear physics,
the parameters for a unification program changed drastically (compare §69). Many aspects
of the original unified field theory program have consequently fallen into oblivion, but
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the history of modern differential geometry can hardly be understood without taking into
account this context of searching for generalizations of Riemannian geometry.

In essence, Einstein’s general theory of relativity of 1916 remains today the accepted
theory of the gravitational field, and notwithstanding the expectation that a generally
relativistic theory of gravitation should also be quantized—still an unsolved problem—
classical general relativity, in the sense of an exploration of the solutions and implicit
consequences of its gravitational field equations, has been an active field of research ever
since.
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1 BIOGRAPHY

D’Arcy Wentworth Thompson (1860–1948) is remembered today for one published work,
his monumental bookOn growth and form, first published in 1917 with a second edition
in 1942. He was a biologist, but his inclusion in this volume on the history of mathematics
is readily explained, because his attempt to extend the mathematical approach to cover the
biological realm has been strongly influential up to the present time. The continuing impact
of this book is evident in the fact that it is stillin print. As we shall see this is all the more
surprising given the many historically-based obscurities embedded in it. The precise nature
of his influence is however far from clear.

Thompson was the only son of an eminent Edinburgh classics teacher [Thompson,
1958]. His mother’s three brothers were biologists and medical men. After two years as
a medical student at Edinburgh he reverted to his real vocation, that of a naturalist. He
was trained in Cambridge, taking the Natural Science Tripos from 1880 to 1883, and
there he was an exact contemporary of the future distinguished geneticists William Bate-
son and Walter Weldon. His friends included fellow undergraduates, the later physiolo-
gist C.S. Sherrington, the mathematician H.H. Turner, the philosopher W.R. Sorley, and
A.N. Whitehead, mathematician later turned influential philosopher. At Cambridge, after
initial courses in mathematics and physics, hewas particularly influenced by Michael Fos-
ter, leader of the newly-emerging, rigorous, experimental approach to physiology—who
also had an interest in embryology—and especially by Francis Balfour, the remarkably
gifted embryologist who was pioneering a modern approach to comparative embryology,
at the time very much a key discipline for biology generally. As a student Thompson trans-
lated Fritz Muller’sThe fertilization of flowers, for which he asked Charles Darwin to write
a preface (one of his last writings). One suspects that Thompson might well have continued
straightforwardly in the embryological direction, had not Balfour died suddenly in 1882,
aged 31. His ‘school’ then fell apart.

At the age of 24 Thompson founded a new zoology department at Dundee. He later
moved to St Andrews, where indeed he ended his long career, after 64 years as head of
department. His interests ranged very wide, covering embryology, taxonomy, museum cu-
rating and collecting, fisheries and oceanography.He was equally at home with the classics;
Aristotle was his particular favourite, about whom he often wrote. He produced scholarly
glossaries of birds and fishes as referred to in the Classical Greek literature. It is not sur-
prising that Stephen Gould described him as ‘perhaps the greatest polymath this century’.
However, apart from a steady stream of occasional papers, he published nothing of great
scientific significance other than the book considered here, when he was in his late fifties.
Its contents are summarised in Table 1.

2 STRUCTURE OF THE ARGUMENT

The book starts with the problem of scaling, that is, the direct consequences of the vary-
ing sizes of organisms, of surface to volume ratios, etc. The long Chapter 3 on ‘The rate
of growth’ concerns growth curves, differential growth of anatomical parts and the ef-
fects on their form, i.e. shape, and its variations in different populations and under dif-
ferent conditions. The theme is now referred to as ‘allometry’; it especially overlaps the
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Table 1. Contents by Chapters of the book. The longer second edition is not different in
layout or argument.

Ch. Page Topic
1 1 Introductory.
2 16 On magnitude.
3 50 The rate of growth.
4 156 On the internal form and structure of the cell.
5 201 The forms of cells.
6 277 A note on absorption.
7 293 The forms of tissues, or cell-aggregates.
8 346 The same.
9 411 On concretions, spicules, and spicular skeletons.

10 488 A parenthetic note on geodetics.
11 493 The logarithmic spiral.
12 587 The spiral shells of the foraminifera.
13 612 The shapes of horns, and of teeth or tusks: with a note on

torsion.
14 635 On leaf-arrangement, or phyllotaxis.
15 652 On the shapes of eggs, and of certain other hollow structures.
16 670 On form and mechanical efficiency.
17 719 On the theory of transformations, or the comparison of related

forms.
Epilogue 778–779 Index. [End 793.]

concerns of embryology. One reason for the length of this chapter is Thompson’s inter-
est in the mathematics of variation within populations, a controversial theme at the time
among geneticists such as Galton, Weldon, Karl Pearson and Bateson (§56.2). Chapter 4
concerns the internal structure of cells; he interprets chromosome patterns and cell divi-
sion as evidence for, and in terms of, mechanical forces such as surface tension. Chap-
ter 5 deals in similar terms with the external shapes of different cell types. Chapter 6
on absorption addresses surface energy phenomena, which are seen as adjuncts to sur-
face tension forces. Chapter 7 deals with the arranging of cells in groups (for example,
honey combs). Chapter 8 considers the patterning of cells following cell division. Chapter
9 covers the role of mineral deposits in organismic structure, particularly shells and ex-
oskeletons. Chapter 11 covers the specific case of helical patterns, especially in molluscan
skeletons; here the mathematical description fits biological pattern especially closely and
fruitfully.

The book now moves on to a more gross anatomical level; increasingly it merely draws
the formal parallelism between aspects of shapes seen in anatomy as against structures
found in the physical world (Figure 1). Chapter 14 reviews the Fibonacci series as a de-
scription of flower patterns.

Despite the vast diversity of issues and examples, the book is arranged in a logical and
unified manner starting with the broadest principles, then moving from the simplest unit
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Figure 1.

of biological structure, the cell, upwards in scale to biological structures and organs of
increasing complexity.

3 THOMPSON’S KEY METHODOLOGICAL EXAMPLE

Undoubtedly the best remembered chapter in the book is the final one dealing with the
theory of transformations. This is the culmination of the book and a synthesis of its overall
message. It shows the relevance and application of Thompson’s biomathematical approach
to the problems of evolution of new species and phylogenesis. Here he tackles the largest
scale morphological phenomena including whole organisms. The theory of transformations
consists in showing how, after defining the shape of one structure (such as the species of
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Figure 2.

fish in Figure 2) in terms of an imposed Cartesian grid, a new shape (for example, a second
fish species) can be derived through a coordinated geometric deformation of the grid.

The chapter stands out because of the methodology that Thompson introduces and the
way that it is directly demonstrated in his striking diagrams. This is probably the most
original part of the book. He sees this methodas a way of avoiding traditional problems in
taxonomy requiring the comparing of morphologies, such as population variations and the
arbitrariness of the selection of specific individual anatomical features. His method deals
with thewhole pattern. But it is far from clear that the transformations are a pointer to actual
mechanisms involved in biological evolution [Gould, 2002; Horder, 2002]. Are they any
more than merely a descriptive device? The method certainly cannot explain evolutionary
novelties of structure; but only relative morphological changes in arrangement of already
existing structures in obviously comparable species.

4 HOW SHOULD SUCH A WORK BE APPROACHED TODAY?

4.1 The original intention of the author

The main problem in understanding and evaluating a historical work such as this one is that
present perceptions are in danger of differing from those within which Thompson himself
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would have seen his main achievement. Moreover, the way in which he happened to ar-
rive at, and publish, his main objective—which is likely to reflect incidental circumstances
and to bear the traces of his particular startingpoint and false trails on the way—probably
needs to be separated from the finally achieved objective itself. Since we are dealing with a
scientifically important and still influential work, we can hope toidentify an important and
enduring core message that is reasonably close to how Thompson would have understood
it. The only valid starting point for a later analysis of a classic work must be an accurate
assessment of what the work meant at the time and why it was seen as an important con-
tribution to science. But in order to reach this point the historical fog between Thompson
and ourselves has to be dispersed.

4.2 Language, style and presentation

In reading any historical work one faces a certain, inevitable foreignness of expression.
The onus is on the present-day reader to make allowances for historical changes in style,
and even in meaning of words. We also have to take into account the effects of publishing
conventions of the time on the format of the work.

The modern reader is likely to find Thompson’s style a dominant feature of the writing,
particularly in the aspects of his ‘classical’ background which show up in his use of allu-
sions and quotations (usually in their original languages) from a vast international range of
historical sources. This can appear mannered and more literary than scientific. Nonetheless,
the clarity of his meaning is rarely in doubt; the prose is often eloquent and forceful.

Thompson was by nature a naturalist and an encylopaedist; this explains the extraordi-
nary breadth of his biological examples. And yet the book is a highly selective review of
existing scientific literature. It is noticably thin on its coverage of experimental evidence,
particularly in the field of embryology, which would seem to be most directly relevant to
his main theme. Such a lack of coverage is even more glaringly obvious and unfortunate in
the second edition; for example, he refers to Huxley [1932] only once despite the fact that
J.S. Huxley had developed Thompson’s methods in important ways. Although the book is
most remembered for the chapter on transformation, its overall intention and approach is
not really one of systematic reviewing of evidence or of presenting a new method. It is a
compilation, verging on the anecdotal, intended to promote a certain, general view of bi-
ology. This explains why it cannot be described as a textbook, even less a work of general
interest accessible to the non-experts; it is inevitably a ‘one-off’ and is perhaps best charac-
terised as one extended essay. Although Thompson makes it quite clear how his approach
relates to the major biological issues of the time (that is, evolution theory, genetics and
phylogenesis), he is noticably brief in his treatment of them. The following passage from
the epilogue (p. 778) sums up how he sees his presentation, and shows that he regarded the
book as, in a sense, provisional and limited in ambition:

In the beginning of this book I said that its scope and treatment were of so
prefatory a kind that of other preface it had no need; and now, for the same
reason, with no formal and elaborate conclusion do I bring it to a close. The
fact that I set little store by certain postulates (often deemed to be fundamen-
tal) of our present-day biology the reader will have discovered and I have not
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endeavoured to conceal. But it is not for the sake of polemical argument that I
have written, and the doctrines which I do not subscribe to I have only spoken
of by the way. My task is finished if I have been able to shew that a certain
mathematical aspect of morphology, to which as yet the morphologist gives
little heed, is interwoven with his problems, complementary to his descrip-
tive task, and helpful, nay essential, to his proper study and comprehension of
Form.

4.3 Effects of historical context

No author can avoid being the product of his times. Failure to take historical context into
account can cause much puzzlement to the modernreader; recognition of the context often
provides the key that explains otherwise incomprehensible features. Again it is the duty
of the reader to take account of the targets, fads, assumptions, debates or conflicts, and
misunderstandings current at the time, if the work is to be properly judged and evaluated.

Although it is perfectly clear that he understood the biological context and implications
of his contribution, Thompson’s brevity and avoidance of engagement with the fundamen-
tal, polemical issues in biology of his time make it difficult to locate him within the sci-
entific community. He was writing at a critical time for biology: Darwinism (including
gradualism and adaptationism) was still being openly questioned; even the most basic as-
pects of the ultrastructural and macromolecular nature of cells were only beginning to be
understood; Ernst Haeckel’s notion that ontogeny recapitulates phylogeny still provided
a sufficient rational explanation for morphology and as yet genetics provided few clues
about ancestry or evolution. Thompson argues against various versions of ‘final cause’
or teleology, and in favour (like Wilhelm His) of explanations in the ‘here and now’. Like
Bateson [Coleman, 1970], Thompson was sceptical about new ideas on the role of chromo-
somes, partly because he argued against excessive reductionism (following Clerk Maxwell:
compare §44). Below a certain size structure was irrelevant to biological phenomena. Not
surprisingly he hardly mentions Gregor Mendel, August Weismann, Bateson or ‘heredity’.
A primary target for his attack was vitalism, a view of living system then still widespread.
Thompson put his trust in method; like physiology, morphology needed to adopt the strictly
explicit, objective and systematic methods that had been so successful in physics.

Throughout the text one can find indications of specific influences on Thompson’s
thought, particularly in his choice of authors and supporting evidence. He considered
‘force’ to be the most fundamental of causal factors; chemistry as well as biology could be
reduced to it (pp. 1, 11). J.C. Maxwell was a major influence; his name is among the most
frequently cited in the index. Vibrational models were potent images suggestive, and even
illustrative, of mechanisms underlying such diverse processes as cell division, segmenta-
tion of bodily organisation or the striping of colour patterns in zebras or butterflies. The
background assumptions and perspectives under which Thompson was operating can be
inferred from the many remarkable similarities of his approach to that of Bateson, partic-
ularly in his volumeProblems of genetics [1913], written at the same time. Interestingly,
Bateson was not sympathetic to the mathematical approach, and yet he used many of the
same analogies and physical models as Thompson [Coleman, 1970].
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4.4 Subsequent perceptions and influence

It is clear that Thompson’s original objective was to establish the general case for explana-
tions of biological phenomena according to principles derived from physics and mathemat-
ics. This target, and some of his assumptions as he was writing the book, is probably most
explicitly spelled out in early articles in which his ideas first emerged [Thompson, 1911,
1916]. His 1911 paper shows the extent to which he saw physiology as having already
become a rigorous physics-based science; against this ideal morphology seemed sorely de-
ficient methodologically. In a recent review of the history of biomathematics Keller [2002]
has helped to put Thompson into context. Ball [1999] illustrates beautifully how he is still
a key figure in some genres of current thinking about biological structure.

With a book such as this, one that—unusually—still has a continuing influence rather
than being just an important but essentially archival historical document, one has to sepa-
rate an evaluation of it as a work in its time,from the effects of its impact on succeeding
generations. Its original impact may remain somewhat unclear, but succeeding generations
may well have used it for their own, varying purposes.

It happens that a remarkable succession of future scientific opinion-formers took
D’Arcy Thompson as an early model for their work. Following the first edition ofOn
growth and form Huxley [1932] tried to refine the transformation method, both numeri-
cally and in algebraic form. For his more systematic and focused approach he coined the
term ‘allometry’. More recently Gould [1977] followed a similar path and attempted further
modern refinements. Both dedicated their volumes to Thompson. Other prominent scien-
tists much influenced by him include R.B. Goldschmidt, P.B. Medawar (1986), J.T. Bonner
and Alan Turing. Turing attempted a directly mathematical solution to some of the most
fundamental problems in embryonic development through his notion of the ‘morphogen’
and his ‘reaction–diffusion model’ [Hodges, 1983, ch. 8].

By the time (1942) of the second edition ofOn growth and form, Huxley, in marked
contrast to Thompson, had moved on and had led the direction of advance in biology
that was ultimately to prove most successful; in introducing ‘The modern evolutionary
synthesis’ he completed the integration of modern genetics with the traditional concerns of
evolutionary biology.

It seems possible that the enduring repute of Thompson’s book is largely a function of
the appeal it had to a particular succession to outstanding scientific communicators, who
admired it for its style and erudition as much as for its science, and who, as young pioneers
themselves, also found in Thompson a model, who appealed as a personality, especially
as the maverick ‘courageous loner’. In a revealing commentary on the book, Gould [2002]
confirms the perhaps illusory qualities that have sustained its reputation and given the book
its almost mythic status.

5 EVALUATION

It is difficult to evaluate this unorthodox volume, whose fame does not rest simply on an
original and foundational scientific finding, a new theory or even a new methodology—
at every point its originality could be questioned—but is inseparable from its style and
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presentation. Thompson’s claim to greatness does not rest on mathematical originality; he
denied that he had special mathematical skills. The comment has often been made that his
ideas are inapplicable in practice; even later refined versions like allometry are of limited
usefulness in biology as a whole.

It has often been pointed out against Thompson that he was ‘wrong’ in almost all his
views about biological fundamentals. As it turned out, his sceptical view of gradualistic
Darwinian evolution or the phylogenetic and genetic basis of existing organic forms was
unjustified. However, this judgement is unfair, given the state of flux of such issues at the
time of the first edition. Thompson was not as much of an iconoclast as he has been taken to
be, but he was clearly a free spirit, as well as being an opinionated and uninhibited thinker.
He was also aware of the dangers he faced in taking these views and in promoting such
a starkly alternative approach; he refers feelingly to the contempt with which his earlier
mechanical views of embryogenesis had been met (p. 56). Undoubtedly one of his main
motivations was to promote rigorous methods in biology, in the face of vitalism and the
speculative thinking common at the time.

In the end we face a paradox. Thompson’s specific intentions have not been fulfilled and
his project could be said largely to have failed. The limitations of his approach in detail
have become ever more obvious; biology cannot be reduced to mathematics, and now has
to look to molecular biology for its foundations. And yet his abiding importance lies in his
emphasis on morphology and the problem of explaining higher-level biological phenom-
ena. There is no more eloquent statement of the limitations of reductionism available. In
any scientific position that survives as a living force the position has to evolve along with
changing historical contexts. Seen in this light Thompson’s vision survives and may yet
become even more important.
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CHAPTER 65

LEONARD DICKSON, HISTORY OF THE
THEORY OF NUMBERS(1919–1923)

Della D. Fenster

Dickson provided an encyclopedic account of the history of number theory up to 1918.
However, he omitted the important topic of quadratic reciprocity.

First publication. Volume I,Divisibility and primality, 1919. 486 pages. Volume II,Dio-
phantine analysis, 1920. 803 pages. Volume III,Quadratic and higher forms, 1923. 313
pages. All vols. Washington: The Carnegie Institution.

Photoreprints. New York: Chelsea, 1966. Providence: American Mathematical Society
1999, 2002.

Related articles: Gauss on number theory (§22), Dirichlet (§37), Hilbert on number theory
(§54).

1 BRIEF BIOGRAPHY OF THE AUTHOR

Born in Independence, Iowa in 1874, LeonardEugene Dickson spent his boyhood in Cle-
burne, Texas and ultimately attended the University of Texas for his undergraduate and
master’s education [Albert, 1955; University of Texas Archives, 1899, 1914]. With his mas-
ter’s degree in hand and two years of teaching experience under his belt, Dickson chose as
the place to pursue his doctorate the strong triumvirate of Eliakim Hastings Moore (1862–
1932), Oskar Bolza, and Heinrich Maschke at the young University of Chicago over the
up-and-coming Harvard with William Fogg Osgood and Maxime Bôcher. Dickson’s math-
ematical career would ultimately hingeon this decision [Fenster, 1997, 9–13].

At the time, Chicago, with its sights set on emulating the German tradition of scholar-
ship, stood in marked contrast to most American institutions. Specifically, Moore, Bolza
and Maschke formed the core of the original far-sighted Chicago Mathematics Department,
which promotedboth research and teaching and which emphasized in its graduate program
the training of future productive researchers [Parshall and Rowe, 1994, 363–426; Fenster,
1997, 10–11].

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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Moore, then drawn to group theory, inspired Dickson to write a thesis on (what we
would call) permutation groups; this was duly done between 1894 and 1896 [Dickson,
1897]. Although group theory would remain among Dickson’s research interests through-
out his career, he would add finite field theory, invariant theory, the theory of algebras
and number theory to his repertoire [Albert, 1955, 334–345 contains a bibliography of his
work]. He reflected Chicago’s influence—particularly that of Moore—in more ways than
in his research interests, however. The department’s sustained commitment to research,
high standards for publication, and their vision for the American (as opposed to New Eng-
land) mathematical communitycame to permeate Dickson’s mathematical persona in these
formative years. In the spring of 1900, the Chicago Mathematics Department invited him
to join them as an assistant professor. From this position he made significant contributions
to the consolidation and growth of the algebraictradition in America [Fenster, 1997, 21].
Specifically, he spent 40 years (all but the first two) of his professional career on the faculty
at Chicago, where he directed 67 Ph.D. students, wrote more than 300 publications, served
as editor of theMonthly and theTransactions of the American Mathematical Society, and
guided the Society as its President from 1916 to 1918.

2 WHY DICKSON MAY HAVE WRITTEN HIS
HISTORY OF THE THEORY OF NUMBERS

Yet this mathematical workhorse, who played billiards andbridge by day and did math-
ematics from 8:30 p.m. to 1:30 a.m. every night [Albers and Alexanderson, 1991, 377],
spent nearly a decade of his career writing a three-volume, 1602-page history of the the-
ory of numbers. The lurking question is: why? As he explained it himself, he undertook
this project because ‘it fitted with my conviction that every person should aim to perform
at some time in his life some serious useful work for which it is highly improbable that
there will be any reward whatever other than his satisfaction therefrom’ (vol. 2, xxi). Al-
though he viewed it as ‘highly improbable’, this altruistic mission paid handsome rewards
for Dickson as this historical study ultimately led to his celebrated work in the arithmetics
of algebras [Fenster, 1998].

Dickson’s most distinguished student, A. Adrian Albert, has suggested that Dickson
wrote the book to become more acquainted with number theory: ‘Dickson always said
that mathematics is the queen of sciences, and that the theory of numbers is the queen of
mathematics. He also stated that he had always wished to work in the theory of numbers
and that he wrote his monumentalHistory of the Theory of Numbers so that he could know
all of the work which had been done in the subject’ [Albert, 1955, 333].

Dickson’s developing research interests substantiate this claim. Of the 200 papers he
wrote prior to 1923, the year he published the third (and final) volume of hisHistory,
only ten considered number-theoretic topics. In 1927, however, his pure mathematical re-
searches began to focus on additive number theory, and in particular on the ideal Waring
theorem. In a long series of papers he and his students provided an almost complete verifi-
cation of the theorem that loosely states that every positive integer is a sum ofI integraln-
th powers for sufficiently largeI . Dickson also guided 29 of his last 32 doctoral students in
number-theoretic dissertations [University of Chicago Archives, 1931, 1938, 1941]. These
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29 students, along with Dickson’s contributions to the ideal Waring theorem and three texts
on number theory that he published as [Dickson, 1929, 1930, 1939] seem to indicate that if
he intended for his historical study to acquaint him with the subject so that he could work
in the field himself, he had certainly accomplished what he set out to do.

However, Dickson may have undertaken this historical work for more nationalistic rea-
sons. For example, he initially sought out the Carnegie Institution of Washington, one of
the new national agencies created to promote what we now call basic research [Reingold
and Reingold, 1981, 7], as a possible publisher of the project. From his perspective, as
he wrote to Carnegie President R.S. Woodward, ‘[i]t would seem desirable to have under-
taken in this country something of the kind doneby the British Association, the Deutsche
Mathematiker Vereinigung, etc., in the preparation by specialists of note of extensive Re-
ports each covering an important branch of science’ [Dickson to Woodward, 1911]. After
describing his ‘ideal of a mathematical report’ that would appeal both to specialists and
non-specialists, Dickson admitted that he had‘already given a solid year’s work to such
an expository Report on the theory of numbers (integral and algebraic)’ (ibidem). Thus
the British and German ‘mathematical Report[s]’, and, in particular, the lack of similar
offerings in America, may have encouraged Dickson to write his own compendium on the
subject of number theory. In the case of graduate training, it was not at all unusual for the
American mathematicians to look to the Europeans for ideas [Parshall and Rowe, 1994].
The initiative that Dicksonoutlined in his letter to Woodward, however, required not only
an acquaintance with the European literature but also an awareness of a perceived void in
American publications. Moreover, the opening sentence of his letter to Woodward seems
to suggest that he wanted to raise American mathematics to the European standard in this
particular realm. Throughout his career, he remained avidly committed to establishing stan-
dards of excellence for and in the community ofAmerican mathematicians [Fenster, 1998,
1999].

3 THE STYLE AND CONTENT OF DICKSON’S
HISTORY OF THE THEORY OF NUMBERS

Table 1 summarises the contents of Dickson’sHistory. His view of the role of the historian
dictated how he both prepared and wrote his book. As he saw it, ‘[w]hat is generally wanted
[in a historical study] is a full and correct statement of the facts, not an historian’s personal
explanation of those facts. The more completely the historian remains in the background,
the better the history. Before writing such a history, he must have made a more thorough
search for all the facts than is necessary for the conventional history’ (vol. 1, xx). For him
this ‘thorough’ search required a trip overseas to visit European libraries and collect var-
ious number theoretic references. The University of Chicago, apparently, supported this
type of international research travel since they granted Dickson a leave of absence. For the
necessary funds, he sought travel support for his research from the Carnegie Institution of
Washington. From a purely pragmatic perspective, hisHistory confirms the importance of
recent ‘technical innovations’—such as the railroad, steamship, and telegraph—in the in-
ternationalization of science [Parshall, 1996, 293; Lehto, 1998, 1–2]. Specifically, Dickson
could not have undertaken, much less completed, hisHistory without the recent advances
of the railroad to take him to the East Coast of the United States, the steamship to carry
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Table 1. Contents by chapters of Dickson’sHistory of the theory of numbers.

Ch. Page Topics
Volume I.Divisibility and primality.

1 3 Perfect, multiply perfect, and amicable numbers.

2 51 Formulas for the number and sum of divisors, problems of Fermat and Wallis.

3 59 Fermat’s and Wilson’s theorems, generalizations and converses; symmetric
functions of 1,2, . . . , p− 1, modulop.

4 105 Residue of(up−1− 1)/p modulop.

5 113 Euler’sf -function, generalizations; Farey series.

6 159 Periodic decimal fractions; periodic fractions; factors of 10n± 1.

7 181 Primitive roots, exponents, indices, binomial congruences.

8 223 Higher congruences.

9 263 Divisibility of factorials and multinomial coefficients.

10 279 Sum and number of divisors.

11 327 Miscellaneous theorems on divisibility, greatest common divisor, least
common multiple.

12 337 Criteria for divisibility by a given number.

13 347 Factor tables, lists of primes.

14 357 Methods of factoring.

15 375 Fermat numbersFn = 22n + 1.

16 381 Factors ofan �= bn.
17 393 Recurring series; Lucas’un, vn.

18 413 Theory of prime numbers.

19 441 Inversion of functions; Möbius’s functionµ(n); numerical integrals and
derivatives.

20 453 Properties of the digits of numbers.

467 Author index. 484–486 Subject index.
Volume II. Diophantine analysis.

1 1 Polygonal, pyramidal and figurate numbers.

2 41 Linear Diophantine equations and congruences.

3 101 Partitions.

4 165 Rational right triangles.

5 191 Triangles, quadrilaterals, and tetrahedra.

6 225 Sum of two squares.

7 259 Sum of three squares.

8 275 Sum of four squares.

9 305 Sum ofn squares.

10 325 Number of solutions of quadratic congruences inn unknowns.
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Table 1. (Continued)

Ch. Page Topics
11 329 Liouville’s series of eighteen articles.

12 341 Pell equation;ax2+ bx + c made a square.

13 401 Further single equations of the second degree.

14 435 Squares in arithmetical or geometrical progression.

15 443 Two or more linear functions made squares.

16 459 Two quadratic functions of one or two unknowns made squares.

17 485 Systems of two equations of degree two.

18 491 Three or more quadratic functionsof one or two unknowns made squares.

19 497 Systems of three or more equations of degree two in three or more unknowns.

20 533 Quadratic form made an nth power.

21 545 Equations of degree three.

22 615 Equations of degree four.

23 673 Equations of degreen.

24 705 Sets of integers with equal sums of like powers.

25 717 Waring’s problem and related results.

26 731 Fermat’s last theorem,axr + bys = czt , and the congruencexn + yn = zn
(modp).

777 Author index. 799–803 Subject index.
Volume III. Quadratic and higher forms.

1 1 Reduction and equivalence of binary quadratic forms, representation of
integers.

2 55 Explicit values ofx, y in x2+Dy2= g.

3 60 Composition of binary quadratic forms.

4 80 Orders and genera; their composition.

5 89 Irregular determinants.

6 92 Number of classes of binary quadratic forms with integral coefficients.

7 198 Binary quadratic forms whose coefficients are complex integers or integers
of a field.

8 203 Number of classes of binary quadratic forms with complex integral
coefficients.

9 206 Ternary quadratic forms.

10 225 Quaternary quadratic forms.

11 234 Quadratic forms inn variables.

12 253 Binary cubic forms.

13 259 Cubic forms in three or more variables.

14 262 Forms of degreen� 4.
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Table 1. (Continued)

Ch. Page Topics
15 269 Binary Hermitian forms.

16 279 Hermitian forms inn variables and their conjugates.

17 284 Bilinear forms, matrices, linear substitutions.

18 289 Representation by polynomials modulop.

19 293 Congruencial theory of forms.

303 Author index. 309–313 Subject index.

him across the Atlantic and the telegraph to aid him with his correspondence. The time was
right for such a comprehensive undertaking.

Dickson’s description of this historical undertaking as ‘serious useful work’, however,
proved more than accurate. This was no hastily written history of number theory. On the
contrary, he had planned both the content of his project and the precise method that he
would follow to present the details of his study. He revealed the scope of his plans when he
explicitly stated his bold intention to ‘give anadequate account of the entire literature of the
theory of numbers’ (vol. 1, iii). As for his method, the following excerpt reveals both the
thoroughness of his study and the historiographic view that he maintained throughout this
work. As for the presentation, a typical page (vol. 1, 5) reveals the stylistic manifestation
of his historiographic view:

Hrotsvitha, a nun in Saxony, in the second half of the tenth century, mentioned
the perfect numbers 6, 28, 496, 8128.
Abraham Ibn Ezra (1167), in his commentary to the Pentateuch, Ex. 3, 15,
stated that there is only one perfect number between any two successive powers
of 10.
Rabbi Josef b. Jehuda Ankin, at the end of the twelfth century, recommended
the study of perfect numbers in the program of education laid out in his book
‘Healing of Souls.’
Jordanus Nemorarius (1236) stated (in Book VII, props. 55, 56) that every
multiple of a perfect or abundant number is abundant, and every divisor of
a perfect number is deficient. He attempted to prove (VII, 57) the erroneous
statement that all abundant numbers are even.
Leonardo Pisano, or Fibonacci, cited in his Liber Abbaci of 1202, revised about
1228, the perfect numbers

1

2
22(22− 1)= 6,

1

2
23(23− 1)= 28,

1

2
25(25− 1)= 496,

excluding the exponent 4 since 24−1 is not prime. He stated that by proceeding
so, you can find an infinitude of perfect numbers.

In 1602 pages, Dickson never swerved from this comprehensive, facts-only style of
writing: Hrotsvitha mentioned, Ezra stated, Rabbi Josef recommended, Nemorarius stated,
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Fibonacci cited, etc. This strict style, in theopinion of the number-theorist D.N. Lehmer,
made ‘the book [. . .] not so much a history as a list of references from which a history of
the theory of numbers mightbe written’ [Lehmer, 1919–1920, 131–132].

In some cases, however, thesum total of the facts departed from the strictly internalistic
(to use a modern historiographic adjective) style followed by Dickson, and revealed a much
broader view of the theory of numbers. As we saw above, he included a 12th-century rabbi
as a contributor to the development of perfect numbers and described his contribution as
one who ‘recommended the study of perfect numbers in the program of education laid out
in his book “Healing of Souls” ’. The preceding page included more ‘facts’ on the ethical
importance of perfect numbers (vol. 1, 4):

Iamblichus (about 283–330) [. . .] remarked that the Pythagoreans called the
perfect number 6 marriage, and also health and beauty (on account of the in-
tegrity of its part and the agreement existing in it).
Aurelius Augustinus (354–430) remarked that, 6 being the first perfect number,
God effected the creation in 6 days rather than at once, since the perfection of
the work is signified by the number 6. [. . .].
Alcuin (735–804), of York and Tour, explained the occurrence of the number
6 in the creation of the universe on the ground that 6 is a perfect number. The
second origin of the human race arose from the deficient number 8; indeed,
in Noah’s ark there were 8 souls from which sprung the entire human race,
showing that the second origin was more imperfect than the first, which was
made according to the number 6.

Hence, as Lehmer pointed out in his review of this volume for theBulletin of the American
Mathematical Society, ‘one is struck in glancing through the book by the remarkable com-
bination of superstition, fancy, scientific curiosity, and patient, plodding experiment that
has figured in advancing the science of the theory of numbers’ [Lehmer, 1919–1920, 125].
Dickson may or may not have minded this sort of comment madeabout his book, but he
certainly would have never drawn the conclusion in the book itself.

4 ONE SALIENT OMISSION

Dickson’s purportedly complete history of the theory of numbers lacks the quintessential
topic of elementary number theory, the law ofquadratic reciprocity. This law relates the
solvability of the congruencesx2≡ p (modq) andx2 ≡ q (modp) for p andq distinct,
odd primes. Specifically, ifp or q is of the form 4k + 1 (for k ∈ Z), the two congruences
are both solvable or both not solvable. Ifp andq are both of the form 4k + 3 (for k ∈ Z),
one of the congruences is solvable and the other is not. In terms of the Legendre symbol,
for p andq distinct, odd primes,(

p

q

)(
q

p

)
= (−1)

( p−1
2

)( q−1
2

)
. (1)

This law, as Dickson described it himself, ‘is doubtless the most important tool in the
theory of numbers and occupies the central position in its history. Its generalizations form



840 D.D. Fenster

a leading topic, past and present, in the theory of algebraic numbers’ [Dickson, 1929,
30]. Given that the development of algebraic number theory grew, in large part, out of
efforts to generalize quadratic reciprocity, it seems all the more unusual that a supposedly
comprehensiveHistory of the theory of numbers included no discussion of this area.

Why, then, did Dickson exclude the account of ‘this most important’ tool from hisHis-
tory? The historical record suggests that Dickson did not intend for this omission to occur.
In his closing remarks in the preface to volume II (written in April 1920), Dickson refers
to a Volume III as the ‘concluding’ volume in the series (vol. 2, xii). In April 1921 he
wrote to President John C. Merriam of the Carnegie Institution regarding the ‘final (third)
volume’ of hisHistory. In particular, he outlined the seven chapters of this third volume
as ‘1. Quadratic residues; 2. Quadratic reciprocity law; 3. Higher residues and reciprocity
laws; 4. Binary quadratic forms; 5. Class number of [quadratic forms]; 6. Quadratic forms
in 3 or more variables; 7. Higher Forms’ [Dickson to Merriam, 1921].

Volume III appeared in 1923, ‘promptly’ prepared, as Dickson described it in the pref-
ace, ‘owing to the favorable reception accorded to the first twovolumes of this history’
(vol. 3, iii). Early in the text of this third volume, nestled in his history of binary quadratic
forms, Dickson points us forward to afourth volume (vol. 3, 3). In this parenthetical re-
mark, he indicated his plan to include the quadratic reciprocity law in the fourth volume.
But, of course, as we know now, it never appeared. What happened to it?

The answer involves Albert Everett Cooper, a University of Chicago graduate student
from 1924 to 1926. Cooper earned his Ph.D. in mathematics in the spring of 1926 un-
der Dickson’s guidance with his historical dissertation, ‘A topical history of the theory
of quadratic residues’ [Cooper, 1926]. He wrotethis dissertation with the intention that
it appear as a chapter in the fourth volume of Dickson’sHistory, which would contain a
separate chapter on the history of quadratic reciprocity.

Originally, the Carnegie Institution of Washington agreed to issue the ‘fourth and final
volume’ of Dickson’sHistory. But Dickson had other ideas. He proposed that the Carnegie
Institution no longer plan to publish the fourth volume, but instead publish one of his two
new forthcoming treatises on number theory. Dickson attempted to secure publication for
the fourth volume elsewhere, but with no success. Although Cooper prepared the manu-
script for the Carnegie Institution in 1929, they did not publish it.

The A.E. Cooper Papers in the University of Texas Archives house the scores of papers,
notes, and communiqués of various forms exchanged between Cooper and Dickson on the
history of quadratic reciprocity. The organized and polished pieces of this collection seem
to represent the page proofs of a book (the fourth volume?) written in the same spirit and
style of the first three volumes of Dickson’sHistory.

5 RECEPTION OF DICKSON’SHISTORY OF THE THEORY OF NUMBERS

The reviews of this masterpiece suggest that Dickson accomplished this historical endeavor
with the same prowess as his work in pure mathematics. As Robert Carmichael, a number
theorist who read the proof sheets for the entire second and third volumes, expressed it in
his review for theMonthly [Carmichael, 1919, 397, 403]:
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To give an adequate account of the entire literature of so vast a subject and one
of such long history as the theory of numbers is an undertaking of enormous
magnitude; and it is carried through in this work with a marvelous success in
the presence of which one must pause in admiration. Henceforth this history
will be indispensable to all investigators in the theory of numbers. [. . .] It is a
piece of work for which one cannot find a parallel in the whole of scientific
history.

Dickson’s History remains the classic reference on number theory up to 1918. It
provided—and provides?—an ‘indispensable’ source for those lacking adequate library
facilities [Carmichael, 1919, 397]. In particular, as Dickson intended, the many ‘amateurs’
interested in mathematics benefited from this (reputably) comprehensive, available account
of number theory (vol. 2, xx; [Carmichael, 1919, 397]). As for the professional mathemati-
cian, in his review of volume I Lehmer emphasized ‘the greatest need for just such a piece
of work to promote efficiency among the professional workers in this field and to prevent
them from wasting their time on problems that have already been adequately treated, and
also to suggest other problems which still defy analysis’ [Lehmer, 1919–1920, 132]. The
research mathematician would gain so much more than ‘efficiency’ by the time all three
volumes appeared in print.

Dickson’s ‘systematic’ study of Diophantine analysis for the second volume of hisHis-
tory, for example, provided him with a unique, sweeping perspective on this area of math-
ematics. From this vantage point, he could assert that ‘[s]ince there already exist too many
papers on Diophantine Analysis which give only special solutions, it is hoped that all devo-
tees of this subject will in future refrain from publication until they obtain general theo-
rems on the problem attacked if not a complete solution of it. Only in this way will the
subject be able to retain its proper position by the side of other virile branches of math-
ematics’ (vol. 2, xx). Dickson, in no uncertain terms, made this assertion with authority.
Who better than a prominent research mathematician studying the ‘disjointed elements’ of
Diophantine analysis, could so confidently declare in essence that ‘[i]deas rather than com-
putations are needed in this field’ [Carmichael, 1921, 72–73]? Dickson’s firm grasp on the
past allowed him to see what would lead to a prosperous future for Diophantine analysis.
Carmichael emphasized the value of such forecasting when he wrote that ‘[w]hen a master,
with the work of the past well in mind, tries to see the trend of the future, his judgment will
be a matter of interest whether or not the direction of progress turns out to be such as he
anticipates. It may even throw some light on the difficult question as to the way in which
new discoveries arise’ [Carmichael, 1923, 262]. Interestingly, Dickson himself would de-
vote the final 15 years of his mathematical career focused on establishing a general result
in Diophantine analysis. Simply put, Dickson made the history of number theory work in
very utilitarian ways—far beyond serving solely as a reference volume—for the research
mathematician.

Moreover, in the early years of the 20th century, theProceedings of the London Mathe-
matical Society contains more references to Dickson’sHistory than to any other historical
source [Rice, 2002]. Thus other mathematicians regarded it as a historical resource for
their mathematical research. This met the precise need described by Bashford Dean in his
contribution to the discussion on the pages ofScience regarding the best way the newly
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formed Carnegie Institution of Washingtoncould advance science in this country. Dean
dogmatically described his view that ‘[a]ll workers in science need skilful and energetic
help in the thankless drudgery of reference hunting’ [Dean, 1902, 643].

Dickson’s History of the theory of numbers not only inspired his contemporaries
[Lehmer, 1919–1920; Smith to Merriam, 1921], but also the next generation of mathe-
maticians. Richard Guy, for example, purchased Dickson’sHistory when he was about 17
years old and found it ‘better than getting the whole works of Shakespeare and heaven
knows what else’ [Albers and Alexanderson, 1993, 136]. In his very different approach
to a history of number theory, Oystein Ore refers his readers to Dickson’s three-volume
History for ‘a complete, encyclopedic account of the history of the discoveries in number
theory up to 1918’ [Ore, 1988, 359d]. With their consistent reference to Dickson’sHistory
‘for more details’ [Hardy and Wright, 1938] testify further to the significance of Dickson’s
work. Even more contemporary, Alan Baker acknowledges Dickson’sHistory as an ‘ex-
cellent source’ in hisA concise introduction to the theory of numbers [Baker, 1984]. Then
and now, in histories and mathematical studies of number theory, Dickson’sHistory serves
as the quintessential reference for number theory up to 1918.

Still in print today, Dickson’sHistory may belong to the tiny collection of ‘books on
the history of mathematics that were written over fifty years ago [and] continue to attract
readers today’ [Rowe, 2001, 590]. David Eugene Smith hinted at this 80 years ago when he
candidly wrote: ‘[n]othing has ever come out in this country on the history of mathematics
that is so epoch-making as this work. It is, of course, much more than a mere history,
because it contains the theory as well’ [Smith to Merriam, 1921].
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CHAPTER 66

PAUL URYSOHN AND KARL MENGER, PAPERS
ON DIMENSION THEORY (1923–1926)

Tony Crilly

The papers of Urysohn and Menger provided a definition of ‘local dimension’ of a topo-
logical space and a substantial accompanyingtheory. This contribution suggested a fruitful
research direction during a time of rapid development for topology.

Urysohn. ‘Mémoire sur les multiplicités Cantoriennes’ and ‘(suite)’,Fundamenta math-
ematicae, 7 (1925), 30–137, 378–380; and8 (1926), 225–359. Dated 20 March 1923,
Moscow.

Russian translation. In Papers on topology and other branches of mathematics, 2 vols.
(ed. P.S. Alexandrov), Moscow and Leningrad: Gostekhizdat, 1951.

Menger. ‘Über die Dimensionalität von Punktmengen, Erster Teil’ and ‘II. Teil’,Monats-
hefte für Mathematik und Physik, 33 (1923), 148–160; and34 (1926), 137–161. Sub-
mitted 12 December 1923, published April 1924; and submitted 6 October 1924,
published September 1926.

Related articles: Cantor (§46), Baire and Lebesgue (§59), Seifert/Threlfall and Hopf/
Alexandrov (§76).

1 ANCESTRY

Grappling with the problem of giving a precise definition of dimension has been a con-
tinuing theme in mathematics since Euclid. Stated in modern terms, how can a number
be assigned to a set of points that is invariant under a one-to-one bi-continuous (that is,
topological) transformation of these sets? Furthermore, how can atheory of dimension be
constructed? This was the challenge that attracted Paul Urysohn and Karl Menger at the
beginning of their professional lives.

Fifty years before, Georg Cantor (1845–1918) had discovered results that run counter
to the usual intuition for assigning dimension numbers to typical geometrical objects like

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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lines, squares, and cubes. He startled geometers by displaying a one-to-one correspon-
dence between a ‘one-dimensional’ line and a ‘two-dimensional’ square. This fact put the
accepted notion of dimension in jeopardy, but he saw that it might be saved. He attempted
to show that by requiringcontinuity the paradox could be resolved, to prove that a Euclid-
ean line and square could not be mapped into each other under a bi-continuous one-to-one
transformation. Around the same time, other mathematicians attempted to prove this ‘in-
variance of dimension’, but without success. The general proof that such a topological
transformation (a homeomorphism) between Euclidean spaces of dimensionsm, n existed
if and only if m= n turned out to be elusive until L.E.J. Brouwer (1881–1966) gave two
proofs, one in 1911 and another in 1913.

Obtaining a clear definition of dimension that would serve forarbitrary sets of points,
and at the same time agree with intuitive notions remained a problem. What was meant by a
curve and a surface posed a concomitant question and various answers presented paradoxi-
cal results. The definition of a curve due toCamille Jordan (1838–1922),of being the image
of a continuous mapping of a closed interval, yielded results at variance with intuitive be-
liefs of what dimension should be. With Jordan’s definition, the ‘two-dimensional’ solid
square could be regarded as a curve, whereas sets of points consisting of ‘one-dimensional’
line segments could be produced which were not curves in the Jordan sense. Could an ad-
equate notion of dimension be used to separate such examples as these?

In the first decade of the 20th century, severalmathematicians attempted to define di-
mension, notably, Brouwer and Henri Poincaré (1854–1912). Poincaré’s scheme of us-
ing ‘cuts’ was not immune to curious results: the dimension of the double cone, ostensi-
bly two-dimensional, turned out to be one-dimensional. Brouwer’s idea, which he termed
the integral dimension, was to say that a continuum (a closed connected set of points) is
called ‘n-dimensional’ if it can be divided into separate pieces by means of one or more
(n − 1)-dimensional continua. In modern terms this is referred to as the large inductive
dimension and is denoted byInd. Both his and Poincaré’s recursively framed definitions
were global in that they spoke of the dimension of a whole space.

Though these ideas held promise, neither mathematician was primarily concerned with
constructing a formal mathematical theoryat this stage. To add to the interest, Henri
Lebesgue (1875–1941) put forward the quite different notion of ‘covering dimension’ (de-
noted bydim), which he only developed rigorouslyin the 1920s. In Lebesgue’s definition,
if each point of a domainD belongs to at least one of a finite number of closed sets, and if
these sets have a sufficiently small diameter, then there are points common to at leastn+1
of these sets.

These definitions of dimension briefly discussed are topological in character, in that
they can be freed from metric considerations. Yet another concept of dimension, but one
wholly dependent on metric considerations, is due to Felix Hausdorff (1868–1942). This
was articulated by him in 1919 when he started from a generalization of Lebesgue mea-
sure due to Constantine Carathéodory (1873–1950). Hausdorff gave a measure-theoretic
characterization for Euclidean spaces, leading to what is now known as the Hausdorff di-
mension.

The origins of Hausdorff dimension can be traced to Weierstrassian investigations of
non-differentiable continuous curves that took place in the 1870s. The peculiarity of Haus-
dorff dimension is that it need not be integral, as for example in the case of the Koch



846 T. Crilly

‘snowflake curve’ that has Hausdorff dimension(ln4/ ln3)= 1.2618. . ., the calculation
being based on length. Unaware of Hausdorff’s work, Georges Bouligand (1889–1979)
recreated this theory of dimension during the 1920s. In recent times it has gained promi-
nence through the theory of fractals. There is a connection between Urysohn and Menger’s
theory, but as Hausdorff dimension is not a topological concept, it will not be pursued here.
For detailed historical information on the origins and initial development of dimension the-
ory as a whole, see [Johnson,1979, 1981; Crilly withJohnson, 1999].

2 TWO PHYSICISTS

Paul Urysohn (Pavel Samuilovich Uryson) (1898–1924) was born of a Jewish family in
Odessa, on the Black Sea, where his father was a wealthy financier. He had a solitary
childhood and from an early age was involvedwith academic study, chemistry and physics
being his favourite subjects. Life changed in 1909 when his mother died, and from then
on he was watched over by Lina, the youngest of three much older sisters. The following
year the family moved to Moscow where Paul was sent to a gymnasium school. He wanted
to become a physicist and, quite remarkably, while still a schoolboy, began work at the
Shanyavskii University under the supervision of P.P. Lazarev(1878–1942). His success as
a physical scientist seemed assured as his experimental work in X-rays led to a published
paper on Coolidge Tube radiation [Arkhangelskii and Tikhomirov, 1998; Cameron, 1982].

Karl Menger (1902–1985) came from a background of academia, the arts, and public
service. His father was the Austrian economist, Carl Menger (1840–1921), a professor at
the University of Vienna, and his mother, Hermione Andermann, was a successful novel-
ist. One of his uncles was Anton Menger (1841–1906), a noted social scientist and also a
professor at the university, and another was a long-standing member of the Austrian Re-
ichstag. At the Döblinger gymnasium school, Karl was in the company of future Nobel
prizewinners, Wolfgang Pauli (1900–1958) and Richard Kuhn (1900–1967). With such an
academic pedigree and surrounded by academic brilliance, he entered the University of Vi-
enna during the autumn of 1920, with an imperative to do well. The appointment of Hans
Thirring had added lustre to an excellent physics department, and young Menger’s plan
was to study theoretical physics.

3 PAUL URYSOHN, MATHEMATICIAN

In 1915 Urysohn entered Moscow University but changed his field to mathematics. He
attended the lectures of Dimitrii F. Egorov (1869–1931) and of Egorov’s student Nikolai
N. Luzin (1883–1950). A man of the old school, Egorov was formal in his approach to
students, while Luzin was relaxed and could enter into their lives. He gathered around him
a group of ‘Luzitanians’ and Urysohn was a leading member. After completing a rigor-
ous mathematical training, and graduating in 1919, Urysohn continued with post-graduate
work. He met Paul (Pavel Sergeevich) Alexandrov (1896–1982) and the two became great
friends, known around the university as the ‘two P.S’s’. Under Luzin’s influence, Urysohn
prepared his doctoral thesis in the spring of 1921.

Urysohn’s doctorate was completed by June 1921 for a thesis on integral equations. This
was credited with founding non-linear analysis in Russia, and around the same time, he
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produced outstanding work on convex and differential geometry. He became a member of
staff of the Institute of Mathematics and Mechanics, and a professor at the second Moscow
University. In the summer, Egorov suggested he might attempt to formulate anintrinsic
definition of curves and surfaces, intrinsic because they were to be independent of the
containing space. Urysohn’s task was to describe the most general point sets that merit
being called lines and surfaces, and this quest led him to seek a rigorous definition of
dimension.

In August Urysohn was on holiday with other Luzitanians, renting a dacha near Bolshev
on the Kalyazmy river. Topology in Russia was given an impetus by this group and he was
at the centre of this movement. It was an exciting period in his life, with a lost childhood
regained and his adventurous spirit overcoming the more morose side of his character. In
the Russian countryside, spent walking and swimming, and constantly in the company of
Alexandrov, he was inspired. In a ‘dream’ he envisaged the outlines of a comprehensive
theory of topology and a solution to the dimension problem.

During the following academic year,1921–1922, Urysohn proved many new theorems
in point-set topology. He gave a course on topological continua and made it his practice
to give students the proofs of new results immediately he discovered them himself. Si-
multaneously he announced his results in a series of notes to the Moscow Mathematical
Society. By the spring of 1922, less than a year after he had begun, his dimension theory
was settled, and in September Lebesgue presented the theory to theAcadémie des Sci-
ences in Paris. When the full paper appeared in print several years later, it constituted our
‘Landmark’ in topology. Its contents are summarised in Table 1.

In approaching his task, Urysohn laid down several methodological principles. All his
definitions had to be intrinsic. Moreover, he soughtlocal definitions rather than global ones.
This would allow the treatment of spaces which contained points of differing dimensions,
like the ‘disk with spike’ defined as the subset{(x, y): x2+ y2= 1} ∪ {(x,0): 1 � x � 2}
of E2. Closed sets were his primary focus, but he noted that several theorems did not
require this condition. He also saw that compactness, in the sense of Maurice Fréchet,
defined in terms of infinite sequences and limit points (what is now called ‘sequential
compactness’) was the pivotal assumption in most of his arguments [Pier, 1980]. Hence,
it seemed natural to use the compact metric space as a base for his work rather than the
more concrete Euclidean spaces. Indeed, Urysohn proclaimed the compact metric space to
be the ‘natural domain of existence’ (‘domaine naturel d’existence’) for intrinsic topology,
but, as Dale Johnson has remarked, Urysohn made the statement, not realising that even
‘natural domains’ change in the course of history and are altered to fit the current demands
of mathematical research [Johnson, 1981, 229].

In seeking the definition of curve and surface expressed in the language of set theory,
Urysohn set out a definition of ann-dimensional Cantorian manifold (‘multiplicité Canto-
rienne’) as ann-dimensional continuum, which remains connected after the removal of any
closed subset of dimensionn− 2. The construction effectively solved Egorov’s problem
of requiring intrinsic definitions of lines and surfaces since in Urysohn’s terms, curves and
surfaces are one- and two-dimensional Cantorian manifolds respectively. (The technical
term ‘Cantorian manifold’ has been dropped in topology as ‘manifold’ is now reserved
for a topological space that is locally Euclidean.) This definition waspredicated on the
intuitive meaning of ‘dimension’ itself.
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Table 1. Summary by Chapters of Urysohn’s paper. Part 2 starts at Chapter 3.

Chapter Page Topics

Introduction 30–64 Problems of topology, methodological principles.
Summary of known results, concepts, terminol-
ogy, and notation of topology.

1. Definitions 65–79 Definition of ε-separation (p. 65). Inductive de-
finition of dimensionind (p. 66). Dimension is
a topological invariant, and other consequences.
Sets of dimension zero.

2. Preliminary study of
dimension

79–137 Consequences of definition for subsets of Euclid-
ean n-space. Particular results follow which
presage general results (investigated in ch. 5):
E2, Cantorian lines;E3, Cantorian surfaces. De-
finition of a Cantoriann-dimensional manifold
(p. 124).

3. Examples 225–256 Exhibition of various test-bed examples of
indecomposable continua.

4. Fundamental theorems256–286 Concerning the dimension of closed sets: e.g. a
closed set which is of dimension at leastn cannot
be decomposed into a countable (or finite) number
of sets of dimension less thann (p. 260).

5. Euclidean spaces 286–316 Introduction toEn. Relation between dimension
and true order;ind = dim, that is, a necessary
and sufficient condition for a closed setF to
have ind(F ) = n is that its true order equals
n + 1 (p. 301). Several important theorems: e.g.,
a closed domain ofEn is of dimensionn, and the
double boundary theorem (the set common to two
domains inEn has dimensionn− 1 (p. 311)).

6. Decomposition of sets 316–351 The decomposition of sets into sets of zero dimen-
sion; Urysohn’s inequality ((6) in text) (p. 317).
Decomposition ofn-dimensional sets inton + 1
sets of zero dimension. Theorems on closed sets
andFσ sets.

Supplementary notes 352–356 Condition for the intersection of sets to be of
dimensionn; a property ofFσ ,Gδ sets.

357–359 New notation, Table of contents.

Urysohn’s notion of dimension is based on ‘ε-separation’. A pointx in a subsetC of
a compact metric space isε-separated by a setB if there are mutually disjoint setsA, B
andD such that i)C = A ∪ B ∪D, ii) x ∈ A, iii) A ∪ B ⊂ S (an open ball centrex and
radiusε), and iv) (A∩D)∪ (A∩D)= φ. His definition of dimension is recursive: a point
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x is of dimensionn if it is not of dimension< n with respect toC but can beε-separated
by a setB of dimension< n. That an isolated point is of dimension zero is obtained by
defining the dimension of the empty set to be−1, the only set with this property. If no
suchn exists, the pointx is said to be of infinite dimension. In modern terms Urysohn’s
definition is referred to as the small inductive dimension and is denoted byind.

Urysohn made substantial progress in constructing a theory ofind based on Cantorian
manifolds. A major step was his implicit establishment of the ‘coincidence theorem’

indX= IndX = dimX (1)

for compact metric spaces. An instance of his work is his proof of the ‘addition theorem’

ind(Y ∪Z)� ind(Y )+ ind(Z)+ 1 (2)

for separable spacesY andZ, a theorem sometimes referred to as ‘Urysohn’s inequality’
(p. 317). As a straightforward extension whereX is the union ofk subsetsFi , he found
that

ind(X)�
∑
i

ind(Fi)+ (k − 1). (3)

In the special case thatX is of dimensionn and is decomposable intok subsets of dimen-
sion zero, it follows thatk � n+ 1. He went on to show that such a decomposition ofX

may be achieved with exactlyn+ 1 zero-dimensional sets.
Completing this work in the spring of 1923, Urysohn and Alexandrov set off on a jour-

ney through Europe, funding it by giving popular public evening lectures on the new rel-
ativity theory in several Moscow theatres. They visited Göttingen and met such leading
lights as David Hilbert (1862–1943), Emmy Noether (1882–1935), and Richard Courant
(1888–1972). There Urysohn became aware of Brouwer’s dimension theory, and study-
ing it, found a counter-example to one of Brouwer’s results concerning the ‘separation of
points’. In September he lectured on this example to a meeting of the German Mathemati-
cal Union in Marburg.

In the following year, 1924, Urysohn and Alexandrov returned to Europe. They met with
Hilbert again, who welcomed their joint paper on topological spaces for theMathematische
Annalen—and thanked them for a gift of caviar. In Bonn they met Hausdorff, yet another
topologist who had started off in physics. They visited him in his home for mathematical
seminars to discuss new ideas in topology, and alarmed him by their daily swimming of
the Rhine. HisGrundzüge der Mengenlehre of 1914 provided a basis for Urysohn’s work,
and he adopted Hausdorff’s terminology, which he found systematic and complete. Con-
tinuing their tour, they journeyed to Holland to sit at the feet of Brouwer. Frequently a
man who could dismiss ideas and their creators with withering scorn, Brouwer took the
young Russian mathematicians into his confidence. Leaving Holland, the two ‘P.S.’s’ con-
tinued their European meanderings to France, to the coast of Brittany near Nantes. They
stopped at Batz-sur-Mer (near La Baule) on the coast of Brittany, where on 17 August a
calamity occurred. In the morning Urysohn began a new mathematics paper; but in the late
afternoon, dismissive of the danger of swimming in rough seas, he was drowned.
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4 KARL MENGER, MATHEMATICIAN

After a short while at the University of Vienna, Menger grew dissatisfied with the physics
course and migrated to the Institute of Mathematics. During the 1920s the university pos-
sessed an enviable mathematical reputation, with a faculty including Wilhelm Wirtinger
(1865–1945), Philipp Fürtwängler (1869–1940), and Hans Hahn (1879–1934).

In the spring of 1921, Hahn set up a seminar on problems associated with the theory
of curves. Menger attended, and inspired by Hahn, quickly produced a paper titled ‘New
ideas concerning the concept of curve’. As Dale Johnson has noted, Menger’s endeavour
was only an informal description of curves embedded in Euclidean 3-space but it pointed
the way to his future work [Johnson, 1981, 233–241]. With progress in prospect, Menger
suffered a severe setback: he was afflicted with tuberculosis (Morbus Viennensis) and was
forced to retire to a sanatorium. There he had time to reflect and to revise his notion of a
curve.

Once recuperated, Menger returned to Vienna in April 1923, where he worked on his
‘Landmark’ paper. By the end of the year, he submitted it to theMonatshefte für Math-
ematik und Physik, a journal produced locally, of which Hahn was an editor. This first
Part formed the basis of his thesis, and he gained his doctorate on 23 June 1924. A year
later a second Part of the paper was submitted and published in 1926. Their contents are
summarised in Table 2.

Menger approached his definition of dimension with a clear insight. Moreover, when
approaching geometrical situations, with a view to shaping a theory, he confronted the
theory in a physical way: ‘We can think of curves as being represented by fine wires,
surfaces produced from thin metal sheets, bodies as if they were made of wood. Then
we see that in order to separate a point in the surface from points in a neighbourhood
or from other surfaces, we have to cut the surfaces along continuous lines with a scissors’
[Menger, 1925, 278; see Crilly and Moran, 2002, 146]. He could then translate his thoughts
into a mathematical language. In this way, a curve for Menger was a connected subset
K of a metric space with the property that each neighbourhood of itspoints contains a
neighbourhood whose intersection withK is disconnected. In the first Part of his landmark
paper he probed this definition and proved some theorems.

The fundamental definition at the base of Menger’s dimension theory is, like Urysohn’s,
recursive. It is more immediate than Urysohn’s, and though phrased in terms of sets, it is
actually defined as a local concept: a subsetM of a metric space is calledn-dimensional if
n is the smallest number with the property, that for each pointm in M and to each neigh-
bourhoodU(m) there exists a neighbourhoodU ′(m) ⊂ U(m), so that the intersection of
M with the boundary ofU ′(m) is at most(n− 1)-dimensional (pt. 1, 158). This illustrates
why Menger took the dimension of the empty set to be−1, an important part of the defini-
tion. As with Urysohn, a subset that was notn-dimensional for any natural numbern, was
called infinite-dimensional.

While the first Part of Menger’s paper consists of miscellaneous topics in the theory of
curves, the second Part is almost entirely dedicated to dimension theory. In this he allowed
the definition of dimension to extend beyond metric spaces and apply to topological spaces
as defined by Hausdorff in terms of systems of neighbourhoods (pt. 2, 138).
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Table 2. Summary of Menger’s paper. The second Part begins at ‘Introduction’.

Pages Topics

148–149 Definition of a curve in a metric space.

149–157 Properties of curves (e.g. if a compact curveK lying in a met-
ric space is mapped by a continuous transformation to a metric
space, its image is also a curve (p.149). If the unionV of a count-
able number of curves is a compact continuum, thenV is a curve
(p. 152)).

158 Recursive definition of dimension of a metric space.

159–160 Properties of 0-dimensional sets. Curves which can be identified
with 1-dimensional continua. A proof that the dimension ofE2

is 2. A geometric description of closed sets inE2.

160 Statement of independence from Urysohn.

Introduction 136–139 The dimension problem. Recursive definition of dimension
for topological spaces which are capable of being defined by
Hausdorff’s axioms stated in terms of neighbourhood systems
(p.138). Consequences of the definition of dimension; e.g. the
dimension of a subset of ann-dimensional space is at mostn-
dimensional (p. 139).

Section 1 139–141 ‘Invariance of dimension’ under homeomorphism (p. 140)).

Section 2 141–152 ‘Structure ofn-dimensional sets’. Theorems: e.g. the set of all
points ofM in whichM is at most (at least)k-dimensional, can
be constructed from aGδ(Fσ ) set (p. 141).

Section 3 152–161 Properties ofEn and subsets. Theorems: e.g. The dimension of
En (and each open subset of it) isn (p. 155); The complement
of a compact closed subset ofEn which is at mostn− 2 dimen-
sional, is connected (p. 156). Relationship between dimension
and connectivity (pp. 157–161).

In a further Part of his paper with the same title, Menger [1929] sought to character-
ize the dimension function by a set of axioms. He gave five axioms, which a dimension
function should satisfy, and showed that such a function defined on subsets of the plane
was identical toind. This axiomatic line of investigation was continued by Georg Nöbel-
ing (b. 1907), Witold Hurewicz (1904–1956), Henry Wallman (1915–1992) and Ryszard
Engelking.

5 THE JOINT CONTRIBUTION

Emerging from the aftermath of revolution and the first World War, Menger and Urysohn
looked at the problem of dimension anew and independently constructed topological theo-
ries based on their definitions. Their problem was to build a theory around geometric sets
of points involving definitions that could deal with the ‘pathological’ examples in topol-
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ogy that had appeared since the time of Cantor. In the course of their work they built a
solid foundation for the development of dimension theory, as an important part of point
set topology, which by Urysohn and Menger’s time was a semi-established subject broadly
concerned with the properties of sets invariant under homeomorphism.

Neither Menger nor Urysohn arrived at their theory without guidance. As Dale John-
son has noted, the young mathematicians were guided by ‘intellectual fathers’ who had
a knowledge of the problems and the attendant difficulties. In the case of Menger it was
Hahn, and in Urysohn’s case it was Egorov [Johnson, 1981, 240]. Both ‘fathers’ had con-
nections with leading workers in the field of topology. A good friend of Brouwer, Hahn
had worked on the theory of curves before the War, and would have been aware of his
researches on dimension. Hahn himself had already shown that the essential property of
a curve was its local connectedness, and this was a strong element in Menger’s work.
Egorov had posed the problem that set Urysohn off on his quest, but the indirect influence
of Waclaw Sierpinski (1882–1969) on his development cannot be ignored. Technically an
Austrian citizen he was stranded in Russia during the War but allowed to continue mathe-
matical research in Moscow. He knew Egorovand collaborated with Luzin and produced
papers on curves and continua. After the War, he returned to Poland, and worked on di-
mension theory independently of Menger and Urysohn.

Menger started on the problem without years of mathematical training, the area of point-
set topology presenting problems that do not require a long pre-schooling. These pioneer-
ing problems clearly appeal to the ‘tough-minded’ specialist who requires a challenge,
and this suited the young Menger keen to establish his name. Urysohn approached the
problem with a rigorous mathematical training and the self-knowledge that he had gained
his mathematical ‘spurs’ with a thesis on integral equations and an established research
record. Menger enjoyed a long life and forged a high reputation, but, considering his life’s
brief span, Urysohn’s accomplishment is breathtaking. Alexandrov spent the summers of
1925 and 1926 in Holland where he and Brouwer made Urysohn’s work ready for posthu-
mous publication. Of the Soviet school of mathematics, which grew so rapidly following
the First World War, Alexandrov wrote of his lamented friend ‘Pavel Samuilovich Urysohn
was one of the greatest, if not the greatest, of these both in his talents and in his enthusiasm’
[Arkhangelskii and Tikhomirov, 1998, 875].

6 THE IMPACT OF MENGER AND URYSOHN

The first impact of Urysohn’s work was on Alexandrov himself. Knowing his work inti-
mately Alexandrov went on to place some of his friend’s results in a general setting. For
instance, Urysohn had conjectured that a set which is the common boundary oftwo regions
(a ‘double boundary’) in Euclideann-space is an(n−1)-dimensional Cantorian manifold.
Forn= 2 it was known, and it was settled by Urysohn himself forn= 3. In 1927, Alexan-
drov proved it generally as a prologue to homological dimension theory.

In assessing their impact more generally, the pioneering aspect of their work should not
be forgotten. For any who wanted to study dimension theory in the 1920s, there was only
a scattered set of materials available. Brouwer’s papers could be consulted, while Poincaré
had published his sketchy thoughts in a philosophical journal. Lebesgue’s ‘covering di-
mension’ was only fully investigated by its creator following the War. Thus Urysohn’s
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landmark paper fulfilled a need by offering extensive coverage of the embryonic theory. It
was also written in a style that suggested further work. Its publication in the prestigious
Polish journal, dedicated solely to this branch of topology, perhaps owes something to
Luzin and Egorov’s friendship with Sierpinski.

A continuation of Urysohn’s landmark paper, covering a further 172 pages, was edited
by Alexandrov and published in 1927. The total length of Urysohn’s papers on Canto-
rian manifolds amounted to 417 printed pages. Menger’s landmark papers were short by
comparison, but he became prolific and his definition of dimension found its way into
his papers on the theory of curves and surfaces. His bookDimensionstheorie [Menger,
1928] provided the first comprehensive treatment of the theory and made the theory gen-
erally available. It remained a standard reference even after the appearance of Hurewicz
and Wallman’sDimension theory (1941) that gives a polished presentation of the theory in
which the separable metric space provides the setting.

Following the appearance of the landmark papers, there were several significant depar-
ture points in dimension theory. During 1925–1927 the coincidence theorem, that all three
classical definitions of dimension (ind, Ind, anddim) coincide for the class of separable
metric spaces, was proved by Hurewicz and Lev Abramovich Tumarkin (1904–1974) in-
dependently. This theorem allowed topologists the flexibility to apply the most appropriate
form of the dimension concept for these spaces, sure in the knowledge that these definitions
were equivalent.

By the early 1930s dimension theory as applied to separable metric spaces was firmly
established, but the tendency for mathematicians to generalise cast this work as ‘classical’.
Eduard Cech (1893–1960) modified the recursive definition ofind and defined dimension
for topological spaces which included metric spaces as a special case. In a next step, the
broadening of dimension theory beyond separable metric spaces, some of the fundamental
identities were lost. An immediate casualty was the coincidence theorem, which fails for
both compact spaces and for metric spaces generally [Engelking, 1968, 262–264]. For the
broad classes of topological spaces with few restrictions there was not one unique value of
topological dimension but potentially three different ones. These new features signalled a
rich theory ahead.

At the Moscow International Conference on Topology in 1935, Alexandrov posed ques-
tions concerning the relationships betweenindX, IndX, dimX. For instance, what is the
widest class of topological spaces for whichdimX � indX? In 1941, he proved this was
true for compact spaces, but in 1949, A. Lunc and O.V. Lokucievskii each gave examples
of compact spaces for whichdimX = 1 andindX = 2 [Alexandrov, 1955, 3]. Kiiti Morita
(1915–1995) in 1950, and Yu.M. Smirnov (b. 1921) in 1951 proved the inequality for Lin-
delöf spaces and Morita for complete paracompact spaces, and it has been further extended.
The reverse inequality,dimX � indX, met with lesser success and the interest shifted to
describe spaces for which equality holds. In 1952, Miroslav Katêtov (1918–1995) showed
this was the case for metrizable spaces and by Morita two years later.

Urysohn’s work inspired a generation of topologists in Russia. In 1951 Smirnov proved
Urysohn’s inequality (3)

ind(Y ∪Z)� ind(Y )+ ind(Z)+ 1, (4)
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whereY,Z are sets in a hereditary normal spaceX (and in 1963 it was established for nor-
mal spaces by Alexander Zarelua). In the West his work attracted topologists such as Ed-
win Hewitt (1920–1999) and C.H. Dowker (1912–1982). According to prominent Russian
topologists, Urysohn’s work really applied to the development after the 1950s, where his
influence is pervasive [Arkhangelskii and Tikhomirov, 1998, 890].

Of all the definitions of topological dimension,ind, Ind and dim are the main ones,
and Urysohn’s and Menger’sind has met with the greatest success. ‘None of the several
other possible definitions of dimension has the immediate intuitive appeal of this one and
none leads so elegantly to the existing theory’ [Hurewicz and Wallman, 1948, 4]. The
establishment ofind was far reaching, for it could be applied to subspaces of Hilbert space
though results along these lines were still in their infancy around 1950.

We can now see that Menger and Urysohn’s work may be regarded as complementary.
Though equivalent, Urysohn’s definition of dimension does not have the immediacy of
Menger’s, the form of the definition of local dimension that has achieved widespread use.
In his compendious work, Urysohn gave a smooth presentation of a far greater number of
fundamental results. Taken together, these two mathematicians provided a benchmark for
dimension theory in the 1920s ready for further advance. When thinking of the birth of
dimension theory, topologists correctly acknowledge the joint ‘Urysohn–Menger’ theory.

BIBLIOGRAPHY

Alexandrov, P.S. 1955. ‘The present status of the theory of dimension’,American Mathematical
Society translations, 1, 1–26.

Alexandrov, P.S., and Fedorchuk, V.V. with Zaitsev, V.I. 1978. ‘The main aspects in the development
of set-theoretical topology’,Russian mathematical surveys, 33, 1–53. [Signposts 1900–1978.]

Arkhangelskii, A.V. and Tikhomirov, V.M. 1998. ‘Pavel Samuilovich Urysohn (1898–1924)’,
Russian mathematical surveys, 53, 875–892.

Aull, C.E. and Lowen, R. (eds.) 1997.Handbook of the history of general topology, vol. 1, Dordrecht:
Kluwer.

Cameron, D.F. 1982. ‘The birth of Soviet topology’,Topology proceedings, 7, 329–378. [Biographi-
cal details on Urysohn not available elsewhere in English.]

Crilly, T. with Johnson, D. 1999. ‘The emergence of topological dimension theory’, in [James, 1999],
1–24.

Crilly, T. and Moran, A. 2002. ‘Commentary on Menger’s work on curve theory and topology’, in
[Schweizer etalii, 2002], 141–152.

Engelking, R. 1968.Outline of general topology, Amsterdam: North-Holland. [Trans. from Polish.
Contains historical notes and references.]

Fedorchuk, V.V. 1998. ‘The Urysohn identity and dimension of manifolds’,Russian mathematical
surveys, 53, 937–974.

Hurewicz, W., and Wallman, H. 1941.Dimension theory, Princeton: Princeton University Press. [Rev.
ed. 1948.]

James, I.M. (ed.) 1999.History of topology, Amsterdam: Elsevier.
Johnson, D.M. 1979, 1981. ‘The problem of the invariance of dimension in the growth of modern

topology, Part I’ and ‘Part 2’,Archive for history of exact sciences, 20, 97–188;25, 85–267.
Johnson, D.M. 2002. ‘Commentary on Menger’s work on dimension theory’, in [Schweizer et alii,

2002], 23–32.



Chapter 66. Paul Urysohn and Karl Menger, papers on dimension theory (1923–1926) 855

Katêtov, M. and Simon, P. 1997. ‘Origins of dimension theory’, in [Aull and Lowen, 1997], 113–134.
[General exposition up to the 1920s.]

Koetsier, T. and van Mill, J. 1997. ‘General topology, in particular dimension theory, in The Nether-
lands: the decisive influence of Brouwer’s intuitionism’, in [Aull and Lowen, 1997], 135–180.

Menger, K. 1925. ‘Grundzüge einer Theorie der Kurven’,Mathematische Annalen, 95, 277–306.
Menger, K. 1928.Dimensionstheorie, Leipzig and Berlin: Teubner.
Menger, K. 1929. ‘Über die Dimension von Punktmengen III. Zur Begründung einer axiomatis-

chen Theorie der Dimension’,Monatshefte für Mathematik und Physik, 36, 193–218. [Repr. in
[Schweizer etalii, 2002], 93–118.]

Menger, K. 1943. ‘What is dimension?’,American mathematical monthly, 50, 2–7.
Menger, K. 1979.Selected papers in logic and foundations, didactics, economics, Dordrecht: Reidel

(Vienna Circle Collection, vol. 10).
Menger, K. 1994.Reminiscences of the Vienna Circle and the Mathematical Colloquium (ed. L.

Golland and others), Dordrecht: Kluwer (Vienna Circle Collection, vol. 20).
Pier, J.-P. 1980. ‘Historique de la notion de compacité’,Historia mathematica, 7, 425–443.
Schweizer, B. et alii (eds.) 2002.Karl Menger selecta mathematica, vol. 1, Vienna: Springer. [Selec-

tion of papers and commentaries; doesnot include the landmark paper.]
Topology atlas. WWW source for obituaries, latest research news, etc.



CHAPTER 67

R.A. FISHER, STATISTICAL METHODS FOR
RESEARCH WORKERS, FIRST EDITION (1925)

A.W.F. Edwards

This book is especially notable for its wide-ranging account of methods of statistical infer-
ence, and also for the wealth of applications made to biology.

First publication. Edinburgh and London: Oliver and Boyd, 1925 (Biological monographs
and manuals (ed. F.A.E. Crew and D.Ward Cutler), vol. 5). ix+ 239 pages+ 6 pull-out
tables. Print run: 1050 copies.

Later editions. 2nd 1928, 3rd 1930, 4th 1932, 5th 1934, 6th 1936, 7th 1938, 8th 1941, 9th
1944, 10th 1946, 11th 1950, 12th 1954, 13th 1958; all Oliver and Boyd. 14th (posthu-
mous), in two variants: 1) Oliver and Boyd (ISBN 0-05-002170-2), 1970; 2) New York:
Hafner; London: Collier–Macmillan, 1970.

Reprints. 10th, 13th and 14th editions, the last inStatistical methods, experimental design
and scientific inference, Oxford: Oxford University Press, 1990 (ISBN 0-19-852229-0).

French translation. Méthodes statistiques adaptées à la recherche scientifique, Paris:
Presses Universitaires de France, 1947.

German translation of the 12th ed. Statistische Methoden für die Wissenschaft, Edinburgh:
Oliver and Boyd, 1956.

Italian translation. Metodi statistici ad uso dei ricercatori, Turin: Unione Tipografico,
1948.

Spanish translation of the 10th ed. Metodos estadisticos para investigadores, Madrid:
Aguilar, 1949.

Japanese translation. Kenkyuusyano tameno toukeiteki houhou, Tokyo: Morikita, 1952.
[Repr. 1970.]

Russian translation of the 12th ed. Statisticheskie metody dlya issledovatelei, Moscow:
Gosstatizdat, 1958.

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.

856



Chapter 67. R.A. Fisher,Statistical methods for research workers (1925) 857

Related articles: Bayes (§15), Laplace on probability (§24), Pearson (§56), Shewhart
(§72).

1 THE AUTHOR

Although R.A. Fisher (1890–1962) was a first-rate mathematician,Statistical methods for
research workers contains no advanced mathematics. Reviewers of the first edition ob-
jected to its narrow focus, its lack of proofs, its reliance on genetical examples, and its
biological emphasis generally [Box, 1978]. Its greatness stems not from its mathematics
but from the revolutionary novelty of its approach to statistical inference combined with
its wealth of practical advice on the actual analysis of data by the new methods. Rarely has
a book contained so much of value to the beginner and the advanced worker at the same
time. Fisher’s own description of the book, ten years after its publication, was ‘a connected
account of the applications in laboratory work of some of the more recent advances in
statistical theory’ [Fisher, 1935].

Fisher was taught ‘all the pure, mathematics I know’ by G.H. Hardy, whose textbook
A course of pure mathematics (1908) had just been published when the young student
came up to Cambridge to read for the Mathematical Tripos, in which he was placed in
the first class in 1912. His contributions to mathematics itself lie in the fields of statistical
distribution theory, combinatorial theory (especially the enumeration of Latin squares) and
design theory generally. He initiated stochastic diffusion theory in 1922, and when A.N.
Kolmogorov referred to ‘das wundervolle Buch von R.A. Fisher’ it was not toStatistical
methods but toThe genetical theory of natural selection [Fisher, 1930a], in which Fisher
had employed it [Kendall, 1990]. In 1934 Fisher published the idea of a randomized or
‘mixed’ strategy in the theory of games, independently of von Neumann. But for most of
his working life he was a professor of genetics, first in London and then at Cambridge,
and in evolutionary theory he is acknowledged as ‘the greatest of Darwin’s successors’
([Dawkins, 1986]; see [Edwards, 1990]).

Ronald Aylmer Fisher was born in London on 17 February 1890, the son of George
Fisher, a fine-art auctioneer, and his wife Katie [Box, 1978]. His twin brother was still-
born. At Harrow School, which he entered in 1904 as a scholar, he distinguished himself in
mathematics despite being handicapped by poor eyesight that prevented him working by
artificial light. His teachers used to instruct him by ear, and Fisher developed a remarkable
capacity for pursuing complex mathematical arguments in his head. This manifested itself
later in life in an ability to reach a conclusion whilst forgetting the argument, to handle
complex geometrical trains of thought, and to develop and report essentially mathemati-
cal arguments in English (only for students to have to reconstruct the mathematics later).
Fisher’s early interest in natural history was reflected in the books chosen for special school
prizes at Harrow, culminating in his last year in the choice of the complete works of Charles
Darwin in 13 volumes.

Fisher entered Gonville and Caius College, Cambridge, as a scholar in 1909. After
graduating in 1912 he spent a postgraduate year in the Cavendish Laboratory, Cambridge,
studying the theory of errors under F.J.M. Stratton and statistical mechanics and quantum
theory under J.H. Jeans (later Sir James Jeans).
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Prevented from entering war service in 1914 by poor eyesight, Fisher taught physics and
mathematics in schools for the duration of the war, and in 1919 he was appointed Statis-
tician to Rothamsted Experimental Station, anagricultural research station at Harpenden,
north of London. From 1920 to 1926 he was also a non-resident Fellow of Gonville and
Caius College, to which he gave pride of place on the title page ofStatistical Methods. In
1933 he was elected to succeed Karl Pearson (1857–1936) at University College London
as Galton Professor of Eugenics (that is, of Human Genetics, as it later became), and in
1943 he was elected Arthur Balfour Professor of Genetics at Cambridge and once more a
Fellow of Gonville and Caius College.

After he retired in 1957 Fisher traveled widely, spending his last few years in Adelaide,
Australia, as an honorary research fellow of the C.S.I.R.O. Division of Mathematical Sta-
tistics. He died there of a post-operative embolism on 29 July 1962. His ashes lie under a
plaque in a side aisle of Adelaide Cathedral.

Fisher married Ruth Eileen Guinness in 1917 and they had two sons and six daugh-
ters, and a baby girl who died young. He was elected a Fellow of the Royal Society of
London in 1929 (as a mathematician) and was created Knight Bachelor by Queen Eliza-
beth II in 1952 for services to science. He was the founding President of the Biometric
Society (now the International Biometric Society) in 1947, and served as President of the
Royal Statistical Society (of the U.K.), of theGenetical Society of Great Britain, and of his
Cambridge college, Gonville and Caius. He received many honorary degrees and accepted
the honorary membership of many academies at home and abroad, and was awarded all
the principal medals of the Royal Society, the Royal (1938), the Darwin (1948) and the
Copley (1956).

Fisher’s papers number nearly three hundred, and he also wrote many reviews, partic-
ularly in The eugenics review between 1915 and 1935, and letters to journals. In genetics,
his bookThe genetical theory of natural selection [Fisher, 1930a] was followed byThe
Theory of inbreeding [Fisher, 1949]. Several statistics books were offshoots ofStatistical
methods, and will be mentioned below. He was an accomplished formal lecturer as may
be seen from his many presidential and similar addresses, and an occasional broadcaster
on scientific topics. The same cannot be said of his lectures to students, which required
intense concentration and subsequent interpretation.

Small of stature, with thick glasses and a beard (Figure 1), Fisher did not suffer fools
gladly. He was a skilled controversialist in conversation, but his quick temper sometimes
rendered further discussion impossible. His contemporaries divided cleanly into those who
regarded him with awe and affection and gratitude for the generosity with which he offered
ideas to them, and those who found him tetchy, difficult and remote. Especially as a pro-
fessor at Cambridge he showed great interest in the few students who passed through his
small department, and he always enjoyed the company of young people.

Of the many thumb-nail sketches which his greatness has inspired, perhaps the follow-
ing comment on Fisher by the Cambridge cosmologist Sir Fred Hoyle [1999] contains the
closest likeness in the smallest span:

I am genuinely sorry for scientists of the younger generation who never knew
Fisher personally. So long as you avoided a handful of subjects like inverse
probability that would turn Fisher in the briefest possible moment from ex-
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Figure 1. Fisher in 1924, at the time of writing the first edition of his book.
Photograph courtesy of Joan Fisher Box.

treme urbanity into a boiling cauldron of wrath, you got by with little worse
than a thick head from the port which he, like the Cambridge mathematician
J.E. Littlewood, loved to drink in the evening. And on the credit side you
gained a cherished memory of English spoken in a Shakespearean style and
delivered in the manner of a Spanish grandee.

2 WRITING STATISTICAL METHODS

At Cambridge Fisher’s introduction to statistical procedures was through the astronomer
F.J.M. Stratton, one of his teachers in Gonville and Caius College. Not only did Stratton
give an undergraduate course of lectures on ‘Combination of observations’ which Fisher
almost certainly attended, but Fisher studied under him and Jeans at the Cavendish Labo-
ratory for a postgraduate year 1912–1913. Although no notes for the lectures are known,
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(Sir) David Brunt wrote a bookThe combination of observations in whose preface he wrote
‘I have to acknowledge my indebtedness to Mr F.J.M. Stratton, of Gonville and Caius Col-
lege, Cambridge, to whose University lectures I owe most of my knowledge of the subjects
discussed in this book, and upon whose notes I have drawn freely’ [Brunt, 1917]. The book
refers to very littlebeyond Karl Pearson’s work (§56), but it does notice the second edition
of G. Udny Yule’sAn introduction to the theory of statistics (1912). These two books, with
their heavy emphasis on the normal distribution, the method of least squares, correlation
and (in Yule’s case) contingency, may be assumed fairly to reflect Fisher’s undergraduate
knowledge (Whittaker and Robinson’sThe calculus of observations did not appear until
1924).

But Fisher was soon outpacing his teachers. Even as an undergraduate, encouraged by
Stratton, he had in 1912 published a paper foreshadowing his later introduction of the
method of maximum likelihood. This led him to an interest in thez-distribution (essentially
the modernt-distribution) described, but not formally derived, in the path-breaking paper
by ‘Student’ (W.S. Gosset) in 1908 that launched the statistical theory of small samples.
Fisher was soon able to derive the distribution usingn-dimensional geometrical reasoning.

By 1923 Fisher was already beginning to achieve the leading position in statistics which
he was to hold at least until the outbreak of the Second World War in 1939. His 1922Philo-
sophical transactions paper ‘On the mathematical foundations of theoretical statistics’ was
only one of the key papers in a period of five years marked by his introduction into statis-
tics of many of the words and phrases which were to dominate the field:variance, analysis
of variance, degrees of freedom, efficiency, sufficiency, consistency, likelihood, method of
maximum likelihood, location and scale andstatistic [Fisher, 1922].

Fisher started to writeStatistical methods in the summer of 1923, and it was almost
complete by the middle of 1924. The prefaceto the first edition is dated February 1925,
and Cambridge University Library receivedits copy on 1 July. Fisher was in Canada from
the end of July 1924 to the beginning of September and asked Gosset to read the proofs.
One consequence of this was Gosset’s suggestion on returning the proofs on 20 October
that the all-important statistical tables could be folded ‘into the book but when in use they
could be folded out’, and for the first six editions the tables in the text were duplicated in
this way at the back of the book [Gosset, 1970].

The book was originally to be calledStatistics for biological research workers, as may
be seen in the first list of the books in the series ‘Biological Monographs and Manuals’ in
which it appeared. This series, from the Edinburgh publishers Oliver and Boyd, was edited
by F.A.E. Crew of Edinburgh and D. Ward Cutler of Rothamsted; but there was more than
just Rothamsted to connect them to Fisher, for all three men were leading participants
in the affairs of the Eugenics Society. In October 1924 Fisher was one of the Honorary
Secretaries and both Crew and Cutler members of the Council. Crew became Professor of
Animal Genetics in the University of Edinburgh and lived until 1973, whilst Ward Cutler
died young in 1941 whilst still head of the Microbiology Department at Rothamsted.

Robert Grant was one of the partners in Oliver and Boyd and corresponded with Fisher
in 1950 about the proposal by the editor of theJournal of the American Statistical Asso-
ciation to mark the silver jubilee ofStatistical methods with ‘one or two articles on the
character and consequences of that volume’ [Bennett, 1990]. He reminisced: ‘It all takes
my mind back to that day when Frank Crew called relative to your manuscript, how he



Chapter 67. R.A. Fisher,Statistical methods for research workers (1925) 861

spoke of its quality, the formative work that it contained, and urged publication if only on
the grounds that statistics in future would and must form part of research work in every sci-
ence’. Fisher replied: ‘It was Cutler who approached me, probably after consulting Crew,
and certainly he came at the right moment, for I did not have to do any mathematical re-
searchad hoc, but only had to select and work out in expository detail the examples of the
different methods proposed’.

Ironically the first book of the series was by Lancelot Hogben [1924], for in later years
Hogben was to be a leading criticof the entire corpus of Fisherian statistical inference.
His magnum opusStatistical theory, though largely ignored by the statistical world, was a
refreshing reminder that there is still much to be debated about inference. Of its many tilts
at Fisher, this one was specific toStatistical methods [Hogben, 1957]:

In Statistical Methods for Research Workers, destined to be the parent of a large
fraternity of manuals setting forth the same techniques with exemplary material
for the benefit of readers willing—and, as it transpired, only too anxious—to
take them on trust, Fisher’s formulation of the rationale of the significance test
neither discloses a new outlook explicitly not clarifies views expressed by his
predecessors. All that is novel is a refinement of the algebraic theory of the
sampling distributions—with one notable exception embraced by Pearson’s
(1895) system of moment-fitting curves.

The language is eerily reminiscent of some of Fisher’s own outbursts in later life, and
effectively disguises such elements of truth as it contains.

Of the ten titles in ‘Biological monographs and manuals’ onlyStatistical methods sur-
vived into a second edition, but to the end of its life it was still being described as one of
the series. Not until the 13th edition (1958) was the inclusion of a list of the other books in
the series discontinued.

3 CONTENT OF THE FIRST EDITION

The first edition ofStatistical methods is a handsomely-produced volume, 6× 9 inches,
bound in dark blue cloth with ‘Biological Monographs and Manuals’ printed in black on
the front. Printing was undertaken in the publisher’s own works. The lines of type are set
at 15 point making for an ‘open’ appearance to each page. Fisher himself suffered from
poor eyesight all his life, and remarked, in connection withThe genetical theory of natural
selection, ‘Fairly large print is a real antidote to stiff reading’ [Bennett, 1983]. The print
run was 1050 copies (this figure and others quoted for subsequent editions are taken from
[Yates, 1951]). The contents are summarised in Table 1.

The book opens with a long introductory chapter surveying the field of statistics from
Fisher’s new viewpoint. (The bold type is Fisher’s, in the style of both [Yule, 1912] and
[Brunt, 1917].) Section1: The Scope of Statistics—‘Statistics may be regarded as (i.) the
study ofpopulations, (ii.) as the study ofvariation , (iii.) as the study of methods of the
reduction of data’. The section ends: ‘It is the object of the statistical processes employed
in the reduction of data to exclude [the] irrelevant information, and to isolate the whole
of the relevant information contained in the data’. Much of this opening material is taken
directly from [Fisher, 1922] ‘On the mathematical foundations of theoretical statistics’.
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Table 1. Contents by chapters of Fisher’s book, first edition (1925).

Ch. Pages Contents

I 26 Introductory.

II 16 Diagrams.

III 34 Distributions.

IV 24 Tests of goodness of fit, independence and homogeneity; table ofχ2.

V 37 Tests of significance ofmeans, differences of means, and regression
coefficients.

VI 36 The correlation coefficient.

VII 35 Intraclass correlations and the analysis of variance.

VIII 22 Further applications of the analysis of variance.

In Section2: General Method, Calculation of StatisticsFisher introduces his vital dis-
tinction between theparametersof the population distribution which are to be estimated
and thestatisticscalculated from the data which are to be used for the purpose. Here we
meet the singular word ‘statistic’ which he had coined in 1921:

The problems which arise in the reduction of data may thus conveniently be di-
vided into three types: (i.) Problems ofSpecification, which arise in the choice
of the mathematical form of the population. (ii.) Problems ofEstimation,
which involve the choice of method of calculating, from our sample, statis-
tics fit to estimate the unknown parameters of the population. (iii.) Problems
of Distribution , which include the mathematical deduction of the exact nature
of the distribution in random samples of our estimates of the parameters[. . .].

Here in these introductory pages we already find the great clarification which Fisher had
brought to statistical inference in the preceding few years, especially by distinguishing
clearly between aparameter and itsestimate.

Next Fisher states that he believes the method ofInverse Probability ‘is founded upon
an error, and must be wholly rejected’. (It was not until 1950 that the word ‘Bayesian’
was coined, by Fisher himself, to refer to inverse probability (compare §15.5). It has now
completely replaced the earlier phrase; see [David and Edwards, 2001].) Fisher’s meth-
ods would rely on quite different probability arguments, and by making entirely clear his
rejection of Bayesian methods he was sweeping away a confusion which had permeated
statistical thinking from C.F. Gauss and P.S. Laplace right up to Pearson and Francis Edge-
worth at the end of the 19th century. All these authors had intermingled Bayesian and
non-Bayesian arguments, but Fisher’s ambition and intention was to construct a strictly
non-Bayesian methodology for the ‘reduction of data’.

But ‘This is not to say that we cannot draw, from knowledge of a sample, inferences
respecting the population from which the sample was drawn, but that the mathematical
concept of probability is inadequate to express our mental confidence or diffidence in mak-
ing such inferences, and that the mathematical quantity which appears to be appropriate for
measuring our order of preference among different populations does not in fact obey the
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laws of probability. To distinguish it from probability, I have used the term“Likelihood”
to designate this quantity’. Notwithstandingthis bold introduction of a concept but four
years old, likelihood itself does not feature strongly in the book other than in the method
of maximum likelihood, but in 21st-century statistical theory it is one of Fisher’s principal
legacies [Edwards, 1972].

Having introduced the idea that a statistic, computed from the data, is to be used to
estimate a parameter, it is necessary to learn how to chose between competing statistics.
Section3: The Qualifications of Satisfactory Statisticsaddresses this problem. A statis-
tic must beconsistent, that is, converge on the true valueof the parameter when the sample
is large, and it should be asefficient as possible. It should use all the ‘relevant informa-
tion’ available in the observations. Fisher had first introduced these words and phrases
in 1922, and although inStatistical methods ‘information’ is not explicitly defined in the
first edition, it is implicitly taken to be inversely proportional to the samplingvariance
of the estimate. In a contemporary paper ‘Theory of statistical estimation’ Fisher [1925]
defined ‘information’ explicitly, thus giving the word a technical meaning three years be-
fore R.V.L. Hartley used it in its ‘Shannon’ sense. Fisher information, as it is often now
called, is a measure of informativeness about something specific, the value of a parameter,
whilst Shannon information is a measure of the capacity of a channel to transmit a mes-
sage whether informative or not. Shannon’s refers to the medium, Fisher’s to the message.
Sometimes it is possible to find a statistic which is not only efficient but which can also
be shown to use all the information even in a small sample; it is then said to besufficient,
another 1922 coining. Such statistics, where they exist, Fisher asserted could be found by
his Method of Maximum Likelihood (1922 again) which, in other cases, would at least
uncover an efficient statistic.

Thus does Fisher, in a few sentences, set out his project. To readers of Yule and Brunt
it will have appeared a great mystery. To Fisher’s biological colleagues, unversed in least
squares, finite differences, and other concepts inherited from astronomy and geodesy, it
was a revelation.

Section4: Scope of this Bookdescribes in some detail how the book is constructed.
After Fisher’s remark ‘The book has been arranged so that the student may make acquain-
tance with these three main distributions in a logical order [χ2, t andz], and proceeding
from more simple to more complex cases’, the exasperated anonymous original owner of
my copy of the first edition has written ‘and with the minimum of logical explanation’.
Further on he writes in the margin ‘Proof? Why not even refer to the paper which con-
tains a proof?’. It was to be a common complaint from mathematicians. The statistician
G.A. Barnard first met Fisher in 1933 when in his last year at school, and remarked that he
had been looking for mathematical texts on statistics without success. Fisher pointed to a
copy ofStatistical Methods and said: ‘I believe you are a mathematician. You’ll find in this
book a lot of statements given without proof. If you’re a mathematician you should be able
to prove these things for yourself. If you work through the book doing that, you’ll learn
mathematical statistics’. Barnard did [Barnard, 1990].

Section5: Mathematical Tables explains the sources of the tables included inSta-
tistical Methods. Fisher made a fundamental change in the format of statistical tables by
tabulating the value of the variate for a range of values of the probability rather than the
other way round. Thus Table III for Pearson’sχ2 tabulates it for values of the probability
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P (.99, .98, .95, . . ., .10, .05, .02, .01) and the degrees of freedomn (from 1 to 30) instead
of tabulatingP for different values ofn andχ2 as had Karl Pearson. This, coupled with
the use of the novel phrases ‘test of significance’ (p. 43), ‘significance level’ (p. 157) and
‘percentage point’ (p. 198), drove the entire statistical community away from quotingP at
the conclusion of an analysis towards asserting whether or not the result was ‘significant’
at a certain ‘level’, such as 1% or 5%. In Chapter III Fisher goes so far as to say ‘It is con-
venient to take this [5%] point as a limit in judging whether a deviation is to be considered
significant or not’. Hald [1998] famously described Fisher as ‘the statistical magistrate of
our time’. A further, and profound, consequence of this new format for statistical tables was
the ease with which it enabled confidence intervals to be computed, which Egon Pearson
[1990] thought might have been instrumental in the emergence of the confidence theory. In
this he was echoing a thought of Fisher’s in his Harvard Tercentenary Lecture ‘Uncertain
inference’ [Fisher, 1936]. He also confirms the story that part of the reason for the new
format might have been his father’s reluctance to allow Fisher to reproduce theBiometrika
copyright tables for fear of damaging their sales.

Section6 has no title, and sits oddly in this first chapter, as if an afterthought. It consists
of an example of the application of the method of maximum likelihood to the estimation
of a genetical recombination fraction. Aswe shall see, Fisher later expanded it and placed
it elsewhere.

Seven further chapters follow this, practising what the ‘Introductory’ Chapter I has
preached. Chapter II covers ‘Diagrams’—thevery first of which charts the growth of baby
Harry, the Fishers’ second child, born in May 1923. In Chapter III, ‘Distributions’, the
Normal, Poisson and Binomial distributions are introduced, with the minimum of mathe-
matics but with examples of fitting them to data. A typical example of the author’s efforts
to explain mathematical concepts in words for the benefit of his biological readers is his
description of the Normal distribution as having ‘frequencies given by a definite mathe-
matical law, namely, that the logarithm of the frequency at any distancex from the centre
of the distribution is less than the logarithm of the frequency at the centre by a quantity
proportional tox2’. The formula is then revealed,one senses rather reluctantly.

Chapter IV introduces ‘Tests of goodness of fit, Independence and Homogeneity’ based
on theχ2 distribution. As usual, the instruction is by means of examples and no formula is
given for theχ2 distribution function. In Chapter V we move on to ‘Tests of Significance
of Means, Differences of Means, and Regression Coefficients’. Tests based on the Nor-
mal distribution soon give way to small-sample tests based on ‘Student’s’t-distribution.
Characteristically, Fisher does not bother to refer to the fact that he was the mathematician
who first rigorously derived this distribution. In the fourth edition (1932) Fisher added a
‘Historical Note’ to Chapter I in which he said “ ‘Student’s” work was not quickly ap-
preciated, and from the first edition it hasbeen one of the chief purposes of this book to
make better known the effect of his researches, and of mathematical work consequent upon
them’. An interesting occurrence of the word ‘confidence’ given its later use in ‘confidence
interval’ occurs in Chapter V: ‘In this case we can not only assert a significant difference,
but place its value with some confidence at between 4 and 5 inches’.

‘The Correlation Coefficient’ is introduced in Chapter VI by means of the data of Karl
Pearson and Alice Lee on the stature of 1376 father–daughter pairs. The formula for the
correlated bivariate normal surface is given and the method of calculation of the correlation
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coefficient demonstrated. The partial correlation coefficienti is described. The significance
test for an observed correlation, involving ‘Student’s’ distribution, is given, and Fisher
shows by an example how misleading it would be to assume a Normal distribution of
error for the correlation coefficient. To handle the sampling distribution of the coefficient
when the population is itself correlated Fisher introduces hisz-transformation, once again
omitting to mention that it was he who derived the exact sampling distribution in 1915 that
led him to suggest this transformation.

In Chapter VII ‘the analysis of variance’ makes its first appearance, via a discussion of
‘Intraclass Correlations’. Here one may see the transition between the Pearsonian emphasis
on correlation and the Fisherian emphasis on the analysis of variance taking place before
one’s very eyes. Fisher had only invented the terms ‘variance’ and ‘analysis of variance’
seven years earlier, in 1918 [David and Edwards, 2001]. Chapter VIII ‘Further Applica-
tions of the Analysis of Variance’ takes the story a step further, first into regression and
then into the all-important area of agricultural experimentation. Section48. Technique of
Plot Experimentation starts ‘The statistical procedure of the analysis of variance is es-
sential to an understanding of the principles underlying modern methods of arranging field
experiments’. Randomisation is introduced as the prerequisite for the validity of the subse-
quent tests of significance. It was Fisher’s first publication of this point of view. (In the third
edition Fisher added to the Preface the remark: ‘As has sometimes occurred before with
the inclusion of new results, reference to the demonstration cannot yet be given, since no
demonstration has yet been published’.) A 5× 5 Latin Square makes its appearance. And
there the book suddenly stops, just as it touches on these path-breaking developments at
Rothamsted which were to lead to a revolution in agricultural experimentation and indeed
to experimentation in science generally.

4 SUBSEQUENT EDITIONS AND BOOKS

Fisher produced a new edition ofStatistical methods roughly every two years throughout
its life, and in each Preface he indicated the sections that he had added or altered. The full
collection is shown in Figure 2. Prefaces of the later editions may therefore be consulted
for the details, and here we only note major changes.

In the second edition (1928, 1250 copies) Fisher removed Section6 of the ‘Introduc-
tory’ Chapter I and expanded it into a new Chapter IX ‘The Principles of Statistical Esti-
mation’, partly at the suggestion of Gosset. Generations of statistical geneticists have learnt
their estimation theory from it. The same material appeared in a contemporary paper with
B. Balmukand [1928]. We find statistical ‘information’ now clearly defined.

In the third edition (1930, 1500 copies) Fisher added a separate bibliography of his
own statistical publications. This subsequently grew year by year, for his output never
slackened.

The fourth edition (1932, 1500 copies) contained a long addition to Chapter VIII, a
Section49.1. The Analysis of Covariance. The very word ‘covariance’ had only been
coined two years earlier (by Fisher himself, inThe genetical theory of natural selection). Of
particular interest to students of the logic of statistical inference is the effect onStatistical
methods of Fisher’s discovery and advocacy offiducial probability in [1930b]. In Chapter I
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Figure 2. A population of 13 varying editions (Cambridge University).

he could no longer say that ‘the mathematicalconcept of probabilityis inadequate’ (for
the full quotation, see section 3 above) without adding ‘in most cases’ and explaining
that the interpretation of probabilities established by tests of significance ‘as probability
statements respecting populations’ constituted ‘an application unknown to the classical
writers on probability’.

Also for this edition Fisher removed Section5. Mathematical Tablesfrom Chapter I
and replaced it by aHistorical Note intended to be ‘of value to students who wish to see
the modern work in its historical setting’ and correcting misapprehensions ‘ascribing to the
originality of the author methods well known tosome previous writers, or ascribing to his
predecessors modern developments of which they were quite unaware’. Fisher has some-
times been criticized for the inaccuracy of his historical writing, but he never withheld
credit where credit was due, in this section most notably when mentioning C.F. Gauss:
‘He perceived the aptness [for estimation] of the Method of Maximum Likelihood, al-
though he attempted to derive and justify this method from the principle of inverse prob-
ability. The method has been attacked on this ground, but it has no real connection with
inverse probability’.

The print run for the fifth edition (1934) was1500 copies. It contained new material on
the analysis of the 2× 2 contingency table.

In 1935 Fisher’s second statistical bookThe design of experiments appeared. As he
said in the preface: ‘In 1925 the author wrote a book (Statistical methods for research
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workers) with the object of supplying practical experimenters and, incidentally, teachers of
mathematical statistics, with a connected account of the applications in laboratory work of
some of the more recent advances in statisticaltheory’ and he went on to explain how the
new work had grown out of the eighth chapter of the old. HenceforthStatistical methods
no longer needed additions on this subject, and the sixth edition (1936, 2000 copies) could
refer to the new book, though Chapter VIII was retained. One notable coining inThe design
of experiments was the phrase ‘null hypothesis’, missing fromStatistical methods.

The sixth edition, likeThe design of experiments, also made free use of the word ‘fidu-
cial’. To the fourth-edition statement quoted above Fisher added: ‘To distinguish such
statements as to the probability of causes from the earlier attempts now discarded [that
is, inverse probability], they are known as statements ofFiducial Probability ’, and in-
stead of the mean of a normal distribution being ‘likely’ to lie within the limits defined by
the sample mean± two standard errors it becomes ‘probable, in the fiducial sense’.

For the seventh edition, in 1938 (2000 copies), the duplicate fold-out copies of the sta-
tistical tables were dropped from the end of the book, made redundant by the publication in
that year of anotherStatistical methods off-shoot:Statistical tables for biological, agricul-
tural and medical research, produced jointly with Fisher’s successor at Rothamsted, Frank
Yates. In this edition the size had increased by more than 50% over the first edition.

The eighth edition appeared during the war,in 1941 (2250 copies), and perhaps for this
reason was reset with closer lines (from 15 to 131

2 point, a 10% increase in capacity for the
written material). Section numbers appearedin the running heads of each page for the first
time (as had been suggested by Gosset in 1924), and Ward Cutler, who had died, ceased to
be listed as joint editor with Crew; but little else changed.

Subsequent editions showed rather modest changes or none at all. The original first-
edition preface was dropped for the ninth (1944, 2000 copies). The first post-war edi-
tion, the tenth, sold well (1946, 3000 copies; reprinted 1948, 1500 copies; my copy of the
reprint, though claiming to be published by Oliver and Boyd, has ‘Hafner Publishing Com-
pany Inc., New York’ on the title page). The 11th edition in 1950had a print run of 7500
copies. The 12th was published in 1954 and the 13th (and last in Fisher’s lifetime) in 1958.
No figures for their print runs have been published, but the 13th was reprinted in 1963 and
1967.

In the preface to the 13th edition Fisher added a penultimate paragraph occasioned by
the publication in 1956 of the third of his books which can be described as offshoots from
Statistical methods, ‘one devoted to the logic of induction,under the titleStatistical Meth-
ods and Scientific Inference’ (referring to it as ‘1957’; Fisher rather often made mistakes of
one year in referring to his own books and papers). The paragraph is notable for its Parthian
shot at the ‘flood of literature [which since the middle of this century] has appeared bear-
ing on statistical methods’. ‘The authors are largely in mathematical teaching departments,
and better trained as mathematicians than some of their predecessors. Too often, however,
their experience has not included the training and mental discipline of the natural sciences,
and much space is given to the trivial and the irrelevant’. It was a familiar refrain.

The posthumous 14th edition appeared in two versions, both dated 1970. The ‘British’
version was an Oliver and Boyd paperback. It opens with a ‘Preface to the Fourteenth
Edition’ carrying the name of E.A. Cornish of Adelaide, who prepared it ‘from notes left by
Sir Ronald Fisher’, though in fact the prefaceis simply Fisher’s from the 13th edition with
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an inserted paragraph mentioning the additions. The ‘American’ version was published by
Hafner in New York. It reprints the preface to the 13th edition, unsigned, with a separate
note conveying the information about the new material. The type-setting of the first batch of
additional material in the two versions differs, the British version missing some parentheses
in a formula on page 165, and the American having a word italicized. That of the second
batch, Section57.4, appears identical. The natural inference is that the American version
has been produced from the British with corrections. Both are copyright ‘University of
Adelaide’, Fisher’s literary executor.

The 1990 single-volume reprintStatistical methods, experimental design and scientific
inference of all three of Fisher’s statistical booksuses the ‘American’ edition but with a
further variant of the page 165 formula, though the note about the new material is now
signed by J.H. Bennett, of Adelaide, who also expanded the Contents so as to record all
the section headings. This edition records a 1973 reprint of the 14th edition. There is a
foreword to the whole volume by Yates.

5 IMPACT OF THE BOOK

That Fisher is the father of modern statistics no-one will dispute, but to gauge the contri-
bution ofStatistical methods itself requires the thought-experiment of imagining it not to
have been written. This would have made little difference to the dissemination of Fisher’s
more theoretical work, which would have still formed the backbone of 20th-century math-
ematical statistics; but the effect of that work on applied statistical practice would have
been felt more slowly, particularly in biology, including genetics, medicine and the design
of agricultural experiments. If, as seems only just, one includesThe design of experiments
in the assessment, the impact ofStatistical methods throughout the biological sciences was
profound and permanent, and from biology the influence spread rapidly into the social sci-
ences. To a greater extent than Fisher everwished, the test of significance became thesine
qua non of received practice, demanded by the editors of journals even when estimation
would have been more appropriate.

The book had as great an impact on teachers as it had on experimentalists, as may
be seen by comparing the texts of Yule, Brunt (both mentioned above) and A.L. Bowley
[1926] with those that followedStatistical methods, especially G.W. Snedecor’sStatistical
methods applied to experiments in agriculture and biology [1937]. Fisher spent the summer
of 1931 at Iowa State University, Ames, at the invitation of Snedecor, giving three lectures
each week based onStatistical methods. Similarly in 1936 he lectured on design from
The design of experiments, which had been published the preceding year. The influence of
these lectures at the leading American statistical laboratory, and the further contacts which
resulted, was immense. So too was the influence of H. Hotelling at Columbia University,
who reviewed no fewer than seven editions ofStatistical methods, writing at the outset
‘The author’s work is of revolutionary importance and should be far better known in this
country’ [David, 1998].

In India tooStatistical methods was particularly influential. Mahalanobis [1938] writes:
‘This book has probably done more than anything else to make research workers in most
diverse fields of study familiar with the practical applications of modern statistical meth-
ods, and to create a statistical attitude of mindamong the younger generation of scientists’.
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Of all the eulogies of this great book none is more extensive and better informed than
that of [Yates, 1951]. on the occasion of its silver jubilee. It starts:

It is now twenty-five years since R.A. Fisher’s Statistical Methods for Research
Workers was first published. These twenty-five years have seen a complete rev-
olution in the statistical methods employed in scientific research, a revolution
which can be directly attributed to the ideas contained in this book, and which
has spread in ever-widening circles until there is no field of statistics in which
the influence of Fisherian ideas is not profoundly felt.

6 EPILOGUE

It may not be inappropriate to end with a personal anecdote. I was one of only two stu-
dents studying genetics in Fisher’s Cambridge department during his last year as Profes-
sor (1956–1957). I had previously attended an introductory course in statistics (by H.E.
Daniels) and soon found that Fisher’s lectures, especially on linkage, demanded a much
deeper knowledge. At the end of one lecture Iasked his advice and he said, rather quizzi-
cally, that he had written ‘one or two books on statistics’ and perhaps I might like to
consult them. I bought all three (and happily had him autograph them) and devoured the
12th-editionStatistical methods with unbridled enthusiasm. One of the effects of reading
the book again 46 years later has been to remind myself of just how much my own statis-
tical education came from this one short book, which itself, though already then 31 years
old, was such an inspiration. Many others can tell similar stories.
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CHAPTER 68

GEORGE DAVID BIRKHOFF,
DYNAMICAL SYSTEMS(1927)

David Aubin

The first book to expound the qualitative theory of systems defined by differential equa-
tions, Birkhoff’sDynamical systems created a new branch of mathematics separate from its
roots in celestial mechanics and making broad use of topology. Important for several fields
of mathematics, its impact became massiverecently with the spread of ‘chaos theory’.

First publication. Providence, Rhode Island: American Mathematical Society (Colloquium
Publications Series, no. 9), 1927. viii+ 295 pages.

Revised edition. Introduction and addendum by Jürgen Moser, preface by Marston Morse.
1966. xii+ 305 pages. Tenth printing 1999.

Russian translation. Dinamicheskie sistemy (trans. E.M. Livenson, ed. A.A. Markov, V.V.
Nemytskij and V.V. Stepanov), Moscow and Leningrad: ‘Gostekhizdat’, 1941. [Repr.
Izhevsk: Izd. dom ‘Udmurtskij Univ.’, Nauchno-Izdatel’skij Tsentr ‘Regulyarnaya i
Khaoticheskaya Dinamika’, 1999 (Seriya Regulyarnaya i Khaoticheskaya Dinamika,
no. 8).]

Related articles: Poincaré (§48), Lyapunov (§51), Einstein (§63).

1 INTRODUCTION

‘History has responded to these pages on Dynamical Systems in an unmistakable way’.
When this book by George David Birkhoff (1884–1944) was reissued in 1966, nearly 40
years after its first publication and more than20 years after its author’s death, Marston
Morse stressed its historical legacy in his new preface (p. v). A decade later, such a remark
would have seemed superfluous. The craze for ‘deterministic chaos’ was in full swing and
scores of scientists were striving to master dynamical systems theory. Undoubtedly rooted
in multifaceted work of Henri Poincaré (1854–1912) at the turn of the century, this theory
as Birkhoff defined it was a branch of mathematics that dealt with the global qualitative
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behavior of systems governed by deterministic laws (that is, where randomness played no
part). In retrospect,Dynamical systems (hereafter, ‘DS’) stands strangely isolated among
the mathematical literature of its time as a fundamental intermediary between Poincaré’s
perceptive work and the modern theory.

Deterministic chaos and dynamical systems theory have had a perplexing history [Aubin
and Dahan-Dalmedico, 2002]. That older results that could have been ‘forgotten’ for sev-
eral decades gave rise to widespread puzzlement. Albeit well received by the mathematical
press when it was first published in 1927,DS was a textbook for a field of mathematics
that barely existed for some decades to come. Its main domain of application—celestial
mechanics—seemed to have lost some of its urgency now that relativity theory and quan-
tum mechanics were revolutionizing physics. By insisting on considering general problems
of dynamics as opposed to particular ones and by looking globally at sets of motions rather
than particular orbits, Birkhoff’s way of approaching the topic was highly original. Not
only was he creating an up-to-date topological apparatus for the task at hand, he also con-
fronted head-on the problem of finding a role for dynamical theory when the fundamental
equations of physics were being recast. The striking contrast betweenconformist subject-
matter and innovative mathematical and epistemological frameworks can account for the
unusual career ofDS, both the relative oblivion into which it fell and its later success. More
than the results presented in the book, the main reason for its posthumous fame is surely
its style, which largely derives from the intellectual context in which it was produced, that
of American mathematics in thedecade following the Great War.

2 CELESTIAL MECHANICS: THE HISTORICAL BACKGROUND

In the 19th century, the understanding of the analytic structure of the equations of motion
derived from Newtonian mechanics was greatly advanced with the work of Joseph Louis
Lagrange (§16), W.R. Hamilton and Carl Jacobi. In the paradigmatic field of celestial me-
chanics, Pierre-Simon Laplace had perfected Leonhard Euler’s perturbation method which
allowed him and his successors to compute planetary orbits very accurately in terms of
power series (§18). The discovery in 1846 of Neptune on the basis of computations made
by Urbain Leverrier and John C. Adams showed that results could be astonishing. But the
so-called three-body problem remained as frustrating as ever. The law of gravitation acting
upon three masses—especially the Sun, the Earth, and the Moon—gave rise to a system
of differential equations for which no explicit expression of the solution valid for all time
could be found.

Up to that point, in rational mechanics, one mostly tried to find a local trajectory, that is,
solve a system of differential equations withgiven initial conditions without paying much
attention to global behaviors. For complicated problems, the influence of each major planet
was treated as a perturbation and solutions expressed in forms of power series. In his fa-
mous entry to King Oscar of Sweden’s prize of 1889, Poincaré showed that such power
series were in general divergent (§48.5). Renouncing the idea of obtaining convergent se-
ries, several methods—analytic, extremal or topological—were laid out by Poincaré and
explored by a few of his followers. His work on curves defined by differential equations, on
celestial mechanics whether concerned with astral orbits or shapes of rotating fluid masses,
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even his path-breaking development of topology, always emphasized the global behavior
of solutions to a system.

Among the few astronomers and mathematicians who were inspired by Poincaré’s ideas,
Birkhoff went the furthest in developing a full-fledged theory of dynamical systems de-
tached from its roots in celestial mechanics, and making a systematic use of topology.
Having been exposed to the three most prominent currents of mathematical thought in the
United States, Birkhoff was well prepared to tread this topological road. His constant in-
sistence on marrying analysis with topology at the highest level of abstraction possible had
no other root.

Born in 1884 in Michigan, Birkhoff was awarded a Ph.D. by the University of Chicago
in 1907. He was one of the first leading American mathematicians to be fully trained in the
Unites States without having made the trip to Europe. But he had divided his time between
the leading centers of American mathematics. At Harvard, William Osgood and Maxime
Bôcher introduced him to classical analysis, while at Chicago he learnt the abstract modern
ideas of Eliakim Hastings Moore’s ‘general analysis’ [Siegmund-Schültze, 1998]. Through
his interactions with Oswald Veblen at Princeton University, where he taught from 1909
to 1912, Birkhoff encountered a third significant current of mathematical thought:analysis
situs, as the nascent field of topology was then called (compare §76.1).

Shortly after Poincaré’s untimely death in 1912, Birkhoff suddenly established his in-
ternational mathematical stature with acoup d’éclat when he published the proof of a con-
jecture known as ‘Poincaré’s last geometric theorem’. The theorem stated that continuous,
one-to-one, area-preserving maps from the annulus to itself rotating points on the bound-
aries in opposite directions had at least two fixed points [Poincaré, 1912; Birkhoff,Papers,
vol. 1,673–681]. As Poincaré had already seen, this theorem has important consequences
for dynamics.

3 THE CONTENTS OF BIRKHOFF’S BOOK

DS was published in 1927, when Birkhoff was 43 years old; it is summarised in Table 1.
A professor of mathematics at Harvard University since 1912, he was by then a well-
respected statesman of the American mathematical community, active in the American
Academy of Sciences and the National Research Council, as well as having served as the
president of the AmericanMathematical Society.

Before 1927, the only source on general dynamics had been the three volumes of
Poincaré’sLes méthodes nouvelles de la mécanique céleste (1892–1899), characterized by
George Darwin as ‘for half a century to come [. . .] the mine from which humbler investiga-
tors will excavate their materials’ [Barrow-Green, 1997, 152]. But Poincaré’s magisterial
treatise contained much that was cumbersome to use, at times obscure, and at times—for
those interested in general dynamics—unduly concerned with details of celestial mechan-
ics. For Birkhoff, on the other hand, dynamics ought not to address a single problem, but
rather directly tackle the most general class of dynamical systems defined by the differen-
tial equations

dxi/dt =Xi(x1, . . . , xn), i = 1, . . . , n. (1)
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Table 1. Contents by chapters of Birkhoff’s book.

Ch. Page ‘Title’: other included topics

I 1 ‘Physical aspects of dynamical systems’: general analytic discussion,
conservation of energy, Lagrangian equations.

II 33 ‘Variational principles and applications’: Hamiltonian dynamics.

III 59 ‘Formal aspects of dynamics’: formal series.

IV 97 ‘Stability of periodic motions’.

V 123 ‘Existence of periodic motions’: variational principles (geodesics), analytic
continuation.

VI 150 ‘Application of Poincaré’s geometric theorem’: Poincaré map.

VII 189 ‘General theory of dynamical systems’: topological definitions.

VIII 209 ‘The case of two degrees of freedom’.

IX 260 ‘The problem of three bodies’. [End 295.]

In DS, Birkhoff summarized more than 15 years of his own research along three main
axes: the general theory of dynamical systems; the special case with two degrees of free-
dom; and the three-body problem in celestial mechanics. These topics form the subject of
the last three chapters (VII, VIII, and IX), which have been the most widely admired and
studied. In the first two chapters, Birkhoff’s treatment was traditional: he gave proofs for
existence, uniqueness and continuity theorems, and then discussed Lagrange’s equations,
Hamiltonian mechanics, and changes of variables. In chapter III, solutions were studied
in their formal aspects, that is as power series about which questions of convergence were
systematically laid aside as irrelevant to the matter at hand. The next chapter followed
Poincaré’s idea of investigating the stability of formal solutions near equilibrium or peri-
odic motion. But Birkhoff again went further in considering a vast array of definitions for
stability: complete or trigonometric stability, stability of the first order, permanent stability
‘for which small displacements from equilibrium remain small over time’ (p. 121), semi-
permanent stability, unilateral stability (due to Lyapunov: §51), and stability in the sense
of Poisson (due to Poincaré).

Chapter V presented four methods by means of which the existence of periodic motions
could be established. The first of these madeuse of the variational principles of dynam-
ics, for example by considering geodesics ona surface and their deformations (a method
developed by Jacques Hadamard). A second variational method was called the ‘minimax’
method, whereby new geodesics were found by considering the lower limit of the length
of geodesics stretched by a rotation of the manifold. The minimax method was the original
stimulus for Morse theory, which made topological considerations effective for analysis
[Morse, 1934, iv]. The third method, due to George W. Hill and Poincaré, looked at the
analytic continuation of periodic orbits already known to exist.

The fourth method showing the existence of periodic motion was a generalization of
Poincaré’s idea of transverse section. Birkhoff’s formal theory of Poincaré sections would
become an indispensable element of dynamical systems theorists’ toolkit (Chapter VI).
This gave a dynamical problem a ‘striking change of form’. When a continuous dynam-
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ical flow was cut transversally by a surfaceS, each time the continuous dynamical flow
was crossingS, the dynamical equation defined a pointPi on the surface. Successive in-
tersections defined a one-to-one analytic transformationT of the section surfaceS into
itself. Poincaré had used the idea to transform the reduced three-body problem into the
transformation of the ring into itself. Birkhoff showed that there was a great variety of cir-
cumstances where one could use this method. The example of a billiard ball rolling on a
flat surface with curved boundaries concretely illustrated the power of the method.

4 BIRKHOFF’S MAIN AMBITION

This was to develop a ‘General theory of dynamical systems’, which is summarized in
Chapter VII ofDS. ‘The final aim of the theory of motion must be directed toward the
qualitative determination of all possible types of motions and of the interrelation of these
motions’ (p. 189). As Koopman [1930] wrote in a review, ‘[t]he only property made use
of in this chapter is the bare fact that the curves are integral curves ofanalytic differential
equations. The treatment has the aspect of a study in point-set theory’. With this work
begun in 1912, dynamical systems theory was thoroughly infused with topological ideas.

Birkhoff showed that for arbitrary dynamical systems there always was a closed set of
‘central motions’ endowed with a certain property of ‘recurrence’ and towards which all
other motions of the system in general tended asymptotically. Considering the equation of
motion (1), he looked at states of motion as points in a closedn-dimensional manifoldM.
To each pointP0 of M (initial conditions), one could associate via (1) a curve of motion
lying onM. He then divided the manifoldM into two non-intersecting sets: the open set of
wandering points, that is, those starting from which the equations of motion would define
a trajectory filling openn-dimensional continua inM; and the complementary closed set
M1 of non-wandering points. As time increased or decreased, he showed, every wandering
point approached the setM1 of non-wandering points.

Further, Birkhoff constructed a sequence of setsM1,M2, . . . , whereM2 was the set
of non-wandering points with respect toM1, etc. This process had to end at some point
with a setC of central motions. This was a generalization of periodic motions to which
Poincaré had drawn attention. For Birkhoff, the first problem concerning the properties of
dynamical systems was the determination of central motions. The fact that for classical
dynamics, central motions were the totalityof all motion made amply clear that he was
constructing a ‘general theory’ with a wider range of applicability.

In 1912, Birkhoff also introduced the notions of ‘minimal’ or ‘recurrent’ sets of mo-
tions. Letα- andω-limit points be points towards which other motions tended as timet

approached−∞ or+∞. If � was a closed, connected set of limit motions (i.e. trajectories
composed of limit points of a motion) and� had no proper subset, then Birkhoff defined
the members of� as recurrent motions and the set itself as minimal. He showed that a
motion was recurrent if and only if for anyε > 0, curves of motion would remain for a
certain interval of timeT within a distanceε of every point of the trajectory. In other word,
such motions came back arbitrary close to every point of the curve of motion. They were
in the set of central motions but the reverse was not necessarily true.

Based on an astute use of topology, thesedefinitions greatly extended the possibility
of classifying the motions generated by dynamical systems. Solomon Lefschetz asked in
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his review [1929] how classical dynamics was ever able to do without them. Birkhoff’s
notion of non-wandering points was picked up by the Russian mathematician Aleksandr
Andronov, whose roughly contemporary work in this domain ranked equal in importance
with Birkhoff’s. And it prefigured the concept of ‘attractor’ that was fundamental for the
reconfiguration of dynamical systems theory from the mid-1960s onward. Made famous
by René Thom and Steve Smale, an attractor has been succinctly defined as ‘aninde-
composable, closed, invariant set [. . .] which attracts all orbits starting at points in some
neighborhood’ [Holmes, 1990].

5 BIRKHOFF’S LECTURE COURSE AND ITS CONTEXT

Though widely admired, the offshoot of the theory was somewhat disappointing. As Birk-
hoff acknowledged, the remarkable diversity and complexity of behaviors meant that ‘rig-
orously proven qualitative results are rare’ [Birkhoff,Papers, vol. 2, 246]. As was pointed
out by Koopman [1930], what was at stake was the value of a mathematical theory. To
reach a better grasp of both Birkhoff’s approach to dynamics and the long-term reception
of DS, one must look at the American postwar context in which it was produced.

Prior to becoming the cornerstone of a branch of mathematics, the American Math-
ematical Society summer colloquium lectures upon whichDS was based was the best
attended series so far. In September 1920, over 90 mathematicians gathered at the Uni-
versity of Chicago to hear Birkhoff, at the first of these events to take place after the end
of the Great War. For many, this was an inspiring return to normalcy. He treated his au-
dience with a review of recent developmentsin an honored field of mathematical physics
crowned with far-ranging philosophical speculations. As was the tradition, the lecturer em-
phasized his own contributions. In his five lectures, he reviewed traditional approaches to
dynamical problems, and summarised his own work on topological tools to describe the
various types of motion that could occur in a dynamical system making the crucial distinc-
tion between hyperbolic and elliptic motions. His fourth lecture was an application of this
‘General analysis’ to the three-body problem. Concerned with the ‘significance of dynam-
ical systems for general scientific thought’, Birkhoff’s fifth lecture was not published in
DS. From their titles, themes broached—‘The dynamical model in physics’, ‘Modern cos-
mogony and dynamics’, ‘Dynamics and biological thought’, ‘Dynamics and philosophical
speculation’—are tantalizing in their ambitions [Hurwitz, 1920].

Like other American scientists, mathematicians in the early 20th century were preoc-
cupied by issues of purity [Parshall and Rowe, 1994]: ‘Gross utilitarianism is the obvi-
ous danger’ [Carmichael, 1919, 163]. While astronomers importantly shaped the emerg-
ing mathematical community in the United States, a younger generation centered around
Chicago ‘played a leadershiprole in defining the mathematical profession on American
shores in terms of pure, abstract, rigorous mathematics’ [Parshall, 2000, 8]. Their ethos
was ‘a privileging of pure over applied mathematics, of research over teaching, and of
educating future mathematicians over training others who neededadvanced mathemati-
cal skills’ [Butler Feffer, 1997, 66–67]. Birkhoffcertainly agreed with a mild version of
this credo. Although he always emphasised applications in celestial mechanics, he never
computed an orbit.
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Since Poincaré had written hisMéthodes nouvelles, two things had happened that trans-
formed the way dynamics was to be understood: the Great War and relativity theory (§63).
If its impact was no way overwhelming, the war effort in 1917–1918 introduced a crucial
inflexion in scientists’ self-perception [Aubin and Bret, 2003]. A handful of mathemati-
cians, Birkhoff among them, worked on war-related topics (ballistics, sound-ranging, and
submarine detection). But as opposed to physicists and chemists, they felt they had a harder
time convincing the country that their skillswere required for warfare. The war led to a
reevaluation of the role played by formal mathematics in the physical sciences and some
soul-searching on the mathematicians’ part [Servos, 1986]. Some felt that overemphasis
on purity had led to a detrimental neglect of applied mathematics. To those concerned with
the role of mathematics in science and other human affairs, mathematicians often replied
that their inquiries were essential in understanding the deep structures of scientific thought.
‘Transcending the flux of the sensuous universe, there exists a stable world of pure thought,
a divinely ordered world of ideas, accessible to man, free from the mad dance of time, in-
finite and eternal’ [Keyser, 1915, 679]. Looking for stability in complex flows, dynamical
systems theory was Birkhoff’s attempt at accommodating two strong, yet antagonistic ten-
dencies of postwar American mathematics: the strive towards purity, if not purism; and the
acknowledgment, reinforced by the war, that mathematicians ought to be concerned with
applications.

The postwar situation was further complicated by revolutions in physics. Poincaré, it
was claimed, ‘was depressed when certain recent physical theories seemed to imply that
differential equations are not so fundamental to the understanding of phenomena as he
had supposed’ [Carmichael, 1917, 168]. More than physicists and astronomers, American
mathematicians often readily welcomed relativity theory [Goldberg, 1987]. Birkhoff pub-
lished two books on Einstein’s theory (1923, 1925); the first was, with Stanley Eddington’s
Mathematical theory of relativity of 1923, among the earliest books in English explaining
relativity with sufficient mathematical sophistication.

Like Veblen, Birkhoff argued that crises in fundamental physics increased the impor-
tance of the mathematician who provided a ‘rigorous and qualitative background’ to the
‘more physical, formal, and computational aspects of the sciences’ [Birkhoff,Papers,
vol. 2, 110]. Through the years, his position evolved and it later seemed that dynami-
cal systems theory was for skeptics. ‘At a time when no physical theory can properly be
termed fundamental—the known theories appear to be merely more or less fundamental in
certain directions—it may be asserted with confidence that ordinary differential equations
in the real domain, and particularly equations of dynamical origin, will continue to hold a
position of the highest importance’ (DS, iii). ‘In view of the many indignities which me-
chanics has suffered in recent years’, a reviewer wrote with a sigh of relief, ‘this volume
merely illustrates that additional hypotheses are not as yet needed if one wishes to make
new discoveries in dynamics’ [Bartky, 1928].

6 ON THE IMPACT AND RENAISSANCE OF THE BOOK

DS was not Birkhoff’s last word on the topic. In particular, his proof in [Birkhoff, 1931]
of the ergodic theorem was deemed as important as his proof of Poincaré’s geometric the-
orem. Introduced by Ludwig Boltzmann, ergodicity has been a cornerstone of statistical
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mechanics. It described systems such thateach particular motion when continued indef-
initely passed through every configuration compatible with energy conservation. Allying
topological consideration with Henri Lebesgue’s theory of integration (§59.3), Birkhoff
developed the notion of transitivity introduced inDS(that is, the property of a dynamical
system whereby small neighborhoods of curves of motion filled the whole manifold up
to a set of measure zero) and showed that it was a widespread property for Hamiltonian
systems. Birkhoff knew that this property was not generic, but his results prompted further
developments in ergodic theory [Dahan-Dalmedico, 1995].

DS also shaped much of the work done by Aleksandr Kolmogorov, Vladimir I. Arnol’d,
and Jürgen Moser in the 1950s and 1960s on the celebrated KAM theorem that inval-
idated Birkhoff’s ergodic conjecture [Diacu and Holmes, 1996]. Several other concepts
introduced by Birkhoff were later picked up by others. On the notion of recurrent motion,
Morse, Walter H. Gottschalk, and Gustav A. Hedlund built an abstract theory of symbolic
dynamics in 1955 that is used today in theoretical computer science. Another example is
the ‘bad’ curve studied by Birkhoff in 1932, a complicated state of motion that ultimately
formed the basis for Smale’s ‘horseshoe’, a stable, yet chaotic motion [Abraham, 1985].

Very technical, those developments kept the memory of Birkhoff’sDS alive, but re-
stricted to specialized fields of inquiry until dynamical systems theory was spectacularly
revived after the Second World War by Lefschetz [Dahan-Dalmedico, 1994]. But Lef-
schetz and his collaborators rediscovered the work of Poincaré through their close study
of Russian sources rather than in Birkhoff’s work. One reason for this was the insistence
put on dissipative systems where energy is not conserved, as opposed to conservative ones
emphasized by Birkhoff. InDS, the section on dissipative systems occupied less than two
pages. He acknowledged that ‘[c]onservative systems are often limiting cases of what is
found in nature’, but dissipative systems generally tended toward a the motion of a conser-
vative system with fewer degrees of freedom.

The mathematicians’ more active participation to the Second World War and the Cold
War, as well as concerns with nonlinear oscillations arising from radio-engineering (B.
Van der Pol), led to an understanding of dynamical systems different than that stemming
from Birkhoff’s nearly exclusive concern with celestial mechanics. This crucial differ-
ence in emphasis is brought to light by comparing Birkhoff’s attitude concerning stability
with Andronov’s [Dahan-Dalmedico, 2004]. Both dealt with general systems of differential
equations using many of the same sources (Poincaré, Lyapunov). They nonetheless ended
up with almost opposite views on stability. Inspired by the famous ‘problem of stability’
of the three-body problem, Birkhoff restricted the study of stability to that of orbits lying
near a periodic (or central) motion. He thought one had to dictate, by convention or by a
judicious choice of problems to be answered, the kind of stability that one wanted to look
at. ‘All that stability can mean is that, for the system under consideration, those motions
whose curves lie in a certain selected part of phase space from and after a certain instant
areby definition called stable, and other motions unstable’ [Birkhoff,Papers, vol. 3, 602].
Concerned with radio systems, Andronov imagined a more general type of stability that
applied not only to solutions of a system of differential equations, but to the system itself.
The only interesting systems for modeling, he thought, were structurally stable, that is,
keeping the same qualitative behavior under small deformations.
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In the 1960s, a generation too young to have had to participate to the war effort revived
widespread interest inDS. Less interested in control than their elders, Mauricio Peixoto
and Smale launched a general program of classification of dynamical systems that thrived
on the topological approach that was characteristic of Birkhoff’s work. Following the pub-
lication of Smale’sDifferentiable dynamical systems in 1967, a blooming field was estab-
lished that had a profound impact on the way that the mathematical modeling of natural
phenomena was to be understood. Edward N. Lorenz in 1963 and David Ruelle in 1971
independently exhibited systems governed by simple deterministic laws that nonetheless
exhibited complex, apparently erratic behaviors [Aubin, 2001].

All of a sudden,Dynamical systems enjoyed a second life. In this book, people interested
in chaos found a straightforward style that corresponded to their expectations. Physicists
liked to see equations of motion written in a form they recognized. They were comfortable
with discussions of Lagrangian and Hamiltonian functions. No fancy Bourbakist abstrac-
tion here defaced them [Aubin, 1997]. No more than an elementary topological knowledge
was required to grasp the most innovative ideas introduced in the book. Readers also ap-
preciated the self-contained character of the book and the tools presented in all generality,
in less than 300 pages of clear English prose. A generation mobilized against the Vietnam
war and intend to ‘explicitly direct [its] work toward socially-positive goals’ [Smale, 1972,
3] found in American struggles with issues of purity after the Great War in the face of new
wars and upheavals in physics an epistemological and moral framework with which they
felt comfortable.
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CHAPTER 69

P.A.M. DIRAC (1930) AND J. VON NEUMANN
(1932), BOOKS ON QUANTUM MECHANICS

Laurie M. Brown and Helmut Rechenberg

Dirac’s book is the classic physicist’s treatise on the quantum mechanical transformation
theory, which is a generalization of the matrix-mechanical and wave-mechanical quantum
theories of Werner Heisenberg and Erwin Schrödinger, respectively. The book of von Neu-
mann covers the foundational principles of quantum mechanics in a careful mathematical
way.

Dirac, The principles of quantum mechanics, first edition
First publication. Oxford: Clarendon Press, 1930. vii+ 257 pages.

Later editions. 2nd 1935, 3rd 1947, 4th 1958, and ‘4th revised’ (1967; repr. 1971, 1974,
1981 and later): all Clarendon Press.

Translations. In many languages. Due to Dirac’s relationship with Peter Kapitza, notewor-
thy are the three Russian editions, with publishers’ prefaces having ideological content
[Dirac, 1995, 472–478];Osnovi kvantoboy mekhaniki (trans. M.P. Bronshtein), 1st ed.,
Moscow and Leningrad: State Technico-theoretical Publishing, 1932. Also the Japanese
transl. of the 2nd and subsequent editions, by Y. Nishina, S. Tomonaga, M. Kobayashi,
and H. Tamaki.

von Neumann, Mathematische Grundlagen der Quantenmechanik
First publication. Berlin: Julius Springer, 1932. ii+ 262 pages.

English translation. Mathematical foundations of quantum mechanics (trans. R.T. Beyer),
Princeton: Princeton University Press, 1955. xii+ 455 pages.

Related articles: Kelvin (§58), Lorentz (§60).

1 THE DISCOVERY OF QUANTUM MECHANICS

Beginning in 1913, Niels Bohr (1885–1962) and Arnold Sommerfeld (1868–1951) had
applied the quantum-theoretical ideas of Max Planck and Albert Einstein to the nuclear
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atomic model of Ernest Rutherford and created what became the ‘old quantum theory’.
This theory, which was based closely upon classical mechanics with certain restrictions,
had achieved some successes [Sommerfeld, 1919], but since 1923 its complete failure to
deal with the spectra of many-electron atoms led to efforts to replace it. In July 1925
Werner Heisenberg (1901–1976)in Göttingen, a former student of Sommerfeld and as-
sistant to Max Born (1882–1970), completed an article in which he proposed a radically
new description of periodic atomic systems, using what he called ‘quantum theoretically
reformulated Fourier series’ involving only observable quantities, namely, transition am-
plitudes and frequencies. The dynamical variables defined in this scheme did not obey
the commutative law of multiplication [Heisenberg, 1925]. He showed the article to Born,
who realized that Heisenberg’s new variables were matrices. Together with Heisenberg and
Pascual Jordan (1902–1980), the three developed the first mathematical theory of quantum
mechanics, known asmatrix mechanics [Born and Jordan, 1930]. In August 1925 Heisen-
berg sent a copy of the proof sheets of his pioneering paper to England, where Paul Dirac
(1902–1984) studied it and formulated an alternative mathematical theory of quantum me-
chanics, known asquantum algebra.

At the request of David Hilbert (1862–1943), in fall 1925 Heisenberg presented a sur-
vey of the new quantum mechanics in the Göttingen mathematical seminar. Starting from
empirical quantum phenomena, he showed that the dynamical variables could be repre-
sented by infinite Hermitean matrices and demonstrated how their eigenvalues (denoting
the empirical data) were obtained with the help of the well-known method of principal-
axis transformation. Hilbert had introduced this method earlier (1904–1910) in connection
with his theory of linear integral equations, where he had also shown the equivalence of
discrete matrix and continuous integral-equation representations of the eigenvalue problem
[Hilbert, 1912]. When Erwin Schrödinger (1887–1961) presented his wave mechanics in
January 1926 it appeared, therefore, obvious that his treatment of atomic problems with
differential equations, the matrix method of Born and others, and the algebraic method of
Dirac were equivalent.

Although then of feeble health, Hilbert was very interested in a strict mathematical
formulation of quantum mechanics. In the winter semester 1926–1927 he delivered a lec-
ture course on ‘Mathematical methods of quantum theory’, in which he stressed the ne-
cessity to develop an axiomatic basis for thestatistical transformation theory, which had
been proposed in December 1926 by Dirac and Jordan. Hilbert’s guest John von Neumann
(1903–1957) and his assistant Lothar Nordheim prepared a publication of excerpts from
his lectures [Hilbert et alii, 1928]. Von Neumann would then carry out Hilbert’s program in
a set of papers on the mathematical foundation of quantum mechanics (1927–1930), which
were extended and summarized in his book of 1932.

2 BACKGROUND OF DIRAC’SPRINCIPLES

Heisenberg’s new theory was meant to replace the ‘old quantum mechanics’ of Bohr and
Sommerfeld, which had proven to be unsatisfactory. Heisenberg sent a proof copy of the
article (received by the journal on 29 July 1925) to Ralph Fowler at Cambridge University,
who passed it on to his research student Dirac with the note: ‘What do you think of this?
I shall be glad to hear. RHF’.
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On 20 July, Born asked his student Jordan to help him to extend Heisenberg’s work.
During the next few months, Born and Jordan, soon joined by Heisenberg, wrote two pa-
pers that practically completed Heisenberg’s ideas in the form ofmatrix mechanics [Born
and Jordan, 1925; Born, Heisenberg, and Jordan, 1926]. Wolfgang Pauli, who had been fol-
lowing these developments closely, promptly obtained the spectrum of the hydrogen atom,
using Heisenberg’s ‘new quantum mechanics’, and pointed out that it avoided difficulties
in the old theory that arose when crossed electric and magnetic fields were present.

Meanwhile, independently of the Göttingen group, Dirac at Cambridge obtained essen-
tially the same results as Born and Jordan, as Dirac described in an interview [Van der
Waerden, 1967, 41]:

At first I could not make much of [Heisenberg’s paper], but after about two
weeks I saw that it provided the key to the problem of quantum mechanics.
I proceeded to work it out by myself. I had previously learnt the Transforma-
tion Theory of Hamiltonian Mechanicsfrom lectures by R.H. Fowler and from
Sommerfeld’s book Atombau und Spektrallinien.

One of the main results of Born and Jordan was that ifq andp are quantum variables
corresponding to a pair of canonically conjugate variables in the classical Hamiltonian
theory, then their commutator, defined byqp − pq , has the valuei�, where� = h/2π
andh is Planck’s constant. (For example, ifq is the Cartesian coordinatex, thenp is
the momentumpx .) On the other hand, quantum coordinates and momenta that are not
canonically conjugate do commute.

In his paper Dirac [1925] obtained the same result. However, he also observed that
the commutator was analogous to a general expression, called the Poisson bracket, that
occurs in classical Hamiltonian mechanics. This is defined as follows: Letqr andpr (with
r = 1,2,3, . . .) be a complete set of canonically conjugate variables, and letx andy be
functions of these variables. Then, the Poisson bracket ofx andy is

[x, y] =
∑
r

{
∂x

∂qr

∂y

∂pr
− ∂y

∂qr

∂x

∂pr

}
. (1)

Using Bohr’s Correspondence Principle, which states that for large quantum numbers clas-
sical physics should apply, Dirac conjectured that the Poisson bracket should correspond
to the quantum commutator, or more precisely, in the large quantum number limit, that

xy − yx = ih̄[x, y]. (2)

Dirac had discovered a way to translate the equations of Hamiltonian dynamics into the
language of quantum mechanics. For example, the Hamiltonian equations of motion are
(q̇r = dqr/dt , etc. andH(qr,pr ) is the Hamiltonian function):

q̇r = [qr,H ], ṗr = [pr,H ], (3)

and more generally, for any functionu(qr,pr),

du/dt = [u,H ] + ∂u/∂t. (4)
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These equations are also valid as quantum mechanical equations, provided one replaces
the Poisson bracket by the commutator, as in (2).

In a second paper, Dirac [1926a] generalized the matrix formulation of quantum me-
chanics, using a more abstract algebraic scheme. In this system, he called the non-
commuting quantum variablesq-numbers, distinguishing them from the classical com-
muting quantities that he calledc-numbers. He stated that the quantum calculations
are to be carried out in terms of theq-numbers. However, the results of the calcula-
tions have then to be interpreted asc-numbers, in order to be compared with experi-
ment. He called his new methodtransformation theory [Mehra and Rechenberg, 1982;
Kragh, 1990].

In addition to the articles of Pauli and Dirac, the journals received another major work
in January 1926. That was the first of a series of papers, in which Schrödinger introduced
the quantum wave function and wrote the famous equation for it that bears his name
[Schrödinger, 1926a]. In March he showed the equivalence of his new formulation, ex-
pressed in terms of eigenfunctions and eigenvalues of linear operators, to that of Heisen-
berg, Born, and Jordan [Schrödinger, 1926b]. In a subsequent paper, Schrödinger [1926c]
became the first person to calculate the intensities of the lines of the atomic hydrogen
spectrum. Dirac was very pleased to discover that he could generalize his transformation
theory to include both wave mechanics and matrix mechanics, and thus he provided a sec-
ond proof of their equivalence [Dirac, 1927a]. The Schrödinger and Heisenberg ‘pictures’
are limiting cases, and other intermediate representations are possible as well.

Born in Bristol, England on 8 August 1902, Paul Dirac studied there at the Merchant
Venturers Technical College, where his father was a teacher of French. After three years
study of electrical engineering and two years of applied mathematics, in 1923 he became
a research student at St. John’s College, Cambridge, with Ralph Fowler as his adviser.
In 1926, Dirac received his doctorate from Cambridge University with a dissertation en-
titled ‘Quantum mechanics’. From 1926 to 1930, Dirac made other major contributions
to quantum theory, including quantum statistics, quantum electrodynamics, and the rela-
tivistic quantum theory of the electron. For their pioneering work on quantum mechanics,
Heisenberg, Dirac and Schrödinger were all awarded in 1933 the Nobel Prize in Physics.
The 1932 prize, not awarded in that year, went to Heisenberg, while Dirac and Schrödinger
shared the prize for 1933.

With regard to quantum statistics, Albert Einstein and Satyendra Nath Bose had in 1924
introduced the so-called Einstein–Bose (E–B) statistics, which apply to identical particles
of integer spin, such as photons and He4 atoms. Enrico Fermi had introduced in 1926 the
statistics that are responsible for Pauli’s exclusion principle. They apply to electrons and
other particles of half-integral spin, such as He3 atoms and are referred to as Fermi–Dirac
(F–D) statistics. Dirac’s contribution [Dirac, 1926b] was to show that the two kinds of
statistics correspond to Schrödinger wave functions that are, respectively, symmetric (E–B
case) or antisymmetric (F–D case) under the exchange of identical particles.

In 1927, Dirac published a quantum theory of the electromagnetic field interacting with
electrons, the so-calledquantum electrodynamics or QED. Born and Jordan had proposed
in 1925 a quantum theory of the free electromagnetic field, which Dirac developed into
a practical scheme for calculating rates of emission and absorption of radiation [Dirac,
1927b]. Making a Fourier decomposition of the classical electromagnetic field, he regarded
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each frequency component as arising from a harmonic oscillator. Dirac then replaced the
classical oscillators by quantum ones and interpreted thenth quantum state of an oscillator
of angular frequencyω to representn light quanta of energy�ω. In this way an assembly
of photons replaces a train of waves. This mathematical equivalence was the resolution of
the wave-particle paradox that had puzzled physicists for decades.

Perhaps Dirac’s greatest achievement was a relativistic quantum theory of the electroni
[Dirac, 1928]. Among other advances, this theory soon predicted the existence of an en-
tirely unexpected new form of matter, called antimatter. Although there already existed a
relativistic Schrödinger equation, it did not include the effects of electron spin and thus
did not provide an accurate spectrum of atomic hydrogen. This equation, also called the
Klein–Gordon (KG) equation, was a partial differential equation of second order in the
time, analogous to the free particle relation

E2= c2p2+m2c4, (5)

whereE = energy,p = (px,py,pz) = momentum,m = mass andc = speed of light.
The KG equation did not conform to Dirac’s transformation theory, since Hamiltonian
dynamics has equations of motion that are linear in time.

Dirac regarded this as a major shortcoming and tried to deal with it by writing a Hamil-
tonian function in the linear form

H = α · p+ βm. (6)

SinceH represents the relativistic energy, squaring both sides of (6) should resemble (5).
That is not possible ifα = (αx,αy,αz) andβ are numbers, but it can work if they are
suitable anticommuting 4× 4 matrices. This results in the famous Dirac equation, which
we can write in a convenient notation as:

Π0ψ = (α ·Π + α0m)ψ, with αiαj + αjαi = 2δij , i, j = 0,1,2,3. (7)

Here the Dirac wave-functionψ has four components (ψ1,ψ2,ψ3,ψ4), theαi are 4× 4
matrices, and we have setβ = α0. We also replacedp = −i�∇ andH = p0 = i�∂/∂t ,
respectively, byΠ = p − (e/c)A, andΠ0 = p0− (e/c)A0, whereAµ (µ= 0,1,2,3) is
the electromagnetic four-vector potential.

The Dirac equation (7) gave excellent agreement with the hydrogen spectrum and with
other experiments, including the scattering of high-energy radiation on electrons (Comp-
ton scattering). It automatically gave the electron spin of 1/2� and the magnitude of its
magnetic momente�/mc. However, its successes were accompanied by a very disturbing
feature: The Dirac equation implied that electrons could havenegative total energy, which
would imply negative mass, from Einstein’s principle thatE =mc2. As we will relate be-
low, several years were needed to discover the true interpretation of those negative energy
solutions.

3 THE PRINCIPLES OF QUANTUM MECHANICS

In 1930, Dirac published the landmark treatise calledThe principles of quantum mechan-
ics; its contents are summarised in Table 1. It has been justly compared with thePrincipia,
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Table 1. Contents by chapters of Dirac’s book

Chapter Page Title

I 1 The principle of superposition.

II 18 Symbolic algebra of states and observables.

III 35 Eigenvalues and eigenstates.

IV 55 Representations of states and observables.

V 73 Transformation theory.

VI 92 Equations of motion and quantum conditions.

VII 117 Elementary applications.

VIII 137 Motion in a central field of force.

IX 157 Perturbation theory.

X 176 Collision problems.

XI 198 Systems containing several similar particles.

XII 218 Theory of radiation.

XIII 238 Relativity theory of the electron. [End 257.]

the masterwork of one of Dirac’s predecessors in the Lucasian Chair of Mathematics at
Cambridge University, namely Isaac Newton. Dirac set out his program of thePrinciples
in the Preface to the first edition, which is reprinted almost in its entirety in all subsequent
editions. Contrasting the new theory of quantum mechanics with the classical tradition,
where ‘we could form a mental picture in space and time of the whole scheme’, he pointed
out that ‘nature works on a different plan’. Dirac continued:

Here fundamental laws do not govern the world as it appears in our mental pic-
ture in any very direct way, but instead they control a substratum of which we
cannot form a mental picture without introducing irrelevancies. The formula-
tion of these laws requires the use of the mathematics of transformations [. . .].
The growth of the use of transformation theory, as applied first to relativity
and later to the quantum theory, is the essence of the new method in theoretical
physics.

For this reason, he argued that a book on the new physics must be essentially mathematical.
However, he stated:

All the same the mathematics is only a tool and one should learn to hold the
physical ideas in one’s mind without reference to the mathematical form. In
this book I have tried to keep the physics to the forefront, by beginning with an
entirely physical chapter and in the later work examining the physical meaning
underlying the formalism wherever possible.

Indeed, in the first edition ofPrinciples, the initial chapter has no equations, and in the later
editions the first chapter has very few. As for the mathematical style, Dirac pointed out
two possibilities, namely: an abstract symbolic method or a method using ‘coordinates or
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representations’. Except for Hermann Weyl’s bookGruppentheorie und Quantenmechanik
[Weyl, 1928], all other treatments used the latter method, whether it be matrix mechanics
or wave mechanics. Dirac adopted the symbolic method, feeling that ‘it goes more deeply
into the nature of things’.

After remarking that ‘it is quite hopeless onthe basis of classical ideas to try to account
for the remarkable stability of atoms and molecules’, Dirac’s first chapter considers the
principle of superposition of states as the main property of the new mechanics. This prin-
ciple is borrowed from the classical theory of waves, but it is here applied to particles as
well. Light, which exhibits such typical wave phenomena as interference and diffraction,
also appears asphotons, energy ‘packages’ ofE = hν, whereν is the light frequency, as
required by Einstein’s explanation of the photoelectric effect. Thus light consists of both
waves and particles.

Consider a plane-polarized beam of light of very low intensity entering a plane polarizer
(such as a crystal), so weak that we can consider one photon at a time. Let the polarizer be
set at an angleα to the photon’s plane of polarization. As the photon’s integrity is always
preserved, it will either pass through the polarizer (with probability cos2α) or be absorbed
(with probability sin2α). We are unable to predict the outcome of the experiment and must
be content to know theprobability of the photon’s transmission.

Until the measurement is made, that is, until we observe that the photon has either
passed through the polarizer or not, we can regard the photon as being in a mixture of
two states, one that is polarized in the plane of the polarizer and one that is polarized in a
perpendicular plane. Alternatively, we can use any two perpendicular planes of polarization
to form the mixture. This idea can be generalized to the case of an atom that can be in a
mixture of atomic states (p. 10):

When an observation is made on any atomic system that has been prepared in a
given way and is thus in a given state, the result will not in general be determi-
nate,i.e. if the experiment is repeated several times under identical conditions
several different results may be obtained. If the experiment is repeated a large
number of times it will be found that each particular result will be obtained
a definite fraction of the total number of times, so that one can say there is a
definite probability of its being obtained any time that the experiment is per-
formed. This probability the theory enables one to calculate. In special cases
this probability may be unity and the result of the experiment is then quite
determinate.

This leads to theprinciple of superposition, which is different from the classical notion
of superposition of waves (p. 15):

We may say that a state A may be formed by a superposition of states B and
C when, if any observation is made on the system in state A leading to any
result, there is a finite probability for the same result being obtained when the
same observation is made on the system on one (at least) of the two states B
and C. The Principle of Superposition says that any two states B and C may be
superimposed in accordance with this definition to form a state A and indeed
an infinite number of different states A may be formed by superposing B and C
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in different ways. This principle forms the foundation of quantum mechanics.
It is completely opposed to classical ideas, according to which the result of
any observation is certain and for any two states there exists an observation
that will certainly lead to two different results.

The second chapter ofPrinciples introduces the mathematics of quantum mechanics and
the remaining first half of the book develops this subject in an abstract way, the applications
to physical problems filling out the second half. This scheme is preserved in all the editions.
In the first edition Dirac argued (p. vi): ‘From the mathematical side the approach to the
new theories presents no difficulties, as the mathematics required [. . .] is not essentially
different from what has been current for a considerable time’.

The mathematics may not be ‘essentially different’ from that in common use by physi-
cists, but Dirac’s innovations have provided the stimulus for at least two new branches of
mathematics, namely the theory ofdistributions and the theory of theDirac operator (or
‘square root of the Laplacian’), used in formulating Dirac’s relativistic electron equation.

In the first edition, Dirac constructed an abstract scheme in which ‘physical things such
as states of a system or dynamical variables’ are represented by algebraic symbols that are
analyzed in accordance with certain axioms and laws. In the later editions (which physicists
considered to be more accessible, or as Heisenberg said ‘menschlicher’), Dirac adopted a
geometric picture to represent physical states, employing a space of complex vectors and
its dual space; the state vectors have unit norm. Linear operators (q-numbers) act upon the
state vectors, transforming the space intoitself. When such a space is denumerably infi-
nite, it is called a Hilbert space, introduced originally in David Hilbert’s theory of linear
integral equations. Quantum mechanics, however, requires a generalization to a continu-
ously infinite-dimensional vector space, and this means new mathematics. Hermann Weyl,
a student and collaborator of Hilbert, explicitly discussed this point [Weyl, 1928].

Although the laws of quantum mechanics are expressed in terms of the abstractq-
numbers, the application to physical problems demands the use of representations to ob-
tain c-number predictions that can be compared to experiment. To deal with continuous
variables like position and momentum, leading to continuously infinite-dimensional vector
spaces, Dirac introduced his famousδ-function. The one-dimensionalδ(x) is an improper
function that is zero everywhere except atx = 0, where it is infinite; its integral over allx
is unity. It is clearly a generalization of the Kroneckerδij,, having integer indices, which is
zero forj �= i and unity forj = i. Dirac was aware that the use ofδ(x) was not rigorous
mathematics, but he argued that it use ‘will not be in itself a source of lack of rigour in
the theory, since any equation involving theδ function can be transformed into an equiv-
alent but usually more cumbersome form in which theδ function does not appear’. The
mathematician Laurent Schwartz, who invented the rigorous distribution theory in 1945,
realized that Dirac had anticipated his work.Later he remarked: ‘It was not only the Dirac
“function” itself that Dirac put forward, but likewise for all singular functions, he had the
idea of distributions as kernels’.

4 LATER EDITIONS OFPRINCIPLES

In the preface to the second edition, Dirac says: ‘The book has been mostly rewritten’. The
theory, developed in a less abstract form, ‘should make the work suitable for a wider circle
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of readers’. The content was mostly unchanged, but emphasized the geometry of the space
of state vectors. In general, reviewers preferred the new pedagogical style.

The chapter headings of the third edition ofPrinciples are very similar to those of the
first two editions, but in the third and succeeding editions he used a new notation that he
developed starting from 1939. According to a review by Herman Feshbach, the effect was
‘to render the relation between states and wave functions more transparent, many of the
proofs become shorter and clearer’. Also, one could use dyadics in state vector space to
represent linear operators.

The new notation can be symbolized as〈bra|c|ket〉, where the ket or ket vector|ket〉 rep-
resents a quantum state. This state can be labeled by one or more parameters, for example,
|a, b, . . .〉. The bra or bra vector is theconjugate imaginary vector; for example,〈a, b, . . . |
is the conjugate imaginary of|a, b, . . .〉 in the sense that the product〈a, b, . . . |a, b, . . .〉 is
a real positive number (note that| | has been shortened to|). In general〈k|l〉 is a number
whose complex conjugate is〈l|k〉. The c in the expression〈bra|c|ket〉 is a linear operator,
so that c|ket〉 is also a ket and〈bra|c is also a bra.

The fourth and ‘fourth revised’ editions are essentially identical to the third edition,
except for the final chapters, dealing with the relativistic electron theory and quantum field
theory. They appear in thePrinciples, beginning with the first edition and form a very
important part of Dirac’s work.

Chapter XIII of the first edition deals with Dirac’s relativistic electron theory. For sim-
plicity (and because he was not ready to accept aquantum field theory of the electron), he
considered a single electron described by a four-component Schrödinger wave function, as
in (7) above. He gave the wave function for a free electron and also calculated the spectrum
of the hydrogen atom.

He then turned to the troublesome question of the interpretation of the electron states
of negative energy. We note that we are speaking here of the states oftotal (not relative)
negative energy, whose existence relativistically would imply negative mass. In addition,
ordinary electrons could fall into these states (in quantum theory, though not classically,
where they would have to traverse a forbidden gap in energy). In order to prevent this
catastrophe, Dirac invented his ‘hole theory’, according to whichalmost all of the negative
energy states are occupied and hence, according to the Pauli Exclusion Principle, they are
not accessible to positive energy electrons. Dirac assumed that a completely filled set of
vacuum states would not appear as electrically charged.

However, a sufficiently energetic photon could lift a negative energy electron to a pos-
itive state, leaving behind an observable hole. Dirac argued that this hole in the negative
‘sea’ would behave as a positive charge, and heidentified it with the only known elemen-
tary particle, namely, the proton, which is much heavier than the electron. The presentation
of all the material on the relativistic electron in the second and all successive editions
was almost unchanged,except that everywhere the word ‘proton’ appears it is replaced by
positron. This change occurred for two reasons. In the first place, several physicists proved
that the positively charged ‘hole’ in Dirac’s theory must have exactly the same mass as the
electron, the theory being charge-symmetric. In the second place, the positive electron, or
positron, was observed in 1932 to be a component of the cosmic rays, and the positron was
soon afterwards produced in the laboratory, both as a member of an electron positron pair
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(through gamma ray materialization) and as a product of artificially induced nuclear beta
decay.

In the first three editions, Dirac presented a version of quantum electrodynamics (here-
after, ‘QED’) in which the electromagnetic field is quantized (that is, represented as pho-
tons, which can be created and destroyed) but the number of charged particles of a given
sign is conserved. He inferred the form of the interaction between electrons and photons
by going to the limit of large numbers of photons being present, in which case the inter-
action is essentially classical. In this respect, he used the idea of the Bohr Correspondence
Principle, although it is not explicitly named.

Only in the fourth edition of 1958, but not earlier, did Dirac introduce a version of
QED in which the number of charged particles is not fixed. This treatment used ‘second
quantization’ of the electron-positron field, which allows the creation of these particles in
pairs. In his preface, Dirac explained why he made this change:

In present-day high-energy physics the creation and annihilation of charged
particles is a frequent occurrence. A quantum electrodynamics which demands
conservation of the number of charged particles is therefore out of touch with
physical reality. So I have replaced it bya quantum electrodynamics which in-
cludes creation and annihilation of electron-positron pairs. This involves aban-
doning any close analogy with classical electron theory, but provides a closer
description of nature.

Dirac remained skeptical about the validity of quantum field theory throughout his life,
regardingQED and other local quantum field theories as mathematically unsound, as evi-
denced by their apparently infinite predictions for physically finite quantities such as mass
and charge. In the opinion of most physicists, these defects were cured in the late 1940s
by a relativistically covariant subtraction scheme known as renormalization. In the fourth
edition ofPrinciples, Dirac concluded his discussion ofQED with the following comment
(p. 309):

People have succeeded in setting up certain rules that enable one to discard the
infinities produced by the fluctuations in a self-consistent way and have thus
obtained a workable theory from which one can calculate results that can be
compared with experiment. Good agreement with experiment has been found,
showing that there is some validity in the rules. But the rules are applicable
only to special problems, usually collision problems, and do not fit in with
the logical foundations of quantum mechanics. They should therefore not be
considered a satisfactory solution of the difficulties.

Ten years after the fourth edition, in a ‘4th revised’ edition, Dirac repeated that he did
not see how the renormalization theory ‘can be presented as a logical development of the
standard principles of quantum mechanics’. He had found a way to calculate the Lamb
shift and the anomalous magnetic moment of the electron (two successes of the renormal-
ization theory) by a new formulation ofQED that made use of the Heisenberg picture, in
which the state vector is constant. The results agreed with the renormalization technique.
Nevertheless, Dirac maintained that as regards high-energy physics a new approach would
be needed, since ‘we are effectively in the pre-Bohr era’.
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5 WEYL, HILBERT, VON NEUMANN AND THE MATHEMATICAL
FOUNDATIONS OF QUANTUM MECHANICS

Among the mathematicians interested in physical theories, Hermann Weyl (1885–1955),
professor at theEidgenössische Technische Hochschule (ETH) in Zurich, learned of the
new matrix mechanics from Max Born in September 1925. He was impressed by what
he called a ‘fabulous discovery’ and independently of Heisenberg (and others) proposed
the commutation relations of matrices for several degrees of freedom. It is interesting to
note that, although he had treated the problem of unbounded matrices having discrete plus
continuous spectra in his doctoral thesis withHilbert, he did not proceed to the equiva-
lent differential-equation formalism or to the Schrödinger equation. Probably he was too
deeply involved in his exhaustive program of finding the representations of all simple and
semi-simple continuous groups. After he completed this task, he published some appli-
cations to quantum mechanics of these mathematical results in a paper of October 1927
[Weyl, 1927]. He showed there that ‘the principal inner reason for the canonical pairing
of quantum-mechanical variables shows up clearly in the case that the fundamental group
[of the dynamics] is a continuous one, which still embraces discrete cases as well’. By
emphasizing what he called ‘theintegral standpoint against the differential one’ (that is,
replacing the infinitesimal group by the full continuous group), he found that the tranfor-
mation from the equations of matrix mechanics ‘to Schrödinger’s wave equations can be
performed with every necessary rigor’; he alsoremoved the difficulties connected with the
ordering of quantum-mechanical variables in products and thus established the kinematical
structure of quantum mechanics on the basis of group theory.

Weyl further introduced the concept ofrays in Hilbert space characterizing the pure
states of physical problems, and discussed the classical groups in this quantum-mechanical
‘ray space’. He summarized the results of this paper in a simplified manner in his well-
known bookThe theory of groups and quantum mechanics, which emerged from a lecture
course at the ETH [Weyl, 1928]. There he displayed the formalism of the rotation group, as
well as that of the permutation group (including the Pauli principle), and presented Dirac’s
new relativistic theory of the electron. Although Weyl was not the first to introduce group-
theoretical methods into quantum mechanics, having been preceded by Heisenberg and
Eugene Wigner, it was mainly his book that helped the community of quantum physics to
appreciate this mathematical theory as an important tool in solving atomic and high-energy
physics problems.

A result of Weyl’s group-theoretical approach, namely the solution of the general prob-
lem of canonical transformations in quantum mechanics and the demonstration of the
equivalence of all existing different formulations of quantum mechanics, had already been
considered in the fall of 1926 by Dirac (see section 1 above) and independently by Jordan.
Jordan referred to Pauli’s idea of taking the probability amplitudeϕ—which depends on
two Hermitean variables—as the fundamental concept [Jordan, 1927]. He proposed a new
statistical foundation of quantum mechanics resting on four postulates. On applying these
postulates to the linear operators in quantum mechanics, he derived the laws of the theory
in all existing schemes, from matrix mechanics to wave mechanics. In the last part of his
lecture course in winter 1926–1927 Hilbert acknowledged Jordan’s axiomatic approach
in principle and claimed in addition: ‘One does not need for the understanding of these



Chapter 69. P.A.M. Dirac (1930) and J. von Neumann (1932), books on quantum mechanics 893

ideas a physical divination but just pure logic’ [Hilbert, 1927, 204]. He first attacked this
ambitious goal in a paper with two collaborators.

Early in 1926, Hilbert asked the International Education Board to grant a fellowship
to a 22-year-old Hungarian mathematician, insisting that his candidate, Janos or John von
Neumann (1903–1957), was a ‘completely exceptional personality, who had already per-
formed very productive work’. Born in Budapest on 28 December 1903, von Neumann
had studied mathematics in Berlin (1921–1923) and afterwards chemical engineering at
the Zurich ETH, receiving his Ph.D. (Budapest) and Master (Zurich) degrees in 1925; later
he would apply forHabilitation in mathematics at Berlin University, submitting a the-
sis on ‘The axiomatic construction of set theory’ and passing it in December 1927. Von
Neumann audited Hilbert’s Göttingen lectures on the foundations of quantum theory, and
wrote a joint paper with Hilbert and his physics assistant Lothar Nordheim on the mathe-
matical foundations of quantum mechanics (1928). The authors stated their procedure as
follows:

One imposes certain physical conditionson the probabilities, which are sug-
gested by our present knowledge. Then one seeks, in a second step, a simple
analytic apparatus containing quantities that satisfy the same relations. This
analytic apparatus, and therefore the quantities involved, now obtain on the
basis of the physical requirements a physical interpretation. The goal is to for-
mulate the physical requirements so completely that they fix the mathematical
apparatus entirely.

They thus hoped to overcome the difficulties of the procedure, which the physicists had
assumed, namely: guessing the mathematical apparatus of the theory before having recog-
nized all physical requirements and then adjusting the mathematics. In contrast, the Göttin-
gen trio demanded that one first determine themathematical apparatus uniquely, and then
apply a physical interpretation to the scheme.

In establishing a complete system of axioms for quantum mechanics, Hilbert and others
closely followed Jordan’s proposal, but they expanded his four axioms to six. Thus their
Axiom I defines theprobability amplitude Φ(x,y;F1,F2) in the case of two dynamical
variablesF1 andF2 , denoting that for a given valuey of F2, F1 assumes a value between
x andx + dx. Axiom II states that the square of this amplitude, theprobability density
w(x,y;F1,F2), is identical to the one for the case, in which the valuex of F1 is given
andF2 assumes a value between y andy + dy. Axiom III demands that in the relation
of a quantityF to itself a sharp determination is possible, that is, with each dynamical
quantity a definite numerical value can be associated. Axiom IV establishes the addition
and multiplication laws for probability amplitudes; Axiom V ensures that the probabilities
are determined only by their functional dependence of the variablesF1 andF2 on the
canonical variable pair momentump and positionq , but not on the special properties of
the Hamiltonian of the system; and Axiom VI requires that the probabilities for a given
physical system do not depend on the coordinate system chosen.

Upon introducing a system of ‘complete operators’, which could be represented by
integral operators with kernels, the authors defined two special operatorsF(xx) andG(xx),
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which satisfied the functional equations{
F

(x
x

)− y}
Φ(x,y)= 0 and

{
G

(x
x

)+ ε I ∂/∂y
}= 0 (8)

(with ε = h/2π , and I denoting the unit operator), and whose anticommutator was given
by

GF − FG= ε I. (9)

The physical interpretation of the mathematical formalism was then obvious. From (8)
the authors derived the time-independent Schrödinger equation, and from (9) the time-
dependent Schrödinger equation. The solution of the time-independent Schrödinger equa-
tion, namely {

H(ε∂/∂x, x)−W}
Φ(x,W ;q,H)= 0, (10)

they wrote as

Φ(x,y;q,H)=
∑
n

cnψn(x)δ(W −Wn)+ψ(x,W)c(W). (11)

That is, the energy spectrum of the system described by the HamiltonianH contains a sum
of discrete terms and a continuous term, withcn andc(W) denoting the respectivea priori
probability amplitudes. ‘Formally one can, by suitable application of the improper func-
tion, write the calculus as a matrix calculus and thus express clearly the genuine discrete
nature of quantum mechanics, as Dirac has essentially done’, the authors concluded but
added that ‘from the mathematical point of view the method of calculation used this way
must be considered unsatisfactory, since one never knows to what extent the operations
occurring can be really performed’.

In their last footnote, Hilbert et alii referred to a different approach, which von Neumann
presented in a paper to the meeting of 20 May 1927 of the Göttingen Academy, entitled
‘Mathematical foundations of quantum mechanics’ [von Neumann, 1927a]. He justified his
57-page memoir by noting the weak points of the existing mathematical formalism of quan-
tum mechanics. On the one hand, the matrix method did not really succeed in obtaining the
eigenvalue spectrum of the quantum-theoretical Hamiltonian unless the spectrum was dis-
crete: Dirac’s introduction of continuous matrices could not be justified with mathematical
rigor, because ‘one must introduce with it concepts like infinitely large matrix elements
or infinitely close diagonals’. On the other hand, Schrödinger’s wave-mechanical scheme
had to be complemented by the probability interpretation derived from matrix mechanics.
Finally, both matrix and wave mechanics ‘worked with quantities that were unobservable,
hence senseless’. Even if the final results exhibited no such unsatisfactory features, they
should be avoided, hence von Neumann announced a new ‘method, which remedies these
abuses and summarizes, in a unified and systematic way, the statistical point of view in
quantum mechanics’.

To achieve this goal, the author exploited the available mathematical theory of Hilbert
spaces. Unlike the physicists, he did not rely on the on the analogy between the discrete
space of index valuesZ and the continuous state spaceΩ of a quantum-mechanical system,
but identifiedZ with a complex Hilbert SpaceHZ of denumerably many dimensions, and
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Ω with another Hilbert spaceHΩ of square-integrable Schrödinger functions. However,
since both have formally many properties in common, he put those into a third, the ‘abstract
Hilbert spaceH’, which is defined by the following axioms:

i) it is a linear space;

ii) it is a metric space, the metric arising from a symmetrical, bilinear form;

iii) it possesses infinitely many dimensions;

iv) there exists a sequence that is everywhere dense inH (later H would be called
therefore a ‘separableHilbert space’); and

v) in H the Cauchy convergence condition applies. As an immediate consequence
of these axioms, there followed the existence of a complete orthogonal system of
functionsϕ.

In the abstract Hilbert spaceH von Neumann then introduced operators, especially
what he called ‘Einzel operators’ (later renamedprojection operators) E (with E2 = E),
which had already played a role in the eigenvalue problem, in the theory of linear integral
equations. While Hilbert had shown in 1906that every bounded symmetrical bilinear form
possessed aunique representation with a unique set of eigenvalues, this was not yet clear
for the unbounded symmetrical (Hermitean) operators occurring in von Neumann’s space
H for quantum mechanics. For the moment, he assumed this requirement to be valid and
proceeded to demonstrate the ‘mathematically rigorous unification of statistical quantum
mechanics’, that is, to establish the probabilityAnsatz used by Jordan in deriving the quan-
tum mechanical transformation theory. Half a year later he removed these difficulties in his
Habilitation thesis of December 1927 [von Neumann, 1929a]. Also the unbounded sym-
metrical operators could be shown, by limiting their range of definition inH, to exhibit a
unique eigenvalue spectrum. In a further paper he pointed to another necessary, yet weaker,
restriction of the operators for that purpose: their matrices had to be ‘square integrable’,
that is, the sums of the absolute squares of their row elements had to assume finite values.

By and large the rich and rigorous work performed by the young mathematical genius
in 1927 substantiated the hopes of the theoretical physicists and satisfied the requirements
of his mathematical colleagues. However, von Neumann emphasized in his thesis that ‘the
general theory of Hilbert operators does notreproduce everywhere the behavior generally
expected and assumed in the “transformation theory” on the basis of the analogy with
bounded or even finite dimensional operators’ [von Neumann, 1929a, 62]. One might add
that another Hungarian mathematician of his age, Aurel Wintner, attacked the same prob-
lem at the same time and arrived, between 1927 and 1928, at results consistent with those
of von Neumann [Wintner, 1929].

Apart from the thorough discussion of the peculiar Hilbert space problems in quantum
mechanics, von Neumann studied another path to a different axiomatic foundation of quan-
tum mechanics. In a memoir on ‘Probability-theoretical formulation of quantum mechan-
ics’, presented in November 1927 to the Göttingen Academy [von Neumann, 1927b], he
turned to a systematic derivation of the physical theory from the facts of experience, which
were all connected with the probability description. That is, in contrast to the physicists,
who had taken adeductive path of identifying the absolute square of the Schrödinger wave
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function with the probability of the state described, and verified the agreement with exper-
imenta posteriori, he chose theinductive path by assuming the unrestricted validity of the
usual probability calculus—as followed from the experiment—and derived the quantum-
mechanical relations. For establishing the proper basis for this enterprise, he introduced
a number of useful definitions and wrote down the necessary postulates. The definitions
were stimulated by concepts from classical statistical mechanics, such as ‘uniform’ or ‘el-
ementary disordered ensembles’, ‘knowledge of a system’, and ‘expectation values’ for its
properties. As a particularly valuable concept for describing the knowledge of a quantum-
mechanical system (or of ensembles of them) he introduced aHermitean operator U in
terms of adensity matrix and stated: ‘All possible knowledge corresponds uniquely in a
one-to-one relation to the definite, linear operatorU . This correspondence is described by
the expectation value formula

E(S)=
∑
sµνūµν, (12)

whereS andU are represented by the matrices{sµν} and{uµν}, respectively’ [von Neu-
mann, 1927b, 225]. Lev Landau arrived at a similar density operator in a special case in
1927.

Von Neumann concluded ‘that quantum mechanics is not only compatible with the usual
probability calculus; but, with a few plausible assumptions added, it is even the only pos-
sible solution’, and he listed ‘these basic assumptions’:

1. Every measurement changes the observed object, and two measurements always dis-
turb each other, if they cannotbe replaced by a single one.

2. However, the change created by a measurement is of such nature that this measure-
ment always remains valid, that is, when it is repeatedimmediately afterwards, the
same result will be obtained.

3. The physical quantities have to be describedby functional operators satisfying sim-
ple formal rules.

With these preparations he proceeded todevelop the thermodynamics of quantum-
statistical ensembles [von Neumann, 1927c] and later treated—after previous pioneering
work by the physicists Schrödinger and Pauli—the ergodic hypothesis and the so-called
H -theorem in quantum mechanics [1929b]. All these results entered, in a final formulation,
his great conclusive book on the mathematical foundations of quantum mechanics.

6 THE MATHEMATICAL FOUNDATIONS OF QUANTUM MECHANICS

Physicists reacted only moderately to the contributions of their mathematical colleague
von Neumann. Wolfgang Pauli cited a few results in his handbook article on wave me-
chanics, and Pascual Jordan wrote in a review of Wintner’s book: ‘The first successful
advances in the field of the [mathematical] problems we owe to him, on the one hand, and
to J. von Neumann, on the other’. Some activequantum theorists gave greater attention
to von Neumann’s treatment of probabilities. Thus, Dirac employed the density matrix in
several nonrelativistic and relativistic problems, while Schrödinger and Pauli were inter-
ested in his results on theH -theorem. Born and Jordan paid particular tribute to most of
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von Neumann’s mathematical foundation and translated a large part of his statistical argu-
ments on the quantum-mechanical systems and their eigenvalues from the abstract operator
language into the more familiar language (for physicists) of vectors and tensors [Born and
Jordan, 1930, esp. ch. 6]. However, to reach a larger scientific public, von Neumann wrote
his own book on mathematical foundations, outlining the main motivation in the preface
(1932, English translation, p. ix):

Dirac, in several papers, as well as in his recently published book, has given
a representation of quantum mechanics which is scarcely to be surpassed in
brevity and elegance, and which is at the same time of invariant character. [. . .]
The method of Dirac (and this is overlooked today in a great part of the quan-
tum mechanical literature, because of the clarity and elegance of the theory)
in no way satisfies the requirements of mathematical rigor—not even if these
are reduced in a natural fashion to theextent common elsewhere in theoretical
physics.

Von Neumann then criticized especially the introduction of the improper delta-function
for the task of diagonalizing all self-adjoint operators in quantum mechanics; he insisted
‘that the correct structure need not consist in amathematical refinement and explanation of
the Dirac method, but rather that it requires aprocedure differing from the very beginning,
namely, the reliance on the Hilbert theory of operators’. That is, hisMathematical founda-
tions should establish a mathematical approach to quantum mechanics quite different from
Dirac’s Principles. The book contains six chapters, summarised in Table 2.

In the three chapters following the short introduction in Chapter I—where the usual
quantum-mechanical scheme of the physicistsis outlined, including the transformation
theory—von Neumann displayed in detail his mathematical foundation, worked out be-
tween 1927 and 1929. Chapters V and VI the author devoted primarily to the discussion of
the physical interpretation of quantum mechanics and the process of measurement, which
emerged from Heisenberg’s discovery of the uncertainty relations and the ensuing philo-
sophical considerations leading to Bohr’sprinciple of complementarity. In their book, Born
and Jordan [1930] had derived the measurement process from the matrix-mechanical for-
malism and concluded: ‘It is the measurement which forces the atom to decide for itself

Table 2. Contents by chapters of von Neumann’s book.
The pages of the German/English versions are given;

the English edition is cited.

Chapter Page Title

I 4/3 Introductory considerations.

II 18/34 Abstract Hilbert space.

III 101/196 Quantum statistics.

IV 157/295 Deductive development of the theory.

V 184/347 General considerations.

VI 222/417 The measuring process. [End 262/455.]
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an eigenvalue of [a variable] B; on the other hand, A [a variable not commuting with B]
then loses its previously defined value. One therefore notices that the analysis of the laws
of microphysics leads necessarily to radical consequences. Even the conventional concepts
of subject, object and reality lose their usual meaning’ (pp. 324–325). Two years later,
von Neumann gave a more thorough analysis of the measurement process, casting the
Heisenberg and Bohr’s Copenhagen interpretation into the language of his mathematical
foundations.

Von Neumann prepared the discussion in Chapter V by considering the relation be-
tween the quantum-mechanicalmeasurement process and irreversible phenomena in clas-
sical thermodynamics. In Chapter VI he started, like Born and Jordan before, from a calcu-
lation of the act of measuring a quantity in standard quantum mechanics and derived this
result immediately: The measurement procedure turns a pure state—which when unob-
served evolves according to the Schrödinger equation in a causal manner—into a mixture,
that is, an irreversible change occurs. In agreement with an idea of Bohr, he ascribed this
change to apsycho-physical parallelism, and von Neumann stated in his book (pp. 418–
420, abbreviated):

Measurement or the related process of subjective perception is a new entity
relative to the physical environment and no reducible to the latter. Nevertheless,
it is a fundamental requirement of the so-called principle of pyscho-physical
parallelism that it must be possible to describe the extra-physical process of
the subjective perception as if it were reality in the physical world—i.e. to
assign to its parts equivalent physical processes in the objective environment,
in ordinary space. That is, we must always divide the world into two parts, the
one being the observed system, the other the observer. The boundary between
the two is arbitrary to a large extent. It can be pushed arbitrarily deeply into
the interior of the body of the actual observer.

In order to express these considerations properly, von Neumann divided the world (that
is, the system considered in it) into three parts, part I denoting the observed system, part II
the measuring instrument, and part III the actual observer. The quantum-mechanical eval-
uation of the measurement process then yielded the same result, independently of whether
he treated first the combined system (I+ II) and then system III, or first the system I and
then the combined system (II+ III)—that is, he proved that in the measurement process
one could without any consequences shift the boundary (later calledvon Neumann cut)
between the observed system, the measuring instrument and the observer. Further he con-
cluded: ‘The noncausal measurement process [involving essentially his unitaryU operator
in (12)] is not produced by any incomplete knowledge of the state of the observer’ (p. 439).

Von Neumann’s evaluation of the measurement process was accepted asthe standard
treatment in the following two decades. Butafter 1952 his procedure received new crit-
ical attention, and different descriptions, either within the standard quantum-mechanical
formalism or violating it, have been proposed [Mehra and Rechenberg, 2001; Redai and
Stöltzner, 2001]. Some physicists especially attacked a result of Chapter IV, namely the
conclusion that ‘hidden variables’, introduced in order to restore classical causality in
atomic theory, must be excluded. The author proved their impossibility by applying two
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laws obeyed by quantum mechanical operators and his equation (12); and thus he demon-
strated that extra variables, not contained in the Schrödinger equation, would change ex-
perimentally substantiated results. The new hidden-variable discussion, started by David
Bohm in 1952, led to quantitative formulation in theBell inequalities [Bell, 1964], but
experiments clearly contradict them. Obviously, nature agrees with quantum mechanics
as the proper description of atomic processes, and preserves the important contributions
contained in von Neumann’sMathematical foundations.
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tural conceptions in algebra and in the whole of mathematics.

First publication. Moderne Algebra. Unter Benutzung der Vorlesungen von E. Artin und
E. Noether, 2 volumes, Berlin: Verlag Julius Springer, 1930–1931. 243+ 216 pages.

Later editions. 2nd ed. vol. 1 1937, vol. 2 1940. 3rd ed. vol. 1 1951, vol. 2 1955. 4th ed.
Algebra, vol. 1 1955, vol. 2 1959. Vol. 1: 6th ed. 1964, 7th ed. 1966, 8th ed. 1971,
9th ed. 1993. Vol. 2: 6th ed. 1993.

English translation. Modern algebras. In part a development from lectures by E. Artin
and E. Noether (trans. from the 2nd ed. by Fred Blum, with revisions and additions
by the author), New York: Ungar,1949–1950. [2nd ed. 1953. Further edition:Algebra
(trans. F. Blum and John R. Schulenberger), 1970.]

Japanese translation. Gendai daisûgaku. Ko gimbayashi, 3 vols., Tokyo: Shoko Shuppan-
sha, 1959. [Further eds.:Enshû gendai daisûgaku, vol 1, Ko Gimbayashi; Enshû gendai
sûgaku, vol. 2, Ko Gimbayashi. Tokyo: Tokyo tosho, 1967, 1971.]

Russian translation. Algebra (trans. A.A. Bel’skogo, ed. Ju.I. Merzlyakova), Moscow:
Nauka, 1979.

Related articles: Dirichlet (§37), Cantor (§46), Weber (§53), Hilbert on number theory
(§54), Dickson (§65).

1 BIOGRAPHICAL NOTES

While still a student, Bartel Leender van der Waerden (1903–1996) had the good fortune
to meet and collaborate with two mathematicians whose work gave a new direction and
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shape to algebraic research: Emmy Noether (1882–1935) and Emil Artin (1898–1962).
He first studied mathematics and physics at the University of Amsterdam from 1919 to
1924, aiming to enter the teaching professionin accordance with the wishes of his fa-
ther. He later named the algebraist Hendrik de Vries (1867–1954) as his most important
teacher, although he also attended the lectures of the theorist on foundations Gerrit Man-
noury (1867–1956), the invariant theorist Roland Weitzenböck (1885–1951), and Luitzen
E.J. Brouwer (1881–1966), the famous topologist and founder of intuitionism. He contin-
ued his studies at Göttingen in 1924–1925. After his military service, he spent a semester
at the University of Hamburg in 1926, and in the same year graduated under de Vries at
Amsterdam. Following a lectureship at Göttingen in 1927 and a professorship at Gronin-
gen, he taught at the University of Leipzig from 1931 to 1945. After visiting positions at
Baltimore and his birthplace Amsterdam, Zürich became the second important workplace
of his life, where he taught and worked at the university from 1951 to 1972, succeeding
Rudolf Fueter (1880–1950); later hebecame professor emeritus.

The marked influences on van der Waerden were above all those of de Vries in Amster-
dam, Noether in Göttingen and Artin in Hamburg. de Vries taught him classical algebraic
geometry, in particular the enumerative calculus of Hermann C.H. Schubert (1848–1911).
He then learned the new abstract conception of algebra from Noether and Artin, and how
the shape of important parts of algebra became suitably modified in this context. During
his time at Göttingen and Hamburg, van der Waerden also came under the important in-
fluence of Hellmuth Kneser (1898–1973), Otto Schreier (1901–1929) and Erich Hecke
(1887–1947). His main area of work was algebraic geometry, whose adaptation and pre-
cise foundation he made a self-appointed task, and to which he made fundamental contri-
butions, from his doctoral thesis to the series of 20 articles ‘Zur algebraischen Geometrie’,
which appeared between 1933 and 1971.

Appropriately, the bookModerne Algebra stands at the start of van der Waerden’s sci-
entific publications. In it, as in later works, he demonstrated his ability to extract the case
of a theory and describe it clearly. Examples are the monographs ‘Introduction to alge-
braic geometry’, ‘Group-theoretical methods in quantum mechanics’, and ‘Mathematical
statistics’, in which he also presented important results of his own. Despite its success, van
der Waerden was later to describeModerne Algebra as ‘the wrong book’, in contrast to
Einführung in die algebraische Geometrie [1939], which for him was ‘the right book’.

2 AIMS AND CONTENTS OF THE BOOK: FOUNDATIONS

van der Waerden described the purpose of the book in the following words (vol. 1, p. 1):

The ‘abstract’, ‘formal’ or ‘axiomatic’ setting to which algebra owes its re-
cently acquired renewal of impetus has led, above all infield theory, ideal
theory, group theory and thetheory of hypercomplex numbers, to insight into
new relationships and far-reaching results. The main aim of the book is to in-
troduce the reader to this whole circle of ideas. Thus, general concepts and
methods occupy the foreground, while the individual results that form the sub-
stance of classical algebra fall into their proper places within the framework of
the modern structure.
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The book was divided into 17 chapters (see Table 1, which covers also the third and
seventh editions). A major concern of vander Waerden was to arrange the material in
such a way as to form a coherent picture in which the individual sections are perceived
from the foundations more or lessindependently of each other. This led in a fairly natural
way to a hierarchical arrangement of the individual chapters. After the introduction of a
basic concept, there follows at the next level the deeper and more thorough development
of the theory relating to this concept, as well as the study of further fundamental algebraic
structures. Appended to this, at a third level, was the investigation of important special
areas.

van der Waerden achieved this object in a masterful way. The first three chapters con-
tained the basic concepts, roughly described by the headings sets, groups, rings, ideals and
fields. In set theory, he forged a strictly abstract treatment of the necessary terminology
and results, by adopting the standpoint of naïve set theory without becoming involved with
a discussion of the fundamentals arising in this context. Naïve set theory here means the
pragmatic approach chosen by many mathematicians whereby the various basic concepts
are understood with a certain intuitive clarity but all elements leading to paradoxes are
avoided (compare §46 on Cantor). As to foundations, van der Waerden contented him-
self with a reference to the third edition ofEinleitung in die Mengenlehre by Abraham
Fraenkel (1891–1965) and later to the joint work of David Hilbert (1862–1943) and Paul
Bernays (1888–1977) on the foundations of mathematics (§77). The basic algebraic struc-
tures, such as groups, rings and fields, were then defined in terms of abstract sets. Between
the elements of a set were defined one or two operations that must satisfy certain rules. For
example, the definition of group began as follows (vol. 1, 15):

A non-empty setG of elements of any kind (such as numbers, maps or trans-
formations) is called agroup if the following four conditions hold. 1. There
is a rule of combination that assigns to any paira, b of elements ofG a third
element of the same set, which is usually called theproduct of a andb and
writtenab or a · b. (The product may depend on the order of the factors:ab is
not necessarily equal toba.)

The other three axioms involved properties of the product, namely, the fulfilment of the
associative law(ab)c= a(bc), the existence of at least one left identitye with ea = a for
all a inG, and for everya inG the existence of at least one left inversea−1, with a−1a = e.
A group was said to beAbelian if ab is always equal toba, that is, the commutative law
holds. van der Waerden thus combined the approaches of Walter Dyck (1856–1934) and
Heinrich Weber (1842–1913) (§53) with the results of the American school in the study
of axiom systems to produce a set-theoretically acceptable formulation. The definitions of
ring, field and ideal followed a similar pattern, where in the case of the last-named the
characterization as a subset of a ring was alsoused. While proceeding from an abstract ba-
sis, van der Waerden was nevertheless at pains to establish the relationship with traditional
algebra and showed in practice how numerous known results appear in the abstract setting.

van der Waerden used simple theorems on polynomials with coefficients in an arbitrary
commutative ring or field to introduce differential quotients of entire rational functions
without recourse to considerations of continuity. Having derived certain interpolation for-
mulae, he devoted himself in particular tothe factorisation and irreducibility of polyno-



904 K.-H. Schlote

Table 1. Contents by chapters of van der Waerden’s book.
An overview is provided of the variations in distribution of chapters between the first, third and
seventh editions: the first changes to the second volume were made in the fifth edition. The first

page of each chapter is indicated.

Ch. 1st edition 1930–1931 3rd edition 1951–1955 7th edition 1966–1967
1 Numbers and sets. 4 Numbers and sets. 3 Numbers and sets. 3

2 Groups. 15 Groups. 19 Groups. 13

3 Rings and fields. 36 Rings and fields. 41 Rings and fields. 33

4 Completely rational
functions. 67

Completely rational
functions. 73

Vector spaces and tensor
spaces. 62

5 Field theory. 86 Field theory. 101 Entire rational functions. 84

6 Continuation of group
theory. 132

Continuation of group
theory. 146

Field theory. 110

7 Galois theory. 148 Galois theory. 163 Continuation of group theory.
146

8 Ordered and well-
ordered sets. 192

Infinite field extensions.
191

Galois theory. 168

9 Infinite field extensions.
198

Real fields. 200 Ordered and well-ordered
sets. 209

10 Real fields. 209–238 Evaluated fields. 248–
295

Infinite field extensions. 215

11 Elimination theory. Elimination theory. Real fields. 234–263
vol. 2, 1 vol. 2, 1

12 General theory of ideals
of commutative rings. 23

General theory of ideals
of commutative rings. 18

Linear algebra. vol. 2, 1

13 Theory of polynomial
ideals. 51

Theory of polynomial
ideals. 46

Algebras. 33

14 Completely algebraic
numbers. 86

Completely algebraic
numbers. 74

Representation theory of
groups and algebras. 78

15 Linear algebra. 109 Linear algebra. 98 General theory of ideals of
commutative rings. 120

16 Theory of hypercomplex
quantities. 149

Theory of hypercomplex
quantities. 135

Theory of polynomial ideals.
155

17 Representation theory of
groups and hypercom-
plex systems. 177–212

Representation theory of
groups and hypercom-
plex systems. 167–219

Integral algebraic quantities.
175

18 Evaluated fields. 200

19 Algebraic functions of a
variable. 234

20 Topological algebra. 266–292
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mials. A central role was played by the proof, of which the basic idea goes back to Carl
Friedrich Gauss (1777–1855), that if uniqueness of factorisation holds for an integral do-
mainS, then it also holds for the polynomial ringS[x]. This part of the book concluded
with a treatment of symmetric functions, that is, functions of the variablesx1, . . . , xn that
are invariant under any permutation ofx1, . . . , xn, and the representation of such functions
in terms of the so-called ‘elementary symmetric functions’.

3 THE CONSOLIDATION OF FIELD THEORY AND GROUP THEORY:
GALOIS THEORY

In the chapters that follow, van der Waerden gave a comprehensive account of field theory
and a continuation of group theory. In field theory he followed the classical model of Ernst
Steinitz (1871–1928), in giving a survey of all possible types of fields and their relation-
ships with one another along with fundamental results on the structure of fields, including
the theory of Galois fields (finite commutative fields) and cyclotomic fields, and leading
finally to the theorem on the primitive element. A key constituent here was the analysis of
field extensions, that is, fields that could be constructed from a prescribed ground field by
the adjunction of new elements. The ground field was usually assumed to be commutative.
In describing the process of extension, set-theoretic terminology again turned out to be
advantageous: the adjunction of an arbitrary setM is reduced to that of finite sets and the
construction of a union of sets, namely, the union of all fields arising from the adjunction
of finitely many elements ofM. The adjunction of a finite set can be obtained by the suc-
cessive adjunction of single elements. Thus it is possible to concentrate on the adjunction
of a single element, which is known as a simple extension. The latter was further character-
ized as algebraic or transcendental according as there does or does not exist a (non-trivial)
polynomial with coefficients in the ground field having the adjoined element as a zero.

Following some preliminary assertions on the linear independence of abstract quantities
and the systems formed by them, which are important in linear algebra and in particular
satisfy the Steinitz exchange condition, the properties of algebraic and transcendental ex-
tensions were further investigated. The theorem on the primitive element answered the
question of when a finite commutative extension of a commutative ground field can be
obtained by the adjunction of a single generating (primitive) element. It is worth pointing
out that van der Waerden ended the chapter with a section on ‘the execution of the field-
theoretic operations in finitely many steps’. This may also be understood, independently
of the undisputed mathematical motivation of these considerations, as a reaction to the
discussions of foundations going on at the time (compare §71).

van der Waerden began the deeper study of group theory by extending the group con-
cept to that of groups with operators. These are characterized by the fact that an ordinary
group is considered together with a further set of abstract elements called ‘operators’, and
a product is defined whereby an operator is combined with a group element: one says that
the operator acts on the group element. The product must again be an element of the group
and action of the operator is a homomorphism of the group into itself. He then develops the
theory of normal series and composition series. Anormal series of a groupG is defined
as a series:G ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn = E, where eachGi is normal in its predecessor
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Gi−1. Such a series, in which it is not possible to insert between two adjacent terms an-
other term differing from both, is called a ‘composition series’. When every factor group
Gi−1/Gi of two adjacent terms is abelian, the groupG is said to be ‘solvable’. As the
most important assertions of this theory, van der Waerden proved the theorem, which went
back to Schreier, on the existence of isomorphic refinements of any two normal series in
an arbitrary group, and the Jordan–Hölder theorem on the isomorphism of any two com-
position series of a given group. Then from the definition of direct product of groups there
follow some particular assertions about permutation groups that will be needed later in the
exposition of Galois theory. The three chapterstogether comprised a treatment of abstract
algebraic structures that will enable the later theory to be developed in greater generality
and, in particular, all the necessary preparations were made for the construction of Galois
theory on this abstract basis.

This theory occupied the next seven chapters, and inaugurated the treatment of the spe-
cial themes according to the hierarchy mentioned earlier. The main result of the theory de-
scribed the well-known correspondence between the finite separable extensions of a com-
mutative ground fieldK and the subgroups of a finite Galois group. As van der Waerden
later acknowledged [1972–1973, 246], his exposition of Galois theory followed exactly the
presentation given by Artin in his lectures of 1926. He introduced the Galois group as the
automorphism group of an extension field ofK, thereby following the interpretation made
by Richard Dedekind (1831–1916) at the end of the 1850s (compare §37). In particular, the
proof of the main theorem required the use of the primitive element theorem, a step which
displeased Artin and which he was able to avoid in his revision of the theory in 1938. Fol-
lowing the main theorem, van der Waerden elucidated more precisely the correspondence
between subgroups and intermediate fields, and showed firstly how to obtain the interme-
diate field corresponding to a subgroup of the Galois group and vice versa, and secondly
how the Galois group changes when the ground field is extended.

The theory of cyclotomic fields was then developed as an application of Galois theory.
A cyclotomic field is a field generated by thenth rootsζ of unity, and thecyclotomic
polynomial is the polynomial!n(x) whose zeros are precisely the primitiventh roots of
unity counted once each.!n(x) is shown to be irreducible (over the fieldQ of rational
numbers), and it was then a simple matter to determine the Galois group ofQ(ζ ). van
der Waerden went on to describe the intermediate fields in the case whenn is a prime
number, and showed how to construct the cyclotomic field by the successive adjunction
of quantities obtained from the ground field. All of this is based on ideas developed by
Gauss in Section 7 of theDisquisitiones arithmeticae to prove the solubility of the equation
xn − 1= 0 (n prime) using a chain of subsidiary equations each of lowest degree (§22.5).
Historically, these fundamental researches of Gauss exercised a strong influence on the
development of algebra in general, and in particular on the study of solvability of equations
by Niels Henrik Abel (1802–1829) (§29) and Evariste Galois (1811–1832). The exposition
of cyclotomic theory also contains a proof that the regular 17-gon is constructible using
ruler and compasses, a result which formed the starting point for the young Gauss in his
study of cyclotomic theory.

Following a section on the treatment of the equationxn − a = 0 (a �= 0), van der Waer-
den used Galois theory to solve, in about ten pages, the problem that lay at the heart of
algebra for many centuries: the solution of equations by radicals. No better illustration of
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the fundamental change in algebra could be found. As well as proving the famous assertion
of Abel that the general equation of degreen is not solvable by radicals forn > 4, he also
presented the solution of equations of the second, third and fourth degrees on this abstract
basis. If this were not enough, the old question of the constructibility of geometric objects
by ruler and compasses, which was among the classical problems of antiquity, was also
solved. Also in this context is a general analysis of the construction of regular polygons by
ruler and compasses, in which the construction of the 17-gon mentioned above appears as
a special case. A few remarks on the calculation of the Galois group brought this chapter
to a close.

4 IDEALS AND HYPERCOMPLEX SYSTEMS:
FURTHER BASIC ALGEBRAIC THEORY

It is appropriate at this point to diverge from the order of chapters in the book and say
something about the remaining fundamental topics. These were general theory of ideals in
commutative rings (ch. 12), linear algebra (ch. 15) and the theory of hypercomplex systems
(ch. 16).

At the heart of ideal theory lay the classification of the divisibility property for ideals in
commutative rings, in particular the answer to the question of whether the elementary di-
visibility properties of the ordinary arithmetic of integers carry over to more general rings.
This theory was investigated and developed in abstract terms in the decade preceding the
appearance of the book, principally by Noether, using the classical exposition of Dedekind
as a starting point. This involved the study of such important properties of rings as the
validity of the basis theorem or, which is equivalent, the ascending chain condition. The
former asserted that every ideal in a ring has a finite basis, while the latter, in its original
formulation, requires that every chain of idealsa1,a2,a3, . . . in which eachai is a proper
divisor of ai−1, that is,ai ⊂ ai−1, had only finitely many terms. Alongside the concepts
of greatest common divisor and lowest common multiple, the operations of product and
quotient of ideals had also to be introduced. For example, theproduct of the two idealsa
andb was defined to be the ideal generated by the productsa · b (a ∈ a, b ∈ b). As might
be expected, the familiar factorisation of an ideal as a product of powers of prime ideals
does not carry over without change from the ringof integers to more general rings, and so
it becomes necessary to find properties which characterize the simple constituents of ideals
and lead to an analogous factorisation.

The role of such constituents is played by the primary ideals, which are defined by the
property that when the producta · b belongs to the idealq anda is not an element of
q, then there is a positive integerρ such thatbρ ∈ q. Moreover, for every primary ideal
there is a corresponding prime ideal. As a central result, van der Waerden finally proved
that every ideal can be represented as the intersection of finitely many primary ideals. This
representation can be chosen in such a way that it cannot be shortened and no two primary
ideals corresponding to the same prime ideal can be combined to form a larger primary
ideal. These primary ideals are called the ‘greatest primary components’ of the ideal. In
this form the representation satisfies certain uniqueness conditions, in that the number of
greatest primary components, and also the prime ideals corresponding to the components,
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are uniquely determined. These considerations and with a study of divisibility in the case
of rings with identity, especially in relation to coprime ideals, that is, ideals whose greatest
common divisor is the whole ring, close the chapter.

The objects of study in linear algebra are linear forms, modules, vectors and matrices;
van der Waerden presented the various well-known constituents of classical algebra in an
abstract setting, in particular that of groups with operators. Moreover, the concept of linear
independence, already encountered in field theory, along with the results associated with it,
came naturally into play. Following some remarks on modules in general and the special-
isation to modules of linear forms (that is, modules whose elements can be represented as
linear combination of finitely many linearly independent elements), he treated the theory of
vector spaces and linear mappings between them. Since these mappings can be described
using matrices, this treatment also involvedelements of linear algebra and led naturally
to the theory of solutions of systems of linear equations. The domain of multipliers of the
module, which corresponds to the domain of coefficients of the system of equations, is
now assumed to be a field, and when the field is actually commutative, the theory of deter-
minants can be used in the derivation of solubility criteria and formulae for the solutions.
All these topics in linear algebra required only a brief description and a reference to the
classical theory.

A more thorough treatment was accorded to the theory of elementary divisors and the
proof of the basis theorem for finitely generated Abelian groups. The latter concerned
the decomposition of such a group into a direct sum of cyclic groups. Here again, van
der Waerden strove for the highest possible level of generality. For example, a proof was
given of the elementary divisor theorem for non-commutative division rings. The chapter
ended with the rudiments of the theory of representation and representation modules, and
also the reduction to normal form of matrices and thus of quadratic and Hermitian forms
over a commutative field. This included the treatment of the characteristic polynomial and
characteristic equation of a matrix.

A ring which at the same time is a module of linear forms over a commutative field
K, leads to the notion of hypercomplex systems, or algebras, which form another impor-
tant class of algebraic objects. A key point in the theory of hypercomplex systems is the
elucidation of their structure. To begin with, a hypercomplex system can be regarded as a
group with operators, where two separate domains of operators must be distinguished: the
domainK of multipliers of the module, and the hypercomplex system itself. To these there
correspond different admissible subgroups, where in the second case the ideals of the ring
comprise the admissible subgroups. As a preliminary to the study of their structure, the
notion of ideal is then extended to algebras by defining admissible left, right and two-sided
ideals with respect to the domainK of multipliers. Under these conditions the ideals of a
hypercomplex system then satisfy the maximum and minimum conditions, that is, every
non-empty set of ideals has a largest and smallest number.

This property plays a central role in the subsequent investigations. van der Waerden em-
phasized this in his analysis of structure, in that from a general starting point with arbitrary
rings he ended up only with those that satisfy these maximum and minimum conditions.
If a ring has a domain of operators (multipliers), then ideals are defined as admissible
ideals. It should be mentioned that the maximum condition is equivalent to the ascending
chain condition, which was earlier of great importance in the construction of ideal theory.
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It turns out, however, that the minimum condition is considerably more restrictive than the
maximum condition.

Two further important concepts were those of nilpotent ideals and the radical. The for-
mer are ideals of which some finite power is the zero ideal, and the latter is the set of
elements of the ring that each generate a nilpotent two-sided ideal. This leads to the intro-
duction of semi-simple rings as rings with a zero radical that satisfy the minimum condition
for left ideals. The structure of semi-simple rings is completely described: they are rings
with identity equal to a direct sum of simple left ideals. The simple left ideals are those
that contain no proper admissible ideal other than the zero ideal, and in this sense are the
smallest building blocks in the construction of the ring.

In this structure theory, van der Waerden generalized the remarks and results of Ben-
jamin Peirce (1809–1880), Wilhelm Killing (1847–1923), Elie Cartan (1869–1951) and
Joseph H. Maclagan Wedderburn (1882–1948). It is interesting that he based the elabo-
ration of the theory in this section on that given by Noether in her lectures, and made no
mention of the generalization of Wedderburn’s theorem by Artin in 1927. The related in-
vestigation of the analogues decomposition into two-sided ideals yields the uniqueness of
the ideals involved, and as a special case the theorem of Dedekind on the decomposition of
a commutative ring with zero radical and satisfy the minimum condition into a direct sum
of commutative fields that annihilate one another. The subsequent study of the structure of
the ring of automorphisms of a completely reducible module or a completely reducible ring
with identity and its characterization as a direct sum of matrix rings, brought to a close the
structural analysis of semi-simple rings. A consideration of the effects on the properties of
algebras under the formation of products and the extension of the ground field concluded
the chapter and paved the way for the special studies.

5 SOME SPECIAL TOPICS IN ALGEBRA

The chapter on ordered and well-ordered sets occupied a special place. Although it takes
up only six closely packed pages, it is none the less very remarkable, as it supplies further
basic notions of set theory, such as the axiom of choice, the well-ordering principle and
transfinite induction. van der Waerden did not baulk at using elements of transfinite set
theory in order to achieve a high level of abstraction. However, the application of these
set-theoretic methods was not uncontroversial. As to the axiom of choice, for instance, it
is assumed on the basis of examples that, given an arbitrary set of non-empty sets, one can
define a choice function, that is, a function assigning to each set one of its members.

Using these additional set-theoretic tools, it is possible to develop the theory of infinite
extensions, with which the treatment of special topics continues after the Galois theory.
The majority of these topics concerned a detailed study of field theory. For infinite alge-
braic extensions, van der Waerden derived the theorem on the existence of an algebraically
closed algebraic extension field, which is uniquely determined up to equivalence of ex-
tensions. A field is said to be algebraically closed if every member of the corresponding
polynomial ring splits into linearfactors. An algebraically closed extension field of a field
K contains all possible algebraic extensions ofK up to equivalence. The classification of
the extensions ofK is then completed by showing that an arbitrary infinite extension splits
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into a pure transcendental and an associated algebraic extension. The purely transcendental
extension is the result of adjoining to the ground field a set of algebraically independent
unknowns. van der Waerden proved the additivity of the degree of transcendence for such
extensions, but only in the case of finite degree, since the case of infinite degree would
require the definition of addition of infinite cardinals. Here he followed the key points in
the classical exposition of the theory; it wasgiven by Steinitz in his work of 1910, which
was fundamental to the development of algebra.

To this was added the theory of real fields, which goes back to Artin and Schreier.
Regarding ordered fields, fields with a valuation and the definition of the real numbers, van
der Waerden studied the non-algebraic properties involved and was at pains to explain the
algebraic aspects of this theory. The result was a characterization of the basis arithmetic
properties of the field of real numbers in purely algebraic terms. A formally real field can
be defined as an abstract field in which−1 cannot be written as a sum of squares. Such
a field is said to be ‘real closed’ if no proper algebraic extension of it is formally real.
For such fields, van der Waerden was then able to supply algebraic proofs of a number of
properties and theorems that are used in analysis, such as the existence of a unique ordering,
Rolle’s theorem and the theorem of Sturm on the number of distinct zeros in an interval. He
also described the connection between the properties of real closure and algebraic closure:
a real-closed field is not algebraically closed, but becomes so after the adjunction of an
imaginary unit. Furthermore, in analgebraically closed extension� of a formally real
field there is at least one intermediate fieldP for which�= P(i). Taking the ordering into
account, one obtains the following assertion, which is important in the construction of the
number system: an ordered fieldK has, up to isomorphism, only one real-closed algebraic
extension fieldP in which the ordering is an extension of the ordering onK. Moreover, the
identity is the only automorphism ofP fixing the elements ofK. TakingK to be the field
of rational numbers, one is thereby able to construct the field of real algebraic numbers in
a purely algebraic way.

A central role in algebraic geometry is played by the study of the solvability of algebraic
equations in several unknowns and the derivation of formulae for their solutions; they form
another collection of topics. A similar role is taken by resultants on polynomials whose
vanishing is in general necessary and sufficient for the existence of a non-trivial solution.
Invoking Leopold Kronecker’s method of elimination and using the system of resultants
for a system of polynomials in one variable, van der Waerden established a criterion for
the solvability of such a system of polynomials. Further criteria concerned the solubility of
one or more polynomial equations inn unknowns, as well as some specific statements on
this problem. An important result, which is at the same time a generalization of successive
elimination, is Hilbert’s ‘Nullstellensatz’ of 1893, which asserted that a polynomialg in
n unknowns over a commutative field belongs to the ideal generated byk polynomialsfi
wheng vanishes at all common zeros of thefi , where 1� i � k.

The clarification of this kind of membership for polynomials played an important role
in setting up the theory of polynomial ideals, which was itself one of the historical roots
of the construction of ideal theory. On the other hand, the theory of polynomial ideals at
the level of abstraction now achieved was a combination of results obtained in the gen-
eral theory of ideals and those of field theory; so it formed the starting point for a deeper
study of algebraic geometry. Next to the basic concepts, such as algebraic function, alge-
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braic variety as the zero set of an ideal in the polynomial ring over a commutative field,
and irreducibility of a variety, there stood a generalization of Noether’s fundamental the-
orem, its application and a first introduction to intersection-point problems for algebraic
varieties. The irreducibility of a manifold turned out to be equivalent to the existence of a
representation of parameters by algebraic functions, and alsoto the fact that the associated
ideal is prime. Using a method going back to Emanuel Lasker (1868–1941), it was fur-
ther shown that every algebraic variety can be represented uniquely as the union of finitely
many irreducible varieties.

A second historical root of ideal theory was the study of algebraic integers in algebraic
number theory. van der Waerden took this into account in Chapter 14, sketching important
results of this approach. For this, he extended the ascending chain condition to chains of
modules over a ringR, and proceeded to characterize, in the case whenR is a subring of
a larger ringS, those elements ofS that were integral overR. If S is commutative, then
the integers again form a ring and the transitive law for integralness holds. After studying
ideal theory in the ring of integers, where some assumptions are necessarily made about
the ringR, which is now assumed to be an integral domain, there followed the axiomatic
characterization of classical ideal theory in the form described by Noether in the mid 1920s.
Ideal theory was constructed on the basis of three axioms: the ascending chain condition
for ideals, the maximality of prime ideals, and integral closure. The meaning of each axiom
was described and the unique prime factorisation of ideals deduced. This last result had a
converse: the validity of the three axioms follows from the unique prime factorisation.

The book ended with a treatment of the representation theory of groups and algebras,
which followed on immediately from the sections on linear algebra and the theory of hy-
percomplex systems. The representation problem for groups is reduced to that for hyper-
complex systems by forming the group ring associated with a group and proving that every
representation of the group is determined by a representation of the group ring.

An important role was played here by questions of the reducibility of representations
and the theorem of Heinrich Maschke (1853–1908) on the complete reducibility of the
representations of a finite group, as well as by the theory of characters. With regard to
reducibility, two general theorems yield the assertions that every representation of a com-
pletely reducible hypercomplex system withidentity is itself completely reducible, and
every irreducible representation of an arbitrary algebra occurs in the regular representa-
tion. Characters are defined as the traces of irreducible representations over an algebraically
closed field, where ‘trace’ means the trace of the matrix representing a given element. The
use of characters makes it easy to obtain many properties of representations, in particular
the fact that, under certain conditions, completely reducible representation of an algebra is
uniquely determined up to equivalence by thetraces of the representing matrices. The rep-
resentations of some finite groups, such as the quaternion group and the symmetric groups
S3 andSn, were derived by way of example. In conclusion, there was an application due to
Noether of representation theory to the theory of non-commutative fields.

6 RECEPTION AND HISTORICAL IMPACT OF THE BOOK

van der Waerden’s book effected a fundamental change in algebra and revolutionized math-
ematicians’ perception of algebraic problems. It opened up a ‘new world’, as he had him-
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self experienced when he came into contact with the new ideas of Göttingen in 1924 [van
der Waerden, 1975, 32]. Other mathematicians said that after the appearance of the book
the mathematical world was different from what it had been before. Algebra and algebraic
problems seemed suddenly to take up a central position in mathematical research, and
were no longer regarded as problems of peripheral interest. Garrett Birkhoff (1911–1996)
described this in the following words [Birkhoff, 1973, 771]:

Even in 1929 its concepts and methods (i.e. of ‘modern’ algebra) were still con-
sidered to have marginal interest as compared with those of analysis in most
universities, including Harvard. By exhibiting their mathematical and philo-
sophical unity and by showing their power as developed by E. Noether and her
other younger colleagues (most notably E. Artin, R. Brauer, and H. Hasse) van
der Waerden made ‘modern algebra’ suddenly seem central in mathematics.
It is not too much to say that the freshness and enthusiasm of his exposition
electrified the mathematical world—especially mathematicians under 30 like
myself.

Although it did not fit into the historical picture, the book was for many the symbol of
both the progress in algebra in the 20th century and the increased penetration of algebraic
ideas and methods in other areas of mathematics. It is certain that the book substantially
accelerated this progress, although it was only one factor among many others.

In a nutshell, van der Waerden’sModerne Algebra made its impression less by describ-
ing new results than by systematically putting together algebraic knowledge gained in the
preceding decades and the resulting consideration of the new abstract approach and the
application of axiomatic methods. The book exhibited not just one algebraic theory in this
light, but the entire family of newly formed theories. Its significance was simply that it
threw into bold relief the changed interaction between the branches of algebra and the re-
sulting new image of the subject. The theory of the general equation of degreen, which a
century earlier had been the main topic in algebra, was now treated in a few pages as an
application of the abstractly formulated Galois theory.

The new image of algebra as a family of theories working together evolved as a gen-
eral concept of structure withfar-reaching effects on the whole of mathematics and other
branches of science. In particular, many of these ideas were taken up and further devel-
oped by the influential Bourbaki group. Important elements of the structure concept were
emphasized in the layout of the book without defining the concept of algebraic structure.
Through the application of axiomatic methods, one clearly recognizes the properties char-
acterizing algebraic conception at that time. This makes it possible to concentrate afresh
on the particular ‘structural properties’ of objects alluded to in algebraic investigations and
to recognize easily the occurrence of the same basic algebraic structure in various applica-
tions.

The definition of the basic algebraic objects followed either as sets of abstract elements
admitting operations with certain specified properties, or as derived objects constructed
from a given object by a definite algebraic procedure: the field of quotients is an exam-
ple of the latter. The structural point of view is supported by an appropriate definition of
mappings between algebraic objects in the form of homomorphisms and isomorphisms,
with the understanding that isomorphic objects have the same algebraic properties and
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thus embody the same structure. It must be pointed out, however, that van der Waerden de-
fined these mappings separately for the individual structures. Likewise, homomorphisms
of groups and rings are distinguished in the index of terminology, as are module and op-
erator homomorphisms, and the mappings for the object under consideration are described
more than once in the text.

Another feature was the emphasis on the consistent algebraic compilation of the theory,
almost without reference to non-algebraic elements. This is especially apparent in, for
example, the application of particular number systems. When the rational or real numbers
appeared in an algebra textbook prior to van der Waerden both domains were taken for
granted. Now they were characterized algebraically as fields.

The success ofModerne Algebra comes down finally to its lively style of presenta-
tion. Because of the abstract basis, the presentation of the individual theories is shorter
and clearer, and thus has a stimulating effect on many readers. This is shown partic-
ularly clearly in a comparison with other algebra books of that time. His book was
by no means the only textbook on algebra currently extant. On the contrary, the great
progress made in algebra since the turn of the century had created an ever-increasing
need for a new, systematic and comprehensive treatment of the results and theories.
The standard text in the preceding decades, Weber’s three-volumeLehrbuch der Alge-
bra of 1895–1908 (§53) was rendered more and more out of date by these develop-
ments. From the middle of the 1920s on, there appeared among others the following
textbooks, also written by famous algebraists:Modern algebraic theories by Leonard
Eugene Dickson (1874–1954),Höhere Algebra (two volumes) by Helmut Hasse (1898–
1979),Algebra (two volumes) by Oskar Perron (1880–1975), andEinführung in die Al-
gebra (two volumes) by Otto Haupt (1887–1988). The first two of these books were
published in 1926 and Perron’s book followed a year later, and both Haupt’s book and
the German translation of Dickson’s algebraic theories appeared in 1929. But none of
these authors succeeded in describing the substance of the new conception of algebra as
clearly as van der Waerden, or in interweaving it so elegantly with the body of classi-
cal results. In all their efforts to describe clearly and systematically the progress in al-
gebra, they maintained a more or less strong commitment to the classical theory, and
this hampered their exposition of the material. We note in passing that the first text-
book in English to present algebra in the style of van der Waerden wasA survey of
modern algebra by Birkhoff and Saunders Maclane (b. 1909), which was published
in 1941.

7 FURTHER REVISION OF THE BOOK

In view of the great influence ofModerne Algebra on the development of the subject, it
is not surprising that a new edition very quickly became necessary and the first translation
was soon made. The book rapidly became the standard textbook of algebra. With this in
mind, van der Waerden made a special effort to take into account the further developments
in algebra for the first of the new editions, and to take into consideration all the innovations
in the care material of algebra indispensable in an introductory survey.

The second revised edition of the first volume appeared in 1937, and of the second in
1940. van der Waerden made some significant changes in his revision of the text. In the
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first place, he reorganized the first volume into ‘a useful textbook of algebra for beginners’.
He thus incorporated into it Euler’s theory of resultants and the theory of linear equations
from the second volume, and added a section on decomposition into partial fractions. The
notions of vector space and hypercomplex systems were now likewise explained in the
first volume. He also derived the basic theorems on dimension, norm and trace alike in full
generality, and included some further supplements and revisions.

The more detailed and thorough treatment of valuation theory was due to an enhanced
understanding: it now had a chapter to itself. van der Waerden also reacted to the con-
tinuing discussion on the foundations of mathematics and the application of transfinite
proof-methods. He tried to avoid such applications of set theory to algebra, and left out all
those parts of field theory that involve the axiom of choice or the well-ordering theorem.
Thus he also dropped the chapter on ordered and well-ordered sets. He obviously saw this
as a suitable compromise with which to counteract any criticism. A completely finitistic
development of algebra without recourse to any non-constructive existence proofs would
have required too great a sacrifice (vol. 1, 2nd ed. 1937, p. vi).

All the chapters in the second volume were also subjected to a thorough revision, and in
the Foreword van der Waerden particularly emphasized the considerable extension and re-
modelling of the chapter on hypercomplexnumbers and their representations. This changed
perception caused the second volume to assume more strongly the character of a deeper
presentation concentrating particular areas of research, and the changes made were chiefly
contingent on advances in individual areas of algebra. From this basic reorganization of
the book and the transformation of the first volume into an introductory text, there arose in
the following decade the need for a new edition of the first volume more often than of the
second.

van der Waerden also revised the text from time to time for later editions of the book.
The alterations and supplements were, however, not as extensive as those in the second
edition. This is a clear reflection of the fact that the reshaping of algebra with regard to the
statement of its problems and the formation of its fundamental branches, including their
relationship to one another and to other areas of mathematics, was so far advanced that a
definite stock of concepts and results had emerged as the core of the theory and achieved
a far-reaching consensus among mathematicians. In the third edition (1951) he returned to
the standpoint of the first in regard to the application of set-theoretic methods and revoked
the constraints made in the second.

Since the methods of abstract algebra had in the meantime become the common
property of mathematicians, van der Waerden followed a suggestion of Heinrich Brandt
(1886–1954) and called merely ‘Algebra’ the book that appeared in 1955 as the first
volume of the fourth edition. The second volume of the third edition, which was
printed in the same year, likewise carried the changed title. The fourth edition incorpo-
rated in the second volume (1959) the important innovations stemming pre-eminently
from progress in algebraic geometry. In two newly added chapters, he dealt with al-
gebraic functions of one variable and with topological algebra. He developed the the-
ory of algebraic functions up to and including the Riemann-Roch theorem for arbi-
trary fields of constants. Topological algebra was originally devoted to the comple-
tion of topological groups, rings and skew fields, including locally bounded and lo-
cally compact skew fields, and oriented itself chiefly around the fundamental work of
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David van Dantzig (1900–1959) in 1933. Further revisions were made in the chap-
ters on general ideal theory, algebraic integers and representation theory, which, by
the completion of important ideal-theoretic theorems of W. Krull and the highlight-
ing of new aspects and improved proofs, were brought to the very frontiers of re-
search.

The former chapter on hypercomplex numbers was considerably extended and now re-
named ‘Algebras’, a designation which has become established for this part of algebraic
research. van der Waerden presented the main features of the theory of radicals devel-
oped by Nathan Jacobson (1910–1999) in the 1940s, and was able to provide a simplified
proof of the main theorem by continuing ideas of Noether with the new contributions of
Jacobson. At the same time, Grassmann algebras and Clifford algebras also found a place,
whereas the chapter on elimination theory was dropped. In the fifth edition, the chapters
of the second volume were completely reordered into three relatively independent groups.
Chapters 12–14 were now devoted to linear algebra, algebras and representation theory,
chapters 15–17 dealt with ideal theory and chapters 18–20 covered fields, algebraic func-
tions and topological algebra.

Through all these variations and completions, van der Waerden’s algebra has always
remained topical and, despite strong competition, is a standard work in the corner of acad-
emic literature. Those who wish to scale the heights of algebra and its multifaceted appli-
cations must first become acquainted with van der Waerden’sAlgebra.
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CHAPTER 71

KURT GÖDEL, PAPER ON THE
INCOMPLETENESS THEOREMS (1931)

Richard Zach

Gödel’s incompleteness results are two of the most fundamental and important contribu-
tions to logic and the foundations of mathematics. He showed that no axiomatizable formal
system strong enough to capture elementary number theory can prove every true sentence
in its language. This theorem is an important limiting result regarding the power of formal
axiomatics, but has also been of immense importance in other areas, such as the theory of
computability.

First publication. ‘Über formal unentscheidbare Sätze derPrincipia mathematica und ver-
wandter Systeme. I’,Monatshefte für Mathematik und Physik, 37 (1931), 173–198.

Manuscripts. Two early drafts in Gabelsberger shorthand, the typewritten manuscript, page
proofs, galley and an offprint held in the Kurt Gödel Papers at Princeton University
Library, New Jersey, USA.

Reprint. In Gödel, Collected works, vol. 1 (ed. S. Feferman and others), New York: Oxford
University Press, 1986, 116–195 [opposite English translation 3)].

English translations. 1) By B. Meltzer inOn formally undecidable propositions of Prin-
cipia Mathematica and related systems, Edinburgh: Oliver and Boyd, 1962, 35–72.
2) By E. Mendelsohn in M. Davis (ed.),The undecidable, Hewlett, NY: Raven Press,
1965, 4–38. 3) By J. van Heijenoort in his (ed.),From Frege to Gödel. A source book in
mathematical logic, Cambridge, MA: Harvard University Press, 1967, 592–617. [Ap-
proved by Gödel. Repr. with intro. by S.C. Kleene in Gödel, Collected works, vol. 1 (see
above; also several related pieces there). Also in S.G. Shanker (ed.),Gödel’s theorem in
focus, London: Routledge, 1988, 17–47.]

Italian translations. 1) As ‘Proposizioni formalmente indecidibili deiPrincipia Mathemat-
ica e di sistemi affini I’, in E. Agazzi (ed.),Introduzione ai problemi dell’assiomatica,
Milan: Vita è Pensiero, 1961, 203–228. 2) By E. Ballo and others in their (ed.), Gödel,
Opere (1929–1936), Turin: Bollati Boringhieri, 1999, 113–138.
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Portuguese translation. As ‘Acerca de proposições formalmente indecidíveis nosPrincipia
Mathematica e sistemas relacionados’, in M. Lourenço (ed.),O teorema de Gödel e a
hipótese do contínuo, Lisbon: Fundação Calouste Gulbenkian, 1979, 245–290.

Spanish translations. 1) By M. Garrido and others as ‘Sobre proposiciones formalmente
indecidibles de losPrincipia Mathematica y sistemas afines’, inCuadernos Teorema 8,
Valencia (Spain): Revista Teorema, 1980. 2) By J. Mosterín as ‘Sobre sentencias for-
malmente indecidibles dePrincipa Matematica y sistemas afines’, in his (ed.), Gödel,
Obras completas, Madrid: Alianza, 1981, 45–90.

Japanese translation. As ‘Principia Mathematica ya sono kanrentaikei deno keisikiteki ni
ketteihukanou na meidai nitsuite I’, in K. Hirose and K. Yokota (eds.),Gödel no sekai
[Gödel’s world], Tokyo: Kaimei-sha, 1985, 165–202.

French translation. By J.B. Scherer as ‘Sur les propositions formellement indécidables des
Principia Mathematica et des systèmes apparentés I’, in E. Nagel and J.R. Newman,
Le théorème de Gödel, Paris: Editions du Seuil, 1989, 106–143.

Related articles: Peano and Dedekind on arithmetic (§47), Cantor (§46), Whitehead and
Russell (§61), Hilbert and Bernays (§77).

1 GÖDEL’S LIFE AND WORK

Kurt Gödel was born on 28 April 1906 in Brünn, the capital of Moravia, then part of
the Austro-Hungarian Empire; now Brno, Czech Republic. His father was a well-to-do
part-owner of a textile company. Gödel attended the GermanGymnasium in Brünn and
in 1923 followed his elder brother to study at the University of Vienna. He first studied
physics, but Philipp Furtwängler’s lectures on number theory so impressed him that he
switched to mathematics in 1926. His teachersquickly realized Gödel’s talent, and upon
the recommendation of Hans Hahn (1879–1934), wholater became his supervisor, Gödel
was invited to join the group of philosophers around Schlick which became known as the
‘Vienna Circle’. Gödel regularly attended until 1928, and later remained in close contact
with some members of the circle, especially Rudolf Carnap (1891–1970). His interest in
logic and the foundations of mathematics was sparked around that time, mainly through
Carnap’s lectures on logic, two talks which L.E.J. Brouwer gave in Vienna in 1928, and
Hilbert and Ackermann’sGrundzüge der theoretischen Logik (1928).

One of the open problems posed by David Hilbert (1862–1943) in [Hilbert, 1929] was
that of the completeness of the axioms of the ‘engere Funktionenkalkül’, the first-order
predicate calculus. Gödel solved this problem in his dissertation, which was submitted to
the University of Vienna in 1929 and appeared as [Gödel, 1930].

Gödel then set to work on the main open problem in Hilbert’s foundational program,
that of finding a finitary consistency proof for formalized mathematics. This led him to
the discovery of his first incompleteness theorem. In September 1930, following a report
on his dissertation work, he gave the first announcement of his new result in a discussion
of the foundations of mathematics at the ‘Tagung für Erkenntnislehre der exakten Wis-
senschaften’ in Königsberg. John von Neumann, who was in the audience, immediately
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recognized the significance that Gödel’s result had for Hilbert’s program. Shortly there-
after, he wrote to Gödel with a sketch of the second incompleteness theorem about the
unprovability of the consistency of a system within that system; but by that time Gödel
had also obtained this result and published an abstract of it. The second result showed
that Hilbert’s program could not be carried out, and gave a negative solution to the sec-
ond problem in Hilbert’s famous 1900 list of mathematical problems (§57): Gödel proved
that there can be no finitary consistency proof for arithmetic. The full paper was sub-
mitted for publication on 17 November 1930 and appeared in January 1931, in a Vienna
mathematics journal edited by Hahn. It was also accepted as Gödel’sHabilitationsschrift
in 1932, and he was madePrivatdozent (unpaid lecturer) at the University of Vienna
in 1933.

Throughout the 1930s, Gödel worked on topics in logic and the foundations of math-
ematics, and lectured often on his incompleteness results. In particular, he gave a course
on these results during his first visit to Princeton during the academic year 1933–1934
which exerted a significant influence on the logicians there, especially Alonzo Church
and his student Stephen C. Kleene. During the 1930s, Gödel settled a subcase of the
decision problem for first-order logic (proving the decidability of the so-called ‘Gödel–
Kalmar–Schütte class’), showed that intuitionistic logic cannot be characterized by finitely
many truth values (and in the process inventing the family of Gödel logics), gave an in-
terpretation of classical arithmetic in intuitionistic arithmetic (thus showing the consis-
tency of the former relative to the latter), and established some proof-theoretic speed-up
results.

After the annexation of Austria by Nazi Germany in 1938, during a second visit to
Princeton, the title ofPrivatdozent was abolished. Gödel’s application forDozent neuer
Ordnung was delayed, and he was deemed fit for military duty. He and his wife Adele,
whom he had married in 1938, obtained U.S. visas and emigrated in 1940. From that date
on, Gödel held an appointment at the Institute for Advanced Study at Princeton. 1940 also
saw the publication of his third major contribution to mathematical logic, the proof of the
consistency of the axiom of choice and of the continuum hypothesis (compare §46 on Can-
tor with the other axioms of set theory). This work was also inspired by a problem set by
Hilbert: The first in his 1900 list of problems had asked for a proof of Cantor’s continuum
hypothesis. Gödel’s result, together with Paul Cohen’s 1963 proof of the consistency of the
negation of the axiom of choice and of the continuum hypothesis, gave a negative solution
to Hilbert’s first problem: the axioms of set theory do not decide the continuum hypothesis
one way or the other.

From 1943 onward, Gödel became increasingly interested in philosophy and relativity
theory. In 1944, he contributed a study of Russell’s mathematical logic (compare §61) to
the Russell volume in the seriesLibrary of living philosophers. In the 1950s, he published
several contributions to general relativity theory; in 1958, his consistency proof of arith-
metic by an interpretation using functionals of hereditarily finite type, the so-called ‘Di-
alectica interpretation’, appeared in print. Much of his post-1940 work, however, remained
unpublished, including his modal-logical proof of the existence of God.

In the last ten years of his life, Gödel was in poor health, both physical and mental. He
suffered from depression and paranoia, to the point at which fear of being poisoned kept
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him from eating. He died of ‘malnutrition and inanition’ in Princeton on 14 January 1978.
For more on his life and work, see [Feferman, 1986] and [Dawson, 1997].

2 HILBERT’S PROGRAM, COMPLETENESS, AND INCOMPLETENESS

Gödel’s ground-breaking results were obtained against the backdrop of the foundational
debate of the 1920s. In 1921, reacting in part to calls for a ‘revolution’ in mathematics
by the intuitionist Brouwer and his own student Hermann Weyl, Hilbert had proposed a
program for a new foundation of mathematics. The program called for i) a formalization
of all of mathematics in an axiomatic systems followed by ii) a demonstration that this
formalization is consistent, that is, that no contradiction can be derived from the axioms
of mathematics. Partial progress had been made by Wilhelm Ackermann and John von
Neumann, and Hilbert in 1928 claimed that consistency proofs had been established for
first-order number theory. Gödel’s results would later show that this assessment was too
optimistic; but he had himself set out with the aim of contributing to this program.

According to [Wang, 1987], Gödel attempted to give a consistency proof for analysis
relative to arithmetic. For this, he needed a definition of the concept of truth in arithmetic
to verify (in arithmetic itself) the truth of the axioms of analysis. But Gödel soon realized
that the concept of truth for sentences of arithmetic cannot be defined in arithmetic. The
was led to this result by considerations similar to the liar paradox, thus anticipating later
work by Alfred Tarski. Butprovability of a sentence from the axioms of arithmeticis rep-
resentable in arithmetic, and combining these two facts enabled Gödel to prove that every
consistent axiomatic system in which provability was representable must contain true, but
unprovable sentences. Gödel had apparently obtained this result in the summer of 1930.
At the time, he represented symbols by numbers, and formulas and proofs by sequences
of numbers. Sequences of numbers can be straightforwardly formalized in systems of type
theory or set theory. At the occasion of the announcement of his incompleteness result in
the discussion at Königsberg, von Neumann asked if it was possible to construct undecid-
able sentences in number theory. This suggested a possible simplification to Gödel, and
indeed he subsequently succeeded in arithmetizing sequences by an ingenious use of the
Chinese remainder theorem.

It had been assumed by Hilbert that first-order number theory is complete in the sense
that any sentence in the language of number theory would be either provable from the ax-
ioms or refutable (that is, its negation would be provable); indeed, he asked for a proof of
this in his lecture on problems in logic [Hilbert, 1929]. Gödel’s first incompleteness the-
orem showed that this assumption was false:it states that there are sentences of number
theory which are neither provable nor refutable. The first theorem is general in the sense
that it applies to any axiomatic theory which isω-consistent (defined in the next section),
has an effective proof procedure, and is strong enough to represent basic arithmetic. The
system for which Gödel proved his results is a version of the system ofPrincipia mathe-
matica. In this system, the lowest type of variables ranges over numbers, the usual defining
axioms for successor, plus comprehension are available as axioms. However, practically
all candidates for axiomatizations of mathematics, such as first-order Peano Arithmetic,
the full system ofPrincipia mathematica, and Zermelo–Fraenkel set theory satisfy these
conditions, and hence are incomplete.
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3 AN OUTLINE OF GÖDEL’S RESULTS

Gödel’s paper is organized in four sections. Section 1 contains an introduction and an
overview of the results to be proved. Section 2 contains all the important definitions and
the statement and proof of the first incompleteness theorem. In Section 3, he discusses
strengthenings of this result. Section 4 is devoted to a discussion of the second incomplete-
ness theorem. For detailed treatments of these results, see [Smorynski, 1977] or [Hájek and
Pudlák, 1993].

In Section 2, Gödel first sets up some necessary definitions, gives the axioms of the
variantP of the system ofPrincipia mathematica which he uses, introduces the machinery
necessary for the arithmetization of metamathematics (Gödel numbering), and proves four
theorems (I–IV) about recursive functions and relations. The language of the systemP

consists of the usual logical symbols, 0 and the successor functionf , as well as a repos-
itory of simply typed variables. Variables of the lowest type range over natural numbers,
variables of the next type range over classes of numbers, variables of the third type range
over classes of classes of numbers, and so on. The axioms of the system are the usual
logical axioms, the comprehension schema(∃u)(∀v)(u(v) ≡ A(v)) (whereu is a variable
of type n + 1, v a variable of typen, andA a formula not containingu free), and the
extensionality axiom(∀v)(x(v)≡ y(v))→ x = y.

One of the novel methods that Gödel uses is the arithmetization of syntax, now called
‘Gödel numbering’. In order to be able to formalize reasoning about formulas and proofs
in systemP—which is, after all, a system for number theory—Gödel defines a mapping of
the symbols in the language ofP to numbers. In his paper the mapping is given by 0�→ 1,
f �→ 3,∼�→ 5,∨ �→ 7, ∀ �→ 9, ( �→ 11, ) �→ 13, and thekth variable of typen is mapped
to pnk , wherepk is thekth prime> 13 (for example, the first variable of lowest type is
coded by 17). A sequence of symbols (for example, a formula) with codesn1, . . . , nk is
then mapped to the number 2n1 · 3n2 · · · · · pnkk .

What Gödel calls ‘recursive functions and relations’ would now be calledprimitive
recursive functions (and relations); he used the terminology in use at the time. A function
φ is primitive recursive if there is a sequence of functions each of which is either the
successor functionx+1, a constant function, or results from two functionsψ,µ occurring
previously in the sequence by the schema of primitive recursion

φ(0, x2, . . . , xn)= ψ(x2, . . . , xn), (1)

φ(k + 1, x2, . . . , xn)= µ
(
k,φ(k, x2, . . . , xn), x2, . . . , xn

)
. (2)

A relation between natural numbers is primitive recursive if it can be defined by
φ(x1, . . . , xn)= 0, whereφ is a primitive recursive function.

Gödel’s Theorem I states that primitive recursive functions are closed under substitution
and primitive recursion. Theorem II states that recursive relations are closed under comple-
ment and union. Theorem III states that if two functionsφ,ψ are primitive recursive, then
so is the relation defined byφ(x̄)= ψ(x̄). Finally, Theorem IV establishes that primitive
recursive relations are closed under bounded existential generalization, that is, ifφ(x) and
R(x, ȳ) are primitive recursive, thenso is the relation defined by(∃z)(z� φ(x)&R(z, ȳ)).
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Gödel next defines 46 functions and relations needed for the arithmetization of syntax
and provability, of which the first 45 are primitive recursive. These definitions culminate in
the definition of (45)xBy (‘x is a proof ofy ’) and (46)Bew(x) (‘x is a provable formula’).
Bew(x) is not primitive recursive, since it is obtained fromB by unbounded existential
generalization (that is, as (∃y)yBx). These definitions use the arithmetization of syntax
introduced earlier in the sense that, for example, the relationBew(x) holds of anumber x
if it is the code of a provable formula.

Gödel then sketches the proof of Theorem V, which states that wheneverR is a
primitive recursiven-ary relation, then there is a formulaA with n free variables, so
that if R(k1, . . . , kn) , thenA(k̄1, . . . , k̄n) is provable, and when notR(k1, . . . , kn), then
∼ A(k̄1, . . . , k̄n) is provable. (Here,̄k is 0 preceded byk f ’s.) A formulaA that is ob-
tained from the primitive recursive definition ofR in the way outlined in the proof is
called a ‘primitive recursive formula’. Since the proof is only sketched, this is not an ex-
plicit definition of what a primitive recursive formula is. In particular, in the systemP , the
most natural way to formalize primitive recursion is by higher-order quantification over
sequences of numbers. Gödel explicitly uses such a second-order quantifier in the proof
of Theorem VII discussed below. The method of constructing a formula ofP which sat-
isfies the conditions of Theorem V for a given primitive recursive relationR—a formula
which ‘numeralwise represents’R—yields such a formula for each of the 46 functions and
relations defined earlier.

Following the proof of Theorem V, Gödel introduces the notion ofω-consistency.
Roughly, an axiomatic system isω-consistent if one cannot prove bothA(n̄) for all n and
∼(∀x)A(x). Theorem VI then is the first incompleteness theorem. Supposeκ is a primitive
recursive predicate that defines a set of (codes of) formulas, which we might add as axioms
to systemP . Then we can, in a similar way as before, define the relationxBκy (x is a proof
of y in Pκ) and the predicateBewκx (x is provable inPκ). Theorem VI states that ifPκ
is ω-consistent, then there is a primitive recursive formulaA(x) so that neither(∀x)A(x)
nor∼(∀x)A(x) are provable inPκ . By an ingenious trick combining diagonalization and
the arithmetization of syntax (especially Theorem V), Gödel proves that there is a formula
A(x) so that(∀x)A(x) is provably equivalent inPκ to ∼Bewκ (p̄), wherep is the Gödel
number of(∀x)A(x) itself. Hence,(∀x)A(x) in a sense says of itself that it is unprovable.

The paper continues in Section 3 with a number of strengthenings of Theorem VI. The
formulaAwhose existence was proved in Theorem VI may contain quantifiers over higher-
type variables. A relation which can be defined using only quantification over individual
variables, and also+ and· as additional functions (addition and multiplication) is called
arithmetical. Theorem VII states that every primitive recursive relation is arithmetical. Fur-
thermore, the equivalence of recursive relations with arithmetical relations is formalizable
in the system, that is, ifA is a primitive recursive formula, then systemP proves thatA
is equivalent to an arithmetical formula (one containing+, ·, but no quantification over
variables of higher type). It then follows from Theorem VI that everyω-consistent axiom-
atizable extension ofP contains undecidable arithmetical sentences (Theorem X).

The final section is devoted to the second incompleteness theorem (Theorem XI), which
says that the formalization of consistency of an extensionPκ of P is not provable inPκ . In
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this context, the formula formalizing consistency ofPκ is taken to be

Widκ ≡ (∃x)
(
Form(x)& ∼Bewκ(x)

)
(3)

(‘there is an unprovable formula’). The proof of Theorem XI is only sketched. The argu-
ment for the first half of Theorem VI, namely, that(∀x)A(x) is unprovable inPκ , uses
only the consistency ofPκ but not itsω-consistency. By formalizing this proof inPκ itself,
we see thatPκ proves the implicationWidκ → ∼Bewκ (p̄), wherep is the Gödel num-
ber of the unprovable(∀x)A(x). But, as noted above,∼Bewκ(p̄) is equivalent, inPκ , to
(∀x)A(x). So if were provable, then (∀x)A(x) would be provable as well.

4 IMPORTANCE AND IMPACT OF THE INCOMPLETENESS THEOREMS

The main results of Gödel’s paper, the first (Theorem VI) and second (Theorem XI) in-
completeness theorems, stand as two of the most important in the history of mathematical
logic.

Their importance lies in their generality: although proved specifically for extensions of
systemP , the method Gödel used is applicable in a wide variety of circumstances. Any
ω-consistent system for which Theorem V holds will also be incomplete in the sense of
Theorem VI. Theorem XI applies not as generally, and Gödel only announced a second
paper in which this was going to be carried out for systems which are not extensions ofP .
However, the validity of the result for other systems was soon widely recognized, and the
announced paper was never written. Hilbert and Bernays [1939] provided the first detailed
proof of the second incompleteness theorem, and gave some sufficient conditions on the
provability predicateBew in order for the theorem to hold (§77.4.2).

One important aspect of the undecidable sentence(∀x)A(x) is that, although it is nei-
ther provable nor refutablein P , it is nevertheless readily seen to betrue. For what it states
is that it itself is not provable inP , and by the first incompleteness theorem, this is pre-
cisely the case. Since it is also not refutable, that is, its negation is also unprovable inP ,
the existence of undecidable sentences like(∀x)A(x) shows the possibility of axiomatic
systems which areω-inconsistent. The system resulting fromP by adding∼(∀x)A(x) as
an additional axiom is one example. It provesA(n̄) for all n, and also(∃x)∼A(x). Al-
though by Theorem VI there will also be true but unprovable statements inthis system, the
existence of undecidable sentences is left open. Rosser [1936] weakened the assumptions
of Theorem VI and showed that not onlyω-inconsistent but also consistent systems of the
type discussed by Gödel will contain independent sentences.

The immediate effect of Gödel’s theorem, and in particular, of his second theorem, was
that the assumptions of Hilbert’s program were challenged. Hilbert assumed quite explic-
itly that arithmetic was complete in the sense that it would settle all questions that could be
formulated in its language—it was an open problem he was confident could be given a pos-
itive solution. The second theorem, however, was more acutely problematic for Hilbert’s
program. As early as January 1931, in correspondence between Gödel, Bernays, and von
Neumann, it became clear that the consistency proof developed by Ackermann must con-
tain errors [Zach, 2003]. Both Bernays and von Neumann accepted that the reasoning in
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Gödel’s proof can be readily formalized in systems such asP ; on the other hand, a consis-
tency proof should, by Gödel’s own methods, also be formalizable and yield a proof inP

of the sentence expressingP ’s consistency.
The errors in the consistency proof were soon found. It fell to [Gentzen, 1936] to give

a correct proof of consistency using methodsthat, of necessity, could not be formulated in
the system proved consistent. Although Gödel’s results dealt a decisive blow to Hilbert’s
program as originally conceived, they led to Gentzen’s work, which opened up a wide range
of possible investigations in proof theory. For more on the reception of Gödel’s theorems,
see [Dawson, 1989] and [Mancosu, 1999].

As mentioned above, up to 1930 it was widely assumed that arithmetic, analysis, and
indeed set theory could be completely axiomatized, and that once the right axiomatizations
were found, every sentence of the theory under consideration could be either proved or
disproved in the object-language theory itself. Gödel’s theorem showed that this was not
so, and that once a sharp distinction between the object- and metatheory was drawn, one
could always formulate statements which could be decided in the metatheory, but not in the
object theory itself. The first incompleteness theorem shows that object-level provability is
always outstripped by meta-level truth. Gödel’s proof, by example as it were, also showed
how carefully object- and meta-language have to be distinguished in metamathematical
considerations. A few years later, Tarski’s work on truth and semantic paradoxes pointed
to the same issue, showing that truth cannot be defined in the object-level theory (provided
the theory is strong enough).

Gödel’s results had a profound influence on the further development of the foundations
of mathematics. One was that it pointed the wayto a reconceptualization of the view of ax-
iomatic foundations. Whereas a prevalent assumption prior to Gödel—and not only in the
Hilbert school—was that incompleteness was at best an aberrant phenomenon, the incom-
pleteness theorem showed that it was, in fact, the norm. It now seemed that many of the
open questions of foundations, such as the continuum problem, might be further examples
of incompleteness. Indeed, in [Gödel, 1940]he succeeded not long after in showing that
the axiom of choice and the continuum hypothesis are not refutable in Zermelo–Fraenkel
set theory: Cohen [1966] later showed that they were also not provable. The incomplete-
ness theorem also played an important role in the negative solution to the decision problem
for first-order logic by Church [1936]. The incompleteness phenomenon not only applies
to provability, but, via the representability of recursive functions in formal systems such as
P , also to the notion of computability and its limits.

Perhaps more than any other recent result of mathematics, Gödel’s theorems have ig-
nited the imagination of non-mathematicians. They inspired Douglas Hofstadter’s best-
sellerGödel, Escher, Bach (1979), which compares phenomena of self-reference in math-
ematics, visual art, and music. They also figure prominently in the work of popular writers
such as Rudy Rucker. Although they have sometimes been misused, as when self-described
postmodern writers claim that the incompleteness theorems show that there are truths that
can never be known, the theorems have also had an important influence on serious philos-
ophy. John Lucas, in his paper ‘Minds, machines, and Gödel’ (1961) and more recently
Roger Penrose inShadows of the mind (1994) have given arguments against mechanism
(the view that the mind is, or can be faithfully modeled by a digital computer) based on
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Gödel’s results. It has also been of great importance in the philosophy of mathematics: for
instance, Gödel himself saw them as an argument for Platonism [Feferman, 1984].
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CHAPTER 72

WALTER ANDREW SHEWHART, ECONOMIC
CONTROL OF QUALITY OF MANUFACTURED

PRODUCT(1931)

Denis Bayart

In this book Shewhart brought together many of the statistical principles of industrial qual-
ity control. His work contributed largely to the opening up of the field of industrial appli-
cations to mathematics.

First publication. New York: Van Nostrand;London: Macmillan, 1931. xiv+ 501 pages.

Photoreprint. ‘50th anniversary commemorative reissue’, Milwaukee, Wisconsin: Ameri-
can Society for Quality Control, 1980.

Spanish translation. Control económico de la calidad de productos manufacturados,
Madrid, Spain: Diaz de Santos, 1997.

Related articles: Laplace on probability (§24), Pearson (§56), Fisher (§67).

1 THE INDUSTRIAL PROBLEM OF THE STATISTICAL CONTROL OF QUALITY

This book is the first publication to deal specifically with the control of industrial man-
ufacturing processes by means of mathematicalstatistics. It relies mainly on the theories
of distributions and sampling. This introduction of mathematical analysis into the field of
industrial operations gives rise to important developments in the engineering sciences and
also leads to statistical decision theory.

The flourishing of mass production in industry during the 20th century has caused prob-
lems in controlling the quality of manufactured products. They are produced in numbers
too great to allow individual control, and sometimes the control involves their destruction
(for example, munitions). In other cases, the control requires extensive operations in the
laboratory, which inhibits a quick reaction to correct the errors detected.

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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In this context, statistics and the calculus of probabilities furnish rational meth-
ods for controlling production by sampling.Probability makes it possible to calcu-
late the risk of making a bad decision based on a sample of given size. These cal-
culations have caused many surprises, as there is always a tendency to over-estimate
how representative a sample is. Thus, to judge the quality of a batch it was cus-
tomary to take a sample of 2% of the batch size, which is much too small to form
the basis of a valid judgement. Moreover, Poisson’s law has been rediscovered in the
observation that the sample need not necessarily be proportional to the size of the
batch.

Thus, in the course of the 1920s, many methods appeared independently in several
industrial countries. The mathematics involved is not particularly new, and had indeed
been known for a long time. Thus it was certainly the economic and industrial conditions
that encouraged the development of these methods at this particular time.

It was W.A. Shewhart (1891–1967) who produced the most original and profound pub-
lication of his day. A physicist by training with a Ph.D. in physics from the University of
California at Berkeley in 1917, he was recruited in 1918 by the Western Electric Company
and then in 1925 by Bell Telephone Laboratories, where he remained until his retirement
in 1956. As well as statistics, he was involved with standardization in liaison with several
large engineering associations.

Shewhart also played an important part in the American statistical community: founding
member (1937) and president (1944) of the Institute of Mathematical Statistics, and presi-
dent (1945) of the American Statistical Association. In addition, he was the first editor of
the seriesWiley publications in statistics, where he placed emphasis on applied statistics.
His works were also taken into the field of management by the statistician and consultant
W.E. Deming (1900–1993): they enjoyed great success in Japan, where they contributed
to the industrial miracle of the 1970s (quality circles, total quality control) before being
re-imported to the United States in the 1980s.

2 AN APPROACH VIA STATISTICAL PHYSICS

The problem to be addressed is that of the variability of physical quantities brought into
play in industrial processes. It is this variability that can explain the bad quality of products.
Indeed, the good quality of a product is defined as its conformity to a set of specifications
and tolerances (in this approach, the quality ofindustrial products is always assumed to be
measurable). The manufacturing equipment, raw materials and manual operations intro-
duce into the process a variability that is not measured, and may be incompatible with the
tolerances imposed.

Shewhart studied this variability by regarding it as a property of the system of produc-
tion and by representing it as a statistical distribution whose parameters could be estimated.
But for such a hypothesis to be valid, it is necessary that a system of production be in a
stable state, which Shewhart conceptualised under the name of ‘constant system of chance
causes’. In general, the production equipment in a factory is not in this state. To get around
this, it is necessary to identify the ‘assignable causes of variation’ and by eliminating them
to reduce the variability and regularize production. He referred explicitly to P.S. Laplace
in these first reflections [Shewhart, 1924, 57].
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Figure 1. The first form of the control chart [Shewhart, 1924]. Property of Bell Telephone
Laboratories, Murray Hill, New Jersey, USA.

The economic dimension mentioned in thetitle of the work arises for reasons of cost
effectiveness. The identification and elimination of assignable causes of variation carry
a cost, which must be comparable with the advantages resulting from an improvement
in quality. In addition, physical phenomena introduce a natural variability (for Shewhart,
all these physical magnitudes are of a statistical nature) which it is ‘not reasonable’ to
seek and reduce. The quest for precision thus comes upon an obstacle both physical and
economic, which imposes limitations on what the industry is capable of producing in terms
of quality.

Beside the theoretical aspects Shewhart also conceived the cognitive tools which are an
indisputable aid to the implementation of a course of action: these are ‘control charts’ (Fig-
ure 1). The control chart is a remarkable invention that depicts visually both the evolution
of the characteristics of quality of production and the limits that it must not exceed. These
limits represent the natural variability of the system. If they are exceeded at a given mo-
ment, this means that the system is no longer in the same stable state, that an external cause
of variability has intervened to significant effect, and that an enquiry must be launched to
identify it.
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3 THE DIALOGUE BETWEEN MATHEMATICS AND INDUSTRIAL PRACTICE

The reader of Shewhart’s book will perhaps be surprised by the mathematics to be found
there, as it is closer to physics or engineering. Why then is it included in these ‘landmarks
of mathematics’?

One reason is that it is just this book that has opened the way for thousands of papers and
reports on statistical process control. Another reason is that Shewhart puts mathematics to
practical use without recourse to a brutal ‘application’ of formalisms or calculations. It in-
stitutes a dialogue between mathematical theory and experience by scrupulously emphasiz-
ing their respective limits to obtain the compromise necessary for action. This compromise
is worked out from an ‘economic’ point of view, taking into account the cost of acquiring
information and taking action in relation to the attendant benefits. Although these aspects
are not developed very far, one can see in Shewhart the premises of the mathematics of
decision-making.

On the mathematical plane, Shewhart invokes above all the following elements: a) the
mathematical theory of statistical distributions (frequent use of the first four moments and
various estimators); b) the identification of distributions from empirical observations, no-
tably by the methods of Karl Pearson and the Gram-Charlier; c) the theory of sampling and
distributions of sample statistics.

The works of Shewhart have a social dimension in their domain of action, industry:
they introduce mathematical statistics into the factory, entrusting it to the working man
with little education in mathematics. This is atour de force accomplished by the control
chart, which transforms into a visual metaphor the reasoning by statistical induction from
samples.

It must be acknowledged that this work wasaccomplished on behalf of the large Amer-
ican telephone company AT&T, at the request and with the support of its directors, with
the very rich human and material resources atthe disposal of the departments of research
and engineering. The legend ‘Member of the Technical Staff, Bell Telephone Laboratories,
Inc.’ features prominently beneath the name of the author on the title pageof the book.
This involvement in business has given him access to real facts and industrial experience
in creating a dialogue between statistical theory and practical experience.

Shewhart also had many exchanges with his colleagues, especially Harold F. Dodge,
who also worked in statistical control but from another point of view (sampling inspection);
and also those connoisseurs of probability and statistics, T.C. Fry and E.C. Molina. The
works of Shewhart first appeared as the subject of ‘Out-of-hours courses’ at Bell Telephone
Laboratories, whose technical services provided a valuable resource in making possible
the realization of numerous graphs, tables and diagrams. Finally, the Bell Laboratories
produced a scientific journal,The Bell System technical journal, which published several
articles on these new methods.

Following in the footsteps of ‘Student’ (W.S. Gosset), Shewhart has thus contributed to
the opening up of the field of industrial applications to mathematics. The new constraints
suggested or imposed by the industrial terrain have stimulated the creativity of statisticians,
leading to important theoretical advances. We recall, for example, that the statistical deci-
sion theory of Abraham Wald evolved from sequential analysis, which was itself a response
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to a problem on the statistical control of quality raised during the Second World War by a
Supply Corps officer [Wald, 1947].

4 PRESENTATION OF THE BOOK

The contents of Shewhart’s book is summarized in Table 1. It consists of 25 chapters di-
vided into seven parts, and three appendices. We shall take the parts in order, insofar as
they correspond to a methodical progression through the various aspects of the material.

The introduction (Part I, three chapters) is very substantial. It comprises a synthesis of
the whole, aimed at a scientific or cultivated audience. Shewhart gives a very systematic
account of the hypotheses on which his method is based. These mainly concern the concept
of ‘constant system of causes’, which he constructs by a method of abstraction based on
equivalence relations between systems. He chooses examples of random systems known in
the physical sciences for transferring methods of reasoning to industrial systems. He also
describes the principle of the control chart and the various advantages that industry can
reap from the statistical control of quality.

Part II (‘Ways of expressing quality of product’, six chapters) is an exposition of de-
scriptive statistics adapted to the needs of industrial production. What are the different
ways of presenting the facts expressing the quality of manufactured goods? What criteria
should be used as evidence in making judgments? The order in which measurements are
taken is essential when it is necessary to decide whether or not the system from which the
series results is random. One chapter is devoted to tables, graphs and diagrams, another to
analytic considerations, and a third to the expression of relations (correlations). This part
recounts the work of a normalization committee created in 1929 to which Shewhart had
contributed. The proposals of this committee were later adopted as standards by the Amer-
ican Standards Association [Littauer, 1950]. This is an example of Shewhart’s contribution
at the level of institutions of normalization for formalizing statistical facts.

Part III (‘Basis for specification of quality control’, three chapters) plumbs the theoret-
ical depths of the new concept of control and proposes a characterization of ‘maximum
control’. This state is defined as ‘the condition reached when the chance fluctuations in a
phenomenon are produced by a constant system of a large number of causes in which no
cause produces a predominating effect’ (p. 151). A cause which dominates the others is
called an ‘assignable cause of Type I’.

Establishing that a system is in a state of control raises fundamental difficulties: such
a state cannot be characterized in a positive way, as this would require observing its func-
tioning over an infinite period of time. One can only make a hypothesis and submit it to
experience. While lacking a sufficient condition for a state of control, one has the necessary
condition that ‘differences in the quality of a number of pieces of a productappear to be
consistent with the assumption that they arose from a constant system of chance causes’
(p. 146).

Part IV (‘Sampling fluctuations in quality’, four chapters) is devoted to sampling,
both theoretical and practical. Shewhart utilises British mathematical statistics to estab-
lish relations between the original distribution and the sampling distributions for sev-
eral estimators of central tendency and dispersion. For example, he draws up a table of
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Table 1. Contents by chapters of Shewhart’s book. Thetitles are quoted.

Chap. Page Topics
vii Preface, Table of contents.

Part I 1 Introduction.

1 3 Characteristics of a controlled quality.

2 8 Scientific basis for control.

3 26 Advantages secured through control.

Part II 35 Ways of expressing quality of product.

4 37 Definition of quality.

5 55 The problem of presentation of data.

6 63 Presentation of data by tables and graphs.

7 71 Presentation of data by means of simple functions or statistics.

8 85 Basis for determining how to present data.

9 99 Presentation of data to indicate relationship.

Part III 119 Basis for specification of quality control.

10 121 Laws basic to control.

11 145 Statistical control.

12 150 Maximum control.

Part IV 161 Sampling fluctuations in quality.

13 163 Sampling fluctuations.

14 174 Sampling fluctuations in simple statistics under statistical control.

15 214 Sampling fluctuations in simple statistics, correlation coefficient.

16 230 Sampling fluctuations in simple statistics, general remarks.

Part V 247 Statistical basis for specification of standard quality.

17 249 Design limits on variability.

18 262 Specification of standard quality.

Part VI 273 Allowable variability in quality.

19 275 Detection of lack of control in respect to standard quality.

20–21 301 Detection of lack of control.

Part VII 349 Quality control in practice.

22 351 Summary of fundamental principles.

23 376 Sampling, measurement.

24 404 Sampling.

25 418 The control program.

425 Appendix I. Resultant effects of constant cause systems.

437 Appendix II. Experimental results.

473 Appendix III. Bibliography.

493 Indexes of names and subjects. [End 501.]
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coefficients for passing by simple multiplication from the observed mean of the stan-
dard deviation of the samples to the standard deviation of the distribution of the vari-
able.

Shewhart also uses an experimental approach involving urns of controlled composition.
First there is an urn whose composition simulates the normal law (discretized and repre-
sented by 998 chips marked according to the values of the random variable). This enables
him to produce experimental results on samples and to verify the agreement between theory
and experience. 4000 draws are made from this urn and reproduced in an appendix.

A second urn is made up of a population with rectangular distribution, that is, uniform
between 0 and 1. A third represents a triangular distribution with maximum on the right.
There also 4000 draws are made from each urn and the results published. They serve mainly
to test the robustness of analytic formulae linking the original distribution and the sampling
distributions where the former is not normal. These experiments lead to a conclusion which
is very important in practice: samples of sizen= 4 appear to be robust. Since that time the
number 4 has featured in all the textbooks like a fetish (or sometimes 5, which makes the
calculations easier). The underlying concept is that of ‘rational subgroup’ (see the next
section).

In part V, Shewhart considers the formulation of production specifications (‘Statistical
basis for specification of standard quality’, two chapters). In the first he studies from a
statistical point of view the addition of tolerances, which is important in the design of
products. He then proposes defining specifications of quality by means of a distribution, its
mean and deviation. This represents another contribution to the scheme of drawing up new
standards for industry.

Part VI (‘Allowable variation in quality’, three chapters) explains the theory of control
charts and the criteria used in their construction (see the next section). Part VII (‘Qual-
ity control in practice’, four chapters) is a mixed bag. There is a chapter on the practical
aspects of taking samples and another on measurements in physics aimed mainly at metrol-
ogists. The other two chapters reach very general and rather abstract conclusions, whereby
Shewhart expresses his philosophy of control and of causality.

In the appendices, the author studies various constant systems of causes that are not
normal, and their convergence towards normality as the number of causes increases. The
results of the draws from the three types of box enable the reader to do his own experi-
ments and to develop his intuition on the variability of samples. Finally, the well-annotated
bibliography forms a valuable document for historians.

5 ALLOWABLE VARIABILITY IN QUALITY

The touchstone of Shewhart’s method, being aimed at an operational result, is as follows:
can one effectively reduce the variability of systems, and if so how? He distinguishes two
types of situation.

The first type is that where the ‘standard’ of quality is given in advance, in the spec-
ification, in statistical form (mean and deviation, and form of the distribution). From the
specified parameters of the distribution,one can calculate the limits between which the
mean and deviation of a sample of sizen drawn from this population must vary (with a
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probability chosen close to 1). A sample for which the calculated statistic does not belong
to the prescribed interval indicates with high probability that the system does not follow the
specified distribution. One then pursues an enquiry in the physical world to find the source
of this variation and eliminate it. The whole is subject to ‘economic’ considerations, by
reason of cost-effectiveness.

The discussion on the choice of limits of control forms a particularly good illustra-
tion of the way in which Shewhart creates a dialogue between theory and experiment.
The specified distribution serves essentially to demonstrate the existence of limits of op-
timal control from an economic point of view. But for the calculation of these limits, it
is the experiment that predominates, with the intent of simplifying and uniformizing pro-
cedures. Shewhart finally recommends fixing the limits at 3σ (σ as standard deviation)
on either side of the mean of the distribution. To justify this, he appeals to the very rapid
convergence towards the normal law of a majority of the sample distributions. The choice
of 3σ corresponds to a probability of 0.003 of making a bad decision, which is entirely
acceptable in practice. He also makes appeal, when the law is arbitrary, to Chebychev’s
theorem, but without dwelling on the fact that the risk of a bad decision is thereby in-
creased.

The second type of situation is much more interesting and innovative: bringing the sys-
tem into a state of maximum control, of a kind where the norm is a property of the system
itself and not just grafted on. The main difficulty in this case stems from the fact that one
knows nothing definite about a possible statistical law of the phenomenon. It is necessary
to work progressively.

To begin with, one must form ‘rational subgroups’ from the facts. This operation makes
use of the knowledge of engineering of the system that one has at the outset. These sub-
groups serve to facilitate the discovery of thecauses of variation (for example, by distin-
guishing the products according to the supplier). This concept, which is at an embryonic
stage in the book, is made precise in [A.S.T.M., 1935, art. 4]: ‘within [a subgroup] the vari-
ations may be considered on engineering grounds to be due to nonassignable chance causes
only, butbetween [subgroups] the differences may be due to assignable causes whose pres-
ence is suspected or considered possible’.

The next step is to construct a control chart for a suitable statistic (such as the mean,
deviation or frequency of defectives). One estimates from samples the parameters of the
distribution of this statistic, which serve to place the limits of control at±3σ .

This first control chart enables one to detect assignable causes of variation. Having
eliminated these, one repeats the process: rational subgroups, samples, calculation of new
limits of control. These being tighter than the previous ones, reveal new assignable causes
of variation. Continue in this way untila state of maximum control is reached or one
judges that it is no longer economically viableto make further improvements. We mention,
without going into details of the rather complex methods, the possibility of taking into
account ‘assignable causes of Type II’ present in a system that seems to be in a state of
control. Examples are causes of variation that have an effect en masse (correlated causes)
and cannot be spotted individually.
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6 RECEPTION OF THE BOOK

From the outset, the publication of Shewhart’s book has concerned only statisticians and
some specialists. Karl and Egon Pearson invited him to London in 1932 under the auspices
of the British Standards Institution (BSI). The area was judged important enough to merit
the creation of a special section of the Royal Statistical Society devoted to agricultural
and industrial applications and a specialized series of their journal. In 1935, Egon Pearson
published under the imprimatur of the BSI a textbook on Shewhart’s work [Pearson, 1935]
with certain improvements and modifications [Eisenhart, 1990].

Shewhart published only two books in his lifetime. The second is a collection of lec-
tures delivered at an agricultural school in 1938, collected and edited by Deming, who had
organized the lectures [Shewhart, 1939]. Here Shewhart developed his ideas on metrology,
in a way that is disconcerting but undeniably profound. He was strongly influenced by
the pragmatist philosophy of the logician Clarence I. Lewis and the operationalism of the
physicist P. Bridgman.

It was, however, the economic regime of the War that ensured the wide dissemination of
the statistical control of quality in industry,both in the United States and in Great Britain,
under the impetus of governments who saw in it the technical and economic advantages of
rationalizing production. Important educational programmes were set up.

After the War, the Marshall plan disseminated these methods of industrial organization
in Continental Europe. But it was in Japan that they evoked the greatest response. Intro-
duced in the postwar period by the MacArthur administration, they were gradually adopted
by industrialists, who made them into a hobby-horse with world-famous success.
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CHAPTER 73

VITO VOLTERRA, BOOK ON MATHEMATICAL
BIOLOGY (1931)

G. Israel

In this pioneering book on mathematical Volterra studied aspects of the dynamics of animal
populations. Some competition over results ensued with the statistician Alfred J. Lotka.

First publication. Leçons sur la théorie mathématique de la lutte pour la vie, Paris:
Gauthier-Villars, 1931. vi+ 214 pages.

Manuscript. Manuscripts in box 29 of the Volterra Archive at theAccademia Nazionale dei
Lincei, Rome, Italy.

Photoreprint. Paris: Editions Jacques Gabay, 1990.

Related article: Wentworth Thompson (§64).

1 THE ORIGINS OF VOLTERRA’S INTEREST IN BIOMATHEMATICS

Vito Volterra (1860–1940) may be considered one of the greatest Italian mathematicians
living between the 19th and the 20th centuries who also enjoyed great international pres-
tige. He distinguished himself for his genius from a very early age: when he was only 13
he solved a restricted version of the three-body problem (compare §48). He was profes-
sor of mechanics and mathematical physics at Pisa, Turin and Rome. Nominated Senator
of the Kingdom in 1905, he held numerous offices including that of President of theAc-
cademia dei Lincei and founded new scientific institutions, including the Italian National
Research Council (Consiglio Nazionale delle Ricerche). He was one of 12 Italian univer-
sity professors who refused in 1931 to take an oath of allegiance to the fascist regime; this
resulted in his being marginalized from national life and culminated in his total exclusion
after the promulgation of the anti-Jewish race laws. His huge scientific production em-
braced central issues of mathematical physics, especially the theory of elasticity; of analy-
sis, a field in which he is considered as one of the inventors of the theory of integral and
integro-differential equations and of functional analysis; and applications of mathematics
to biology.

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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In the early 20th century, Volterra may be considered as one of the few distinguished
mathematical physical scientists to give credence to the use of mathematics in the non-
physical sciences. In a famous lecture delivered in 1900 on the occasion of the opening
of the academic year of Rome University [Volterra, 1901], he made an assessment of the
applications of mathematics to the biological and social sciences. In his opinion, these ap-
plications ought to follow a mechanistic reductionist approach, consisting in ‘transporting’
into the new fields the methods that had beenso successful in the mechanical and physical
sciences. It is on this basis that he made his assessment of the results hitherto achieved.
According to Volterra, the applications to economics had attained excellent results thanks
to Léon Walras and Vilfredo Pareto, who had followed an explicitly mechanistic approach
based on the methods of mathematical analysis (compare §41 on Jevons). Conversely, bi-
ology, with the exception of a few attempts such as the geometric model of the astronomer
G.V. Schiaparelli, seemed to be dominated bystatistical and probabilistic methods that
Volterra considered to be a less important and non-rigorous branch of mathematics.

Despite the emphatic statement of the importance of pursuing such a programme of
mechanistic mathematization, Volterra did not himself engage directly in this type of re-
search in the following two decades. He concerned himself, in general terms, with mathe-
matical economics, a field from which he later withdrew, perhaps because of the difficulties
that arose out of his exchange of letters with Pareto. In the biological field, Volterra made
no direct contributions until the mid 1920s, and it appears that he was not aware of the
research of a mathematical nature carried out in that period, in particular by Alfred J.
Lotka (1860–1949), an American statistician of Austrian origin with many interests rang-
ing from population dynamics to chemical dynamics; and Ronald Ross (1857–1932), a
British physician with a colonial background, a great expert in malaria, whose formulation
of the dynamics of this disease in mathematical terms earned him the Nobel prize for medi-
cine. On the other hand, there is no doubt that Volterra developed a strong empirical interest
in the topic of the dynamics of animal populations and above all in fishery. This emerges
from his activities on the Italian Oceanographic Committee, of which he was a founder
member, promoting its coordination with similar initiatives at the European level. This in-
terest was part of Volterra’s general projectto promote the applications of mathematics
and was stimulated also by his scientific relations with Umberto D’Ancona (1896–1964),
a distinguished zoologist in Italian scientific circles, and an expert in marine biology, who
married his daughter Luisa.

2 THE PREMISES AND GENESIS OF THE BOOK: RESEARCH IN THE 1920S

The book with which we are dealing must be considered as the most important contribution
to the mathematization of biology made during the first half of the century, together with
[Lotka, 1925]. The origins of Volterra’s direct intervention in the field of biomathematical
research emerge clearly from his correspondence, manuscripts and direct testimony.

In late 1925 D’Ancona showed him the results of a statistical survey of fish populations
in the Upper Adriatic sea that pointed to a curious phenomenon. As a general rule, the
percentage of predatory fish in the total fish catch in several ports in the Upper Adriatic re-
mained constant, while it displayed an appreciable increase during the period 1915–1918,
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that is, the years during which Italy was at war and the naval conflict in the Adriatic had
led to an interruption of fishing activities. D’Ancona suggested that the lull in fishing ac-
tivities was the cause of the increase in the number of predators, and he asked Volterra to
provide a mathematical proof of this. Volterra threw himself into the question and came
up with a description of the interaction between prey and predators based on a simple
mathematical model, which has since becomefamous and is known as the ‘Lotka–Volterra
equations’. Using this model he was able to verify D’Ancona’s thesis, but he also drew
from it the pretext for working out a much more extensive range of models to describe the
interaction between any number of animal species in competition among themselves. He
considered both the case of species in exponential growth and in limited (logistic) growth,
and perfected his treatment by introducing delayed effects. To this he used the theory of
memory systems (or ‘hereditary systems’) that he had developed in the field of the theory
of elasticity and represented one of his most important results as a physico-mathematician.
The differential equations involved were thenreplaced by integro-differential equations, a
mathematical theory created by Ludwig Boltzmann, Emile Picard and by Volterra himself.
These results were gathered together in an article published shortly afterwards [Volterra,
1926a] and a short summary of the more elementary results was published in the journal
Nature [Volterra, 1926b] with a presentation by the well-known biologist D’Arcy Went-
worth Thompson (§64), who had received it from an old friend of Volterra, the physicist
Joseph Larmor.

It was clear that Volterra’s interest was not so much in describing a series of scattered
models as in giving form to the programme set out in the 1900 lecture: to introduce, at least
for one branch of biology, a mechanistic approach based on the methods of mathematical
analysis. Volterra actually defined his overall results as a ‘rational mechanics of biological
associations’ that, as in physics, would be based on an experimental or at least empirical
verification.

Volterra’s articles, which preceded other publications in the years that followed, aroused
widespread interest in the scientific world. Not only among his fellow mathematicians
but also among biologists, His results, disseminated above all through theNature article,
aroused curiosity and interest. These biologists included the German Friedrich Boden-
heimer, the zoologist of Canadian origin William R. Thompson, and the American ento-
mologist Royal N. Chapman: Volterra kept up an interesting correspondence with them.
Chapman played an important role in suggesting applications topics to him and in putting
him in touch with his collaborator John Stanley and with another American entomologist,
Samuel A. Graham. This led to the creation of a network of relations that developed further
after the publication of Volterra’s book. For further details and biographical information on
the correspondents, see [Israel and Millán Gasca, 2002].

It must nevertheless be pointed out that Volterra’s entry into the field also gave rise to
some friction, as he had neglected to make any reference to Ross’s work on malaria or to
Lotka’s book [Lotka, 1925], which indeed he did not know. Lotka wrote toNature claiming
that he had preceded Volterra in introducing his prey-predator equations in his book. This
led to a (polite) dispute over priority [Lotka and Volterra, 1927]. It was easy for Volterra
to show that his work had a much more ambitious aim than Lotka’s and enunciated a
much more general system of equations. Their correspondence reveals the totally different
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perspectives of the two scientists, who never succeeded in establishing a fruitful dialogue
[Israel, 1991, 1993].

In the meantime, Volterra ensured that his results were circulated in the mathematical
world. In 1928, he was invited by the mathematician Emile Borel to Paris, a city in which
he already felt at home, to give a series of lectures at the newInstitut Henri Poincaré on
the mathematical theory of biological fluctuations. The lectures were held in the winter of
1928–1929, and the task of collecting the text for possible editing was given to a young
mathematician and former student at theEcole Normale Supérieure, Marcel Brelot (1903–
1987). This led to the idea of turning the text of the lectures collected by Brelot into a
book to be published in the seriesCahiers Scientifiques, directed by the mathematician
Gaston Julia and published in Paris by Gauthier–Villars. In February 1929, Volterra wrote
to D’Ancona to announce his decision to publish a book and to ask his opinion on three
possible titles: ‘Principes mathématiques de la lutte pour la vie’, ‘Théorie mathématique
de la lutte pour la vie’, and ‘Principes mathématiques de biologie’. D’Ancona chose the
second (‘Mathematical theory of the struggle for life’), which Volterra followed; he res-
olutely rejected the third on the grounds that Volterra’s studies involved only one sector
of biology, ecology, and indeed only part of the latter. However, this was an indication of
Volterra’s ambition to open the way towards a general mathematization of biology.

3 THE WRITING AND CONTENTS OF THE BOOK

In order to appreciate the events surrounding the publication of the book something must
be said about the person responsible for the final draft, namely Brelot. As was mentioned,
he was a former student of theEcole Normale Supérieure, where he had as fellow students
mathematicians such as André Weil, Jean Dieudonné, Claude Chevalley and Henri Cartan,
the founding nucleus of the ‘Bourbaki’ group. Although never actually a member, in his
later career as a mathematician Brelot displayed such a passionate support for axiomatics
as to be considered more Bourbakist than the Bourbakists. In 1931 he was engaged in
writing a doctoral thesis under the guidance of Picard, a great friend of Volterra. It was due
to the intervention of the latter and of Vessiot that Volterra facilitated Brelot being awarded
a Rockefeller scholarship, which he utilized at the University of Rome under Volterra’s
guidance, and at the University of Berlin under Erhard Schmidt. It was only natural that
the Roman period should be utilized for editing Volterra’s book, even though Brelot did
not like the climate or life in the Italian capital and made frequent trips back to Paris or to
his native residence in the country at Boisseaux from where he wrote letters to Volterra.

According to the intentions of Volterra, Brelot was supposed to make an accurate tran-
scription of his lectures, re-elaborating the mathematical part in all its details and in par-
ticular the proofs, adding appendices wherevernecessary to make all the technical aspects
easier for the reader to grasp. Furthermore,Volterra had a much broader readership that
just mathematicians in mind: he aimed in particular at biologists. From a very early stage
he involved D’Ancona, who was given the first drafts of the various parts of the book as
soon as they were completed, and was regularly asked for his opinion on the terminology
used, on all aspects of the biological side of the book, for the bibliographic references, and
also to write some historical-bibliographical notes. In this way, Volterra aimed at putting
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together a book that would satisfy two requirements: rigour and completeness of the math-
ematical treatment, so that it would representa point of reference and departure for the
development of research; and the richness ofthe references to biological issues, so as to
involve biologists and stimulate as wide an interest as possible.

The task of holding together these two requirements proved more difficult than ex-
pected, especially because of the heterogeneous nature of the two collaborators and, in
particular, because Brelot’s mentality was quite different from Volterra’s. Brelot was actu-
ally thinking of a book that, on the basis of a few simple biological ideas would be focused
on ‘rational research, calculations and mathematical theories’, as he wrote in a letter to
Volterra which forms part of the extensive correspondence between September 1929 to
October 1930 that accompanied the writing of the book [Israel and Millán Gasca, 2002,
ch. 4].

From this point of view, it is particularly interesting to examine the difference of opin-
ion that occurred between Brelot and Volterra regarding the role of ‘biological postulates’
in the development of the theory. In Volterra’s view, the process of mathematization should
consist in formulating in mathematical terms hypotheses deemed to be plausible and then
abandoning oneself to the tool of mathematical analysis, taking the process as far as pos-
sible, and only in the very end, to compare the results obtained with the initial hypotheses
in order to verify whether any unsatisfactory aspects were due to any unrealistic aspects
of the hypotheses themselves. Brelot, on the other hand, was in favour of introducing ‘bi-
ological postulates’ during the process in order to facilitate the mathematical treatment or
to make it possible to obtain complete coherent partial results. He used this approach in
the treatment of the case of a three-speciesecosystem in which one species feeds off the
second and the second feeds off a plant species. Volterra reacted somewhat energetically,
calling upon him to modify his treatment saying that ‘it is possible to go some considerable
distance using mathematics and to do without postulates’, as well as insisting on the need
to maintain a distinction between the mathematical part and the biological part. In a series
of phrases, subsequently deleted from the final version of the letter (dated September 1929)
requesting Brelot to reappraise his approach, Volterra displayed all his annoyance, going
as far as to say that ‘postulates are mostly proposed by Satan in order to make us lazy’
and developed in detail, also from a mathematical point of view, the treatment that ought
to be followed by Brelot. The latter displayed a degree of resistance to Volterra’s request,
claiming that, however annoying, biological postulates represented the only way of ensur-
ing rigour was maintained, that is, that the hypotheses were precisely defined, and went as
far as to say that ‘he felt some aversion to the approximation procedures’ used by Volterra.
The dispute ended in a verbal encounter of which we have no record but, judging from the
result, a compromise was probably reached. Brelot attempted to limit the use of postulates,
although he held out for his point of view quite stubbornly. Oddly enough, in a subsequent
letter, he pointed out that ‘a cultivated reader may find it annoying to have to leave the
safe terrain of mathematical reasoning’ (and use ‘postulates’), ‘but he can only blame the
evil nature of the problem’. In other words, the blame for the unsatisfactory aspects of the
treatment was not so much inherent in the latter as in biological reality itself.

Brelot’s relative insensitivity to the empirical issues underlying the theory also explain
the difficulty that he experienced in accepting D’Ancona’s contributions. He considered
D’Ancona’s intervention to be superfluous and even incomprehensible. It is no coincidence
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Table 1. Summary by Chapters and Sections of Volterra’s book.

Ch.-Sect.: page Description
v–vi: 1 Foreword.

I Coexistence of two species.

I-I: 9 Two species competing for the same food.

I-II: 14 Two species one of which devours the other.

I-III: 27 Two species in the case of different mutual actions.

II Preliminary study of the coexistence of any number of species.

II-I: 36 Species competing for the same food.

II-II: 38 First elements in the study of several species preying on each other.

II-III: 42 Case of an even number of species preying on each other.

II-IV: 58 Case of an uneven number of species preying on each other.

68 Mathematical note.

III Study of the coexistence of n species with more general hypotheses.
Conservative and dissipative systems.

III-I: 77 The coefficient of growth of each species living alone is allowed to
depend on the number of individuals comprising it.

III-II: 96 Much more general theory.

III-III: 104 Conservative and dissipative associations.

III-IV: 131 Introduction of the hypothesis of variation of the external conditions.

135 Mathematical note.

IV On hereditary actions compared in biology and mechanics.

IV-I: 141 Notion of inheritance of its mathematical translation.

IV-II: 159 Study of the coexistence of a predatory species and a preyed species in
the hypothesis of an invariable linear heredity.

IV-III: 169 Hereditary energy in biology (preceding case with minor fluctuations)
and in mechanics with a single parameter.

188 Mathematical note.

197 Conclusion, historical note, bibliography.

211–214 Contents.

that he found repugnant the idea of including the historical-biological note written by the
latter in the book. According to Volterra’s intentions this note was to have been an essential
part of the book. Brelot accepted D’Ancona’s intervention, pointing out that ‘there was no
harm in having theapparent collaboration of a professor of natural sciences’ but insisted
that it be contained in a separate note and placed at the end.

The contents of Volterra’s book are summarised in Table 1. It consisted of four chapters.
The first was dedicated to the problem of the coexistence of two species, the second to the
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study of the coexistence of any number of species, which was then generalized in chap-
ter three, in particular making a distinction between conservative and dissipative systems;
chapter four introduced the notion of hereditary action in biology and the related technique
of integro-differential equations. The book opened with an introduction that fully reflected
Volterra’s ideas and was concluded by D’Ancona’s historical-bibliographical note. The
book was accompanied by mathematical noteswritten by Brelot concerning elements of
linear algebra, quadratic forms, and Volterra’s integral and integro-differential equations.

4 THE PLACE OF THE BOOK AMONG VOLTERRA’S WORKS

With a process of construction such as this, it is quite clear that the book would not fully
satisfy either its author or its editors, whether mathematicians or biologists. The book had
the undeniable merit of providing a comprehensive and complete account of Volterra’s
research, of including it in the framework of research carried out on the subject, and of
representing a useful handbook for anyone wishing to establish an exhaustive basis for
further research. Its defects stemmed from the compromises made between the diverging
ideas of the collaborators: Brelot’s abstract and mathematics-oriented approach left heavy
traces in the final draft despite Volterra’s attempts to contain it. The book was too heavily
biased in favour of mathematicians, and the over-abundance of technical jargon was likely
to scare off biologists. Furthermore, Brelot’s mathematical background revealed substantial
gaps in the field of the qualitative analysis of differential equations, and so the treatment
appeared rather old-fashioned and not to have taken on board more recent developments.

Volterra’s dissatisfaction with the book, and in particular with its scant attraction for bi-
ologists, was expressed immediately and became the subject of an exchange of letters with
D’Ancona, in which the blame for the defects was laid squarely on Brelot. This led to the
idea of writing a new book addressed mainly to naturalists and thus pruned of all unduly
complicated mathematical technicalities. This book, the result of an intense collaborative
effort between D’Ancona and Volterra, was published in 1935 [Volterra and D’Ancona,
1935]. In Volterra’s mind, the 1931 book represented therational phase of the study of
biological associations (corresponding to the status of rational mechanics in mathemati-
cal physics), while the book written with D’Ancona represented the development of the
applied phase. In a third stage [Volterra, 1937] he was then to go on and develop thean-
alytical phase, namely the formulation in variational terms of the mathematical theory of
biological associations, corresponding to analytical mechanics [Israel, 1991].

5 THE BOOK’S RECEPTION AND ITS INFLUENCE ON
BIOMATHEMATICAL RESEARCH

Volterra’s book created quite a stir and gained him further scientific relations, particularly
in the field of biology. The organic illustration of his results in a book aroused curiosity
and stimulated attempts to compare theory with empirical reality. Furthermore, it imposed
a certain direction on his scientific publications on the subject. It may be claimed that,
whereas during the first phase interest in Volterra’s work developed in the Anglo-Saxon
world, it gradually gave way to new relations in the Continental European sphere. Signifi-
cant relations were formed between Volterraand the eminent American zoologist Raymond
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Pearl and the British zoologist Charles S. Elton (one of the founders of modern ecology)
in the wake of the book’s publication, although all the efforts to have the book published in
English made by Elton, Chapman and D’Arcy Thompson were unsuccessful. In actual fact,
the centre of Volterra’s relations gradually shifted from the Anglo-Saxon scientific world
to that of the Francophone and Soviet area. Volterra’s research had strong repercussions
on Soviet mathematicians, such as A.N. Kolmogorov who developed a generalization of
Volterra’s equations for the case of competing species. The Russian biologist Giorgii F.
Gause showed considerable interest in Volterra’s theories, engaging in an intense activity
to verify them empirically [Gause, 1935].

However, it was above all in Paris that Volterra found two perceptive interlocutors who
became his principal collaborators for the rest of his life: the Russian emigré geochemist
Vladimir A. Kostitzin, and the professor of pharmacy Jean Régnier. Kostitzin, who had
been a member of the ‘Moscow school’, was also an expert in the theory of integral equa-
tions and made a significant contribution to the theory, also of a mathematical nature [Kos-
titzin, 1934, 1937]. Régnier made available hislaboratory for the purpose of carrying out
empirical research on the growth of bacteria populations, with Kostitzin working on the
theoretical side. However, the reductionist approach of the trio came into growing con-
flict with the dominant modelling approach. The war then either separated them physically
or witnessed their deaths, and thus brought to a close that 20-year period known as ‘the
Golden Age of theoretical ecology’ [Scudo, 1984].

For contemporary mathematical biology Volterra’s 1931 book (and his biomathematical
work as a whole) represents one of the most frequently cited references, as most ecosystem
models are actually only re-elaborations and improvements of systems of equations that he
enunciated. However, as a source for use the book is comparatively superficial, for most of
its mechanistic scientific programme has been forgotten or abandoned.
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CHAPTER 74

S. BOCHNER, LECTURES ON FOURIER
INTEGRALS (1932)

Roger Cooke

This treatise marked a stage in the unification of harmonic analysis in the context of ab-
stract integration theory. It contained the first publication of Bochner’s famous theorem
characterizing the Fourier transforms of positive measures.

First publication. Vorlesungen über Fouriersche Integrale, Leipzig: Akademische Ver-
lagsgesellschaft, 1932 (Mathematik und ihre Anwendungen in Monographien und
Lehrbüchern, vol. 12). viii+ 229 pages.

Photoreprint. New York: Chelsea Publishing Company, 1948.

English translation. Lectures on Fourier integrals. With an author’s supplement on
monotonic functions, Stieltjes integrals, and harmonic analysis (trans. M. Tenenbaum
and H. Pollard), Princeton: Princeton University Press, 1959 (Annals of Mathematics
Studies, no. 42).

Russian translation. Lektsii ob integralakh Fur’e (trans. V.M. Borok, ed. Ya.I. Zhitomirskii,
foreword by G.E. Shilov), Moscow: State Publishing House for Physics and Mathemat-
ics Literature, 1962.

Related articles: Fourier (§26), Riemann on trigonometric series (§38), Lebesgue and Baire
(§59).

1 THE DEVELOPMENT OF THE THEORY OF THE FOURIER INTEGRAL

The need for a monograph on the subject of the Fourier integral arose from the develop-
ment of analysis during the late 19th and early 20th centuries. This development brought
about radical changes in both the meaning of the termsfunction andintegral and in the un-
derstanding of what was meant by a mathematical proof. The context of set theory, within
which the new theories of functions of a real variable and integration were developed,
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raised entirely new questions in connection with the Fourier integral, so that a complete
re-examination of its development needed to be undertaken. In order to make clear the is-
sues addressed in this monograph, a brief sketch of the development of the Fourier integral
during the 19th century will be helpful.

The problems that originally gave rise to the Fourier integral arose in the period 1806–
1811 in work of P.S. Laplace, Joseph Fourier and S.D. Poisson [Poisson, 1814], and shortly
thereafter in the work of A.L. Cauchy [Cauchy, 1817a, 1817b]. All of these men discovered
the fundamentalFourier inversion formula that would nowadays be written

f (x)= 2

π

∫ ∞

0

∫ ∞

0
f (y)cos(zy)cos(zx) dy dz. (1)

([Grattan-Guinness, 1972], and §26). In all three cases the discovery was connected with
the classical equations known as the wave equation and the heat (diffusion) equation. The
former equation was bequeathed to the 19th century by the 18th, and the latter was worked
out by Fourier himself. The inversion formula contains twointegrals and an unspecified
function f (y). The meaning of these two concepts underwent a metamorphosis during the
19th century, and that development led to an entirely different way of looking at the Fourier
integral (§38).

More complicated problems were soon to follow. In studying heat conduction in a
sphere Fourier found that it was necessary touse periodic functionswhose frequencies
were not all multiples of the same unit, but were solutions of the transcendental equation

nX/ tan(nX)= 1− hX, (2)

whereX was the radius of the sphere andh a constant. With these more general series, it is
not clear whether any function at all is represented outside the fundamental region. If any-
one worried about what the series represented outside the interval of interest, no one seems
to have written about it. In the physical world there are boundaries. At these boundaries
certain functions, such as density and temperature have breaks. For that reason, mathe-
matical explanations required analytic explanations whose validity was restricted to only
some of the mathematically allowable values.The fact that sines and cosines repeat their
values outside the fundamental period came to be accepted as irrelevant. Representations
over a finite interval by functions that continue periodically seemed highly successful, and
a discussion of the validity of such a representation was given by J.P.G. Dirichlet in 1829.
In order to keep a consistent notation, we shall make a small update in the representation
formula for Fourier series and state it only for even functions of period 2π , so as to bring
out its analogy with (1). In this notation the Fourier inversion formula for series can be
written

f (x)= 1

π

∫ π

0
f (y) dy + 2

π

∞∑
n=1

∫ π

0
f (y)cos(ny)cos(nx) dy. (3)

The two representations (1) and (3) show a strong analogy, which one might possibly
explain by their both having been generated by similar equations of mathematical physics.
To a mathematician, such an analogy begs for a context in which the two things are both
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manifestations of the same kind of underlying structure. But while the validity of (3) could
be established under reasonable hypotheses (for example, it is valid at each point at which
the functionf (x) has a derivative), the validity of (1) presented more subtle problems.
The main source of such problems lay in the fact that the integral extended over an infi-
nite interval, so that no merely local condition could assure convergence. In modern terms,
both smoothness and reasonable decay at infinitywere needed, and the latter threatened to
impose such severe restrictions that the usefulness of the method for physical applications
would be eliminated. This problem is an urgent one, no matter how the integral is inter-
preted. Before discussing the wider definitions of integrals, which altered the context of
the inversion problem, we need to discuss the approaches to overcoming this difficulty.

In a study of wave motion in a fluid, Poisson [1823a, 1823b] also arrived at the Fourier
integral formula in a rather strange-looking form, which, with slightly updated notation,
we may write as

f (x)= 1

π

∫ ∞

0

∫ ∞

−∞
f (α)cosa(x − α)e−ka dα da. (4)

The introduction of the ‘convergence factor’e−ka overcame the problem that seemed to
arise so often, when the function defined by the inner integral did not decay quickly enough
to guarantee convergence. The formula (4) is correct, if interpreted as the limit whenk
tends to zero through positive values. A very similar technique was used by N.H. Abel to
justify formulas such as

ln(2)= 1− 1

2
+ 1

3
− 1

4
+ · · · and

π

4
= 1− 1

3
+ 1

5
− 1

7
+ · · · , (5)

which can be obtained by expanding the integrands in the following integrals as geometric
series: ∫ 1

0

1

1+ x dx and
∫ 1

0

1

1+ x2 dx. (6)

Abel showed that the sum of the series was, as it appeared to be, the limit of the integrals
from 0 to r asr increased to 1. The similarity to Poisson’s technique can be seen by the
substitutionr = e−k. This technique, which makes it possible to sum a series or evaluate
an integral that, strictly speaking, diverges, is now called ‘Abel–Poisson summation’.

As already mentioned, the concept of the integral also underwent a development dur-
ing the 19th century, and of course any such development, because it affects the class of
functions that can be integrated, forced a reinterpretation of the Fourier integral and a re-
examination of its validity. The whole subject of calculus is founded on the identity of
two apparently different things: a) the operation inverse to differentiation; b) the ‘summa-
tion’ of a continuous family of infinitely small productsf (x) dx, wheredx represents an
‘infinitesimal increment’ in the variablex. The fundamental theorem of calculus is based
on the observation thatf ′(x) dx is simplydy, wherey = f (x). The dubiousness of such
reasoning and the needs of complex analysis led Cauchy to develop the integral in a dif-
ferent way, and a similar recasting of the definition was given by Bernhard Riemann in
1854, in connection with the study of trigonometric series representations. By the time of
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Riemann’s work a definition of continuity that is essentially modern had become accepted,
and Riemann pointed out that under his definition some discontinuous functions could be
integrated. It sufficed that, when the interval of integration was partitioned into sufficiently
fine subintervals, the total length of the subintervals containing points where the integrand
is discontinuous become arbitrarily small. (And, as Riemann showed, an even weaker con-
dition suffices.) By allowing discontinuous functions to be integrated, Riemann had made
it possible to form the Fourier integral of such a function (§39). But what properties would
that integral have? Before that question wasfully answered, the Riemann integral itself
was superseded by a number of more general integrals, each of which demanded that the
Fourier integral be reinvestigated.

2 NEW KINDS OF INTEGRALS

Under the impact of the new rigor demanded of series and integral representations and
the powerful effect of the set theory created in the 1870s and 1880s by Dedekind, Can-
tor, and others—motivated in part by a desire to continue Riemann’s excursion into the
theory of trigonometric series representations—analysts began looking at the concept of
the integral more and more closely as the 19th century drew to a close. New integrals ap-
peared, associated with the names of A. Harnack, E. Borel, H. Lebesgue, A. Denjoy, and
O. Perron. By far the most influential of these was the Lebesgue integral, created in all
important essentials between 1899 and 1902 (§59). Two of its most profound effects were
to be felt in probability, investigated by Borel,and trigonometric series representations,
which Lebesgue recognized early and made the subject of a monograph. The beauty and
importance of the Lebesgue integral were recognized early, and by 1907 E.W. Hobson
(1856–1933) was including a discussion of this integral (in the form given by W.H. Young)
in hisTheory of functions of a real variable, which also included a chapter on applications
to Fourier series [Hobson, 1907]. Meanwhile, the Lebesgue integral began to generate its
own new questions, as F. Riesz introduced the classes now known asLp , the spaces of
measurable functionsf for which |f |p is Lebesgue integrable, 1� p �∞ (the spaceL∞
consists of functions that are bounded on a set whose complement has measure zero). How
the Fourier series and integrals of functionsin these spaces behave became a matter of great
interest, and a number of questions were raised, some of which required half a century to
answer.

The difference between finite and infinite intervals and the extra hypotheses needed
to ensure the convergence of the Fourier integral over an infinite interval opened up a
gap in the understanding of the two types of transforms. A study of the validity of the
Fourier integral formula was carried out by Alfred Pringsheim (1850–1941) in the article
[Pringsheim, 1910]. He classified the hypotheses needed for the validity of the formula
into two types, which he described as conditions in the finite region (‘im Endlichen’) and
conditions at infinity (‘im Unendlichen’). These two types of conditions are nowadays
calledlocal andglobal conditions. He pointed out that the local conditions could be traced
all the way back to Dirichlet’s work of 1829, but that ‘a rather obvious backwardness
reveals itself’ in regard to the global conditions. In fact, he said, they

seem in general to be limited to a relatively narrow condition, one which is
insufficient for even the simplest type of application, namely that of absolute
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integrability off (λ) over an infinite interval. There are, as far as I know, only
a few exceptions, such as those of A. Harnack, who, in the appendix to his
German edition of J.A. Serret’sTextbook of Differential and Integral Calculus,
has given the following condition:f (λ) must tend continuously to zero asλ
increases without bound and must possess an absolutely integrable derivative
f ′(λ).

Nowhere in this article did Pringsheim say whether he meant integrability in the traditional
sense of Cauchy and Riemann or in one of the newer senses. He did refer to Lebesgue’s
Leçons (§59), however.

Actually the difference between local and global conditions is not so marked as Pring-
sheim implied. The pointwise convergence and summability proofs for both Fourier series
and Fourier integrals require that the function have a certain smoothness or continuity at
the point in question (local) and that it be bounded and integrable over the entire space
(global). The difference is that for a finite interval a bounded function is automatically in-
tegrable, while such is not the case over an infinite interval. Therein lies the problem that
makes integrals appear at first sight to be harder than Fourier series. In fact, right at the
heart of the summation process lies a function ofx called theDirichlet kernel. Depending
on an integer parametern for a finite intervalF and a real parameterR for an infinite one
I , it is absolutely integrable over everyF but not over anyI . For a periodic function over
an interval of lenght 2π it is

sin(n+ 1/2)x
/

sinx/2, while for the Fourier integral it is sin(Rx)/x. (7)

Pringsheim also touched on a second issue mentioned above, namely the problem of
what a series of trigonometric functions represents outside a finite interval if the frequen-
cies of the representing functions are not all multiples of a fixed frequency. In his attempt
to fill the lacuna in the global conditions he considered functionsF(x) given by absolutely
convergent trigonometric series of the form

∑
cν cos(qνx+γν), whereqν→∞ andF ′(x)

is absolutely integrable. He mentioned that Fourier had considered such series, but he did
not emphasize that, in contrast to Fourier, he needed to consider their values over the entire
line, not just a finite interval. Such functions, a decade later, were to become the object of
study in their own right, since they subsume all the periodic functions, as well as certain
special functions considered earlier by P. Bohl and E. Esclangon. These more general func-
tions, calledalmost-periodic functions, introduce another complication into any attempt to
provide a unified theory of both series and integrals. Pringsheim did not show how the
coefficientscν could be obtained from the functionF(x). Rather, he assumed that the co-
efficients were given in advance and that they defined the function. He did, however, say
that

It is perhaps worth noting that the set of functionsF(x) introduced into the
Fourier integral formula by the preceding result is quite extensive [. . . and
contains trigonometric series] progressing by completelyarbitrary (that is, not
necessarily integer) multiples ofx, and hence can be, for example, of the type
first considered by Fourier in his theory of heat conduction, which are charac-
terized by the fact that theqν are the roots of a transcendental equation [. . . ].
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Pringsheim’s negative remarks on the assumption of absolute integrability (quoted
above) point up the problem to be overcome: the Dirichlet kernel, which allows a partial
sum or integral to be expressed as an integral of the function being represented, is ab-
solutely integrable in the case of Fourier series, but not in the case of the Fourier integral.
Probably this complication accounts for the greater prevalence of discussions of Fourier
series in textbooks in comparison with Fourier integrals. The lack of good reference works
was a motive for the writing of both Bochner’sVorlesungen and a monograph of Norbert
Wiener (1894–1964) that appeared about the same time. In the decade before these books
appeared, both of these young men had made important contributions to the new area of
almost-periodic functions, which was eventually to fit neatly along with Fourier integrals
into a unified theory of Fourier analysis on a locally compact Abelian group.

As analysis was reaching new levels of abstraction in the first decade of the 20th cen-
tury with the growth of functional analysis, a few analysts continued to write in the style of
Karl Weierstrass and Leopold Kronecker, proving the existence of solutions to a problem
by explicit construction. One such mathematician was Harald Bohr (1887–1951), brother
of the famous physicist Niels Bohr and creator of the theory of almost-periodic functions.
Bohr’s original interest had been in number-theoretic questions, especially the Riemann
hypothesis, on which he had worked together with Edmund Landau. This hypothesis con-
cerns the Riemann zeta function, which can be represented for complex numbersz lying
to the right of the number 1 in the complex plane by the Dirichlet series

ζ(z)=
∞∑
n=1

1

nz
=

∞∑
n=1

exp(−z logn)=
∞∑
n=1

cne
−iy logn, (8)

where the coefficientscn in the case of this particular Dirichlet series depend on the real
part (x) of z. For a fixed real part, this series is of the type considered by Fourier and
Pringsheim. In contrast to the earlier cases considered by Fourier and Pringsheim, the
function was given in advance, and the question as to how the coefficients were obtained
for such a representation arose in earnest. Theanswer to that question posed a puzzle. Bohr
discovered that for a functionf (x)=∑

cλe
iλx the coefficientcλ was given by

cλ = lim
T→∞

1

2T

∫ T

−T
f (x)e−iλx dx. (9)

On the one hand, since periodic functions are a special case of this kind of series, this
formula showed how to get the coefficients of the Fourier series of a periodic function by
integrating over the entire line. On the other hand, it did not bring about the desired unity
between series and integrals, since the formula involved an integral mean rather than an
integral.

These investigations led Bohr to study the kinds of functions that can be approximated
uniformly for all realx by general trigonometric polynomials, that is, by finite sums of the
form ∑

cλe
iλx. (10)

A decisive step in the study of Fourier series of periodic functions had been Weierstrass’s
proof in 1885 that every continuous periodic function could be uniformly approximated by
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a finite periodic trigonometric polynomial. Bohr now reversed the question in the context
of these non-periodic series, asking which functions could be uniformly approximated by
these more general finite trigonometric sums. He found the answer in a property that he
aptly namedalmost periodicity. A function f (x) is almost periodic if it has the follow-
ing property, first stated by Bohr in 1923: For everyε > 0 there exists a positive number
l such that every interval of lengthl contains at least oneε-translate, that is, a number
τ such that|f (x + τ ) − f (x)| < ε for all x. In Bohr’s terminology, theε-translates are
‘relatively dense’. Although this language is quite in line with the modes of expression
introduced by Cauchy, Weierstrass, and other 19th-century mathematicians, it leaves much
to be desired as a starting point for the theory. For example, it is far from obvious that the
sum or product of two almost-periodic functions is almost periodic. The analog of Weier-
strass’s approximation theorem, that is, the proof that an almost-periodic function can be
uniformly approximated by general trigonometric polynomials, is one of the most diffi-
cult in all of analysis. The only known proofs are due to some outstanding 20th-century
mathematicians (Bohr himself, Bochner, Wiener, Hermann Weyl, F. Riesz, and A.N. Bo-
golyubov). Bohr’s proof was a good example of mathematics practiced according to strict
Weierstrassian principles, full of explicit approximations. The route he followed was long
and arduous, well described by Bochner’s phrase in Bohr’s obituary, that Bohr ‘succeeded
in proving the approximation theorem in his own fussy way, such as he did’.

Such was the state of affairs in classical Fourier analysis at the time when Bochner
came to write his monograph. Fourier series of periodic functions had been well studied
and were well adapted to the Lebesgue integral, but Fourier integrals did not fit so neatly
into this theory, since the primary tool, the Dirichlet kernel, is not Lebesgue integrable. In
addition, the new theory of almost-periodic functions, which included all periodic func-
tions, was anomalous, since the Fourier coefficients were not obtained from the functions
they represented by integration. A unified approach was the goal. As groundwork for such
an approach, Bochner thought that a systematic exposition of the Fourier integral in the
context of the now-dominant Lebesgue integral ought to be undertaken.

A single reference on which one could rely for the basic information was noticeably
lacking. The dearth of expository material linking the Lebesgue theory of integration and
the Fourier integral was apparent to Bochner’s contemporary Wiener, who went from Cam-
bridge, Massachusetts (MIT) to Cambridge, UK in 1932. That experience motivated him
to write his own exposition of the subject, emphasizing the areas in which he had been one
of the major contributors (the Wiener Tauberian theorem). In the preface to his monograph
[Wiener, 1933] he explained what he had in mind:

My original idea was of a rather comprehensive treatise, proceeding from the
elements of Lebesgue integration through theL2 theory of Fourier series to
the Plancherel theorem, the Fourier Integral, the periodogram, and lastly, to
theorems of Tauberian type. My impulse to write a book of this type arose from
a dissatisfaction with the preponderant role of convergence theory in existing
textbooks on the subject, and from the need for a treatment more in line with
the extensive periodical literature.
As far as my desire to write a book sprang from the need for a textbook to
use in my course at the Massachusetts Institute of Technology, it has largely
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been dissipated by the recent appearance of a book on the Theory of Functions
by Professor Titchmarsh. Several chapters of his book are devoted to the treat-
ment of Fourier series from the modern point of view. Unfortunately—frommy
standpoint—he does not allot a great deal of space to the Fourier Integral and
related matters. Thus, while there is now no need for the comprehensive trea-
tise which I at first contemplated, there is need for a discussion of the Fourier
Integral from the modern point of view. When Professor Titchmarsh’s book
has been in use for some five years, and has become the basis for higher in-
struction in Fourier series, it will be possible to treat the Fourier Integral in a
thoroughgoing and coordinate way, but for the present we shall have to content
ourselves with more fragmentary treatments.

The fact that two young men of very similar mathematical background (both had been
working in almost-periodic functions, for example) chose to write an expository mono-
graph on the same subject at the same time is intriguing, and a comparison of the two
monographs is enlightening. We shall return to this topic after discussing the contents of
theVorlesungen.

3 THE AUTHOR

Salomon Bochner (1899–1982) was born near Krakov, Austria-Hungary, now part of
Poland, and studied at the University of Warsaw. After receiving his Ph.D. at the University
of Berlin in 1921, Bochner collaborated with Hardy and Littlewood in the United Kingdom
and with Harald Bohr in Denmark. From 1924 to 1933 he was at the University of Munich,
where he wrote theVorlesungen. When Hitler came to power, he immediately emigrated to
Britain. He soon received an offer from Princeton University, which he promptly accepted
and acquired American citizenship. He taught at Princeton until the mandatory age limits
in effect at the time forced his retirement in 1969. In that year he moved to Rice University
in Houston, Texas, where he spent the remaining 13 years of his life.

As mentioned, just before writing theVorlesungen, Bochner had been immersed in the
theory of almost-periodic functions. In contrast to Bohr, Bochner made free use of the
results of functional analysis. In his hands, the theory became much more transparent than
Bohr had made it. For example, he defined almost-periodic functions as those functions
whose translates form a conditionally compact set in the space of bounded continuous
functions on the real line. To be sure, he did not use the descriptionconditionally compact,
but rather stated a condition equivalent to it: every sequence of translates of the function
contains a uniformly convergent subsequence. It is easy to establish via the Ascoli–Arzelà
criterion for compactness in the space of continuous functions on a finite interval that
Bochner’s definition is equivalent to Bohr’s. From Bochner’s definition it is immediate
that the sum and product of almost-periodic functions are almost periodic. However, the
benefits of this alternative definition go farbeyond the ease of proving such elementary
results. The definition reveals a fundamental symmetry about this class of functions that is
obscured by Bohr’s more traditional definition. The translations form a group operating on
the almost-periodic functions, and the orbits under this group reveal important properties
about the functions themselves. Through this symmetry group one can see connections
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between the integrable functions, to which the Fourier integral applies, and almost-periodic
functions. For example, Wiener showed that the translates of an integrable functionf (x)

are dense inL1 if and only if the Fourier integral off never assumes the value 0. Thus,
translations seemed to have an important relation to both integrable functions and almost-
periodic functions, but a different one in the two cases.

In 1935 Bochner was to find a way of giving a unified discussion of almost-periodic
functions (of a class even more general than those considered by Bohr, known as the
Stepanov almost-periodic functions) with the Fourier integrals of integrable functions. The
most general perspective on the problem, however, would not be gained until 1940, in the
work of André Weil. All that, obviously, was in the future at the time theVorlesungen were
written.

4 BOCHNER’S BOOK

To restate the fundamental theorem about the Fourier series and the Fourier integral in the
exponential form (introduced by Cauchy) thathas nowadays generally replaced the use of
sines and cosines, by the early 1930s there existed a considerable amount of literature on
two kinds of Fourier inversion formulas: (a) the formula for integrals, which can be written
as

f (x)=
∫ ∞

−∞

∫ ∞

−∞
f (y)e2πiz(x−y) dy dz; (11)

and (b) the formula for almost-periodic functions, which includes the case of Fourier series
of purely periodic functions and can be written as

f (x)=
∑
λ

lim
T→∞

1

2T

∫ T

−T
f (y)e−2πiλ(x−y) dy, (12)

where the limit of the integral is nonzero only for a countable collection of real numbersλ.
The integral with respect toy in (11) and the limit of that integral in (12) necessarily
converge iff (y) is respectively absolutely Lebesgue integrable or almost periodic. The
integral with respect toz in (12) and the summation overλ in (12), however, require either
some special hypotheses aboutf (y) or the introduction of some convergence factor in
order to have a meaning.

The general direction in which to seek a unification of the two theories was suggested
by the theory of representations of Lie groups, which underwent a spectacular development
in the 1920s. It turned out that the functions that occurred as the entries in the matrices of
a complete set of irreducible representations of a compact Lie group formed an orthogonal
basis that could be used to represent functions, just like Fourier series. At that point, as
K.I. Gross says [1994, 406–407]:

The genius for bringing together these two seemingly unrelated themes [group
theory and Sturm–Liouville theory] belongs to Hermann Weyl, who should
be regarded as the father of modern harmonic analysis. The date of birth is
1927, and the official birth certificate is the remarkable paper by Weyl and his
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Table 1. Contents by chapter of Bochner’s book. The second column gives the pages in
the German original, and the third column those in the English translation.

Ch. Page Page Title

1 1 1 Fundamental properties of trigonometric integrals.

2 19 23 Representation and summation formulas.

3 39 46 The Fourier integral theorem.

4 63 78 Stieltjes integrals.

5 82 104 Operating with functions of the class!0[L1].
6 110 138 Generalized trigonometric integrals.

7 145 182 Analytic and harmonic functions.

8 169 214 Square integrability.

9 183 231 Functions of several variables.

208 264 Appendix.

219 281 Commentary [End 227].

292 Monotone functions [Bochner, 1933]. [End 331.]

student F. Peter [Peter and Weyl, 1927], in which the structure theory for the
representations of a finite group is carried over completely to the context of
compact Lie groups.

When Bochner succeeded in unifying Fourier series and integrals on Euclidean spaces
in 1935, he was able to show immediately that his results could be applied to Lie groups,
which are locally Euclidean spaces. One puzzle remained, however. The fact that a mean
was needed, rather than an integral, to get the Fourier coefficients of almost-periodic func-
tions, was not to be explained until harmonic analysis moved on to encompass more general
groups in the years immediately following 1932.

The contents of Bochner’s monograph is summarised in Table 1. It contains both a
summary of the state of the subject in its new form and indications of alterations soon to
come in the work of Bochner himself and others. In the foreword to the book the author
explained the need for such a monograph:

Since there is a wealth of material and as yet no book on the subject, I was
forced to undertake the choice of material according to my own point of view.
I set as my goal to develop the theoretical foundations for operations with
Fourier integrals and their computational use. For that reason, alongside the
general Fourier integrals, which have begun to be studied only recently, older
things of a completely different type are also considered, for example, the eval-
uation of certain multiple integrals [. . . ] which are not discussed in modern
books and hence are unfamiliar to most younger mathematicians.

Bochner also included an appendix with statements of the main theorems about
Lebesgue integration in several real variables, saying that ‘this material has not yet found
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its way into the textbooks’. That statement was not quite accurate when applied to the
English literature, although it may have been inrelation to the German literature. The third
edition of Hobson’s textbook had appeared in 1927,containing a thoroughdiscussion of the
Lebesgue integral in two variables, including the formula for change of variable. But where
Fourier integrals were concerned, it was true that the connection with the Lebesgue integral
had not yet been given an elementary exposition, even in one variable. The famous book
of H.S. Carslaw included some applications and discussed the Lebesgue integral only in
an appendix [Carslaw, 1930]. An English monograph on the Fourier integral, [Titchmarsh,
1937], was to be described by its author as ‘a sequel to myTheory of Functions’. The latter
book, published in 1932, had contained a systematic exposition of the Lebesgue integral.

Thus, in 1932, there was a clear field for a monograph on Fourier integrals in the context
of Lebesgue integration. Bochner’s book, however, was more than a systematic exposition
of known results. In every chapter of it one canfind applications that are new and interest-
ing: applications to difference-differential equations, to integral equations, and many other
areas. One chapter (the fourth) contained a result that was entirely new and was to have a
profound influence on the subsequent development of the subject.

Along with the exposition, Bochner included aset of notes on the history of the subject.
In his summary he said:

The oldest textbook on Fourier Integrals (and in a certain respect the only one
up to now) is the bookAnalytische Studien, Second Part, by O. Schlömilch
[1823–1901], Leipzig, 1848.
A. Pringsheim has made a worthy contribution to the history of Fourier inte-
grals, especially in regard to the question as to how well it is justified to name
them after J.J. Fourier, in his articles ‘Über das Fouriersche Integraltheorem,’
Jahresbericht der deutschen Mathematiker-Vereinigung, 16 (1907), 2–16, and
‘Über die Gültigkeitsgrenzen für die Fouriersche Integralformel,’Math. Ann.,
68 (1910), 307–408. The latter [. . . ] contains the first precise criterion for
the validity of the Fourier integral formula and the Fourier integral theorem,
which were further improved in a paper inMath. Ann., 71 (1912), 289–298.
The results of Pringsheim and later generalizations by other authors are all
reproduced in the textbook of L. Tonelli [1885–1946]Serie trigonometriche,
Bologna, 1928. We also note the book of E.W. HobsonTheory of Functions of
a Real Variable, 2nd ed., Vol. 2, 1926 [. . . ].
The first precise result on the validity of the Fourier integral formula, which
involved ‘summability’ rather than actual convergence, was stated long be-
fore Pringsheim by A. Sommerfeld [1868–1951] in his dissertation ‘Über die
willkürlichen Funktionen in der mathematischen Physik,’ Königsberg, 1891.
A very extensive collection of particular Fourier integrals can be found in
the bookFourier Integrals for Practical Applications by George A. Campbell
[1870–1954] and Ronald M. Foster [1896–1998].

Bochner dealt with the difficulty occasioned by the fact that the Dirichlet kernel is
not absolutely integrable over the entire line by constructing parallel proofs of the main
theorems to cover the case of a Lebesgue integrable function and the case of a func-
tion monotonically decreasing to zero. This parallel treatment of the two cases is pursued
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throughout the development of the basic lemmas on Fourier integrals in Chapter 2 and
is especially important in the main theorem of the subject, with which Chapter 3 opens.
Stating the Fourier inversion formula as

1

2

[
f (x + 0)+ f (x − 0)

]= 1

π

∫ ∞

0
dα

∫ ∞

−∞
f (ξ)cosα(ξ − x) dξ (13)

(he omitted the infinite limits of integration), he gave the following statement of the Fourier
integral theorem:

A sufficient condition for the validity of [(13)] is that f (ξ) be of bounded
variation in a neighborhood of x and that one of the following conditions hold
as ξ→∞ and ξ→−∞:
1) f (ξ) is absolutely integrable,

2) f (ξ)
ξ

is absolutely integrable and tends monotonically to zero or, more gen-

erally, can be written in the form g(ξ)sin(pξ + q) where g(ξ) tends monoton-
ically to zero.

Bochner noted that it was permissible for one of these conditions to hold at+∞ and
the other at−∞, and that the integral was to be understood as the Cauchy principal value
in the second case. Chapter 3 then proceeds to develop the summability theory of Fourier
integrals by various methods (Abel–Poisson, Gauss–Weierstrass, and others) and gives ap-
plications to the theory of Bessel functions and the evaluation of multiple integrals.

Chapter 4 (‘Stieltjes integrals’) provides the main claim of this work to ‘Landmark’
status. In the 20th century the groundbreaking new results in mathematics have nearly
always appeared as research papers in journals, to be incorporated into expository mono-
graphs only later. Bochner, however, chose this monograph as the forum to reveal one
of the most influential and profound results in Fourier analysis, a characterization of the
Fourier–Stieltjes transforms of bounded nondecreasing functions. He defined adistribution
function to be a nondecreasing bounded function whose value at each point is the average
of its right- and left-hand limits. For such a functionV (α), theFourier–Stieltjes transform
is defined as the integral

F(x)=
∫
e−iαx dV (α). (14)

Bochner denoted the set of all such transforms B. In Theorem 23 he gave the following
characterization of these transforms: ‘In order for a function to belong to the class B, it is
necessary and sufficient that it be positive-definite’.

Bochner defined a positive-definite function to be a continuous functionf (x) that is
Hermitian, meaning thatf (−x)= f (x), where the bar denotes complex conjugation, and
also has the property that for any real numbersx1, . . . , xm and any complex coefficients
ρ1, . . . , ρm, the following inequality holds:

m∑
µ=1

m∑
ν=1

f (xµ − xν)ρµρν � 0. (15)
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(The double sum is necessarily a real number because of the Hermitian property.) Such
functions had been considered by Gustav Herglotz two decades earlier in connection with
Fourier series and the famous problem of characterizing the moments of a Stieltjes inte-
grator. The definition just given had been formulated in 1923 by M. Mathias, who had
investigated some of the properties of positive-definite functions on the real line.

Nevertheless, it was primarily Bochner who realized the importance of this concept.
Although his name is justifiably attached to a number of results in various areas of math-
ematics, it is this theorem above all that analysts tend to mean when they say ‘Bochner’s
theorem’. It was generalized by A. Weil and D.A. Raikov to the setting of locally com-
pact groups and plays an important role in understanding the behavior of Fourier–Stieltjes
transforms. The same theorem was discovered about this time by the Soviet mathematician
A.Ya. Khinchin and published in theBulletin of Moscow State University in 1937. For that
reason it is referred to in Soviet literature as the Bochner–Khinchin theorem. Considering
all its prefigurations and generalizations, Loomis [1953] called it ‘the Herglotz–Bochner–
Weil–Raikov theorem’. Bochner gave it an immediate application, providing a new proof
of the Parseval relation for almost-periodic functions. Reversing the usual order of presen-
tation for such new results, Bochner soon wrote a research paper containing this result and
a number of others [Bochner, 1933].

In July 1932, when he wrote the words quoted above, Wiener probably did not know
of Bochner’s book, although the two men certainly knew each other. Each cited work of
the other in his monograph. Bochner devoted an entire section (article 9 of Chapter 2) of
theVorlesungen to a generalization of a formula of Wiener (implicit in Wiener’s work, as
he said). While proving the Parseval relation for almost-periodic functions in his mono-
graph, Wiener cited Bochner’s work on almost-periodicity. As this last sentence indicates,
applications to almost-periodic functions, an area in which both authors had worked, are
a common topic in the two books. In neither book, however, are they a major part. They
occupy more of Wiener’s book than of Bochner’s, but even there almost-periodic functions
form only a part of one chapter. Of necessity, both books discuss the fundamental results of
the theory, such as Plancherel’s theorem. However, the proofs in the two cases are so dif-
ferent as to constitute almost a difference in kind. The two men seem to have looked at the
subject from entirely different points of view. This difference did not preclude their using
each other’s results in their own work. For example, Bochner used Wiener’s celebrated the-
orem that the reciprocal of a nonvanishing function with an absolutely convergent Fourier
series also has an absolutely convergent Fourier series to prove a very delicate theorem on
absolute convergence of multiple Fourier series in [Bochner, 1936].

5 THE AFTERMATH: ABSTRACT HARMONIC ANALYSIS

The year following the appearance of Bochner’s monograph brought the last and great-
est paper of Alfred Haar (1885–1933), which contained a proof of the striking fact that
every locally compact topological group possesses a translation-invariant measure, known
in his honor asHaar measure [Haar, 1933]. Haar measure made it possible to generalize
the Fourier integral to the context of any such group. Haar’s proof of the existence of a
translation-invariant measure inspired John von Neumann, the following year, to prove the
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existence of a translation-invariantmean, analogous to the Bohr mean. This mean allowed
von Neumann to generalize the notion of almost-periodicity to functions on any group.
He simply showed that the convex set spanned by the translates of such a function con-
tained a unique constant function, equal to the mean. Von Neumann’s construction looked
like a radical step away from the concept of a topological group, since it seemed to ig-
nore the topology completely. Whereas the ordinary dual group consisted of continuous
homomorphisms from the group into the circle, von Neumann was considering arbitrary
homomorphisms, whether continuous or not. That fact finally provided the clue that put
almost-periodic functions in the proper perspective. Considering both continuous and dis-
continuous homomorphisms amounted to putting the discrete topology on the dual group,
and hence making its dual group compact. Since the underlying group is imbedded in the
dual of the dual of the group with the discrete topology, almost-periodic functions could
be seen as the restrictions of functions that are continuous on the dual of the discrete dual.
This compact group is now called theBohr compactification of the group, and von Neu-
mann’s (and Bohr’s) mean was simply the integral with respect to the Haar measure on the
Bohr compactification. In this way complete unity was at last achieved, and all forms of
(commutative) Fourier analysis were special cases of functions on a locally compact group
and its dual.

Although harmonic analysis becameabstract harmonic analysis in order to unify
Fourier series and integrals, the classical cases of periodic or almost-periodic functions
and Fourier integrals of integrable functions on Euclidean space remained a topic of spe-
cial interest, both in its own right, because of the specialized theorems and questions it gen-
erated, and as background for the more abstract study. A generation after the publication
of Bochner’s book, mathematicians were still turning to it for information and inspiration.
In 1959 two faculty members at Cornell University, Morris Tenenbaum and Harry Pollard
(co-authors of a well-known textbook of differential equations), published with Princeton
University Press an English translation of theVorlesungen and included [Bochner, 1933].
As they said,

our main purpose was to make generally available to the present generation
of group-theorists and practitioners in distributions the historical and concrete
problems which gave rise to these disciplines. Here can be found the theory of
positive definite functions, of the generalized Fourier integral, and even forms
of the important theorems concerning the reciprocal of Fourier transforms.

Three years later, in 1962, the English translation formed the basis of a Russian trans-
lation. In his foreword G.E. Shilov noted the same points as Tenenbaum and Pollard in
justifying the publication of a 30-year-old work, pointing out that Bochner’s work on gen-
eralized trigonometric integrals anticipated part of the theory of distributions of Laurent
Schwartz, namely the part relating to the Fourier transform of slowly increasing functions.
After listing the great changes in harmonic analysis over the preceding generation due to
the application of the theory of analytic functions of a complex variable, the Gel’fand the-
ory of representations of Banach algebras and the theory of generalized functions due to
Gel’fand, Schwartz, and others, Shilov concluded: ‘All that being said, in its wealth of
specific material, its “classic” character (in the best sense of that word), and in its absolute
accessibility, Bochner’s book retains its full value even for the present time’.
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CHAPTER 75

A.N. KOLMOGOROV, GRUNDBEGRIFFE DER
WAHRSCHEINLICHKEITSRECHNUNG (1933)

Jan von Plato

In this short book Kolmogorov laid out the foundations of probability theory in terms of set
and measure theory, bringing into definitive form a line of thought among some probabilists
of the past three decades. His handling of conditional probabilities and of infinite fields of
probability was especially significant.

First publication. Berlin: Springer, 1933 (Ergebnisse der Mathematik, vol. 2, no. 3). ix+62
pages.

Reprint. Same publisher, 1973.

English translation. Foundations of the theory of probability (trans. N. Morrison), New
York: Chelsea, 1950. [2nd ed. 1956.]

Related articles: Laplace on probability (§24), Lebesgue and Baire (§59), Gödel (§71),
Hilbert and Bernays (§77).

1 INTRODUCTION

TheGrundbegriffe der Wahrscheinlichkeitsrechnung (‘Fundamental concepts of probabil-
ity’) by Andrei Kolmogorov (1903–1987) is the book that has become the symbol of mod-
ern measure-theoretic probability theory, its year of appearance 1933 being seen as a turn-
ing point that made earlier studies redundant. The idea of a measure-theoretic foundation of
probability was almost as old as measure theory itself, and it had been repeatedly presented
and used in the literature prior to 1933. Therefore, the mere idea was not the reason for the
acceptance of Kolmogorov’s measure-theoreticapproach, but rather what he achieved by
its use. The two essential mathematical novelties of theGrundbegriffe were the theory of
conditional probabilities when the condition has probabilityzero, and the general theory
of random or stochastic processes. For works not explicitly referred to below, see the bib-
liography of [von Plato, 1994].

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.
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Kolmogorov’s mathematical education was in the spirit of set theory and modern real
analysis of the school of N.N. Lusin (1883–1950). His first paper,written in 1922 but
published in 1928, deals with what is today called descriptive set theory. In his first pub-
lications he studied the properties of Fourier series, giving an example of a series that
diverges except for a set of measure zero [Kolmogorov, 1923]. In [1926] he gave an every-
where divergent series. In his [1925] he published the first of his early papers on logic and
foundations of mathematics; a belated English translation appeared only in 1967. It is the
first publication ever on a constructive system of logic, and Kolmogorov’s main aim in it
was to ‘save’ classical mathematics by showing that its inferences are formally acceptable.
He gives a translation of classically provable formulas to constructive ones, an invention
usually attributed to Kurt Gödel and Gerhard Gentzen, but besides the formal results it also
contains a general intuitionistic approach to the philosophy of mathematics. Passages from
theGrundbegriffe (hereafter, ‘GW’) remind us that Kolmogorov maintained his intuitionist
philosophy presented in his [1925]. Referringto sets (events in probabilistic terminology)
that are infinite unions of other sets, he writes that ‘we consider these sets in general only
as ideal events to which nothing corresponds in the world of experience. However, if a
deduction uses the probabilities of such events and if it leads to the determination of the
probability of a real event, thisdetermination will obviouslybe unobjectionable also from
an empirical point of view’ [p. 16].

2 THE BACKGROUND OF THEGRUNDBEGRIFFE

In 1900 David Hilbert (1862–1943) presented his list of mathematical problems at the In-
ternational Congress of Mathematicians in Paris (§57). Hilbert’s sixth problem is, follow-
ing the example of hisGrundlagen der Geometrie one year earlier, to treat axiomatically
those physical disciplines in which mathematics plays a predominant role (§55). These are
in the first place the calculus of probability and mechanics. Hilbert added that it would
be desirable to have, together with the logical investigation of the axioms of probability
theory, a rigorous and satisfying development of the methods of determining averages in
physics. This goes specifically for the kinetic theory of gases. Early attempts at the ax-
iomatization of probability include such forgotten names as Laemmel, Broggi, and a few
others.

Kolmogorov’s suggested solution to Hilbert’s sixth problem had also later predeces-
sors; he himself mentions Richard von Mises and Sergei Bernstein as exponents of axiom
systems with interests different from his. In these, the concept of probability is a defined
notion, and the attempt is ‘to establish a connection as close as possible to the empirical
origin of the concept of probability’ (p. 2). However, Kolmogorov concludes that for the
sake of simplicity of the theory, ‘it seems most appropriate to axiomatize the concepts of
a chance event and its probability’ (p. 2). Kolmogorov wanted to follow the example of
Hilbert’s Grundlagen der Geometrie in the questions of formalization. Probability theory
is to be formalized in exactly the same abstract way as geometry or algebra. As a conse-
quence, the formalism has several other interpretations in addition to the one from which
it grew. Thus, probability theory can be applied to cases which ‘do not have anything to
do with the concrete sense of the notions of chance and probability’ (p. 1). Behind this
statement there is an application of probability to a purely infinitary situation. The idea of
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basing probability theory on measure theory is by no means original in Kolmogorov, as we
have mentioned. He says himself that after Lebesgue, ‘the analogy between the measure of
a set and the probability of an event, as well as the integral of a function and the mathemat-
ical expectation of a random quantity, lay at hand’ (p. iii). Subsequently, Maurice Fréchet
formulated measure theory in an abstract way, so as to make it independent of its origins
as a generalization of geometric measure. Kolmogorov says that this abstraction made it
possible to found probability on measure theory, and that ‘the construction of probability
theory according to these points of view has been current in the appropriate mathematical
circles’ (p. iii).

Two works precede the measure-theoretic axiomatization of theGrundbegriffe [Kol-
mogorov, 1929, 1931]. In the latter, there was a physical motivation for building a theory
of probability, namely the need to handle schemes of statistical physics in which time and
state space are continuous. Probability was introduced as aσ -additive measure over the
state space, as the transition probabilityP(t1, t2, x,A) for going from statex at time t1
to the set of statesA at timet2. It was supposed to be a measurable function with respect
to x, with expected values of random variables defined as Stieltjes integrals. The theory
of continuous processes was built directly upon the model of classical physics. The state
space of a classical system is usually a subset of a real spaceRn. The present state of a
system and its dynamical law determine its future behaviour. In a probabilistic generaliza-
tion, the present state determines a probability distribution over future states, leading to
the notion of a Markov process. A paper preceding the random processes of 1931 by only
two years in publication and much less in writing, namely [Kolmogorov, 1929], contains
nothing of the physically oriented motivations. Titled ‘General theory of measure and the
calculus of probability’, it tries to show the possibility of ‘a completely general and purely
mathematical theory of probabilities’. Further, ‘finding out from the formulation of prob-
ability theory those elements which conditionits inner logical structure and do not relate
at all to its concrete meaning, is sufficient for such a theory’. The theory is consequently
wider in its range than a calculus of probability which is only meant to deal with chance
phenomena, for the former extends to the realm of pure mathematics. Kolmogorov men-
tions as an example the distribution of the digits of a decimal expansion, a result found
with the help of the formulas of the calculus of probability, but not involving any concrete
notion of chance. On the relation between measure theory and probability he says that ‘the
general concept of measure of a set contains the concept of probability as a special case’.
Therefore the results of probability theory concerning random variables are special cases
of results on measurable functions.

The concept ofindependence is central in the application of probability theory to pure
mathematics. Kolmogorov says this concept had never been formulated purely mathemati-
cally before. Obviously, one need for such a definition is the independence of the digits of a
decimal expansion. The thought being that arithmetic sequences follow some law or other,
their independence property has to be saved from the domain of chance by a purely formal
mathematical definition. The conditions for a finitely additive probability are laid down
as axioms, and denumerably additive measures are signalled out by the term ‘normal’. In
a note added to the reprinting, Kolmogorov [1986, 472] mentions that this early work did
not yet contain the set-theoretic notion of conditional probability. One could speak of a set-
theoretic foundation of the whole of probabilitytheory only after conditional probabilities
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as well as distributions in infinite product spaces had been incorporated, he says. These
are the two mathematical novelties of theGrundbegriffe, the book which established that
set-theoretic foundation.

3 AXIOMS FOR FINITARY PROBABILITY THEORY

The book proper starts with the axiom system for a finite set of events. In view of Kol-
mogorov’s position on foundations of mathematics, this is very natural. The famous axioms
go as follows (p. 2):

There is a setE of elementary events x, y, z, . . . . There is a family of subsetsF of E,
the members of which are called ‘chance events’.

I. F is a field of sets (that is, closed with respect to unions, intersections, and com-
plements).

II. F contains the setE.

III. To each setA of F , a non-negative real numberP(A) is attached. This number
P(A) is called the probability of the eventA.

IV. P(E)= 1.

V. If A andB are disjoint,P(A ∪B)= P(A)+ P(B).
We shall first review the place of foundational questions in the book.

First of all, Kolmogorov does not offer a formalization of probabilityin the strict sense
of the word, but aninformal axiomatization within intuitive set theory. It is of course
straightforward to give a strict formalization, by giving the axioms in a formalized sys-
tem of set theory. Set theory and the measure-theoretic way of building up the theory of
real functions were the kind of mathematics in which he was educated. The reference for
set theory in the book is the short version of Felix Hausdorff’sMengenlehre [Hausdorff,
1927]; the presentation of measure-theoreticprobability in the first edition of 1914 was
left out in this shorter version. Kolmogorov shows first that his axiom system isconsistent.
In logical terms, he gives aninterpretation for the formal axioms. An interpretation, or a
model, consists of adomain D, the set of objects the interpretation talks about, and a set of
relations F. These latter specify the functions and relations of the domain that correspond
to the functions and relations of the formal axioms. This correspondence has to be such that
the relations which interpret the formal notions, are fulfilled in the domain. Corresponding
assertions about the relations aretrue in the model. Specifically, the axioms correspond to
relations that hold in the model. A contradictory axiom system is one that has no models.
Conversely, if an axiom system has at least one model, it is non-contradictory. The model
that Kolmogorov puts up is very simple: forE, take any set{x}, so the domain interpreting
F is the set{∅,E}. Defining the functionP by P(E)= 1 andP(∅) = 0, it is easy to see
that this interpretation fulfils the axioms.

Next Kolmogorov notes that the axiom system is, as he says, ‘incomplete’ (‘unvoll-
ständig’). Some caution is in order here. At the time of the writing of Kolmogorov’s book,
work on foundations of mathematics was in full progress. The great name in foundational
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studies was of course Hilbert. His ‘metamathematics’ had as its objects the formalization,
proof of consistency and completeness, and creation of a decision method for mathematics
(§77). In more modern terms, the completeness of an axiomatic system can be explained
as follows. An assertion islogically true or valid if it holds in all possible models; there
is no counter-example. An axiom system iscomplete if all true assertions can be formally
proved in it. The completeness of predicate logic was proved by Kurt Gödel in 1930. Next,
an axiom system isincomplete if there is a true assertion for which there is no formal proof
within the system. Gödel’s sensational incompleteness theorem of 1931 shows that there
are true assertions of formalized arithmetic for which there is no such proof (§71).

The notion that Kolmogorov is after in the passage under discussion is another one:
that of thecategoricity of an axiomatization. An axiomatization is categorical if all its
models are isomorphic. In his book Kolmogorovsays that his axiomatization of probability
is incomplete because in different problems of probability theory one considers different
fields of probability (p. 3). Obviously, the intention is that there are non-isomorphic fields
so that the axioms of probability do not characterize their possible interpretations in a
categorical way. A further metamathematical question concerns the mutualindependence
of the axioms. If there is an interpretation which makes all but one of the axioms of some
system true, there cannot be any logically correct deduction of that axiom from the others.
Kolmogorov seems to take the independence of his axioms for obvious. Indeed, simple
considerations show the independence: not all measures all normalized, so that there cannot
be any deduction of axiom IV. As there are genuine subadditive measures, axiom V is
independent, and so on. In the treatment of infinite fields of probability, an additional axiom
VI is posed. Kolmogorov shows that it is independent of the other axioms. However, under
the additional assumption of a finite field of probability, it becomes derivable (p. 14).

4 THE APPLICATION OF PROBABILITY

The sense of probability that Kolmogorov endorses is addressed, characteristically, in the
chapter dealing with the theory of probability for a finite set of events. The strictly infinitary
parts of the theory are purely mathematical, and do not correspond to anything in the
empirical world. He borrows from [von Mises, 1931] the title, ‘the relation to the world of
experience’ for his Section I.2, and follows von Mises’s presentation of the conditions of
the applicability of the theory to the world of experience. The application of probability
takes place according to the following scheme (p. 3):

1. A certain complexS of unlimitedly repeatable conditions is assumed.

2. One investigates certain events that may appear in the realization of the conditionsS.
In individual cases of the conditions, the events appear in general in different ways.
Let E be the set of possible variantsx1, x2, . . . of how the events appear. The setE
contains all variants we hold a priori for possible.

3. If the variant appearing after the realization of conditionsS belongs to the setA, we
say the eventA appeared.

4. Under certain conditions, one can assume that to the eventA a real numberP(A) is
attached such that
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A. If the conditionsS are repeated a great number of timesn, one can bepractically
certain that the relative frequencym/n of occurrence ofA differs only little from
P(A).

B. If P(A) is very small, one can be practically certain thatA does not appear in a
single realization of the conditionsS.

As noted above, Kolmogorov saw probabilistic independence, and weakened but anal-
ogous conditions, as the notionsthat distinguish probability theory from measure theory
in general. The application of probability calls for a justification of independence. And
indeed, we find him writing: ‘After the philosophy of natural science has explained the
much debated question concerning the character of the concept of probability itself, one
of its most important tasks is the following: to make precise the conditions under which
any given real phenomena can be held mutually independent’ (pp. 8–9). He adds that ‘this
question falls outside the scope of our book’. Much later he said he did not answer the
problem of application of probability in1933 because he did not know what the answer
should be.

5 INFINITE FIELDS OF PROBABILITY

Kolmogorov’s Chapter II is devoted to infinite fields of probability. The two mathemati-
cal novelties by which his book differs from previous formulations of measure-theoretic
probability, concern such fields. These are the theory of conditional probabilities and the
construction of a random process as a probability measure over an infinite-dimensional
product space.

The presentation of infinite fields of probability begins with theaxiom of continuity
(p. 13). Let

⋂
i Ai and

⋃
i Ai be the finite or denumerable intersections and unions of

A1,A2,A3, . . .. Axiom VI reads:

VI. For a descending sequence (1)A1⊃ A2⊃ · · · of events fromF with (2)
⋂
i Ai =

∅, it holds that (3) limP(Ai)= 0 asi→∞.

If a field of probability is finite, letAk be the smallest set in (1). Then, since
⋂
i Ai =

A1 ∩ · · ·∩ Ak = ∅ by (2),Ak = ∅ ∈F . ThereforeP(Ak)= 0 so (3) follows (pp. 13–14).
This also proves that the system is consistent and non-categorical. The continuity axiom
is, by an easy argument, equivalent to denumerable additivity (p. 14), orσ -additivity as it
is also called. Assume thatA1,A2,A3, . . . form a disjoint sequence of events:

P

( ⋃
i

Ai

)
=

∑
i

P (Ai). (4)

Denumerable additivity is not a universallyaccepted property of probability measures.
Kolmogorov sees it as a mathematical convention, a view based on his finitism (p. 14):

Because the new axiom is essential only for infinite fields of probability, it
would hardly be possible to explain its empirical meaning in the way sketched
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for axioms I–V in section 2 of the first chapter. In the description of any re-
ally observable random process, one can obtain only finite fields of probability.
Infinite fields of probability appear only as idealized schemes of real random
processes.We delimit ourselves arbitrarily to schemes which fulfil the continu-
ity axiom VI.

Axiom VI would not work if the field of events were not closed with respect to de-
numerable unions and intersections. Kolmogorov refers to Hausdorff’sMengenlehre the
construction of the smallestσ -field BF over a given field of setsF . Then he goes on to
the extension of a denumerably additive probabilityP over a fieldF into aσ -field BF
(p. 16). This is followed by a remark to the effect that even if the eventsA from F can be
taken as (possibly only approximately) observable real events, it does not follow that this
would be the case for the sets ofBF . The extended field of probability (BF ,P ) remains
a purely mathematical construction (p. 16). As we noted above, the infinitary events from
BF are ‘ideal events’ in Kolmogorov, and their status is the one that Hilbert gave for ideal
elements in mathematics in general. ‘If the use of probabilities of these ideal events leads
to a determination of the probability of a real event inF , it is obviously automatically
acceptable from an empirical point of view’(p. 16).

In Chapter III, random variables are defined as measurable functions. Then the consis-
tency conditions for a system of finite-dimensional distributions are laid down, as pertain-
ing to n random variables (p. 24). These conditionsrequire that the distributions for any
k variables, withk < n, coincide with marginals ofn-dimensional distributions. With the
systems of finite-dimensional distributions, all the prerequisites have been laid for the next
paragraph III.4, in which the elementary events are points in an infinite-dimensional space.
Such product spaces had been considered in measure theory earlier, and even their proba-
bilistic significance had been under some attention. In Kolmogorov’s treatise, the product
space construction is made for the purpose of a measure-theoretic treatment of stochastic
processes as follows:

Let M be any set. Then the probability space to be considered is the setRM = {xµ}
whereµ ∈ M. To givenn indicesµ1, . . . ,µn there corresponds ann-dimensional sub-
spaceRn. A setA is acylinder set if it is the inverse of the projection fromRM toRn of a
setA′ ⊂Rn, for somen. If A′ is a Borel set,A also is by definition. LetFM be the Borel
sets ofRM thus obtained. Its Borel extension isBFM . If a probabilityP is given over
FM , A ∈FM is a cylinder set and its probabilityP(A) is obtained as follows. There is
a setA′ of Rn to whichA projects such thatP(A) = Pµ1···µn(A′). Here the latter proba-
bility is well determined since it is the probability for then random variablesx1, . . . , xn.
A system of finite-dimensional distributions determines in this way the probabilities for
all Borel sets. Therefore it determines a probabilityP on FM . By the extension theorem
the same holds forBFM . Kolmogorov’sHauptsatz, or what is often called his extension
theorem, now shows that a consistent system of finite-dimensional distributions determines
a probabilityP onFM andBFM fulfilling the axioms I–VI (p. 27).

The Kolmogorov extension theorem allows for two things: firstly, the discussion of the
strong limit theorems of probability in a systematic setting. These theorems typically state
that the limit of a denumerable sequence has with probability one a certain property. That
probability one is, after Kolmogorov, the same as the measure in an infinite-dimensional
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space of all possible sequences. The systematic reason for the connection between strong
limit laws and measure-theoretic probability is brought into clear light. Secondly, the ex-
tension theorem allows of the construction of a probability law of a stochastic process with
an arbitrary index setM, starting from the finite-dimensional distributions. (In keeping
with the synthetic mode of presentation, stochastic processes are mentioned only later in
the book, on p. 39.) The probability is not defined onall subsets ofRM , however, if the
index setM is continuous. Kolmogorov’s example is the set defined by requiringxµ to
be below a given bound for eachµ (p. 26). There are relatively simple-sounding events
the probability of which is not well defined by his procedure. Some however think they
properly only sound simple, but are not in fact intrinsically well defined [Doob, 1953].

In Chapter V Kolmogorov develops the second of the two essential novelties of his book,
the theory of conditional probabilities for infinite sets of elementary events. It applies to
cases in which the condition has zero probability, such as oneencounters in the theory of
Brownian motion for example. Conditional probabilities are definedas random variables,
the case of a zero probability condition beinghandled with what is today called the Radon–
Nikodym theorem.

6 THE IMPACT OF THEGRUNDBEGRIFFE

Before entering into the immediate reception of theGrundbegriffe, we add some remarks
on the rest of its contents. The last Chapter VI is a treatment of laws of large numbers
to which topic Kolmogorov had contributed continuously, since his first joint paper with
A.Y. Khintchine in 1925. An appendix of the bookcontains a purely infinitistic theorem,
namely what is called a zero-one law. As was mentioned, it escapes the concrete sense
of chance and probability according to Kolmogorov, whereas some other infinitistic re-
sults allow of a finitistic reformulation. Thezero-one law says that under rather general
conditions, the probability of convergence of a sequence can obtain only the values zero
or one. TheGrundbegriffe ends with a bibliography on previous works on probability of
foundational interest.

The mathematical novelties of Kolmogorov’sbook, besides the organization of the ax-
iomatization, were the construction of stochastic processes and the general theory of con-
ditional expectations, conditional probabilities in particular. He says himself in the preface
that ‘these new questions arose out of necessity from certain very concrete physical ques-
tions’. As we have seen, conditional probabilities wherethe condition is drawn from a
continuous set (thus having ingeneral zero probability), appear at once in the theory of
stochastic processes.

We turn now to the reception of the Kolmogorovian measure-theoretic probabilities.
The new approach has later certainly been seen as a revolution that made earlier theo-
ries obsolete. Some such later descriptionsby contemporaries or near contemporaries of
Kolmogorov are [Doob, 1989] and [Cramér, 1976]. In Doob one finds bewilderment as to
why the approach was ‘not immediately universally accepted at once’, on the ground of
‘the uncontroversial nature of the measure-theoretic approach’ [p. 820]. We also read that
Kolmogorov’s book ‘transformed the characterof the calculus of probabilities, moving it
into mathematics from its previous state as a collection of calculations inspired by a vague
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nonmathematical context’ [p. 818]. Cramér puts his words more carefully: ‘Looking back
towards the beginning of a new era in mathematical probability theory, it seems evident
that a real breakthrough came with the publication of Kolmogorov’s book’ [1976, 519].
Already in 1939 in his review of ‘Lines of development in the calculus of probability’ he
had emphasized the continuity, insteadof an opposition, between classical and modern
probability. He explains briefly the measure-theoretic basis and goes on to show how the
classical problems appear as special cases in the new theory. ‘Here, too, the case turns out
of so many revolutionary ideas: the development does not take place as spontaneously as
may seem on a first look. The central new ideas partly are only a consequent, necessary
redevelopment of a common property of thoughts that one can follow a long way back in
time’ [Cramér, 1939, 67].

In his book [Cramér, 1937] a vague frequentist idea of probability is first introduced.
Different axiomatizations are always possible, he says. Then he explains a little the fre-
quentist theory of von Mises. Its difficulties, in defining the irregularity of collectives,
justify the choice of Kolmogorov’s axiomatic measure-theoretic approach, ‘at least for the
time being’ [1937, 4]. Thus, measure-theoretic probability is not seen as any necessity, log-
ical, mathematical, historical, or what have you, and nor was it a novelty of Kolmogorov’s.

A long development culminated in Kolmogorov’s monograph. It is undeniable that its
appearance meant a remarkable advancement in the mathematics of probability. This was
mainly felt in the theory of stochastic processes where Kolmogorov’s use of infinite product
spaces met with immediate approval, but measure-theoretic probability found other uses,
too. One of the first to join Kolmogorov was Khintchine, who was at the time developing
a probabilistic approach to ergodic theory andthe theory of stationary processes. Eber-
hard Hopf had been using measure theory in his studies of dynamical systems. Hopf in his
great paper on probabilistic aspects of dynamical systems [1934], immediately took advan-
tage of Kolmogorov’s measure-theoretic probabilities. J.L. Doob started at once after 1933
to develop the theory of stochastic processes. His systematic papers from the late 1930s
are devoted to the study of discrete and continuous-time stochastic processes. Measure-
theoretic probabilities were also taken into use by Cramér and Lévy in their books, which
both appeared in 1937. Even on the basis of this very partial list, one can conclude that
many of the leading researchers in mathematical probability soon absorbed Kolmogorov’s
measure-theoretic probabilities. Their ‘universal acceptance’, on the other hand, took its
time. This was partly due to resistance from other, competing approaches to probability,
notably the theory of von Mises. Bruno de Finetti also systematically refused to think that
a measure-theoretic scheme would be more than a useful way of finding examples. Instead
he offered an alternative, stemming from his thought that probabilitytheory must have a
form immediately appealing to the ‘everyday sense’ of probability. Anyway, as concerns
the reception of measure-theoretic probabilities, it is a fact that textbook expositions did
not start appearing until after the Second World War, with the exception of [Cramér, 1937].
His 1946 bookMathematical methods of statistics makes systematic use of measure theory,
as does [Doob, 1953]. Paul Halmos’s book of 1950,Measure theory, the standard treatise
on its topic for a long time, devotes one chapter to probability measures.
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CHAPTER 76

H. SEIFERT AND W. THRELFALL (1934) AND
P.S. ALEXANDROFF AND H. HOPF (1935),

BOOKS ON TOPOLOGY

Alain Herreman

In the early 20th century algebraic topology was a discipline at once young and in full
elaboration. These two books, taking part in the development of modern algebra and set
theory, succeeded in offering for the first time a clear and coherent presentation of this
already vast discipline, each book following different points of view. For this reason they
were immediately accepted and use as reference works for quite some time.

Seifert and Threlfall
First publication. Lehrbuch der Topologie, Leipzig: Teubner, 1934. vii+ 353 pages.

English translation. A textbook of topology (trans. Michael A. Goldman), New York: Aca-
demic Press, 1980. [Includes also Seifert,Topology of 3-dimensional fibered spaces
(trans. W. Heil, ed. J.S. Birman and J. Eisner).]

Alexandroff and Hopf
First publication. Topologie, Berlin: J. Springer, 1935 (Die Grundlehren der mathemati-

schen Wissenschaften, volume 45). xiv+ 636 pages.

Photoreprints. New York: Chelsea, 1965, 1972. Also Berlin and New York: Springer, 1974.

Related articles: Cantor (§46), Riemann on geometry (§39), Urysohn and Menger (§60),
van der Waerden (§70)

1 ALGEBRAIC TOPOLOGY PRIOR TO 1934

1.1 Poincaré’s memoirs and combinatorial analysis situs

The books of Seifert and Threlfall and Alexandroff and Hopf deal with the subject known
as ‘algebraic topology’. From their titles however, they are simply books on ‘topology’.

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
© 2005 Elsevier B.V. All rights reserved.

970
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Indeed, it was not until 1942, with the publication of the bookAlgebraic topology by
Solomon Lefschetz (1884–1972), that the adjective ‘algebraic’ was coupled with ‘topol-
ogy’ in the title of a book or article. Nevertheless, as early as 1932, Alexandroff indicated
in a note on a little book [Alexandroff, 1932] that he preferred this name to ‘combinatorial
topology’, ‘since we consider much broader applications of algebraic methods and con-
cepts than the word “combinatorial” would include’ [Alexandroff, 1961,27]. In addition
to the word ‘Topology’, already used by J. Listing (1808–1882) in [Listing, 1847], the ex-
pression ‘Analysis situs’, introduced by G.W. Leibniz (1646–1716), was also in common
use up to the beginning of the 1930s, to designate that branch of mathematics defined by
Bernhard Riemann (1826–1866) as ‘the study of continuous magnitudes where one does
not consider them as existing independently of their position or as measurable in terms of
each other, but where one studies only the relativesituation of places and regions, entirely
without reference to any metric relation’ ([Riemann, 1857]: compare §39).

‘Analysis situs’ was also the designation adopted by Henri Poincaré (1854–1912) in his
series of six memoirs on the subject [Poincaré, 1895–1904]. It is in these ‘fascinating and
exasperating’ memoirs [Dieudonné, 1989] that Poincaré introduces most of the basic no-
tions, methods, theorems and conjectures relating to homology and the fundamental group.
In the next 30 years, most of the papers inspired by these memoirs attempted to give a more
satisfying presentation of certain parts by means of more general or more suitable defin-
itions. Thus there developed a ‘combinatorial analysis situs’ or ‘combinatorial topology’,
which covered a great variety of approaches. Among them the spaces considered (called
today ‘manifolds’, ‘complexes’, ‘chains’, and so on) composed of cells (also called today
‘simplexes’), like a polyhedron is composedof faces. All these designations (‘topology’,
‘analysis situs’, ‘combinatorial analysis situs’, ‘algebraic topology’) reflect only partially
the diversity of the definitions adopted: two articles then rarely had the same definition of
manifolds [Herreman, 2000].

1.2 Books on topology published before 1934–1935

It was only in 1922 that the first book on the subject appeared:Analysis situs, by Oswald
Veblen (1880–1960) [Veblen, 1922]. This elementary book of 194 pages was the main
reference for nearly 10 years and was re-issued in 1931. It proposed a presentation that
attempted to reconcile the arithmetical approach (via matrices and numbers) with the geo-
metric in the study of homology with coefficients in integers or reduced modulo 2. Its
geometric nature is clear from the way it treats spaces in order of dimension: first spaces
of dimension 1 (linear graphs), then complexes and manifolds of dimension 2, and finally
complexes of dimensionn. It was from this book that Saunders MacLane tried to learn the
subject: ‘from such a book, without a teacher, it was exceedingly difficult to understand
combinatorial topology; in 1931 I tried with Veblen’s book and failed’ [MacLane, 1986,
306].

Later there appeared a book by a colleague of Veblen, namely Lefschetz. Containing
more than 400 pages, [Lefschetz, 1930] includes duality theorems, the theory of inter-
section of chains, intersection theory and the theory of fixed points of continuous maps
between two manifolds, with applications to analytic and algebraic manifolds. Using the
theory of sets, still very geometric in thisbook, the author was able to extend the notion of
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homology to that of homology relative to a subset of a manifold, and to embrace in a single
theorem the duality theorems of Poincaré and J.W. Alexander (1888–1971), on whom see
section 3.1. It covered the subject better than its predecessor, but was still judged ‘quite
difficult to read’ by the young Hassler Whitney (1907–1989) [Whitney, 1942].

Among available books devoted to point set topology one may mention [Young and
Young, 1906; Hausdorff, 1914; Fréchet, 1928] and [Kuratowski, 1933].

2 SEIFERT AND THRELFALL,LEHRBUCH DER TOPOLOGIE (1934)

2.1 Biographical notes on Seifert and Threlfall

Herbert Seifert (1907–1996) began his study of mathematics and physics at the Technical
University of Dresden in 1926. In the following year, he followed for the first time the
topology courses of William Threlfall (1888–1949). This encounter quickly developed into
a productive friendship which led to numerous joint publications, including two books:
[Seifert and Threlfall, 1938] preceded by the book under discussion, which in part came
out of these courses.

Seifert spent part of the academic year1928–1929 at Göttingen, where he met Alexan-
droff and Hopf (see section 3.1 below). He obtained his doctorate in 1930 with a paper
on ‘Construction of three-dimensional closed spaces’ [Seifert, 1931]. He was appointed
professor at the University of Heidelberg in 1935 following the dismissal of Heinrich Lieb-
mann by the Nazis. He occupied this position until his retirement, except for the war years,
when he worked at theInstitut für Gasdynamik.

In 1938 Threlfall was appointed professor at the University of Frankfurt-am-Main,
where he succeeded C.L. Siegel, who had emigrated to the United States. In 1946 he
obtained for his friend a professional position at his university, but the period of sepa-
ration and the death of Threlfall in 1949 precluded any further collaboration between them
[Puppe, 1999].

2.2 The book

The contents of their book is summarised in Table 1. Bearing in mind that ‘topology is
intimately associated with the theory of groups’ (p. 305), the authors devote a chapter to
the elements of the theory of groups (defined in terms of generators and relations) that are
needed throughout the book. The most general spaces are ‘neighbourhood spaces’, that is
sets of points to which are associated neighbourhoods satisfying the axioms ad hoc. This
level of generality serves mainly to define continuous functions, for the book is devoted to
the study of less general spaces, namely, complexes. A (simplicial) complex is a ‘neigh-
bourhood space which can be simplicially decomposed’ (p. 43). The (simplicial) homology
groups of a complex are defined using simplicial chains, that is, linear combinations with
integer coefficients or reduced modulo 2 of the oriented simplexes of the complex: the ho-
mology groups are the ‘residue classes of the latticeGk of closedk-chains relative to the
sublatticeNk of null-homologousk-chains’ (p. 66).

The book then describes the classical results of combinatorial topology obtained us-
ing incidence matrices: the reduction to normal form, torsion numbers, the Euler–Poincaré
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Table 1. Contents by chapters of the book by Seifert and Threlfall.

Page Topics
I: Illustrative material.

1 The principal problem of topology. Closed surfaces. Isotopy, homotopy,
homology. Higher dimensional manifolds.

II: Simplicial complexes.
22 Neighborhood spaces. Mappings. Point sets in Euclidean spaces.

Identification spaces;n-simplexes. Simplicial complexes. The schema of a
simplicial complex. Finite, pure, homogeneous complexes. Normal
subdivision. Examples of complexes.

III: Homology groups.
60 Chains. Boundary, closed chains. Homologous chains. Homology groups.

Computation of the homology groups in simple cases. Homologies with
division. Computation of homology groups from the incidence matrices.
Block chains; chains mod 2, connectivity numbers. Euler’s formula.
Pseudomanifolds and orientability.

IV: Simplicial approximation.
95 Singular simplexes; singular chains. Singular homology groups. The

approximation theorem. Invariance of simplicial homology groups. Prisms in
Euclidean spaces. Proof of the approximation theorem. Deformation and
simplicial approximation of mappings.

V: Local properties.
123 Homology groups of a complex at a point. Invariance of dimension.

Invariance of the purity of a complex; of its boundary; of pseudomanifolds
and of orientability.

VI: Surface topology.
134 Closed surfaces. Transformation to normal form. Types of normal form: the

principal theorem. Surfaces with boundary. Homology groups of surfaces.
VII: The fundamental group.
154 The fundamental group. Examples: the edge path group of a simplicial

complex, and of a surface complex. Generators and relations; edge complexes
and closed surfaces. The fundamental and homology groups. Free
deformation of closed paths. Fundamental group and deformation of
mappings. This group at a point, and of a composite complex.

VIII: Covering complexes.
188 Unbranched covering complexes. Base path and covering path. Coverings and

subgroups of the fundamental group. Universal coverings. Regular coverings.
The monodromy group.

IX: 3-dimensional manifolds.
211 General Principles. Representation by a polyhedron; homology groups; the

fundamental group. The Heegaard diagram. 3-dimensional manifolds with
boundary; construction of 3-dimensional manifolds out of a knot.
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Table 1. (Continued)

Page Topics
X: n-Dimensional manifolds.
235 Star complexes cell complexes. manifolds; the Poincaré duality theorem.

Intersection number of cell chains; dual bases. Cellular approximations.
Intersection numbers of singular chains. Invariance of intersection numbers.
Examples: orientability and two-sidedness; linking numbers.

XI: Continuous mapping.
294 The degree of a mapping. a trace formula. A fixed point formula.

Applications.
XII: Auxiliary theorems from the theory of groups.
305 Generators and relations. Homomorphic mapping and factor groups.

Abelianization of groups. Free and direct products. Abelian groups. The
normal form of integer matrices.

328 Comments.
341 Bibliography. [End 353.]

characteristic, and so on. Topological invariance is proved using singular homology groups
defined in terms of singular chains, that is, integer linear combinations of singular oriented
non-degenerate simplexes. The latter are topological invariants bydefinition, and the topo-
logical invariance of simplicial homology groups then follows from a deformation theo-
rem, which reduces homologies between singular chains to homologies between simplicial
chains of a sufficiently fine subdivision of the complex. This is a clearer exposition of the
proof given by Veblen [1922], which is in turn taken from the paper [Alexander, 1915] and
is essentially contained in Poincaré’s memoirs.

The authors introduce ‘homology groups at a point’: the homology groups of the com-
plex formed by the simplexes not containing that point. These are also topological invari-
ants, and they used this fact to prove the topological invariance of dimension. We recall
that the definition of dimension of a space and the proof of its invariance had been classical
problems since the work of Georg Cantor(1845–1918): several definitions of dimension
and various proofs of invariance had been given (§66), the first valid one by L.E.J. Brouwer
(1881–1966) in [Brouwer, 1911].

Having introduced these elements of combinatorial topology and illustrated them by nu-
merous examples, the authors show that the Euler characteristic together with orientability
are sufficient to characterize a closed surface defined by identifying the sides of polygons.
Even if this result and proof were not entirely new, their presentation remains a model.
Having in mind the problem of classifying complexes of dimension greater than 2, the au-
thors introduce the fundamental group, defined as the group of homotopy classes of closed
paths in a complex. They make a connection between this group and the ‘first homology
group by proving that the first homology group of a connected complex is the Abelianised
fundamental group’. They go on to show that the fundamental group is also the ‘group of
covering transformations of the universal covering complex’. These notices are then ap-
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plied to manifolds of dimension 3, but without solving completely the problem of their
classification.

The authors then restrict themselves to manifolds, which they define as ‘connected, fi-
nite, n-dimensional complexes which at every point have the same homology groups as
the(n−1)-sphere’. This definition, which consists of retaining only the homological char-
acterization of simplicial neighbourhoods, had already been considered by various math-
ematicians, notably by Alexander and E. van Kampen, and also in [Lefschetz, 1930]. The
property of being a manifold in this sense is thus topologically invariant, which is not the
case with other definitions. This definition also makes it possible to state and prove the
Poincaré duality theorem, either starting from incidence matrices or by constructing dual
bases using intersection numbers. Both proofs are given. Finally, one chapter is devoted to
the theory of the degree of a map, developed by Brouwer, applied to fixed-point theorems
and to the ‘trace formula’ of Hopf.

3 ALEXANDROFF AND HOPF,TOPOLOGIE (1935)

3.1 Biographical notes on Alexandroff and Hopf

P.S. Alexandroff (1896–1982) was a student of Nikolai Nikolaevich Luzin (1883–1950),
and his first papers were devoted to general topology. In 1923, at the age of 27, he and
his friend P.S. Urysohn (1898–1924) went to Göttingen, which was then one of the main
centres of mathematics. There they met, among others, Emmy Noether (1882–1935) and
David Hilbert (1862–1943). During the summer of 1924, they went to Holland together
to meet Brouwer. After the death of his friend in a bathing accident in Britanny (§66.3)
Alexandroff returned to work with Brouwer for part of the years 1925 and 1926.

It was in the course of his regular visits to Göttingen between then and 1932 that Alexan-
droff struck up a friendship with Heinz Hopf (1894–1971), who was two years his senior.
Hopf had already followed, at Breslau and then Berlin, the courses of Erhard Schmidt
(1876–1959) on the theory of sets and the work of Brouwer. He first came to Göttingen
in 1925. It was in December of that year, at a dinner at Brouwer’s house, that Noether
suggested replacing the Betti numbers by groups. Hopf used this idea to good effect in
generalizing the Euler–Poincaré formula [Hopf, 1928].

Supported by a Rockefeller grant, Alexandroff and Hopf went to Princeton together,
where they spent the academic year 1927–1928. They attended the courses of, and held
discussions with, those of the most eminent topologists of the time: Veblen, Lefschetz and
Alexander. The last-named is best known for his two proofs of the invariance of Betti num-
bers and connection numbers (Betti numbers reduced modulo 2) [Alexander, 1915], his
counterexamples showing that the Betti numbers and the fundamental group are insuffi-
cient to classify manifolds of dimension 3, and the duality theorem that bears his name
today [Alexander, 1922].

Alexandroff was appointed Professor of Mathematics at the State University of Moscow
in 1929. In 1931, Hopf was appointed Professor of Mathematics at the Technical High
School of Zürich, where he remained until his retirement in 1965 [Arboleda, 1979; Frei
and Stammbach, 1999].
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3.2 The book

The book was written for the Springer seriesGrundlagen der mathematischen Wis-
senschaften (‘Foundations of the mathematical sciences’) on the initiative of Richard
Courant, who had suggested the project to the future authors in 1928. Alexandroff being
in Moscow and Hopf in Zürich, their collaboration was carried out chiefly by letter. The
International Congress in Zürich (5–12 September 1932), of which Hopf was one of the
organizers, enabled the two authors to meet; and it was at the first international conference
on topology (4–10 September 1935), this time organized by Alexandroff in Moscow, that
they finished the book. Its contents are summarised in Table 2.

The object of the book is not to present ‘the whole of topology’ but ‘topology as a
whole’, which is perhaps more ambitious. Instead of opting for general topology or combi-
natorial topology, it combines these two approaches in the way that Brouwer, to whom the
book is dedicated, had been the first to suggest. The first part is devoted to the elementary
notions of general topology: open and closed sets, metric and topological spaces (defined
in terms of closure), continuous maps, separation axioms, and compact, bicompact and
complete spaces.

Table 2. Contents by Part of the book by Alexandroff and Hopf.

Page Topics
First Part: Basic concepts of set-theoretic topology.
24 Topological and metric spaces.
83 Compact spaces.

Second Part: Topology of complexes.
124 Polyhedra and its cell decomposition [Zellenzerlegungen].
154 Vertices and coefficient domains.
205 Betti groups.
240 Sub-division and decomposition of complexes.
273 Special questions from the theory of complexes.
Third Part: Topological invariance theorems and related development of concepts.
313 Simplicial approximations of continuous mappings.
347 Canonical displacement [Verschiebungen]. Again on the invariance of

dimension number and of Betti groups. General concept of dimension.
379 The decomposition theorem for Euclidean space. Further invariance theorems.
Fourth Part: Linking in Euclidean space. Continuous mappings of polyhedra.
409 Linking theory. Alexander’s duality theorem.
457 Brouwer’s mapping degree. Kronecker’s characteristic.
498 Homotopy und extension theorems for mappings.
527 Fixed points.
554 Appendix I: Abelian groups.
594 Appendix II: Rn and its convex cells.
617 List of topological books.
618 Bibliography.
622 Subject index. [End 636.]
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The second part introduces the basic concepts of combinatorial topology: ‘curved’ poly-
hedra and their subdivisions. Polyhedra are defined using complexes, where a complex is
a finite or countable set of simplexes (line segments, triangles, tetrahedral, and so on) with
ad hoc conditions on the relations of incidence between them. A polyhedra is then the set
of points belonging to at least one cell of the complex. The need to distinguish clearly be-
tween the set of cells (the complex) and the set of points (the polyhedron) was emphasized
for the first time in [Alexandroff, 1932], when confusion was still rife [Herreman, 2000].
A curved polyhedron (‘krumme Polyeder’) is then a topological space homeomorphic to a
polyhedron. It is thus a geometrical object.

Algebra, in the form of the theory of abelian groups, enters the picture via algebraic
complexes. An algebraic complex associates a set of vertices and an abelian group: the
vertices suffice to define the simplexes of an oriented complex, and analgebraic complex
is then a linear combinationC =∑

t ixi , where thexi are simplexes and thet i elements
of the abelian group or of a ring: the integers, integers modulom, rational numbers, or
rational numbers modulo 1 in which L. Pontrjagin (1908–1988) had shown an interest.
These complexes enable one to define the Betti groups as quotients of the group of cycles
with coefficients in a group by the group of cycles that are boundaries. The authors make
precise the influence of the choice of coefficient group on the Betti groups and establish
the invariance of the latter by subdivision of the polyhedron.

The third part of the book is devoted to polyhedra and to proving the topological invari-
ance of the dimension and the Betti groups. Several proofs are given: one makes use of
the link established by simplicial approximation between homotopy classes and homology
classes, and another involves the nerve of acovering of a metric space, a notion intro-
duced by Alexandroff and inspired by the dual polyhedra of Poincaré and the simplicial
techniques adopted by Brouwer.

The fourth part is devoted to the theory of intersection and linking numbers in Euclidean
space of dimensionn that enables one to prove the Alexander duality theorem. One chapter
is given over to the Lefschetz fixed-point formula for a transformation of a polyhedron onto
itself.

4 RECEPTION OF THE TWO BOOKS

The recognition of a new branch of mathematics, analysis situs, can be attributed to Leib-
niz. It had a name and a well-established and stable definition; but hardly any definitions,
theorems or proofs were shared by many of the numerous contributions to this area in the
second half of the 19th century [Pont, 1974]. Neither did any basic text serve as a com-
mon reference. This changed with the appearance of Poincaré’s memoirs: they introduce
a set of definitions, theorems, proofs and methods that were to be quickly taken up by the
international mathematical community. From then on, analysis situs had its reference texts.

Forty years later, the book of Seifert and Threlfall marked a new era in this history. The
elements of homology theory it contains (simplicial homology groups, incidence matrices,
a proof of the invariance of singular homology, the theory of manifolds, Poincaré’s duality
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theorem, intersection and linking, and fixed-point theorems) differ little from those pre-
sented four years sooner in [Lefschetz, 1930]. The organization of the body of the theory
then seems to have become pretty well fixed: the results and methods of this theory became
‘standard’. But Seifert and Threlfall present the material with unprecedented and enduring
clarity. This book, while it contains no truly original results, gives the first clear exposition
of ideas, which makes it accessible to students. It is this that makes it an important event
in the history of algebraic topology. It gives the reader access to common seemingly well-
established theories. It is moreover probably more a consequence or simply an effect of the
book than the state of a discipline then in full revitalisation.

Whatever be the case, the reading of it allowed economies to be made in the reading
of other texts, Poincaré’s difficult memoirs in particular. It thus modifies the rapport of the
reader with earlier publications. This is another effect of its clarity and status as a reference
manual. Its numerous historical notes forge new links with texts that will from then on be
read less or even not at all.

The ‘Julia seminar’ testified to the reception of both books. Held in Paris since 1933, this
seminar was led by a group of young mathematicians: J. Dieudonné, A. Weil, C. Chevalley,
J. Leray, R. de Possel, C. Ehresmann, P. Dubreil and F. Marty. Among them one recog-
nises some of the mathematicians who founded Bourbaki two years later, after which Weil,
Dubreil and Chevalley moved to Göttingen. The theme of the seminar in its first year was
the ‘theory of groups and algebras’. It provided a forum for the study of the works of G.
Frobenius, Noether, E. Artin, A. Speiser, H. Hasse and B. L. van der Waerden, the first
volume of whoseModerne Algebra had appeared in 1930 (§70). The second year was de-
voted to Hilbert spaces, and the following year, 1935–1936, to topology, where our two
books played their part. André Weil, who hadmet Alexandroff at Göttingen in 1927, chose
Alexandroff and Hopf as the reference bookfor his accounts of the ‘applications of ho-
mological invariants to the characterization of classes of representation’ and ‘intersection
numbers and topological degrees’. It was also thereference for de Possel’s account of ‘fixed
points of transformation’. Seifert and Threlfall served similarly for F. Marty’s account of
‘coverings—the fundamental group’. Poincaré’s memoirs were never cited by the young
French mathematicians, and neither was Veblen’s book. Lefschetz’s book was only men-
tioned by Ehresmann, Chevalley and Weil. Ten years later, H. Cartan again referred ‘for
all fundamental notions’ to Alexandroff and Hopf [Cartan, 1945, Note, p. 2], and J. Leray
mentioned the first two chapters of ‘the excellent treatise of Messrs. Alexandroff and Hopf’
[Leray, 1945].

It was the same story in the United States. Thus Whitney, who was of the same age as
the young French mathematicians, wrote [Whitney, 1942]:

In 1934, the appearance of [Seifert and Threlfall] gave the young student an
excellent first text in the field. In one subject, the fundamental group (with ap-
plications), it fills a large gap in earlier works. Soon after (1935) [Alexandroff
and Hopf] was published. It is a very full treatment [. . .]. Both [Seifert and
Threlfall] and [Alexandroff and Hopf] are written in a clear, detailed style.

Peter Hilton spoke similarly of Alexandroff and Hopf: ‘This was an extremely influential
book and was a sort of bible for the study of algebraic topology. It was a very beautifully
written work’ [Hilton, 1988, 286].
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Each of these books refer to subsequent volumes in their introductions: Seifert and
Threlfall intended to treat Alexander duality in a second volume, and Alexandroff and
Hopf were even more precise in specifying two additional books, the first to be devoted to
topological spaces in full generality, and the second to varieties and the fundamental group.
But none of these saw the light of day. At the time when these two books appeared, two
discoveries were announced at the Moscow Congress that transformed algebraic topology:
cohomology was discovered independentlyby Alexander and A.N. Kolmogorov (1903–
1987), and homotopy groups were defined in all dimensions by W. Hurewicz (1904–1956).

Political events also had an effect on the geography of the mathematical world. At the
end of the 1920s and beginning of the 1930s, mathematicians came from all over the world
to Göttingen: Garrett Birkhoff, Whitney and Mac Lane, to name but a few. The advent of
Naziism emptied the University of Göttingen and transplanted the heart of mathematics
in the United States, especially in Princeton, where a new algebraization of topology took
place. Partly as a result of these developments and this algebraization, our two books were
quickly overtaken by the specialists. To add one or two volumes would no longer suffice; a
rewriting would have been necessary. It was this that led to Lefschetz in 1942 to publish his
bookAlgebraic topology, which bore the stamp of this new generation of mathematicians
at Princeton, such as Mac Lane, S. Eilenberg, N.E. Steenrod, Whitney and Chevalley.

From that time onwards, our two books could no longer be regarded as more than intro-
ductory texts. Seifert and Threlfall seems an obvious candidate for this role: Alexandroff
and Hopf is not properly speaking a textbook, but rather a coherent and systematic ex-
position of a large part of the subject. It gains its generality and coherence largely from
the set-theoretic language in which it is uncompromisingly written: a good number of its
distinctions and developments are bound up with this choice. Seifert and Threlfall lies
closer to basic geometric intuition: this does not lose its interest or its value in the later
evolution of the theory, which needs to reflectthat intuition. Moreover, some theorems in
topology are valid, or known to be valid, only in sufficiently high dimensions: a distinction
appeared between topology in general and topology in low dimensions. The need has be-
come increasingly obvious for a specific study of low-dimensional topology, as opposed to
investigations of the widest generality. It turns out that Alexandroff and Hopf fits into the
latter category, while Seifert and Threlfall can serve as an introduction to the former.

BIBLIOGRAPHY

Alexander, J.W. 1915. ‘A proof of the invariance of certain constants in Analysis Situs’,Transactions
of the American Mathematical Society, 16, 148–154.

Alexander, J.W. 1922. ‘A proof and extension of the Jordan–Brouwer separation theorem’,Transac-
tions of the American Mathematical Society, 23, 333–349.

Alexandroff, P.S. 1932.Einfachste Grundbegriffe der Topologie, Berlin: Springer Verlag. [English
trans.:Elementary concepts of topology (trans. A.E. Farley), New York: Dover, 1961.]

Arboleda, L.C. 1979. ‘Les débuts de l’école topologique soviétique: notes sur les lettres de Paul
S. Alexandroff et Paul Urysohn à Maurice Fréchet’,Archives for history of exact sciences, 20,
73–89.

Brouwer, L.E.J. 1911. ‘Beweis der Invarianz der Dimensionzahl’,Mathematische Annalen, 70, 161–
165. [Repr. inCollected works, vol. 2, 430–435.]



980 Chapter 76. Seifert/Threlfall (1934)and Alexandroff/Hopf (1935) on topology

Cartan, H. 1945. ‘Méthodes modernes en topologie algébrique’,Commentarii Mathematicae Hel-
veticii, 18, 1–15.

Dieudonné, J. 1989.A history of algebraic and differential topology 1900–1960, Boston: Birkhäuser.
Fréchet, M. 1928.Les espaces abstraits, Paris: Gauthier–Villars.
Frei, G. and Stammbach, U. 1999. ‘Heinz Hopf’, in [James, 1999], 991–1008.
Hausdorff, F. 1914.Grundzüge der Mengenlehre, Leipzig: Veit. [Repr. New York: Chelsea, 1949.]
Herreman, A. 2000.La topologie et ses signes. Eléments pour une histoire sémiotique des mathéma-

tiques, Paris: L’Harmattan.
Hilton, P. 1988. ‘A brief and subjective history of homology and homotopy theory in this century’,

Mathematics magazine, 6, 282–291.
Hopf, H. 1928. ‘Eine Verallgemeinerung der Euler–Poincaré Formel’,Nachrichten der Gesellschaft

der Wissenschaften zu Göttingen, 127–136.
James, I.M. (ed.) 1999.History of topology, Amsterdam: North-Holland.
Kuratowski, C. 1933.Topologie, vol. 1, Warsaw and Lwow: PWN.
Lefschetz, S. 1930.Topology, New York: American Mathematical Society.
Lefschetz, S. 1942.Algebraic topology, Providence: American Mathematical Society.
Leray, J. 1945. ‘Sur la forme des espaces topologiques et sur les points fixes des représentations’,

Journal de mathématiques pures et appliquées, 24, 95–167.
Listing, H.B. 1847. ‘Vorstudien zur Topologie’,Göttinger Studien, 811–875.
MacLane, S. 1986. ‘Topology becomes algebraic with Vietoris and Noether’,Journal of pure and

applied algebra, 39, 305–307.
Poincaré, H. 1895. ‘Analysis Situs’,Journal de l’Ecole Polytechnique, (2) 1, 1–123. [This and the

later papers repr. inŒuvres, vol. 6 (1953).]
Poincaré, H. 1899. ‘Complément à l’analysis situs’,Rendiconti del Circolo Matematico di Palermo,

13, 285–343.
Poincaré, H. 1900. ‘Second complément à l’Analysis Situs’,Proceedings of the London Mathemati-

cal Society, 32, 277–308.
Poincaré, H. 1902. ‘Sur les cycles des surfaces algébriques; Quatrième complément à l’Analysis

Situs’,Journal de mathématiques pures et appliquées, (5) 8, 169–214.
Poincaré, H. 1904. ‘Cinquième complément à l’Analysis Situs’,Rendiconti del Circolo Matematico

di Palermo, 18, 45–110.
Pont, J.-C. 1974.La topologie algèbrique des origines à Poincaré, Paris: PUF.
Puppe, D. 1999. ‘Herbert Seifert’, in [James, 1999], 1021–1027.
Riemann, B. 1857. ‘Theorie der Abel’schen Functionen’,Journal für die reine und angewandte

Mathematik, 54, 101–155.
Seifert, H. 1931. ‘Konstruktion dreidimensionaler geschlossener Räume’,Berichte der säschsichen

Akademie der Wissenschaften zu Leipzig, 83, 26–66.
Seifert, H. and Threlfall, W. 1938.Variationsrechnung im Grossen, Leipzig: Teubner.
Veblen, O. 1922.Analysis situs, New York: American Mathematical Society (Colloquium Publica-

tions). [Repr. 1931.]
Whitney, H. 1942. Review of [Hopf, 1941],Mathematical reviews, 3, 316.
Young, W.H. and Young, G.C. 1906.The theory of sets of points, Cambridge: Cambridge University

Press. [Repr. New York: Chelsea, 1972.]



CHAPTER 77

DAVID HILBERT AND PAUL BERNAYS,
GRUNDLAGEN DER MATHEMATIK ,

FIRST EDITION (1934, 1939)

Wilfried Sieg and Mark Ravaglia

In these two volumes, Hilbert and Bernays present systematically their proof-theoretic in-
vestigations and a wide range of current results, such as Herbrand’s theorems and Gödel’s
incompleteness theorems. The second volume has a number of supplements, in which they
discuss some specialized topics, for example, the development of mathematical analysis
and the unsolvability of the decision problem.

First publication. 2 volumes, Berlin: Verlag Julius Springer, 1934, 1939 (Die Grundlehren
der Mathematischen Wissenschaften, vols. 40 and 50). 479+ 506 pages.

Second edition. 2 volumes, same publisher, 1968–1970. 472+ 561 pages. [Revisions de-
tailed in forewords written by Bernays.]

French translation of the second edition. Fondements des mathématiques (trans. F. Gail-
lard, E. Gaillard and M. Guillaume), 2volumes, Paris: l’Harmattan, 2001.

Russian translation of the second edition. Osnovaniya matematiki (trans. N.M. Nagornyi,
ed. S.I. Adyan) 2 vols., Moscow: Nauka Publishing House, 1979. [Repr. 1982.]

Related articles: Dedekind (§43), Dedekind and Peano (§47), Hilbert on geometry (§55),
Whitehead and Russell (§61), Gödel (§71).

1 BACKGROUND

The two volumes ofGrundlagen der Mathematik by David Hilbert (1862–1932) and Paul
Bernays (1888–1977) are very special milestones in the development of modern mathemat-
ical logic. They were at the forefront of contemporaneous research and presented then cur-
rent metamathematical results: from consistency proofs (Hilbert and Bernays had obtained
in weaker forms during the 1920s) through theorems of Jacques Herbrand (1908–1931)

Landmark Writings in Western Mathematics, 1640–1940
I. Grattan-Guinness (Editor)
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and Kurt Gödel (1906–1978) to a sketch of a consistency proof for number theory found
by Gerhard Gentzen (1909–1945). This material is supplemented in the second volume by
a series of important appendices concerning focused topics, for example, a very elegant
formal development of analysis and an incisive presentation of the undecidability of the
decision problem. Indeed, the two volumes constitute an encyclopedic synthesis of meta-
mathematical work from the preceding two decades. What is most remarkable, however,
is the sheer intellectual force that structures the books: they are penetrating and system-
atic studies concerned with the foundations of modern mathematics as it emerged in the
second half of the 19th century. That emergence was deeply influenced by C.F. Gauss,
J.P.G. Dirichlet, Bernhard Riemann, and above all by Richard Dedekind (1831–1916).

Dedekind formulated abstract axiomatic theories within a general logicist framework
that was articulated most explicitly inWas sind und was sollen die Zahlen? [1888]. His
way of formulating theories was used by Hilbert inDie Grundlagen der Geometrie [1899]
and the paper ‘Über den Zahlbegriff’ [1900]. Hilbert recognized, as Dedekind had done,
the centrality of the consistency problem for such theories. For Dedekind this was a se-
mantic issue, and he tried to resolve it by defining suitable models within logic. However,
problematic aspects of Dedekind’s broad logicist framework were noticed early by Georg
Cantor (1845–1918) and formulated in letters to Hilbert in 1897. Hilbert reformulated the
consistency problem as a quasi-syntactic one for his axiomatization of the arithmetic of
real numbers, both in his papers (1900) and (1901), in the latter in the second of his Paris
problems (§57.2). He demanded that a ‘direct proof’ be given to establish that no contra-
diction can be obtained from the axioms in a ‘finite number of logical steps’. The point of
such a proof was to establish the existence of a ‘consistent multiplicity’, i.e. a set, satisfy-
ing the axioms. At the time, Hilbert thought that a consistency proof could be given ‘by
means of a careful study and suitable modification of the known methods of reasoning in
the theory of irrational numbers’.

Hilbert believed, it seems, that the genetic build-up of the real numbers could be ex-
ploited to yield the blueprint for a consistency proof in Dedekind’s logicist style. That is
supported by Hilbert’s treatment of arithmetic in other lectures from that period, but also
by a more programmatic statement from the introduction to the notes for his lectures ‘El-
emente der Euklidischen Geometrie’ (summer semester 1899). He maintains there: ‘It is
important to fix precisely the starting-point of our investigations: as given we consider the
laws of pure logic and in particular all of arithmetic’ [Toepell, 1986, 203–204]. Hilbert
adds parenthetically, ‘On the relation between logic and arithmetic cf. Dedekind,Was sind
und was sollen die Zahlen?’. And, clearly, for Dedekind arithmetic is part of logic.

2 NAÏVE PROOF THEORY

In Dedekind’s as well as in Hilbert’s systematic developments only the mathematical parts
are characterized axiomatically; logic is not given a principled formulation. That changes in
1904 with Hilbert’s programmatic call for a simultaneous development of logic and math-
ematics. However, it is only more than a decade later that an appropriate logical frame is
obtained through the careful study ofPrincipia mathematica (1910–1913) by A.N. White-
head (1862–1947) and Bertrand Russell (1872–1970). This fully formal framework is then
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recognized as an object of metamathematical investigation—to address the issues that arose
at the beginning of the century (§61). We consider some of them now.

2.1 Equational theories

Hilbert changed his basic attitude towards consistency proofs only around 1903 after the
discovery of the elementary contradiction of Russell and Zermelo, which convinced him
that there was adeep problem. In early 1904 he wrote to Adolf Hurwitz and claimed:
‘exactly the most important and most interesting questions [concerning the foundations of
arithmetic] have not been settled by Cantor and Dedekind (and a fortiori not by Weierstrass
and Kronecker)’. He announced his intention to offer in the next semester a seminar on
the ‘logical foundations of mathematical thought’ (original in [Dugac, 1976, 271]). The
lecture notes from that term contain remarks on Dedekind’s achievements, but insist that
fundamental difficulties remain:

He [Dedekind] arrived at the view that the standpoint of considering the inte-
gers as obvious cannot be sustained; herecognized that the difficulties Kro-
necker saw in the definition of irrationals arise already for integers; further-
more, if they are removed here, they disappear there. This work [Was sind und
was sollen die Zahlen?] was epochal, but it did not yet provide something de-
finitive, certain difficulties remain. These difficulties are connected, as for the
definition of the irrationals, above all to the concept of the infinite; [. . .]

All of this set the stage for the talk of August 1904 at the International Congress of
Mathematicians at Heidelberg. Hilbert [1905] stresses there the programmatic goal of de-
veloping logic and mathematics, in particular arithmetic, simultaneously. His theory of
arithmetic is now restricted and deals only with natural numbers; it consists of axioms
for identity and Dedekind’s requirements for asimply infinite system, except that the in-
duction principle is not formulated. The consistency of this purely equational system is
established by an inductive argument on derivations. The work has real shortcomings, as
there is neither a calculus for sentential logic nor a proper treatment of quantification.
In sum, Hilbert initiates an important shift fromsemantic to syntactic arguments, but the
formal set-up is inadequate as a framework for arithmetic, and the ultimate goal of the
consistency proof remains to guarantee the existence of a set, here of the ‘smallest infi-
nite’.

Henri Poincaré (1854–1912) challenged the foundational import of Hilbert’s considera-
tions on account of the inductive character of the consistency proof [Poincaré, 1905–1906].
His incisive analysis shifted Hilbert’s attention not away from foundational concerns (they
are documented by lectures throughout the period from 1905 to 1917), but from the syn-
tactic approach advocated in the Heidelberg talk. Indeed, under the impact of a detailed
study of Principia mathematica beginning in 1913, Hilbert flirted again with logicism.
What resulted from this study, very importantly as it contains the first exposition of mod-
ern mathematical logic, were the lectures ‘Prinzipien der Mathematik’, given in the winter
semester of 1917–1918 with the assistance of Bernays. Their logicism was abandoned in
the following year; a radical constructivism was adopted instead and subsequently aban-
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doned; finally, the finitist consistency program was formulated in lectures given in the
winter semester of 1921–1922.

2.2 Quantifier-free systems

The evolution towards this program started in the summer semester 1920, when Hilbert
came back to the syntactic approach of his course of 1905. The notes from that semester
contain a consistency proof for almost exactly the same fragment of arithmetic as that
discussed in the Heidelberg talk; the modified argument is presented in the first part of
[Hilbert, 1922] and its strategic point is made explicit there: ‘Poincaré’s objection, claiming
that the principle of complete induction cannot be proved but by complete induction, has
been refuted by my theory’.

In the second part of [Hilbert, 1922] the theory is expanded to include an appropri-
ate logical calculus; he emphasizes that ‘all formulas and statements of arithmetic can be
obtained in a formal way’. The editors of hisGesammelte Abhandlungen mention that ‘a
schema for the introduction of functions by recursion equations’ has to be added, if this
last goal is to be reached. As to the claimed consistency result, they assert that it holds
only if quantifiers are excluded and the induction axiom is replaced by the induction rule.
With these modifications consistency is claimed though not proved there, for a theory that
includes primitive recursive arithmetic. This work is the beginning of a genuinely new di-
rection, which is best articulated in [Bernays, 1922] and given its principled formulation
in Hilbert’s Leipzig talk: the instrumentalcharacter of extensions that go beyond finitist
mathematics is now emphasized.

The developments leading to a proof of the above result can be followed in contempo-
raneous lecture notes; the proof is only sketched in [Hilbert, 1923], but was given in detail
during the winter semester of 1922–1923. The first step turns linear proofs into trees so that
any formula occurrence is used at most once as apremise of an inference. That prepares the
second step, namely, the elimination of all (necessarily free) variables through appropriate
substitutions by a numeral. In the third step the numerical value of the closed terms and the
truth-value of the formulas are determined. As all formulas in the final syntactic configu-
ration turn out to be true, an inconsistency cannot be proved. Primitive recursively defined
functions are admitted and treated in the argument. The rule of induction for quantifier-free
formulas is also added, though not incorporated into the argument—it could be, as it was
done already in 1921–1922.

From a contemporary perspective the arguments reveal something very important: as
soon as a formal theory contains a class of finitist functions it is necessary to appeal to a
wider class of functions in this kind of consistency proof. Anevaluation function is needed
to determine uniformly the numerical value of terms, and such a function is no longer in
the given class. As the formal system considered in the above consistency proof includes
primitive recursive arithmetic, the consistency proof goes beyond the means available in
primitive recursive arithmetic. Finitist mathematics is consequently stronger than primitive
recursive arithmetic at this early stage of proof theory. Indeed, as we will see, that assess-
ment of the relative strength is clearly sustained throughout the development reported in
this essay.
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2.3 Quantifiers and ε-terms

The above proof theoretic considerations are preliminary in that they concern a theory
that ispart of finitist mathematics and thusneed not be secured by a consistency proof.
The truly expanding step involves theories with quantifiers treatedaccording to Hilbert’s
Ansatz; that is indicated in [Hilbert, 1922] and elaborated in [Hilbert, 1923]. There, he
sketches how quantifierscan be eliminated with theτ -function, the dual of theε-operator,
which replaces theτ -symbol in early 1923. Theτ -function associates with every predicate
A(a) a particular objectτx.A(x) or simplyτA; it satisfies thetransfinite axiom A(τA)→
A(a) and allows the definition of the quantifiers:

(x)A(x)↔A(τA) and (Ex)A(x)↔A
(
τ (∼A)). (1)

Hilbert extends the consistency argument to the ‘first and simplest case’ that goes beyond
the finitist system and describes a particular process of eliminating instances of the transfi-
nite axiom (later also calledepsilon axiom, epsilon formula or critical formula).

The further development is quick and limited. Wilhelm Ackermann (1896–1962) di-
rectly continues Hilbert’s proof-theoretic work in his thesis but modifies the elimination
procedure for epsilon terms. His paper, based on the thesis, was submitted on 30 March
1924 and published in early 1925; it starts out in Section II with a concise review of
Hilbert’s considerations. That Section is entitled, tellingly, ‘The consistency proof before
the addition of the transfiniteaxioms’. At first it was believed that Ackermann [1925] had
established the consistency of arithmetic and analysis; but a note was added ‘in proof’ re-
stricting the result significantly. Von Neumann, whose paper ‘Zur Hilbertschen Beweisthe-
orie’ was submitted on 29 July 1925, tried to clarify the extent of Ackermann’s result and
asserts that it covers Russell’s mathematics without the axiom of reducibility or Hermann
Weyl’s system in his bookDas Kontinuum (1918) [von Neumann, 1927, 46]. In his talk
at the International Congress of Mathematicians held in Bologna in 1928, Hilbert [1929]
stated, quite in line with von Neumann’s observation, that the consistency of full num-
ber theory had been secured by the proofs of Ackermann and von Neumann; according to
Bernays in his preface to the second volume, that belief was sustained until 1930. Indicat-
ing the depth of Dedekind’s influence, Hilbert formulated as Problem I of his Bologna talk
the consistency of theε-axioms for function variables and commented later: ‘The solution
of problem I justifies also Dedekind’s ingenious considerations in his essayWas sind und
was sollen die Zahlen?’.

As we know now and as was recognized in 1931, Ackermann and von Neumann had
established only the consistency of arithmetic with quantifier-free induction. In late 1933
Gödel attributed the most far-reaching partial result in the pursuit of Hilbert’s program still
to Herbrand, who in [Herbrand, 1931] had extended the Ackermann/von Neumann result
by allowing a larger class of finitist functions that included, in particular, the non-primitive
recursive Ackermann function. By then, Herbrand knew of Gödel’s incompleteness theo-
rems and agreed with von Neumann’s related assertion: ‘If there is a finitist consistency
proof at all, then it can be formalized. Thus, Gödel’s proof implies the impossibility of a
consistency proof’. The historical development as sketched above is actually reflected in
the structure ofGrundlagen der Mathematik, whose systematic metamathematical content
is to be described in the next two sections.
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3 THE FIRST VOLUME

According to the preface of this volume, a presentation of proof theory had almost been
completed, when the publication of papers by Herbrand and Gödel in 1931 produced a
deeply changed situation for proof theory. This resulted in an extension of the scope of
the work and its division into two volumes. The volumes were completed in early 1934
and early 1939; though both volumes use much material from joint work in the 1920s,
the actual writing of the volumes was done byBernays. The contents of the volumes are
summarized in Table 1.

The eight chapters of Volume I can be divided roughly into three parts: Chapters 1
and 2 introduce the central foundational issues, Chapters 3 to 5 develop systematically the
logical framework of first-order logic (with identity) and Chapters 6 to 8 investigate the
consistency problem and other metamathematical questions for a variety of (sub-) systems

Table 1. Summary by Chapters ofGrundlagen der Mathematik. Titles translated.

Chapter; pp. Chapter title
I.1; 19 The consistency problem in axiomatics as a logical decision problem.
I.2; 23 Elementary number theory. Finitist inference and its limits.
I.3; 23 The formalization of logical inference I; the propositional calculus.
I.4; 79 The formalization of logical inference II; the predicate calculus.
I.5; 46 Inclusion of identity. Completeness of the one-place predicate

calculus.
I.6; 78 The consistency of infinite domains of individuals. Beginnings of

number theory.
I.7; 97 Recursive definitions.
I.8; 76 The concept “that, which” and its eliminability.
II.1; 48 The method of elimination of bound variables by means of Hilbert’s

ε-symbol.
II.2; 82 Proof theoretic investigation of number theory by means of methods

connected with theε-symbol.
II.3; 75 Application of theε-symbol for the investigation of the logical

formalism.
II.4; 48 The method of the arithmetization of metamathematics applied to the

predicate calculus.
II.5; 120 The reason for extending of the methodological frame for proof

theory.
II.Supp. I;16 Overview of the predicate calculus and connected formalisms.
II.Supp. II; 29 A sharpening of the concept of calculable function and Church’s

theorem on the decision problem.
II.Supp. III; 58 On certain parts of the propositional calculus and their deductive

demarcation by means of schemata.
II.Supp. IV; 44 Formalisms for the deductive development of analysis.
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of number theory. Volume I focuses on the development of proof theory without use of the
ε-operator.

3.1 Existential axiomatics

Chapter 1 begins with a general discussion of axiomatics, at the center of which is a distinc-
tion betweencontentual andformal axiomatic theories. This distinction occurs under dif-
ferent formulations throughout Hilbert and Bernays’s writings. Contentual axiomatic the-
ories (examples of which include Euclid’s geometry, Newton’s mechanics and Clausius’s
thermodynamics) draw on experience for the introduction of their fundamental concepts
and basic principles, which are understood contentually. By contrast, formal axiomatic
theories such as Hilbert’s axiomatization of geometry abstract away such intuitive con-
tent; they begin with the assumption of a fixed system of things (or several such systems),
which is delimited from the outset and constitutes a ‘domain of individuals for all predi-
cates from which the statements of the theory are built up’ (p. 2). The assumption of the
existence of such a domain of individuals constitutes an ‘idealizing assumption that joins
the assumptions formulated in the axioms’ (p. 3). Hilbert and Bernays elsewhere refer to
this approach asexistential axiomatics. While they clearly consider formal axiomatics to
be a sharpening of contentual axiomatics, nonetheless they are quite explicit that these two
types of axiomatics complementeach other and are both necessary.

Through a general discussion of the consistency problem for formal axiomatic theories,
they are led to conclude that the consistency of a formal axiomatic theory with a finite
domain can be established by the exhibition of a model satisfying that system; however,
one cannot proceed in this fashion for formalaxiomatic theories with infinite domains.
Consistency proofs for such theories present a special problem, because ‘reference to non-
mathematical objects cannot settle the question whether an infinite manifold exists; the
question must be solved within mathematics itself’ (p. 17). One must treat, they argue,
the consistency problem for a formal axiomatic theoryF with an infinite domain as a
logical problem. This involves i) the formalization of principles of logical reasoning for
F , and ii) a proof that fromF one cannot derive (using these principles) both a formula
and its negation. In short, one must treat the consistency problem from a proof theoretic
perspective.

Such a proof need not be given individually for eachF . Instead, one need only carry out
such a proof for some axiom systemF that 1) has a structure that is sufficientlysurveyable
to make a consistency proof for the system plausible, and 2) has a rich enough structure so
that by assuming the existence of a systemS of things and relations satisfyingF , one can
derive the satisfiability of axiom systems for the branches of physics and geometry. The
satisfiability of an axiom system from those subjects is to be accomplished by representing
its objects by individuals (or complexes of individuals) ofS and its basic relationships by
predicates constructed from those ofS by logical operations. Hilbert and Bernays identify
arithmetic (including number theory and analysis) as a candidate for such anF .

3.2 Finitist considerations

For such a consistency argument to be foundationally significant, it must avoid the ideal-
izing existence assumptions made by formal axiomatic theories. But if a proof-theoretic
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justification of arithmetic by elementary means should be possible, might it not be possible
to give a direct development of arithmetic free from non-elementary assumptions (and thus
not requiring any additional foundational justification)?

The answer to this question involves elementary presentations of parts of number theory
and formal algebra; these presentations simultaneously serve to introduce thefinitist stand-
point. The finitist deliberations take here theirpurest form, i.e. the form of ‘thought exper-
iments involving objects assumed to beconcretely given’ (p. 20). The word ‘finitist’ is in-
tended to convey the idea that a consideration, a claim or definition respects that objects are
to be representable in principle, and that processes are to be executable in principle (p. 32).

Having given finitist presentations of elementary number theory and formal algebra,
Hilbert and Bernays remark that one cannot obtain a direct, elementary justification for
all of mathematics, because already in number theory and analysis one uses non-finitist
principles. While it is conceivable one could circumvent the use of such principles in num-
ber theory (where one only assumes the existence of the domain of integers), the case is
different for analysis. There one assumes in addition the existence of real numbers, that
is, infinite sets of integers, and applies the principle of the excluded middle also to these
extended domains.

Thus one is led back to the strategy of proceeding in an indirect fashion, i.e., of using
proof theory as a tool to secure the consistency of mathematics. As part of this strategy,
Hilbert and Bernays adopt the methodologicalrequirement that proof theory be finitist.
This requirement ensures that the sought after consistency proof for arithmetic will avoid
making idealizing existential assumptions which, after all, are in need of justification. This
requirement that proof theory be finitist is relaxed only at the end of the second volume
when ‘extensions of the methodological framework of proof theory’ are considered.

The first stage of this endeavor, the formulation of an appropriate logical formalism,
occupies Chapters 3–5. The logical systems they develop are so close to contemporary ones
that we do not discuss them in detail; they can actually be traced back to the lectures given
in 1917–1918 and are presented already in [Hilbert and Ackermann, 1928]. The systematic
development of logical formalisms is accompanied by their proof theoretic investigation.
For instance, these chapters contain a number of normal form results as well as a proof of
the completeness of the monadic predicate calculus with identity.

3.3 Consistency proofs

The second stage, in Chapters 6 and 7, involves the formulation and investigation of sub-
systems of number theory, which can be arranged into two groups. The first group of sys-
tems consists of weak fragments of arithmetic containing first-order quantification but few,
if any, function symbols. These formalisms extend the predicate calculus with equality by
mathematical axioms for 0, successor and<; some of them also involve quantifier-free in-
duction. Hilbert and Bernays explore relations between them and establish independence,
as well as consistency results. The main technique for giving consistency proofs is that dis-
cussed in section 1.2. However, since the formalisms contain quantifiers, an additional pro-
cedure is required here, namely a reduction procedure that assigns quantifier-free formulas,
reducts acting as witnesses, to formulas containing quantifiers. The method underlying this
procedure is due to Herbrand and to Emil Presburger. Additionally, the procedure for the
replacement of free variables now must also handle free formula variables.
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A further difference is that the consistency results are inferred from more general results
involving the notion ofverifiability, which is an extension of the notion of truth to certain
formulas containing free variables, bound variables, and recursively defined function signs.
More precisely, lettingA be a formula of the formalismF ,

i) if A is a numeric formula (that is, if it is composed of equalities and inequalities
between numerals by means of sentential connectives), then it is verifiable if it is
true;

ii) if A contains free numeric variables (but no formula variables or bound variables),
then it is verifiable if one can show by finitist means that the substitution of arbitrary
numerals for variables (followed by the evaluation of all function-expressions and
their replacement through their numericalvalues) yields a true numeric formula;

iii) if A contains bound variables but no formula variables, then it is verifiable if its
reduct is verifiable (according to i) and ii)).

In order to establish the consistency of a formalismF , one proves now that every formula
not containing formula variables is verifiable, if it is derivable inF . Since 0�= 0 is not
verifiable, it is not derivable inF ; it follows thatF is consistent.

The second group of subsystems of number theory contains formalisms arising from
the elementary calculus with free variables (the quantifier-free fragment of the predicate
calculus) through the addition of functions defined by primitive recursion. Hilbert and
Bernays start Chapter 7 with a discussion of the formalization of the principle of definition
by recursion. They take the simplest schema of recursion to be

f (a, . . . , k,0)= a(a, . . . , k), (2)

f (a, . . . , k, n′)= b
(
a, . . . , k, n,f (a, . . . , k, n)

)
, (3)

where a and b denote previously defined functions anda, . . . , k, n are numerical variables.
After discussing this definitional principle, they prove a

GENERAL CONSISTENCY THEOREM. Let F be a formalism extending the elementary
calculus with free variables by verifiable axioms (that may contain recursively defined
functions whose defining equations are taken as axioms) and the schema of quantifier free
induction, then every derivable formula of F is verifiable.

They explicitly take this theorem to establish the consistency of a number of formalisms
including that of recursive number theory, which they develop at length in order to illus-
trate the strength of recursive definitions. As their notion of recursive number theory is
equivalent to primitive recursive arithmetic, finitist mathematics here goes beyond primi-
tive recursive arithmetic. Following this development they discuss formalisms arising from
the extension of the recursion and induction schemas and remark that their previous consis-
tency results are easily extended to these systems as well; these remarks push the bounds
of finitist mathematics still further.
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3.4 Full number theory

The third stage of the development carried out in the first volume occurs towards the end
of Chapter 7 and in Chapter 8. Here one findsa third group of formalisms that are each
equivalent to full Peano Arithmetic. The first of these is the formalism of the axiom system
(Z); call this formalismZ. When arriving atZ, Hilbert and Bernays comment that the
techniques used in their previous consistency proofs for fragments of number theory cannot
be generalized toZ. The problem is that any reduction procedure forZ would provide
a decision procedure forZ and thus would allow one to solve all problems of number
theory. They leave the possibility of such a procedure as an open problem (whose solution,
if it exists, is a long way off) and focus on showing thatZ provides the means for the
formalization of full number theory.

With this end in mind, Hilbert and Bernays prove in Chapter 8 that all recursive func-
tions are representable inZ. This proof involves establishing three separate claims: 1) that
the least number operatorµ can be explicitly defined in terms of Russell and Whitehead’s
ι-symbol; 2) that any recursive definition (a notion that they leave unanalyzed) can be ex-
plicitly defined inZµ (that is,Z extended by defining axioms for theµ-operator); and 3)
that the addition of theι-rule toZ is a conservative extension ofZ. After the discussion of
some additional results, such as the general eliminability of function symbols using pred-
icate symbols, the first volume concludes with the remark that the above results entail the
consistency ofZµ relative to that ofZ, but that none of the results or methods considered
so far suffice to show thatZ is consistent.

4 THE SECOND VOLUME

The second volume picks up where the first left off. It presents in Chapters 1 and 2 Hilbert’s
proof theoretic ‘Ansätze’ based on theε-symbol as well as related consistency proofs; this
is the first main topic. The methods used there open a simple approach to Herbrand’s the-
orem, which is at the center of Chapter 3. The discussion of the decision problem at the
end of that chapter leads, after a thorough discussion of the ‘method of the arithmetiza-
tion of metamathematics’, in the next chapter to a proof theoretic sharpening of Gödel’s
completeness theorem. The remainder of the volume is devoted to the second main topic,
the examination of the fact, which is the basis for the necessity to expand the frame of
the contentual inference methods, which are admitted for proof theory, beyond the earlier
delimitation of the ‘finitist standpoint’. Of course, Gödel’s incompleteness theorems are at
the center of that discussion.

4.1 Limited results

The consistency proofs in Section 7.a) of the first volume were given for quantifier-free
systems. Now these theories are embedded in the system of full predicate logic together
with theε-axioms, which have the formA(a)→ A(εx.A(x)); theε-termsεx.A(x) repre-
sent individuals having the property expressed byA(a), if the latter holds of any individual
at all. The crucial task is to eliminate all references to bound variables from proofs of
theorems that do not contain them; axioms used in these proofs must not contain bound
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variables either. In the formulation of Hilbert and Bernays, the consistency of a system of
proper axioms relative to the predicate calculus together with theε-axioms is to be reduced
to the consistency of the system relative to the elementary calculus (with free variables)
(p. 33). The consistency of the latter system is recognized on account of a suitable finitist
interpretation. Thus, Hilbert and Bernays emphasize that operating with theε-symbol can
be viewed as ‘merely an auxiliary calculus, which is of considerable advantage for many
metamathematical considerations’ (pp. 12–13).

In the framework of the extended calculus, bound variables can be seen to be associated
really only with terms, as the quantifiers can be defined in a way dual to that shown earlier
for theτ -symbol. The initial elimination result is the

FIRST ε-THEOREM. If the axiomsA1, . . . ,Ak and the conclusion of a proof do not contain
bound individual variables or (free) formula variables, then all bound variables can be
eliminated from the proof.

The argument can be extended to cover proofs of purely existential formulas, but the
formal proofs then yield as their conclusion a suitable disjunction of instances of the exis-
tential formula. Based on this extension Hilbert and Bernays prove their

CONSISTENCY THEOREM. If the axioms A1, . . . ,Ak are verifiable, then i) any provable
formula containing at most free individual variables is verifiable, and ii) for any provable,
purely existential formula (Ex1) · · · (Exn) A(x1, . . . , xn) (with only the variables shown)
there are variable-free terms t1, . . . , tn such that A(t1, . . . , tn) is true.

This theorem is applied to establish the consistency i) of Euclidean and Non-Euclidean
geometry without continuity assumptions in section 1.4, and ii) of arithmetic with recursive
definitions, but only quantifier-free induction as in sections 2.1 and 2.2. In essence then,
the consistency theorem from [Herbrand, 1931] has been reestablished in a subtly more
general way, as is emphasized on p. 52: Hilbert and Bernays allow the introduction of a
larger class of recursive functions. We can put the result also in a different historical con-
text and see that the consistency proof of 1923 for the quantifier-free system of primitive
recursive arithmetic has been extended to cover that system’s expansion by full classical
quantification theory.

The remainder of Chapter 2 discusses the difficulty of extending the elimination pro-
cedure (in the proof of the firstε-theorem) to a system with full induction and examines
Hilbert’s originalAnsatz for eliminatingε-symbols. (As to the character of the original and
the later version of the elimination method and Ackermann’s work see pp. 21, 29, 92ff,
the note on p. 121, as well as Bernays’s preface.) The next two chapters investigate the
formalism for predicate logic, beginning in Chapter 3 with a proof of the

SECOND ε-THEOREM. If the axioms and the conclusion of a proof (in predicate logic
with identity) do not contain ε-symbols, then all ε-symbols can be eliminated from the
proof.
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Then Herbrand’s theorem is obtained as well as a variety of criteria for the refutability
of formulas in predicate logic; proofs of the Löwenheim–Skolem theorem and of Gödel’s
completeness theorem are also given. These considerations are used to establish results
concerning the decision problem, and solvable cases as well as reduction classes are dis-
cussed. In Chapter 4 Gödel’s method of the ‘arithmetization of metamathematics’ is pre-
sented in great detail and applied to obtain a fully formalized proof of the completeness
theorem.

Here is one standard formulation of the completeness theorem: consistency of an ax-
iom system relative to the calculus of predicate logic coincides with satisfiability of the
system by an arithmetic model. The formalized proof is intended to establish a kind of
finitist equivalent (p. 205) to a consequence of this formulation, namely, that the consis-
tency relative to the predicate calculus guarantees consistency in an open contentual sense
(‘im unbegrenzten inhaltlichen Sinne’). The finitist equivalent is formulated in terms of ir-
refutability roughly as follows: if a formula is irrefutable in predicate logic, then it remains
irrefutable in ‘every consistent number theoretic formalism’, that is, in every formalism
that is consistent and remains consistent when the axioms ofZµ and possibly also veri-
fiable formulas are added (p. 253). That fact can be interpreted as expressing a deductive
closure of the predicate calculus, but obviously only ifZµ is consistent. Thus, there is an
additional reason for establishing the consistency of this number theoretic formalism.

4.2 Incompleteness

The discussion of Gödel’s incompleteness theorems (§71) begins with a thorough investi-
gation of semantic paradoxes. However, this investigation does not try to ‘solve’ the para-
doxes in the case of natural languages, but focuses on the question under what condi-
tions analogous situations can occur in the case offormalized languages. These conditions
are formulated quasi-axiomatically for general deductive formalismsF taking for granted
that there is a bijection between the expressions ofF and natural numbers, a ‘Gödel-
numbering’. The formalismF and the numbering are required to satisfy roughly tworep-
resentability conditions: R1) primitive recursive arithmetic is ‘contained in’F ; and R2) the
syntactic properties and relations ofF ’s expressions, as well as the processes that can be
carried out on such expressions, are given by primitive recursive predicates and functions.

For the consideration of the first incompleteness theorem the second representability
condition is made more specific. It now requires that thesubstitution function (yielding
the number of the expression obtained from an expression with numberk, when every
occurrence of the number variablea is replaced by a numerall) is given primitive recur-
sively by a binary functions(k, l) and theproof predicate by a binary relationB(m,n)
(holding whenm is the number of a sequence of formulas constituting anF -derivation of
the formula with numbern). Consider, as Gödel did, the formula∼B(m, s(a, a)); accord-
ing to the first representability condition this is a formula of the formalismF and has a
number, sayp. Because of the defining property ofs(k, l), the value ofs(p,p) is then the
numberq of the formula∼B(m, s(p,p)). The equations(p,p)= q is provable inF ; thus,
∼B(m, s(p,p)) is actually equivalent to∼B(m,q) and expresses that ‘the formula with
numberq is not provable inF ’. As q is the number of∼B(m, s(p,p)), this formula conse-
quently expresses (via the equivalence) itsown underivability. Theargument adapted from
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that for the liar paradox leads, from the assumption that this formula is provable, directly to
a contradiction inF . But instead of encountering a paradox, we infer now that the formula
is not provable, if the formalismF is consistent.

Hilbert and Bernays discuss—following Gödel and assuming theω-consistency ofF—
the unprovability of the sentence∼(x)∼B(m,q). Then they establish the Rosser version
of the first incompleteness theorem, i.e., the independence of a formulaR from F assum-
ing just F ’s consistency. Thus, a ‘sharpened version’ of the theorem can be formulated
for deductive formalisms satisfying certain conditions: ‘One can always determine a unary
primitive recursive functionf , such the equationf (m) = 0 is not provable inF , while
for each numerall the equationf (l) = 0 is true and provable inF ; neither the formula
(x)f (x) = 0 nor its negation is provable inF ’ (p. 279). This sharpened version of the
theorem asserts that every sufficiently expressive, sharply delimited, and consistent for-
malism is deductively incomplete. An important consequence of this result is discussed in
section 5.1.

4.3 Unprovability of consistency

For a formalismF that is consistent and satisfies the restrictive conditions, the proof of the
first incompleteness theorem shows the formula∼B(m,q) to be unprovable. However, it
also shows that the sentence∼B(m,q) holds and is provable inF , for each numeralm.
The second incompleteness theorem is obtained by formalizing these considerations, i.e.
by proving inF the formula∼B(m,q) from the formal expressionC of F ’s consistency.
That is possible, however, only ifF satisfies certain additional conditions, the so-called
derivability conditions. Hilbert and Bernays conclude immediately ‘in case the formalism
F is consistent no formalized proof of this consistency, i.e. no derivation of that formula
C, can exist inF ’ (p. 284).

The formalized argument makes use of the representability conditions R1) and R2),
where the second condition now requires also that there is a unary primitive recursive
functione, which when applied to the numbern of a formula yields as its value the num-
ber of the negation of the formula. These then are the derivability conditions: D1) If there
is a derivation of a formula with numberl from a formula with numberk, then the for-
mula (Ex)B(x,k)→ (Ex)B(x, l) is provable inF ; D2) The formula(Ex)B(x, e(k))→
(Ex)B(x, e(s(k, l))) is provable inF ; and D3) Iff (m) is a primitive recursive term withm
as its only variable and ifr is the number of the equationf (a) = 0, then the formula
f (m) = 0→ (Ex)B(x, s(r ,m)) is provable inF . Consistency is formally expressed by
(Ex)B(x,n)→∼(Ex)B(x, e(n)); starting with that assumption, the formula∼B(m,q)
is obtained inF by a rather direct argument on pp. 286–288.

There are two brief remarks with which we want to complement this metamathematical
discussion of the incompleteness theorems. The first simply states that verifying the rep-
resentability conditions and the derivability conditions is the central mathematical work
that has to be done; Hilbert and Bernays accomplish this for the formalismZµ (starting
on p. 293) and forZ (beginning on p. 324). Thus, the second volume ofGrundlagen der
Mathematik contains the first full argument for the second incompleteness theorem; after
all, Gödel’s paper contains only a minimal sketch of a proof. However, it has to added—and
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that is the second brief remark—that the considerations are not fully satisfactory for agen-
eral formulation of the theorems, as there is no argument given why deductive formalisms
should satisfy the particular restrictive conditions on their syntax. This added observation
points to one of the general methodological issues discussed next.

5 PHILOSOPHICAL AND MATHEMATICAL ISSUES

The existential formal axiomatics that emerged in the second half of the 19th century and
found its remarkable expression in Hilbert’sGrundlagen der Geometrie (§55) constituted
the major pressing issue for the various Hilbert programs during the period from 1899
to 1934, the date of the publication of the first volume ofGrundlagen der Mathematik.
The finitist consistency program that began to be pursued in 1922 is the intellectual thread
holding the investigations in both volumes together. The general programmatic direction
was formulated clearly in the first volume and presented above in section 2.1. The ultimate
goal of proof theoretic investigations, as Hilbert formulated it in the preface to volume I, is
to recognize the usual methods of mathematics, without exception, as consistent. Hilbert
continued, ‘With respect to this goal I would like to emphasize the following: the view,
which temporarily arose and maintained thatcertain recent results of Gödel imply the
infeasibility of my program, has been shown to be erroneous’. How is the program affected
by those results? Is it indeed the case, as Hilbert expressed it also in 1934, that the Gödel
theorems just force proof theorists to exploit the finitist standpoint in a sharper way?

5.1 Issue of completeness

The second question is raised prima facie only through the second incompleteness theorem.
However, Hilbert and Bernays discuss also the effect of the first incompleteness theorem
and ask quite explicitly (p. 280), whether the deductive completeness of formalisms is a
necessary feature for the consistency program to make sense. They touched on this very is-
sue already in pre-Gödel publications, Hilbert in his Bologna Lecture of 1928 and Bernays
in his penetrating article [1930]. He formulated in his lecture the question of the syntactic
completeness for number theory and analysis as Problem III, and concluded the discus-
sion by suggesting that ‘in höheren Gebieten’ (higher than number theory) it is thinkable
that a system of axioms could be consistently extended by a statementS, but also by its
negation∼S; the acceptance of one of the statements is then to be justified by ‘system-
atic advantages (principle of the permanence of laws, possibilities of further developments
etc.)’.

Hilbert conjectured that number theory is deductively complete (p. 59). That is reiterated
in [Bernays, 1930] and followed by the remark that ‘the problem of a real proof for this
is completely unresolved’. The problem becomes even more difficult, Bernays continues,
when we consider systems for analysis or set theory. However, this ‘Problematik’ is not to
be taken as an objection against the standpoint presented (p. 59):

We only have to realize that the [syntactic] formalism of statements and proofs
we use to represent our conceptions does not coincide with the [mathematical]
formalism of the structure we intend in our thinking. The [syntactic] formalism
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suffices to formulate our ideas of infinite manifolds and to draw the logical
consequences from them, but in general it [the syntactic formalism] cannot
combinatorially generate the manifold as it were out of itself.

That is also the central point in the general discussion of the first incompleteness theo-
rem (p. 280). Indeed, Hilbert and Bernays emphasize there that in formulating the problems
and goals of proof theory they avoided from the very beginning ‘to introduce the idea of a
total system for mathematics with a philosophically principled significance’. It suffices for
their purposes to characterize the actual systematic structure of analysis and set theory in
such a way that it provides an appropriate frame for (the reducibility of) the geometric and
physical disciplines.

From these reflective remarks it follows thatthe first incompleteness theorem for the
central formalismsF (of number theory, analysis, and set theory) does not directly un-
dermine Hilbert’s program. Nevertheless, it raises in its sharpened form a peculiar issue:
any finitist consistency proof forF would yield a finitist proof of a statement in recursive
number theory—that is not provable inF . Finitist methods would thus go beyond those of
analysis and set theory, even for the proof ofnumber theoretic statements. This is a ‘para-
doxical’ situation, in particular, as Hilbert and Bernays quite unambiguously state in the
first volume (p. 42), ‘finitist methods are included in the usual arithmetic’. Consequently,
even the first theorem forces us to address two general tasks, namely, i) to explore the ex-
tent of finitist methods, and ii) to demarcate appropriately the methodologicalstandpoint
for proof theory.

5.2 The extent of finitist methods

Tasks i) and ii) are usually associated with the second incompleteness theorem, which,
as emphasized at the end of Section 4.3, allows us to infer directly and sharply that a
finitist consistency proof for a formalismF (satisfying the representability and derivability
conditions) cannot be carried out inF . Hilbert and Bernays explore the extent of finitist
methods in Section 5.3.a) by first trying to answer the question, in which formalism their
various finitist investigations can actually be carried out. The immediate claim is that most
considerations can be formalized, perhaps witha great deal of effort, in primitive recursive
arithmetic (p. 340). But then they assert: ‘Atvarious places this formalism is admittedly
no longer sufficient for the desired formalization. However, in each of these cases the
formalization is possible inZµ’. They point to the more general recursion principles from
Chapter 7 of the first volume as an example of ‘procedures of finitist mathematics’ that
cannot be captured in primitive recursive arithmetic, but can be formalized inZµ.

In the remainder of Section 5.3.a) they discuss ‘certain other typical cases’, in which
the boundaries of primitive recursive arithmetic are too narrow to allow a formalization of
their prior finitist investigations. There is, first of all, the issue of an evaluation function
that is needed for the consistency proof of primitive recursive arithmetic (already in vol-
ume I) but cannot be defined by primitive recursion (p. 341). Secondly, there is the general
concept of a calculable function (p. 342); that concept is used (p. 189) to formulate a fini-
tistically sharpened notion of satisfiability, i.e.effective satisfiability, in finitist treatments
of solvable cases of the decision problem. Thirdly, they discuss the principle of induction
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for universally quantified formulas used in consistency proofs (p. 344). The issue surround-
ing this principle is settled metamathematically, as we now know, by later proof theoretic
work: the system of elementary number theory with this induction principle is conservative
over primitive recursive arithmetic.

As to ii), some remarks concerning supplement II are relevant in the above context, as
the notion of a calculable function has to be sharpened in such a way that it can be formal-
ized. The presentation in that supplement of the negative solution of the decision problem
is preceded by a conceptual analysis of the concept ‘reckonable function’, i.e. of a function
whose values can be calculated according to rules. The latter rather vague notion is sharp-
ened, in a way that is methodologically very similar to the analysis of the incompleteness
theorems, namely by formulatingrecursiveness conditions for deductive formalisms that
allow equational reasoning. The central condition requires the proof predicate to be prim-
itive recursive. It is then shown that the functions calculable in formalisms satisfying the
recursiveness conditions are exactly the general recursive ones. The latter notion can be de-
fined in the language of number theory as is necessary for the formalization in ii). Though
the conceptual analysis is not fully satisfactory for the reason mentioned in Section 4.3, it is
nevertheless a major and concluding step in the analysis of effectively calculable functions
as pursued in the mid-1930s by Gödel, Alonzo Church, Stephen Kleene, and others.

5.3 Beyond finitism?

The examination of their own proof-theoretic practice leads Hilbert and Bernays to the con-
clusion that some considerations require means that go beyond primitive recursive arith-
metic, but can be formally captured inZµ. It is at exactly this point that the second incom-
pleteness theorem provides, as the title of Chapter 5 states, the ‘reason for extending the
methodological frame for proof theory’. Already on p. 253, as a transition from Chapter 4
to Chapter 5, Hilbert and Bernays state specifically that consequences of the theorem force
us to view the domain of the contentual inference methods used for the investigations of
proof theory more broadly ‘than it corresponds to our development of the finitist standpoint
so far’.

The question is, whether there are any methods that can still be called properly ‘finitist’
and yet go beyondZµ. Hilbert and Bernays argue that this is not a precise question, as
‘finitist’ is not a sharply delimited notion,but rather indicates methodological guidelines
that enable us to recognize some considerations as definitely finitist and others as definitely
non-finitist. The limits of finitist considerations are to be ‘loosened’ (vol. 2, 348), and two
possibilities of such loosenings are considered that are quickly seen to be ‘conservative’.
Which further loosenings are ‘admissible, if we want to adhere to the fundamental tenden-
cies of proof theory?’ Against this backgroundtwo then recent results are examined: the
reduction of classical arithmeticZ to the systemZ of arithmetic with just minimal logic,
and Gentzen’s consistency proof for a version ofZ (and thus ofZ) using a special form
of transfinite induction.

The reductive result that Hilbert and Bernays formulate is a slightly stronger one than
that obtained by Gödel and, independently, by Gentzen. The proof showing thatZ is con-
sistent relative toZ is an elementary finitist one. Thus, the obstacle for obtaining a finitist
consistency proof forZ does not lie in the fact that it contains the typically non-finitist
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logical principles liketertium non datur! The obstacle appears already when one tries to
give a finitist consistency proof forZ . The consistency ofZ would be established on the
basis of any assumptions, ‘which suffice to give a verifying interpretation of the restricted
formalism’ (p. 357). Such a contentual verification, based on interpretations of A.N. Kol-
mogoroff and Arend Heyting, is then examined with the conclusion that it involves the
intuitionistic understanding of negation as absurdity.

The question is raised, whether—in a proof of the consistency ofZ—the systematic use
of absurdity could be avoided, as well as the appeal to an interpretation of the formalism (in
contrast to its direct proof theoretic examination). It is claimed that Gentzen’s consistency
proof addresses both these issues. After a thorough discussion of the details of the sys-
tem of ordinal notation and the (justification of the) principle of transfinite induction, but
only the briefest indication of the structure of Gentzen’s proof, the main body of the book
concludes with some extremely general remarks about the significance of Gentzen’s proof:
it provides a perspective for the proof theoretic investigation also of stronger formalisms,
when one clearly has to countenance the use of larger and larger ordinals. The volume
concludes with the sentence: ‘If this perspective should prove its value, then Gentzen’s
consistency proof would open a new phase of proof theory’. In this way, it seems, Bernays
sees Gentzen’s approach as overcoming ‘the temporary fiasco of proof theory’ he discussed
in the introduction to volume II and attributed to ‘exaggerated methodological demands put
on the theory’.

No explicit final and definitive judgment on the (non-)finitist character of these two
consistency proofs is actually articulated in the book. However, in the first volume (p. 43),
intuitionism is viewed as a proper extension of finitist mathematics. That view is also
expressed in contemporaneous papers by Bernays and in many later comments, perhaps
most dramatically in his article on Hilbert, where the above relative consistency proof
for Z is seen as the reason for the recognition ‘that intuitionistic reasoning is not iden-
tical with finitist reasoning, contrary to the prevailing views at the time’ [Bernays, 1967,
502]. As to Gentzen’s consistency proof, Bernays states in the introduction to the sec-
ond edition of volume II that the transfinite induction principle used in it is ‘a non-finitist
tool’.

5.4 Demarcation

In the introduction of the first edition and the detailed discussion there is perhaps an am-
biguity; whether the extensionof the finitist standpoint necessitated by the incompleteness
theorems still is essentially the finitist standpoint as articulated in the first two chapters of
volume I, or whether it is a proper extension compatible with the broader strategic consid-
erations underlying proof theory. We think the ambiguity should be resolved in the latter
sense; after all, the considerations in Chapter 5 come under the heading ‘Transcending the
former methodological standpoint of proof theory—Consistency proofs for the full number
theoretic formalism’.

However, there is not even a broad demarcation of a new, wider methodological stand-
point for proof theory; a reason for this lack is perhaps implicit in the remarks connecting
the consistency proof forZ relative to intuitionistic arithmetic with Gentzen’s consistency
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proof (p. 360). It is claimed, first of all, that it is ‘unsatisfactory from the standpoint of
proof theory’ to have only a consistency proof forZ that ‘rests mainly on an interpreta-
tion of a formalism’. It is observed, secondly, that the only method of going beyond the
formalismZ has been the formulation of truth definitions: a classical truth definition is
given forZ on pp. 329–340, and the formalization of the consistency proof based on an
intuitionistic interpretation would amount to using a truth definition. Thirdly and finally,
it is argued that a consistency proof is desirable that rests on ‘the direct treatment of the
formalism itself’; that is seen in analogy for obtaining the consistency of primitive re-
cursive arithmetic, where Hilbert and Bernays were not satisfied with the possibility of a
finitist interpretation, but rather convinced themselves of the consistency by specific proof
theoretic methods. Where in this discussion is even an opening for a broader demarca-
tion?

6 CONCLUDING REMARKS

The free and open way in which Hilbert and Bernays joined in the 1920s a number of
different tendencies into a sharply focused program with a special mathematical and philo-
sophical perspective is remarkable. The program has been transformed, in accord with
the broad strategy underlying Hilbert’s proposal, to ageneral reductive one; here one
tries to give consistency proofs for strong classical theories relative to ‘appropriate con-
structive’ ones. The expanding development of proof theory is one effect of Hilbert’s
broad view on foundational problems and of his sharply articulated questions. Another
effect is visible in the rich and varied results of Hilbert, Bernays, and other members
of the Hilbert School (Ackermann, Gentzen, Kurt Schütte); finally, we have to consider
the stimulus his approach and questions provided to contemporaries outside the school
(von Neumann, Herbrand, Gödel, Church, and Alan Turing). Indeed, there is no foun-
dational enterprise with a more profound and far-reaching effect on the emergence and
development of mathematical logic. What Ackermann [1934] formulated in his review of
just the first volume, holds even more for the complete two-volume work, namely, that
it ‘is to be viewed in a line with the great publications of Frege, Peano, and Russell–
Whitehead’.

NOTE

Ravaglia wrote section 3, Sieg the rest.
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See also Calculus; Complex-variable

analysis; Functions; Series
Andronov, A. (1901–1952) 876 878
Apollonius (−250 –−175?) 8 30 75 143

295 370
ApproximationSee Numerical methods
Arbogast, L.F.A. (1759–1803) 260 301 407
Arbuthnot, J. (1667–1735) 117
Archimedes (−287? –−212) 41 147 156

187 295
Arithmetic

consistency of 733 734 919–924
982–989

foundations of 608–610 618–625 785
789 790 992–997

Arnol’d, V.A. 637 738 878
Artin, E. (1898–1962) 307 703 708 736

739 796 902 904 909 912 978
Astronomy 244–256 300 317–328

orbits 65 245–249 319–328 878

perturbations 84 240 249–253 326 327
356 461 635 809 813 815 818

precession 78 165 532
stability 250 253
three-body problem 85 104 627–638

872∼878
See also Heavenly bodies

Axiom system 622 688 715
categoricity 620 719 964
consistency 722 793 922–924 964 982

998
(in)completeness 715 719 793 920–925

963 964 985 990–995
independence 618 714∼719 963 964
models of 792 963 964

Axiomatics 154 212 218 493 514 713–719
722 735 785 789 851 892 902 912 939
961–963 982 987 994

Babbage, C. (1791–1871) 409 471 477
Baire, R. (1874–1932) 611764–765

769∼773
Barnard, G.A. 863
Barrow, I. (1630–1677) 18 31 62 63 89
Bartels, M. (1769–1836) 313
Barton, E.H. (1859–1925) 597
Bateson, W. (1861–1926) 729 824 825 829
Bayes, T. (1702–1761) 199–206 331
Bayesianism 201–207 331 336 728 862

See also Probability
Beeckman, I. (1588–1637) 2 3
Beltrami, E. (1835–1900) 515–517
Bendixson, I. (1861–1935) 637
Bentham, J. (1748–1832) 535
Berkeley, G. (1685–1753) 121–130 144

146 155 200 259
Berlin or Prussian Academy 55 160 164

182 209 259 260 416 481 585 810 811
Berlin University 169 424 425 432 451

481 545 601 678 785 811 893 939 952
Bernays, P. (1888–1977) 719 810 904 923

924986–998
Bernoulli, D.(1700–1782) 299 336 758

mechanics 131–142 162 164 360 364
595 773

Bernoulli, Jacobor Jakob (1654–1705) 17
42 45 52 169 172

calculus 53–56 89 171 298
probability 88–103 109 117 330
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Bernoulli, Johann (1667–1748) 45 51 52
89 90 169 449

calculus 55 56 172 184 298 758–760
mechanics 78 136 140 141 164 171 529

Bernoulli, N. (1687–1759) 90 103 106 112
113 117

Bernstein, F. (1878–1956) 621
Bernstein, S.N. (1880–1968) 741 961
Bertrand, J.L.F. (1822–1900) 561
Bessel, F.W. (1784–1846) 327 328

See also under Functions
Besso, M. (1873–1955) 809
Bettazzi, R. (1861–1941) 546 623
Betti, E. (1823–1892) 401 452 455
Bézout, E. (1730–1783) 164 166 279 397
Bianchi, L. (1856–1928) 519
Bienaymé, I.-J. (1796–1878) 339 726 728
Binomial theoremor expansion 27 31 96

98 112 127 281 345
See also under Statistics

Biomathematics 674 726–730 824–831
865–868 934 937–943

Biot, J.B. (1774–1862) 246 252 355 408
Birkhoff, G. (1911–1996) 912 913 979
Birkhoff, G.D. (1884–1944) 637 638 674

871–879
Blumenthal, O. (1876–1944) 703 712 714

716
Bochner, S. (1899–1982)951–958
Bohr, H.A. (1887–1951) 950–953
Bohr, N. (1885–1962) 882–884 897 898
Boltzmann, L. (1844–1906) 633 688 877

938
Bolyai, J. (1802–1860) 511∼516 714
Bolzano, B.P.J.M. (1781–1848) 275 556

623
Bolzano–Weierstrass theorem 602 603
Bombelli,R. (1526–1573) 393
Bonnet, P.O. (1819–1892) 348
Boole, G. (1815–1864) 111 275 437

470–478 531 622 649
See also under Abstract algebras

Borchardt, C.W. (1817–1880) 428 678
Borda, J.-C. (1733–1799) 165 300
Borel, E.F.E.J. (1871–1956) 611 763 939

948
See also Heine–Borel theorem;under

Sets
Born, M. (1882–1970) 883∼887 897 892

Boscovich, R.J. (1711–1787) 250
Bossut, C.S.J. (1730–1814) 227 296

298–302
Bouligand, G. (1889–1979) 846
Boulliau, I. (1605–1694) 961
Bourbaki group 879 912 939 978
Bourget, M.J. 592
Bowditch, N. (1773–1838) 246 254
Brelot, M. (1903–1987) 939–942
Brianchon, C.J. (1783–1864) 239 373 376
Briggs, H. (1561–1630) 29
Brill, A. von (1842–1935) 688
Bromhead, E. ff. (1789–1858) 409
Brouncker, W. (1620?–1684) 28 30 42
Brouwer, L.E.J. (1881–1966) 792 845 849

852 902 918 920 974–977
Bruns, H. (1848–1919) 635
Brunt, D. (1886–1965) 860 863 868
Bunyakovsky, V.Ya. (1804–1889) 339 352
Burali-Forti, C. (1861–1931) 623
Burckhardt, J.C. (1773–1825) 317

Calculus, differential 49–54 126 130 169
192–197 280–284 297

derivative 192 194 261–266 346 347
500 767 768
partial 195 264 265 268 282 770

differential 49–51 173 178 192∼195
269 281 345 466 806 820

differential coefficient 169 194 282 286
351 537

fluxions 56 62 63 67–73 77 124∼130
144–157 201

foundations of 124–130 192 193 254
mean value theorems 267–269 347–349

555
See also Functions; Indivisibles;

Infinitesimals; Limits
Calculus, fundamental theorem of the 61

62 67 348 352 367 766 947
Calculus, integral 54 55 176 284–287 466

beta integral 201 203
Cauchy–Riemann integral 169 347 348

498 760–762 765–768 772
definability of 173 349 387 495–502

947–949
content 617 763 767
contour 453
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evaluation of integrals 289 321 331 332
381 384 412

fluents 62 63 69 77 147 156
integration by parts 156 178 348 405
measure 498 502 763–769 845 878 948

951–956 960
multiple integrals 342 380 382 404 575

576 580 953 954
surface 404 453 575 576
See also Complex-variable analysis;

Curves, rectification of;under Series
Calculus of extension 433–438 462
Calculus of variations 55 169–179 260

271–274 287 740–742 810
δ operator 177–179 212 214 287
multiplier 214 269∼273 684

Calculus, priority dispute over the 56 79 82
298 467

Cambridge University 60 61 532 533 570
571 583 652 658 659 785 824 885

Mathematical Tripos 409 524 565 584
588 590 592 725 857

Press 786 787 791
Campbell, G.A. (1870–1954) 955
Cantor, G.F.L.P. (1845–1918) 501 502 556

557 561 562 615 702
set theory 473 557600–611 621 624

625 762 763 770–773 785 786 790 948
974 982

Cantor, M.B. (1829–1920) 302
Capillarity 253
Carathéodory, C. (1873–1950) 735 768

845
Cardano, G. (1501–1576) 13 20 295 393

394 655
Carlsen, L. 776
Carmichael, R.D. (1879–1967) 840 841

876 877
Carnap, R. (1891–1970) 785 792 793 918
Carnegie Institute of Washington 835 840

842
Carnot, L. (1753–1823) 218 342 442 525
Carré, L. (1663–1711) 56
Carroll, L. (1832–1898) 662
Carslaw, H.S. (1870–1954) 955
Cartan, E.J. (1869–1951) 552 637 909
Casorati, F. (1835–1890) 390 455
Castelnuovo, G. (1865–1942) 795–797 800

Cauchy, A.L. (1789–1857) 370 398–400
437 527 750

complex-variable analysis 343 350 362
370377–390 415 428 450 452 456 494
953

real-variable analysis 265 275 291
341–352 351 363 369 407 494 495 498
499 556 637 760 761 766 785 946 947

Cavaillès,J. (1903–1944) 493
Cavalieri, B. (1598?–1647) 24–26 48 147
Cayley, A. (1821–1895) 437 531 546 636

697 725
Cech, E. (1893–1960) 853
Chaos 631 634 638 878 879
Chasles, M. (1793–1880) 20 226 238 375

376
Chebyshev, P.L. (1821–1894) 310 339 665

726
Chicago, University of 833–835 873 876
Chisini, O. (1889–1967) 796–801
Christoffel, E.B. (1829–1900) 807 815 816
Chrystal, G. (1851–1911) 583 584
Church, A. (1903–1995) 924 919 996
Chwistek, L. (1884–1944) 793
Clairaut, A.C. (1713–1765) 157 188 773
Clapeyron, E. (1799–1864) 523 726
Clausius, R. (1822–1888) 523 987
Clebsch, R.F.A. (1833–1872) 272 438 545

546 715
Clifford, W.K. (1845–1879) 439 466 658

725
Clocks 35–42 292 817
Codazzi, D. (1824–1873) 514 515
Code-breaking 27
Combinations 94∼98 110 111

See also Permutations
Combinatorics 20 95∼99 109 743 857
Complexor imaginary numbers 186 282

306 310 370 371 378–380 388
392–394 413–415 423 444–446 449
461 511 558 571 649 651 956

hypercomplex 462 902 908∼911 914
Complex-variable analysis 351 378–390 415

418 419 487
Cauchy–Riemann equations 380 389

390 452
functions 346 427 428 450–457 494

611 742 759 760 956
integration 386–389 415 417 450
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Riemann surfaces 453–456 741 742
singularities 382 384 387 388 453

Comte, I.A.F.M.X. (1798–1857) 220 363
364

Conic sections 7∼15 18 24 42 74 75 188
233 252 324 368–374 435 441 445 465

Condorcet, Marquis de (1743–1794) 103
243 278 298 330 331

Continued fractions 28 187 188 286 306
366 484 701

Continuity 62 148 239 240 369–371 375
446 556–561 604 693 715–719 729
761 903 965 966

See also Numbers, kinds of real;under
Functions

Convexity 51 405 740 742 847
ConvergenceSee under Series
Coolidge, J.-L. (1873–1954) 239 240
Cooper, A.E. (1893–1960) 840
Coordinate systems 175 188 189 269 325

361 370 466 682 686 806 809–813 816
827

Coriolis, G.G. (1792–1843) 252 350
Cosmology 65 83 84
Cotes, R. (1682–1716) 83 321
Coulomb, C.A. (1736–1806) 408 566 746
Courant, R. (1888–1972) 457 849 976
Cournot, A.A. (1801–1877) 218 219 339
Craig(e), J. (d. 1731) 54
Cramér, H. (1893–1985) 968
Cremona, L. (1830–1903) 438 517
Crew, F.A.E. (1886–1973) 860 861 867
Culmann, K. (1821–1881) 446
Curvature 43 64 74 83 153 188 189 229

234 235 283 284 468 508–515 683 722
807 814

Curves 7–19 29 55 61 77 79 151–154
174–177 188 189 260 283 284 374 445
633 634 845 846 850–852 875

algebraic 9–12 797–801
construction of 7–15 19 28 29

rule and compass 7–11 43 78 392
720 906 907

cycloid 36–39 42∼45 51 54 169 171
ovals 13 76 739
rectification of 42 55 89 260 350 413

762 778 796–800
Cutler, W. (1890–1941) 860 861 867

Cyclotomy 305∼308 313 399 414 693 697
706 707 905

D’Alembert, J. le R. (1717–1783)159–166
209 243 252 298 301 331 380

See also under Mechanics, laws of
D’Ancona, U. (1896–1964) 937∼942
de Beaune, F. (1601–1652) 4 17 20 52
de Finetti,B. (1906–1985) 968
de la Hire, P. (1640–1718) 18 231 376
De Moivre, A. (1667–1754) 90 98 103

105–120 187 203 330 332 333
de Morgan, A. (1806–1871) 330 332 339

351 471 477
de Prony, G.F.M. Riche (1755–1839) 218

246 342 350
De Sitter,W. (1872–1934) 819
D’Urban, F. 299
De Vries, H. (1867–1954) 902
du Bois Reymond, P.D.G. (1831–1889)

132 501 624 774
Darboux, G. (1842–1917) 545 761 764

767 769 771
Darwin, G.H. (1845–1912) 532 873
Dedekind, J.W.R. (1831–1916) 451 452

456 492 602 948 982 985
algebraor number theory 307 312–314

481–484 487–489 691–693 697 701
702 906∼909

arithmetic 553–563 613–625 982 983
Degen, C.F. (1766–1825) 399
Dehn, M. (1878–1952) 712 734
Delambre, J.B.J. (1749–1822) 245 254 327
Delauney, C.E. (1816–1872) 256 525
Deming, W.E. (1900–1993) 927 934
Demography 118–120 205 332 336 339

764
Denjoy, A. (1884–1914) 948
DerivativeSee under Calculus, differential
Desargues, G. (1591–1661) 17 293 375

444 722
Descartes, R. (1596–1650) 34 296 297

algebra 53 76 449
Geometria or Géométrie 1–21 24 34 48

61 62 392
geometry 52 554 555
mechanics 34 63 64

DeterminantsSee Linear algebra
Deutsche Mathematiker-Vereinigung 429

455 639 701 702 764 835 849
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Dickson, L.E. (1874–1954) 401 699
833–842 913

Differences 106 113 119 192 194–196 261
262 287∼290 298 863 873∼878 955

Differential equations, ordinary 52
286–290 349 357 666–667 673

linear 286 668–673 741
singular solutions 286 475 741

Differential equations, partial 174 286 287
358 592 611 682 683 741 759 770 886

boundary conditions 359 741 758
Laplace’s 250 407 408 452 456 594 596
Poisson’s 566 582 808 817
singular solutions 260 286
wave 196 594 758

Differential operators 362 408 466 468
471 472 573 631 642∼652 808

Dimension 437 687 734
invariance of 844–854 974
See also Topology

Dimensions, scientific 139 140 361 571
597

Dini, U. (1845–1918) 763 769 774
Diophantus (250±) 29 391 392
Dirac, P.A.M. (1902–1984) 882∼897
Dirichlet, J.P.G. Lejeune- (1805–1859) 192

351 430 451∼454 555 615 669
Fourier series 363 492–498 760 774

946 948
number theory 312481–489

Dirichlet’s principle 408 409 454 456
DivergenceSee under Series
Donkin, W.F. (1814–1869) 589 590
Doob, J.L. (1910–2004) 967 968
Duhamel, J.M.C. (1797–1872) 350 363

525
Duhem, P. (1861–1916) 687 688
Dyck, W. (von) (1856–1934) 904
Dynamical systemsSee under Mechanics,

branches of

EarthSee under Heavenly bodies
Ecole des Ponts et Chaussées (Paris) 227

342
Ecole Normale (Paris) (both versions) 209

226 227 234 238 355 764 939
Ecole Polytechnique (Paris) 244 246 253

278 355 356 372 390 404 627

teaching ator textbooks for 189 209
226 227 234 237 238 260 281 290 342
349–351 375 674

Economics 535–542 674 764 928 929 937
exchange 538–540
utility 535–539 542

Eddington, A.S. (1882–1944) 818 877
Edgeworth, F.Y. (1845–1926) 539 842 862
Egorov, D.F. (1869–1931) 846 847 852

853
Ehrenfest, P. (1880–1933) 688 804
Einstein, A. (1879–1955) 519 687 712 722

755 779∼783 882∼886
relativity theory 678802–821

Eisenstein, G.F.M. (1823–1852) 310 401
707

Elasticity theorySee under Mechanics,
branches of

Electric telegraph 749 750 770
Electricity 406–408 522–524 566 575

749–751
charge 566 568 586
circuits 478 570 576–579 589 647–650
current 567 569 570 575–578 585

Electromagnetismor -dynamics 407
567–586 640–642 649 678 749–751
779–783 813 820

field 523 571 575 576 585 586 780–783
810 817 885 889

See also Magnetism
Electrons 585 586 755 780–783 885–891
Electrostatics 566–570 575–577 580∼583
Elimination 12 17 267 475 910 915
Energy in general 137 522–532 568 584

592 593 636 642 679–682 812 813 878
886 890 894

See also under Mechanics
Engel, F. (1861–1941) 439 517
Enriques, F. (1871–1946)795–801
Encyklopädie der mathematischen

Wissenschaften 429 456 550
Equations 298 363 466 554

fundamental theorem of algebra 166
283 346 394 398 450

(non-)solvability 196 306 312–314
391–401 412–414 693 697

roots of 12–18 76 113 119 194 283 350
392–401 361–363 692 697 907–910
946 949
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See also Abstract algebras; Cyclotomy;
Galois theory; Polynomials

Equilibrium 161 163 165 213∼220 250
253 269 270 356 357 409 529∼532
539 541 595 665 669 750 753 874

Euclid (−300±) 29 30 75 143 147 211 295
438 507 513 554 557 560 718 987

See also Geometry, Euclidean
Eudoxus (−408 –−355?) 554
Euler, L. (1707–1783) 305 309

analysis 98 119 201 260 360 378 397
414–417 424 449 496 759 914

astronomy 249 320 629 773 872
calculus 191–197 758
calculus of variations 168–179 212 272
Introductio 181–189 414 424
mechanics 133 141 164 196 209–211

246 299 530 628
continuum 133 137 140 141

Evolutesor involutes 41–43 233–235 284

Fagnano, G.C. di T. (1682–1766) 209 279
416

Fano, G. (1871–1952) 551 715 718
Faraday, M. (1791–1867) 410 522

567∼571 575–577 584 749
Fatou, P. (1878–1929) 501 773∼776
Faulhaber, J. (1580–1635) 97 98
Fechner, G.T. (1801–1887) 567
Feigl, G. (1890–1945) 719
Féjer, L. (1880–1959) 774
Fermat, P. de (1607?–1665) 11 12 17∼20

29 30 34 52–54 68 98 297 309 554
See also Number theory

Fermi, E. (1901–1954) 885
Fibonacci series 825
Fisher, R.A. (1890–1962) 726 727 730

856–869
FitzGerald, G.F. (1851–1901) 582 584 642

647 687 755
Fontenelle, B. le B. (1657–1757) 53
Force(s)

central 64 73∼78 83 213 215
composition of 85 218
conception of 67 122 161 162 246 525

681∼686
See also Astronomy; Mechanics

Foster, R.M. (1896–1998) 955
Fourier analysis 487

integrals 332 335 362 363 774 946–958
series 359–363 427 493–497 642 647

650 760 774 883 885 946∼954 957
958
uniqueness 499–502 557 601 602
760 775 776

See also Series, trigonometric
Fourier, J.B.J. (1768–1830) 218 219 254

354–364 413 428 481
heat theory 407 522 568 749 773
seriesor integrals 491–494 499–501

759 760 885 946∼951
Fowler, R.H. (1889–1944) 883–885
Fraenkel, A.A. (1891–1965) 611 904
Franklin, B. (1706–1790) 137
Fréchet, M. (1878–1973) 611 769 962
Frege, F.L.G. (1848–1925) 477 518 618

623 722 786 789
Fresnel, A.J. (1788–1827) 254 528 593

750
Fricke, R. (1861–1930) 429 699
Friction 219 524 525 529∼532 595
Frobenius, G.F. (1849–1917) 704 978
Fuchs, L. (1833–1902) 551
Function spaces 360 735 769 854 889 894

895 948
Functional analysis 674 776 936 950 952
Functional equations 345
Functions, properties of

continuous 262 344–348 381 495–500
536 560 601 738 758 762 767–775 952
956 972

conception of 182–184 192 281 348
758 762 765

discontinuous 345 360 495–499 502
503 758∼763 948
classification of 769–773 776

infinite-valued 266 381 498 772
(non-)differentiable 502 503 738
of bounded variation 502 767 774 956
of several variables 196 264 265 270

271 282 344 350 738 769 771 775 954
optimaeor extremae of 51 52 152 153

174–177 195 196 270 271 282
495–503

See also Calculus; Complex-variable
analysis; Recursion

Functions, types of
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algebraic 6 306 394 395 400 413 414
417 429 450 693 703

almost periodic 950∼958
Bessel 362 355 594 596 631 956
elliptic 286352 399 418–430 698
elliptic integral 250 413–425 449
exponential 186 282 758 947
generating 106 110 119 250 332
Legendreor surface harmonics 250 251

407 408 528 532 596
logarithmic 2 151 188 194 200 282 286

417 758
See also Logarithms

trigonometric 114 151 185∼188 282
286 359 413–415 449 758

zeta 197 455 486 704 736 950
See also Recursion

Fundamental theorem of algebraSee under
Equations

Galilei, G.(1564–1642) 35 41 48 210 297
See also under Mechanics, laws

Galois, E. (1811–1832) 306 401 488 690
Galois theory 398 401 692 697 704–706

737 905–909 912
Galton, F. (1822–1911) 205 726 727 825
Games of chance 89 93 95 99 102 109 204

729
Gases 132 137–138 540 596 755 961
Gause, G.F. (1910–1989) 943
Gauss, C.F. (1777–1855) 219 410 415 422

437 438 441 522 555 566
astronomy 256316–328
equations 346 398 413 449 450 905
geometry 452 453 507 511 514 713 714

740 807 815
number theory 481 487 488 614 702

Disquisitiones arithemeticae
303–314 481 484 489 702 906

statistics 253 332 335 336 339 862 866
Gauthier–Villars (publishers) 674 939
Geiser, C.F. (1843–1934) 802 806
Gentzen, G. (1909–1945) 924 961 982

996–998
Geodesics 509 637 734 812 816 817 820

874
Geometry 2 435 790 982

algebraic 24 739 743 795–801
analytic 8–21 41 188 189 283 368

coordinateSee Coordinate systems
descriptive 227–240 441
differential 229 234∼237 283 350 511

519 790 806 820 821 847
line 595
non-Euclidean 511–519 546–550 991
of numbers 489 701

Geometry, Euclidean 149 508–510
546∼550 716–719 805 991

parallel axiom 442 514 515 714
Geometry, projective 75 235 368 376

442–446 517 518 546–550 615
713–715 718 797

duality 373 374 441 443
polesor polars 231 232 370 371 375

444 445
Desargues’sor Pascal’s intersection

theorems 373 374 713 716∼721
Gergonne, J.D. (1771–1859) 373∼376 441
Germain, S. (1776–1831) 313
German Mathematicians’ UnionSee

Deutsche Mathematiker-Vereinigung
Gibbs, J.W. (1839–1903) 437 467 468 573

642∼645
Girard, A. (1595–1632) 13 14 20 394 396

449
Gödel, K. (1906–1978) 733 793917–925

961 964 982 985 986 992 996 997
Göpel, G.A. (1812–1847) 428
Göttingen Academy 556 814 894 895
Göttingen University 304 316 317 441 451

456 481 511 545 546 550 555 601 615
691 692 700 701 711 717 718 812 883
902 972 978 979

theses presented at 452 492 507 614
Golius, J. (1596–1667) 3 8
Gompertz, B. (1779–1865) 120
Gordan, P. (1837–1912) 563
Gossen, H.H. (1810–1858) 542
Gosset, W.S. (‘Student’) (1876–1937) 730

860 867 929
Goursat, E. (1858–1936) 457 674
Grant, R. 860 861
Grassmann, H.G. (1809–1877)431–439

462 467 478 615 618 622 714 786
Graves, J.T. (1808–1870) 460
Gravitation 40 42 78 83 84 155 166 252

254 513 518 566 628 722 814∼818
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Green, G. (1793–1841)403–410 453 522
526 528 531 566 568 575 596 749–751

Gregory, David (1659–1708) 48 77–79 144
Gregory, Duncan F. (1813–1844) 275 472
Grossmann, M. (1878–1936) 803 806–811

815
Gudermann, C. (1798–1852) 451
Gyldén, H. (1841–1896) 635

Haar, A. (1885–1933) 957
Hachette, J.N.P. (1769–1834) 228
Hadamard, J. (1865–1963) 611 637 673

874
Hahn, H. (1879–1934) 850 852 918 919
Halley, E. (1656?–1743) 60 65 118 123
Halmos, P. 968
Halsted, G.B. (1853–1922) 516
Hamel, G. (1877–1954) 734
Hamilton, W.R. (1805–1865) 438 471

algebra 400 401460–469 528 643 646
mechanics 166 220 528 530 578 628

637 872
See also Mechanics, laws of; Quaternions

Hankel, H. (1839–1873) 438 763 771
Hardy, C. (1598–1678) 10 17
Hardy, G.H. (1877–1947) 503 561 611 776

842 857 952
Harnack, A. (1851–1888) 763 948 949
Harriot, T. (1560–1621) 13 14 18 20 297
Harmonic analysis 493 769 774 953 954

958
Harvard University 467 792 793 796 873

912
Haskell, M.W. (1863–1948) 551
Hasse, H. (1898–1979) 699 707 708 737

912 913 978
Haupt, O. (1887–1988) 913
Hausdorff, F. (1868–1942) 708 845 849

963 966
Heat theoryor Thermodynamics 138 254

355∼363 523 636 686 735 749 896
Heavenly bodies

comets 65 78 218 245 252 300 317–319
338

Earth 254 319 363 527
shape of the 78 155 244 250–252 532
See also Potential theory

Moon 77 78 164 212 251∼254 629

planets 35 64 245 249–251 318 327 328
565 629

Sun 64 65 252 319 629 817
Heaviside, O. (1850–1925) 467 573 584

585639–652
Hecke, E. (1887–1947) 708 902
Hegel, G.W.F. (1770–1831) 314
Heilbronn, H. (1908–1975) 308
Heine, E.H. (1821–1881) 557 601
Heine–Borel theorem 611 763
Heisenberg, W. (1901–1976) 863–866 889

897 898
Helmholtz, H. von (1821–1894) 523 532

577 585 589 591 597 678 686 687 725
Hensel, K.H.W. (1861–1941) 703
Herbart, J.F. (1796–1841) 511–513
Herbrand, J. (1908–1931) 981 982

985∼988
Herglotz, G. (1881–1953) 957
Hermann, J. (1678–1733) 56 78 103
Hermite, C. (1822–1901) 630 765 773
Herschel, J.F.W. (1792–1871) 409 466 471

591
Hertz, H. (1857–1892) 584 585 642

677–688 715 751 779
Hessenberg, G. (1874–1925) 720
Heyting, A. (1898–1980) 997
Hilbert, D. (1862–1943) 456 691 769 776

849 889 975
algebraor number theory 489 563

700–709
foundational studies 603 611 623 624

792 904 920 928 963 964981–998
geometry 445 551 688710–722 961

994
physics 812–814 883 892 893
problems paper732–743 918 919 961 982

Hill, A.B. (1897–1991) 730
Hill, G.W. (1838–1914) 628 636 874
Hille, C.E. (1894–1980) 429 561
Hilton, P.J. 978
History of mathematics 254 293–302 795

838–842
Hjelmslev, J. (1873–1950) 720
Hobbes, T. (1588–1679) 29 30 63
Hobson, E.W. (1856–1933) 948 955
Hogben, L. (1895–1975) 861
Hölder, L.O. (1859–1937) 686 704 722
Holmboe, B.M. (1795–1850) 399
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Hooke, R. (1635–1703) 61 64 65 72
Hopf, E.F.F. (1902–1983) 968
Hopf, H. (1894–1971) 971975–979
Hotelling, H. (1895–1973) 868
Hoyle, F. (1915–2001) 858
Hudde, J. (1628–1704) 13 34 52 89
Huntington, E.V. (1874–1952) 792
Hurevicz, W. (1904–1956) 851 853 979
Hurwitz, A. (1859–1919) 457 611 691 703

712 722 774 803 933
Huxley, J.S. (1887–1975) 828 830
Huygens, C. (1629–1695) 18 29 48 51∼54

mechanics33–45 64 132
probability 89 92–95 106 112

Hydraulicsor HydrodynamicsSee under
Mechanics, branches of

Identity 622 983 986 988 991
Indivisibles 24–26 29 147
Inequalities 155–157 265–269
Infinite, actual 344 604 618 619 790

axiom of infinity 623 625 690
definition of 605 606 619–621 983
See also Transfinite numbers;under

Linear algebraand Functions
Infinitesimals 13 26 31 39 41 48–50 61 62

67 70 81 126 128 144–149 154–156
173 192–195 262 343 347 408 509 555
563 537

Insurance 117–120 336
IntegersSee Numbers
IntegralSee Calculus, integral;

Complex-variable analysis
Integralor integro-differential equations

252 357 735 769 776 846 883 889 936
942 943 955

Intermediate value theorems 267 344–346
InterpolationSee Numerical methods
Invariantsor Covariants 312 633 634 637

690 697 711 734 738 804∼820 958
974

Isoperimetric problemsSee Calculus of
variations

Ivory, J. (1765–1842) 408

Jacobi, C.G.J. (1804–1851) 214 218–221
274 399 310 408419–430 449 485 497
531 628 691 707 872

Jacobson, N. (1910–1999) 915

Jevons, W.S. (1835–1882) 477 478
534–542

Joly, C.J. 466 467
Jordan, M.E.C. (1838–1922) 502 545 617

691 692 763 774 845
Jordan, P. (1902–1980) 883 884 892∼898
Joule, J.P. (1818–1889) 523
Journal für die reine und angewandte

Mathematik (Crelle’s) 373 399 410
422 424 454 514 602 603

Jurin, J. (1684–1750) 129

Kantian philosophy 259 462 511 512 559
792

Kelvin, Lord See Thomson, W.
Khayyam, O. (1056–1130) 392 554
Khinchine, A.Ya. (1894–1959) 957 967

968
Killing, W. (1847–1923) 909
Kirchhoff, G.R. (1824–1887) 647∼650

678–680 725
Kleene, S.C. (1909–1994) 919 996
Klein, C.F. (1849–1925) 306 425 438 439

455–457 481 556 692 711 716 717 804
815 818

Erlangen program 240544–552 711
geometry 239 445 517 518

Kneser, H. (1892–1973) 902
Kneser, J.C.C.A. (1862–1930) 720
Kolmogorov, A.N. (1903–1987) 637 735

738 857 878 943960–968 979
Koopman, B.O. (1900–1981) 875 876
Korn, A. (1870–1945) 166
Kostitzin, V. (1882?–1963?) 943
Kronecker, L. (1823–1891) 306 603 607

691 701∼704 775 910 950 983
Kummer, E.E. (1810–1893) 314 485∼488

678 702 707 708
Kuratowski, C. (1896–1980) 625

Lacroix, S.F. (1765–1843) 190 194
277–291 293 298 313 339 360 403

Lagrange, J.L. (1736–1813) 119 160 226
243–245 313 355 404 493

algebra 283 298 305 311 397 485 691
693

calculus 189 194 196 279–282 345 359
360 381 471 526 773

mechanics 249 269 270 314 528–530
566 577 584 594 628 629 669 751 872
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Méchanique analitique 166208–221
244 260 269 299 529
See also Mechanics, laws of

Théorie des functions 209 218258–275
281 282 298

Lalande, J.J. (1732–1807) 278 293 294
299 300 317

Lambert, J.H. (1728–1777) 320 720
Lamé, G. (1795–1870) 363
Landau, E. (1877–1938) 950
Landau, L. (1908–1968) 896
Laplace, P.S. (1749–1827) 218 278 355

404 530 532
analysis 249 250 286 289 332 378 450

528 946
astronomy 314 317 324 629 872
Mécanique céleste 242–256 300 331

404 407
physics 138 253 254 358 363 522 566
probabilityor statistics 100 103 106

107 110 119 201 250 254329–339 378
728 862 927

Larmor, J.J. (1857–1942) 585 586 751 756
938

Lasker, E. (1868–1941) 911
Laurent, P.A. (1813–1854) 389
Least upper bound 559

See also Limits
Lebesgue, H.L. (1875–1941) 497 498 611

764∼776 845 852 878 948 949 962
Lefschetz, S. (1884–1972) 674 875∼878

971 975∼979
Legendre, A.M. (1785–1833) 244 253 278

305 308 311 399 482 510 718
analysis 260 273 326 327 384 416–421

429
See also under Functions, types of

Lehmer, D.N. (1867–1938) 839 841
Leibniz, G.W. (1646–1716) 7 12 18∼21 34

89 90 96 412 415 438 449 472 971 977
calculus 12 43 4446–58 79 82 89 128

171 282 298 497 756
Lenard, P.E.A. (1862–1947) 679
Leurechon, J. (1591?–1670) 655
Leśniewski, S. (1886–1939) 793
Leverrier, U.J.J. (1811–1877) 256 872
Levi-Cività, T. (1873–1941) 518 637 673

811 815 820
Lewis, A.J. (1839–1919) 657

Lewis, C.I. (1883–1964) 792 934
Lexis, W. (1837–1914) 726
L’Hôpital, G.F.A. de (1661–1704) 51 56

126
L’Huilier, S.A.J. (1750–1840) 343
Lie, M.S. (1842–1899) 545 546 549–551

734
Light See Optics
Limit(s) 63 67 71–74 128 129 148–150

153 194 281 282 290 965
existence of 498
lower or upper 345 498 603 767
multiple 345 348 349 383
theory of 69 157 343–345 360
See also Set theory

Lindemann, C.L.F. (1852–1939) 711 712
715

Linstedt, A. (1854–1939) 635
Linear algebra 435 908 914 915

determinants 311 466 485∼488
eigenvaluesor latent roots 250 670 883

894–897
matrices 437 671 805 883–886
895–897 908 911

infinite 360 735 774 883
Linear forms 305 306 312 908
Linear programming 363 476
Liouville, J. (1809–1882) 389 410 531 633

690
Lipschitz, R.O.S. (1832–1908) 349 560

682 683 774
Listing, J.B. (1808–1882) 971
Littlewood, J.E. (1885–1977) 859 952
Lobachevsky, N.I. (1792–1856) 192 310

511 514–517 714
Lodge, O.J. (1851–1940) 584 641
Logarithms 150 184 185 298 325 449

See also under Functions
Logic(s) 792 793 983

algebraic 472–478 785
connectives 51 473 786–789 791 792
law of excluded middle 785–787 988

997
mathematical 617 621–624 785–793

983∼988 998
metalogic 787 791–793 924
propositional functionsor predicates

622 787–790 986–992
propositions 477 787 789 983
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quantification 785∼789 791 793 922
984 985 988

relations 477 478 785 786 790 921 922
universe of discourse 473 474
See also Abstract algebras;

Metamathematics; Set theory
Lorentz, H.A. (1853–1928) 586 678 688

755778–783 805
Lotka, A.J. (1860–1949) 937–939
Love, A.E.H. (1863–1940) 598
Lucas, F.E.A. (1842–1891) 489 656 657
Łukasiewicz, J. (1878–1956) 793
Lusin or Luzin, N.N. (1883–1950) 562

771 772 776 846 852 853 961 975
Lyapunov, A.M. (1857–1918) 637

664–674 874 878

MacCullagh, J. (1809–1847) 584
Mac Lane, S. 913 971 979
MacLaurin, C. (1698–1746) 129 130

143–157 250
See also under Series

Mach, E. (1838–1916) 166 171 220 679
687 815

Magnetism 404–407 522 566–569
574∼580 585 749–751 779

induction 576–579
See also Electromagnetism

Manifolds 508–511 549 552 518 628 742
743 806 875

Mappings 615 619–621 624 625 820 845
912 913 921

Maps 234 451 515
Markov, A.A. (1856–1922) 726
Marshall, A. (1842–1924) 542
Maschke, H. (1853–1908) 833 911
Mass 66 78 136 137 681 682 890
Mathematical induction 29 31 97 485

618∼624 982 983 995 996
Mathews, G.B. (1861–1922) 489
Mathieu, M. 957
MatricesSee Linear algebra
Maupertuis, P.L (1698–1759) 161 182 212

530
Maurice, F.D. (1805–1872) 476 477
Maxima and minimaSee Functions,

properties of, optimae
Maxwell, J. Clerk (1831–1879) 410 523

527 589 639 678 679 725 751 779–781
803 829

Treatise 467 532564–582 590 643
MeasureSee under Calculus, integral
Mechanics, branches of 210

analyticalor variational 210–221
529–531 584 594 595 684–686 779
809 810 818 884 942

celestialSee Astronomy; Heavenly bodies
dynamical systems 628 637 670–674

739 871–879 968
dynamics in general 63 64 136 164 210

211 529 878
elasticity theory 165 363 527 531 598

642 725 751 754 938
energy and workor live forces 84

132∼137 163–165 212 215 525–531
631 679–688 751 754 878

fluid mechanics 84 132–142 164 165
213 215 250 407 409 524 531 532 569
574 575 678 688 743 749–751 817 947
tides 78 84 155 251 433 532

kinematics 70 71 125 129 147–149 155
525–528

mechanical engineeringor Machines
132 136 138 234 299 598 933

Newtonian 43 156 163 210 244 245 252
513 525 628 681 809 815 817 872 987

statics in general 164 212 213 529 532
See also Energy; Force(s); Quantum

mechanics
Mechanics, lawsor principles of 220 245

260 299
d’Alembert’s 161–165 212 245 529 594

685
Galileo’s law of fall 36 169 804 816
Kepler’s lawsor problem 65 74–76 319

324 632
least action 84 172 211 215 245 530

531 686
lever 42 218
moments 213 436 726
Newton’s laws 67 245 528 529 648 685

inverse square 64 65 74 77 78 245
249
second 67 78 211∼214 252 682

Torricelli’s principle 39 42
virtual velocitiesor work 84 211–213

218–220 245 529 530 594
Mechanics, notions in



1016 Index

angular momentum 84 215 249
centre of gravity 39 161 170 251
constraints 214 219 683–686
Hamiltoniansor Lagrangians 213–215

218 219 528∼531 533 571 578 583
631 633 684 686 811–814 817 874 879
894

impact 34 133 163 165
momentum 66 136 137 163 684 807

808 812 813
rotation 42 164 165 249 251
stability 665–674 629 630 633–635

874∼878
Menger, K. (1902–1985) 846–854
Mersenne, M. (1588–1648) 2 19 20 42
Metamathematics 792 793 903 915–924

924 963 964 982–984 987–998
Metrodorus (510±) 654
Michaelson–Morley experiment 780
Mie, G. (1868–1957) 813
Minding, E.F.A. (1806–1885) 310 514 687
Minkowski, H. (1864–1909) 482 489 636

691 701 704 712 722 802
Mittag-Leffler, M.G. (1846–1927) 561 562

607 611 630 773
Möbius, A.F. (1790–1868) 374 437 438

446 461 715
Moleculesor atoms 67 252 338 358 527

569 680 751 755 779–781 820
884–890

See also Electrons
Monge, G. (1746–1818) 225–239 260 277

278 283 284 342 355 359 372 376 408
441 525

Montmort, P.R. (1678–1719) 90 99 103
106 112 113 117 330

Montucla, J.E. (1725–1799) 54292–302
Moore, E.H. (1862–1932) 719 833 873
Moore, G.E. (1873–1958) 785 787
Morse, H.C.M. (1892–1977) 871 874 878
Moser, J. 637 670 878
Moufang, R. (1905–1977) 720
Moulton, F.R. (1872–1952) 720
Murphy, R. (1806–1843) 409
Music 295 301 590 924
Mydorge, C. (1585–1647) 17

Napoléon Bonaparte (1769–1822) 228 243
254 333 336 338 355 356 372

Navier, C.L.M.H. (1785–1836) 138 350
363

Neumann, C.G. (1832–1925) 410 679 680
Neumann, F.E. (1798–1895) 567 577 691
Newton, I. (1642–1727) 144 188 252 410

597
algebra 8 13 14 17 18 62 144 392
calculus xii 12 30 31 63 67–73 149 154

171 526
mechanics 64–67 71 77–83 144 628
Principia mathematica 43 60–85 106

126 210 297 372 529 628 787 886 887
Nicholson, J.W. (1881–1955) 517
Nieuwentijt,B. (1654–1718) 51
Niven, W.D. (1842–1917) 583 584
Noether, E. (1882–1934) 703 818 849 901

907 909∼912 915 975 978
Noether, M. (1844–1921) 456 708
Nordheim, L. (1899–1992) 883 893
Number theory 189 196 304–315 424 455

556 657 700–709 739 834–842 911
920 988 994

congruence 304∼308 314 482 484 488
Diophantine equations 305 736 737 841
divisors 20 306 310 311 703
Fermat–Pell equation 484 487
Fermat’s last theorem 429 707 736
number fields 701–709 736 737
quadratic reciprocity 308 309 484 707

736 839 840
residues 308–310 313 314 482–485 706

707 736
Riemann hypothesis 736 743 950

Numbers, kinds of real 3 554–559
602–604

cardinal 606–609 621 624 625 789
definition of 785 789 988
negative 18 392 393
ordinal 605–608 789 790
prime 307–310 423 487 704 736
rationalor irrational 351 392 503

555–563 693 706 715 735 737
definition of 343 602 618 623 983

transcendental 27 31 185 393 711 735
905

See also Arithmetic; Complex numbers;
Continuity

Numbers, specific
Bernoulli 98 195 289
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e 186 268
π 24 27 30 31 186 188 195 711

Numerical methods 28 78 252 261 284 288
289 318–321

Ohm, G.S. (1789–1854) 364
Olbers, H.W.M. (1758–1840) 256 318–321
Operators 467 885∼896 905

See also Differential operators
Optics 13 35 43 297 299 409 468 513 526

570 580–583 586 593 594 754–756
782 811 818 886 888

and the aether 569 570 583 584
See also Aether

refraction 52 138 252 461 779
speed of light 814 815 886

OptimisationSee under Functions,
properties of

Osgood, W.F. (1864–1943) 456 833 873
Ostrogradsky, M.A.V. (1801–1862) 219

339 352 363 388
Oughtred, W. (1575–1660) 29 61
Oxford University 23 571 583
Ozanam, J. (1640–1717) 106 293 655 656

Pacioli, L. (1445–1517) 654
Padoa, A. (1868–1937) 785
Painlevé, P. (1863–1933) 636 673
Paman, R. (d. 1748) 129 130
Pappus (320±) 20 62 75

curves of 4 7–11 14 19
ParadoxesSee under Set theory
Pareto, V. (1848–1923) 937
Paris 42 43 47 545 748 785

Universityor Faculties of 238 342 357
627

See alsoEcole
Part-whole theory 473–475 793

See also Set theory
Pascal, B. (1623–1662) 48 96∼99 296
Pasch, M. (1843–1930) 713–715 718 719
Pauli, W. (1900–1958) 846 884 885 892

893 896
Paulus, A.X. (1885–1949) 688
Peano, G. (1858–1932) 432 478616–625

714 763 785 786
Pearson, E.S. (1895–1980) 934
Pearson, K. (1857–1936)724–730 825 858

860 862 864 929 934

Peirce, C.S. (1839–1914) 439 478 618 786
Pendulum 35–42 84 163 409 415 531
Permutations 90 96 97 111 311 696 697

905
See also Combinations

Perron, O. (1880–1975) 668 913 948
Persidskii, K.P. 667–669 674
Philosophical magazine 408 462 640–642

650
Philosophy of mathematics 1–3 211 245

433 603
formalism 722 920 923 924 981–998
intuitionismor finitism 562 792 919

961 983∼998
logicism 785∼793 615 624 982 983
Platonism 925
See also under Probability

Physics in general 252 253 722 735
Piazzi, G. (1746–1826) 317 318 322
Picard, E. (1856–1941) 673 764 769 772

773 938 939
Pieri, M. (1860–1913) 446 785
Planck, M. (1857–1947) 803 882 883
Plücker, J. (1801–1868) 239 374 446 545

548
Poincaré, J.H. (1854–1912) 456 518 551

687 719 742 756 805 845 983 984
differential equations 627–638 666

669∼673 871–877
topology 852 970∼974 977

Poinsot, L. (1777–1859) 218 249
Poisson, S.D. (1781–1840) 342

analysis 378 385 386 450 493 774 946
947

applied mathematics 218 252 253 254
363 404∼408 522 529 566 568 596
633 749 751

probabilityor statistics 100 107 339
Pollard, H. (1919–1985) 958
Polynomials 13–18 76 97 188 306 312

392–395 414 417 428 429 692 693 703
737 769 903–906 910–912

rule of signs 14 361 363 613
See also Equations

Poncelet, J.V. (1788–1867) 132 231 239
240366–374 441 443

Pontecoulant, P.G. de (1795–1874) 256
Pontrjagin, L. (1908–1988) 734 977
Porism 368 372
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Potential theory 404–410 450 453 522 531
532 669

attraction of ellipsoids 85 155 532
equipotential surfaces 85 155 250 408
Green’s theorem 405 406
Stokes’s theorem 575 576 749

Poynting, J.H. (1852–1919) 584
Preece, W.H. (1834–1913) 641
Presburger, E. (d. 1943?) 988
Price, R. (1723–1791) 200 203–205
Priestley, J. (1733–1804) 297
Princeton Universityor Institute 873 919

982 958 975 979
Pringsheim, A. (1850–1941) 457 948–950

955
Probability (theory) 89–103 106–120

201–206 331–339 476 735 888
892–896 927

conditional 99 106 202 960 962 965
967

expectation 92–94 99 107 108 333 334
inverse 201–205 327 862 866 867
law of large numbers 90 94 100–103

107 967
measure of 93 100 107 896
measure-theoretic interpretation of 960

968
philosophy of 89 100 117 337 338 476

478 866 968
random variables 554 932 962 966 967
See also Games of chance; Statistics

Projections 229 235 368 371–373
See also Geometry, projective

Proof byreductio ad absurdum 147 149
Proof theorySee Metamathematics
Prym, F.E. (1841–1915) 455
Psychology 473 474 478 512 607
Puiseux, V.A. (1820–1883) 389 450∼453
Pythagoreans 554 555

Quadratic forms 250 305∼310 313
482∼489 548 604 682 701 706 737
806 840 908

Quadrature of the circle 18 27 52 293 300
301

See also Calculus, integral
Quantum mechanics 410 598 688 735 743

820 882–889

Quaternions 439 461–469 528 571–575
642–647

See also Vectors
Quetelet, L.A.J. (1796–1874) 725 726
Quine, W.V.O. (1908–2000) 793

Ramsey, F. (1903–1930) 205 791 793
Ratios, theory of 49 554
Rankine, W.M. (1820–1872) 523
Rayleigh, 3rd Lord (1842–1919) 532

588–598 751 755
Recreational mathematics 299 654–662
Recursion 99 618 620 623 735 849 850

921–924 984 989 990 995 996
See also Metamathematics

Régnier, J. (1892–1946) 943
Reichenbach, H. (1891–1953) 819
Reid, L.W. 701
Relativity theory 410 462 877

field equations 807 808 811–815 820
821

general 518 805–821
special 519 735 780∼783 803∼807

815 819
Religion 83 116 117 123 146 201 342 425

476 477 601 607∼611 725 919
Resistance, fluidor solid 65 77 78 84 85

137 260
Reye, T. (1838–1919) 446 714
Reyneau, C.R. (1656–1728) 56
Riemann, G.F.B. (1826–1866) 410 555

615 692
complex-variable analysis 390 428 429

451–457
geometry 506–519 739 815 971
real-variable analysis 351 364491–503

601 760–762 771 774 775 947 948
Riesz, F. (1880–1956) 776 948 951
Riesz, M. (1886–1969) 611
Rigour 128 263 352 485 541 624 702 897
Roberval, G.P. de (1602–1675) 4 8 42 62

297
Robins, B. (1707–1751) 129
Rosenhain, J.G. (1816–1887) 428
Ross, R. (1857–1932) 937 938
Rosser, J.B. (1907–1989) 923 993
Rota, G.-C. (1932–1999) 439 722
Rouse Ball, W.W. (1850–1925)658–662
Routh, E.J. (1831–1907) 531 590 666 686

724
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Royal Society of London 35 56 61 65 200
472 545 566 650 787 858

Philosophical transactions 61 106 114
117 118 143 144 200 295 567 642 860
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