

Global Software and IT

Copyright © 2012 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our web
site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:
ISBN: 9780470636190

oBook ISBN: 9781118135105
ePDF ISBN: 9781118135075
ePub ISBN: 9781118135099
eMobi ISBN: 9781118135082

Printed in United States of America

10  9  8  7  6  5  4  3  2  1

http://www.copyright.com/
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://www.wiley.com/

v

Contents

Foreword    ix

About the Author    xi

Introduction	 1

Part I  Strategy

1.	 Different Business Models	 7

2.	 The Bright Side: Benefits	 15

3.	 The Dark Side: Challenges	 19

4.	 Deciding the Business Model	 27

5.	 Preparing the Business Case	 33

Part II  Development

6.	 Requirements Engineering	 39

7.	 Estimation and Planning	 45

8.	 Development Processes	 53

9.	 Practice: Global Software Architecture Development	 59

10.	 Practice: Software Chunks and Distributed Development	 69

11.	 Configuration Management	 81

12.	 Open Source Development	 83

vi    Contents

13.	 Quality Control	 89

14.	 Tools and IT Infrastructure	 95

15.	 Practice: Collaborative Development Environments	 109

Part III  Management

16.	 Life-Cycle Management	 127

17.	 Supplier Selection and Evaluation	 131

18.	 Supplier Management	 135

19.	 Practice: IT Outsourcing—A Supplier Perspective	 141

20.	 Monitoring Cost, Progress, and Performance	 151

21.	 Risk Management	 165

22.	 Practice: Risk Assessment in Globally Distributed Projects	 179

23.	 Intellectual Property and Information Security	 189

24.	 Practice: Global Software Engineering in Avionics	 193

25.	 Practice: Global Software Engineering in Automotive	 209

Part IV  People and Teams

26.	 Work Organization and Resource Allocation	 227

27.	 Roles and Responsibilities	 237

28.	 Soft Skills	 241

29.	 Training and Coaching	 245

30.	 Practice: People Factors in Globally Distributed Projects	 249

31.	 Practice: Requirements Engineering in Global Teams	 257

32.	 Practice: Educating Global Software Engineering	 269

Contents    vii

Part V  Advancing Your Own Business

33.	 Key Take-Away Tips	 283

34.	 Global Software and IT Rules of Thumb	 293

35.	 The World Remains Flat	 297

Appendices

Appendix A  Checklist/Template: Getting Started	 303

Appendix B  Checklist/Template: Self Assessment	 309

Appendix C  Checklist/Template: Risk Management	 315

Glossary and Abbreviations    319

Bibliography    339

Index    349

Ongoing economic challenges are affecting and impacting business and society in
nearly every industry and geographical region. Taking decisive action to reprioritize
the way we are doing business is a key focus for companies. Around the world,
companies are taking the necessary measures that will enable us to adjust to today’s
reality and to future challenges. In adjusting and refocusing we need to stay on
course to ensure that short-term challenges won’t distract us from planning for
longer-term opportunities to achieve sustainable growth. Information technology is
part of the solution if handled in a truly global scale.

With decades of experience in making companies globally successful, I believe
that we are faced with a unique opportunity to nurture global economic prosperity.
Global software engineering, IT outsourcing, and rightshoring are all pieces toward
readjusting the software and IT business. The prestigious journal Harvard Business
Manager recently stated that outsourcing with global IT services and software
development ranks as one of the top business ideas of the past 100 years. This cer-
tainly makes sense, because software and IT industries are today truly global. Be it
offshoring or outsourcing, component or service integration, managing global soft-
ware engineering has rapidly become a key competence for successful engineers and
managers. The diversity of suppliers, cultures, and products requires dedicated
techniques, tools, and practices to overcome challenges.

This book, Global Software and IT, written by my colleague and friend Christof
Ebert, summarizes experiences and provides guidance, processes, and approaches
for successfully handling global software development and outsourcing. It offers
tons of practical hints and concrete explanations of “how to do it better.” Readers
will get an opportunity to explore the current state of practice in this area as well as
new thoughts and trends that will shape the future.

Global Software and IT provides a framework for mastering global software
and IT, and also summarizes experiences from companies around the globe. The
book is very readable and provides a wealth of knowledge for both practitioners and
researchers. With its many practical insights, this book will be a useful desktop refer-
ence for industry practitioners and managers within the software engineering and IT
communities.

Global IT and software development, service, and provisioning imply a great
organizational and industrial shift in structure. Let’s rise to the challenge and, in
doing so, raise the quality of life and our economic prosperity for generations to
come. Now is the time to grow and improve global software and IT and thus
empower all of the world’s citizens to participate in the human network.

Michael Corbett

Foreword

ix

New York
July 2011

About the Author

xi

Christof Ebert is managing director at Vector
Consulting Services. A trusted advisor for
companies around the world, he supports
clients to improve product development and
product strategy and to manage organizational
changes. Dr. Ebert sits on a number of advisory
and industry bodies. Over the years he has set
up several offshoring sites, performed due dili-
gence assessments, and supported numerous
companies in improving their global software
engineering and IT outsourcing programs. He
serves on the executive board of the IEEE
International Conference on Global Software
Engineering (www.ICGSE.org) series and
teaches at the University of Stuttgart.

He can be contacted at christof.ebert@
vector.com.

http://www.ICGSE.org
http://christof.ebert@vector.com
http://christof.ebert@vector.com

Things do not change; we change.
—Henry David Thoreau

Software and IT have gone global at a fast pace. Be it IT outsourcing, global software
engineering, or business process outsourcing, growth rates are more than 20% per
year [IAOP09, USA07]. While the cost advantage and skill pool of global develop-
ment and outsourcing may appear to be advantageous, they bear a set of risks that
come on top of the regular project risks. Not knowing these risks and not mitigating
against them means that your project may soon belong to the growing share of failed
global endeavors.

Global Software and IT provides guidance and examples of experiences, as well
as processes and approache,s to successfully handle global software development
and outsourcing. It offers many practical hints and concrete explanations of “how
to do it better.”

Global Software and IT addresses practitioners, namely:

•	 Developers and engineers workingin global development projects to make
their collaborations more effective, through
	 captive sourcing within a company
	 provision of outsourcing services to clients, or
	 engaging in open source development.

•	 Software and IT managers on all levels from the individual working in a
distributed team to the senior manager who decides where to open a new site
and what it means to be successful.

•	 Project managers and project teams who want to succeed with distributed
activities.

•	 Product managers and R&D managers taking advantage of globalization.

•	 Procurement teams interested in making sourcing of development partners
more effective.

•	 Suppliers trying to understand the practices and needs that drive their clients.

1

Introduction

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

2    Introduction

Global Software and IT provides a framework for global development, covering
topics such as management of people in distributed sites, management of projects
across multiple locations, mitigation of the risks of offshoring, processes for global
development, practical outsourcing guidelines, and use of collaboration and com-
munication to achieve goals. It summarizes experiences from companies of different
sizes and organizational layouts as well as information about industries around the
globe. This book shares the best practices from various professional projects, includ-
ing ones that involve locations in different continents and a variety of cultures.
Perhaps most relevant, the book explains the means and strategies needed to survive
in a globally dispersed work environment.

This book helps each reader to improve his global software activities by provid-
ing examples of:

•	 Hands-on experiences, including opportunities, lessons learned, and risks

•	 Management education and training in companies

•	 Self-learning for students in business and software

•	 Hands-on practical insights for industry practitioners and managers, and

•	 A course layout for university or professional training.

When writing the book we decided for readability purposes to only use the male
form of pronouns. We are well aware that software and especially global projects is
one of the few engineering fields where we find today almost the same number of
women as men. We thank you for your understanding.

Global Software and IT provides practitioners with practical guidance as well
as examples of experiences from companies and projects from across the globe and
different application domains. Hands-on examples are shown in shaded boxes.
Practical guidelines and take-away tips are also prominently displayed. Some topics,
such as cultural differences, play a role in all global projects, while others depend
on the size and organizational styles of individual companies and projects. We
provide an explanation for why something is done in a certain way as well as which
risk is addressed by which method. We recommend “translating” these concepts to
your own environment, rather than taking a specific solution as the one and only
possible.

I want to thank IEEE and John Wiley & Sons for supporting this book and
asking me to write this second edition. A book about such a quickly evolving topic
would be impossible to write without the continuous feedback of my colleagues
and clients. Special thanks go to Alberto Avritzer, Suttamally Bala, Werner Burger,
Daniela Damian, Filippo Lanubile, Audris Mockus, Daniel Paulish, S. Sadagopan,
Bikram Sengupta, Andree Zahir, and everyone else who has for provided insight
from their own in global software and IT experiences. Additionally, Filippo
Lanubile, Rafael Prikladnicki, and Aurora Vizcaino deserve thanks for contributing
to tools topics. Finally, I would like to thank Dave Gustafson and Dan Paulish for
being good and long-time companions while going global.

The IEEE conference series ICGSE (International Conference on Global
Software Engineering) has helped to build a strong research and industry community

﻿ Introduction    3

of smart people who drive knowledge and competence evolution in this quickly
growing field. I am honored to serve on its executive committee and look forward
to the evolution of this discipline.

Global software and IT is not for free. Often people argue that we are going
global because of cheaper labor rates. But software and IT business based solely on
cost is almost certainly doomed to fail. Successful global software businesses, on
the other hand, are driven by global innovation, talent, and markets. Salaries adjust
over time; innovation keeps moving.

Global software and IT necessitates a shift in culture. This cultural adjustment
is often underestimated, but in order to be successful we need to change. We need
to reinvent business models and working paradigms, we need to learn new formats
of collaboration and communication. This book will show what it means and how
to succeed.

There are two challenges with going global: to get started and to keep going.
With the many rewards from your business combined with guidance from this book,
you will translate risks to chances and opportunities, which is what they should be.
I wish you, the reader of this book, the best of success in this endeavor!

Christof EbertBerlin
August 2011

Part I

Strategy

Summary: Globalized software development and various formats of information
technology outsourcing (ITO) are as natural for the software and IT business as
project management or requirement engineering. Going global with software and IT is
a great way to distribute work effectively as well as appropriately assign tasks to
employees who are most qualified for the task at hand. To attain the greatest success
in the fields of software and IT we must take advantage of opportunities for continuous
collaboration around the globe. This chapter looks at different business models in
software and IT.

The annual volume of global IT outsourcing and software development in 2010 was
approximately $100 billion. Considering the field’s growth rate of 5 to 10 percent
per year, the industry is clearly rife with portential [BCG09, McKinsey08]. When
one examines the facts about the software business, it becomes readily evident that
it has become a truly global venture. Examples are manifold:

•	 Offshoring is growing at double-digit rates across Europe and the United
States throughout many different industries and all major business
functions.

•	 Offshoring is no longer just about cost reduction, low-end manufacturing, IT,
and back office work; it has become a major driver for entire business
processes.

•	 50% annual growth in the offshoring of core innovation activities (i.e., R&D,
product design, engineering).

As early as 1962, EDS began offering IT on spare capacity, also known as time-
shared computing as an external service (today this is called application service
provisioning). In 1976 EDS started deploying global IT services, such as financial
accounting. Entrepreneurs in India realized early on that this form of business could
help the country leapfrog into current technologies, therefore becoming a major
business partner to the Western world. Indian institutes of technology were formed
in the 1960s. They featured strong computer science curricula which laid the

7

Chapter 1

Different Business Models

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

8   Chapter 1  Different Business Models

foundtions for India’s current success in the IT domain. The first e-mail sent from
China to a foreign country was on September 20, 1987 to the University of Karlsruhe.
The text was short, yet powerful: “Across the Great Wall we can reach every corner
in the world.” It was the vision of an increasingly connected world in which all citi-
zens and enterprises would have the ability to do business with one another. The
world was getting smaller. The notion of “across the wall” is about bridging gaps.
It demonstrates that being connected does not necessarily mean sharing the same
values with one another, nor does it make countries and continents borderless and
integrated.

Today, practically all new business plans contain offshoring as a key element
for containing cost and creating flexibility in order to cope with changing demands
on skills and numbers of engineers. Different business models are applied in the
global context.

First, there is a distinction made between outsourcing and offshoring:

•	 Offshoring—is a business activity beyond sales and marketing which takes
place outside the home country of an enterprise. Enterprises typically either
have local branches in low-cost countries or they ask specialized companies
abroad to perform a service for them.—Offshoring performed within the
company is called captive offshoring.

•	 Outsourcing—is a business’s lasting and result-oriented relationship with a
supplier who executes business activities for an enterprise which were tradi-
tionally executed inside the enterprise. Outsourcing is site-independent. The
supplier can reside in direct neighborhood of the enterprise or offshore.

Offshoring and outsourcing are two dimensions in the scope of globalized soft-
ware development and IT. They do not depend on each other and can be implemented
individually.

For sourcing, a distinction is made based on the type of service being sourced
from an external supplier:

•	 Business Process Outsourcing (BPO)—where a business process (or busi-
ness function) is contracted to a third-party service provider.

•	 Information Technology Outsourcing (ITO)—where software and It related
services are outsourced to a third-party service provider. ITO is a form of
Business Process Outsourcing (BPO) for software and information technol-
ogy activities.

•	 Application service provisioning (ASP)—where computer-based services
are sourced from a third-party service provider. ASP is a form of Information
Technology Outsourcing (ITO) for operationally provisioning software and
IT functionality.

•	 Software sourcing—where software components are sourced from an exter-
nal supplier. Sourcing is a business process that summarizes all procurement
practices. It includes finding, evaluating, contractually engaging, and manag-
ing suppliers of goods and services.

12   Chapter 1  Different Business Models

IT functions have the highest degree of outsourcing capacity across the five
sectors, however, the core of these sectors, namely R&D and engineering functions,
are at the steepest growth rate. No longer are support functions and services out-
sourced as we were once used to. Today’s emphasis is on globally utilizing research
and engineering to develop products. Global software engineering and IT are at the
crossing point of both the IT sector and the engineering function which naturally
builds the spearhead of this radical business change. IT outsourcing has reached 50%
and more of all expenses for IT services occur across industries. But R&D and
engineering is not yet saturated. They will continue to grow at rates way above 20%
per year. This means that global software development as well as IT service out-
sourcing will further grow during this decade.

INFORMATION TECHNOLOGY OUTSOURCING

Information Technology Outsourcing (ITO) is the form of outsourcing in which
software and IT related services are outsourced to a third-party service provider. ITO
is a form of Business Process Outsourcing (BPO) for software and information
technology activities. Historically, EDS was the first ITO supplier. Examples of ITO
are outsourcing of software maintenance or IT provisioning services.

ITO is either driven by the need to reduce capital costs or by business process
outsourcing. There is hardly any strategic component in ITO despite the fact that
many companies claim otherwise. Essentially, companies that are in need of capital
in the short term sell their IT assets and resources while immediately sourcing it
back to maintain services. As shown in recent years by the cases of Xerox, J.P.
Morgan, Swiss Bank, and Delta Airlines, when a company claims strategic reasoning
in the sale of IT assets, in reality, the ITO has actually failed to deliver the expected
long-term benefits. [Lacity09]. Realizing any strategic goals with ITO is difficult
and demands a high degree of managerial attention.

GLOBAL SOFTWARE ENGINEERING

Global software engineering (GSE) is software development and maintenance in
globally distributed sites. Different business models and work breakdown schemes,
such as outsourcing, offshoring, and rightshoring, are used. Thus, GSE is not cor-
related with outsourcing and can coexist, for instance, by means of captive develop-
ment centers within the boundaries of an enterprise or distributed project teams.

NETSOURCING AND APPLICATION
SERVICE PROVISIONING

Netsourcing or Application service provisioning (ASP) is the form of sourcing in
which computer-based services are outsourced to a third-party service provider. The
application service provider (also ASP) provides these services to customers over a
network. Therefore, increasingly, the term “Netsourcing” is used for this business

Open Source Software   13

model. ASP is a form of Information Technology Outsourcing (ITO) for operation-
ally provisioning software and IT functionality. Software offered using an ASP
model is called on-demand software or software as a service (SaaS). Examples of
this are customer relationship management and sales (e.g., salesforce.com), as well
as, increasingly, desktop applications. ASP is limited and is also a risk (to perfor-
mance, security, and availability) because access to a particular application program
takes place through a standard protocol such as HTTP. The market is divided as
follows: Functional ASP delivers a single application, such as timesheet services; a
vertical ASP delivers a solution for a specific customer type, such as a chimney
sweepers; and an enterprise ASP delivers broad solutions, such as finance
solutions.

SOFTWARE SOURCING

Software sourcing is the form of sourcing in which software components are sourced
by an external supplier. Sourcing is a business process that summarizes all procure-
ment practices. It includes finding, evaluating, contractually engaging, and managing
suppliers of goods and services. Sourcing includes different types of goods and
components and, therefore, license models. This starts with commercial off the shelf
(COTS), includes a variety of tailored components and solutions, and ends with the
different community, open source distribution, and access models. Software compo-
nent sourcing is also a type of distributed development. Today, distributed develop-
ment is mostly a global business and, as a result, is part of global software
development.

OPEN SOURCE SOFTWARE

One key driver in new value networks is free and open source software. Worldwide
companies of various industries are investing in open source. They effectively use
it as a viable ecosystem for access to skills, as well as for creating new markets.
Today, a variety of global business models around open source are exploited The
risks are known, but mitigating solutions exist. Specific communities have been
created with suppliers and their customers using open source processes and mecha-
nisms to provide faster access to hardware drivers, software updates, or specific
features. New value networks are enhancing traditional approaches. Suppliers are
teaming up to share their software basis and to offer tailored services to single user
segments. Independent software vendors (ISV) distribute popular solutions and
components, or integrate them, thus helping to accelerate integration efforts.

Summary: Going global makes sense because we have access to talent, markets, and
the flexibility to adjust according to our own business needs. On the other hand , we
all know that software development demands teamwork and collaboration. First we
will look into the motivation for global development. We will then analyze challenges
and provide solutions for those of you who are embarking on global software and IT
or questioning which format most suits your specific demands.

Cost reduction is still the major trigger for globalization although its relevance has
been decreasing in the past years. The reasoning for cost reduction is simple yet
effective, so effective, in fact, that you can find it in any newspaper. Labor cost
varies across the globe. In different parts of the world, you pay different amounts
of money per working hour or per person per year for similar skills and output. An
examination of labor costs for comparable skills of educated IT engineers shows
that several Asian countries offer a rate of 10%-40% of the expected pay for the
same work time in Western Europe or the United States. For instance, in 2008 an
“associate engineer” in India earned around US$ 4,400 per year as compared with
US$ 55,000 for a new engineer employed in Europe or North America [BCG09].
This reduces R&D labor cost by 40%–60% (not considering hidden costs and addi-
tional overheads, which severely reduce this potential).

Specifically, Asian countries offer such a huge amount of skilled and highly
motivated engineers that it is impossible not to consider such potential for project
planning. The 2006 ACM Job Migration Task Force report on globalization and
software offshoring [Aspray06] and the annual World Bank Reports [Worldbank11]
both underline that globalization of the software industry will further increase due
to both information technology itself (e.g. skills and technology demands as well as
market evolutions in emerging economies), government actions (e.g. moving into
IT sectors to reduce dependencies on raw materials in places such as China), and,
finally, by economic factors (e.g., labor cost differences).

Labor cost will remain a major driver for any type of IT and software outsourc-
ing and offshoring for a long time to come. Figure 2.1 shows the annual wage dis-
tribution across the world [McKinsey08, Worldbank11, EconomistIntelligence11].

15

Chapter 2

The Bright Side: Benefits

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

http://www.glassdoor.com/Salaries
http://globaltechforum.eiu.com

18   Chapter 2  The Bright Side: Benefits

with many well-trained and process-minded engineers (especially in Asia),
and shorter time-to-profit in following the sun and developing and maintain-
ing software in two to three shifts in different time zones.

Many factors cannot be quantified or made tangible initially, but will sooner or
later contribute heavily to overall performance. For instance, innovation is a major
positive effect that is boosted by going global. Engineers with all types of cultural
backgrounds actively participate to continuously improve the product, innovate new
products, and to make the processes more effective. Even with the slightly more
complex decision making process involved in going global, achievements are sub-
stantial if engineers of different educational and cultural backgrounds unite to solve
problems. The best practices can be shared, and, sometimes, small changes within
the global development community can have big positive effects.

Obviously, not all companies that engage in global software engineering and IT
look at each of the four goals (presence, talent, efficiency, and flexibility) with the
same levels of motivation. As a matter of fact, we even see a kind of trajectory in
which a vast majority of companies start with efficiency needs (i.e., cost savings),
and then move on to presence in local markets. Only after these two forces are
understood do the companies move on to tackle talent and flexibility. Also, it is clear
that these four factors feed themselves. The more energy a company spends on
building a regional pool of skilled software engineers, the more it also considers
how to best utilize these competencies to, for instance, build a regional market or
develop new products for such markets.

Summary: Working in a global context obviously has advantages but there are also
some drawbacks. While the positive side accounts for time-zone effectiveness or
reduced cost in various countries, we should not close our eyes to the risks and
disadvantages. Practitioners of global software development and IT outsourcing
clearly recognize that difficulties exist. In this chapter, we will look at risks and
failures in global software and IT projects. Only when we are aware of risks and past
failures, do we have a chance of doing better ourselves.

It seems rational to put stakeholders in one place, share the objectives, and execute
the project. The need to work in one location is a major lesson to take away from
many failed projects; it has even found its way into many practice development
methodologies such as agile development. So, what are the strategies and tactics to
survive globally dispersed projects?

One-fifth of the executives in a recent survey say that they are dissatisfied with
the results of their outsourcing arrangements, while another fifth of the respondents
see no real benefits [McKinsey08, BCG09, IDC07]. As a rule of thumb, 20%–25%
of all outsourcing relationships fail within two years and 50% fail within five years.
This is in line with our own experiences over the past decade. The figures actually
did not improve over time [Ebert07a, IDC07, Hussey08, Rivard08].

Working in a globally distributed project means businesses must worry about
overheads for planning and managing people, it means there will be both linguistic
and cultural barriers, and it creates jealousy between the more expensive engineers
who become afraid of losing their jobs while they are forced to train their much
cheaper counterparts/possible replacements. In this book, we will try to summarize
experiences and to share the best practices from projects of different types and sizes,
which involve several locations on different continents and in various cultures.

19

Chapter 3

The Dark Side: Challenges

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

The Dark Side: Challenges   21

work in India because it is cheaper,” or the engineering lead explaining, “Any
work can be done by virtual teams.” A major underlying reason for dysfunc-
tional global work is a cultural difference in values as well as underlying
societal factors [House04, O’Hara94, Krishna04]. We often superficially label
this as “cultural issues” or even worse as “soft factors,” claiming that we
cannot handle it with our limited management and software education. For
instance, time perception in a society has profound impact on many behaviors
such as insufficient planning and monitoring which cannot be cured only as
symptoms. A culture deeply rooted in the present will always be portrayed as
lazy and unfocused by a society rooted in the future that demands accurate
planning. The same idea applies to societies that value entrepreneurship and
spontaneous (re)actions for events as opposed to those societies that prefer
clearly outlined roles and responsibilities. Such differences must be recog-
nized, considered, and dealt with. A shared value system and continuous team
building activities will help everyone involved as well as serving to unite
employees across these different societies.

•	 Insufficient communication due to distance, time zones and cultural barriers.
Note that distance impacts start at around 10–15 meters which is far closer
in distance than one would usually assume. People talk and share only if they
are close to one another and frequently see each other without in spontaneous
situations. Lucent and others did extensive studies on communication in
global teams and found that 15% of software development is made up of
informal communication [Herbsleb00, Herbsleb03, DeMarco99, Hussey08].
Distributed teams are less effective than a collocated team working on the
same task.

•	 Dispersed work organization is the global nature of project and product
work which obscures a holistic view of project success factors. More sites
add cost due to overhead management, separated and dysfunctional processes,
and tools and teams. While Tools help however, they are not enough to build
a distributed team. Process immaturity is a key roadblock and cause of inef-
ficiencies and rework. Gartner, BCG, and Standish report that 10% manage-
ment overhead, that is, one person to synchronize for 10 persons allocated an
offshored task [BCG09, Hussey08]. Our own experiences show that having
two sites working on the same development project immediately adds 10%–
20% cost while reducing visibility and impacts of management. Overall effort
overheads are ca. 35% if work is in two places. This is due to interface control,
management, replication, frictions, and so on [Jones07, Herbsleb00, Ebert07a,
Grinter99, Mockus01, Hussey08].

•	 Inadequate global management results in micromanaged tasks or lack of
visibility. Often project managers fear lack of control and establish very small
fragmented tasks in order to stay in control. Micromanagement creates a lack
of buy-in from the teams as they expect that the manager to interfere and,
therefore, they feel that they don’t have to pay attention. On the other end of
the spectrum is insufficient visibility starting with estimates and continuing

22   Chapter 3  The Dark Side: Challenges

with change management and progress tracking. Global team management
often suffers from biased attitudes. Functional and regional rivalries exacer-
bate the tendency to claim credit for success and shift blame for failures.
We’ve experienced, in several such global product lines, that roadmaps and
features are overly volatile because of local optimization on regional customer
basis. Our experiences show that change rate of requirements will, in conse-
quence, be much higher than industry average (1%–3% per month). Lucent
reports 30%–100% delays for multi-site change requests and overall project
delays if a project is distributed across sites [Herbsleb00].

•	 Isolated learning. Improvements derived from past experiences are rarely
applied beyond the originating organizational silo. We found that, in global
software engineering and IT, individual sites have their own individual tools
and processes even if they are working on the same product lines. Different
countries or regions sometimes launch independent infrastructure optimiza-
tion in order to differentiate from one another. This is often amplified by
dysfunctional regional competition as many companies have established the
need to challenge “high-cost” countries with “low-cost” countries. For that
reason, the parent organization might hesitate to provide all necessary support
due to the fear that work may be taken away. Additional obstacles in sharing
experiences arise from insufficient risk mitigation related to intellectual prop-
erty or third party access to tools and knowledge repositories. SAP reports,
“Distributed development is slower and less forgiving in case of mistakes.
We need to communicate more but we have less capacity to communicate.
Effects of mistakes are not easily apparent and tend to be hidden by regional
owners longer than possible in a centralized development” [Zencke04].

•	 Less agility compared with colocated teams is almost certain as soon as an
integrated task is done in different sites. Workflow, monitoring, and engineer-
ing processes must all be strengthened to assure that different stakeholders
collaborate well. This is perceived as overhead by the teams and if they are
not well-trained they try to escape which causes major trouble during develop-
ment [Grinter99, Herbsleb03, Olsson00, Hussey08].

•	 Insufficient contract management. Contracts are absolutely crucial for man-
aging external suppliers. They must include defined and measurable Service
Level Agreements (SLAs) to assure appropriate quality levels. For captive
offshoring, it may be wise (depending on organization structure) to govern
by means of internal contracts and SLAs. SLAs are advantageous because
targets and measurements are agreed upfront. This prevents the need for
continuous debates with senior management if some delivery is late. Certainly,
such internal contracts and SLAs combined with a culture of accountability
and clearly assigned responsibilities also help to circumvent the political game
of finger pointing and claiming that “the others” did not do their job well.

•	 Unknown legal environment is a major trap for any global activity whether
it is sales or engineering. It means you must get very familiar with local laws
such as contracts, liability, intellectual property, or human resource manage-

The Dark Side: Challenges   25

must be developed locally in North America while 70% is developed in one of seven
offshore development centers.

Ford: Never split projects between too many different areas (i.e. departments and
regions). Favor projects with less than three areas involved in design and test.

Alcatel-Lucent: The best results are achieved if coherent tasks are colocated. If
resources are scarce, you must colocate functions rather than products or projects. Create
a sufficiently large pool of similar resources to ensure flexibility, continuous mentoring
and learning, and mobility of resources. Certain independent process steps can be sepa-
rated from one another and distributed across sites (at the known overhead cost): (1)
requirements management/ product management, (2) development, and (3) system and
interworking tests. If work is to be distributed, it is better to do it for well-defined con-
tents (i.e., a mobile communication protocol standard), but not for flexible and innovative
projects.

Thales: Effective offshoring requires strong and aligned processes and tools.
SAP: Very strong focus on global team management with shared values and excel-

lent collaboration environment.
Bosch: Common language across projects and regions is achieved by using standard

processes based on the CMMI.2

With the needs, rewards, and mitigation patterns that we have shown here, you
can translate risks to chances and opportunities which is exactly how they should
be seen to create the best business opportunities.

2  CMMI denotes the Capability Maturity Model for Development (CMMI-DEV) [SEI11]. Since global
software engineering is primarily about the development and maintenance processes, CMMI-DEV has
the best capture of engineering and management processes. Terminology across the CMMI constellations
is aligned, and so is our use of terms. We recommend looking also to CMMI for Acquisition (CMMI-
ACQ), CMMI for Services (CMMI-SVC), COBIT and ITIL for additional coverage and good practice
guidelines in the sourcing, service and IT domains.

Summary: Success with global software and IT starts with selecting the appropriate
business model and sourcing strategy. Global software development and ITO are not
restricted to a particular stable business model, nor is it limited to working with or
without an external supplier. In this chapter we will look at different business models
and provide decision support depending upon your specific environment and
constraints.

The business model and the decision to work with a supplier and the best way to
manage that supplier heavily influence the entire process and management of global
software engineering and IT. We will briefly examine the aspects of working with
internal development centers or distributed teams in the home company and then
contrast this scenario with a single external supplier for global development services.
Having several suppliers adds to complexity, but does not change the process. This
explains why we can limit our analysis to the two basic models with internal or
external global teams.

Figure 4.1 shows how different business models typically evolve. The starting
point for most companies is the lower left quadrant which implies that providing
localized services typically shows presence, eases installation and support, and
boosts local sales. Alternatively, the lower right quadrant demonstrates another pos-
sible starting point which translates into work packages being done by an offshore
center or by people working in a remote site. Neither model is a stable end point
except in that localized services are necessary. However, to fully experience global
development creates the potential and provides the perception that it can boost the
productivity that is demanded by companies moving to the upper half of the port-
folio. A stable end point for many IT and software companies is the upper right
quadrant which demonstrates the need to implement a viable and sustainable strategy
for work split and collaboration across multiple sites.

Various field studies and empirical research demonstrate that trying to accom-
plish too much too fast is associated with lower levels of success [Lacity09].

27

Chapter 4

Deciding the Business Model

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

Summary: Too often the business case on global software and IT is done primarily by
looking at cost per person. In fact, we hardly ever see complete business cases that
are periodically evaluated. This chapter provides some insight on setting up a
business case. It shows various experiences as well as how to calculate the hidden
parameters.

A business case presents a business idea or proposal to a decision maker. Essentially,
it should prove that the proposal is sufficiently solid and that it fits economically
and technically with the company’s strategy. It is part of a more general business
plan and emphasizes costs and benefits, how to finance the endeavor, technical
needs, feasibility, market situation, environment, and the competition. It is created
early in the product life-cycle and serves as the major input before a decision for
investment is taken.

Many global projects and products fail simply because the business case was
never done or was not done correctly [Ebert07a, IDC07, Hussey08, Rivard08]. The
key to a successful business case is that it must connect the value proposition with
the technical and marketing concept as well as with the market evolution and the
company’s potential. A lack of research and forethought on one of these four dimen-
sions invalidates the entire business case.

The business case that is used to decide on a business model for outsourcing/
offshoring consists of the following elements:

•	 Summary.

•	 Introduction (motivation of the business proposal, market value, relationship
to existing products, solutions or services, home business’ capabilities and
capacity, and different scenarios being evaluated).

•	 Market analysis (market assumptions, industry trends, target market and cus-
tomers, volume of the target market, competitors, home business’ positioning,
and evaluation of these assumptions through strengths, weaknesses, opportu-
nities, and threats, as well as make versus reuse versus buy, and related
opportunities and threads).

33

Chapter 5

Preparing the Business Case

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

34   Chapter 5  Preparing the Business Case

•	 Marketing plan (marketing contents and sales strategies).

•	 Business calculation (sales forecasts, profit/loss calculation, cash flow, financ-
ing expenses, business risk management, securities, present value of invest-
ments, and evaluation of assumptions. Calculation needs to be done for many
different scenarios which are then to be compared and evaluated).

•	 Operations plan (customer interfaces, production planning, supply chain, sup-
pliers, make versus reuse versus buy, platforms and components to be used,
service needs, management control, quality objectives and quality manage-
ment, managing global development, involved sites, training aspects, skill and
knowledge management, and intellectual property evaluation and growth).

•	 Project and release plan (resources, skills, milestones, dependencies, and risk
management).

•	 Organization (type of organization, management structure, reporting lines,
and communication).

•	 Further details of the business case as attachments to above elements.

A business case has to prove that the proposed concept fits both technically and
commercially within the enterprise. It is part of the business plan and is created
before the launch of the product development segment of the process. Preparing the
business case in a global software engineering and IT environment consists of
several steps:

1.	 Coin a vision and focus. What is the message you want to get across? What
will the proposed product or solution change? Use language that is under-
stood by decision makers and stakeholders be concise and discuss financial
and marketing aspects more than technology. Focus on what you are really
able to do. For the global development scenario, it is crucial for you to
introduce a clear life-cycle vision and not to simply say that several sites in
low cost countries will be considered for the purposes of cost reduction.

2.	 Analyze the market environment and commercial situation. How will
you sell? How much, to whom, and with what effect? For improvement
projects you must identify the symptoms of poor practice and what those
will mean for your company (e.g., cost of non-quality, productivity, cycle
time, and predictability). Quantify the costs and benefits, the threats and
opportunities. For IT projects you should consider that the IT direct cost is
only the tip of the iceberg. The true value proposition is in the operational
business processes. In a globally distributed development it is helpful to
analyze different scenarios and evaluate impacts of each on customer percep-
tion, market penetration, speed and efficiency depending on market proxim-
ity, competitive evaluation of outsourcing/offshoring, and the necessary
localized sales support (starting with requirements elicitation and impact
analysis).

3.	 Plan the proposed project. Show how it will be operationally conducted.
Describe the resources, organization, skills, and budget you plan to use.

36   Chapter 5  Preparing the Business Case

of losing their jobs while they are forced to train their much cheaper counterparts.
On top of all of the above, there are risks related to intellectual property protection,
security, and many other things as well. All of those elements must be considered
when you are preparing your outsourcing/offshoring business case which comes on
top of the regular product business case.

Part II

Development

Summary: Tell me how the project starts and I will tell you how it will end. We need
to focus on the early phases, specifically, determining the requirements and making
sure all stakeholders understand what has to be done. This chapter provides insight
into the best practices and requirements in engineering for global projects.

Requirements engineering is the systematic approach to developing, specifying,
analyzing, verifying, allocating, tracing, and managing the requirements (functional
requirements, quality attributes, and constraints) of the system, and establishing and
maintaining an agreement between the customer/user and the project team on the
changing requirements of the system. Figure 6.1 shows the requirements engineering
within the context of a globally developed product. We distinguish the product
domain from the project domain because in most cases stakeholders and influence
varies heavily between the two domains. Global software development looks primar-
ily into the project domain whether it is colocated in an offshore location or distrib-
uted across locations.

The ultimate success factor for any global development project is to know what
to do (i.e., eliciting, analyzing, specifying, verifying, and allocating the require-
ments). It is also necessary to assure that the impact of changes to previous com-
mitments are analyzed and managed transparently for the sake of all stakeholders.
This is indicated in Figure 6.1 by the different boxes which represent the require-
ments engineering activities throughout the life-cycle of a project.

Before the start of development, requirements are uncertain. That, almost by
definition, is captured by an old requirements analyst slogan which claims, “I know
it when I see it.” These uncertainties, as can be observed in various industries, are
increasing in today’s quickly changing markets. Requirements uncertainties origi-
nate from various causes, such as cognitive limitations (i.e., users find it hard to
imagine the product and to state their requirements; their opinions about their own
requirements evolve by the very exercise of requirements elicitation) or changing
circumstances so that requirements change (e.g., introducing the system changes the
situation too, and therefore changes requirements!), but yield similar results
[Lawrence01]. Because of these changes, work packages, and eventually the entire
project, are delayed and do not fulfill the original expectations.

39

Chapter 6

Requirements Engineering

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

Requirements Engineering   41

impacts and dependencies, and consistently applying a specification
template).

•	 Specifying the understanding of requirements (i.e., the receiver, such as an
offshore team, will describe how it will approach the given requirements).

•	 Sorting requirements (i.e., determining the order of consideration based on
criticality of need and level of associated risk, implementing in increments
following the priorities, descoping those requirements with lowest priority).

•	 Assuring adequate collaboration and communication workflow management,
such as distributed requirement databases, shared access control, and fre-
quently updated and time-stamped baseline distribution of requirements, fea-
tures and their individual status.

•	 Managing change (i.e., using automated tools to assist in the understanding
and tracing of requirements from inception to allocation to delivery; evaluat-
ing requirements upfront on individual change risks; applying strict change
management; determining the localization, scope, and impacts of changes).

•	 Designing for change (i.e., appropriate task organization in the distributed
development teams, improved maintainability, modularity, and isolating fea-
tures that are subject to changes).

The results and decisions from the bullet points above should be coined into a
requirements engineering and management process as well as being embedded into
the product life-cycle. This assures that you will understand and be trained in the
various global teams (or different suppliers). It also serves as guidance with the
ability to agree on a SLA and change process with customers and suppliers. Distinct
standards for requirements engineering, such as IEEE 1233 and IEEE 830, focus on
generic techniques to ensure that customer needs are recorded and traced throughout
the development life-cycle. The key standard covering nonfunctional requirements
and classifying generic quality attributes is ISO 9126.

Requirements that are properly expressed form a high-level abstraction of the
functional and nonfunctional behavior of the product. Formalizing such a description
helps in identifying reusable aspects of systems at a level independent of any par-
ticular solution or component structure. A template for a requirements specification
is provided in Table 6.1. It is based on IEEE standards 830 and 1233 and what they
demand with respect to requirements specifications. Data quality of project informa-
tion and requirements lists is important to preserve integrity and consistency through-
out the life-cycle.

To check for completeness and consistency of requirements and the traceability
of work products, a minimum quality assurance is necessary. Inconsistencies and
errors in requirements are most often found by testers because they think in terms
of testability. If requirements are inconsistent or vague, they should be corrected on
the spot. If a problem is detected during the project, it is called a requirements change
and it has to be approved by the core team before any action is taken. Project infor-
mation builds an online accessible history database upon which further impact
analysis and project planning are based .

Summary: Estimating size and resources is one of the most important topics in global
software engineering and IT. You will not deliver according to expectations if you
don’t plan ahead, and, you cannot plan if you don’t know the underlying dependencies
and estimates. We will provide concrete guidance on estimation as well as some tools
to check estimates and plans.

An estimate is a quantitative assessment of the likely amount or outcome of a future
endeavor. The phrase is usually applied to forecast project costs, size, resources,
effort, or durations. Given that estimates can, by definition, be imprecise, they should
always include some indication of accuracy (e.g. ±x percent). Increasingly, the
dynamics of the software market are shifting to include use of external components
and adapting codes rather than writing codes from scratch. This has lead to new and
extended kinds of technologies for the estimation. Gradually, estimation moves away
from mere size-based estimation toward functional and component estimation.
Standards are evolving because estimates play a crucial role in business and because
enormous amounts of money are at stake.

Often estimates are confused with goals or plans. For instance, projects are
scheduled according to needs but not necessarily in line with feasibility. Sometimes
commitments are given to clients on something “very urgent and important” before
anyone has checked how this “urgency” relates to previous commitments and capac-
ity planning. Most failures in global software projects come from not understanding
and considering this important difference between goals, estimates, and plans
[Ebert07a, IDC07, Jones07, Hussey08, Rivard08]. Figure 7.1 shows these three dif-
ferent perspectives and how they relate to each other [SWEBOK11].

Estimation and planning for global software projects follows the typical pro-
cesses of impact analysis, work breakdown, dependencies, and critical path analysis.
This book will not repeat those in detail, especially as there are plenty of examples
of good experiences and best practices available in literature [Ebert07a, Jones07].

A good starting point for best practices in estimation and planning is the CMMI
[SEI11]. The process areas of project planning, integrated project management, risk
management, requirements development, technical solution, and organizational

45

Chapter 7

Estimation and Planning

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

48   Chapter 7  Estimation and Planning

•	 Expert judgment is based on the brainstorming of one or more experts who
have experience with similar projects. An expert-consensus mechanism such
as the Delphi Technique may be used to produce the estimate.

•	 Analogy estimating is based on the comparison of similar previous activities
and on an analysis of the most relevant projects, products, and service attri-
butes to try to figure out, from the experience of estimators, which could be
the effort and cost values for the new project. Expert judgment requires skilled
people who are able to properly understand relationships and implicitly evalu-
ate qualitative and quantitative figures among projects to determine possible
clusters of projects.

•	 Decomposition is a top-down estimation technique which tries to make the
list of tasks initially planned more and more granular. The more granular the
tasks associated to a certain requirement in a WBS, the closer the planned
effort becomes with its final value, therefore reducing the mean relative error
and the possible slippage in delivering the project’s outcomes.

•	 Statistical or parametric models are a set of related mathematical equations
in which alternative scenarios are defined by changing the assumed values of
a set of fixed coefficients (parameters). Software project managers use soft-
ware parametric models or parametric estimation tools to produce estimates
of a project’s duration, staffing, and cost.

Due to the risk in international sourcing projects and the many incidents between
clients and suppliers, many estimation techniques are globally standardized by ISO.
In 1998, ISO started to create the ISO-14143 family for function point–related esti-
mations. This stated a series of common criteria for recognizing possible functional
size measurement methods. Currently, five methods are also ISO standards: IFPUG
(ISO 20926:2009), COSMIC (ISO 19761:2011), NESMA (ISO 24570:2005), Mark-
II (ISO 20968:2002), and FISMA (ISO 29881:2010). All these methods size the
functional user requirements for a software product as a sizing baseline which is
then adjusted to estimate effort [Ebert07a].

Figure 7.2 gives an example of how different global development scenarios
impact the project cost drivers. The first scenario (top) shows the cost for a fully
colocated development. Evidently, there are no interface overheads because the team
is sitting in one place. With an assumed total effort of 10,000 person-hours and a
cost ratio of 30% if work is done in a low cost country, we find the distribution as
depicted in the top part of the diagram. The total cost would be 10,000 cost entities.
When globally distributed development takes place in two sites, the picture changes.
While absolute effort (for simplicity) is kept unchanged, and design, project manage-
ment, and interface management are primarily handled in the two sites, we face a
total of 11,500 person-hours (due to the overheads of working at two sites), and a
cost reduction of 19% toward 8,100 cost entities. With a fully offshored development
(design and test) that preserves only the upstream activities in the high-cost country,
the total effort further increases towards 11,000 person-hours, but with a total cost
of only half the original cost, namely 5,000 cost entities.

http://www.isbsg.org
http://csse.usc.edu/tools/COCOMOSuite.php
http://www.spr.com/spr-knowledgeplan.html
http://www.qsm.com/tools/index.html

Estimation and Planning   51

Some additional hints derived from our outsourcing/offshoring experiences will
help for estimation and planning:

•	 Assure a single requirements repository. Requirements are becoming increas-
ingly unstable. They achieve shorter lead times and faster reaction in changing
markets. The risk is that the project is built on a moving baseline, which is
one of the most often quoted reasons for project failure. Global development
projects need a central requirements repository and clear responsibility for
making changes to it. The requirements must provide links to further informa-
tion, a specified owner, the full impact analysis, responsibility for implemen-
tation, and the allocation to work packages and work products.

•	 Ask the global teams to estimate and plan the work they ought to perform.
This achieves buy-in and also demands that they understand the assignment.
Obviously, their results might deviate from what the project manager expects,
which should rive a technical review of selected design alternatives and their
impact. Do not cut such personal or team estimates without talking, but
enforce that teams defend their estimates versus higher management.

•	 Plan your decisions based on work breakdown and actual skills. Plans are
based on average performance indicators and history data. The smaller the
project and the more the critical paths that are established due to requested
expert knowledge, the higher the risk of having a reasonable plan from a
macroscopic viewpoint that never achieves the targets on the microscopic
level of individual experts’ availability, effectiveness, and skills. It was shown
in several studies that individual experience and performance contributes up
to 70% of overall productivity ranges [Jones07, Ebert07a, McConnell03].

•	 Verify estimates and perform a feasibility analysis. Estimations are based on
individual judgment and, as such, are highly subjective. Applying any estima-
tion model expresses, first of all, the experience and judgment of the assigned
expert. Even simple models such as Function Points are reported as yielding
reproducibility inaccuracy of greater than 30% [Ebert07a, Jones07]. To reduce
the risk related to decision making based on such estimates a Delphi-style
approach can be applied that focuses multiple expert inputs on one estimate.
Feasibility can be evaluated in simulating a project plan or relating it to previ-
ous experiences with tools such as QSM.

•	 Measure actual results and update your estimation rules. Most estimates are
based on history data and formulae from operational databases. Faults,
changes, effort, even the task breakdown are recorded by individuals who
often do not necessarily care for data quality, especially when it comes to
delivery and time pressure. Measurements must be verified and upon finished
analysis, fed back to the estimation tool.

Traditional project planning and tracking looked at actual results versus plans.
When the plans are adjusted after the facts it demonstrates that they are not reach-
able. This method creates too many delays and is not sufficiently precise to drive
concrete corrective actions on the spot. For global development projects, such

52   Chapter 7  Estimation and Planning

monitoring often means that difficulties accumulate for too long. Therefore, continu-
ous predictions should be used to relate actual constraints and performance to his-
toric performance results. Good forecasts allow for adjusting plans and mitigating
risks long before the actual performance tracking measurements would visualize
such results. For instance, knowing about average mean time to defect allows plan-
ning for maintenance staff, help desk and support centers, and service level
agreements.

54   Chapter 8  Development Processes

time perception varies dramatically across societies around the globe. Some focus
on the past or present, while others are very future-oriented. Though this can
explained sociologically, such as the foreseeable or the always surprising effects of
nature on the destiny of a certain region of the world, it impacts behaviors. Therefore,
the concept of urgency is different in such societies. Creating hard deadlines or
considering a milestone as a deadline might work well in some societies, but it may
also fail without adequate training in another.

Administration and planning might traditionally be considered highly relevant
in, for example, northern countries and in China (northern countries due to the need
to plan for long winters, China due to thousands of years of highly sophisticated
administrations) or, in other countries, they might be almost irrelevant. Another
example of cultural differences would be trust. Some cultures do not care about
written documents and primarily take a person and his word, while others demand
written documents and evidence before they will accept results. Awareness of such
differences allows you to consider them in terms of team building, setting a shared
vision, and shared values and objectives. Shared values and training on such different
societal attitudes is a key aspect in preparing the right development process and
balancing the need for checkpoints with the level of acceptable and meaningful
concrete deliverables. Needless to say, these societal differences are increasingly
being reduced with growing globalization. This can be seen in the Indian software
industry, which, over the decades, has adjusted extremely well to the northwestern
way of planning and tracking.

Global development must balance managed processes with enough flexibility
to ease the work for individual engineers, specifically, when engineers must act fast

Figure 8.1  Process maturity of suppliers and clients must match.

Process maturity sourcing client

Pr
o
ce

ss
 m

at
u
ri
ty

 s
o
u
rc

in
g
 s

u
p
p
lie

r

Low High

Low

High

Replacement
(insufficient

supplier
performance,
selection of

better supplier)

Overheads
(lack of

downstream
integration,

rework cycles)

Win-Win
(process

integration,
shared

objectives,
mutual

optimization)

Failure
(dysfunctional

interfaces,
frictions,
overruns)

Development Processes   57

•	 The progress tracking of development and test is primarily based on the inte-
gration and testing of single customer requirements. This, for the first time,
gives visibility to real progress because a requirement can only be checked
off if it is successfully integrated in the test line. Traceability is improved
because each customer requirement links to the related work products.

•	 Increments are extensively feature-tested by the independent test line before
starting system tests. The test activity itself is done by means of daily (or
frequent) build for all modules.

A lot could be added about development processes, but this is mostly sound
software engineering knowledge that I will not repeat. For more information, I
recommend checking the respective resources, such as [McConnell03].

59

Chapter 9

Practice: Global Software
Architecture Development
Daniel J. Paulish, Siemens

Summary: This chapter provides a case study from Siemens and shows how best to
apply architecture development in globally distributed software projects. The case
study highlights relevant themes and guidance from previous chapters in a concrete
project context. It offers valuable insights toward how to do things in your own
company.It discusses some of the organizational and technical issues involved in doing
global design and development. Finally, it describes a few techniques that have been
successfully used on distributed projects to design software systems and manage the
design and development after the high-level design phase is complete.

BACKGROUND

As software design and development teams are geographically distributed, coordina-
tion and control become more difficult due to distance, time zones, and cultural dif-
ferences. Some project tasks can be distributed among collaborating staff located far
away from one another, but some tasks, such as architecture design, are better done
locally at a single site with staff sitting together in one room. Architecture design is a
highly collaborative task that is usually done by a small team. It requires many discus-
sions about design tradeoffs, real-time decisions, and specifications development.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

Background   61

to his question. Although architects in distributed sites will adjust their work
hours to allow some overlap, we have noticed that most architects prefer to
sleep when it’s dark. Thus, collaboration tools are used to support question
and answer communications, so that design decisions are not lost in a stack
of e-mail messages.

Software architects perform design tradeoffs by drawing proposed design dia-
grams on a white board, and then discussing and modifying the design until it is
stable enough to be documented within an architecture design document [Clements03].
Architects must design a system architecture that optimally meets both the functional
and non-functional requirements [Berenbach09].

The following has been observed about how architects work on system design
projects [Herbsleb05].

There are many design tradeoffs that must be performed. The design team will
have many face-to-face meetings to determine which architecturally significant
requirements are the most important to consider [Sangwan07]. Thus, high-level
design is very iterative, requiring frequent communications among a design team
whose members have differing skills and viewpoints as to how the system design
will look. The frequent communication among the design team members requires
that team members are colocated or that they come together for regularly scheduled
design workshops. In a large survey among professionals on their experiences with
distributed development, communication in the form of face-to-face meetings was
frequently mentioned as a solution to diverse project problems [Illes-Seifert07].

A key role on a software systems design and development project is the chief
architect. The chief architect is the primary technical decision maker for the project.
The design team members will propose many alternative designs while considering
how the architecturally significant requirements will be satisfied. As the leader of
the system design team, the chief architect will decide on the design alternatives that
will be used and documented for the project. “Just in time” decision making is
required, since the chief architect needs to allow time for all the good alternatives
to emerge from the team while still making timely decisions so that alternatives are
not debated unnecessarily and the high-level design work can be completed within
a time-boxed schedule [Paulish02].

Thus, architects will work on creating a system design within a small team lead
by the chief architect. The team will have many face-to-face meetings to discuss the
various design alternatives before documenting the system design for other remote
designers who will do lower level design in accordance with the high-level design.
Thus, system design is an activity that requires face-to-face contact in order to make
progress. In distributed projects, the system designers must be brought together at
a single location to be able to work together to do the tradeoffs and to consider
alternative designs during the design workshops.

There are a number of organizations that are used for system design teams
working on distributed projects. For example, we have had some success using an
“extended workbench model” for distributed development (Fig. 9.1) on the Global
Studio Project [Sangwan07].

Background   63

at their site. The remote teams report to the project manager at the central location,
usually through an assigned supplier manager.

When working with remote organizations that have unique domain and techni-
cal expertise, a “system of systems” approach may be used for distributed develop-
ment [Avritzer08b]. With this approach, the software development process is still
developed and managed centrally, but the system design team is extended with key
domain experts who are resident at the remote sites. Their specialized domain
knowledge drives the software architecture specification efforts during the early
phase activities. Frequent communication between the central and remote teams and
among the remote teams is encouraged. Unlike the extended workbench model
approach, the central team is not required to coordinate the communications among
the distributed teams.

Although in systems approach the system designers are spread across multiple
sites, it is still necessary to bring them together periodically for the system design
workshops. Typically, there will be more colocated meetings of the system designers
at the beginning or early phases of the project. As the system architecture is docu-
mented and reviewed, the system design team members will spend more time at
their home sites and will become more involved with lower level design and devel-
opment activities.

There are many practices that are used to make the system design workshops
more efficient. For example, jet lag can be a major concern when architects come
together from different parts of the world for a design workshop. One practice used
to combat jet lag is to colocate the system design team for three weeks at a time
before giving them two weeks at their home site to work individually on documenta-
tion and to catch up with local obligations to their development team. We have been
told by traveling architects that the 3/2 week schedule is preferable to the more
common practice where a week-long design workshop is held every month. In this
case, architects can lose efficiency as their bodies must adjust to different time zones
more frequently.

Figure 9.2  Example reporting relationships between central and remote teams.

Central Organization
Project

Manager

Chief Architect

Requirements
Engineering

Architecture Quality
Assurance

User
Interface

Project
Planning

Change
Management

Remote Organization R&D
Resource Manager

Component
Team #1

Component
Team #10

Integration &
Validation

66   Chapter 9  Practice: Global Software Architecture Development

architects working at the distributed sites. Central site architects will need to have
some understanding of cultural differences to be able to work effectively with the
remote architects residing in other countries. We suggest having a kick-off meeting
at the beginning of a project so that key team members can meet each other face-
to-face before working together. One possible activity during the kick-off meeting
is intercultural training.

Team size is a concern not only for a distributed project but for any project that
has more than a few team members. As the team size gets larger, there are more
communication paths among the team members. Thus, adding people to a software
development project may be a way to get more work done, but individual productiv-
ity will decrease as team members have more people that they will need to com-
municate with to accomplish their work. For very large projects, some team members
(e.g., the chief architect) are likely to spend most of their time communicating and
very little of their time on developing project artifacts. Ideally, project managers
recognize this negative productivity impact and strive to keep their development
teams as small as possible. However, there is great pressure to bring new products
to market quickly. Most project teams will likely be larger than is desirable. One
solution to this problem is to break the project work into pieces that can each be
done by a small team and then to have the pieces integrated by another team. The
resulting organization is a collection of small teams that communicate between one
another for predefined reasons or that have specialists who do the communicating.
Based on our experience with large projects, we recommend, as rules of thumb, that
no individual team is larger than 10 members and that the team members have their
work places within 50 meters of each other [Allen84]. Furthermore, the team should
have a work or conference room in which they can all fit for joint work tasks or
stand up meetings.

For system design teams, we suggest that the size of the central high-level
design team be limited to six architects, lead by a chief architect [Paulish02]. We’ve
observed that large design teams can suffer from a “too many cooks in the kitchen”
phenomenon. Smaller design teams can typically reach consensus, make design
decisions more quickly, and document their decisions in the design artifacts. The
team members must be selected carefully to represent different views, skills, domain
expertise, and experience. In addition, for distributed projects, some team members
will join the central design team for a limited time period with the intent that they
will be leading their development teams when they return to their home country.

TAKE-AWAY TIPS

Some tips for architecture design for global software development projects are sum-
marized below:

•	 Allow the chief architect to be the technical leader and decision maker for
the entire project team.

•	 Select a chief architect who will be able to work well with the project manager
and the remote team leaders and architects (i.e., good communication skills).

Summary: This chapter provides a case study from Lucent and shows how best to
introduce distributed development in globally distributed software projects. The case
study highlights relevant themes and guidance from previous chapters in a concrete
project context. It offers valuable insights toward how to do things in your own
company. This chapter shows how to define a quantitative analysis process to identify
candidate chunks for distributed development across several locations. We discuss the
nature of work items and their representations in change management systems before
proposing a technique to distribute the work among multiple locations so that the
number of work items spanning sites is minimized.

BACKGROUND

Software development organizations face considerable pressure and incentive to
distribute their work [Carmel99]. In this chapter we look for technical solutions that
will accommodate the business needs for distributed software development. The
problem of distributing development work occurs when the work that is needed to
evolve an existing software system cannot be performed by one team in one location
because of resource limitations or business imperatives. Often, a highly skilled work-
force is available in other countries where the same company has development loca-
tions. We investigate quantitative approaches to distributing work across the geographic
locations in order to minimize their communication and synchronization needs. The
same technique has applications in other areas, including distributing work to contrac-
tors in the same country, and assessing the state of an existing distribution.

Our main premise is inspired by Conway’s work [Conway68], which suggests
that the structure of a software product reflects the organizational structure of the
company that produced it, and by Parnas’s work [Parnas72], which suggests that
the division of labor should be reflected in software modularity. In this chapter we

69

Chapter 10

Practice: Software Chunks
and Distributed Development
Audris Mockus AvayaLabs and David M. Weiss, Iowa
State University

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

70   Chapter 10  Practice: Software Chunks and Distributed Development

introduce ways to quantify the three-way interactions among the reporting structure
of an organization, the geographic distribution of an organization, and the modular
structure of source code. Our analysis is based on records of work items, where a
work item is an assignment of developers to a task, usually to make changes to the
software.

We conjecture that for software development to be most efficient the geographic
distribution and reporting structure of the software, organization should match the
division of work in software development: work items that are likely to change
together, sometimes known as tightly coupled work items, which require frequent
coordination and synchronization should be performed within one site and one
organizational subdivision. This conjecture is supported by empirical evidence
[Grinter99, Herbsleb00].

If one accepts this conjecture, then the question is how to identify such tightly
coupled items. Our work is in large part an attempt to identify them by an empirical
analysis of the changes made to software. Because of the empirical nature of our
analysis, we refer to work items as “chunks” when they represent pieces of code
that are being changed. Following the usage of the development projects whose
software we have analyzed, we use the term “module” to mean a set of code con-
tained in a directory of files. Note that this is distinct from the definition of informa-
tion hiding module used by Parnas and others [Parnas72, Parnas85]. In fact, we
believe that our chunks correspond to de facto information hiding modules.

The purpose of the typical work item in a software organization is to make a
change to a software entity. Work items range in size from very large work items,
such as releases, to very small changes, such as a single delta (modification) to a
file. Figure 10.1 shows a hierarchy of work items with associated attributes. Boxes
with dashed lines define data sources (VCS and CMS), boxes with thick lines define
changes, and boxes with thin lines define properties of work items. The arrows define
“contains,” a relationship among changes; for example, each Maintenance Request
(MR) is a part of a feature.

Figure 10.1  Hierarchy of work items and associated data sources.

Feature

File, Module

Version
Control
System

Change
Management
System

#line add., del.Developer

Time, Date

Description MR

delta

Software Release

Background   71

The source code of large software products is typically organized into subsys-
tems according to major functionality (database, user interface, etc.). Each subsys-
tem contains a number of source code files and documentation. The versions of the
source code and documentation are maintained using a version control system (see
Chapters 13 and 15). We usually compute the lines changed by a delta by a file dif-
ferencing algorithm (such as Unix diff), invoked by the VCS, which compares an
older version of a file with the current version.

In addition to a VCS, most projects employ a change request management
system (CMS) that keeps track of individual requests for changes, which we call
Maintenance Requests (MRs). Whereas a delta is used to keep track of lines of code
that are changed, an MR is intended to be a change made for a single purpose. Each
MR may have many deltas associated with it, although each MR is made for a single
purpose. Some commonly used problem tracking systems include ClearQuest from
IBM and the Extended Change Management System (ECMS) [Midha97]. Most
commercial VCSs also include support for problem tracking. Usually such systems
associate a list of deltas with each MR.

There are several possible reasons for requesting a modification, including the
need to fix previous changes that caused a failure during testing or in the field, and
to introduce new features to the existing system. Some MRs are made to restructure
the code to make it easier to understand and maintain. The latter activity is more
common in heavily modified code, such as in legacy systems.

Based on informal interviews in a number of software development organiza-
tions within Lucent, we obtained the following guidelines for dividing work into
MRs. Recall that an MR corresponds to a single purpose. Work items that affect
several subsystems (the largest building blocks of functionality) are split into distinct
MRs so that each MR affects only one subsystem; a work item in a subsystem that
is too big for one person is organized into several MRs so that each one could be
completed by a single person.

For practical reasons, these guidelines are not strictly enforced, so that some
MRs cross subsystem boundaries and some have several people working on them.
A group of MRs associated with new software functionality is called a feature. A
set of features and problem fixes constitute a customer delivery, also known as a
release. Put another way, each release can be characterized as a base system that is
modified and extended by a set of MRs.

If every change to a work item could be made independent of every other change
to the same or other work items, the software developer’s life would be easy (and
software would lose much of its power). Coordination is the set of activities used
to understand the effect of a change on the different parts of a single work item, or
the effects of a change on different work items. For a software release, all coordina-
tion is contained within the release, while for an individual delta on a file, coordina-
tion is often only with the other deltas for the file.

Changes made as part of an MR require tight coordination within the change
and are preferably done by a single developer. For example, a change to a function’s
parameters would require a change in function declaration, in function definition,
and in all the places in which the function is called. In contrast, the coordination

72   Chapter 10  Practice: Software Chunks and Distributed Development

between MR’s, although needed, typically does not represent as much coordination
as changes within one MR.

The tight coordination needed within an MR suggests that MRs are the smallest
work items that may be done independently of each other. In particular, they could
be assigned to distinct development sites or to distinct organizations. This hypothesis
is supported by the evidence that MRs involving developers distributed across geo-
graphic locations take a lot longer to complete (see, e.g., [Herbsleb03]).

According to the general rules of dividing work into MRs described previously,
the work items encompassing several MRs may reflect only a weak coupling among
the parts of the code that they modify. Such work items may be accomplished by
several people. They may also reflect the software’s architectural division into sepa-
rate, independently changeable units.

The tight coupling of work within an MR suggests the following measure of
work-item-based coupling between entities in a software project. For two entities A
and B the measure of absolute coupling is defined by the number of MRs that result
in changes to or activity by both A and B. For example, if A and B represent two
subsystems of the source code, the absolute measure of work item coupling would
be the number of MRs such that each MR changes the code in both subsystems. The
coupling for two groups of developers would be represented by the number of MRs
such that each MR has at least one developer from each group assigned to it. In a
similar fashion, a coupling is defined as being between a set of code and a group of
developers, that is, the number of MRs that are performed by developers in the group
and that modify the code.

To adjust for the size of entities A and B, measures of relative coupling may
be obtained by dividing the absolute measure by the total number of MRs that relate
to A or to B. We should note that coordination needed to accomplish MRs is
also embodied in other activities and in ways that are not reflected in the preceding
coupling measures. Examples of this would be coordination among MR’s in a
feature, or coordination during system integration and testing. However, the coordi-
nation needs are less likely to be as high between distinct MRs as within an individual
MR.

RESULTS

Globalization is the process of distributing software development among several
sites. Our main goal is to develop criteria and methods to allow project management
so as to make better informed globalization decisions using quantitative evaluation
of possible consequences.

We start by asking the question: What work could be transferred from a primary
site that has resource shortages to a secondary site that has underutilized resources?
We evaluate the costs and benefits of a particular transfer approach and use an
algorithm to find the best possible transfer. In studying such transfers in Lucent
Technologies we have observed that the following approaches are considered or used
(the merits of each are discussed in [Mockus01]):

Results   73

•	 Transfer by functionality, where the ownership of a subsystem or set of sub-
systems is transferred. This was the most commonly applied approach in the
software organizations we studied.

•	 Transfer by localization- where the software product is modified locally for
a local market. An example of such a modification is to translate the docu-
mentation and user interface into a local language.

•	 Transfer by development stage, where different activities are performed at
different locations. For example, design and coding may be performed at a
different site than system testing.

•	 Transfer by maintenance stage, where older releases are transferred primarily
for their maintenance phase when new features are no longer expected to be
added to the release.

We want to describe a process that could help solve the globalization problem.
We start by describing a number of factors that were mentioned by people who were
involved in globalization decisions during our conversations with them. We present
these factors to illustrate some of the complicating issues in globalization. After that
we introduce several quantifiable variables and illustrate their use in a globalization
decision.

We conjecture that globalization may lead to transfer of work that is in some
way undesirable to the primary site. The last three globalization approaches noted
in the preceding section reflect different types of “undesirable” work, such as local-
ization, maintenance (often referred to as current engineering), testing, and tools
support. We have observed several instances of functionality transfer (the first
approach), where the areas that are not desirable to the primary site are transferred.
Of course, they may have been transferred for other reasons as well.

We conjecture that the decision to transfer work may involve informal risk
management strategies, especially if the transfer is taking place to a secondary site
that has not worked with the primary site before or that has had problems working
with the primary site in the past. The risk management strategies consist of identify-
ing work that is “not critical” to the overall project in general and to the primary
site in particular, so that the completion of the project, and especially the work in
the primary location, will not be catastrophically affected by potential delays or
quality problems at the secondary site. Examples of such “non critical” work include
simulation environments, development tool enhancements, current engineering
work, and parts of regression testing. To some extent, the risk management can be
done by transferring a functional area, for example, a part of operations, administra-
tion, and management (OA&M).

For the work transfer to be successful, the receiving location needs to get appro-
priate training. If the work involves knowing the fine points of legacy systems, then
significant support in training from the primary location has to be expected. Such a
situation is likely to arise if the maintenance or testing stages are transferred. The
amount of training may be especially high if the secondary location has a high
turnover of programmers, thus requiring continuous retraining of the personnel. The
training needs vary depending on how specialized the knowledge is that is needed

74   Chapter 10  Practice: Software Chunks and Distributed Development

to perform the work. How might one quantify the time and effort needed for devel-
opers to become fully productive? We show one way to do so for productivity and
for other variables in the next section.

We looked at two aspects of globalization:

•	 When the competing globalization decisions are evaluated;

•	 When alternative globalization solutions are generated.

This section talks about the first aspect discussed above, while the second point,
generation of alternative solutions, is discussed in the next section. The final global-
ization decision has to be made based on quantitative and qualitative considerations.
For the most common globalization approach, division of functionality among loca-
tions, we focus on criteria and measures for several factors, including work coupling,
effort, and learning curves. In a later section, we will discuss how to generate can-
didates that optimize our criteria.

We refer to any collection of files as a globalization candidate. The complemen-
tary part of the system contains all other files. Work items spanning locations tend
to introduce coordination overheads and associated delays. Consequently, it is desir-
able to have as few of such work items as possible. This criterion can be approxi-
mated by the number of MRs that modify both the candidate and the complementary
part of the software, which is the measure of absolute coupling between the candi-
date and the rest of the system (see preceding discussion). The candidates that mini-
mize this measure are chunks because they have the minimal amount of coupling to
the rest of the code base.

In addition to predicting future coordination needs, it is important to assess the
current coordination overhead of the candidate part of software. This can be achieved
by counting the number of MR’s that involve participants from more than one loca-
tion. Figure 10.2 compares two globalization candidates. The first curve shows the
yearly trend of relative measure of work-item based coupling between the candidate
and the complement, the second line shows the trend of the fraction of multi-site
MRs within a candidate, and the third line shows the difference between them.

Figure 10.2  Two candidates for globalization.

Fr
ac

tio
n

of
 m

ul
ti-

si
te

 M
R

s

100

19991998

Candidate 2

1997

80

60

40

20

0

Relative coupling
Fraction of multi-site MRs
Difference

100

19991998

Candidate 1

1997

80

60

40

20

0

Relative coupling
Fraction of multi-site MRs
Difference

Results   75

Both candidates start with about the same degree of relative coupling, but can-
didate 1’s relative coupling tends to decrease in time while candidate 2’s tends to
increase. In addition, candidate 1 requires considerably more multi-site MRs than
candidate 2. This indicates that relatively more time and effort is wasted in candidate
1 because of multi-site work. We may want to assign such work areas to a single
site with the expectation that it will reduce the amount of multi-site work and inef-
ficiencies associated with it. Consequently, candidate 1 appears to be a significantly
better candidate for distribution than candidate 2.

When assigning a part of the code to a remote location, it is important to ensure
that the amount of effort needed on that part of the code matches the capacity of the
development resources in the candidate location. It is also important that the candi-
date embodies some minimal amount of work; transferring a candidate that requires
only a trivial amount of effort may not be worthwhile.

The amount of work needed for a candidate can be estimated by assessing
historic trends of effort for the candidate. Assuming that a developer spends roughly
equal amounts of effort for each delta, the total effort spent during a year can be
approximated by adding the proportions of deltas each developer completed on the
candidate during that year. For example, a developer who completed 100 deltas in
a year, 50 of which apply to a particular candidate, would contribute 0.5 technical
head count years to the candidate. The scale of effort is thus in terms of Person Years
(PY). In our experience resources of between 10 and 20 PY were available in the
remote locations, roughly corresponding to a group reporting to a technical manager.

The assumption that each delta (done by the same programmer) carries an equal
amount of effort is only a rough approximation. In fact, it has been shown (see, e.g.,
[Graves98]) that in a number of software projects a delta that fixes a bug requires
more effort than a delta that adds new functionality. However, in our problem, the
approximation of equal effort per delta is reasonable because there is fairly large
prediction noise because the effort spent on a candidate may vary over time.
Furthermore, each programmer is likely to have a mixture of different deltas in the
candidate, averaging out the distinctions in effort among the different types of deltas.
In cases when more precise estimates are needed, models [Graves98] can be used
to find a more precise effort for each delta.

When a chunk of code is transferred to developers who are unfamiliar with the
product, a substantial adjustment in effort may be needed. In one of the projects that
we studied, a typical rule of thumb to estimate the time until the remote new team
reaches full productivity was 12 months. Figure 10.3 shows the empirical estimate
of such a curve. The productivity is measured by the number of deltas completed
by a developer in a month. The time is shifted for each developer to show their first
delta occurring in month one. This allows us to calculate productivity based on
developer experience with the transferred code. The horizontal axis shows the length
of a developer’s experience on the project in months and the vertical axis shows the
average number of deltas over 50 developers who started working on the project
within a three year period from 1995 to 1998. The jagged curve represents monthly
averages, while the smooth curve illustrates the trend by smoothing the monthly
data. The figure shows that the time to reach full productivity (when the learning

78   Chapter 10  Practice: Software Chunks and Distributed Development

in any previous iteration, the current candidate and the criterion are recorded as the
best solution so far. This iteration is repeated a fixed number of times or for a certain
period of time.

Two candidates are shown in Figure 10.2. The first candidate is optimal among
candidates consuming approximately 10 PY per year and the second candidate is
optimal among candidates consuming approximately 20 PY per year.

In previous sections, we have focused on the transfer of functional areas. It is
interesting and instructive to evaluate alternative approaches in a quantitative
fashion. In this section we describe an example evaluation of a localization approach.

The management team of a very large telecommunications project wanted to
evaluate the possibility of having a development team located in a country in Asia
to perform all customization work for that country. The feasibility analysis was based
on the software features implemented for the entire region (all countries in Asia).
The expectation was that the analysis would discover only a few functional domains
where such features are implemented, thereby highlighting training requirements for
the team. Good candidates for localization are products in which the localization
work is concentrated in only a few functional domains, rather than being spread
evenly over all functional domains.

By comparing a list of more than 300 features for Asian countries done in 1998-
1999, with the remaining features done over the same period, we found that the
former features modified almost all the functional areas (subsystems) of the product.
Furthermore, the effort (as calculated from the number of delta) for Asian features
mirrored the pattern of effort for the entire system, that is, the ratios of Asian feature
effort to overall effort is relatively constant over the subsystems. Figure 10.4 shows
a histogram of this fraction indicating that, while on average about 10% of the effort
goes to Asian features; there is only one subsystem where more than 25% of the
effort is devoted to such features. A similar pattern holds for modules and files. The
only difference is that the precision is lower when predicting modules modified by
Asian features.

Furthermore, different developers implement localization features over the
years (possibly indicating shifting functionality). While 528 developers participated
in implementing Asian features in 1998 and 1999, only 144 of them worked on such

Figure 10.4  Histogram of the fraction of localization effort for an Asian market.

14

12

10

8

Fraction of localization work

of

 fu
nt

io
na

l a
re

as

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

6

4

2

0

80   Chapter 10  Practice: Software Chunks and Distributed Development

•	 Define and design the software into modules that can remain as independent
chunks that can be developed or changed independently, and decide what the
structural unit is for a module: Is it a file, directory, or some other entity?

Our approach applies to any project where some change data have been accu-
mulated. Note that even in so-called greenfield projects the development proceeds
by incremental change, so that once the project has produced a substantial amount
of code, the algorithm could be applied to the change data.

Because of our strong emphasis on independent changeability, we think about
what we have done as exposing the empirical information hiding structure of a
software system. As a system evolves, decisions that are embodied in the structure
of the code become intertwined in such a way that they are dependent on each other;
a change to one usually means a change to the others. Evolution of the system impels
the formation of chunks. The challenge for the software architect is to construct a
modular design where the modules and the chunks closely correspond to each other
throughout the system’s lifetime.

Summary: This chapter underlines the relevance of good configuration management
and change control especially in distributed projects. While configuration management
is necessary for types of development and engineering, it must be quite strong in terms
of methods and tools if teams are working in different time zones without the possibility
of agreeing on whom is making which change. Concepts such as traceability help to
see impacts of changes.

Configuration management is one of the key development process activities in a
successful global project. In distributed development especially, chances are high
that different versions of software are merged which creates inconsistencies and
errors. Change review boards, versioning rules, branching and merging guidelines,
and clean baselining and change control mechanisms must be installed. They ought
to work the same way in all sites.

There are dedicated instruments to assure clean configuration management in
global development projects. In this chapter we will list the most relevant instruments
with the understanding that regular configuration management includes much more.

Rigorous change management assures that no change to any baseline happens
without upfront agreement. Any changes and defects must be reported in a standard-
ized change management system, such as Bugzilla or Synergy. They must have status
flags with time stamps to allow consistency checks before approving them. They
should be traceable to related work products (other change requests and configura-
tion items), such as horizontally between related change requests or vertically (e.g.,
from a change request to the implementation and test cases). And, most important,
no change is allowed without a documented approval. Often, changes happen
through tunneling that takes place between engineers who know each other. This is
not working in global development.

Access rights to tools and work products must be controlled. Global development
increases the risk of intellectual property being exposed or compromised. We recom-
mend installing role-based access policies because they are easy to install and to
maintain. Archives must be protected with structured access rights to avoid inconsis-
tencies from being introduced. Never give full visibility to an entire archive. If there is

81

Chapter 11

Configuration Management

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

82   Chapter 11  Configuration Management

high turnover to be expected, the role and access rights management should be feasi-
ble with batch jobs. In essence, this should be done periodically, without additional
triggers to assure that responsibility changes or newcomers are immediately
considered.

Most tools have operational databases that are hosted on servers. Make sure that
these operational databases and warehouses are replicated across sites and that the
replications are consistent with each other. Test specifically for those databases with
frequent and high-load access to make sure that they work properly. This holds
especially true for the code archive and change repository, both of which are con-
tinuously accessed by each engineer. Test how long it will take to replicate them in
case of a network failure. Assure that engineers in all sites can continue working
with localized copies of archives in case of network disruptions.

Backups must be distributed across sites. Never keep the archives and their
backups at the same physical site. If separating them is not internally feasible, col-
laborate with an external provider to assure that your different archives and backups
are distributed and accessible in case of emergency. Make routine checks on a peri-
odic basis to verify their status, integrity, and accessibility. Test the entire restore
and distribution mechanism on a periodic basis.

To assure configuration management is consistently implemented, configuration
audits are placed in the project plan and performed periodically (at least at the bigger
milestones). The following topics should be covered by such audits:

•	 Infrastructure:  determine if the integrity of the baseline libraries is being
maintained. Answer questions such as: Are the change and update records
complete and accurate?

•	 Project:  Is the project following its configuration management plan and
protecting the integrity of its new and modified configuration items as
intended? Is it producing its builds and releases according to the agreed-upon
schedule?

•	 Process:  Are configuration management activities being performed accord-
ing to the organizational (and/or project) change and configuration process?
Do the delivered work products conform to the established (and/or de facto)
internal standards?

•	 Baseline:  Are the baselined items accessible? Can previous versions be
restored? Are changes always traceable to baseline items? Is one unique
baseline status communicated to all stakeholders?

Configuration management is one of the disciplines that hugely benefits from
using the right tools. In fact, it is hard to imagine having no support tools. When
selecting these tools, make sure that they are not simple repositories, but that they
are explicitly suitable and recommended for global (i.e., distributed) development.
They must, at least, assure traceability to other tools (of a different supplier) and
open interfaces so you can build your own connections.

Summary: Companies of various industries are investing in open source and
effectively use it as viable ecosystem for access to skills and for creating new markets.
Open source clearly is a global software and IT business with contributors from
around the world and various packaging companies. We will provide concrete
guidance on how to manage open source software, be it as a user or as a contributor.

The software industry has evolved toward complex supplier-user networks that
cooperate and collaborate in many ways. These days, we hardly ever see the tradi-
tional way of software development where design, production, sales, delivery, and
service are done by one company. Business models, engineering life-cycles, and
distribution channels and services have dramatically changed. One key driver in
these new value networks is free and open source software. The reasons for the fast
growth of open source usage are manifold [Ebert07b, Forrester04]:

•	 Global competition and low entry thresholds drive companies to continuously
try to reduce the costs of their software products and components. Open
source software with comparatively low license and maintenance cost fosters
life-cycle cost reduction.

•	 Time-to-profit means that you must cut out delays from the introduction of
products and services. Using mature standard components allows focusing on
the high-end which is where true value is created.

•	 Practically all industries are shifting—with the different speeds and cycle
times—from hardware to software, and finally, to services. This implies that
traditional hand-made proprietary low-level software is being replaced by
standard solutions.

•	 The growing instability of global markets pushes users to select endurable
solutions that will not be impacted by fads and hypes because both often
drivecommercial software to annual revenue streams from selling unneces-
sary complexity. Open source software only delivers core features and thus
achieves better performance and quality.

•	 Open source solutions with sufficiently big communities have better quality
than their commercial counterparts. For instance, open source improves secu-

83

Chapter 12

Open Source Development

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

Open Source Development   85

Here are some concrete guidelines for practitioners using open source software
in a global project context or contributing to open source projects:

•	 Apply clear decision criteria to open source decision making. For both techni-
cal and commercial criteria, examine your own product’s overall life-cycle to
make sure your open source decision is valid beyond the initial development
phase.

•	 Decide on a distribution scheme. Before deciding to use GPL software, you
must know how to handle packaging with it so that you can choose how to
distribute your products. With most licensing schemes, you must distribute
all copyrights from all contributors with the software. The more different
components and contributions that exist, the more difficult this becomes.
Using open source software involves many intrinsic challenges, so you might
want to more narrowly focus your scarce engineering budget by turning to
experts to handle issues such as configuration management, license reviews,
liability transfer, or filtering new releases. Experts can help adjust your devel-
opment processes to handle external components. Additionally, for small
FOSS communities, professionals can work with both suppliers and users to
improve interfaces and build decent change management and reliable road-
mapping for industrializing your products.

•	 Check supplier availability over time. An open development tool might look
attractive, but it may also prove disastrous over the years if it’s not adequately
supported.

•	 Disseminate technical, legal, and managerial information widely in your
company. Not everybody has to read it, but you need to consider major
impacts before introducing an open source component. License schemes,
version status, configuration lists of all components in your products, bug
information, and security warnings should be easily accessible and continu-
ously updated.

•	 Manage and mitigate your legal exposure. You can’t choose the license
scheme you like because “copyleft” agreements, such as GPL, define most of
the open source software you’re using. First, understand the underlying licens-
ing scheme and avoid those that aren’t generally in mainstream use. GPL is
used broadly and it benefits from known legal exposure and ways to cope
with it.

•	 Create IPR awareness. Developers and their companies have been hurt by
using open source without understanding basic copyright notions or other
intellectual property rights. The right to use and modify software doesn’t
mean that copyrights are transferred. You must have a clear, indisputable legal
status and governance regarding IPR and the use of open source software.
Make sure that underlying open source components won’t pollute your own
source code. For instance, the status of proprietary code dynamically loaded
with GPL (GNU General Public License) code is still fuzzy in the GPL
license. If your business needs these proprietary drivers, maybe open source

86   Chapter 12  Open Source Development

software isn’t the answer for you. Contact the copyright owner and agree on
a dedicated license scheme to clarify the legal impacts in such exceptional
cases. Many popular open source components have dual licensing schemes
that might be more appropriate.

•	 Even without open source usage, legal and commercial restrictions typically
don’t allow you to exclude liability of your products. However, most open
source software comes without any liability, which means the distributor bears
the entire risk without possible recourse to the licensor. Prepare for liability
and fast bug fixing of your external components. Packaging companies offer
services to handle all this, but you’ll pay for it.

•	 Don’t reinvent licensing schemes. If you use open source software in your
products, you might want to create a community of contributors and, there-
fore, install a dedicated framework that will protect your copyrights and
facilitate open development. There are more than enough license schemes
available. Don’t create new schemes that will only increase complexity and
confusion among users. Instead, try to consolidate toward major schemes,
such as GPL or LGPL.

•	 Avoid license schemes that are difficult to use or that might endanger your
business model. For instance, the Artistic License includes ambiguities that
can cause confusion on legal terms. Schemes such as BSD licensing or the
Apple Public Source License might allow your open source software or exten-
sions of it to move unexpectedly to the proprietary software domain.

•	 Control the introduction and use of open source software. Systematically
qualify open source components before integrating them because versions and
variants arrive more often in open source software than they do in proprietary
software. For example, MySQL releases an update every four weeks and
Eclipse releases one every six weeks. You must define upfront the refresh
and update processes for introducing a new open source component
version, and you must manage development and service life-cycle processes
systematically in order to ensure that the chosen open source component, as
well as your own components, can synchronize with each other and with your
release and business cycles. Your configuration manager must explicitly
authorize any external component on a per-version basis. Train your build or
configuration manager and your quality teams on these additional open source
related needs.

•	 Ensure that your processes support open source software usage. You must
adapt your development and life-cycle management processes to cope with
specific open source challenges. Configuration and change management must
be able to handle bug fixes and open source update releases in various
formats—source code, design descriptions, release notes, test cases, and so
on. Quality control must verify and validate new upgrades before introducing
them. When modifying open source software, your change processes must
include making the changes public and your quality control must ensure that
quality levels meet your standards. Test-driven development and code-analysis

http://maemo.org

90   Chapter 13  Quality Control

management [McConnell03, Ebert07]. It is useless to spend an extra amount on
improving quality of a product to a level that consumers aren’t willing to pay for.
The optimum quality seems to be in between the two extremes. It means you must
achieve the right level of quality and deliver it on time. It also means continuously
investigating what this best level of quality really means, both for the customers and
for the engineering teams who want to deliver it.

As a first step for any quality control activity, one must define the quality levels
to be achieved. In global development projects, this is often done by means of SLA
or by phase-end or hand-over criteria. These targets must be measurable regardless
of the global collaboration model or contract model established with suppliers. It is
key to set the right targets and to set them as performance indicators for R&D, the
management in each location.

After knowing the target, it is relevant to know where the development with
respect to defect reduction is at any moment. The general approach is called defect
estimation. Defects should be estimated based on the stability of the underlying
software components. All software in a product can be separated into four parts
according to its origin. The base of the calculation of new/changed software is the
list of modules to be used in the complete project (i.e., the description of the entire
build with all its components). A defect correction in one of these components typi-
cally results in a new version, while a modification in functionality (in the context
of the new project) results in a new variant. Configuration management tools such
as CVS or ClearCase are used to distinguish the one from the other while still main-
taining a single source.

Our starting point for defect estimation and forecasting the quality level comes
from psychology. Any person makes roughly one (non-editorial) defect in 10 written
lines of work. This applies to code as well as to a design document or an e-mail, as
was observed by the personal software process (PSP) and many other sources
[Jones07]. The estimation of remaining malfunctions is language independent
because malfunctions are introduced per thinking and editing activity of the pro-
grammer, that is, visible by written statements. We could prove this independency
of programming language and code defects per statement in our own environment
when examining languages such as Assembler, C, and others. This translates into
100 defects per KStmt. Half of these defects are found by careful checking by the
author, which leaves some 50 defects per KStmt delivered at code completion.
Training, maturity, and coding tools can further reduce the number substantially. We
found some 10–50 defects per KStmt depending on the maturity level of the respec-
tive organization. This is based on new or changed code and does not include any
code that is reused or automatically generated. The author detects most of these
original defects before the respective work product is released. Depending on the
underlying personal software process (PSP), 40%-80% of these defects are removed
by the author immediately. We have experienced in software that around 10–50
defects per KStmt remain. For the following calculation we will assume that 30
defects/KStmt are remaining (which is a common value [Jones07, Ebert07a].

To statistically estimate the amount of remaining defects in software at the time
it is delivered by the author (i.e., after the author has done all verification activities,

Quality Control   91

he can execute himself), we distinguish four different levels of stability of the soft-
ware that are treated independently:

f a x b y c z d w x y z= × + × + × + × − − −()

with

•	 x: the number of new or changed KStmt designed which will be tested within
this project. This software was specifically designed for the aforementioned
project. All other parts of the software are reused with varying stability.

•	 y: the number of KStmt that are reused but are unstable and not yet tested
(based on functionality that was designed in a previous project or release, but
never externally delivered; this includes ported functionality from other
projects).

•	 z: the number of KStmt that are tested in parallel with another project. This
software is new or changed for the other project and is entirely reused in the
project under consideration.

•	 w: the number of KStmt in the total software build within this product.

The factors a–d relate the defects in software to size. They depend heavily on the
development environment, project size, maintainability degree, and so on. Based on
previous assumptions, the following factors can be used:

•	 a: 30 defects per KStmt (depending on engineering methods; should be based
on own history data).

•	 b: 60% × 30 defects per KStmt (assuming defect detection before start of test
is 60%).

•	 c: 60% × 30 defects per KStmt × (overlapping degree) × 25% (depending on
overlapping degree of resources and test intensity).

•	 d: 1% × 30 defects per KStmt (assuming 1% of defects typically remain in a
product at the time when it is reused).

With targets agreed upon and defects estimated, a variety of different defect
detection techniques must be evaluated and combined to optimize cost, quality, and
time. Preferably, defects should be detected close to the activity when they have
been introduced (that is, before start of test). Since defects can never be entirely
avoided, several techniques have been suggested for detecting defects early in the
development life-cycle [McConnell98, Ebert01b]:

•	 Design reviews and inspections.

•	 Code inspections with checklists based on typical fault situations or critical
areas in the software.

•	 Enforced reviews and testing of critical areas (in terms of complexity, former
failures, expected fault density, individual change history, customer’s risk and
occurrence probability).

92   Chapter 13  Quality Control

•	 Tracking the effort spent for analyses, reviews, and inspections, and separat-
ing according to requirements to find out which areas are not sufficiently
covered.

The goal is to find the right balance between efficiency (time spent per item)
and effectiveness (ratio of detected faults compared to remaining faults) by making
the right decisions to spend the budget for the most appropriate quality assurance
methods. In addition, overall efficiency and effectiveness have to be optimized. It
must, therefore, be carefully decided which method should be applied on each work
product to guarantee high efficiency and effectiveness of code reading (i.e., done by
one checker) and code inspections (i.e., done by multiple checkers in a controlled
setting). Wrong decisions can have two main impacts:

On one hand, the proposed method to be performed is too “weak.” Faults, which
could have been found with a stronger method, are not detected in the early phase.
Not enough effort is spent in the early phase. Typically, in this case, efficiency is
high and effectiveness is low. On the other hand, the proposed method to be per-
formed is too “strong” or overly heavy. If the fault density is low from the very
beginning, even an effective method will not discover many faults. This leads to a
low efficiency, compared to the average effort that has to be spent to detect one fault.
This especially holds for small changes in legacy code.

Globally distributed software development is highly impacted by work organi-
zation and effective work split. Often, not all necessary skills to design a complex
functionality are available at one location. Instead of creating virtual development
teams, we strongly advise (for reasons of productivity and quality) that you build
coherent and colocated teams of fully allocated engineers. Coherence means that the
work is split during development according to feature content, which allows you to
assemble a team that can implement a set of related functionality—as opposed to
artificial architecture splits. Colocation means that engineers working on such a set
of coherent functionality should sit in the same building, in the same room, if it is
feasible. Finally, full allocation implies that engineers working on a project should
not be distracted by different tasks for other projects.

Projects at their start are already split into pieces of coherent functionality that
will be delivered in increments to a continuous build. Functional entities are allo-
cated to development teams, which are often based in different locations. Architecture
decisions, decision reviews at major milestones, and tests are done at one place.
Experts from countries with minority contribution will be relocated for the time the
team needs to work together. This allows effective project management based on
the teams that are fully responsible for quality and delivery accuracy of their
functionality.

Colocating a development team to stimulate more interactions, however, is more
expensive. We found, in our projects, that colocating peer reviews improves both
efficiency and effectiveness of defect detection and thus reduces cost of non-quality.
Looking into individual team performance, we can see that colocated teams achieve
an efficiency improvement during inspections of over 50% [Ebert01b]. This means
that with the same amount of defects in design and code, those teams, which sit at

Quality Control   93

the same place, need less than half the time for defect detection. The amount of
defects detected shows almost a factor of 2 difference in terms of defects per KStmt.
Examining the low cost of defect detection during inspections compared to subse-
quent testing activities and the cost contribution of validation towards total cost, we
found an impact of greater than 10% on project cost.

A final word on work allocation and ownership: Shifting verification activities
to low-cost countries is highly inefficient. Often tasks are overly fragmented and the
quality control activities are handled with poor results due to lack of knowledge. In
the end, each delivery has to be checked twice, once at the time it is shipped to a
low-cost country, and then again backward. All of these processes cost time and
money and are demoralizing for the engineers on both sides because it always ends
up ping-ponging back and forth. As mentioned before, we strongly recommend
building teams, preferably in one place, and assigning them ownership for a work
product including functionality and quality. Such teams should operate globally
according to needs and skills availability, but not be internally split into first- and
second-class engineering tasks.

Summary: Tools facilitate global software engineering dramatically. In fact, global
development is impossible without adequate tool support. Tools are necessary due to
several inherent characteristics of software engineering in different sites. In this
chapter, we will provide a structured and systematic overview on different tools
domains with many concrete examples. While the one or other example might become
outdated over the years, it is still helpful to glean an understanding from this chapter
as to the essence of tools selection and usage in global settings.

Software tools can be grouped along four dimensions, namely:

•	 Functionality: Comprising of and evolving into complex functionality,
designs, and architectures. Examples include modeling tools, test environ-
ments, design tools, and so on.

•	 Communication: assuring understanding and exchange between stakeholders
and amongst engineers. Examples include project management, requirements
engineering, and change management tools.

•	 Work products: Managing a multitude of interdependent work products.
Examples include tools for configuration management, versioning, debug-
ging, and so on.

•	 Life-cycle: Software tends to evolve over time. A longer lifetime creates dif-
ferent versions or variants of the system, each of which must be managed
until the end of its life. Examples of tools include some of the aforementioned
tools, such as traceability tools, test configurators, or product data
management.

These four dimensions becomeeven more complex in distributed teams, especially
if they hardly ever (or never) meet. Even the smallest decision or reasoning for a

95

Chapter 14

Tools and IT Infrastructure

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

98   Chapter 14  Tools and IT Infrastructure

[Ebert10]. In fact, all professional engineering tools today allow linking into their
contents by means of hyperlinks (i.e., URLs or even web services). A life-cycle
picture shows the global overview of the processes, and many embedded hyperlinks
allow navigation with a few clicks to the final element in which the reader is inter-
ested. Compared with static process models of the 1980s, which typically used
standard data-modeling languages, the currently available workflow systems provide
nicely visualized flows that hide anything that is not relevant for a specific view as
much as possible. Usability, and not formalism, is the key.

A tailorable process framework can resolve the perceived conflict between
organizational process and individual tailoring. Such a framework should be fully
graphically accessible and should allow the selection of a process that will be appli-
cable for components as well as an entire product that is based on selecting the
appropriate parameters that characterize the project. The framework allows for
automatic instantiation of the respective development process and product life-cycle,
as well as a project quality plan and specific applicable measurements that are based
on modular process elements such as role descriptions, templates, procedures, or
check lists, which hyperlink with each other.

Usability of any workflow support system is determined by the degree to which
it can be adapted or tailored toward the project’s needs. There are organizational and
project-specific environmental constraints. Those constraints make it virtually
impossible to apply the workflow system in a way that is out of the box. Adaptation
is achieved by offering a set of standard workflows, which are then selected (e.g.,
incremental delivery versus grand design; parallel versus sequential development;
development versus maintenance). On a lower level, work products are defined or
selected out of a predefined catalogue. The process models should distinguish
between mandatory and optional components.

Processes and tools can be diverse across projects and, sometimes, across sites.
Our experience drives us increasingly to standardizing tools across the enterprise
because it has scale effects (e.g., license cost, interface simplicity), but it also con-
siderably shortens the learning curve if engineers are moved to another project or if
a new team of engineers is hired at some place in the world.

Collaborative project management tools such as ActiveCollab1 and WorldView
[8] offer a Web-based interface to manage project information for calendars and
milestone tracking. Such tools give managers an overview of project status at dif-
ferent detail levels, such as team member locations and contact information. IBM
LotusLive2 provides an overview of ongoing project activities by using information
extracted from developers’ workspaces.

There are two open source platforms that are also used in project management,
they are GForge,3 AS and WebAPSEE.4 The former is a platform that ties together
different toolsets such as task managers, document managers, forums, or mailing lists;

4  http://sourceforge.net/projects/webapsee/

3  http://gforge.org/gf/

2  http://www.lotuslive.com/de/

1  http://www.activecollab.com

http://sourceforge.net/projects/webapsee/
http://gforge.org/gf/
http://www.lotuslive.com/de/
http://www.activecollab.com

Design and Modeling   99

the latter aims to provide automated support for software process management, pro-
viding a high level of flexibility for changes on dynamic and enacting process models.

REQUIREMENTS ENGINEERING

Major RE tools such as DOORS5 and IRqA6 let multiple engineers use natural lan-
guage text to describe project use cases and requirements and to record dependencies
among and between them. These tools are expensive. As a result, companies often
start by developing their own environments based on Spreadsheets and databases.
However, such environments don’t scale up and they create lots of hidden cost.

The professional tools show their power in global and distributed settings in IT
and software projects. They help project teams to manage the requirements, to create
use cases, and to mitigate project risk by displaying the requirements that may be
affected by upstream or downstream changes of requirements. To be useful in global
settings, requirements engineering tools should provide a document-oriented, Word-
based interface with Web interfaces for users who need access to requirements
information without the need of local installations. They encourage collaboration
for geographically distributed teams through scalable Web interfaces, strong version-
ing support, and discussion threads.

DESIGN AND MODELING

Distributed design and modeling tools such as Objectif7 and IBM Rational Tau8
support virtual software-design meetings by capturing and storing all design-relevant
information, role definitions, and version control coordination. It includes playback
features to review a session once it has ended.

Prominent design and modeling tools, such as Gliffy9 and Creately10 support
multiple diagram types such as UML or Business Process Modeling Notation. They
also offer special features that simplify team communication and collaboration, such
as tools for commentaries, creating blogs, and even managing knowledge.
Furthermore, Gliffy can be integrated with the Jira distributed tracking system.

Model-based collaboration is what distinguishes collaborative software engi-
neering from more general collaboration activities that share only files and not
content [5]. Collaborative modeling tools such as Artisan Studio11, Rational Software
Modeler12, and Visible Analyst13 help developers create formal or semiformal soft-

11  http://www.artisansoftwaretools.com

10  http://creately.com

9  http://www.gliffy.com

8  http://www-01.ibm.com/software/awdtools/tau/

7  http://www.microtool.de/objectif

6  http://www.visuresolutions.com

5  http://www.ibm.com/software/awdtools/doors

13  http://www.visible.com/Products/Analyst

12  http://www.ibm.com/software/awdtools/modeler/swmodeler

http://www.artisansoftwaretools.com
http://creately.com
http://www.gliffy.com
http://www-01.ibm.com/software/awdtools/tau/
http://www.microtool.de/objectif
http://www.visuresolutions.com
http://www.ibm.com/software/awdtools/doors
http://www.visible.com/Products/Analyst
http://www.ibm.com/software/awdtools/modeler/swmodeler

100   Chapter 14  Tools and IT Infrastructure

ware artifacts, including Unified Modeling Language (UML) models and customized
software processes.

TEST AND VALIDATION

TestLink14 is a popular tool for managing the entire testing process. It has a Web-
based interface that, if you have a browser, is accessible everywhere. The tool
organizes test cases into test plans. Users can import and execute groups of test cases
by using one or more keywords that have been previously assigned by the users
to the test cases.

On the other hand, Selenium15 is a tool suite to automate Web application testing
across many platforms. It includes an Integrated Development Environment (IDE)
for writing and running tests, a remote-control tool for controlling Web-browsers on
other computers, a Web-based quality-assurance tool, and an Eclipse plug-in to write
Selenium and Watir16 tests.

Finally, OpenSTA17 is a distributed software-testing architecture that can
perform scripted HTTP and HTTPS heavy-load tests with performance measure-
ments from Win32 platforms.

CONFIGURATION MANAGEMENT

Global software engineering and IT imply that there is no longer a global owner of
a specific work product across projects. Instead, many developers in different places
simultaneously share the responsibility of enhancing functionality within one
product. Often a distinct work product (or concretely, a file with source code) is
replicated as variants that are concurrently updated and frequently synchronized
to allow the centralized and global evolution of distinct functionality [Perry98,
Herbsleb99].

Effective tools and work environments are thus the glue to successful global
software development. Most commercial tools face problems when they are used in
sites around the globe. Most big vendors have articulated similar problems to those
that wo’ve faced. Almost no tool seamlessly foresees synchronizing and database
for backing up contents without disturbing engineers who are logged on 24 hours a
day, 7 days a week. Performance rapidly decreases when multi-site use is involved,
due to heterogeneous server and network infrastructures.

The more distributed the project, the greater the need for secure, remote, reposi-
tory and build management. Build tools such as Maven and CruiseControl let proj-
ects maintain remote repositories and create and schedule workflows. The workflows
facilitate continuous integration for executing scripts, compiling binaries, invoking

17  http://opensta.org

16  http://watir.com

15  http://seleniumhq.org

14  http://testlink.sourceforge.net

http://opensta.org
http://watir.com
http://seleniumhq.org
http://testlink.sourceforge.net

http://www.atlassian.com
http://www.darcs.net
http://mercurial.selenic.com
http://www.git-scm.com
http://subversion.tigris.org
http://www.bugzilla.org

102   Chapter 14  Tools and IT Infrastructure

of dependency. Based on the detected failure and the originating fault, a list of files
in different projects should be pre-populated and will tell you which other variants
of a given file need to be corrected. Although this is rather simple with a parent and
variant tree on the macroscopic level, due to localized small changes on the code
procedure and database content level, careful manual analysis is requested. Those
variants (e.g., within customization projects) are then automatically triggered.
Depending on a trade-off analysis of failure risk and stability impacts, the developer
responsible for the specific customization would correct these defects.

This approach immediately helps to focus on major field problems and ensure
that, if applicable, they will be avoided in other markets. It, however, also shows
the cost of the applied product line roadmap. Too many variants, even if they are
maintained by groups of highly skilled engineers, create overheads. Obviously, vari-
ants need to be aligned to allow for better synchronization of contents (both new
functionality and corrections) while still preserving the desired specific functional
flavors necessary in a specific market.

COMMUNICATION AND SHARING

Communication tools are among the very basic needs for effective global teamwork.
Collaboration techniques must be able to handle time zone challenges and standard-
izing project and team management practices so that all global stakeholders will
benefit from increased efficiency. A lot of time is wasted in Global Software
Engineering and IT projects due to cumbersome set-up of videoconferences or
attempts to agree on an available time slot across a distributed group of engineers.
Therefore, a mix of synchronous and asynchronous communication needs to be
established.

Asynchronous communication tools include dedicated collaboration tools such
as interactive requirements engineering repositories, workflow management tools,
e-mail, blogs, mailing lists, newsgroups, Web forums, and knowledge bases such as
wikis.

Synchronous communication tools include telephony, chat, instant messaging,
video conferencing, and any type of online collaboration and meeting tools. Agree
upon a fixed communication window for all members of a global team. This could
be the same window across the company where everyone is available in case of
urgent issues that need to be reviewed by the team. Such fixed windows work easily
for two regions, such as Europe and Asia, or North America and Asia. It is more
difficult to find a solution for three regions, specifically, if one of those is the
American West Coast or Australia. A shared calendar is helpful for simple setup of
remote meetings because it saves you from lots of e-mails in which many people
are copied simply to read that somebody is unavailable due to a dentist appointment.
Assure both for your teleconferencing and videoconferencing that events can be
recorded and replayed. Experience has shown that team members who are not so
fluent in English will often like to hear it again—even if it is only to improve their
English proficiency.

Communication and Sharing   103

Desktop sharing is absolutely mandatory for any global engineering team. There
are numerous solutions that exist with the possibility of sharing computer screens
and setting up teleconferences in parallel. We strongly recommend embarking on
desktop videoconferencing via IP. It can be set up ad hoc when needed and has much
lower cost (with same quality, if there is a good VPN) compared to the classic vid-
eoconferencing. Assure that simple directory services are available so that people
can use videoconferences in ways that are similar to net-meeting and related tools.

WebEx24 is the market leader for online meeting facilities. Both WebEx and
WorkSpace3D25 provide a rich interface for synchronous and asynchronous collabo-
ration. They enable voice and video over IP communication while you view and edit
documents, desktop and application sharing, co-browsing and whiteboard drawing,
and meeting persistence for later replay.

The text-based eConference26 is a lean tool that supports distributed teams
needing synchronous communication and structured-discussion services. Such tools
provide closed-group chat that is augmented by agendas, meeting minute-editing,
typing-awareness capabilities, and hand-raising panels to enable turn-based
discussions.

Office Communications Server (OCS) is an enterprise real-time conferencing
tool from Microsoft27 that provides the infrastructure for enterprise instant messag-
ing, presence, file transfer, video calling, and structured conferences. It is available
within an organization, between organizations, and with external users on public
internet.

General communication tools (i.e., non-software engineering-specific) fall in
the category of groupware, together with tools for document sharing and review, as
well as concurrent editing and shared calendars. However, the term “groupware” is
now used less frequently in favor of preferred wordings such as “collaborative soft-
ware” or “social software.” Popular multifunction collaboration platforms are IBM
Lotus Notes/Domino28 and Microsoft SharePoint.29

Recently, Web 2.0 applications have become quite common in open source and
global software projects. They represent a valuable means to increase informal com-
munication among team members. Web 2.0 extends traditional collaborative soft-
ware by means of direct user contributions, rich interactions, and community
building. Some key Web 2.0 applications are blogs, such as WordPress;30 microb-
logs, such as Twitter (twitter.com); wikis, such as the Portland Pattern Repository,31
social networking sites, such as LinkedIn,32 and collaborative tagging systems, such

29  http://www.microsoft.com/SharePoint

28  http://www.ibm.com/software/lotus/notesanddomino

27  http://www.microsoft.com/communicationsserver

26  http://code.google.com/p/econference

25  http://www.tixeo.com

24  http://www.webex.com

32  www.linkedin.com

31  c2.com/cgi/wiki

30  wordpress.org

http://www.microsoft.com/SharePoint
http://www.ibm.com/software/lotus/notesanddomino
http://www.microsoft.com/communicationsserver
http://code.google.com/p/econference
http://www.tixeo.com
http://www.webex.com
http://www.linkedin.com
http://c2.com/cgi/wiki
http://wordpress.org

104   Chapter 14  Tools and IT Infrastructure

as Delicious.33 Increasingly, wiki platforms emerge as a practical, economical option
for creating and maintaining group documentation.

COLLABORATIVE DEVELOPMENT ENVIRONMENTS

A Collaborative Development Environment (CDE) provides a project workspace
with a standardized tool set for global software teams. CDEs combine different tools,
and thus offer a frictionless development environment for outsourcing und offshor-
ing. Several CDEs are available as commercial products or open source initiatives,
and, increasingly, as online services hosted externally.

While traditional PDM and PLM/ALM tools interwork with many design and
manufacturing tools, they only recently started to consider specific software engi-
neering environments. Examples include Dassault Enovia MatrixOne,34 Oracle
Agile,35 Siemens Teamcenter,36 and Vector eASEE,37 which interwork with dedicated
software engineering tools, such as IBM’s Synergy. More generic enterprise resource
management (ERM) would not sufficiently support software engineering on the
more specific workflows. CRM environments have recently integrated with defect
tracking tools, but more is needed to also support requirements engineering end to
end (e.g., a defect often results in a new requirement). Their scope is limited to
various front-end processes. However, all of the tools that have been mentioned
could be extended to facilitate interworking because they are event-driven.

CDEs are borrowing successful features that are typically available on social
network sites. For instance, Assembla38 notifies users of project-related events via
Twitter; GitHub39 offers a Twitter-like approach to monitoring a project’s progress;
Rational Team Concert40 borrows Delicious’s tagging feature, letting developers
assign free keywords to managed items.

CDEs are often unsuitable in companies because of legacy tools or environ-
ments that must be enhanced by specific collaboration functionalities. In these situ-
ations, developers can choose from collaboration tools that map to typical life-cycle
activities.

The need for workflow management support stems from the heterogeneity of
underlying engineering tools and detailed processes that overlap considerably such
as logon procedures, document management, and product data management.
Software engineering processes must integrate with interfacing business processes
from an end-to-end perspective. For instance, configuration management for soft-
ware artifacts belonging to a single product line and reused in a variety of products
must relate to the overall product data management (PDM). Software defect correc-

40  www.ibm.com/software/awdtools/rtc

39  github.com

38  www.assembla.com

37  www.vector.com/easee

36  www.siemens.com/teamcenter

35  www.oracle.com/agile/index.html

34  www..matrixone.com

33  delicious.com

http://www.ibm.com/software/awdtools/rtc
http://github.com
http://www.assembla.com
http://www.vector.com/easee
http://www.siemens.com/teamcenter
http://www.oracle.com/agile/index.html
http://www..matrixone.com
http://delicious.com

Knowledge Management   105

tions must relate to overall service request management as part of the customer
relationship management (CRM) solution.

Interworking with legacy and proprietary tools can be achieved by deploying
an object request broker to give to such tools an open interface. However, the trans-
actional interface between such tools often does not adequately support the fine-
grained integration of data, thus avoiding replication of data as much as possible.
For example, the product life-cycle view must include data from the PDM system,
software documentation system, the defect tracking system, the personnel database
(for the actors), the process assets library, and the authorized tools list, all in one
view. For that reason, Eclipse is increasingly used as a reference platform to integrate
existing (legacy or proprietary) tools with COTS tools.

KNOWLEDGE MANAGEMENT

One tool you won’t want to miss is knowledge management. Information and knowl-
edge must be effectively shared at a low retrieval cost. Demand for up-to-date and
synchronized information available to your customers, your engineers and all your
stakeholders is quickly increasing. Technical documentation in today’s advanced
global system providers is created from small modules that exist only once as a
single source maintained by the appropriate expert. No single line of customer docu-
mentation would be written just for that one matter because it creates inconsistency.
The best example of this is status reports in globally executed projects that need
many inputs from various places and sources. Having an online reporting tool which
integrates well with the project management, measurement, and various operational
databases helps a lot.

Expertise is not always readily available. Appropriate knowledge management
strategies and the respective tool-support help in finding the right answer to problems
instead of forcing you to guess. We found, in several studies, that with distance, the
tendency for ambiguity and guessing grows. Engineers are not the world’s best com-
municators and, as such, often shy away from simply calling a peer in another place
to clean up open issues. Instead, a day or more is wasted with figuring out the
purpose of a design decision or requirement. Make a rule that decisions are docu-
mented right away and moved to an efficient knowledge management system that
allows tagging and retrieval.

Knowledge centers are content management systems that let team members
share explicit knowledge on the Web. A knowledge center, such as the Eclipse help
system41 or KnowledgeTree,42 might contain internal documents, technical refer-
ences, standards, FAQs, and examples of the best practices. Twiki43 is another
example of an enterprise collaboration web application platform used as a document
management system and a knowledge base. Knowledge centers can also include

43  http://twiki.org/

42  www ktdms.com

41  http://help.eclipse.org

http://twiki.org/
http://www.ktdms.com
http://help.eclipse.org

110   Chapter 15  Practice: Collaborative Development Environments

and control issues such as misalignment and reworking. When the control and coor-
dination needs of distributed software teams rise, so does the load on all communica-
tion channels available. In fact, software projects have two complementary
communication needs. First, the more formal, official communications are used for
crucial tasks like updating project status, escalating project issues, and determining
who has responsibility for particular work products. Second, informal ‘corridor talk’
allows team members to keep a “peripheral awareness” of what is going on around
them, what other people are working on, what states the various parts of the project
are in, and many other essential pieces of background information that enable devel-
opers to work together efficiently. In colocated settings, communication is taken for
granted. As a result, its importance often goes unnoticed. When developers are not
located together, they have fewer opportunities for communication. There is empiri-
cal evidence that the frequency of communication drops off with the physical separa-
tion among developers’ sites [Herbsleb03]. Therefore, distance exacerbates
coordination and control problems directly or indirectly through its negative effects
on communication. In other words, communication disruption due to distance further
increases and aggravates coordination and control breakdowns [Carmel01].

Distance can have an effect on three distinct dimensions: geographical, tempo-
ral, and socio-cultural. Geographical distance is a measure of the spatial dispersion
that occurs when team members are scattered across different sites. It can be opera-
tionalized as the cost or effort required to exchange visits from one site to another.
Temporal distance is a measure of the temporal dispersion that occurs when team
members wish to interact. It can be caused by time-zone differences or time shifting
work patterns (e.g., one site having a quick lunch break at noon and another site a
two-hour lunch time at 1 o’clock). Socio-cultural distance is a measure of the effort
required by team members to understand the organizational and national cultures
(e.g., norms, practices, values, spoken languages) in remote sites.

Cooperation difficulties due to distance can only be partially tackled using
appropriate techniques. For instance, coordination and control issues can be coun-
teracted by respectively adopting architectural frameworks that enable a better divi-
sion of labor between teams, and by choosing an agile development process.
However, global development would not be feasible without adequate tool support
[Ebert06]. In fact, developers need constant tool support during the whole software
life-cycle in order to model, design, and test software functionalities; manage a
myriad of interdependent artifacts; and communicate with each other. In the next
section, we present a number of tools and collaborative development environments
that are available today to enable effective global software development.

Tools provide a considerable help to software development activities. Software
engineering tools that assist distributed projects fall into the following categories:
software configuration management, bug and change tracking, build and release
management, modelers, knowledge centers, communication tools, and collaborative
development environments.

A software configuration management (SCM) tool includes the ability to manage
change in a controlled manner by checking components in and out of a repository,
the evolution of software products, storing multiple versions of components, and by

http://www.atlassian.com/software/jira/
http://www.bugzilla.org/
http://darcs.net/
http://mercurial.selenic.com/wiki/
http://git-scm.com/
http://subversion.tigris.org/
http://www.nongnu.org/cvs/

http://www.visible.com/Products/Analyst/
http://www-01.ibm.com/software/awdtools/modeler/swmodeler/
http://www.artisansoftwaretools.com/products/
http://cruisecontrol.sourceforge.net/

Background   113

general collaboration activities which lack the focus on using the models to create
shared meanings.

Knowledge centers are mostly document-driven and web-enabled which allows
team members to share explicit knowledge across a work unit. A knowledge center
includes technical references, standards, frequently asked questions (FAQs), and best
practices. Ther use of wiki software for collaborative web publishing has emerged
as a practical and economical option to consider for creating and maintaining group
documentation. Wikis are particularly valuable in distributed projects as global
teams may use them to organize, track, and publish their work [Louridas06]. Figure
15.2 shows the home page of the Fedora project wiki where both developers and
users may contribute and find information. Knowledge centers may also include
sophisticated knowledge management activities to acquire tacit knowledge in explicit
forms, such as expert identification and skills management [Rus02].

Communication tools increase productivity in global teams. Software engineers
have adopted a wide range of mainstream communication technologies for project
use in addition to, or replacement of, communicating face-to-face. Asynchronous
communication tools include e-mail, mailing lists, newsgroups, web forums, and
blogs; synchronous tools include the classic telephone and conference calls, chat,
instant messaging, voice over IP, and video conferencing. E-mail is the most widely
used and successful collaborative application. Thanks to its flexibility and ease of
use, e-mail can support conversations while also operating as a task/contact manager.
However, one of the drawbacks of e-mail is that, due to its success, people tend to
use it for a variety of purposes, often in a quasi-synchronous manner. In addition,
e-mail is ‘socially blind’ [Erickson00] in that it does not enable users to signal their
availability. Before becoming an indispensable tool ubiquitous in every workplace,

Figure 15.2  Fedora Project documentation based on wiki.

http://bazaar.canonical.com/
http://sourceforge.net/

http://www.ohloh.net/
http://www.perforce.com/
http://gforge.org/projects/gforge/

116   Chapter 15  Practice: Collaborative Development Environments

public CDEs (Fig. 15.5). As such, Ohloh provides statistics about a project’s longev-
ity, licenses, and software measurements, such as source lines of code and commit
statistics, so as to inform about the amount of activity for each project. It also allows
for evaluation of trend popularity of specific programming languages through global
statistics per language measures. Contributor statistics are also available with the
aim of measuring developers’ personal experiences on the basis of commit statistics
and mutual ratings (in form of “kudos” received from other developers in the com-
munity). As of January 2010, Ohloh counts over 440,000 members and lists over
430,000 projects.

Trac17 is a CDE that combines an integrated wiki, an issue tracking system, and
a front-end interface to SCM tools, usually Subversion, although it supports a
number of other configuration management tools through plug-ins. Also,
CruiseControl can be integrated via plug-ins to support source code building. Project
overview and progress tracking are allowed by setting a roadmap of milestones
which include a set of so-called tickets (i.e., tasks, feature requests, bug reports, and
support issues) as well as by viewing the timeline of changes. Trac also allows team
members to be notified about project events and ticket changes through e-mail mes-
sages and RSS feeds. Figure 15.6 shows a screenshot of a project with active tickets
grouped by milestone and colored to indicate different priorities.

Google Code18 is a Google application that offers a project hosting service with
revision control (only SVN and Mercurial are supported), issue tracking, a wiki for
documentation, and a file download features (Fig. 15.7). Google code service is free

Figure 15.4  A GForge-based CDE.

18  http://code.google.com/

17  http://trac.edgewall.org/

http://code.google.com/
http://trac.edgewall.org/

118   Chapter 15  Practice: Collaborative Development Environments

for all OSS projects that are licensed under one of the following nine licenses:
Apache, Artistic, BSD, GPLv2, GPLv3, LGPL, MIT, MPL, and EPL. The site also
limits the maximum number of projects that a single developer can create.

Assembla19 is yet another CDE service for both open source and commercial
software (Fig. 15.8). Other than offering the most common features of a typical
CDE, Assembla distinguishes itself from other environments for a few noticeable
aspects, namely, the chance to choose between SVN, Git, and Mercurial for software
configuration management. The notification of changes also available via Twitter as
well as the support offered to teams adopting an agile development process for
running Scrum meetings [Schwaber01].

Jazz [Frost07] is an extensible platform which leverages the Eclipse notion of
plug-ins to build specific CDE products like the IBM Rational Team Concert20 (Fig.
15.9). The present version has a wide-ranging scope, but in the former version of
Jazz [Cheng04, Hupfer04] the goal was to integrate synchronous communication
and reciprocal awareness of coding tasks into the Eclipse IDE. The development of
Jazz has been inspired by the Booch and Brown’s vision of a “frictionless surface”
for development [Booch03] which was motivated by the observation that much of

20  http://www-01.ibm.com/software/awdtools/rtc/

19  http://www.assembla.com/

Figure 15.7  An example of project summary page in Google Code.

http://www-01.ibm.com/software/awdtools/rtc/
http://www.assembla.com/

Figure 15.8  Active tickets in Assembla grouped by milestone.

Figure 15.9  A screenshot of the Jazz client Rational Team Concert.

120   Chapter 15  Practice: Collaborative Development Environments

the developers’ effort is wasted in switching back and forth between different appli-
cations to communicate and work together. According to this vision, collaborative
features should be available as components that extend core applications (e.g., the
IDE), thus increasing the users’ comfort and productivity. Jazz uses a proprietary
source code management solution, which can also be replaced by other common
SCM tools (e.g., SVN and Git). The Jazz client is a rich client application, called
Rational Team Concert (see Fig. 15.9), which is built upon the Eclipse RCP platform.
Aside from the development-specific features, Jazz also offers a built-in RSS reader
and integrates with Lotus Sametime and Google Talk instant messaging networks.
Jazz repositories can also be accessed using a browser, thanks to the Jazz Rest API,
which exposes and makes accessible all the core services from the Web.

GitHub21 is a CDE service that describes itself as a “social network for program-
mers” (Fig. 15.10). Like the other CDEs mentioned before, GitHub hosting service
only offers Git as source code management to both open source and commercial
software projects. However, GitHub also aims to foster developers’ collaboration by
letting them fork projects through Git, send and pull requests, and monitor develop-
ment through a twitter-like, “follow-this-project” approach.

Figure 15.10  Main page of Ruby on Rails project in GitHub.

21  http://github.com/

http://github.com/

Take-Away Tips   121

Finally, to conclude this section, we mention some other noticeable CDEs, such
as Launchpad,22 which is known for hosting the Ubuntu project; GNU Savannah,23
the central point for the development of most GNU software; Tigris,24 which is a
CDE specialized on hosting open source software engineering tools; and CodePlex,25
Microsoft’s recent take on collaborative open source development.

Web 2.0 extends traditional collaborative software by means of direct user
contribution, rich interaction, and community building. Some key Web 2.0 applica-
tions are blogs, microblogs, wikis, social networking sites, and collaborative tagging
systems. The use of Web 2.0 applications has become quite common in open source
and global software projects as they represent a valuable means to increase the
amount of informal communication exchanged between team members. For example,
wiki platforms, such as Confluence,26 have emerged as a practical and economical
option to consider for creating and maintaining group documentation [Louridas06].

RESULTS

Although all the products reviewed in this chapter are successful and effectively
adopted by many distributed development teams, companies today are relying more
and more on collaborative development environments. Capgemini, a multinational
consultant and outsourcing company, has managed to successfully introduce the use
of CollabNet, the enterprise version of SourceForge, by starting with a few pilot
projects which focused on a subset of the most needed CDE features. CollabNet was
gradually spread to the various seats of Capgemini. Deutsche Bank has also reported
to have successfully adopted the CollabNet CDE thanks to the ability to collect all
the metrics necessary to quickly target specific wastes in the project management
and apply rapid corrections. At InfoSupport, a Dutch-based consultant company, the
adoption of the Jazz CDE has significantly reduced maintenance costs and time-to-
market. First, rather than spending resources in trying to make several successful
tools coexist, the adoption of Jazz ensured an integrated set of tools with a coordi-
nated release lifecycle and no risks of present and future reciprocal incompatibilities.
Second, the availability of a web-based thin client of Jazz allowed customers’
InfoSupport to access relevant information within the CDE.

TAKE-AWAY TIPS

In this chapter we presented a number of tools and collaborative development environ-
ments that are available to support distributed teams. As a general guidance, we can draw
a few major lessons that can prevent GSE/outsourcing efforts from falling to pieces.

26  http://www.atlassian.com/software/confluence/

25  http://www.codeplex.com/

24  http://www.tigris.org/

23  http://savannah.gnu.org/

22  https://launchpad.net/

http://www.atlassian.com/software/confluence/
http://www.codeplex.com/
http://www.tigris.org/
http://savannah.gnu.org/
http://https://launchpad.net/

modified), workspace (e.g., event notifications in case of build failures, new
commits), and team (e.g., coworkers’ profiles, blogs, activities, bookmarks, wikis,
and files). By aggregating this information in one place, CDEs provide an overall
group awareness to developers who have few or no chances to meet. They are useful
for speeding up the establishment of organizational values, attitudes, and trust-based
inter-personal connections, thus facilitating communication as well as the overall
distributed software development process [Calefato09]. Although at first glance
enterprise CDEs might be discarded due to high license costs, companies should not
overlook the hidden costs due to the effort of integrating several pieces of free
software, extending them to meet their corporate standards, and contacting different
tech-support teams.

Finally, the area in which most of the CDE platforms need improvement is in
the integration of build tools (only available in GForge, Trac, RTC, and Codeplex)
and modeling tools (only available in Trac).

Take-Away Tips   123

Part III

Management

Summary: Software development involves profound technological knowledge,
teamwork, processes, methods, and tools. To reduce complexity, it looks just as
rational to put all engineers in one location, share the objectives, agree on one
process and technology to apply, and let the project run. Reality, especially in times of
global development of solutions with lots of different players, components, interfaces,
and anything else that could possibly increase complexity, is different. This is where
product life-cycle management enters the picture. It assures that one product life-cycle
is defined, agreed upon, and consistently implemented in order to have consistent
interfaces, agreed roles and responsibilities, defined work products, and thus, a
possibility to share and collaborate in a global dimension.

Product life-cycle management (PLM) and application life-cycle management
(ALM) both ease collaboration of distributed teams because processes and rules can
be relied upon and must not be reinvented for each task [Ebert03]. Training materials
can be developed and shared. This is something which seasoned practitioners and
managers, as well as young engineers—perhaps in different parts of the world or in
different companies—can rely upon.

As an example, let’s look at the development of Internet information systems.
Requirements elicitation of such web-based systems shows differences to more
conventional approaches as described earlier in this chapter. Often, requirements for
web-based information systems are “created from scratch” by developers themselves
rather than being discovered through the normal process of identifying system
stakeholders and gathering their requirements. Ad hoc elicitation during develop-
ment has life-cycle impacts. Evolutionary life-cycles dominate and are often used
in an explorative approach. The development cycle for a web-enabled application is
short, that is, only a few months and highly iterative, which leaves very little time
for any formal requirements gathering and their consolidation. In such a compressed
timeframe, adaptations of web applications to different geographical locations, cul-
tures, or varying knowledge and background (i.e., skill level) of prospective users,

127

Chapter 16

Life-Cycle Management

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

128   Chapter 16  Life-Cycle Management

are done by explorative development. Internet information systems create prototypes
of a running solution which is a simplified executable for exploring more require-
ments or constraints. They do this based on explorative product life-cycles.. Often,
such an iterative approach without a full view on architectural impacts and business
rules to govern future usage initially yields inadequate quality and performance.
Other development cycles to improve quality should therefore be considered

Effective collaboration in a global context means that the different functions of
the enterprise plus potential external partners (e.g., outsource manufacturing) need
to agree on processes, tools, and practices. They need to apply common access to
knowledge, performance measurements, and decision-making protocols. They need
to share information, communication, and underlying resources. The overarching
process guidance comes from gate reviews in the product life-cycle, which explains
the slogan of product life-cycle management.

Many standards have been set up over the last two decades to facilitate product
life-cycle management. Life-cycle processes are currently driving the underlying
specific standards. ISO 15288 summarizes the system life-cycle processes, while
ISO 12207 is the standard for software life-cycle processes. Both ISO and IEEE
currently work diligently to align underlying process standards with these life-cycle
standards. From an overall process viewpoint, formal approaches to guarantee
quality products have lead to international guidelines (e.g., ISO 9001) and currently
established methods to assess the product/solution engineering processes of suppli-
ers (e.g., ISO 15504, SEI CMMI, ITIL, COBIT). The related systems engineering
process is described in IEEE 1220.

Practitioners do not look for heavy process documentation, but rather for process
support that describes exactly what they have to do, at the moment they have to do
it. Modular process elements must be combined according to a specific role or work
product to be delivered. Still, the need for an organizational process, as described
by CMMI maturity level 3 [SEI11], is strongly emphasized and reinforced. We
generally recommend not embarking on global software development if the impacted
organizations are not at least on maturity level 3 and have defined life-cycle pro-
cesses (which are requested when operating at maturity level 3).

Global development, in many cases, exhibits supplier-client relationships, even
if the supplier is part of the home organization. An example of this is software centers
in different parts of the world that contribute to product development with shared
or split responsibilities. Companies such as SAP, IBM, or Alcatel-Lucent have these
models in place and manage internal suppliers following defined processes and a
standardized product life-cycle [Ebert07a, Zencke04, Forrester04]. The product life-
cycle with its defined phases is key for (internal or external) supplier agreement and
planning. Figure 16.1 shows a simplified product life-cycle and the different needs
per phase from a supplier/contributor and contractor/owner perspective.

The product life-cycle must be mandatory for all projects. This implies that it
is sufficiently agile to handle different types of projects. Standardized tailoring of
the life-cycle to different project types with predefined templates or intranet web
pages simplifies usage and reduces overheads. Its mandatory elements must be
explicit and auditable. Some online workflow support facilitates ease of implementa-

Summary: A key success factor in global software development and IT management is
how to master the relationships with suppliers. Supplier selection includes contracting
and procurement strategies because management has to decide between make versus
buy and also the life-cycle of these products or services. Based on the offer and
contractual risks, managers on both the procurement and technical side have to
decide whether a client relationship and subsequent sourcing is profitable and whether
related risks can be managed over a long period of time. In this chapter we will
provide concrete guidance on supplier selection and evaluation.

Supplier relationships can evolve over time because the business situations of the
partners change and new technology and new vendors enter the marketplace. Often,
outsourcing situations lock the client to some degree, making it expensive for the
client to change its vendor. Very early on in an outsourcing project, a client becomes
tied to its chosen vendor even though the client may try to manage costs and depen-
dencies by competitive arrangements by introducing additional suppliers. Although
organizations try hard, it is hardly possible to assess every risk andto plan for con-
tingencies in a contract over a long period of time.

Supplier relationships often oscillate between trust and control. Figure 17.1
shows an oscillating evolution. Naturally, there is not one single path, but the layout
is archetypical for most supplier relationships. Depending on outsourcing content,
some stability can be reached over time, but the customer organization must be clear
that behaviors occasionally need to change otherwise performance and cost won’t
be competitive. This being understood, mature customer organizations consider such
evolution in the contract set-up to avoid lock-in at a point where the relationship
needs a change.

131

Chapter 17

Supplier Selection
and Evaluation

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

Supplier Selection and Evaluation    133

alism of their local management. Many of the checklists simply help to detect defi-
ciencies and to improve. We will come back to supplier agreement management and
the entire life-cycle impacts of managing a supplier in a later chapter.

When selecting external suppliers, a key prerequisite is in identifying which
supplier best fits your needs. There are a few simple rules to follow:

•	 Select a supplier that fits with the size and business model of your own
company. For instance, a very big business process outsourcing supplier might
be less interested in providing specialized services to a small company. The
supplier might be willing to do so, but after a while behaviors will be less
supportive to the needs of the small or medium enterprise. They would have
done better with an intermediate used to working with small enterprises or by
using a supplier who specializes in this type of management.

•	 Select a supplier with sufficient process and methodology know-how. As a
rule, the supplier of engineering services must have high process maturity.
Demand a recent CMMI appraisal valid for the entire company and evaluate
results. Additionally, for clients looking for suppliers in the IT service domain,
COBIT and ITIL are helpful toward basic service processes and risk
management.

•	 Assure process flexibility. It is not of much help if you select a supplier that
demands to use exactly the same processes and tools across all projects. A
good supplier is capable of adjusting its processes and interfaces to your tools.
Of course, they should be able to help you in improving processes and opti-
mizing tools, but this is decided on a needs basis.

•	 Select a supplier with sufficient domain knowledge in your own field. Having
domain expertise allows you to put skilled engineers who need less knowl-
edge to understand technical aspects related to the product or service on your
project rather than those who only understand the design and programming
language.

•	 Demand a list of engineers working on your project with skills, current subject
experience, previous projects, and so on. Insist that these engineers are allo-
cated to the project in case you want to build skills over a time. Note that
defined engineers and names typically increase cost per head because it
reduces flexibility at the supplier side.

•	 Use a supplier that is physically present at your own site. It often takes sub-
stantial effort to continuously travel to the supplier site or to have only video
conferences. Having a local supplier’s sales team, as well as some engineering
skills, eases requirements and change management.

Some simple checks for supplier selection should be applied throughout the
different processes of supplier selection and agreement management:

•	 Did you ever work with this supplier and would you do it again? What were
the lessons learned from that previous contract? Alternatively, demand this
check from a reference client who you know and trust.

134   Chapter 17  Supplier Selection and Evaluation

•	 What expertise and references are available from the supplier in your own
domain?

•	 What is the turnover rate at the supplier site? Is it acceptable or rather high?
How are skills managed in light of this turnover rate? What turnover rates
will be assured by the contract?

•	 How stable is the supplier and its management or shareholders? Did it recently
change, reorganize, or merge with another company? Avoid any supplier that
is currently hampered by big acquisitions.

•	 What business processes are in place at the supplier to elicit requirements and
to cope with change? Does this fit your needs?

•	 Is the supplier able and experienced in handling global development teams?
Can it manage teams with members from different companies?

•	 Do the supplier and its employees have the necessary formal qualifications
your customers and markets demand (e.g., ISO 9001, CMMI maturity levels,
COBIT and ITIL implementation, etc.)? Is the supplier periodically audited?
Check some recent audit results.

•	 Are the legal constraints acceptable for you and your company? Suppliers
often demand that the site for legal disputes be in a part of the world where
you are not so experienced. Check which site makes sense for you and your
lawyers. Check if there are some sample legal cases that show typical behav-
iors. Specifically, focus on anything related to protecting your intellectual
property. Manage the risk of any impact on your intellectual properties, such
as whether a key engineer may defect, upfront.

•	 Is the infrastructure sufficient for your own purposes? Does it scale up to the
high interaction needs during shared development or testing? Is it protected
and auditable? Are the tools interfaces to your own tools sufficient? Have they
been tested in real-world scenarios before?

•	 What prices are demanded for the services? Are they competitive? How will
you avoid a lock-in position once the supplier has understood your technol-
ogy, products and business?

Generally speaking, there are many checks which should be performed prior to
the contract signature and determine a first “go/no-go” for the selection. Most can
be done offline as part of a request for quotation. You might still want to visit the
suppliers’ sites to directly see offices and talk with engineers or management. In that
case, make sure you speak with those engineers and team leads who will later be
working on your project. Trust your feeling when looking into offices or cafeterias;
they provide messages about culture and behaviors.

Contracts are finally agreed with both technical and non-technical / commercial
elements. The technical aspects are coined into a service level agreement that you
should manage carefully.

Summary: This chapter describes practical experiences from an outsourcing supplier’s
perspective. The scope of the engagement described in this case study was such that it
could comprehensively cover relevant themes and guidance from previous chapters in
a concrete project context. It offers valuable insights of outsourcing partnerships that
can help toward doing things successfully in your own company.

BACKGROUND

One of the key components of Distributed Software Management is the outsourcing
of part or full life-cycle of the Application/Product and/or the associated infrastruc-
ture to partner organizations. In this case study, the transformation of IT infrastruc-
ture and applications by a large global organization in close association with Wipro
as their primary outsourcing partner, has been taken as the case in point. Commencing
historically, with a predominant advantage of cost arbitrage, the compulsions of
outsourcing took multiple dimensions later. Like most successful organizations
world over, irrespective of their domain and operations, this organization has given
a strategic position for IT outsourcing due to its overweighing merits over the
drawbacks.

The drivers for outsourcing were many for this company. The complexities of
the system and the software that drives it have increased manifold and it was practi-
cally impossible for the organization to do everything by them. From a “Vertical
Integration” approach, the company moved over to an “Assemble the best pieces”
approach. Through the collaboration of the best players in the industry, who have
core competencies in their own areas of focus, the company derived the best results.

The second aspect in this relationship was the non linear increase in the need
for educated and trained workforce to support the high growth business strategies.

141

Chapter 19

Practice: IT Outsourcing—A
Supplier Perspective
S. M. Balasubramaniyan, Wipro

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

Background   143

The strategic position for IT Outsourcing also enables an organization to con-
sider the risks in it. The risk profile for IT Outsourcing would vary from one orga-
nization to another. A structured approach to Risk assessment and judicious decision
making together with carefully planned Risk mitigation are required to be included
in the planning process. In this case, timely development and implementation of the
new systems in line with the retirement plan of the legacy systems was the major
risk evaluated and mitigated through phased implementation plan.

The success of IT outsourcing starts with making the right choice of work to
be outsourced. Since this is an important starting point in any collaborative work,
many studies have been conducted and one of the good models to follow has con-
sidered two factors, namely, Interaction Requirements and Management Requirements
(Fig. 19.1).

The evaluation of the IT work in the above model helps the organization that
is outsourcing, as well as the IT service provider, to make an objective assessment
of the suitability or the potential risks to the successful outsourcing. Where the need
for interaction between partners and the management of relationships are low, the
work considered for outsourcing is most amenable for success. When these factors
are high, the risk to the success of outsourcing is the highest. This model helps the
partners to take care of the failure modes to ensure that the probability of successful
outcome is high.

It is not a prescriptive situation to outsource or not based on the above model,
but it helps the partners to consider the risks involved and the efforts to be taken to
plan, mitigate, and prevent the occurrence of any of the identified risks.

Figure 19.1  Fitment to outsourcing.

Low

LowHigh

Requires
high
interaction
handling
capabilities
and tools

2

Not
suitable

1

3

4

5

Highly
suitable

Requires high
management abilities

Moderately suitable,
longer transition and
higher onshore
presence

Management
Requirements

Interaction
Requirements

Results   147

decade and, therefore, the solution framework that was developed by the practice
group and used to build the transformation solution had the correct requirement of
the client carefully built in. It made the solution appropriate and needed minimal
customization and rework.

As the partnership mode of working matures and the horizon of the collabora-
tion expands, it becomes apparent that the considerations of partnership are not the
same in all instances of outsourced partnership. To get the best value out of the
outsourced partnership, deeper insights need to be made as the relationship realizes
the cursory benefits of outsourcing. In this case, the approach taken during defining
and implementing the IT transformation was different from the approach taken
during the sustenance phase of the implementation. Low cost of maintenance was
the primary business driver and low cost resources, remote support, and deployment
of diagnostic and analytical tools enabled the achievement of this.

Probing deeper, the considerations in the outsourced partnership, the following
aspects emerge:

•	 Principle purpose of outsourcing: The purpose of outsourcing could be for
tactical cost considerations or for the domain/platform experience of the sup-
plier organization or for the IP/core competency of the supplier. The value
proposed by each collaborating organization or each partnership could be
vastly different.

•	 The stake in outsourced work: The choices could be among expanding the
life-term of the application/product, agility and flexibility required to respond
to market requirements, and sharing the ownership in a large complex imple-
mentation. Here, the context of the work being outsourced would be the key.

•	 Mode of engagement: The role and responsibilities of partnering organiza-
tions need to be considered. The situation may warrant the program to be
centrally coordinated or with decentralized responsibilities or completely left
to be managed by the supplier organization. The maturity of the IT application
or the product is the key for this decision.

•	 Organizational fit: How well the vision and objectives of the supplier organi-
zation align with those of the outsourcing organization would be a strategic
fit for large and long tenured collaborations. In certain domains, like technol-
ogy outsourcing and product development, this aspect would be a key
consideration.

•	 Choice of partners: Organizations categorize different partners on a scale of
preference for different kinds of outsourced works. Strategic partners share
the road map of the outsourcing organization, while a tactical customer–
vendor relationship exists for non-core engagements. In some instances, one
may have to carefully select and establish a long-term relationship, whereas
in some situations, new vendor opportunities can be explored.

•	 Enabling Considerations: Depending on the tools, methods, systems, pro-
cesses, and even political considerations, the decision on outsourcing may

148   Chapter 19  Practice: IT Outsourcing—A Supplier Perspective

have to be taken. Oftentimes, the geographical considerations and political
environment of the partner organizations could become limiting factors.

•	 Management Style: This is one of the key considerations in relationships
where the supplier is mature and large. The display of management commit-
ments, Executive level connects and shared visions and goals would deter-
mine the success and, sometimes, the continuity of outsourced partnership
itself.

The governance of outsourced engagement is another key success factor. While
many of the aspects of governance are mastered over a period of time with experi-
ence, it is essential to be cognizant of the relationship enablers that make the out-
sourced relationship successful.

•	 Learning Curve: Collaborative capabilities are something an organization
learns over a period of time. It is not an inherent characteristic of most orga-
nizations. Therefore, the experienced among the partners need to hold the
hand of the other to take the relationship through the initial hard path to
comfort. Often, the first projects of outsourced engagements are not success-
ful, but it is essential how much the partners have learned out of their mistakes
and are able to apply in subsequent engagements. This determines the success
of long-term outsourced relationships. The experience of Wipro in the busi-
ness domain of the client in this case study ensured that the engagement
derived the benefit from the learning curve for well over a decade.

•	 Organization Structure: At the commencement of an outsourced relationship,
both the organizations need to position appropriate people who would inter-
face on a peer term basis. Clear escalation paths need to be defined.
Management review structure and hierarchy need to be put in place. This
pre-requisite, if done well, will largely ensure that the relationship is success-
ful. The sponsor organization in the client’s and the Program Management
Office (PMO) in Wipro can be cited as an example.

•	 Engagement Score Card: An objective measurement system with clearly
defined parameters closely related to the objective of the engagement would
ensure that the perceptions on either side do not dislodge the collaborative
engagement. It is necessary that the measurement system is periodically
revisited to make it relevant to the current state of engagement and revised if
necessary. All management reviews are held keeping this score card in view
so that the course corrections and mutually agreeable evaluation of the current
status and actions can be evolved and agreed upon. One typical engagement
score card is the balanced score card. One can use a variation of it by taking
into consideration the objectives of the engagement at any point of time.

•	 Soft Skills and Cultural Fit: In a global and distributed environment, temporal
and cultural misfits take a heavy toll on relationships. It is essential that the
personnel on the outsourcing and Supplier organizations learn one another’s
cultures and adapt themselves to the situation. Best results are obtained when
both parties move to a common neutral platform and it is not a situation of

150   Chapter 19  Practice: IT Outsourcing—A Supplier Perspective

•	 Business continuity: Equally applicable in monolithic development environ-
ment, it gains importance due the nature of business to partners. Cost effective
and innovative solutions in case of contingencies would greatly help the
purpose of outsourcing.

•	 Alliances: Complex solutions, development, and support need integration of
off-the-shelf products customized for the purpose. A good alliance with key
COTS product vendors would accelerate the solutions development and value
created.

In critical engagements, the partner with a nearshore center or who works out
of the client’s location is a viable solution. However, they are likely to erode the
benefits of offshored outsourcing over a period of time and need to be strategically
used for induction of new relationships.

TAKE-AWAY TIPS

Successful organizations across world adopt multi-pronged strategies for market
leadership, time-to-market advantage, cost competitiveness, delivery excellence,
global presence and reach, portfolio management, and a highly profitable existence.
Globally distributed software and product management through outsourcing and
offshoring play a vital part in it.

Successful IT outsourcing decisions are not likely to be tactical ones. Carefully
determining what to outsource, whom to outsource, and what benefits are expected
to be derived from it need to be thought through and planned. Preparation toward
partnered relationships where imperative cultural and business differences are likely
to be present is essential. An outsourced relationship often needs to be planned
long–term, which automatically brings in the need to find the solution to the question
on its long-term sustainability. Value addition to cursory benefits will need deeper
considerations and the phase in the life-cycle of the product or application under
consideration. Also, the surround consideration needs to be equally taken care to
temper the engagement to improve the probability of success of IT outsourcing.

The “Next Level Partnership” considerations surface at the crossroads of a
relationship when the question “What next?” is raised. The objectives of a nascent
or a new outsourced collaboration would have been achieved and both partners look
for the next higher value added engagement. Typically, the answers to this question
result in expanded scope of engagement, involvement of partners in the upstream
cycles of the IT or product decision making process, higher responsibilities for the
suppliers, and building stakes in each others’ organizations.

Summary: Monitoring cost, progress, and performance of global software projects
is a control activity concerned with identifying, measuring, accumulating, analyzing,
and interpreting project information for planning and tracking activities, decision-
making, and cost accounting. We will provide guidance for monitoring cost, progress,
and performance in global and distributed IT and software projects.

Global development projects do not fail because of incompetent suppliers, project
managers or engineers working on these projects; neither do they fail because of
insufficient methods or tools. Primarily, they fail because of the use of wrong man-
agement techniques. Management techniques derived and built on experience from
small colocated projects are inadequate for monitoring global software development.
As a result, service level agreements are not met and the delivered software is late,
of low quality, and of much higher cost than originally estimated.

Dedicated management techniques are needed because software projects yield
intangible products. Project (or supplier) monitoring and control is the basic tool for
gaining insight into project performance and is more than only ensuring the overall
technical correctness of a project.

Monitoring and control answers few simple questions derived from the follow-
ing management activities:

•	 Decision-making. What should I do?

•	 Attention directing. What should I look at?

•	 Performance evaluation. Am I doing that is either good or bad?

•	 Improvement tracking. Am I doing better or worse than last period?

•	 Planning. What can we reasonably achieve in a given period?

•	 Target setting. How much can we improve in a given period?

151

Chapter 20

Monitoring Cost, Progress,
and Performance

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

Monitoring Cost, Progress, and Performance   153

•	 What are the near-term activities, and are we adequately prepared to perform
them?

•	 What is the status of project issues/risks that were previously identified?

•	 Are there any new issues or risks?

To effectively and efficiently monitor global development projects, the follow-
ing steps need to be done:

•	 Set objectives, both short-and long-term for products and process.

•	 Understand and agree to commitments and their changes (e.g.,
requirements).

•	 Forecast and develop plans both for projects and for departments.

•	 Identify and analyze potential risks.

•	 Set up and commit to a service level agreement (independent of contract
format).

•	 Set up and agree on a contract which relates milestones, deliverables, SLA,
and payment.

•	 Motivate people to accomplish plans.

•	 Coordinate and implement plans.

•	 Compare actual measurements with original objectives.

•	 Determine if the project is under control and whether the plan is still valid.

•	 Predict the development direction of process and product relative to goals and
control limits.

•	 Evaluate project and process performance.

•	 Investigate and mitigate significant deviations.

•	 Identify and implement corrective actions and reward/penalize performance.

An initial set of internal project indicators for this goal can be derived from the
Software Engineering Institute’s (SEI) core measurements and measurement litera-
ture [Ebert07]. They simplify the selection by reducing the focus on project tracking
and oversight from a contractor and program management perspective. Obviously,
additional indicators must be agreed upon to evaluate external constraints and inte-
grate with market data. Here is our short list of absolutely necessary project
measurements:

1.	 Requirements status and volatility.  Requirements status is a basic ingredi-
ent to tracking progress based on externally perceived value. Always remem-
ber that you are paid for implementing requirements, not for generating code.

2.	 Product size and complexity.  Size can be measured as functional size in
Function Points, or code size in lines of code or statements. Be prepared to
distinguish according to your measurement goals with code size between
what is new and what is reused or automatically generated code.

154   Chapter 20  Monitoring Cost, Progress, and Performance

3.	 Effort.  This is a basic monitoring parameter to assure you stay in budget.
Effort is estimated upfront for the project and its activities. Afterward, these
effort elements are tracked.

4.	 Schedule and time.  This is the next basic monitoring measurement to
ensure that you can keep the scheduled delivery time. Similar to effort, time
is broken down to increments or phases which are tracked based on what is
delivered so far. Note that milestone completion must be lined up with
defined quality criteria to avoid detecting poor quality too late.

5.	 Project progress.  This is the key measurement during entire project execu-
tion. Progress has many facets and should look to deliverables and how they
contribute to achieving the project’s goals. Typically, there are milestones
for the big steps and earned value and increments for the day-to-day opera-
tional tracking. Earned value techniques look to the degree of how results
such as implemented and tested requirements or closed work packages relate
to effort spent and elapsed time. This then allows estimating cost to complete
and remaining time to complete the project.

6.	 Quality.  This is the most difficult measurement, as it is hardly possible to
forecast accurately whether the product has already achieved the right quality
level which is expected for operational usage. Quality measurements need
to predict quality levels and track how many defects are found compared to
estimated defects. Reviews, unit test and test progress, and coverage are the
key measurements to indicate quality. Reliability models are established to
forecast how much defects need still to be found. Note that quality attributes
are not only functional, but also relate to performance, security, safety, and
maintainability.

Projects typically aggregate information similar to a dashboard. Such project
dashboard allows having all relevant information related to project progress against
commitments including risks and other information summarized on one page, typi-
cally online accessible with periodically updated data. Examples for project dash-
board information are performance of milestones against the planned dates, or
showing the earned value at a given moment.

Project dashboards provide information in a uniform way across all projects,
thus not overloading the user with different representations and semantics that he
has to wade through. They provide information at the fingertips so you are ready to
make decisions. They help to examine those projects that underperform or that are
exposed to increased risk. Project managers would look more closely and examine
how they could resolve such deviation in real time within the constraints of
the project. All projects must share the same set of consistent measurements
presented in a unique dashboard. Lots of time is actually wasted by reinventing
spreadsheets and reporting formats when the project team should, instead, focus on
creating value.

A project dashboard must not be time consuming or complex. Measurements
such as schedule and budget adherence, earned value, or quality level are typical

http://www.vector.com/easee

Monitoring Cost, Progress, and Performance   163

Variance analysis serves to find practical reasons for causes of off-standard
performance so that project management or department heads can improve opera-
tions and increase efficiency. It is, however, not an end in itself because variances
might be caused by other variances or be related to a different target. Predictors
should thus be self-contained, such as in the given example. Test cases alone are
insufficient because an unstable product due to insufficient design requires more
effort in testing.

A major use of cost control measurements combined with actual performance
feedback is the tracking of earned value (see also Figure 20.1). Earned value com-
pares achieved results with the invested effort and time. For simplification, let us
assume that we have an incremental approach in the project with customer require-
ments allocated to increments. Let us further assume that we deliver increments on
a frequent basis, which are integrated into a continuous build. Only when such incre-
ment is fully integrated into the build and tested is it accepted. Upon acceptance of
an increment, the status of the respective requirements within this increment is set
to “tested.” The build, though only internally available, could at any time, with low
overhead, be finalized and delivered to a customer. The value measurements then
increase by the relative share of these tested requirements compared to the sum of
all project requirements. If, for instance, 70% of all customer requirements are avail-
able and tested, the earned value is 70%. Weighting is possible by allocating effort
to these requirements. Compared with the traditional progress tracking, earned value
doesn’t show the “90% complete syndrome” (where lots of code and documents are
available, but no value is created from an external perspective), because nothing
could be delivered to the customer as is.

Summary: Globally distributed software development poses substantial risks to project
and product management. As companies turn to globalized software and IT, they find
the process of developing and launching new products becoming increasingly complex
as they attempt to integrate skills, people, and processes that are scattered in different
places. We will highlight here some typical risks and provide guidance for risk
mitigation and risk management in global settings.

Globally distributed software development amplifies typical software project and
product related risks, such as project delivery failures and insufficient quality. Worse
yet, it creates new risks, such as inadequate IPR management or lock-in situations
with suppliers. These risks must be identified in due time and have to be considered
together with the sourcing strategy and its operational implementation.

While the classic centralized software development approach once allowed
solving problems in the coffee corner or around the white board, global teams today
are composed of individuals who are culturally, ethnically, and functionally diverse.
They work in different locations and time-zones and are not easily reachable for a
chat on how to design an interface or how to resolve a bug that prevents test from
progressing. This explains that, for instance, only 30% of all embedded software is
developed in a global or distributed context, while the vast majority is colocated.
The reason is very simple. Embedded software poses much higher risk on safety
and reliability; thus companies prefer risk management in their own—known—
environment, rather than adding risk through global teams. How can these risks are
mitigated and thus flexibility be improved?

Risk management is the systematic application of management policies, proce-
dures, and practices to the tasks of identifying, analyzing, evaluating, treating, and
monitoring risk. Global development projects pose specific risks on top of regular
risk repositories and check lists. They relate to two major underlying risk drivers,
namely, insufficient processes and inadequate management.

Not all eventualities can be buffered because in the global economy, developing
and implementing products must be fast, cost effective, and adaptive to changing
needs. Therefore, there is a need to utilize different techniques to effectively and

165

Chapter 21

Risk Management

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

168   Chapter 21  Risk Management

across close to one hundred projects and products of different size and managed
either in captive or distributed mode. We can highlight with this data that specifically
early indicators, such as requirements change rate, early defect removal and skill
level, key risks related to project performance, and attrition can be effectively
mitigated.

Project delivery failures. A standard risk for many projects, the risk of being
late or over budget, amplifies in probability and impact due to the intrinsic difficul-
ties of managing a global development team.

As mitigation, project and team managers must be educated in estimation, plan-
ning, dependency management, uncertainty management, project monitoring, and
communication. The latter is crucial as experience shows that projects fail not
because of unknowns, but because of not willing to know or to communicate known
facts [Ebert07a, Hussey08, Rivard08].

We have seen from ramping-up internal software teams in Eastern Europe,
India, and China that solid processes not only accelerate introduction of outsourcing/
offshoring but also serve as a safety net to assure right training, good management
practices, and so on. We conducted a controlled experiment when ramping up off-
shore development teams in China. Our experience was that the building of such a
globally distributed development team was fastest and most reliable in the case
where the demanding organization was on CMMI maturity level 3. The same was
done with lower-maturity demanding organizations with the effect that the CMMI
maturity level 2 organizations could manage with some external support, while the
maturity 1 organization failed due to highly inefficient interface frictions and lots of
rework. For companies in the IT service domain COBIT and ITIL enhance CMMI-
SVC toward basic service processes and risk management.

We recommend maintaining an organization-wide risk repository with all
project risks together with identified mitigation actions. At the start of a new project,
the project manager has to take this organization wide risk repository and check
what specific risks are applicable to his project together with any new items. The
second, a more medium-term approach, is to train all project managers. Using the
CMMI or COBIT and certifying in professional project management is an effective
mitigation.

Another important and easy mitigation action is building on past project experi-
ences. The key parameter for project success is schedule adherence. We suggest
doing a periodic root cause analysis (RCA) on completed projects to identify the
key issues that contributed to delays. On these issues we can do a Pareto analysis
to define focused actions for the most critical and repeating issues. Figure 21.3 shows
the impact of project delivery risk mitigation indicating a clear reduction in spread
of schedule deviation over years, as we increasingly apply our learning from previ-
ous projects toward future projects.

Insufficient quality. Working in different places or with teams in different
organizations means, that many work products are moved across such places and
teams with the risk of insufficient quality. Often the underlying rationale is that teams
suppose that there will still be sufficient validation “downstream” so that quality
deficiencies accumulate.

170   Chapter 21  Risk Management

they are forced to train their much cheaper counterparts. The barriers to such har-
monization and cooperation are not to be underestimated. They range from language
barriers to time zone barriers to incompatible technology infrastructures to hetero-
geneous product line cultures and not-invented-here syndromes. An obvious barrier
is the individual profit and loss responsibility that in tough times means primarily
focusing on current quarter results and not investing in future infrastructures.
Incumbents perceive providing visibility a risk, because they become accountable
and more subject to internal competition.

As risk mitigation we recommend collaboration and communication. Collaborate
across disciplines, cultures, time, distance, organizations. Communication starts
before the outsourcing/offshoring project is kicked off. Fears, hopes, barriers must
be articulated. Assess your organization carefully on such distance and culture risks.
This demands a fully new skill set, currently not taught at universities (e.g., manage-
rial, teaming, sharing without losing) [Sangwan07]. Cultural sensitization, periodic
workshop between clients and suppliers, and networking between various teams has
been the effective risk mitigation strategy. Provide space for engineers to share their
emotions with team leaders openly. Establish early warning systems to detect upcom-
ing barriers and fears.

Collaboration also means effective and efficient tools support. The exchange of
information between sites must be carefully planned. The closer tasks and software
components are linked, the more need for good data communication. Tasks with
high overlap should not been done with too much time distance. Especially with a
high work time overlap, online collaboration has high demands on fast, reliable
quality of service for video, engineering tools and online collaboration. A change
management tool is not enough because engineering demands collaboration on
content and knowledge. Plain supplier management platforms as they are offered
today for handling online market places and tenders are also insufficient due to their
limitations in sharing engineering information. You will need rules and workflow
support for documentation, design reviews, change management boards, and so on.

Figure 21.4  Optimizing early defect removal in global development contributes to improved
schedule adherence.

Early defect ratio versus schedule adherence

60

70
80

90
100

110

120
130

140

2004 2005 2006 2007

S
ch

ed
u

le
 a

d
h

er
en

ce
 (

%
)

0
10
20
30
40
50
60
70
80
90

E
ar

ly
 D

ef
ec

t
R

at
io

 (
%

)

Schedule adherence (%) EDR

Correlation: r = –0.9

Risk Management   175

structure. A big supplier with a small enterprise won’t fit, because the SME will not
have the chance to make corrections once the contract is settled. Evaluate offers
during the tender of a supplier contract with dedicated estimation tools such as QSM
SLIM to compare and judge feasibility [Ebert07a].

Lock-in. With outsourcing/offshoring supplier competition on a global market,
external suppliers often start with rather low rates, and, once the projects are suffi-
ciently large, clients might be forced to lock-in with them due to progress of product
development and knowledge transition. In the least we may have to face increasing
cost inflation.

The primary risk mitigation is to have multiple partners and distribute critical
knowledge on two sources. Each one shall know that we have a choice to make and
that will make the external suppliers to remain competitive. To improve efficiency
and reduce effects of lock-in, global teams must use the same tools, methods, and
processes. It is worth the extra money for tools licenses, although in a low cost
country the additional load on engineering cost can be 10%–20% for the necessary
design tools. Our recommendation is to avoid supplier-specific and ad hoc tools as
they won’t scale up and can bring substantial issues if backups cannot be restored
or contents are corrupted. Process improvements and best practices gained over
years of experience in one engineering team need to be replicated quickly, in other
engineering teams. Common processes and tools across engineering teams will
benefit quick spread of lessons learned/defect prevention actions across teams.

Lock-in goes beyond suppliers. Do not forget about risks related to certain
regions of the world, where you might currently be locked-in. We also recommend
maintaining flexibility in where you work and with which supplier. Instabilities can
be caused by political turmoil as well as earthquakes, civil war, or terrorist attacks.
Don’t put all your global development into one single site. Consider distributed
hosting of infrastructure and backups. Periodically test the restore mechanisms to a
different new site.

Inadequate IPR management. Intellectual property rights are a key success
factor in software development. Mostly, software is not patented and copyrights are
not enforced equally in all regions of the world. Further risks are related to improper

Figure 21.7  Achieved skill index and attrition in subsequent year.

–40%

–30%

–20%

–10%

0%

10%

20%

30%

40%

50%

Team 1 Team 2 Team 3 Team 4 Team 5 Team 6 Team 7

A
ttr

iti
on

 c
om

pa
re

d
to

m
ea

n
of

 a
ll

te
am

s

Attrition of team compared to average of all teams
Skill index of team compared to all team average

Correlation: –0.85

Summary: In this case study we present a technique used to assess schedule risk in
globally distributed industrial software projects. To support the case study we
analyzed two and a half years of quantitative project data and we obtained team
productivity measurements as a function of project site and feature applicability
domain. We supplement the quantitative data with a questionnaire that was used to
generate qualitative data. The qualitative data is useful, as it helps to identify
communication delay and domain knowledge as some of the factors that could explain
the observed differences in site productivity.

BACKGROUND

To support our analysis about the main aspects related to project risks, we performed
a systematic literature review of project practices and lessons learned from globally
distributed projects. The analyzed project was distributed over five sites, two in the
United States, two in Europe, and one in India, had more than three thousands
requirements and nearly one hundred and fifty developers. Each site has one or more
development teams, and the project has 11 teams in total. Our data set contained
nine short project releases, spanning twelve months of software development and
software integration testing.

Several studies on global software engineering have identified some common
aspects that can affect product schedule, such as [Alberts08, Ebert06, Hillegersberg07,
Hussey08]:

•	 Cultural differences

•	 Many distributed sites

•	 Different knowledge expertise and domains

179

Chapter 22

Practice: Risk Assessment in
Globally Distributed Projects
Adailton Lima and Alberto Avritzer, Siemens

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

182   Chapter 22  Practice: Risk Assessment in Globally Distributed Projects

should be made available between the producer and the consumer of information.
As reported by Gotel [Gotel08], direct communication is necessary, especially on
the integration phase in which developers and testers should have intensive com-
munication to solve the inevitable problems introduced by code integration. For
example, Phalnikar [Phalnikar09] reports that the creation of a message board or
wiki to share similar questions can improve project communication and avoid basic
problems.

Regarding the process definition studies, the most common strategy reported is
the definition of common processes and tools over the different development sites.
Project managers applied this strategy when faced with global coordination prob-
lems in the software development process [Ebert08, Mikulovic06, Herbsleb05].
There are also recommendations related to the execution of project activities, like
the definition of strategies to conduct remote meetings and the practices to be used
for configuration management of the shared project workspace.

Global software development projects must rely on decentralized control mech-
anisms to provide adequate support for the remote coordination among sites
[Hillegersberg07]. Source code measurements can be collected and analyzed to
provide an overview of the software development status [Kuipers03, Kuipers07]. A
manager can use these measurements to support project management decisions
based on development and testing information processed by their tool.

Project risks can be assessed based on positive and negative project risks drivers
[Alberts08]. Risks drivers are collected on the target project and a risk assessment
algorithm is applied to calculate project risk. The main contribution of this method-
ology consists of the risk drivers that can be added to support globally distributed
software development projects.

We are not aware of any tool support to automatically perform risk assessment
of globally distributed projects using statistical project management data. In addi-
tion, project factors such as communication and coordination requirements may have
strong impact on globally distributed projects.

We have adopted a simulation approach for the risk assessment of schedule risk.
This approach allowed for the creation of a high-level simulation model for the
assessment of project behavior as a function of the following parameters: software
development process, team productivity, and communication requirements. The
simulation tool was used in the following two steps of our investigation methodol-
ogy: first, we ran general simulations to look for project schedule bottlenecks;
second, we reduced the search space selecting specific points to compute the project
schedule risk measurement.

Domain knowledge variability and team communication are important factors
to consider in schedule risk assessment models of globally distributed software
development projects, where features are outsourced to sites that may have less
knowledge about the applicability domain. The experimental study was conducted
by a series of stochastic simulations based on a model designed using the Tan gram-
II tool [Silva06]. This tool allows the creation of event-based models, where the
interval between events is determined by stochastic data. Figure 22.2 shows the
graphical representation of the simulation model, representing the feature allocation

Background   183

to sites, the communication among sites, and the queuing of features for develop-
ment resources.

We have extracted quantitative data from the project management database of
the large globally distributed software development project under study. We have
also interviewed project leaders and developers to balance quantitative and qualita-
tive data in our analysis. The project management database contained feature pro-
ductivity data per project site, and feature domain of applicability, for nine short
project releases.

The simulation model was designed to represent an abstraction of a group of
development sites interacting during the software development process. Each site
has its own domain knowledge capabilities and a set of features that have been
allocated to the site.

The simulation model was based on the characteristics listed above, and con-
tains the following features: feature request at each globally distributed site, feature
development time at each globally distributed site, domain knowledge per global
site, queuing for development resources, estimation of reduced team productivity
due to queuing and communication overhead, and estimation of the project schedule
risk. The stochastic model makes assumptions about the probability distribution of
factors that are easier to obtain, like the time to develop a feature, the communica-
tion pattern between sites, and the pattern of feature allocation to sites.

Our simulation model computes the reduced team productivity due to the com-
munications overhead and queuing for development resources. The project schedule
risk is computed by executing the simulation model and extracting statistics about
the number of times the simulation resulted in project delay. For example, if we run
the simulation one hundred times and obtain as a result that the project was delayed
ten times, we define the schedule risk as 10%.

Figure 22.2  Simulation model with global view.

Communication channel

Feature allocation

Fe
a

tu
re

s
Fe

a
tu

re
s

Tasks queue

Site B

Site A

Summary: Global software engineering demands a huge amount of knowledge being
shared across physical sites. This means a variety of information security risks
associated with development practices, infrastructure, and operations that can lead–if
not managed adequately–to severe business impacts as well as affect commercial
image of the organization resulting in loss of customer confidence and trust. We will
provide some guidance on managing intellectual property and mitigating IPR related
risks.

Global development, independent of the underlying internal engineering center busi-
ness model or outsourcing, has raised concerns toward assuring the security of the
information and intellectual property being shared across sites. In colocated develop-
ment on a single campus, today’s technology of firewalls and infrastructure protec-
tion has sufficient means to protect information security. Hackers and other malicious
attacks (often even performed by employees to assure loopholes for their own needs)
continuously challenge even this supposedly simple scenario. In the globalized, and
thus distributed, site approach, assuring security is much more difficult. Networks
must be protected as well as physical infrastructure in different countries with dif-
ferent attitudes to intellectual property and security. Confidential and critical client
information needs to be secured in a manner that ensures the client’s information
security policy.

Security risks in global development are manifold, and we can only name a few
which create the biggest exposure to the users, such as access to confidential infor-
mation by any person who is not entitled to have such visibility, insufficient disaster
recovery in case of security breaches or failing operations, lack of adequate manage-
ment of external intellectual property (e.g., downloading of open source software
and polluting own designs), exposure to external security breaches (e.g., hacking,
denial of service, implantation of Trojan horses), malicious engineers creating loop-
holes or other damages, or insecure applications implanted by own workforce on
the network.

189

Chapter 23

Intellectual Property and
Information Security

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

192   Chapter 23  Intellectual Property and Information Security

all persons working for you or having access to information related to your
company (e.g., administrators in the back office) to assure nobody will have
uncontrolled access.

•	 Always register trademarks and copyrights in countries where you operate.
File for local patents as much as is feasible.

•	 Establish clear governance rules on visibility and sharing of information.
Audit the enforcement of security and backup policies. Check access rights
on a routine basis. Many tools and applications (or operating systems) come
with defaults that bear high risks.

•	 Agree on specific security contracts locally. If necessary, include insurances
even if they appear expensive.

•	 Use all available security mechanisms for electronic communication. Establish
visibility ranges, role-based identity management or firewalls. Communicate
with VPN. Do not allow ftp or messaging.

•	 Never communicate confidential information on regular phone or e-mail ser-
vices. Always encrypt contents with a strong authentication key.

•	 When working with local enterprises for collaborative development, establish
replicated documentation and protected shared collaboration zones to avoid
direct access to own enterprise intranet.

•	 Demand good document management from any external supplier to assure
that you still have full access to all your critical design documents in case the
supplier defects, suddenly disappears, or wants to lock you.

•	 Audit access rights and security policies at your remote sites and your external
suppliers. Consider even the most obvious defenses, such as fire protection
or distributed backup. Test your recovery plans and simulate accidents rou-
tinely. Restore critical information at least on a weekly basis to avoid surprises
in case of accidents.

•	 Mirror critical knowledge across different physical sites in different parts of
the world. Do not locate critical knowledge only in one part that might sud-
denly become victim of a civil war or an earthquake. Never entrust intellectual
property to single persons if there is no skilled second source. Replicate criti-
cal skills and manage skills development accordingly.

•	 Assure that any tools and libraries you are using are covered by necessary
global licensing schemes. Not all floating licenses are valid on a global basis.
Some suppliers exclude distinct countries from their license schemes. Use
license management tools to assure clean and auditable license management.

•	 Establish policies with respect to reuse of external code (e.g., Open Source
Software). Demand explicit electronic signatures upon check-in of new code
or technical documents into your document management system to enforce
all engineers accepting the rules.

•	 Demand that your suppliers follow the information security laws and policies
of your home base (or any other country if yours is not strong enough).

Summary: This chapter provides a case study from Diehl Aerospace and shows
experiences from globally distributed software projects in the aerospace industry. It
addresses embedded and safety-critical software where skills are usually deeply
embedded into the home company, thus making outsourcing rather difficult. So it will
also address cultural issues. The case study highlights relevant themes and guidance
from previous chapters in a concrete project context. It offers valuable insights into
how to do things in your own company.

BACKGROUND

We started offshoring as part of our software development some years ago. There
were two main drivers at that time for starting offshoring. The first one, and at this
stage the most important, was that we didn’t find enough engineers in Germany or
the rest of Europe (we expanded our search for engineers also to France and the
United Kingdom), and, second, there was a cost issue. But let me speak first about
the engineering shortage.

For that, we discussed, at first internally, whether to ask Indian engineers to
work at our sites in Germany. During the discussion we realized there was a need
of 50–80 engineers over a period of 18 months, and it would not be possible to do
this work onsite in Germany. What else was there to do? The only alternative would
be to send this work offshore, but no one in the company had done it before. So
there were no experienced people available who could give support for managing
entrance into offshore business. The result was that we would have to manage it on
our own.

At first we started to think about what would be the greatest obstacles within
our company. We saw two of them very quickly. First, we realized we had to set up

193

Chapter 24

Practice: Global Software
Engineering in Avionics
Werner Burger, Diehl Aerospace

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

Ta
bl

e
24

.1
 

Su
pp

lie
r

Sk
ill

s
an

d
Po

te
nt

ia
l A

ss
es

sm
en

t

C
ri

te
ri

a
W

ei
gh

t

Pa
rt

ne
r

Po
in

ts
Su

m
Po

in
ts

Su
m

. .
 .

Po
in

ts
Su

m
Po

in
ts

Su
m

1
K

no
w

-h
ow

 E
m

be
dd

ed
 C

 S
of

tw
ar

e
10

2
K

no
w

-h
ow

 e
m

be
dd

ed
 S

of
tw

ar
e

5

3
To

ol
s

co
m

pa
tib

ili
ty

 (
D

O
O

R
S,

 R
ha

ps
od

y 
. .

 .)
9

4
Pr

oc
es

se
s

10

5
Te

ch
ni

ca
l

E
qu

ip
m

en
t

10

6
Q

ua
lit

y
M

an
ag

em
en

t
Sy

st
em

10

7
Po

te
nt

ia
l

fo
r

in
cr

ea
se

 o
f

te
ch

ni
ca

l
st

af
f

10

8
O

w
n

ca
pa

bi
lit

y
fo

r
te

am
 r

am
p

up
9

9
T

ra
in

in
g

8

10
E

xp
er

ei
nc

es
 i

n
gl

ob
al

 e
ng

in
ee

ri
ng

 (
E

ur
op

e)
8

11
E

xp
er

ei
nc

es
 i

n
gl

ob
al

 e
ng

in
ee

ri
ng

 (
U

S)
10

12
L

an
gu

ga
e

sk
ill

10

13
Fl

uc
tu

at
io

n
ra

te
10

14
N

um
be

r
of

 e
m

pl
oy

ee
s

9

16
A

vi
on

ic
 e

xp
er

tis
e

8

18
C

ul
tu

re
9

196

Results   197

How do you get the best performance from your offshoring partner? Set up a
well-defined development process, define a checklist as a basis for the work to be
performed, set up a training plan for your offshore partner, define key performance
indicators and also improvement figures on a time scale, and set challenges.

How do you get the best cost structure? Take care that your offshore team has
senior engineers but also young ones, so that you have a mixed team where seniority
is also available. Be cautious: if you have negotiated very low hourly rates your
team might have beginners only. Finally, you have to set up a process to handle
efficient requirement changes.

Following these guidelines will help you to define which work is done where,
onsite or offsite; this, combined with well-defined key performance indicators, can
help you reach a very good cost/performance ratio.

OFFSHORE PARTNER SELECTION

Selecting an offshore partner should be done according an evaluation list as described
in the following. Table 24.1 distinguishes hard and soft facts. The hard facts (assess-
ment, financial) and the soft facts (experience, culture) give an almost complete
picture of the capabilities of the companies under selection, and should lead to a
good choice. Last but not least, a personal management obligation given by the CEO
of the selected supplier should be given.

The preparation for the assessment and the assessment itself have to be done
very carefully. We always did the assessment based on real facts: we looked into
source codes that had been done, and we asked staff who we planned to assign to
our projects directly about their experience and let them describe in detail the proj-
ects they had worked on. We also checked technical details and asked or checked
why alternative solutions had not been chosen. By this we got a very good impres-
sion of their capabilities; we overcame any inhibitions (mainly those of the Indians),
and we got very good information we could use for our assessment and for our
selection. We didn’t pay too much attention to the marketing people; we focused on
the engineering staff.

RESULTS

Implementing offshoring for the first time is like a journey in a dangerous jungle.
You don’t know the foreign culture, you don’t know the foreign people. While the
engineers at your company may feel they are the best in world (which is exactly
what you told them before), they may wonder why you would want to take work
away from them.

You have to win them over; you have to guide your engineers to manage global
working. How can you win people over for anything new? In principle it is simple:
make your story theirs, make your approach theirs, and make your intention theirs.

It is like a boat ride on a dangerous river. Put courageous people in your boat,
start the ride, show them how to manage the first pitfalls, and, after some time, hand

Starting the First Real Project   199

and performed. It is very important to very clearly define the objective of the pilot
project, both internally and externally. The management levels of both companies
have to be incorporated. Methods and procedures for monitoring and control have
to be discussed, and, after being reviewed with management, they have to be written
down and communicated.

All internal important stakeholders have to be incorporated. “Important” stake-
holder means, first and foremost, the “spin doctors” who have to be won to support
the offshore project. During the project, these stakeholders should be continuously
informed about the results reached and problems coming up. Also at the beginning,
the evaluation criteria should be defined and set up.

Another important factor is for you to select two people, one for technical
management and one for project management. These two people have to become
the internal and external supporters and have to have the required hard skills and
experience. The soft skills can be attained by training measures. Performing a pilot
project with several potential subcontractor companies can allow a comparison of
competence, productivity, and capabilities. This gives a good overview and a broad
area of understanding and learning. This information should be considered carefully
in future projects. The number of the subcontractor companies under competition
will be limited by the available assessment staff. At the end of the pilot project, a
lessons-learned process, internally and externally, should be done, wherein all posi-
tive and negative results are shown and discussed with all stakeholders. During
the first project, measures how to mitigate the “negatives” have to be set up in
written form.

STARTING THE FIRST REAL PROJECT

At the beginning, we always very carefully selected the lead technical person and
trained him in intercultural issues, mainly in Indo/German specifics. But only real
life and real experience can advance intercultural understanding. We asked our
technical person to invite an Indian colleague to visit towns and historic sites
together, as well as to do something together with their families. This brought
forward an understanding of personalities as well as working styles. Most of the
later problems were solved without management interaction.

The first real project with the selected subcontractor was started with a defined
budget, defined quality and results to be delivered, and defined time schedule. At
first, a suitable cooperation model was chosen from three possible types:

•	 Time and material

•	 Work packages

•	 Statement of work

Time and material means that engineers will be selected by the subcontractor
company according their skills. These engineers build a team guided by the pur-
chaser company. The task to be done is defined; results to be reached and to be
delivered are also defined. If problems arise, either the team has to be expanded or

General Principles   205

For the measurement, define key performance indicators (KPI) and use them.
Give the offshore team feedback about their success reached and about the improve-
ment of productivity reached. Make a monthly report and put the reports on a
blackboard for everybody in the purchaser’s team to see it. Also, discuss the KPIs
and how better KPIs can be reached. All teams want to get better and to show better
results; they want to learn and show strong competitiveness.

Work Culture. Today, significant work in global software engineering is being
done in Asia and India. The reasons for that are cost structure and the high number
of available engineers, who are well-educated, well-trained, and highly motivated.
Nevertheless, there is some reduction at avionics companies to subcontract avionics
software development to India. It is mainly based on the differences in working
culture and not on a lack of understanding of the different behavior or culture.

This obstacle has to be overcome. The working culture of the subcontractor
company has to be understood and methods and means have to be set up and
installed. The best way is a very simple one. Start a project and do it. And think
about the fact that people will work together in a team if there is a communication
culture available, and communication between engineers is much simpler if technical
problems have to be solved commonly.

Think about how important daily floor communication in your company is when
all the project work is done in your own offices. Doing projects far away means that
there will no longer be any kind of floor communication. So you have to install other
means to allow information to flow. Set up a “structured” communication to allow
fast answering of questions, understanding of technical problems, and a way to solve
cultural differences.

Very often this can be done by installing either an onsite engineer at the sup-
plier’s site, or a representative from the subcontractor’s company at the purchaser’s
site. However, technical communication has to be simplified, and the right technical
people have to communicate on a personal relationship basis.

After communication is set up, you may begin to see that you have one team
instead of two fighting against each other. Technical problems may be solved,
required quality will be reached, and tough schedules may be kept. These are the
key factors for project success.

Ramp-up/ramp-down. Another point that supports project success is described
in the following. The nature of avionics projects shows that during integration and
testing, problems will be found that have to be solved and incorporated into a new
software version—without any delay to or and influence on the project schedule.
This means very fast ramp-ups and ramp-downs have to be realized (see Fig. 24.3).
A ramp-up of about 50 engineers for 2 months within one project has to be managed.
Indian dynamics support that. The precondition for that is to have well-trained
engineers available and an excellent team structure that allows for adding new col-
leagues to the team. Again, special attention has to be given to the project manage-
ment, preparation of planning, and reaction to project changes. Cultural dynamics
and the motivation of engineering teams will provide the basis for that.

Change of project requirements. Unfortunately, there is another weak point
that must be solved to reach project success. In general, there are two different kinds

Success Factors   207

SUCCESS FACTORS

How do you reach the optimum of savings? This is the key to success, to get
a competitive advantage. Hard and soft facts have to be addressed. Excellent man-
agement of the soft facts is the basis for any project success. Motivation and con-
tinuous feedback are a must. Within the area of avionics, motivation is not too
difficult to reach. Everybody likes to be part of the large number of engineers
who have successfully developed an aircraft. Giving feedback and giving it
continuously is very often unusual, but it is essential for the team working for
you. Do everything that the best engineers in the company want working for your
project.

But hard facts have to be seriously considered in detail. Following the common
practice for project teams in Europe and the United States, the hard facts to be used
will be described. Set up a detailed statement of work that consists of separate work
packages, with specification of inputs to be delivered from the purchaser’s and
results provided by the supplier according to a detailed schedule. Define the quality
standards to be followed. Identify for each of the work packages the amount of effort
you will accept. Define measurements that have to be followed and present those to
the responsible lead engineers. Agree on the facts you want to see. Install an inten-
sive coordination and communication structure and define responsibilities and
actions, such as answering open points within one working day. Find a solution to
problems that will not be solved within the agreed time-frame. And control it in a
very direct way. Do not wait for questions to be asked. Sometimes there are no
questions. For control you will need a project manager with good technical expertise
and project management experience.

Next, set up a cost management change process. Your supplier has to track
project progress associated with project cost. The offshore company should give an
indication if they will run out of project cost. If this tends to happen, the purchaser’s
manager has to work out a solution with the supplier’s lead engineers. Convince
them of your point of view with technical facts complemented by technical propos-
als, for example, on how to proceed. Let your knowledge and your experience flow.

Many engineers at offshore sites are very motivated to learn and will follow the
advice given. But sometimes the productivity is not as good as expected and needed.
Then, the measurements agreed upon have to be improved, processes have to be
simplified, and for the respective work, easy and helpful tools have to be developed
and added to the project. Do not hesitate to improve the measurements until you
think savings are nearly at a maximum level.

Why is that goal so seldom reached? Very often, the global software engineering
project manager does not get enough time to do this very carefully and is not well
prepared or experienced enough for this kind of project management.

What effort is actually necessary for control and overheads? A percentage of
15% of the technical manager’s time and 10% of the project manager’s time in rela-
tion to the total amount of project hours should be a sufficient amount to be spent.
Usually, this can be reached after the third project, and with an adequate project size
this can occur after one year of cooperation.

208   Chapter 24  Practice: Global Software Engineering in Avionics

TAKE-AWAY TIPS

In the future, avionic software projects will become larger and more complex. Time
schedules will become shorter because engineering shortage is a daily experience.
Therefore, global software engineering will help to solve these challenges.

Here is some practical advice:

•	 Don’t hesitate to transfer responsibility.

•	 Give the colleagues at the offshore company the awareness that they are
responsible to fulfill the task to the satisfaction of their customer.

•	 Write down your expectations, do counterchecking for understanding, and do
your project monitoring and control along these expectations.

•	 Set up well-defined milestones and share the results of meeting them, give
feedback and address incomplete results reached and make proposals for how
to improve. Communicate the results.

•	 Additionally, continuously do your lessons-learned meetings and incorporate
those promptly in your project. Only then will your offshoring become a
success.

Prepare the task carefully and comprehensively, and do the right IT-tool selec-
tion and installation. Define in written form the tasks (SoW), the quality to be
reached, (standards) processes to be followed, and expectations you have. Discuss
and define measurements to be realized and performance improvement you want to
see, and continuously give feedback about the results reached or not reached before
making proposals for how to reach them. Do not forget to monitor and control all
the targets set. Your project will then be a success.

Summary: This chapter provides a case study from Bosch and shows experiences from
globally distributed software projects in the automotive industry. It illustrates how
Bosch, in the domain of software development for powertrain control, was able to
implement a successful cooperation between the central locations in Europe, the
regional centers in the United States and Japan, and their development services unit
in India. The case study highlights relevant themes and guidance from previous
chapters in a concrete project context. It offers valuable insights into how to do things
within your own company.

BACKGROUND

Global distributed software development has become the mandate in the automotive
industry for various reasons. To mention just a few:

•	 All players in the industry need to pursue growth opportunities worldwide.

•	 Not having access to the globally available engineering resources is prohibi-
tive considering demographic as well as educational trends in the developed
world.

•	 Customers worldwide demand competent development teams which they can
easily access rather than being serviced from headquarters many time zones
away.

•	 Suppliers need operations in cultural proximity to important customers to
fully understand their strategies and requirements.

•	 Taking advantage of the vastly different cost structures of operations around
the world is essential to stay competitive.

209

Chapter 25

Practice: Global Software
Engineering in Automotive
Andree Zahir and Satish Seetharam, Bosch

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

210   Chapter 25  Practice: Global Software Engineering in Automotive

Consequently, global software engineering is no longer an optional approach
that needs to be balanced against the efficiency advantages of colocated teams.
Instead it is a mandatory concept that must be managed in the best possible way.

As the global market leader in fuel injection equipment (FIE), Bosch has the
need for an effective worldwide software development organization for engine
control units. The lead development locations are based in Stuttgart, Vienna, and
Paris with regional development locations being established around Detroit and
Tokyo. These locations are referred to as onsite locations. They are supported from
the development services organization in India, residing in Bangalore and Coimbatore,
collectively called offshore locations.

In order to characterize the nature of work, we distinguish between platform
developments (defined as a variety of functionalities being used across several cus-
tomers) and customer specific development.1 Product generations are updated every
5–6 years, which is mainly driven by emission legislation. Tighter limits for pollut-
ants and fuel efficiency2 lead to more complex engine control functions, which in
turn require advanced hardware (higher performance microcontrollers with increas-
ing I/O channels), software architecture, and development tools.

Software development projects in the automotive embedded control domain
exhibit some unique qualities. Compared with the well-established business applica-
tion development and IT-services projects typically executed in India, a knowledge
cluster in automotive controls is just emerging. Therefore, a lot of training is required
in-house to build up required competence levels. Some of the specific challenges are:

•	 The complex real-time computations required for engine controls.

•	 Knowledge retention over many years since the product lifecycle, including
service periods, easily exceeds 10 years.

•	 System knowledge on vehicle and engine related topics in the mechanical and
hydraulic domain in order to understand customer requirements.

•	 Specialized and costly test equipment like vehicle simulators, cars, and test
benches are essential to validate the embedded control functions.

Offshoring in development organizations is generally understood as outsourcing
of certain development activities to locations with a considerably lower cost struc-
ture. This case study contemplates offshoring of development work from the above
mentioned onsite locations (i.e., high-cost locations [HCL]) to the offshore locations
in India (i.e., low-cost locations [LCL]).

The typical problems of such cooperation depends on the specific countries
involved but are more closely linked to the different cost structures and cultures of
these locations. Henceforth, the lessons we learned from the cooperation between
locations in WEU and India can be applied, to a good extent, for situations when
offshoring from the United States or Japan to LCL like China or Eastern Europe.

2  CO2 emissions can only be reduced by improving fuel efficiency of vehicles.

1  The additional variant of customer platforms which cover common functionalities across various
projects for a particular customer is not covered here.

212   Chapter 25  Practice: Global Software Engineering in Automotive

The only way of making an intercultural team effective is for the management
to be open and understanding of all the cultural differences affecting work, and to
adjust the cooperation accordingly. Typically, project reporting, tracking, quality
assessments, and communication styles need to be addressed. It is also important
that colleagues from both parties know each other personally. A reasonable amount
of travel should always be planned between the locations even though the continuous
rise in bandwidth allows high performance video conferencing worldwide. N.J.
Adler showed how dominating the intercultural aspects on team efficiency are
[Adler91]. Unfortunately, multicultural teams tend toward the extremes regarding
efficiency compared to single cultural groups. They are either highly effective or
well below the average effectiveness of single cultural teams (see Fig. 25.2).

Inadequate rewards for offshoring: This issue typically results from the
diverging motivational factors of development engineers and their management. All
the critical areas mentioned affect the engineering staff involved in distributed
development. But the rewards for successful offshoring are typically attributed to
their managers only. Typical goals for international managers are the reduction of
total development costs or balancing the worldwide distribution of development
capacity. For engineers or team leaders in software development, goal setting related
to technology, increased competence, or efficiency is more usual. Unfortunately,
none of these goals becomes easier to achieve in case development work starts
getting distributed. Most likely all project managers around the globe would prefer
to have their team located in the same place.

In short, the persons struggling with the difficulties related to distributed soft-
ware development don’t earn the rewards of making virtual teams successful. Only
their superiors do and this commonly causes lack of motivation.

Limited offshore team stability: Throughout the years prior to the current eco-
nomic crisis a major complaint concerning India as software development location
created the lack of stability within the software teams. People used to switch assign-
ments much faster compared to Europe or the United States for two dominant reasons:

•	 The tremendous growth in the Indian IT-sector did create plenty of attractive
job opportunities for experienced software developers in the market which,
in turn, promoted higher attrition numbers across the industry.

Figure 25.2  The performance dilemma of multicultural groups.

Cooperation Model between Development Locations   215

ects. Consequently, offshoring started to be perceived as enriching rather than just
threatening.

The strategy for the offshore center in India clearly reflects that approach. In
addition to supporting development projects worldwide, the responsibility of the
LCL in India is defined as handling mature generation projects as well as complete
projects for local customers in various emerging markets. To complement the global
setup, the long-term responsibility of the HCL is defined for strategy development
and new innovation projects. People across the organization support this strategy
because it offers a compelling vision for both the lead development locations as well
as the offshore center. Since this strategy was defined several years ago, sufficient
time has passed to reach out through the organization.

Clear commitment of the top-management team at the lead development orga-
nization shouldn’t be underestimated. It makes a huge difference whether top-
managers remain convinced of the offshore approach even in the inevitable situations
of operational problems. Statements like “Just make it work together with the off-
shore team” give a very clear direction. Raising questions about the offshore approach
in such situations conveys the message that the strategy is not stable and a rising
number of problems could get escalated afterward.

COOPERATION MODEL BETWEEN DEVELOPMENT
LOCATIONS

The offshore center implements the simple business model to treat the departments
in the lead and regional development locations as customers to service. Since every
organization is highly motivated to grow, a strong pull-factor emerges to get devel-
opment work transferred to the offshore center. At the HCL, the motivation to
transfer work is higher in case they are treated as esteemed customers rather than
totally equal partners. In India the service sector is well developed and complements
this demand. Combined, this approach has proven to be more effective compared to
shifting work to India through management pressure at the lead and regional devel-
opment centers alone.

From the perspective of the lead development locations, full ownership of the
supporting development teams in India is encouraged. Team cooperation and per-
formance shows the best results in case people start thinking as one global organiza-
tion down to department and group level. Once this mindset is achieved, managers
start thinking in terms of globally distributed software development rather than
shifting work out of their onsite team (see Fig. 25.3). Accepting that kind of global
responsibility becomes visible through statements like “I’m in charge for a global
development capacity X of which 50% is located offshore in India.”

To streamline the interfaces between the development units, the organization in
India mirrors the structure of the lead development location. Through this approach
we realize a one-to-one relationship between managers on both sides effectively
supports a close and sustainable cooperation. In case a manager just needs to call

218   Chapter 25  Practice: Global Software Engineering in Automotive

Offshoring activities in projects normally start with a senior member being
associated with the team onsite at the lead development location on a basis of 6–12
months. On return to the offshore center, this person is used as a seed to establish
the project at the remote location in a gradual way. Associate exchange programs
are utilized in case of a need for a specialized skill at the offshore center. Then the
right person, with respect to aspirations and skills, is sent for a travel to Europe in
order to learn on the job what is required to transfer the related development
activities.

In order to create the awareness of the work environment in Europe, every
Indian colleague is sent on a 3-month “orientation visit” to Europe after having
worked for roughly one year in the offshore center. After returning to India, these
associates know their counterparts in the joint project teams and more fully under-
stand how software engineers work and communicate in Europe. That experience
typically leads to good improvement in team efficiency.

REWARDING DISTRIBUTED TEAMS

Reward mechanisms for successfully offshoring projects need to be installed at the
right place. This means line management positions from team to department lead
need to be addressed rather than top management levels alone. The kinds of incen-
tives that are chosen depends upon the development organization and the overall
company culture.

Some incentives, like business growth, are intrinsic for corporate organizations
and do not require additional stimuli. Working with a low-cost location, for instance,
allows executing more projects within given budget limits. In case this does not
motivate team members sufficiently, additional factors can be used:

•	 Removing the option to engage third-party contractors at the HCL.

•	 Prescribing certain ratios of development capacity between the high and
lowcost locations.

Technical experts can be rewarded for distributing their knowledge to an inter-
national expert network. The success can be measured by observing the offshore
location performing regional development projects independently from the lead
development unit.

OFFSHORE TEAM STABILITY

Attrition depends on the overall labor market situation and can be influenced only
to a limited extent. Of course, the offshore center needs to stay competitive within
the local software industry regarding compensation, career opportunities, employee
benefits, work environment, and so on. For the offshore managers it becomes a key

Take-Away Tips ﻿   223

TAKE-AWAY TIPS

The software development units in Bosch working on powertrain applications like
engine controls started the cooperation with the offshore center in India 20 years
ago and made this offshore center an integral part of the global development network.
Cooperation models have been adopted over time based on learning and best prac-
tices while working in the intercultural context. The chosen approach of fully inte-
grating the international teams while maintaining a customer oriented mindset in the
offshore center has proven to lead to excellent results in the cooperation. In the
previous chapter we presented data on quality, levels of responsibility, and cost
savings achieved in cooperation with the offshore center in India confirming the
competitiveness of our distributed team approach.

Selecting the right topics for the Indian service center was essential to achieve
broad support for the offshore strategy in the organization. Offshore development
should also be used to raise the potential of the lead development locations toward
international technology management and innovation. Working successfully in dis-
tributed teams needs to be rewarded and building a competent offshore development
team an element that supports personal career growth.

Reaffirming the offshore development strategy from top-management is of
utmost importance. Establishing distributed development teams across locations
with diverse cultural backgrounds is a great challenge and needs continuous manage-
ment support over many years to be successful. Creating the mindset of being one
global organization can only be achieved top-down.

Development environments available in the market address the issues of glob-
ally distributed teams and are mature enough for use in professional software devel-
opment. We experienced that harmonized technical processes and roles significantly
help in making virtual teams speak the same “language.” Effort spent in setting up
the cooperation with respect to meetings, information exchange, escalations, com-
petence development, and other topics are well invested, but dependent on the
corporate culture. The goal remains to minimize the impact of cultural differences
on the operational aspects of the cooperation.

All efforts regarding processes, methods, and tools will not suffice in case the
organization fails to ignite a team spirit across the participating locations. Trainings
are essential to make people aware of the intercultural differences and to practice
corresponding behavioral patterns. The formal communication approaches required
in businesses or project environments are facilitated in case a strong informal com-
munication is already established between the people involved.

Part IV

People and Teams

228   Chapter 26  Work Organization and Resource Allocation

But the culture and people barriers to global collaboration are not to be under-
estimated (see Chapter 2) [O’Hara94, Sangwan07, Hussey08]. They range from
language barriers to time zone barriers to incompatible technology infrastructures
to heterogeneous product line cultures and not-invented-here syndromes. It creates
jealousy between the more expensive engineers who are afraid of losing their jobs,
while forced to train their much cheaper counterparts. An obvious barrier is the
individual profit and loss responsibility that in tough times means primarily focusing
on current quarter results and not investing in future infrastructures. Incumbents
perceive providing visibility a risk, because they become accountable and more
subject to internal competition.

Although there are no patent recipes for global software engineering and IT
work allocation, many experiences from previous projects indicate what we might
call “typical configurations.” Such configurations are shown in Table 26.1.

The first column to the left indicates the “operational scenario” of global product
development and operations. It starts with the beginning of the product (solution)
life-cycle and moves to installation and operation towards the bottom of the table.
The second column shows the most appropriate business model for such an opera-
tional scenario. The next column indicates how external suppliers might be included.
Obviously, external suppliers do not fit in all scenarios, depending on intellectual
property and dependencies exposure, but also related toward risk management of
future growth. The learning curve duration and the break even period depend upon
these scenarios and are summarized in the subsequent columns. The last column,
finally, portrays how many parties (external or internal) are most appropriate.
Needless to say, most scenarios are most effectively handled with a small number
of contributors–except such cases where the contribution can be well isolated and
decoupled from overall project flow and risks (e.g., software components or plat-
forms which are selected and evolve in parallel but without critical dependencies).

Effective work organization and resource allocation is key to successful global
software development. There are two options of organizing global assignments,
namely virtual teams and colocated teams.

Virtual teams are set up with engineers from different parts of the world with
a shared objective for the duration of the assignment. They collaborate inside the
team with high functional coherence. Virtual teams are created when skills are dis-
tributed and must cooperate toward an engineering product or design. The advantage
certainly is the famous “follow the sun” approach of continuous engineering because
one part of the team almost always is able to take up the work of another which just
finished work hours. Evidently this works not for a setting with engineers in close
time zones (e.g., North and South America, Western and Eastern Europe, Western
Europe and India).

The drawback of virtual teams is communication difficulties and the lack of
team spirit because people do not know each other [Egloff06, Olson00, Herbsleb03,
Grinter99]. Virtual teams need precisely allocated work packages and demand an
overhead planning. They demand excellent collaboration tools beyond configuration
management and document management. Continuous integration of resulting code
is a big advantage in virtual teams regardless of whether they work on new designs

230   Chapter 26  Work Organization and Resource Allocation

or maintenance tasks. It assures that team members in other places can continue with
the same code and be sure it is working when they start.

Colocated teams work at one place with a defined work assignment. They
benefit from being together as a team and, thus, from simplified communication.
Colocation means that team members should sit in the same building, perhaps the
same room. From a mere people management perspective this is of great advantage
and can yield productivity gains of 30%-50% [Ebert07a]. Being at one place, they
can utilize standard engineering tools for configuration management or their shared
documents, thus keeping the setup rather simple.

The difficulty in setting up such teams is that the necessary skills are not always
available at one place. Often such teams suffer from interface inconsistencies with
their fellow teams working on different assignments in different places. Competition
between teams could impact integration negatively. It is of benefit for colocated
teams to establish clear quality gates and quality control activities (e.g., reviews,
inspections, unit test with defined exit criteria) to assure the right quality level when
resulting work products are passed on to other places in the world.

Both virtual teams and colocated teams need a distributed project management
due to the distributed nature of assignments, even if they are functionally split. The
dilemma with distributed teams is that they need more intensive communication
while their nature reduces the possibilities to effectively communicate. We have a
few recommendations of how to improve communication in distributed teams:

 •	Cope with distance and diversity. Use different communication channels to
address audiences that are less familiar with each other. Apply some “remote
team building” by having non-technical discussions or events by telephone
or video. Remote games could be helpful to build such virtual teams.

•	 Distributed management demands more effort which must be budgeted both
in terms of effort as well as skills. As a rule you should plan some 5%–10%
of overhead for managing these teams. In the worst-case scenario, with highly
fragmented tasks and loss of escalation to resolve conflicts, the overhead can
grow to 20%–40% as we experienced in some cases.

•	 Consider sending managers and staff to remote sites. Rotate middle manage-
ment across sites so they won’t get into the “us versus them” mode. Assure
that managers feel obliged to live for some time in offshore countries. Not
only is it worth living close to your engineers in the global sites, but it also
helps adjusting one’s perspective by living as a foreigner for some years.
Offshore managers should have many years of experience with living in dif-
ferent countries.

•	 Agree on concrete team KPIs which would only provide a benefit if the entire
team succeeds. Often, the local line management in Europe or North America
would dominate teams even if they operated in several countries. This is the
tradition of Anglo-Saxon and western line management. Reduce the impacts
of these lines dramatically. As long as local line management influences deci-
sions and bonuses, engineers will never care for global teaming. Literally

Work Organization and Resource Allocation   231

speaking, local management has to act as “hotel managers,” providing the
best possible infrastructure, but never interfering with actual assignments.

•	 Agree on some communication protocols with the teams. This might include
the various communication channels, as well as when and how to use them
most effectively. For instance, it seems a normal pattern for many engineers
to send e-mails if they don’t know other people in person. Stop this and
demand that your engineers also call unknown persons by phone. Have a
common project portal for all project-related information.

•	 Plan for sufficient training. A common failure in global software engineering
is the lack of necessary technical or process skills, and thus, delays. Assure
that skills and competences ramp-up in due time before they are needed in
the project. Adapt training mechanisms to the variety of cultures and preferred
communication means. Mix different formats, such as classroom (can be
remote and virtual), live webinars, or e-learning of predigested contents.
Force departments, team leaders, and project managers to periodically assess
skills and skill needs of their teams. Demand training plans for each single
engineer. Always remember that sufficient training and the right skills are
some of the best motivational instruments.

Independent of the team structure (i.e., virtual or colocated) we recommend
using fully allocated team members and coherent assignments.

Coherence means that the work is split during development according to feature
content, which allows assembling a team that can implement a set of related func-
tionality. The more coherence the work assignment has, the less dependencies and
interactions occur with other teams that might work in different settings or even
different places and time zones. Projects are at their kick-off already split into pieces
of coherent functionality that will be delivered in increments to a continuous build.
Coherent functional entities are allocated to development teams, which can be based
in different locations. Architecture decisions, decision reviews at major milestones,
and tests should be done at one place. Experts from countries with minority contri-
bution will be relocated for the time the team needs. This allows effective project
management, independent of how the project is globally allocated.

Full allocation implies that engineers working on a project should not be dis-
tracted by different tasks in other projects. The more allocation to a single task and
shared objective within one team, the fewer engineers are distracted by disturbances
and, thus, context switches. Full allocation does not mean 100% but should certainly
be higher than 60%. If tasks are too small, related tasks should be allocated to the
team. The difficulties usually start with very heterogeneous assignments, such as
working on two different products. In such cases, the context switching from one to
the other product is highly dysfunctional and causes dramatic productivity loss.

These working principles directly impact productivity. Team members must
communicate whenever necessary, and without long planning and preparation, to
make the team efficient [DeMarco99]. Alcatel-Lucent, for instance, evaluated proj-
ects over five years and could distinguish, according to the factor of collocation and
allocation, degree [Ebert01b]. Colocated teams achieve an efficiency improvement

Work Organization and Resource Allocation   235

Development happens in multi-skilled teams. These skills are replicated in
almost all locations.

•	 Market-specific or customer-specific functional clusters that would be defined
based on the requirement analysis and, ultimately, form the project team
responsible for a customer project. This type of requirement must be the
exception and asks for a dedicated pricing strategy as it creates the most
overheads, but could be the most interesting for our customers to
differentiate.

Such separation of architectural units is the necessary pre-condition for splitting
a global project into teams that can be individually colocated.

238   Chapter 27  Roles and Responsibilities

An Engineering role with the majority of resources is responsible for designing
and integrating new functionality for all software. This involves detailed design,
coding, inspections, module test, and unit testing until the functionality is integrated,
but also testers who maintain a continuous build.

A Service role that serves on specific functions for a group of projects, includ-
ing industrialization and maintenance activities. Often distinct skills are necessary
shortly or repeatedly, but not at a high allocation need. Examples include customer
documentation or production. For better visibility, this group of engineers is assigned
to serve on a need-basis, however, this is still following basic estimation
guidelines.

These roles are then allocated to various development teams, which constitute
a project. They are not necessarily colocated according to these three functions. In
fact, service and engineering are often split across sites.

A project is managed by a project manager and has various teams responsible
for developing specific features.

Project management must be adjusted to outsourcing/offshoring. If teams are
distributed across sites, project management must be more restrictive than with a
colocated team. Management by walk-around will not work anymore and many
managers have to learn new ways to monitor and be present, even if it is only virtu-
ally. As a first step, the project objectives must be very explicit and clear. Each team
member must commit to the project and feel it in their bonuses if the objectives are
not reached. Project and team managers must follow up milestones very closely.
Showing insufficient care when a milestone is passed without results will be imme-
diately translated to weak management. Flexibility must be used very carefully
because it can be misinterpreted. If you are flexible, explain why. As a rule, you
need to push for results. Techniques, such as earned value, are certainly better than

Figure 27.1  Globalized software development and IT impact the entire enterprise.

� Establish coherent GSE vision
� Safe-guard core competences and products
� Align global product portfolio
� Establish frame contracts with key suppliers

� Assess own needs
� Align own planning (skills, resources, sites, work split)
� Establish key performance indicators
� Institutionalize standard GSE process

� Provide infrastructure
� Set up individual GSE projects
� Manage suppliers, sites and distributed teams

� Implement GSE within the respective project
� Manage project-specific risks
� Set up, measure and reach agreed objectives

Enter-
prise

Business
Division

Product line /
departments

Projects

Soft Skills   243

•	 Work with stakeholders to create common terminology with clear definitions.
Write a glossary for key terms and maintain it across the entire program. Note
that you might know a lot about the product, but not necessarily about the
supplier or foreign new team member.

•	 Communicate expectations clearly and in the way the different persons
normally “receive” such expectations. This could mean to write and then
telephone or to have an intermediate local manager to communicate such
expectations.

•	 Jointly review expectations and targets. Develop project plans based on these
reviews to assure each member’s commitment.

•	 Have people commit themselves personally, such as in a round-table, where
each person repeats his role and responsibility, and articulates his
commitment.

•	 Define roles and responsibilities. Write them on an intranet forum with access
to all stakeholders. Review roles and responsibilities before allocating names.

•	 Build relationships with different channels. Often the meet and greet informal
relationship-building is not feasible. Investigate which method of relationship
building and meeting each other is most promising. Be creative in formats to
use and always consider how people might perceive it.

•	 Send critical information, documents, and materials to all team members at
the same time. Agree ways to efficiently inform everyone about changing
requirements or project plans.

•	 Make all relevant information accessible from a single intranet repository,
wiki, or document management system.

•	 Set up communication policies for the different channels to be used. For
instance, emphasize not to send mail as ping pong, but rather pick up the
phone and talk. Foster in these policies the use of different communication
means in parallel.

•	 Vary the timing of meetings and telephone conferences across different time
slots to accommodate all involved time zones.

•	 Allow sufficient time for members to digest and respond to shared informa-
tion. Do not push hard for a decision when people have not yet understood
whether it is possible for them and for their own management. Allow typically
for one day between the information and the decision-making. It is worth the
extra step, and ensures lasting commitments.

•	 Develop and distribute written records of all meetings independent of format
and channel. Write minutes with a collaboration tool while conducting the
meeting so that all persons can immediately see what is written. Encourage
your team members to do so as well.

•	 Never shoot immediately. Take advantage of time zone differences and your
perceived invisibility to all persons at the same time to first prepare an answer
thoroughly before communicating it.

Summary: Continuous technical training and coaching seems natural for any
engineering activity given the fast pace of technology evolution. Looking into post
mortem studies of finished projects, we found that training has profound impact on the
success of global development. There are big differences in productivity, and even
success rates, of teams and projects that you can trace back to skills and competences.
Competence management with appropriate formats, therefore, is a success factor in
outsourcing/offshoring projects that deserves special attention. This chapter highlights
how to practically improve skills and competences.

Competence management has several dimensions. First, there is the basic ramp-up
of engineers to a specific technology and responsibility with related functional and
social skills. Second, there is also the more specific coaching in front of a new
assignment or start of a new development activity.

Basic skills ramp-up follows the responsibilities and roles and is provided by
means of competence grids (mapping specific technology and behavioral needs to
visible skills). Engineers will typically follow some introductory classes when start-
ing with a new responsibility. Competence grids are used to find weak spots or skill
gaps which would be eventually closed by training. Training can be delivered in
various formats, where in the case of global software engineering and IT, it is mostly
remote formats such as e-learning or video-based training. More general purpose
training will be supplied by local trainers who will come on campus or offer class-
room training in the region of the development site. To assure effectiveness of these
training formats, we recommend good planning (so that engineers will actually join
the training) and feedback surveys after one week and, again, after a few months.
Only if the training has lasting impact after a few months is it sufficient and the gap
can be considered closed. A good practice in performance management and people
management is to make individual reviews with each employee by his line manager
(in the same site) and identify, on a quarterly or half-yearly basis, the program’s
strengths and weaknesses and update the training program. Strengths should be
captured in a skills management database to allow fast and efficient mapping of
available skills to needs in the next period.

245

Chapter 29

Training and Coaching

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

248   Chapter 29  Training and Coaching

Often, coaching of engineers during the projects is reduced due to assumed
negative impacts on total cost and duration. However, we found the opposite.
Reduced coaching harms overall project performance. Assure that you also coach
your expatriates. They need even more support because they often have a huge load
of responsibility (managing a project or a team in a remote site), while being exposed
to a different culture, language, and work environment.

http://www-01.ibm.com/software/rational/jazz/

Summary: This chapter provides a case study from different companies and shows
how to manage requirements in globally distributed software projects. It indicates
organic patterns of collaboration involving considerable cross-site interaction, in
which communication of changes was the most predominant reason for collaboration.
Although the developers’ awareness of remote team members who work on the same
requirements did not seem to be affected by distance, our case study identifies
challenges in maintaining the awareness of remote colleagues’ accessibility in
collaboration. We discuss implications for knowledge sharing and coordination of
work on a requirement in distributed teams, and propose directions for the design of
collaboration tools that support awareness in distributed requirements engineering.

BACKGROUND

Global software development (GSD), driven by growing business opportunities and
advanced communication technologies, has created challenges in coordination and
collaboration. The increase in distance between project team members brings about
problems in awareness of progress that affects one’s work [Cataldo06, Herbsleb99,
Ehrlich06].

Requirements engineering (RE), in particular, is a key issue in GSD. Due to its
intense collaborative needs, requirements engineering is a challenge in global soft-
ware development. How do distributed teams manage the development of require-
ments in environments that require significant cross-site collaboration and
coordination? In this chapter, we report a case study of collaboration and awareness
among team members during requirements engineering in an industrial distributed
software team. Using the lens of requirements to group team members who work
on a particular requirement, we used social networks to investigate requirements-

257

Chapter 31

Practice: Requirements
Engineering in Global Teams
Daniela Damian, Sabrina Marczak, and Irwin Kwan,
University of Victoria

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

258   Chapter 31  Practice: Requirements Engineering in Global Teams

centric collaborations in a project, and to examine aspects of awareness of require-
ments changes within these requirements-centered networks.

Contribution from many stakeholder roles is needed throughout the software
development life-cycle to define, develop, and test requirements. Up-to-date infor-
mation about requirements and their evolution in changing environments is critical.
Changes to requirements and design specifications, frequent in large software proj-
ects [Cataldo06], need to be communicated promptly to team members to avoid
negative impacts on quality and team productivity.

However, not only does GSD introduce delays in project communication
[Herbsleb01], but distributed software teams have to coordinate work across diverse
organizational settings, cultural backgrounds, and time zone differences [Damian03b,
Herbsleb01]. Consequently, developers have difficulty coordinating requirements
development. There is little support for monitoring progress of requirements or
identifying team members who are knowledgeable of certain features [Herbsleb99].
While some collaborative tools aiming at supporting RE in distributed teams
[Sinha06] rely on teams self-subscribing to communication about a particular
requirement, we found that teams that have relevant knowledge and work related to
particular requirements have dynamic membership with unpredictable patterns
[Damian07]. These teams evolve over time and are affected by factors of geographi-
cal distance, organizational structure, and RE process. What we still do not know is
how distributed teams manage requirements evolution and change information, nor
do we know what gaps in communication and awareness need to be identified in
order to avoid loss of critical knowledge within these requirements-centered
networks.

This case study was conducted at the Brazilian software development center of
one large international IT manufacturing company. The project we selected for study
had significant interaction between the Brazilian location and the United States
headquarters location. The project was an infrastructure maintenance project to an
application developed in the United States over the past 7 years. The project team
consisted of 10 members (7 in Brazil and 3 in the United States); more specifically,
6 developers, 1 system architect, 1 test leader, and 2 technical leaders (one of them
also acted as a business analyst).

RESULTS

The traditional definition of a team in software engineering presents an image of a
strict hierarchical structure in which team members work on related components.
However, studies of current practice [Ehrlich06, Herbsleb01] reveal that team
members are often working on multiple requirements within cross-functional teams
that may contain developers, testers, and technical writers. A study of requirements-
engineering process improvement in a medium-size organization [Damian06] indi-
cates the positive impact of collaboration within cross-functional teams during
requirements-management processes. These teams, composed of designers, develop-
ers, and testers used collaborative activities during the analysis of requirements to

Results   259

maintain awareness of requirements and their changes throughout the project life-
cycle, reducing rework and risk while increasing developer productivity.

In our case study we used the concept of a requirements-centered team (RCT)
as a cross-functional team in which each member is involved in a particular stage
of a requirements’ development (e.g., design, code, or test). A team member may
belong to more than one RCT at one time, and a project has as many RCTs as the
number of requirements. By relating the team members who work on the same
requirements, we can gain a better understanding of how people collaborate and
coordinate based on the requirements-related tasks that they complete.

RCTs, in addition to encompassing members from different teams, have a
changing membership. As the development of a requirement evolves, more people
are involved in contributing to the corresponding RCT. Our own empirical studies
indicate that the group of people who work on a common feature is continually
expanding [Herbsleb01] as a result of expertise seeking and management of inter-
dependencies between requirements. Ehrlich and Chang also found that team
members often go outside of their established team boundaries when seeking infor-
mation about their work [Ehrlich06]. When a member of an RCT collaborates with
a person who was not initially allocated to work on a specific requirement in order
to help develop this requirement, this person is considered as an add-on, or an
emergent team member, to the RCT.

We represented relationships among team members in a RCT using a social
network. We thus defined a requirement-centered social network (RCSN) as a social
network that represents an RCT. Each connection between the members in an RCSN
represents a communication line between two team members in which the partici-
pants communicate about the requirement. We used the RCSN to study the collabo-
ration among team members relevant to the design, development, and testing of a
requirement, as well as any awareness problems they experience in distributed
interaction.

To better understand the dynamic nature of an RCT and how we can support
effective collaboration within cross-functional distributed teams, we used an RCSN
to study the evolution of the RCT over time. By deriving an RCSN from project
plan data (such as task assignment based on a work breakdown structure), we gener-
ated a planned RCSN that indicates who should be communicating with whom in
the project. We then compared this to an actual RCSN generated using actual com-
munication data collected through a questionnaire during the project, and identified
the differences between the planned RCSN and the actual RCSN.

The RCSN, with its emphasis on communication lines between team members,
was a useful tool when studying interaction in distributed teams. We observed com-
munication among the colocated as well as distributed team members, and studied
effects due to distance and availability. We were particularly interested in using the
RCSNs to examine how a distributed development team in the industry propagates
information to make every team member aware of the state of the requirements and
their changes, and manages the collaboration around them.

Who is involved in actual RCSNs? We were able to study and characterize the
distributed collaboration within social networks associated with 13 requirements that

http://segal.uvic.ca/collaborationpatterns

http://home.segal.uvic.ca/<223C>pubs/pdf/132/2010_GSEBook_Damian.pdf

266   Chapter 31  Practice: Requirements Engineering in Global Teams

interaction. Although the developers’ awareness of remote team members who work
on the same requirements did not seem to be affected by distance, our case study
identifies that distance creates challenges in maintaining awareness of remote col-
leagues’ accessibility for collaboration. Below, we summarize a number of important
insights that software practitioners may find useful in guiding the analysis or
improvement of requirements-driven collaboration in their own organization.

Requirements networks are dynamic and different from those one would
draw from the initial task-allocation plan. Reasons for the dynamic nature of these
networks include the fact (1) that the initial project plan may not accurately list all
roles and project members responsible for the activities related to a particular
requirement and thus does not reflect all members who will be working on the
development of the requirement, but also (2) because members who work on related
parts of the system may have relevant expertise or interest in contributing to the
collaboration, and thus becoming part of this network. This has implications for
ways in which collaboration should be supported in colocated and distributed devel-
opment teams, as discussed below.

Maintaining general and current awareness becomes critical in dynamic,
distributed software requirements-centric teams. Requirements engineering is a
complex task involving continuous knowledge acquisition and sharing. The spread
of technical and domain expertise across multiple individuals creates the need for
constant collaboration. Awareness about who has the relevant knowledge about
particular requirements, and who is available and accessible for collaboration,
becomes the key enabler for effective collaboration in requirements-centric teams.
In our case study, although there was not a clear relationship between distances and
whether or not a developer was aware of a remote team member who can help him
on his requirements, distance did affect the frequency of communication and access
to this person. Despite the fact that a developer may know which remote member
to contact regarding the requirements he is working on, that person was perceived
as being difficult to communicate with.

Collaboration tools must be able to leverage information that is not always
electronic in order to maintain awareness in distributed teams. Although exper-
tise seeking and requesting assistance is typically supported by informal communi-
cation in colocated teams, distributed teams lack this communication depth and are
left with the inability to know who works on the same requirements and to whom
changes should be propagated for effective cross-site coordination efforts.
Mechanisms that aim at providing awareness information will have to use sources
of information such as elements of the project environment (e.g., who created or
changed a requirement in the requirements specification, or who tested a require-
ment) to understand the current status of the project and who the relevant collabora-
tors to avoid failures in the project are.

Collaborative tools should be able to facilitate unplanned collaborative
work among software team members, as well as initial contact among team
members working on the same and interrelated requirements. Because
requirements-centric teams have dynamic membership, they reflect what we called
emerging interactions, or interactions between members initially allocated to work

Take-Away Tips   267

on the respective requirement and those outside this network but who posses knowl-
edge relevant to the requirement. For effective collaboration, tools must be able to
(1) allow expertise finding when and such that these emerging interactions do occur,
and (2) maintain current (or activity) awareness among the members of these
dynamic requirements-centered social networks, without overloading them.

Tools that create and maintain RCSNs automatically help managers iden-
tify gaps in communication and awareness, prompting the need for improve-
ments in process or project communication infrastructure. In our study, the fact
that those who communicated more were also more aware, as well as the consider-
able reliance on verbal communication or local experts (project members kept aware
of each other through regular meetings or unplanned interactions), raises important
questions for tool development, such as, What type of local or verbal interaction
facilitates the maintenance of this awareness? How can an awareness system repli-
cate it in the distributed interaction? Which information from the development
environment can be collected by such an awareness system automatically in order
to supply it to the project members? With more studies practitioners should also
benefit from additional investigation of the impact of other factors such as work
(process) or ethnic culture on awareness. While we only sought to correlate aware-
ness with communication in this study, it is also possible that awareness was main-
tained as a result of certain procedures for knowledge dissemination in project
meetings (process), or may have been hindered due to different communication
styles across sites.

Summary: This chapter provides a case study from India and shows how to train and
educate students for globally distributed software projects. The case study highlights
relevant themes and guidance from previous chapters in a concrete project context. It
offers valuable insights toward how to train people in your own company, and how to
utilize university education to grow international awareness and globalization skills.

BACKGROUND

Over the past 15 years or so, there has been a sea change in the Indian IT industry sce-
nario that has had a significant effect on the Software Engineering Education landscape.
In this section, we will look at the factors that have changed the software industry in
India, the three “waves” of evolution of software industry in India, and the demands that
this evolution places on the kind of skills that Indian engineers are expected to possess
to succeed in the competitive global marketplace. This section is a case study of the
methods adopted by a premier academic institution (IIIT-B) in India to equip the students
with these skills and the lessons we learned in this process. Over the past 10 years, IIIT-B
has graduated more than 1,100 students who have been successful entrepreneurs or have
been successful in large multi-national corporations, working in world-class global
software engineering projects and products.

Three factors changed the course of the Indian IT industry in the early-to-mid
1990s. First, Indian companies matured to have effective processes that enabled
scalability of operations without compromising quality. This is amply demonstrated
by the fact that India has the highest number of CMMI Maturity Level 5 certified
organizations in the world. Second, the blossoming of Internet suddenly removed

269

Chapter 32

Practice: Educating Global
Software Engineering
Gopalaswamy Ramesh, Chandrashekar Ramanathan,
and Sowmyanarayanan Sadagopan, International
Institute of Information Technology, Bangalore
(IIIT-B), India

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

270   Chapter 32  Practice: Educating Global Software Engineering

all communication and distance barriers. Teams in India and in several locations across
the globe could work collaboratively to produce state-of-the-art software products. Time
difference and geographic separation suddenly became non-issues. Third, India, as a
local market, started blossoming. Not only did Indian companies start adopting products
and solutions like Enterprise Resource Planning (ERP), Customer Relationship
Management (CRM) and Supply Chain Management (SCM) to streamline their busi-
nesses and provide a competitive edge, but also new markets that encouraged innovation
and entrepreneurship started to emerge in India. Indian matrimony (which is of unique
Indian ethos) and local cultural, religious, and business opportunities sprang to the fore-
front, with applications like bharatmatrimony.com, eprarthana.com, and so on. In addi-
tion, in areas like mobile telephony, India more than compensated for missing out on
earlier parts of the telecom revolution by being one of the most vibrant markets in the
world. Thus, the presence of local markets in India spurred new changes in the software
scenario which were hitherto unknown in India.

All these changes had significant ramifications of the role that typical Indian
engineers played in the global market. During the past 15 years or so, Indian software
industry has gone through three “waves” of evolution. In the first wave (that actually
started the IT age in India in the 1970s), it was looked at as a source of resources
(Resource Model) that were to be managed, controlled, and directed by a team in
another location; these resources were either “onshore” or “offshore.”I In the second
wave, it was given the leeway of being able to take on independent management of
a downstream activity like programming, testing, and maintenance (Life-cycle
Model). In the third wave, it graduated to being a peer team to other global teams
that were engaged in the entire life-cycle of a product and fully tied into current
versions and technologies (Integrated Team Model)[Ramesh09].

This change in the nature of engagement of Indian software industry with the
global marketplace in these three waves has necessitated some significant transitions
that Indian engineers needed to make. Some of these transitions are (Table 32.1):

Dependent → Independent → Interdependent.  The work carried out in the
first wave was in the “work-to-specs” mode. This placed a complete depen-
dency for the Indian engineer on getting detailed instructions or “specs” from
his “Project Lead” in another part of the world. If the specs were not clear,
the execution stopped, almost as if it was an automaton. In the second phase,
when they started working on independent chunks, for example, on mainte-
nance of an older release of a product or on a life-cycle activity such as
testing, they needed to make independent decisions, but still they were not
fully integrated into the high-risk, high visibility, mainstream products and
releases. In the third phase, the Indian engineers are now expected to work
collaboratively as peers in globally distributed teams, working on current
versions, technologies and products. This necessitates strong soft skills fos-
tering communication and teamwork as well as being ranked among the best
in the world in their respective work areas.

Tool smith → Technology savvy → Customer-oriented.  Indian engineers
who, in the first wave, were specialists in programming languages (or manual

272   Chapter 32  Practice: Educating Global Software Engineering

wave, they took on a more recent product release that was still in widespread
use (and thus of higher risk); in the third phase, they worked on the most
current leading edge technology and product versions. This required the
education system to keep pace with the current technologies.

In this entire quest, Bangalore was becoming the center stage of global software
engineering roots in India. Several reputed product companies like Bosch, Siemens,
Texas Instruments, Motorola, and Oracle started setting up software development centers
in Bangalore. Indian IT majors like Infosys started making Bangalore their home base.

RESULTS

It was in this context that IIIT-Bangalore (IIIT-B) was formed as a government–
industry partnership. While the vision and mission for IIIT-B to be a key player in
the global IT scenario to focus on global software engineering was very clear, there
were some significant challenges and opportunities presented by the Indian IT educa-
tion scenario. Some of these were generically “India-centric.” We will look at these
India-centric challenges in engineering education before going into some of the
specific issues we faced at IIIT-B.

Large volume. Indian engineering student pool is one of the largest in the world.
Just to give you an idea, the neighboring state of Tamil Nadu boasts of being one
of the largest sources of engineers, with close to 230 colleges and approximately
60,000 engineers of different disciplines churned out every year. The State of
Karnataka (Bangalore is the capital city for the state of Karnataka) has 138 engineer-
ing colleges and 55,000 seats. This large volume leads to some scalability issues
that are perhaps unheard of in other places.

Lowest common denominator syndrome. One of the issues that the large volume
throws up is that not all students are of the same caliber. More importantly, not all
colleges or faculty in the colleges are equally competent. The goal of the evaluation
pattern was not to identify top talent, but to ensure that no “injustice” is done to the
“weaker” sections that were at a disadvantage because of lack of resources. As a
result, the emphasis degenerated to encourage mere rote learning.

Low industry-academia collaboration. The industry-academia collaboration
which truly was one of the reasons for success in the Western countries was con-
spicuous by their absence (or at least presence in very limited pockets). This had
two effects: First, a majority of the students who came out were not employable,
and second, a majority of the faculty did not get exposure to industry practices. This,
combined with the lowest common denominator syndrome discussed above, acted
as a deterrent for the teachers and students to make their knowledge relevant to
industry a very unrewarding experience.

At IIIT-B, we were cognizant of the above generic challenges and made a few
strategic decisions upfront:

•	 We chose to have a presence only in the Masters level, at least to start with.
This enabled us to take students with a higher level of maturity and caliber, and
thus not concern ourselves with the lowest common denominator syndrome.

Getting Students Ready for Global Software Engineering   275

•	 A systematic approach of product development was encouraged and even
mandated. Process disciplines like maintaining a Requirements Traceability
Matrix through a project were also experimented.

•	 Independent testing of students’ work was part of the grading criteria
[Desikan06]. Just like in a global software engineering environment, we
experimented with a team’s product being tested independently by another
team playing the role of a customer performing acceptance testing.

•	 The importance of maintenance in real-life software development was stressed
by making the students recognize some of the popular models like the Follow
the Sun model which leverages India’s geographical time zone position to
maximize work opportunities [Ramesh06].

Stressing the importance of support activities such as configuration man-
agement or software maintenance. Often in academic institutions, students develop
small programs, and then, after the assignment or course gets completed, the pro-
grams are discarded. This seldom represents what happens in real life. Issues like
change control, configuration management, reviews, effective testing, process com-
pliance, and maintenance assume paramount importance in real-life globally distrib-
uted teams. Most university curricula in India make, at most, a passing mention
about these vital issues; in our program, we emphasize these issues and give oppor-
tunities for students to practice some of these tasks.

Consciously having industry people come and teach classes. As mentioned
earlier, this is an integral and central part of our strategy. Through interactions with
such faculty, students gained a number of advantages that would stand them in good
stead in the industry.

•	 The practitioners were able to bring to the table “state of the art practices”
and highlight what works and what does not work in real-life.

•	 The practitioners provided exposure to the students on the effective use of
tools that increase productivity and quality of deliverables

•	 The students got to “learn by observation” some of the traits like effective
presentation from these seasoned practitioners.

Obviously, this did not come without any hardship to the students. In order to
accommodate the busy schedules of the visiting industry people, classes were sched-
uled over the weekends. But this extra effort that the students put in made them
cherish the benefits even more.

Going beyond mere comprehension and rote reproduction. Very early in our
evolution, we made a conscious decision not to fall prey to just testing rote learning
aspects of a course. Mere comprehension and reproduction was not sufficient. In
terms of Bloom’s taxonomy of learning, we wanted the students to master the
higher levels of learning, such as application, analysis, evaluation, and synthesis
[Bloom56]. The evaluation pattern for all the courses stressed on these higher level
objectives.

278   Chapter 32  Practice: Educating Global Software Engineering

sensitizing students to social activities, including visits to orphanages and organizing
regular blood donation camps. All this ensured that we were able to sharpen and
develop necessary soft skills in the students in order to enable them to compete better
in the global software engineering marketplace.

IIIT-B has graduated more than 1,100 students. These students are well
placed in reputed MNCs as well as Indian IT majors. There have also been suc-
cessful entrepreneurs. One of our students, Padmanabhan, who is a co-founder
of the startup 8KMiles.com says: “What I learned as a student at IIIT-B in Global
Software Engineering and the finer aspects of communication and collaboration
and remote project management apart from an understanding about the founda-
tions of requirements engineering, estimation, design, development, and elabo-
rate testing as part of the complete SDLC, has helped me immensely in real life:
First, while working on many globally distributed projects with teams spread
between U.S., UK, and India; and currently by applying it as a core concept in
my own start-up and also while hiring talent for my team, clearly knowing what
skills I need to look for in people for projects that are truly global.” Another
student, Manish Thaper, currently working in GE Healthcare says: “My stay at
IIIT-B helped me realize that building a software system is no less than devising
a new product in any other engineering branch. Developing software is not just
writing algorithms, but needs to address plans, resources, tools, costs, quality
measurements, delays, patterns, and much more. We also realized that, in the
global scenario, non-functional requirements like performance, scalability, reli-
ability, and security are vitally important to build world-class software and that
too with an ever improving delivery speed.”

Feedback such as that mentioned above underlines that training on global soft-
ware and IT competences will effectively build world-class software engineers who
are ready to make a significant contributions to global software engineering.

TAKE-AWAY TIPS

Teaching truly global-scale software engineering is highly necessary to prepare
students for business needs, but it is challenging. We conclude with brief take-away
tips for any educational institution trying to create world-class talent in global soft-
ware engineering. Any institution chartered with training people to work in the
offshore and distributed environment should ensure the following:

•	 Software engineering should be projected as a discipline rather than a stand-
alone course. The principles and practices of software engineering should be
interwoven in all the courses.

•	 Success in distributed environments requires appreciation of communication
challenges in such environments. The students will be industry-ready only by
being exposed to the use of the soft skills required for such environments

•	 Evaluation of students should be on the basis of projects which test both the
engineering practices as well as the effective use of related processes such as
reviews or communication.

Take-Away Tips   279

•	 Students will maximize their learning by constant interactions with industry
professionals. Having such professionals teach some of the courses, as well
as having the students spend an extended duration in the industry as a part of
an internship, will have immense benefits to both the industry and students.

We have been constantly refining and fine-tuning our approach because each
time we tried to do something new we have learned a lot.

Part V

Advancing Your Own
Business

Execution   287

that English is the language for all communication in the company. Provide
language training to all exposed engineers. Enforce the use of the English
language even in meetings and e-mails. Set up a project homepage for each
project that summarizes project content, progress measurements, planning
information, and team-specific information.

•	 Implement a sound business model.  Decide on a global software engineer-
ing and IT business model (e.g., external vs. internal offshoring). Determine
a clear business plan (why offshoring, what expectations). Evaluate different
alternatives by means of business case (e.g., suppliers, sites, products).

•	 Assure stakeholder buy-in.  Agree on strategy and mid-term goals with all
impacted stakeholders. Assure that all stakeholders understand and support
strategy and goals. This includes sites, projects, and different functions. Visit
impacted sites to build relationships. Never globalize only on the basis of low
cost. Make offshore labs equal partners.

•	 Select the right people.  Establish recruiting strategies if you decide to grow
your own team at a new site. An effective recruiting strategy assures that talent
is chosen consistently considering a number of criteria, such as cultural aware-
ness, language skills, technical skills, or process and social competences.

•	 Carefully ramp-up.  Grow stepwise. Learn from errors. Execute pilot project
within defined scope. Carefully analyze lessons learned and use that knowl-
edge for future risk mitigation. Start small and carefully evaluate relation-
ships, results, growth potential, market, and customers.

EXECUTION

•	 Enforce specific objectives.  Agree and communicate the respective project
targets, such as quality, milestones, content, or resource allocation at a proj-
ect’s start. Similarly, at phases or increments, start team targets are adjusted
and communicated to facilitate effective internal team management. Assure
that there is always a specification describing what has to be done (we call it
customer requirements for simplicity) for any task or project or product being
developed in a global development mode. Also ensure that there is a second
specification which is linked to the first for traceability and consistency
reasons describing how this will be done by the remote team. Having these
two documents enforces understanding of the task at hand and fosters account-
ability later on.

•	 Define interfaces and responsibilities.  Make individual teams responsible
for their results. Define which teams are involved and what they are going to
do in which location at beginning of projects. This includes a focus on alloca-
tion rules such as scattering or collocation.

•	 Monitor progress.  Continuously manage risk. Mitigate risks related to
contract, people, business, and IPR up-front. Manage projects, risks, and

Ta
bl

e
33

.1
 

E
ff

ec
tiv

el
y

M
iti

ga
tin

g
G

lo
ba

l
So

ft
w

ar
e

E
ng

in
ee

ri
ng

 a
nd

 I
T

 R
is

ks

M
it

ig
at

io
ns

R
is

ks

E
ng

in
ee

rs

ar
e

no
t

av
ai

la
bl

e
in

 d
ue

 t
im

e

In
su

ffi
ci

en
t

pr
oj

ec
t

m
an

ag
em

en
t

Po
or

sp

ec
ifi

ca
tio

ns

an
d

do
cu

m
en

ts

Q
ua

lit
y

de
fic

ie
nc

ie
s

ar
e

re
co

gn
iz

ed

to
o

la
te

Fr
eq

ue
nt

ch

an
ge

s
cr

ea
te

 e
xt

ra

co
st

In
co

ns
is

te
nc

ie
s

an
d

in
co

m
pa

tib
ili

tie
s

In
te

lle
ct

ua
l

pr
op

er
ty

in

fr
in

ge
m

en
t

In
st

ab
ili

tie
s

in
 a

 h
os

t
co

un
tr

y

In
ad

eq
ua

te

su
pp

lie
r

m
an

ag
em

en
t

R
ig

ht
sh

or
in

g
x

x
x

E
st

ab
lis

h
an

d
en

fo
rc

e
sh

ar
ed

va

lu
es

x
x

x
x

x
x

x

Pr
oc

es
s

m
at

ur
ity

x
x

x
x

x
x

A
cc

ou
nt

ab
ili

ty
x

x
x

M
an

ag
e

ri
sk

s
x

x
x

x
x

Fo
st

er

co
m

m
un

ic
at

io
n

x
x

x
x

x
x

Im
pl

em
en

t
so

un
d

bu
si

ne
ss

 m
od

el
x

x

A
ss

ur
e

st
ak

eh
ol

de
r

bu
y-

in
x

x
x

Se
le

ct
 r

ig
ht

 p
eo

pl
e

x
x

x

C
ar

ef
ul

ly
 r

am
p

up
x

x
x

x

E
nf

or
ce

 s
pe

ci
fic

ob

je
ct

iv
es

x
x

x
x

D
efi

ne
 i

nt
er

fa
ce

s
an

d
re

sp
on

si
bl

es

M
on

ito
r

pr
og

re
ss

x
x

x
x

x

T
ra

in
 p

eo
pl

e
an

d
en

ha
nc

e
co

m
pe

te
nc

es

x
x

x

M
ai

nt
ai

n
gl

ob
al

po

ol
 o

f
ta

le
nt

x
x

M
an

ag
e

co
nfi

gu
ra

tio
ns

x
x

x
x

x

U
se

 t
he

 r
ig

ht
 t

oo
ls

x
x

R
ot

at
e

m
an

ag
em

en
t

x
x

x

290   Chapter 33  Key Take-Away Tips

assumptions. Within each project follow-up continuously on the top-ten risks,
which, in a global project, are typically less technical than managerial. Always
compare against written agreements. Ensure that commitments exist in written
and controlled form.

•	 Train people and enhance competences.  Plan and provide training and
coaching to all levels (engineers and management).

•	 Maintain global pool of talent.  Overlook turnover rates of engineers in
remote countries. Rates depend on countries and it is the objective of a local
site manager to assure that his own turnover rate is in the upper quartile of
the respective country. Set up mixed teams from different countries to inte-
grate individual cultural background toward a corporate and project-oriented
spirit. While having one project leader who is fully responsible to achieve
project targets, assign him a project management team that represents the
major cultures within the project.

•	 Manage configurations.  Rigorously enforce tools for configuration manage-
ment and build management rules (e.g., branching, merging, synchronization
frequency) and provide the necessary tool support. Synchronize different ver-
sions or variants. Install necessary tools for configuration management (defect
tracking, change management, build control, product data management,
product life-cycle management, etc.).

•	 Use suitable tools.  Evidently, remote work needs more tools support than
being in one place does. It starts with communication links and includes all
types of tools support from basic infrastructure up to collaborative engineer-
ing tools. Look into what tools suites offer the best possible interworking
(e.g., traceability between different work products or alert mechanisms in case
of changes). Secure tools access both internally and externally. Back up de-
centrally and periodically. Have a tools expert in each site to avoid lengthy
and unproductive wait periods. Don’t rely on centralized license management
and tools installations. If you have central licenses, make sure that engineers
can still work even if a link falls down. Avoid vendor lock-in. The first tool
to buy is always easy, afterward, however, many mechanisms work that all
try to lock you with a single vendor.

•	 Rotate management.  Assure that management of different sites knows other
locations and cultures to create the necessary awareness for cultural diversity
and how to cope with it.

These best practices can be mapped to the risk list which we introduced in
Chapter 21. Table 33.1 shows how these global software engineering and IT risks
can be mitigated by best practices.

To be successful with globalized software and IT, companies typically demand
external support in domains that they are not really familiar with:

•	 Evaluating and judging the business model and strategy.

•	 Assessing and mitigating risks before sourcing is started.

Execution   291

•	 Improving engineering and management processes (ALM, PLM).

•	 Introducing knowledge management.

•	 Benchmarking suppliers.

•	 Setting up appropriate contract and SLA.

•	 Establishing supplier-management processes.

•	 Independently reviewing quality and performance.

Summary: In order to effectively plan global software engineering and IT, you need
your own history database with baselines for estimation, quality planning, and the
like. However, you might not have this data available yet, or it may not yet be scalable
for global development projects. This chapter will provide facts and rules of thumb
from our experiences in global software engineering and IT projects.

Assume that you have a supplier and want to check his estimates and later follow
his planning. How much effort is necessary? What overheads have been factored in?
Is the supplier offering a low price, but will later fail? Everybody, at some point in
time, is in bootstrapping mode with the need for some concrete data. Where do you
get such initial data? We started looking into books and conference proceedings,
cost estimation tools, and lots of our own project lessons learned. We gradually
extracted some simple rules of thumb that we could use even in situations where no
historic information was accessible. This is what you will find here. The list is far
from complete, and it is certainly not as scientific as one would like, but it is a start.
The data stems from our own history databases, as well as from a number of external
sources, such as estimation tools or project management literature [Ebert07a,
Jones07, Lyu95, McConnell98, Rivard08, Sangwan07].

Project planning is based on size, schedule and productivity. A good predictor
is the Putnam formula that states that effort in a project is proportional in
size to the power of 3 divided by duration to the power of 4 and divided
again by productivity to the power of 3. The minimum project duration in
months is 2.5 times effort in person-years to the power of 1/3.

Team size is roughly the square root of effort in person-months. This means
that a task with 10 person-months estimated effort should be done with 3
persons. Obviously, high independencies inside the task allow for more
persons, and thus, shorter durations. However, most probably, the task was
specified too broadly and should first be broken down in smaller tasks, such
as 10 tasks with 1 person-month effort, done by 10 persons.

293

Chapter 34

Global Software and IT Rules
of Thumb

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

294   Chapter 34  Global Software and IT Rules of Thumb

Engineering productivity can be rather easily improved by 5%–10% per year.
This is done by means of CMMI or specific improvement activities. More
than the 10% are difficult to achieve, but are, in some industries, inevitable
due to competitive pressure.

Duration of a task or project (given that all other factors are known) can be
improved by up to 25% in one shot by improving productivity. This implies
excellent team building and teamwork, strong planning and monitoring on
the critical path, strong method and tools support, high parallelism, and early
defect removal. Such mechanisms are not sustainable and demand strong
follow-up. They bear the risk of high stress levels and attrition of team
members if pressure is maintained for too long.

Allocating engineers to several projects in parallel reduces productivity.
Experience shows that productivity is reduced in steps depending on the
amount of context switching due to the different assignments (e.g., phone
calls from the second project while doing design in the first). As a rule of
thumb, consider some 30% productivity decrease if you are working on
several independent assignments.

Working in several locations, as we do in global development, costs extra
effort. We found in many studies, including own experiences, that with two
locations you should budget some 20%–30% overhead and for three to four
locations, some 30%–40% overhead. This overhead is due to additional
interfaces, management, team effort, collaboration support, quality control,
reviews, and so on.

Requirements change with 1%–3% per month normalized to the effort origi-
nally estimated. For instance, if the requirements are estimated with 1 person-
year, you would expect an additional effort or change impact of 1–2
person-weeks per month. This is not peanuts; it needs to be considered in
building change review boards and clear rules for change management.
Target a freeze point of your requirements in due time by planning backward
from a project’s (or task’s) end.

Cost of non-quality (i.e., defect detection and correction after the activity
where the defect was introduced) is around 30%–50% of total engineering
(project) effort. It is, by far, the biggest chunk in any project that can be
reduced to directly and immediately save cost. For global software engineer-
ing projects especially, this cost increases due to interface overheads where
code or design would be shipped back and forth until defects are retrieved
and removed.

The amount of defects at code completion (i.e., code has been finished for a
specific component and has passed compilation) can be estimated in different
ways. If size in KStmt or KLOC is known, this can be translated into remain-
ing defects. We found some 10–50 defects per KStmt depending on the
maturity level of the respective organization. This is based on new or changed
code only and does not include any code that is reused or automatically
generated. For such codes, the initial formula has to be extended with per-

Global Software and IT Rules of Thumb   295

centage of defects found by the already completed verification (or validation)
steps. An alternative formula takes estimated function points to the power of
1.25.

Verification pays off. Peer reviews and inspections are the least expensive of
all manual defect detection techniques. You need some 1–3 person-hours per
defect for inspections and peer reviews. Before starting peer reviews or
inspections, all tool-supported techniques, such as static and dynamic check-
ing of source code should be fully exploited., Preferably, fully instrumented
unit tests should be done before peer reviews. Unit test, static code analyses,
and peer reviews are orthogonal techniques that detect different defect
classes. Often, cost per defect in unit test is highest amongst the three tech-
niques due to the manual handling of test stubs, test environments, test cases,
and so on.

Each verification or validation step can detect and remove some 30% of the
defects. That translates into 30% of defects remaining at a certain point of
time that can be found with a distinct defect detection technique. This is a
cascading approach, in which each cascade (e.g., static checking, peer review,
unit test, integration test, system test, beta test) removes each 30% of defects.
It is possible to exceed this number slightly toward 40%–50%, but it comes
at dramatically increasing cost per defect.

Remaining defects are estimated from estimated total defects and the different
detected defects. This allows for planning of verification and validation and
allocating necessary time and budget according to quality needs. If 30% of
defects are removed per detection activity, then 70% will remain. Defects
that remain at the end of the project equal the amount of defects at code
completion times 70% to the power of independent detection activities (e.g.,
code inspection, module test, integration test, system test).

Release quality of software shows that typically 90% of all initial defects at
code completion will reach the customer. Depending on the maturity of the
software organization, the following defects at release time can be observed:
CMMI maturity level 1: 5–60 defects/KStmt; maturity level 2: 3–12 defects/
KStmt; maturity level 3: 2–7 defects/KStmt; maturity level 4: 1–5 defects/
KStmt; maturity level five: 0.05–1 defects/KStmt. Don’t expect high quality
in external components from suppliers on low maturity levels, especially if
they are not explicitly contracted. Suppliers with high maturity might have
low defect rates, but only if they own the entire product or component.
Virtual (globally distributed) development demands more quality control,
and thus cost of quality, to achieve the same release quality.

Improving release quality needs time: 5% more defects detected before release
time translates into a 10%–15% added duration of the project.

New defects are inserted with changes and corrections, specifically those late
in a project and done under pressure. Corrections create some 5%–30% new
defects depending on time pressure and underlying tool support. Especially
late defect removal on the critical path to release causes many new defects

296   Chapter 34  Global Software and IT Rules of Thumb

because quality assurance activities are undermined, and engineers are
stressed. This must be considered when planning testing/validation or main-
tenance activities.

Test effort can be planned by estimating the necessary test cases. This is done
by a target quality level and coverage criteria to be achieved based on opera-
tional scenarios and use cases. Starting during the requirements analysis
phase, test effort can be estimated by functionality and translates roughly
into 0.3–1 test cases per function point. For procedural languages such as C,
this translates into 3–7 test cases per KStmt. This is a very rough formula
and should be handled with care. Note that, across projects, at least 30% of
all test cases are redundant. Such average holds for both legacy and new
projects because engineers have the tendency to add test cases “to be on the
safe side,” but do not control them by means of coverage or related effective-
ness criteria. This is an excellent business case in itself toward applying
better test management and test coverage tools. Orthogonal test case arrays
help in reducing test redundancies.

Maintenance effort for the last level (engineering effort related to defect
removal after the welcome desk, etc., had done their job) amounts to 5%–
15% of project effort per year. Make sure that this effort is budgeted and
staffed before release or you might end up in difficult times with your cus-
tomers who expect proper SLA management. New and changed functionality
(on top of defect corrections) account for 5%–8% of new functionality per
year and 10% of functionality being changed per year. Altogether, this trans-
lates to one third of project cost being budgeted for maintenance, especially
in the first year after release. It will typically decrease thereafter.

The Pareto principle also holds for software engineering. As a rule of thumb,
20% of all components (subsystems, modules, classes) consume 60%–80%
of all resources. Some 20% of all components contain 60% of all effective
defects. Some 20% of all defects need 60%–80% of correction effort, and
20% of all enhancements require 60%–80% of all maintenance effort. This
looks a bit theoretical because, obviously, one can in most cases find a Pareto
distribution. However, there are concrete benefits you can utilize to save on
effort. For instance, critical components can be identified in the design by
static code analysis and verification activities and can then be focused on
those critical components.

Summary: Global software development is not the target per se, but is rather the
result of a conscious business-oriented trade-off. The guiding principle is to optimize
the cost of engineering while still achieving the most feasible integration of all R&D
centers worldwide. Outsourcing/offshoring is driven by acquisitions, setting up
development centers in countries that offer necessary skill and resources at same or
higher productivity, and presence in key markets. This chapter will get back to the
four drivers for global software and IT and provide an outlook for what to expect
next. It will certainly stimulate your own ideas on better utilization of globalization
and collaboration.

Global software engineering is the consequence of the rather friction-free economic
principles of the entire software industry. Basically, any code can be developed at
any place in the world and made visible and accessible to any other place in the
world at virtually the same time. There are not many overheads in distribution or
industrialization as long as source code is shared. Many companies start global
development due to perceived cost differences. Achieved cost reductions are further
delivered to customers, which means competitive pressure for those enterprises not
yet embarking on global development.

Further advantages appear when intensifying global software engineering and
IT, such as more flexible work hours for engineers, and a demand-oriented provision-
ing of skills. Starting with smaller chunks of work, outsourcing/offshoring intensifies
toward globalizing the execution of entire business processes or products. Innovative
products are created due to having more capacity and more efficient workflows.
Product life-cycles and technology growth will further accelerate due to this increas-
ing innovation driven by global software engineering and IT. The principle, as such.
is amplified and will not allow any enterprise to exit.

As we have seen in Chapter 2, there are four drivers of fuel globalization, as
shown in Figure 35.1: efficiency, presence, talent, and flexibility.

1.	 Presence.  Outsourcing/offshoring is part of companies’ growth strategies
and keeps them accelerating:
•	 Broad base for resources, skills, technology, and innovation.
•	 New markets at emerging economy sites.

297

Chapter 35

The World Remains Flat

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

The World Remains Flat   299

Process need to facilitate speed, organization, and collaboration. They must
leverage investments quickly because of the ever-growing risk of IP loss. The new
product life-cycle is determined by the time it takes to copy, compete, and implement
processes that provide agility and efficiency. Companies need to balance time-to-
profit with time-to-copy. They need to develop an organizational and management
strategy for offshoring, along with an economic business case. Collaboration will
further grow across disciplines, cultures, time, distance, organizations. This demands
a completely new skill set that is currently not taught at universities (e.g., manage-
rial, teaming, sharing without losing).

Outsourcing/offshoring makes deficiencies more visible and it amplifies
weaknesses. These deficiencies are always there, with or without global software
engineering and IT, but in a global and distributed context they have more impact.
The needs for global engineering must be carefully balanced with additional costs
that might be incurred only at a later point. This includes staff turnover rates, which
vary greatly across the globe; cost overheads related to traveling, relocation, com-
munication, middle management, or redundant development and test equipment;
lack of availability of dedicated tools that allow for globally distribution and work
environments; impacts of the learning curve which slow down with as more loca-
tions are involved; cultural differences which can impact the work climate; insuf-
ficient language skills; different legal constraints related to work time, organization,
or participation of unions; and building up redundant skills and resource buffers to
be prepared for colocated teams and for unforeseen maintenance activities.

We faced all these obstacles and had to deal with them by means of planning,
risk management, and communication. Even the best training cannot substitute for
extremely cooperative engineers and highly effective management, both of which
are oriented toward overall success and not impacted by legacy behaviors.

In the near future, global engineering will evolve into a standard engineering
management method that must be mastered by each R&D manager. Processes and
product components will increasingly be managed in a global context. Suppliers
from many countries will evolve to ease start-up and operations of global software
engineering and IT, even for small and mid-sized enterprises in the high-cost coun-
tries. Brokers will emerge to help find partners in different parts of the world and
manage the offshoring overhead. Cost per headcount will stay low for few years but
will steadily increase due to rising standards of living in the emerging countries that
contribute to outsourcing/offshoring. Global software engineering and IT have a
strong contribution in improving living conditions around the world. Bridging the
divide is best approached by sharing values and understanding cultures. Such
increasing standards of living in China, India, and many other low-cost countries
will generate hundreds of millions of new middle-class people who will demand
more information technology.

Unfortunately (for the expensive Western countries), these changing conditions
will not have a sustainable positive impact for today’s highly paid software engi-
neers. On the other hand, an increasing number of competing software companies
will evolve and further push for global alignment of engineering costs (but this time
cutting down the top salaries). What looks healthy from a global perspective may

300   Chapter 35  The World Remains Flat

have a negative impact on those of us who do not adjust quickly enough to the new
work split.

To be successful in a global market, a company should manage the risks of
global software development and utilize the positive aspects as drivers to shape the
software engineering processes in detail and the culture in general. The challenge is
to continuously improve processes, innovativeness, and productivity. IT and soft-
ware engineering have low entry barriers and a global resource pool. Engineers will
have to assess their own competitive value frequently and change gears and func-
tions opportunistically to stay employable. That is the task of all of us software
engineers in the future. Those of us who stagnate will be out of business faster than
we might think.

History has shown us time and again that mixing genes is the best thing that
can be done in the path of evolution. Or, in the words of Charles Darwin, one of the
first truly globally acting scientists, “It is not the strongest of the species that survive,
or the most intelligent, but the ones most responsive to change.” Globalization is,
in fact, about the same thing—an embodiment of Darwin’s concept.

Appendices

Global software and IT cannot be learned on the job. That would be a very expensive
exercise. It is smarter and more cost-effective to start with the best practices and
then enhance them according to your own specific needs, culture, and risks. These
best practices should then lead to your own processes for the different life-cycle
phases of the sourcing or offshoring project. This book provides guidance for finding
answers to most problems and risks. Here is a simple checklist and template for
beginners so that they don’t overlook some critical factors.

No. Check Your Status / Comments

Sourcing strategy

1 Define and implement a company-wide strategy for
guiding offshoring evolution–from support to core
competences.

2 Determine a clear business plan (i.e., why outsourcing/
offshoring, which business model, what type of
sourcing or captive engagement, what products, etc.).

3 Agree on an implementation strategy and operational
targets.

4 Determine and agree on the concrete outsourcing and
offshoring business case addressing the costs and
benefits across its life-cycle.

5 Evaluate different alternatives by means of business
cases (e.g., suppliers, sites, tasks).

303

Appendix A

Checklist/Template:
Getting Started

(Continued)

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

304   Appendix A  Checklist/Template: Getting Started

No. Check Your Status / Comments

6 Ensure senior management support on objectives and the
entire program.

7 Set clear and measurable objectives of what should be
achieved by what date.

8 Assure internal stakeholders buy-in. Get relevant
stakeholders in projects and in the line on board.

9 Set up and agree on a clear governance policy that
addresses major outsourcing-/offshoring aspects and
which is mandatory for all stakeholders

10 Consider external expertise and experiences to
successfully manage the outsourcing/offshoring
program.

Initiation and ramp-up

11 Determine an experienced project manager with full
responsibility for the project (i.e., budget, content, and
resources). If there are several such projects, determine
a strong manager to be totally responsible for the
outsourcing/offshoring program, including supplier
management.

12 Set up an effective steering board for the outsourcing/
offshoring program with all its projects.

13 Standardize and document all relevant processes and
interfaces between you and your supplier(s).

14 Reengineer your engineering processes to master the
changing needs toward global collaboration. Adapt
your processes in engineering, IT, management and
controlling to the changed needs of such an
outsourcing/offshoring program.

15 Carefully evaluate how to protect intellectual property
while growing global innovation (time-to-profit vs.
time-to-copy).

16 Make sure that your organization exhibits the necessary
process maturity to address outsourcing/offshoring and
have the processes been assessed on maturity level two
(e.g., CMMI-DEV with distributed development,
CMMI-ACQ for outsourcing, A-SPICE for the
automotive industry, COBIT, and ITIL for IT
companies).

17 Develop global managers and a global workforce
management.

18 Set up clear evaluation criteria for potential suppliers,
covering technical, market, and soft factors. Tailor such
lists according to specific project needs and risks.
Avoid any bias toward a specific supplier.

Checklist/Template: Getting Started    305

No. Check Your Status / Comments

19 Select potential suppliers and evaluate them according to
agreed upon and written criteria. Ensure that bias is
avoided and risks are considered.

20 Select a supplier who understands your business; target
win-win (contract, SLA). Meet the supplier so he
understands your culture, specific market, needs, and
technical/environmental constraints and products.

21 Prepare a formal SLA between you and the supplier
addressing your targets, risks, escalation, and
measurable objectives.

22 Review the SLA with legal experts and fine-tune.

23 Review the SLA with the suppliers on feasibility.

24 Ensure by means of your own processes and SLA that
supplier changes, dual supplier structures and
knowledge management are adequately addressed.

25 Set up a steering board with representatives of the
supplier. Determine frequent meetings, specifically
during the ramp-up and initiation.

26 Train relevant stakeholders (employees and managers)
on outsourcing/offshoring best practices, risks and
management skills.

27 Prepare your engineering teams for global collaboration
(e.g., values, awareness). Train relevant stakeholders
(employees and managers) on outsourcing/offshoring
on soft skills, cultural aspects, and cross-country
communication.

28 Train relevant stakeholders (employees and managers)
on your processes applicable for the outsourcing/
offshoring project and the tools to be used for effective
collaboration.

Project execution

29 Set up and execute a pilot project with defined scope.

30 Establish and maintain a list of relevant risks and
appropriate mitigation actions (e.g., contract, people,
business, security, IPR). Ensure ownership of each
relevant risk, specifically where interfaces are involved.
Enforce periodic risk status reviews.

31 Ensure that each project has its own single source
requirements list covering both functional and non-
functional requirements and acceptance criteria.

32 Provide access to the requirements list for impacted
suppliers. Provide collaboration mechanisms to
exchange requirements.

(Continued)

306   Appendix A  Checklist/Template: Getting Started

No. Check Your Status / Comments

33 Ensure that all requirements are formally specified and
managed throughout the outsourcing/offshoring project.

34 Establish and maintain a sufficiently detailed project
plan which addresses all relevant activities. Establish
clear responsibilities for an efficient work split.

35 Review and commit to the project plan and requirements
with all relevant stakeholders (including suppliers for
their parts) so that they agree to deliver necessary
resources in due time.

36 Ensure that the project plan considers all “support
activities” such as reviews, configuration management,
quality management, training, documentation, etc.

37 Set up and ensure a continuous monitoring of all
processes and deliverables addressing both quantitative
and qualitative needs.

38 Set up a formal control with the supplier which
considers cost control, SLA deliverables, and relevant
project parameters (e.g., budget, milestones, and
quality).

39 Address deviations from the plan or the SLA
immediately and follow up through closure, specifically
during the ramp-up and initiation.

40 Establish and maintain a quality assurance plan covering
all relevant activities to ensure the necessary quality.

41 Ensure that the quality of the delivered software
periodically measured and compared against targets
(e.g., maintainability, reliability, usability, etc.).

42 Establish and maintain a single change control board
with all impacted stakeholders, including the
supplier(s), for their parts.

43 Establish and maintain a systematic change management
process with support tools that are uniformly applicable
for all suppliers (e.g., requirements repository, intranet
information dashboard, configuration control system,
source code control system, test case, defect tracking,
etc.).

44 Make sure that all necessary information on the project
and processes is available to all stakeholders across all
locations (e.g., quality plans, tools, quality status,
configuration baselines, etc.).

45 Make sure that all necessary tools for efficient
collaboration are available and used (e.g., requirements
engineering, documentation, project management, team
meetings, wikis, etc.).

Checklist/Template: Getting Started    307

No. Check Your Status / Comments

46 Train configuration managers on baselining and recovery
mechanisms.

47 Make sure that basic engineering and management tools
are used consistently across all sites and projects (e.g.,
defect tracking, configuration management, project
management, workflow management).

48 Make sure that the available IT infrastructure is
sufficient to collaborate across sites and to interface
with the suppliers’ IT infrastructure (e.g., performance,
security, etc.).

49 Establish and utilize different communication channels
(e.g., site visits, video conferencing, telephone calls,
online meetings, collaboration tools).

50 Set up periodic project and technical reviews with
stakeholders across sites, functions, projects, and with
the supplier.

Relationship management

51 Establish and enforce transparent performance
evaluations to periodically assess and improve
performance and cost of the existing supplier
agreements.

52 Continuously manage your technology, IPR and
competence portfolio and roadmap to identify needs
and resolution over time.

53 Maintain your own critical expertise.

54 Grow stepwise. Learn from your errors.

This test gives an impression and brief risk assessment of how good your chances
are to successfully implement your global software and IT program. Success means
that you will reliably achieve your project objectives (schedule, quality, content,
cost, and budget). The test will help you to identify risks, assess them and pinpoint
to potential solutions.

It is a strength-weakness profile which creates a starting point for improvements.
Due to its short format, it will not substitute a professional risk evaluation.

Answer this test alone and for your own specific current situation. Take relevant
current projects or activities in order to obtain a representative response. Answer all
questions from the perspective of these chosen projects. Stay realistic. Avoid wrong
assumptions and hopes that things will be better.

The test consists of several questions that you evaluate using a numerical scale:

3 points: Yes, fully

2 points: Probably

1 point: Doubtful

0 points: No, not at all

If the outsourcing/offshoring project has just been launched you should antici-
pate responses to operational issues due to the current plans, company culture, and
project experiences.

We use the term “outsourcing/offshoring project” to address different formats
to global software and IT projects. This can be an IT outsourcing project or a glob-
ally distributed software development at various locations or the use of an open-
source its components.

309

Appendix B

Checklist/Template:
Self Assessment

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

310   Appendix B  Checklist/Template: Self Assessment

EVALUATION

Sum up all given points on the right side of the table and multiply the raw sum by
the correction factor (see last page) to get the final result.

If you have less than 120 points, there are substantial risks in the outsourcing/
offshoring project. Between 120 and 160 points means that you have an average
situation with average performance which means that you will have some problems
that will lead to delays or additional expenses. If you have more than 160 points,
you are among the small minority of projects that will achieve the targets with high
probability.

Now we address the most important part of this self test. Identify priorities and
risks of your outsourcing/offshoring program based on the given answers. What did
you learn from the test? What are your biggest risks? Where do you go from here?
What priorities will be addressed? How do you implement the solutions to the
outsourcing/offshoring program? Identify, based on the content of this book, how to
mitigate risks and improve. Create an action list (which you should discuss with
employees or supervisors). You need to decide what is important to you before you
begin to change.

You can also discuss the test later with colleagues in your company or with your
employees.

No. Check
Your Answer

(No = 0 . . . Yes = 3)

  1 Does the outsourcing/offshoring project have clear and
measurable objectives?

  2 Is senior management fully supportive of the outsourcing/
offshoring program?

  3 Does outsourcing/offshoring project management in your
company agree that the objectives are realistic?

  4 Is the entire outsourcing/offshoring program
(Engineering/R&D/IT, Finance, Procurement, Operations,
etc.) focused on the same objectives?

  5 Is there a clear governance policy which is mandatory for
all stakeholders and that addresses major outsourcing/
offshoring aspects?

  6 Is there an experienced project manager with full
responsibility for the project (i.e., budget, content, and
resources)?

  7 Is there one outsourcing/offshoring sponsor who is held
personally accountable for the success of the outsourcing/
offshoring program?

  8 Is there an effective steering board for the outsourcing/
offshoring program?

  9 Have all your employees and managers been sufficiently
trained for the outsourcing/offshoring activities?

Evaluation   311

No. Check
Your Answer

(No = 0 . . . Yes = 3)

10 Have all employees and managers been sufficiently trained
on cultural aspects, cross-country communication, etc.?

11 Does the outsourcing/offshoring project have a clear
business case when addressing the cost and benefits across
its life-cycle?

12 Is there a single requirements list for the outsourcing/
offshoring project covering both functional and non-
functional requirements and acceptance criteria?

13 Does the supplier possess the skills and competences
(technical and non-technical) demanded for the
outsourcing/offshoring program.

14 Does the supplier know and understand your specific
market, needs, and technical/environmental constraints of
the products?

15 Is the selected supplier oriented toward the agreed targets
and requirements?

16 Is there a signed formal SLA between you and the supplier
addressing your targets?

17 Does the supplier consider the SLA to be feasible?

18 Are the contracts between you and the supplier sufficiently
concrete to ensure that outsourced services and processes
seamlessly fit with your own processes?

19 Are all outsourcing and supplier contracts aligned across
different projects and suppliers? Are they managed by a
single sourcing manager?

20 Are later changes of suppliers or providers prepared and
feasible based on the agreed upon contracts? Are lock-ins
effectively avoided?

21 Are deviations from the plan or the SLA immediately
addressed and followed through to closure?

22 Do your processes for development, provisioning,
management, and controlling fit with your supplier and the
needs of the outsourcing/offshoring project?

23 Are all relevant processes and interfaces between you and
your supplier(s) sufficiently standardized?

24 Have your processes in engineering, IT, management, and
controlling been adapted to the changed needs of such
outsourcing/offshoring programs?

25 Does your organization exhibit the necessary process
maturity to address outsourcing/offshoring and have the
processes been assessed on maturity level two (e.g.,
CMMI-DEV with distributed development, CMMI-ACQ
for outsourcing, A-SPICE for the automotive industry,
COBIT and ITIL for IT companies)?

(Continued)

312   Appendix B  Checklist/Template: Self Assessment

No. Check
Your Answer

(No = 0 . . . Yes = 3)

26 Are all requirements formally specified and managed
throughout the outsourcing/offshoring project addressing
all impacted stakeholders?

27 Is there a sufficiently detailed project plan which addresses
all relevant activities?

28 Has the project plan been reviewed and agreed upon by all
relevant stakeholders so they agree to deliver necessary
resources in due time?

29 Is the project plan built upon clearly defined work packages
which are either open (0% complete) or closed (100%
complete) and which are owned by a single person?

30 Is there a continuous monitoring of all processes and
deliverables addressing both quantitative and qualitative
needs?

31 Is the current progress compared to the committed plan
known by all relevant stakeholders?

32 Have all requirements been systematically estimated by
impacted stakeholders so they commit to the overall
planning?

33 Does the project plan consider all “support activities,” such
as reviews, configuration management, quality
management, training, documentation, etc.?

34 Has a formal control been agreed upon with the supplier
which considers cost control, SLA deliverables, and
relevant project parameters (e.g., budget, milestones, and
quality)?

35 Are your customer requirements traceable to the
requirements and test cases and are those relationships
maintained through the project?

36 Is there a quality assurance plan covering all relevant
activities to ensure the necessary quality?

37 Is the quality of the delivered software periodically
measured and compared against targets (e.g.,
maintainability, reliability, usability, etc.)?

38 Are project plans realistic and considered feasible by all
impacted stakeholders (e.g., looking to availability, skills,
holidays, turnover, trainings, etc.)?

39 Are all external interfaces of your project known and
managed (e.g., to your clients)?

40 Is there a written plan on all activities related to changes to
requirements to your suppliers?

41 Is there a systematic change management installed for all
suppliers (e.g., change control board, configuration
baselines) which is followed across the project?

Evaluation   313

No. Check
Your Answer

(No = 0 . . . Yes = 3)

42 Is all necessary information on the project and processes
available to all stakeholders across all locations (e.g.,
quality plans, tools, quality status, configuration baselines,
etc.)?

43 Are all necessary tools for efficient collaboration available
and used (e.g., requirements engineering, documentation,
project management, team meetings, wikis, etc.)?

44 Is the source code under formal configuration control as of
project start to allow, at each moment, an automatic build
and/or fall-back?

45 Are the basic engineering and management tools being used
across the sites and projects (e.g., defect tracking,
configuration management, project management, workflow
management)?

46 Is the available IT infrastructure sufficient to collaborate
across sites and to interface with the suppliers’ IT
infrastructure?

47 Is the bandwidth sufficient for tools, video conferencing,
backups, etc. to work and collaborate across sites?

48 Are the backup and recovery policies and tools sufficient for
fast recovery? Are they periodically tested in real life?

49 Are different communication channels effectively and
efficiently used (e.g., site visits, video conferencing,
telephone calls, online meetings, collaboration tools)?

50 Is there a maintained list of relevant risks and appropriate
mitigation actions?

51 Are there periodic reviews with stakeholders across sites,
functions, projects, and with the supplier?

52 Are transparent performance evaluations used to
periodically assess and improve performance and cost of
the existing supplier agreements?

53 Are there sufficiently skilled people available in due time to
avoid overtime?

54 Are risks and problems detected and resolved in due time
across sites, suppliers, projects, and processes?

55 Are the supplier employees fully allocated to your
outsourcing/offshoring program?

56 Is the employee turnover rate of the supplier below 10%?

57 Do you believe that all impacted stakeholders actively
support the outsourcing/offshoring program?

58 Do you believe that all impacted stakeholders want a
sustainable partnership with the selected supplier(s)?

(Continued)

314   Appendix B  Checklist/Template: Self Assessment

No. Check
Your Answer

(No = 0 . . . Yes = 3)

59 Do you believe that all relevant risks of the outsourcing/
offshoring project are sufficiently mitigated?

60 Do you have sufficient external expertise and experiences
available and used for preparation and training to
successfully manage the outsourcing/offshoring program?

Initial sum

Multiplication factor:
1.5 if your organization is experienced with outsourcing/
offshoring projects with the selected supplier.

1.25 if your organization is experienced with previous home
outsourcing/offshoring activities?’

Otherwise 1.0.

Sum (= initial sum x multiplication factor)

Global software and IT pose lots of risks and challenges which are not so relevant
in regular colocated projects. These risks must be identified, assessed, and managed,
otherwise global software and IT might be a very expensive exercise. It is certainly
helpful to start with the best practices and then enhance them according to your own
specific needs, culture, and risks. This book provides guidance for finding answers
to most problems and risks. Here is a simple checklist and template which sum-
marizes typical risks.

315

Appendix C

Checklist/Template:
Risk Management

Risk Mitigation Actions

Project delivery failures Professionally train all project managers.
Apply best practices from the CMMI (DEV + ACQ), COBIT,
ITIL for IT companies frameworks.

Implement CMMI maturity level three on supplier and
customer side.

Maintain an organization risk repository.
Use lessons learned and root cause analysis reports from
previous projects to avoid repetition of problems.

Insufficient quality Establish and use quality indicators.
Systematically follow quality gates at work product level.
Implement CMMI maturity level three on supplier and
customer side (or COBIT and ITIL for IT service providers).

Monitor and use early defect ratio as a warning sign of
insufficient specification and code quality.

(Continued)

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

316   Appendix C  Checklist/Template: Risk Management

Risk Mitigation Actions

Distance and cultural
clashes

Train people in all involved organizations on handling
cultural diversity.

Provide different communication channels and collaboration
tools.

Use workflow management and online tools.
Have periodic workshops with teams and apply online
team-building.

Organize around teams and give them ownership and
responsibility.

High staff turnover Establish flexible long-term retention models.
Make employees an integral part of the company, such as by
partial ownership, direct involvement on certain decisions,
etc.

Periodically conduct employee engagement surveys to take
appropriate corrective actions.

Monitor critical resources availability and evolution and
implement succession plans.

Learn to deal with staff turnover by means of pooled buffers.

Poor supplier services Agree and apply supplier management and escalation
processes.

Use flexible prizing schemes depending on uncertainties and
risks.

Preferably establish a fixed price contract scheme to mitigate
estimation risks.

Evolve towards a partner model with the supplier.
Train suppliers on required processes, specifically interfaces,
reporting, requirements engineering and configuration
management.

During the ramp-up period, carefully educate supplier
management on escalation procedures and your own
required quality level.

Rigorously highlight insufficient quality, delays or lack of
visibility.

Escalate carefully and step-wise and avoid the SLA
“hammer”.

Instability with overly
high change rate

Follow a systematic RE process covering supplier and
customer.

Establish clear responsibilities and policies for handling
change.

Review and sign-off of all requirements.
Monitor and control the requirements change index.

Insufficient competencies Establish competence management.
Standardize skill and competency requirements and
definitions across all distributed locations.

Use professional multi-project management and resource
planning.

Provide all necessary training and monitor effectiveness.

Checklist/Template: Risk Management    317

Risk Mitigation Actions

Wage and cost inflation Establish a systematic and consistent accounting and
reporting based on engineering/service activities.

Review efficiency beyond the traditional measurements of
estimation accuracy and cost.

Distribute work across regions and anticipate wage increases.
Evaluate, together with the supplier, his own situation and
review mechanisms for mutual win-win.

Evaluate your own and suppliers’ business models over future
years – and look for risks on either side.

Lock-in with supplier Establish common processes and tools with clear descriptions
for ramp-up and operational usage in order to facilitate
move of activities.

Communicate, document, and distribute critical knowledge.
As a service client keep critical engineering knowledge
within your own company.

Maintain back-up and recovery mechanisms.
Carefully protect against supplier lock-in on the basis of
contracts, work distribution and dual sourcing.

Evaluate together with the supplier his own situation and
review mechanisms for mutual win-win situations.

Inadequate IPR
management

Systematically train engineering and management on IPR.
Establish and rigorously apply a strong policy on IPR
protection.

Encourage innovation on all sites and promote patents.

The Glossary has been compiled based on entries from various international standards, such
as IEEE Std 610 (Standard Glossary of Software Engineering Terminology) [IEEE90], ISO
15504 (Information technology. Software process assessment. Vocabulary) [ISO04], the
SWEBOK (Software Engineering Body of Knowledge) [SWEBOK11], the CMMI for
Development [SEI11], ITIL and COBIT standards [COBIT05, ITIL07], and the PMBOK
(Project Management Body of Knowledge) [PMI01]. Entries are adjusted to serve the needs
of this particular book. This terminology is consistently used across all publications, lectures,
and keynotes of the author. The author acknowledges the usage of these standards and takes
all responsibility for deviating adjustments within the text below.

Acceptance Criteria  The criteria that a system or component must satisfy in order to be
accepted by a user, customer, or other authorized entity.

Acceptance Test  Test activities for sample checks to verify that a system (or product, solu-
tion) has the right quality for deployment and usage. The acceptance test is often done by
the customer.

Acquisition  The process of obtaining products (goods and services) through contract.

Acquisition Strategy  The specific approach to acquiring human resources to serve on a
project, products, and services. It considers supply sources, acquisition methods, require-
ments specification types, contract or agreement types, and the related acquisition risk.

Activity  An element of work performed during the course of a project. An activity normally
has an expected duration, expected cost, and expected resource requirements. Activities are
often subdivided into tasks.

Agile Development  Development paradigm to support efficient software engineering for
typically small collocated projects. Captures well-known best practices and bundles them
toward a style which avoids what is perceived as “unnecessary.” Examples of agile methods
include extreme programming, feature driven development, and test driven
development.

Allocate  Assign requirements to a project, process, or other logical element of the system.

Application Service Provider  A company that provides servers and services to host and
run applications.

Application Service Provisioning (ASP)  ASP or netsourcing is a form of outsourcing
where computer-based services are outsourced to a third-party service provider. The appli-
cation service provider provides these services to customers over a network. ASP is a
form of Information Technology Outsourcing for operationally provisioning software
and IT functionality. Software offered using an ASP model is called on-demand software
or software as a service (SaaS). Examples are customer relationship management or sales

319

Glossary and Abbreviations

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

320   Glossary and Abbreviations

(e.g., salesforce.com), but also, increasingly, desktop applications. ASP is limited and of
risk (performance, security, availability) because access to a particular application program
is through a standard protocol such as HTTP. The market is divided as follows: Functional
ASP delivers a single application, such as timesheet services; a vertical ASP delivers a
solution for a specific customer type, such as a chimney sweepers; an enterprise ASP deliv-
ers broad solutions, such as finance solutions.

Appraisal  Examination (sometimes called assessment) of one or more processes by a
trained team of professionals using an appraisal reference model as the basis for determin-
ing at a minimum strengths and weaknesses. Mostly used in context of CMMI (Capability
Maturity Model Integration). See also SCAMPI.

AS  Aerospace Standard

ASP  See Application Service Provisioning.

Audit  Systematic, independent, and documented process for obtaining evidence and evalu-
ating it objectively to determine the extent to which audit criteria are fulfilled.

Balanced Scorecard (BSC)  A set of well-defined performance measurement balanced to
capture different dimensions, such as finance, customers, innovation, and people. Compared
to one-dimensional sets of measurements, a BSC allows comparing multiple dimensions
at the same time, thus reducing the risk of local optimization (e.g., short-term financial
gains at the cost of long-term survival).

Baseline  See Configuration Baseline.

Benchmarking  (1) The continuous process of measuring products, services, and practices
against competitors or those companies recognized as industry leaders. (2) An improvement
paradigm with a structured and systematic learning from the best in class. Benchmarking
is difficult to implement without highly effective and fast industry networks and is therefore
offered as a consulting product (contact C. Ebert for details).

Benefits  Perceived positive impact of a product or service. Within the business case it is
the income within a period. Benefits impact value.

Best Practice  This concept (or recipe for success, success method, state of the practice)
describes the use of best practices, technical systems, and business processes in an enter-
prise. Best practice is typically described by standards and can be relevant in liability issues
when a company needs to prove that it applies the state of the practice.

Body Shopping  Specific outsourcing service used to allocate external resources ad hoc to
a task, work package or project to get immediate results. Increases flexibility but at the cost
of fragmentation and overheads. Normally done onshore by dedicated consulting compa-
nies (e.g., timesharing companies) or offshore by offshore suppliers. In Europe it is often
restricted by labor laws.

BPO  See Business Process Outsourcing.

BSC  See Balanced Scorecard.

BTO  See Business Transformation Outsourcing.

Business Case  Consolidated information summarizing and explaining a business proposal
from different perspectives (cost, benefit, and so on) for a decision maker. Often used for
assessing the value of a product or requirements of a project. As opposed to a mere profit-
loss calculation, the business case is a “case” which is owned by the product manager
and used for achieving the objectives.

Glossary and Abbreviations   321

Business Process  A partially ordered set of enterprise activities that can be executed to
realize a given objective of an enterprise or a part of an enterprise to achieve some desired
end result.

Business Process Outsourcing (BPO)  A form of outsourcing where a business process
(or business function) is contracted to a third-party service provider. BPO involves out-
sourcing of operations and responsibilities of that process or function. Examples are busi-
ness processes such as supply chain, maintenance, welcome desk, financial services, or
human resources. Historically, Coca Cola was the first to use BPO for outsourcing parts of
their supply chain.

Business Requirement  See Market Requirement; Requirements Specification.

Business Transformation Outsourcing  Outsourcing model that covers both classic ser-
vices (e.g., IT infrastructure management, software development) but also the reengineering
and improvement of the related business processes. The goal is to flexibly adjust an enter-
prise to changing market demands. Example: outsourcing of product development and
production.

Capability Maturity Model Integration  See CMMI.

CDE  See Collaborative Development Environment.

Certification  Acknowledgment based on a formal demonstration that a system, process, or
person complies with specified objectives or requirements. Example: ISO 9001 certifica-
tion, CPRE certification.

Change  A change (or transition, transformation) is the managed move of individuals, teams,
and organizations from a current state to a desired future state. Examples: Introduction of
a new culture, strategy implementation, process change, merger, acquisition, cost reduction,
outsourcing.

Change Agent  An individual or group that has sponsorship and is responsible for imple-
menting or facilitating change. An example of a change agent is the systems engineering
process group. Contrast with change advocate.

Change Control Board (CCB)  A formally constituted group of stakeholders responsible
for evaluating, approving, or rejecting changes to a configuration baseline.

Change Management  The systematic process to implement a change in a controlled
manner. It comprises the objectives, processes and actions that are used to successfully
implement the change. Typically, organizational change includes the transformation and
development of the hierarchical organization and the process organization.

Change Request  Formalized requirement to expand or reduce the project scope, modify
policies, processes, plans, or procedures, modify costs or budgets, or revise schedules. A
change request often ripples into many items of a configuration baseline.

CMMI  Capability Maturity Model Integration. The model contains the essential elements
of effective processes for one or more disciplines. It also describes an evolutionary
improvement path from ad hoc, immature processes, to disciplined, mature processes with
improved quality and effectiveness. The CMMI is fully based on ISO 15504. The CMMI
have been used successfully for many years for evaluating and improving engineering
processes in the IT, software, and systems industries. Created and owned by the Software
Engineering Institute.

COBIT  Control Objectives for Information and Related Technology is a set of best prac-
tices and governance criteria for IT management created by the Information Systems Audit

322   Glossary and Abbreviations

and Control Association and the IT Governance Institute in 1996. COBIT provides manag-
ers, auditors, and IT users with a set of generally accepted measures, indicators, processes
and best practices for appropriate IT governance and control in a company. It uses three
dimensions, namely, IT processes, IT resources, and business requirements.

Collaborative Development Environment (CDE)  A CDE provides a project workspace
with a standardized tool set for global software teams. CDEs combine different tools, and
thus, offer a frictionless development environment for outsourcing and offshoring.

Collocation  An organizational placement strategy where the project team members are
physically located close to one another in order to improve communication, working rela-
tionships, and productivity.

Commitment  An agreement that is freely assumed, visible, and expected to be kept by all
parties.

Competence  From Latin competere (being able to do something), the ability of a person to
do a specific task.

Component  A constituent part, element, or piece of a complex whole. Product components
are parts of the product and help to structure the development and manufacturing processes.
They are integrated to “build” the product. There may be multiple levels of product
components.

Concurrent Engineering  An approach to project staffing that, in its most general form,
calls for implementers to be involved in the design phase.

Configuration Baseline  The configuration information formally designated at a specific
time during a product’s, product component’s, or work product’s life. Configuration base-
lines, plus approved changes from those baselines, constitute the current configuration
information.

Configuration Management  A discipline applying technical and administrative direction
and surveillance to (1) identify and document the functional and physical characteristics
of a configuration baseline and its items, (2) control changes to those characteristics, (3)
record and report change processing and implementation status, and (4) verify compliance
with specified requirements.

Conformity  Fulfilling a requirement.

Constraint  A constraint is a requirement that constrains the way a system can be realized.
Constraints extend the functional requirements and the quality requirements. Examples:
cost, business processes, laws. See also requirement, requirements analysis, requirements
engineering.

Contract  A mutually binding agreement, which obligates the supplier to provide the speci-
fied product, and obligates the buyer to take it and to pay for it.

Corrective Action  Action taken to eliminate the cause of a detected nonconformity or other
undesirable situation

Cost  Expenses for engineering, producing, selling, and so on, of a product or service. For
software systems these are mostly labor cost plus marketing and sales expenses. Costs are
typically expensed in the year they are incurred with direct impact on cash and profitability.
For long-term investments they can be capitalized with positive impact on cash but not on
profit.

Cost Budgeting  Allocating the cost estimates to individual project components.

Glossary and Abbreviations   323

Cost Control  Controlling expenses and changes to the allocated project budget. See Earned
Value Management.

Cost Estimation  See Estimate.

Cost of Non-Quality (CNQ)  The cost incurred of not having the right level of quality at a
given moment. The cost of non-quality includes activities, from that moment onward,
related to insufficient quality, such as rework, inventory cost, scrap, or quality control.

Cost of Quality  The cost incurred to ensure quality. The cost of quality includes quality
planning, quality control, quality assurance, and rework.

Cost Performance Index (CPI)  A measurement of cost efficiency on a project. It is the
ratio of earned value (EV) to actual costs (AC). CPI = EV / AC. A value equal to or greater
than one indicates a favorable condition (actual cost lower than planned) and a value less
than one indicates an unfavorable condition (cost overrun). See also Earned Value
Management.

Cost Variance (CV)  A measurement of cost performance on a project. It is the algebraic
difference between earned value (EV) and actual cost (AC). CV = EV − AC. A positive
value indicates a favorable condition and a negative value indicates an unfavorable condi-
tion. See also Earned Value Management.

CPI  See Cost Performance Index.

Critical Path  In a project network diagram, the series of activities which determines the
earliest completion of the project.

Customer  Organization or person receiving a solution, service, or product. Specified
precisely by the contract between supplier and customer. The customer is not always the
user.

Customer Requirements Specification  See Requirements specification.

Customer Satisfaction  The customer’s opinion of the degree to which a transaction has
met the customer’s needs and expectations

Data Dictionary  Description of data elements with structure, syntax, value ranges, depen-
dencies, and a brief content description.

Defect  An imperfection or deficiency in a system or component where that component does
not meet its requirements or specifications which could yield a failure. Causal relationship
distinguishes the failure caused by a defect which itself is caused by a human error.

Design to Cost  A quality requirement that directs a solution optimized to low cost. The
entire life-cycle is considered depending which type of cost is put into focus (e.g., cost of
production, cost of ownership, reduced pricing to the customer, and so on).

Development  See R&D.

Development Project  A project in which something new or enhanced (e.g., software tech-
nology, changed functionalities) is developed as a product for a market or a customer.

Document  Information and its tangible transport medium. Documents describe work
products.

Due Diligence  Systematic evaluation of a company before working together or before an
acquisition or merger. The evaluation includes a systematic analysis of strengths and weak-
nesses. See also SWOT analysis.

Earned Value Management  Managing a project based on the value of the results achieved
to date in a project while comparing with the projected budget and the planned schedule

324   Glossary and Abbreviations

progress at a given date. Progress measurement which relates already consumed resources
and achieved results at a given point in time with the respective planned values for the
same date.

Ebert’s Law on Productivity  Productivity is improved by reducing accidents (e.g., improve
engineering and management discipline, processes, and tools) and controlling essence (e.g.,
understand the real needs are and implement those in the product). Abbreviated as RACE
(Reduce Accidents, Control Essence).

Eclipse  Open source framework for software development. With its open plug-in structure
based on the Eclipse Rich Client Platform (RCP) that allows data exchange both on access
and semantic levels, Eclipse is used in many different engineering tasks. Example: A small
supplier offers a tool that easily interacts with a rich basis of other tools.

Eco System  A term from biology for a system of different species that mutually support
each other. Example: Supplier A offers a service for a product of supplier B on which B
depends. Both suppliers support each other.

Effectiveness  From Latin effectivus (creating impact), the relationship between achieved
objectives to defined objectives. Effectiveness means “doing the right things.” Effectiveness
looks only if defined objectives are reached and not how they are reached.

Efficiency  (1) Economic efficiency (from Latin efficere, “achieving”) is the relationship
between the result achieved (effectiveness) and the resources used to achieve this result.
Efficiency means “doing things right.” An efficient behavior like an effective behavior
delivers results, but keeps the necessary effort to a minimum. See also productivity. (2)
A measurement. The set of attributes that bear on the relationship between the level of
performance of the software and the amount of resources used under stated conditions.

Effort  The number of labor units required to complete an activity or other project element.
Usually expressed as person hours, person weeks, or person years. Not to be confused with
duration.

Effort Estimation  An assessment of the likely effort, cost or duration of a project or task
at the time before or during project execution. Should always include some indication of
accuracy (e.g., ± x%). See also estimate.

ELOC  Executable LOC, Effective LOC. The amount of executable software code which
excludes comments, and so on.

Embedded Software  A software system which is embedded in a larger system, the main
purpose of which is not computation (e.g., software for automatic fuel injection in a car).
Most embedded systems are real-time systems.

Embedded System  A special-purpose computer system built into a larger system for which
the main purpose is not computation. Example: Pacemaker.

Emergency Plan  Description of actions and responsibilities that need to happen if a risk
materializes. It is set up for all critical risks as part of risk management.

Engineering  (1) The application of science and mathematics by which properties of matter
and the sources of energy are made useful to people. (2) An organization in the enterprise
that is in charge of product development, applications, or software solutions. Can be soft-
ware engineering, IT or offshore centers.

Estimate  An estimate is a quantitative assessment of the likely amount or outcome of a
future endeavor. It is usually applied to forecast project costs, size, resources, effort, or
durations. Given that estimates can, by definition, be imprecise, they should always include
some indication of accuracy (e.g., ±x percent). See also effort estimation.

Glossary and Abbreviations   325

Evaluation  A systematic determination of the extent to which an entity meets its specified
criteria (e.g., business objectives, quality goals, process needs). See also validation;
verification.

Evolution  The last phase of the product life-cycle. Covers all types of maintenance as well
as activities that maintain or enhance the value of a product.

Extreme Programming  An agile development methodology for software development.
Underlying principles are to develop only what is needed. It is based on incremental
development, refactoring, pair programming, no documentation except the code, and so
on.

Failure  (1) A departure between observed and expected behavior of a system at runtime.
The termination of the ability of an item to perform a required function or its inability to
perform within previously specified limits. (2) The effect of a defect in a system on its
external behavior. Deficient operational behavior of a system or a component due to a
product defect, a user error, or a hardware/software error. See also defect.

Feature Driven Development (FDD)  Agile development methodology for software engi-
neering. FDD based on incremental development. Increments are closely linked to
requirements (here: features) to assure that each increment delivers tangible value.

Frontloading  Early decision-making in the product life-cycle to reduce overall lead-time
and effort.

Full Function Points (FFP)  Extension to Function Points to use this functional size mea-
surement for systems other than software only (e.g., embedded systems).

Function Point Analysis (FPA)  Quantitative method to estimate function points by evaluat-
ing the software requirements or design on the number of inputs, outputs, queries, proce-
dural complexity, and environmental factors. The derived function points can be related to
effort or duration of a project.

Function Points (FP)  See FPA.

Functional Requirement  A function of a system that is offered by a system or a system
component. It describes in the language of the system what the system will do. Example:
Calculation of output parameters from input parameters by applying a specified algorithm.
See also requirements; requirements analysis; requirements engineering.

General Public License (GPL)  The most widely used open source license type. Right to
source code for any binary that is GPL licensed. Right to modify source code and redis-
tribute source and modifications. Licensee must be prepared to distribute source for any
distributed binaries derived from GPL code. Licensee must manage licenses for all imported
code. Note that an application on top of the Linux kernel does not become GPL.

Global Software Engineering (GSE)  Software engineering in globally distributed sites.
Different business models and work breakdown schemes are used, such as outsourcing,
offshoring, rightshoring.

Governance  Leadership principle and its operational implementation in the enterprise to
ensure that agreements are kept.

GSD  Global Software Development. See Global Software Engineering.

GSE  See Global Software Engineering.

Guanxi  Chinese for network of personal relationships and their active use on a wide scale
of decision-making and mutual support.

326   Glossary and Abbreviations

Guideline  Operational explanation how a process or tool are used in a specified situation.

Hard Skills  Knowledge on facts, methods, and technologies. Also called know-how or
know-what.

HCL  High Cost Location.

History Database  See Measurement Repository.

IDE  Integrated Development Environment. Tool suite used to develop application software.
It typically supports design, coding, and verification. Additional tools support require-
ments management or test and are integrated to the IDE by its vendors.

IEC  International Electrotechnical Commission

IEEE  Institute for Electrical and Electronics Engineers, the largest global interest group for
engineers of different branches and for computer scientists.

INCOSE  International Council on Systems Engineering, an organization that is very active
in systems engineering.

Increment  Internal delivery of a product. Often increments are planned as steps within a
project to deliver the most relevant (valuable) functionality first. Increments and iterations
are used to divide complex projects, and thus, mitigate the associated risks. Incremental
steps are planned from the beginning to allow stepwise stabilization and measurable value
of the project as it progresses. See also earned value.

Incremental Development  Project is developed and stabilized stepwise in executable and
usable increments.

Indicator  From Latin indicare (pointing to), an indirect measurement used to estimate or
predict another measurement which is not (yet) directly measurable. An indicator points to
a trend, a deviation, or some behavior which is otherwise not tangible. Example: The
structural design complexity is an indicator for the test effort.

Information Technology (IT)  Denomination for all information, communication, and data
processing technologies, covering industries, markets, and software or hardware systems
and components.

Information Technology Outsourcing (ITO)  A form of outsourcing where software and
It related services are outsourced to a third-party service provider. ITO is a form of busi-
ness process outsourcing for software and information technology activities. Historically,
EDS was the first ITO supplier. Examples of this are outsourcing of software maintenance
or IT provisioning services.

Inspection  Conformity evaluation by observation and judgment accompanied as appropri-
ate by measurement, testing, or gauging. Part of verification.

Integration Test  The progressive linking and testing of software components in order to
ensure their proper functioning in the complete system. See also verification.

ISO  International Standards Organization, a UN-sponsored organization to achieve and
enforce globally effective standards.

ISO/TS  ISO Technical Standard.

IT  See Information Technology.

IT Portfolio  IT assets (static and dynamic) and their relationship to enterprise strategy. See
also portfolio management.

ITIL  The IT Infrastructure Library is a guidance and set of requirements toward organiza-
tions of processes that are necessary for operating an IT infrastructure within an enterprise.

Glossary and Abbreviations   327

The original British ITIL Standard BS 15000 is, today, a globally used de-facto standard
and is maintained as ISO / IEC 20000. The ISO / IEC 20000 IT Service Management serves
as a measurable quality standard for IT service management. For that matter the necessary
minimum requirements and processes are specified that an organization must establish and
manage to be able to provide IT services in a defined quality.

ITO  See Information Technology Outsourcing.

IV&V  Independent verification and validation. A software or system (component) is veri-
fied by an organization which is neither economically nor organizationally linked with the
organization responsible for development. See also validation; verification.

Joint Application Design  Method for developing systems with different stakeholders
participating. It allows you to identify critical and important requirements early. It is
utilized heavily in agile development.

Key Account Manager (KAM)  A sales person responsible for a key customer (“key
account”) which he or she supports and represents in internal decision-making processes.
Key accounts are critical to business because they contribute (or should contribute) to a
large share of all revenues or profits.

Key Performance Indicator (KPI)  A quantitative measurement or indicator used in
performance management to agree an objective and measure progress during the reporting
period and is often linked to bonus payment. See also balanced scorecard.

KLOC  Kilo (thousand) LOC.

Knowledge Management  The process that deals with systematically eliciting, structuring,
and facilitating the efficient retrieval and effective use of knowledge, both tacit and explicit,
and stretching from know-how to know-what to know-why.

KPI  See Key Performance Indicator.

KStmt  Kilo (thousand) statements. See also KLOC.

LCL  Low cost location.

Life-Cycle  (1) The system or product evolution initiated by a user need or by a perceived
customer need through the disposal of consumer products and their life-cycle process
products and by-products from inception until retirement. (2) A framework containing the
processes, activities, and tasks involved in the development, operation, and maintenance
of a software product, spanning the life of the system from the definition of its requirements
to the termination of its use. See also product life-cycle; product life-cycle
management.

Life-Cycle Cost  The total investment in product development, test, manufacturing, distribu-
tion, operation, refining, and disposal. This investment is typically allocated across the
anticipated number of units to be produced over the entire product life-cycle, thus provid-
ing a per-unit view of life-cycle cost. See also business case.

LOC  Lines of code, the most popular size measurement for software. There are different
algorithms for calculating LOC (e.g., executable code, total written lines of source code).
LOC is the basis for effort estimation and defect forecasting. Also used in hardware and
firmware development.

Maintainability  The set of attributes that bears on the effort needed to make specified
modifications.

Maintenance  The product life-cycle phase of modifying a product or component after
delivery to correct defects, adapt to a changed environment, improve performance or other

328   Glossary and Abbreviations

attributes, or perform line and depot maintenance of hardware components. That is, it
includes maintenance that may be corrective, adaptive, or perfective.

Maintenance Project  Dedicated project to provide changes to an existing product for
correcting defects and for introducing new or changed functionality. See also
maintenance.

Management System  System that describes how to establish and achieve management
objectives, processes, consistent process practice, and governance.

Market  A group of people or organizations with an unresolved need and sufficient resources
to apply to the satisfaction of that need.

Marketing  The different tasks, functions, and processes that evaluate and improve the
enterprise and its market position (e.g., advertisement, pricing, product vision). Marketing
is the whole business seen from the point of view of its final result, that is, from the cus-
tomer’s point of view. Concern and responsibility for marketing must, therefore, permeate
all areas of the enterprise.

Maturity Level  A well-defined evolutionary plateau toward achieving a mature process.
Used for evaluating process maturity and for process improvement (appraisal) of both own
processes and those of a supplier. The five maturity levels in the CMMI are labeled initial,
repeatable, defined, managed, and optimizing.

Maturity Model  Model which maps process capability in defined categories, and thus
permits a reliable and repeatable process evaluation. A maturity model provides require-
ments and expectations to processes but doesn’t prescribe processes. It is thus no product
life-cycle model. Typically used for process assessments and for process improvement
(appraisal) of both home processes and those of a supplier. See also CMMI.

MBO  Management by objective, a goal-oriented management method setting concrete
objectives which are followed through. See also key performance indicator.

Measurement  (1) A formal, precise, reproducible, objective mapping of a number or
symbol to an empirical entity for characterizing a specific attribute. (2) Mathematically: A
mapping M of an empirical system C and its relations R to a numerical system N. (3) The
use (e.g., extraction, evaluation, analysis, presentation, and corrective actions) of a mea-
surement. Examples: Product measurements (e.g., defects, duration, deviation from plan,
performance) or process measurements (e.g., cost of defect correction, efficiency,
effectiveness).

Measurement Repository  Repository (or storage) used to collect and make available mea-
surement data. Such repository contains or references actual measurement data and related
information needed to understand, analyze, and utilize (e.g., for estimations or statistical
management) the measurement data.

Migration Project  The managed replacement of a system with another system.

MIL  Military standard.

Milestone  A significant event in the project, usually completion of a major deliverable. Used
to structure a life-cycle.

MIS  Management Information System, a database system for collecting, aggregating,
reporting, and analyzing various project and enterprise figures. There are different tools to
be used.

Model Driven Development  Product life-cycle model for development of software and
systems. (Software) systems are described with a set of related models. The models build

Glossary and Abbreviations   329

a continuous hierarchy of abstractions. The level of abstraction is continuously decreasing
from the business process to the system definition, the design, and finally, the implementa-
tion. Changes are incorporated first to the model and, afterward, in its implementation to
ensure consistency across all models at all times.

MTTF  Mean time to failure, a reliability measurement showing the time between two
failures.

MTTR  Mean time to repair, a reliability measurement showing the time a system is, on
average, not working (due to defects or maintenance).

Multi-Project Management  The optimal allocation of resources to different projects.
Being different from portfolio management, multi-project management looks for only the
best possible execution of the respective projects.

Nearshore Outsourcing  The outsourcing supplier resides in a site geographically close to
the main site. This reduces impacts of time zones, distance, and cultural variety. See also
offshoring; outsourcing.

Netsourcing  See Application Service Provisioning.

Nonfunctional Requirements  See Quality Requirements.

Offshore Outsourcing  Large geographical distance between acquirer and supplier (e.g.,
Europe to India). See also offshoring; outsourcing.

Offshoring  Executing a business activity beyond sales and marketing outside the home
country of an enterprise. Enterprises typically either have their offshoring branches in low-
cost countries or they ask specialized companies abroad to execute the respective activity.
Offshoring should, therefore, not be confused with outsourcing. Offshoring within the
home company is called captive offshoring. See also nearshore outsourcing.

Onshore Outsourcing  The supplier comes from same country as the acquirer. See also
offshoring; outsourcing.

Outsourcing  A result-oriented relationship with a supplier who executes business activities
for an enterprise which was traditionally executed inside the enterprise. Outsourcing is
site-independent. The supplier can reside in direct neighborhood of the enterprise or off-
shore (outsourced offshoring).

Peer Review  Internal review activity in which experts on the same organizational hierarchy
level as the author verify a work product. See also verification.

PEP  See Product Engineering Process.

Performance  A quantitative measurement of a product, process, person, or project charac-
terizing a physical or functional attribute relating to achieving a target or executing a
mission or function. Performance attributes include quantity (how many or how much),
quality (how well), coverage (how much area, how far), timeliness (how responsive, how
frequent), and readiness (availability, mean time between failures). See also efficiency.

PERT  Program Evaluation and Review Technique, a project management method devel-
oped during the 1950s in the United States to integrate planning and monitoring specifically
for projects with subcontractors. It includes statistical treatment to the possible time dura-
tions and uncertainties, and thus, achieves better accuracy than simple one-value based
techniques.

Plan  A documented series of tasks required meeting an objective, typically including the
associated schedule, budget, resources, organizational description, and work breakdown
structure.

330   Glossary and Abbreviations

Planned Value  The authorized budget assigned to the scheduled work to be accomplished
for a schedule activity or work breakdown structure component. Also referred to as the
budgeted cost of work scheduled (BCWS). See also Earned Value Management.

PLC  See product life-cycle.

PLM  See product life-cycle management.

PMBOK  See project management body of knowledge.

PMI  Project Management Institute, a globally active organization that trains and certifies
project managers independent from the application domain.

Portfolio  The sum of all assets and their relationship to the enterprise strategy and its market
position. See also portfolio management.

Portfolio Management  A dynamic decision process aimed at having the right product mix
and performing the right projects to implement a given strategy. It evaluates all projects in
their entirety with respect to their overall contribution to business success and answers the
question: Do we have the right projects? It selects projects and allocates limited resources
in order to meet business needs.

Present value  The current value of all future expense and income considering a realistic
interest rate with the today’s (“present”) date as a common reference point.

Price  The amount a customer is charged for one or more instances or the usage of the
product. For internal products (e.g., IT services) there is typically an internal pricing
scheme based transaction cost and external market prices.

Priority  The degree of importance of a requirement, event, task, or project.

Process  Set of activities, which uses resources to transform inputs into outputs. A sequence
of steps performed for a given purpose. Example: The product life-cycle.

Process Capability  (1) The range of expected results that can be achieved by following a
process. (2) The ability of an organization to develop and deliver products or services
according to defined processes.

Process Description  A documented expression of a set of activities performed to achieve
a given purpose. A process description provides an operational definition of the major
components of a process. The description specifies, in a complete, precise, and verifiable
manner, the requirements, design, behavior, or other characteristics of a process. It may
also include procedures for determining whether these provisions have been satisfied.
Process descriptions can be found at the activity, project, or organizational level.

Product  From Latin produco (to create, deliver), an economic good (or output) which is
created in a process that transforms product factors (or inputs) to an output. When sold, it
is characterized by attributes that are valuable to its users. It is a deliverable which creates
a value and an experience for its users. A product can be a combination of systems, solu-
tions, materials, and services delivered internally (e.g., in-house IT solution) or externally
(e.g., SW application) as is or as a component for another product (e.g., IP stack).

Product Engineering Process (PEP)  The process which describes specific to a company
the concept, development, and manufacturing of a product. See also product life-cycle.

Product Life-Cycle (PLC)  The sum of all activities needed to define, develop, implement,
build, operate, service, and phase out a product or solution and its related variants. It is
subdivided into phases that are separated by dedicated milestones, called decision gates.
With the focus on disciplined gate reviews, the PLC fosters risk management and provid-

Glossary and Abbreviations   331

ing auditable decision-making information (e.g., complying with product liability needs,
or Sarbanes-Oxley Act section 404).

Product Life-cycle Management (PLM)  The business process for guiding products and
solutions from inception through retirement. PLM comprises all processes and requires
stakeholders to manage and effectively execute the PLC, including business and technology
strategy, product and field marketing, and portfolio management and product development.
By providing aligned and collaborating processes and tools, PLM facilitates the discipline
to implement strategy, planning, and management, and thus ensures execution through each
phase of the life-cycle. PLM facilitates an enterprise’s ability to monitor activities, analyze
challenges and bottlenecks, make decisions, and execute decisions. By lining up goals and
processes, it fosters sustainable performance improvements. See also product life-cycle
model.

Product Line  A group of products sharing a common, managed set of features that satisfy
needs of a selected market or mission. A product within a product line shares the common
basis and exhibits a defined variability to address specific market needs. Such a product
line is a platform with platform elements (P1-Pn) and features (F1-Fm), which are selected
within a defined scope for the instantiation of a concrete product.

Product Management  The discipline and business process which governs a product
(including solution or service) from its inception to the market/customer delivery and
service in order to generate biggest possible value to the business.

Productivity  Defined as output over input. Output is the value delivered. Input covers all
resources (e.g., effort) spent to generate the output, the influence of environmental factors
(e.g., complexity, quality, time, process capability, team distribution, interrupts, feature
churn, tools, and language). Productivity combines efficiency and effectiveness from a
value-oriented perspective: Productivity is about generating value with the lowest resource
consumption.

Program  A set of related projects.

Program Management  Achieving a shared objective with a set of related projects.
Historically related to a set of projects for a single customer.

Project  A temporary endeavor undertaken to create a unique product or service with people.
In software engineering different project types are distinguished (e.g., product develop-
ment, IT infrastructure, outsourcing, software maintenance, service creation).

Project Controlling  Comparing actual performance with planned performance, analyzing
variances, assessing trends to effect process improvements, evaluating possible alternatives,
and recommending appropriate corrective action as needed. Example: earned value.

Project Life-Cycle  The set of sequential project phases determined by the control needs of
the organizations involved in the project. Typically, the project life-cycle can be broken
down into at least four phases: initiation, concept/planning, execution, and closure. The
project life-cycle and the product life-cycle are interdependent, i.e., a product life-cycle
can consist of several projects and a project can comprise several products.

Project Management  The goal-oriented and systematic application of knowledge, skills,
tools, and techniques to project activities in order to meet or exceed stakeholder needs and
expectations from a project.

Project Management Body of Knowledge (PMBOK)  A repository presenting a baseline
of project management knowledge. Serves as a de facto industry and educational standard
and is used for certification. Originated and maintained by the PMI.

332   Glossary and Abbreviations

Project Plan  A formal, approved document used to guide both project execution and project
control. The primary uses of the project plan are to document planning assumptions and
decisions, to facilitate communication among stakeholders, and to document approved
scope, cost, and schedule baselines.

Quality  (1) The ability of a set of inherent characteristics of a product, service, product
component, or process to fulfill requirements of customers. (2) The degree to which a set
of inherent characteristics fulfills requirements.

Quality Assurance (QA)  The part of quality management covering the planned and sys-
tematic means for assuring management that defined standards, practices, procedures, and
methods of the process are applied.

Quality Control (QC)  The part of quality management covering the operational tech-
niques and activities that are used to fulfill requirements for quality (e.g., inspections,
tests).

Quality Management (QM)  The sum of all planned systematic activities and processes for
creating, controlling, and assuring quality. See also quality assurance; quality control.

Quality Management System (QMS)  A system to establish a quality policy and quality
objectives and to strive to achieve those objectives. See also management system.

Quality Measurements  Coordinated activities to measure and direct an organization or
process toward achieving quality. Direct quality measurements evaluate specific quality
objectives (e.g., defect density, reliability). Indirect quality measurements are indicators for
a direct quality measurement before it can be measured (e.g., code complexity for
maintainability).

Quality Objective  Specific objectives, which, if met, provide a level of confidence that the
quality of a product or work product is satisfactory. See also quality requirement.

Quality of Service (QoS)  A measurement that describes quality features of a delivered
service. Example: Reaction time of a supplier for a specific defect class.

Quality Requirement  A qualitative property that a system or individual component of the
system must exhibit. They extend the functional requirements. Examples: maintainability,
security, reliability. Sometimes called non-functional requirements. See also requirement;
requirements analysis; requirements engineering.

Quality Requirements Engineering (QRE)  The disciplined and systematic approach to
elicit, specify, analyze, prioritize, commit, verify, validate, assure, and manage quality
requirements throughout the life-cycle.

R&D  Research and development that typically comprises of any engineering activity in the
product life-cycle. R&D is not the product management, marketing, or operations activities
to produce or deliver the product.

Request for Information (RFI)  Initial request to potential suppliers by the customer. It
introduces the customer, his needs and the requested service or product. The objective is
to get initial information about the supplier. The RFI is typically distributed as a question-
naire. Based on the replies, a shortlist of potential suppliers for the request for proposal
is issued.

Request for Proposal (RFP)  Request to potential suppliers by the customer. It introduces
the requirements of the requested service or product. The objective is to get a solution or
project proposal with cost and time horizons from the supplier. Based on the replies, a
shortlist of potential suppliers for the request for quotation is issued.

Glossary and Abbreviations   333

Request for Quotation (RFQ)  Request to potential suppliers by the customer. It specifies
all requirements. The RFI is typically distributed as a questionnaire. The objective is to get
a valid offer from the supplier. Based on the replies, the supplier is selected.

Requirement  (1) A condition or capability needed to solve a problem or achieve an objec-
tive. (2) A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other formally imposed docu-
ment. (3) A documented representation of a condition or capability as in definition (1) or
(2). Three different views on requirements are distinguished: market requirements, product
requirements, and component requirements. Three different types of requirements are
distinguished: functional requirements, quality requirements, and constraints.
Requirements are part of contracts, orders, project plans, test strategies, and so on. They
serve as a base for defining, estimating, planning, executing, and monitoring projects. See
also requirements engineering.

Requirements Engineering (RE)  (1) The disciplined and systematic approach (i.e., “engi-
neering”) to elicit, specify, analyze, commit, validate, and manage requirements to trans-
form real-world needs and goals into a product. (2) Activity within systems and software
engineering. The goal of RE is to develop good—not perfect—requirements and to manage
them during development with respect to risks and quality. Systematic RE is what makes
the difference between a winning product and a set of features.

Requirements Specification  A document that summarizes all requirements of the product
to be developed. Describes what shall be done and why. Owned by the client and relevant
for the contract. A requirements specification is not a solution description and must not
mix the requirement (what is to be done?) with the solution (how is it implemented?).

Resource  Impacting or used input of a process. Examples: human resources, equipment,
services, supplies, commodities, materiel, budgets, or funds.

Return on Investment (ROI)  (1) A measurement of how effectively an organization is
using its capital to generate profits. In accounting it is the annual income (profit) divided
by the sum of shareholder’s equity and long-term debt. (2) The tangible outcome or profit-
ability of an investment measured in business measurements (e.g., money). Defined as the
ratio of returns (result from an investment) to the directly related effort (investment).

Review  Performed on a work product, following defined procedures, typically by peers of
the product’s producer for the purpose of identifying defects and improvements. See also
validation; verification.

Rightshoring  Allocating engineering task to the optimum site in a worldwide scenario.
Assuring that the work is performed where it has the most benefits for the enterprise. Blend
of outsourcing, offshoring, and nearshore outsourcing.

Risk  An uncertain event or condition that, if it occurs, has a positive or negative effect. It
is a function of the probability of occurrence of a given threat and the potential adverse
consequences of that threat’s occurrence. See also risk management.

Risk Management  The systematic application of management policies, procedures, and
practices to the tasks of identifying, analyzing, evaluating, treating, and monitoring risk.
Risk management evaluates the effects of today’s decisions on the future. It is used in
project management, product management, and portfolio management.

Risk Mitigation  Part of risk management, taking steps to lessen a risk by lowering the
probability of a risk event’s occurrence or reducing its effect should it occur. There are four
techniques for risk mitigation: avoiding, delimiting, handling, ignoring.

334   Glossary and Abbreviations

Schedule Performance Index (SPI)  A measurement of schedule efficiency on a project. It
is the ratio of earned value (EV) to planned value (PV). SPI = EV / PV. An SPI equal to
or greater than one indicates a favorable condition (earlier delivery than planned) and a
value of less than one indicates an unfavorable condition (delay). See also Earned Value
Management.

Schedule Variance (SV)  A measurement of schedule performance on a project. It is the
algebraic difference between the earned value (EV) and the planned value (PV).
SV = EV − PV. See also Earned Value Management.

Scrum  From rugby terminology, a method for project management and for agile develop-
ment. It means that a team or (sub) project organizes their work themselves. The team
takes full ownership for delivering allocated work packages within the externally defined
scope. The delivery and planning is based on the so-called product backlog, which priori-
tizes requirements and synchronizes the team’s activities with external stakeholders. A daily
scrum meeting with ca. 15 minutes duration ensures daily planning and technical agree-
ments, and thus fosters commitment of each team member.

Security  Security (or information security) is the sum of all attributes of a system
which contribute toward ensuring that it can neither be accidentally nor deliberately be
attacked or manipulated. Information security implies that the product will not do anything
with the processed or managed information which is not explicitly intended by its
specification.

Service  Intangible, temporary product that is the result of at least one activity performed
at the interface between the supplier and customer and that does not imply a change of
ownership.

Service Level Agreement (SLA)  A requirements specification and contracted agreement
to specify services and their service level. The SLA defines the expected quality of a service
and describes how it will be measured (e.g., cost, defects, flexibility to changes). Its limits
are part of a contract and serve continuous quality improvement. A SLA has four elements:
the service specification, the measurement description, the objective, and the pricing
scheme which relates degree of fulfillment of the objective to the price to be paid.

Service-Oriented Architecture  IT infrastructure oriented at demanded business processes.
The system architecture offers application and usage-specific services and functions as IT
services. Driven by usage demands and rapid adaptation to requirements and changes
within the business environment. See also Service Level Agreement.

Six Sigma  A process improvement paradigm using statistical process control that governs
processes with sufficient accuracy and control to stay with its standard deviation of outputs
(sigma) within a range allowing that six times that standard deviation just reaches the
allowed control interval.

SLA  See Service Level Agreement.

SMART  Acronym describing the desired attributes of objectives or goals, which should be
Specific (precise, clearly focused), Measurable (tangible, with an underlying definition),
Attractive (to the person who has this objective), Realistic (achievable in the given scope,
applicable to a concrete environment), and Timely (currently necessary, showing results in
a short time frame).

Soft Skills  Social competences, to facilitate working with other people and organizing one’s
own life. Includes self-marketing, self-management, communication, and leadership.

Glossary and Abbreviations   335

Software Engineering  (1) The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is, the applica-
tion of engineering to software. (2) The study of approaches for (1).

Software Engineering Body of Knowledge (SWEBOK)  A repository presenting a base-
line of software engineering knowledge. Used for developing curricula and certifications.

Software Sourcing  A form of sourcing where software components are sourced from an
external supplier. It includes finding, evaluating, contractually engaging, and managing
suppliers of goods and services. Software sourcing includes different types of goods, com-
ponents, and license models. This starts with commercial off the shelf (COTS), includes a
variety of tailored components and solutions, and ends with the different community and
open source distribution and access models.

Solution  A system tailored to serve a specific business or customer need. Solutions are
typically customer-specific and unique and include a combination of different products,
processes, and resources.

Solution Model  Result of the requirements analysis. One or more solutions are modeled
and described based on a given set of requirements and environmental conditions. See also
requirements specification; solution specification.

Solution Specification  The specification of the solution which covers the requirements
of the product. Describes how the solution will be done. Owned by the supplier and forms
the basis for all subsequent engineering steps. It includes at least a system model and a
system specification as an answer to given requirements. The requirements specification
and solution specification are controlled and baselined.

Sourcing  A business process summarizing all procurement practices. Sourcing includes
finding, evaluating, contractually engaging, and managing suppliers of goods and
services.

Specification  Precise description of an activity or a work product which serves as basis or
input for further activities or work products. A specification can comprise requirements
to a product and how they will be solved. Different parts of a specification (e.g., what is
to be done, how it will be done) must not be mixed.

Stakeholder  A person or organization, such as customers, sponsors, performing organiza-
tions, or the public, actively involved in the project or whose interests may be positively
or negatively affected by execution or completion of the project. The stakeholder may also
exert influence over the project and its deliverables.

Standard  A guideline that reflects agreements on products or processes. Standards are set
by nationally or internationally recognized industrial, professional, trade or governmental
bodies. They can also evolve and be accepted de facto by industry or society.

State of the Practice  See Best Practice.

Statement of Work (SOW)  Part of the project contract that describes the general require-
ments of the product or service.

Strategic Outsourcing  A form of outsourcing with long-term and sustainable focus. A
business process is moved to an external supplier in order to focus on resources on the core
business. Within engineering projects this can be a process (e.g., maintenance, test) or a
system (e.g., legacy product). Strategic outsourcing changes the entire value chain.

Success Method  See Best Practice.

336   Glossary and Abbreviations

Supplier  A provider of goods or services to a customer. There are different supplier types:
(1) parts and materials, (2) components, subsystems, modules, engineering services, and
(3) systems, business processes. The positioning within a supplier network (or supplier
pyramid) shows the relevance of the supplier to its customer and is often numbered (OEM,
Tier-1, Tier-2, . . . Tier-N suppliers).

SV  See Schedule Variance.

SWEBOK  See Software Engineering Body of Knowledge.

SWOT Analysis  Analysis of Strengths, Weaknesses, Opportunities, and Threats to under-
stand one’s own profile in a market and to identify potential attack or defense plans toward
successful strategy execution.

System  An integrated composite consisting of one or more products, processes, and
resources and that provides a capability to satisfy a stated need or objective.

Tactical Outsourcing  Form of outsourcing with short-term (“just in time”) focus. Suppliers
are selected on a case-by-case basis for activities within projects. Suppliers who are most
suitable for the concrete task at hand are selected. Tactical outsourcing is used to improve
operational efficiency. It is similar to subcontract management.

Test  An activity in which a system or component is executed under specified conditions,
the results are observed or recorded, and an evaluation is made of some aspect of the system
or component. Part of quality control. See also validation; verification.

Test-Driven Development  An agile development approach for software development
where tests are designed before the development of the respective component. This ensures
coverage of relevant functionality, which can be regression tested in case of changes and
updates.

Tool  Instrumented and (semi-)automated support for practically applying methods, con-
cepts, and notations in engineering tasks.

Traceability  Tangible relationship between two or more logical entities, e.g., work prod-
ucts, by means of recorded identification. The goal of traceability is to assure clean change
control and provide better quality of work products, such as better consistency. Example:
Traceability from customer requirements and test cases. Traceability distinguishes horizon-
tal and vertical traceability.

Unit test  A test of individual programs or modules in order to remove design or program-
ming errors. See also verification.

Use Case  (1) Concept to describe a system based on usage of system resources by its
environment. Characterized by an objective-driven set of interactions within and at the
borders of that system. (2) Notation from UML for describing a scenario (usage approach,
operational scenario) from the perspective of its user. A use case enhances requirements,
it is not a substitute. See also requirement.

User  Person or organization that will use the system during later operation to achieve a
goal. The user is not necessarily the customer (e.g., a software application is bought by
the procurement organization and used by the engineering team).

Validation  Confirmation by examination and provision of objective evidence that the par-
ticular requirements for a specific intended use are fulfilled (“doing the right thing”). Part
of quality control. See also validation.

Verification  Confirmation at the end of a process by examination and provision of objective
evidence that specified requirements to the process have been fulfilled (“doing things
right”). Part of quality control. See also verification.

Glossary and Abbreviations   337

Virtual Team  A group of persons with a shared objective who fulfill their roles with little
or no time spent meeting face-to-face. Virtual teams can be comprised of persons separated
by great distances (e.g., offshoring) or separated by organizational limits (e.g., different
suppliers). Various forms of technology are used to facilitate communication among team
members.

WBS  Work Breakdown Structure, the hierarchical refinement of a project into work
packages.

Wiki  A collaborative work environment in the internet or intranet whose contents can be
accessed and changed by its users. The name is derived from wikiwiki, the Hawaiian word
for “fast.” There many Wiki-based tools to easily implement collaborative workflows (e.g.,
requirements specification, test management).

Win-Win Method  A negotiation strategy to reach the maximum result from diverging
opinions of the various stakeholders. The goal is to achieve that all parties leave the con-
cluded negotiation with the perception that they have gained something.

Work Package  A deliverable at the lowest level of the work breakdown structure. A work
package may be divided into activities.

Work Product  An artifact associated with the execution of a process (e.g., requirements
specification, test case).

[Adler91] Adler, N.J.: International
Dimensions of Organizational Behavior
(2nd ed.). Boston: Kent Publishing, 1991.

[Agerfalk06] Agerfalk, P.J., and B.
Fitzgerald. Flexible and distributed
software processes: Old petunias in new
bowls? Communications of the ACM,
Vol. 49, No. 10, pp. 26–34, 2006.

[Alberts08] Alberts, C, T. Audrey, and L.
Marino. Mission Diagnostic Protocol,
Version 1.0: a risk-based approach for
assessing the potential for success. SEI
Technical Report CMU/SEI-2008-
TR-005, March 2008.

[Allen84] Allen, T. Managing the Flow of
Technology: Technology Transfer and the
Dissemination of Technological
Information within the R&D
Organization. MIT Press, Cambridge,
MA, 1984.

[Aspray06] Aspray, W., F. Mayadas, and
M.Y. Vardi, eds. Globalization and
Offshoring of Software: A Report of the
ACM Job Migration Task Force,
Association for Computing Machinery,
2006. Available at http://www.acm.org/
globalizationreport/. Accessed January 6,
2011.

[Avram07] Avram, G. Of deadlocks and
peopleware: collaborative work practices
in global software development.
In International Conference on
Global Software Engineering, 2007,
pp. 91–102.

[Avritzer08b] Avritzer, A., Y. Cai, and D.
Paulish. Coordination Implications of
software architecture in a global software

339

Bibliography

development project. In Proceedings of
WICSA 2008, 2008.

[Avritzer08a] Avritzer, A., et al.
Experiences with agile practices in the
global studio project. In IEEE
International Conference on Global
Software Engineering, 2008, pp. 77–86.

[Berenbach09] Berenbach, B., D.
Paulish, J. Kazmeier, and A.
Rudorfer. Software and Systems
Requirements Engineering. McGraw-Hill,
New York, 2009.

[BCG09] Bhattacharya, A., and H.
Zablit. Taking R&D Global: The Boston
Consulting Group. August 2009.
Available at http://www.bcg.com/
documents/file25452.pdf. Accessed
January 6, 2011.

[Birk03] Birk, A., et al. Product line
engineering: the state of the practice.
IEEE Software, Vol. 20, No. 6,
pp. 52–60, 2003.

[Bloom56] Bloom, B.S., ed. Taxonomy of
Educational Objectives: The
Classification of Educational Goals.
Susan Fauer Company, 1956,
pp. 201–207.

[Boden09] Boden, A., and G. Avram.
Bridging knowledge distribution: the role
of knowledge brokers in distributed
software development teams. In
Proceedings of the 2009 ICSE Workshop
on Cooperative and Human
Aspects on Software Engineering,
2009.

[Booch03] Booch, G., and A.W. Brown.
Collaborative development environments.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

http://www.acm.org/globalizationreport/
http://www.acm.org/globalizationreport/
http://www.bcg.com/documents/file25452.pdf
http://www.bcg.com/documents/file25452.pdf

340    Bibliography

In Advances in Computers, Vol. 59,
Academic Press, 2003.

[Calefato09] Calefato, F., D. Gendarmi,
and F. Lanubile. Embedding social
networking information into jazz to foster
group awareness within distributed
teams. In Proceedings of the 2nd
International Workshop on Social
Software Engineering and Applications
(SoSEA’09), 2009, pp. 23–28.

[Carmel01] Carmel, E., and R. Agarwal.
Tactical approaches for alleviating
distance in global software development.
IEEE Software, Vol. 18, No. 2,
pp. 22–29, 2001.

[Carmel99] Carmel, E. Global Software
Teams. Prentice Hall, Upper Saddle
River, NJ, 1999.

[Cataldo06] Cataldo, M., et al. Siemens
Global Studio Project: experiences
adopting an integrated GSD
infrastructure. In IEEE International
Conference on Global Software
Engineering, 2006.

[Cataldo06] Cataldo, M., P.A. Wagstrom,
J.D. Herbsleb, and K.M. Carley.
Identification of coordination
requirements: Implications for the design
of collaboration and awareness tools. In
Proceedings of Computer-Supported
Cooperative Work, November 4–8, 2006.

[Cheng04] Cheng, L., C. de Souza, S.
Hupfer, J. Patterson, and S. Ross.
Building Collaboration into IDEs. ACM
Queue, Vol. 1, No. 9, 2004.

[SEI11] SEI: CMMI: Guidelines for Process
Integration and Product Improvement,
3rd ed. Addison-Wesley, Boston, 2011.
Available at: http://www.sei.cmu.edu/
cmmi/tools/cmmiv1–3/. Accessed January
6, 2011.

[Clements03] Clements, P., F. Bachmann,
L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford. Documenting
Software Architectures Views and
Beyond, Addison Wesley, 2003.

[COBIT05] IT Governance Institute. CobiT
4.0. IT Governance Institute, Rolling

Meadows, IL, 2005. Available at http://
www.isaca.org/Content/NavigationMenu/
Members_and_Leaders/COBIT6/
Obtain_COBIT/Obtain_COBIT.htm.
Accessed January 6, 2011.

[Conway68] Conway, M. E. How do
committees invent? Datamation, Vol. 14,
No. 4, pp. 28–31, 1968.

[Corbett04] Corbett, M.F. The
Outsourcing Revolution: Why It Makes
Sense and How to Do It Right. Kaplan
Business, New York, 2004.

[Cramton05] Cramton, C.D., and S.S.
Webber. Relationships among
geographic dispersion, team processes,
and effectiveness in software
development work teams. Journal of
Business Research, Vol. 58, pp. 758–765,
2005.

[Curtis88] Curtis, B., H. Krasner, and N.
Iscoe. A field study of the software design
process for large systems. Comm. ACM,
Vol. 31, No. 11, pp. 1268–1287, 1988.

[Damian03a] Damian, D., F. Lanubile,
and H.L. Oppenheimer. Addressing the
challenges of software industry
globalization: the workshop on global
software development. In Proceedings of
the 25th International Conference on
Software Engineering, IEEE Computer
Society, Los Alamitos, 2003,
pp. 793–794.

[Damian03b] Damian, D., and D. Zowghi.
Requirements engineering challenges in
multi-site software development
organizations. Requirements Engineering
Journal, vol. 8, pp. 149–160, 2003.

[Damian06] Damian, D., and J. Chisan.
An empirical study of the complex
relationships between requirements
engineering processes and other
processes that lead to payoffs in
productivity, quality, and risk
management. IEEE Transactions on
Software Engineering, Vol. 32, No. 7,
pp. 433–453, 2006.

[Damian07] Damian, D., L. G. Izquierdo,
J. Singer and I. Kwan. Awareness in the

http://www.sei.cmu.edu/cmmi/tools/cmmiv1�3/
http://www.sei.cmu.edu/cmmi/tools/cmmiv1�3/
http://www.isaca.org/Content/NavigationMenu/Members_and_Leaders/COBIT6/Obtain_COBIT/Obtain_COBIT.htm
http://www.isaca.org/Content/NavigationMenu/Members_and_Leaders/COBIT6/Obtain_COBIT/Obtain_COBIT.htm
http://www.isaca.org/Content/NavigationMenu/Members_and_Leaders/COBIT6/Obtain_COBIT/Obtain_COBIT.htm
http://www.isaca.org/Content/NavigationMenu/Members_and_Leaders/COBIT6/Obtain_COBIT/Obtain_COBIT.htm

Bibliography    341

wild: why communication breakdowns
occur. In Proc. of Int’l Conf. on Global
Software Engineering, pp. 81–90,
Washington, DC, USA, 2007.

[Damian08] Damian, D., F. Lanubile, and
T. Mallardo. On the need for mixed
media in distributed requirements
negotiations. IEEE Transactions on
Software Engineering, Vol. 34, No. 1,
116–132, 2008.

[DeMarco99] DeMarco, T., and T. Lister.
Peopleware, 2nd ed. Dorset House, New
York, 1999.

[Desikan06] Desikan, S., and G. Ramesh.
Software Testing: Principles and
Practices. Pearson Education, 2006.

[Desouza06] Desouza, K.C., Y. Awazu,
and P. Baloh. Managing knowledge in
global software development efforts:
issues and practices. IEEE Software, Vol.
23, No. 5, pp. 30–37, 2006.

[Duke07] Duke University and Booz Allen
Hamilton. Next-Generation Offshoring:
The Globalization of Innovation.
Available at https://offshoring.
fuqua.duke.edu/report.jsp, 2007.

[Ebert01a] Ebert, C., and P. DeNeve.
Surviving global software development.
IEEE Software, Vol. 18, No. 2,
pp. 62–69, 2001.

[Ebert01b] Ebert, C. Improving validation
activities in a global software
development. In Proceedings of the
International Conference on Software
Engineering 2001. IEEE Computer
Society Press, Los Alamitos, CA,
2001.

[Ebert03] Ebert, C., J. DeMan, and F.
Schelenz. e-R&D: effectively managing
and using R&D knowledge. In Managing
Software Engineering Knowledge. Ed. A.
Aurum et al. Springer, Berlin, 2003,
pp. 339–359.

[Ebert06] Ebert, C. Global Software
Engineering. IEEE Ready Note (e-Book),
IEEE Computer Society, Los Alamitos,
2006.

[Ebert07a] Ebert, C., and R. Dumke.
Software Measurement. Springer,
Heidelberg, New York, 2007.

[Ebert07b] Ebert, C. Open Source Drives
Innovation. IEEE Software, Vol. 24, No.
3, pp. 105–109, 2007. Available at http://
csdl.computer.org/dl/mags/so/2007/03/
s3105.pdf.

[Ebert08] Ebert, C., B.K. Murthy, and
N.N. Jha. Managing risks in global
software engineering: principles and
practices. In IEEE International
Conference on Global Software
Engineering, 2008, pp. 131–140.

[Ebert10] Ebert, C., F. Lanubile, R.
Prikladnicki, and A. Vizcaino.
Collaborative tools and PLM in
distributed software engineering. In IEEE
International Conference on Global
Software Engineering, 2010.

[EconomistIntelligence11] Doing eBusiness
in . . . country ranking on eBusiness
readiness. 2011. Available at http://
globaltechforum.eiu.com/index.asp?
layout=channelid_6&channelid=6&title=
Global+Technology. Accessed January 6,
2011.

[Egloff06] Egloff, S., and N. Fuchs. Best
Practices in Culture Management. Report
of Swisscom IT Services. Zurich,
Switzerland, 2006.

[Ehrlich06] Ehrlich, K., and K. Chang.
Leveraging expertise in global software
teams: going outside boundaries. In
Proceedings of the International
Conference on Global Software
Engineering, Florianopolis, Brazil, 2006,
pp. 149–158.

[Ellis91] Ellis, C.A., S.J. Gibbs, and G.
Rein. Groupware: some issues and
experiences. Communications of the
ACM, Vol. 34, No. 1, pp. 39–58, 1991.

[Erickson00] Erickson, T., and W.A.
Kellogg. Social translucence: an
approach to designing systems that
support social processes. ACM
Transactions on Computer-Human
Interaction, Vol. 7, No. 1, 59–83, 2000.

http://https://offshoring.fuqua.duke.edu/report.jsp
http://https://offshoring.fuqua.duke.edu/report.jsp
http://csdl.computer.org/dl/mags/so/2007/03/s3105.pdf
http://csdl.computer.org/dl/mags/so/2007/03/s3105.pdf
http://csdl.computer.org/dl/mags/so/2007/03/s3105.pdf
http://globaltechforum.eiu.com/index.asp?layout=channelid_6&channelid=6&title=Global+Technology
http://globaltechforum.eiu.com/index.asp?layout=channelid_6&channelid=6&title=Global+Technology
http://globaltechforum.eiu.com/index.asp?layout=channelid_6&channelid=6&title=Global+Technology
http://globaltechforum.eiu.com/index.asp?layout=channelid_6&channelid=6&title=Global+Technology

342    Bibliography

[Fagan76] Fagan, M.E. Design and code
inspections to reduce errors in program
development. IBM Systems Journal, Vol.
15, No. 3, 1976.

[Forrester04] Forrester Research Inc.
Applying Open Source Processes in
Corporate Development Organizations.
White Paper, May 20, 2004.

[Fowler06] Fowler, M., and M. Foemmel.
Continuous Integration. 2006. Available
at http://martinfowler.com/articles/
continuousIntegration.html.

[Frost07] Frost, R. Jazz and the Eclipse
way of collaboration. IEEE Software,
Vol. 24, No. 6, 114–117, 2007.

[Gotel08] Gotel, O., V. Kulkarni, C.
Scharff, and L. Neak. Integration starts
on day one in global software
development projects. In IEEE
International Conference on Global
Software Engineering, 2008,
pp. 244–248.

[Graves98] Graves, T.L., and A. Mockus.
Inferring change effort from
configuration management data. In
Metrics 98: Fifth International
Symposium on Software Metrics,
Bethesda, MD, November 1998,
pp. 267–273.

[Gregori09] Gregori, R. Leading Virtual
Teams. Bosch Intern C/HDC3, March 2,
2005.

[Grinter99] Grinter, R.E., et al. The
Geography of Coordination: Dealing with
Distance in R&D Work. Proceedings of
GROUP’99. ACM Press, New York,
1999, pp. 306–315.

[Gutwin04] Gutwin, C., R. Penner, and
K. Schneider. Group awareness in
distributed software development. In
Proceedings of ACM Conference on
Computer-Supported Cooperative Work.
New York, 2004, pp. 72–81.

[Herbsleb00] Herbsleb, J.D., et al.
Distance, dependencies, and delay in a
global collaboration. In Proceedings of
the ACM Conference on Computer-

Supported Cooperative Work. ACM
Press, New York, 2000, pp. 319–328.

[Herbsleb01] Herbsleb, J.D., and D.
Moitra. Global software development.
IEEE Software, Vol. 18, No. 2, 16–20,
2001.

[Herbsleb03] Herbsleb, J.D., and A.
Mockus. An empirical study of speed
and communication in globally
distributed software development. IEEE
Transactions on Software Engineering,
Vol. 29, no. 3, pp. 481–494, 2003.

[Herbsleb05] Herbsleb, J., D. Paulish,
and M. Bass. Global software
development at Siemens: experience
from nine projects. In Proceedings of the
International Conference on Software
Engineering, 2005, pp. 524–533.

[Herbsleb99] Herbsleb, J.D., and R.E.
Grinter. Splitting the organization and
integrating the code: Conway’s law
revisited. In Proceedings on International
Conference on Software Engineering.
IEEE Computer Society Press, Los
Alamitos, CA, 1999.

[Hillegersberg07] Hillegersberg, J.V., and
M. Herrera. Tool support for distributed
software development: the past, present,
and future of gaps between user
requirements and tool functionalities. In
Tools for Managing Globally Distributed
Software Development (TOMAG 2007).
Munich, Germany, 2007.

[Hirschheim06] Hirschheim, R., A.
Heinzl, and J. Dibbern. Information
Systems Outsourcing. Springer, New
York, 2006.

[House04] House, R.J., P.J. Hanges, M.
Javidan, P.W. Dorfman, and V. Gupta.
Culture, Leadership and Organizations:
The Globe Study of 62 Societies. Sage
Publications, Thousand Oaks, CA, 2004.

[Hsieh99] Hsieh, T.Y., et al. Are You
Taking Your Expatriate Seriously?
McKinsey Quarterly, 1999.

[Hupfer04] Hupfer, S., L. Cheng, S. Ross,
and J. Patterson. Introducing

http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

Bibliography    343

collaboration into an application
development environment. In
Proceedings of the ACM Conference on
Computer Supported Cooperative Work,
ACM, New York, 2004, pp. 21–24.

[Hussey08] Hussey, J.M., and S.E. Hall.
Managing Global Development Risk.
Auerbach Publications, FL, 2008.

[IAOP09] Michael Corbett and Associates.
The [annual] Strategic Outsourcing
Study. 2009. Available at http://
www.outsourcingprofessional.org/
firmbuilder/. Accessed January 6, 2011.

[IDC07] IDC: The Early Termination of
Outsourcing Contracts, 2007. Available at
http://www.idc.com/getdoc.jsp?
containerId=CA11SO7. Accessed
January 6, 2011.

[IEEE90] IEEE Standard 610.12–1990:
IEEE Standard Glossary of Software
Engineering Terminology. IEEE, New
York, 1990.

[IEEE98a] IEEE Standard 830–1998: IEEE
Recommended Practice for Software
Requirements Specifications. IEEE, New
York, 1998.

[IEEE98b] IEEE Standard 1233–1998:
IEEE Guide for Developing System
Requirement Specifications. IEEE, New
York, 1998.

[Illes-Seifert07] Illes-Seifert, T., A.
Herrmann, M. Geisser, and T.
Hildenbrand. The Challenges of
Distributed Software Engineering and
Requirements Engineering: Results of an
Online Survey. In Proceedings of
GREW’07, 2007, pp. 55–66.

[ISO04] ISO/IEC TR 15504–9:2004.
Information Technology. Software
Process Assessment. Vocabulary. ISO/
IEC JTC1/SC7 Secretariat, Canada, 2004.

[ITIL07] Office of Government Commerce:
ITIL. Several Books on Continual
Service Improvement, Service Design,
Service Operation, Service Strategy and
Service Transition. London: Office of
Government Commerce, 2007.

[Jones07] Jones, C. Estimating Software
Costs. McGraw Hill, 2007.

[Karlsson00] Karlsson, E.A., et al. Daily
build and feature development in large
distributed projects. In Proceedings of the
International Conference on Software
Engineering. IEEE Computer Society
Press, Los Alamitos, CA, 2000,
pp. 649–658.

[Karolak02] Karolak, D.W. Software
Engineering Risk Management, with
SERIM Learner First Software Package,
Set. Wiley-IEEE Computer Society Press,
2002.

[Karolak98] Karolak, D.W. Global
Software Development. IEEE Computer
Society Press, Los Alamitos, CA, 1998.

[Kirkpatrick83] Kirkpatrick, S., C.D.
Gellat, Jr., and M.P. Vecchi.
Optimization by simulated annealing.
Science, Vol. 220, pp. 671–680, 1983.

[Kitchenham04] Kitchenham, B.A., T.
Dyba, and M. Jorgensen: Evidence-
based Software Engineering. Proceedings.
26th International Conference on
Software Engineering, 2004.

[Krishna04] Krishna, S., S. Sahay, and G.
Walsham. Managing cross-cultural
issues in global software outsourcing.
Communications of the ACM, Vol. 47,
No. 4, pp. 62–66, 2004.

[Kuipers03] Kuipers, T., and A. van
Deursen. Source-based software risk
assessment. In International Conference
on Software Maintenance, Washington,
DC, 2003.

[Kuipers07] Kuipers, T., J. Visser, and G.
de Vries. Monitoring the Quality of
Outsourced Software. In Tools for
Managing Globally Distributed Software
Development (TOMAG 2007), Munich,
Germany, 2007.

[Lacity09] Lacity, M.C., S.A. Khan, and
L.P. Willcocks. A review of the IT
outsourcing literature: Insights for
practice. Journal of Strategic Information
Systems, Vol. 18, pp. 130–146, 2009.

http://www.outsourcingprofessional.org/firmbuilder/
http://www.outsourcingprofessional.org/firmbuilder/
http://www.outsourcingprofessional.org/firmbuilder/
http://www.idc.com/getdoc.jsp?containerId=CA11SO7
http://www.idc.com/getdoc.jsp?containerId=CA11SO7

344    Bibliography

[Lanubile03] Lanubile, F., T. Mallardo,
and F. Calefato. Tool support for
geographically dispersed inspection
teams. Software Process: Improvement
and Practice, Vol. 8, No. 4, pp. 217–231,
2003.

[Lawrence01] Lawrence, B., K. Wiegers,
and C. Ebert. The top risks of
requirements engineering. IEEE Software,
Vol. 18, No. 6, pp. 62–63, 2001.

[Louridas06] Louridas, P. Using wikis in
software development. IEEE Software,
Vol. 23, No. 2, pp. 88–91, 2006.

[Lyu95] Lyu, M.R. Handbook of Software
Reliability Engineering. McGraw-Hill,
New York, 1995.

[McConnell03] McConnell, S.
Professional Software Development.
Addison-Wesley, Boston, 2003.

[McConnell98] McConnell, S. Software
Project Survival Guide. Microsoft Press,
Redmont, 1998.

[McKinsey08] Goel, A., N. Moussavi, and
V.N. Srivatsan: Time to rethink
offshoring? McKinsey Quarterly, Sept.
2008.

[Metropolis53] Metropolis, N.,
A. Rosenbluth, M. Rosenbluth,
A. Teller, and E. Teller. Equation of
state calculations by fast computing
machines. Journal of Chemical Physics,
Vol. 21, pp. 1087–1092, 1953.

[Midha97] Midha, A.K. Software
configuration management for the 21st
century. Bell Labs Technical Journal, Vol.
2, No. 1, Winter 1997.

[Mikulovic06] Mikulovic, V., M. Heiss,
and J.D. Herbsleb. Practices and
supporting structures for mature inquiry
culture in distributed software
development projects. In International
Conference on Global Software
Engineering, 2006.

[Mockus01] Mockus, A., and D.M. Weiss.
Globalization by chunking: a quantitative
approach. IEEE Software, Vol. 18, No. 2,
pp. 30–37, 2001.

[Murugesan07] Murugesan, S.
Understanding web 2.0. IT Professional,
Vol. 9, No. 4, pp. 34–41, 2007.

[NASSCOM06]: NASSCOM, Booz, Allen
& Hamilton: Globalization of
Engineering Services, The next frontier
for India, August 2006. Available at:
http://www.globalservicesmedia.com/
News/Home/Nasscom-Sets-$40-Billion-
Target-for-India-in-Engineering-
Outsourcing-by-2020/21/27/0/general
20070521579. Accessed January 6, 2011.

[Nguyen08] Nguyen, T., T. Wolf, and D.
Damian. Global Software Development
and Delay: Does Distance Still Matter?
In IEEE International Conference on
Global Software Engineering, 2008,
pp. 45–54.

[O’Hara94] O’Hara-Devereaux, M., and
H. Johansen. Global Work: Bridging
Distance, Culture and Time. Jossey_Bass,
San Francisco, CA, 1994.

[OI05] Offshore Insights: Captive offshore
development centres: how do we obtain
the desired value? In Offshore Insights
Market Report Series, Vol. 3, No. 3,
March 2005.

[Olson00] Olson, G.M., and J.S. Olson.
Distance matters. Human-Computer
Interaction, Vol. 15, pp. 139–178, 2000.

[O’Sullivan09] O’Sullivan, B. Making
sense of revision-control systems.
Communications of the ACM, Vol. 52,
No. 9, pp. 56–62, 2009.

[Palmisano09] Palmisano, S.J. The
Globally Integrated Enterprise. Available
at http://www.ibm.com/ibm/
governmentalprograms/
samforeignaffairs.pdf. Accessed January
6, 2011.

[Parnas72] Parnas, D.L. On the criteria to
be used in decomposing systems into
modules. Communica-tions of the ACM,
Vol. 15, No. 12, pp. 1053–1058, 1972.

[Parnas85] Parnas, D.L., P.C. Clements,
and D.M. Weiss. The modular structure
of complex systems. IEEE Transactions

http://www.globalservicesmedia.com/News/Home/Nasscom-Sets-$40-Billion-Target-for-India-in-Engineering-Outsourcing-by-2020/21/27/0/general20070521579
http://www.globalservicesmedia.com/News/Home/Nasscom-Sets-$40-Billion-Target-for-India-in-Engineering-Outsourcing-by-2020/21/27/0/general20070521579
http://www.globalservicesmedia.com/News/Home/Nasscom-Sets-$40-Billion-Target-for-India-in-Engineering-Outsourcing-by-2020/21/27/0/general20070521579
http://www.globalservicesmedia.com/News/Home/Nasscom-Sets-$40-Billion-Target-for-India-in-Engineering-Outsourcing-by-2020/21/27/0/general20070521579
http://www.globalservicesmedia.com/News/Home/Nasscom-Sets-$40-Billion-Target-for-India-in-Engineering-Outsourcing-by-2020/21/27/0/general20070521579
http://www.ibm.com/ibm/governmentalprograms/samforeignaffairs.pdf
http://www.ibm.com/ibm/governmentalprograms/samforeignaffairs.pdf
http://www.ibm.com/ibm/governmentalprograms/samforeignaffairs.pdf

Bibliography    345

on Software Engineering, SE-11,
pp. 259–266, March 1985.

[Paulish02] Paulish, D. Architecture-Centric
Software Project Management: A Practical
Guide, Addison-Wesley, Boston, 2002.

[Perry98] Perry, D.E., et al. Parallel
changes in large scale software
development: an observational case
study. In Proceedings of International
Conference on Software Engineering.
IEEE Computer Society Press, Los
Alamitos, CA, 1998, pp. 251–260.

[Phalnikar09] Phalnikar, R., V.S.
Deshpande, and S.D. Joshi. Applying
agile principles for distributed software
development. In International Conference
on Advanced Computer Control, 2009,
pp. 535–539.

[PMI01] A Guide to the Project
Management Body of Knowledge.
Project Management Institute, 2001.

[Prikladnicki08] Prikladnicki, R., M.
Cristal, D. Wildt: Usage of scrum
practices within a global company. In
Proceedings of the IEEE International
Conference on Global Software
Engineering, pp. 222–226, IEEE,
Washington, DC, 2008.

[Ramesh06] Ramesh, G., and R.
Bhattiprolu. Software Maintenance–
Effective Practices for Geographically
Distributed Teams. Tata McGraw Hill,
2006.

[Ramesh09] Ramesh, G. Managing Global
Software Projects: How to Lead
Geographically Distributed Teams,
Manage Processes and Use Quality
Models. Tata McGraw Hill, 2009.

[Ramesh10] Ramesh, G., and M. Ramesh.
The ACE of Soft Skills: Attitude,
Communication and Etiquette for Survival
and Success. Pearson Education, 2010.

[Rivard08] Rivard, S., and B.A. Aubert.
Information Technology Outsourcing.
ME Sharpe, New York, 2008.

[Rottmann06] Rottman, J., and M. Lacity.
Proven practices for effectively

offshoring IT work. Sloan Management
Review, Vol. 47, No. 3, pp. 56–63, 2006.

[Royce98] Royce, W. Software Project
Management. Addison-Wesley, Reading,
MA, 1998.

[Rus02] Rus, I., and M. Lindvall.
Knowledge management in software
engineering. IEEE Software, Vol. 19, No.
3, pp. 26–38, 2002.

[Sangwan07] Sangwan, R., M. Bass, N.
Mullick, D. Paulish, and J. Kazmeier.
Global Software Development Handbook.
Auerbach, 2007.

[Schwaber01] Schwaber, K., and M.
Beedle. Agile Software Development
with Scrum. Prentice Hall, 2001.

[Schwaber04] Schwaber, K. Agile Project
Management with Scrum. Microsoft
Press, Redmond, WA, 2004.

[Sengupta06] Sengupta, B., S. Chandra,
and V. Sinha. A research agenda for
distributed software development. In
International Conference on Software
Engineering, 2006, pp. 731–740.

[Silva06] Silva, EE. de S., et al. Modeling,
analysis, measurement and
experimentation with the Tan gram-II
Integrated Environment. In International
Conference on Performance Evaluation
Methodologies and Tools, Vol. 180, 2006,
pp. 1–10.

[Sinha06] Sinha, V., B. Sengupta, and S.
Chandra, Enabling collaboration in
distributed requirements management.
IEEE Software, Vol. 23, No. 5,
pp. 52–61, 2006.

[Sureshchandra08] Sureshchandra, K.,
and J. Shrinivasavadhani. Adopting
Agile in Distributed Development. In
IEEE International Conference on Global
Software Engineering, 2008, pp. 217–221.

[SWEBOK11] Guide to the Software
Engineering Body of Knowledge
(SWEBOK). Prospective Standard ISO
TR 19759, 2011. Available at http://
www.swebok.org. Accessed January 6,
2011.

http://www.swebok.org
http://www.swebok.org

346    Bibliography

[USA07] U.S. Committee on Science and
Technology. Hearing Charter: The
Globalization of R&D and Innovation,
June 12, 2007.

[Whitehead07] Whitehead, J.
Collaboration in software engineering: a
roadmap. In International Conference on
Software Engineering. IEEE Computer
Society, Washington, DC, 2007,
pp. 214–225.

[Worldbank11] World Bank: Doing
Business 2011—Making a Difference for
Entrepreneurs. Available at http://
www.doingbusiness.org/reports/doing-
business/doing-business-2011. Accessed
January 6, 2011.

[Zencke04] Zencke, P. Communication in
Software Development. Unpublished
conference report. SAP AG, Germany,
2004. Available at http://science.
house.gov/Publications/hearings_
markups_details.aspx?NewsID=1926
http://www.idc.com/getdoc.jsp?
containerId=CA11SO7. Accessed
January 6, 2011.

[Zhou10] Zhou, M., and A. Mockus.
Developer fluency: achieving true
mastery in software projects. In ACM
SIGSOFT/FSE, Santa Fe, NM,
November 7–11, 2010. Available at
http://mockus.org/papers/fluency.pdf.

FURTHER
INFORMATION

Global Software and IT

Aspray, W., F. Mayadas, and M.Y. Vardi,
eds. Globalization and Offshoring of
Software: A Report of the ACM Job
Migration Task Force, Association for
Computing Machinery, 2006, (http://
www.acm.org/globalizationreport/).
Description: This report summarizes
recent trends in migration of software
related roles and functions with
increasing globalization. Aside from

looking into specific profiles and regional
trends (mostly with a U.S. perspective,
though), it also indicates that global
software engineering and IT creates new
jobs onshore, something that several
studies already highlighted.

IEEE Software, Vol. 18, No. 2, April/May
2001, and Vol. 23, No. 4, September/
October 2006. Description: IEEE
Software (http://www.computer.org/
portal/site/software/) is the global journal
for the leading software practitioner,
available in print and online. It publishes
many articles on global software
engineering and best practices. The two
mentioned issues from 2001 and 2006
are collections of several articles on best
practices in global software engineering.

Rivard, S., and B. A. Aubert. Information
Technology Outsourcing. ME Sharpe,
New York, 2008. Description: Reference
book on IT outsourcing. Many concrete
case studies are described in readable and
clear language. It specifically covers the
broad topic of supplier agreement
management, negotiations, risk
management, and so on. Unfortunately,
software product development falls short
in this book. There are two case studies
from IT outsourcing from the United
Kingdom and South Africa.

Sangwan, R., M. Bass, N. Mullick, D.
Paulish, and J. Kazmeier. Global
Software Development Handbook,
Auerbach, 2007. Description: As the title
suggests, this book is a good reference to
global software development and global
software engineering. It provides useful
insights in team building, code structure,
distributed validation, and architecture.

Thondavadi, N., and G. Albert. Offshore
Outsourcing: Path to New Efficiencies in
IT and Business Processes. Authorhouse,
2004. Description: This book looks
primarily to the business case of global

http://www.doingbusiness.org/reports/doing-business/doing-business-2011
http://www.doingbusiness.org/reports/doing-business/doing-business-2011
http://www.doingbusiness.org/reports/doing-business/doing-business-2011
http://science.house.gov/Publications/hearings_markups_details.aspx?NewsID=1926
http://science.house.gov/Publications/hearings_markups_details.aspx?NewsID=1926
http://science.house.gov/Publications/hearings_markups_details.aspx?NewsID=1926
http://www.idc.com/getdoc.jsp?containerId=CA11SO7
http://www.idc.com/getdoc.jsp?containerId=CA11SO7
http://mockus.org/papers/fluency.pdf
http://www.acm.org/globalizationreport/
http://www.acm.org/globalizationreport/
http://www.computer.org/portal/site/software/
http://www.computer.org/portal/site/software/

Further Information    347

software engineering and IT. Different IT
offshoring formats are described with
clear focus on activities in India (where
the authors draw their experiences). The
profound introduction of a GE manager
from India underlines the huge potential
of global development and IT offshoring.

Tiwana, A. Beyond the black box:
knowledge overlaps in software
outsourcing. IEEE Software, Vol. 21, No.
5, pp. 51–58, 2004. Description: A very
practical article looking toward how to
evaluate outsourcing scenarios. The
underlying studies stem from interviews
with IT project managers. The embedded
checklists for supplier selection and
supplier management are very helpful if
you embark on outsourcing.

General Offshoring,
Rightshoring, and
Outsourcing

Bhattacharya, A., and H. Zablit. Taking
R&D Global. The Boston Consulting
Group. August 2009. Available at http://
www.bcg.com/documents/file25452.pdf.
Description: Overview on global R&D
strategies and how they are implemented.
This article is easy to read and provides
some useful examples from different
industries. It is not software- or
IT-related.

Corbett, M. F. The Outsourcing
Revolution: Why It Makes Sense and
How to Do It Right. Dearborn Trade,
2004. Description: The reference book
for outsourcing. It covers the entire
bandwidth of outsourcing domains (i.e.,
not only IT or software), specifically
business process outsourcing, and offers
a balanced view of what to expect
and how to calculate cost. Many
concrete hints and guidelines help in
operationally managing and succeeding
in outsourcing.

Roux, D. and J. R. Wentworth.
Laborgistics: A New Strategy for
Management. Economica, 2004.
Description: This book portrays
outsourcing and offshoring differently
from most other literature and, certainly,
published opinions. The authors
envisage the future of outsourcing (again
not dedicated to IT and software
domains) as a continuously renewing
combination and integration of people
and technology. Starting from
partnerships and alliances, a whole set of
new formats of collaboration and
industry relationships beyond outsourcing
is described.

Locations and
Countries

http://www.cia.gov/cia/publications/
factbook/geos/xx.html. Description: The
CIA fact book with continuously updated
information on each country of the
world. The first entry point if you are
researching a country.

http://www.doingbusiness.org/reports/
doing-business/doing-business-2011.
Description: The World Bank provides on
an annual report on doing business in
countries, regions, and cities around the
world. The report provides the latest
evolutions, some business indicators, and
much information on the sub-national
level.

http://www.wto.org/english/docs_e/
docs_e.htm. Description: The annual
world trade report of the World Trade
Organization (WTO). This summary
increasingly looks at outsourcing and the
numbers behind it.

http://globaltechforum.eiu.com/index.asp?
layout=channelid_6&channelid=6&title=
Global+Technology. Description: Doing
eBusiness in… provides world-wide

http://www.bcg.com/documents/file25452.pdf
http://www.bcg.com/documents/file25452.pdf
http://www.cia.gov/cia/publications/factbook/geos/xx.html
http://www.cia.gov/cia/publications/factbook/geos/xx.html
http://www.doingbusiness.org/reports/doing-business/doing-business-2011
http://www.doingbusiness.org/reports/doing-business/doing-business-2011
http://www.wto.org/english/docs_e/docs_e.htm
http://www.wto.org/english/docs_e/docs_e.htm
http://globaltechforum.eiu.com/index.asp?layout=channelid_6&channelid=6&title=Global+Technology
http://globaltechforum.eiu.com/index.asp?layout=channelid_6&channelid=6&title=Global+Technology
http://globaltechforum.eiu.com/index.asp?layout=channelid_6&channelid=6&title=Global+Technology

348    Bibliography

country descriptions and a ranking on
their eBusiness readiness.

House, R. J., P. J. Hanges, M. Javidan,
P. W. Dorfman, and V. Gupta. Culture,
Leadership and Organizations: The Globe
Study of 62 Societies. Sage Publications,
Thousand Oaks, CA, 2004. Description:
This report has looked over many years
into 62 societies or what we often call
“cultures” across the world and
investigated the beliefs, values, and
major paradigms driving those societies.
It is a great work to get insight into why
certain societies behave as they do and
how to cope with opposed society
explanatory factors, such as time
or trust.

International
Conferences

The IEEE-sponsored International
Conference on Global Software
Engineering is fully devoted toward
improving the state of practice in global
software engineering and IT by bringing
together researchers and practitioners
from universities and industries. It is
organized on an annual basis. Details:
http://www.icgse.org

The Outsourcing World Summit is the
annual event of the International

Association of Outsourcing Professionals.
This conference is based on a simple
premise: that outsourcing can be
successful only when all participants—
customers, providers, and consultants
alike—come together to break through
the myths, misunderstandings, and
occasional missteps that come with
change of this magnitude. Details:
http://www.outsourcing professional.org

Internet Resources and
Newsletters

Articles, literature, and news on
outsourcing:

http://www.outsourcing-journal.com/
http://www.outsourcing-books.com/

Newsletters with outsourcing events and
news specifically for IT and global
software engineering:

http://www.globalservicesmedia.com/News
http://www.outsourcing-alert.com
http://www.outsourcing-news.com
http://www.blogsource.org/
http://www.offshore-outsourcing.com/
http://www.outsourcing-events.com

News, events, and information on
organizational change management:

http://www.vector.com/change

http://www.icgse.org
http://www.outsourcingprofessional.org
http://www.outsourcing-journal.com/
http://www.outsourcing-books.com/
http://www.globalservicesmedia.com/News
http://www.outsourcing-alert.com
http://www.outsourcing-news.com
http://www.blogsource.org/
http://www.offshore-outsourcing.com/
http://www.outsourcing-events.com
http://www.vector.com/change

accountability 285
accounting 161
achievements 23
activities 10
aerospace 193
agile development 19, 22, 55, 64, 84, 106,

118, 139, 173, 242
allocation 227, 231, 232, 294
application life-cycle management 127
application service providing 8, 13
architecture 59, 234
ASP 8, 13
automotive industry 209
aviation 193

backup 82
benchmarks 23, 24, 31
benefits 15, 23, 222
best practices 286
BPO 8, 11
break-even 24
business case 15, 19, 23, 24, 33, 48, 96,

172, 207, 298
business goal 46
business model 9, 27, 287, 298
business process outsourcing 8, 11

capabilitiy 107
captive center 220
case study 59, 69, 109, 141, 193, 209, 249,

257, 269
challenges 19, 299
change management 81, 101
checklist 138, 152, 198

getting started 303
risk management 315
self-assessment 309

China 211, 285

349

Index

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

CMMI 46, 53, 128, 134, 137, 166, 168,
172, 284

coaching 245, 246
COBIT 46, 128, 134, 166, 168, 172, 284
coherence 231
collaboration 61, 95, 98, 109, 128, 145,

169, 249, 253
collaboration tools 95, 98, 109
colocation 92, 230, 294
communication 21, 65, 169, 217, 230, 252,

259, 287
community source software 87
competence management 245
competencies 173
complexity management 31, 174
compliance 46, 166
concurrent engineering 233
configuration management 43, 76, 81, 101,

173
consulting 285, 290
contract 134, 136
contract management 22
coordination 60, 110
cost 19, 23, 96, 172, 174, 195, 207, 222,

296
cost control 162, 286
cost of non-quality 294
cost of quality 161
COTS 13
countries 10
culture 20, 65, 169, 205, 211, 249, 252,

259
customer relationship management 105

dashboard 98, 157
defect estimation 90, 295
defects 90, 222, 234, 295
development tools 95, 98, 109

350    Index

distance 110, 169
diversity 273

earned value 157
Eastern Europe 211, 228, 285
ecosystem 13
education 269
efficiency 18, 299
estimation 45, 47, 293, 296
estimation techniques 47

feasibility analysis 51
flexibility 17
friction-free economy 11, 297

global management 21
global software engineering

definition 12
global team 30
governance 46, 128, 166, 191, 239, 276,

284
GSE 12
guidelines 232

India 205, 210, 222, 228, 272, 285
information technology (IT)

infrastructure 201, 239
outsourcing 8, 12, 141

infrastructure 82
instability 173
intellectual property 176, 189
interface management 31
IPR 176, 189
IPR management 176
ISO 830 41
ISO 1220 128
ISO 1233 41
ISO 9001 128, 134
ISO 9126 41
ISO 12207 128
ISO 15288 128
ISO 15504 128
ITIL 46, 128, 134, 166, 168, 172,

284
IT infrastructure 201, 239
IT outsourcing 141
ITO 8, 12

Japan 211

knowledge 269
knowledge management 105
know-how 271
KPI 231

labor cost 15, 16, 23, 48, 174, 195
legal issues 22
legal regulations 128, 166
lessons learned 18, 24, 49, 53
life-cycle 127, 145, 177
localization 78
lock-in 175

maintenance 296
management techniques 21, 127, 131, 135,

141, 286, 290
management tools 95, 98, 109
market 34
maturity 284
measurement 51, 98, 157, 162, 222, 234,

287, 294
monitoring 98, 151
montoring 290
motivation 15, 92, 160

netsourcing 13

objectives 153, 231, 287
offshoring manager 239
open source software 9, 83
organization 21, 63, 92, 202, 220, 227,

237, 239
OSS 13
outlook 297
outsourcing 141, 191
overhead 207, 294
overheads 217

Pareto principle 296
patents 176
people 205, 211, 227, 237, 241, 249, 284,

287, 297
people management 31, 35, 230, 245,

254
performance management 162
PERT 157
pilot 287
pilot project 198
planning 45, 47, 180, 293

Index    351

presence 17
process 53, 96, 98, 106, 128, 203, 213,

284, 299
process framework 98
process standard 106
product data management 104
productivity 217, 222, 294, 296, 299
product life-cycle 128, 129
product life-cycle management 127
program management 149
progress review 152
project failures 20
project management 64, 98, 151, 180, 202,

230, 239, 254, 290
project tracking 51, 57, 151, 157

quality 89, 169, 222, 234, 294, 295
quality control 89, 161, 295
quality management 89

recovery 82
relationship management 131
requirements engineering 39, 51, 128, 257,

294
requirements specification 41
responsibilities 237, 287
rightshoring 283
risk assessment 182
risk heuristics 182
risk management 18, 28, 46, 96, 138, 165,

168, 177, 182, 189, 286, 290
risk simulation 182
risks 20, 49, 53, 165, 168, 206
roles 237, 287
rotation 290
rules of thumb 293

safety 166
Sarbanes–Oxley Act 166
scenarios 48
Scrum 55, 64, 118, 139, 173, 242
security 166, 189
security management 191
security protection 191
service 141
simulation model 183
skill management 51, 269
skills 173
SLA 42, 239

social network 259
soft factors 205
soft skills 149, 241, 249
software architecture 59
software sourcing 8, 13
Sourcing 13
South America 228
SoW 201, 208
stability 212
stakeholder 287
standard cost 162
standardization 106
strategic outsourcing 9
strategy 20, 28, 34, 237
supplier agreement management 136
supplier evaluation 131, 135
supplier management 22, 30, 128, 131,

132, 135, 141, 171, 190, 202
supplier selection 131, 133, 135
SWOT 286
system design 62

tactical outsourcing 9
talent 17, 298
task description 204
team 228
team management 239
team size 293
teamwork 15, 60, 110, 184, 233, 249, 253
template

getting started 303
risk management 315
self assessment 309

test 296
time 169
tools 82, 95, 96, 98, 106, 109, 253, 271, 290

bug tracking 111
CDE 104
collaboration 102, 104
collaborative development environment 104
communication 102, 114
configuration management 82, 100, 111
design 99
knowledge center 113
knowledge management 105
modeling 99, 112
requirements engineering 99
test 100
workflow management 104

352    Index

traceability 43
training 231, 245, 269, 290
trends 297
turnover 171
turnover rate 23

validation 295, 296
value 15
values 276, 284
variance analysis 162, 163
verification 295
version control 71

virtual team 228
vision 34

wages 195
WBS 48, 157
Wiki 65
work breakdown 48, 157, 234
work items 70
work organization 21, 227
work transfer 74
workflow management 104

	Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing
	Contents
	Foreword
	About the Author
	Introduction
	Part I: Strategy
	Chapter 1: Different Business Models
	Chapter 2: The Bright Side: Benefits
	Chapter 3: The Dark Side: Challenges
	Chapter 4: Deciding the Business Model
	Chapter 5: Preparing the Business Case

	Part II: Development
	Chapter 6: Requirements Engineering
	Chapter 7: Estimation and Planning
	Chapter 8: Development Processes
	Chapter 9: Practice: Global Software Architecture Development
	Chapter 10: Practice: Software Chunks and Distributed Development
	Chapter 11: Configuration Management
	Chapter 12: Open Source Development
	Chapter 13: Quality Control
	Chapter 14: Tools and IT Infrastructure
	Chapter 15: Practice: Collaborative Development Environments

	Part III: Management
	Chapter 16: Life-Cycle Management
	Chapter 17: Supplier Selection and Evaluation
	Chapter 18: Supplier Management
	Chapter 19: Practice: IT Outsourcing—A Supplier Perspective
	Chapter 20: Monitoring Cost, Progress, and Performance
	Chapter 21: Risk Management
	Chapter 22: Practice: Risk Assessment in Globally Distributed Projects
	Chapter 23: Intellectual Property and Information Security
	Chapter 24: Practice: Global Software Engineering in Avionics
	Chapter 25: Practice: Global Software Engineering in Automotive

	Part IV: People and Teams
	Chapter 26: Work Organization and Resource Allocation
	Chapter 27: Roles and Responsibilities
	Chapter 28: Soft Skills
	Chapter 29: Training and Coaching
	Chapter 30: Practice: People Factors in Globally Distributed Projects
	Chapter 31: Practice: Requirements Engineering in Global Teams
	Chapter 32: Practice: Educating Global Software Engineering

	Part V: Advancing Your Own Business
	Chapter 33: Key Take-Away Tips
	Chapter 34: Global Software and IT Rules of Thumb
	Chapter 35: The World Remains Flat

	Appendices
	Appendix A: Checklist/Template: Getting Started
	Appendix B: Checklist/Template: Self Assessment
	Appendix C: Checklist/Template: Risk Management

	Glossary and Abbreviations
	Bibliography
	Index

