Global Software and IT

A GUIDE TO
Distributed Development,
Projects, and Outsourcing

Christof Ebert

Global Software and IT
A Guide to Distributed
Development, Projects,

and Outsourcing

Christof Ebert

IEEE

ycomputer
psouety

FWILEY

A John Wiley & Sons, Inc., Publication

Global Software and IT

Global Software and IT
A Guide to Distributed
Development, Projects,

and Outsourcing

Christof Ebert

IEEE

ycomputer
psouety

FWILEY

A John Wiley & Sons, Inc., Publication

Copyright © 2012 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our web
site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:
ISBN: 9780470636190

oBook ISBN: 9781118135105
ePDF ISBN: 9781118135075

ePub ISBN: 9781118135099
eMobi ISBN: 9781118135082

Printed in United States of America

10987654321

http://www.copyright.com/
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://www.wiley.com/

Contents

Foreword ix

About the Author xi

Introduction

Part I Strategy

Different Business Models
The Bright Side: Benefits
The Dark Side: Challenges
Deciding the Business Model

Preparing the Business Case

Part I Development

10.

11.

12.

Requirements Engineering

Estimation and Planning

Development Processes

Practice: Global Software Architecture Development
Practice: Software Chunks and Distributed Development
Configuration Management

Open Source Development

15

19

27

33

39

45

53

59

69

81

83

vi

13

14

15

Contents
. Quality Control
. Tools and IT Infrastructure

. Practice: Collaborative Development Environments

Part [l Management

16

17.

18.

19.

20.

21.

22,

23.

24,

25

. Life-Cycle Management

Supplier Selection and Evaluation

Supplier Management

Practice: IT Outsourcing—A Supplier Perspective
Monitoring Cost, Progress, and Performance

Risk Management

Practice: Risk Assessment in Globally Distributed Projects
Intellectual Property and Information Security

Practice: Global Software Engineering in Avionics

. Practice: Global Software Engineering in Automotive

Part IV People and Teams

26.

27.

28.

29.

30.

31.

32,

Work Organization and Resource Allocation

Roles and Responsibilities

Soft Skills

Training and Coaching

Practice: People Factors in Globally Distributed Projects
Practice: Requirements Engineering in Global Teams

Practice: Educating Global Software Engineering

89

95

109

127

131

135

141

151

165

179

189

193

209

227

237

241

245

249

257

269

Part V. Advancing Your Own Business
33. Key Take-Away Tips
34. Global Software and IT Rules of Thumb

35. The World Remains Flat

Appendices

Appendix A Checklist/Template: Getting Started
Appendix B Checklist/Template: Self Assessment

Appendix C Checklist/Template: Risk Management

Glossary and Abbreviations

Bibliography

Index

349

339

319

Contents

vii

283

293

297

303

309

315

Foreword

Ongoing economic challenges are affecting and impacting business and society in
nearly every industry and geographical region. Taking decisive action to reprioritize
the way we are doing business is a key focus for companies. Around the world,
companies are taking the necessary measures that will enable us to adjust to today’s
reality and to future challenges. In adjusting and refocusing we need to stay on
course to ensure that short-term challenges won’t distract us from planning for
longer-term opportunities to achieve sustainable growth. Information technology is
part of the solution if handled in a truly global scale.

With decades of experience in making companies globally successful, I believe
that we are faced with a unique opportunity to nurture global economic prosperity.
Global software engineering, IT outsourcing, and rightshoring are all pieces toward
readjusting the software and IT business. The prestigious journal Harvard Business
Manager recently stated that outsourcing with global IT services and software
development ranks as one of the top business ideas of the past 100 years. This cer-
tainly makes sense, because software and IT industries are today truly global. Be it
offshoring or outsourcing, component or service integration, managing global soft-
ware engineering has rapidly become a key competence for successful engineers and
managers. The diversity of suppliers, cultures, and products requires dedicated
techniques, tools, and practices to overcome challenges.

This book, Global Software and IT, written by my colleague and friend Christof
Ebert, summarizes experiences and provides guidance, processes, and approaches
for successfully handling global software development and outsourcing. It offers
tons of practical hints and concrete explanations of “how to do it better.” Readers
will get an opportunity to explore the current state of practice in this area as well as
new thoughts and trends that will shape the future.

Global Software and IT provides a framework for mastering global software
and IT, and also summarizes experiences from companies around the globe. The
book is very readable and provides a wealth of knowledge for both practitioners and
researchers. With its many practical insights, this book will be a useful desktop refer-
ence for industry practitioners and managers within the software engineering and IT
communities.

Global IT and software development, service, and provisioning imply a great
organizational and industrial shift in structure. Let’s rise to the challenge and, in
doing so, raise the quality of life and our economic prosperity for generations to
come. Now is the time to grow and improve global software and IT and thus
empower all of the world’s citizens to participate in the human network.

New York MiIcHAEL CORBETT
July 2011

ix

About the Author

Christof Ebert is managing director at Vector
Consulting Services. A trusted advisor for
companies around the world, he supports
clients to improve product development and
product strategy and to manage organizational
changes. Dr. Ebert sits on a number of advisory
and industry bodies. Over the years he has set
up several offshoring sites, performed due dili-
gence assessments, and supported numerous
companies in improving their global software
engineering and IT outsourcing programs. He
serves on the executive board of the IEEE
International Conference on Global Software
Engineering (www.ICGSE.org) series and
teaches at the University of Stuttgart.

He can be contacted at christof.ebert@
vector.com.

xi

http://www.ICGSE.org
http://christof.ebert@vector.com
http://christof.ebert@vector.com

Introduction

Things do not change; we change.
—Henry David Thoreau

Software and IT have gone global at a fast pace. Be it IT outsourcing, global software
engineering, or business process outsourcing, growth rates are more than 20% per
year [[AOP09, USA07]. While the cost advantage and skill pool of global develop-
ment and outsourcing may appear to be advantageous, they bear a set of risks that
come on top of the regular project risks. Not knowing these risks and not mitigating
against them means that your project may soon belong to the growing share of failed
global endeavors.

Global Software and IT provides guidance and examples of experiences, as well
as processes and approache,s to successfully handle global software development
and outsourcing. It offers many practical hints and concrete explanations of “how
to do it better.”

Global Software and IT addresses practitioners, namely:

* Developers and engineers workingin global development projects to make
their collaborations more effective, through
o captive sourcing within a company
o provision of outsourcing services to clients, or
o engaging in open source development.

» Software and IT managers on all levels from the individual working in a
distributed team to the senior manager who decides where to open a new site
and what it means to be successful.

* Project managers and project teams who want to succeed with distributed
activities.

* Product managers and R&D managers taking advantage of globalization.

* Procurement teams interested in making sourcing of development partners
more effective.

 Suppliers trying to understand the practices and needs that drive their clients.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

2 Introduction

Global Software and IT provides a framework for global development, covering
topics such as management of people in distributed sites, management of projects
across multiple locations, mitigation of the risks of offshoring, processes for global
development, practical outsourcing guidelines, and use of collaboration and com-
munication to achieve goals. It summarizes experiences from companies of different
sizes and organizational layouts as well as information about industries around the
globe. This book shares the best practices from various professional projects, includ-
ing ones that involve locations in different continents and a variety of cultures.
Perhaps most relevant, the book explains the means and strategies needed to survive
in a globally dispersed work environment.

This book helps each reader to improve his global software activities by provid-
ing examples of:

* Hands-on experiences, including opportunities, lessons learned, and risks
e Management education and training in companies

e Self-learning for students in business and software

e Hands-on practical insights for industry practitioners and managers, and

* A course layout for university or professional training.

When writing the book we decided for readability purposes to only use the male
form of pronouns. We are well aware that software and especially global projects is
one of the few engineering fields where we find today almost the same number of
women as men. We thank you for your understanding.

Global Software and IT provides practitioners with practical guidance as well
as examples of experiences from companies and projects from across the globe and
different application domains. Hands-on examples are shown in shaded boxes.
Practical guidelines and take-away tips are also prominently displayed. Some topics,
such as cultural differences, play a role in all global projects, while others depend
on the size and organizational styles of individual companies and projects. We
provide an explanation for why something is done in a certain way as well as which
risk is addressed by which method. We recommend “translating” these concepts to
your own environment, rather than taking a specific solution as the one and only
possible.

I want to thank IEEE and John Wiley & Sons for supporting this book and
asking me to write this second edition. A book about such a quickly evolving topic
would be impossible to write without the continuous feedback of my colleagues
and clients. Special thanks go to Alberto Avritzer, Suttamally Bala, Werner Burger,
Daniela Damian, Filippo Lanubile, Audris Mockus, Daniel Paulish, S. Sadagopan,
Bikram Sengupta, Andree Zahir, and everyone else who has for provided insight
from their own in global software and IT experiences. Additionally, Filippo
Lanubile, Rafael Prikladnicki, and Aurora Vizcaino deserve thanks for contributing
to tools topics. Finally, I would like to thank Dave Gustafson and Dan Paulish for
being good and long-time companions while going global.

The IEEE conference series ICGSE (International Conference on Global
Software Engineering) has helped to build a strong research and industry community

Introduction 3

of smart people who drive knowledge and competence evolution in this quickly
growing field. I am honored to serve on its executive committee and look forward
to the evolution of this discipline.

Global software and IT is not for free. Often people argue that we are going
global because of cheaper labor rates. But software and IT business based solely on
cost is almost certainly doomed to fail. Successful global software businesses, on
the other hand, are driven by global innovation, talent, and markets. Salaries adjust
over time; innovation keeps moving.

Global software and IT necessitates a shift in culture. This cultural adjustment
is often underestimated, but in order to be successful we need to change. We need
to reinvent business models and working paradigms, we need to learn new formats
of collaboration and communication. This book will show what it means and how
to succeed.

There are two challenges with going global: to get started and to keep going.
With the many rewards from your business combined with guidance from this book,
you will translate risks to chances and opportunities, which is what they should be.
I wish you, the reader of this book, the best of success in this endeavor!

Berlin CHRISTOF EBERT
August 2011

Part 1

Strategy

Chapter 1

Different Business Models

Summary: Globalized software development and various formats of information
technology outsourcing (ITO) are as natural for the software and IT business as
project management or requirement engineering. Going global with software and IT is
a great way to distribute work effectively as well as appropriately assign tasks to
employees who are most qualified for the task at hand. To attain the greatest success
in the fields of software and IT we must take advantage of opportunities for continuous
collaboration around the globe. This chapter looks at different business models in
software and IT.

The annual volume of global IT outsourcing and software development in 2010 was
approximately $100 billion. Considering the field’s growth rate of 5 to 10 percent
per year, the industry is clearly rife with portential [BCG09, McKinsey08]. When
one examines the facts about the software business, it becomes readily evident that
it has become a truly global venture. Examples are manifold:

* Offshoring is growing at double-digit rates across Europe and the United
States throughout many different industries and all major business
functions.

* Offshoring is no longer just about cost reduction, low-end manufacturing, IT,
and back office work; it has become a major driver for entire business
processes.

* 50% annual growth in the offshoring of core innovation activities (i.e., R&D,
product design, engineering).

As early as 1962, EDS began offering IT on spare capacity, also known as time-
shared computing as an external service (today this is called application service
provisioning). In 1976 EDS started deploying global IT services, such as financial
accounting. Entrepreneurs in India realized early on that this form of business could
help the country leapfrog into current technologies, therefore becoming a major
business partner to the Western world. Indian institutes of technology were formed
in the 1960s. They featured strong computer science curricula which laid the

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

8 Chapter 1 Different Business Models

foundtions for India’s current success in the IT domain. The first e-mail sent from
China to a foreign country was on September 20, 1987 to the University of Karlsruhe.
The text was short, yet powerful: “Across the Great Wall we can reach every corner
in the world.” It was the vision of an increasingly connected world in which all citi-
zens and enterprises would have the ability to do business with one another. The
world was getting smaller. The notion of “across the wall” is about bridging gaps.
It demonstrates that being connected does not necessarily mean sharing the same
values with one another, nor does it make countries and continents borderless and
integrated.

Today, practically all new business plans contain offshoring as a key element
for containing cost and creating flexibility in order to cope with changing demands
on skills and numbers of engineers. Different business models are applied in the
global context.

First, there is a distinction made between outsourcing and offshoring:

* Offshoring—is a business activity beyond sales and marketing which takes
place outside the home country of an enterprise. Enterprises typically either
have local branches in low-cost countries or they ask specialized companies
abroad to perform a service for them.—Offshoring performed within the
company is called captive offshoring.

¢ QOutsourcing—is a business’s lasting and result-oriented relationship with a
supplier who executes business activities for an enterprise which were tradi-
tionally executed inside the enterprise. Outsourcing is site-independent. The
supplier can reside in direct neighborhood of the enterprise or offshore.

Offshoring and outsourcing are two dimensions in the scope of globalized soft-
ware development and IT. They do not depend on each other and can be implemented
individually.

For sourcing, a distinction is made based on the type of service being sourced
from an external supplier:

* Business Process Outsourcing (BPO)—where a business process (or busi-
ness function) is contracted to a third-party service provider.

¢ Information Technology Outsourcing (ITO)—where software and It related
services are outsourced to a third-party service provider. ITO is a form of
Business Process Outsourcing (BPO) for software and information technol-
ogy activities.

e Application service provisioning (ASP)—where computer-based services
are sourced from a third-party service provider. ASP is a form of Information
Technology Outsourcing (ITO) for operationally provisioning software and
IT functionality.

¢ Software sourcing—where software components are sourced from an exter-
nal supplier. Sourcing is a business process that summarizes all procurement
practices. It includes finding, evaluating, contractually engaging, and manag-
ing suppliers of goods and services.

Different Business Models 9

* Open source—where, considering restrictions such as IPR, software is
sourced from a supplier (often unknown) and a community of developers in
different parts of the world. Global software and IT do not depend on having
legal entities as suppliers. The open source movement has shown that big
global software projects can also be conducted by enthusiastic individuals.

The time and relationship perspective of the outsourcing demands a third
distinction:

* Tactical Outsourcing—is a form of outsourcing with short-term (“just in
time”’) focus. Suppliers are selected on a case-by-case basis for activities
within projects. Those suppliers who are best suitable for the concrete task at
hand are selected . Tactical outsourcing, which is similar to subcontract man-
agement, is used to improve operational efficiency.

 Strategic outsourcing— is a form of outsourcing with long-term and sustain-
able focus. A business process is moved to an external supplier in order to
focus resources on the core business. Within engineering projects this can be
a process (e.g., maintenance, test) or a system (e.g., legacy product). Strategic
outsourcing changes the entire value chain.

Outsourcing and offshoring allow more flexibility in managing operational
expenses because resources are allocated to places and regions that are most suited
to flexible needs and ever-changing business models. Figure 1.1 summarizes the
reasons for outsourcing and offshoring [Ebert07a, BCG09, TAOP09, IDCO7,
Hussey08, Rivard08]'.

Figure 1.2 shows the penetration of enterprises with different types of global devel-
opment and IT activities [TAOP09, Aspray06]. The horizontal axis provides the share of

Local
markets
6%
’ Labor cost
32%
Flexibility
14%
Quality,
cycle time
21% Talent and
skills
27%

Figure 1.1 Reasons for outsourcing and offshoring.

! There are many such studies elaborating on reasons for global development. Exact percentages are
not relevant here. It is the rank order that is important. Further studies are mentioned in the ACM Job
Migration report [Aspray06].

10 Chapter 1 Different Business Models

offshoring (as a proxy for the degree of global software engineering and IT in an enter-
prise for an activity) and the vertical axis provides a view on the penetration of enterprises
for a specific activity. For instance, maintenance projects already penetrate more than
half of all software activities worldwide (position on vertical axis) and it is typically done
in an offshore environment rather than a single place in a highly paid country (right
position on horizontal axis). Some activities, such as new applications and OEM product
development, are clearly not yet where they could be.

The share of offshoring or globalization depends on the underlying IT needs and
on what software is being developed. While for mere IT applications or internet services
global development is fairly easy, embedded software still presents major challenges to
distributed development. A 2010 study by embedded.com found that only 30% of all
embedded software is developed in a global or distributed context, while the vast major-
ity is collocated. Similarly, the amount of quality deficiencies and call-backs across
industries has increased in parallel to growing global development and sourcing.

Business risks increase with global software, IT development, and sourcing. Not
all software engineering tasks and projects benefit from outsourcing and
offshoring.

The journey has begun, but it is far from being clear what the end result will
be. Some countries will come to saturation because global development essentially
means that all countries and sites have their fair chance to become players and to

£L
.5_:” Internet
services
/—\ Maintenance
Encapsulated Infrastructure projects

applications” support /

Penetration
of enterprises

applications dev\eki@ent

Low

Entire
business
process,

Highest potential
for value creation
(future focus)

strategy
development
~~—"

Low Share of offshoring in headcount High
(offshoring potential)

Figure 1.2 Impacts of IT and software offshoring.

Business Process Outsourcing 11

compete based on skills, labor cost, innovativeness, and quality. Software engineer-
ing is based upon a friction-free economy in which any labor is moved to the site
(or engineering team) that is best suitable amongst a set of constraints. No customer
is in a position to judge whether a piece of software from one specific site is better
or worse when compared to the same software being produced somewhere else in
the world. In essence, the old economy labels of “made in country x” has become
a type of thinking that does not relate to software industries. What counts are busi-
ness impacts and performance such as resource availability, productivity, innovative-
ness, quality of work performed, cost, flexibility, skills, and the like.

BUSINESS PROCESS OUTSOURCING

Business Process Outsourcing (BPO) is the form of outsourcing where a business
process (or business function) is contracted to a third-party service provider. BPO
involves outsourcing of operations and responsibilities of that process or function.
For example, one could use BPO for business processes such as supply chain, main-
tenance, welcome desk, financial services, or human resources. Historically, Coca
Cola was the first company to use BPO for outsourcing parts of their supply chain.
In the software industry, EDS was the first supplier for outsourced services.
Today, business process outsourcing is a key element in most R&D and IT-
driven industries. The reasons for this are manifold, and saturation has not yet been
reached. In fact, outsourcing arrives at different speed in different industries. Figure
1.3 shows the offshore outsourcing penetration of different business processes across

industries ranging from automotive and manufacturing, to finance, consumer, ICT,
and health [Duke07].

Offshoring penetration [%]
80 [

O Auto, industry, manufacturing

Growth Growth O Financial services
rate 2006: rate 2006: @ Consumer, media

mICT
38% 50% B Health, pharma, bio

R&D Engineering IT Finance HR

Figure 1.3 The penetration of business process outsourcing (BPO).

12 Chapter 1 Different Business Models

IT functions have the highest degree of outsourcing capacity across the five
sectors, however, the core of these sectors, namely R&D and engineering functions,
are at the steepest growth rate. No longer are support functions and services out-
sourced as we were once used to. Today’s emphasis is on globally utilizing research
and engineering to develop products. Global software engineering and IT are at the
crossing point of both the IT sector and the engineering function which naturally
builds the spearhead of this radical business change. IT outsourcing has reached 50%
and more of all expenses for IT services occur across industries. But R&D and
engineering is not yet saturated. They will continue to grow at rates way above 20%
per year. This means that global software development as well as IT service out-
sourcing will further grow during this decade.

INFORMATION TECHNOLOGY OUTSOURCING

Information Technology Outsourcing (ITO) is the form of outsourcing in which
software and IT related services are outsourced to a third-party service provider. ITO
is a form of Business Process Outsourcing (BPO) for software and information
technology activities. Historically, EDS was the first ITO supplier. Examples of ITO
are outsourcing of software maintenance or IT provisioning services.

ITO is either driven by the need to reduce capital costs or by business process
outsourcing. There is hardly any strategic component in ITO despite the fact that
many companies claim otherwise. Essentially, companies that are in need of capital
in the short term sell their IT assets and resources while immediately sourcing it
back to maintain services. As shown in recent years by the cases of Xerox, J.P.
Morgan, Swiss Bank, and Delta Airlines, when a company claims strategic reasoning
in the sale of IT assets, in reality, the ITO has actually failed to deliver the expected
long-term benefits. [Lacity09]. Realizing any strategic goals with ITO is difficult
and demands a high degree of managerial attention.

GLOBAL SOFTWARE ENGINEERING

Global software engineering (GSE) is software development and maintenance in
globally distributed sites. Different business models and work breakdown schemes,
such as outsourcing, offshoring, and rightshoring, are used. Thus, GSE is not cor-
related with outsourcing and can coexist, for instance, by means of captive develop-
ment centers within the boundaries of an enterprise or distributed project teams.

NETSOURCING AND APPLICATION
SERVICE PROVISIONING

Netsourcing or Application service provisioning (ASP) is the form of sourcing in
which computer-based services are outsourced to a third-party service provider. The
application service provider (also ASP) provides these services to customers over a
network. Therefore, increasingly, the term “Netsourcing” is used for this business

Open Source Software 13

model. ASP is a form of Information Technology Outsourcing (ITO) for operation-
ally provisioning software and IT functionality. Software offered using an ASP
model is called on-demand software or software as a service (SaaS). Examples of
this are customer relationship management and sales (e.g., salesforce.com), as well
as, increasingly, desktop applications. ASP is limited and is also a risk (to perfor-
mance, security, and availability) because access to a particular application program
takes place through a standard protocol such as HTTP. The market is divided as
follows: Functional ASP delivers a single application, such as timesheet services; a
vertical ASP delivers a solution for a specific customer type, such as a chimney
sweepers; and an enterprise ASP delivers broad solutions, such as finance
solutions.

SOFTWARE SOURCING

Software sourcing is the form of sourcing in which software components are sourced
by an external supplier. Sourcing is a business process that summarizes all procure-
ment practices. It includes finding, evaluating, contractually engaging, and managing
suppliers of goods and services. Sourcing includes different types of goods and
components and, therefore, license models. This starts with commercial off the shelf
(COTYS), includes a variety of tailored components and solutions, and ends with the
different community, open source distribution, and access models. Software compo-
nent sourcing is also a type of distributed development. Today, distributed develop-
ment is mostly a global business and, as a result, is part of global software
development.

OPEN SOURCE SOFTWARE

One key driver in new value networks is free and open source software. Worldwide
companies of various industries are investing in open source. They effectively use
it as a viable ecosystem for access to skills, as well as for creating new markets.
Today, a variety of global business models around open source are exploited The
risks are known, but mitigating solutions exist. Specific communities have been
created with suppliers and their customers using open source processes and mecha-
nisms to provide faster access to hardware drivers, software updates, or specific
features. New value networks are enhancing traditional approaches. Suppliers are
teaming up to share their software basis and to offer tailored services to single user
segments. Independent software vendors (ISV) distribute popular solutions and
components, or integrate them, thus helping to accelerate integration efforts.

Chapter 2

The Bright Side: Benefits

Summary: Going global makes sense because we have access to talent, markets, and
the flexibility to adjust according to our own business needs. On the other hand , we
all know that software development demands teamwork and collaboration. First we
will look into the motivation for global development. We will then analyze challenges
and provide solutions for those of you who are embarking on global software and IT
or questioning which format most suits your specific demands.

Cost reduction is still the major trigger for globalization although its relevance has
been decreasing in the past years. The reasoning for cost reduction is simple yet
effective, so effective, in fact, that you can find it in any newspaper. Labor cost
varies across the globe. In different parts of the world, you pay different amounts
of money per working hour or per person per year for similar skills and output. An
examination of labor costs for comparable skills of educated IT engineers shows
that several Asian countries offer a rate of 10%-40% of the expected pay for the
same work time in Western Europe or the United States. For instance, in 2008 an
“associate engineer” in India earned around US$ 4,400 per year as compared with
US$ 55,000 for a new engineer employed in Europe or North America [BCG09].
This reduces R&D labor cost by 40%—60% (not considering hidden costs and addi-
tional overheads, which severely reduce this potential).

Specifically, Asian countries offer such a huge amount of skilled and highly
motivated engineers that it is impossible not to consider such potential for project
planning. The 2006 ACM Job Migration Task Force report on globalization and
software offshoring [Aspray06] and the annual World Bank Reports [Worldbank11]
both underline that globalization of the software industry will further increase due
to both information technology itself (e.g. skills and technology demands as well as
market evolutions in emerging economies), government actions (e.g. moving into
IT sectors to reduce dependencies on raw materials in places such as China), and,
finally, by economic factors (e.g., labor cost differences).

Labor cost will remain a major driver for any type of IT and software outsourc-
ing and offshoring for a long time to come. Figure 2.1 shows the annual wage dis-
tribution across the world [McKinsey08, Worldbank11, EconomistIntelligencell].

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

15

16 Chapter 2 The Bright Side: Benefits

100000
——USA, SE
s ——USA
10000 IS L - - -India ¢
- —-— = = =India
- — = Brazil
- - == =China
— R
1000 -I-----I-—---I-----I- I

2003 2004 2005 2006 2007 2008
Figure 2.1 Annual wages around the world (in U.S. dollars).

The top two lines are for U.S. software engineers and average, the two dotted lines
are India, and the remaining two lines are Brazil and China. The average income of
American and Indian software engineers is shown in order to contrast the relation-
ship with the average income across all professions.! While the growth rate is clearly
bigger in lower income countries such as India or China, the distance will further
attract global software development and IT outsourcing.

Other factors, therefore, begin to influence the decision for global software
engineering and IT (Fig. 2.2). Increasingly, global software development and off-
shoring is about proximity to markets, sharing the benefits of resources from differ-
ent cultures, and flexibility in skill management. IT and R&D managers want access
to on-demand specialist knowledge with less forecasting and provisioning. This
often contains a great deal of fixed cost which, in today’s competitive environment,
is not easy to bear. Increasingly, the target is quality improvement and innovation;
both are related to blending cultures and thus achieve internal competition and new
stimulus for doing better.

For the decade of 2010-2020, we see four major goals fueling the need for outsourcing
and offshoring, namely efficiency, presence, talent, and flexibility.

Figure 2.2 provides an overview of these goals, which will be briefly explained
here:

1. Presence. Global R&D and software engineering has become part of the
growth strategies of many companies. This is because they are closer to the

! Sources: http://www.glassdoor.com/Salaries, http://globaltechforum.eiu.com

http://www.glassdoor.com/Salaries
http://globaltechforum.eiu.com

The Bright Side: Benefits 17

4, Efficiency: 1. Presence:
Process Global growth
excellence. strategy.
Speed to profit Learn from new
ahead of markets.
competitors.

3. Flexibility: 2. Talent: Race
JIT networks for skilled
across people.
organizations. Value creation
Technology happens where
expertise that the skills are.
depends on
context.

Figure 2.2 The self-sustaining momentum of globalized software and IT.

companies’ markets and they better understand how to cope with regional
needs, be it software development or services. Such global growth is a self-
sustaining force, as it demands increasing capacities in captive or outsourced
software engineering centers.

Talent. Computer science and engineering skills are scarce. Many countries
do not have enough resources locally available to cope with the demand for
IT and software products and services. Fueling this trend, many younger
people got nervous because of media-driven misrepresentations of the
dangers of outsourcing/offshoring for the entire software field. As a result,
they decide to pursue careers in completely different fields. The consequence
is a global race for excellent software engineers. Outsourcing/offshoring
is the instrument to provide such skills and to handle the related
supplier-processes.

Flexibility. Software organizations are driven by fast changing demands on
skills and sheer numbers of engineers. With the development of a new and
innovative product, many people with broad experiences are needed, while,
when arriving in maintenance, these skill needs look different. Additionally,
manpower distributions are also changing. Such flexible demands can no
longer be handled inside the enterprise. Outsourcing/offshoring is the answer
to provide skilled engineers and to allow the building of flexible ecosystems,
combining suppliers, customers with engineering, and service providers.

Efficiency. Software and IT companies need to deliver quickly and reliably
because their competition is literally a mouse click away. Hardly any other
business has such low entry barriers as IT. These low entry barriers stimulate
an endless fight for efficiency along the dimensions of improved cost, quality,
and time-to-profit. Outsourcing/offshoring clearly helps in improving effi-
ciency. This is due to labor cost differences across the world, better quality

18 Chapter 2 The Bright Side: Benefits

with many well-trained and process-minded engineers (especially in Asia),
and shorter time-to-profit in following the sun and developing and maintain-
ing software in two to three shifts in different time zones.

Many factors cannot be quantified or made tangible initially, but will sooner or
later contribute heavily to overall performance. For instance, innovation is a major
positive effect that is boosted by going global. Engineers with all types of cultural
backgrounds actively participate to continuously improve the product, innovate new
products, and to make the processes more effective. Even with the slightly more
complex decision making process involved in going global, achievements are sub-
stantial if engineers of different educational and cultural backgrounds unite to solve
problems. The best practices can be shared, and, sometimes, small changes within
the global development community can have big positive effects.

Obviously, not all companies that engage in global software engineering and IT
look at each of the four goals (presence, talent, efficiency, and flexibility) with the
same levels of motivation. As a matter of fact, we even see a kind of trajectory in
which a vast majority of companies start with efficiency needs (i.e., cost savings),
and then move on to presence in local markets. Only after these two forces are
understood do the companies move on to tackle talent and flexibility. Also, it is clear
that these four factors feed themselves. The more energy a company spends on
building a regional pool of skilled software engineers, the more it also considers
how to best utilize these competencies to, for instance, build a regional market or
develop new products for such markets.

Chapter 3

The Dark Side: Challenges

Summary: Working in a global context obviously has advantages but there are also
some drawbacks. While the positive side accounts for time-zone effectiveness or
reduced cost in various countries, we should not close our eyes to the risks and
disadvantages. Practitioners of global software development and IT outsourcing
clearly recognize that difficulties exist. In this chapter, we will look at risks and
failures in global software and IT projects. Only when we are aware of risks and past
failures, do we have a chance of doing better ourselves.

It seems rational to put stakeholders in one place, share the objectives, and execute
the project. The need to work in one location is a major lesson to take away from
many failed projects; it has even found its way into many practice development
methodologies such as agile development. So, what are the strategies and tactics to
survive globally dispersed projects?

One-fifth of the executives in a recent survey say that they are dissatisfied with
the results of their outsourcing arrangements, while another fifth of the respondents
see no real benefits [McKinsey08, BCG09, IDC07]. As a rule of thumb, 20%—-25%
of all outsourcing relationships fail within two years and 50% fail within five years.
This is in line with our own experiences over the past decade. The figures actually
did not improve over time [Ebert07a, IDC07, Hussey08, Rivard08].

Working in a globally distributed project means businesses must worry about
overheads for planning and managing people, it means there will be both linguistic
and cultural barriers, and it creates jealousy between the more expensive engineers
who become afraid of losing their jobs while they are forced to train their much
cheaper counterparts/possible replacements. In this book, we will try to summarize
experiences and to share the best practices from projects of different types and sizes,
which involve several locations on different continents and in various cultures.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

19

20 Chapter 3 The Dark Side: Challenges

The business reasons for working in a low-cost country are surely not a simple
trade-off for the various costs of engineering in different regions. Many companies
struggle because they only focus on the perceived differences in labor cost and
not on risks and overhead expenses. Twenty percent of all globalization projects
are canceled within the first year.

Big savings in global software engineering and IT have only been reported from
(business) processes which are well defined and already performed before offshoring
begins, and which do not require much control [TAOPQ9, Hussey08, Rivard08]. This
includes maintenance projects (under the condition that the legacy software has some
type of description) for which some or all parts can be distributed, technical docu-
mentation (i.e., creation, knowledge management, packaging, translation, distribu-
tion, and maintenance), or validation activities. Development projects have shown
good results in all cases in which tasks have been well separated so that distributed
teams would have direction and ownership.

Global development projects fail if tasks are broken down too much. For
example, asking a remote engineer to do the verification for software developed
concurrently in another site did not work out positively for the company [CarmelO1,
Grinter99, Herbsleb00, Hussey08, RivardO8]. In this case, distance and lack of direct
communication slow down development rather than help it. The single biggest
source of difficulties in outsourcing/offshoring is related to communication across
sites. Bad communication hinders both coordination and creates insufficient man-
agement processes [Cramton035, O’Hara94, Krishna04]

For instance, continuous integration of insufficiently verified and encapsulated software
components fails if done separately from parallel ongoing software development.
Distributed teams working on exactly the same topic (e.g., the famous follow-the-sun
pattern of developing a piece of software in different time zones) posed the highest chal-
lenges for coordination and often resulted in severe overheads that would be measurable
or tangible only later on (e.g. features misinterpreted, insufficient quality, lack of owner-
ship and responsibility, etc.).

The challenges in global software engineering and IT can be summarized as
follows:

* Lack of strategy and shared values in parent organization resulting in insuf-
ficient collaboration, and unclear work split and ownership. Roadmaps might
be fragmented or provide insufficient visibility of business strategy, both of
which contribute to insecurity of teams and cause sub-optimal results. A clear
sign for lack of strategy would be if the senior manager announced , “We will

The Dark Side: Challenges 21

work in India because it is cheaper,” or the engineering lead explaining, “Any
work can be done by virtual teams.” A major underlying reason for dysfunc-
tional global work is a cultural difference in values as well as underlying
societal factors [House04, O’Hara94, Krishna04]. We often superficially label
this as “cultural issues” or even worse as “soft factors,” claiming that we
cannot handle it with our limited management and software education. For
instance, time perception in a society has profound impact on many behaviors
such as insufficient planning and monitoring which cannot be cured only as
symptoms. A culture deeply rooted in the present will always be portrayed as
lazy and unfocused by a society rooted in the future that demands accurate
planning. The same idea applies to societies that value entrepreneurship and
spontaneous (re)actions for events as opposed to those societies that prefer
clearly outlined roles and responsibilities. Such differences must be recog-
nized, considered, and dealt with. A shared value system and continuous team
building activities will help everyone involved as well as serving to unite
employees across these different societies.

Insufficient communication due to distance, time zones and cultural barriers.
Note that distance impacts start at around 10-15 meters which is far closer
in distance than one would usually assume. People talk and share only if they
are close to one another and frequently see each other without in spontaneous
situations. Lucent and others did extensive studies on communication in
global teams and found that 15% of software development is made up of
informal communication [HerbslebOO, Herbsleb03, DeMarco99, HusseyO0S].
Distributed teams are less effective than a collocated team working on the
same task.

Dispersed work organization is the global nature of project and product
work which obscures a holistic view of project success factors. More sites
add cost due to overhead management, separated and dysfunctional processes,
and tools and teams. While Tools help however, they are not enough to build
a distributed team. Process immaturity is a key roadblock and cause of inef-
ficiencies and rework. Gartner, BCG, and Standish report that 10% manage-
ment overhead, that is, one person to synchronize for 10 persons allocated an
offshored task [BCG09, Hussey08]. Our own experiences show that having
two sites working on the same development project immediately adds 10%—
20% cost while reducing visibility and impacts of management. Overall effort
overheads are ca. 35% if work is in two places. This is due to interface control,
management, replication, frictions, and so on [Jones07, Herbsleb0O, Ebert07a,
Grinter99, Mockus01, Hussey08].

Inadequate global management results in micromanaged tasks or lack of
visibility. Often project managers fear lack of control and establish very small
fragmented tasks in order to stay in control. Micromanagement creates a lack
of buy-in from the teams as they expect that the manager to interfere and,
therefore, they feel that they don’t have to pay attention. On the other end of
the spectrum is insufficient visibility starting with estimates and continuing

22 Chapter 3 The Dark Side: Challenges

with change management and progress tracking. Global team management
often suffers from biased attitudes. Functional and regional rivalries exacer-
bate the tendency to claim credit for success and shift blame for failures.
We’ve experienced, in several such global product lines, that roadmaps and
features are overly volatile because of local optimization on regional customer
basis. Our experiences show that change rate of requirements will, in conse-
quence, be much higher than industry average (1%—-3% per month). Lucent
reports 30%—-100% delays for multi-site change requests and overall project
delays if a project is distributed across sites [Herbsleb00].

¢ Isolated learning. Improvements derived from past experiences are rarely
applied beyond the originating organizational silo. We found that, in global
software engineering and IT, individual sites have their own individual tools
and processes even if they are working on the same product lines. Different
countries or regions sometimes launch independent infrastructure optimiza-
tion in order to differentiate from one another. This is often amplified by
dysfunctional regional competition as many companies have established the
need to challenge “high-cost” countries with “low-cost” countries. For that
reason, the parent organization might hesitate to provide all necessary support
due to the fear that work may be taken away. Additional obstacles in sharing
experiences arise from insufficient risk mitigation related to intellectual prop-
erty or third party access to tools and knowledge repositories. SAP reports,
“Distributed development is slower and less forgiving in case of mistakes.
We need to communicate more but we have less capacity to communicate.
Effects of mistakes are not easily apparent and tend to be hidden by regional
owners longer than possible in a centralized development” [Zencke04].

* Less agility compared with colocated teams is almost certain as soon as an
integrated task is done in different sites. Workflow, monitoring, and engineer-
ing processes must all be strengthened to assure that different stakeholders
collaborate well. This is perceived as overhead by the teams and if they are
not well-trained they try to escape which causes major trouble during develop-
ment [Grinter99, Herbsleb03, Olsson00, Hussey08].

¢ Insufficient contract management. Contracts are absolutely crucial for man-
aging external suppliers. They must include defined and measurable Service
Level Agreements (SLAs) to assure appropriate quality levels. For captive
offshoring, it may be wise (depending on organization structure) to govern
by means of internal contracts and SLAs. SLAs are advantageous because
targets and measurements are agreed upfront. This prevents the need for
continuous debates with senior management if some delivery is late. Certainly,
such internal contracts and SLAs combined with a culture of accountability
and clearly assigned responsibilities also help to circumvent the political game
of finger pointing and claiming that “the others” did not do their job well.

¢ Unknown legal environment is a major trap for any global activity whether
it is sales or engineering. It means you must get very familiar with local laws
such as contracts, liability, intellectual property, or human resource manage-

The Dark Side: Challenges 23

ment. If you do not yet have enough experience with global development and
specific regulations, we strongly recommend using consulting to ramp up your
competencies and processes before you actually engage in global develop-
ment. Never rely on the legal support from a supplier in the host country to
which you want to expand your engineering teams.

Higher employee turnover rate. Turnover rates are higher in offshore centers
than onshore in comparable job positions [Hussey08, Aspray(06]]. The reasons
for this are manifold, but can be reduced to three factors, namely, different
cultures, insufficient management, and reduced motivation. We see different
local patterns of employee turnover rates across the world. Some can be
explained by cultural clichés such as the ones claiming that Europeans and
Chinese people are married to their company while Indians and U.S. Americans
are on a continuous job hunt. Low motivation can make engineers search for
another job. Often, it is simply job content (e.g. doing only legacy repair,
having only scattered assignments with low personal commitment and owner-
ship) and lack of career path within the job which makes engineers move to
another company. For instance, India’s I'T industry is growing so quickly that
many engineers are continuously approached by other companies with more
interesting job offers. With additional effort and skilled management however,
turnover rates can be reduced. We have experienced for ourselves that it is
feasible to manage an Indian engineering team that, over a many years, can
have turnover rates similar to those in Europe [Ebert0O8]. It all depends on
management, culture, responsibilities, and, ultimately, motivation.

With these challenges, reported cost reduction from global software engineering and
IT is much less than the aforementioned potential of 40%-60% savings if the same
process is split across the world with changing responsibilities [Hussey08, Rivard08].
Successful companies reported from their global software projects a 10%—15% cost
reduction after a two to three year learning curve. Of all outsourcing relationships,
20%—-25% fail within two years and half fail within five years [Ebert07a, IDCO7,
Hussey08, Rivard08], partially because, initially, outsourcing demands up to 20%
additional effort.

Figure 3.1 shows the average contribution of this hidden cost to the overall cost

of R&D. For mere IT outsourcing, specifically for management, overheads are lower.

Externalization of insufficient engineering processes creates extra cost and delays
driven by the necessary learning curve on both sides. These additional costs can
be as much as 20%—40% of regular costs of engineering.

The learning curve for transferring an entire software package to a new team

(e.g. location) takes twelve months [Karolak98, HerbslebOO, Hussey0O8]. Our own
experiences [EbertOla, EbertOlb, EbertO7a, EbertO8], and research [Aspray06,
IDCO7, Sangwan07, USA07] show that the effectiveness for software design and

24 Chapter 3 The Dark Side: Challenges

Home country cost

L e -
Initializing cost Savings
so_| [N (ota) .
Initializing cost
(annual rate,
discounted)
60 |-
Home country overhead cost for
communication, travel, interface
management
40 —+— Cost of offshore management,
additional IT, infrastructure, etc.
20
Equivalent hourly rates
0 for offshore R&D

Figure 3.1 Cost comparison, including hidden cost.

coding grows in a learning curve of 50% effectiveness which can be reached after
one to three months and 80% after three to five months. However, these percentages
obviously depend on process maturity and technology complexity. Each of the fol-
lowing bullets accounts for a 5%—-10% increase to regular onshore engineering costs
in the home country:

* Supplier and contract management

* Coordination and interface management

* Fragmented and scattered processes

* Project management and progress control

* Training, knowledge management, communication

 IT infrastructure and global tools licenses

» Liability coverage and legal support.

To mitigate these risks of global software development, we found several good practices
reported from different global software teams, such as':

GE: After years of no results with reducing software cost, J. Welch concluded that
there is a need for a clear and simple policy to split work between locations. If there is
no clear policy, no progress will be made . The GE policy demands that 30% of software

! Own research based upon: Article evaluation in IEEE Software magazine, discussions and reports at
the IEEE International Conference on Global Software Engineering and case study books [Zencke04,
Ebert07a, Herbsleb0O, Herbsleb05, Rivard08, Sangwan08].

The Dark Side: Challenges 25

must be developed locally in North America while 70% is developed in one of seven
offshore development centers.

Ford: Never split projects between too many different areas (i.e. departments and
regions). Favor projects with less than three areas involved in design and test.

Alcatel-Lucent: The best results are achieved if coherent tasks are colocated. If
resources are scarce, you must colocate functions rather than products or projects. Create
a sufficiently large pool of similar resources to ensure flexibility, continuous mentoring
and learning, and mobility of resources. Certain independent process steps can be sepa-
rated from one another and distributed across sites (at the known overhead cost): (1)
requirements management/ product management, (2) development, and (3) system and
interworking tests. If work is to be distributed, it is better to do it for well-defined con-
tents (i.e., a mobile communication protocol standard), but not for flexible and innovative
projects.

Thales: Effective offshoring requires strong and aligned processes and tools.

SAP: Very strong focus on global team management with shared values and excel-
lent collaboration environment.

Bosch: Common language across projects and regions is achieved by using standard
processes based on the CMMIL.*

With the needs, rewards, and mitigation patterns that we have shown here, you
can translate risks to chances and opportunities which is exactly how they should
be seen to create the best business opportunities.

2 CMMI denotes the Capability Maturity Model for Development (CMMI-DEV) [SEI11]. Since global
software engineering is primarily about the development and maintenance processes, CMMI-DEV has
the best capture of engineering and management processes. Terminology across the CMMI constellations
is aligned, and so is our use of terms. We recommend looking also to CMMI for Acquisition (CMMI-
ACQ), CMMI for Services (CMMI-SVC), COBIT and ITIL for additional coverage and good practice
guidelines in the sourcing, service and IT domains.

Chapter 4

Deciding the Business Model

Summary: Success with global software and IT starts with selecting the appropriate
business model and sourcing strategy. Global software development and ITO are not
restricted to a particular stable business model, nor is it limited to working with or
without an external supplier. In this chapter we will look at different business models
and provide decision support depending upon your specific environment and
constraints.

The business model and the decision to work with a supplier and the best way to
manage that supplier heavily influence the entire process and management of global
software engineering and IT. We will briefly examine the aspects of working with
internal development centers or distributed teams in the home company and then
contrast this scenario with a single external supplier for global development services.
Having several suppliers adds to complexity, but does not change the process. This
explains why we can limit our analysis to the two basic models with internal or
external global teams.

Figure 4.1 shows how different business models typically evolve. The starting
point for most companies is the lower left quadrant which implies that providing
localized services typically shows presence, eases installation and support, and
boosts local sales. Alternatively, the lower right quadrant demonstrates another pos-
sible starting point which translates into work packages being done by an offshore
center or by people working in a remote site. Neither model is a stable end point
except in that localized services are necessary. However, to fully experience global
development creates the potential and provides the perception that it can boost the
productivity that is demanded by companies moving to the upper half of the port-
folio. A stable end point for many IT and software companies is the upper right
quadrant which demonstrates the need to implement a viable and sustainable strategy
for work split and collaboration across multiple sites.

Various field studies and empirical research demonstrate that trying to accom-
plish too much too fast is associated with lower levels of success [Lacity(09].

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

27

28 Chapter 4 Deciding the Business Model

As a rule of thumb, clients that outsourced more than 80% of their IT budgets
had success rates of below 30%, while clients who outsourced less than 80% of
their IT budgets had success rates of over 80%.

The Australian federal government ITO project provides an interesting case study
[Lacity09] from when they experienced poor results both financially and operationally,
losing close to US$1 billion, because they clustered too many different IT functions in
one step. The intention, of course, was to save money in a short period of time through
the economies of scale. However, the increased frictions, overheads, and subsequent
management costs across disparate IT functions, severely reduced savings below what
was to be expected from a reduced outsourcing scope. The content of what is outsourced
or offshored also matters. More savings can be achieved by outsourcing systems opera-
tions and ICT than by outsourcing software development, end user support, and systems
management.

High

Cost Strategic
reduction sourcing

Impact on
productivity
Localized Tactical
services sourcing
Low

Low High
Impact on own capabilities

Figure 4.1 Impacts of globalized software and IT on a company’s productivity and capabilities.

In case that kind of outsourcing or sourcing is considered, the supplier’s capa-
bilities must fit with those of the client. The degree of sourcing depends on this fit
in order to mitigate sourcing risks (see Chapter 8). Table 4.1 shows typical scenarios
and how they influence decisions on the business model and sourcing strategies.
Check the environmental constraints on the left side of the table. For instance, the
innovation degree of the product could be high or low. Empty fields indicate that
the answer won’t matter here. Once you have identified the most appropriate column
(and thus scenario), you find some concrete guidance at the bottom part. Note that
not all scenarios can be easily applied. For instance, high innovation degree and low
client maturity create high outsourcing risks—even if the supplier has high process

and domain expertise (right column).

3a0ddns LGB JuawaSeueur *ASofouyo)
£yaed-panyy asopd 103foxd Sy, ‘Keme 103foxd Sy, *dn durer oy ayp 1orpddns ayy pue uoneSnru
P dpy jySnu JySu sassasord Jufur aoegIajur spaau 1arpddns ssaursnq Inok mouy JSu paysaffns
[Ppow pajedIpap 1noAk aaoxduiy azmundo aY T, "a10J2q se nox :Suramosino pue [opour
V S11 Y3y £1ap 02(oxd ysry 103foxd ysnyy Sunjiom snunuo) pIepuels Suroinosyno eardAy,
i°N 2191582 SIGISESH SIq1ISEH] A0 uoistos(q
asnradxa
[2IUSUIUOITAUD
yStH yStH yStH urewop s 1217ddng
asnradxa
yS1H [eoIUYd3) SIUSID
Aunyew
MOT MOT ySig ySg ySig ssasoxd sjuar)
SUOT)ORIIUT
pue juouraSeurAl
MO ySig MO :Ky1xarduio)
1onpoad jo
ySig MO ySig MO 22132p uoneAoUU]

SOLIRURDG [ea1dAL

[ETS)

sanifiqede)) pue spaay s,Jual[D) Y} YoJeJAl ISNJA] SOLIRUDS furoinog

I'¥ 219%L

29

30 Chapter 4 Deciding the Business Model

Software development - = =
o c [} Q
2 . = £
= < c = E
o9 ©T Qo v
< cmown = =00 ©
] =L 9 Z0c =
§| §5= GEE |CE
o @ o E =] =l o o
S| 262 o8 |82
= & = @ &
c .
g T o § Captive S 23 |5 E
‘B = o
- qE, = development center £80 23
S g 90 g | 50
= z5° 8 o |dayp
o] o c [
g o
o [g g
Competence g
management %
3
o

Project management

Figure 4.2 Global software engineering with a home-based captive development center (offshoring).

Interface and transaction complexity depend upon the chosen business
model and sourcing strategy. The fully internalized global development is shown
in Figure 4.2. The relevant functions along the product’s life-cycle are put into
various boxes with the engineering center at the middle of the diagram. From left
to right we see the typical business cycle of product life-cycle management, namely
a product manager who owns the business and makes decisions about requirements,
business case, roadmap and make vs. reuse vs. buy, and so on. Following the product
management, we see requirements engineering, systems analysis, design activities,
and architecture design. From here on, global development might come fully or
partially into the picture.

Take, for example, the simple scenario of full product development in a glob-
ally distributed team (the box called “captive development center”). The center
has the responsibility of managing skills and competences (forecasting, provi-
sioning, career development, etc.), team management skills, providing results
according to plans and commitments, and so on. The arrows depict major inter-
faces between this specific global engineering center and the traditional activities
around product management, requirements engineering, project management,
people/competence management, supplier agreement management, packaging/
industrialization, and supply chain management. The small supplier box in the
upper right of the figure shows a component supplier as it is frequently used for
software components. Such a global engineering center typically evolves from
standardized and well-defined services (task-based) towards full product respon-
sibility. It is rarely the case that the center stagnates in a sub-optimal position
working only on piecemeal-like tasks. This would reduce the gains expected from
a global team dramatically.

Deciding the Business Model 31

Software development

~ i External = 2
= Supplier agreement S S EnTE < 5 “E’
= C c management supplier = = E
[T = g
€ 2R N _O

9 €89 == ©
£ e o U O ¢ c
2| ie BEE|.E

) o = 5 o
(=] Qg E 95 E £k

(8)
| 282 58y |Eo
cC 0 = 5<
(] Oy o "o 3 @
° o >5 External £8@ |28
S § © £ service supplier &'C g |3 ©
= o g © ~ o wn 8
o @ = = -
©

o 4 g 5 “E’
(o]
d
(12}
3
o

Project management

Figure 4.3 Global software engineering with external suppliers for components (sourcing) and
services (outsourcing).

Figure 4.3 demonstrates the elements of working with an external supplier that
provides the engineering services in an offshore (or nearshore) scenario. The supplier
of the (global) engineering services will build strong interfaces to the major func-
tions of the product life-cycle of its client from day one. Again, these interfaces are
shown with arrows. Interface management may look like overhead for the client,
but it is the clear professional need of the supplier. Frankly, it is overhead, but it is
overhead born out of the risk mitigation of the supplier who would otherwise fear
that changes would continuously ripple from the client to his organization, thus
making it impossible to keep SLAs and delivery commitments. Those interfaces cost
an additional 10%—-20% (depending on the maturities of both the client and supplier)
on top of regular project cost without any value-add as seen by the client. With
several other suppliers involved for the sake of component deliveries, such over-
heads can grow into the 30% range. Needless to say, people management and com-
petence management are handled from within the supplier (not shown for the
external component supplier which is even more separated) on the basis of forecasts
delivered by means of the contract and regular client stakeholder reviews.

The complexity of global development, and thus the risks of global develop-
ment, depend on the business model selected for global development. Figure 4.4
shows a qualitative graph relating complexity of handling global development
dependent upon the business model (bubbles) and its scope (horizontal axis). A
defined work package (e.g., perform inspections) can certainly be handled at any
part of the world if it is well defined and not overly demanding regarding domain

32

High

Complexity;
coordination
overheads

Low

Chapter 4 Deciding the Business Model

N ~—
P - Follow the sun ~
Maintenance ~
4 pojecis Business —MN—
Contract T + process
/ programming
Defined work
packages I/
Low High

Share of sourced life-cycle effort

Figure 4.4 Complexity evolves depending on the business model.

and product knowledge. Needless to say, defined work packages also have the lowest

value-add for a company and increase cost of interfaces.

Handling complexity increases toward entire tasks (e.g., a feature development
or a test team) or projects (e.g., a maintenance or development project) handled in
a global context. It improves with a business process managed in a global context,
such as the responsibility for a product line. As a rule, the left side of the figure is
easier to introduce, while the right side is easier to sustain with a positive business

case. Business cases must be explored for all scenarios.

Chapter 5

Preparing the Business Case

Summary: Too often the business case on global software and IT is done primarily by
looking at cost per person. In fact, we hardly ever see complete business cases that
are periodically evaluated. This chapter provides some insight on setting up a
business case. It shows various experiences as well as how to calculate the hidden
parameters.

A business case presents a business idea or proposal to a decision maker. Essentially,
it should prove that the proposal is sufficiently solid and that it fits economically
and technically with the company’s strategy. It is part of a more general business
plan and emphasizes costs and benefits, how to finance the endeavor, technical
needs, feasibility, market situation, environment, and the competition. It is created
early in the product life-cycle and serves as the major input before a decision for
investment is taken.

Many global projects and products fail simply because the business case was
never done or was not done correctly [Ebert07a, IDCO7, Hussey08, Rivard08]. The
key to a successful business case is that it must connect the value proposition with
the technical and marketing concept as well as with the market evolution and the
company’s potential. A lack of research and forethought on one of these four dimen-
sions invalidates the entire business case.

The business case that is used to decide on a business model for outsourcing/
offshoring consists of the following elements:

e Summary.

¢ Introduction (motivation of the business proposal, market value, relationship
to existing products, solutions or services, home business’ capabilities and
capacity, and different scenarios being evaluated).

* Market analysis (market assumptions, industry trends, target market and cus-
tomers, volume of the target market, competitors, home business’ positioning,
and evaluation of these assumptions through strengths, weaknesses, opportu-
nities, and threats, as well as make versus reuse versus buy, and related
opportunities and threads).

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

33

34 Chapter 5 Preparing the Business Case

Marketing plan (marketing contents and sales strategies).

Business calculation (sales forecasts, profit/loss calculation, cash flow, financ-
ing expenses, business risk management, securities, present value of invest-
ments, and evaluation of assumptions. Calculation needs to be done for many
different scenarios which are then to be compared and evaluated).

Operations plan (customer interfaces, production planning, supply chain, sup-
pliers, make versus reuse versus buy, platforms and components to be used,
service needs, management control, quality objectives and quality manage-
ment, managing global development, involved sites, training aspects, skill and
knowledge management, and intellectual property evaluation and growth).

Project and release plan (resources, skills, milestones, dependencies, and risk
management).

Organization (type of organization, management structure, reporting lines,
and communication).

Further details of the business case as attachments to above elements.

A business case has to prove that the proposed concept fits both technically and
commercially within the enterprise. It is part of the business plan and is created
before the launch of the product development segment of the process. Preparing the
business case in a global software engineering and IT environment consists of
several steps:

1. Coin a vision and focus. What is the message you want to get across? What

will the proposed product or solution change? Use language that is under-
stood by decision makers and stakeholders be concise and discuss financial
and marketing aspects more than technology. Focus on what you are really
able to do. For the global development scenario, it is crucial for you to
introduce a clear life-cycle vision and not to simply say that several sites in
low cost countries will be considered for the purposes of cost reduction.

Analyze the market environment and commercial situation. How will
you sell? How much, to whom, and with what effect? For improvement
projects you must identify the symptoms of poor practice and what those
will mean for your company (e.g., cost of non-quality, productivity, cycle
time, and predictability). Quantify the costs and benefits, the threats and
opportunities. For IT projects you should consider that the IT direct cost is
only the tip of the iceberg. The true value proposition is in the operational
business processes. In a globally distributed development it is helpful to
analyze different scenarios and evaluate impacts of each on customer percep-
tion, market penetration, speed and efficiency depending on market proxim-
ity, competitive evaluation of outsourcing/offshoring, and the necessary
localized sales support (starting with requirements elicitation and impact
analysis).

Plan the proposed project. Show how it will be operationally conducted.
Describe the resources, organization, skills, and budget you plan to use.

Preparing the Business Case 35

What are the risks and their mitigation? What suppliers will you utilize?
Perform a reality check on your project. Does the combined information
make sense? Can you deliver the value proposed in step one ? How will you
track the earned value? What measurements and dashboard will be utilized?
Consider total cost of ownership, not simply the effort and resources that
must be used to develop. Plan the impacted engineers, the necessary skills,
how to ramp-up sites and skills; discuss collaboration tools and overheads,
interface management, review procedures in a global context, and life-cycle
management processes. Finally, the plan and business case must be verified.
This is often done by a portfolio management group or the controlling
function.

. Validate the business case. This step is often neglected, however crucial it

may be to close the loop between assumptions and a learning organization.
The problem lies not in invalid assumptions, but in businesses failing to learn
from previously made errors. Therefore, at critical life-cycle milestones, as
well as at delivery and during service, cost and revenue must be reassessed
with the goal of revisiting the entire initial planning stage (up to the level at
which a product might be killed for not proving its assumptions). It is also
important to lean toward risk management, uncertainty management, and
accountability. Specifically, in a globally distributed project, this step assures
that you and your business will learn from past obstacles in people manage-
ment, turnover rates, or insufficient quality levels.

The business case is quantitative by nature. It builds upon assumptions and
propositionswhich must be evaluated periodically rather than discussed solely at the
beginning of the project. It must be looked at from different perspectives such as
the validity, consistency, and completeness of the project. This is where software
measurements come into the picture. They provide, for instance, the guidance for
performing a feasibility study. They relate expected volume or size of the project to
effort and schedule needs, thus indicating whether or not the proposed plan and
delivery dates are viable. They indicate uncertainties, and, together with software
engineering techniques, guide the risk mitigation. Considering that requirements
typically change with 1%-3% per month is a starting point for planning releases and
incremental deliveries.

=

The global software engineering and IT business case is not a simple trade-off of
the different costs of engineering. There are tangible benefits to going global in
terms of flexibility, skills availability, market proximity, and labor cost.
Additionally, there are extra costs in global software engineering and IT business
due to overheads, frictions, rework, and misunderstandings.

Working in a globally distributed project means there will be overheads for
planning and managing people; it means that you will face language and cultural
barriers; it creates jealousies between the more expensive engineers who are afraid

36 Chapter 5 Preparing the Business Case

of losing their jobs while they are forced to train their much cheaper counterparts.
On top of all of the above, there are risks related to intellectual property protection,
security, and many other things as well. All of those elements must be considered
when you are preparing your outsourcing/offshoring business case which comes on
top of the regular product business case.

Part 11

Development

Chapter 6

Requirements Engineering

Summary: Tell me how the project starts and I will tell you how it will end. We need
to focus on the early phases, specifically, determining the requirements and making
sure all stakeholders understand what has to be done. This chapter provides insight
into the best practices and requirements in engineering for global projects.

Requirements engineering is the systematic approach to developing, specifying,
analyzing, verifying, allocating, tracing, and managing the requirements (functional
requirements, quality attributes, and constraints) of the system, and establishing and
maintaining an agreement between the customer/user and the project team on the
changing requirements of the system. Figure 6.1 shows the requirements engineering
within the context of a globally developed product. We distinguish the product
domain from the project domain because in most cases stakeholders and influence
varies heavily between the two domains. Global software development looks primar-
ily into the project domain whether it is colocated in an offshore location or distrib-
uted across locations.

The ultimate success factor for any global development project is to know what
to do (i.e., eliciting, analyzing, specifying, verifying, and allocating the require-
ments). It is also necessary to assure that the impact of changes to previous com-
mitments are analyzed and managed transparently for the sake of all stakeholders.
This is indicated in Figure 6.1 by the different boxes which represent the require-
ments engineering activities throughout the life-cycle of a project.

Before the start of development, requirements are uncertain. That, almost by
definition, is captured by an old requirements analyst slogan which claims, “T know
it when I see it.” These uncertainties, as can be observed in various industries, are
increasing in today’s quickly changing markets. Requirements uncertainties origi-
nate from various causes, such as cognitive limitations (i.e., users find it hard to
imagine the product and to state their requirements; their opinions about their own
requirements evolve by the very exercise of requirements elicitation) or changing
circumstances so that requirements change (e.g., introducing the system changes the
situation too, and therefore changes requirements!), but yield similar results
[Lawrence01]. Because of these changes, work packages, and eventually the entire
project, are delayed and do not fulfill the original expectations.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

39

40 Chapter 6 Requirements Engineering

Product Product manager Global
domain 0 marketing steering
sales board
Project o - -
domain I elicitation I I analysis | I allocation I
I specification / verification I
I_ tracing / change management I
Project manager Global engineering team Quality assurance

[T

/
/

Figure 6.1 Managing the requirements in a global project or product.

Within global development projects the risks related to requirements are ampli-
fied due to delayed visibility of open issues, uncertainties, or misunderstandings.
Open issues cannot be easily clarified by dropping in on another stakeholder’s office;
they must be formally handled [DamianO3b]. The following requirements-related
risks should be mitigated in global development projects while considering the
adequacy of collaboration and communication. This means:

* Overlooking a crucial requirement.

¢ Not understanding the needs behind the requirements.

* Considering only functional requirements and overlooking nonfunctional
requirements.

¢ Not inspecting requirements, thus detecting insufficiencies too late.

* Representing requirements in the form of designs, thus reducing the solution
domain.

¢ Fragmenting requirements into dependent work packages designed by differ-
ent teams.

* Continuous changes which undermine the initial planning and business case.
¢ Insufficient change management which leads to inconsistencies and defects.

From our experiences in global systems engineering projects, these risks are
most effectively addressed by:

* Specifying requirements (i.e., grouping related requirements, permitting a
higher-level understanding of relationships and dependencies, modeling

Requirements Engineering 41

impacts and dependencies, and consistently applying a specification
template).

» Specifying the understanding of requirements (i.e., the receiver, such as an
offshore team, will describe how it will approach the given requirements).

* Sorting requirements (i.e., determining the order of consideration based on
criticality of need and level of associated risk, implementing in increments
following the priorities, descoping those requirements with lowest priority).

* Assuring adequate collaboration and communication workflow management,
such as distributed requirement databases, shared access control, and fre-
quently updated and time-stamped baseline distribution of requirements, fea-
tures and their individual status.

* Managing change (i.e., using automated tools to assist in the understanding
and tracing of requirements from inception to allocation to delivery; evaluat-
ing requirements upfront on individual change risks; applying strict change
management; determining the localization, scope, and impacts of changes).

* Designing for change (i.e., appropriate task organization in the distributed
development teams, improved maintainability, modularity, and isolating fea-
tures that are subject to changes).

The results and decisions from the bullet points above should be coined into a
requirements engineering and management process as well as being embedded into
the product life-cycle. This assures that you will understand and be trained in the
various global teams (or different suppliers). It also serves as guidance with the
ability to agree on a SLA and change process with customers and suppliers. Distinct
standards for requirements engineering, such as IEEE 1233 and IEEE 830, focus on
generic techniques to ensure that customer needs are recorded and traced throughout
the development life-cycle. The key standard covering nonfunctional requirements
and classifying generic quality attributes is ISO 9126.

Requirements that are properly expressed form a high-level abstraction of the
functional and nonfunctional behavior of the product. Formalizing such a description
helps in identifying reusable aspects of systems at a level independent of any par-
ticular solution or component structure. A template for a requirements specification
is provided in Table 6.1. It is based on IEEE standards 830 and 1233 and what they
demand with respect to requirements specifications. Data quality of project informa-
tion and requirements lists is important to preserve integrity and consistency through-
out the life-cycle.

To check for completeness and consistency of requirements and the traceability
of work products, a minimum quality assurance is necessary. Inconsistencies and
errors in requirements are most often found by testers because they think in terms
of testability. If requirements are inconsistent or vague, they should be corrected on
the spot. If a problem is detected during the project, it is called a requirements change
and it has to be approved by the core team before any action is taken. Project infor-
mation builds an online accessible history database upon which further impact
analysis and project planning are based .

42 Chapter 6 Requirements Engineering

Table 6.1 A Requirements Specification Template for Global Development Projects

Requirement ID Unique key to identify and retrieve the requirement
Requirement title Short, concise, specific description
Status Implementation status with history and owners
Details Precise, understandable, traceable link to project / product
Motivation from marketing requirements, link to roadmap
Constraints Non-technical, non-functional requirements
Economic, legal considerations; own / client business drivers
Dependencies Related features, requirements, design decisions
Valuation Balanced for cost and benefits
Business reasoning, customer business case
Analysis Impacts, effort, new constraints, make vs. reuse vs. buy
Priority Clear priority based on cost and value
Traceability Maintainable traceability to related work products
Market requirements, component requirements, test cases, etc.
Impacts Requirements and conditions on hardware, interfaces, etc.
Acceptance criteria Quantitative targets, qualification test cases, SLA impacts
Comments Continuous collection during entire lifetime

Must not create embedded conflicts to above sections

Impact analysis is based on requirements, priority setting, and portfolio manage-
ment. What are the requirements? How do they relate between markets and correlate
with one another? What is their impact? What markets have asked for them and for
what reason? Are they necessary for a solution or just inherited from an incumbent
approach, perhaps becoming obsolete in the meantime? To address these questions,
requirements must be documented in a structured and disciplined way. They must
be expressed to allow for both technical as well as business judgment aspects. Any
incoming requirement should be reviewed with the product catalog and global
product evolution in mind so as to also evaluate marginal value versus marginal
costs. Underlying financial figures must be correct for both cost and value. Often,
the value side of business cases is flawed and nobody follows through to see if a
single requirement actually contributed to value creation as much as was expected
by those who asked for it.

To effectively manage everlasting changes and creeping requirements (which
normally translate into a quickly moving schedule, budget overruns, and decreasing
SLA quality) is to stubbornly stick to the principle that engineering change requests
must be based on allocated requirements. To support the management of variants,
we recommend product line scenarios in which some of the tools we recommend
later on can help with managing the baseline of reused and reusable requirements
as well as those requirements that are market-specific. Linking those requirements
to test cases reduces the overheads in managing the evolution of variants.

By definition, all requirements in global development projects must be acces-
sible online along with other relevant product and project information. Beginning

Requirements Engineering 43

with simple spreadsheets, different tools can be used. We have seen entire projects
which have been managed through the use of one spreadsheet. Such a spreadsheet
has all requirements, their status, effort, responsible and mapping to increments, test
cases, and work products. Reporting can be generated directly from such a spread-
sheet. For bigger projects we recommend online accessible vaulting systems to trace
requirements to work products. A requirements database helps with this effort.
Contents include requirements, implementation status of each requirement, priori-
ties, estimated cost, value assessment, mapping to releases (especially future releases
to communicate the roadmap), relationships between requirements, and links to
related implementation and test details.

Tools certainly help in managing requirements in a global context. They are,
however, not a solution to requirements related risk management. For global devel-
opment projects with more than a few engineers involved and for projects that are
scattered between two and more locations, we recommend a professional require-
ments engineering tool that is capable of storing and organizing requirements and
managing changes and traceability.

The impacts of a “simple’ change proposal are highlighted in Figure 6.2. The
complexity of the picture underlines why changes must be very carefully evaluated.
Having a project plan that is directly linked with requirements is mandatory for all
projects. If there is a change to the plan or to the content of the plan, both must be
synchronized and approved by the entire core team.

In global software engineering and IT, change management is impossible to
handle without automated tools, support and the discipline to maintain impact
analysis, and traceability relationships. Traceability must always consider the hori-

Requirements Cha ”gi Qualification,
engineering reigliizte release

Requirements [y System
specification . === in production

Direct
System i impacts

analysis

System model,[

Project specification [, """t

management

Project plan,
reporting EESVEET T H Integration

Software design test

Architecture,
design *

e,

Implementation,

verification

Indirect
impacts

Figure 6.2 Traceability facilitates change management and consistency checks across teams and
organizational boundaries.

44 Chapter 6 Requirements Engineering

zontal dependencies between requirements (or artifacts on same abstraction level)
and vertical traceability from a work product on a higher abstraction level to one
closer to the implementation (or downstream in the product life-cycle).

Outsourcing/offshoring doesn’t work without adequate tools, support, and disci-
pline for change management.

For managing contracts and SLAs it is absolutely necessary to have time-
stamped extracts of requirements, their applicability, their contract level, their
mapping to various work products (e.g., design, test cases, project work packages,
priorities, dependencies on other requirements or already implemented functionality,
etc.). They should have an open interface to interface with collaboration tools used
downstream of the project and to other related tools, such as project management.
Open interfaces allow for the building of data exchange with suppliers using differ-
ent tools.

Chapter 7

Estimation and Planning

Summary: Estimating size and resources is one of the most important topics in global
software engineering and IT. You will not deliver according to expectations if you
don’t plan ahead, and, you cannot plan if you don’t know the underlying dependencies
and estimates. We will provide concrete guidance on estimation as well as some tools
to check estimates and plans.

An estimate is a quantitative assessment of the likely amount or outcome of a future
endeavor. The phrase is usually applied to forecast project costs, size, resources,
effort, or durations. Given that estimates can, by definition, be imprecise, they should
always include some indication of accuracy (e.g. *x percent). Increasingly, the
dynamics of the software market are shifting to include use of external components
and adapting codes rather than writing codes from scratch. This has lead to new and
extended kinds of technologies for the estimation. Gradually, estimation moves away
from mere size-based estimation toward functional and component estimation.
Standards are evolving because estimates play a crucial role in business and because
enormous amounts of money are at stake.

Often estimates are confused with goals or plans. For instance, projects are
scheduled according to needs but not necessarily in line with feasibility. Sometimes
commitments are given to clients on something “very urgent and important” before
anyone has checked how this “urgency” relates to previous commitments and capac-
ity planning. Most failures in global software projects come from not understanding
and considering this important difference between goals, estimates, and plans
[Ebert07a, IDCO7, Jones07, Hussey08, Rivard08]. Figure 7.1 shows these three dif-
ferent perspectives and how they relate to each other [SWEBOKI11].

Estimation and planning for global software projects follows the typical pro-
cesses of impact analysis, work breakdown, dependencies, and critical path analysis.
This book will not repeat those in detail, especially as there are plenty of examples
of good experiences and best practices available in literature [Ebert07a, Jones07].

A good starting point for best practices in estimation and planning is the CMMI
[SEI11]. The process areas of project planning, integrated project management, risk
management, requirements development, technical solution, and organizational

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

45

46 Chapter 7 Estimation and Planning

Goals
> External \
P> Business needs
> Examples:

requirements, Understand,

target cost adapt,

commit 31
’ Plan

Estimates > Break-down of a goal to activities
» Internal and milestones in order to reach

this goal

> Relates goals and estimates to
best possibly reach the goals

» Approach: Win-win

> Needs clear commitments of all
impacted stakeholders

Figure 7.1 Goals, estimates, and plans must match to achieve realistic commitments and deliveries.

> Constrained by
dependencies,
uncertainties

» Examples:
effort, duration

environment for integration should especially be considered for planning in a global
context. Additionally, for companies in the IT service domain, COBIT and ITIL are
helpful toward learning about basic service processes and risk management
[COBITOS, ITILO7].

Global development and sourcing projects should start with clearly defined
business goals. Such goals are external to the specific software or IT project and set
constraints which are necessary to take into account when making a plan. A business
goal relates business needs, such as increasing profitability, to investing resources,
such as starting a project or launching a product with a given budget, content, and
timing. A goal may be, for instance, to reach a certain milestone at a given date or
to extend testing by some time to achieve a desired quality level.

A global software company wanted to reduce engineering cost so it looked to outsource
some of the test activities to a low-cost country. The supplier in that country was inter-
ested in building up a long-term relationship and growing toward more advanced assign-
ments, such as software design. This was not what the client had in mind. In day-to-day
business this different set of goals caused many conflicts because the client would send
defective software for which the supplier often made proposals for redesign possibilities
and tried to convince the client to act on those suggestions.

An estimate is the well-founded evaluation of how much time and resources
would be necessary to achieve a stated goal. Estimates are typically generated inter-

Estimation and Planning 47

nally and are not necessarily externally visible. They should not be driven by the
goal because doing so could make the estimate overly optimistic. Of course, the
underlying solutions which drive the estimates should be aligned with the goals.
Estimates are generated by experts who are familiar with the product or project. In
software and IT projects this could be the effort necessary to deliver at a given
milestone.

A plan is the breakdown of a goal into activities and milestones that are con-
structed in order to reach this goal. The plan should be in line with the goal and the
estimate, which is not necessarily easy and obvious, such as when a software project
with given requirements will likely take longer than the target date that is foreseen
by the client. In such cases, plans demand a review of initial goals as well as esti-
mates and the underlying uncertainties and inaccuracies. Creative solutions with the
underlying rationale of achieving a win-win position are applied to resolve conflicts.
To be useful, the plan needs to achieve commitment with impacted stakeholders.

An ICT company wanted to outsource their network integration testing. Their clear busi-
ness objective was to cut cost. They looked for a supplier with global coverage and found
three companies capable of delivering this entire business process. In the evaluations
and further negotiations the client looked to cut down on daily rates in order to achieve
a cost reduction objective. SLAs were negotiated to sustain the quality level after the
outsourcing would take place. The contract was closed and then the outsourcing started.
The supplier soon realized that his efforts would be considerably higher than estimated
because the test demanded more thorough preparation of each test line—again and again.
Within a few months the margins shrank and they wanted to renegotiate. This, however,
was not foreseen in the SLA and contract. Since this did not work, the supplier worked
further toward building an exit from the SLA without losing his reputation. They found
a strategy and within one year the contract was cancelled. Subsequent cost of the client
was rather high because first they had to take the business back to their own premises
to ensure business continuity before trying to find a new supplier with much higher rates.

It is relevant in global software and IT projects that business goals are understood
by all stakeholders and used to achieve a win-win situation. Goals must be trans-
lated to the respective task or process that is being globally executed. They help
in arbitrating and short-term prioritizing and decision-making. Do not hide rele-
vant goals. Avoid tying the supplier into a situation and SLA in which he can only
lose. You, as a client, will also lose.

Global software and IT projects use four families of estimation techniques,

namely, expert judgment, analogy, decomposition, and statistical (or parametric)
methods.

48 Chapter 7 Estimation and Planning

* Expert judgment is based on the brainstorming of one or more experts who
have experience with similar projects. An expert-consensus mechanism such
as the Delphi Technique may be used to produce the estimate.

* Analogy estimating is based on the comparison of similar previous activities
and on an analysis of the most relevant projects, products, and service attri-
butes to try to figure out, from the experience of estimators, which could be
the effort and cost values for the new project. Expert judgment requires skilled
people who are able to properly understand relationships and implicitly evalu-
ate qualitative and quantitative figures among projects to determine possible
clusters of projects.

¢ Decomposition is a top-down estimation technique which tries to make the
list of tasks initially planned more and more granular. The more granular the
tasks associated to a certain requirement in a WBS, the closer the planned
effort becomes with its final value, therefore reducing the mean relative error
and the possible slippage in delivering the project’s outcomes.

* Statistical or parametric models are a set of related mathematical equations
in which alternative scenarios are defined by changing the assumed values of
a set of fixed coefficients (parameters). Software project managers use soft-
ware parametric models or parametric estimation tools to produce estimates
of a project’s duration, staffing, and cost.

Due to the risk in international sourcing projects and the many incidents between
clients and suppliers, many estimation techniques are globally standardized by ISO.
In 1998, ISO started to create the ISO-14143 family for function point-related esti-
mations. This stated a series of common criteria for recognizing possible functional
size measurement methods. Currently, five methods are also ISO standards: IFPUG
(IS0 20926:2009), COSMIC (ISO 19761:2011), NESMA (ISO 24570:2005), Mark-
II (ISO 20968:2002), and FISMA (ISO 29881:2010). All these methods size the
functional user requirements for a software product as a sizing baseline which is
then adjusted to estimate effort [Ebert07a].

Figure 7.2 gives an example of how different global development scenarios
impact the project cost drivers. The first scenario (top) shows the cost for a fully
colocated development. Evidently, there are no interface overheads because the team
is sitting in one place. With an assumed total effort of 10,000 person-hours and a
cost ratio of 30% if work is done in a low cost country, we find the distribution as
depicted in the top part of the diagram. The total cost would be 10,000 cost entities.
When globally distributed development takes place in two sites, the picture changes.
While absolute effort (for simplicity) is kept unchanged, and design, project manage-
ment, and interface management are primarily handled in the two sites, we face a
total of 11,500 person-hours (due to the overheads of working at two sites), and a
cost reduction of 19% toward 8,100 cost entities. With a fully offshored development
(design and test) that preserves only the upstream activities in the high-cost country,
the total effort further increases towards 11,000 person-hours, but with a total cost
of only half the original cost, namely 5,000 cost entities.

Estimation and Planning 49

Scenario 1: [= Offshoring
Collocated i person hours
development [H

L = Local

[person hours

$» PSSR SR &
& &P O S
s (';\Qg Q \"\@Q \;&\ \&@Q

<

Scenario 2:

oF Q
Globally
distributed L
development [

iulls

Scenario 3:
Offshored
development

Figure 7.2 Cost structure for same development project handled in different global development
modes.

Similar effects can be observed for quality, schedule accuracy, change manage-
ment, and non-functional requirements [Damian03b, EbertO1b, HerbslebOO,
Jones07]. The worst scenario in terms of performance is scenario 2, with split work
across sites. We did a study of projects where we could distinguish between them
according to the factors of collocation and allocation degree [Ebert01b]. Colocated
teams achieve an efficiency improvement during initial validation activities of over
50%. With the same amount of initial defects after code complete, they would need
half the effort for removing remaining defects for a defined quality level at the exit
gate. Small projects with highly scattered resources show less than half the produc-
tivity when compared with projects with fully allocated staff. Cycle time is similarly
impacted.

In global software projects, people and their cultures should be considered care-
fully. Oftentimes there is a general lack of historical data in organizations, therefore
estimates are done mainly through analogy and experience. Only with experienced
people can you start to build a proper historical database and regularly gather data
there. To do so, you must focus on people in order to run estimates today and to
plan how to design and implement historical databases for the purpose of catching
and retrieving the experience within the organization during the years. Tools can
help in reducing times and costs for data gathering; tools can partly produce reports
after you decide which phenomenon and by which criteria they should be analyzed.
I It would, however, be unrealistic to think they could properly do more than this.

What historical data should be collected and used? As a size measurement we
recommend Function Points as they are well-defined and help to start with software

50 Chapter 7 Estimation and Planning

product functional user requirements. Effort should be gathered in person-hours
rather than in person-days. Do not store extra hours during the day or make those
numbers incomparable for benchmarking purposes. Errors or incidents should be
classified by severity and implementation priority for planning and scheduling pur-
poses in a service desk process.

In judging estimates from external suppliers or teams in different sites, we
recommend using benchmarking databases [EbertO7b, Jones07]. These databases
include parameterized data sets from thousands of IT and software projects, many
of which were done in a global setting. Often, Function Points are used as an under-
lying methodology to allow for the comparing of apples and apples. The most widely
used databases for such estimation checks in global IT and software projects are:

* QSM and SLIM Control'. It is a proprietary empirical software estimation
model in which effort is a function of size (e.g., Function Points, LOC), pro-
ductivity, and time and a scaling factor. It is a nice tool to use to play with
parameters, for instance, to see the impact on effort and delivery quality
directly when advancing or relaxing a deadline.

* SPR KnowledgePlan.? Similar to QSM it is a proprietary software tool
designed for sizing projects and to estimate work, resources, schedule, and
defects. It allows you to evaluate project strengths and weaknesses and to
determine their impact on quality and productivity.

* COCOMO.? The Cost Constructive Model (COCOMO 1I) is a parametric
model used for software development projects. It allows the backfiring cal-
culation from LOC to Function Points. Although the underlying empirical
base is much lower than in the other databases and respective tools, it has a
wide popularity due to its use in education.

» ISBSG.* The international software benchmarking database allows you to
make online evaluations on schedule, duration, and so on of an estimate that
is based on very few parameters. Compared with QSM and KnowledgePlan
it demands much less by way of parameters, is in its free online accessible
entry version, and can be easily used for a quick check.

Use standardized functional size measurements, that is, function points of a certain
type, and establish clear counting rules. Use international standards for sizing in
case you work with different suppliers. This allows baselining the work to be done
and gives you the ability to compare results later. Finally, derive effort and plans
from these basis size measurements by analogy and by using work breakdown
structure which relate to the project plan.

! http://www.gsm.com/tools/index.html

2 http://www.spr.com/spr-knowledgeplan.html
3 http://csse.usc.edu/tools/ COCOMOSuite.php
4 http://www.isbsg.org

http://www.isbsg.org
http://csse.usc.edu/tools/COCOMOSuite.php
http://www.spr.com/spr-knowledgeplan.html
http://www.qsm.com/tools/index.html

Estimation and Planning 51

Some additional hints derived from our outsourcing/offshoring experiences will
help for estimation and planning:

* Assure a single requirements repository. Requirements are becoming increas-
ingly unstable. They achieve shorter lead times and faster reaction in changing
markets. The risk is that the project is built on a moving baseline, which is
one of the most often quoted reasons for project failure. Global development
projects need a central requirements repository and clear responsibility for
making changes to it. The requirements must provide links to further informa-
tion, a specified owner, the full impact analysis, responsibility for implemen-
tation, and the allocation to work packages and work products.

* Ask the global teams to estimate and plan the work they ought to perform.
This achieves buy-in and also demands that they understand the assignment.
Obviously, their results might deviate from what the project manager expects,
which should rive a technical review of selected design alternatives and their
impact. Do not cut such personal or team estimates without talking, but
enforce that teams defend their estimates versus higher management.

* Plan your decisions based on work breakdown and actual skills. Plans are
based on average performance indicators and history data. The smaller the
project and the more the critical paths that are established due to requested
expert knowledge, the higher the risk of having a reasonable plan from a
macroscopic viewpoint that never achieves the targets on the microscopic
level of individual experts’ availability, effectiveness, and skills. It was shown
in several studies that individual experience and performance contributes up
to 70% of overall productivity ranges [Jones07, Ebert07a, McConnell03].

 Verify estimates and perform a feasibility analysis. Estimations are based on
individual judgment and, as such, are highly subjective. Applying any estima-
tion model expresses, first of all, the experience and judgment of the assigned
expert. Even simple models such as Function Points are reported as yielding
reproducibility inaccuracy of greater than 30% [Ebert07a, Jones07]. To reduce
the risk related to decision making based on such estimates a Delphi-style
approach can be applied that focuses multiple expert inputs on one estimate.
Feasibility can be evaluated in simulating a project plan or relating it to previ-
ous experiences with tools such as QSM.

* Measure actual results and update your estimation rules. Most estimates are
based on history data and formulae from operational databases. Faults,
changes, effort, even the task breakdown are recorded by individuals who
often do not necessarily care for data quality, especially when it comes to
delivery and time pressure. Measurements must be verified and upon finished
analysis, fed back to the estimation tool.

Traditional project planning and tracking looked at actual results versus plans.
When the plans are adjusted after the facts it demonstrates that they are not reach-
able. This method creates too many delays and is not sufficiently precise to drive
concrete corrective actions on the spot. For global development projects, such

52 Chapter 7 Estimation and Planning

monitoring often means that difficulties accumulate for too long. Therefore, continu-
ous predictions should be used to relate actual constraints and performance to his-
toric performance results. Good forecasts allow for adjusting plans and mitigating
risks long before the actual performance tracking measurements would visualize
such results. For instance, knowing about average mean time to defect allows plan-
ning for maintenance staff, help desk and support centers, and service level
agreements.

Chapter 8

Development Processes

Summary: Global software development and IT demand specific development and
management processes. It is relevant to consider cultural and personal aspects in
coining the right global development process. In this chapter we will emphasize the
need for clear rules on collaboration regarding roles, interfaces, tools, and work
products. Practical examples highlight how companies set up and maintain such rules.

Global software and IT projects typically have some sort of supplier-client relation-
ship, even if there is only one company with a captive development center. It is
important for clients and suppliers to have shared processes and to maintain clear
rules on collaboration regarding roles, interfaces, tools, work products, and so on.
Empirical studies highlight that success is higher when both the client and supplier
firms exhibit at least CMMI maturity level three [Rottmann0O6]. Figure 8.1 shows
the mutual dependencies between supplier and client process maturity [EbertO7a].

Outsourcing insufficient engineering and management processes is a key reason
for failed outsourcing projects. Insufficient processes are amplified as soon as
distance and corporate boundaries add towards complexity.

From all our empirical research we can conclude that organizations on CMMI
maturity level one or two should not expect that global software engineering would
yield much benefit. Instead, it will reveal major deficiencies in processes and work-
flow, which create all types of difficulties, such as insufficient quality, delays, addi-
tional cost, canceled offshoring contracts, unmotivated workforces in both places
(previous and new), and many more problems besides. The only viable alternative
for such low-maturity organizations is to ramp-up the home companie’s processes
before proceeding with global software engineering and IT.

Different societies—and often persons on the microscopic level—have different
values and underlying driving factors [House04, O’Hara94, KrishnaO4]. For instance,

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by

John Wiley & Sons, Inc.

53

54

Process maturity sourcing supplier

Chapter 8 Development Processes

Win-Win
Overheads (process
(lack of integration,
High downstream shared

integration,
rework cycles)

objectives,
mutual
optimization)

Failure Replacement
(dysfunctional (lr;iuml?'eernt
Low interfaces, of PP
frictions pertormance,
overruns,) selection of
better supplier)
Low High

Process maturity sourcing client

Figure 8.1 Process maturity of suppliers and clients must match.

time perception varies dramatically across societies around the globe. Some focus
on the past or present, while others are very future-oriented. Though this can
explained sociologically, such as the foreseeable or the always surprising effects of
nature on the destiny of a certain region of the world, it impacts behaviors. Therefore,
the concept of urgency is different in such societies. Creating hard deadlines or
considering a milestone as a deadline might work well in some societies, but it may
also fail without adequate training in another.

Administration and planning might traditionally be considered highly relevant
in, for example, northern countries and in China (northern countries due to the need
to plan for long winters, China due to thousands of years of highly sophisticated
administrations) or, in other countries, they might be almost irrelevant. Another
example of cultural differences would be trust. Some cultures do not care about
written documents and primarily take a person and his word, while others demand
written documents and evidence before they will accept results. Awareness of such
differences allows you to consider them in terms of team building, setting a shared
vision, and shared values and objectives. Shared values and training on such different
societal attitudes is a key aspect in preparing the right development process and
balancing the need for checkpoints with the level of acceptable and meaningful
concrete deliverables. Needless to say, these societal differences are increasingly
being reduced with growing globalization. This can be seen in the Indian software
industry, which, over the decades, has adjusted extremely well to the northwestern
way of planning and tracking.

Global development must balance managed processes with enough flexibility
to ease the work for individual engineers, specifically, when engineers must act fast

Development Processes S5

and don’t have the time to synch around the globe’s time zones. This is difficult and
needs profound understanding (driven from business rationales) as to how to struc-
ture and tailor processes to avoid unnecessary overheads. Facilitate processes wher-
ever possible, such as by creating standardized templates for work products, or tools
for workflow management, Both of which reduce errors and improve productivity.

Global development benefits by chunking deliverables into self-contained work
products that can be stepwise stabilized and integrated. It is based on the old Roman
idea that self-contained pieces are easier to govern than a huge complex system, the
so-called divide and conquer paradigm. This paradigm holds whether you do main-
tenance on a big legacy system, application and service development, or the engi-
neering of a new system. Incremental development and related life-cycle models are
known and applied for many years to address this “chunking” and stepwise stabiliza-
tion [McConnell98, Royce98, Karlsson00].

Today, “chunking” and stepwise stabalization are enhanced by agile methods
[Schwaber04]. Increments toward a stable build are one of the key success factors
in global development. They ensure that deliveries from different teams or places
in the world can be effectively integrated. Within periodic intervals, a validated
baseline is made available for all team members upon which they build their enhance-
ments or maintenance changes.

Incremental development reduces delivery and quality risks because progress

@ within the team is more continuous and can be more easily monitored. Utilize
agile practices such as Scrum to build trust across sites and to ensure delivery in
time, budget, and quality.

Traditionally, agile development methodologies have been demanded small
colocated teams. This allows fast interaction between team members and, when
necessary, immediate reaction and consideration of feature changes demanded by a
customer. This seems to be in contradiction with the entire paradigm of global soft-
ware engineering and IT—at least for any distributed development. It is certainly
true from a microscopic perspective: Don’t split team tasks and responsibilities
across sites if it can be avoided. For instance, if code is developed in one place and
unit tested in another, there is certainly the risk of inefficiency, misunderstandings,
and inconsistencies. From the macroscopic view, distribution and global develop-
ment are in line with the needs of agile development. It forces you to split the work
in a way that will maximize team cohesion and minimize coupling. For instance,
qualification testing or network integration in communication solutions can well be
done at another place than the underlying application development. Requirements
and business cases can be developed in different organizational and geographic
layouts than the resulting designs and code.

56 Chapter 8 Development Processes

In fact, hardware development has long proven that, with the right collaboration tech-
nologies, outsourced manufacturers can work with design teams in other physical places
given that they have sound and integrated engineering change management, product data
management, and the like.

Within global engineering projects, it is not frequently obvious how to imple-
ment an entirely incremental approach to architecture that is primarily driven by
interacting classes or subsystems. Clearly, it would be advantageous to have isolated
add-on functionality or independent components. In real-world systems, specifically
in legacy systems that are maintained in low cost countries, development during top
level (or architectural design) not only agree on interfaces and impacts on various
subsystems, but also on a work split which is aligned with subsystems. The clash
often comes when these subsystems should be integrated with all new functionality.
Such processes are characterized by extremely long integration cycles that don’t
show any measurable progress in terms of feature content.

The following steps show how incremental development principles can be
introduced and become beneficial for global engineering:

¢ Analyze requirements from the beginning in terms of how they could be
clustered to related functionality, which could later be delivered as an
increment.

* Analyze context impacts of all increments upfront before start of development
(e.g., data structures that are common for all modules). The elaboration phase
is critical to make real incremental development and a stable test line feasible.
Obviously, not all context impacts can be addressed immediately without
extending the elaboration phase toward what is unacceptable. Thus, it is nec-
essary to measure context stability and to follow up with root cause analysis
as to why certain context impacts were overseen. As a target, the elaboration
should not take longer than one third of total elapsed time. The reminder of
the project duration is related to the development activities.

* Provide a project plan that is based on these sets of clustered customer require-
ments and that allocates development teams to each set. Depending on the
impact of the increments, they can be delivered to the test line more or less
frequently. For instance, if a context impact is detected too late, a new produc-
tion cycle is necessary which will take more effort and lead time than regular
asynchronous increments of additional code within the originally defined
context.

¢ Each increment is developed within one dedicated team, although a team
might be assigned to several increments in a row. Increments must be com-
pleted until the end of unit tests and feature integration tests so that the various
components can always be accepted to the test line. A key criterion for the
quality of increments is that they don’t break the build.

Development Processes 57

* The progress tracking of development and test is primarily based on the inte-
gration and testing of single customer requirements. This, for the first time,
gives visibility to real progress because a requirement can only be checked
off if it is successfully integrated in the test line. Traceability is improved
because each customer requirement links to the related work products.

* Increments are extensively feature-tested by the independent test line before
starting system tests. The test activity itself is done by means of daily (or
frequent) build for all modules.

A lot could be added about development processes, but this is mostly sound
software engineering knowledge that I will not repeat. For more information, I
recommend checking the respective resources, such as [McConnell03].

Chapter 9

Practice: Global Software
Architecture Development

Daniel J. Paulish, Siemens

Summary: This chapter provides a case study from Siemens and shows how best to
apply architecture development in globally distributed software projects. The case
study highlights relevant themes and guidance from previous chapters in a concrete
project context. It offers valuable insights toward how to do things in your own
company.It discusses some of the organizational and technical issues involved in doing
global design and development. Finally, it describes a few techniques that have been
successfully used on distributed projects to design software systems and manage the
design and development after the high-level design phase is complete.

BACKGROUND

As software design and development teams are geographically distributed, coordina-
tion and control become more difficult due to distance, time zones, and cultural dif-
ferences. Some project tasks can be distributed among collaborating staff located far
away from one another, but some tasks, such as architecture design, are better done
locally at a single site with staff sitting together in one room. Architecture design is a
highly collaborative task that is usually done by a small team. It requires many discus-
sions about design tradeoffs, real-time decisions, and specifications development.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

59

60 Chapter 9 Practice: Global Software Architecture Development

Mike had just learned that his next assignment would be as a system design team member
for a large transportation system project for a major North American city. He knew that
there were already tens of thousands of contracted features in the requirements database,
which was still growing. What was unique about this project, however, was that the
architects with whom Mike would be working were located in four different countries
around the world. He had never met any of these remote architects. Mike was understand-
ably apprehensive about how he would efficiently collaborate with these distributed
systems engineers. He was relieved to learn that the contracted features were all described
in English, and that the customer was located just a short flight away. He suspected that
he would be doing much traveling for this project, and he checked his personal calendar
for the next few months.

Although it may be desirable to design a product at a single location, as projects
become larger it may not be possible to house the development team in a single loca-
tion. For large complex systems, it is not very likely that all the domain experts neces-
sary to design a product line will be living in the same city. Thus, design processes
for distributed projects must recreate the highly interactive and efficient communica-
tions of, say, the architecture design team gathered around the white board.

Architecture design for distributed development projects requires enhanced
processes in two primary areas as compared to colocated projects.

Higher quality design artifacts: Engineers on distributed development proj-
ects will usually learn about the high-level design from reading design
specifications. Thus, the artifacts generated from the high-level design
process must be readable and understandable. Remote team members in
distributed projects will not be able to ask questions of clarification of the
designers who defined the system architecture as easily as in colocated proj-
ects. For distributed projects, models will more likely be used to describe
the designbecause some team members with limited English language skills
will not be able to easily read long specifications written in English. Defects
introduced in design may not be so easily discovered by remote teams
working on downstream processes. When remote teams with limited domain
know-how develop the product, they may implement exactly what is described
in the design specifications even though it may be incorrectly specified.

Improved collaborations: On distributed projects, central designers may not
have the possibility for quick response communications and casual commu-
nications with distant designers. In fact, an architect working at one site may
work while another architect at a different site in a different time zone is
sleeping. For example, architect A has a question about a design that was
described by architect B at another site. Architect A e-mails his question to
architect B who is sleeping while architect A is working. Architect B comes
to work the next day and answers the question by e-mail when architect A
is sleeping. With such asynchronous communications, one can see how it
can take substantial time before the requesting engineer receives a response

Background 61

to his question. Although architects in distributed sites will adjust their work
hours to allow some overlap, we have noticed that most architects prefer to
sleep when it’s dark. Thus, collaboration tools are used to support question
and answer communications, so that design decisions are not lost in a stack
of e-mail messages.

Software architects perform design tradeoffs by drawing proposed design dia-
grams on a white board, and then discussing and modifying the design until it is
stable enough to be documented within an architecture design document [Clements03].
Architects must design a system architecture that optimally meets both the functional
and non-functional requirements [Berenbach(09].

The following has been observed about how architects work on system design
projects [Herbsleb05].

There are many design tradeoffs that must be performed. The design team will
have many face-to-face meetings to determine which architecturally significant
requirements are the most important to consider [SangwanO7]. Thus, high-level
design is very iterative, requiring frequent communications among a design team
whose members have differing skills and viewpoints as to how the system design
will look. The frequent communication among the design team members requires
that team members are colocated or that they come together for regularly scheduled
design workshops. In a large survey among professionals on their experiences with
distributed development, communication in the form of face-to-face meetings was
frequently mentioned as a solution to diverse project problems [Illes-Seifert07].

A key role on a software systems design and development project is the chief
architect. The chief architect is the primary technical decision maker for the project.
The design team members will propose many alternative designs while considering
how the architecturally significant requirements will be satisfied. As the leader of
the system design team, the chief architect will decide on the design alternatives that
will be used and documented for the project. “Just in time” decision making is
required, since the chief architect needs to allow time for all the good alternatives
to emerge from the team while still making timely decisions so that alternatives are
not debated unnecessarily and the high-level design work can be completed within
a time-boxed schedule [Paulish02].

Thus, architects will work on creating a system design within a small team lead
by the chief architect. The team will have many face-to-face meetings to discuss the
various design alternatives before documenting the system design for other remote
designers who will do lower level design in accordance with the high-level design.
Thus, system design is an activity that requires face-to-face contact in order to make
progress. In distributed projects, the system designers must be brought together at
a single location to be able to work together to do the tradeoffs and to consider
alternative designs during the design workshops.

There are a number of organizations that are used for system design teams
working on distributed projects. For example, we have had some success using an
“extended workbench model” for distributed development (Fig. 9.1) on the Global
Studio Project [Sangwan07].

62 Chapter 9 Practice: Global Software Architecture Development

Remote Remote
Site #1 Site #2
Central
Site
Remote Remote
Site #3 °© © o° Site #N

Figure 9.1 Example “extended workbench model” distributed development organization.

In that project, a small architecture team is part of a central organization in which
members are assigned full-time from both the central and remote sites. The central
organization operates with a chief architect as its technical leader and a project manager
responsible for the entire product life-cycle. With the extended workbench model, the
central team’s architecture design tasks are staffed with some members of the future
remote development teams who have temporarily relocated to work at the central site.
Ideally, the time spent at the central site (e.g., 6 months) is used to “train” the future
remote team members on the application domain, architecture, tools, and processes that
will be used during the development. These team members will hopefully become team
leaders of the remote development teams upon returning to their home sites. The design
artifacts created by the central architecture team will be given to the remote teams for
them to understand the high-level architecture of the system that they will be
developing.

Design information is transferred from the central team to each remote compo-
nent development team in the form of models and specifications. The documentation
package is used to help communicate the work that will be done to the remote teams
in accordance with the development plan. The work to be done is scoped to be
implemented by a relatively small component development team (maximum of 10
engineers). These organizational approaches may change over time. For example, a
component may be allocated to a distributed team in the beginning with the intent
that, over time, the remote site will develop the skills to become a competence center
in the functionality of that component [AvritzerO8a].

Figure 9.2 gives an example organization showing the relationship between the
central and remote teams for an extended workbench model. The project manager
has the overall responsibility for the life-cycle of product development. The chief
architect is the head of the architecture team and has overall responsibility for tech-
nical decisions affecting the product’s functionality and performance. The members
of the remote component development teams report to a local R&D resource manager

Background 63

o Project
Central Organization Manager
Chief Architect
{ { { \
Requirements Architecture Quality User Project Change Integration &
Engineering Assurance Interface Planning Management Validation
’X
Remote Organization R&D
Resource Manager

Component Component

Team #1 © 6 © Team #10

Figure 9.2 Example reporting relationships between central and remote teams.

at their site. The remote teams report to the project manager at the central location,
usually through an assigned supplier manager.

When working with remote organizations that have unique domain and techni-
cal expertise, a “system of systems” approach may be used for distributed develop-
ment [AvritzerO8b]. With this approach, the software development process is still
developed and managed centrally, but the system design team is extended with key
domain experts who are resident at the remote sites. Their specialized domain
knowledge drives the software architecture specification efforts during the early
phase activities. Frequent communication between the central and remote teams and
among the remote teams is encouraged. Unlike the extended workbench model
approach, the central team is not required to coordinate the communications among
the distributed teams.

Although in systems approach the system designers are spread across multiple
sites, it is still necessary to bring them together periodically for the system design
workshops. Typically, there will be more colocated meetings of the system designers
at the beginning or early phases of the project. As the system architecture is docu-
mented and reviewed, the system design team members will spend more time at
their home sites and will become more involved with lower level design and devel-
opment activities.

There are many practices that are used to make the system design workshops
more efficient. For example, jet lag can be a major concern when architects come
together from different parts of the world for a design workshop. One practice used
to combat jet lag is to colocate the system design team for three weeks at a time
before giving them two weeks at their home site to work individually on documenta-
tion and to catch up with local obligations to their development team. We have been
told by traveling architects that the 3/2 week schedule is preferable to the more
common practice where a week-long design workshop is held every month. In this
case, architects can lose efficiency as their bodies must adjust to different time zones
more frequently.

64 Chapter 9 Practice: Global Software Architecture Development

When a high-level system design is completed, documented, and distributed to
remote designers, there’s always the possibility that the architecture will drift due to
misunderstandings or lower level design changes. Thus, the central design team must
provide an oversight function and conduct design reviews with the remote teams. In
some cases, the high-level architecture may be modified to accommodate the lower
level designs, but this should be a decision considered by the chief architect.

The two most critical roles on any development project are the project manager
and the chief architect. The project manager is concerned about schedules, budget,

@ organization, staffing, and meeting these objectives. The chief architect is con-
cerned about the various technical decisions of the project. In a global software
and IT project, these roles are pivotal and should be both well trained and well
supported.

For global development projects, the project manager and chief architect must
make decisions for a team that is geographically distributed and not under their direct
control. Thus, in addition to the usual required management and technical skills,
they must be able to work effectively with staffs from differing country and company
cultures. Their communication skills will be stretched as they attempt to lead and
interact with staff whom they may never have met and who may have performance
incentives that are different from their own. We recommend that staff members
assigned to these roles for global projects have intercultural experience or are given
intercultural sensitivity training early in the project. Furthermore, they will need to
be flexible and adaptable as project progress and status changes due to events that
are beyond their control; for example, changes in political conditions in the countries
in which their development teams are located [Sangwan07].

Design artifacts must be high quality since the author of a specification may not
be easily accessible to answer questions from the readers (users) of the specification.
High quality artifacts will likely be associated with a review process so that stake-
holders and technical experts can review the documents before they are distributed
to a large group of distributed developers. Agile techniques, such as Scrum, help in
organizing global development teams towards high quality [SchwaberO4].

For the Global Studio Project, we used Scrum teams to conduct daily stand up meetings
to help coordinate the activities within the team. These short meetings typically address
three questions: What have you done? what do you plan to do? And, is there anything
standing in the way of making progress? For global development, we recommend a
weekly coordination teleconference that is facilitated by the project manager with a
representative from each component development team, called a “Scrum of Scrums.”
The audio portion of the weekly teleconference can be augmented with a desktop sharing
tool so that presentation charts, diagrams, or documents can be viewed by all the

participants.

Results 65

We recommend using video conferences for “special” meetings. These meetings
should include iteration kick-off meetings, review meetings, or meetings where
technical documentation is exchanged or discussed between the central team and
one remote team. Since the video conference equipment is usually a shared resource,
these meetings would likely be scheduled in advance. In contrast, weekly teleconfer-
ence would be scheduled in the same time slot each work week. If staff members
are not at their work place during the fixed time slot, they can call in to the telecon-
ference. When participants are not available due to vacation or illness, they should
assign a proxy to participate in the weekly Scrum of Scrums meeting.

Many of the communications between the central and remote teams will neces-
sarily be in the form of e-mail. This is particularly likely between sites, for example,
in the United States and India because one team is likely to be working when the
other team is sleeping. It is suggested that a secure intranet as well as virtual private
networks are set up for such e-mails and development tools. This will provide some
degree of protection of proprietary project communications and artifacts.

Communication in distributed development projects should be supported by a
mixture of different communication mechanisms, such as e-mail, telephone, col-
laboration web site (wiki), teleconferences, and video conferences.

We recommend that a collaboration web site (e.g., wiki) be set up for all team
members to view decisions made on the project, store key documents, and support
asynchronous discussions (e.g., forums). This collaboration site should also contain
the tool set that will be used on the project as well as relevant training information.
The collaboration web site can also link in to the development site. Here, team
members will be able to submit code to a build, run regression tests, and generate
release notes describing which features are implemented in each version of the
software. For such projects, we recommend continuous integration techniques.
Ideally, anyone on the project should be able to view the current status of the devel-
opment by running the current build.

RESULTS

Distance and time zones can make communication between architects on distributed
projects difficult. The informal “water cooler” communications are lost when team
members are located at different sites. Thus, you must compensate for these lost
communications with better specifications, collaboration tools, and periodic face-to-
face meetings.

Intercultural and language differences can also hinder effective communication
among the architects. Designs will be described in written and verbal forms, as well
as in models (e.g., described in UML), that everybody on the team can understand.
Work habits, educational backgrounds, and value systems will vary among the

66 Chapter 9 Practice: Global Software Architecture Development

architects working at the distributed sites. Central site architects will need to have
some understanding of cultural differences to be able to work effectively with the
remote architects residing in other countries. We suggest having a kick-off meeting
at the beginning of a project so that key team members can meet each other face-
to-face before working together. One possible activity during the kick-off meeting
is intercultural training.

Team size is a concern not only for a distributed project but for any project that
has more than a few team members. As the team size gets larger, there are more
communication paths among the team members. Thus, adding people to a software
development project may be a way to get more work done, but individual productiv-
ity will decrease as team members have more people that they will need to com-
municate with to accomplish their work. For very large projects, some team members
(e.g., the chief architect) are likely to spend most of their time communicating and
very little of their time on developing project artifacts. Ideally, project managers
recognize this negative productivity impact and strive to keep their development
teams as small as possible. However, there is great pressure to bring new products
to market quickly. Most project teams will likely be larger than is desirable. One
solution to this problem is to break the project work into pieces that can each be
done by a small team and then to have the pieces integrated by another team. The
resulting organization is a collection of small teams that communicate between one
another for predefined reasons or that have specialists who do the communicating.
Based on our experience with large projects, we recommend, as rules of thumb, that
no individual team is larger than 10 members and that the team members have their
work places within 50 meters of each other [Allen84]. Furthermore, the team should
have a work or conference room in which they can all fit for joint work tasks or
stand up meetings.

For system design teams, we suggest that the size of the central high-level
design team be limited to six architects, lead by a chief architect [Paulish02]. We’ve
observed that large design teams can suffer from a “too many cooks in the kitchen”
phenomenon. Smaller design teams can typically reach consensus, make design
decisions more quickly, and document their decisions in the design artifacts. The
team members must be selected carefully to represent different views, skills, domain
expertise, and experience. In addition, for distributed projects, some team members
will join the central design team for a limited time period with the intent that they
will be leading their development teams when they return to their home country.

TAKE-AWAY TIPS

Some tips for architecture design for global software development projects are sum-
marized below:

¢ Allow the chief architect to be the technical leader and decision maker for
the entire project team.

* Select a chief architect who will be able to work well with the project manager
and the remote team leaders and architects (i.e., good communication skills).

Take-Away Tips 67

* Provide central oversight of the architecture so that it will not drift as lower
level designs are done at the remote sites.

* Address the top five to ten concerns when defining the system architecture.

e Set up a kick-off meeting of the key members of all the distributed teams at
the beginning of the project so that distributed team members have the chance
to meet face-to-face.

Distributed development projects must compensate for the large communication
paths from the central team architects to distant development teams. Software
architecture is most efficiently done by a small team located at a single site, but

@ today’s need to rapidly develop new products demands that teams collaborate with
each either across organizational and regional boundaries. Effective collaborations
and good quality design artifacts are necessary for successful globally distributed
projects.

Chapter 10

Practice: Software Chunks

and Distributed Development

Audris Mockus AvayalLabs and David M. Weiss, lowa
State University

Summary: This chapter provides a case study from Lucent and shows how best to
introduce distributed development in globally distributed software projects. The case
study highlights relevant themes and guidance from previous chapters in a concrete
project context. It offers valuable insights toward how to do things in your own
company. This chapter shows how to define a quantitative analysis process to identify
candidate chunks for distributed development across several locations. We discuss the
nature of work items and their representations in change management systems before
proposing a technique to distribute the work among multiple locations so that the
number of work items spanning sites is minimized.

BACKGROUND

Software development organizations face considerable pressure and incentive to
distribute their work [Carmel99]. In this chapter we look for technical solutions that
will accommodate the business needs for distributed software development. The
problem of distributing development work occurs when the work that is needed to
evolve an existing software system cannot be performed by one team in one location
because of resource limitations or business imperatives. Often, a highly skilled work-
force is available in other countries where the same company has development loca-
tions. Weinvestigate quantitative approaches todistributing work across the geographic
locations in order to minimize their communication and synchronization needs. The
same technique has applications in other areas, including distributing work to contrac-
tors in the same country, and assessing the state of an existing distribution.

Our main premise is inspired by Conway’s work [Conway68], which suggests
that the structure of a software product reflects the organizational structure of the
company that produced it, and by Parnas’s work [Parnas72], which suggests that
the division of labor should be reflected in software modularity. In this chapter we

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

69

70 Chapter 10 Practice: Software Chunks and Distributed Development

introduce ways to quantify the three-way interactions among the reporting structure
of an organization, the geographic distribution of an organization, and the modular
structure of source code. Our analysis is based on records of work items, where a
work item is an assignment of developers to a task, usually to make changes to the
software.

We conjecture that for software development to be most efficient the geographic
distribution and reporting structure of the software, organization should match the
division of work in software development: work items that are likely to change
together, sometimes known as tightly coupled work items, which require frequent
coordination and synchronization should be performed within one site and one
organizational subdivision. This conjecture is supported by empirical evidence
[Grinter99, Herbsleb00].

If one accepts this conjecture, then the question is how to identify such tightly
coupled items. Our work is in large part an attempt to identify them by an empirical
analysis of the changes made to software. Because of the empirical nature of our
analysis, we refer to work items as “chunks” when they represent pieces of code
that are being changed. Following the usage of the development projects whose
software we have analyzed, we use the term “module” to mean a set of code con-
tained in a directory of files. Note that this is distinct from the definition of informa-
tion hiding module used by Parnas and others [Parnas72, Parnas85]. In fact, we
believe that our chunks correspond to de facto information hiding modules.

The purpose of the typical work item in a software organization is to make a
change to a software entity. Work items range in size from very large work items,
such as releases, to very small changes, such as a single delta (modification) to a
file. Figure 10.1 shows a hierarchy of work items with associated attributes. Boxes
with dashed lines define data sources (VCS and CMS), boxes with thick lines define
changes, and boxes with thin lines define properties of work items. The arrows define
“contains,” a relationship among changes; for example, each Maintenance Request
(MR) is a part of a feature.

Change
| Software Release | Management

System

| Description l—l MR |

| X
: |
: L
' Version !
: |
i i
i i
i i

. Control
Developer #line add., del. System

Figure 10.1 Hierarchy of work items and associated data sources.

Background 71

The source code of large software products is typically organized into subsys-
tems according to major functionality (database, user interface, etc.). Each subsys-
tem contains a number of source code files and documentation. The versions of the
source code and documentation are maintained using a version control system (see
Chapters 13 and 15). We usually compute the lines changed by a delta by a file dif-
ferencing algorithm (such as Unix diff), invoked by the VCS, which compares an
older version of a file with the current version.

In addition to a VCS, most projects employ a change request management
system (CMS) that keeps track of individual requests for changes, which we call
Maintenance Requests (MRs). Whereas a delta is used to keep track of lines of code
that are changed, an MR is intended to be a change made for a single purpose. Each
MR may have many deltas associated with it, although each MR is made for a single
purpose. Some commonly used problem tracking systems include ClearQuest from
IBM and the Extended Change Management System (ECMS) [Midha97]. Most
commercial VCSs also include support for problem tracking. Usually such systems
associate a list of deltas with each MR.

There are several possible reasons for requesting a modification, including the
need to fix previous changes that caused a failure during testing or in the field, and
to introduce new features to the existing system. Some MRs are made to restructure
the code to make it easier to understand and maintain. The latter activity is more
common in heavily modified code, such as in legacy systems.

Based on informal interviews in a number of software development organiza-
tions within Lucent, we obtained the following guidelines for dividing work into
MRs. Recall that an MR corresponds to a single purpose. Work items that affect
several subsystems (the largest building blocks of functionality) are split into distinct
MRs so that each MR affects only one subsystem; a work item in a subsystem that
is too big for one person is organized into several MRs so that each one could be
completed by a single person.

For practical reasons, these guidelines are not strictly enforced, so that some
MRs cross subsystem boundaries and some have several people working on them.
A group of MRs associated with new software functionality is called a feature. A
set of features and problem fixes constitute a customer delivery, also known as a
release. Put another way, each release can be characterized as a base system that is
modified and extended by a set of MRs.

If every change to a work item could be made independent of every other change
to the same or other work items, the software developer’s life would be easy (and
software would lose much of its power). Coordination is the set of activities used
to understand the effect of a change on the different parts of a single work item, or
the effects of a change on different work items. For a software release, all coordina-
tion is contained within the release, while for an individual delta on a file, coordina-
tion is often only with the other deltas for the file.

Changes made as part of an MR require tight coordination within the change
and are preferably done by a single developer. For example, a change to a function’s
parameters would require a change in function declaration, in function definition,
and in all the places in which the function is called. In contrast, the coordination

72 Chapter 10 Practice: Software Chunks and Distributed Development

between MR’s, although needed, typically does not represent as much coordination
as changes within one MR.

The tight coordination needed within an MR suggests that MRs are the smallest
work items that may be done independently of each other. In particular, they could
be assigned to distinct development sites or to distinct organizations. This hypothesis
is supported by the evidence that MRs involving developers distributed across geo-
graphic locations take a lot longer to complete (see, e.g., [Herbsleb03]).

According to the general rules of dividing work into MRs described previously,
the work items encompassing several MRs may reflect only a weak coupling among
the parts of the code that they modify. Such work items may be accomplished by
several people. They may also reflect the software’s architectural division into sepa-
rate, independently changeable units.

The tight coupling of work within an MR suggests the following measure of
work-item-based coupling between entities in a software project. For two entities A
and B the measure of absolute coupling is defined by the number of MRs that result
in changes to or activity by both A and B. For example, if A and B represent two
subsystems of the source code, the absolute measure of work item coupling would
be the number of MRs such that each MR changes the code in both subsystems. The
coupling for two groups of developers would be represented by the number of MRs
such that each MR has at least one developer from each group assigned to it. In a
similar fashion, a coupling is defined as being between a set of code and a group of
developers, that is, the number of MRs that are performed by developers in the group
and that modify the code.

To adjust for the size of entities A and B, measures of relative coupling may
be obtained by dividing the absolute measure by the total number of MRs that relate
to A or to B. We should note that coordination needed to accomplish MRs is
also embodied in other activities and in ways that are not reflected in the preceding
coupling measures. Examples of this would be coordination among MR’s in a
feature, or coordination during system integration and testing. However, the coordi-
nation needs are less likely to be as high between distinct MRs as within an individual
MR.

RESULTS

Globalization is the process of distributing software development among several
sites. Our main goal is to develop criteria and methods to allow project management
so as to make better informed globalization decisions using quantitative evaluation
of possible consequences.

We start by asking the question: What work could be transferred from a primary
site that has resource shortages to a secondary site that has underutilized resources?
We evaluate the costs and benefits of a particular transfer approach and use an
algorithm to find the best possible transfer. In studying such transfers in Lucent
Technologies we have observed that the following approaches are considered or used
(the merits of each are discussed in [Mockus01]):

Results 73

 Transfer by functionality, where the ownership of a subsystem or set of sub-
systems is transferred. This was the most commonly applied approach in the
software organizations we studied.

 Transfer by localization- where the software product is modified locally for
a local market. An example of such a modification is to translate the docu-
mentation and user interface into a local language.

» Transfer by development stage, where different activities are performed at
different locations. For example, design and coding may be performed at a
different site than system testing.

* Transfer by maintenance stage, where older releases are transferred primarily
for their maintenance phase when new features are no longer expected to be
added to the release.

We want to describe a process that could help solve the globalization problem.
We start by describing a number of factors that were mentioned by people who were
involved in globalization decisions during our conversations with them. We present
these factors to illustrate some of the complicating issues in globalization. After that
we introduce several quantifiable variables and illustrate their use in a globalization
decision.

We conjecture that globalization may lead to transfer of work that is in some
way undesirable to the primary site. The last three globalization approaches noted
in the preceding section reflect different types of “undesirable” work, such as local-
ization, maintenance (often referred to as current engineering), testing, and tools
support. We have observed several instances of functionality transfer (the first
approach), where the areas that are not desirable to the primary site are transferred.
Of course, they may have been transferred for other reasons as well.

We conjecture that the decision to transfer work may involve informal risk
management strategies, especially if the transfer is taking place to a secondary site
that has not worked with the primary site before or that has had problems working
with the primary site in the past. The risk management strategies consist of identify-
ing work that is “not critical” to the overall project in general and to the primary
site in particular, so that the completion of the project, and especially the work in
the primary location, will not be catastrophically affected by potential delays or
quality problems at the secondary site. Examples of such “non critical” work include
simulation environments, development tool enhancements, current engineering
work, and parts of regression testing. To some extent, the risk management can be
done by transferring a functional area, for example, a part of operations, administra-
tion, and management (OA&M).

For the work transfer to be successful, the receiving location needs to get appro-
priate training. If the work involves knowing the fine points of legacy systems, then
significant support in training from the primary location has to be expected. Such a
situation is likely to arise if the maintenance or testing stages are transferred. The
amount of training may be especially high if the secondary location has a high
turnover of programmers, thus requiring continuous retraining of the personnel. The
training needs vary depending on how specialized the knowledge is that is needed

74 Chapter 10 Practice: Software Chunks and Distributed Development

to perform the work. How might one quantify the time and effort needed for devel-
opers to become fully productive? We show one way to do so for productivity and
for other variables in the next section.

We looked at two aspects of globalization:

* When the competing globalization decisions are evaluated;

e When alternative globalization solutions are generated.

This section talks about the first aspect discussed above, while the second point,
generation of alternative solutions, is discussed in the next section. The final global-
ization decision has to be made based on quantitative and qualitative considerations.
For the most common globalization approach, division of functionality among loca-
tions, we focus on criteria and measures for several factors, including work coupling,
effort, and learning curves. In a later section, we will discuss how to generate can-
didates that optimize our criteria.

We refer to any collection of files as a globalization candidate. The complemen-
tary part of the system contains all other files. Work items spanning locations tend
to introduce coordination overheads and associated delays. Consequently, it is desir-
able to have as few of such work items as possible. This criterion can be approxi-
mated by the number of MRs that modify both the candidate and the complementary
part of the software, which is the measure of absolute coupling between the candi-
date and the rest of the system (see preceding discussion). The candidates that mini-
mize this measure are chunks because they have the minimal amount of coupling to
the rest of the code base.

In addition to predicting future coordination needs, it is important to assess the
current coordination overhead of the candidate part of software. This can be achieved
by counting the number of MR’s that involve participants from more than one loca-
tion. Figure 10.2 compares two globalization candidates. The first curve shows the
yearly trend of relative measure of work-item based coupling between the candidate
and the complement, the second line shows the trend of the fraction of multi-site
MRs within a candidate, and the third line shows the difference between them.

Candidate 1 Candidate 2
100 4 100 4
— Relative coupling & — Relative coupling
| |=—Fraction of multi-site MRs s | |==Fraction of multi-site MRs
80) 80 .
----- Difference 2 - Difference
(2]}
60 = 60
]
IS
40 A %5 40+
______ c //
———————————— o o
204 ——""" T B 20 o —mmm—————
__________ S
___ 2
0+, — . 0
1997 1998 1999 1997 1998 1999

Figure 10.2 Two candidates for globalization.

Results 75

Both candidates start with about the same degree of relative coupling, but can-
didate 1’s relative coupling tends to decrease in time while candidate 2’s tends to
increase. In addition, candidate 1 requires considerably more multi-site MRs than
candidate 2. This indicates that relatively more time and effort is wasted in candidate
1 because of multi-site work. We may want to assign such work areas to a single
site with the expectation that it will reduce the amount of multi-site work and inef-
ficiencies associated with it. Consequently, candidate 1 appears to be a significantly
better candidate for distribution than candidate 2.

When assigning a part of the code to a remote location, it is important to ensure
that the amount of effort needed on that part of the code matches the capacity of the
development resources in the candidate location. It is also important that the candi-
date embodies some minimal amount of work; transferring a candidate that requires
only a trivial amount of effort may not be worthwhile.

The amount of work needed for a candidate can be estimated by assessing
historic trends of effort for the candidate. Assuming that a developer spends roughly
equal amounts of effort for each delta, the total effort spent during a year can be
approximated by adding the proportions of deltas each developer completed on the
candidate during that year. For example, a developer who completed 100 deltas in
a year, 50 of which apply to a particular candidate, would contribute 0.5 technical
head count years to the candidate. The scale of effort is thus in terms of Person Years
(PY). In our experience resources of between 10 and 20 PY were available in the
remote locations, roughly corresponding to a group reporting to a technical manager.

The assumption that each delta (done by the same programmer) carries an equal
amount of effort is only a rough approximation. In fact, it has been shown (see, e.g.,
[Graves98]) that in a number of software projects a delta that fixes a bug requires
more effort than a delta that adds new functionality. However, in our problem, the
approximation of equal effort per delta is reasonable because there is fairly large
prediction noise because the effort spent on a candidate may vary over time.
Furthermore, each programmer is likely to have a mixture of different deltas in the
candidate, averaging out the distinctions in effort among the different types of deltas.
In cases when more precise estimates are needed, models [Graves98] can be used
to find a more precise effort for each delta.

When a chunk of code is transferred to developers who are unfamiliar with the
product, a substantial adjustment in effort may be needed. In one of the projects that
we studied, a typical rule of thumb to estimate the time until the remote new team
reaches full productivity was 12 months. Figure 10.3 shows the empirical estimate
of such a curve. The productivity is measured by the number of deltas completed
by a developer in a month. The time is shifted for each developer to show their first
delta occurring in month one. This allows us to calculate productivity based on
developer experience with the transferred code. The horizontal axis shows the length
of a developer’s experience on the project in months and the vertical axis shows the
average number of deltas over 50 developers who started working on the project
within a three year period from 1995 to 1998. The jagged curve represents monthly
averages, while the smooth curve illustrates the trend by smoothing the monthly
data. The figure shows that the time to reach full productivity (when the learning

76 Chapter 10 Practice: Software Chunks and Distributed Development

20— /\
N

104

average delta/month

5 10 15 20
months of experience
Figure 10.3 Learning curve.

When transferring a chunk of a complex system from one site to another, assume
it will take about 18 months to achieve full productivity after the transfer. Even
@ after this period, do not expect developers to handle more complicated tasks

[Zhoul0]. Many projects do not assign mentoring tasks to developers with less
than 3 years in a project.

curve flattens) is approximately 15 months. Because developers in this project
undergo a three month training period before starting work, the total time to reach
full productivity is 18 months.

Now that we have some measures that we can use to evaluate candidates, we
turn our attention to generating candidates that optimize a desired criterion. Such
automatically generated alternatives can then be compared to existing candidates
using qualitative and quantitative evaluations as described above.

Based on the previous analysis, we have the following criteria for evaluating
candidates:

* The number of MRs that touch both the candidate and the rest of the system
should be minimized.

* The number of MRs within the candidate that involve participants from
several sites should be maximized.

* The effort needed to work on the candidate should approximately match the
spare development resources at the proposed remote site.

Because the first two criteria both measure the number of undesirable MRs, we
can minimize the difference between the first and the second criterion. In other
words, let A be the number of multi-site MRs at present, and let B be the number
of multi-site MRs after the candidate is transferred to a remote site. The increase in
the number of multi-site MRs because of such a transfer can be expressed by the
difference: B—A. The number B can be approximated by the number of MRs that
cross candidate’s boundary (the first criterion); the number A represents multi-site

Results 77

MRs that are entirely within a candidate, and which, presumably, will become single-
site MRs once the candidate is transferred to a new location (the second criterion);
the third criterion simply defines the bounds on the effort of the candidate.

The algorithm generates possible candidates and selects the best according to
the desired criterion. We use a variation of simulated annealing (e.g., [Kirkpatrick83,
Metropolis53]) where new candidates are generated iteratively from a current can-
didate and the generated candidate is accepted as the current candidate with a prob-
ability that depends on whether or not the evaluation criterion for the generated
candidate is better than for the current candidate.

As input to the algorithm we provide a set of files or modules where each file
is associated with an effort in PY for the last year. The effort is calculated as
described in the previous section. Another input consists of a set of MRs, where
each MR is associated with the list of files it modifies and with an indicator of
whether or not it is a multi-site MR. Finally, we provide a range of effort in PY for
the candidate. Initially, the algorithm generates a candidate by randomly selecting
modules until it gets within the bounds of the specified effort.

The new candidate is generated iteratively where the iteration consists of ran-
domly choosing one of three steps:

¢ Add a module to the candidate set by randomly selecting modules from the
complement of the system until one is found that does not violate the effort
boundary conditions.

* Delete a module from the candidate set by randomly selecting modules to
delete from the candidate until one is found that does not violate the effort
boundary conditions.

* Exchange modules by randomly selecting one module from the candidate and
one from the complement until the exchange does not violate the effort bound-
ary conditions.

Once the new candidate is generated, the criterion of interest (coupling to the
rest of the system) is evaluated and compared to the value for the current candidate.
If the criterion is improved, the new candidate is accepted as the current candidate,
if not, the new candidate is accepted as the current candidate with a probability
p < 1. This probability p has to be greater than zero to make sure that in the long
run all possible solutions are evaluated and that the algorithm does not get stuck in
a local minimum. If the current criterion improves upon the criterion value obtained

When seeking component candidates for distribution, consider the Maintenance
Requests (MR) performed on the respective candidate. Look for candidates with
the following properties. (1) The number of MRs that touch the candidate and the

§] rest of the system is minimal among candidates. (2) The number of MRs that
involved participation from several sites is maximal among candidates. (3) The
estimated required effort is about the same as the resources available at the new
site.

78 Chapter 10 Practice: Software Chunks and Distributed Development

in any previous iteration, the current candidate and the criterion are recorded as the
best solution so far. This iteration is repeated a fixed number of times or for a certain
period of time.

Two candidates are shown in Figure 10.2. The first candidate is optimal among
candidates consuming approximately 10 PY per year and the second candidate is
optimal among candidates consuming approximately 20 PY per year.

In previous sections, we have focused on the transfer of functional areas. It is
interesting and instructive to evaluate alternative approaches in a quantitative
fashion. In this section we describe an example evaluation of a localization approach.

The management team of a very large telecommunications project wanted to
evaluate the possibility of having a development team located in a country in Asia
to perform all customization work for that country. The feasibility analysis was based
on the software features implemented for the entire region (all countries in Asia).
The expectation was that the analysis would discover only a few functional domains
where such features are implemented, thereby highlighting training requirements for
the team. Good candidates for localization are products in which the localization
work is concentrated in only a few functional domains, rather than being spread
evenly over all functional domains.

By comparing a list of more than 300 features for Asian countries done in 1998-
1999, with the remaining features done over the same period, we found that the
former features modified almost all the functional areas (subsystems) of the product.
Furthermore, the effort (as calculated from the number of delta) for Asian features
mirrored the pattern of effort for the entire system, that is, the ratios of Asian feature
effort to overall effort is relatively constant over the subsystems. Figure 10.4 shows
a histogram of this fraction indicating that, while on average about 10% of the effort
goes to Asian features; there is only one subsystem where more than 25% of the
effort is devoted to such features. A similar pattern holds for modules and files. The
only difference is that the precision is lower when predicting modules modified by
Asian features.

Furthermore, different developers implement localization features over the
years (possibly indicating shifting functionality). While 528 developers participated
in implementing Asian features in 1998 and 1999, only 144 of them worked on such

14+
n 12+

of funtional area
o N b~ OO 8
L 1 l 1 1 1

0.00 0.05 010 0.15 020 025 0.30 0.35
Fraction of localization work

Figure 10.4 Histogram of the fraction of localization effort for an Asian market.

Take-Away Tips: 79

features both in 1998 and 1999. The large number of functional areas involved and
the possibility of these areas changingover time indicate considerable obstacles
when using the localization approach in the considered product.

Often bug fixing and testing are perceived as undesirable activities. Many organizations
offshore the maintenance of deployed releases of software, but developing new releases
is not offshored. Unfortunately, such decisions are rarely based on rigorous analysis of
potential drawbacks and benefits. For example, an offshore team responsible for main-
taining older releases may never develop sufficient skills to enhance the product and may
struggle when the rest of the work is transferred to them. Consequently, it may be desir-
able to compare and, possibly, fine-tune candidates generated by the interested parties.

There are often a number of important social and organizational factors that
need to be addressed in any decision to transfer work. For example, work that is
considered undesirable or uninteresting by developers at a particular location may
be proposed as a candidate for transfer.

TAKE-AWAY TIPS:

In large software systems, the alignment between work items and organizational and
software structures allows us to state several important actions to take when consid-
ering candidates for transfer:

¢ Identify the current work structure and ensure that it matches the desired
architecture.

Practical questions to answer when considering the transfer of work to another
location: (1) Does the current work structure match the initial architecture, and
what is the current work structure? (2) Do the current work and software structures
match the organizational structure? (3) Does the current work structure match the
geographic distribution of the organization? (4) How to define a piece of software
so that it is and remains an independent chunk that can be developed/changed
independently: Is it a file, directory, or some other entity?

» Compare the current work and software structures and be sure that they match
the organizational structure.

* Ensure that the current work structure matches the geographic distribution of
the organization.

80 Chapter 10 Practice: Software Chunks and Distributed Development

* Define and design the software into modules that can remain as independent
chunks that can be developed or changed independently, and decide what the
structural unit is for a module: Is it a file, directory, or some other entity?

Our approach applies to any project where some change data have been accu-
mulated. Note that even in so-called greenfield projects the development proceeds
by incremental change, so that once the project has produced a substantial amount
of code, the algorithm could be applied to the change data.

Because of our strong emphasis on independent changeability, we think about
what we have done as exposing the empirical information hiding structure of a
software system. As a system evolves, decisions that are embodied in the structure
of the code become intertwined in such a way that they are dependent on each other;
a change to one usually means a change to the others. Evolution of the system impels
the formation of chunks. The challenge for the software architect is to construct a
modular design where the modules and the chunks closely correspond to each other
throughout the system’s lifetime.

Chapter 11

Configuration Management

Summary: This chapter underlines the relevance of good configuration management
and change control especially in distributed projects. While configuration management
is necessary for types of development and engineering, it must be quite strong in terms
of methods and tools if teams are working in different time zones without the possibility
of agreeing on whom is making which change. Concepts such as traceability help to
see impacts of changes.

Configuration management is one of the key development process activities in a
successful global project. In distributed development especially, chances are high
that different versions of software are merged which creates inconsistencies and
errors. Change review boards, versioning rules, branching and merging guidelines,
and clean baselining and change control mechanisms must be installed. They ought
to work the same way in all sites.

There are dedicated instruments to assure clean configuration management in
global development projects. In this chapter we will list the most relevant instruments
with the understanding that regular configuration management includes much more.

Rigorous change management assures that no change to any baseline happens
without upfront agreement. Any changes and defects must be reported in a standard-
ized change management system, such as Bugzilla or Synergy. They must have status
flags with time stamps to allow consistency checks before approving them. They
should be traceable to related work products (other change requests and configura-
tion items), such as horizontally between related change requests or vertically (e.g.,
from a change request to the implementation and test cases). And, most important,
no change is allowed without a documented approval. Often, changes happen
through tunneling that takes place between engineers who know each other. This is
not working in global development.

Access rights to tools and work products must be controlled. Global development
increases the risk of intellectual property being exposed or compromised. We recom-
mend installing role-based access policies because they are easy to install and to
maintain. Archives must be protected with structured access rights to avoid inconsis-
tencies from being introduced. Never give full visibility to an entire archive. If there is

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

81

82 Chapter 11 Configuration Management

high turnover to be expected, the role and access rights management should be feasi-
ble with batch jobs. In essence, this should be done periodically, without additional
triggers to assure that responsibility changes or newcomers are immediately
considered.

Most tools have operational databases that are hosted on servers. Make sure that
these operational databases and warehouses are replicated across sites and that the
replications are consistent with each other. Test specifically for those databases with
frequent and high-load access to make sure that they work properly. This holds
especially true for the code archive and change repository, both of which are con-
tinuously accessed by each engineer. Test how long it will take to replicate them in
case of a network failure. Assure that engineers in all sites can continue working
with localized copies of archives in case of network disruptions.

Backups must be distributed across sites. Never keep the archives and their
backups at the same physical site. If separating them is not internally feasible, col-
laborate with an external provider to assure that your different archives and backups
are distributed and accessible in case of emergency. Make routine checks on a peri-
odic basis to verify their status, integrity, and accessibility. Test the entire restore
and distribution mechanism on a periodic basis.

To assure configuration management is consistently implemented, configuration
audits are placed in the project plan and performed periodically (at least at the bigger
milestones). The following topics should be covered by such audits:

e Infrastructure: determine if the integrity of the baseline libraries is being
maintained. Answer questions such as: Are the change and update records
complete and accurate?

e Project: Is the project following its configuration management plan and
protecting the integrity of its new and modified configuration items as
intended? Is it producing its builds and releases according to the agreed-upon
schedule?

* Process: Are configuration management activities being performed accord-
ing to the organizational (and/or project) change and configuration process?
Do the delivered work products conform to the established (and/or de facto)
internal standards?

* Baseline: Are the baselined items accessible? Can previous versions be
restored? Are changes always traceable to baseline items? Is one unique
baseline status communicated to all stakeholders?

Configuration management is one of the disciplines that hugely benefits from
using the right tools. In fact, it is hard to imagine having no support tools. When
selecting these tools, make sure that they are not simple repositories, but that they
are explicitly suitable and recommended for global (i.e., distributed) development.
They must, at least, assure traceability to other tools (of a different supplier) and
open interfaces so you can build your own connections.

Chapter 12

Open Source Development

Summary: Companies of various industries are investing in open source and
effectively use it as viable ecosystem for access to skills and for creating new markets.
Open source clearly is a global software and IT business with contributors from
around the world and various packaging companies. We will provide concrete
guidance on how to manage open source software, be it as a user or as a contributor.

The software industry has evolved toward complex supplier-user networks that
cooperate and collaborate in many ways. These days, we hardly ever see the tradi-
tional way of software development where design, production, sales, delivery, and
service are done by one company. Business models, engineering life-cycles, and
distribution channels and services have dramatically changed. One key driver in
these new value networks is free and open source software. The reasons for the fast
growth of open source usage are manifold [Ebert07b, Forrester04]:

* Global competition and low entry thresholds drive companies to continuously
try to reduce the costs of their software products and components. Open
source software with comparatively low license and maintenance cost fosters
life-cycle cost reduction.

* Time-to-profit means that you must cut out delays from the introduction of
products and services. Using mature standard components allows focusing on
the high-end which is where true value is created.

 Practically all industries are shifting—with the different speeds and cycle
times—from hardware to software, and finally, to services. This implies that
traditional hand-made proprietary low-level software is being replaced by
standard solutions.

* The growing instability of global markets pushes users to select endurable
solutions that will not be impacted by fads and hypes because both often
drivecommercial software to annual revenue streams from selling unneces-
sary complexity. Open source software only delivers core features and thus
achieves better performance and quality.

* Open source solutions with sufficiently big communities have better quality
than their commercial counterparts. For instance, open source improves secu-

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

83

84 Chapter 12 Open Source Development

rity because more people review the source code than that of proprietary
software. For that very reason, security breaches are typically fixed quickly
and with broad notification to the user community.

» Students use open source in school, which substantially shortens their learning
curve when they go to work for software companies. Engineers often have
the same open source tools at home, which positively impacts the work
climate and productivity.

Having shaped the global software industry for a decade, strong ecosystems

have grown, covering technologies such as embedded software components, middle-

ware, enterprise software and internet services.

Market leaders such as Google, IBM, Microsoft, SAP, and Siemens, as well as many
small companies, engage in open source for multiple reasons. For instance, Mozilla’s
Firefox browser, with hundreds of millions of users, has become a rival of Microsoft’s
market-leading Internet Explorer, and has thus created a new push to an otherwise stag-
nating market. Major technology breakthroughs are based upon open source software.
Many current engineering processes have evolved from the way open source is devel-
oped. This holds for iterative development and agile techniques as well as globally
distributed software engineering.

Open source models have changed development processes. Agile development
approaches, such as incremental development, gain acceptance because engineers
learn them in their open source endeavors at home. Open source projects of different
sizes and distribution degrees provide an almost controlled environment for experi-
menting in global software development as has been discussed in other chapters of
this book. Many shared-development and knowledge-management platforms, includ-

ing Eclipse and wikis, facilitate distributed development.

Innovative global business models are, perhaps, the most interesting open source con-
tribution. A showcase example is Asterisk (www.asterisk.org), a key enabler for radical
transformation in private branch exchange (PBX) telephony systems. Until recently, the
hardware focus of business telephony allowed a few vendors to dominate this multibillion-
dollar market. With IP telephony’s arrival, most vendors want to closely bundle their
traditional and IP hardware-based solutions to protect their long-term investments. On
the other hand, millions of small and medium enterprises can’t afford a PBX system, but
still need its feature set. Asterisk has started to offer entirely PC-based systems that
provide public switched telephone network (PSTN) connectivity through small process-
ing cards instead of proprietary hardware boxes. Functionality is comparable to tradi-
tional PBX, flexibility to adapt and integrate with existing infrastructure is better, and
scalability in terms of both traffic and features costs less because there’s no expensive
hardware investment.

Open Source Development 85

Here are some concrete guidelines for practitioners using open source software
in a global project context or contributing to open source projects:

* Apply clear decision criteria to open source decision making. For both techni-
cal and commercial criteria, examine your own product’s overall life-cycle to
make sure your open source decision is valid beyond the initial development
phase.

* Decide on a distribution scheme. Before deciding to use GPL software, you
must know how to handle packaging with it so that you can choose how to
distribute your products. With most licensing schemes, you must distribute
all copyrights from all contributors with the software. The more different
components and contributions that exist, the more difficult this becomes.
Using open source software involves many intrinsic challenges, so you might
want to more narrowly focus your scarce engineering budget by turning to
experts to handle issues such as configuration management, license reviews,
liability transfer, or filtering new releases. Experts can help adjust your devel-
opment processes to handle external components. Additionally, for small
FOSS communities, professionals can work with both suppliers and users to
improve interfaces and build decent change management and reliable road-
mapping for industrializing your products.

* Check supplier availability over time. An open development tool might look
attractive, but it may also prove disastrous over the years if it’s not adequately
supported.

* Disseminate technical, legal, and managerial information widely in your
company. Not everybody has to read it, but you need to consider major
impacts before introducing an open source component. License schemes,
version status, configuration lists of all components in your products, bug
information, and security warnings should be easily accessible and continu-
ously updated.

* Manage and mitigate your legal exposure. You can’t choose the license
scheme you like because “copyleft” agreements, such as GPL, define most of
the open source software you’re using. First, understand the underlying licens-
ing scheme and avoid those that aren’t generally in mainstream use. GPL is
used broadly and it benefits from known legal exposure and ways to cope
with it.

* Create IPR awareness. Developers and their companies have been hurt by
using open source without understanding basic copyright notions or other
intellectual property rights. The right to use and modify software doesn’t
mean that copyrights are transferred. You must have a clear, indisputable legal
status and governance regarding IPR and the use of open source software.
Make sure that underlying open source components won’t pollute your own
source code. For instance, the status of proprietary code dynamically loaded
with GPL (GNU General Public License) code is still fuzzy in the GPL
license. If your business needs these proprietary drivers, maybe open source

86 Chapter 12 Open Source Development

software isn’t the answer for you. Contact the copyright owner and agree on
a dedicated license scheme to clarify the legal impacts in such exceptional
cases. Many popular open source components have dual licensing schemes
that might be more appropriate.

» Even without open source usage, legal and commercial restrictions typically
don’t allow you to exclude liability of your products. However, most open
source software comes without any liability, which means the distributor bears
the entire risk without possible recourse to the licensor. Prepare for liability
and fast bug fixing of your external components. Packaging companies offer
services to handle all this, but you’ll pay for it.

e Don’t reinvent licensing schemes. If you use open source software in your
products, you might want to create a community of contributors and, there-
fore, install a dedicated framework that will protect your copyrights and
facilitate open development. There are more than enough license schemes
available. Don’t create new schemes that will only increase complexity and
confusion among users. Instead, try to consolidate toward major schemes,
such as GPL or LGPL.

* Avoid license schemes that are difficult to use or that might endanger your
business model. For instance, the Artistic License includes ambiguities that
can cause confusion on legal terms. Schemes such as BSD licensing or the
Apple Public Source License might allow your open source software or exten-
sions of it to move unexpectedly to the proprietary software domain.

e Control the introduction and use of open source software. Systematically
qualify open source components before integrating them because versions and
variants arrive more often in open source software than they do in proprietary
software. For example, MySQL releases an update every four weeks and
Eclipse releases one every six weeks. You must define upfront the refresh
and update processes for introducing a new open source component
version, and you must manage development and service life-cycle processes
systematically in order to ensure that the chosen open source component, as
well as your own components, can synchronize with each other and with your
release and business cycles. Your configuration manager must explicitly
authorize any external component on a per-version basis. Train your build or
configuration manager and your quality teams on these additional open source
related needs.

* Ensure that your processes support open source software usage. You must
adapt your development and life-cycle management processes to cope with
specific open source challenges. Configuration and change management must
be able to handle bug fixes and open source update releases in various
formats—source code, design descriptions, release notes, test cases, and so
on. Quality control must verify and validate new upgrades before introducing
them. When modifying open source software, your change processes must
include making the changes public and your quality control must ensure that
quality levels meet your standards. Test-driven development and code-analysis

Open Source Development 87

tools will help provide the quality infrastructure. When evolving open source
software, don’t overlook nonfunctional requirements such as performance or
maintainability. If your products might be used in safety-critical systems or

Open source software is of growing relevance in all software and IT projects. As
a technical manager you should create awareness in your team to avoid legal
exposure and to ensure the best possible usage schemes. As a software engineer,
you might participate in an open source project to learn about global development
styles and to experiment beyond the boundaries of your company.

within high-reliability standards, you must consider independent verification
and certification.

Today, the open source approach has grown toward a global software engineer-
ing business model which can hardly be avoided for any software or IT project.
Especially in the global software engineering context, community source software

Community source offers different levels of openness. For instance, BEA’s Eclipse-based
development environment lets engineers integrate FOSS and proprietary solutions.
Nokia’s Maemo' development platform is an interesting example. It is used to develop
services and applications for Nokia’s Internet Tablet. While Nokia controls the Maemo
roadmap and overall technology evolution, it contributed less than 2% of the source
code. Companies such as Sun, Hewlett Packard, and IBM created the rest of it, using
FOSS libraries such as Linux.

is growing quickly. It uses the traditional open source approach with voluntary
contributors and open licensing schemes, but it applies that approach to proprietary
software that is shared in a closed user community.

Aside from cases in which proprietary software is mediocre or built on a weak
business model, open source isn’t cannibalizing of proprietary software. In fact, it
creates new jobs and new demand for services. Close to one-fifth of all open source
contributors earn money from their contributions [Ebert07b]. Last, but certainly not
least, open source is an excellent vehicle, especially for young software engineers,
for understanding architecture, coding styles, quality control mechanisms, and
implementing your own ideas in a global setting.

! http:/maemo.org

http://maemo.org

Chapter 1 3

Quality Control

Summary: Quality of a component or product must be designed from the beginning.
Once designed, it must be rigorously and consistently controlled.. This is not easy in
global settings with different stakeholders following their own objectives. In this
chapter, we will discuss concrete practices to develop and control quality in global
software and IT projects.

Competition, along with the customers’ willingness to change suppliers whenever
they are dissatisfied, has resulted in huge efforts to provide software on time and
with the high quality the customer has specified and expects to pay for. A study by
the Strategic Planning Institute shows that customer-perceived quality is amongst
the three factors with the strongest influence on long-term profitability of a company.
Customers typically view achievement of the right balance between reliability,
delivery date, and cost as having the greatest effect on their long-term link to a
company [Ebert07a].

Global software development challenges traditional quality control and asks for

new solutions. Given the global competition, quality must be proven good enough
for any component and for the entire system. Distributed ownership of these
various software components does not allow close teamwork toward continuous
builds or peer reviews. Often, the owners of interacting components know each
other only from phone conversations, but still have to assure the right level of
quality control.

Methodological approaches to guarantee quality products have lead to interna-
tional guidelines (e.g., ISO 9001) and widely applied methods to assess the develop-
ment processes of software providers (e.g., CMMI [SEI11]). Additionally, COBIT
and ITIL are highly useful for defining basic processes in IT service companies
[COBITOS, ITILO7]. Most companies apply certain techniques of criticality predic-
tion that focus on identifying and reducing release risks. Unfortunately, many
efforts usually concentrate on testing and reworking instead of proactive quality

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by

John Wiley & Sons, Inc.

89

90 Chapter 13 Quality Control

management [McConnell03, Ebert07]. It is useless to spend an extra amount on
improving quality of a product to a level that consumers aren’t willing to pay for.
The optimum quality seems to be in between the two extremes. It means you must
achieve the right level of quality and deliver it on time. It also means continuously
investigating what this best level of quality really means, both for the customers and
for the engineering teams who want to deliver it.

As a first step for any quality control activity, one must define the quality levels
to be achieved. In global development projects, this is often done by means of SLA
or by phase-end or hand-over criteria. These targets must be measurable regardless
of the global collaboration model or contract model established with suppliers. It is
key to set the right targets and to set them as performance indicators for R&D, the
management in each location.

After knowing the target, it is relevant to know where the development with
respect to defect reduction is at any moment. The general approach is called defect
estimation. Defects should be estimated based on the stability of the underlying
software components. All software in a product can be separated into four parts
according to its origin. The base of the calculation of new/changed software is the
list of modules to be used in the complete project (i.e., the description of the entire
build with all its components). A defect correction in one of these components typi-
cally results in a new version, while a modification in functionality (in the context
of the new project) results in a new variant. Configuration management tools such
as CVS or ClearCase are used to distinguish the one from the other while still main-
taining a single source.

Our starting point for defect estimation and forecasting the quality level comes
from psychology. Any person makes roughly one (non-editorial) defect in 10 written
lines of work. This applies to code as well as to a design document or an e-mail, as
was observed by the personal software process (PSP) and many other sources
[JonesO7]. The estimation of remaining malfunctions is language independent
because malfunctions are introduced per thinking and editing activity of the pro-
grammer, that is, visible by written statements. We could prove this independency
of programming language and code defects per statement in our own environment
when examining languages such as Assembler, C, and others. This translates into
100 defects per KStmt. Half of these defects are found by careful checking by the
author, which leaves some 50 defects per KStmt delivered at code completion.
Training, maturity, and coding tools can further reduce the number substantially. We
found some 10-50 defects per KStmt depending on the maturity level of the respec-
tive organization. This is based on new or changed code and does not include any
code that is reused or automatically generated. The author detects most of these
original defects before the respective work product is released. Depending on the
underlying personal software process (PSP), 40%-80% of these defects are removed
by the author immediately. We have experienced in software that around 10-50
defects per KStmt remain. For the following calculation we will assume that 30
defects/KStmt are remaining (which is a common value [Jones07, Ebert07a].

To statistically estimate the amount of remaining defects in software at the time
it is delivered by the author (i.e., after the author has done all verification activities,

Quality Control 91

he can execute himself), we distinguish four different levels of stability of the soft-
ware that are treated independently:

f=axx+bxy+cxz+dXx(W—x—-y—-2)
with

* x: the number of new or changed KStmt designed which will be tested within
this project. This software was specifically designed for the aforementioned
project. All other parts of the software are reused with varying stability.

e y: the number of KStmt that are reused but are unstable and not yet tested
(based on functionality that was designed in a previous project or release, but
never externally delivered; this includes ported functionality from other
projects).

* z: the number of KStmt that are tested in parallel with another project. This
software is new or changed for the other project and is entirely reused in the
project under consideration.

e w: the number of KStmt in the total software build within this product.

The factors a—d relate the defects in software to size. They depend heavily on the
development environment, project size, maintainability degree, and so on. Based on
previous assumptions, the following factors can be used:

e a: 30 defects per KStmt (depending on engineering methods; should be based
on own history data).

* b: 60% x 30 defects per KStmt (assuming defect detection before start of test
is 60%).

* ¢: 60% x 30 defects per KStmt X (overlapping degree) x 25% (depending on
overlapping degree of resources and test intensity).

* d: 1% x 30 defects per KStmt (assuming 1% of defects typically remain in a
product at the time when it is reused).

With targets agreed upon and defects estimated, a variety of different defect
detection techniques must be evaluated and combined to optimize cost, quality, and
time. Preferably, defects should be detected close to the activity when they have
been introduced (that is, before start of test). Since defects can never be entirely
avoided, several techniques have been suggested for detecting defects early in the
development life-cycle [McConnell98, EbertO1b]:

* Design reviews and inspections.

* Code inspections with checklists based on typical fault situations or critical
areas in the software.

» Enforced reviews and testing of critical areas (in terms of complexity, former
failures, expected fault density, individual change history, customer’s risk and
occurrence probability).

92 Chapter 13 Quality Control

* Tracking the effort spent for analyses, reviews, and inspections, and separat-
ing according to requirements to find out which areas are not sufficiently
covered.

The goal is to find the right balance between efficiency (time spent per item)
and effectiveness (ratio of detected faults compared to remaining faults) by making
the right decisions to spend the budget for the most appropriate quality assurance
methods. In addition, overall efficiency and effectiveness have to be optimized. It
must, therefore, be carefully decided which method should be applied on each work
product to guarantee high efficiency and effectiveness of code reading (i.e., done by
one checker) and code inspections (i.e., done by multiple checkers in a controlled
setting). Wrong decisions can have two main impacts:

On one hand, the proposed method to be performed is too “weak.” Faults, which
could have been found with a stronger method, are not detected in the early phase.
Not enough effort is spent in the early phase. Typically, in this case, efficiency is
high and effectiveness is low. On the other hand, the proposed method to be per-
formed is too “strong” or overly heavy. If the fault density is low from the very
beginning, even an effective method will not discover many faults. This leads to a
low efficiency, compared to the average effort that has to be spent to detect one fault.
This especially holds for small changes in legacy code.

Globally distributed software development is highly impacted by work organi-
zation and effective work split. Often, not all necessary skills to design a complex
functionality are available at one location. Instead of creating virtual development
teams, we strongly advise (for reasons of productivity and quality) that you build
coherent and colocated teams of fully allocated engineers. Coherence means that the
work is split during development according to feature content, which allows you to
assemble a team that can implement a set of related functionality—as opposed to
artificial architecture splits. Colocation means that engineers working on such a set
of coherent functionality should sit in the same building, in the same room, if it is
feasible. Finally, full allocation implies that engineers working on a project should
not be distracted by different tasks for other projects.

Projects at their start are already split into pieces of coherent functionality that
will be delivered in increments to a continuous build. Functional entities are allo-
cated to development teams, which are often based in different locations. Architecture
decisions, decision reviews at major milestones, and tests are done at one place.
Experts from countries with minority contribution will be relocated for the time the
team needs to work together. This allows effective project management based on
the teams that are fully responsible for quality and delivery accuracy of their
functionality.

Colocating a development team to stimulate more interactions, however, is more
expensive. We found, in our projects, that colocating peer reviews improves both
efficiency and effectiveness of defect detection and thus reduces cost of non-quality.
Looking into individual team performance, we can see that colocated teams achieve
an efficiency improvement during inspections of over 50% [EbertO1b]. This means
that with the same amount of defects in design and code, those teams, which sit at

Quality Control 93

the same place, need less than half the time for defect detection. The amount of
defects detected shows almost a factor of 2 difference in terms of defects per KStmt.
Examining the low cost of defect detection during inspections compared to subse-
quent testing activities and the cost contribution of validation towards total cost, we
found an impact of greater than 10% on project cost.

A final word on work allocation and ownership: Shifting verification activities
to low-cost countries is highly inefficient. Often tasks are overly fragmented and the
quality control activities are handled with poor results due to lack of knowledge. In
the end, each delivery has to be checked twice, once at the time it is shipped to a
low-cost country, and then again backward. All of these processes cost time and
money and are demoralizing for the engineers on both sides because it always ends
up ping-ponging back and forth. As mentioned before, we strongly recommend
building teams, preferably in one place, and assigning them ownership for a work
product including functionality and quality. Such teams should operate globally
according to needs and skills availability, but not be internally split into first- and
second-class engineering tasks.

Chapter 14

Tools and IT Infrastructure

Summary: Tools facilitate global software engineering dramatically. In fact, global
development is impossible without adequate tool support. Tools are necessary due to
several inherent characteristics of software engineering in different sites. In this
chapter, we will provide a structured and systematic overview on different tools
domains with many concrete examples. While the one or other example might become
outdated over the years, it is still helpful to glean an understanding from this chapter
as to the essence of tools selection and usage in global settings.

Software tools can be grouped along four dimensions, namely:

* Functionality: Comprising of and evolving into complex functionality,
designs, and architectures. Examples include modeling tools, test environ-
ments, design tools, and so on.

e Communication: assuring understanding and exchange between stakeholders
and amongst engineers. Examples include project management, requirements
engineering, and change management tools.

e Work products: Managing a multitude of interdependent work products.
Examples include tools for configuration management, versioning, debug-
ging, and so on.

* Life-cycle: Software tends to evolve over time. A longer lifetime creates dif-
ferent versions or variants of the system, each of which must be managed
until the end of its life. Examples of tools include some of the aforementioned
tools, such as traceability tools, test configurators, or product data
management.

These four dimensions becomeeven more complex in distributed teams, especially
if they hardly ever (or never) meet. Even the smallest decision or reasoning for a

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

95

96 Chapter 14 Tools and IT Infrastructure

decision must be recorded and traced not only to originators but also to any other
impacted artifacts, engineers, or product variants.

Performing outsourcing and offshoring without adequate tools and IT infrastruc-
ture will immediately cause problems and high overhead costs. Collaboration across
enterprises and distributed teams often leads to fragmented processes and tool chains
with heterogeneous interfaces and redundant and inconsistent data management
which results in insufficient transparency. Activities such as project management,
pre-development, and product engineering are rarely well-integrated due to the
diversity of stakeholders with individual knowledge about projects, products, and
processes. Consequently, engineering results such as specifications, documentation,
and test cases are inconsistent, and items like signals and parameters are arbitrarily
labeled. Changes create a lot of extra work because you have to make sure that
nothing is overlooked. Reuse is hardly possible due to the many heterogeneous
contents. This pattern is amplified when collaboration across supplier networks and
complex healthcare workflows take place.

The move to global software engineering is a useful catalyst to clean up an inven-
tory of legacy tools once and for all.

To work efficiently, engineers need to handle a multitude of processes and dif-
ferent forms of knowledge that must be shared with colleagues across business
processes and even beyond the borders of the enterprise. Tools are essential to col-
laboration among team members, enabling the facilitation, automation, and control
of the entire development process. Adequate tool support is especially necessary for
global software engineering because distance aggravates coordination and control
problems, directly or indirectly, through its negative effects on communication.
Tools and IT infrastructure help to integrate both processes and people along the
entire life-cycle of a release or product. They can even reach beyond release and
product to cover an entire portfolio. Global software and IT need both process and
tools support. Figure 14.1 shows this impact based on a study at London Business
School [Ebert10].

Sustainable performance improvement in global software and IT projects demands
simultaneous optimization of engineering and management processes and tools.
Introducing tools simply for workflow management, PLM, and eventual collabo-
ration might cause even higher cost due to insufficient usage. Merely improving
processes will often only serve to create bureaucracy and overheads. For success
in software and IT projects, processes must be supported by automated tools.

Now we will examine different tools and use cases and provide insight into
concrete experiences with collaboration tools.

Project Management 97

High

Process focus

+2%

Low
o

Low High
Tool support

Figure 14.1 Tools without processes are nothing; processes without tools are not good enough.

- - pequrement Syplorer 2 s x 0 .
Navigation, access 2 Product life cycle
rights and accounting SiEE S _—__ management support

= (& AuctonModesFromkatng - Featres and Visen
=1 (& AUCIOrVEC_WET E
= @ AUCtorVEOModels

[8d on Ttem

0 Uee Case

2 8 on Ttem weh Attbutes
8 Adwnisvaton =% UC18c on Ttem § Actor
© 48 Browsng 1] UC 1.1 When browsing an iten £3 Subsysem
=48 Burn and Selng -1)] uC 1.2 8a5¢ Fow & Indude
) van & [[]] Uc L3 Alternatve Fows / Assodation
? suyer ([) UC 1.5 The Buyer must be six
@ Soller [{ Y uc 1.5 The Buyer has checen
+ <Bdonlten [J UC1.6 The entered bud becon
7 < Lst Ttem For Sole # (& Bronse Auction Cotalog
=/ (5 en Mem)(:Buyer) # (S Lot Itam For Sele
& / (dist ltem For Soke) 1Sk ¥ (= Regater
8 gerpectver Overviens [ky AnUse Cases vt Attrbutes
R Actors Overview [Lse Case Survey
ti Context Diagran - L5 Requrements Macagerrant flan |5 Deployment Dus.... |
<| A [P | A= EY| A3 L [»] L5 Geometric Shages
L8 2ecuremert Query Resulls) - Requrement Lnk Problems Properties =m)
rerent [eroperty [Priority [stans [oiffadty [suabity [ik A
*ucifdon Ttem e Incorporated wedum Mechumn Technaiogy -1
1 When browaing an item currenty avatable via aucton , 3 Buyer ma... SrefDesaption incomoratad
4 2698 Flow Basc Flow Incorporated
uc:zmv mnwmgmopmavmmwaq- These... Basc Flow Hoh Incorporated
NI The B R the bid amount. The enered.,, Bask Flow rich Incorperated L
provides nformation that tel, . Basc Flow Incomporated L
Work prod UCtS and (S - sl Access to documents

and underlying tools

dependencies

Figure 14.2 Example for tool suite to support global teams and collaboration across work products.

PROJECT MANAGEMENT

We strongly recommend installing a standardized project dashboard that allows
navigating from a high level of abstraction (e.g., all ongoing projects, all active tasks,
all offshore work packages, all distributed activities, etc.) down to impacted engi-
neers, artifacts, tools, and processes. Navigation across different work products and
supportive collaboration tools is realized with hyperlinks as portrayed in Figure 14.2

98 Chapter 14 Tools and IT Infrastructure

[Ebert10]. In fact, all professional engineering tools today allow linking into their
contents by means of hyperlinks (i.e., URLs or even web services). A life-cycle
picture shows the global overview of the processes, and many embedded hyperlinks
allow navigation with a few clicks to the final element in which the reader is inter-
ested. Compared with static process models of the 1980s, which typically used
standard data-modeling languages, the currently available workflow systems provide
nicely visualized flows that hide anything that is not relevant for a specific view as
much as possible. Usability, and not formalism, is the key.

A tailorable process framework can resolve the perceived conflict between
organizational process and individual tailoring. Such a framework should be fully
graphically accessible and should allow the selection of a process that will be appli-
cable for components as well as an entire product that is based on selecting the
appropriate parameters that characterize the project. The framework allows for
automatic instantiation of the respective development process and product life-cycle,
as well as a project quality plan and specific applicable measurements that are based
on modular process elements such as role descriptions, templates, procedures, or
check lists, which hyperlink with each other.

Usability of any workflow support system is determined by the degree to which
it can be adapted or tailored toward the project’s needs. There are organizational and
project-specific environmental constraints. Those constraints make it virtually
impossible to apply the workflow system in a way that is out of the box. Adaptation
is achieved by offering a set of standard workflows, which are then selected (e.g.,
incremental delivery versus grand design; parallel versus sequential development;
development versus maintenance). On a lower level, work products are defined or
selected out of a predefined catalogue. The process models should distinguish
between mandatory and optional components.

Processes and tools can be diverse across projects and, sometimes, across sites.
Our experience drives us increasingly to standardizing tools across the enterprise
because it has scale effects (e.g., license cost, interface simplicity), but it also con-
siderably shortens the learning curve if engineers are moved to another project or if
a new team of engineers is hired at some place in the world.

Collaborative project management tools such as ActiveCollab' and World View
[8] offer a Web-based interface to manage project information for calendars and
milestone tracking. Such tools give managers an overview of project status at dif-
ferent detail levels, such as team member locations and contact information. IBM
LotusLive® provides an overview of ongoing project activities by using information
extracted from developers’ workspaces.

There are two open source platforms that are also used in project management,
they are GForge,® AS and WebAPSEE." The former is a platform that ties together
different toolsets such as task managers, document managers, forums, or mailing lists;

! http://www.activecollab.com

2 http://www.lotuslive.com/de/

* http://gforge.org/gf/

* http://sourceforge.net/projects/webapsee/

http://sourceforge.net/projects/webapsee/
http://gforge.org/gf/
http://www.lotuslive.com/de/
http://www.activecollab.com

Design and Modeling 99

the latter aims to provide automated support for software process management, pro-
viding a high level of flexibility for changes on dynamic and enacting process models.

REQUIREMENTS ENGINEERING

Major RE tools such as DOORS’ and IRgA® let multiple engineers use natural lan-
guage text to describe project use cases and requirements and to record dependencies
among and between them. These tools are expensive. As a result, companies often
start by developing their own environments based on Spreadsheets and databases.
However, such environments don’t scale up and they create lots of hidden cost.

The professional tools show their power in global and distributed settings in IT
and software projects. They help project teams to manage the requirements, to create
use cases, and to mitigate project risk by displaying the requirements that may be
affected by upstream or downstream changes of requirements. To be useful in global
settings, requirements engineering tools should provide a document-oriented, Word-
based interface with Web interfaces for users who need access to requirements
information without the need of local installations. They encourage collaboration
for geographically distributed teams through scalable Web interfaces, strong version-
ing support, and discussion threads.

DESIGN AND MODELING

Distributed design and modeling tools such as Objectif’” and IBM Rational Tau®
support virtual software-design meetings by capturing and storing all design-relevant
information, role definitions, and version control coordination. It includes playback
features to review a session once it has ended.

Prominent design and modeling tools, such as Gliffy’ and Creately'® support
multiple diagram types such as UML or Business Process Modeling Notation. They
also offer special features that simplify team communication and collaboration, such
as tools for commentaries, creating blogs, and even managing knowledge.
Furthermore, Gliffy can be integrated with the Jira distributed tracking system.

Model-based collaboration is what distinguishes collaborative software engi-
neering from more general collaboration activities that share only files and not
content [5]. Collaborative modeling tools such as Artisan Studio'', Rational Software
Modeler'?, and Visible Analyst'® help developers create formal or semiformal soft-

> http://www.ibm.com/software/awdtools/doors

7 http://www.microtool.de/objectif

8 http://www-01.ibm.com/software/awdtools/tau/

® http://www.visuresolutions.com

? http://www.gliffy.com

10 http://creately.com

' http://www.artisansoftwaretools.com

'2 http://www.ibm.com/software/awdtools/modeler/swmodeler
13 http://www.visible.com/Products/Analyst

http://www.artisansoftwaretools.com
http://creately.com
http://www.gliffy.com
http://www-01.ibm.com/software/awdtools/tau/
http://www.microtool.de/objectif
http://www.visuresolutions.com
http://www.ibm.com/software/awdtools/doors
http://www.visible.com/Products/Analyst
http://www.ibm.com/software/awdtools/modeler/swmodeler

100 Chapter 14 Tools and IT Infrastructure

ware artifacts, including Unified Modeling Language (UML) models and customized
software processes.

TEST AND VALIDATION

TestLink'* is a popular tool for managing the entire testing process. It has a Web-
based interface that, if you have a browser, is accessible everywhere. The tool
organizes test cases into test plans. Users can import and execute groups of test cases
by using one or more keywords that have been previously assigned by the users
to the test cases.

On the other hand, Selenium' is a tool suite to automate Web application testing
across many platforms. It includes an Integrated Development Environment (IDE)
for writing and running tests, a remote-control tool for controlling Web-browsers on
other computers, a Web-based quality-assurance tool, and an Eclipse plug-in to write
Selenium and Watir'® tests.

Finally, OpenSTA'” is a distributed software-testing architecture that can
perform scripted HTTP and HTTPS heavy-load tests with performance measure-
ments from Win32 platforms.

CONFIGURATION MANAGEMENT

Global software engineering and IT imply that there is no longer a global owner of
a specific work product across projects. Instead, many developers in different places
simultaneously share the responsibility of enhancing functionality within one
product. Often a distinct work product (or concretely, a file with source code) is
replicated as variants that are concurrently updated and frequently synchronized
to allow the centralized and global evolution of distinct functionality [Perry98,
Herbsleb99].

Effective tools and work environments are thus the glue to successful global
software development. Most commercial tools face problems when they are used in
sites around the globe. Most big vendors have articulated similar problems to those
that wo’ve faced. Almost no tool seamlessly foresees synchronizing and database
for backing up contents without disturbing engineers who are logged on 24 hours a
day, 7 days a week. Performance rapidly decreases when multi-site use is involved,
due to heterogeneous server and network infrastructures.

The more distributed the project, the greater the need for secure, remote, reposi-
tory and build management. Build tools such as Maven and CruiseControl let proj-
ects maintain remote repositories and create and schedule workflows. The workflows
facilitate continuous integration for executing scripts, compiling binaries, invoking

' http://testlink.sourceforge.net
% http://seleniumhg.org

' http://watir.com

' http://opensta.org

http://opensta.org
http://watir.com
http://seleniumhq.org
http://testlink.sourceforge.net

Configuration Management 101

test frameworks, deploying to production systems, and sending e-mail notifications
to developers. A Web-based dashboard shows the status of current and past builds.

Distributed software engineering needs systematic configuration management.
A version-control system lets team members share software artifacts in a controlled
manner. Subversion (SVN'®) is a popular open source version-control system that
facilitates distributed file sharing. SVN adopts a centralized architecture in which a
single central server hosts all project metadata. Developers use SVN clients to check
out a limited view of the data on their local machines.

Currently, several systems use distributed version-control systems that operate
in a peer-to-peer manner. Examples of distributed version-control systems include
Git," Mercurial,® and Darcs.?' Unlike centralized tools that let developers check out
a project from a distributed version-control system, the peer-to-peer systems provide
a complete clone of the project’s repository (called a fork) on local machines, not a
jJust a portion of it.

Trackers are used to manage issues (or “tickets”) such as defects, changes, or
requests for support. The tracking function centers on a database that all team
members can access through the Web.

Distributed trackers such as Jira® are a generalization of bug-tracking systems
such as Bugzilla,® originally developed by the Mozilla project. A recorded issue
includes an identifier, a description, and information about the author; it also defines
a life-cycle to help team members track issue resolutions.

Managing corrections is a good example to help illustrate the observed challenges and
solutions in global software engineering. Products are impacted by defects detected
anywhere and at any time. There is a high risk that the same defects may be occurring
again and again. The product line concept implies that feature roadmaps and deliveries
of both new and changed (or corrected) functionality must be aligned and synchronized.
Synchronization of deliveries, however, adds complexity to the development process.
Corrections cannot be easily copied from one code branch to the other due to their
impacts on ongoing development, such as new functionality with different local flavors
that have already been added. Thus, effective synchronization of the individual correc-
tions involves global visibility of all defects, impacts of defects, correction availability,
and evaluation of impacts of the corrections. Nobody is forced to use corrections. A
trade-off between stability and reliability is made before implementing a single change.

To facilitate easier communication of appropriate corrections, a worldwide
defect database is mandatory and must facilitate synchronization of different types

18 http://subversion.tigris.org
19 http://www.git-scm.com

2 http://mercurial.selenic.com
2! http://www.darcs.net

2 http://www.atlassian.com

2 http://www.bugzilla.org

http://www.atlassian.com
http://www.darcs.net
http://mercurial.selenic.com
http://www.git-scm.com
http://subversion.tigris.org
http://www.bugzilla.org

102 Chapter 14 Tools and IT Infrastructure

of dependency. Based on the detected failure and the originating fault, a list of files
in different projects should be pre-populated and will tell you which other variants
of a given file need to be corrected. Although this is rather simple with a parent and
variant tree on the macroscopic level, due to localized small changes on the code
procedure and database content level, careful manual analysis is requested. Those
variants (e.g., within customization projects) are then automatically triggered.
Depending on a trade-off analysis of failure risk and stability impacts, the developer
responsible for the specific customization would correct these defects.

This approach immediately helps to focus on major field problems and ensure
that, if applicable, they will be avoided in other markets. It, however, also shows
the cost of the applied product line roadmap. Too many variants, even if they are
maintained by groups of highly skilled engineers, create overheads. Obviously, vari-
ants need to be aligned to allow for better synchronization of contents (both new
functionality and corrections) while still preserving the desired specific functional
flavors necessary in a specific market.

COMMUNICATION AND SHARING

Communication tools are among the very basic needs for effective global teamwork.
Collaboration techniques must be able to handle time zone challenges and standard-
izing project and team management practices so that all global stakeholders will
benefit from increased efficiency. A lot of time is wasted in Global Software
Engineering and IT projects due to cumbersome set-up of videoconferences or
attempts to agree on an available time slot across a distributed group of engineers.
Therefore, a mix of synchronous and asynchronous communication needs to be
established.

Asynchronous communication tools include dedicated collaboration tools such
as interactive requirements engineering repositories, workflow management tools,
e-mail, blogs, mailing lists, newsgroups, Web forums, and knowledge bases such as
wikis.

Synchronous communication tools include telephony, chat, instant messaging,
video conferencing, and any type of online collaboration and meeting tools. Agree
upon a fixed communication window for all members of a global team. This could
be the same window across the company where everyone is available in case of
urgent issues that need to be reviewed by the team. Such fixed windows work easily
for two regions, such as Europe and Asia, or North America and Asia. It is more
difficult to find a solution for three regions, specifically, if one of those is the
American West Coast or Australia. A shared calendar is helpful for simple setup of
remote meetings because it saves you from lots of e-mails in which many people
are copied simply to read that somebody is unavailable due to a dentist appointment.
Assure both for your teleconferencing and videoconferencing that events can be
recorded and replayed. Experience has shown that team members who are not so
fluent in English will often like to hear it again—even if it is only to improve their
English proficiency.

Communication and Sharing 103

Desktop sharing is absolutely mandatory for any global engineering team. There
are numerous solutions that exist with the possibility of sharing computer screens
and setting up teleconferences in parallel. We strongly recommend embarking on
desktop videoconferencing via IP. It can be set up ad hoc when needed and has much
lower cost (with same quality, if there is a good VPN) compared to the classic vid-
eoconferencing. Assure that simple directory services are available so that people
can use videoconferences in ways that are similar to net-meeting and related tools.

WebEx* is the market leader for online meeting facilities. Both WebEx and
WorkSpace3D> provide a rich interface for synchronous and asynchronous collabo-
ration. They enable voice and video over IP communication while you view and edit
documents, desktop and application sharing, co-browsing and whiteboard drawing,
and meeting persistence for later replay.

The text-based eConference® is a lean tool that supports distributed teams
needing synchronous communication and structured-discussion services. Such tools
provide closed-group chat that is augmented by agendas, meeting minute-editing,
typing-awareness capabilities, and hand-raising panels to enable turn-based
discussions.

Office Communications Server (OCS) is an enterprise real-time conferencing
tool from Microsoft?’ that provides the infrastructure for enterprise instant messag-
ing, presence, file transfer, video calling, and structured conferences. It is available
within an organization, between organizations, and with external users on public
internet.

General communication tools (i.e., non-software engineering-specific) fall in
the category of groupware, together with tools for document sharing and review, as
well as concurrent editing and shared calendars. However, the term “groupware” is
now used less frequently in favor of preferred wordings such as “collaborative soft-
ware” or “social software.” Popular multifunction collaboration platforms are IBM
Lotus Notes/Domino®® and Microsoft SharePoint.”

Recently, Web 2.0 applications have become quite common in open source and
global software projects. They represent a valuable means to increase informal com-
munication among team members. Web 2.0 extends traditional collaborative soft-
ware by means of direct user contributions, rich interactions, and community
building. Some key Web 2.0 applications are blogs, such as WordPress;* microb-
logs, such as Twitter (twitter.com); wikis, such as the Portland Pattern Repository,’'
social networking sites, such as LinkedIn,” and collaborative tagging systems, such

* http://www.webex.com

» http://www.tixeo.com

% http://code.google.com/p/econference

7 http://www.microsoft.com/communicationsserver

2 http://www.ibm.com/software/lotus/notesanddomino
¥ http://www.microsoft.com/SharePoint

* wordpress.org

! ¢2.com/cgi/wiki

*2 www.linkedin.com

http://www.microsoft.com/SharePoint
http://www.ibm.com/software/lotus/notesanddomino
http://www.microsoft.com/communicationsserver
http://code.google.com/p/econference
http://www.tixeo.com
http://www.webex.com
http://www.linkedin.com
http://c2.com/cgi/wiki
http://wordpress.org

104 Chapter 14 Tools and IT Infrastructure

as Delicious.* Increasingly, wiki platforms emerge as a practical, economical option
for creating and maintaining group documentation.

COLLABORATIVE DEVELOPMENT ENVIRONMENTS

A Collaborative Development Environment (CDE) provides a project workspace
with a standardized tool set for global software teams. CDEs combine different tools,
and thus offer a frictionless development environment for outsourcing und offshor-
ing. Several CDEs are available as commercial products or open source initiatives,
and, increasingly, as online services hosted externally.

While traditional PDM and PLM/ALM tools interwork with many design and
manufacturing tools, they only recently started to consider specific software engi-
neering environments. Examples include Dassault Enovia MatrixOne,* Oracle
Agile,*” Siemens Teamcenter,* and Vector eASEE,* which interwork with dedicated
software engineering tools, such as IBM’s Synergy. More generic enterprise resource
management (ERM) would not sufficiently support software engineering on the
more specific workflows. CRM environments have recently integrated with defect
tracking tools, but more is needed to also support requirements engineering end to
end (e.g., a defect often results in a new requirement). Their scope is limited to
various front-end processes. However, all of the tools that have been mentioned
could be extended to facilitate interworking because they are event-driven.

CDEs are borrowing successful features that are typically available on social
network sites. For instance, Assembla®® notifies users of project-related events via
Twitter; GitHub® offers a Twitter-like approach to monitoring a project’s progress;
Rational Team Concert* borrows Delicious’s tagging feature, letting developers
assign free keywords to managed items.

CDEs are often unsuitable in companies because of legacy tools or environ-
ments that must be enhanced by specific collaboration functionalities. In these situ-
ations, developers can choose from collaboration tools that map to typical life-cycle
activities.

The need for workflow management support stems from the heterogeneity of
underlying engineering tools and detailed processes that overlap considerably such
as logon procedures, document management, and product data management.
Software engineering processes must integrate with interfacing business processes
from an end-to-end perspective. For instance, configuration management for soft-
ware artifacts belonging to a single product line and reused in a variety of products
must relate to the overall product data management (PDM). Software defect correc-

* delicious.com

3 www..matrixone.com

¥ www.oracle.com/agile/index.html

% www.siemens.com/teamcenter

37 www.vector.com/easee

3 www.assembla.com

% github.com

“ www.ibm.com/software/awdtools/rtc

http://www.ibm.com/software/awdtools/rtc
http://github.com
http://www.assembla.com
http://www.vector.com/easee
http://www.siemens.com/teamcenter
http://www.oracle.com/agile/index.html
http://www..matrixone.com
http://delicious.com

Knowledge Management 105

tions must relate to overall service request management as part of the customer
relationship management (CRM) solution.

Interworking with legacy and proprietary tools can be achieved by deploying
an object request broker to give to such tools an open interface. However, the trans-
actional interface between such tools often does not adequately support the fine-
grained integration of data, thus avoiding replication of data as much as possible.
For example, the product life-cycle view must include data from the PDM system,
software documentation system, the defect tracking system, the personnel database
(for the actors), the process assets library, and the authorized tools list, all in one
view. For that reason, Eclipse is increasingly used as a reference platform to integrate
existing (legacy or proprietary) tools with COTS tools.

KNOWLEDGE MANAGEMENT

One tool you won’t want to miss is knowledge management. Information and knowl-
edge must be effectively shared at a low retrieval cost. Demand for up-to-date and
synchronized information available to your customers, your engineers and all your
stakeholders is quickly increasing. Technical documentation in today’s advanced
global system providers is created from small modules that exist only once as a
single source maintained by the appropriate expert. No single line of customer docu-
mentation would be written just for that one matter because it creates inconsistency.
The best example of this is status reports in globally executed projects that need
many inputs from various places and sources. Having an online reporting tool which
integrates well with the project management, measurement, and various operational
databases helps a lot.

Expertise is not always readily available. Appropriate knowledge management
strategies and the respective tool-support help in finding the right answer to problems
instead of forcing you to guess. We found, in several studies, that with distance, the
tendency for ambiguity and guessing grows. Engineers are not the world’s best com-
municators and, as such, often shy away from simply calling a peer in another place
to clean up open issues. Instead, a day or more is wasted with figuring out the
purpose of a design decision or requirement. Make a rule that decisions are docu-
mented right away and moved to an efficient knowledge management system that
allows tagging and retrieval.

Knowledge centers are content management systems that let team members
share explicit knowledge on the Web. A knowledge center, such as the Eclipse help
system*' or KnowledgeTree,”” might contain internal documents, technical refer-
ences, standards, FAQs, and examples of the best practices. Twiki* is another
example of an enterprise collaboration web application platform used as a document
management system and a knowledge base. Knowledge centers can also include

! http://help.eclipse.org
* www ktdms.com
* http://twiki.org/

http://twiki.org/
http://www.ktdms.com
http://help.eclipse.org

106 Chapter 14 Tools and IT Infrastructure

Processes and tools

Standardized Highly specific
processes and processes
Project Factors tools and tools
System size small large
Legacy impacts greenfield big legacy
Architecture / components few, isolated, many, complex
standardized dependencies
Project organization Small, highly distributed,
few interactions virtual teams

Figure 14.3 Selection of processes and tools depends on many parameters.

sophisticated knowledge management activities, such as expert identification and
skills management, to acquire tacit knowledge in explicit forms.

There is no one answer to the question of which tools should be used for global
software engineering. Various project factors determine different approaches to
managing the involved software processes. Figure 14.3 details how different impact-
ing factors not only characterize the project complexity, and thus the management
challenges, but also how they determine the level of process integration and work-
flow management. Workflow management systems offer different perspectives to
allow, for instance, navigation based on work products, roles, or processes [Ebert03].

Process diversity and tailoring of processes happens on various levels. A small example
shows this approach. To successfully deliver a product with heterogeneous architecture
and a mixture of legacy components built in various languages, certain processes must
be aligned on the project level. This holds for project management, configuration man-
agement, and requirements engineering. Otherwise it would, for instance, be impossible
to trace customer requirements that might impact several components through the project
life-cycle. On the other hand, design processes and validation strategies are so close to
the individual components’ architecture and development paradigms that any standard
would fail as well as all standards for one design or programming methodology have
failed in the past. For efficiency reasons, the manager of that heterogeneous project or
product line surely would not like it if, within each small team, the work product tem-
plates or tool-based workflows were redefined. Many workflow systems for unified
processes fail on such low-level process change management. They do not allow integrat-
ing process needs on different levels into a hierarchy with guided selection.

Regardless of which tools are selected, they must interwork properly and thus
reduce any manual effort, such as status reports or consistency checks. Put open
interfaces, interworking capabilities, document exchange, transparent linking, and

Knowledge Management 107

navigating into documents (or other artifacts) high on your wish list for the tools
selection. Consider twice whether a legacy tool should be kept in times of growing
globalization and exploding demands on productivity and cost reduction.

A warning around homemade tools: They sound terrific at their inception and are
terrible at the installation phase. If you are not a toolmaker by products and busi-

@ ness model, do not pretend to be one when it comes to your engineering. Go out
to the Internet and evaluate the many available tools that easily span a prizing
frame of zero (no license cost) to four- or even five-digit cost per seat of high-end
design and test workbenches.

New collaboration tools and associated best practices are emerging almost daily.
Two major trends can be observed. First, basically all engineering tools will provide
collaboration features. These features help individual tools shared by a team, but
they are implemented differently on each tool and do not allow data integration
across tools. The second related trend is improved federation of engineering tools.
Eclipse will help initially, but ensuring efficiency, consistency, and information
security across multiple tools, teams, and companies will require a strong PLM/ALM
strategy. Tools such as Teamcenter and eASEE allow secure federation and collab-
orative working with integrated data backbones.

No current tool supports all the activities necessary for global software engi-
neering. Users must therefore prioritize their collaboration needs and the tools to
support them. Introducing collaboration technology should be a stepwise process,
starting with a collaboration platform to share applications. A consistent PLM/ALM
strategy can evolve parallel to this process, providing mechanisms to guide and align
technologies to the degree necessary. Such a strategy is valuable when working in
external networks with participants from different organizations. Within one
company, users should move to a CDE as part of their overall PLM/ALM.

Effective tool support for collaboration is a strategic initiative for any company
with distributed resources whether the strategy involves offshore development, out-
sourcing, or supplier networks. Software needs to be shared, and appropriate tool
support is the only way to do this efficiently, consistently, and securely.

Chapter 1 5

Practice: Collaborative

Development Environments

Fabio Calefato and Filippo Lanubile, University of
Bari

Summary: This chapter provides examples of practical experiences with tools from
different companies and shows how to best use tools in globally distributed software
projects. It highlights relevant themes and guidance from previous chapters in a
concrete project context. Even if one tool or the other becomes outdated over time,
this chapter still offers valuable insights toward how to do things in your own
company.

BACKGROUND

Adequate tool support is paramount to enable collaboration between team members
and to control the overall development process. This is especially true in global
software engineering because of distance [HerbslebO1]. Distance has an impact on
the three main forms of cooperation within a team [CarmelOl]: communication,
coordination, and control. Communication is the exchange of information, whether
formal or informal, between the members. It can occur in either planned or impromptu
interaction. Coordination is that act of orchestrating each task and organizational unit
so that they contribute to the overall objective. Control is the process of adhering to
goals, policies, standards, or quality levels that are set either formally (e.g., formal
meetings, plans, guidelines) or informally (e.g., team culture, peer pressure).

Distributed teams create overheads on communication, coordination, and control
mechanisms, especially for informal purposes.

Due to distance, people cannot coordinate and control just by visiting the other
team members. The absence of management-by-walking can result in coordination

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by

John Wiley & Sons, Inc.

109

110 Chapter 15 Practice: Collaborative Development Environments

and control issues such as misalignment and reworking. When the control and coor-
dination needs of distributed software teams rise, so does the load on all communica-
tion channels available. In fact, software projects have two complementary
communication needs. First, the more formal, official communications are used for
crucial tasks like updating project status, escalating project issues, and determining
who has responsibility for particular work products. Second, informal ‘corridor talk’
allows team members to keep a “peripheral awareness” of what is going on around
them, what other people are working on, what states the various parts of the project
are in, and many other essential pieces of background information that enable devel-
opers to work together efficiently. In colocated settings, communication is taken for
granted. As a result, its importance often goes unnoticed. When developers are not
located together, they have fewer opportunities for communication. There is empiri-
cal evidence that the frequency of communication drops off with the physical separa-
tion among developers’ sites [HerbslebO3]. Therefore, distance exacerbates
coordination and control problems directly or indirectly through its negative effects
on communication. In other words, communication disruption due to distance further
increases and aggravates coordination and control breakdowns [CarmelO1].

Distance can have an effect on three distinct dimensions: geographical, tempo-
ral, and socio-cultural. Geographical distance is a measure of the spatial dispersion
that occurs when team members are scattered across different sites. It can be opera-
tionalized as the cost or effort required to exchange visits from one site to another.
Temporal distance is a measure of the temporal dispersion that occurs when team
members wish to interact. It can be caused by time-zone differences or time shifting
work patterns (e.g., one site having a quick lunch break at noon and another site a
two-hour lunch time at 1 o’clock). Socio-cultural distance is a measure of the effort
required by team members to understand the organizational and national cultures
(e.g., norms, practices, values, spoken languages) in remote sites.

Cooperation difficulties due to distance can only be partially tackled using
appropriate techniques. For instance, coordination and control issues can be coun-
teracted by respectively adopting architectural frameworks that enable a better divi-
sion of labor between teams, and by choosing an agile development process.
However, global development would not be feasible without adequate tool support
[Ebert06]. In fact, developers need constant tool support during the whole software
life-cycle in order to model, design, and test software functionalities; manage a
myriad of interdependent artifacts; and communicate with each other. In the next
section, we present a number of tools and collaborative development environments
that are available today to enable effective global software development.

Tools provide a considerable help to software development activities. Software
engineering tools that assist distributed projects fall into the following categories:
software configuration management, bug and change tracking, build and release
management, modelers, knowledge centers, communication tools, and collaborative
development environments.

A software configuration management (SCM) tool includes the ability to manage
change in a controlled manner by checking components in and out of a repository,
the evolution of software products, storing multiple versions of components, and by

Background 111

producing specified versions on command. SCM tools also provide a good way to
share software artifacts with other team members in a controlled manner. Rather
than just using a directory to exchange files with other people, developers can use
an SCM tool to be sure that interdependent files are changed together and to control
who is allowed to make changes. Furthermore, SCM tools make it possible to save
messages about what changed and why. Open-source SCM tools have become indis-
pensable tools for coordinating the interaction of distributed developers. Until early
2000s, the world of SCM tools has been quite stale [O’Sullivan09]. Concurrent
Version System (CVS),! which was released in 1990, is the ancestor of the many
open source SCM tools available today, and, despite some severe drawbacks (e.g.,
limitations in renaming and deleting folders), it is still in wide use today, although
it is now used as a legacy system. Subversion (SVN)? came out a decade after CVS
with the goal of overcoming the negative aspects of CVS. Both SVN and CVS adopt
a centralized, client-server approach. A single central server hosts all project’s meta-
data. Developers see a limited view of the data from the central server on their local
machines. In early 2000s, however, a number of projects (e.g., Git,> Mercurial,* and
Darcs®) were started to develop distributed SCM tools that operate in a peer to peer
manner.

Bug and change tracking is centered around a database that is accessible through
a web-based interface by all team members. Other than an identifier and a descrip-
tion, a recorded bug includes information about who found it, the steps it will take
to reproduce it, who has been assigned to it, and in which releases the bug exists
and it has been fixed. Bug tracking systems, such as Bugzilla® and JIRA,” also define
a life-cycle for bugs to help team members track the resolution of defects. Trackers
are a generalization of bug tracking systems that include the management of other
issues such as feature requests, support requests, or patches.

Tracking bugs and other issues in a project is as important as code development. When
Mozilla organization first came online in 1998, one of the first products that was released
was Bugzilla, an open source bug system implemented to replace the in-house system
which was then in use at Netscape. Only upon creating the bug repository were the people
involved in the project able to move on to the development of the new browser. Since
the birth of Bugzilla, a bug is not actually a bug until it has been reported to the issue-
tracking system. In fact, it is a common scenario to forbid developers to commit any
piece of code that has no issue description attached. Today, issue tracking systems have
become so dependable that companies often also use it to assign and track administrative
tasks.

! http://www.nongnu.org/cvs/

2 http://subversion.tigris.org/

3 http://git-scm.com/

4 http://mercurial.selenic.com/wiki/

3 http://darcs.net/

¢ http://www.bugzilla.org/

7 http://www.atlassian.com/software/jira/

http://www.atlassian.com/software/jira/
http://www.bugzilla.org/
http://darcs.net/
http://mercurial.selenic.com/wiki/
http://git-scm.com/
http://subversion.tigris.org/
http://www.nongnu.org/cvs/

112 Chapter 15 Practice: Collaborative Development Environments

cce-wind d (44 mi ago) 5] Lotest Builds 2®
Build Time: 27 Nov 2007 09:51 GMT +08:00 Duration: 7 minutes 40 S4conds © 7 minstes ago b9
Build: budd 8

& 44 mnutes ago buid.8
Q) about 17 hours ago buld.?

Adtifacts Modifications BulldLog | Tests | Ervors and Warnings © about 17 hours 3g0

Modifications © 3bout 18 hours 3g0 buld.6
Sbestiriendchris [Chrs & Gao L) Fixed issue with queued inactive status. . s
{rev. 3847) i branches/cce/Crusecontrolreporting/ dashboard/jsunt/ tests/json_to_css_test.html © about 18 heurs ago buld

[rev. 3847] ol /ece/crusec ol/reporting/ webapp/javascripts/json_to_css.js & about 19 hours ago buld.4

& 1 day ago buld.3
O 1 day ago buld.2
& 8 days ago bukd.1

Figure 15.1 Project-build information within a dashboard.

Build and release management allows projects to create and schedule workflows
that execute build scripts, compile binaries, invoke test frameworks, deploy to pro-
duction systems, and send e-mail notifications to developers. Build and release
management tools can also provide a web-based dashboard to view the status of
current and past builds (Fig. 15.1). Build tools, such as CruiseControl® and its ances-
tor like the UNIX make utility, are essential tools to perform Continuous Integration
[Fowler06], and serve as an agile development practice which allows developers to
integrate daily, thus reducing integration problems.

The larger the project, the greater the need for automating the build and release
function.

Model-based collaboration is what distinguishes collaborative software engi-
neering from more general collaboration activities which only share files and not
content [Whitehead07]. Collaborative modeling tools such as Artisan Studio,’
Rational Software Modeler," and Visible Analyst' help developers to create formal
or semiformal software artifacts including visual UML modeling software artifacts
and customized software processes.

Product and process modeling encompass the core features of what was called
Computer Aided Software Engineering (CASE) from requirements engineering to
visual modeling of both software artifacts and customized software processes.
Collaboration in software development tends to be centered around the creation of
formal or semiformal software artifacts. According to [Whitehead07], model-based
collaboration is what distinguishes software engineering collaboration from more

8 http://cruisecontrol.sourceforge.net/

¢ http://www.artisansoftwaretools.com/products/

19 http://www-01.ibm.com/software/awdtools/modeler/swmodeler/
! http://www.visible.com/Products/Analyst/

http://www.visible.com/Products/Analyst/
http://www-01.ibm.com/software/awdtools/modeler/swmodeler/
http://www.artisansoftwaretools.com/products/
http://cruisecontrol.sourceforge.net/

Background 113

) Wain Page - FedoraProject - Mozilla Firefox

Ble Modfica Weudiza Cronobgla Sggnalbe Frumenti 1 debico.us

E--& B R o [0 s iedrammotect crghviian, Page =] [GED “
6o 2 Login /create account ~
fedora
i article discussion view source
WIKI Main Page
< Main Page
2 Events Visit http:/fedoraproject.org# to learn about or to download Fedora. The Fedora Project wiki is a place for end

users and developers to collaborate. You can find more information or add some yourself. Write access to the
‘wiki is limited to those who have Fedora accounts; however, its not hard to get one! You can join the wiki by the
following the instructions on the editing help page.

< Recent
changes
< Random page

Fedora common bugs -

— \J The Fedora common bugs page is useful for finding fixes to already known issues.

Home il

3 Gt Ecicca The Fedora Project

% Join Fedora .
RN Read an overview to find out what makes Fedora unique.

SUB-PROJECTS Download Fedora from the main Fedora project site.

* Ambastadors Find documentation# on Fedora or interact with the Fedora community. Report bugs or request enhancements.

? Artwork For excellent summaries of wha is happening in Fedora, look at our weekly news reports, To see how many
% Bug Zappers Fedora users are out there, look at our Statistics page.

< Documentation
TN The Fedora 9 Release Summary covers our most recent release.

+ Infrastructure

3 Internationalization The Release Schedule gives a timeline of the next release.

Conpletsto

[

Figure 15.2 Fedora Project documentation based on wiki.

general collaboration activities which lack the focus on using the models to create
shared meanings.

Knowledge centers are mostly document-driven and web-enabled which allows
team members to share explicit knowledge across a work unit. A knowledge center
includes technical references, standards, frequently asked questions (FAQs), and best
practices. Ther use of wiki software for collaborative web publishing has emerged
as a practical and economical option to consider for creating and maintaining group
documentation. Wikis are particularly valuable in distributed projects as global
teams may use them to organize, track, and publish their work [Louridas06]. Figure
15.2 shows the home page of the Fedora project wiki where both developers and
users may contribute and find information. Knowledge centers may also include
sophisticated knowledge management activities to acquire tacit knowledge in explicit
forms, such as expert identification and skills management [Rus02].

Communication tools increase productivity in global teams. Software engineers
have adopted a wide range of mainstream communication technologies for project
use in addition to, or replacement of, communicating face-to-face. Asynchronous
communication tools include e-mail, mailing lists, newsgroups, web forums, and
blogs; synchronous tools include the classic telephone and conference calls, chat,
instant messaging, voice over IP, and video conferencing. E-mail is the most widely
used and successful collaborative application. Thanks to its flexibility and ease of
use, e-mail can support conversations while also operating as a task/contact manager.
However, one of the drawbacks of e-mail is that, due to its success, people tend to
use it for a variety of purposes, often in a quasi-synchronous manner. In addition,
e-mail is ‘socially blind’ [Erickson00] in that it does not enable users to signal their
availability. Before becoming an indispensable tool ubiquitous in every workplace,

114 Chapter 15 Practice: Collaborative Development Environments

e-mail was initially used by the research community niche and was actually opposed
by management. Likewise, chat and instant messaging have followed a similar
evolution path. At first mostly used by young people for exchanging ‘social’ mes-
sages, these synchronous tools have spread more and more in the workplace. While
e-mail is socially blind, these tools, in contrast, provide a lightweight means to
ascertain availability of remote team members and contact them in a timely manner.

Communication in distributed development can be supported by providing stake-
holders with a variety of different options. Do not expect one tool to fit all. The
involvement of many sites means there are many different cultures, habits, and,
most of all, language skills.

General communication tools (i.e., non-software engineering-specific) fall in
the category of ‘groupware’ which refers to the class of applications that support
groups of people engaged in performing a common task [Ellis91]. However, nowa-
days the term “groupware” is disused in favor of preferred wordings such as “col-
laborative software,” “social software, ™ or “Web 2.0”” [Murugesan07], all of which
also include systems used outside the workplace (e.g., blogs, wikis, instant
messaging).

Interoperability and a familiar user interface provide strong motivations to
integrate task-specific solutions and generic groupware into collaborative develop-
ment environments (CDE). A CDE provides a project workspace with a standardized
toolset to be used by the global software team. The earliest CDE was developed
within open source software (OSS) projects because OSS projects, from the begin-
ning, have been composed of dispersed individuals. Today, a number of CDE are
available as commercial products, open source initiatives, or prototypes to enable
distributed software development.

With over 230,000 hosted projects and two million registered users, SourceForge
is the most popular CDE at the time of this book’s publication. The original mission
of SourceForge was to enrich the open source community by providing a centralized
place for developers to control and manage OSS projects. SourceForge offers a
variety of free services: web interface for project administration, space for web
content and scripts, trackers (for reporting bugs, submitting support requests or
patches to review, and posting feature requests), mailing lists and discussion forums,
download notification of new releases, shell functions and compile farm, and sup-
ports CVS, Subversion, Git, Mercurial, and Bazaar"® configuration management
tools. Figure 15.3 shows the personal page of the author, which provides access to
a standard toolset which can be used on every project. The commercial versions for
corporate use, called SourceForge Enterprise Edition and CollabNet Enterprise

2 http://sourceforge.net/
'3 http://bazaar.canonical .com/

http://bazaar.canonical.com/
http://sourceforge.net/

Background 115

& - - @ @ (O Mpsoaceuge setims 2= »] [l .
SOURCEF(C RGE e
Welcersa_lanubile Log out - v remember yes My Favortes]
ohet)
e

Projects = Services my sF.net - TR

SF nat > My Page > Summary

Personal Page for Filippo Lanubile

@ Printable version

My Personal Page | Diary & Notes | Account Options | My Projects | Purchased | | toring | Mailings | | ipth | Tasks |
Tracker

The My SF net pages, accessitle using the navbar above, provide direct access to a variety of informat on related to your account. As of 2005-03, Tracker {Bug Reports
Support Reguests, Feature Requests, eic.) end Task data have been moved to separate pages.

My Projects Buy and Sell Services on SourceForge.net

n i SourceForge.net s Inroducing 8 new feature that will ket you buy cf sell services
8 815. Intemet Based lnspection System for Open Source projects right from the site. Get an insider's kook at this exciting
new development. Learn more »
To remove yourself from a progact, cick the Trash Canicon. Admins must have
their project admin Bag dropped first My Bookmarks
Sea afullstof your Active, Pending, Rejectad and Delatad projects
You currently o not have any bookmarks saved
How can | join an easting project?

Add a custom bockimark

3

Reglsier a new proledt
Congletato

Figure 15.3 Personal SourceForge portal.

Edition, add features for tracking, measuring, and reporting on software project
activities.

Distributed SCM gained popularity in 2002 when Linus Torvalds made the controversial
decision to use BitKeeper, a proprietary, closed source tool by BitMover Inc., for sup-
porting the Linux kernel development, the pinnacle of free open source software. In
2005, when BitMover announced that it would stop providing a version of the tool that
was free of charge to the community, Torvalds decided to start the development of a new
distributed SCM, which later became Git. The main reason for starting a new SCM
development project was that none of the available free systems met Torvalds’ needs,
particularly the requirements on performance and safeguards against data corruption,
either accidental or malicious.

GForge' is a fork of the SourceForge.net project. It has been downloaded and
configured as in-house server by many industrial and academic organizations (see
Fig. 15.4). Like SourceForge, it also offers a commercial version, called GForge
Advanced Server. It supports CVS, Subversion, and Perforce® configuration man-
agement tools. A notable feature of GForge is its integration with the CruiseControl
build tool.

Ohloh' is an online community platform built upon a web services suite. Its
aim is to map the status of the OSS development world by retrieving data from

! http://gforge.org/projects/gforge/
5 http://www.perforce.com/
' http://www.ohloh.net/

http://www.ohloh.net/
http://www.perforce.com/
http://gforge.org/projects/gforge/

@-»-@

116 Chapter 15 Practice: Collaborative Development Environments

) Collab CDE: Benvenuto - Mozilla Firefox

Modfics viuskza Cronkogs Sponelbel Srumenti 2 delico.us

/J} E 1A | L Mgiifede.dounda R}

> Collab CDE

SoftwareiGruppo ¥R]

Collaborative Development Environment

Collab CDE e' I'ambiente di sviluppo collaborativo (Collaborative Development Environment)
che ospita | progetti software gestiti da personale del COLLAB, il Isboratorio di ricerca per |a
collaborazione in rete del Dipartimento di Informatica dell'Universita' degli Studi di Bari.

Statistiche Collab CDE
Progetti ospitati: 25
Utent! registrati: 81

Progetti piti scaricati
Collab CDE offre un accesso web ai principali strumenti collaborativi utilizzati nei progetti (779) Livelabber
software open source (541) JabberPresence

(224) Eppp - GUI front-end to pppd for E17

+ Forum
 Tracker per la gestione dei bug e delle richieste di feature Eg% Egg;n&e;no@
+ Gestione attivita' mediante To Do list (55) EPBCS
+ Pubblicazione web della documentazione 33) COLIBRAR!
« Sondaggi (25) JBSkype
+ Notizie (18) PDF-Via-Skype
+ Source code management (CVS o Subversion) (10 IBIS
+ Upload/download dei release file [Altri]
Per partecipare Utenti pits valutati
Statistiche non disponibili
Collab CDE si rivolge principalmente alle seguenti categorie di utenti/sviluppatori: Piu1 attivi questa settimana

» studenti dei corsi di Sistemi per |a Collaborazione in Rete e di Ambienti 3D interattivi E ég%g:‘;mﬁ;mﬁr e
(33.;

+ tesisti dei docenti del Collab

» personale aziendale o liberi professionisti interessati a progetti del Collab SHEDEER [Altri]

+ dottorandi di ricerca del Collaborative Development Group .. x. =
Recently Registered Projects

(04/15) Ubimail towards JME
042788 Uibioaail k.

Per partecipare attivamente, dovete registrarvi come nuovo utente, accedere come utente
|__reaistrato e scealiere un orogetto di vostro interesse. Se non lo trovate. createlo vol.
Completato

[

Figure 15.4 A GForge-based CDE.

public CDEs (Fig. 15.5). As such, Ohloh provides statistics about a project’s longev-
ity, licenses, and software measurements, such as source lines of code and commit
statistics, so as to inform about the amount of activity for each project. It also allows
for evaluation of trend popularity of specific programming languages through global
statistics per language measures. Contributor statistics are also available with the
aim of measuring developers’ personal experiences on the basis of commit statistics
and mutual ratings (in form of “kudos” received from other developers in the com-
munity). As of January 2010, Ohloh counts over 440,000 members and lists over
430,000 projects.

Trac'” is a CDE that combines an integrated wiki, an issue tracking system, and
a front-end interface to SCM tools, usually Subversion, although it supports a
number of other configuration management tools through plug-ins. Also,
CruiseControl can be integrated via plug-ins to support source code building. Project
overview and progress tracking are allowed by setting a roadmap of milestones
which include a set of so-called tickets (i.e., tasks, feature requests, bug reports, and
support issues) as well as by viewing the timeline of changes. Trac also allows team
members to be notified about project events and ticket changes through e-mail mes-
sages and RSS feeds. Figure 15.6 shows a screenshot of a project with active tickets
grouped by milestone and colored to indicate different priorities.

Google Code'® is a Google application that offers a project hosting service with
revision control (only SVN and Mercurial are supported), issue tracking, a wiki for
documentation, and a file download features (Fig. 15.7). Google code service is free

' http://trac.edgewall.org/
'® http://code.google.com/

http://code.google.com/
http://trac.edgewall.org/

Background 117

[Mozilta Firefox - Ohloh
€ 9> C N % nttp//www.ohlohnet/p/firefox/analyses/latest > @M DB~ £~
Home People Projects Forums Tools Login Register Q -
Mozilla Firefox
GENERAL —
Summary Licenses g Languages g
Journal Entries
Reviews Ohloh searches the source code for individual license Ohloh analyzes the project source code and
Links declarations. These licenses can differ from the project’s determines the language of each line of code,
s official license. excluding comments and blanks.
Managers
Widgets JJavaScript 57%
DEVELOPMENT [s
Code Analysis css 19%
Contridutors I XML 2%
Comnmits =
Enlistments Jother 1%
EDIT Lines of Code g
Permissions
History
m blanks mcomments mcode
200,000
150,000
100,000
50,000
http://www.ohloh.net/languages/6 Jan01 Jan02 Jan03 JanO4 Jan05 Jan06 Jan07 Jan08 Jan09 L

Figure 15.5 Ohloh’s statistics non Mozilla Firefox code base.

Ticket Summary Component version Type owner stotus Croated

249 Implemented Multichat editor core-ul enhancement sleasio_angelini assigned 04/12/08
#30 Implement agenda core-ul 1.0 task alessio_angelini assigned 04/12/08
#4 A conference can be called core-ui 1.0 user-story alessio_angelini assigned 12/24/07
26 A p:('ncpent can be given or removed the rights to core 1.0 user-story pasquale_fersini assigned 12/25/07

spe

®8 A participant may send at conference time user-story luca_bacco accepted 12/25/07
#10 An invitation for a conference call has been recelved user-story accepted 12/25/07

#14 A confererce caller can grent or refuse RFS
220 Implement the pending invitations

assigned 12/25/07

#84 New confarence participant event core 5/26/08

#41 MVP Corwert: Create an [rwitationManager to handle i ntmessenger-ui 1.0 pasquele_fersini accepted 04/03/08
the invitations

#51 Create a base testcase class for Integration tests of dev-support 1.0 task merio_scalas accepted 04/12/08
econference

#58 Fix order among toolbars core-ul jefect pasquale_fersinl new 04/17/08

Milestone M4

Ticket Summary Componant Version Type Ownor Status Croated

#9 A caller may grant speech rights as he wishes core 1.0 user-story pasquele_fersini_assigned 12/25/07

#12 A caller may remove speech rights as he wishes core 1.0 user-story pasquele_fersini assigned 12/25/07

#15 A caller choose the scibe whiteboard 1.0 user-story pasquale_fersini assigned 12/25/07

#16 The soribe updates the whitebosrd " 1.0 Y pasquale_fersini new 12/25/07

#62 Implement automatic updating Core 1.0 enhancement ew 04/18/08

#70 Implement the UserManager 1.0 tarsk ew 04/23/08

#65 Creation of non-persistent chatroom in the core-ui defect alessio_angelini new 04/20/08
ConfarencaWizard a

Concetato ch

Figure 15.6 Active tickets in Trac grouped by milestone.

118 Chapter 15 Practice: Collaborative Development Environments

#§ econference - Project Ho...
€« C # ¢ hitpy//code.google.com/p/econference/ » @M DO~ £~
| My favorites (v] | Profile | Sign out *

econference i
A network-aware Rich Client Application created for enabling ad-hoc
workgroups fo collaborate
Project hosting will be READ-ONLY Tuesday. Oct. 27 at 11am PDT due to brief network maintenance.
Project Home Downloads Wiki Issues Source -
Summary | Updates | People
eConference 3 G i paoiect
Resources Code license: MIT License
How to build eConference 3 Labels: XMPP, RCP, conferencing, IM
How to use eConference 3
Related Projects Feeds: Project foeds
EAQ. Project owners: People details
Problem lefato.uniba,

lanubile,
eConference is a text-conferencing tool that supports synchronous, structured
d

cor ication. eConf is designed to date the needs of a Project committers:
workshop without becoming an unconstrained, on-line chat discussion oo domens
digiorgio domenico,

The tool is based on the XMPP pratocol, an IETF standard for instant messaging antogrim2
and presence awareness. You can setup your own XMPP server installation within

your company intranet, or exploit the free network of XMPP servers federation.

Therefore, eConference is fully apt to support ad hoc distributed teams that need to collaborate remotely.

Ad hoc teams have been studied since 1958 and over the last decades as a factor that partially accounts for the different results obtained
between laboratory studies, where randomly bled groups of individuals are usually employed, and field studies, where established
groups are utilized instead. The usual distinction made is between ad-hoc and established teams. The two factors that characterize these
groups are history and duration. History refers to the length of time a group has been formed (i.e., number of prior meetings), whereas

Figure 15.7 An example of project summary page in Google Code.

for all OSS projects that are licensed under one of the following nine licenses:
Apache, Artistic, BSD, GPLv2, GPLv3, LGPL, MIT, MPL, and EPL. The site also
limits the maximum number of projects that a single developer can create.

Assembla" is yet another CDE service for both open source and commercial
software (Fig. 15.8). Other than offering the most common features of a typical
CDE, Assembla distinguishes itself from other environments for a few noticeable
aspects, namely, the chance to choose between SVN, Git, and Mercurial for software
configuration management. The notification of changes also available via Twitter as
well as the support offered to teams adopting an agile development process for
running Scrum meetings [Schwaber01].

Jazz [Frost07] is an extensible platform which leverages the Eclipse notion of
plug-ins to build specific CDE products like the IBM Rational Team Concert® (Fig.
15.9). The present version has a wide-ranging scope, but in the former version of
Jazz [Cheng04, HupferO4] the goal was to integrate synchronous communication
and reciprocal awareness of coding tasks into the Eclipse IDE. The development of
Jazz has been inspired by the Booch and Brown’s vision of a “frictionless surface”
for development [Booch03] which was motivated by the observation that much of

1% http://www.assembla.com/
» http://www-01.ibm.com/software/awdtools/rtc/

http://www-01.ibm.com/software/awdtools/rtc/
http://www.assembla.com/

Clojure

n

Dashboard | Wiki Stream | Chat | GitHub | Files | Twitter

Support | Tickets | Milestones

Tickets Filters Search Burndown Metrics Agile Planner

Filter [Active by Milestone 2] El or#| Go»
Active by Milestone 2) ReportRss Feed
Ho Milestone
Summary Milestone Assigned To Status Approval
195 Documentation: Where are the docs for New
clojure.test, clojure.walk, etc?
file returns "NO_SQURCE_PATH", but the
196 New

doc says it should be nil

j -with-| ?
g4 Clolureestthrown-with-msg? uses re-match, e
should use re-find

for macro does not allow :let clause in first

207 New
position
Next Release
Summary Milestone Assigned To Status ~ Approval
30 GClssue 26: agent error queue Next Release Chouser Test Ok
79 GClssue 76: adding sorted-set-by Next Release Chas Emerick Test
91 GClssue 87: *-seq should return seg/nil Next Release drewr Test
120 GClssue 116: partition with pad Next Release Steve Gilardi Test
135 zipper: children does not check node type Next Release Test Ok
s Enhancement: give meaningful names to 2 il -

Figure 15.8 Active tickets in Assembla grouped by milestone.

JazzS01S6Ede)azzSOI76EdE JazzSO181Navigate JazzzllBlSearch JazzSOlSdProject JazzSOI0SRUN JazzS205Window JazzSO2ldHel

Zimv iE-0 @ Q- PG £ | B Jszz21222wo...

8 Jazat617 s dan E‘guzzozoe' = O[3 2unt Project % Silm

a22159163a2215914Al Team Areas (1 of | Team Areas selaci :

o - | B D T L bR el W Jazz15100 Project Area ~ & [saz21517958

B¥- e @

& (10 Jaza16171Repostory Connections [ourie Project 2a:2150995how n Tesn Orqanization Jazz151040pen Web Ul For Project
£ aoMINDlccathost A

8 ~ Jazz15105Details ~ Jazz15115Process Descrip

g Ja2215141Suminary he
e SBuids 0 based on th o Echpse Way Process The process
S5 20081 5Bt b A Team Concert area Junik project Eibse Developmen Team, The 1

Jazz15140Description

Reration-baced process waith a fo
@ [, Jazz16672Reports
. & Eash This example project area ibustrates the use of wiork iems, SCM, bulds and other Team delvery of ware,
2 79 JEEEEOh i [Concert companents in & profect...
S 175 Jsz209816My Repository Workspaces + Jazz15119Process Iteratio
@ [DetaWarehouseSyncWorkspace It exemplary shows project work on the naxt JUnk release 4.4,

&3 Jazz14428My Team Areas

% Ja2:22164Work Item History
({9 Jazzzz166Feeds

(& Ja2222167F avortes

~ Jazz15110Members
Jazz15111Roles determine & user’s permissions as wel as any precondkions and follow-up actions

that are run For project and team operations. The roles assignments below are also valid in all the
memm'sm-nnnuuss:wfwadmm,almnsmmmmqmm‘ﬁw

32215087 Name Ja2215088Process Roles Jazz15134Add. .

O Bill Cassaveli teamiead

Ja2215135Create...
. : = -
Jazz15101Overview onfigura... onfigura... | Jazz21 270Work Item Categor...
Bl Jazzz2115Work ems 52 [Jazz22116Tag Cloud | (2 Jazz51: & Advis
Jazz21 6510 results to display Ep~ & - s H i

Jaz221674You may choose one of the Work Item queries below to populate this view.
More Work Item queries are available from the Work Items section of the Team Artfacts view.

1a2221671)522216750pen sssioned to me (XUnk Project)
da2221671 2022216 76Recently created (Uit Project)

Lﬂ;' D me < 7 Jazz21518<No Current Work>

Figure 15.9 A screenshot of the Jazz client Rational Team Concert.

120 Chapter 15 Practice: Collaborative Development Environments

the developers’ effort is wasted in switching back and forth between different appli-
cations to communicate and work together. According to this vision, collaborative
features should be available as components that extend core applications (e.g., the
IDE), thus increasing the users’ comfort and productivity. Jazz uses a proprietary
source code management solution, which can also be replaced by other common
SCM tools (e.g., SVN and Git). The Jazz client is a rich client application, called
Rational Team Concert (see Fig. 15.9), which is built upon the Eclipse RCP platform.
Aside from the development-specific features, Jazz also offers a built-in RSS reader
and integrates with Lotus Sametime and Google Talk instant messaging networks.
Jazz repositories can also be accessed using a browser, thanks to the Jazz Rest API,
which exposes and makes accessible all the core services from the Web.

GitHub*' is a CDE service that describes itself as a “social network for program-
mers” (Fig. 15.10). Like the other CDEs mentioned before, GitHub hosting service
only offers Git as source code management to both open source and commercial
software projects. However, GitHub also aims to foster developers’ collaboration by
letting them fork projects through Git, send and pull requests, and monitor develop-
ment through a twitter-like, “follow-this-project” approach.

git rails's rails at master - G

€ > C & v hup

/github.com/rails/rails @M DO~ k-

github N

Home Pricing and Signup Explore GitHub Blog Login

Source Commits Network (748) Downloads (59
master all branches all tags

rails / rails (étork) (@ watch) (& download) (a4366) (A 746) @ |g
D Ruby on Rails

tp://rubyonrails.org

Clone URL: git:/github.com/rails/rails.git [

Remove old per-component bundled environments first
. jeremy

rails /

.gitignore October 21, 2009 Have all the tests running off a single Gemfile [carlhuda]

4 days ago Use rails/rack-mount [jeremy]

September 01, 2009 Add rake gemspec and gemspecs to the repo [wycats]
October 21, 2009 Have all the tests running off a single Gemfile [carlhuda]
about 6 hours ago Clean up flash a bit [3

5 days ago Fix error_messages_for when instance variable n... [José Valim]

< [m | b

Figure 15.10 Main page of Ruby on Rails project in GitHub.

2! http://github.com/

http://github.com/

Take-Away Tips 121

Finally, to conclude this section, we mention some other noticeable CDEs, such
as Launchpad,” which is known for hosting the Ubuntu project; GNU Savannah,*
the central point for the development of most GNU software; Tigris,>* which is a
CDE specialized on hosting open source software engineering tools; and CodePlex,”
Microsoft’s recent take on collaborative open source development.

Web 2.0 extends traditional collaborative software by means of direct user
contribution, rich interaction, and community building. Some key Web 2.0 applica-
tions are blogs, microblogs, wikis, social networking sites, and collaborative tagging
systems. The use of Web 2.0 applications has become quite common in open source
and global software projects as they represent a valuable means to increase the
amount of informal communication exchanged between team members. For example,
wiki platforms, such as Confluence,” have emerged as a practical and economical
option to consider for creating and maintaining group documentation [Louridas06].

RESULTS

Although all the products reviewed in this chapter are successful and effectively
adopted by many distributed development teams, companies today are relying more
and more on collaborative development environments. Capgemini, a multinational
consultant and outsourcing company, has managed to successfully introduce the use
of CollabNet, the enterprise version of SourceForge, by starting with a few pilot
projects which focused on a subset of the most needed CDE features. CollabNet was
gradually spread to the various seats of Capgemini. Deutsche Bank has also reported
to have successfully adopted the CollabNet CDE thanks to the ability to collect all
the metrics necessary to quickly target specific wastes in the project management
and apply rapid corrections. At InfoSupport, a Dutch-based consultant company, the
adoption of the Jazz CDE has significantly reduced maintenance costs and time-to-
market. First, rather than spending resources in trying to make several successful
tools coexist, the adoption of Jazz ensured an integrated set of tools with a coordi-
nated release lifecycle and no risks of present and future reciprocal incompatibilities.
Second, the availability of a web-based thin client of Jazz allowed customers’
InfoSupport to access relevant information within the CDE.

TAKE-AWAY TIPS

In this chapter we presented a number of tools and collaborative development environ-
ments thatare available to supportdistributed teams. As a general guidance, we can draw
afew majorlessons that can prevent GSE/outsourcing efforts from falling to pieces.

2 https://launchpad.net/
 http://savannah.gnu.org/

* http://www.tigris.org/

» http://www.codeplex.com/

% http://www.atlassian.com/software/confluence/

http://www.atlassian.com/software/confluence/
http://www.codeplex.com/
http://www.tigris.org/
http://savannah.gnu.org/
http://https://launchpad.net/

122 Chapter 15 Practice: Collaborative Development Environments

Two aspects that drive the successful adoption of an issue tracking system are
ease of use and extensibility. On the one hand, a polished and intuitive user interface
lowers the entry level of expertise, thus allowing the tool to be opened to the cus-
tomers as well. On the other hand, choosing products that offer extension API allows
companies to customize tools to meet their corporate standards, for instance, in terms
of security (e.g., single sign-on integration) or culture (e.g., polling to prioritize new
features).

Wikis have mostly found their way in distributed projects as document repositories and
online help systems. Successful adoption of an enterprise wiki needs strong support for
file uploading and WYSIWYG editing features. In fact, on the one hand, in wikis people
found an easier way to share documents in a central place through the web browser rather
than using e-mail or storing them in a network folder. On the other hand, wikis have
dramatically reduced the webmaster bottleneck, and the related costs, by reducing the
expertise needed to update web pages, thus getting more people involved in page editing.

The idea of adopting no SCM in a distributed project is out of question. We
reviewed the mainstream SCM tools, which can be broadly classified as centralized
and distributed, depending on whether they need a central repository or not. Unlike
centralized SCM tools, when developers check out a project from a distributed revi-
sion control system their local machines contain a complete clone of all project’s
repository (called a fork), not a just a portion of it. The major difference between a
centralized and a distributed SCM tool is that, with the former, committing a change
also implicitly means publishing it onto the central repository. Conversely, with a
distributed tool, commit and publish are decoupled because a developer, after com-
mitting a change to the local repository, still has to explicitly decide when to share
it with others. In general, distributed SCM tools are preferred when developers need
to travel often. Therefore, companies should select an SCM that reflects the degree
of distribution of the project to manage. Highly distributed projects, involving three
or four remote sites or more, definitely benefit from using distributed SCM. In addi-
tion, since distributed SCM tools have been designed with the purpose of making
repositories merge a routine operation, they are generally much more performing
than centralized counterparts at computing diffs and applying patches. Such differ-
ences in performance increase as the number of files in a repository reaches tens of
thousands or more. Therefore, the adoption of distributed SCM tools is highly rec-
ommended for managing very large projects.

Because they are essential to enable distributed development, SCM tools were
the first to be integrated within CDE products. CDEs successfully combine most of
the technologies mentioned earlier in one place (e.g., issue trackers, communication,
and knowledge management tools). They thus provide a frictionless surface in
development environments with the goal of increasing the developers’ comfort and
productivity. CDEs provide developers with awareness notifications via feeds or
e-mails about the changes occurred to artifacts (e.g., documents being shared or

Take-Away Tips 123

modified), workspace (e.g., event notifications in case of build failures, new
commits), and team (e.g., coworkers’ profiles, blogs, activities, bookmarks, wikis,
and files). By aggregating this information in one place, CDEs provide an overall
group awareness to developers who have few or no chances to meet. They are useful
for speeding up the establishment of organizational values, attitudes, and trust-based
inter-personal connections, thus facilitating communication as well as the overall
distributed software development process [Calefato09]. Although at first glance
enterprise CDEs might be discarded due to high license costs, companies should not
overlook the hidden costs due to the effort of integrating several pieces of free
software, extending them to meet their corporate standards, and contacting different
tech-support teams.

Finally, the area in which most of the CDE platforms need improvement is in
the integration of build tools (only available in GForge, Trac, RTC, and Codeplex)
and modeling tools (only available in Trac).

Part 111

Management

Chapter 16

Life-Cycle Management

Summary: Software development involves profound technological knowledge,
teamwork, processes, methods, and tools. To reduce complexity, it looks just as
rational to put all engineers in one location, share the objectives, agree on one
process and technology to apply, and let the project run. Reality, especially in times of
global development of solutions with lots of different players, components, interfaces,
and anything else that could possibly increase complexity, is different. This is where
product life-cycle management enters the picture. It assures that one product life-cycle
is defined, agreed upon, and consistently implemented in order to have consistent
interfaces, agreed roles and responsibilities, defined work products, and thus, a
possibility to share and collaborate in a global dimension.

Product life-cycle management (PLM) and application life-cycle management
(ALM) both ease collaboration of distributed teams because processes and rules can
be relied upon and must not be reinvented for each task [Ebert03]. Training materials
can be developed and shared. This is something which seasoned practitioners and
managers, as well as young engineers—perhaps in different parts of the world or in
different companies—can rely upon.

As an example, let’s look at the development of Internet information systems.
Requirements elicitation of such web-based systems shows differences to more
conventional approaches as described earlier in this chapter. Often, requirements for
web-based information systems are “created from scratch” by developers themselves
rather than being discovered through the normal process of identifying system
stakeholders and gathering their requirements. Ad hoc elicitation during develop-
ment has life-cycle impacts. Evolutionary life-cycles dominate and are often used
in an explorative approach. The development cycle for a web-enabled application is
short, that is, only a few months and highly iterative, which leaves very little time
for any formal requirements gathering and their consolidation. In such a compressed
timeframe, adaptations of web applications to different geographical locations, cul-
tures, or varying knowledge and background (i.e., skill level) of prospective users,

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

127

128 Chapter 16 Life-Cycle Management

are done by explorative development. Internet information systems create prototypes
of a running solution which is a simplified executable for exploring more require-
ments or constraints. They do this based on explorative product life-cycles.. Often,
such an iterative approach without a full view on architectural impacts and business
rules to govern future usage initially yields inadequate quality and performance.
Other development cycles to improve quality should therefore be considered

Effective collaboration in a global context means that the different functions of
the enterprise plus potential external partners (e.g., outsource manufacturing) need
to agree on processes, tools, and practices. They need to apply common access to
knowledge, performance measurements, and decision-making protocols. They need
to share information, communication, and underlying resources. The overarching
process guidance comes from gate reviews in the product life-cycle, which explains
the slogan of product life-cycle management.

Many standards have been set up over the last two decades to facilitate product
life-cycle management. Life-cycle processes are currently driving the underlying
specific standards. ISO 15288 summarizes the system life-cycle processes, while
ISO 12207 is the standard for software life-cycle processes. Both ISO and IEEE
currently work diligently to align underlying process standards with these life-cycle
standards. From an overall process viewpoint, formal approaches to guarantee
quality products have lead to international guidelines (e.g., [ISO 9001) and currently
established methods to assess the product/solution engineering processes of suppli-
ers (e.g., ISO 15504, SEI CMMLI, ITIL, COBIT). The related systems engineering
process is described in IEEE 1220.

Practitioners do not look for heavy process documentation, but rather for process
support that describes exactly what they have to do, at the moment they have to do
it. Modular process elements must be combined according to a specific role or work
product to be delivered. Still, the need for an organizational process, as described
by CMMI maturity level 3 [SEIIl1], is strongly emphasized and reinforced. We
generally recommend not embarking on global software development if the impacted
organizations are not at least on maturity level 3 and have defined life-cycle pro-
cesses (which are requested when operating at maturity level 3).

Global development, in many cases, exhibits supplier-client relationships, even
if the supplier is part of the home organization. An example of this is software centers
in different parts of the world that contribute to product development with shared
or split responsibilities. Companies such as SAP, IBM, or Alcatel-Lucent have these
models in place and manage internal suppliers following defined processes and a
standardized product life-cycle [Ebert07a, Zencke04, Forrester04]. The product life-
cycle with its defined phases is key for (internal or external) supplier agreement and
planning. Figure 16.1 shows a simplified product life-cycle and the different needs
per phase from a supplier/contributor and contractor/owner perspective.

The product life-cycle must be mandatory for all projects. This implies that it
is sufficiently agile to handle different types of projects. Standardized tailoring of
the life-cycle to different project types with predefined templates or intranet web
pages simplifies usage and reduces overheads. Its mandatory elements must be
explicit and auditable. Some online workflow support facilitates ease of implementa-

Life-Cycle Management 129
Life-cycle: planning development maintenance end of life
strategy, specification, contract, engineering, dgperations, service, phase-out
Activities: market analysis, Activities: Activities: deployment, version
requirements, make/buy/reuse engineering, and variant handling (product
decision, supplier requests, project tracking line management), change

component and supplier evaluation, and oversight,
contract and SLA negotiations and quality assu-
decision, process and tools tailoring, rance, supplier

training, ramp-up.

management.

management, quality control
and assurance, supplier
agreement management, SLA
management.

> time

Figure 16.1 Life-cycle management for global software and IT products and services.

tion and correctness of information. Gate reviews (decision reviews) must be well
prepared. They must not result in lengthy meetings, but should rather be prepared
with online checklists so all attendees are prepared and can quickly decide the go/
no go for next phase. Project information should generally be available online.

Chapter 17

Supplier Selection
and Evaluation

Summary: A key success factor in global software development and IT management is
how to master the relationships with suppliers. Supplier selection includes contracting
and procurement strategies because management has to decide between make versus
buy and also the life-cycle of these products or services. Based on the offer and
contractual risks, managers on both the procurement and technical side have to
decide whether a client relationship and subsequent sourcing is profitable and whether
related risks can be managed over a long period of time. In this chapter we will
provide concrete guidance on supplier selection and evaluation.

Supplier relationships can evolve over time because the business situations of the
partners change and new technology and new vendors enter the marketplace. Often,
outsourcing situations lock the client to some degree, making it expensive for the
client to change its vendor. Very early on in an outsourcing project, a client becomes
tied to its chosen vendor even though the client may try to manage costs and depen-
dencies by competitive arrangements by introducing additional suppliers. Although
organizations try hard, it is hardly possible to assess every risk andto plan for con-
tingencies in a contract over a long period of time.

Supplier relationships often oscillate between trust and control. Figure 17.1
shows an oscillating evolution. Naturally, there is not one single path, but the layout
is archetypical for most supplier relationships. Depending on outsourcing content,
some stability can be reached over time, but the customer organization must be clear
that behaviors occasionally need to change otherwise performance and cost won’t
be competitive. This being understood, mature customer organizations consider such
evolution in the contract set-up to avoid lock-in at a point where the relationship
needs a change.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

131

132 Chapter 17 Supplier Selection and Evaluation

.

Trust, Eco

pa rtnﬁr- system
ship

Repeatable Out-

Pilot succes: tasking
success
Performance
Performance issues
Control Start sues
Time

Figure 17.1 Supplier relationships evolve over time between control and trust.

It is important for clients and suppliers to use shared processes and to collaborate
with sufficiently high process maturity for the outsourcing of software develop-
ment. Different empirical studies highlight that success is higher when both the
client and supplier firms exhibit at least CMMI maturity level 3. Additionally, for
companies in the IT service domain, COBIT and ITIL are helpful toward basic
service processes and risk management.

Over the past 10 years the impacts of process maturity on supplier relationship
and global software and IT performance have been analyzed in different industry
settings [EbertO7a, Rottmann06]. There is a clear correlation of maturity leveland
performance results on both sides. The supplier might exhibit a CMMI maturity level
of five; if the customer has insufficient processes, the relationship will be risky at
best. They will often be canceled very fast.

Such changes are not easy though. Often, the customer forms a hybrid organiza-
tion or eco-system that is somewhere between a market and a hierarchy with its
suppliers. Renegotiations can be used to mitigate incomplete contracting issues. It
is also possible that the contract between the parties evolves toward individual agree-
ments within a frame contract. The supplier selection phase determines not only an
initial contract, but also the influence mechanisms and relationship management over
long contractual periods. Managers should therefore be very careful in selecting a
supplier and setting up the respective contract.

Global software development is not necessarily outsourcing. This means that not
in all cases is there a need to select external suppliers. Unless you collaborate with an
internal offshoring site, this chapter can be skipped. However, even in the case of full
internally managed global development, it might be insightful to apply some of the
following checklists to your internal software departments and check the profession-

Supplier Selection and Evaluation ~ 133

alism of their local management. Many of the checklists simply help to detect defi-
ciencies and to improve. We will come back to supplier agreement management and
the entire life-cycle impacts of managing a supplier in a later chapter.

When selecting external suppliers, a key prerequisite is in identifying which
supplier best fits your needs. There are a few simple rules to follow:

Select a supplier that fits with the size and business model of your own
company. For instance, a very big business process outsourcing supplier might
be less interested in providing specialized services to a small company. The
supplier might be willing to do so, but after a while behaviors will be less
supportive to the needs of the small or medium enterprise. They would have
done better with an intermediate used to working with small enterprises or by
using a supplier who specializes in this type of management.

Select a supplier with sufficient process and methodology know-how. As a
rule, the supplier of engineering services must have high process maturity.
Demand a recent CMMI appraisal valid for the entire company and evaluate
results. Additionally, for clients looking for suppliers in the IT service domain,
COBIT and ITIL are helpful toward basic service processes and risk
management.

Assure process flexibility. It is not of much help if you select a supplier that
demands to use exactly the same processes and tools across all projects. A
good supplier is capable of adjusting its processes and interfaces to your tools.
Of course, they should be able to help you in improving processes and opti-
mizing tools, but this is decided on a needs basis.

Select a supplier with sufficient domain knowledge in your own field. Having
domain expertise allows you to put skilled engineers who need less knowl-
edge to understand technical aspects related to the product or service on your
project rather than those who only understand the design and programming
language.

Demand a list of engineers working on your project with skills, current subject
experience, previous projects, and so on. Insist that these engineers are allo-
cated to the project in case you want to build skills over a time. Note that
defined engineers and names typically increase cost per head because it
reduces flexibility at the supplier side.

Use a supplier that is physically present at your own site. It often takes sub-
stantial effort to continuously travel to the supplier site or to have only video
conferences. Having a local supplier’s sales team, as well as some engineering
skills, eases requirements and change management.

Some simple checks for supplier selection should be applied throughout the
different processes of supplier selection and agreement management:

Did you ever work with this supplier and would you do it again? What were
the lessons learned from that previous contract? Alternatively, demand this
check from a reference client who you know and trust.

134 Chapter 17 Supplier Selection and Evaluation

* What expertise and references are available from the supplier in your own
domain?

e What is the turnover rate at the supplier site? Is it acceptable or rather high?
How are skills managed in light of this turnover rate? What turnover rates
will be assured by the contract?

* How stable is the supplier and its management or shareholders? Did it recently
change, reorganize, or merge with another company? Avoid any supplier that
is currently hampered by big acquisitions.

* What business processes are in place at the supplier to elicit requirements and
to cope with change? Does this fit your needs?

* Is the supplier able and experienced in handling global development teams?
Can it manage teams with members from different companies?

e Do the supplier and its employees have the necessary formal qualifications
your customers and markets demand (e.g., ISO 9001, CMMI maturity levels,
COBIT and ITIL implementation, etc.)? Is the supplier periodically audited?
Check some recent audit results.

* Are the legal constraints acceptable for you and your company? Suppliers
often demand that the site for legal disputes be in a part of the world where
you are not so experienced. Check which site makes sense for you and your
lawyers. Check if there are some sample legal cases that show typical behav-
iors. Specifically, focus on anything related to protecting your intellectual
property. Manage the risk of any impact on your intellectual properties, such
as whether a key engineer may defect, upfront.

e Is the infrastructure sufficient for your own purposes? Does it scale up to the
high interaction needs during shared development or testing? Is it protected
and auditable? Are the tools interfaces to your own tools sufficient? Have they
been tested in real-world scenarios before?

* What prices are demanded for the services? Are they competitive? How will
you avoid a lock-in position once the supplier has understood your technol-
ogy, products and business?

Generally speaking, there are many checks which should be performed prior to
the contract signature and determine a first “go/no-go” for the selection. Most can
be done offline as part of a request for quotation. You might still want to visit the
suppliers’ sites to directly see offices and talk with engineers or management. In that
case, make sure you speak with those engineers and team leads who will later be
working on your project. Trust your feeling when looking into offices or cafeterias;
they provide messages about culture and behaviors.

Contracts are finally agreed with both technical and non-technical / commercial
elements. The technical aspects are coined into a service level agreement that you
should manage carefully.

Chapter 1 8

Supplier Management

Summary: Supplier management is often neglected and only considered relevant where
there are formal handovers of software components or IT services. In fact, hardly any
software and IT project can survive without supplier management. A small company
may use COTS or open source components, a bigger company may distribute work
allocation across departments, and yet another company may collaborate with its
customers on requirements specifications. In this chapter, we will show sourcing and
supplier management in a distributed context. Checklists are introduced to facilitate
your own selection criteria.

In managing a sourcing relationship, both client and supplier should use their respec-
tive power and processes in order to obtain optimal results. For the commercial
supplier, the optimal outcome may be best measured in financial terms, either in the
short term or the long term. The optimal results for the customer are more difficult
to assess and evaluate due to looking into different dimensions, such as business
case, motivation, and sustainability. Perhaps the best way to characterize the optimal
outcome from the client’s point of view comes from the project group or the indi-
vidual level: a successful project, delivered within a reasonable schedule and budget,
gives personal and professional satisfaction. The customer organization must define
what it considers the positive outcome to be the long-term success of the sourcing
projects with its stakeholders. At times it means you must bite the bullet and pay a
bit more in order to achieve trust and get much better results overall, as opposed to
too much control (see Chapter 7).

Supplier and sourcing management is a core competence for any software and IT
manager today. It is certainly not something to “delegate” to a procurement orga-
nization. The technical manager is the key stakeholder and is held accountable
for culture, climate, results, and performance. Procurement and purchasing
manages contracts, but not people, processes, results, or relationships.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by

John Wiley & Sons, Inc.

135

136 Chapter 18 Supplier Management

We will look specifically at the case in which an external supplier must be
managed. This does not preclude captive sourcing relationships, such as an engineer-
ing organization in India working within, and for, a big global enterprise. The major
difference with such captive sourcing and supplier management is that too often the
internal clients do not realize that they ought to manage their captive suppliers as if
they were external suppliers, while the captive suppliers, on the other hand, behave
as if they were separate units.

The starting point for any supplier management is a framework of life-cycle
processes, responsibilities, and clear decision criteria. Product life-cycle manage-
ment (PLM) protects and guides the different stakeholders in global development.
Figure 18.1 shows the relevant phases along the product life-cycle and the respective
activities related to supplier management. Four major phases are distinguished,
namely, supplier strategy, supplier selection and contracting, contract management,
and evaluation and relationship management.

A client or customer organization must provide a realistic and precise expecta-
tion of functional requirements and quality attributes (e.g., reliability). They should
clearly state that payment will be provided only for systems that meet the agreed
upon functionality (e.g., requirements, acceptance tests, SLA conditions). They
should demand milestone presentations of progress for continued funding.

Supplier organizations, on the other hand, must insist on a signed contract with
requirements. They must agree before contract signature on clear and reasonable
acceptance criteria. The contract must be explicit that the supplier owns the software
until final payment. They must clearly agree on liabilities and support after handover.
They have to express disagreement and unrealistic conditions openly and not con-

Sourcing Initiation Project Evaluation and
strategy . and ramp-up execution relationship
i i | management

Strategy! Contracti Results| Next steps

|
| agreed, signed, delivered; agreed
|

T 3 T

|
1 1
1 1

H
T T
i 1
1 1
1 1
I |
1

» Strategy » Project plan » Project mgmt » Evaluating

» Market » Work packages » Controlling (SLA, project results
information » Site and supplier ~ COSt, risk) » SLA final

» Requirements evaluation » Supplier assessment

» Make or buy » Process assess- agreement mgmt . Improving own

» Opportunity and ment and » Training processes
risk management ~ improvement » Change mgmt » Supplier

» Business case » Risk mgmt » Quality relationship

» Contract » SLA / reporting assurance mgmt
preparation » Contracting » Acceptance » Further projects

Figure 18.1 Supplier agreement management along the product life-cycle.

Supplier Management 137

tinue with diverging assumptions. They should always strive for win-win results and
therefore offer compromise approaches once needs are understood. In cases of com-
ponent delivery, they should include a software key that will operate after the date
of contracted software acceptance.

As a client, you should be cautious not to manage primarily by means of the SLA. We
were called in to a worldwide leading ICT company in a difficult situation. An outsourc-
ing supplier for their testing and documentation was underperforming. It was way below
the SLA, and the obvious mechanism would have been to put clear targets and then take
consequences if they are not met within a few weeks. The ICT company however, was
smart enough to consider that there could be reasons why such a company suddenly
underperforms. When we looked to the supplier, we found that he was best in class and
had been carefully selected. In fact, it would have been difficult for our client to get rid
of that outsourcing supplier because there were already some lock-ins that were visible
which would have made it expensive to switch. When we brought the different needs
together, we found that quite early in the sourcing agreement our client had focused very
much on cost reduction. The supplier, eager to win the contract, agreed, and later found
that the margins would be too low in the long run. They decided internally to prepare a
graceful cut by failing on certain SLA conditions where both parties would be “guilty”
due to unclear specifications and interfaces. Upon identifying this root cause, we worked
toward a renewed contract with win-win schemes built in. A major change was to keep
the low rates (win for the client) but include an incentive for quality and performance
(win for the supplier). They agreed, and after some mixed workshops, which we facili-
tated, to really obtain a re-launch with fresh minds and perceptions. It worked out well.

As a client you should always consider the golden rule of supplier management:
You pay for what you get. Don’t get trapped in contracts that look “cheap,” but later
bring tons of extra cost due to lousy processes and insufficient delivery quality.
Preconditions of any successful supplier management are good processes on both
sides, that is, for the client and the supplier. Insufficient client processes cannot be
externalized. They will not scale up from a single site to several sites. Often, those
low-maturity processes can be handled in localized development without many
overheads due to colocated teams, but they will fail with globalization.

If your own processes (being the client) are on a CMMI maturity level one
or two you better ask for a consultant who can help you in installing effective
engineering and management processes. Most suppliers offer such support, but
this is not necessarily a sustainable solution, as they have different interest and
business models. Independent of what your processes look like, it is relevant to
review them carefully with your suppliers and agree to interfaces on work product,
engineering, and tool level. The exchange of information must be carefully
planned. A change management tool is not enough. It needs rules for documenta-
tion, design reviews, change management boards, and so on. Install workflow
management and online accessible project, work product, and process information

138 Chapter 18 Supplier Management

to assure proper knowledge management. Interactive process models, such as RUP
and others have proven very helpful to communicate and install processes [Ebert03,
Royce98].

For your own processes and their improvement, consult with the CMMI [SEI11]
that has different process areas suitable for supplier management. Specifically,
version 1.3 of 2011 strengthens supplier management topics. They range from selec-
tion and contract management to building a shared vision and effective collaborative
teams. The CMMI has rich evidence from big global systems development projects
with different contractors working on one assignment. For companies in the IT
service industries, COBIT and ITIL will also help towards orchestrated processes
[COBITOS, ITILO7].

Figures 18.2-18.4 provide some sample checklists for supplier and contract
monitoring. The first checklist (Fig. 18.2) is used to highlight specific supplier-

Sudden behavioral changes

Contractual agreements are not kept

Difficulties and issues are not communicated

Frequent rejection of inputs, specifications, etc.

Above average turn-over rate of engineers on your projects
Reduced contact with supplier senior management
Demand to re-prioritize requirements

Overly exact and restrictive interpretation of SLA
Increasing amount of escalation

Financial situation of supplier worsens

Other clients leave your supplier

Supplier gains new and more relevant clients 7

EERNEEEEREEEJ

Figure 18.2 Checklist: Indicators for supplier risks.

Is progress according to agreed milestones and deliverables?
Are right skills and engineers available as agreed?

Is technical expertise on right level?

Are agreed quality levels of deliverables proven?

Are the budgeted cost and schedule kept?

Is quality, cost and content of work products adequate?
Which risks materialize? Which risks are mitigated?

Are agreed standards and processes implemented?

Is security and intellectual property sufficiently protected?

Are governance mechanisms installed and followed?

Which improvements are proposed by supplier?

Is there any way to improve relationship management? 7

[R O R S S S

Figure 18.3 Checklist: Supplier evaluation during the project.

Supplier Management 139

Did the supplier give the perception of not being qualified?
Have schedule and budget constraints been kept?

Have all deliverables been according to SLA and quality levels?
Has effort been in line with estimates? Why not?

Which risks materialized? Which risks could be mitigated?
Which improvements are proposed by the supplier?

Which improvement are suggested by own team?

Has the work split and allocation been adequate?

Are there possibilities to improve relationship management?
Are there possibilities to improve communication?

Is this the right supplier to grow with or to continue with?

EREERAERAERAAR

4

Figure 18.4 Checklist: Supplier evaluation at project or contract end.

created risks during contract execution. They are a kind of formalized gut feeling to
detect changes which (specifically if several appear) point to growing risks. The
second checklist (Fig. 18.3) provides some checks for supplier evaluation during an
ongoing project. The third checklist (Fig. 18.4) is used at contract termination or
project end to summarize lessons learned for future supplier management.

Consider sufficient time and budget resources for training the supplier on your
processes. A very strong training tool is the scrum process with short team meetings
everyday in which recent results and future steps are briefly reviewed. Any uncer-
tainty should be brought up in such reviews, which should take not more than 15-30
minutes and can even be conducted by telephone conference across sites
[Schwaber04].

Build a supplier program management to handle the necessary review and deci-
sion processes. Agree with your supplier review and acceptance processes to assure
the right quality level. Installing such processes after the contract signature will
create the perception of policing the supplier. You can ask third parties in case of
questions or needs for escalation.

Chapter 19

Practice: IT Outsourcing—A
Supplier Perspective

S. M. Balasubramaniyan, Wipro

Summary: This chapter describes practical experiences from an outsourcing supplier’s
perspective. The scope of the engagement described in this case study was such that it
could comprehensively cover relevant themes and guidance from previous chapters in
a concrete project context. It offers valuable insights of outsourcing partnerships that
can help toward doing things successfully in your own company.

BACKGROUND

One of the key components of Distributed Software Management is the outsourcing
of part or full life-cycle of the Application/Product and/or the associated infrastruc-
ture to partner organizations. In this case study, the transformation of IT infrastruc-
ture and applications by a large global organization in close association with Wipro
as their primary outsourcing partner, has been taken as the case in point. Commencing
historically, with a predominant advantage of cost arbitrage, the compulsions of
outsourcing took multiple dimensions later. Like most successful organizations
world over, irrespective of their domain and operations, this organization has given
a strategic position for IT outsourcing due to its overweighing merits over the
drawbacks.

The drivers for outsourcing were many for this company. The complexities of
the system and the software that drives it have increased manifold and it was practi-
cally impossible for the organization to do everything by them. From a “Vertical
Integration” approach, the company moved over to an “Assemble the best pieces”
approach. Through the collaboration of the best players in the industry, who have
core competencies in their own areas of focus, the company derived the best results.

The second aspect in this relationship was the non linear increase in the need
for educated and trained workforce to support the high growth business strategies.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

141

142 Chapter 19 Practice: IT Outsourcing—A Supplier Perspective

The thrust given for technical education and the ability to train large numbers of
skilled people in the developing nations had benefited large corporations such as this
organization to leverage the combined benefits of appropriate competencies at much
reduced cost.

In the initial days of I'T enabled business operations, the trend in this organiza-
tion was also to have most of the IT implementation through proprietary architecture,
infrastructure, and tools. However, with the need for working in a global environ-
ment, it has become imperative that one adopts Global Standards and Open archi-
tecture forimplementation. This approach has substantially improved the development
and implementation timelines as well as the cost. Additionally, a good support from
the industry is available for any issues or specific needs for platform and standards
based developments. The investment in developing Solution frameworks with a
focus on customized solutions for the specific needs of their clients by Wipro helped
to meet the above objective.

As in the case of progress in any domain, the collaboration tools and infrastruc-
ture have been developed in parallel to the advancement in the Information
Technology itself. These tools and methods have transformed the “Cube Farm™ of
IT management from a colocated system to a globally distributed system. This has
substantially helped the realization of globally distributed software development.
The availability of audio and video conferencing, configuration management systems,
and multi site project management tools can be cited as the examples for the same.

With the increasing need for improving the outcome of application or product
development per unit cost or unit effort, distributed development, through outsourc-
ing, has given a quantum advantage in recent times. Given that the options and the
mode of outsourcing have grown with experience, organizations need to study and
adopt what is best for them. In this engagement, the outsourcing client leveraged
the ready-to-cook solution frameworks, large infrastructure for customization in
low-cost locations, nearshore presence of Wipro’s personnel for requirement gather-
ing and final implementation.

IT outsourcing must be treated as a strategic step in the operations of an organiza-
tion and not as a tactical cost saving effort. Any simple cost savings approach,
rather than an overall sustainable cooperation, fails after some time.

There are multiple ways in which an organization can evolve the strategy con-
sidering the various operational factors like IT budget, the work force requirements,
technology transitions, spread of operations, vendor management and availability of
partners, business growth, and the proportionate scale of IT operations. The client,
in this case study, needed a large experienced workforce for a short duration to
design the transformation of their IT landscape that would need very low mainte-
nance cost.

Background 143

The strategic position for IT Outsourcing also enables an organization to con-
sider the risks in it. The risk profile for IT Outsourcing would vary from one orga-
nization to another. A structured approach to Risk assessment and judicious decision
making together with carefully planned Risk mitigation are required to be included
in the planning process. In this case, timely development and implementation of the
new systems in line with the retirement plan of the legacy systems was the major
risk evaluated and mitigated through phased implementation plan.

The success of IT outsourcing starts with making the right choice of work to
be outsourced. Since this is an important starting point in any collaborative work,
many studies have been conducted and one of the good models to follow has con-
sidered two factors, namely, Interaction Requirements and Management Requirements
(Fig. 19.1).

The evaluation of the IT work in the above model helps the organization that
is outsourcing, as well as the IT service provider, to make an objective assessment
of the suitability or the potential risks to the successful outsourcing. Where the need
for interaction between partners and the management of relationships are low, the
work considered for outsourcing is most amenable for success. When these factors
are high, the risk to the success of outsourcing is the highest. This model helps the
partners to take care of the failure modes to ensure that the probability of successful
outcome is high.

It is not a prescriptive situation to outsource or not based on the above model,
but it helps the partners to consider the risks involved and the efforts to be taken to
plan, mitigate, and prevent the occurrence of any of the identified risks.

Management
Requirements | / \ 5
Low 2 Requires
high Highly
interaction suitable
handling
capabilities
and tools
4 Moderately suitable,
longer transition and
higher onshore
\ J presence
T Not
suitable 3 Requires high
management abilities
High Low [nteraction

Requirements

Figure 19.1 Fitment to outsourcing.

144 Chapter 19 Practice: IT Outsourcing—A Supplier Perspective

Preparedness for outsourcing applies to both organizations. While the supplier
partner who takes up the outsourced work needs to be adequately equipped for suc-
cessfully meeting the obligations in the engagement, an equal part is played by the
outsourcing organization in ensuring that the collaboration succeeds. The lack of
preparedness on both sides is, most often, the cause of failure in outsourcing
relationship.

In the engagement described in this case study as a part of the planning process,
key and decision making representatives of the client organization and Wipro, the
IT partner chosen, sat together to evaluate the risks to the engagement. Through
various deliberations, it was determined that the IT transformation project scope is
of relatively low management requirement and relatively high interaction require-
ment. Accordingly, a Program Management Office was created to enable relevant
stakeholders in either organization to be brought together at the right instances to
make suitable decisions to move the engagement forward. Collaborative tools such
as Weekly voice conferencing, MS Project plan, and remote secure login and the
like were used to manage the risks.

In IT outsourcing partnerships, the proposition is either “Win-Win” or “Lose-Lose”.
There is practically no sustainable situation where one partner wins and the other
loses from the business perspective. Therefore, it is essential that both the outsourc-
ing organization as well as the service provider organization consider the business
imperatives of one another and plan the collaboration accordingly.

In IT outsourcing, the organization which takes up outsourced work needs to
make investments in work force training, infrastructure, project managerial capabili-
ties, processes aligned to the partner’s working, cultural fit, and executive oversight.
Service Provider organizations such as Wipro invest in Talent Transformation in a
big way for making their workforce ready for their clients’ technical and business
needs. Customer specific Offshore Development Centers (ODCs) provide the oppor-
tunity for creating the right environment for a client’s engagement through tools,
processes, and infrastructure. The cultural fit is taken care of through cross-cultural
training, both for the client’s personnel as well as Wipro’s personnel.

For the outsourcing organization, since it is a strategic decision, adequate
support needs to be given to the partners in terms of a road map of partnership,
investment for induction of partners to the organization’s culture, adaptability to the
distributed management of applications and products, clear articulation of success
factors, and very importantly, consideration for partner’s business imperatives.
Identification and appointment of sponsors at senior management level in the client’s
organization took care of this aspect in this case.

To arrive at the right combination of organizational characteristics for success-
ful, long-term and value adding collaborations, the product or the IT engagement

Results 145

can be viewed from the perspective of its own life-cycle. The imperatives of col-
laboration and the characteristics that the relationship would need to take at different
phases of the above life-cycle are different. At the inception stage of a product or
IT application life-cycle, the outsourced engagement yields the best benefits but it
is also the phase in which outsourcing is most challenging. In the growth phase, the
outsourcing can be leveraged for growth acceleration such as widening global reach
and customization for different markets. In the maturity phase, the outsourced-to
partner can ensure that the installed base is maintained, sunset product and services
are extended in life, and additional savings/revenue is obtained. Customer engage-
ment and loyalty and product/service continuity is the key engagement objective in
this phase.

When the right combination is achieved, the best value added collaborative
capabilities emerge. Table 19.1 summarizes the best possible combination in each
of the above life-cycle phases.

The IT transformation engagement described in this case study fitted into the Growth
Phase of the IT life-cycle of the client’s organization. Accordingly, the team in Wipro
had experienced architects and program managers as the key team members adapted a
solution framework which was developed in the practice groups for faster implementa-
tion. The relationship spanned the development, implementation, and support to ensure
a long-term commitment. A Program Management Office was created which worked
with the sponsor organization of the client in a collaborative way. Enough empowerment
was given to Wipro through business engagement models such as Fixed Price modules
to distribute the responsibilities between the two parties. Speed of implementation in
line with the IT evolution strategy was the key business proposition.

RESULTS

Studies in the area of successful IT outsourcing are pointing towards three factors
that can determine the success of a partnership.

The first factor is the cost leadership. Cost continues to be the primary reason
for outsourcing decisions and will continue to be so for a long time to come. In the
IT outsourcing scenario, the cost leadership could be achieved through optimized
total cost of ownership (TCO). TCO considers multiple cost factors in the engage-
ment like workforce cost, transition cost, infrastructure cost, operational cost, and
sustaining cost. Therefore, the ability of partners in obtaining appropriate advantages
in each of the above considerations can determine the cost leadership. A client-
specific Offshore Development Center, a proven framework for transition, and a
long-term engagement commitment which, in this case, led to distribution of cost
structures, helped the client to derive the cost advantage,

The second consideration is the capability enhancement for the partnership. As
mentioned in the beginning of this section, today’s applications and products require

146 Chapter 19 Practice: IT Outsourcing—A Supplier Perspective

Table 19.1 Outsourcing Activities Across the Life-Cycle

Life-Cycle
Considerations Inception Phase Growth Phase Maturity Phase
Principle Leverage Core Domain Cost Benefits
Purpose Strengths / IP Competencies /
Portfolio Experience
Stake in Distributed Flexibility and Extending the life
Outsourced Ownership of Agility in response cycle of application
Work Implementation to Market / product
Mode of Centrally Decentralized Ownership
Engagement Coordinated Responsibilities Transition
Organisational Aligned Shared Investments Skills revectoring/
Fit Vision / Long alignment / Tactical planning
Term Planning Medium Term
Planning
Choice of Trusted, Preferred Mature Partners / New Partner
Partners and Strategic Long term possibilities /
Partners commitments Engagement
commitments
Enabling Investment in Core Investments in Partner invested;
Considerations competencies, Diverse tools and Adhocset up for
Tools, Methods, processes; Choice the engagement
Systems and from a bag of purpose
Processes options
Management Executive level Communication and Customer—Vendor
Style commitments; Collaboration level relationship
Empowered driven
relationship

complementary capabilities to build and maintain. During the growth path of an
organization, it is possible that the organization decides to focus on its core compe-
tencies and look at partners for supplemental competencies. Therefore, the collabora-
tive working through outsourcing would enhance the capability of the organization.
In this IT transformation deal, a few key personnel of the client organization were
dedicated to the engagement to ensure a speedy and fault-free beginning of the
project. This commitment helped, in a long way, for downstream quality of the
transformation solution and implementation.

The third factor is the supplier partner’s knowledge of the playing field of the
outsourcing organization. The ability to expand the market reach, as well as the value
provided through industry and market knowledge that can be vectored into the work
being outsourced and the time it takes to market the advantage provided, are clear
enablers for successful outsourcing. Depending on the IT outsourcing strategies of
an organization, the selection of partners needs to be made without choosing too
many or too few. Wipro was engaged in the domain of this client for more than a

Results 147

decade and, therefore, the solution framework that was developed by the practice
group and used to build the transformation solution had the correct requirement of
the client carefully built in. It made the solution appropriate and needed minimal
customization and rework.

As the partnership mode of working matures and the horizon of the collabora-
tion expands, it becomes apparent that the considerations of partnership are not the
same in all instances of outsourced partnership. To get the best value out of the
outsourced partnership, deeper insights need to be made as the relationship realizes
the cursory benefits of outsourcing. In this case, the approach taken during defining
and implementing the IT transformation was different from the approach taken
during the sustenance phase of the implementation. Low cost of maintenance was
the primary business driver and low cost resources, remote support, and deployment
of diagnostic and analytical tools enabled the achievement of this.

Probing deeper, the considerations in the outsourced partnership, the following
aspects emerge:

* Principle purpose of outsourcing: The purpose of outsourcing could be for
tactical cost considerations or for the domain/platform experience of the sup-
plier organization or for the IP/core competency of the supplier. The value
proposed by each collaborating organization or each partnership could be
vastly different.

* The stake in outsourced work: The choices could be among expanding the
life-term of the application/product, agility and flexibility required to respond
to market requirements, and sharing the ownership in a large complex imple-
mentation. Here, the context of the work being outsourced would be the key.

* Mode of engagement: The role and responsibilities of partnering organiza-
tions need to be considered. The situation may warrant the program to be
centrally coordinated or with decentralized responsibilities or completely left
to be managed by the supplier organization. The maturity of the I'T application
or the product is the key for this decision.

* Organizational fit: How well the vision and objectives of the supplier organi-
zation align with those of the outsourcing organization would be a strategic
fit for large and long tenured collaborations. In certain domains, like technol-
ogy outsourcing and product development, this aspect would be a key
consideration.

* Choice of partners: Organizations categorize different partners on a scale of
preference for different kinds of outsourced works. Strategic partners share
the road map of the outsourcing organization, while a tactical customer—
vendor relationship exists for non-core engagements. In some instances, one
may have to carefully select and establish a long-term relationship, whereas
in some situations, new vendor opportunities can be explored.

* Enabling Considerations: Depending on the tools, methods, systems, pro-
cesses, and even political considerations, the decision on outsourcing may

148 Chapter 19 Practice: IT Outsourcing—A Supplier Perspective

have to be taken. Oftentimes, the geographical considerations and political
environment of the partner organizations could become limiting factors.

e Management Style: This is one of the key considerations in relationships
where the supplier is mature and large. The display of management commit-
ments, Executive level connects and shared visions and goals would deter-
mine the success and, sometimes, the continuity of outsourced partnership
itself.

The governance of outsourced engagement is another key success factor. While
many of the aspects of governance are mastered over a period of time with experi-
ence, it is essential to be cognizant of the relationship enablers that make the out-
sourced relationship successful.

e Learning Curve: Collaborative capabilities are something an organization
learns over a period of time. It is not an inherent characteristic of most orga-
nizations. Therefore, the experienced among the partners need to hold the
hand of the other to take the relationship through the initial hard path to
comfort. Often, the first projects of outsourced engagements are not success-
ful, but it is essential how much the partners have learned out of their mistakes
and are able to apply in subsequent engagements. This determines the success
of long-term outsourced relationships. The experience of Wipro in the busi-
ness domain of the client in this case study ensured that the engagement
derived the benefit from the learning curve for well over a decade.

* Organization Structure: At the commencement of an outsourced relationship,
both the organizations need to position appropriate people who would inter-
face on a peer term basis. Clear escalation paths need to be defined.
Management review structure and hierarchy need to be put in place. This
pre-requisite, if done well, will largely ensure that the relationship is success-
ful. The sponsor organization in the client’s and the Program Management
Office (PMO) in Wipro can be cited as an example.

e Engagement Score Card: An objective measurement system with clearly
defined parameters closely related to the objective of the engagement would
ensure that the perceptions on either side do not dislodge the collaborative
engagement. It is necessary that the measurement system is periodically
revisited to make it relevant to the current state of engagement and revised if
necessary. All management reviews are held keeping this score card in view
so that the course corrections and mutually agreeable evaluation of the current
status and actions can be evolved and agreed upon. One typical engagement
score card is the balanced score card. One can use a variation of it by taking
into consideration the objectives of the engagement at any point of time.

* Soft Skills and Cultural Fit: In a global and distributed environment, temporal
and cultural misfits take a heavy toll on relationships. It is essential that the
personnel on the outsourcing and Supplier organizations learn one another’s
cultures and adapt themselves to the situation. Best results are obtained when
both parties move to a common neutral platform and it is not a situation of

Results 149

one party totally adapting to the other. IT outsourcing being technically ori-
ented, often the soft skills like communication, presentation, attire, etiquette,
leadership styles, attention to details, and the like are often neglected and they
become the source of outsourcing engagement failures. The cross-cultural
training of India for the client’s personnel interfacing with Wipro project team
was a key success factor in this direction.

* Program Management: The establishment of a PMO and steering committee
to consider and resolve issues in the conduct of the outsourcing engagement
is another important enabler for success. The coordination, tracking of prog-
ress against the objectives of the engagement, the dependencies management,
change management process, logistics, security details, and the like, if
addressed in time, would substantially improve the success probability of
outsourced engagement.

History has it that many of the engagements have fallen off, not due to technical
or financial considerations, but due to inability of both partners to govern the
relationship.

Notwithstanding the fact that any program management would need to include
the following aspects, it is all the more important to give adequate focus in an out-
sourced environment since two different organizations, and therefore, two different
cultures are involved.

* Risk management: Risk management should commence from the stage of
prospecting of cooperation and should continue as a live agenda in any review
or discussion. The risk identification, the mitigation, and the preventive steps
should be neatly documented and be visible to all stakeholders.

e Transition management: Any outsourced working would need a structured
transition of knowledge from the outsourcing to the supplier entities. Planning
a successful transition is the key responsibility of either organization.

* Knowledge management: A vital concern of outsourcing organizations is the
loss of knowledge in partner’s organization due to staff turnover and project
modes of working. A well established knowledgment management system
will largely alleviate the fear of loss of information and knowledge of the
product or application transitioned.

* Business models: A variety of options for business and commercial models
would greatly enhance the business value in an outsourcing relationship.
Often, the ability not to take risk by the supplier and a lack of convincing
approach by the outsourcing organization, lead to precipitation of issues in
the collaboration. This aspect takes a firmer position as the relationship
matures. Outsourcing organizations would demand that the partners place
their stakes in the relationship through variable project costing, risk and
reward model and the like.

150 Chapter 19 Practice: IT Outsourcing—A Supplier Perspective

* Business continuity: Equally applicable in monolithic development environ-
ment, it gains importance due the nature of business to partners. Cost effective
and innovative solutions in case of contingencies would greatly help the
purpose of outsourcing.

 Alliances: Complex solutions, development, and support need integration of
off-the-shelf products customized for the purpose. A good alliance with key
COTS product vendors would accelerate the solutions development and value
created.

In critical engagements, the partner with a nearshore center or who works out
of the client’s location is a viable solution. However, they are likely to erode the
benefits of offshored outsourcing over a period of time and need to be strategically
used for induction of new relationships.

TAKE-AWAY TIPS

Successful organizations across world adopt multi-pronged strategies for market
leadership, time-to-market advantage, cost competitiveness, delivery excellence,
global presence and reach, portfolio management, and a highly profitable existence.
Globally distributed software and product management through outsourcing and
offshoring play a vital part in it.

Successful IT outsourcing decisions are not likely to be tactical ones. Carefully
determining what to outsource, whom to outsource, and what benefits are expected
to be derived from it need to be thought through and planned. Preparation toward
partnered relationships where imperative cultural and business differences are likely
to be present is essential. An outsourced relationship often needs to be planned
long—term, which automatically brings in the need to find the solution to the question
on its long-term sustainability. Value addition to cursory benefits will need deeper
considerations and the phase in the life-cycle of the product or application under
consideration. Also, the surround consideration needs to be equally taken care to
temper the engagement to improve the probability of success of IT outsourcing.

The “Next Level Partnership” considerations surface at the crossroads of a
relationship when the question “What next?” is raised. The objectives of a nascent
or a new outsourced collaboration would have been achieved and both partners look
for the next higher value added engagement. Typically, the answers to this question
result in expanded scope of engagement, involvement of partners in the upstream
cycles of the IT or product decision making process, higher responsibilities for the
suppliers, and building stakes in each others’ organizations.

Chapter 20

Monitoring Cost, Progress,
and Performance

Summary: Monitoring cost, progress, and performance of global software projects

is a control activity concerned with identifying, measuring, accumulating, analyzing,
and interpreting project information for planning and tracking activities, decision-
making, and cost accounting. We will provide guidance for monitoring cost, progress,
and performance in global and distributed IT and software projects.

Global development projects do not fail because of incompetent suppliers, project
managers or engineers working on these projects; neither do they fail because of
insufficient methods or tools. Primarily, they fail because of the use of wrong man-
agement techniques. Management techniques derived and built on experience from
small colocated projects are inadequate for monitoring global software development.
As a result, service level agreements are not met and the delivered software is late,
of low quality, and of much higher cost than originally estimated.

Dedicated management techniques are needed because software projects yield
intangible products. Project (or supplier) monitoring and control is the basic tool for
gaining insight into project performance and is more than only ensuring the overall
technical correctness of a project.

Monitoring and control answers few simple questions derived from the follow-
ing management activities:

* Decision-making. What should I do?

* Attention directing. What should I look at?

* Performance evaluation. Am I doing that is either good or bad?

* Improvement tracking. Am I doing better or worse than last period?
* Planning. What can we reasonably achieve in a given period?

 Target setting. How much can we improve in a given period?

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

151

152 Chapter 20 Monitoring Cost, Progress, and Performance

Is there sufficient insight into your software and IT projects? If you are like the
majority of those in IT and software companies, you only know the financial figures.
Too many projects run in parallel, without concrete and quantitative objectives and
without tracking of where they are with respect to expectations. Project proposals
are evaluated in isolation from ongoing activities. Projects are started or stopped
based on local criteria, and not by considering the global trade-offs across all projects
and opportunities. Only one-third of all software engineering companies systemati-
cally utilize techniques to measure and control their product releases and develop-
ment projects [Ebert07al].

There is a saying that “you cannot control what you cannot measure.” This
might sound a bit awkward because certainly management is more than semi-
automatic number crunching. However, if there is little or no visibility in the status
and forecast of projects, it is apparent that some common baseline measurements
need to be implemented for all projects in an organization. Such core measurements
would provide visibility into the current versus planned status of engineering proj-
ects, allowing for early detection of variances and time for taking corrective action.

Measurements reduce surprises by giving us insight into when a project is heading
toward trouble, instead of discovering it when it is already there. Standardized
measurements provide management with indicators to control projects and evalu-
ate performance in the bigger picture.

Many organizations that consider software development as their core business
often have too much separation between business performance monitoring and
evaluation and what is labeled as low-level software measurements. Similar to a
financial profit and loss (P&L) statement, it is necessary to implement a few core
measurements to generate reports from different projects that can easily be under-
stood by non-experts. Maintaining consistency across projects allows you to easily
aggregate data for assessing contract and business performance and assisting with
estimating which culminates in a kind of engineering balance sheet. This allows for
better predictability of future projects and quantification of the impact of changes
to existing ones.

What is the purpose of a progress review? It is all about understanding the
project’s status and upcoming activities so that adjustments can be planned and
implemented as necessary. The kinds of things that are discussed in these reviews
include:

* s the project on track (size, effort, budget, schedule, etc.)?

* Have there been any changes to the project or its requirements that people
need to know about?

¢ Is there anything going on in the organizational/customer/project environ-
ments that people need to know about?

Monitoring Cost, Progress, and Performance 153

What are the near-term activities, and are we adequately prepared to perform
them?

What is the status of project issues/risks that were previously identified?

Are there any new issues or risks?

To effectively and efficiently monitor global development projects, the follow-
ing steps need to be done:

Set objectives, both short-and long-term for products and process.

Understand and agree to commitments and their changes (e.g.,
requirements).

Forecast and develop plans both for projects and for departments.
Identify and analyze potential risks.

Set up and commit to a service level agreement (independent of contract
format).

Set up and agree on a contract which relates milestones, deliverables, SLA,
and payment.

Motivate people to accomplish plans.

Coordinate and implement plans.

Compare actual measurements with original objectives.

Determine if the project is under control and whether the plan is still valid.

Predict the development direction of process and product relative to goals and
control limits.

Evaluate project and process performance.
Investigate and mitigate significant deviations.

Identify and implement corrective actions and reward/penalize performance.

An initial set of internal project indicators for this goal can be derived from the
Software Engineering Institute’s (SEI) core measurements and measurement litera-
ture [Ebert07]. They simplify the selection by reducing the focus on project tracking
and oversight from a contractor and program management perspective. Obviously,
additional indicators must be agreed upon to evaluate external constraints and inte-
grate with market data. Here is our short list of absolutely necessary project
measurements:

1. Requirements status and volatility. Requirements status is a basic ingredi-

ent to tracking progress based on externally perceived value. Always remem-
ber that you are paid for implementing requirements, not for generating code.

. Product size and complexity. Size can be measured as functional size in

Function Points, or code size in lines of code or statements. Be prepared to
distinguish according to your measurement goals with code size between
what is new and what is reused or automatically generated code.

154 Chapter 20 Monitoring Cost, Progress, and Performance

3. Effort. This is a basic monitoring parameter to assure you stay in budget.
Effort is estimated upfront for the project and its activities. Afterward, these
effort elements are tracked.

4. Schedule and time. This is the next basic monitoring measurement to
ensure that you can keep the scheduled delivery time. Similar to effort, time
is broken down to increments or phases which are tracked based on what is
delivered so far. Note that milestone completion must be lined up with
defined quality criteria to avoid detecting poor quality too late.

5. Project progress. This is the key measurement during entire project execu-
tion. Progress has many facets and should look to deliverables and how they
contribute to achieving the project’s goals. Typically, there are milestones
for the big steps and earned value and increments for the day-to-day opera-
tional tracking. Earned value techniques look to the degree of how results
such as implemented and tested requirements or closed work packages relate
to effort spent and elapsed time. This then allows estimating cost to complete
and remaining time to complete the project.

6. Quality. This is the most difficult measurement, as it is hardly possible to
forecast accurately whether the product has already achieved the right quality
level which is expected for operational usage. Quality measurements need
to predict quality levels and track how many defects are found compared to
estimated defects. Reviews, unit test and test progress, and coverage are the
key measurements to indicate quality. Reliability models are established to
forecast how much defects need still to be found. Note that quality attributes
are not only functional, but also relate to performance, security, safety, and
maintainability.

Projects typically aggregate information similar to a dashboard. Such project
dashboard allows having all relevant information related to project progress against
commitments including risks and other information summarized on one page, typi-
cally online accessible with periodically updated data. Examples for project dash-
board information are performance of milestones against the planned dates, or
showing the earned value at a given moment.

Project dashboards provide information in a uniform way across all projects,
thus not overloading the user with different representations and semantics that he
has to wade through. They provide information at the fingertips so you are ready to
make decisions. They help to examine those projects that underperform or that are
exposed to increased risk. Project managers would look more closely and examine
how they could resolve such deviation in real time within the constraints of
the project. All projects must share the same set of consistent measurements
presented in a unique dashboard. Lots of time is actually wasted by reinventing
spreadsheets and reporting formats when the project team should, instead, focus on
creating value.

A project dashboard must not be time consuming or complex. Measurements
such as schedule and budget adherence, earned value, or quality level are typical

Monitoring Cost, Progress, and Performance 155

Milestones Quality
Expected defects ~ Tolerance interval
Planned
dates of
milestones | ___._
Rel o .
elease - - — —- Project start Calendar time
Test| _ _|
- 45 degree end value
Code |_ Planned date = Actual date
Design (calendar time) Earned Value
Calendar time -
100% -7
Planned value L
4
Current value: S
Cost .. achieved: 40%: Pid
Progrees planned: 55%‘:’ -15% Schedule variance
Project Earned value 1 1} 10% Cost variance
cost "7
4
_ == Actual cost
09
Calendar time 0% Calendartime today 100%

Figure 20.1 Measurement dashboard (part 1): Overview measurements for schedule, cost, quality,
and earned value.

performance indicators that serve as “traffic lights” on the status of the individual
project. Only those (amber and red) projects that run out of agreed variance (which,
of course, depends on the maturity of the organization) would be investigated and
further drilled down in the same dashboard to identify root causes. When all projects
follow a defined process and utilize the same type of reporting and performance
tracking, it is easy to determine status, identify risks, and resolve issues without
getting buried in the details of micromanaging the project.

A selection of the most relevant project tracking measurements is provided in
Figures 20.1 and 20.2 and Table 20.1 [EbertO7a]. Projects typically aggregate and
provide information similar to a dashboard. Such a project dashboard allows you to
have all relevant information related to project progress against commitments,
including risks and other information summarized on one page, typically one that is
online accessible with periodically updated data. Examples for dashboard measure-
ments include milestone tracking, cost evolution, a selection of process measure-
ments, work product deliveries, and faults with status information. There can be both
direct measurements (e.g., cost) as well as indirect measurements and predictions
(e.g., cost to complete).

We distinguish three views on project measurements with different underlying
goals, namely:

* Aggregated view. This is the typical dashboard with all relevant information
on one page (see Fig. 20.1). It is standard for an organization or enterprise to
ensure that information is presented uniformly with same measurement defini-
tions and visualization semantics, thus ensuring that no time is lost in answer-
ing questions around scope, content, or data quality.

156 Chapter 20 Monitoring Cost, Progress, and Performance

Deliveries
- 25
o
5 22
;g S 15 @ in work
g ’g O Review
SE B Release
o9
o 5 5
o
2 o
w01 w02 w03 w04 w05 w06 w07 w08 w09 w10 w11 w12 w13 w14 w15
Project weeks
Defects
o
9
[+
E] @ new entries
@
° [] corrected
»
© [closed
o
[}
(=]

w01 w02 w03 w04 w05 w6 w07 w08 w09 w10 w11 w12 wi3 wi4 wis
Project weeks

Figure 20.2 Measurement dashboard (part 2): Work product measurements on delivery and quality
for a project over project time; status information is indicated with different shades.

* Work product progress. This are the typical bar charts indicating how much
progress is visible from looking to work products, requirements, increments
or detected defects (see Fig. 20.2).

¢ In-process measurements. This is the most sophisticated view that is typically
only used in organizations with sufficiently mature processes in order to
control and optimize processes within the project. Such measurements

vary depending on the current focus and process improvement activities (see
Table 20.1).

Figure 20.1 shows a simplified dashboard as it is used to track projects. It covers
the major dimensions of any SLA, namely, milestones, cost (expenses), quality, and
earned value. Such tracking measurements are periodically updated and provide an
easy overview on the project status, even for very small projects. Based on this set
of measurements several measurements can be selected for weekly tracking work
products’ status and progress (e.g., increment availability, requirements progress,
code delivery, defect detection), while others are reported periodically to build up a
history database (e.g., size, effort). Most of these measurements are actually byprod-

Monitoring Cost, Progress, and Performance 157

Table 20.1 Measurement dashboard (part 3): In-Process Measurements Comparing Actual
Values with Targets

Metrics Targets Actuals Comment

Size [KLOC]

Effort [PY]

Time-to-market [months]

Tested requirements [%]

Design progress [% of est. effort]

Code progress [% of est. size]

Test progress [% test cases]

Inspection efficiency [LOC/h]

Effort per defect in peer reviews [Ph/defect]
Effort per defect in module test [Ph/defect]
Effort per defect in test [Ph/defect]
Defects detected before integration [%]
Number of defects in design

Number of defects in peer reviews
Number of defects in module test

Number of defects in test

Number of defects in the field

ucts from automatic collection tools related to planning and software configuration
management (SCM) databases. Project-trend indicators based on such simple track-
ing curves are much more effective in alerting managers than the delayed and
superficial task completion tracking with PERT charts.

Figure 20.2 expands this project view toward a more WBS and work-product
driven perspective. Do not get lost in such work products tracking as long as the
overall project perspective is not established. Table 20.1 and its measurements are
more advanced and links process performance with project performance. Different
core measurements and process indicators are combined to get a view into how the
project is doing and how it performs against the estimated process behaviors. It not
only reveals under-performing projects easily, but it also helps to see risks much
earlier than with after the fact tracking alone. In-process checks are always better
than waiting until it is too late for corrections.

These project control measurements are periodically updated and provide an
easy overview on the project status, even for very small projects. Based on this set
of measurements, few measurements can be selected for weekly tracking work
products’ status and progress (e.g., increment availability, requirements progress,
code delivery, defect detection), while others are reported periodically to build up a
history database (e.g., size, effort). Most of these measurements are actually byprod-
ucts from automatic collection tools related to planning and software configuration
management (SCM) databases.

158 Chapter 20 Monitoring Cost, Progress,

eASEE-PrjM
Dashboard: Small Projects

and Performance

5
Open Issues
1
2
3
n
5
Milestones Earned Value
laug 08 et wus uox
Juos e B 120% A

_/0—/ ——analyds 100%

|~ Flennsd Vae
4un c6] — —3¢—naement 1 0% / / 2| | aeuscon
w08 — o ‘/ / / 4~ Eamed Valio
Iz 05 hd P)'—/_/
(s SR —+—system tast ox /
——rekase
Jon 06 o .,—ar”"/./
Jan0: Fsb0E MzO0E AprDS MalOE n06 J406 Aug0s Sop0S OKIOE T T T T

0% 3% 24% I7H 0% E2% 70% O0% 100%

Expense Control Requirements
18
220
L 14 4]
170 / 12 4
%~ Budget ost W Dsecoped
% ——5p pan orgnal| | 10 o Cosd
120 s Exp pan akat - oTes 03
/ |8 Expensas actwal 0 Designed
7 s 0 Commtied
e ai
20
= 2+
3l Jan06 Febce Mzce Apros Maice ance Juice Augos 0
Jan 05 Fob 05 Mrz 06 Apr0S MalCe Jun0S JulCE Aug 08 Sep 06
Test Progress. Defects
1820 2000
1800 1800
00 1820
:m epsn 190 oo od
1200 = coeod
1000 e==suscasshil - [—j——
80 —8—plan mucosesna | | oo —8— ciceod ost
80 60
0 £
20 20
0 0
» » » o » » » »
TSI LTS FAFF LTSS
& < L B B & & & & & N @ & N N N e @

Figure 20.3 Tailorable project dashboard view with eASEE combining the most relevant

information.

Figure 20.3 shows a tailorable project dashboard that has all necessary informa-
tion on one sheet, namely risks and open issues, budget and expense control, mile-
stone control, earned value tracking, requirements and their respective implementation
status, test planning and tracking, and defects status. Built into the commercial
eASEE PLM tools suite, it receives parts of its data from operational databases and
others from the internal data backbone.' This ensures sufficient data quality to

compare project status across all projects of

! www.vector.com/easee

a portfolio.

http://www.vector.com/easee

Monitoring Cost, Progress, and Performance 159

4 | Used in the corporate scorecard | N

Corporate
Scorecard

n_u

View per business or per location. Key indicators
comprise schedule, budget, quality, cycle time.

J

| Used in business reviews

zg;zegs;ion Aggregation of project and process measurements.
B 5 Collected in history database.

n_

. — -—— From one corporate project portal, all project
Portfolio = e — e

M e information is accessible. Actuals results and
anagement r [original commitments are compared.

-\ Y

Project ('_-r"l /AL | Used in project reviews | h
Controlling ﬁ' LA Raw data from projects’ R&D dashboard is input at
L the Product Line Level)

Figure 20.4 Measurements provide a consistent view on all engineering projects, product lines,
and business units.

Figure 20.4 provides a practical example that we have established for a major Fortune
100 company. The corporate scorecard was the starting point and the necessary links to
distributed operational data were established stepwise with a decent effort on ensuring
data quality by means of periodic reviews, governance, and tool support. This small
example also indicates that different processes such as corporate control, strategy man-
agement, portfolio management and project management are ultimately related. What
goes wrong on one level must be visible on the next higher level—if it is beyond the
acceptable noise level.

Aggregation is not intended for micromanagement or command and control
from the top, but rather to ensure that the same data is utilized across the company.
This has advantages not only on the cost side due to less rework and redundant data
collection mechanisms, but also to ensure that risk management is based on exactly
the same insight into operational and strategic baselines and that decisions can
be tracked one day in case of external investigations. Ensure that numbers are con-
sistent across these different hierarchies. Often aggregation hides insufficient data
quality which is then only revealed when it is too late to improve those underlying
processes.

The single best technology for getting control over deliveries, shared work
packages, deadlines, and other resource constraints is to set formal objectives for

160 Chapter 20 Monitoring Cost, Progress, and Performance

quality and resources in a measurable way [Royce98, Ebert07a]. Planning and
control activities cannot be separated. Managers control by tracking actual results
against plans and acting on observed deviations. Controls should focus on significant
deviations from standards and at the same time suggest appropriate ways for fixing
the problems. Typically, these standards are schedules, budgets, and quality targets
established by the project plan. All critical attributes established should be both
measurable and testable to ensure effective tracking. The worst acceptable level
should be clear although the internal target is in most cases higher.

Effective project tracking and implementation of immediate corrective actions
requires a strong project organization. As long as department heads and line manag-
ers interfere with project managers, decisions can be misleading or even contradic-
tory. Frequent task and priority changes on the practitioner level with all related
drawbacks are the consequence. Lack of motivation as well as inefficiency are the
concrete results. A project or matrix organization with dedicated project teams
clearly shows better performance than the classic line organization with far too much
influence of department leaders.

Quality must be monitored closely because it is typically the first failure point
in any shared or collaborative global project. Phase entry criteria must be defined
and agreed upon in a way that allows for rejection of any subsequent activity if the
component quality is inadequate. Related test process measurements include test
coverage, number of open fault reports by severity, closure delay of fault reports,
and other product-related quality, reliably, and stability measurements. Such mea-
surements allow judgments in situations when, because of difficulties in testing,
decisions on the nature and sequence of alternative paths through the testing task
should be made, while considering both the entire testing plan and the present project
priorities. For example, there are circumstances in which full testing of a limited set
of features will be preferred to an incomplete level of testing across full (contracted)
functionality.

Next to the targeted and achieved quality level, cost must be controlled. The
use of cost control is manifold and must go beyond simple headcount follow-up. In
decision making, cost information is used to determine relevant costs (e.g., sunk
costs, avoidable versus unavoidable costs, variable versus fixed costs) in a given
project or process, while in management control the focus is on controllable costs
versus non-controllable costs.

Avoid complex aggregation of different cost parameters. Instead, use simple
straight-forward key figures to measure and report status of business objectives
and SLA. Ensure that key figures are balanced to avoid local optimization.
Combine key figures that look backward, such as progress tracking, with those
that look forward, such as cost to complete.

Monitoring Cost, Progress, and Performance 161

Often heterogeneous cost elements with different meaning and unclear accounting rela-
tionships are combined into one figure that is then optimized. For instance, reducing
“cost of quality” that includes appraisal cost and prevention cost is misleading when
compared with cost of non-quality because certain appraisal cost (e.g., module test) is a
component of regular development. Cost of non-quality, on the other hand, is incomplete
if we are only considering internal cost for fault detection, correction and redelivery
because we must include opportunity cost due to rework at the customer site, late deliver-
ies or simply binding resources that otherwise might have been used for a new project.

Activity-based accounting allows for more accurate estimates and tracking than
using holistic models, which only focus on size and effort for the project as one unit.
Make sure that your accounting in outsourcing/offshoring tracks the cost or effort
of the major activities, otherwise you will be unable to contain cost and improve
processes. Effects of processes and their changes, resources and their skill distribu-
tion, or factors related to each of the development activities can be considered,
depending on the breakdown granularity. Functional cost analysis and even target-
costing approaches are increasingly relevant because customers tend to pay for
features instead of entire packages as before. Not surprisingly, cost reduction can
only be achieved if it is clear how activities relate to costs. The difference is to assign
costs to activities or processes instead of departments.

All activities that impact the development process must be considered to avoid
uncontrollable overhead costs. Cost estimation is derived from the size of new or
reused software related to the overall productivity and the cost per activity. Although
activity-based accounting means more detailed effort reporting throughout each
project, it allows for a clear separation between value adding and non-value adding
activities, process value analysis, and improved performance measures and incentive
schemes. Once process related costs are obvious, it is easy to assign all overhead
costs, such as integration test support or tools, related to the processes where they
are necessary and again to the respective projects. Instead of allocating such over-
head to projects based on overall development effort per project, it is allocated
related to activities relevant in the projects. For instance, up-front design activities
should not contribute to allocation of expensive test equipment.

While dealing with controlling cost, often the question comes up of which tracking system
is to be used. Most companies have rather independent financial tracking systems in
place that provide monthly reports on cost per project and sometimes even on an activity
basis. The reports are often integrated with timesheet systems and relate effort to other
kinds of cost. Unfortunately, such financial systems are in many cases so unrelated to
actual engineering activities that neither the activities clusters nor the reporting frequency
are helpful for making any short-term decisions. We therefore introduce in such compa-
nies simple project dashboards which provide a look to risks status combined with key
figures with a balanced view on progress versus plans and outlook versus objectives.

162 Chapter 20 Monitoring Cost, Progress, and Performance

Requirements
Estimation
Experience database
Supplier data

>

g
5 @
ES] aS® o
2’3 o2 ¢ree® e
11 v v
g : ! :
2 E o | Approx.3% | |
g 20-30% | change per manth :
1 ! >
! | Time
\ | Current status |
I Tolerance limits i
I~ ~ ! i
~ 1 1 :
—_ ~ |- ‘:
T l100% Tem—m==mi=T
o L - i
5% - :
£Eg .- ! :
de |- ! !
1 | >
! " Time

Figure 20.5 Managing changes in scope and content.

Variance analysis is applied to control cost evolution and lead-time over time
(Fig. 20.5). It is based on the initially agreed set of requirements (or features to be
implemented) and the standard costs to perform a single activity within a process
under efficient operating conditions. We can allocate effort to each requirement
based on up-front effort estimation. With each requirement that is delivered within
an increment, the value of the project deliveries would increase by the amount of
effort originally allocated to the requirement. The reasoning here is that the effort
should correlate with our pricing. This certainly is not reality, however, it is a good
predictor for value generated. Why, after all, should one spend a large part of project
effort on a small marginal value to the customer? If the value of delivered require-
ments is bigger than what was supposed to be invested in terms of engineering effort,
the project is ahead. If it is less it is behind. The same approach is taken for schedule.
Both parameters combined give an excellent predictor for time and cost to complete
a project.

Typically, such standard costs are based on well-defined outputs of the activity,
for instance, test cases performed and errors found in testing. Knowing the effort
per test case during integration test and the effort to detect an error (which includes
regression testing but not correction), a standard effort can be estimated for the
whole project. Functionality, size, reuse degree, stability, and complexity of the
project determine the two input parameters, namely, test cases and estimated number
of faults to be detected in the specific test process. Variances are then calculated as
a relative figure: variance = (standard cost — actual cost) / standard cost.

Monitoring Cost, Progress, and Performance 163

Variance analysis serves to find practical reasons for causes of off-standard
performance so that project management or department heads can improve opera-
tions and increase efficiency. It is, however, not an end in itself because variances
might be caused by other variances or be related to a different target. Predictors
should thus be self-contained, such as in the given example. Test cases alone are
insufficient because an unstable product due to insufficient design requires more
effort in testing.

A major use of cost control measurements combined with actual performance
feedback is the tracking of earned value (see also Figure 20.1). Earned value com-
pares achieved results with the invested effort and time. For simplification, let us
assume that we have an incremental approach in the project with customer require-
ments allocated to increments. Let us further assume that we deliver increments on
a frequent basis, which are integrated into a continuous build. Only when such incre-
ment is fully integrated into the build and tested is it accepted. Upon acceptance of
an increment, the status of the respective requirements within this increment is set
to “tested.” The build, though only internally available, could at any time, with low
overhead, be finalized and delivered to a customer. The value measurements then
increase by the relative share of these tested requirements compared to the sum of
all project requirements. If, for instance, 70% of all customer requirements are avail-
able and tested, the earned value is 70%. Weighting is possible by allocating effort
to these requirements. Compared with the traditional progress tracking, earned value
doesn’t show the “90% complete syndrome” (where lots of code and documents are
available, but no value is created from an external perspective), because nothing
could be delivered to the customer as is.

Chapter 21

Risk Management

Summary: Globally distributed software development poses substantial risks to project
and product management. As companies turn to globalized software and IT, they find
the process of developing and launching new products becoming increasingly complex
as they attempt to integrate skills, people, and processes that are scattered in different
places. We will highlight here some typical risks and provide guidance for risk
mitigation and risk management in global settings.

Globally distributed software development amplifies typical software project and
product related risks, such as project delivery failures and insufficient quality. Worse
yet, it creates new risks, such as inadequate IPR management or lock-in situations
with suppliers. These risks must be identified in due time and have to be considered
together with the sourcing strategy and its operational implementation.

While the classic centralized software development approach once allowed
solving problems in the coffee corner or around the white board, global teams today
are composed of individuals who are culturally, ethnically, and functionally diverse.
They work in different locations and time-zones and are not easily reachable for a
chat on how to design an interface or how to resolve a bug that prevents test from
progressing. This explains that, for instance, only 30% of all embedded software is
developed in a global or distributed context, while the vast majority is colocated.
The reason is very simple. Embedded software poses much higher risk on safety
and reliability; thus companies prefer risk management in their own—known—
environment, rather than adding risk through global teams. How can these risks are
mitigated and thus flexibility be improved?

Risk management is the systematic application of management policies, proce-
dures, and practices to the tasks of identifying, analyzing, evaluating, treating, and
monitoring risk. Global development projects pose specific risks on top of regular
risk repositories and check lists. They relate to two major underlying risk drivers,
namely, insufficient processes and inadequate management.

Not all eventualities can be buffered because in the global economy, developing
and implementing products must be fast, cost effective, and adaptive to changing
needs. Therefore, there is a need to utilize different techniques to effectively and

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

165

166 Chapter 21 Risk Management

efficiently mitigate risks. This chapter systematically introduces risk management
in global software and IT context. Governance and legal regulations play a crucial
role in mitigating risks in global projects. Methods include using basic project, sup-
plier, and quality management techniques, process frameworks (e.g., CMMI), ITIL,
COBIT, product life-cycle management, effective communication processes, SLA
based escalation, competence management, and innovation management.

Most countries today enforce to companies with headquarters in that country or
which are quoted at a local trading places to comply with rules on risk management.
A good example is the Sarbanes-Oxley Act in the United States, which holds the
CEO and CFO of such companies personally liable for providing correct information
about the status of the company and for ensuring that the internal control and risk
management system is working properly. Failing to prove compliance can result in
lawsuits and severe punishment. Offshoring or outsourcing therefore must support
these mechanisms for internal control and risk management. This can be translated
to the following rules:

» Establish and maintain an efficient and effective control and risk management
system which includes supplier management.

* Enforce the internally applicable compliance rules also to suppliers so that
full transparency can be maintained.

* Provide transparency of the business processes and resulting documentation
and work products.

* Document decisions with impact on governance, compliance, and finance risks.

¢ Ensure that industry best practices are followed to effectively and efficiently
mitigate risks, including the supply chain, as it has immediate impact on
finance performance and legal exposure of a company.

The latter specifically applies also for mitigating software product liability risks,
which in some countries can end in very costly lawsuits if, for instance, products
create risks to public safety or health, or even have already caused damages. From
a legal perspective, best practices translate into applying international standards such
as CMMI, COBIT, or ITIL, consistently and in a way that can be easily audited.

Governance and compliance are the personal responsibility of a CEO or manag-
ing director and his finance deputy. It is enforced by a set of processes and checks,
including periodic external audits.

Based on many projects, we have established a global software and IT risk top-ten
list. Depending on the specific layout of global software and IT (e.g., with or
without external supplier), the ranking list of these top-ten risks is as follows:

@ Project delivery failures; insufficient quality; distance and culture clashes; staff
turnover (mostly for captive centers); poor supplier services (only for outsourced
development); instability with overly high change rate; insufficient competences;
wage and cost inflation; lock-in (only for outsourced development); inadequate
IPR management.

167

Risk Management

High

Risk and impact
on own business

Low

Specialists

on-site

Tasks allocated
offshore

Maintenance
projects

Business
process

Development
projects

Low

4. Flexibility : JIT

organizational networks.

Risks:

» Poor supplier
services

> Lock-in

> Distance and culture
clashes

3. Talent: Race for skilled
people. Value creation

happens where the skills

are.

Risks:

p Staff turnover

» Insufficient
competencies

> Wage and cost inflation

High

Scope of distribution
Figure 21.1 Business risks depend on the degree of distribution.

1. Efficiency: Speed to

profit ahead of
competitors.

Risks:

» Project delivery
failures

» Insufficient quality

. Presence: Global growth

strategy.
Learn from new
markets.

Risks:

» Instability with overly
high change rate

» Inadequate IPR
management

Figure 21.2 The top-ten global software and IT risks and their underlying drivers.

Figure 21.1 shows the relationship of business risks on the scope of the distribu-
tion. The broader the scope, the bigger the business risks for the client.

These risks can be clustered according to major drivers which then allow select-
ing the most adequate mitigation strategy. Figure 21.2 shows the top-ten risks sorted
on the four major drivers for global software and IT.

We will now have a closer look at these risks and identify specific mitigation
patterns [Ebert08]. Our empirical research provides data from a longitudinal study

168 Chapter 21 Risk Management

across close to one hundred projects and products of different size and managed
either in captive or distributed mode. We can highlight with this data that specifically
early indicators, such as requirements change rate, early defect removal and skill
level, key risks related to project performance, and attrition can be effectively
mitigated.

Project delivery failures. A standard risk for many projects, the risk of being
late or over budget, amplifies in probability and impact due to the intrinsic difficul-
ties of managing a global development team.

As mitigation, project and team managers must be educated in estimation, plan-
ning, dependency management, uncertainty management, project monitoring, and
communication. The latter is crucial as experience shows that projects fail not
because of unknowns, but because of not willing to know or to communicate known
facts [Ebert07a, Hussey08, Rivard08].

We have seen from ramping-up internal software teams in Eastern Europe,
India, and China that solid processes not only accelerate introduction of outsourcing/
offshoring but also serve as a safety net to assure right training, good management
practices, and so on. We conducted a controlled experiment when ramping up off-
shore development teams in China. Our experience was that the building of such a
globally distributed development team was fastest and most reliable in the case
where the demanding organization was on CMMI maturity level 3. The same was
done with lower-maturity demanding organizations with the effect that the CMMI
maturity level 2 organizations could manage with some external support, while the
maturity 1 organization failed due to highly inefficient interface frictions and lots of
rework. For companies in the IT service domain COBIT and ITIL enhance CMMI-
SVC toward basic service processes and risk management.

We recommend maintaining an organization-wide risk repository with all
project risks together with identified mitigation actions. At the start of a new project,
the project manager has to take this organization wide risk repository and check
what specific risks are applicable to his project together with any new items. The
second, a more medium-term approach, is to train all project managers. Using the
CMMI or COBIT and certifying in professional project management is an effective
mitigation.

Another important and easy mitigation action is building on past project experi-
ences. The key parameter for project success is schedule adherence. We suggest
doing a periodic root cause analysis (RCA) on completed projects to identify the
key issues that contributed to delays. On these issues we can do a Pareto analysis
to define focused actions for the most critical and repeating issues. Figure 21.3 shows
the impact of project delivery risk mitigation indicating a clear reduction in spread
of schedule deviation over years, as we increasingly apply our learning from previ-
ous projects toward future projects.

Insufficient quality. Working in different places or with teams in different
organizations means, that many work products are moved across such places and
teams with the risk of insufficient quality. Often the underlying rationale is that teams
suppose that there will still be sufficient validation “downstream” so that quality
deficiencies accumulate.

Risk Management 169

Percentage of projects
80%
Target zone: 100% - 110%

60%

40%

20%

, ")
0% : ™ —
60% 80% 100% 120% 140% 160% 180%

- - -2005 — =—2006 2007| Schedule adherence

Figure 21.3 Improved project performance in terms of schedule adherence.

Many global development projects suffer from a “ping pong” approach of work products
being thrown back and forth due to poor quality. These stories repeat each other—
independent of countries and culture. The designer in the Mexican team claims that the
U.S. specification was not good enough, while the integration tester in India kicks back
the product because Mexico again delivered insufficient code quality.

The major risk mitigation to such repeated rework and increasing mistrust is to
force quality gates on work product level. A work product is only accepted if it has
the right quality level. Incoming work products are inspected at least in samples to
check consistency and quality. Service level agreements and responsibility assign-
ments reduce the “ping pong” effect because at the least it is clear who should do
better.

We look to early defect removal (EDR) as the measurement of defects found
before the start of the test compared with total estimated defects and compare it with
upfront-defined threshold [3]. It will provide warning signals so that corrective
actions can be initiated well before the product becomes due for delivery to customer.
Having worked with this concept over many years in different companies, we observe
a strong negative correlation of —0.9 between mean EDR and mean schedule adher-
ence for a set of around fifty projects in the timeframe of 2004-2007. Figure 21.4
shows this trend over four year period which indicates that EDR is indeed an advance
indicator to reflect on quality, and thus schedule variance of the product.

Distance and culture clashes. Globally distributed software development is
highly impacted by work organization and effective work split. Working in a globally
distributed project means overheads for planning and managing people. It means
language and cultural barriers [O’Hara94, Hussey08, Sangwan(7]. It creates jeal-
ousy between the more expensive engineers being afraid of losing thi¢ir jobs, while

170 Chapter 21 Risk Management

Early defect ratio versus schedule adherence

'\; 140 T T 90 —_
< 130 180 R
8 170 0
§ 1207 160§
$ 110+ oo &
: T R
7 100 140 8
o 90T _ L33
= Correlation: r = —0.9 o
§ 7 122
5 0T 710§
? 60 : : : 0
2004 2005 2006 2007
== Schedule adherence (%) EDR

Figure 21.4 Optimizing early defect removal in global development contributes to improved
schedule adherence.

they are forced to train their much cheaper counterparts. The barriers to such har-
monization and cooperation are not to be underestimated. They range from language
barriers to time zone barriers to incompatible technology infrastructures to hetero-
geneous product line cultures and not-invented-here syndromes. An obvious barrier
is the individual profit and loss responsibility that in tough times means primarily
focusing on current quarter results and not investing in future infrastructures.
Incumbents perceive providing visibility a risk, because they become accountable
and more subject to internal competition.

As risk mitigation we recommend collaboration and communication. Collaborate
across disciplines, cultures, time, distance, organizations. Communication starts
before the outsourcing/offshoring project is kicked off. Fears, hopes, barriers must
be articulated. Assess your organization carefully on such distance and culture risks.
This demands a fully new skill set, currently not taught at universities (e.g., manage-
rial, teaming, sharing without losing) [Sangwan07]. Cultural sensitization, periodic
workshop between clients and suppliers, and networking between various teams has
been the effective risk mitigation strategy. Provide space for engineers to share their
emotions with team leaders openly. Establish early warning systems to detect upcom-
ing barriers and fears.

Collaboration also means effective and efficient tools support. The exchange of
information between sites must be carefully planned. The closer tasks and software
components are linked, the more need for good data communication. Tasks with
high overlap should not been done with too much time distance. Especially with a
high work time overlap, online collaboration has high demands on fast, reliable
quality of service for video, engineering tools and online collaboration. A change
management tool is not enough because engineering demands collaboration on
content and knowledge. Plain supplier management platforms as they are offered
today for handling online market places and tenders are also insufficient due to their
limitations in sharing engineering information. You will need rules and workflow
support for documentation, design reviews, change management boards, and so on.

Risk Management 171

Team Performance
Team Motivation

A » Enhance team
» Community scope
» Communication _ Puilding s
s » Revise roles, cesses, tools
responsibilities > Knowledge :
» Clear goals and transfer Performing

expectations » Negotiate to
» Initial team win-win
building

Norming

Storming

Forming

Time *

Figure 21.5 Build and maintain effective virtual teams.

We strongly recommend addressing team performance and motivation in virtual
teams from the very beginning. Figure 21.5 shows phases of virtual teams and
actions to be taken to mitigate motivation and thus performance risks. Problems and
defects will be addressed more quickly, and the “throwing over the fence™ mentality
is reduced.

Staff turnover. This is a specific risk especially in Asian countries due to abun-
dant job opportunities in the respective economies. It is a generic risk whenever
outsourcing/offshoring has no clear integration with an organization’s overall engi-
neering strategy and career paths, such as having a nearshore maintenance organiza-
tion within a software company.

Regarding attrition, we have to apply two parallel mitigation strategies. First, it
is clear that attrition in certain places of the world is higher than, say in Western
Europe. So we have to cope with it and prepare to learn and live and deal with attrition
in advance. This means advanced planning of buffers, long-term retention mecha-
nisms such as loyalty bonuses, and so on. Buffers could be foreseen if engineers’
unavailability exceeds certain thresholds. Note though that such buffers immediately
impact the bottom line and should be carefully pooled to serve several projects.

Second, we should measure attrition and its impact factors in order to control
and limit staff turnover. We recommend conducting periodic employee engagement
studies from which we can learn and improve the working environment, which shall
limit attrition to manageable levels. Based on surveys we then look into specific
incentives to keep people, even in times where stock options are not the preferred
instrument. For instance, international career paths and excellent individual develop-
ment skills reduce attrition.

Poor supplier services. One frequent risk with third-party suppliers is not
meeting the expectations in terms of quality and delivery schedule. SLAs won’t help
because once this point is reached, even escalation will not help much, because it
will take too long and the product or service quality is already hampered.

172 Chapter 21 Risk Management

The primary mechanism for risk mitigation related to insufficient supplier ser-
vices is to carefully evaluate one’s own processes and those of potential suppliers—
before engaging into global software engineering and IT.

As a client you should always consider the golden rule of supplier management:
You pay for what you get.

Don’t get trapped in contracts that look “cheap,” but later incur extra cost due
to weak processes and insufficient delivery quality. Preconditions of any successful
supplier management are good processes on both sides, that is, for the client and the
supplier. Insufficient client processes cannot be externalized. They will not scale up
from a single site to several sites. Often those low-maturity processes can be handled
in localized development without many overheads due to colocated teams, but will
fail with globalization. From our experiences we recommend having a CMMI
(development and acquisition) maturity level 3 on both sides, for all impacted engi-
neering and sourcing processes. Additionally, for companies in the IT service
domain, COBIT and ITIL are helpful regarding basic service processes and risk
management.

When still in preparation mode, negotiate for a fixed project cost, where price
is fixed and linked to deliverables with specific quality targets, often including
penalty clauses. A fixed price project will make the supplier proactive for perfor-
mance as payment is linked to quality deliveries and not time spent. Though gener-
ally fixed price is at higher cost compared to time and material at the contract
negotiation stage, our lesson learned is at the end of the project, it turns out to be
generally 10%—15% less costly than comparable time and material projects.

Supplier management includes clarification on non-disclosure and related agree-
ments before starting negotiation. Establish clear acceptance and liability rules fol-
lowing contracting and legal schemes of your headquarter base. For maintenance
projects they also include clear SLA in terms of response time, solution time, per-
centage of return failures, and so on. Set up clear and measurable service level
agreements. Ensure that this SLA contains all that matters for you in the contract.
Insist on periodic reporting according to the SLA. From the beginning, define thresh-
olds that establish when and how insufficient performance will be escalated. Measure
supplier capability or demand such measurement based on industry standards, such
as CMMI. Relate value you receive from suppliers to the risk and cost of the deliv-
ered services or components. Implement contract evaluation after each single project.

Consider sufficient time and budget (resources) for training the supplier on your
processes. A very strong training tool is the scrum process with short team meetings
every day where recent results and next steps are briefly reviewed. Any uncertainty
should be brought up in such reviews, which should take not more than 15-30
minutes and can be conducted even by telephone conference across sites. Build a
supplier program management to handle the necessary review and decision pro-

Risk Management 173

cesses. Agree with your supplier review and acceptance processes to assure the right
quality level. Installing such processes after the contract signature will create the
perception of policing the supplier. You can ask third parties in case of questions or
needs for escalation.

Instability with overly high change rate. Frequent changes create extra cost.
Often, being present in different markets with individual engineering teams means
that each of the teams examine the needs of the local market. When products and
features are assembled, inconsistencies appear which cause late requirements
changes. Global development amplifies such requirements engineering weaknesses
that have, in most companies, long been present but could be camouflaged due to
colocated teams. If specifications are insufficient, a remote team will either misun-
derstand or not accept them.

As a mitigation, outsourcing/offshoring demands more reliable requirements
and change requests. We recommend enforcing a rigid roadmapping process that
provides sufficiently early insight into feature evolution and release planning. Teams
will appreciate it with more anticipation and design for change. Global development
demands more communication than colocated development. Specifications and
documents must be carefully reviewed, because engineers on the other side trust to
what is written. Establish for all distributed work packages a baseline and configura-
tion management based on defined and proven quality entry criteria. The expecta-
tions and deliverables in terms of effort, deadline, duration, and quality levels are
to be clearly documented and agreed.

We observed that the number of changes to the requirements are highly (negatively)
correlated to the content adherence, defined as percentage of features delivered at the
end of the project to that of original required features at the start of the project. The
correlation coefficient which we use as an early risk indicator and thus lead indicator for
risk mitigation actions is -0.99 for a set of around fifty projects in the years of 2004-2007.
A possible way to mitigate the risk of uncontrolled requirement changes is to closely
monitor the requirement change index (number of changes to the features divided by
total number of features required at the start of project, expressed as percentage). Figure
21.6 shows how content adherence is related to requirement change index over years.

Insufficient competencies. This is a risk in each development project; however
it is amplified by the bigger dependencies given the globally distributed team com-
bined with less visibility on resource planning and skills availability.

For mitigation we recommend assuring global competence management and
resource planning (e.g., with a multi-project management tool such as Primavera or
similar) and a skills management on the level of detailed technical skills necessary
for the projects. Note that competence management is not the same as above men-
tioned attrition management. It is, however, a necessary condition to reduce
attrition.

174 Chapter 21 Risk Management

Requirement change index versus content adherence over years
(correlation = —0.99)

S 80T —120
50T 1100 &
2 60+ 8
§, 50 + + 80 5

1 1 2
g 40 60 5
5 30T +40 E
£ 20 + =
% 10 + T2 8§
x 0 t } t 0

2004 2005 2006 2007

== Requirement Changes (%) =—#==Content adherence (%)

Figure 21.6 Improved content adherence when managing risks and uncertainties with requirements.

We recommend managing competency needs in parallel to technical and project
roadmapping. It is a strategic task in the hands of engineering management, not HR.
Organizations spend huge effort in training employees but often does not correlate
whether the training and improved skills reflect the business needs.

In our case study we have converted the overall team’s competences and skills range
into a single measurable number by linking available competences and skills and normal-
izing with required business needs. This single index is monitored for improvement. A
direct consequence of skill management is enhanced retention of employees. We observed
a strong negative correlation between skill index computed during one year and that of
team’s lead attrition, that is, attrition of the teams in next year. Figure 21.7 shows the
strong influence of team skill index measured at end of 2006 with that of full year attri-
tion in 2007. The correlation factor within a community of close to 1000 engineers is
-0.85.

Wage and cost inflation. With the global fight for software engineering talent,
wage inflation is a major global software engineering and IT risk. For instance, sala-
ries in India have increased by a double-digit percentage per year during the past
ten years. The annual increase in most Asian countries is around 10% [McKinseyOS,
BCGO09, Worldbank11].

The primary mitigation is to carefully consider which regions to utilize and to
make a profound business case and cash flow planning taking into consideration
expected wage increases in different regions of the world. Where external suppliers
are involved, evaluate upfront their business models and past cost evolution.
Determine upfront which supplier size fits best to your own company size and

Risk Management 175

50% 1
40%
30% A

o/
20% Correlation: —0.85
10%

ol m R s
_10% -1 Team1 Team2 Team3 Team4 Team5 Team6 m7

—20% T
-30%
—40% -
Figure 21.7 Achieved skill index and attrition in subsequent year.

mean of all teams

Attrition compared to

m Attrition of team compared to average of all teams
Skill index of team compared to all team average

structure. A big supplier with a small enterprise won’t fit, because the SME will not
have the chance to make corrections once the contract is settled. Evaluate offers
during the tender of a supplier contract with dedicated estimation tools such as QSM
SLIM to compare and judge feasibility [Ebert07a].

Lock-in. With outsourcing/offshoring supplier competition on a global market,
external suppliers often start with rather low rates, and, once the projects are suffi-
ciently large, clients might be forced to lock-in with them due to progress of product
development and knowledge transition. In the least we may have to face increasing
cost inflation.

The primary risk mitigation is to have multiple partners and distribute critical
knowledge on two sources. Each one shall know that we have a choice to make and
that will make the external suppliers to remain competitive. To improve efficiency
and reduce effects of lock-in, global teams must use the same tools, methods, and
processes. It is worth the extra money for tools licenses, although in a low cost
country the additional load on engineering cost can be 10%—20% for the necessary
design tools. Our recommendation is to avoid supplier-specific and ad hoc tools as
they won’t scale up and can bring substantial issues if backups cannot be restored
or contents are corrupted. Process improvements and best practices gained over
years of experience in one engineering team need to be replicated quickly, in other
engineering teams. Common processes and tools across engineering teams will
benefit quick spread of lessons learned/defect prevention actions across teams.

Lock-in goes beyond suppliers. Do not forget about risks related to certain
regions of the world, where you might currently be locked-in. We also recommend
maintaining flexibility in where you work and with which supplier. Instabilities can
be caused by political turmoil as well as earthquakes, civil war, or terrorist attacks.
Don’t put all your global development into one single site. Consider distributed
hosting of infrastructure and backups. Periodically test the restore mechanisms to a
different new site.

Inadequate IPR management. Intellectual property rights are a key success
factor in software development. Mostly, software is not patented and copyrights are
not enforced equally in all regions of the world. Further risks are related to improper

176 Chapter 21 Risk Management

use of external software (e.g., OSS) and careless handling of confidential informa-
tion (e.g., leaving contracts at printing shops).

As mitigation, make sure that the intellectual property is well-secured. Divide
key assets into pieces and provide only fragments to each global team. Share accord-
ing to strategic relevance. Reinforce copyright protection for external sources. A
GPL-protected component included with your product might force you to fully
disclose all the software of the product. This can be handled both on policy and
architectural levels. Most relevant, however, is that your teams get trained in copy-
rights and specifically on the traps related to open source software. Install and
enforce effective policies for confidentiality, copyright protection and intellectual
property handling and train all software engineers and managers on it. Rigorously
punish wrong-doing and unprofessional behaviors in this critical domain.

At the same time, do not underestimate the potential of new teams to explore
innovation. Creating awareness of how to identify IPR and potential patentable
ideas, on-line forums to share ideas, and voluntary moderators to guide raw ideas
into potential patents is something that is not to be ignored.

Figure 21.8 shows how distributed teams have generated the patent proposals after
awareness training and workshops are conducted in 2006 and 2007, respectively. The
correlation between training and workshop timing and the number of idea generation
can be seen as quite strong; indicating the huge effect such awareness has on protecting
IPR in global software engineering and IT.

Not all of the above risks and suggested mitigation actions may be applicable
to all organizations and scenarios. Wage and cost escalation will not be an issue for
growing teams, as generally new recruits are at a less cost than existing average and
per head cost will come down, even if wage cost is going up. Professional training
like certification of project managers increases the risk of attrition due to better sell-

Number of patentable ideas generated over 2006 & 2007
25

IPR
training
Q2 2006

Patent
workshop in 19
Apr 2007

20+

154

o\
J N\ P

U T T T T T T T 1

Q12006 Q22006 Q32006 Q42006 Q12007 Q22007 Q32007 Q42007
Figure 21.8 Impact of IPR training on patent generation and thus IPR protection.

Risk Management 177

able skill level in market. Long-term retention methods for attrition management
will itself contribute to the risk of wage escalation. Similarly, the strong correlation
observed between skill development and attrition might not be a universal phenom-
ena, or there might be other overlying attributes impacting attrition more strongly.
We recommend that organizations make an internal analysis to fine tune their
approach.

Risk mitigation happens all along the life-cycle. It is not enough to once identify
risks and then keep an eye on the repository. Risks are dynamic by nature, and
so must be their mitigation.

As a general rule for risk identification in a specific environment, we recom-
mend setting up undesired scenarios, evaluate their probability to occur and decide
for some 10-20 of those scenarios to take dedicated mitigation action. A majority
is mitigated inside the global development project (e.g., common tools), while only
a few must be part of the corporate risk strategy (e.g., handling supplier defection).
Organizations should not worry about the number of 10-20 scenarios. They repeat
in each of the organization’s respective projects and will build a kind of checklist
with dedicated and organization-specific mitigation strategies that are reused in each
new project. Figure 21.9 shows typical checklists as they are used throughout the
life-cycle to re-assess risks and to follow their mitigation.

*3[0K0-3J1] Ay SS0IOE Juswaeurw SR 6 7 2INn31]

k k Zuswabeuew diysuopelas &na:w ay)eAes| sjuaoJeyooad A &2@& u-400] & ploAe nok [immoH (@
2Unm anoidw o) kem Aue sisyys| @ ww US||0 JUBAS|SI BI0W PUE 2anpnadwod
Bupjiom enuguos o) senddns sy sl s| @ 2.|ddns mau ueb fusoas seyddnsayipla B s80IAJes 10} pepuewsp ssoud ary (@
Zpanosduy aq 0} pasu Aq pesodoud ase sjuswenosdwi yoym @A Jussiom Jajddns Juaions z_..!oaw pue
sasseooid — [enjnwi Jo umo —YdluUM @ ZPBMojjo} pue 8y} Jo uogenys [epUBUY Yl Se0d (A ainonJsequ) 1| ‘seoepusiul ‘'sjoo} 8y A
ZUO[E2JUNLILIOD pa|leIsu| swsjueyosw souewanob ary (@ Juojjejeoss 2Auedwoo noA pue nok oy
anoudwi 0} sapiiqissod asey) aly A Zpapsajoid Apuspluns Jo junowe Bujseasou ue ssey s| A s|qeydeooe sjujensuco |ebs) sy aly [
Ziuswal w dysuopejal Apedaid [emosyeul pue Aunoes s| [LBAlou)sal pue Joexa Asao Zsuopesylenb jewio)
anoidwi o) sepiqissod aley) aly [A Zpajusius|du) VIS 8y 1eudus)u 18y ddns s seo @ || Aesssosu sy aaeyJelddns sy seoa [
sjenbape usaq sesseooud pue spiepuels peaibe sy @ Zsjuawainbal szguou 288|uedwod Jussyip Wwoy
uogedso|e yse} pue s_nw jomauyseH [A Zpejebpiw are -81 0) puewsp Ja|ddns sy seog [siaquisw Uym swies) sbeuew syued [
Zwes) umo ok Aq SYSU YOIUM £2ZIeUa)ew SYSU Yoy, A Zuswebeuew Jojuss ia)ddns Zswes) hcoEno_gmo
pajsabibns ale sjuswanoidw) iy @A Zajenbape sypnpol M JOBJUOO paonpal a1auy) A 1eqo|b sjpuey Jeiddnsayiuey @
Zpajebjyw usaq saey HI0M JO Jusjuod pue Jsod ‘Auenbs; & 2obeiane anoqge sjoefoid ano, 2 spaau Jnok
SYSH UDIUAM ZPaZIRUalew SysU UdluM A 21day uo sseaujbua Jo sjes Jero-wim s] [@ || Aumew sseooud pue sesseooidoa (@
ZaAoidw) 0} mOH 8npayos pue }soo pajebpng ey ey (@ Jpajpslal Apuanbaiy usaq Jslapjoyaleys
£S8JeWISa UM 8u)| U] UBsqlIoya seH [A Zuenaid seiqessAlep)8 ‘sucjeapoads ‘sindul eneH [syl pue Jejjddns ey} s| 8|qEISMOH [
Zs|aAs] Ayjjenb pue ys 0} siens) Aygenb peaibe aiy [P8JEDJUNLILLICD JOU 8JE YIAYM ZsIBAouin}
Buipioooe ussq seiqeIsAlep |l 8AeH [Zens| E%._ uo espadxe [eoluye) S| A SeNss| pue sandlIp 818y 8y [A 10 uBi| ul peBeuew s|ys sleMOH A
BENT pas.fe se 21dey buisq 2Buyiq ssyddns iy
usaq SJueJ)Su0d pue seARoalqo sAeH [||eIgeleae sieauiBus pue s|ips JuBu ey (A jou sjuswisaibe [enpejuod By [A S80p ssouaJajel pue asiyadxs Jeup (@
Zpayllenb Ajusioyns seyddns syy sem @ 4S9|qeian|ep pue 8=o§u_s ¢sebueyo 2ujeBe) op noA pjnom pue
paaibe o) Buipioooe ssaiboid sy (@ |elojABYSq USppNS aley) 8y @ Jeiddns sjyy yumouom seae noApia @A
(sdd) @2s paloid
000} 00k oL .._m.::__
10t L I =|ID__I.—
] wope musky
g I Y Rl ._._h__:. QDA
o] i | [e | e
5 014) P N T
m E -._n-_n_.a__ slvfefe]s
& ool Fhhun o s
Hoye psfoid me zona sy
1 1 1
1 1 1
1 ! 1 1
judwabeuew ! | | “
1 1 1
diysuonejau | uoIINDAXD ! dn-dweus pue | Abajeuays “
1
pue uonenjeay 109[0.1d | uoneniug | Buidanos |
1 ! 1 1
1 1 1

178

Chapter 22

Practice: Risk Assessment in
Globally Distributed Projects

Adailton Lima and Alberto Avritzer, Siemens

Summary: In this case study we present a technique used to assess schedule risk in
globally distributed industrial software projects. To support the case study we
analyzed two and a half years of quantitative project data and we obtained team
productivity measurements as a function of project site and feature applicability
domain. We supplement the quantitative data with a questionnaire that was used to
generate qualitative data. The qualitative data is useful, as it helps to identify
communication delay and domain knowledge as some of the factors that could explain
the observed differences in site productivity.

BACKGROUND

To support our analysis about the main aspects related to project risks, we performed
a systematic literature review of project practices and lessons learned from globally
distributed projects. The analyzed project was distributed over five sites, two in the
United States, two in Europe, and one in India, had more than three thousands
requirements and nearly one hundred and fifty developers. Each site has one or more
development teams, and the project has 11 teams in total. Our data set contained
nine short project releases, spanning twelve months of software development and
software integration testing.

Several studies on global software engineering have identified some common
aspects that can affect product schedule, such as [Alberts08, Ebert06, Hillegersberg07,
Hussey08]:

 Cultural differences
e Many distributed sites

* Different knowledge expertise and domains

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

179

180 Chapter 22 Practice: Risk Assessment in Globally Distributed Projects

¢ Many communication dependencies

* Time zone differences

* Loss of internal knowledge or innovation

* Potential breach of security

* Potential for poorer quality

* Quality deficiencies that are not recognized on time

* Lack of management availability to address project issues.

Global software development characteristics have a significant impact on software
cost, product quality, project schedule, and developers’ productivity.

We have extracted quantitative data from the project management database of
the large globally distributed software development project under study. We have
also interviewed project leaders and developers to balance quantitative and qualita-
tive data in our analysis.

The project management database contained feature productivity data per
project site, and feature domain of applicability. The extracted information we used
as an input to the feature productivity model were:

* Requirements list

* Expertise of the involved people

* Relationship between features and requirements
 Sites/teams location

» Estimated time required for feature development.

Four members of one of the U.S. teams were also interviewed. One member
was the project manager, the second member was the lead project architect, and two
other members were integration testers. They all worked at the U.S. site throughout
the project. The two testers worked as part of the integration test team, responsible
for testing components delivered by different teams from around the world.

According to the interviewers of the testing team, their work was heavily
impacted by the different knowledge expertise and the many communication depen-
dencies they had with the different development teams they interacted. It was also
reported that these problems were closely related to the project schedule and the
quality of the delivered products.

We have conducted a systematic review with the goal of investigating general
heuristics that are usually applied to globally distributed software development
projects. This information was useful to help the definition of the heuristics imple-
mented on our schedule risk assessment model.

Background 181

Define common processes and tools

Maintain synchronized milestones k \
Avoid the distribution of highly dependent tasks e
Define liaisons to travel along the distributed sites ™~ NA

Knowledge
Management

Provide open communication over multiple {\\ ~

ary
channels ~ \f Process Definition

Provide communication directly between requester \
and source of information ?~ NN

Create a message board or Wiki to reduce ~ .
L Communication
communication delay

/

Create a special tag for urgent communication
needs

Y

Adopt a frequent rotation of tasks between sites ¢

Figure 22.1 Risk domains and project heuristics in global software and IT context.

The systematic review followed the process defined by the Kitchenham
[Kitchenham04]. We defined a query string to formally search for the bibliography
related to our research goals. We applied the following query to the IEEE database:

(Project AND (Management OR Assessment OR Control OR Monitoring)) AND
(“Global Software Development” OR “Global Software Engineering” OR
“Distributed Software Development” OR “Decentralized Software Development”)
AND (Practice OR Lesson OR Heuristic OR Recommendation).

We obtained an initial result of 205 publications. We filtered each result by first
reading the study abstract and then reading the full text of the studies that passed
the first reading step. After reading the full text we selected 17 studies for this study.

Figure 22.1 shows the relationship among the risk domains and the main heu-
ristics extracted from the reference studies. These three risk domains (knowledge
management, process definition, and communication) were obtained from the data
retrieved by our studies.

As an example of knowledge management studies, DeSouza [Desouza06] pro-
posed a classification of different distributed knowledge management models, trying
to help organizations decide on the best way to manage knowledge over different
sites. The study by Boden and Avram [Boden(09] quotes one particular case in which
two teams worked together for 6 years without distance being an issue for the project.
The authors reasoned that the basic problems of expertise search and remote com-
munication were not critical to these teams because the teams knew each other.

An interesting study by Nguyen [NguyenO8] analyzes a case in which com-
munication was not considered a big issue for the project because project members
made good use of collaboration technologies to support distributed work. This prac-
tice insight corroborates with the statement of Herbsleb [Herbsleb05] that projects
should not have bottlenecks for communication and that direct communication

182 Chapter 22 Practice: Risk Assessment in Globally Distributed Projects

should be made available between the producer and the consumer of information.
As reported by Gotel [Gotel08], direct communication is necessary, especially on
the integration phase in which developers and testers should have intensive com-
munication to solve the inevitable problems introduced by code integration. For
example, Phalnikar [PhalnikarO9] reports that the creation of a message board or
wiki to share similar questions can improve project communication and avoid basic
problems.

Regarding the process definition studies, the most common strategy reported is
the definition of common processes and tools over the different development sites.
Project managers applied this strategy when faced with global coordination prob-
lems in the software development process [Ebert08, Mikulovic06, Herbsleb05].
There are also recommendations related to the execution of project activities, like
the definition of strategies to conduct remote meetings and the practices to be used
for configuration management of the shared project workspace.

Global software development projects must rely on decentralized control mech-
anisms to provide adequate support for the remote coordination among sites
[Hillegersberg07]. Source code measurements can be collected and analyzed to
provide an overview of the software development status [Kuipers03, Kuipers07]. A
manager can use these measurements to support project management decisions
based on development and testing information processed by their tool.

Project risks can be assessed based on positive and negative project risks drivers
[AlbertsO8]. Risks drivers are collected on the target project and a risk assessment
algorithm is applied to calculate project risk. The main contribution of this method-
ology consists of the risk drivers that can be added to support globally distributed
software development projects.

We are not aware of any tool support to automatically perform risk assessment
of globally distributed projects using statistical project management data. In addi-
tion, project factors such as communication and coordination requirements may have
strong impact on globally distributed projects.

We have adopted a simulation approach for the risk assessment of schedule risk.
This approach allowed for the creation of a high-level simulation model for the
assessment of project behavior as a function of the following parameters: software
development process, team productivity, and communication requirements. The
simulation tool was used in the following two steps of our investigation methodol-
ogy: first, we ran general simulations to look for project schedule bottlenecks;
second, we reduced the search space selecting specific points to compute the project
schedule risk measurement.

Domain knowledge variability and team communication are important factors
to consider in schedule risk assessment models of globally distributed software
development projects, where features are outsourced to sites that may have less
knowledge about the applicability domain. The experimental study was conducted
by a series of stochastic simulations based on a model designed using the Tan gram-
II tool [Silva06]. This tool allows the creation of event-based models, where the
interval between events is determined by stochastic data. Figure 22.2 shows the
graphical representation of the simulation model, representing the feature allocation

Background 183

(%]
[0)
—
=]
2
(]
()
(T8
A
|
|
|
| . .
; Communication channel
|
|
|
\4
(2]
£ g Tasks queue
©
()
L
Site B

Figure 22.2 Simulation model with global view.

to sites, the communication among sites, and the queuing of features for develop-
ment resources.

We have extracted quantitative data from the project management database of
the large globally distributed software development project under study. We have
also interviewed project leaders and developers to balance quantitative and qualita-
tive data in our analysis. The project management database contained feature pro-
ductivity data per project site, and feature domain of applicability, for nine short
project releases.

The simulation model was designed to represent an abstraction of a group of
development sites interacting during the software development process. Each site
has its own domain knowledge capabilities and a set of features that have been
allocated to the site.

The simulation model was based on the characteristics listed above, and con-
tains the following features: feature request at each globally distributed site, feature
development time at each globally distributed site, domain knowledge per global
site, queuing for development resources, estimation of reduced team productivity
due to queuing and communication overhead, and estimation of the project schedule
risk. The stochastic model makes assumptions about the probability distribution of
factors that are easier to obtain, like the time to develop a feature, the communica-
tion pattern between sites, and the pattern of feature allocation to sites.

Our simulation model computes the reduced team productivity due to the com-
munications overhead and queuing for development resources. The project schedule
risk is computed by executing the simulation model and extracting statistics about
the number of times the simulation resulted in project delay. For example, if we run
the simulation one hundred times and obtain as a result that the project was delayed
ten times, we define the schedule risk as 10%.

184 Chapter 22 Practice: Risk Assessment in Globally Distributed Projects

Team Number

T T T T T T T

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Proportion of Allocated Features

Figure 22.3 Fraction of features allocated to each site for the eleven development teams.

The main assumption in our approach is that the arrival of features to sites, and
the probability distribution of the time required to develop a feature at a certain site,
can be approximated using stochastic methods with sufficient accuracy to support
project management planning tools.

We extracted the following statistical information from the project database:
feature domains, feature allocation, team productivity, and productivity by feature
domain. Figure 22.3 shows the fraction of features that were allocated to each site,
for the eleven development teams involved in the project.

We can observe that team number one was responsible for over 24% of the total
number of features. We considered this team as critical for the evaluation of project
schedule risk. The software development process used by the analyzed project is
composed by a series of development tasks and one integration test task at the end
of the software development process. One team that is responsible for testing the
product integration and functionality executes this final task.

The testers of the studied project have reported that the centralization of project testing
and integration became a bottleneck resource for the project, because of communication
and synchronization problems. Therefore, it is very important for project managers to
assess how the testing centralization may impact project schedule risk.

The main goal of the experiment is to analyze how the project schedule risk can
be minimized. The simulation model has the following parameters that can be varied
to analyze their impact on schedule risk behavior: total project time, development
productivity for each site, test productivity for each site, communication probability,
and feature allocation rate.

We ran simulation experiments to analyze different ranges of values for each
analyzed characteristic following the first step of the experimental methodology
described earlier. For example, Figure 22.4 represents the result of a series of simula-

Results 185

100%
80% 89%

60%
40%
20% 21%

0% , A . .

0
T T T T
0% 10% 35% 38% 40%

Communication Probability

Schedule Risk

Figure 22.4 Relation between communication probability and schedule risk.

tion runs to evaluate the schedule risk behavior along a range of different probabili-
ties of communication. We observed that the schedule risk increased as the value
for the parameter communication probability was increased from 30% to 35%. When
the communication probability parameter reached the value of 38%, the schedule
risk was evaluated as 100%.

@ Schedule risk in distributed development mostly occurs due to coordination and
communication bottlenecks on critical steps of the development process.

We have also evaluated critical values for the test team productivity and the
productivity of team one (quoted as the main development team on Figure 22.3).
For each one of these cases, we obtained three critical values to be evaluated on the
second step of the experimental methodology.

We have structured the initial simulation results using the Latin squares tech-
nique for experimental design. This approach allowed us to reduce the total number
of combinations derived from the three experimental results from nine to three
experiments (3 experiments X 3 critical points = 9 new experiments). We reduced
the search space by applying a 3x3 Latin square matrix, and then we derived the
design of three experiments represented in Figure 22.5.

RESULTS

The successful conclusion of a software development project depends on different
management practices that should be applied during the software development
process. Our simulation approach derives the project structure and statistics from
the project database to generate a stochastic simulation model. The simulation model
predicts expected project behavior based on the management practices represented
in the model.

Based on our empirical studies, we have identified communications probability
and test team productivity as important factors impacting the schedule risk in the

186 Chapter 22 Practice: Risk Assessment in Globally Distributed Projects

N
. ga“
i © S|
A o
ea‘(‘? o™ /\?‘
»(35“ o <

feat/ feat/
72 \week |32% 50 \veek Simulation 1

feat/ . feat/ _ i
74 week 35% 30 week Simulation 2 X
76 "8 1309, 40 feat Simulation 3

week week R

>

Figure 22.5 Three simulations based on the critical values from the evaluated parameters.

100% 100%

58%

Schedule Risk
0
<
2

0% T T
Simulation 1 Simulation2 Simulation 3
Figure 22.6 Results on schedule risk from the three simulations.

context of the analyzed project. According to the results presented on Figure 22.6
(where the schedule risk is 56% and the communication probability is 30% for
simulation three), we can affirm that the communication probability is the most
important factor affecting the project performance. The main result obtained from
the experimental design was the assessment of the impact of the analyzed parameters
on project schedule risk. We can see from Figures 22.5 and 22.6 that the combination
that produced the best result included the lowest communication probability (30%)
and the highest test team productivity (76 features/week). This is explained by the
software development process used, for which the centralization of the test team
represents a bottleneck for the project under study.

The common practices on communication management represented in Figure 22.1
can be applied to minimize schedule risk and provide effective communication.

The final simulation results provide support for the published recommendations
for management decisions related to amount of remote communication and test team
productivity. One of the recommendations for management decisions is to create a
message board or wiki to reduce communication delay [Cataldo06, Phalnikar09].

Take-Away Tips 187

Another recommendation would be to provide open communication over multiple
channels [Avram07, AvritzerO8b, Boden09, EbertO1, Ebert08, Herbsleb05, GotelO8,
Sureshchandra08] to make the communication possible when required.

Recommendations to adopt a frequent rotation of tasks between sites
[Sureshchandra08]andtoavoidthe distributionof highly dependenttasks [Phalnikar(9,
PrikladnickiO8] can impact the test team productivity and reduce the communication
requests between remote sites during the project. According to our simulation results
and the experience of the testers we have interviewed, both recommendations are
expected to have significant positive impact on the developer productivity.

TAKE-AWAY TIPS

We have presented an approach for schedule risk assessment that was based on data
analysis from a large globally distributed industrial software system. We have
observed the productivity variability per site and per release and we have noticed a
variability of about 40% between the most productive and least productive sites and
releases. Because of this large variability between development sites, we recommend
that project managers apply actual historic data for each site to predict project
behavior and assess schedule risk. We applied a simulation model to incorporate the
important global software development parameters, site communication and domain
knowledge, into our schedule risk model to be able to predict the schedule risk at a
finer level of granularity, when aggregated feature productivity data is not yet avail-
able to project managers.

One important lesson learned from this empirical study is that a high-level
simulation model can provide useful insights to identify project management related
bottlenecks for globally distributed projects. The simulation model was used to
derive a plot of project schedule risk as a function of communication probability.

In simulations we showed that project schedule risk is more sensitive to com-
munication than to team productivity.

The process followed by this experimental study can be used by project manag-
ers for assessing schedule risk while defining project management policies and
planning new project releases. The first step is to define which project management
aspects are going to be analyzed and then create variables to capture the targeted
behavior on the simulation model. The simulations setup must evaluate measure-
ments that are related to the organization business (e.g., schedule risk) and that are
important for the organizational business success.

For project managers that do not have a simulation model for their projects, it
is also useful to combine project management historic data and interviews of project
members in their analysis. In this case, short pilot projects can be very useful to
assess the actual impact of improvement practices that are candidates for the project.

Chapter 23

Intellectual Property and
Information Security

Summary: Global software engineering demands a huge amount of knowledge being
shared across physical sites. This means a variety of information security risks
associated with development practices, infrastructure, and operations that can lead—if
not managed adequately—to severe business impacts as well as affect commercial
image of the organization resulting in loss of customer confidence and trust. We will
provide some guidance on managing intellectual property and mitigating IPR related
risks.

Global development, independent of the underlying internal engineering center busi-
ness model or outsourcing, has raised concerns toward assuring the security of the
information and intellectual property being shared across sites. In colocated develop-
ment on a single campus, today’s technology of firewalls and infrastructure protec-
tion has sufficient means to protect information security. Hackers and other malicious
attacks (often even performed by employees to assure loopholes for their own needs)
continuously challenge even this supposedly simple scenario. In the globalized, and
thus distributed, site approach, assuring security is much more difficult. Networks
must be protected as well as physical infrastructure in different countries with dif-
ferent attitudes to intellectual property and security. Confidential and critical client
information needs to be secured in a manner that ensures the client’s information
security policy.

Security risks in global development are manifold, and we can only name a few
which create the biggest exposure to the users, such as access to confidential infor-
mation by any person who is not entitled to have such visibility, insufficient disaster
recovery in case of security breaches or failing operations, lack of adequate manage-
ment of external intellectual property (e.g., downloading of open source software
and polluting own designs), exposure to external security breaches (e.g., hacking,
denial of service, implantation of Trojan horses), malicious engineers creating loop-
holes or other damages, or insecure applications implanted by own workforce on
the network.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

189

190 Chapter 23 Intellectual Property and Information Security

An often neglected security risk is with otherwise trusted parties, such as acci-
dents due to insufficient processes or wrong attitude of own engineers or of supplier
engineers. This is where mechanisms of workflow management and restrictive pro-
cesses come into the picture. The same holds for parties with agendas differing from
your own corporate agenda as a user of global engineering.

Imagine a supplier that will lock you in a contract and then restrict the access and transfer
of your own intellectual property (e.g., code, designs) that the supplier had created for
you. Or it could be an engineering center in some part of the world that is not exactly
following WTO rules and pays only lip service to protecting your own intellectual prop-
erty (take the example of Cisco code and technical documentation which was, a few
years ago, being used in the routers of a competitor from a low cost country). Several
countries in the world are of that type and should never ever have full visibility to your
own design, so that even if something leaks through, nobody could re-engineer what is
valuable for your company.

Typically, a layered approach is taken to assure security:

* On the physical level, networks, devices, and connections are secured with
encrypted data transfer, shared zones, firewalls, secured remote login proce-
dures, and so on. As an example, one can imagine a collaboration environ-
ment, isolated from other tools, where suppliers can access design documents
and remotely make engineering changes or review documents. Any shared
tool which is accessed from remote or from a third party, must be protected
the same way.

¢ On the information (content) level, it is crucial to manage access rights on
both a role and need basis. For instance, many change-management and
configuration-management tools provide full access to all stored information
once a person is logged on to the tool itself. Only recently have major tools
suppliers started protecting work on the information level with shared access
to change requests or archives. These security mechanisms apply to basically
all repositories, whether it is document management, code archives, change
tracking systems, or project management tools. The more critical the informa-
tion, the more it should be fragmented and individually protected.

* On the process level, policies must be established which enforce robust and
secure workflows, even in stress situations where engineers want to achieve
fast firefighting results. This includes role-based access rights that distinguish
information needs or origin of the engineer.

¢ On the corporate level, governance and audits come into the picture. Though
they do not directly assure security, they help in enforcing policies and assur-
ing accountability. Information security governance (which is often legally
demanded by security standards) provides the policies and reporting mecha-
nisms to check application of policies to educate people and establish addi-

Intellectual Property and Information Security 191

tional tools and processes as needed. An independent audit function will
routinely look into the application of the policies and escalate when risks are
not adequately mitigated.

A fragmented approach to security monitoring and management leads to security breaches
and accidents as we often see in companies which just start with global development. It
might be wise to not give all engineers (even in the same company) full access rights to
all repositories. As an example, take a consultant from a third party (extemal supplier)
who works on campus. He will often get temporary access rights to the servers and thus
could easily exploit and access design information not relevant for his role but interesting
to know.

A successful security framework provides a robust process structure tolerable
to adverse inputs, mature and skilled workforce adaptive to a changing environment,
and the right combination of different control mechanisms.

From an outsourcing perspective, suppliers of engineering services must assure
the continuity of their applications and the surrounding security mechanisms
based on the system business impact information, and provide necessary system
continuity mechanisms. Specifically, suppliers must confirm to a variety of dif-
ferent legislative rules, depending on region and application domain.

Here is some concrete guidance toward implementing security protection and
risk mitigation in global engineering scenarios:

* Copyrights are always created by real persons and must be immediately
transferred explicitly to your company as the legal owner. Assure that this
copyright tansfer is part of each single employee contract on worldwide basis.
Be explicit as to the physical site (country) to which the copyrights are trans-
ferred to avoid their resting with your company at the wrong (e.g., not future-
safe) legal place.

¢ Include within each single employee contract formal rules about when and
how to work with competitors after the end of a contract with your company.
Explicitly mention the policies for security and intellectual property protec-
tion in each single contract. Renew contracts in worst case if they have
loopholes or if policies had changed. Do not rely on corporate policies as
sufficient; as in some countries it is only the personal signed contract that is
the policy for the individual employee.

* When working with suppliers or with frame contracts of an external supplier,
enforce that these suppliers do the same as in the previous bullets for each
single contract of their workforce working with you. Demand a signed list of

192

Chapter 23 Intellectual Property and Information Security

all persons working for you or having access to information related to your
company (e.g., administrators in the back office) to assure nobody will have
uncontrolled access.

Always register trademarks and copyrights in countries where you operate.
File for local patents as much as is feasible.

Establish clear governance rules on visibility and sharing of information.
Audit the enforcement of security and backup policies. Check access rights
on a routine basis. Many tools and applications (or operating systems) come
with defaults that bear high risks.

Agree on specific security contracts locally. If necessary, include insurances
even if they appear expensive.

Use all available security mechanisms for electronic communication. Establish
visibility ranges, role-based identity management or firewalls. Communicate
with VPN. Do not allow ftp or messaging.

Never communicate confidential information on regular phone or e-mail ser-
vices. Always encrypt contents with a strong authentication key.

When working with local enterprises for collaborative development, establish
replicated documentation and protected shared collaboration zones to avoid
direct access to own enterprise intranet.

Demand good document management from any external supplier to assure
that you still have full access to all your critical design documents in case the
supplier defects, suddenly disappears, or wants to lock you.

Audit access rights and security policies at your remote sites and your external
suppliers. Consider even the most obvious defenses, such as fire protection
or distributed backup. Test your recovery plans and simulate accidents rou-
tinely. Restore critical information at least on a weekly basis to avoid surprises
in case of accidents.

Mirror critical knowledge across different physical sites in different parts of
the world. Do not locate critical knowledge only in one part that might sud-
denly become victim of a civil war or an earthquake. Never entrust intellectual
property to single persons if there is no skilled second source. Replicate criti-
cal skills and manage skills development accordingly.

Assure that any tools and libraries you are using are covered by necessary
global licensing schemes. Not all floating licenses are valid on a global basis.
Some suppliers exclude distinct countries from their license schemes. Use
license management tools to assure clean and auditable license management.

Establish policies with respect to reuse of external code (e.g., Open Source
Software). Demand explicit electronic signatures upon check-in of new code
or technical documents into your document management system to enforce
all engineers accepting the rules.

Demand that your suppliers follow the information security laws and policies
of your home base (or any other country if yours is not strong enough).

Chapter 24

Practice: Global Software
Engineering in Avionics

Werner Burger, Diehl Aerospace

Summary: This chapter provides a case study from Diehl Aerospace and shows
experiences from globally distributed software projects in the aerospace industry. It
addresses embedded and safety-critical software where skills are usually deeply
embedded into the home company, thus making outsourcing rather difficult. So it will
also address cultural issues. The case study highlights relevant themes and guidance
from previous chapters in a concrete project context. It offers valuable insights into
how to do things in your own company.

BACKGROUND

We started offshoring as part of our software development some years ago. There
were two main drivers at that time for starting offshoring. The first one, and at this
stage the most important, was that we didn’t find enough engineers in Germany or
the rest of Europe (we expanded our search for engineers also to France and the
United Kingdom), and, second, there was a cost issue. But let me speak first about
the engineering shortage.

For that, we discussed, at first internally, whether to ask Indian engineers to
work at our sites in Germany. During the discussion we realized there was a need
of 50-80 engineers over a period of 18 months, and it would not be possible to do
this work onsite in Germany. What else was there to do? The only alternative would
be to send this work offshore, but no one in the company had done it before. So
there were no experienced people available who could give support for managing
entrance into offshore business. The result was that we would have to manage it on
our own.

At first we started to think about what would be the greatest obstacles within
our company. We saw two of them very quickly. First, we realized we had to set up

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

193

194 Chapter 24 Practice: Global Software Engineering in Avionics

a process for subcontracting, and for this part of software development we wanted
to send it offshore. This was easy to manage because we knew what and how to do
software development, how to do subcontracting (we had to write it down and to
bring it in process notation) so that everybody would understand it. But second, we
saw we needed the support from and also the team spirit of our engineers, which
would be the greatest challenge at all.

How to convince your engineers to support work being given away? There is
only one answer: show them their personal advantage. The most important advantage
for an engineer will be that even in the case of offshoring, he will not lose his tech-
nical competence and his chance at further personal technical development. This has
to be taken into account when offshoring software development. Second, we have
to show the engineers that work being taken away from them also avoids their being
overloaded. It is also very important that they keep the more challenging and inter-
esting work for themselves.

After we had set up this strategy, we started realization of the project. We
selected three engineers who were well accepted by the team not only because of
their technical skills and experience, but also because of their social integration.
These engineers developed the process, the way to manage it, and also how to com-
municate the pros and cons. We flew them to Bangalore, India, to meet with their
Indian colleagues—we brought the people together. For the engineers, offshoring
was set up by themselves; they had been integrated from the beginning. It was not
only a management decision.

Engineering management, which doesn’t see advantages for itself, can form an obstacle.
Those in management fear the loss of power and influence in the company, as their staff
will not increase accordingly. There are always management people who want to have
a maximum number of engineers working for them to define their own importance for
themselves in the company. This very critical issue can be solved only by the top-level
management, which has to support the people responsible for offshoring.

EMBEDDED AVIONIC SOFTWARE DEVELOPMENT

Software development for IT applications and software development for embedded
systems: these are two worlds of engineering. Many engineers believe they under-
stand embedded software, but only once you’ve done it in a project do you have the
know-how and the experience to do it successfully. But we are speaking about
embedded avionics software development. And avionics has some additional char-
acteristics, a set of standards and directives that has to be followed. A well-structured
development process and an independent quality assurance department have to be
part of the company processes. Conformity has to be shown regularly. Generally,
almost all Indian companies have reached IT or software certification level (like ISO
9001, CMMI, COBIT, ITIL) during the last years, and can demonstrate that without
any constraints. Therefore, these processes are established and engineers are trained

Embedded Avionic Software Development 195

and familiar with them. Also, the available experience in avionics software develop-
ment will help to accomplish the tasks and projects in a better, more self-contained
manner.

Management and lead engineers should have a multicultural working back-
ground. This is necessary to understand how the project requirements of the pur-
chaser can be met. Some experience in working in external, non-Indian projects, for
example, in the United States, Australia, or Europe, would be most helpful.

Yet there are some hard facts that have to be assessed, such as the size of the
company, organizational structure, team stability, and number of experienced avion-
ics software engineers. The financial background is very important. In the recent
past, one of the big players had serious problems, which have influenced contracted
project stability and progress.

The hourly rate or cost scheme offered is the required basis for the commercial
benchmark, but this has to be associated with productivity, because considering and
selecting the company with the lowest rate may not result in the most cost-effective
subcontractor, and consequently may not result in the best cost-saving cooperation.
Table 24.1 shows an example of an assessment table for use in evaluating potential
outsourcing suppliers.

All these facts have to be verified by an assessment list combined with inter-
views. Only direct personal communication gives a complete picture. An additional
company walk-through, accompanied by personal communication and practical
ispection, can give an indication of the company’s capabilities and strengths. Very
often, only demonstrated hard facts are considered, but the possibilities should also
be put into consideration.

Finally, at the end of the selection process, a 3-year roadmap with well-defined
objectives (measurable) to be reached should be set up. Defined project milestones
and a performance indicator will give a good view about the scope of performance
and measures to be made to improve it. Non-performance of two milestones allows
for cancellation of the contract. This 3-year roadmap should lead to a 3-year contract
with well-defined commercial and performance criteria.

Do the work at the location, where productivity multiplied by cost structure mul-
tiplied by dynamic of adoption to new requirements gives the best result.

How do you get the best cost/performance ratio for your software project? First,
you have to define which work will be done onsite and which work will be done
offsite. What is the guideline for that decision?

All steps where you need expertise and domain know-how should be done
onsite. Also, any steps where your customer requirements are very weak or where
you know or feel that coding requirements may change very often should be done
onsite. On the other hand, many development steps that can be performed in a very
structured way, such as coding according to detailed design, all validation activities,
and unit testing, are candidates for offshoring.

6 aImmy | 8l
8 asnradxa ooy | 9]
6 sookordwd jJo roqunN |
01 qreruonenon | €[
01 [I0ys oesnsue] | [
01 (SN) Sureaurdu [eqo[s ur seouraradxg |]
8 (edoing) SurreauI3ua [8qo[3 ul soourarddxyg [(]
8 Sumurel], | 6
6 dn dwer weay 10J Aiiqedes umQ | §
01 JJBIS [BOIUYDD) JO ASLAIOUT J0J [eNUd)Od | L
0l wo)sAS Juowageur|y Aend) | 9
01 juowdmbyg [eoruyosy, | ¢
01 $9ssa001d | ¥
6 (' Aposdeyy ‘SYOOQ) Anpiquedwos sjoor, | ¢
S QIEM1JOS PIPPIQUID MOU-MOUY] | ¢
(0] QIeMIOS D Poppaquuy MOU-MmOUd | |
wng | sjulod | wng | sjurog wng | sjulod | wng | surod | 1YSIom BLIANID

Iouyed

JUAWISSASSY [enu)od pue S[[yS Iorddng 17 d[qel

196

Results 197

How do you get the best performance from your offshoring partner? Set up a
well-defined development process, define a checklist as a basis for the work to be
performed, set up a training plan for your offshore partner, define key performance
indicators and also improvement figures on a time scale, and set challenges.

How do you get the best cost structure? Take care that your offshore team has
senior engineers but also young ones, so that you have a mixed team where seniority
is also available. Be cautious: if you have negotiated very low hourly rates your
team might have beginners only. Finally, you have to set up a process to handle
efficient requirement changes.

Following these guidelines will help you to define which work is done where,
onsite or offsite; this, combined with well-defined key performance indicators, can
help you reach a very good cost/performance ratio.

OFFSHORE PARTNER SELECTION

Selecting an offshore partner should be done according an evaluation list as described
in the following. Table 24.1 distinguishes hard and soft facts. The hard facts (assess-
ment, financial) and the soft facts (experience, culture) give an almost complete
picture of the capabilities of the companies under selection, and should lead to a
good choice. Last but not least, a personal management obligation given by the CEO
of the selected supplier should be given.

The preparation for the assessment and the assessment itself have to be done
very carefully. We always did the assessment based on real facts: we looked into
source codes that had been done, and we asked staff who we planned to assign to
our projects directly about their experience and let them describe in detail the proj-
ects they had worked on. We also checked technical details and asked or checked
why alternative solutions had not been chosen. By this we got a very good impres-
sion of their capabilities; we overcame any inhibitions (mainly those of the Indians),
and we got very good information we could use for our assessment and for our
selection. We didn’t pay too much attention to the marketing people; we focused on
the engineering staff.

RESULTS

Implementing offshoring for the first time is like a journey in a dangerous jungle.
You don’t know the foreign culture, you don’t know the foreign people. While the
engineers at your company may feel they are the best in world (which is exactly
what you told them before), they may wonder why you would want to take work
away from them.

You have to win them over; you have to guide your engineers to manage global
working. How can you win people over for anything new? In principle it is simple:
make your story theirs, make your approach theirs, and make your intention theirs.

It is like a boat ride on a dangerous river. Put courageous people in your boat,
start the ride, show them how to manage the first pitfalls, and, after some time, hand

198 Chapter 24 Practice: Global Software Engineering in Avionics

over control step by step to your team. When they see that have control of the ride
and that they can manage it, they will become proud of it.

What does that mean for our offshore project? Don’t start with the most difficult
challenges, start with the trivial ones, but incorporate all points, all obstacles, which
have to be managed. Set up a pilot project.

THE PILOT PROJECT

Before starting the first “real” project, a forerunner should be done, a pilot project.
As mentioned before, we want to test all major issues that will be important for the
project’s success. At the beginning of the first project you need to decide what should
be evaluated by such a pilot. You know your requirements very well, your needs for
offshoring, and all the activities that need to be done. Define the pilot, keeping in
mind the capabilities of your offshoring partner, think about how you will manage
your pilot, and then define your interfaces—such as the project interface, the way
to exchange data, the IT interface—and define very well the way the work has to
be done and to be controlled, the methods and procedures for monitoring and control,
all the roles you will have, the responsibilities within your team, and also the escala-
tion procedure that is to be followed. Finally, define how to measure performance
and productivity.

An example from my first pilot project highlights the challenges in their variety. We had
planned a pilot project, had built a team with our engineers, and had taken two people
on the first trip to India. Have you ever arrived at Bangalore airport at midnight? In those
days they had only two international gates in a city of eight million people. Have you
ever arrived in India during the monsoon? It was another world. My colleagues were
very impressed and, at times, depressed. We passed the heavy traffic, arrived at our cli-
ent’s gate (a building like in Western Europe or the United States), and met with the
highly-skilled, friendly engineers. My colleagues were again impressed and they were
very open-minded when technical discussion started. At this point, our team and the
Indian team started to define the first common project: the pilot project.

The main objectives of the pilot project should be a test of the following:

* Capabilities of the potential subcontractor company

* Project interface

 IT interface

* Methods and procedures for monitoring and control

¢ Performance and productivity

In any case, the pilot project should have as many similarities as possible to the

first foreseen “real” project. An adequate duration should be chosen, such as a small
project for 10 to 12 weeks. This allows some critical or complex tasks to be tested

Starting the First Real Project 199

and performed. It is very important to very clearly define the objective of the pilot
project, both internally and externally. The management levels of both companies
have to be incorporated. Methods and procedures for monitoring and control have
to be discussed, and, after being reviewed with management, they have to be written
down and communicated.

All internal important stakeholders have to be incorporated. “Important™ stake-
holder means, first and foremost, the “spin doctors” who have to be won to support
the offshore project. During the project, these stakeholders should be continuously
informed about the results reached and problems coming up. Also at the beginning,
the evaluation criteria should be defined and set up.

Another important factor is for you to select two people, one for technical
management and one for project management. These two people have to become
the internal and external supporters and have to have the required hard skills and
experience. The soft skills can be attained by training measures. Performing a pilot
project with several potential subcontractor companies can allow a comparison of
competence, productivity, and capabilities. This gives a good overview and a broad
area of understanding and learning. This information should be considered carefully
in future projects. The number of the subcontractor companies under competition
will be limited by the available assessment staff. At the end of the pilot project, a
lessons-learned process, internally and externally, should be done, wherein all posi-
tive and negative results are shown and discussed with all stakeholders. During
the first project, measures how to mitigate the “negatives” have to be set up in
written form.

STARTING THE FIRST REAL PROJECT

At the beginning, we always very carefully selected the lead technical person and
trained him in intercultural issues, mainly in Indo/German specifics. But only real
life and real experience can advance intercultural understanding. We asked our
technical person to invite an Indian colleague to visit towns and historic sites
together, as well as to do something together with their families. This brought
forward an understanding of personalities as well as working styles. Most of the
later problems were solved without management interaction.

The first real project with the selected subcontractor was started with a defined
budget, defined quality and results to be delivered, and defined time schedule. At
first, a suitable cooperation model was chosen from three possible types:

* Time and material

* Work packages

 Statement of work

Time and material means that engineers will be selected by the subcontractor
company according their skills. These engineers build a team guided by the pur-

chaser company. The task to be done is defined; results to be reached and to be
delivered are also defined. If problems arise, either the team has to be expanded or

200 Chapter 24 Practice: Global Software Engineering in Avionics

the schedule has to be extended. The disadvantages are that there is no real budget
control possible and that the subcontractor company does not have the project
responsibility, which remains with the purchaser; therefore, the subcontractor will
not learn to take responsibility. Nevertheless, engineering departments at the pur-
chaser’s side tend to prefer this model, as they do not have to fix standards to be
followed. Requirements should be unique and stable in advance of the project’s start.
From a budget point of view, the time and material business model cannot be
recommended.

An adequate model is the “work package description” model. Here, measure-
ments to be reached will be defined by the two companies. Also, all the procedures
and processes to be followed by purchaser and by the subcontractor have to set up
and have to be understood mainly on the subcontractor side. This can be reached by
several weeks of training on the job at the purchaser site, accompanied by a lessons-
learned process. Having a checklist that has to be followed can also be very helpful.
This checklist can be used in a “cookbook”™ manner.

The work package approach should be used specifically for new relationships
because it allows a win-win positioning of both client and supplier.

The following guidance may be given:

¢ During training, take care of sufficient technical support to answer all upcom-
ing questions immediately.

¢ Build up personal relationships during training and try to understand the way
in which your partner is working.

* Have feedback measures in place so you know when work has been done or
when it has not.

* Set up a common checklist, to assure that all items that have to handed over
at the start of the project will be.

* Define together performance figures and also objectives as to how to improve
productivity and within which time frame.

 Finally, let your partner write a “handbook™ for the specific tasks to be per-
formed. This will ensure that the partner has understood what and how the
work has to be done. This can be used for all further work.

For the first project, some “higher” measurements should be used, but for the
next project, the measurements may have to be adjusted. Contracting work package
descriptions becomes simple, as only a brief task description is needed. Costs are
calculated on basis of past measurements. Milestones and delivery schedule are part
of the work package description.

To define the work to be subcontracted by a statement of work (SoW) is very
common. The statement of work defines all tasks to be done, all responsibilities on

Starting the First Real Project 201

each side, inputs to be provided by the purchaser results, and outputs to be delivered.
Also, reviews, milestones, and acceptance criteria are well specified. The statement
of work has to be communicated and negotiated in detail; this is often very time-
consuming. The statement of work for big packages, for example, a five-man work
team for a minimum of 6 months, is an appropriate model.

IT Infrastructure. Working on common projects, where part of the project is
done by a low-cost offshore company, a unique IT structure has to be defined and
set up. The amount for definitions, coordination, and installation is often underesti-
mated. Some points that have to be considered are addressed here. The first recom-
mendation is to define the identical toolset that is in use at the supplier’s as well as
at the purchaser’s site. This toolset should be installed with separate hardware, sepa-
rated from the supplier’s network, fulfilling adequate security and safety standards.
It is self-evident that encrypted data transfer software has to be used. Common
access to a shared database is necessary. Access rights can be easily installed, but
the way of interaction with respect to elapsed time because of the far distance has
to be specified, and, if necessary, adequate separate hardware should be installed.

A common direct line would be the best solution, but this is very expensive. In
any case, sufficient time for installation and testing should be planned and some
hardware cost for improvement of the access time should also be planned for. Figure
24.1 shows a typical IT infrastructure layout for outsourcing.

Roles and Responsibilities. Another important issue is the definition and set-up
of the project interface. Very often, this factor is critical to success or failure. In our
case, Indian development and management cultures differ significantly from those

Internet

Laptop computer

Figure 24.1 IT infrastructure.

202 Chapter 24 Practice: Global Software Engineering in Avionics

Program Management

Coordination

Project
=== Project Monitoring

Management
D - == Cost/ Schedule Monitoring

1st Level Filter
I/F to Management Level

1st Level for problem solution

Project team

D

Task Description
Technical Coordination / Monitoring

\ { (
o &
UV
o Technical acceptance

Figure 24.2 Project interfaces and responsibilities.

that we as Europeans know. So these had to be taken into account. Figure 24.2 shows
how project management and project teams are split in their responsibilities.
Setting up technical management, with a technical project manager at each side,
is the simplest, but most important, issue. Additionally, two program managers
should be installed. At least one of them should be trained in the culture of the other,

3, ¢

but it is preferable if both are trained in the purchaser’s “world” as well as the and
supplier’s “world.”

The program manager will be the first to address for questions; he should take
the function of a first filter level. Very often, very simple questions are asked. And
very often, the reason for that simple question is that one item was communicated
poorly. The first level address avoids disturbances at the project level and, in con-
sequence, to the project progress. The program manager should be an experienced
engineer, preferably with expert knowledge in some technical areas. Special atten-
tion should be given to the selection of these persons, accompanied with training
courses in advance.

Monitoring and control of the project progress is always critical, particularly if
the supplier is far away, works in a different time zone, and lives in a different culture.
We will focus on some points that need continuous observation. First, there is moni-
toring technical progress with a hard look at completeness at milestones, and monitor-
ing all commercial progress. Usually, this is covered by procedures already in practice
in the purchaser’s company. But don’t forget to look at simple things such as the
contractors. Observe the oversized teams and the stability of the teams, in particular
the availability of the lead engineers for the complete project duration.

Experience shows that regular meetings should occur: a weekly project meeting,
with the responsible technical person and the program manager at the purchase side;

General Principles 203

a monthly management meeting, with the heads of the relevant departments; and a
quarterly visit by the executive management at the supplier’s, accompanied by a
walk-through with the project team. These different kinds of meetings allow you to
address all critical points to the relevant management level on a regular basis.

The statement of work approach should be used, if common subcontractor projects
have been done in the past and therefore processes and relationship are well
established.

The following guidance may be given:

» Set up a template for an SoW for all non-specific project items.

e Put all subjects that may change, such as the schedule, in appendixes. This
will simplify maintainability of the SoW.

* Define in detail the tasks to be performed, inputs to be given, results to be
delivered.

* Review the task description together with your subcontractor to be sure that
there is a common understanding.

» Set up and agree on the acceptance criteria before the work starts. Define the
verification and validation strategy, and how it will be practically executed.

* Define the paying milestones in relation to delivery items.

GENERAL PRINCIPLES

Setting up the offshore process in the right manner defines the amount of savings
that can be reached. Many companies with experience in offshoring avionic software
development have significant differences in project objectives realized in schedule,
in quality expected, in supporting effort needed, and therefore in savings reached.
This leads to the point of what is necessary to be installed to get the best results.

Software development looks simple. There are standards detailing how things
have to be done, which are often supported by examples. There is a set of detailed
requirements that have to be understood and coded according coding standards, and
everything has to be done in a disciplined manner. But why is offshoring of avionic
software so difficult?

At first, a very good, detailed task description has to be made. This task descrip-
tion has to be done in a manner that will yield an understanding of the software
task to be done and an understanding of the application function to be realized.
Structuring this task description by simplifying it is always very helpful, and this
can best reached by filling out common templates. Part of the task description
should be to follow checklists, to define the set of standards to be used, and to

204 Chapter 24 Practice: Global Software Engineering in Avionics

create an example of how the results should look. After an exchange of the task
description, you should perform a common review to get a common view and a
common understanding.

Next, the effort for the task should be estimated in a very detailed manner. A
high level of detail allows you to check correct understanding at the supplier’s side,
to see how effort is calculated, and to figure out any kind of misunderstanding. It is
always in the common interest of the purchaser and supplier to have a “good” esti-
mation of effort, because this will prevent teams that are too small, which lead to
schedule problems, or teams that are too large, which results in cost overrun.

The result of the cost estimation has to be presented and discussed between
purchaser and supplier. At this stage, large differences between the purchaser’s and
the supplier’s estimations may be seen. Now the weak points are on the table. The
reason for the different effort estimation has to be analyzed and understood from
both sides. Often, a first improvement is easily reached by changing or modifying
the inputs to the supplier in a way that improves understanding.

But often, at the supplier, there is a new team that is not familiar with standard
procedures to be followed and has no experience available in the domain knowledge
that has to be used. It is necessary to start to think about how a continuous improve-
ment of productivity can be reached. Give some targets for improvement for the
projects contracted to the supplier. Experience shows that the first project will show
negative budget results, the second will show balanced results, and from the third
one onward, savings can be reached. However, one precondition must be fulfilled:
the team has to be stable over the time project.

A well-skilled, experienced, stable team always has very high productivity. To
improve the productivity of the offshore team, you have to measure it and you have
to analyze the figures you get to see where further improvement is possible.

Another risk for insufficient productivity is the quality of the inputs for the
offshore team. Clarification of questions and open points cannot be done as easily
if the colleague is sitting next door. Spend some time reviewing them before sending
them out.

Always critical for embedded software projects is the availability of sufficient
testing resources, for example, evaluation boards. Analyze carefully the testing
process at the beginning of the project and define the amount of resources you need.
Eventually, the team will have to work in shift to reach maximum project benefit.

Team stability is key for good productivity, specifically in embedded software
development. Insist, therefore, on a name list of who is allocated and actually

@ working on the project. To add new team members is not only a matter of training
newcomers. Good productivity is the sum of skills, understanding of require-
ments, domain experience, experience in common cooperation, and understanding
of what the colleague expects.

General Principles 205

For the measurement, define key performance indicators (KPI) and use them.
Give the offshore team feedback about their success reached and about the improve-
ment of productivity reached. Make a monthly report and put the reports on a
blackboard for everybody in the purchaser’s team to see it. Also, discuss the KPIs
and how better KPIs can be reached. All teams want to get better and to show better
results; they want to learn and show strong competitiveness.

Work Culture. Today, significant work in global software engineering is being
done in Asia and India. The reasons for that are cost structure and the high number
of available engineers, who are well-educated, well-trained, and highly motivated.
Nevertheless, there is some reduction at avionics companies to subcontract avionics
software development to India. It is mainly based on the differences in working
culture and not on a lack of understanding of the different behavior or culture.

This obstacle has to be overcome. The working culture of the subcontractor
company has to be understood and methods and means have to be set up and
installed. The best way is a very simple one. Start a project and do it. And think
about the fact that people will work together in a team if there is a communication
culture available, and communication between engineers is much simpler if technical
problems have to be solved commonly.

Think about how important daily floor communication in your company is when
all the project work is done in your own offices. Doing projects far away means that
there will no longer be any kind of floor communication. So you have to install other
means to allow information to flow. Set up a “structured” communication to allow
fast answering of questions, understanding of technical problems, and a way to solve
cultural differences.

Very often this can be done by installing either an onsite engineer at the sup-
plier’s site, or a representative from the subcontractor’s company at the purchaser’s
site. However, technical communication has to be simplified, and the right technical
people have to communicate on a personal relationship basis.

After communication is set up, you may begin to see that you have one team
instead of two fighting against each other. Technical problems may be solved,
required quality will be reached, and tough schedules may be kept. These are the
key factors for project success.

Ramp-up/ramp-down. Another point that supports project success is described
in the following. The nature of avionics projects shows that during integration and
testing, problems will be found that have to be solved and incorporated into a new
software version—without any delay to or and influence on the project schedule.
This means very fast ramp-ups and ramp-downs have to be realized (see Fig. 24.3).
A ramp-up of about 50 engineers for 2 months within one project has to be managed.
Indian dynamics support that. The precondition for that is to have well-trained
engineers available and an excellent team structure that allows for adding new col-
leagues to the team. Again, special attention has to be given to the project manage-
ment, preparation of planning, and reaction to project changes. Cultural dynamics
and the motivation of engineering teams will provide the basis for that.

Change of project requirements. Unfortunately, there is another weak point
that must be solved to reach project success. In general, there are two different kinds

206 Chapter 24 Practice: Global Software Engineering in Avionics

Engineers
b Verification
a Vi
Highlevel _ __ _ _ __#&_ _ __ _. Formal
Req. Analysis
<%
%3
%
N 3

i mrmr i m i e N e Al e e R - - own Staff
_______ Low Level
sign

‘Temng (LLR) _\3

HWI/SW Integration
4 Testing

Implementation

SW Tools

Figure 24.3 Resource evolution along the product life-cycle.

of development. On the one hand, there are mostly very repetitive activities such as
validation and verification activities. These can be done in a very structured matter,
along a well-defined process, which is very detailed. This can be realized in some
“simple” way.

On the other hand, there are “problem solving” activities, such as design,
coding, and high-level testing activities. This means understanding the function to
be realized. The offshore team members have to make their own design decisions
and are responsible for the solution they reach. This can be reached only if they are
trained continuously in understanding the tasks that have to be done.

With regard to global software engineering, this is a big challenge. An example
should make that clear. During the development cycle, project progress is reached
at both sites, at the purchaser’s and the supplier’s. Problems always occur, solutions
are found, and technical interfaces are changed. Often this is done only in a very
small manner. But there is often an influence to the part developed at the partner’s
development team, and they have to be informed about that and a common solution
has to be defined. This also means problems have been transferred to solutions.
These solutions are realized by some differences to the architecture and software
interfaces that are defined before, and those light modifications have to be
communicated—in both directions.

At first the teams have to be encouraged to communicate. And for that, the
attention of the project manager is a must. The project manager has to be trained in
intercultural project management; he has to encourage both teams to move forward
in a straight line and to stay within the required schedule. This kind of attention can
be given by means of regular project teleconferences.

Success Factors 207
SUCCESS FACTORS

How do you reach the optimum of savings? This is the key to success, to get
a competitive advantage. Hard and soft facts have to be addressed. Excellent man-
agement of the soft facts is the basis for any project success. Motivation and con-
tinuous feedback are a must. Within the area of avionics, motivation is not too
difficult to reach. Everybody likes to be part of the large number of engineers
who have successfully developed an aircraft. Giving feedback and giving it
continuously is very often unusual, but it is essential for the team working for
you. Do everything that the best engineers in the company want working for your
project.

But hard facts have to be seriously considered in detail. Following the common
practice for project teams in Europe and the United States, the hard facts to be used
will be described. Set up a detailed statement of work that consists of separate work
packages, with specification of inputs to be delivered from the purchaser’s and
results provided by the supplier according to a detailed schedule. Define the quality
standards to be followed. Identify for each of the work packages the amount of effort
you will accept. Define measurements that have to be followed and present those to
the responsible lead engineers. Agree on the facts you want to see. Install an inten-
sive coordination and communication structure and define responsibilities and
actions, such as answering open points within one working day. Find a solution to
problems that will not be solved within the agreed time-frame. And control it in a
very direct way. Do not wait for questions to be asked. Sometimes there are no
questions. For control you will need a project manager with good technical expertise
and project management experience.

Next, set up a cost management change process. Your supplier has to track
project progress associated with project cost. The offshore company should give an
indication if they will run out of project cost. If this tends to happen, the purchaser’s
manager has to work out a solution with the supplier’s lead engineers. Convince
them of your point of view with technical facts complemented by technical propos-
als, for example, on how to proceed. Let your knowledge and your experience flow.

Many engineers at offshore sites are very motivated to learn and will follow the
advice given. But sometimes the productivity is not as good as expected and needed.
Then, the measurements agreed upon have to be improved, processes have to be
simplified, and for the respective work, easy and helpful tools have to be developed
and added to the project. Do not hesitate to improve the measurements until you
think savings are nearly at a maximum level.

Why is that goal so seldom reached? Very often, the global software engineering
project manager does not get enough time to do this very carefully and is not well
prepared or experienced enough for this kind of project management.

What effort is actually necessary for control and overheads? A percentage of
15% of the technical manager’s time and 10% of the project manager’s time in rela-
tion to the total amount of project hours should be a sufficient amount to be spent.
Usually, this can be reached after the third project, and with an adequate project size
this can occur after one year of cooperation.

208

Chapter 24 Practice: Global Software Engineering in Avionics

TAKE-AWAY TIPS

In the future, avionic software projects will become larger and more complex. Time
schedules will become shorter because engineering shortage is a daily experience.
Therefore, global software engineering will help to solve these challenges.

Here is some practical advice:

Don’t hesitate to transfer responsibility.

Give the colleagues at the offshore company the awareness that they are
responsible to fulfill the task to the satisfaction of their customer.

Write down your expectations, do counterchecking for understanding, and do
your project monitoring and control along these expectations.

Set up well-defined milestones and share the results of meeting them, give
feedback and address incomplete results reached and make proposals for how
to improve. Communicate the results.

Additionally, continuously do your lessons-learned meetings and incorporate
those promptly in your project. Only then will your offshoring become a
success.

Prepare the task carefully and comprehensively, and do the right IT-tool selec-
tion and installation. Define in written form the tasks (SoW), the quality to be
reached, (standards) processes to be followed, and expectations you have. Discuss
and define measurements to be realized and performance improvement you want to
see, and continuously give feedback about the results reached or not reached before
making proposals for how to reach them. Do not forget to monitor and control all
the targets set. Your project will then be a success.

Chapter 25

Practice: Global Software
Engineering in Automotive

Andree Zahir and Satish Seetharam, Bosch

Summary: This chapter provides a case study from Bosch and shows experiences from
globally distributed software projects in the automotive industry. It illustrates how
Bosch, in the domain of software development for powertrain control, was able to
implement a successful cooperation between the central locations in Europe, the
regional centers in the United States and Japan, and their development services unit
in India. The case study highlights relevant themes and guidance from previous
chapters in a concrete project context. It offers valuable insights into how to do things
within your own company.

BACKGROUND

Global distributed software development has become the mandate in the automotive
industry for various reasons. To mention just a few:

All players in the industry need to pursue growth opportunities worldwide.

Not having access to the globally available engineering resources is prohibi-
tive considering demographic as well as educational trends in the developed
world.

Customers worldwide demand competent development teams which they can
easily access rather than being serviced from headquarters many time zones
away.

Suppliers need operations in cultural proximity to important customers to
fully understand their strategies and requirements.

Taking advantage of the vastly different cost structures of operations around
the world is essential to stay competitive.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

209

210 Chapter 25 Practice: Global Software Engineering in Automotive

Consequently, global software engineering is no longer an optional approach
that needs to be balanced against the efficiency advantages of colocated teams.
Instead it is a mandatory concept that must be managed in the best possible way.

As the global market leader in fuel injection equipment (FIE), Bosch has the
need for an effective worldwide software development organization for engine
control units. The lead development locations are based in Stuttgart, Vienna, and
Paris with regional development locations being established around Detroit and
Tokyo. These locations are referred to as onsite locations. They are supported from
the development services organization in India, residing in Bangalore and Coimbatore,
collectively called offshore locations.

In order to characterize the nature of work, we distinguish between platform
developments (defined as a variety of functionalities being used across several cus-
tomers) and customer specific development.' Product generations are updated every
5-6 years, which is mainly driven by emission legislation. Tighter limits for pollut-
ants and fuel efficiency” lead to more complex engine control functions, which in
turn require advanced hardware (higher performance microcontrollers with increas-
ing I/O channels), software architecture, and development tools.

Software development projects in the automotive embedded control domain
exhibit some unique qualities. Compared with the well-established business applica-
tion development and IT-services projects typically executed in India, a knowledge
cluster in automotive controls is just emerging. Therefore, a lot of training is required
in-house to build up required competence levels. Some of the specific challenges are:

* The complex real-time computations required for engine controls.

* Knowledge retention over many years since the product lifecycle, including
service periods, easily exceeds 10 years.

* System knowledge on vehicle and engine related topics in the mechanical and
hydraulic domain in order to understand customer requirements.

e Specialized and costly test equipment like vehicle simulators, cars, and test
benches are essential to validate the embedded control functions.

Offshoring in development organizations is generally understood as outsourcing
of certain development activities to locations with a considerably lower cost struc-
ture. This case study contemplates offshoring of development work from the above
mentioned onsite locations (i.e., high-cost locations [HCL]) to the offshore locations
in India (i.e., low-cost locations [LCL]).

The typical problems of such cooperation depends on the specific countries
involved but are more closely linked to the different cost structures and cultures of
these locations. Henceforth, the lessons we learned from the cooperation between
locations in WEU and India can be applied, to a good extent, for situations when
offshoring from the United States or Japan to LCL like China or Eastern Europe.

" The additional variant of customer platforms which cover common functionalities across various
projects for a particular customer is not covered here.
2 CO, emissions can only be reduced by improving fuel efficiency of vehicles.

Background 211

People

Processes Tools
Figure 25.1 Three dimensions in offshoring challenges.

Typical problems related to offshoring are assigned to the categories as in
Figure 25.1.

The people part is by far the dominating one and also includes the strategic and
intercultural issues related to working in virtual teams. Processes summarize admin-
istrative topics of the cooperation together with concerns regarding the development
process. Tool related topics are mentioned briefly because that part has good cover-
age in literature about development environments. The same three categories are
used when presenting the approaches chosen to build successful virtual team coop-
eration with the offshore location.

At the bottom of most of the people related problems when offshoring gets
established, lies the basic fear of losing the job. Asking someone to transfer parts of
his tasks and responsibilities to a LCL will inadvertently trigger suspiciousness and
anxiety. In case people with much lower salaries are able to fulfill the same respon-
sibilities, the positions in the HCL start becoming insecure. The offshoring strategy
of the organization becomes a crucial part for either mitigating or fostering this fear.

In case the offshoring strategy is only vaguely defined or not properly com-
municated within the organization, the associates involved will become concerned
about their jobs. Additionally, it is important that the offshoring strategy highlights
a long-term perspective for the people at the HCL. The management should not just
open a new development center in China, India, or Vietnam and let the information
float around with associates guessing what it is all about. Rather, it should be made
transparent how the reduced cost structures on a global level relate to the competi-
tiveness and future growth of the organization.

Reluctance to transfer core knowledge: Engineers typically consider their
knowledge a personal asset which defines their individual “market value” and/or
position within the company. Hence, asking them to transfer their knowledge to
somebody else, particularly to a colleague in an LCL such as India, and thus losing
some kind of uniqueness is anything but appreciated. For engineers the question is
as simple as: “Why should I educate that fellow engineer in India on how to take
over my tasks and, eventually, my job?”

Lack of understanding different cultures: The key of most of the problems
in virtual teams goes down to a lack of understanding and sensitivity of intercultural
topics. Usually, people expect the professional behavior they are used to at home
from their colleagues overseas. This assumption does not work in virtual teams as
people come from very different backgrounds. Simple statements like “Yes, I can
do that task™ may have very different meanings in different cultures.

212 Chapter 25 Practice: Global Software Engineering in Automotive

|:| Cross-Cultural Groups |:| Single Culture Groups

Highly Average Highly
Ineffective Effectiveness Effective
Figure 25.2 The performance dilemma of multicultural groups.

The only way of making an intercultural team effective is for the management
to be open and understanding of all the cultural differences affecting work, and to
adjust the cooperation accordingly. Typically, project reporting, tracking, quality
assessments, and communication styles need to be addressed. It is also important
that colleagues from both parties know each other personally. A reasonable amount
of travel should always be planned between the locations even though the continuous
rise in bandwidth allows high performance video conferencing worldwide. N.J.
Adler showed how dominating the intercultural aspects on team efficiency are
[Adler91]. Unfortunately, multicultural teams tend toward the extremes regarding
efficiency compared to single cultural groups. They are either highly effective or
well below the average effectiveness of single cultural teams (see Fig. 25.2).

Inadequate rewards for offshoring: This issue typically results from the
diverging motivational factors of development engineers and their management. All
the critical areas mentioned affect the engineering staff involved in distributed
development. But the rewards for successful offshoring are typically attributed to
their managers only. Typical goals for international managers are the reduction of
total development costs or balancing the worldwide distribution of development
capacity. For engineers or team leaders in software development, goal setting related
to technology, increased competence, or efficiency is more usual. Unfortunately,
none of these goals becomes easier to achieve in case development work starts
getting distributed. Most likely all project managers around the globe would prefer
to have their team located in the same place.

In short, the persons struggling with the difficulties related to distributed soft-
ware development don’t earn the rewards of making virtual teams successful. Only
their superiors do and this commonly causes lack of motivation.

Limited offshore team stability: Throughout the years prior to the current eco-
nomic crisis a major complaint concerning India as software development location
created the lack of stability within the software teams. People used to switch assign-
ments much faster compared to Europe or the United States for two dominant reasons:

e The tremendous growth in the Indian I'T-sector did create plenty of attractive
job opportunities for experienced software developers in the market which,
in turn, promoted higher attrition numbers across the industry.

Background 213

* Even growth of the own organization triggers the requirement to put experi-
enced associates in leadership positions or to use them to start new projects,
thus removing them from the former project team.

During the highest growth years of the Indian IT industry (2004-2006), attrition
rates crossed the 20% mark for many companies. Since these effects are market and
growth driven, one needs to find a way to handle operations in such an environment.
Preventing attrition from happening is more of a wish than a realistic option.

Replacing experienced associates through fresh recruitment from the job market
in India is a setback for the journey to increase the competence level of the organiza-
tion. Experienced software developers in the automotive embedded domain
are difficult to hire because the domestic automotive industry is still in nascent stage
with respect to electronic controls. Since the knowledge levels of graduates
from colleges and universities vary significantly, we have a much higher demand
for training programs in the company compared to Western Europe or the United
States.

Under the process topic we will cover issues related to the development pro-
cesses as well as the general topics related to coordination of work in distributed
teams. Different development processes on each side of the cooperation can be a
great cause for misunderstandings and inefficiencies. The worst case scenario would
be if the complete cost savings from offshoring could get erased by inadequate
processes.

Consider the case a virtual team uses different coding and review guidelines at different
locations. Arriving at a common understanding on the status of work products becomes
more difficult. A simple example could be the acceptable level of Lint warnings in a
particular code. The cooperation between one or more development locations is charac-
terized by a long list of parameters such as project contracting, capacity planning, invoic-
ing, strategic reviews, competence development programs, associate exchange programs,
and operational reviews on various management levels to name just a few. Each of these
parameters can have a significant impact individually on the overall cooperation. Each
organization will typically require a certain learning experience to arrive at the best suited
setting for these parameters.

Development tools are the essential backbone of every successful virtual team in
software development. Without a multisite configuration management system,

@ distributed workflow tools, and a common project collaboration room, virtual
teams can lose effectiveness significantly. Responsible management should ensure
that distributed project teams work with a state-of-the-art development
environment.

214 Chapter 25 Practice: Global Software Engineering in Automotive
RESULTS

We introduced three dominating sources of cooperation related problems in virtual
teams involving offshore development sites. We will follow the same order and
briefly highlight how the software development units for engine controls in Bosch
were able to define and implement practical approaches to make the cooperation
successful.

Success Factors: People. We mentioned above that offshoring inevitably trig-
gers the fear of job losses for the concerned persons. Therefore, the management
has to create a win-win situation for both sides of the cooperation. Since the receiv-
ing side of development work will always be considered as benefiting® the focus
needs to be put on advantages for the HCL which is prompted to shift work to
the LCL.

In principle, there are three different scenarios that enable work transfer to the
offshore location without triggering job security fears.

¢ The work transfer is not mandated by a manager but self-initiated.

* The transferred work is not appreciated by the engineers, but considered a
burden. Hence, offshoring creates a “relief” for the concerned persons.

¢ The work transfer goes hand-in-hand with offering substitute tasks and
responsibilities to the person that are considered more interesting. In this case
offshoring is perceived as “opportunity” by the affected people.

In case management is not able to create at least one of these three scenarios,
offshoring will be perceived as mandated by leadership and not pursued wholeheart-
edly by the engineering teams. At Bosch we used a combination of all options to
motivate people for offshoring.

The first option is realized by limiting development headcount at the HCL so that addi-
tional and interesting projects can only be executed when involving the engineering
services center in India. Second, by transferring a lot of maintenance work and projects
using older generation architectures, developers were relieved from their legacy burden.
They proactively helped their offshore colleagues to work independently in those areas
in order to focus their time more and more on the latest product generations. The third
option is more related to the work split between locations. Initial topics to be moved
offshore in many corporations are coding and testing. After the cooperation has matured,
higher responsibilities, like complete projects or variant products, get shifted too.

Combining options two and three allowed for the moving of a significant
number of developers at the HCL into higher responsibility roles for project manage-
ment, customer relations, global technology coordination, or new innovation proj-

3 Due to the fact that transferring work and know-how secures employment at the receiving, i.e.,
offshore site

Cooperation Model between Development Locations 215

ects. Consequently, offshoring started to be perceived as enriching rather than just
threatening.

The strategy for the offshore center in India clearly reflects that approach. In
addition to supporting development projects worldwide, the responsibility of the
LCL in India is defined as handling mature generation projects as well as complete
projects for local customers in various emerging markets. To complement the global
setup, the long-term responsibility of the HCL is defined for strategy development
and new innovation projects. People across the organization support this strategy
because it offers a compelling vision for both the lead development locations as well
as the offshore center. Since this strategy was defined several years ago, sufficient
time has passed to reach out through the organization.

Clear commitment of the top-management team at the lead development orga-
nization shouldn’t be underestimated. It makes a huge difference whether top-
managers remain convinced of the offshore approach even in the inevitable situations
of operational problems. Statements like “Just make it work together with the off-
shore team” give a very clear direction. Raising questions about the offshore approach
in such situations conveys the message that the strategy is not stable and a rising
number of problems could get escalated afterward.

COOPERATION MODEL BETWEEN DEVELOPMENT
LOCATIONS

The offshore center implements the simple business model to treat the departments
in the lead and regional development locations as customers to service. Since every
organization is highly motivated to grow, a strong pull-factor emerges to get devel-
opment work transferred to the offshore center. At the HCL, the motivation to
transfer work is higher in case they are treated as esteemed customers rather than
totally equal partners. In India the service sector is well developed and complements
this demand. Combined, this approach has proven to be more effective compared to
shifting work to India through management pressure at the lead and regional devel-
opment centers alone.

From the perspective of the lead development locations, full ownership of the
supporting development teams in India is encouraged. Team cooperation and per-
formance shows the best results in case people start thinking as one global organiza-
tion down to department and group level. Once this mindset is achieved, managers
start thinking in terms of globally distributed software development rather than
shifting work out of their onsite team (see Fig. 25.3). Accepting that kind of global
responsibility becomes visible through statements like “I’m in charge for a global
development capacity X of which 50% is located offshore in India.”

To streamline the interfaces between the development units, the organization in
India mirrors the structure of the lead development location. Through this approach
we realize a one-to-one relationship between managers on both sides effectively
supports a close and sustainable cooperation. In case a manager just needs to call

216 Chapter 25 Practice: Global Software Engineering in Automotive

Integrated team view

Offshore
center (India)

Lead develop-
ment location

Customer view
Figure 25.3 Cooperation model between lead development (WEU) and offshore center.

one responsible person in the offshore location to take care of his concerns, a lot of
confidence develops and often good personal relationships as well.

INTERCULTURAL ASPECTS

The intercultural part is probably the most complex issue to be addressed. One needs
to be aware that any solution requires persistent and repetitive implementation in
order to reach down to team and individual associate levels in the organization. Even
though many know about the habit in Asian cultures that completing tasks on time
is less important and that communicating bad news is avoided until the last moment.
But still project managers in the lead development center occasionally repeat the
mistake of not following up closely on whether commitments can really be met. On
the other side, colleagues in India need to learn that the direct communication
common in Germany is not meant to offend, but is just part of their cultural back-
ground. Not addressing these issues will result in the virtual team and their project
failing to meet the expectations.

Reduce communication barriers by understanding and mitigating cultural differ-
ences. Highly productive distributed teams use a wealth of different communica-
tion mechanisms and do not simply send mail back and forth.

Although desirable, it is very difficult to find people who are already exposed
to the language and culture of the target country. In order to make the team members
aware of the intercultural differences that exist between any two cultures, it is neces-
sary for a formal training.

Covering business aspects, especially the information required for day-to-day
work, would make this training very effective. Typical topics in a single-day seminar
about a country can include an overview of the history, geography, culture of the
people, greetings, and communication tips for telephone, e-mails, face-to-face meet-
ings, and office behavior. Language training can also be an alternate way to under-

Intercultural Aspects 217

300
§ 250 Highly Productive Teams
= Total Communications = 699.28
o 200
4
[
2 150
w
2 100
o
Z 50 30 27

'] 5

Conv. E-Mail Phone Mtgs Memo Fax Social Telec.

Figure 25.4 Impact of conventional communication on team performance for highly productive
teams.

300
252

p 250 Less Productive Teams
I
g 200 Total Communications = 456.40
2
§ 2 150
-
s 100
=

%0 26_ 18 14

0 lz [#4] r . 3 0.4

E-Mail Conv. Phone Memo Fax Mtgs Social Telec.

Figure 25.5 Impact of conventional communication on team performance for less productive teams.

stand a foreign culture. Informal or conventional communication (Figs. 25.4 and
25.5) plays a vital role in the success of virtual teams [Gregori09].

The conclusion is that teams with a good spirit (reflected by the informal com-
munication) also work effectively together. Hence, it is important that in distributed
teams the key persons visit each other during critical project phases. To get effective
teamwork right from the project’s start, joint kick-off workshops are encouraged.
This allows better bonding of the team members across locations enabling easier
understanding of subsequent formal communication. The travel related costs typi-
cally pay back through efficiency gains. Alternately, virtual team workshops could
also be conducted to increase the understanding between team members using both
video and teleconference with the help of a trained moderator.

218 Chapter 25 Practice: Global Software Engineering in Automotive

Offshoring activities in projects normally start with a senior member being
associated with the team onsite at the lead development location on a basis of 6—12
months. On return to the offshore center, this person is used as a seed to establish
the project at the remote location in a gradual way. Associate exchange programs
are utilized in case of a need for a specialized skill at the offshore center. Then the
right person, with respect to aspirations and skills, is sent for a travel to Europe in
order to learn on the job what is required to transfer the related development
activities.

In order to create the awareness of the work environment in Europe, every
Indian colleague is sent on a 3-month “orientation visit” to Europe after having
worked for roughly one year in the offshore center. After returning to India, these
associates know their counterparts in the joint project teams and more fully under-
stand how software engineers work and communicate in Europe. That experience
typically leads to good improvement in team efficiency.

REWARDING DISTRIBUTED TEAMS

Reward mechanisms for successfully offshoring projects need to be installed at the
right place. This means line management positions from team to department lead
need to be addressed rather than top management levels alone. The kinds of incen-
tives that are chosen depends upon the development organization and the overall
company culture.

Some incentives, like business growth, are intrinsic for corporate organizations
and do not require additional stimuli. Working with a low-cost location, for instance,
allows executing more projects within given budget limits. In case this does not
motivate team members sufficiently, additional factors can be used:

* Removing the option to engage third-party contractors at the HCL.

 Prescribing certain ratios of development capacity between the high and
lowcost locations.

Technical experts can be rewarded for distributing their knowledge to an inter-
national expert network. The success can be measured by observing the offshore
location performing regional development projects independently from the lead
development unit.

OFFSHORE TEAM STABILITY

Attrition depends on the overall labor market situation and can be influenced only
to a limited extent. Of course, the offshore center needs to stay competitive within
the local software industry regarding compensation, career opportunities, employee
benefits, work environment, and so on. For the offshore managers it becomes a key

Offshore Team Stability 219

The primary means to achieve this is to make the offshore operation independent of
individual engineers. Since this requires a critical size of operations, it combines well
with the growth paradigm of countries like India. Having increased the capacity by nearly
a factor of eight in the period from 2002 to 2009, the offshore center, despite operating
from two locations, has reached the required level of stability to execute even complex
projects. Team sizes and the number of available experts in most of the technical domains
allow for a consistent backup plan in order to be prepared for the impact of attrition and
job rotations. Additionally, the economic slow-down during 2008/2009 has helped bring
attrition levels in the Indian IT industry back to normal. From average rates of 20%-22%
in 2006/2007, a reduction to well below 10% percent is observed for 2009.

skill to match aspirations of associates with the situation and goals of the projects.
But trying to keep attrition under control in all kinds of market situations would
simply become too costly for the company. Hence, the better approach is to manage

To make distributed development a success, processes and roles should be aligned
across all sites. Common development processes, methods, and tools shape the
DNA of any global software organization, whereas management processes need
to address the regional differences.

the offshore operations in a way that attrition and people rotations affect the project
performance in a limited way.

Success Factors: Processes. We integrate the general setup of the international
cooperation together with the process related topics. Discussing the processes, we
will distinguish between the technical development processes and the managerial
part like project planning.

From the technical and quality aspect, it is mandated that the same processes
are in place at all locations worldwide. As a global product company serving custom-
ers worldwide, it needs to be ensured that products fulfill the same standards no
matter where the development location may be. Exactly the same requirements, that
is, change, documentation, and configuration management, as well as workflow tools
and guidelines regarding software design, coding, and testing, are valid for software
developers in all locations. For testing, standard labs with both open- and closed-
loop vehicle simulators, oscilloscopes, function generators, and so on, are replicated
at the offshore center in India.

Furthermore, exactly the same role definitions within a project apply for all
locations. This is essential to make all developers speak the same language in order
to facilitate support and assistance within the virtual team. Additionally, the rotation
of developers between locations is much easier when using a globally harmonized

220 Chapter 25 Practice: Global Software Engineering in Automotive

development approach. Consequently, process harmonization between the locations
has become a key initiative for the worldwide organization.

As management processes, we refer to competence management, training,
human resources development in general, and project management. For such pro-
cesses, a need for regional or cultural adaptations is essential. Considering attrition
rates in India, as mentioned above, the human resources related processes cannot be
a copy of the German version. Similarly, the training system needs alignment to the
local education system and the growth rates. The offshore center in India recruited
several hundreds of engineers annually. A number that none of the lead development
locations would have been able to induct.

The general cooperation part covers administrative topics like capacity plan-
ning, invoicing, joint meeting structures, and procedures for communication and
information exchange. From an administrative perspective, the Indian offshore
center is treated in exactly the same way as a department of the lead development
location in Europe. Ordering and invoicing is required on top since the offshore
center delivers services across national borders.

We already explained that the captive offshore center in India treats all other development
locations as their customers. Consequently, a customer satisfaction survey is conducted
for all departments that receive development services from India once or twice a year.
After analyzing the feedback, the offshore center publishes the results and their improve-
ment plans to showcase that the results of the survey are taken seriously.

Dedicated planning and reporting of critical issues is very important for the
success of a global cooperation. Review meetings are conducted with defined cycles
on all management levels. The top management team of both sides reviews
the strategic and general setup of the cooperation twice a year. On a department
head level, cooperation issues are discussed on a monthly basis and the cockpit
chart about the cooperation is reviewed. Every project reviews the progress on a
weekly basis.

Another success factor of the cooperation is treating the offshore center as an
equal partner with respect to communication and information flow. Important mail
distribution lists reflect the global setup of the organization. All relevant meetings
are scheduled at times when international participants have the opportunity to join.
All these meetings are effectively conducted as teleconferences with international
participation. This approach supports significantly to maintain team spirit in the
worldwide organization.

Success Factors: Tools. The development environment and network bandwidth
are the key means to support seamless cooperation in virtual teams. It is important
that all team members work within the tool environment to remove misunderstand-
ings and facilitate effective support between all members. All relevant work products
need to be globally accessible with reasonable response times. Hence, multisite

Offshore Team Stability 221

configuration management and workflow tools for collaboration form the backbone
of the distributed development environment.

Network bandwidth between the collaborating locations remains a critical
parameter for efficiency. Since the related costs have come down significantly over
the past few years, high bandwidth connections have become the standard today.

In software development, quality is probably the most important parameter. We measure
the number of software defects detected after a particular software release is integrated
and labeled in the configuration management system divided by the person’s years of
project effort for that release. For normalization, the defect density of 2006 is defined as
one. The capacity growth of the offshore center from 2006 to 2009 brought the defect
density down much by roughly a factor of 2 much faster than the absolute number of
defects injected. Defect density data of 2009 shows an improvement of more than 65%
compared with 2006 (Fig. 25.6).

However, due to growing international teams and increasing data traffic caused by
exchanging more complex work products, the network needs constant load supervi-
sion and regular updates.

Performance indicators. In order to judge whether all suggested measures lead
to a successful international development organization, we compare some key per-
formance indicators (KPIs) with available benchmark data on offshoring.

The defect performance is difficult to compare with industry benchmarks
because the numbers highly depend on the technical domain, the development
process, and tools. What is possible to state is that the quality of delivered software

Defect Density at Offshore Center

1,0

2 1,00 . - 1000

(72}

2 \ o7 - 800

g A 8

B T~ 0s 600 >

(=} 2

g % (A 03 :

; - 400 3

T A =

5 - 200

z 1033 976 904 758

0,00 0

2006 2007 2008 2009

1 Total defects —#— Defects/Project Effort [PY]

Figure 25.6 Quality improvement in the captive offshore center.

222 Chapter 25 Practice: Global Software Engineering in Automotive

@ Level 1: Resource Work:
Coding & Unit testing

3
Value =
Capture

O Level 2: Control Work:
Product Support & Maint.

O Level 3: Manage Work:
Component Factory

@ Level 4: Partner Work:
Regionalize / Customize /
Enhance

. High ® Level 5: Leadership Work
Level of Integration New product development

Figure 25.7 The value capture reference model.

from the offshore center is, in the meantime, on par with software developed at the
lead development locations.

Another important parameter to judge the capability of an offshore center is the
so-called value capture [OI05]. Figure 25.7 depicts the value capture model and
explains the different kinds of typical work content for captive offshore development
center in India on a scale from 1 (resource work) to 5 (leadership work). We rate
our Indian operations on level 4 since complete engine control development projects
for the emerging markets are executed there. Such projects are highly cost efficient
since no additional coordination effort from the lead development is required. Still,
the larger share of development work happens on the lower value capture levels and
the current output can be considered as roughly 70% at levels 1 and 2 combined,
20% at level three, and 10% at level 4. Complete new product development, which
would qualify for level 5, has not yet started in the offshore center. Although this
distribution does not look impressive, it is in fact quite ahead of most captive devel-
opment centers in India.

Finally, offshoring of development work to an LCL such as India is, to a large
extent, about cost savings. Consequently, the cost savings achieved in a particular
cooperation can be used as a performance indicator. Industry benchmark data on
offshore operations in India is available with NASSCOM. A study from 2006 (refer
to [NASSCOMO6]) shows that between 40% and 50% of the costs can be saved in
India compared with the United States in spite of offshore development being con-
sidered less efficient and coordination efforts are taken into account.

Although our cost calculation for the offshore center includes, additionally, all
travel expenses between the locations and the extra I'T costs to run a multisite location
(not mentioned in [NASSCOMOG6]) the cost advantage is more than 50% in 2009. Our
forecast for 2010 shows a further reduction of costs for the offshore center driven by:

» Better utilization of the existing offshore engineering capacity.
* Higher efficiency of the engineering team through gained experience.

* Optimization of the cooperation leading to reduced overhead effort.

Take-Away Tips 223
TAKE-AWAY TIPS

The software development units in Bosch working on powertrain applications like
engine controls started the cooperation with the offshore center in India 20 years
ago and made this offshore center an integral part of the global development network.
Cooperation models have been adopted over time based on learning and best prac-
tices while working in the intercultural context. The chosen approach of fully inte-
grating the international teams while maintaining a customer oriented mindset in the
offshore center has proven to lead to excellent results in the cooperation. In the
previous chapter we presented data on quality, levels of responsibility, and cost
savings achieved in cooperation with the offshore center in India confirming the
competitiveness of our distributed team approach.

Selecting the right topics for the Indian service center was essential to achieve
broad support for the offshore strategy in the organization. Offshore development
should also be used to raise the potential of the lead development locations toward
international technology management and innovation. Working successfully in dis-
tributed teams needs to be rewarded and building a competent offshore development
team an element that supports personal career growth.

Reaffirming the offshore development strategy from top-management is of
utmost importance. Establishing distributed development teams across locations
with diverse cultural backgrounds is a great challenge and needs continuous manage-
ment support over many years to be successful. Creating the mindset of being one
global organization can only be achieved top-down.

Development environments available in the market address the issues of glob-
ally distributed teams and are mature enough for use in professional software devel-
opment. We experienced that harmonized technical processes and roles significantly
help in making virtual teams speak the same “language.” Effort spent in setting up
the cooperation with respect to meetings, information exchange, escalations, com-
petence development, and other topics are well invested, but dependent on the
corporate culture. The goal remains to minimize the impact of cultural differences
on the operational aspects of the cooperation.

All efforts regarding processes, methods, and tools will not suffice in case the
organization fails to ignite a team spirit across the participating locations. Trainings
are essential to make people aware of the intercultural differences and to practice
corresponding behavioral patterns. The formal communication approaches required
in businesses or project environments are facilitated in case a strong informal com-
munication is already established between the people involved.

Part IV

People and Teams

Chapter 26

Work Organization and
Resource Allocation

Summary: Globally distributed software development and IT is highly impacted by
work organization and effective work split. Working in a globally distributed
environment means overheads for planning and managing people. It means language
and cultural barriers. We will provide some practical insights in this chapter on how
to best organize work in a global setting.

Clearly, mixed teams with people from different countries, cultures, and, perhaps,
companies, stimulate innovation, both in terms of products and technologies, and in
terms of more efficient collaboration. Teams that have worked together for a long
time, such as departments inside a company, often struggle in identifying really
innovative solutions because they are captured within their traditional thinking
schemes. As soon as external players are added to such a team there is new stimulus

from outside, and it is less easy simply wiping these ideas off the table.

For instance, we have been called in by a client who was in trouble with his product
strategy. There were too many products with their own variants which were eating lots
of effort but no longer generated enough value. Due to these many variants, there were
insufficient resources to start new projects. Several new product launches were repeat-
edly delayed due to lack of resources. When we arrived it was obvious that one reason
was strong departments that did not sufficiently share across boundaries and that rarely
worked with external persons in their strategy and development teams. The company, in
fact, was of the opinion that even coaching should be done internally by their training
center and training experts—not realizing that this makes new stimulus very difficult to
obtain. We worked in two steps. First, we opened the silo boundaries and created core
teams for products and projects with members from different departments who had full
ownership (in an agile sense) for results. Then we brought in external expertise from
suppliers that would work for a limited time, such as one year, inside such teams.
Suddenly, the teams started with fresh ideas and challenged their way of working. A
useful side effect was that knowledge management had to grow in parallel because, due
to the mixed teams with members who were no longer available after, say, 1 year,
knowledge had to be secured systematically.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by

John Wiley & Sons, Inc.

227

228 Chapter 26 Work Organization and Resource Allocation

But the culture and people barriers to global collaboration are not to be under-
estimated (see Chapter 2) [O’Hara94, Sangwan(07, Hussey08]. They range from
language barriers to time zone barriers to incompatible technology infrastructures
to heterogeneous product line cultures and not-invented-here syndromes. It creates
jealousy between the more expensive engineers who are afraid of losing their jobs,
while forced to train their much cheaper counterparts. An obvious barrier is the
individual profit and loss responsibility that in tough times means primarily focusing
on current quarter results and not investing in future infrastructures. Incumbents
perceive providing visibility a risk, because they become accountable and more
subject to internal competition.

Although there are no patent recipes for global software engineering and IT
work allocation, many experiences from previous projects indicate what we might
call “typical configurations.” Such configurations are shown in Table 26.1.

The first column to the left indicates the “operational scenario” of global product
development and operations. It starts with the beginning of the product (solution)
life-cycle and moves to installation and operation towards the bottom of the table.
The second column shows the most appropriate business model for such an opera-
tional scenario. The next column indicates how external suppliers might be included.
Obviously, external suppliers do not fit in all scenarios, depending on intellectual
property and dependencies exposure, but also related toward risk management of
future growth. The learning curve duration and the break even period depend upon
these scenarios and are summarized in the subsequent columns. The last column,
finally, portrays how many parties (external or internal) are most appropriate.
Needless to say, most scenarios are most effectively handled with a small number
of contributors—except such cases where the contribution can be well isolated and
decoupled from overall project flow and risks (e.g., software components or plat-
forms which are selected and evolve in parallel but without critical dependencies).

Effective work organization and resource allocation is key to successful global
software development. There are two options of organizing global assignments,
namely virtual teams and colocated teams.

Virtual teams are set up with engineers from different parts of the world with
a shared objective for the duration of the assignment. They collaborate inside the
team with high functional coherence. Virtual teams are created when skills are dis-
tributed and must cooperate toward an engineering product or design. The advantage
certainly is the famous “follow the sun” approach of continuous engineering because
one part of the team almost always is able to take up the work of another which just
finished work hours. Evidently this works not for a setting with engineers in close
time zones (e.g., North and South America, Western and Eastern Europe, Western
Europe and India).

The drawback of virtual teams is communication difficulties and the lack of
team spirit because people do not know each other [Egloff06, Olson00, Herbsleb03,
Grinter99]. Virtual teams need precisely allocated work packages and demand an
overhead planning. They demand excellent collaboration tools beyond configuration
management and document management. Continuous integration of resulting code
is a big advantage in virtual teams regardless of whether they work on new designs

I2JUad] umo Io

suoneorjdde

Mg S[PPIAL JI0ys Buroinosino Aqpeord£y, QI0YSJJO/-1e3U/-U() [euioyur jo uoneradQ
I2)U2d I UMO IO
M S[ppIu-jIoys JIoYyg Suromosino Apesrd£, aroysIRAU/-UQ armonyseljul jo uonerado
uoneziuelio umo uoneIOqR[[0d SINJONISLIJUT PUB dIBM)JOS
Mo J[ppIuI-Ioys JIoyg K[qexayaxd Syueynsuo)) 3S0[0 ‘a2I10ysIRAU/-UQ) JO UONE[[RISUI PUE UOIRS
I2)U2D JWIAP UMO IO
M Suo S[PPIA Surormosino Apeord£y, 2I0YSJJO/-TRAN] sjonpoid Jo 2ourUUIRIAL
I2)U2D JWIAP UMO 10 suoneorjdde
Kuepy Suor-a[ppIA S[PPIA Suromosino Apesrd£, 210YS}IO [PUISJUT JO OURU)UTRIA]
PajeO0[[0d 2q
pinoys juauwrdo[oAap
12)U2D JS3) UMO I0 pue 3s9) syse}
M S[PPIA S[PPIA Suromosino Apesrd£, t2I0YSJJO/-TRaU/-UQ) 2IBM)JOS JO UOTEPI[RA
PaJeO0[[0d 2q P[NOYS
S10)u20 Juawdo[aAap 100fo1d of8urs (xorduwos ‘pappaquio)
Mo Suor-o[ppIAl BRI IN umo ApeordAy, $QI0YSJJO/-1R3U/-UQ) juowrdo[aAap J1onpoig
12)U2D JWIAP UMO IO
maq Suor-2[ppIA S[PPIAL Surormosino ApeordAy, 210YsJJo/-1eaU/-uQ) (ououag) juawdojaaap jonpoig
suoneorjdde
Auew-mag S[PPIAL JI0yS Suroinosino Aqpeard£y, 210YSIO (LO1) 1eumurl jo yuowdoroaa(g
uoneziuelio umo uoneIoqe[[0d aresar 103 suoneorjdde pue
Mo Fuog fuo A[qeojard Gueynsuo) 9s0[0 ‘a10ysu(Q) suuojjerd ‘uonmuyap jonpoid
uoneziuelfio umo PaJeO0[[09 2q P[NOYS s[opour ssauisng
maq Suo Suo A[qerayard Yueynsuo)) taroysuo A[qerajaig MU JO SIsA[eueR pue uonIuya(J
sayis/s1omaed potad usaayearg QAIND [epowt 1a1pddng [opow ssauisng yseL
JO Iaquinpn Sururea

suonemgyuo) [eord£L, pue uonesoy YoM [2qO[D 1°9Z AQEL

230 Chapter 26 Work Organization and Resource Allocation

or maintenance tasks. It assures that team members in other places can continue with
the same code and be sure it is working when they start.

Colocated teams work at one place with a defined work assignment. They
benefit from being together as a team and, thus, from simplified communication.
Colocation means that team members should sit in the same building, perhaps the
same room. From a mere people management perspective this is of great advantage
and can yield productivity gains of 30%-50% [EbertO7a]. Being at one place, they
can utilize standard engineering tools for configuration management or their shared
documents, thus keeping the setup rather simple.

The difficulty in setting up such teams is that the necessary skills are not always
available at one place. Often such teams suffer from interface inconsistencies with
their fellow teams working on different assignments in different places. Competition
between teams could impact integration negatively. It is of benefit for colocated
teams to establish clear quality gates and quality control activities (e.g., reviews,
inspections, unit test with defined exit criteria) to assure the right quality level when
resulting work products are passed on to other places in the world.

Both virtual teams and colocated teams need a distributed project management
due to the distributed nature of assignments, even if they are functionally split. The
dilemma with distributed teams is that they need more intensive communication
while their nature reduces the possibilities to effectively communicate. We have a
few recommendations of how to improve communication in distributed teams:

* Cope with distance and diversity. Use different communication channels to
address audiences that are less familiar with each other. Apply some “remote
team building” by having non-technical discussions or events by telephone
or video. Remote games could be helpful to build such virtual teams.

* Distributed management demands more effort which must be budgeted both
in terms of effort as well as skills. As a rule you should plan some 5%—10%
of overhead for managing these teams. In the worst-case scenario, with highly
fragmented tasks and loss of escalation to resolve conflicts, the overhead can
grow to 20%—-40% as we experienced in some cases.

* Consider sending managers and staff to remote sites. Rotate middle manage-
ment across sites so they won’t get into the “us versus them” mode. Assure
that managers feel obliged to live for some time in offshore countries. Not
only is it worth living close to your engineers in the global sites, but it also
helps adjusting one’s perspective by living as a foreigner for some years.
Offshore managers should have many years of experience with living in dif-
ferent countries.

e Agree on concrete team KPIs which would only provide a benefit if the entire
team succeeds. Often, the local line management in Europe or North America
would dominate teams even if they operated in several countries. This is the
tradition of Anglo-Saxon and western line management. Reduce the impacts
of these lines dramatically. As long as local line management influences deci-
sions and bonuses, engineers will never care for global teaming. Literally

Work Organization and Resource Allocation 231

speaking, local management has to act as “hotel managers,” providing the
best possible infrastructure, but never interfering with actual assignments.

* Agree on some communication protocols with the teams. This might include
the various communication channels, as well as when and how to use them
most effectively. For instance, it seems a normal pattern for many engineers
to send e-mails if they don’t know other people in person. Stop this and
demand that your engineers also call unknown persons by phone. Have a
common project portal for all project-related information.

* Plan for sufficient training. A common failure in global software engineering
is the lack of necessary technical or process skills, and thus, delays. Assure
that skills and competences ramp-up in due time before they are needed in
the project. Adapt training mechanisms to the variety of cultures and preferred
communication means. Mix different formats, such as classroom (can be
remote and virtual), live webinars, or e-learning of predigested contents.
Force departments, team leaders, and project managers to periodically assess
skills and skill needs of their teams. Demand training plans for each single
engineer. Always remember that sufficient training and the right skills are
some of the best motivational instruments.

Independent of the team structure (i.e., virtual or colocated) we recommend
using fully allocated team members and coherent assignments.

Coherence means that the work is split during development according to feature
content, which allows assembling a team that can implement a set of related func-
tionality. The more coherence the work assignment has, the less dependencies and
interactions occur with other teams that might work in different settings or even
different places and time zones. Projects are at their kick-off already split into pieces
of coherent functionality that will be delivered in increments to a continuous build.
Coherent functional entities are allocated to development teams, which can be based
in different locations. Architecture decisions, decision reviews at major milestones,
and tests should be done at one place. Experts from countries with minority contri-
bution will be relocated for the time the team needs. This allows effective project
management, independent of how the project is globally allocated.

Full allocation implies that engineers working on a project should not be dis-
tracted by different tasks in other projects. The more allocation to a single task and
shared objective within one team, the fewer engineers are distracted by disturbances
and, thus, context switches. Full allocation does not mean 100% but should certainly
be higher than 60%. If tasks are too small, related tasks should be allocated to the
team. The difficulties usually start with very heterogeneous assignments, such as
working on two different products. In such cases, the context switching from one to
the other product is highly dysfunctional and causes dramatic productivity loss.

These working principles directly impact productivity. Team members must
communicate whenever necessary, and without long planning and preparation, to
make the team efficient [DeMarco99]. Alcatel-Lucent, for instance, evaluated proj-
ects over five years and could distinguish, according to the factor of collocation and
allocation, degree [EbertO1b]. Colocated teams achieve an efficiency improvement

232 Chapter 26 Work Organization and Resource Allocation

of over 50% percent during initial validation activities. This means that with the
same amount of defects in design and code, those teams, which sit in the same place,
need less than half the time for defect detection. Allocation directly impacts overall
project efficiency. It was found in the same long-term study that small projects with
highly scattered resources would show less than half the productivity compared to
projects with fully allocated staff. Cycle time is similarly impacted. People switching
between tasks need time to adjust to the new job. In that same study Alcatel-Lucent
found an impact of a factor 2 to 3 compared with what is necessary if resources are
allocated to one job during a window of one week upward.

Ensure that people work on few tasks or work packages with the highest possible
allocation. More tasks means more interruptions, and thus more defects and longer
response time and, ultimately, reduced motivation.

Here are few guidelines for effective allocation:

* Ensure that allocation of the majority of persons who contribute to the project
(i.e., the engineering role) is almost full-time. This is measured with the
scatter factor that relates the persons contributing to a task to the total effort
of the task. This scatter factor should be around 1.5 with a clear tendency to
further reduce.

* Ensure that allocation is reliable, which implies agreements on beginning and
end dates. Having time fixed means that with clear quality and cost targets,
the only variable factor is content. Content thus serves as a buffer to mitigate
unexpected overruns, and is facilitated by incremental development and con-
tinuous build.

* Ensure that teams are colocated, even if the project is distributed across sites.
Teams that are assigned across several locations cannot effectively work as a
team and thus deliver their work products with reduced efficiency.

* Distinguish development (i.e., new functionality) from maintenance activities
(i.e., defect correction). Organize both as separate projects, where the main-
tenance project due to the unpredictable workload would combine many
markets.

In some companies, such changes in allocation mean a big cultural change with
the clear target of replacing isolated expertise with skill broadening and effective
teamwork. This implies a clear individual responsibility for overall project results.
Such simple, yet effective, rules demand a sufficiently detailed project plan at the
start of project that breaks down resource needs to skills and duration, and provides
a feature development breakdown to teams and increments.

Enriching jobs in the way described above means also more training and coach-
ing needs. We saw, however, in our own experiences over the past ten years, that

Work Organization and Resource Allocation 233

coaching pays off. Looking only at cost of non-quality, that is, time to detect and
correct defects, we found [EbertO1b, EbertOla] that projects with intensive coaching
(ca. 1%-2% of accumulated phase effort) could reduce the cost of non-quality in
the phase by over 20%. A break-even point is typically reached at ca. 5% coaching
effort. This means that there are natural limits toward involving too many inexperi-
enced engineers.

The higher the allocation, the more motivation and ownership you will gain
from your global development teams.

Consider the following case study from an ICT company [EbertOla]. With an overly
high fragmentation of tasks around the world in over ten different development centers,
engineers increasingly lost visibility of how their own contribution affects the overall
project. Several project post mortems indicated that activities and work product quality
were seen as extremely isolated. The effect was that whenever we tried to build the
complete product or iteration, a huge overhead was necessary to bring the pieces together.
This holds as well for individual work products which were not sufficiently validated as
for an entire activity, which was not seen as an entity, but only as pieces. Due to not
having a product perspective, work products were handled inefficiently. Results were
forwarded to the next in the chain, and cost of non-quality as well as delays accumulated.
For instance, inspections typically did not follow the defined process, involving checkers,
an inspection leader, and a maximum reading speed. Many inspections were considered
finished when the respective milestone date appeared, instead of applying reasonable
exit criteria, before continuing the defect detection with the next and more expensive
activity. Tests were conducted with a rather static set of test cases that were not dynami-
cally filtered and adjusted to reliability growth models. The root causes were obvious,
but so deeply embedded in the culture that a complete reengineering process was neces-
sary to facilitate global development at competitive cost.

The major changes for a team moving to global development are concurrent
engineering and teamwork. They need to be supported by the respective workflow
techniques. We assemble cross-functional teams especially at the beginning of the
project. Even before project kick-off, a first expert team is called to ensure a com-
plete impact analysis that is a prerequisite to defining increments. Concurrent engi-
neering means that, for instance, a tester is also part of the team, as experience shows
that designers and testers look at the same problem very differently. Testability can
only be ensured with a focus on test strategy and the potential impacts of design
decisions already made during the initial phases of the project.

Teamwork is reinforced to the degree that a team has sole responsibility for
realizing a set of customer requirements. This means that no longer would a designer
leave the team when his work product is coded. He would stay to test the work
products in the context of those changes provided by other team members. Feature-
orientation clearly dominates artificial architectural splits [McConnell98]. The
targets of the team are based on project targets and are shared by all team members.
They are followed up on the basis of delivered value, that is, feature content. Periodic

234 Chapter 26 Work Organization and Resource Allocation

\1\\

\

Percentage of defects detected

100%
90% -
80% y:d
70%
-
60% Teamwork: faster /c/ 7{
50% reaction to problems o
20% /
30% T)'é Waterfall
20% 4 — approach: late
o ,/ defect detection
0% _.‘_.,e/ . [l |
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Relative project time (start until handover)

Figure 26.1 Effective team management scales directly up to faster reaction time.

reviews of team progress with the project lead are necessary to follow up and help
in case of risks that cannot be mitigated inside the team.

The effects of this reengineered team process were carefully evaluated over
several years. There were two major effects. Response time, and thus overall cycle
time, is reduced as defect correction happens in the team (Fig. 26.1). Cost of non-
quality in the overall project and field defects were reduced significantly' due to
earlier defect detection.

Let us also spend a few words on architecture and work breakdown organiza-
tion. Global development impacts product development heavily toward fewer and
simpler threads of design variants. We recommend a strong product line—oriented
approach for variant management and evolution. The product line concept is based
on a few core releases that are further customized according to specific market
requirements around the world. The structuring of a system into product families
allows the sharing of design effort within a product family and, as such, counters
the impact of ever growing complexity.

Based on a mapping of customer requirements to architectural units (i.e.,
modules, databases, subsystems, and production tools), global engineering activities
can be treated according to their impact on architectural entities:

¢ Small independent architectural units that could be fairly well separated and
left out from any customization. Typically, they are subject to moving into
separate servers. Development is colocated at one place.

* Big chunks that would be impacted in any project and thus need a global
focus to facilitate simple customization (e.g., different signaling types can be
captured with generic protocol descriptions and translation mechanisms).

! Both hypotheses were tested in a set of 68 projects over 4 years (i.e., before and after the change). As
a result we can accept with a significance level of >95% in a T-test that the change toward feature-
oriented development impacts both cycle time and cost positively.

Work Organization and Resource Allocation 235

Development happens in multi-skilled teams. These skills are replicated in
almost all locations.

* Market-specific or customer-specific functional clusters that would be defined
based on the requirement analysis and, ultimately, form the project team
responsible for a customer project. This type of requirement must be the
exception and asks for a dedicated pricing strategy as it creates the most
overheads, but could be the most interesting for our customers to
differentiate.

Such separation of architectural units is the necessary pre-condition for splitting
a global project into teams that can be individually colocated.

Chapter 27

Roles and Responsibilities

Summary: Global software engineering and IT must start with a strategic view,
top-down, which is implemented in the lower levels of the organization down to the
actual development, or engineering projects that translate requirements and work
packages into responsibilities across sites. We will show here some of the roles and
responsibilities, such as a project manager or an offshoring manager, and how they
collaborate in global projects.

Global software and IT impact the entire enterprise (see Fig. 27.1). It should be
set-up and managed top-down starting with clear business needs and addressing the
overall strategy. Repeatedly, global software engineering and IT failed in the past
due to an overly isolated or bottom-up approach with the spirit to work in another
location because it is cheaper or has the right skills. Later, the product manager or
sales representative might detect that quality decreases and customers defect as a
consequence. Outsourcing, rightshoring, and global development must have a clear
focus considering enterprise strategy, product portfolio, core competences, market
perception, customer satisfaction, and the long-term health of the enterprise.

An essential factor in managing a global project is to achieve accountability for
results. We often faced, in the past, a situation where distributed projects were
heavily impacted by the functional line organization or even some local legacy
organization. However, nobody felt responsible for achieving results. The result
was poor productivity and unpredictable delivery accuracy. The availability and
empowerment of key stakeholders must, therefore, be ensured throughout the
product life-cycle.

The key roles facilitating global development are the following:

The Core Competence role of highly experienced senior developers deciding
on the architecture evolution, specifying features, and reviewing critical design deci-
sions in the entire product line. They influence architecture design decisions and are
involved in setting up a concrete project.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by

John Wiley & Sons, Inc.

237

238 Chapter 27 Roles and Responsibilities

» Establish coherent GSE vision
» Safe-guard core competences and products
» Align global product portfolio
» Establish frame contracts with key suppliers

» Assess own needs
» Align own planning (skills, resources, sites, work split)
» Establish key performance indicators

Business
» Institutionalize standard GSE process

Division
» Provide infrastructure

Product line / » Set up individual GSE projects

departments » Manage suppliers, sites and distributed teams

» Implement GSE within the respective project
» Manage project-specific risks
» Set up, measure and reach agreed objectives

Projects

Figure 27.1 Globalized software development and IT impact the entire enterprise.

An Engineering role with the majority of resources is responsible for designing
and integrating new functionality for all software. This involves detailed design,
coding, inspections, module test, and unit testing until the functionality is integrated,
but also testers who maintain a continuous build.

A Service role that serves on specific functions for a group of projects, includ-
ing industrialization and maintenance activities. Often distinct skills are necessary
shortly or repeatedly, but not at a high allocation need. Examples include customer
documentation or production. For better visibility, this group of engineers is assigned
to serve on a need-basis, however, this is still following basic estimation
guidelines.

These roles are then allocated to various development teams, which constitute
a project. They are not necessarily colocated according to these three functions. In
fact, service and engineering are often split across sites.

A project is managed by a project manager and has various teams responsible
for developing specific features.

Project management must be adjusted to outsourcing/offshoring. If teams are
distributed across sites, project management must be more restrictive than with a
colocated team. Management by walk-around will not work anymore and many
managers have to learn new ways to monitor and be present, even if it is only virtu-
ally. As a first step, the project objectives must be very explicit and clear. Each team
member must commit to the project and feel it in their bonuses if the objectives are
not reached. Project and team managers must follow up milestones very closely.
Showing insufficient care when a milestone is passed without results will be imme-
diately translated to weak management. Flexibility must be used very carefully
because it can be misinterpreted. If you are flexible, explain why. As a rule, you
need to push for results. Techniques, such as earned value, are certainly better than

Roles and Responsibilities 239

Home engineering center External supplier
(or captive site)

Engineering / General
PL Mgmt management

| Program Service
Project Offshoring manager functions
manager manager
-QA
| - process and
Project tools
Competence manager - competence
teams management
- training

Engineering Engineering
teams teams

Figure 27.2 An organization structure template for global software development.

weak work package tracking. Incremental development is a strong practice for man-
aging global projects as we have seen earlier.

Teams should get sufficient autonomy and empowerment to deliver results. The
project manager is unable to manage details—and it would not be appreciated in
many cultures anyway. It is better if teams have clear objectives and an agenda that
is followed, rather than their individual team management.

If you have many global development activities, we recommend installing an
“offshoring manager” role to coordinate the various activities specific to global
software engineering and IT, such as infrastructure management, security manage-
ment, and mobility management (see Fig. 27.2). A skilled offshoring manager can
guide the many team leads and project managers that are exposed for the first time
to global software engineering and IT. He can help foreign engineers to network and
find the right contacts. And he should be able to maintain major supplier interfaces
in case of offshore outsourcing. This offshoring manager is measured at the success
of all running global software projects. He is measured on delivery accuracy (sched-
ule, quality, cost), productivity, and SLA adherence.

Chapter 28

Soft Skills

Summary: Soft management skills such as communication, team management, and
project management are core competences of any person involved in a globalized
software or IT project. Specifically, for persons with leadership roles, such as a
project manager, it is crucial to develop these soft skills before the assignment starts.
Often, they need to both grow their own soft skills and also adopt existing soft skills to
the different cultures present in the global project. We will emphasize in this chapter
some soft skills and provide many useful hints for how to improve specific soft skills
for international projects and work-slit.

Soft skills revolve around relationships and the ability to communicate and influ-
ence, rather than technical expertise. Relational issues are impacted by the values
and norms that underlie each national culture. Thus, global team leaders must learn
how to manage cultural diversity without physically being there. Cultural sensitivity
and strong interpersonal and communication skills are critical to motivating members
of globally dispersed teams and engaging them to be active members of the project.
Language competences must be addressed before the start of a distributed project.

In growing soft skills in the team and in practicing them consistently, a manager
@ will immediately be highly recognized as somebody who tries to understand first
before pushing to be understood.

Not all soft skills are equally valued in different cultures. A project manager
might be successful in his own home turf, while not succeeding in working across
time zones and cultures. Sometimes it is a matter of distance, such as for managers

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by

John Wiley & Sons, Inc.

241

242 Chapter 28 Soft Skills

who like to meet and greet their team members continuously, which is obviously
not feasible in a distributed project. At times, it is a mere misunderstanding of dif-
ferent behaviors.

For instance, while leading an international team, one of my project managers from
Europe complained that some managers from China would not reply to e-mails. We
looked into it and found that they were never formally introduced to this European
manager. Both their social status and the still rather infant impersonal communication
approach did not allow them to just answer as people are used to in the Western
hemisphere.

Most persons from a more remote location want to first be formally introduced
to their counterparts and also “socialize” a bit before engaging in project work.
Simply sending an assignment might even be considered embarrassing as they do
not have the means to adequately reply without losing face in one way or the other.

Here are some examples of how to better manage distributed team members,
and thus to improve culture and feelings in such a project:

* Be aware of cultural differences even if people are working in the same
country. Be sensitive to their feelings, background, and past experiences.

* Be aware that your priorities are initially not necessarily theirs. Maybe they
have just observed a project crash or some political or natural crisis that
impacts their perceptions.

e Build trust at the beginning. Hold direct meetings at least one, if feasible. If
it is not feasible, travel as the manager to all sites and hold a video conference
with the entire distributed team each time so that they see you there.

* Hold more project meetings than you are used to from a colocated project.
Use techniques such as scrum to engage all team members in brief status
reviews and high visibility.

¢ Allow some time in each meeting or review to reflect learning, feelings, and
behavior. Have team members work together and interact socially. There are
lots of techniques and games to facilitate remote socializing.

* When socializing and planning for team events, be aware of the different
cultural backgrounds, as they might create negative perceptions from events
considered normal somewhere else.

* Facilitate continuous interaction of all team members.
» Set clear expectations for tasks, assignments, and projects.

* Educate all stakeholders that the meaning of what one writes or says in the
project’s shared language might be perceived and understood differently by
different persons, whether a native speaker or not.

Soft Skills 243

Work with stakeholders to create common terminology with clear definitions.
Write a glossary for key terms and maintain it across the entire program. Note
that you might know a lot about the product, but not necessarily about the
supplier or foreign new team member.

Communicate expectations clearly and in the way the different persons
normally “receive” such expectations. This could mean to write and then
telephone or to have an intermediate local manager to communicate such
expectations.

Jointly review expectations and targets. Develop project plans based on these
reviews to assure each member’s commitment.

Have people commit themselves personally, such as in a round-table, where
each person repeats his role and responsibility, and articulates his
commitment.

Define roles and responsibilities. Write them on an intranet forum with access
to all stakeholders. Review roles and responsibilities before allocating names.

Build relationships with different channels. Often the meet and greet informal
relationship-building is not feasible. Investigate which method of relationship
building and meeting each other is most promising. Be creative in formats to
use and always consider how people might perceive it.

Send critical information, documents, and materials to all team members at
the same time. Agree ways to efficiently inform everyone about changing
requirements or project plans.

Make all relevant information accessible from a single intranet repository,
wiki, or document management system.

Set up communication policies for the different channels to be used. For
instance, emphasize not to send mail as ping pong, but rather pick up the
phone and talk. Foster in these policies the use of different communication
means in parallel.

Vary the timing of meetings and telephone conferences across different time
slots to accommodate all involved time zones.

Allow sufficient time for members to digest and respond to shared informa-
tion. Do not push hard for a decision when people have not yet understood
whether it is possible for them and for their own management. Allow typically
for one day between the information and the decision-making. It is worth the
extra step, and ensures lasting commitments.

Develop and distribute written records of all meetings independent of format
and channel. Write minutes with a collaboration tool while conducting the
meeting so that all persons can immediately see what is written. Encourage
your team members to do so as well.

Never shoot immediately. Take advantage of time zone differences and your
perceived invisibility to all persons at the same time to first prepare an answer
thoroughly before communicating it.

244 Chapter 28 Soft Skills

Often it is claimed that outsourcing or offshoring suppliers or even employees in captive
development centers are not as motivated as developers in the home country. Perceived
reasons are different salaries, less possibilities to develop new things in the low-cost
country, or insufficient opportunities for career or sharing the benefits from growing
business. This perception is questionable and, to our experience, mostly wrong. We heard
in several interviews with engineers from India and other low-cost countries that they
observe higher motivation in their own teams compared to the engineers at their clients’
sites. One manager said, “We seemingly are eager to grow and learn new things. In the
United States and Western Europe I sometimes have the feeling that people are saturated
and doing so well that they cannot imagine improvement. They work to get work done,
but not to personally grow.” While this is an opinion, it is still thought-provoking in
terms of how we are perceived from people in low-cost countries, and how much we are
able and capable of motivating our people in high-cost countries every day, again and
again.

Chapter 29

Training and Coaching

Summary: Continuous technical training and coaching seems natural for any
engineering activity given the fast pace of technology evolution. Looking into post
mortem studies of finished projects, we found that training has profound impact on the
success of global development. There are big differences in productivity, and even
success rates, of teams and projects that you can trace back to skills and competences.
Competence management with appropriate formats, therefore, is a success factor in
outsourcing/offshoring projects that deserves special attention. This chapter highlights
how to practically improve skills and competences.

Competence management has several dimensions. First, there is the basic ramp-up
of engineers to a specific technology and responsibility with related functional and
social skills. Second, there is also the more specific coaching in front of a new
assignment or start of a new development activity.

Basic skills ramp-up follows the responsibilities and roles and is provided by
means of competence grids (mapping specific technology and behavioral needs to
visible skills). Engineers will typically follow some introductory classes when start-
ing with a new responsibility. Competence grids are used to find weak spots or skill
gaps which would be eventually closed by training. Training can be delivered in
various formats, where in the case of global software engineering and IT, it is mostly
remote formats such as e-learning or video-based training. More general purpose
training will be supplied by local trainers who will come on campus or offer class-
room training in the region of the development site. To assure effectiveness of these
training formats, we recommend good planning (so that engineers will actually join
the training) and feedback surveys after one week and, again, after a few months.
Only if the training has lasting impact after a few months is it sufficient and the gap
can be considered closed. A good practice in performance management and people
management is to make individual reviews with each employee by his line manager
(in the same site) and identify, on a quarterly or half-yearly basis, the program’s
strengths and weaknesses and update the training program. Strengths should be
captured in a skills management database to allow fast and efficient mapping of
available skills to needs in the next period.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

245

246 Chapter 29 Training and Coaching

English skills must be rigorously improved in any global software engineering
set-up. Implement a policy that all (and this means all) documents are written in
English. Do not allow exceptions or you will see a flood of translation trials with
huge overheads. Push increasingly that English is used also for all e-mails. It doesn’t
hurt anything and it improves everyone’s English skills. While this is a no-brainer
for North Americans, the British, or Indians, it is fairly difficult in the bigger
European countries where the local languages are considered such an important
cultural heritage that using them justifies severe economic drawbacks. The frictions
resulting from these local legacy languages are tremendous. English is the lingua
franca and must be taught and enforced in order to have effective global working.

Assure that team members have possibilities offered to improve their English
skills.

We had, for instance, good success in several places in fast ramp-up of English simply
by offering a mandatory English class each morning from 7 to 8 o’clock. People were
free to select any weekday but they had go to the class each week for 6 months.

Coaching prior to a new assignment or activity, such as a validation step, has
a direct impact on engineering performance. This coaching is less standardized in
terms of content, duration, and format than the basic skills ramp-up. Coaching comes
on top of regular technical training and happens entirely on the job by means of
allocating experienced engineers to teams of less-experienced engineers. We found
big differences in terms of phase-specific training that involves both technical and
process aspects. Some project managers focus heavily on providing all necessary
technical and process information at respective phase kick-off meetings (e.g., start
of detailed design or start of test), while others just present some rudimentary techni-
cal information and do not bother further with ongoing coaching. Effective coaching
considers the main learning effects from past projects and relates them to available
process expertise of the respective teams being coached. Given the strong impact of
coaching on global team success, we will look to an example about contents. Our
example is the coaching for more effective verification of a distributed design team.
The chosen format is a coach who would provide verification support to all engineer-
ing teams worldwide. This assures consistency. He would be on-site for introduction
and question and answer sessions for large teams that need a lot of training. Otherwise,
the coaching would be done via video conferencing. In any case, it is always specific
to needs, assuring focus and immediate value for participants. The coaching contains
the following elements:

* General availability of a review or inspection leader: Only a trained and
internally certified inspection leader is allowed to plan and perform inspec-

Training and Coaching 247

tions to ensure adherence to the formal rules and achievement of efficiency
targets. The number of certified inspection leaders and their availability limits
the number of performed inspections for a particular project. The coaching
for this part looks into the dedicated skills of a review leader and assures
availability of sufficient number of such trainers.

* Planning details to prepare verification activities. For instance, the actual
design effort per component (i.e., class or module) provides an estimate of
how much code will be new or changed. This indicates the effort that will be
necessary for reviews and inspections. Based on the program language and
historic experiences in previous projects, the optimal checking rate determines
the necessary effort to be planned. Relating to the checking rate the total
amount of the target size to be inspected defines the necessary effort.

» Expertise of the reviewer. If specific knowledge is necessary to check particu-
lar parts of the software, the availability of correspondingly skilled persons
will have an impact on the planning of code reviews and code inspections.
An example is security for which reviewers need to look to certain design
guidelines, review checklists, and common errors that might impact security
of a component or product.

* Quality targets: The coaching will help to set the right quality targets depend-
ing on criticality of a component and impact of errors. Quality targets balance
the cost-benefit trade-off of review activities: The intention is to apply code
inspections on heavily changed modules first to optimize payback of the
additional effort that has to be spent compared to the lower effort for code
reading. We recommend code reading to be performed by the author himself
for very small changes with a checking time shorter than 2 hours in order to
profit from a good efficiency of code reading. The effort for knowledge trans-
fer to another designer can be saved. If high-risk areas are identified (e.g.,
unexpected changes to previously stable components or unstable inputs from
a previous project) exhaustive inspections must be considered.

* Achieving the entry criteria: The inspection or review can start earliest if entry
criteria for these procedures can be matched. Typically, at least error-free
compilable sources have to be available.

During several global development projects, we found that providing a certain level of
coaching within the project reduces cost of non-quality [EbertO1b]. We compared a set
of projects within one culture (i.e., Europe) and similar skill background (i.e., engineers
had sufficient technical knowledge of the software package) that received a coaching
effort of ca. 1%-2% of total project budget with a second set of projects that received
no coaching. Intensive coaching will reduce the cost of non-quality in the project by
over 20%. We found that for our own process and defect detection cost a break-even
point would be reached at ca. 5% coaching effort. Obviously, this is much more than
what we usually consider necessary. This also means that there are quantifiable limits to
involving too many inexperienced engineers in one project.

248 Chapter 29 Training and Coaching

Often, coaching of engineers during the projects is reduced due to assumed
negative impacts on total cost and duration. However, we found the opposite.
Reduced coaching harms overall project performance. Assure that you also coach
your expatriates. They need even more support because they often have a huge load
of responsibility (managing a project or a team in a remote site), while being exposed
to a different culture, language, and work environment.

Chapter 30

Practice: People Factors in
Globally Distributed Projects

Bikram Sengupta, IBM

Summary: This chapter provides a case study from IBM and shows how to manage
people in globally distributed software projects. The case study highlights relevant
themes and guidance from the previous chapters on people and soft factors in global

software and IT in a concrete project context. It offers valuable insights toward how to

do things in your own company.

BACKGROUND

As a “globally integrated enterprise” [Palmisano09] IBM Corporation has been an
early adopter of the practice of locating tasks anywhere in the world based on the
right skill, cost, and environment. This practice has been applied to both its internal
functions and associated re-organization and also to how it develops solutions for

its customers throughout the world.

For example, IBM operates an integrated network of global delivery centers in more
than three dozen countries, providing clients with business process, infrastructure, con-
sulting, and application services, utilizing best-of-breed tools, processes and automation
technologies—many of which have been developed in close collaboration with IBM
Research, itself a globally integrated enterprise that operates eight labs in six countries
worldwide with each lab engaged in several cross-site projects at any time. Software
development projects within IBM thus generally involve globally distributed teams who
bring in unique skills and local perspectives to deliver innovation through highly col-
laborative engagements. Several years of experience in distributed projects has helped
IBM to develop deep insights into the challenges of global software development and
delivery as well as build company-wide core competence in tools, methodologies, and
education in this area.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by

John Wiley & Sons, Inc.

249

250 Chapter 30 Practice: People Factors in Globally Distributed Projects

At IBM Research, we have been studying the phenomenon of distributed software
delivery, working closely with our colleagues in the application services domain. In
particular, IBM Research—India has the advantage of proximity to development
teams who are heavily involved in offshore delivery. IBM has six global delivery
locations in India and this has allowed us to closely observe the challenges these
teams face, as well as the best practices they have developed to address the same.
We have also interacted with onsite team members in client-facing roles to obtain a
more comprehensive view of the delivery process. Many of the technical challenges
that we observed have been documented earlier in [Sengupta06]. In this article, we
will focus on another equally important aspect of global development, one that is
often the main deciding factor between a distributed project’s success and failure
— the people factor. We will draw upon our interactions with practitioners of distrib-
uted delivery in IBM’s application services line of business to discuss how this factor
has implications for team composition, collaborative work and project management.

RESULTS

Our interactions with practitioners engaged in distributed software delivery provided
us with many interesting insights as to how such teams start working together, how
their relationship evolves over time, the challenges that may arise, and how to
address the same. Several anecdotes and best practices shared by the team members
helped us derive these insights. One of the first things we discovered was that selec-
tion of team members for global software development projects has to be based on
factors that go much beyond the usual requirements for colocated software projects
(e.g., specific technical skills or relevant years of experience). We have found good
communication skills (generally in English) to feature very high in the list of desired
attributes of global team members. A number of offshore team members reported
that they have taken (and benefited from) courses on communication skills (includ-
ing listening skills and skills for effective telephonic conversations). Such teams
often develop their own best practices to foster effective communication.

For example, e-mails from offshore teams to customers may be peer-reviewed prior to
sending. One project followed a practice of weekly 1-hour sessions, where everybody
had to take turns speaking on some topic. Some team members put a different perspective
on communication by pointing out that in distributed projects, those who are shy and
not communicative may not be adequately recognized in spite of hard work, and, in fact,
keeping quiet during team phone calls is often perceived as lack of interest or understand-
ing. As a result, people who are more articulate are often the first to be recognized.

Apart from communication skills, some of the other sought-after characteristics of
global team members include: ability to work independently with limited direction
from other sites, good coordination and time management skills, flexibility (e.g.,
with respect to working hours and travel), respect for each other’s point of view,
and a general appreciation of cultures.

Results 251

Select team members for global projects carefully look out for strong communica-
tion and coordination skills, ability to work independently and deliver work in a
timely fashion, and keep an open mind to various viewpoints and cultures.

A kick-off meeting is arranged at the start of a project it should be conducted
over the phone if travel budget is not available. During this meeting, team members
generally engage in informal interactions to get to know each other better. In one
project, we found that a shared folder containing photographs of team members (and
subsequently, team parties and outings) was maintained, and team members felt that
this helped in creating a spirit of “one-team” in spite of being geographically dis-
tributed. A key element that needs to be constantly fostered in cross-site relationship
is trust. We have found that trust in global teams builds up over a period of time.
Most team members we spoke to observed that timely deliverables and high-quality
work products automatically lead to more trust. As one offshore manager said: “Trust
is not a short-term phenomenon, it takes time to develop...it is good to show incre-
mental results periodically to build trust.” The same view was echoed by a devel-
oper: “At the start of a project, there can be very close monitoring, but if you show
ownership, trust automatically develops.” Face-to-face interactions also lead to more
trust. An offshore team member had this to say: “When you speak to someone over
the phone you tend to visualize the individual in a particular way, for example, a
customer team-member used to sound like an army general over the phone, but when
we met face-to-face, I found him to be actually soft-spoken.”

In a successful case, remote teams are frequently encouraged to ask questions freely in
order to understand requirements because common understanding increases the trust
level. Trust also develops where there is transparency. For example, a team-member
facing a technical issue that he is unable to solve should raise it during team meetings
instead of keeping quiet about it and delaying resolution (which can impact other sites).
As one developer said, “As long as sincerity is reflected in your activities, you can be
open with your customers and team members...if something cannot be done, then say
so.” However, trust between remote teams can also be fragile and disturbed by incidents
that may be handled with relative ease in colocated settings, where developers share
informal camaraderie. For example, as some developers pointed out to us, incidents like
over-riding code changes without adequate discussions can disturb team dynamics sig-
nificantly when participants are in different geographies and seldom meet face-to-face.

Global team members have to be sensitive to such issues, and project managers
may help by clearly defining roles and responsibilities, and ensuring transparency
and accountability.

252 Chapter 30 Practice: People Factors in Globally Distributed Projects

Encourage open, responsible, and transparent communication between team
members, as well as informal interactions whenever possible. Occasional face-to-
face meetings can go a long way in developing comfort levels within the team.
At the same time, a focus on technical work and quality deliverables is what will
sustain trust in the long run.

Another issue that has a bearing on cross-site relationship is cultural differences
that are bound to exist in multi-site projects. These can stem from differences in
local customs, language, accent, attitude, working practices, and even differences in
corporate cultures between organizations in the same geographic location.

To give a simple linguistic example, an India-based developer pointed out that when
Indians have a question, they frequently say they have a “doubt,” whereas, in many
places like the United States, the word may be interpreted as expressing lack of confi-
dence. This can create misunderstandings when the question involves the work or skills
of a team-member. To give another example involving more generalized cultural notions,
in a distributed IBM development project involving the Netherlands and India that we
studied, a Dutch developer observed that Dutch people were more direct and less
process-oriented than their Indian colleagues.

To address such issues, the usual practice is to give at least some informal
cultural training to new or junior team members. Sometimes, more formal training
is provided by sharing documents on the culture of the different geographies
involved. If possible, early face-to-face meetings are arranged, so that differences
in culture can be observed first-hand and seen in the proper context. In fact, some
successful multi-site projects in IBM have had as much as 8 weeks of face-to-face
contact for training of key team members. The other advantage of face-to-face meet-
ings is that when developers return to their own sites, they may be able to act as
contact people or liaisons. Team members at both sites use the help of these liaisons
to initiate contact with the remote site, or to find out answers to a wide variety of
questions regarding the remote site. This naturally imposes a significant cost on the
liaisons, particularly in projects that have only a few people with cross-site experi-
ence. Thus, some IBM managers invest their best people in liaison roles. It is espe-
cially useful if the liaison is knowledgeable about local cultures of the sites he is
trying to bridge. For example, we found that the U.S. site of an IBM global project,
which frequently needed to collaborate with developers from Taiwan, used a Taiwan-
born technical liaison, who understood the cultures of both sides of the world.

Cultural differences are a reality in distributed projects, so be prepared for them.
The primary spoken language will frequently differ across sites, a common lan-
guage can be spoken and interpreted with subtle differences. Working styles can
genuinely differ across geographies and companies. Arrange for training, spend
some time together, and seek out liaisons when possible.

Results 253

In addition to cultural understanding, a few simple, but effective, practices may
also be followed to promote the notion of “one team” and support cross-site work.

For example, some projects maintain a glossary of common terms to facilitate shared
knowledge and more effective communication between team members. Given that
remote meetings are almost an everyday feature in distributed projects, we found that
teams follow a routine that try to ensure meaningful participation from all sites. Compared
with colocated meetings on the same topic, when scheduling remote discussions, addi-
tional time is often reserved in advance for effective summarization and wrap-up.

To get around unsatisfactory web meeting experiences due to poor bandwidth
and connectivity issues that may plague some remote sites, presentation materials
for a meeting are usually circulated to the whole team in advance. Again, when
remote employees are not able to attend a meeting due to time-zone issues, minutes
of the meeting and follow-up actions are shared with them over follow-up e-mail.
In some projects, measurements are collected for ascertaining how the whole team
is working together. In one of the projects we studied, the simple measurement of
frequency of contributions and interactions is used as a measure of overall project
progress and team morale. In another project, respondents had to provide answers
to questions on personal work, teamwork, knowledge work, and so on. This process
is subjective, but if the same set of people is interviewed periodically, then the
changes in response may serve as an indicator of the change in project health and
status.

While measurements and disciplined team practices like the ones above are
helpful, software development, at its very core, is a creative activity that benefits
from rich, informal interactions between team members, which familiarize them
with the working styles of each other, allow them to brainstorm and have awareness
of each other’s activities, and, in general, foster team spirit. It is thus difficult to
completely separate people factors in global software development from technology:
the communication media that connects remote sub-teams in to a virtual whole, and
keeps them engaged and motivated. IBM distributed projects make extensive use of
tools in aid of communication (e-mail, chat, phone calls, web meetings etc.),
document/status sharing (team rooms, wikis, etc.) and software development (tools
for various life-cycle activities).

The choice of communication medium depends on the context and personal
preference. In general, text-based communication introduces more overhead, but
practitioners prefer it for discussions that need to be recorded. A far-reaching impact
of distributed development in IBM has been on tools for software development. As
reported in [Sengupta06], SDLC tools for requirements, design, coding, testing, and
so on traditionally have not provided built-in support for collaboration. Remote
practitioners had to hold all discussions related to these activities outside the tools
over standard communication media. As a result, we observed that they experienced
significant context switch, and many important discussions on SDLC artifacts were

254 Chapter 30 Practice: People Factors in Globally Distributed Projects

never preserved, leading to gaps in understanding over time. In addition, support
for formal collaboration (e.g., awareness of changes) was limited, leading to
coordination problems in global projects. Distributed development thus pre-
sented a compelling case for making software development tools and environ-
ments more collaborative [Booch03]. A product strategy around collaborative
application lifecycle management was established that resulted in IBM Rational
Jazz," which is a new technology platform that transforms how people work
together to build software and has been uniquely designed keeping the needs of
globally distributed teams in mind.

One of the most crucial factors that determine the success of a multi-site soft-
ware project is the role played by the managers. They have to perform both people
management and project management duties across remote sites. In the successful
projects we studied, the management of the primary team provided robust leadership
and set overall directions, but also ensured that the participating groups felt equal
and valued.

For example, there were projects where initially the primary team (usually the onsite
client-facing team) assigned work directly to individual remote team members and
monitored progress, but this sometimes led to friction. Subsequently, remote teams were
allowed to partition work between their members, which led to smoother execution.
Many team members also felt that the best source of motivation for them comes from
the quality of work that is assigned. Hence it is important for managers to distribute
work in an equitable manner and promote technical leadership in remote sites. Working-
out of hours is a normal occurrence in multi-site projects. Some remote teams observed
that hardships due to time-zone differences needed to be shared better, and pointed out
that the situation can be particularly challenging for women professionals in offshore
locations.

In general, the social life of team members in distributed projects (particularly
in offshore locations) is adversely impacted, and managers have to be sensitive to
this and allow more flexibility and provide personal support whenever required. In
case of cross-site reporting, managers need to ensure that career progression of
remote employees is not neglected, strong individual development programs are put
in place, and appraisals and remuneration are fair. Good managers provide timely
communication that is transparent and widespread, keeping remote teams in the loop
all the time. They also try to make provision for periodic face-to-face meetings of
team members (even in the face of travel budget restrictions) to create strong rapport
between them, and schedule these meetings in a way that makes the time spent
together very productive.

! http://www-01.ibm.com/software/rational/jazz/

http://www-01.ibm.com/software/rational/jazz/

Take-Away Tips 255

A partially de-centralized leadership model works well in distributed projects. A
primary site is needed for overall planning management, but you must do nurture
leadership in remote sites. Allow them to operate autonomously on local issues
and encourage their participation in project planning and decision-making. Focus
on remote employees, their development needs, career progression, and work—life
balance.

TAKE-AWAY TIPS

People, factors, and teaming issues have always been recognized in software devel-
opment, a discipline that has a strong social aspect to it. However, they have never
been more important than in today’s world of globally distributed projects, where
many of the observed challenges in practice can be traced back to inadequate com-
munication between team members separated by distance as well as cultural and
time-zone differences.

Here are our recommendations—drawn from our experiences described above—
for those who manage or participate in global projects:

* Select well-rounded, responsible individuals with good communication and
coordination skills, who can work independently and manage their time well.

¢ Encourage informal interactions across the team and open sharing of thoughts,
ideas, and concerns. Ensure that formal communication is timely, transparent,
and widespread.

* Foster cultural awareness and sensitivity, through direct contact when possi-
ble, or through the required level of training and the help of liaisons.

¢ Share the hardship of time-zone differences; prepare and circulate discussion
materials ahead of time, leave sufficient time for going round the table to
summarize and wrap up, and share important minutes and follow-up actions.

* Select collaboration tools judiciously, and use them extensively for both
informal and formal collaboration around project tasks; these tools keep team
members coordinated and engaged with the virtual team.

e Actively encourage technical leadership and local decision-making in remote
sites and focus on the development needs and career progression of remote
engineers.

As our experiences with IBM practitioners indicates, the industry is cognizant
of these challenges and is combining the best practices for building and sustaining
remote teams with the next generation of collaboration technology and sensitive
people management to ensure that distributed software development stays viable and
its many benefits continue to be realized.

Chapter 3 1

Practice: Requirements
Engineering in Global Teams

Daniela Damian, Sabrina Marczak, and Irwin Kwan,
University of Victoria

Summary: This chapter provides a case study from different companies and shows
how to manage requirements in globally distributed software projects. It indicates
organic patterns of collaboration involving considerable cross-site interaction, in
which communication of changes was the most predominant reason for collaboration.
Although the developers’ awareness of remote team members who work on the same
requirements did not seem to be affected by distance, our case study identifies
challenges in maintaining the awareness of remote colleagues’ accessibility in
collaboration. We discuss implications for knowledge sharing and coordination of
work on a requirement in distributed teams, and propose directions for the design of
collaboration tools that support awareness in distributed requirements engineering.

BACKGROUND

Global software development (GSD), driven by growing business opportunities and
advanced communication technologies, has created challenges in coordination and
collaboration. The increase in distance between project team members brings about
problems in awareness of progress that affects one’s work [Cataldo06, Herbsleb99,
Ehrlich06].

Requirements engineering (RE), in particular, is a key issue in GSD. Due to its
intense collaborative needs, requirements engineering is a challenge in global soft-
ware development. How do distributed teams manage the development of require-
ments in environments that require significant cross-site collaboration and
coordination? In this chapter, we report a case study of collaboration and awareness
among team members during requirements engineering in an industrial distributed
software team. Using the lens of requirements to group team members who work
on a particular requirement, we used social networks to investigate requirements-

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

257

258 Chapter 31 Practice: Requirements Engineering in Global Teams

centric collaborations in a project, and to examine aspects of awareness of require-
ments changes within these requirements-centered networks.

Contribution from many stakeholder roles is needed throughout the software
development life-cycle to define, develop, and test requirements. Up-to-date infor-
mation about requirements and their evolution in changing environments is critical.
Changes to requirements and design specifications, frequent in large software proj-
ects [Cataldo06], need to be communicated promptly to team members to avoid
negative impacts on quality and team productivity.

However, not only does GSD introduce delays in project communication
[HerbslebO1], but distributed software teams have to coordinate work across diverse
organizational settings, cultural backgrounds, and time zone differences [Damian03b,
HerbslebO1]. Consequently, developers have difficulty coordinating requirements
development. There is little support for monitoring progress of requirements or
identifying team members who are knowledgeable of certain features [Herbsleb99].
While some collaborative tools aiming at supporting RE in distributed teams
[Sinha06] rely on teams self-subscribing to communication about a particular
requirement, we found that teams that have relevant knowledge and work related to
particular requirements have dynamic membership with unpredictable patterns
[DamianQ7]. These teams evolve over time and are affected by factors of geographi-
cal distance, organizational structure, and RE process. What we still do not know is
how distributed teams manage requirements evolution and change information, nor
do we know what gaps in communication and awareness need to be identified in
order to avoid loss of critical knowledge within these requirements-centered
networks.

This case study was conducted at the Brazilian software development center of
one large international IT manufacturing company. The project we selected for study
had significant interaction between the Brazilian location and the United States
headquarters location. The project was an infrastructure maintenance project to an
application developed in the United States over the past 7 years. The project team
consisted of 10 members (7 in Brazil and 3 in the United States); more specifically,
6 developers, 1 system architect, 1 test leader, and 2 technical leaders (one of them
also acted as a business analyst).

RESULTS

The traditional definition of a team in software engineering presents an image of a
strict hierarchical structure in which team members work on related components.
However, studies of current practice [Ehrlich06, HerbslebO1] reveal that team
members are often working on multiple requirements within cross-functional teams
that may contain developers, testers, and technical writers. A study of requirements-
engineering process improvement in a medium-size organization [Damian06] indi-
cates the positive impact of collaboration within cross-functional teams during
requirements-management processes. These teams, composed of designers, develop-
ers, and testers used collaborative activities during the analysis of requirements to

Results 259

maintain awareness of requirements and their changes throughout the project life-
cycle, reducing rework and risk while increasing developer productivity.

In our case study we used the concept of a requirements-centered team (RCT)
as a cross-functional team in which each member is involved in a particular stage
of a requirements’ development (e.g., design, code, or test). A team member may
belong to more than one RCT at one time, and a project has as many RCTs as the
number of requirements. By relating the team members who work on the same
requirements, we can gain a better understanding of how people collaborate and
coordinate based on the requirements-related tasks that they complete.

RCTs, in addition to encompassing members from different teams, have a
changing membership. As the development of a requirement evolves, more people
are involved in contributing to the corresponding RCT. Our own empirical studies
indicate that the group of people who work on a common feature is continually
expanding [Herbsleb01] as a result of expertise seeking and management of inter-
dependencies between requirements. Ehrlich and Chang also found that team
members often go outside of their established team boundaries when seeking infor-
mation about their work [Ehrlich06]. When a member of an RCT collaborates with
a person who was not initially allocated to work on a specific requirement in order
to help develop this requirement, this person is considered as an add-on, or an
emergent team member, to the RCT.

We represented relationships among team members in a RCT using a social
network. We thus defined a requirement-centered social network (RCSN) as a social
network that represents an RCT. Each connection between the members in an RCSN
represents a communication line between two team members in which the partici-
pants communicate about the requirement. We used the RCSN to study the collabo-
ration among team members relevant to the design, development, and testing of a
requirement, as well as any awareness problems they experience in distributed
interaction.

To better understand the dynamic nature of an RCT and how we can support
effective collaboration within cross-functional distributed teams, we used an RCSN
to study the evolution of the RCT over time. By deriving an RCSN from project
plan data (such as task assignment based on a work breakdown structure), we gener-
ated a planned RCSN that indicates who should be communicating with whom in
the project. We then compared this to an actual RCSN generated using actual com-
munication data collected through a questionnaire during the project, and identified
the differences between the planned RCSN and the actual RCSN.

The RCSN, with its emphasis on communication lines between team members,
was a useful tool when studying interaction in distributed teams. We observed com-
munication among the colocated as well as distributed team members, and studied
effects due to distance and availability. We were particularly interested in using the
RCSNs to examine how a distributed development team in the industry propagates
information to make every team member aware of the state of the requirements and
their changes, and manages the collaboration around them.

Who is involved in actual RCSNs? We were able to study and characterize the
distributed collaboration within social networks associated with 13 requirements that

260 Chapter 31 Practice: Requirements Engineering in Global Teams

we identified in the Software Requirement Specification document. We found that
each requirement’s RCSN was extremely dynamic and included important cross-site
interactions. More people collaborated during the development of each requirement
than was originally planned, and about one third of interactions in the team were
with emergent team members. Whereas in our previous work [Damian(07] we identi-
fied that teams working on same requirement are dynamic, here we bring further
insights about this trend: all 13 RCSNs consistently had emergent interactions.' In
particular, a developer was most likely to be added to an RCSN, though technical
leaders and testers were added as well. Interestingly, the tester was not involved in
any planned RCSN, but appeared in every actual RCSN, suggesting that the tester
was always involved in the requirements work for this project.

We obtained these insights by analyzing the 13 planned and actual RCSNs. Each
planned RCSN included a subset of the 10 team members who were assigned to the
project. To build each corresponding actual RCSN, we identified, from questionnaire
data, all project members that the respondents identified as communicating about
the requirement, in addition to those we listed from the planned RCSN. Analyzing
these 13 actual RCSNs, we identified a total of 38 emergent team members (adds)
across all RCSNs; these are non-unique, that is, there are duplicates across RCSNs.

By way of illustration, see Table 31.1, which shows details of the planned and
actual RCSN of requirement 6 (R6), as well as the distribution of team members
across all RCSNs. On average, there are a total of 2.9 emergent people per network,
2.3 of them (79.3%) are from Brazil and 0.6 (20.7%) are from the United States.
This indicates that, on average, about one third of the team members in the project
are emergent in an RCSN.

A further analysis of the emergent team members and their project roles within the
13 dynamic RCSNs shows that 19 out of 38 (50%) of roles involved in emergent interac-
tions are Developers, 13 (34.2%) are Testers, and 6 (15.8%) are Technical Leaders. Table
31.2 shows the data across all RCSNs and the total of people in each role; data is shown
across all RCSNs. Note that none of the planned RCSNs included a Tester.

Table 31.1 Distribution of Team Members

Emergent
people in the
Team members Team members actual RCSN
in planned RCSN in actual RCSN (adds)
Requirement BR us BR us BR us
R6 3 1 4 2 1 1
Total across all 41 22 71 30 30 8
requirements

Average 3.2 1.7 55 23 23 0.6

! See Appendix at http:/segal.uvic.ca/collaborationpatterns.

http://segal.uvic.ca/collaborationpatterns

Results 261

Table 31.2 Distribution of Team Members by Requirement-Centered Social Network
per Role

Emergent
Team members people in the
in planned Team members actual RCSN
RCSN in actual RCSN (adds)

Role BR Us BR Us BR us
Developer 15 1 32 3 17 2
Tester 0 0 13 0 13 0
System Arch 0 13 0 13 0 0
Test Lead 13 0 13 0 0 0
Tech Lead 13 8 13 14 0 6
Total 41 22 71 30 30 8

What interactions and information exchange can be found in RCSNs? To iden-
tify patterns of collaboration and information exchange within RCSNs, we identi-
fied, from questionnaire data, who talked to whom and what information they
exchanged within each RCSN.

Overall, project members mostly communicated about changes in their work.
However, although requirements changes were the predominant reason for com-
munication within and across sites, and two thirds of the respondents believed that
they did not receive requirements changes in a timely fashion.

As a project developer told us, he worked on implementing a requirement for about three
days until he heard the Brazilian development leader by chance, in a project meeting,
negotiating a new delivery date with the project manager in the United States for the
requirements changes that the developer was not even aware of: “Because I was having
difficulties developing a solution that would interface with previous component specifi-
cations, I asked the development leader for help. He was in a hurry to attend a manage-
ment meeting, then he invited me to follow him. I sat in the meeting thinking that I
needed to get back to work. Suddenly I hear the project manager asking if the new data
was feasible to implement the changes to the requirement I was working on. If it wasn’t
for my presence there, the development leader was going to take about one more day to
tell me that I was trying to implement a solution for an obsolete requirement. He knew
for about two days that the requirement had changed and did not have the chance to
communicate it to me due to things with higher priority he had to take care of.”

Changes are the most predominant reason for interaction in requirements-driven
@ collaboration and thus collaboration tools should support timely propagation of
requirements changes information to affected project members.

262 Chapter 31 Practice: Requirements Engineering in Global Teams

This highlights an area in which improved change awareness, by increasing its
timeliness, may have a strong effect on collaboration. Software projects will benefit
from communication processes and tools that provide specific support to the com-
munication of changes, both to improve the timeliness of change notifications and
to reduce the communication overhead required to make team members aware of
every change.

Similarly, we found that project members communicated frequently with col-
leagues who were not initially allocated to work on the respective requirements but
who became involved in the communication and coordination effort driven by these
requirements because of their relevant expertise.

During one of our interviews, the Brazilian development leader told us that because some
of the people who conceptualized the system architecture and worked on maintaining
the application in the past are still working for the company, the current team seeks their
help to clarify requirements, requests, and decisions on how to implement the release
requirements This team has been working on maintaining this application for about four
years, but sometimes we consult with former members about technical specifications.
This application is critical to the company shipping process so we cannot afford to try
making changes to the application structure that would risk stopping its operation on the
ground. Since we do not have a complete documentation about how the application
interfaces with other dependent applications, we would rather ask those who conceptual-
ized the system about the potential impact of the enhancements we are requested to
perform in each release. Although they are working in different business areas now, they
are open in supporting us from time to time, which makes our lives easier.

Communication with project members who were not included in the initial project

@ plan accounted for about one third of the entire communication. Thus, being aware
of who these emergent, relevant, collaborators is important in effective require-
ments change management.

We show an example of requirements-centric social network for R6 in Figure
31.1. Each node represents a person, and an edge is an instance of communication
between these people regarding the requirement. Each project member is identified
by his or her name (fictitious, to protect anonymity), location (BR or US), and role.
Project members included in the planned RCSN are identified in parentheses, and
emergent people are identified in square brackets. The dotted lines indicate com-
munication lines that were expected from the planned RCSN, and the solid lines
indicate the communications reported in the actual RCSN. Details for the other
RCSNs can be found online.?

2 http://home.segal.uvic.ca/ pubs/pdf/132/2010_GSEBook_Damian.pdf

http://home.segal.uvic.ca/<223C>pubs/pdf/132/2010_GSEBook_Damian.pdf

Results 263

CC,CA,IILRRC,RA, S, SC

// George // Jack II. S, SC
BR Tech Lead - (BR Developer) *
, ()) % (per) \
\
\
Kim |
[BR Tester] 1 CC . Il. RC, S, 5C) Victor
CC, CA, I, RRC, RA, S, SC ! [US Tech Lead]
N /
CA ~ /

//éC, CA,IILRRC,RA, S, SC

David Kyle
(BR Test Lead) (US Sys Arch)

Figure 31.1 Real example of a requirement-centered social network for a single requirement. See
text for details.

To characterize the information exchanged within RCSNs, Figure 31.1. also
shows an example of communication patterns in information provided by our
respondents about the nature of interaction they had with the other project members
working on same requirements. The labels on the edges indicate the reasons for
communication as provided in the questionnaire: Communication of Changes (“C”
in Fig. 31.1), Coordination of Activities (CA), Implementation of Issues (I), Planning
(P), Requirement Clarification (RC), Risk Assessment (RA), Support (S), and
Synchronization of Code (SC). For example, Kyle reported reasons for interaction
with David as Communication of Changes (CC) and Coordination of Activities
(CA).

RE involves information acquisition and expertise seeking, as well as coordina-
tion across multiple teams. Geographical distance is known to negatively affect
communication among stakeholders [HerbslebO1]. Awareness, which is defined as
an understanding of the activities of others, which in turn provides a context for
one’s own activities, is linked to issues related to coordinating team effort.
Communication is a main means to distribute awareness information, so we expect
that a developer’s awareness of who else is working on his requirements and whether
they are available for contact is affected in GSD. In our study we were interested
in how aware team members in a GSD project are, and what influences that
awareness.

We also investigated general awareness, which refers to an individual’s knowl-
edge of who has expertise in the project. With respect to requirements work, an
individual with good general awareness can readily identify who in the project team
can provide help with a particular requirement. We were interested in how a distrib-
uted development team, which is limited to remote communication, learns about each
other’s abilities. Current awareness, or task awareness, refers to how aware an indi-
vidual is of another individual’s workload [EhrlichO6]. In requirements engineering,

264 Chapter 31 Practice: Requirements Engineering in Global Teams

this is important because a software developer would benefit from knowing about
developers working on related or similar requirements. Availability [Ehrlich06] refers
to how aware one is of an individual’s accessibility for information seeking.

Experiences so far indicate that awareness is significantly affected in distributed
teams. Ehrlich, et al [EhrlichO6] found not only that people tend to communicate more
frequently with someone about whom they have current or general awareness, but also
that both general and current awareness, as well as availability, decrease significantly
across sites. Herbsleb reported similar findings, observing that outside scheduled com-
munication, distributed team members rarely communicated with each other [Herbsleb99].

In our case study, we (1) collected information on whether project members main-
tained awareness of work and changes within RCSNs, and (2) investigated whether
current awareness, general awareness, and availability are correlated with communica-
tion patterns in the project, as well as whether they are affected by geographical distance.
Furthermore, we wanted to obtain insights into whether project members have awareness
of members that work on inter-related requirements, so as to further our understanding
of coordination needs within requirements-centered social networks.

Overall, we found that a team member generally knew who else was working
on the same requirements, regardless of geographical location. This was somehow
surprising, given the RCSN’s dynamic nature and the significant number of emergent
relationships in these networks. We also identified an interesting relationship between
distance, communication, and awareness. On the one hand, we noticed a significant
decline of general awareness when frequency of communication was lower, indicat-
ing that people were more likely to communicate with someone whom they knew
could help with the work. We also observed a significant decline of communication
frequency and availability over distance. The communication with the remote col-
leagues was less frequent than with the local ones, and the remote team members
were more difficult to reach than the local ones, respectively. Let us present some
details of the many aspects of awareness from the responses in our case study.

First, we asked the respondents if they knew who in the project team was working
on the same requirements they were allocated on. The answers were positive: almost all
members were always or most of time aware of who in the local project team was
working on the same requirements, and two thirds of project members were always or
most of time aware about the remote team members. Only 12% of the respondents were
never aware of who was working on the same requirements in the remote team.

In our 3-month observation sessions we noticed that the awareness in the project came
from informal conversations at the coffee-break area or from discussions during lunch-
time. It is important to share that Brazilians usually have long lunch breaks (about 90
minutes long) that include eating and socialization. One of the developers told us: “I
enjoy how we go out for lunch all together. Not only because I can enjoy some company
while eating, but also because I usually learn about what is going on in the project from
colleagues that I am working with. We discuss technical difficulties we are having about
a certain requirement, and it is common to hear that someone else on the team has
knowledge about how to solve the problem.”

Take-Away Tips 265

An important aspect of maintaining awareness of changes that take place within
the project is to avoid rework. When asked whether the changes in the project were
communicated in time to avoid rework, 75% of respondents believed that always or
most of time the changes were communicated in time. Although 25% of respondents
believed the alerts were timely “because changes are immediately communicated,”
37% still believed that there were some issues about communication of changes
(“changes take long to be communicated,” or “some project team members are not
communicated,” or “changes are not communicated at the same time in both loca-
tions”). This indicates that, although the respondents believed the alerts were timely,
there was still a feeling of gaps in communication.

Knowledge sharing across sites is also a known problem in global teams
[Desouza06] as inadequate channeling of information, or incomplete information, is
communicated across sites [Damian03b]. We thus asked which information they
currently receive when requirements changes are communicated, as well as which
additional information they would like to receive to help them better understand
which requirements have been changed at the remote site. They could select one or
multiple reasons among: requirement identification, justification of the change,
schedule changes, or other. Responses included requirement identification (75% of
responses), schedule changes (62.5%), and justification of change (37.5%). Among
the additional information they would find helpful, respondents indicated require-
ment identification (50%)—which was an interesting finding since 75% already
reported as receiving requirements—schedule changes (75%), and justification of
change (75%).

We also observed that project meetings play an important role in bringing awareness to
team members. The team meets weekly to discuss development, testing, and management
issues. The meetings are held separately by team, and there is a short weekly meeting
with the entire team to share progress updates. The U.S. development leader told us over
the phone: “This team is quite special. Everyone knows each other personally although
the majority of the team is located in Brazil, and this makes working with them easier.
We have built trust on each other over the years, thus it is more comfortable to host a
meeting to discuss impact of requirements changes and team allocation over the phone.
Our meetings go beyond progress report. Any time we need to make an important deci-
sion we call on a meeting, and share the responsibility of making decisions. During these
meetings we exchange information about the project status, which allows me to be aware
of what others are doing and perform my work from a distance.”

TAKE-AWAY TIPS

In this analysis of an industrial, distributed software project, we examined collabora-
tion, awareness, and distance in requirements-centered social networks. Our findings
indicate organic patterns of collaboration involving considerable cross-site interac-
tion, in which communication of changes was the most predominant reason for

266 Chapter 31 Practice: Requirements Engineering in Global Teams

interaction. Although the developers’ awareness of remote team members who work
on the same requirements did not seem to be affected by distance, our case study
identifies that distance creates challenges in maintaining awareness of remote col-
leagues’ accessibility for collaboration. Below, we summarize a number of important
insights that software practitioners may find useful in guiding the analysis or
improvement of requirements-driven collaboration in their own organization.

Requirements networks are dynamic and different from those one would
draw from the initial task-allocation plan. Reasons for the dynamic nature of these
networks include the fact (1) that the initial project plan may not accurately list all
roles and project members responsible for the activities related to a particular
requirement and thus does not reflect all members who will be working on the
development of the requirement, but also (2) because members who work on related
parts of the system may have relevant expertise or interest in contributing to the
collaboration, and thus becoming part of this network. This has implications for
ways in which collaboration should be supported in colocated and distributed devel-
opment teams, as discussed below.

Maintaining general and current awareness becomes critical in dynamic,
distributed software requirements-centric teams. Requirements engineering is a
complex task involving continuous knowledge acquisition and sharing. The spread
of technical and domain expertise across multiple individuals creates the need for
constant collaboration. Awareness about who has the relevant knowledge about
particular requirements, and who is available and accessible for collaboration,
becomes the key enabler for effective collaboration in requirements-centric teams.
In our case study, although there was not a clear relationship between distances and
whether or not a developer was aware of a remote team member who can help him
on his requirements, distance did affect the frequency of communication and access
to this person. Despite the fact that a developer may know which remote member
to contact regarding the requirements he is working on, that person was perceived
as being difficult to communicate with.

Collaboration tools must be able to leverage information that is not always
electronic in order to maintain awareness in distributed teams. Although exper-
tise seeking and requesting assistance is typically supported by informal communi-
cation in colocated teams, distributed teams lack this communication depth and are
left with the inability to know who works on the same requirements and to whom
changes should be propagated for effective cross-site coordination efforts.
Mechanisms that aim at providing awareness information will have to use sources
of information such as elements of the project environment (e.g., who created or
changed a requirement in the requirements specification, or who tested a require-
ment) to understand the current status of the project and who the relevant collabora-
tors to avoid failures in the project are.

Collaborative tools should be able to facilitate unplanned collaborative
work among software team members, as well as initial contact among team
members working on the same and interrelated requirements. Because
requirements-centric teams have dynamic membership, they reflect what we called
emerging interactions, or interactions between members initially allocated to work

Take-Away Tips 267

on the respective requirement and those outside this network but who posses knowl-
edge relevant to the requirement. For effective collaboration, tools must be able to
(1) allow expertise finding when and such that these emerging interactions do occur,
and (2) maintain current (or activity) awareness among the members of these
dynamic requirements-centered social networks, without overloading them.

Tools that create and maintain RCSNs automatically help managers iden-
tify gaps in communication and awareness, prompting the need for improve-
ments in process or project communication infrastructure. In our study, the fact
that those who communicated more were also more aware, as well as the consider-
able reliance on verbal communication or local experts (project members kept aware
of each other through regular meetings or unplanned interactions), raises important
questions for tool development, such as, What type of local or verbal interaction
facilitates the maintenance of this awareness? How can an awareness system repli-
cate it in the distributed interaction? Which information from the development
environment can be collected by such an awareness system automatically in order
to supply it to the project members? With more studies practitioners should also
benefit from additional investigation of the impact of other factors such as work
(process) or ethnic culture on awareness. While we only sought to correlate aware-
ness with communication in this study, it is also possible that awareness was main-
tained as a result of certain procedures for knowledge dissemination in project
meetings (process), or may have been hindered due to different communication
styles across sites.

Chapter 3 2

Practice: Educating Global
Software Engineering

Gopalaswamy Ramesh, Chandrashekar Ramanathan,
and Sowmyanarayanan Sadagopan, International

Institute of Information Technology, Bangalore
(IIIT-B), India

Summary: This chapter provides a case study from India and shows how to train and
educate students for globally distributed software projects. The case study highlights
relevant themes and guidance from previous chapters in a concrete project context. It
offers valuable insights toward how to train people in your own company, and how to
utilize university education to grow international awareness and globalization skills.

BACKGROUND

Over the past 15 years or so, there has been a sea change in the Indian IT industry sce-
nario that has had a significant effect on the Software Engineering Education landscape.
In this section, we will look at the factors that have changed the software industry in
India, the three “waves” of evolution of software industry in India, and the demands that
this evolution places on the kind of skills that Indian engineers are expected to possess
to succeed in the competitive global marketplace. This section is a case study of the
methods adopted by a premier academic institution (III'T-B) in India to equip the students
with these skills and the lessons we learned in this process. Over the past 10 years, [II'T-B
has graduated more than 1,100 students who have been successful entrepreneurs or have
been successful in large multi-national corporations, working in world-class global
software engineering projects and products.

Three factors changed the course of the Indian IT industry in the early-to-mid
1990s. First, Indian companies matured to have effective processes that enabled
scalability of operations without compromising quality. This is amply demonstrated
by the fact that India has the highest number of CMMI Maturity Level 5 certified
organizations in the world. Second, the blossoming of Internet suddenly removed

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

269

270 Chapter 32 Practice: Educating Global Software Engineering

all communication and distance barriers. Teams in India and in several locations across
the globe could work collaboratively to produce state-of-the-art software products. Time
difference and geographic separation suddenly became non-issues. Third, India, as a
local market, started blossoming. Not only did Indian companies start adopting products
and solutions like Enterprise Resource Planning (ERP), Customer Relationship
Management (CRM) and Supply Chain Management (SCM) to streamline their busi-
nesses and provide a competitive edge, but also new markets that encouraged innovation
and entrepreneurship started to emerge in India. Indian matrimony (which is of unique
Indian ethos) and local cultural, religious, and business opportunities sprang to the fore-
front, with applications like bharatmatrimony.com, eprarthana.com, and so on. In addi-
tion, in areas like mobile telephony, India more than compensated for missing out on
earlier parts of the telecom revolution by being one of the most vibrant markets in the
world. Thus, the presence of local markets in India spurred new changes in the software
scenario which were hitherto unknown in India.

All these changes had significant ramifications of the role that typical Indian
engineers played in the global market. During the past 15 years or so, Indian software
industry has gone through three “waves” of evolution. In the first wave (that actually
started the IT age in India in the 1970s), it was looked at as a source of resources
(Resource Model) that were to be managed, controlled, and directed by a team in
another location; these resources were either “onshore” or “offshore.”I In the second
wave, it was given the leeway of being able to take on independent management of
a downstream activity like programming, testing, and maintenance (Life-cycle
Model). In the third wave, it graduated to being a peer team to other global teams
that were engaged in the entire life-cycle of a product and fully tied into current
versions and technologies (Integrated Team Model)[Ramesh09].

This change in the nature of engagement of Indian software industry with the
global marketplace in these three waves has necessitated some significant transitions
that Indian engineers needed to make. Some of these transitions are (Table 32.1):

Dependent — Independent — Interdependent. The work carried out in the
first wave was in the “work-to-specs” mode. This placed a complete depen-
dency for the Indian engineer on getting detailed instructions or “specs” from
his “Project Lead” in another part of the world. If the specs were not clear,
the execution stopped, almost as if it was an automaton. In the second phase,
when they started working on independent chunks, for example, on mainte-
nance of an older release of a product or on a life-cycle activity such as
testing, they needed to make independent decisions, but still they were not
fully integrated into the high-risk, high visibility, mainstream products and
releases. In the third phase, the Indian engineers are now expected to work
collaboratively as peers in globally distributed teams, working on current
versions, technologies and products. This necessitates strong soft skills fos-
tering communication and teamwork as well as being ranked among the best
in the world in their respective work areas.

Tool smith — Technology savvy — Customer-oriented. Indian engineers
who, in the first wave, were specialists in programming languages (or manual

Background 271

Table 32.1 Necessary Skills Required for Each of Three Introduction Approaches

Wave 1: Wave 2: Life Wave 3: Integrated
Attribute Resource Model Cycle Model Team Model
Independent Complete Moderate Peers required to
thinking dependency on dependency on carry on work
specs specs without being spoon
fed and being able to
guide others to think
Management Dependent Independent Inter-dependent teams
Structure resources Management
Nature of Tool smith; Familiarity with Awareness of and
proficiency proficiency in the entire empathy with
a tool or technology customer
programming stack or life requirements
language cycle operations
Nature of Know how; Know what; got Know why:
knowledge purely a more Understand the
mechanical complete idea rationale for the
of the specs, specs; look at it from
without customer viewpoint;
knowing even conceptualize
exactly why the the product and
specs are what visualize the product;
they are
Nature of Near end-of-life More recent Most current
products products; low technologies technologies and

risk

and versions;
moderate risk

products; high risk
and visibility

testing), worked in silos of their own modules or programs, had to graduate
to knowing the entire technology stack in the second wave. In the third wave,
with the advent of collaborative, state-of-the-art work with significant market
exposure, the Indian engineers had to develop customer-centricity, being able
to visualize the customer needs and being able to map these to the technology
landscape.

Know-how — Know-what — Know-why. All the above factors have neces-
sitated the need for an awareness of the bigger picture on the part of the
Indian engineer. A clear understanding of why they were doing what they
were doing became vital to the success as the “how’ and “what” kept chang-
ing really quickly with rapid strides in technology. This emphasis on “know
why” transformed the Indian engineer to innovate ideas and products, instead
of just execution of tasks.

Near end-of-life — “N-1" State — Current Technologies. In the first wave,
Indian engineers dealt with low-risk, near-end-of-life products; in the second

272 Chapter 32 Practice: Educating Global Software Engineering

wave, they took on a more recent product release that was still in widespread
use (and thus of higher risk); in the third phase, they worked on the most
current leading edge technology and product versions. This required the
education system to keep pace with the current technologies.

In this entire quest, Bangalore was becoming the center stage of global software
engineering roots in India. Several reputed product companies like Bosch, Siemens,
Texas Instruments, Motorola, and Oracle started setting up software development centers
in Bangalore. Indian IT majors like Infosys started making Bangalore their home base.

RESULTS

It was in this context that IIIT-Bangalore (IIIT-B) was formed as a government—
industry partnership. While the vision and mission for IIIT-B to be a key player in
the global IT scenario to focus on global software engineering was very clear, there
were some significant challenges and opportunities presented by the Indian IT educa-
tion scenario. Some of these were generically “India-centric.” We will look at these
India-centric challenges in engineering education before going into some of the
specific issues we faced at IIIT-B.

Large volume. Indian engineering student pool is one of the largest in the world.
Just to give you an idea, the neighboring state of Tamil Nadu boasts of being one
of the largest sources of engineers, with close to 230 colleges and approximately
60,000 engineers of different disciplines churned out every year. The State of
Karnataka (Bangalore is the capital city for the state of Karnataka) has 138 engineer-
ing colleges and 55,000 seats. This large volume leads to some scalability issues
that are perhaps unheard of in other places.

Lowest common denominator syndrome. One of the issues that the large volume
throws up is that not all students are of the same caliber. More importantly, not all
colleges or faculty in the colleges are equally competent. The goal of the evaluation
pattern was not to identify top talent, but to ensure that no “injustice” is done to the
“weaker” sections that were at a disadvantage because of lack of resources. As a
result, the emphasis degenerated to encourage mere rote learning.

Low industry-academia collaboration. The industry-academia collaboration
which truly was one of the reasons for success in the Western countries was con-
spicuous by their absence (or at least presence in very limited pockets). This had
two effects: First, a majority of the students who came out were not employable,
and second, a majority of the faculty did not get exposure to industry practices. This,
combined with the lowest common denominator syndrome discussed above, acted
as a deterrent for the teachers and students to make their knowledge relevant to
industry a very unrewarding experience.

At III'T-B, we were cognizant of the above generic challenges and made a few
strategic decisions upfront:

* We chose to have a presence only in the Masters level, at least to start with.
This enabled us to take students with a higher level of maturity and caliber, and
thus not concern ourselves with the lowest common denominator syndrome.

Getting Students Ready for Global Software Engineering 273

* We will restrict the class strength to about 100-120.
* We will have a strong and sustained collaboration with the industry.

* We will provide exposure and expertise in an all-around manner, not just limit
ourselves to mere “technical excellence.” We decided that exposure to areas
like Marketing, Finance, and Soft Skills were absolutely essential for our
students to be “industry-ready”.

We will now discuss some challenges that we faced (that were unique to the IIIT-B
mission and strategy) that we had to overcome for us to achieve our lofty goals. The
students who entered the program came from a diversity of engineering backgrounds
which included Computer Science and Engineering and Information Technology, as well
as other disciplines. This diversity posed some challenges to us. For example, the non-
CSE/T students needed basic grounding in subjects such as data structures, object ori-
entation, and databases, while these subjects were already completed by the students
from CSE/IT backgrounds. The course was designed to be a two-year program, with the
last semester fully dedicated to an industry internship. This meant that we had only three
semesters to cover a variety of subjects to the diverse set of students. Obviously, this
placed a heavy burden on both the teaching staff and the students.

In order to ensure that the students achieved both breadth and depth (in a chosen
area), we introduced the concept of areas of specialization. In addition to gaining
mastery over the basics, each student had to choose an area of specialization.

Getting industry practitioners to teach. The practitioners who were willing
to teach were already busy with their deadlines and getting them to visit our campus
on a regular basis was not easy. The geographical distribution of the software com-
panies within Bangalore and the distances compounded with road traffic problems
did not make it any easier.

Goal of providing all-around exposure. We needed to get the students exposed
to the so-called non-technical subjects like Marketing. The mindset of “I am an
engineer and why should I learn this?” had to be removed for the students to be
motivated enough to get an insight into these areas.

GETTING STUDENTS READY FOR GLOBAL
SOFTWARE ENGINEERING

We need to produce well-rounded, industry-ready graduates who become valuable
contributors to the global software engineering scenario. In this section, we will
describe our approach and some of the specific things we did to achieve this goal.

We realized that global software engineering has two components. First is the
software engineering component, on top of which comes the global component. In
order to address the software engineering component, we took the following
approach.

274 Chapter 32 Practice: Educating Global Software Engineering

Highlighting real-life, all-around activities. Through all the courses, the stu-
dents got to understand and appreciate the importance of all the different life-cycle
phases that make up software engineering and product development. For example:

* Students were encouraged to conceptualize product ideas, rather than being

“given” run-of-the-mill projects.

Students had to understand and apply standards for performing the various
software engineering activities. They used standards like the IEEE Standard
for documenting requirements [[EEE98a, IEEE98b], got exposure to review
mechanisms like Fagan Inspection [Fagan76], and so on. This indoctrinated
them to the best practices of global software engineering.

Students got a solid grounding in foundational and architectural aspects of
building a software product. For this, the students had to finish a set of core
courses (Table 32.2). The core courses not only had courses related to tradi-
tional Computer Science, but also factored in courses on Accounting and
Finance, Marketing and Strategy, Industry-oriented software engineering, and
Technical Communication. This was in keeping with our strategy and objec-
tives of providing an all-around background.

Table 32.2 Curriculum at IIIT-B: Core and Foundation Courses

Prep-Semester Courses

Course Number Course Name Credits

PS 101 Introductory Programming 1

PS 102 Mathematics 1

PS 103 Information Systems Analysis 1
and Design

Core Courses

Course Number Course Name Credits
CS 101 Algorithms 4
DB 101 Data Management 4
SE 101 Object-Oriented Design -
NC 101 Networking and -
Communication
CS 110 Operating Systems 4
SE 110 Industry-Oriented Software 4
Engineering
MG 581 Accounting and Finance 3
MG 582 Marketing and Strategy 3
MG 583 Technical Communication 3

Getting Students Ready for Global Software Engineering 275

* A systematic approach of product development was encouraged and even
mandated. Process disciplines like maintaining a Requirements Traceability
Matrix through a project were also experimented.

* Independent testing of students’ work was part of the grading criteria
[Desikan06]. Just like in a global software engineering environment, we
experimented with a team’s product being tested independently by another
team playing the role of a customer performing acceptance testing.

* The importance of maintenance in real-life software development was stressed
by making the students recognize some of the popular models like the Follow
the Sun model which leverages India’s geographical time zone position to
maximize work opportunities [Ramesh06].

Stressing the importance of support activities such as configuration man-
agement or software maintenance. Often in academic institutions, students develop
small programs, and then, after the assignment or course gets completed, the pro-
grams are discarded. This seldom represents what happens in real life. Issues like
change control, configuration management, reviews, effective testing, process com-
pliance, and maintenance assume paramount importance in real-life globally distrib-
uted teams. Most university curricula in India make, at most, a passing mention
about these vital issues; in our program, we emphasize these issues and give oppor-
tunities for students to practice some of these tasks.

Consciously having industry people come and teach classes. As mentioned
earlier, this is an integral and central part of our strategy. Through interactions with
such faculty, students gained a number of advantages that would stand them in good
stead in the industry.

* The practitioners were able to bring to the table “state of the art practices”
and highlight what works and what does not work in real-life.

* The practitioners provided exposure to the students on the effective use of
tools that increase productivity and quality of deliverables

* The students got to “learn by observation” some of the traits like effective
presentation from these seasoned practitioners.

Obviously, this did not come without any hardship to the students. In order to
accommodate the busy schedules of the visiting industry people, classes were sched-
uled over the weekends. But this extra effort that the students put in made them
cherish the benefits even more.

Going beyond mere comprehension and rote reproduction. Very early in our
evolution, we made a conscious decision not to fall prey to just testing rote learning
aspects of a course. Mere comprehension and reproduction was not sufficient. In
terms of Bloom’s taxonomy of learning, we wanted the students to master the
higher levels of learning, such as application, analysis, evaluation, and synthesis
[Bloom56]. The evaluation pattern for all the courses stressed on these higher level
objectives.

276 Chapter 32 Practice: Educating Global Software Engineering

For example, instead of asking the students to enumerate different types of black box
testing, we would present them with different scenarios and ask them to choose the most
appropriate method. This approach stirs the higher level of learning that is necessary to
facilitate taking initiative and making decisions without expecting someone to spoon
feed micro-instructions to them all the time. In the context of moving to life-cycle model
and integrated team model of global software engineering teams, this was a giant step
forward.

Emphasizing originality, out-of-the-box thinking, and creativity. A number
of our courses expect students to carry out projects that demonstrate the ability to
analyze and apply the concepts taught in that course as well as integrate and syn-
thesize the concepts learned in other courses. As mentioned earlier, these self-
initiated projects instilled a competitive sense in the students. In the course of a
single semester, they were able to conceptualize and design interesting and innova-
tive applications like a complete travel planning and reservation system, project
work bench, news aggregator, and so on.

For addressing the global component, some of the methods adopted include:

Setting non-negotiable value systems. The objective of the program was not
just to get technical excellence, but also to instill some basic value systems
into students that will stand them in good stead in the global arena. Some of
these were:

* Creativity is rewarded. This was the case whether it was evaluation of tests
and exams or in projects.

¢ Open communication is encouraged. For example, students could give
open feedback about the courses

 Ethics is constantly emphasized. We even offered a course on ethics and
on issues like emotional intelligence to instill the students witha more
humane approach to life

Encouraging teamwork and communication. The courses gave opportunities

for fostering teamwork and communication. When the students did group

projects, they were made to share with the class what each of them contrib-

uted. In order to ensure there was participation from all the members, dif-

ferent team members were made to present different parts of the project.

Simulating real-life environments during courses and projects. We used
several novel methods to simulate real-life environments for the students’
projects. (See also the inset below). First of all, we made sure the students
didn’t do “toy” projects, but were able to do projects that have a semblance
of reality. We also made sure they understood that projects in the real world
aren’t done by one-man armies, but by demanding and rewarding teamwork
and communication.

In order to emphasize that software engineering practices cut across application
domains, students were allowed to do software engineering course projects by

Getting Students Ready for Global Software Engineering 277

choosing projects within their respective areas of specialization (e.g., networking
and communication, embedded systems, banking) and guided by domain experts in
those areas. This allowed the students to appreciate the fact that software engineering
processes and practices are applicable in any type of software development project.

We designed and offered a unique course called “Global Software Project Management,”
where we went beyond vanilla project management issues such as SDLC or WBS and
tried to simulate a team that is run in a globally distributed team. Here, we paired up
teams, with one team acting as the “customer” for the other team and vice versa. For
example, when the first team produced a SRS document, it was reviewed by the second
team who did the design using the SRS. Whenever the second team found any gaps in
the SRS, they either had to make some reasonable assumptions or had to ask the SRS
team. This way, we short circuited the typical scenario when students don’t write proper
SRS because they are confident they can make up for it all in the coding stage. We simu-
lated the global environment by forcing the team to communicate only by e-mail and
allowing, at most, two phone calls during the course of the semester. No personal contact
was allowed in discussion of the project. While we obviously would not be able to
enforce this, we evaluated this by looking at how effectively they documented the
minutes of such meetings, as well as how well they carried forward action items. We
taught them sessions on e-mail etiquette and phone etiquette so that they knew how to
write good e-mail and participate meaningfully in phone calls, both essential traits for
global software engineering. We also had a course on software testing that included
aspects of software maintenance. During this course, we made the students produce
studies on popular SDLC tools that support globally distributed environments like the
ones from IBM Rational, Borland, and so on. This made them study these tools and made
them ready for the real-world global environment. Another innovation we attempt in the
software testing course is to encourage the students to contribute to the testing of open
source projects. Students get involved with one specific open-source project of their
choice. The aim again is to give them a truly global exposure of working in large virtual
teams and mentors spread across the world. The success of this experiment is yet to be
ascertained as the term is still in progress.

Enhancing soft skills. Soft skills are comprised of attitude, communication,
and etiquette [Ramesh10]. By our non-negotiable value systems and by the staff
members themselves conforming to the values and being role models, we laid the
foundation for good attitudes. We provided many opportunities for students to
improve their communication and leadership skills. This included a course on busi-
ness communication as a part of the core curriculum, and a primer on good e-mail
and phone etiquette as a part of the Global Software Project Management course.
We also gave them exposure to working under pressure while not slipping on quality
or values. There were a number of extra-curricular activities that required the stu-
dents to develop their initiative and leadership skills. With III'T-B’s emphasis on the
all-around learning and not just a mere “teaching shop’ approach, there were oppor-
tunities for learning yoga and music, playing indoor and outdoor games, as well as

278 Chapter 32 Practice: Educating Global Software Engineering

sensitizing students to social activities, including visits to orphanages and organizing
regular blood donation camps. All this ensured that we were able to sharpen and
develop necessary soft skills in the students in order to enable them to compete better
in the global software engineering marketplace.

IIIT-B has graduated more than 1,100 students. These students are well
placed in reputed MNCs as well as Indian IT majors. There have also been suc-
cessful entrepreneurs. One of our students, Padmanabhan, who is a co-founder
of the startup 8KMiles.com says: “What I learned as a student at IIIT-B in Global
Software Engineering and the finer aspects of communication and collaboration
and remote project management apart from an understanding about the founda-
tions of requirements engineering, estimation, design, development, and elabo-
rate testing as part of the complete SDLC, has helped me immensely in real life:
First, while working on many globally distributed projects with teams spread
between U.S., UK, and India; and currently by applying it as a core concept in
my own start-up and also while hiring talent for my team, clearly knowing what
skills I need to look for in people for projects that are truly global.” Another
student, Manish Thaper, currently working in GE Healthcare says: “My stay at
IIIT-B helped me realize that building a software system is no less than devising
a new product in any other engineering branch. Developing software is not just
writing algorithms, but needs to address plans, resources, tools, costs, quality
measurements, delays, patterns, and much more. We also realized that, in the
global scenario, non-functional requirements like performance, scalability, reli-
ability, and security are vitally important to build world-class software and that
too with an ever improving delivery speed.”

Feedback such as that mentioned above underlines that training on global soft-
ware and IT competences will effectively build world-class software engineers who
are ready to make a significant contributions to global software engineering.

TAKE-AWAY TIPS

Teaching truly global-scale software engineering is highly necessary to prepare
students for business needs, but it is challenging. We conclude with brief take-away
tips for any educational institution trying to create world-class talent in global soft-
ware engineering. Any institution chartered with training people to work in the
offshore and distributed environment should ensure the following:

» Software engineering should be projected as a discipline rather than a stand-
alone course. The principles and practices of software engineering should be
interwoven in all the courses.

 Success in distributed environments requires appreciation of communication
challenges in such environments. The students will be industry-ready only by
being exposed to the use of the soft skills required for such environments

* Evaluation of students should be on the basis of projects which test both the
engineering practices as well as the effective use of related processes such as
reviews or communication.

Take-Away Tips 279

* Students will maximize their learning by constant interactions with industry
professionals. Having such professionals teach some of the courses, as well
as having the students spend an extended duration in the industry as a part of
an internship, will have immense benefits to both the industry and students.

We have been constantly refining and fine-tuning our approach because each
time we tried to do something new we have learned a lot.

Part V

Advancing Your Own
Business

Chapter 3 3

Key Take-Away Tips

Summary: Managing global software development is not easy and has high-risk
exposure to lowering overall productivity. Still, if risks are managed well, the positive
impacts dominate. This chapter will summarize major take-away tips from this book,
without repeating what was highlighted before.

There are five major lessons from global software engineering and IT, namely right-
shoring, establishing and enforcing shared values, improving process maturity,
accountability for results, and managing risks. Together, these five building blocks
will assure that your global software engineering and IT will not fall to pieces.

RIGHTSHORE ACCORDING TO NEEDS

Teams working on a coherent task should not be split across sites. A task should
be handled in a place with team members being as close as possible.

Colocation of related development drives the necessary informal communica-
tion that is the driver of good architecture and improved reuse (i.e., sharing best
practices, challenging results in due time). Global software engineering activities
should be done in a few rather big development centers rather than many small
teams. This assures flexibility of assignment due to a big pool of readily accessible
resources. Turnover can be more easily managed in bigger teams and demands fewer
buffer needs. Big sites facilitate horizontal mobility. With horizontal mobility you
foster engineering flexibility and motivation. Rightshoring drives improved load and
pipeline management. Management overheads are reduced with fewer, but larger,
offshore centers. If hardware or systems development is coupled with the software
engineering, the integration testing activities should always be at the site of the
hardware development and prototyping. Software ships more easily than hardware
in case of small updates. Rightshoring also implies mixing legacy and innovative
products across sites. Having legacy in one center makes that center unattractive
with low motivation and increased turnover rates. After a defined period of roughly

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by

John Wiley & Sons, Inc.

284 Chapter 33 Key Take-Away Tips

three years, engineers should be reassigned to a different product in order to keep
flexibility on sufficiently high level.

ESTABLISH AND ENFORCE SHARED VALUES

Agree with the critical stakeholders across sites on a small set of values that would
be used to drive target setting, performance monitoring, and so on.

Consider regional, cultural, religious and other behavioral impacts and treat
them so that employees understand and feel understood. Where there are clear dis-
crepancies between different value sets of behavioral factors across the involved
societies and teams, speak openly about it and find a shared solution. Never sweep
those discrepancies under the carpet, as they will haunt you forever!

We found in a company with a captive development center in Asia that different time
perception created frustration in teams. For instance, a designer from Asia was allocated
to a critical project, but would not appear for telephone conferences. When asked why,
he explained that a relative was sick. This happened quite often until we found out that
the person was simply not used to keeping such time commitments to the minute. We
established some guidelines to avoid misperceptions and frustration in teams (e.g.,
appear at meetings no more than 5 minutes late or you will pay X amount of money in
penalty) which employees have to obey inside the projects or company.

Shared values must be enforced rigorously because they direct behaviors and
all operational activities across the teams. If employees find that managers them-
selves appear late at meetings they will be late as well. If employees find that their
managers don’t keep commitments or do not follow performance objectives, they
themselves won’t.

IMPROVE PROCESS MATURITY

Assure that your processes are in good shape before they are used in a global
context.

A CMMI maturity level 3 for different sites and partners helps for successful
collaboration in global projects. This can also be achieved by means of COBIT and
ITIL, as well as clearly enforcing process discipline. Rigorously enforce using the
agreed standard process that relates to a high-maturity organization pattern. Provide

Hold People Accountable for Results 285

an interactive process model based on accepted practices that allows tailoring pro-
cesses for the specific needs of a project or even a team.

Organizations on CMMI maturity levels 1 or 2 should not expect that global
software engineering would yield immediate benefits. Instead, it will reveal major
deficiencies in processes and workflow which create all type of difficulties, such as
isufficient quality, delays, additional cost, cancelled offshoring contracts, unmoti-
vated workforce in both places (previous and new), and much more. The most viable
approach for such low-maturity organizations is to use external support and ramp-up
the home processes before proceeding with global software engineering and IT.

On the other hand, we have seen, from previous experiences in ramping-up big
internal software teams in Eastern Europe, India, and China, that solid processes not
only accelerate introduction of outsourcing/offshoring, but also serve as a safety net
to assure the right training, good management practices, and so on.

We did one controlled experiment when setting up Chinese development teams. The
building of a distributed team was fastest and most reliable in the case in which the
parent organization (product line) was on maturity level 3. We also did it with lower-
maturity parent organizations and learned that the maturity level 2 organizations could
manage with some external support, while the maturity 1 organization almost failed.I
It took us quite some effort to build their processes and train the workforce on the
parent side.

HOLD PEOPLE ACCOUNTABLE FOR RESULTS

@ Assure that each piece of work always has one defined owner.

Ownership is crucial for engineering tasks and this holds specifically in software
development with the many built-in interfaces and dependencies. As soon as a team
is responsible with people scattered in different reporting lines or around the world,
it is impossible to assure good quality and reliable commitments. Each person in
such an endeavor would normally have his own priority setting and not work toward
a shared goal. Team building will help, but not solve, the issue because the lack of
vision and shared objectives has a deep impact. It is, therefore, absolutely clear that
any global development team must have one single agenda and must be measured
on mutually shared objectives. Work products must have, for the same reason, a
single owner, not a pair of programmers in different sites where one would always
wait for the other to do his homework. Ownership assures accountability.

People who know what the piece of work is used for and what it eventually
brings toward the customer are much more eager to deliver high quality and assure
that commitments are kept. If they feel like a small wheel in a complex organization,
they rely on “the others” and on “management” to get conflicts resolved. This creates

286 Chapter 33 Key Take-Away Tips

immediate trouble in global projects and outsourcing. Managers in such situations
should refrain from micromanaging and instead split work into meaningful tasks
with clear links to global objectives and track the earned value as an externally
tangible measurement for each team.

CONTINUOUSLY MANAGE RISKS

Manage uncertainties and risks on a continuous basis. Don’t consider any of your
business case assumptions as being stable.

The unexpected happens because we become focused on managing what we
can foresee and imagine. However, especially in global software engineering and
IT, lots of unexpected events can happen. At the moment where you have settled all
project risks and closely collaborated with all stakeholders, you can be sure that a
global communications link will break down, some of your key designers will decide
to leave, or a civil war or disease will start in one of your offshore centers. Note
that outsourcing/offshoring has more and different risks than what you are used to
hearing from general folklore. Build trust face-to-face to rely in critical situations
on all stakeholders worldwide. With mutual respect and trust, remote execution
becomes much easier.

Perform SWOT (strength, weakness, opportunity, threat) analysis on a yearly
basis. Control attrition of engineers well in advance. Establish the right set of indica-
tors. Promote your valuable engineers and managers. Assign them technical chal-
lenges. Check how critical skills can be replicated without many overheads. Control
budget and prepare for changing cost. Relatively low-base labor costs are typically
loaded with various additional costs, for example, interface management, translation,
necessary managerial levels. Offshore salaries tend to increase much faster than in
Europe. Review cost of engineering and project cost structure periodically. Allow,
where appropriate, for local contracts with suppliers and tools vendors. Global sup-
pliers (for tools or components) often charge less to Asian local companies.

LESSONS LEARNED ALONG THE LIFE-CYCLE

There are many more lessons learned that we captured in this book together with
examples and explanations. As a take-away tip, we will summarize some of the best
practices that we have identified over the past years that clearly support global
software development.

INITIATION

¢ Foster communication. Provide sufficient communication means, such as
video conferencing or shared workspaces and global software libraries. Assure

Execution 287

that English is the language for all communication in the company. Provide
language training to all exposed engineers. Enforce the use of the English
language even in meetings and e-mails. Set up a project homepage for each
project that summarizes project content, progress measurements, planning
information, and team-specific information.

* Implement a sound business model. Decide on a global software engineer-
ing and IT business model (e.g., external vs. internal offshoring). Determine
a clear business plan (why offshoring, what expectations). Evaluate different
alternatives by means of business case (e.g., suppliers, sites, products).

» Assure stakeholder buy-in. Agree on strategy and mid-term goals with all
impacted stakeholders. Assure that all stakeholders understand and support
strategy and goals. This includes sites, projects, and different functions. Visit
impacted sites to build relationships. Never globalize only on the basis of low
cost. Make offshore labs equal partners.

¢ Select the right people. Establish recruiting strategies if you decide to grow
your own team at a new site. An effective recruiting strategy assures that talent
is chosen consistently considering a number of criteria, such as cultural aware-
ness, language skills, technical skills, or process and social competences.

* Carefully ramp-up. Grow stepwise. Learn from errors. Execute pilot project
within defined scope. Carefully analyze lessons learned and use that knowl-
edge for future risk mitigation. Start small and carefully evaluate relation-
ships, results, growth potential, market, and customers.

EXECUTION

* Enforce specific objectives. Agree and communicate the respective project
targets, such as quality, milestones, content, or resource allocation at a proj-
ect’s start. Similarly, at phases or increments, start team targets are adjusted
and communicated to facilitate effective internal team management. Assure
that there is always a specification describing what has to be done (we call it
customer requirements for simplicity) for any task or project or product being
developed in a global development mode. Also ensure that there is a second
specification which is linked to the first for traceability and consistency
reasons describing how this will be done by the remote team. Having these
two documents enforces understanding of the task at hand and fosters account-
ability later on.

* Define interfaces and responsibilities. Make individual teams responsible
for their results. Define which teams are involved and what they are going to
do in which location at beginning of projects. This includes a focus on alloca-
tion rules such as scattering or collocation.

* Monitor progress. Continuously manage risk. Mitigate risks related to
contract, people, business, and IPR up-front. Manage projects, risks, and

ur-Anq
IOpIOyaYe}s QINSSY

[opow ssouIsnq
punos juowd[duy

UONEIIUNUIIOD
10150

SYSLI 9SBUBIA

AN[IqeIUN02dYy

sl sl el el

Aunjeuwr $$9001J

X

X

sanfea
pareys 90I0Jud

pue ystqessg

X

X

X

SuroysyIry

JuswaseuRW
1o11ddns
9renbopeuy

Anunoo
10y & ul
sonIIqeIsuy

JuoWAS UL UL
Kyodoxd
[emOa[[AU]

soniqnedwoour
pue
SOIOUQ)SISUOOU]

1500
BIIXQ 2]BaI0
sogueyo
juonbaig

e[00}
paziugooax
are
SOIOUAIOYIP
Kirend

SJUAWINO0P
pue
suoneoy1oads
1004

JuouIaSeURW
109foxd
JuaIOYnSuy

owm onp ur
J[qereae
jou aIe
s1oouIsug

SASTY

SuonESHIIA

SYSIY LI pue Sutooursuy a1emijos [eqo[SuneSniN A[eAN0OH ['€€ AqEL

JudwIdSRURW
RITATON |

S[001 YT oy} S}

suoneIn3yuod
J3euey

juare) jo [ood
[8qO[3 urejurejy

seoudaduod
QoUBYUd
pue o[doad ureiy,

ssa1301d 10J1UOIN

so[qisuodsal pue
SQOBJIAIUL QUYI(]

REYNSRETY
oyroads Qo1ojug

dn dwer £[njore)

9rdoad 14311 109[0S

290

Chapter 33 Key Take-Away Tips

assumptions. Within each project follow-up continuously on the top-ten risks,
which, in a global project, are typically less technical than managerial. Always
compare against written agreements. Ensure that commitments exist in written
and controlled form.

Train people and enhance competences. Plan and provide training and
coaching to all levels (engineers and management).

Maintain global pool of talent. Overlook turnover rates of engineers in
remote countries. Rates depend on countries and it is the objective of a local
site manager to assure that his own turnover rate is in the upper quartile of
the respective country. Set up mixed teams from different countries to inte-
grate individual cultural background toward a corporate and project-oriented
spirit. While having one project leader who is fully responsible to achieve
project targets, assign him a project management team that represents the
major cultures within the project.

Manage configurations. Rigorously enforce tools for configuration manage-
ment and build management rules (e.g., branching, merging, synchronization
frequency) and provide the necessary tool support. Synchronize different ver-
sions or variants. Install necessary tools for configuration management (defect
tracking, change management, build control, product data management,
product life-cycle management, etc.).

Use suitable tools. Evidently, remote work needs more tools support than
being in one place does. It starts with communication links and includes all
types of tools support from basic infrastructure up to collaborative engineer-
ing tools. Look into what tools suites offer the best possible interworking
(e.g., traceability between different work products or alert mechanisms in case
of changes). Secure tools access both internally and externally. Back up de-
centrally and periodically. Have a tools expert in each site to avoid lengthy
and unproductive wait periods. Don’t rely on centralized license management
and tools installations. If you have central licenses, make sure that engineers
can still work even if a link falls down. Avoid vendor lock-in. The first tool
to buy is always easy, afterward, however, many mechanisms work that all
try to lock you with a single vendor.

Rotate management. Assure that management of different sites knows other
locations and cultures to create the necessary awareness for cultural diversity
and how to cope with it.

These best practices can be mapped to the risk list which we introduced in

Chapter 21. Table 33.1 shows how these global software engineering and IT risks
can be mitigated by best practices.

To be successful with globalized software and IT, companies typically demand

external support in domains that they are not really familiar with:

e Evaluating and judging the business model and strategy.

» Assessing and mitigating risks before sourcing is started.

Execution

Improving engineering and management processes (ALM, PLM).
Introducing knowledge management.

Benchmarking suppliers.

Setting up appropriate contract and SLA.

Establishing supplier-management processes.

Independently reviewing quality and performance.

291

Chapter 34

Global Software and IT Rules
of Thumb

Summary: In order to effectively plan global software engineering and IT, you need
your own history database with baselines for estimation, quality planning, and the
like. However, you might not have this data available yet, or it may not yet be scalable
for global development projects. This chapter will provide facts and rules of thumb
from our experiences in global software engineering and IT projects.

Assume that you have a supplier and want to check his estimates and later follow
his planning. How much effort is necessary? What overheads have been factored in?
Is the supplier offering a low price, but will later fail? Everybody, at some point in
time, is in bootstrapping mode with the need for some concrete data. Where do you
get such initial data? We started looking into books and conference proceedings,
cost estimation tools, and lots of our own project lessons learned. We gradually
extracted some simple rules of thumb that we could use even in situations where no
historic information was accessible. This is what you will find here. The list is far
from complete, and it is certainly not as scientific as one would like, but it is a start.
The data stems from our own history databases, as well as from a number of external
sources, such as estimation tools or project management literature [EbertO7a,
Jones07, Lyu95, McConnell98, Rivard08, Sangwan07].

Project planning is based on size, schedule and productivity. A good predictor
is the Putnam formula that states that effort in a project is proportional in
size to the power of 3 divided by duration to the power of 4 and divided
again by productivity to the power of 3. The minimum project duration in
months is 2.5 times effort in person-years to the power of 1/3.

Team size is roughly the square root of effort in person-months. This means
that a task with 10 person-months estimated effort should be done with 3
persons. Obviously, high independencies inside the task allow for more
persons, and thus, shorter durations. However, most probably, the task was
specified too broadly and should first be broken down in smaller tasks, such
as 10 tasks with 1 person-month effort, done by 10 persons.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

293

294 Chapter 34 Global Software and IT Rules of Thumb

Engineering productivity can be rather easily improved by 5%—10% per year.
This is done by means of CMMI or specific improvement activities. More
than the 10% are difficult to achieve, but are, in some industries, inevitable
due to competitive pressure.

Duration of a task or project (given that all other factors are known) can be
improved by up to 25% in one shot by improving productivity. This implies
excellent team building and teamwork, strong planning and monitoring on
the critical path, strong method and tools support, high parallelism, and early
defect removal. Such mechanisms are not sustainable and demand strong
follow-up. They bear the risk of high stress levels and attrition of team
members if pressure is maintained for too long.

Allocating engineers to several projects in parallel reduces productivity.
Experience shows that productivity is reduced in steps depending on the
amount of context switching due to the different assignments (e.g., phone
calls from the second project while doing design in the first). As a rule of
thumb, consider some 30% productivity decrease if you are working on
several independent assignments.

Working in several locations, as we do in global development, costs extra
effort. We found in many studies, including own experiences, that with two
locations you should budget some 20%—-30% overhead and for three to four
locations, some 30%—-40% overhead. This overhead is due to additional
interfaces, management, team effort, collaboration support, quality control,
reviews, and so on.

Requirements change with 1%-3% per month normalized to the effort origi-
nally estimated. For instance, if the requirements are estimated with 1 person-
year, you would expect an additional effort or change impact of 1-2
person-weeks per month. This is not peanuts; it needs to be considered in
building change review boards and clear rules for change management.
Target a freeze point of your requirements in due time by planning backward
from a project’s (or task’s) end.

Cost of non-quality (i.e., defect detection and correction after the activity
where the defect was introduced) is around 30%—-50% of total engineering
(project) effort. It is, by far, the biggest chunk in any project that can be
reduced to directly and immediately save cost. For global software engineer-
ing projects especially, this cost increases due to interface overheads where
code or design would be shipped back and forth until defects are retrieved
and removed.

The amount of defects at code completion (i.e., code has been finished for a
specific component and has passed compilation) can be estimated in different
ways. If size in KStmt or KLOC is known, this can be translated into remain-
ing defects. We found some 10-50 defects per KStmt depending on the
maturity level of the respective organization. This is based on new or changed
code only and does not include any code that is reused or automatically
generated. For such codes, the initial formula has to be extended with per-

Global Software and IT Rules of Thumb 295

centage of defects found by the already completed verification (or validation)
steps. An alternative formula takes estimated function points to the power of
1.25.

Verification pays off. Peer reviews and inspections are the least expensive of
all manual defect detection techniques. You need some 1-3 person-hours per
defect for inspections and peer reviews. Before starting peer reviews or
inspections, all tool-supported techniques, such as static and dynamic check-
ing of source code should be fully exploited., Preferably, fully instrumented
unit tests should be done before peer reviews. Unit test, static code analyses,
and peer reviews are orthogonal techniques that detect different defect
classes. Often, cost per defect in unit test is highest amongst the three tech-
niques due to the manual handling of test stubs, test environments, test cases,
and so on.

Each verification or validation step can detect and remove some 30% of the
defects. That translates into 30% of defects remaining at a certain point of
time that can be found with a distinct defect detection technique. This is a
cascading approach, in which each cascade (e.g., static checking, peer review,
unit test, integration test, system test, beta test) removes each 30% of defects.
It is possible to exceed this number slightly toward 40%—-50%, but it comes
at dramatically increasing cost per defect.

Remaining defects are estimated from estimated total defects and the different
detected defects. This allows for planning of verification and validation and
allocating necessary time and budget according to quality needs. If 30% of
defects are removed per detection activity, then 70% will remain. Defects
that remain at the end of the project equal the amount of defects at code
completion times 70% to the power of independent detection activities (e.g.,
code inspection, module test, integration test, system test).

Release quality of software shows that typically 90% of all initial defects at
code completion will reach the customer. Depending on the maturity of the
software organization, the following defects at release time can be observed:
CMMI maturity level 1: 5-60 defects/KStmt; maturity level 2: 3—12 defects/
KStmt; maturity level 3: 2-7 defects/KStmt; maturity level 4: 1-5 defects/
KStmt; maturity level five: 0.05—1 defects/KStmt. Don’t expect high quality
in external components from suppliers on low maturity levels, especially if
they are not explicitly contracted. Suppliers with high maturity might have
low defect rates, but only if they own the entire product or component.
Virtual (globally distributed) development demands more quality control,
and thus cost of quality, to achieve the same release quality.

Improving release quality needs time: 5% more defects detected before release
time translates into a 10%—15% added duration of the project.

New defects are inserted with changes and corrections, specifically those late
in a project and done under pressure. Corrections create some 5%—30% new
defects depending on time pressure and underlying tool support. Especially
late defect removal on the critical path to release causes many new defects

296 Chapter 34 Global Software and IT Rules of Thumb

because quality assurance activities are undermined, and engineers are
stressed. This must be considered when planning testing/validation or main-
tenance activities.

Test effort can be planned by estimating the necessary test cases. This is done
by a target quality level and coverage criteria to be achieved based on opera-
tional scenarios and use cases. Starting during the requirements analysis
phase, test effort can be estimated by functionality and translates roughly
into 0.3—1 test cases per function point. For procedural languages such as C,
this translates into 3-7 test cases per KStmt. This is a very rough formula
and should be handled with care. Note that, across projects, at least 30% of
all test cases are redundant. Such average holds for both legacy and new
projects because engineers have the tendency to add test cases “to be on the
safe side,” but do not control them by means of coverage or related effective-
ness criteria. This is an excellent business case in itself toward applying
better test management and test coverage tools. Orthogonal test case arrays
help in reducing test redundancies.

Maintenance effort for the last level (engineering effort related to defect
removal after the welcome desk, etc., had done their job) amounts to 5%—
15% of project effort per year. Make sure that this effort is budgeted and
staffed before release or you might end up in difficult times with your cus-
tomers who expect proper SLA management. New and changed functionality
(on top of defect corrections) account for 5%—8% of new functionality per
year and 10% of functionality being changed per year. Altogether, this trans-
lates to one third of project cost being budgeted for maintenance, especially
in the first year after release. It will typically decrease thereafter.

The Pareto principle also holds for software engineering. As a rule of thumb,
20% of all components (subsystems, modules, classes) consume 60%—80%
of all resources. Some 20% of all components contain 60% of all effective
defects. Some 20% of all defects need 60%—80% of correction effort, and
20% of all enhancements require 60%—-80% of all maintenance effort. This
looks a bit theoretical because, obviously, one can in most cases find a Pareto
distribution. However, there are concrete benefits you can utilize to save on
effort. For instance, critical components can be identified in the design by
static code analysis and verification activities and can then be focused on
those critical components.

Chapter 3 5

The World Remains Flat

Summary: Global software development is not the target per se, but is rather the
result of a conscious business-oriented trade-off. The guiding principle is to optimize
the cost of engineering while still achieving the most feasible integration of all R&D
centers worldwide. Outsourcing/offshoring is driven by acquisitions, setting up
development centers in countries that offer necessary skill and resources at same or
higher productivity, and presence in key markets. This chapter will get back to the
four drivers for global software and IT and provide an outlook for what to expect
next. It will certainly stimulate your own ideas on better utilization of globalization
and collaboration.

Global software engineering is the consequence of the rather friction-free economic
principles of the entire software industry. Basically, any code can be developed at
any place in the world and made visible and accessible to any other place in the
world at virtually the same time. There are not many overheads in distribution or
industrialization as long as source code is shared. Many companies start global
development due to perceived cost differences. Achieved cost reductions are further
delivered to customers, which means competitive pressure for those enterprises not
yet embarking on global development.

Further advantages appear when intensifying global software engineering and
IT, such as more flexible work hours for engineers, and a demand-oriented provision-
ing of skills. Starting with smaller chunks of work, outsourcing/offshoring intensifies
toward globalizing the execution of entire business processes or products. Innovative
products are created due to having more capacity and more efficient workflows.
Product life-cycles and technology growth will further accelerate due to this increas-
ing innovation driven by global software engineering and IT. The principle, as such.
is amplified and will not allow any enterprise to exit.

As we have seen in Chapter 2, there are four drivers of fuel globalization, as
shown in Figure 35.1: efficiency, presence, talent, and flexibility.

1. Presence. Outsourcing/offshoring is part of companies’ growth strategies
and keeps them accelerating:
* Broad base for resources, skills, technology, and innovation.
* New markets at emerging economy sites.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

297

298 Chapter 35 The World Remains Flat

4. Efficiency: 1. Presence:
Process Global growth
excellence. strategy.
Speed to profit Learn from new
ahead of markets.
competitors.

3. Flexibility: 2. Talent: Race
JIT networks for skilled
across people.
organizations. Value creation
Technology happens where
expertise that the skills are.
depends on
context.

Figure 35.1 The way ahead: four drivers fuel future globalization.

* Mergers and acquisitions.

* Tax optimization, local R&D funding, governmental support.
Blue Ocean approach to innovative products and services.

¢ Learning from non-Western research (e.g., Asian medicine).

Global growth, therefore, is a self-sustaining force. Understanding local
markets and being present will boost these markets (e.g., India and China
account for 2.5 billion potential customers), which, in turn, will boost con-
sumption and economic growth, which then further amplifies global software
and IT. On top of that, global R&D helps to address global problems (e.g.,
diseases, green energy, water, nutrition).

Talent. The race for skilled people will create a global talent marketplace.
In turn, talented engineers will work at places they enjoy most so that com-
panies will offer space and labs in those areas. Companies will chase after
talent offshore, regardless of cost. Success will be determined by global
attractiveness to engineers.

Flexibility. Networks across organizational boundaries will further grow,
just in time. We face them today already with suppliers or community source
environments in some areas. The organizational layout will move from task-
based offshoring with defined relationships to a flexible business process
globalization. There will be JIT networks of processes, suppliers, and ser-
vices around the world. Collaborative networks (e.g., community source,
research broker) will further evolve.

Efficiency. All these factors will only grow if the machine behind them, that
is organizational processes and tools, operates at the highest efficiency.
Engineering and management processes must tame two diverging forces:

¢ Sharing knowledge and skills for innovative products.

* Protecting results in order to achieve necessary margins to grow.

The World Remains Flat 299

Process need to facilitate speed, organization, and collaboration. They must
leverage investments quickly because of the ever-growing risk of IP loss. The new
product life-cycle is determined by the time it takes to copy, compete, and implement
processes that provide agility and efficiency. Companies need to balance time-to-
profit with time-to-copy. They need to develop an organizational and management
strategy for offshoring, along with an economic business case. Collaboration will
further grow across disciplines, cultures, time, distance, organizations. This demands
a completely new skill set that is currently not taught at universities (e.g., manage-
rial, teaming, sharing without losing).

Outsourcing/offshoring makes deficiencies more visible and it amplifies
weaknesses. These deficiencies are always there, with or without global software
engineering and IT, but in a global and distributed context they have more impact.
The needs for global engineering must be carefully balanced with additional costs
that might be incurred only at a later point. This includes staff turnover rates, which
vary greatly across the globe; cost overheads related to traveling, relocation, com-
munication, middle management, or redundant development and test equipment;
lack of availability of dedicated tools that allow for globally distribution and work
environments; impacts of the learning curve which slow down with as more loca-
tions are involved; cultural differences which can impact the work climate; insuf-
ficient language skills; different legal constraints related to work time, organization,
or participation of unions; and building up redundant skills and resource buffers to
be prepared for colocated teams and for unforeseen maintenance activities.

We faced all these obstacles and had to deal with them by means of planning,
risk management, and communication. Even the best training cannot substitute for
extremely cooperative engineers and highly effective management, both of which
are oriented toward overall success and not impacted by legacy behaviors.

In the near future, global engineering will evolve into a standard engineering
management method that must be mastered by each R&D manager. Processes and
product components will increasingly be managed in a global context. Suppliers
from many countries will evolve to ease start-up and operations of global software
engineering and IT, even for small and mid-sized enterprises in the high-cost coun-
tries. Brokers will emerge to help find partners in different parts of the world and
manage the offshoring overhead. Cost per headcount will stay low for few years but
will steadily increase due to rising standards of living in the emerging countries that
contribute to outsourcing/offshoring. Global software engineering and IT have a
strong contribution in improving living conditions around the world. Bridging the
divide is best approached by sharing values and understanding cultures. Such
increasing standards of living in China, India, and many other low-cost countries
will generate hundreds of millions of new middle-class people who will demand
more information technology.

Unfortunately (for the expensive Western countries), these changing conditions
will not have a sustainable positive impact for today’s highly paid software engi-
neers. On the other hand, an increasing number of competing software companies
will evolve and further push for global alignment of engineering costs (but this time
cutting down the top salaries). What looks healthy from a global perspective may

300 Chapter 35 The World Remains Flat

have a negative impact on those of us who do not adjust quickly enough to the new
work split.

To be successful in a global market, a company should manage the risks of
global software development and utilize the positive aspects as drivers to shape the
software engineering processes in detail and the culture in general. The challenge is
to continuously improve processes, innovativeness, and productivity. IT and soft-
ware engineering have low entry barriers and a global resource pool. Engineers will
have to assess their own competitive value frequently and change gears and func-
tions opportunistically to stay employable. That is the task of all of us software
engineers in the future. Those of us who stagnate will be out of business faster than
we might think.

History has shown us time and again that mixing genes is the best thing that
can be done in the path of evolution. Or, in the words of Charles Darwin, one of the
first truly globally acting scientists, “It is not the strongest of the species that survive,
or the most intelligent, but the ones most responsive to change.” Globalization is,
in fact, about the same thing—an embodiment of Darwin’s concept.

Appendices

Appendix A

Checklist/Template:
Getting Started

Global software and IT cannot be learned on the job. That would be a very expensive
exercise. It is smarter and more cost-effective to start with the best practices and
then enhance them according to your own specific needs, culture, and risks. These
best practices should then lead to your own processes for the different life-cycle
phases of the sourcing or offshoring project. This book provides guidance for finding
answers to most problems and risks. Here is a simple checklist and template for
beginners so that they don’t overlook some critical factors.

No. Check Your Status / Comments

Sourcing strategy

1 | Define and implement a company-wide strategy for
guiding offshoring evolution—from support to core
competences.

2 | Determine a clear business plan (i.e., why outsourcing/
offshoring, which business model, what type of
sourcing or captive engagement, what products, etc.).

3 | Agree on an implementation strategy and operational
targets.

4 | Determine and agree on the concrete outsourcing and
offshoring business case addressing the costs and
benefits across its life-cycle.

5 | Evaluate different alternatives by means of business
cases (e.g., suppliers, sites, tasks).

(Continued)

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

303

304

Appendix A Checklist/Template: Getting Started

Check

Your Status / Comments

Ensure senior management support on objectives and the
entire program.

Set clear and measurable objectives of what should be
achieved by what date.

Assure internal stakeholders buy-in. Get relevant
stakeholders in projects and in the line on board.

Set up and agree on a clear governance policy that
addresses major outsourcing-/offshoring aspects and
which is mandatory for all stakeholders

10

Consider external expertise and experiences to
successfully manage the outsourcing/offshoring
program.

Initiation and ramp-up

11

Determine an experienced project manager with full
responsibility for the project (i.e., budget, content, and
resources). If there are several such projects, determine
a strong manager to be totally responsible for the
outsourcing/offshoring program, including supplier
management.

12

Set up an effective steering board for the outsourcing/
offshoring program with all its projects.

13

Standardize and document all relevant processes and
interfaces between you and your supplier(s).

14

Reengineer your engineering processes to master the
changing needs toward global collaboration. Adapt
your processes in engineering, IT, management and
controlling to the changed needs of such an
outsourcing/offshoring program.

15

Carefully evaluate how to protect intellectual property
while growing global innovation (time-to-profit vs.
time-to-copy).

16

Make sure that your organization exhibits the necessary
process maturity to address outsourcing/offshoring and
have the processes been assessed on maturity level two
(e.g., CMMI-DEV with distributed development,
CMMI-ACQ for outsourcing, A-SPICE for the
automotive industry, COBIT, and ITIL for IT
companies).

17

Develop global managers and a global workforce
management.

18

Set up clear evaluation criteria for potential suppliers,
covering technical, market, and soft factors. Tailor such
lists according to specific project needs and risks.
Avoid any bias toward a specific supplier.

Checklist/Template: Getting Started 305

Check

Your Status / Comments

19

Select potential suppliers and evaluate them according to
agreed upon and written criteria. Ensure that bias is
avoided and risks are considered.

20

Select a supplier who understands your business; target
win-win (contract, SLA). Meet the supplier so he
understands your culture, specific market, needs, and
technical/environmental constraints and products.

21

Prepare a formal SLA between you and the supplier
addressing your targets, risks, escalation, and
measurable objectives.

22

Review the SLA with legal experts and fine-tune.

23

Review the SLA with the suppliers on feasibility.

24

Ensure by means of your own processes and SLA that
supplier changes, dual supplier structures and
knowledge management are adequately addressed.

25

Set up a steering board with representatives of the
supplier. Determine frequent meetings, specifically
during the ramp-up and initiation.

26

Train relevant stakeholders (employees and managers)
on outsourcing/offshoring best practices, risks and
management skills.

27

Prepare your engineering teams for global collaboration
(e.g., values, awareness). Train relevant stakeholders
(employees and managers) on outsourcing/offshoring
on soft skills, cultural aspects, and cross-country
communication.

28

Train relevant stakeholders (employees and managers)
on your processes applicable for the outsourcing/
offshoring project and the tools to be used for effective
collaboration.

Project execution

29

Set up and execute a pilot project with defined scope.

30

Establish and maintain a list of relevant risks and
appropriate mitigation actions (e.g., contract, people,
business, security, IPR). Ensure ownership of each
relevant risk, specifically where interfaces are involved.
Enforce periodic risk status reviews.

31

Ensure that each project has its own single source
requirements list covering both functional and non-
functional requirements and acceptance criteria.

32

Provide access to the requirements list for impacted
suppliers. Provide collaboration mechanisms to
exchange requirements.

(Continued)

306

Appendix A Checklist/Template: Getting Started

Check

Your Status / Comments

33

Ensure that all requirements are formally specified and
managed throughout the outsourcing/offshoring project.

34

Establish and maintain a sufficiently detailed project
plan which addresses all relevant activities. Establish
clear responsibilities for an efficient work split.

35

Review and commit to the project plan and requirements
with all relevant stakeholders (including suppliers for
their parts) so that they agree to deliver necessary
resources in due time.

36

Ensure that the project plan considers all “support
activities” such as reviews, configuration management,
quality management, training, documentation, etc.

37

Set up and ensure a continuous monitoring of all
processes and deliverables addressing both quantitative
and qualitative needs.

38

Set up a formal control with the supplier which
considers cost control, SLA deliverables, and relevant
project parameters (e.g., budget, milestones, and
quality).

39

Address deviations from the plan or the SLA
immediately and follow up through closure, specifically
during the ramp-up and initiation.

40

Establish and maintain a quality assurance plan covering
all relevant activities to ensure the necessary quality.

41

Ensure that the quality of the delivered software
periodically measured and compared against targets
(e.g., maintainability, reliability, usability, etc.).

42

Establish and maintain a single change control board
with all impacted stakeholders, including the
supplier(s), for their parts.

43

Establish and maintain a systematic change management
process with support tools that are uniformly applicable
for all suppliers (e.g., requirements repository, intranet
information dashboard, configuration control system,
source code control system, test case, defect tracking,
etc.).

44

Make sure that all necessary information on the project
and processes is available to all stakeholders across all
locations (e.g., quality plans, tools, quality status,
configuration baselines, etc.).

45

Make sure that all necessary tools for efficient
collaboration are available and used (e.g., requirements
engineering, documentation, project management, team
meetings, wikis, etc.).

Checklist/Template: Getting Started 307

Check

Your Status / Comments

46

Train configuration managers on baselining and recovery
mechanisms.

47

Make sure that basic engineering and management tools
are used consistently across all sites and projects (e.g.,
defect tracking, configuration management, project
management, workflow management).

48

Make sure that the available IT infrastructure is
sufficient to collaborate across sites and to interface
with the suppliers’ IT infrastructure (e.g., performance,
security, etc.).

49

Establish and utilize different communication channels
(e.g., site visits, video conferencing, telephone calls,
online meetings, collaboration tools).

50

Set up periodic project and technical reviews with
stakeholders across sites, functions, projects, and with
the supplier.

Relationship management

51

Establish and enforce transparent performance
evaluations to periodically assess and improve
performance and cost of the existing supplier
agreements.

52

Continuously manage your technology, IPR and
competence portfolio and roadmap to identify needs
and resolution over time.

53

Maintain your own critical expertise.

54

Grow stepwise. Learn from your errors.

Appendix B

Checklist/Template:
Self Assessment

This test gives an impression and brief risk assessment of how good your chances
are to successfully implement your global software and IT program. Success means
that you will reliably achieve your project objectives (schedule, quality, content,
cost, and budget). The test will help you to identify risks, assess them and pinpoint
to potential solutions.

It is a strength-weakness profile which creates a starting point for improvements.
Due to its short format, it will not substitute a professional risk evaluation.

Answer this test alone and for your own specific current situation. Take relevant
current projects or activities in order to obtain a representative response. Answer all
questions from the perspective of these chosen projects. Stay realistic. Avoid wrong
assumptions and hopes that things will be better.

The test consists of several questions that you evaluate using a numerical scale:

3 points: Yes, fully
2 points: Probably
1 point: ~ Doubtful
0 points: No, not at all

If the outsourcing/offshoring project has just been launched you should antici-
pate responses to operational issues due to the current plans, company culture, and
project experiences.

We use the term “outsourcing/offshoring project” to address different formats
to global software and IT projects. This can be an IT outsourcing project or a glob-
ally distributed software development at various locations or the use of an open-
source its components.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

309

310 Appendix B Checklist/Template: Self Assessment
EVALUATION

Sum up all given points on the right side of the table and multiply the raw sum by
the correction factor (see last page) to get the final result.

If you have less than 120 points, there are substantial risks in the outsourcing/
offshoring project. Between 120 and 160 points means that you have an average
situation with average performance which means that you will have some problems
that will lead to delays or additional expenses. If you have more than 160 points,
you are among the small minority of projects that will achieve the targets with high
probability.

Now we address the most important part of this self test. Identify priorities and
risks of your outsourcing/offshoring program based on the given answers. What did
you learn from the test? What are your biggest risks? Where do you go from here?
What priorities will be addressed? How do you implement the solutions to the
outsourcing/offshoring program? Identify, based on the content of this book, how to
mitigate risks and improve. Create an action list (which you should discuss with
employees or supervisors). You need to decide what is important to you before you
begin to change.

You can also discuss the test later with colleagues in your company or with your
employees.

Your Answer
No. Check (No=0...Yes=3)

1 | Does the outsourcing/offshoring project have clear and
measurable objectives?

2 | Is senior management fully supportive of the outsourcing/
offshoring program?

3 | Does outsourcing/offshoring project management in your
company agree that the objectives are realistic?

4 | Is the entire outsourcing/offshoring program
(Engineering/R&D/IT, Finance, Procurement, Operations,
etc.) focused on the same objectives?

5 | Is there a clear governance policy which is mandatory for
all stakeholders and that addresses major outsourcing/
offshoring aspects?

6 | Is there an experienced project manager with full
responsibility for the project (i.e., budget, content, and
resources)?

7 | Is there one outsourcing/offshoring sponsor who is held
personally accountable for the success of the outsourcing/
offshoring program?

8 | Is there an effective steering board for the outsourcing/
offshoring program?

9 | Have all your employees and managers been sufficiently
trained for the outsourcing/offshoring activities?

Evaluation 311

Check

Your Answer
(No=0...Yes=3)

10

Have all employees and managers been sufficiently trained
on cultural aspects, cross-country communication, etc.?

11

Does the outsourcing/offshoring project have a clear
business case when addressing the cost and benefits across
its life-cycle?

12

Is there a single requirements list for the outsourcing/
offshoring project covering both functional and non-
functional requirements and acceptance criteria?

13

Does the supplier possess the skills and competences
(technical and non-technical) demanded for the
outsourcing/offshoring program.

14

Does the supplier know and understand your specific
market, needs, and technical/environmental constraints of
the products?

15

Is the selected supplier oriented toward the agreed targets
and requirements?

16

Is there a signed formal SLA between you and the supplier
addressing your targets?

17

Does the supplier consider the SLA to be feasible?

18

Are the contracts between you and the supplier sufficiently
concrete to ensure that outsourced services and processes
seamlessly fit with your own processes?

19

Are all outsourcing and supplier contracts aligned across
different projects and suppliers? Are they managed by a
single sourcing manager?

20

Are later changes of suppliers or providers prepared and
feasible based on the agreed upon contracts? Are lock-ins
effectively avoided?

21

Are deviations from the plan or the SLA immediately
addressed and followed through to closure?

22

Do your processes for development, provisioning,
management, and controlling fit with your supplier and the
needs of the outsourcing/offshoring project?

23

Are all relevant processes and interfaces between you and
your supplier(s) sufficiently standardized?

24

Have your processes in engineering, IT, management, and
controlling been adapted to the changed needs of such
outsourcing/offshoring programs?

25

Does your organization exhibit the necessary process
maturity to address outsourcing/offshoring and have the
processes been assessed on maturity level two (e.g.,
CMMI-DEV with distributed development, CMMI-ACQ
for outsourcing, A-SPICE for the automotive industry,
COBIT and ITIL for IT companies)?

(Continued)

312

Appendix B Checklist/Template: Self Assessment

Check

Your Answer
(No=0...Yes=3)

26

Are all requirements formally specified and managed
throughout the outsourcing/offshoring project addressing
all impacted stakeholders?

27

Is there a sufficiently detailed project plan which addresses
all relevant activities?

28

Has the project plan been reviewed and agreed upon by all
relevant stakeholders so they agree to deliver necessary
resources in due time?

29

Is the project plan built upon clearly defined work packages
which are either open (0% complete) or closed (100%
complete) and which are owned by a single person?

30

Is there a continuous monitoring of all processes and
deliverables addressing both quantitative and qualitative
needs?

31

Is the current progress compared to the committed plan
known by all relevant stakeholders?

32

Have all requirements been systematically estimated by
impacted stakeholders so they commit to the overall
planning?

33

Does the project plan consider all “support activities,” such
as reviews, configuration management, quality
management, training, documentation, etc.?

34

Has a formal control been agreed upon with the supplier
which considers cost control, SLA deliverables, and
relevant project parameters (e.g., budget, milestones, and
quality)?

35

Are your customer requirements traceable to the
requirements and test cases and are those relationships
maintained through the project?

36

Is there a quality assurance plan covering all relevant
activities to ensure the necessary quality?

37

Is the quality of the delivered software periodically
measured and compared against targets (e.g.,
maintainability, reliability, usability, etc.)?

38

Are project plans realistic and considered feasible by all
impacted stakeholders (e.g., looking to availability, skills,
holidays, turnover, trainings, etc.)?

39

Are all external interfaces of your project known and
managed (e.g., to your clients)?

40

Is there a written plan on all activities related to changes to
requirements to your suppliers?

41

Is there a systematic change management installed for all
suppliers (e.g., change control board, configuration
baselines) which is followed across the project?

Evaluation 313

Check

Your Answer
(No=0...Yes=3)

42

Is all necessary information on the project and processes
available to all stakeholders across all locations (e.g.,
quality plans, tools, quality status, configuration baselines,
etc.)?

43

Are all necessary tools for efficient collaboration available
and used (e.g., requirements engineering, documentation,
project management, team meetings, wikis, etc.)?

44

Is the source code under formal configuration control as of
project start to allow, at each moment, an automatic build
and/or fall-back?

45

Are the basic engineering and management tools being used
across the sites and projects (e.g., defect tracking,
configuration management, project management, workflow
management)?

46

Is the available IT infrastructure sufficient to collaborate
across sites and to interface with the suppliers’ IT
infrastructure?

47

Is the bandwidth sufficient for tools, video conferencing,
backups, etc. to work and collaborate across sites?

48

Are the backup and recovery policies and tools sufficient for
fast recovery? Are they periodically tested in real life?

49

Are different communication channels effectively and
efficiently used (e.g., site visits, video conferencing,
telephone calls, online meetings, collaboration tools)?

50

Is there a maintained list of relevant risks and appropriate
mitigation actions?

51

Are there periodic reviews with stakeholders across sites,
functions, projects, and with the supplier?

52

Are transparent performance evaluations used to
periodically assess and improve performance and cost of
the existing supplier agreements?

53

Are there sufficiently skilled people available in due time to
avoid overtime?

54

Are risks and problems detected and resolved in due time
across sites, suppliers, projects, and processes?

55

Are the supplier employees fully allocated to your
outsourcing/offshoring program?

56

Is the employee turnover rate of the supplier below 10%?

57

Do you believe that all impacted stakeholders actively
support the outsourcing/offshoring program?

58

Do you believe that all impacted stakeholders want a
sustainable partnership with the selected supplier(s)?

(Continued)

314

Appendix B Checklist/Template: Self Assessment

available and used for preparation and training to
successfully manage the outsourcing/offshoring program?

Your Answer
No. Check (No=0...Yes=3)
59 | Do you believe that all relevant risks of the outsourcing/
offshoring project are sufficiently mitigated?
60 | Do you have sufficient external expertise and experiences

Initial sum

Multiplication factor:

1.5 if your organization is experienced with outsourcing/
offshoring projects with the selected supplier.

1.25 if your organization is experienced with previous home
outsourcing/offshoring activities?’

Otherwise 1.0.

Sum (= initial sum x multiplication factor)

Appendix C

Checklist/Template:
Risk Management

Global software and IT pose lots of risks and challenges which are not so relevant
in regular colocated projects. These risks must be identified, assessed, and managed,
otherwise global software and IT might be a very expensive exercise. It is certainly
helpful to start with the best practices and then enhance them according to your own
specific needs, culture, and risks. This book provides guidance for finding answers
to most problems and risks. Here is a simple checklist and template which sum-
marizes typical risks.

Risk Mitigation Actions

Project delivery failures | Professionally train all project managers.

Apply best practices from the CMMI (DEV + ACQ), COBIT,
ITIL for IT companies frameworks.

Implement CMMI maturity level three on supplier and
customer side.

Maintain an organization risk repository.

Use lessons learned and root cause analysis reports from
previous projects to avoid repetition of problems.

Insufficient quality Establish and use quality indicators.

Systematically follow quality gates at work product level.

Implement CMMI maturity level three on supplier and
customer side (or COBIT and ITIL for IT service providers).

Monitor and use early defect ratio as a warning sign of
insufficient specification and code quality.

(Continued)

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

315

316 Appendix C Checklist/Template: Risk Management

Risk Mitigation Actions
Distance and cultural Train people in all involved organizations on handling
clashes cultural diversity.
Provide different communication channels and collaboration
tools.

Use workflow management and online tools.

Have periodic workshops with teams and apply online
team-building.

Organize around teams and give them ownership and
responsibility.

High staff turnover Establish flexible long-term retention models.

Make employees an integral part of the company, such as by
partial ownership, direct involvement on certain decisions,
etc.

Periodically conduct employee engagement surveys to take
appropriate corrective actions.

Monitor critical resources availability and evolution and
implement succession plans.

Learn to deal with staff turnover by means of pooled buffers.

Poor supplier services Agree and apply supplier management and escalation
processes.

Use flexible prizing schemes depending on uncertainties and
risks.

Preferably establish a fixed price contract scheme to mitigate
estimation risks.

Evolve towards a partner model with the supplier.

Train suppliers on required processes, specifically interfaces,
reporting, requirements engineering and configuration
management.

During the ramp-up period, carefully educate supplier
management on escalation procedures and your own
required quality level.

Rigorously highlight insufficient quality, delays or lack of
visibility.

Escalate carefully and step-wise and avoid the SLA
“hammer”.

Instability with overly Follow a systematic RE process covering supplier and
high change rate customer.

Establish clear responsibilities and policies for handling
change.

Review and sign-off of all requirements.

Monitor and control the requirements change index.

Insufficient competencies | Establish competence management.

Standardize skill and competency requirements and
definitions across all distributed locations.

Use professional multi-project management and resource
planning.

Provide all necessary training and monitor effectiveness.

Checklist/Template: Risk Management 317

Risk

Mitigation Actions

Wage and cost inflation

Establish a systematic and consistent accounting and
reporting based on engineering/service activities.

Review efficiency beyond the traditional measurements of
estimation accuracy and cost.

Distribute work across regions and anticipate wage increases.

Evaluate, together with the supplier, his own situation and
review mechanisms for mutual win-win.

Evaluate your own and suppliers’ business models over future
years — and look for risks on either side.

Lock-in with supplier

Establish common processes and tools with clear descriptions
for ramp-up and operational usage in order to facilitate
move of activities.

Communicate, document, and distribute critical knowledge.

As a service client keep critical engineering knowledge
within your own company.

Maintain back-up and recovery mechanisms.

Carefully protect against supplier lock-in on the basis of
contracts, work distribution and dual sourcing.

Evaluate together with the supplier his own situation and
review mechanisms for mutual win-win situations.

Inadequate IPR
management

Systematically train engineering and management on IPR.

Establish and rigorously apply a strong policy on IPR
protection.

Encourage innovation on all sites and promote patents.

Glossary and Abbreviations

The Glossary has been compiled based on entries from various international standards, such
as IEEE Std 610 (Standard Glossary of Software Engineering Terminology) [IEEE90], ISO
15504 (Information technology. Software process assessment. Vocabulary) [ISO04], the
SWEBOK (Software Engineering Body of Knowledge) [SWEBOKI11], the CMMI for
Development [SEI11], ITIL and COBIT standards [COBITOS5, ITILO7], and the PMBOK
(Project Management Body of Knowledge) [PMIO1]. Entries are adjusted to serve the needs
of this particular book. This terminology is consistently used across all publications, lectures,
and keynotes of the author. The author acknowledges the usage of these standards and takes
all responsibility for deviating adjustments within the text below.

Acceptance Criteria The criteria that a system or component must satisfy in order to be
accepted by a user, customer, or other authorized entity.

Acceptance Test Test activities for sample checks to verify that a system (or product, solu-
tion) has the right quality for deployment and usage. The acceptance test is often done by
the customer.

Acquisition The process of obtaining products (goods and services) through contract.

Acquisition Strategy The specific approach to acquiring human resources to serve on a
project, products, and services. It considers supply sources, acquisition methods, require-
ments specification types, contract or agreement types, and the related acquisition risk.

Activity An element of work performed during the course of a project. An activity normally
has an expected duration, expected cost, and expected resource requirements. Activities are
often subdivided into tasks.

Agile Development Development paradigm to support efficient software engineering for
typically small collocated projects. Captures well-known best practices and bundles them
toward a style which avoids what is perceived as “unnecessary.” Examples of agile methods
include extreme programming, feature driven development, and test driven
development.

Allocate Assign requirements to a project, process, or other logical element of the system.

Application Service Provider A company that provides servers and services to host and
run applications.

Application Service Provisioning (ASP) ASP or netsourcing is a form of outsourcing
where computer-based services are outsourced to a third-party service provider. The appli-
cation service provider provides these services to customers over a network. ASP is a
form of Information Technology Outsourcing for operationally provisioning software
and IT functionality. Software offered using an ASP model is called on-demand software
or software as a service (SaaS). Examples are customer relationship management or sales

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,
First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by
John Wiley & Sons, Inc.

319

320 Glossary and Abbreviations

(e.g., salesforce.com), but also, increasingly, desktop applications. ASP is limited and of
risk (performance, security, availability) because access to a particular application program
is through a standard protocol such as HTTP. The market is divided as follows: Functional
ASP delivers a single application, such as timesheet services; a vertical ASP delivers a
solution for a specific customer type, such as a chimney sweepers; an enterprise ASP deliv-
ers broad solutions, such as finance solutions.

Appraisal Examination (sometimes called assessment) of one or more processes by a
trained team of professionals using an appraisal reference model as the basis for determin-
ing at a minimum strengths and weaknesses. Mostly used in context of CMMI (Capability
Maturity Model Integration). See also SCAMPL

AS Aerospace Standard
ASP See Application Service Provisioning.

Audit Systematic, independent, and documented process for obtaining evidence and evalu-
ating it objectively to determine the extent to which audit criteria are fulfilled.

Balanced Scorecard (BSC) A set of well-defined performance measurement balanced to
capture different dimensions, such as finance, customers, innovation, and people. Compared
to one-dimensional sets of measurements, a BSC allows comparing multiple dimensions
at the same time, thus reducing the risk of local optimization (e.g., short-term financial
gains at the cost of long-term survival).

Baseline See Configuration Baseline.

Benchmarking (1) The continuous process of measuring products, services, and practices
against competitors or those companies recognized as industry leaders. (2) An improvement
paradigm with a structured and systematic learning from the best in class. Benchmarking
is difficult to implement without highly effective and fast industry networks and is therefore
offered as a consulting product (contact C. Ebert for details).

Benefits Perceived positive impact of a product or service. Within the business case it is
the income within a period. Benefits impact value.

Best Practice This concept (or recipe for success, success method, state of the practice)
describes the use of best practices, technical systems, and business processes in an enter-
prise. Best practice is typically described by standards and can be relevant in liability issues
when a company needs to prove that it applies the state of the practice.

Body Shopping Specific outsourcing service used to allocate external resources ad hoc to
a task, work package or project to get immediate results. Increases flexibility but at the cost
of fragmentation and overheads. Normally done onshore by dedicated consulting compa-
nies (e.g., timesharing companies) or offshore by offshore suppliers. In Europe it is often
restricted by labor laws.

BPO Sec Business Process Outsourcing.
BSC See Balanced Scorecard.
BTO See Business Transformation OQutsourcing.

Business Case Consolidated information summarizing and explaining a business proposal
from different perspectives (cost, benefit, and so on) for a decision maker. Often used for
assessing the value of a product or requirements of a project. As opposed to a mere profit-
loss calculation, the business case is a “case” which is owned by the product manager
and used for achieving the objectives.

Glossary and Abbreviations 321

Business Process A partially ordered set of enterprise activities that can be executed to
realize a given objective of an enterprise or a part of an enterprise to achieve some desired
end result.

Business Process Outsourcing (BPO) A form of outsourcing where a business process
(or business function) is contracted to a third-party service provider. BPO involves out-
sourcing of operations and responsibilities of that process or function. Examples are busi-
ness processes such as supply chain, maintenance, welcome desk, financial services, or
human resources. Historically, Coca Cola was the first to use BPO for outsourcing parts of
their supply chain.

Business Requirement See Market Requirement; Requirements Specification.

Business Transformation Outsourcing Outsourcing model that covers both classic ser-
vices (e.g., IT infrastructure management, software development) but also the reengineering
and improvement of the related business processes. The goal is to flexibly adjust an enter-
prise to changing market demands. Example: outsourcing of product development and
production.

Capability Maturity Model Integration See CMMI.
CDE See Collaborative Development Environment.

Certification Acknowledgment based on a formal demonstration that a system, process, or
person complies with specified objectives or requirements. Example: ISO 9001 certifica-
tion, CPRE certification.

Change A change (or transition, transformation) is the managed move of individuals, teams,
and organizations from a current state to a desired future state. Examples: Introduction of
anew culture, strategy implementation, process change, merger, acquisition, cost reduction,
outsourcing.

Change Agent An individual or group that has sponsorship and is responsible for imple-
menting or facilitating change. An example of a change agent is the systems engineering
process group. Contrast with change advocate.

Change Control Board (CCB) A formally constituted group of stakeholders responsible
for evaluating, approving, or rejecting changes to a configuration baseline.

Change Management The systematic process to implement a change in a controlled
manner. It comprises the objectives, processes and actions that are used to successfully
implement the change. Typically, organizational change includes the transformation and
development of the hierarchical organization and the process organization.

Change Request Formalized requirement to expand or reduce the project scope, modify
policies, processes, plans, or procedures, modify costs or budgets, or revise schedules. A
change request often ripples into many items of a configuration baseline.

CMMI Capability Maturity Model Integration. The model contains the essential elements
of effective processes for one or more disciplines. It also describes an evolutionary
improvement path from ad hoc, immature processes, to disciplined, mature processes with
improved quality and effectiveness. The CMMI is fully based on ISO 15504. The CMMI
have been used successfully for many years for evaluating and improving engineering
processes in the IT, software, and systems industries. Created and owned by the Software
Engineering Institute.

COBIT Control Objectives for Information and Related Technology is a set of best prac-
tices and governance criteria for IT management created by the Information Systems Audit

322 Glossary and Abbreviations

and Control Association and the IT Governance Institute in 1996. COBIT provides manag-
ers, auditors, and IT users with a set of generally accepted measures, indicators, processes
and best practices for appropriate IT governance and control in a company. It uses three
dimensions, namely, IT processes, IT resources, and business requirements.

Collaborative Development Environment (CDE) A CDE provides a project workspace
with a standardized tool set for global software teams. CDEs combine different tools, and
thus, offer a frictionless development environment for outsourcing and offshoring.

Collocation An organizational placement strategy where the project team members are
physically located close to one another in order to improve communication, working rela-
tionships, and productivity.

Commitment An agreement that is freely assumed, visible, and expected to be kept by all
parties.

Competence From Latin competere (being able to do something), the ability of a person to
do a specific task.

Component A constituent part, element, or piece of a complex whole. Product components
are parts of the product and help to structure the development and manufacturing processes.
They are integrated to “build” the product. There may be multiple levels of product
components.

Concurrent Engineering An approach to project staffing that, in its most general form,
calls for implementers to be involved in the design phase.

Configuration Baseline The configuration information formally designated at a specific
time during a product’s, product component’s, or work product’s life. Configuration base-
lines, plus approved changes from those baselines, constitute the current configuration
information.

Configuration Management A discipline applying technical and administrative direction
and surveillance to (1) identify and document the functional and physical characteristics
of a configuration baseline and its items, (2) control changes to those characteristics, (3)
record and report change processing and implementation status, and (4) verify compliance
with specified requirements.

Conformity Fulfilling a requirement.

Constraint A constraint is a requirement that constrains the way a system can be realized.
Constraints extend the functional requirements and the quality requirements. Examples:
cost, business processes, laws. See also requirement, requirements analysis, requirements
engineering.

Contract A mutually binding agreement, which obligates the supplier to provide the speci-
fied product, and obligates the buyer to take it and to pay for it.

Corrective Action Action taken to eliminate the cause of a detected nonconformity or other
undesirable situation

Cost Expenses for engineering, producing, selling, and so on, of a product or service. For
software systems these are mostly labor cost plus marketing and sales expenses. Costs are
typically expensed in the year they are incurred with direct impact on cash and profitability.
For long-term investments they can be capitalized with positive impact on cash but not on
profit.

Cost Budgeting Allocating the cost estimates to individual project components.

Glossary and Abbreviations 323

Cost Control Controlling expenses and changes to the allocated project budget. See Earned
Value Management.

Cost Estimation See Estimate.

Cost of Non-Quality (CNQ) The cost incurred of not having the right level of quality at a
given moment. The cost of non-quality includes activities, from that moment onward,
related to insufficient quality, such as rework, inventory cost, scrap, or quality control.

Cost of Quality The cost incurred to ensure quality. The cost of quality includes quality
planning, quality control, quality assurance, and rework.

Cost Performance Index (CPI) A measurement of cost efficiency on a project. It is the
ratio of earned value (EV) to actual costs (AC). CPI = EV / AC. A value equal to or greater
than one indicates a favorable condition (actual cost lower than planned) and a value less
than one indicates an unfavorable condition (cost overrun). See also Earned Value
Management.

Cost Variance (CV) A measurement of cost performance on a project. It is the algebraic
difference between earned value (EV) and actual cost (AC). CV =EV — AC. A positive
value indicates a favorable condition and a negative value indicates an unfavorable condi-
tion. See also Earned Value Management.

CPI See Cost Performance Index.

Critical Path In a project network diagram, the series of activities which determines the
earliest completion of the project.

Customer Organization or person receiving a solution, service, or product. Specified
precisely by the contract between supplier and customer. The customer is not always the
user.

Customer Requirements Specification See Requirements specification.

Customer Satisfaction The customer’s opinion of the degree to which a transaction has
met the customer’s needs and expectations

Data Dictionary Description of data elements with structure, syntax, value ranges, depen-
dencies, and a brief content description.

Defect An imperfection or deficiency in a system or component where that component does
not meet its requirements or specifications which could yield a failure. Causal relationship
distinguishes the failure caused by a defect which itself is caused by a human error.

Design to Cost A quality requirement that directs a solution optimized to low cost. The
entire life-cycle is considered depending which type of cost is put into focus (e.g., cost of
production, cost of ownership, reduced pricing to the customer, and so on).

Development See R&D.

Development Project A project in which something new or enhanced (e.g., software tech-
nology, changed functionalities) is developed as a product for a market or a customer.

Document Information and its tangible transport medium. Documents describe work
products.

Due Diligence Systematic evaluation of a company before working together or before an
acquisition or merger. The evaluation includes a systematic analysis of strengths and weak-
nesses. See also SWOT analysis.

Earned Value Management Managing a project based on the value of the results achieved
to date in a project while comparing with the projected budget and the planned schedule

324 Glossary and Abbreviations

progress at a given date. Progress measurement which relates already consumed resources
and achieved results at a given point in time with the respective planned values for the
same date.

Ebert’s Law on Productivity Productivity is improved by reducing accidents (e.g., improve
engineering and management discipline, processes, and tools) and controlling essence (e.g.,
understand the real needs are and implement those in the product). Abbreviated as RACE
(Reduce Accidents, Control Essence).

Eclipse Open source framework for software development. With its open plug-in structure
based on the Eclipse Rich Client Platform (RCP) that allows data exchange both on access
and semantic levels, Eclipse is used in many different engineering tasks. Example: A small
supplier offers a tool that easily interacts with a rich basis of other tools.

Eco System A term from biology for a system of different species that mutually support
each other. Example: Supplier A offers a service for a product of supplier B on which B
depends. Both suppliers support each other.

Effectiveness From Latin effectivus (creating impact), the relationship between achieved
objectives to defined objectives. Effectiveness means “doing the right things.” Effectiveness
looks only if defined objectives are reached and not how they are reached.

Efficiency (1) Economic efficiency (from Latin efficere, “achieving”) is the relationship
between the result achieved (effectiveness) and the resources used to achieve this result.
Efficiency means “doing things right.” An efficient behavior like an effective behavior
delivers results, but keeps the necessary effort to a minimum. See also productivity. (2)
A measurement. The set of attributes that bear on the relationship between the level of
performance of the software and the amount of resources used under stated conditions.

Effort The number of labor units required to complete an activity or other project element.
Usually expressed as person hours, person weeks, or person years. Not to be confused with
duration.

Effort Estimation An assessment of the likely effort, cost or duration of a project or task
at the time before or during project execution. Should always include some indication of
accuracy (e.g., £ x%). See also estimate.

ELOC Executable LOC, Effective LOC. The amount of executable software code which
excludes comments, and so on.

Embedded Software A software system which is embedded in a larger system, the main
purpose of which is not computation (e.g., software for automatic fuel injection in a car).
Most embedded systems are real-time systems.

Embedded System A special-purpose computer system built into a larger system for which
the main purpose is not computation. Example: Pacemaker.

Emergency Plan Description of actions and responsibilities that need to happen if a risk
materializes. It is set up for all critical risks as part of risk management.

Engineering (1) The application of science and mathematics by which properties of matter
and the sources of energy are made useful to people. (2) An organization in the enterprise
that is in charge of product development, applications, or software solutions. Can be soft-
ware engineering, IT or offshore centers.

Estimate An estimate is a quantitative assessment of the likely amount or outcome of a
future endeavor. It is usually applied to forecast project costs, size, resources, effort, or
durations. Given that estimates can, by definition, be imprecise, they should always include
some indication of accuracy (e.g., £x percent). See also effort estimation.

Glossary and Abbreviations 325

Evaluation A systematic determination of the extent to which an entity meets its specified
criteria (e.g., business objectives, quality goals, process needs). See also validation;
verification.

Evolution The last phase of the product life-cycle. Covers all types of maintenance as well
as activities that maintain or enhance the value of a product.

Extreme Programming An agile development methodology for software development.
Underlying principles are to develop only what is needed. It is based on incremental
development, refactoring, pair programming, no documentation except the code, and so
on.

Failure (1) A departure between observed and expected behavior of a system at runtime.
The termination of the ability of an item to perform a required function or its inability to
perform within previously specified limits. (2) The effect of a defect in a system on its
external behavior. Deficient operational behavior of a system or a component due to a
product defect, a user error, or a hardware/software error. See also defect.

Feature Driven Development (FDD) Agile development methodology for software engi-
neering. FDD based on incremental development. Increments are closely linked to
requirements (here: features) to assure that each increment delivers tangible value.

Frontloading Early decision-making in the product life-cycle to reduce overall lead-time
and effort.

Full Function Points (FFP) Extension to Function Points to use this functional size mea-
surement for systems other than software only (e.g., embedded systems).

Function Point Analysis (FPA) Quantitative method to estimate function points by evaluat-
ing the software requirements or design on the number of inputs, outputs, queries, proce-
dural complexity, and environmental factors. The derived function points can be related to
effort or duration of a project.

Function Points (FP) See FPA.

Functional Requirement A function of a system that is offered by a system or a system
component. It describes in the language of the system what the system will do. Example:
Calculation of output parameters from input parameters by applying a specified algorithm.
See also requirements; requirements analysis; requirements engineering.

General Public License (GPL) The most widely used open source license type. Right to
source code for any binary that is GPL licensed. Right to modify source code and redis-
tribute source and modifications. Licensee must be prepared to distribute source for any
distributed binaries derived from GPL code. Licensee must manage licenses for all imported
code. Note that an application on top of the Linux kernel does not become GPL.

Global Software Engineering (GSE) Software engineering in globally distributed sites.
Different business models and work breakdown schemes are used, such as outsourcing,
offshoring, rightshoring.

Governance Leadership principle and its operational implementation in the enterprise to
ensure that agreements are kept.

GSD Global Software Development. See Global Software Engineering.
GSE See Global Software Engineering.

Guanxi Chinese for network of personal relationships and their active use on a wide scale
of decision-making and mutual support.

326 Glossary and Abbreviations

Guideline Operational explanation how a process or tool are used in a specified situation.

Hard Skills Knowledge on facts, methods, and technologies. Also called know-how or
know-what.

HCL High Cost Location.
History Database See Measurement Repository.

IDE Integrated Development Environment. Tool suite used to develop application software.
It typically supports design, coding, and verification. Additional tools support require-
ments management or test and are integrated to the IDE by its vendors.

IEC International Electrotechnical Commission

IEEE Institute for Electrical and Electronics Engineers, the largest global interest group for
engineers of different branches and for computer scientists.

INCOSE International Council on Systems Engineering, an organization that is very active
in systems engineering.

Increment Internal delivery of a product. Often increments are planned as steps within a
project to deliver the most relevant (valuable) functionality first. Increments and iterations
are used to divide complex projects, and thus, mitigate the associated risks. Incremental
steps are planned from the beginning to allow stepwise stabilization and measurable value
of the project as it progresses. See also earned value.

Incremental Development Project is developed and stabilized stepwise in executable and
usable increments.

Indicator From Latin indicare (pointing to), an indirect measurement used to estimate or
predict another measurement which is not (yet) directly measurable. An indicator points to
a trend, a deviation, or some behavior which is otherwise not tangible. Example: The
structural design complexity is an indicator for the test effort.

Information Technology (IT) Denomination for all information, communication, and data
processing technologies, covering industries, markets, and software or hardware systems
and components.

Information Technology Outsourcing (ITO) A form of outsourcing where software and
It related services are outsourced to a third-party service provider. ITO is a form of busi-
ness process outsourcing for software and information technology activities. Historically,
EDS was the first ITO supplier. Examples of this are outsourcing of software maintenance
or IT provisioning services.

Inspection Conformity evaluation by observation and judgment accompanied as appropri-
ate by measurement, testing, or gauging. Part of verification.

Integration Test The progressive linking and testing of software components in order to
ensure their proper functioning in the complete system. See also verification.

ISO International Standards Organization, a UN-sponsored organization to achieve and
enforce globally effective standards.

ISO/TS ISO Technical Standard.
IT See Information Technology.

IT Portfolio IT assets (static and dynamic) and their relationship to enterprise strategy. See
also portfolio management.

ITIL The IT Infrastructure Library is a guidance and set of requirements toward organiza-
tions of processes that are necessary for operating an IT infrastructure within an enterprise.

Glossary and Abbreviations 327

The original British ITIL Standard BS 15000 is, today, a globally used de-facto standard
and is maintained as ISO / IEC 20000. The ISO / IEC 20000 IT Service Management serves
as a measurable quality standard for IT service management. For that matter the necessary
minimum requirements and processes are specified that an organization must establish and
manage to be able to provide IT services in a defined quality.

ITO See Information Technology Outsourcing.

IV&V Independent verification and validation. A software or system (component) is veri-
fied by an organization which is neither economically nor organizationally linked with the
organization responsible for development. See also validation; verification.

Joint Application Design Method for developing systems with different stakeholders
participating. It allows you to identify critical and important requirements early. It is
utilized heavily in agile development.

Key Account Manager (KAM) A sales person responsible for a key customer (“key
account”) which he or she supports and represents in internal decision-making processes.
Key accounts are critical to business because they contribute (or should contribute) to a
large share of all revenues or profits.

Key Performance Indicator (KPI) A quantitative measurement or indicator used in
performance management to agree an objective and measure progress during the reporting
period and is often linked to bonus payment. See also balanced scorecard.

KLOC Kilo (thousand) LOC.

Knowledge Management The process that deals with systematically eliciting, structuring,
and facilitating the efficient retrieval and effective use of knowledge, both tacit and explicit,
and stretching from know-how to know-what to know-why.

KPI See Key Performance Indicator.
KStmt Kilo (thousand) statements. See also KLOC.
LCL Low cost location.

Life-Cycle (1) The system or product evolution initiated by a user need or by a perceived
customer need through the disposal of consumer products and their life-cycle process
products and by-products from inception until retirement. (2) A framework containing the
processes, activities, and tasks involved in the development, operation, and maintenance
of a software product, spanning the life of the system from the definition of its requirements
to the termination of its use. See also product life-cycle; product life-cycle
management.

Life-Cycle Cost The total investment in product development, test, manufacturing, distribu-
tion, operation, refining, and disposal. This investment is typically allocated across the
anticipated number of units to be produced over the entire product life-cycle, thus provid-
ing a per-unit view of life-cycle cost. See also business case.

LOC Lines of code, the most popular size measurement for software. There are different
algorithms for calculating LOC (e.g., executable code, total written lines of source code).
LOC is the basis for effort estimation and defect forecasting. Also used in hardware and
firmware development.

Maintainability The set of attributes that bears on the effort needed to make specified
modifications.

Maintenance The product life-cycle phase of modifying a product or component after
delivery to correct defects, adapt to a changed environment, improve performance or other

328 Glossary and Abbreviations

attributes, or perform line and depot maintenance of hardware components. That is, it
includes maintenance that may be corrective, adaptive, or perfective.

Maintenance Project Dedicated project to provide changes to an existing product for
correcting defects and for introducing new or changed functionality. See also
maintenance.

Management System System that describes how to establish and achieve management
objectives, processes, consistent process practice, and governance.

Market A group of people or organizations with an unresolved need and sufficient resources
to apply to the satisfaction of that need.

Marketing The different tasks, functions, and processes that evaluate and improve the
enterprise and its market position (e.g., advertisement, pricing, product vision). Marketing
is the whole business seen from the point of view of its final result, that is, from the cus-
tomer’s point of view. Concern and responsibility for marketing must, therefore, permeate
all areas of the enterprise.

Maturity Level A well-defined evolutionary plateau toward achieving a mature process.
Used for evaluating process maturity and for process improvement (appraisal) of both own
processes and those of a supplier. The five maturity levels in the CMMI are labeled initial,
repeatable, defined, managed, and optimizing.

Maturity Model Model which maps process capability in defined categories, and thus
permits a reliable and repeatable process evaluation. A maturity model provides require-
ments and expectations to processes but doesn’t prescribe processes. It is thus no product
life-cycle model. Typically used for process assessments and for process improvement
(appraisal) of both home processes and those of a supplier. See also CMMI.

MBO Management by objective, a goal-oriented management method setting concrete
objectives which are followed through. See also key performance indicator.

Measurement (1) A formal, precise, reproducible, objective mapping of a number or
symbol to an empirical entity for characterizing a specific attribute. (2) Mathematically: A
mapping M of an empirical system C and its relations R to a numerical system N. (3) The
use (e.g., extraction, evaluation, analysis, presentation, and corrective actions) of a mea-
surement. Examples: Product measurements (e.g., defects, duration, deviation from plan,
performance) or process measurements (e.g., cost of defect correction, efficiency,
effectiveness).

Measurement Repository Repository (or storage) used to collect and make available mea-
surement data. Such repository contains or references actual measurement data and related
information needed to understand, analyze, and utilize (e.g., for estimations or statistical
management) the measurement data.

Migration Project The managed replacement of a system with another system.

MIL Military standard.

Milestone A significant event in the project, usually completion of a major deliverable. Used
to structure a life-cycle.
MIS Management Information System, a database system for collecting, aggregating,

reporting, and analyzing various project and enterprise figures. There are different tools to
be used.

Model Driven Development Product life-cycle model for development of software and
systems. (Software) systems are described with a set of related models. The models build

Glossary and Abbreviations 329

a continuous hierarchy of abstractions. The level of abstraction is continuously decreasing
from the business process to the system definition, the design, and finally, the implementa-
tion. Changes are incorporated first to the model and, afterward, in its implementation to
ensure consistency across all models at all times.

MTTF Mean time to failure, a reliability measurement showing the time between two
failures.

MTTR Mean time to repair, a reliability measurement showing the time a system is, on
average, not working (due to defects or maintenance).

Multi-Project Management The optimal allocation of resources to different projects.
Being different from portfolio management, multi-project management looks for only the
best possible execution of the respective projects.

Nearshore Outsourcing The outsourcing supplier resides in a site geographically close to
the main site. This reduces impacts of time zones, distance, and cultural variety. See also
offshoring; outsourcing.

Netsourcing See Application Service Provisioning.
Nonfunctional Requirements See Quality Requirements.

Offshore Outsourcing Large geographical distance between acquirer and supplier (e.g.,
Europe to India). See also offshoring; outsourcing.

Offshoring Executing a business activity beyond sales and marketing outside the home
country of an enterprise. Enterprises typically either have their offshoring branches in low-
cost countries or they ask specialized companies abroad to execute the respective activity.
Offshoring should, therefore, not be confused with outsourcing. Offshoring within the
home company is called captive offshoring. See also nearshore outsourcing.

Onshore Outsourcing The supplier comes from same country as the acquirer. See also
offshoring; outsourcing.

Outsourcing A result-oriented relationship with a supplier who executes business activities
for an enterprise which was traditionally executed inside the enterprise. Outsourcing is
site-independent. The supplier can reside in direct neighborhood of the enterprise or off-
shore (outsourced offshoring).

Peer Review Internal review activity in which experts on the same organizational hierarchy
level as the author verify a work product. See also verification.

PEP See Product Engineering Process.

Performance A quantitative measurement of a product, process, person, or project charac-
terizing a physical or functional attribute relating to achieving a target or executing a
mission or function. Performance attributes include quantity (how many or how much),
quality (how well), coverage (how much area, how far), timeliness (how responsive, how
frequent), and readiness (availability, mean time between failures). See also efficiency.

PERT Program Evaluation and Review Technique, a project management method devel-
oped during the 1950s in the United States to integrate planning and monitoring specifically
for projects with subcontractors. It includes statistical treatment to the possible time dura-
tions and uncertainties, and thus, achieves better accuracy than simple one-value based
techniques.

Plan A documented series of tasks required meeting an objective, typically including the
associated schedule, budget, resources, organizational description, and work breakdown
structure.

330 Glossary and Abbreviations

Planned Value The authorized budget assigned to the scheduled work to be accomplished
for a schedule activity or work breakdown structure component. Also referred to as the
budgeted cost of work scheduled (BCWS). See also Earned Value Management.

PLC See product life-cycle.
PLM See product life-cycle management.
PMBOK See project management body of knowledge.

PMI Project Management Institute, a globally active organization that trains and certifies
project managers independent from the application domain.

Portfolio The sum of all assets and their relationship to the enterprise strategy and its market
position. See also portfolio management.

Portfolio Management A dynamic decision process aimed at having the right product mix
and performing the right projects to implement a given strategy. It evaluates all projects in
their entirety with respect to their overall contribution to business success and answers the
question: Do we have the right projects? It selects projects and allocates limited resources
in order to meet business needs.

Present value The current value of all future expense and income considering a realistic
interest rate with the today’s (“present”) date as a common reference point.

Price The amount a customer is charged for one or more instances or the usage of the
product. For internal products (e.g., IT services) there is typically an internal pricing
scheme based transaction cost and external market prices.

Priority The degree of importance of a requirement, event, task, or project.

Process Set of activities, which uses resources to transform inputs into outputs. A sequence
of steps performed for a given purpose. Example: The product life-cycle.

Process Capability (1) The range of expected results that can be achieved by following a
process. (2) The ability of an organization to develop and deliver products or services
according to defined processes.

Process Description A documented expression of a set of activities performed to achieve
a given purpose. A process description provides an operational definition of the major
components of a process. The description specifies, in a complete, precise, and verifiable
manner, the requirements, design, behavior, or other characteristics of a process. It may
also include procedures for determining whether these provisions have been satisfied.
Process descriptions can be found at the activity, project, or organizational level.

Product From Latin produco (to create, deliver), an economic good (or output) which is
created in a process that transforms product factors (or inputs) to an output. When sold, it
is characterized by attributes that are valuable to its users. It is a deliverable which creates
a value and an experience for its users. A product can be a combination of systems, solu-
tions, materials, and services delivered internally (e.g., in-house IT solution) or externally
(e.g., SW application) as is or as a component for another product (e.g., IP stack).

Product Engineering Process (PEP) The process which describes specific to a company
the concept, development, and manufacturing of a product. See also product life-cycle.

Product Life-Cycle (PLC) The sum of all activities needed to define, develop, implement,
build, operate, service, and phase out a product or solution and its related variants. It is
subdivided into phases that are separated by dedicated milestones, called decision gates.
With the focus on disciplined gate reviews, the PLC fosters risk management and provid-

Glossary and Abbreviations 331

ing auditable decision-making information (e.g., complying with product liability needs,
or Sarbanes-Oxley Act section 404).

Product Life-cycle Management (PLM) The business process for guiding products and
solutions from inception through retirement. PLM comprises all processes and requires
stakeholders to manage and effectively execute the PLC, including business and technology
strategy, product and field marketing, and portfolio management and product development.
By providing aligned and collaborating processes and tools, PLM facilitates the discipline
to implement strategy, planning, and management, and thus ensures execution through each
phase of the life-cycle. PLM facilitates an enterprise’s ability to monitor activities, analyze
challenges and bottlenecks, make decisions, and execute decisions. By lining up goals and
processes, it fosters sustainable performance improvements. See also product life-cycle
model.

Product Line A group of products sharing a common, managed set of features that satisfy
needs of a selected market or mission. A product within a product line shares the common
basis and exhibits a defined variability to address specific market needs. Such a product
line is a platform with platform elements (P1-Pn) and features (F1-Fm), which are selected
within a defined scope for the instantiation of a concrete product.

Product Management The discipline and business process which governs a product
(including solution or service) from its inception to the market/customer delivery and
service in order to generate biggest possible value to the business.

Productivity Defined as output over input. Output is the value delivered. Input covers all
resources (e.g., effort) spent to generate the output, the influence of environmental factors
(e.g., complexity, quality, time, process capability, team distribution, interrupts, feature
churn, tools, and language). Productivity combines efficiency and effectiveness from a
value-oriented perspective: Productivity is about generating value with the lowest resource
consumption.

Program A set of related projects.

Program Management Achieving a shared objective with a set of related projects.
Historically related to a set of projects for a single customer.

Project A temporary endeavor undertaken to create a unique product or service with people.
In software engineering different project types are distinguished (e.g., product develop-
ment, IT infrastructure, outsourcing, software maintenance, service creation).

Project Controlling Comparing actual performance with planned performance, analyzing
variances, assessing trends to effect process improvements, evaluating possible alternatives,
and recommending appropriate corrective action as needed. Example: earned value.

Project Life-Cycle The set of sequential project phases determined by the control needs of
the organizations involved in the project. Typically, the project life-cycle can be broken
down into at least four phases: initiation, concept/planning, execution, and closure. The
project life-cycle and the product life-cycle are interdependent, i.e., a product life-cycle
can consist of several projects and a project can comprise several products.

Project Management The goal-oriented and systematic application of knowledge, skills,
tools, and techniques to project activities in order to meet or exceed stakeholder needs and
expectations from a project.

Project Management Body of Knowledge (PMBOK) A repository presenting a baseline
of project management knowledge. Serves as a de facto industry and educational standard
and is used for certification. Originated and maintained by the PMI.

332 Glossary and Abbreviations

Project Plan A formal, approved document used to guide both project execution and project
control. The primary uses of the project plan are to document planning assumptions and
decisions, to facilitate communication among stakeholders, and to document approved
scope, cost, and schedule baselines.

Quality (1) The ability of a set of inherent characteristics of a product, service, product
component, or process to fulfill requirements of customers. (2) The degree to which a set
of inherent characteristics fulfills requirements.

Quality Assurance (QA) The part of quality management covering the planned and sys-
tematic means for assuring management that defined standards, practices, procedures, and
methods of the process are applied.

Quality Control (QC) The part of quality management covering the operational tech-
niques and activities that are used to fulfill requirements for quality (e.g., inspections,
tests).

Quality Management (QM) The sum of all planned systematic activities and processes for
creating, controlling, and assuring quality. See also quality assurance; quality control.

Quality Management System (QMS) A system to establish a quality policy and quality
objectives and to strive to achieve those objectives. See also management system.

Quality Measurements Coordinated activities to measure and direct an organization or
process toward achieving quality. Direct quality measurements evaluate specific quality
objectives (e.g., defect density, reliability). Indirect quality measurements are indicators for
a direct quality measurement before it can be measured (e.g., code complexity for
maintainability).

uality Objective Specific objectives, which, if met, provide a level of confidence that the
y Obj P] p
quality of a product or work product is satisfactory. See also quality requirement.

Quality of Service (QoS) A measurement that describes quality features of a delivered
service. Example: Reaction time of a supplier for a specific defect class.

Quality Requirement A qualitative property that a system or individual component of the
system must exhibit. They extend the functional requirements. Examples: maintainability,
security, reliability. Sometimes called non-functional requirements. See also requirement;
requirements analysis; requirements engineering.

Quality Requirements Engineering (QRE) The disciplined and systematic approach to
elicit, specify, analyze, prioritize, commit, verify, validate, assure, and manage quality
requirements throughout the life-cycle.

R&D Research and development that typically comprises of any engineering activity in the
product life-cycle. R&D is not the product management, marketing, or operations activities
to produce or deliver the product.

Request for Information (RFI) Initial request to potential suppliers by the customer. It
introduces the customer, his needs and the requested service or product. The objective is
to get initial information about the supplier. The RFI is typically distributed as a question-
naire. Based on the replies, a shortlist of potential suppliers for the request for proposal
is issued.

Request for Proposal (RFP) Request to potential suppliers by the customer. It introduces
the requirements of the requested service or product. The objective is to get a solution or
project proposal with cost and time horizons from the supplier. Based on the replies, a
shortlist of potential suppliers for the request for quotation is issued.

Glossary and Abbreviations 333

Request for Quotation (RFQ) Request to potential suppliers by the customer. It specifies
all requirements. The RFI is typically distributed as a questionnaire. The objective is to get
a valid offer from the supplier. Based on the replies, the supplier is selected.

Requirement (1) A condition or capability needed to solve a problem or achieve an objec-
tive. (2) A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other formally imposed docu-
ment. (3) A documented representation of a condition or capability as in definition (1) or
(2). Three different views on requirements are distinguished: market requirements, product
requirements, and component requirements. Three different types of requirements are
distinguished: functional requirements, quality requirements, and constraints.
Requirements are part of contracts, orders, project plans, test strategies, and so on. They
serve as a base for defining, estimating, planning, executing, and monitoring projects. See
also requirements engineering.

Requirements Engineering (RE) (1) The disciplined and systematic approach (i.e., “‘engi-
neering”) to elicit, specify, analyze, commit, validate, and manage requirements to trans-
form real-world needs and goals into a product. (2) Activity within systems and software
engineering. The goal of RE is to develop good—not perfect—requirements and to manage
them during development with respect to risks and quality. Systematic RE is what makes
the difference between a winning product and a set of features.

Requirements Specification A document that summarizes all requirements of the product
to be developed. Describes what shall be done and why. Owned by the client and relevant
for the contract. A requirements specification is not a solution description and must not
mix the requirement (what is to be done?) with the solution (how is it implemented?).

Resource Impacting or used input of a process. Examples: human resources, equipment,
services, supplies, commodities, materiel, budgets, or funds.

Return on Investment (ROI) (1) A measurement of how effectively an organization is
using its capital to generate profits. In accounting it is the annual income (profit) divided
by the sum of shareholder’s equity and long-term debt. (2) The tangible outcome or profit-
ability of an investment measured in business measurements (e.g., money). Defined as the
ratio of returns (result from an investment) to the directly related effort (investment).

Review Performed on a work product, following defined procedures, typically by peers of
the product’s producer for the purpose of identifying defects and improvements. See also
validation; verification.

Rightshoring Allocating engineering task to the optimum site in a worldwide scenario.
Assuring that the work is performed where it has the most benefits for the enterprise. Blend
of outsourcing, offshoring, and nearshore outsourcing.

Risk An uncertain event or condition that, if it occurs, has a positive or negative effect. It
is a function of the probability of occurrence of a given threat and the potential adverse
consequences of that threat’s occurrence. See also risk management.

Risk Management The systematic application of management policies, procedures, and
practices to the tasks of identifying, analyzing, evaluating, treating, and monitoring risk.
Risk management evaluates the effects of today’s decisions on the future. It is used in
project management, product management, and portfolio management.

Risk Mitigation Part of risk management, taking steps to lessen a risk by lowering the
probability of a risk event’s occurrence or reducing its effect should it occur. There are four
techniques for risk mitigation: avoiding, delimiting, handling, ignoring.

334 Glossary and Abbreviations

Schedule Performance Index (SPI) A measurement of schedule efficiency on a project. It
is the ratio of earned value (EV) to planned value (PV). SPI = EV / PV. An SPI equal to
or greater than one indicates a favorable condition (earlier delivery than planned) and a
value of less than one indicates an unfavorable condition (delay). See also Earned Value
Management.

Schedule Variance (SV) A measurement of schedule performance on a project. It is the
algebraic difference between the earned value (EV) and the planned value (PV).
SV =EV - PV. See also Earned Value Management.

Scrum From rugby terminology, a method for project management and for agile develop-
ment. It means that a team or (sub) project organizes their work themselves. The team
takes full ownership for delivering allocated work packages within the externally defined
scope. The delivery and planning is based on the so-called product backlog, which priori-
tizes requirements and synchronizes the team’s activities with external stakeholders. A daily
scrum meeting with ca. 15 minutes duration ensures daily planning and technical agree-
ments, and thus fosters commitment of each team member.

Security Security (or information security) is the sum of all attributes of a system
which contribute toward ensuring that it can neither be accidentally nor deliberately be
attacked or manipulated. Information security implies that the product will not do anything
with the processed or managed information which is not explicitly intended by its
specification.

Service Intangible, temporary product that is the result of at least one activity performed
at the interface between the supplier and customer and that does not imply a change of
ownership.

Service Level Agreement (SLA) A requirements specification and contracted agreement
to specify services and their service level. The SLA defines the expected quality of a service
and describes how it will be measured (e.g., cost, defects, flexibility to changes). Its limits
are part of a contract and serve continuous quality improvement. A SLA has four elements:
the service specification, the measurement description, the objective, and the pricing
scheme which relates degree of fulfillment of the objective to the price to be paid.

Service-Oriented Architecture IT infrastructure oriented at demanded business processes.
The system architecture offers application and usage-specific services and functions as IT
services. Driven by usage demands and rapid adaptation to requirements and changes
within the business environment. See also Service Level Agreement.

Six Sigma A process improvement paradigm using statistical process control that governs
processes with sufficient accuracy and control to stay with its standard deviation of outputs
(sigma) within a range allowing that six times that standard deviation just reaches the
allowed control interval.

SLA See Service Level Agreement.

SMART Acronym describing the desired attributes of objectives or goals, which should be
Specific (precise, clearly focused), Measurable (tangible, with an underlying definition),
Attractive (to the person who has this objective), Realistic (achievable in the given scope,
applicable to a concrete environment), and Timely (currently necessary, showing results in
a short time frame).

Soft Skills Social competences, to facilitate working with other people and organizing one’s
own life. Includes self-marketing, self-management, communication, and leadership.

Glossary and Abbreviations 335

Software Engineering (1) The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is, the applica-
tion of engineering to software. (2) The study of approaches for (1).

Software Engineering Body of Knowledge (SWEBOK) A repository presenting a base-
line of software engineering knowledge. Used for developing curricula and certifications.

Software Sourcing A form of sourcing where software components are sourced from an
external supplier. It includes finding, evaluating, contractually engaging, and managing
suppliers of goods and services. Software sourcing includes different types of goods, com-
ponents, and license models. This starts with commercial off the shelf (COTS), includes a
variety of tailored components and solutions, and ends with the different community and
open source distribution and access models.

Solution A system tailored to serve a specific business or customer need. Solutions are
typically customer-specific and unique and include a combination of different products,
processes, and resources.

Solution Model Result of the requirements analysis. One or more solutions are modeled
and described based on a given set of requirements and environmental conditions. See also
requirements specification; solution specification.

Solution Specification The specification of the solution which covers the requirements
of the product. Describes how the solution will be done. Owned by the supplier and forms
the basis for all subsequent engineering steps. It includes at least a system model and a
system specification as an answer to given requirements. The requirements specification
and solution specification are controlled and baselined.

Sourcing A business process summarizing all procurement practices. Sourcing includes
finding, evaluating, contractually engaging, and managing suppliers of goods and
services.

Specification Precise description of an activity or a work product which serves as basis or
input for further activities or work products. A specification can comprise requirements
to a product and how they will be solved. Different parts of a specification (e.g., what is
to be done, how it will be done) must not be mixed.

Stakeholder A person or organization, such as customers, sponsors, performing organiza-
tions, or the public, actively involved in the project or whose interests may be positively
or negatively affected by execution or completion of the project. The stakeholder may also
exert influence over the project and its deliverables.

Standard A guideline that reflects agreements on products or processes. Standards are set
by nationally or internationally recognized industrial, professional, trade or governmental
bodies. They can also evolve and be accepted de facto by industry or society.

State of the Practice See Best Practice.

Statement of Work (SOW) Part of the project contract that describes the general require-
ments of the product or service.

Strategic Outsourcing A form of outsourcing with long-term and sustainable focus. A
business process is moved to an external supplier in order to focus on resources on the core
business. Within engineering projects this can be a process (e.g., maintenance, test) or a
system (e.g., legacy product). Strategic outsourcing changes the entire value chain.

Success Method Sece Best Practice.

336 Glossary and Abbreviations

Supplier A provider of goods or services to a customer. There are different supplier types:
(1) parts and materials, (2) components, subsystems, modules, engineering services, and
(3) systems, business processes. The positioning within a supplier network (or supplier
pyramid) shows the relevance of the supplier to its customer and is often numbered (OEM,
Tier-1, Tier-2, . . . Tier-N suppliers).

SV See Schedule Variance.

SWEBOK See Software Engineering Body of Knowledge.

SWOT Analysis Analysis of Strengths, Weaknesses, Opportunities, and Threats to under-
stand one’s own profile in a market and to identify potential attack or defense plans toward
successful strategy execution.

System An integrated composite consisting of one or more products, processes, and
resources and that provides a capability to satisfy a stated need or objective.

Tactical Outsourcing Form of outsourcing with short-term (“just in time”) focus. Suppliers
are selected on a case-by-case basis for activities within projects. Suppliers who are most
suitable for the concrete task at hand are selected. Tactical outsourcing is used to improve
operational efficiency. It is similar to subcontract management.

Test An activity in which a system or component is executed under specified conditions,
the results are observed or recorded, and an evaluation is made of some aspect of the system
or component. Part of quality control. See also validation; verification.

Test-Driven Development An agile development approach for software development
where tests are designed before the development of the respective component. This ensures
coverage of relevant functionality, which can be regression tested in case of changes and
updates.

Tool Instrumented and (semi-)automated support for practically applying methods, con-
cepts, and notations in engineering tasks.

Traceability Tangible relationship between two or more logical entities, e.g., work prod-
ucts, by means of recorded identification. The goal of traceability is to assure clean change
control and provide better quality of work products, such as better consistency. Example:
Traceability from customer requirements and test cases. Traceability distinguishes horizon-
tal and vertical traceability.

Unit test A test of individual programs or modules in order to remove design or program-
ming errors. See also verification.

Use Case (1) Concept to describe a system based on usage of system resources by its
environment. Characterized by an objective-driven set of interactions within and at the
borders of that system. (2) Notation from UML for describing a scenario (usage approach,
operational scenario) from the perspective of its user. A use case enhances requirements,
it is not a substitute. See also requirement.

User Person or organization that will use the system during later operation to achieve a
goal. The user is not necessarily the customer (e.g., a software application is bought by
the procurement organization and used by the engineering team).

Validation Confirmation by examination and provision of objective evidence that the par-
ticular requirements for a specific intended use are fulfilled (“doing the right thing”). Part
of quality control. See also validation.

Verification Confirmation at the end of a process by examination and provision of objective
evidence that specified requirements to the process have been fulfilled (“doing things
right”). Part of quality control. See also verification.

Glossary and Abbreviations 337

Virtual Team A group of persons with a shared objective who fulfill their roles with little
or no time spent meeting face-to-face. Virtual teams can be comprised of persons separated
by great distances (e.g., offshoring) or separated by organizational limits (e.g., different
suppliers). Various forms of technology are used to facilitate communication among team
members.

WBS Work Breakdown Structure, the hierarchical refinement of a project into work
packages.

Wiki A collaborative work environment in the internet or intranet whose contents can be
accessed and changed by its users. The name is derived from wikiwiki, the Hawaiian word
for “fast.” There many Wiki-based tools to easily implement collaborative workflows (e.g.,
requirements specification, test management).

Win-Win Method A negotiation strategy to reach the maximum result from diverging
opinions of the various stakeholders. The goal is to achieve that all parties leave the con-
cluded negotiation with the perception that they have gained something.

Work Package A deliverable at the lowest level of the work breakdown structure. A work
package may be divided into activities.

Work Product An artifact associated with the execution of a process (e.g., requirements
specification, test case).

Bibliography

[Adler91] ADLER, N.J.: International
Dimensions of Organizational Behavior
(2nd ed.). Boston: Kent Publishing, 1991.

[AgerfalkO06] AGERFALK, PJ., and B.
FirzGerALD. Flexible and distributed
software processes: Old petunias in new
bowls? Communications of the ACM,
Vol. 49, No. 10, pp. 26-34, 2006.

[AlbertsO8] ALBERTS, C, T. AUDREY, and L.
MariNo. Mission Diagnostic Protocol,
Version 1.0: a risk-based approach for
assessing the potential for success. SEI
Technical Report CMU/SEI-2008-
TR-005, March 2008.

[Allen84] ALLEN, T. Managing the Flow of
Technology: Technology Transfer and the
Dissemination of Technological
Information within the R&D
Organization. MIT Press, Cambridge,
MA, 1984.

[Aspray06] Aspray, W., F. MAYADAS, and
M.Y. VARDI, eds. Globalization and
Offshoring of Software: A Report of the
ACM Job Migration Task Force,
Association for Computing Machinery,
2006. Available at http://www.acm.org/
globalizationreport/. Accessed January 6,
2011.

[Avram07] AvraMm, G. Of deadlocks and
peopleware: collaborative work practices
in global software development.

In International Conference on
Global Software Engineering, 2007,
pp- 91-102.

[AvritzerO8b] AVRITZER, A., Y. Cal, and D.
PauLisH. Coordination Implications of
software architecture in a global software

development project. In Proceedings of
WICSA 2008, 2008.

[AvritzerO8a] AVRITZER, A., et al.
Experiences with agile practices in the
global studio project. In IEEE
International Conference on Global
Software Engineering, 2008, pp. 77-86.

[Berenbach09] BERENBACH, B., D.
PauLIsH, J. KAZMEIER, and A.
RUDOREFER. Software and Systems
Requirements Engineering. McGraw-Hill,
New York, 2009.

[BCGO9] BHATTACHARYA, A., and H.
ZABLIT. Taking R&D Global: The Boston
Consulting Group. August 2009.
Available at http://www.bcg.com/
documents/file25452.pdf. Accessed
January 6, 2011.

[Birk03] BIRK, A., et al. Product line
engineering: the state of the practice.
IEEE Software, Vol. 20, No. 6,
pp. 52-60, 2003.

[Bloom56] BLoowm, B.S., ed. Taxonomy of
Educational Objectives: The
Classification of Educational Goals.
Susan Fauer Company, 1956,
pp- 201-207.

[Boden(09] BODEN, A., and G. AVRAM.
Bridging knowledge distribution: the role
of knowledge brokers in distributed
software development teams. In
Proceedings of the 2009 ICSE Workshop
on Cooperative and Human
Aspects on Software Engineering,

2009.

[Booch03] BoocH, G., and A.W. BROWN.

Collaborative development environments.

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,

First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by

John Wiley & Sons, Inc.

339

http://www.acm.org/globalizationreport/
http://www.acm.org/globalizationreport/
http://www.bcg.com/documents/file25452.pdf
http://www.bcg.com/documents/file25452.pdf

340 Bibliography

In Advances in Computers, Vol. 59,
Academic Press, 2003.

[Calefato09] CALEFATO, F., D. GENDARMI,
and F. LANUBILE. Embedding social
networking information into jazz to foster
group awareness within distributed
teams. In Proceedings of the 2nd
International Workshop on Social
Software Engineering and Applications
(SoSEA’09), 2009, pp. 23-28.

[Carmel01] CARMEL, E., and R. AGARWAL.
Tactical approaches for alleviating
distance in global software development.
IEEE Software, Vol. 18, No. 2,
pp- 22-29, 2001.

[Carmel99] CARMEL, E. Global Software
Teams. Prentice Hall, Upper Saddle
River, NJ, 1999.

[Cataldo06] CATALDO, M., et al. Siemens
Global Studio Project: experiences
adopting an integrated GSD
infrastructure. In IEEE International
Conference on Global Software
Engineering, 2006.

[Cataldo06] CATALDO, M., P.A. WAGSTROM,
J.D. HERBSLEB, and K.M. CARLEY.
Identification of coordination
requirements: Implications for the design
of collaboration and awareness tools. In
Proceedings of Computer-Supported
Cooperative Work, November 4-8, 2006.

[Cheng04] CHENG, L., C. de Souza, S.
HUPFER, J. PATTERSON, and S. Ross.
Building Collaboration into IDEs. ACM
Queue, Vol. 1, No. 9, 2004.

[SEI11] SEI: CMMI: Guidelines for Process
Integration and Product Improvement,
3rd ed. Addison-Wesley, Boston, 2011.
Available at: http://www.sei.cmu.edu/
cmmi/tools/cmmiv1-3/. Accessed January
6, 2011.

[Clements03] CLEMENTS, P., F. BACHMANN,
L. Bass, D. GARLAN, J. IVERs, R. LITTLE,
R. Norp, and J. STAFFORD. Documenting
Software Architectures Views and
Beyond, Addison Wesley, 2003.

[COBITO5] IT Governance Institute. CobiT
4.0. IT Governance Institute, Rolling

Meadows, IL, 2005. Available at http://
www.isaca.org/Content/NavigationMenu/
Members_and_Leaders/COBIT6/
Obtain_COBIT/Obtain_COBIT.htm.
Accessed January 6, 2011.

[Conway68] Conway, M. E. How do
committees invent? Datamation, Vol. 14,
No. 4, pp. 28-31, 1968.

[Corbett04] CorBETT, M.F. The
Outsourcing Revolution: Why It Makes
Sense and How to Do It Right. Kaplan
Business, New York, 2004.

[Cramton05] CramTON, C.D., and S.S.
'WEBBER. Relationships among
geographic dispersion, team processes,
and effectiveness in software
development work teams. Journal of
Business Research, Vol. 58, pp. 758-765,
2005.

[Curtis88] CurTIs, B., H. KRASNER, and N.
Iscok. A field study of the software design
process for large systems. Comm. ACM,
Vol. 31, No. 11, pp. 1268-1287, 1988.

[Damian03a] DAMIAN, D., F. LANUBILE,
and H.L. OPPENHEIMER. Addressing the
challenges of software industry
globalization: the workshop on global
software development. In Proceedings of
the 25th International Conference on
Software Engineering, IEEE Computer
Society, Los Alamitos, 2003,
pp. 793-794.

[Damian03b] DamiaN, D., and D. ZowGHI.
Requirements engineering challenges in
multi-site software development
organizations. Requirements Engineering
Journal, vol. 8, pp. 149-160, 2003.

[Damian06] DAMIAN, D., and J. CHISAN.
An empirical study of the complex
relationships between requirements
engineering processes and other
processes that lead to payoffs in
productivity, quality, and risk
management. IEEE Transactions on
Software Engineering, Vol. 32, No. 7,
pp. 433-453, 2006.

[Damian07] DamiAN, D., L. G. I1zQUIERDO,
J. SINGER and I. KwAN. Awareness in the

http://www.sei.cmu.edu/cmmi/tools/cmmiv1�3/
http://www.sei.cmu.edu/cmmi/tools/cmmiv1�3/
http://www.isaca.org/Content/NavigationMenu/Members_and_Leaders/COBIT6/Obtain_COBIT/Obtain_COBIT.htm
http://www.isaca.org/Content/NavigationMenu/Members_and_Leaders/COBIT6/Obtain_COBIT/Obtain_COBIT.htm
http://www.isaca.org/Content/NavigationMenu/Members_and_Leaders/COBIT6/Obtain_COBIT/Obtain_COBIT.htm
http://www.isaca.org/Content/NavigationMenu/Members_and_Leaders/COBIT6/Obtain_COBIT/Obtain_COBIT.htm

wild: why communication breakdowns
occur. In Proc. of Int’l Conf. on Global
Software Engineering, pp. 81-90,
Washington, DC, USA, 2007.

[Damian08] DamiIAN, D., F. LANUBILE, and
T. MALLARDO. On the need for mixed
media in distributed requirements
negotiations. IEEE Transactions on
Software Engineering, Vol. 34, No. 1,
116-132, 2008.

[DeMarco99] DEMARco, T., and T. LISTER.
Peopleware, 2nd ed. Dorset House, New
York, 1999.

[Desikan06] DESIKAN, S., and G. RAMESH.
Software Testing: Principles and
Practices. Pearson Education, 2006.

[Desouza06] Desouza, K.C., Y. Awazu,
and P. BALOH. Managing knowledge in
global software development efforts:
issues and practices. IEEE Software, Vol.
23, No. 5, pp. 30-37, 2006.

[Duke07] Duke University and Booz Allen
Hamilton. Next-Generation Offshoring:
The Globalization of Innovation.
Available at https://offshoring.
fuqua.duke.edu/report.jsp, 2007.

[EbertOla] EBERT, C., and P. DENEVE.
Surviving global software development.
IEEE Software, Vol. 18, No. 2,
pp. 62-69, 2001.

[Ebert01b] EBERT, C. Improving validation
activities in a global software
development. In Proceedings of the
International Conference on Software
Engineering 2001. IEEE Computer
Society Press, Los Alamitos, CA,

2001.

[Ebert03] EBERT, C., J. DEMAN, and F.
SCHELENZ. e-R&D: effectively managing
and using R&D knowledge. In Managing
Software Engineering Knowledge. Ed. A.
AURUM et al. Springer, Berlin, 2003,
pp. 339-359.

[Ebert06] EBERT, C. Global Software
Engineering. IEEE Ready Note (e-Book),

IEEE Computer Society, Los Alamitos,
2006.

Bibliography 341

[Ebert07a] EBERT, C., and R. DUMKE.
Software Measurement. Springer,
Heidelberg, New York, 2007.

[Ebert07b] EBERT, C. Open Source Drives
Innovation. IEEE Software, Vol. 24, No.
3, pp- 105-109, 2007. Available at http://
csdl.computer.org/dl/mags/so/2007/03/
$3105.pdf.

[Ebert08] EBERT, C., B.K. MURTHY, and
N.N. JHA. Managing risks in global
software engineering: principles and
practices. In IEEE International
Conference on Global Software
Engineering, 2008, pp. 131-140.

[Ebert10] EBERT, C., F. LANUBILE, R.
PRrRIKLADNICKI, and A. VIZCAINO.
Collaborative tools and PLM in
distributed software engineering. In IEEE
International Conference on Global
Software Engineering, 2010.

[EconomistIntelligence11] Doing eBusiness
in . . . country ranking on eBusiness
readiness. 2011. Available at http://
globaltechforum.eiu.com/index.asp?
layout=channelid_6&channelid=6&title=
Global+Technology. Accessed January 6,
2011.

[Egloff06] EGLOFF, S., and N. Fuchs. Best
Practices in Culture Management. Report
of Swisscom IT Services. Zurich,
Switzerland, 2006.

[EhrlichO6] EHRLICH, K., and K. CHANG.
Leveraging expertise in global software
teams: going outside boundaries. In
Proceedings of the International
Conference on Global Software
Engineering, Florianopolis, Brazil, 2006,
pp. 149-158.

[Ellis91] ELLis, C.A., S.J. GiBBs, and G.
REIN. Groupware: some issues and
experiences. Communications of the
ACM, Vol. 34, No. 1, pp. 39-58, 1991.

[Erickson00] Erickson, T., and W.A.
KELLOGG. Social translucence: an
approach to designing systems that
support social processes. ACM
Transactions on Computer-Human
Interaction, Vol. 7, No. 1, 59-83, 2000.

http://https://offshoring.fuqua.duke.edu/report.jsp
http://https://offshoring.fuqua.duke.edu/report.jsp
http://csdl.computer.org/dl/mags/so/2007/03/s3105.pdf
http://csdl.computer.org/dl/mags/so/2007/03/s3105.pdf
http://csdl.computer.org/dl/mags/so/2007/03/s3105.pdf
http://globaltechforum.eiu.com/index.asp?layout=channelid_6&channelid=6&title=Global+Technology
http://globaltechforum.eiu.com/index.asp?layout=channelid_6&channelid=6&title=Global+Technology
http://globaltechforum.eiu.com/index.asp?layout=channelid_6&channelid=6&title=Global+Technology
http://globaltechforum.eiu.com/index.asp?layout=channelid_6&channelid=6&title=Global+Technology

342 Bibliography

[Fagan76] FAGAN, M.E. Design and code
inspections to reduce errors in program
development. IBM Systems Journal, Vol.
15, No. 3, 1976.

[Forrester04] Forrester Research Inc.
Applying Open Source Processes in
Corporate Development Organizations.
White Paper, May 20, 2004.

[Fowler06] FOWLER, M., and M. FOEMMEL.
Continuous Integration. 2006. Available
at http://martinfowler.com/articles/
continuouslIntegration.html.

[Frost07] Frost, R. Jazz and the Eclipse
way of collaboration. IEEE Software,
Vol. 24, No. 6, 114-117, 2007.

[Gotel08] GOTEL, O., V. KULKARNI, C.
SCHARFF, and L. NEAK. Integration starts
on day one in global software
development projects. In IEEE
International Conference on Global
Software Engineering, 2008,
pp. 244-248.

[Graves98] GraVEs, T.L., and A. MocKus.
Inferring change effort from
configuration management data. In
Metrics 98: Fifth International
Symposium on Software Metrics,
Bethesda, MD, November 1998,
pp- 267-273.

[Gregori09] GREGORI, R. Leading Virtual
Teams. Bosch Intern C/HDC3, March 2,
2005.

[Grinter99] GRINTER, R.E., et al. The
Geography of Coordination: Dealing with
Distance in R&D Work. Proceedings of
GROUP’99. ACM Press, New York,
1999, pp. 306-315.

[Gutwin04] GuTtwin, C., R. PENNER, and
K. SCHNEIDER. Group awareness in
distributed software development. In
Proceedings of ACM Conference on
Computer-Supported Cooperative Work.
New York, 2004, pp. 72-81.

[HerbslebOO] HERBSLEB, J.D., et al.
Distance, dependencies, and delay in a
global collaboration. In Proceedings of
the ACM Conference on Computer-

Supported Cooperative Work. ACM
Press, New York, 2000, pp. 319-328.

[HerbslebO1] HERBSLEB, J.D., and D.
MoritrA. Global software development.
IEEE Software, Vol. 18, No. 2, 16-20,
2001.

[HerbslebO3] HERBSLEB, J.D., and A.
Mockus. An empirical study of speed
and communication in globally
distributed software development. IEEE
Transactions on Software Engineering,
Vol. 29, no. 3, pp. 481-494, 2003.

[HerbslebO5] HERBSLEB, J., D. PAULISH,
and M. Bass. Global software
development at Siemens: experience
from nine projects. In Proceedings of the
International Conference on Software
Engineering, 2005, pp. 524-533.

[Herbsleb99] HERBSLEB, J.D., and R.E.
GRINTER. Splitting the organization and
integrating the code: Conway’s law
revisited. In Proceedings on International
Conference on Software Engineering.
IEEE Computer Society Press, Los
Alamitos, CA, 1999.

[Hillegersberg07] HILLEGERSBERG, J.V., and
M. HERRERA. Tool support for distributed
software development: the past, present,
and future of gaps between user
requirements and tool functionalities. In
Tools for Managing Globally Distributed
Software Development (TOMAG 2007).
Munich, Germany, 2007.

[Hirschheim06] HIRSCHHEIM, R., A.
HEINZL, and J. DIBBERN. Information
Systems Outsourcing. Springer, New
York, 2006.

[House04] Housk, R.J., P.J. HANGES, M.
JAvIDAN, P.W. DORFMAN, and V. GUPTA.
Culture, Leadership and Organizations:
The Globe Study of 62 Societies. Sage
Publications, Thousand Oaks, CA, 2004.

[Hsieh99] HsieH, T.Y., et al. Are You
Taking Your Expatriate Seriously?
McKinsey Quarterly, 1999.

[HupferO04] HUPFER, S., L. CHENG, S. Ross,
and J. PATTERSON. Introducing

http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

collaboration into an application
development environment. In
Proceedings of the ACM Conference on
Computer Supported Cooperative Work,
ACM, New York, 2004, pp. 21-24.

[HusseyO8] HussEy, J.M., and S.E. HALL.
Managing Global Development Risk.
Auerbach Publications, FL, 2008.

[TAOPQ9] Michael Corbett and Associates.
The [annual] Strategic Outsourcing
Study. 2009. Available at http://
www.outsourcingprofessional.org/
firmbuilder/. Accessed January 6, 2011.

[IDCO7] IDC: The Early Termination of
Outsourcing Contracts, 2007. Available at
http://www.idc.com/getdoc.jsp?
containerld=CA11SO7. Accessed
January 6, 2011.

[IEEE90] IEEE Standard 610.12—1990:
IEEE Standard Glossary of Software
Engineering Terminology. IEEE, New
York, 1990.

[IEEE98a] IEEE Standard 830-1998: IEEE
Recommended Practice for Software
Requirements Specifications. IEEE, New
York, 1998.

[IEEE98b] IEEE Standard 1233-1998:
IEEE Guide for Developing System
Requirement Specifications. IEEE, New
York, 1998.

[Illes-Seifert07] ILLES-SEIFERT, T., A.
HERRMANN, M. GEISSER, and T.
HiLDENBRAND. The Challenges of
Distributed Software Engineering and
Requirements Engineering: Results of an
Online Survey. In Proceedings of
GREW’07, 2007, pp. 55-66.

[ISO04] ISO/IEC TR 15504-9:2004.
Information Technology. Software
Process Assessment. Vocabulary. ISO/
IEC JTC1/SC7 Secretariat, Canada, 2004.

[ITILO7] Office of Government Commerce:
ITIL. Several Books on Continual
Service Improvement, Service Design,
Service Operation, Service Strategy and
Service Transition. London: Office of
Government Commerce, 2007.

Bibliography 343
[Jones07] JoNEs, C. Estimating Software
Costs. McGraw Hill, 2007.

[Karlsson00] KARLSSON, E.A., et al. Daily
build and feature development in large
distributed projects. In Proceedings of the
International Conference on Software
Engineering. IEEE Computer Society
Press, Los Alamitos, CA, 2000,
pp. 649-658.

[Karolak02] KArROLAK, D.W. Software
Engineering Risk Management, with
SERIM Learner First Software Package,
Set. Wiley-IEEE Computer Society Press,
2002.

[Karolak98] KaroLAK, D.W. Global
Software Development. IEEE Computer
Society Press, Los Alamitos, CA, 1998.

[Kirkpatrick83] KIRKPATRICK, S., C.D.
GELLAT, Jr., and M.P. VECCHI.
Optimization by simulated annealing.
Science, Vol. 220, pp. 671-680, 1983.

[Kitchenham0O4] KiTcHENHAM, B.A., T.
DyBA, and M. JOoRGENSEN: Evidence-
based Software Engineering. Proceedings.
26th International Conference on
Software Engineering, 2004.

[Krishna04] KrisHNA, S., S. SAHAY, and G.
WALSHAM. Managing cross-cultural
issues in global software outsourcing.
Communications of the ACM, Vol. 47,
No. 4, pp. 62-66, 2004.

[Kuipers03] Kuipers, T., and A. van
DEURSEN. Source-based software risk
assessment. In International Conference
on Software Maintenance, Washington,
DC, 2003.

[Kuipers07] Kuipers, T., J. VISSER, and G.
DE VRIES. Monitoring the Quality of
Outsourced Software. In Tools for
Managing Globally Distributed Software
Development (TOMAG 2007), Munich,
Germany, 2007.

[Lacity09] Lacity, M.C., S.A. KHAN, and
L.P. WiLLcocks. A review of the IT
outsourcing literature: Insights for

practice. Journal of Strategic Information
Systems, Vol. 18, pp. 130-146, 2009.

http://www.outsourcingprofessional.org/firmbuilder/
http://www.outsourcingprofessional.org/firmbuilder/
http://www.outsourcingprofessional.org/firmbuilder/
http://www.idc.com/getdoc.jsp?containerId=CA11SO7
http://www.idc.com/getdoc.jsp?containerId=CA11SO7

344 Bibliography

[Lanubile03] LANUBILE, F., T. MALLARDO,
and F. CALEFATO. Tool support for
geographically dispersed inspection
teams. Software Process: Improvement
and Practice, Vol. 8, No. 4, pp. 217-231,
2003.

[LawrenceOl1] LAWRENCE, B., K. WIEGERS,
and C. EBERT. The top risks of
requirements engineering. IEEE Software,
Vol. 18, No. 6, pp. 62-63, 2001.

[Louridas06] Louripas, P. Using wikis in
software development. IEEE Software,
Vol. 23, No. 2, pp. 88-91, 2006.

[Lyu95] Lyu, M.R. Handbook of Software
Reliability Engineering. McGraw-Hill,
New York, 1995.

[McConnell03] McCONNELL, S.
Professional Software Development.
Addison-Wesley, Boston, 2003.

[McConnell98] McCoNNELL, S. Software
Project Survival Guide. Microsoft Press,
Redmont, 1998.

[McKinseyO8] GOEL, A., N. Moussavl, and
V.N. SRIVATSAN: Time to rethink
offshoring? McKinsey Quarterly, Sept.
2008.

[Metropolis53] METROPOLIS, N.,

A. ROSENBLUTH, M. ROSENBLUTH,

A. TELLER, and E. TELLER. Equation of
state calculations by fast computing
machines. Journal of Chemical Physics,
Vol. 21, pp. 1087-1092, 1953.

[Midha97] MipHA, A.K. Software
configuration management for the 21st
century. Bell Labs Technical Journal, Vol.
2, No. 1, Winter 1997.

[Mikulovic06] MikuLovic, V., M. HEIss,
and J.D. HERBSLEB. Practices and
supporting structures for mature inquiry
culture in distributed software
development projects. In International
Conference on Global Software
Engineering, 2006.

[MockusO1] Mockus, A., and D.M. WErss.
Globalization by chunking: a quantitative
approach. IEEE Software, Vol. 18, No. 2,
pp- 30-37, 2001.

[Murugesan07] MURUGESAN, S.
Understanding web 2.0. IT Professional,
Vol. 9, No. 4, pp. 3441, 2007.

[NASSCOMO6]: NASSCOM, Booz, Allen
& Hamilton: Globalization of
Engineering Services, The next frontier
for India, August 2006. Available at:
http://www.globalservicesmedia.com/
News/Home/Nasscom-Sets-$40-Billion-
Target-for-India-in-Engineering-
Outsourcing-by-2020/21/27/0/general
20070521579. Accessed January 6, 2011.

[Nguyen08] Nguyen, T., T. Wolf, and D.
Damian. Global Software Development
and Delay: Does Distance Still Matter?
In IEEE International Conference on
Global Software Engineering, 2008,
pp. 45-54.

[O’Hara94] O’HARA-DEVEREAUX, M., and
H. JoHANSEN. Global Work: Bridging
Distance, Culture and Time. Jossey_Bass,
San Francisco, CA, 1994.

[OI05] Oftshore Insights: Captive offshore
development centres: how do we obtain
the desired value? In Offshore Insights
Market Report Series, Vol. 3, No. 3,
March 2005.

[Olson00] OLsoN, G.M., and J.S. OLSsON.
Distance matters. Human-Computer
Interaction, Vol. 15, pp. 139-178, 2000.

[O’Sullivan09] O’SuLLIVAN, B. Making
sense of revision-control systems.
Communications of the ACM, Vol. 52,
No. 9, pp. 56-62, 2009.

[Palmisano09] PALMISANO, S.J. The
Globally Integrated Enterprise. Available
at http://www.ibm.com/ibm/
governmentalprograms/
samforeignaffairs.pdf. Accessed January
6, 2011.

[Parnas72] PARNAS, D.L. On the criteria to
be used in decomposing systems into
modules. Communica-tions of the ACM,
Vol. 15, No. 12, pp. 1053-1058, 1972.

[Parnas85] ParNAs, D.L., P.C. CLEMENTS,
and D.M. WEIss. The modular structure
of complex systems. IEEE Transactions

http://www.globalservicesmedia.com/News/Home/Nasscom-Sets-$40-Billion-Target-for-India-in-Engineering-Outsourcing-by-2020/21/27/0/general20070521579
http://www.globalservicesmedia.com/News/Home/Nasscom-Sets-$40-Billion-Target-for-India-in-Engineering-Outsourcing-by-2020/21/27/0/general20070521579
http://www.globalservicesmedia.com/News/Home/Nasscom-Sets-$40-Billion-Target-for-India-in-Engineering-Outsourcing-by-2020/21/27/0/general20070521579
http://www.globalservicesmedia.com/News/Home/Nasscom-Sets-$40-Billion-Target-for-India-in-Engineering-Outsourcing-by-2020/21/27/0/general20070521579
http://www.globalservicesmedia.com/News/Home/Nasscom-Sets-$40-Billion-Target-for-India-in-Engineering-Outsourcing-by-2020/21/27/0/general20070521579
http://www.ibm.com/ibm/governmentalprograms/samforeignaffairs.pdf
http://www.ibm.com/ibm/governmentalprograms/samforeignaffairs.pdf
http://www.ibm.com/ibm/governmentalprograms/samforeignaffairs.pdf

on Software Engineering, SE-11,
pp. 259-266, March 1985.

[Paulish02] PAuLIsH, D. Architecture-Centric
Software Project Management: A Practical
Guide, Addison-Wesley, Boston, 2002.

[Perry98] PERRY, D.E., et al. Parallel
changes in large scale software
development: an observational case
study. In Proceedings of International
Conference on Software Engineering.
IEEE Computer Society Press, Los
Alamitos, CA, 1998, pp. 251-260.

[PhalnikarO9] PHALNIKAR, R., V.S.
DESHPANDE, and S.D. JosHI. Applying
agile principles for distributed software
development. In International Conference
on Advanced Computer Control, 2009,
pp. 535-539.

[PMIO1] A Guide to the Project
Management Body of Knowledge.
Project Management Institute, 2001.

[PrikladnickiO8] PRIKLADNICKI, R., M.
CRISTAL, D. WILDT: Usage of scrum
practices within a global company. In
Proceedings of the IEEE International
Conference on Global Software
Engineering, pp. 222-226, IEEE,
Washington, DC, 2008.

[Ramesh06] RAMESH, G., and R.
BHATTIPROLU. Software Maintenance—
Effective Practices for Geographically
Distributed Teams. Tata McGraw Hill,
2006.

[Ramesh09] RAMESH, G. Managing Global
Software Projects: How to Lead
Geographically Distributed Teams,
Manage Processes and Use Quality
Models. Tata McGraw Hill, 2009.

[Ramesh10] RAMESH, G., and M. RAMESH.
The ACE of Soft Skills: Attitude,
Communication and Etiquette for Survival
and Success. Pearson Education, 2010.

[Rivard08] RivARrD, S., and B.A. AUBERT.
Information Technology Outsourcing.
ME Sharpe, New York, 2008.

[Rottmann06] ROTTMAN, J., and M. LAcITY.
Proven practices for effectively

Bibliography 345
offshoring IT work. Sloan Management
Review, Vol. 47, No. 3, pp. 56-63, 2006.

[Royce98] RoycE, W. Software Project
Management. Addison-Wesley, Reading,
MA, 1998.

[Rus02] Rus, 1., and M. LINDVALL.
Knowledge management in software
engineering. IEEE Software, Vol. 19, No.
3, pp. 26-38, 2002.

[Sangwan07] SANGWAN, R., M. Bass, N.
MuLLICK, D. PAULISH, and J. KAZMEIER.
Global Software Development Handbook.
Auerbach, 2007.

[SchwaberO1] SCHWABER, K., and M.
BEEDLE. Agile Software Development
with Scrum. Prentice Hall, 2001.

[Schwaber04] SCHWABER, K. Agile Project
Management with Scrum. Microsoft
Press, Redmond, WA, 2004.

[Sengupta06] SENGUPTA, B., S. CHANDRA,
and V. SINHA. A research agenda for
distributed software development. In
International Conference on Software
Engineering, 2006, pp. 731-740.

[Silva06] SiLva, EE. de S., et al. Modeling,
analysis, measurement and
experimentation with the Tan gram-II
Integrated Environment. In International
Conference on Performance Evaluation
Methodologies and Tools, Vol. 180, 2006,
pp. 1-10.

[Sinha06] SiNHA, V., B. SENGUPTA, and S.
CHANDRA, Enabling collaboration in
distributed requirements management.
IEEE Software, Vol. 23, No. 5,
pp. 52-61, 2006.

[SureshchandraO8] SURESHCHANDRA, K.,
and J. SHRINIVASAVADHANI. Adopting
Agile in Distributed Development. In
IEEE International Conference on Global
Software Engineering, 2008, pp. 217-221.

[SWEBOKI11] Guide to the Software
Engineering Body of Knowledge
(SWEBOK). Prospective Standard ISO
TR 19759, 2011. Available at http://
www.swebok.org. Accessed January 6,
2011.

http://www.swebok.org
http://www.swebok.org

346 Bibliography

[USA07] U.S. Committee on Science and
Technology. Hearing Charter: The
Globalization of R&D and Innovation,
June 12, 2007.

[Whitehead07] WHITEHEAD, J.
Collaboration in software engineering: a
roadmap. In International Conference on
Software Engineering. IEEE Computer
Society, Washington, DC, 2007,
pp- 214-225.

[Worldbank11] World Bank: Doing

Business 2011—Making a Difference for

Entrepreneurs. Available at http://
www.doingbusiness.org/reports/doing-
business/doing-business-2011. Accessed
January 6, 2011.

[Zencke04] ZENCKE, P. Communication in
Software Development. Unpublished
conference report. SAP AG, Germany,
2004. Available at http://science.
house.gov/Publications/hearings_
markups_details.aspx?NewsID=1926
http://www.idc.com/getdoc.jsp?
containerld=CA11SO7. Accessed
January 6, 2011.

[Zhoul0] ZrOU, M., and A. MOCKUS.
Developer fluency: achieving true
mastery in software projects. In ACM
SIGSOFT/FSE, Santa Fe, NM,
November 7-11, 2010. Available at
http://mockus.org/papers/fluency.pdf.

FURTHER
INFORMATION

Global Software and IT

ASPRAY, W., F. MAaYAaDAS, and M.Y. VARDI,
eds. Globalization and Offshoring of
Software: A Report of the ACM Job
Migration Task Force, Association for
Computing Machinery, 2006, (http://
www.acm.org/globalizationreport/).
Description: This report summarizes
recent trends in migration of software
related roles and functions with
increasing globalization. Aside from

looking into specific profiles and regional
trends (mostly with a U.S. perspective,
though), it also indicates that global
software engineering and IT creates new
jobs onshore, something that several
studies already highlighted.

IEEE Software, Vol. 18, No. 2, April/May

2001, and Vol. 23, No. 4, September/
October 2006. Description: IEEE
Software (http://www.computer.org/
portal/site/software/) is the global journal
for the leading software practitioner,
available in print and online. It publishes
many articles on global software
engineering and best practices. The two
mentioned issues from 2001 and 2006
are collections of several articles on best
practices in global software engineering.

RIVARD, S., and B. A. AUBERT. Information

Technology Outsourcing. ME Sharpe,
New York, 2008. Description: Reference
book on IT outsourcing. Many concrete
case studies are described in readable and
clear language. It specifically covers the
broad topic of supplier agreement
management, negotiations, risk
management, and so on. Unfortunately,
software product development falls short
in this book. There are two case studies
from IT outsourcing from the United
Kingdom and South Africa.

SANGWAN, R., M. Bass, N. MULLICK, D.

PauLisH, and J. KAzZMEIER. Global
Software Development Handbook,
Auerbach, 2007. Description: As the title
suggests, this book is a good reference to
global software development and global
software engineering. It provides useful
insights in team building, code structure,
distributed validation, and architecture.

THONDAVADI, N., and G. ALBERT. Offshore

Outsourcing: Path to New Efficiencies in
IT and Business Processes. Authorhouse,
2004. Description: This book looks
primarily to the business case of global

http://www.doingbusiness.org/reports/doing-business/doing-business-2011
http://www.doingbusiness.org/reports/doing-business/doing-business-2011
http://www.doingbusiness.org/reports/doing-business/doing-business-2011
http://science.house.gov/Publications/hearings_markups_details.aspx?NewsID=1926
http://science.house.gov/Publications/hearings_markups_details.aspx?NewsID=1926
http://science.house.gov/Publications/hearings_markups_details.aspx?NewsID=1926
http://www.idc.com/getdoc.jsp?containerId=CA11SO7
http://www.idc.com/getdoc.jsp?containerId=CA11SO7
http://mockus.org/papers/fluency.pdf
http://www.acm.org/globalizationreport/
http://www.acm.org/globalizationreport/
http://www.computer.org/portal/site/software/
http://www.computer.org/portal/site/software/

software engineering and IT. Different IT
offshoring formats are described with
clear focus on activities in India (where
the authors draw their experiences). The
profound introduction of a GE manager
from India underlines the huge potential
of global development and IT offshoring.

TiwaNa, A. Beyond the black box:
knowledge overlaps in software
outsourcing. IEEE Software, Vol. 21, No.
5, pp. 51-58, 2004. Description: A very
practical article looking toward how to
evaluate outsourcing scenarios. The
underlying studies stem from interviews
with IT project managers. The embedded
checklists for supplier selection and
supplier management are very helpful if
you embark on outsourcing.

General Offshoring,
Rightshoring, and
Outsourcing

BHATTACHARYA, A., and H. ZABLIT. Taking
R&D Global. The Boston Consulting
Group. August 2009. Available at http://
www.bcg.com/documents/file25452.pdf.
Description: Overview on global R&D
strategies and how they are implemented.
This article is easy to read and provides
some useful examples from different
industries. It is not software- or
IT-related.

CorBETT, M. F. The Outsourcing
Revolution: Why It Makes Sense and
How to Do It Right. Dearborn Trade,
2004. Description: The reference book
for outsourcing. It covers the entire
bandwidth of outsourcing domains (i.e.,
not only IT or software), specifically
business process outsourcing, and offers
a balanced view of what to expect
and how to calculate cost. Many
concrete hints and guidelines help in
operationally managing and succeeding
in outsourcing.

Further Information 347

Roux, D. and J. R. WENTWORTH.
Laborgistics: A New Strategy for
Management. Economica, 2004.
Description: This book portrays
outsourcing and offshoring differently
from most other literature and, certainly,
published opinions. The authors
envisage the future of outsourcing (again
not dedicated to IT and software
domains) as a continuously renewing
combination and integration of people
and technology. Starting from
partnerships and alliances, a whole set of
new formats of collaboration and
industry relationships beyond outsourcing
is described.

Locations and
Countries

http://www.cia.gov/cia/publications/
factbook/geos/xx.html. Description: The
CIA fact book with continuously updated
information on each country of the
world. The first entry point if you are
researching a country.

http://www.doingbusiness.org/reports/
doing-business/doing-business-2011.
Description: The World Bank provides on
an annual report on doing business in
countries, regions, and cities around the
world. The report provides the latest
evolutions, some business indicators, and
much information on the sub-national
level.

http://www.wto.org/english/docs_e/
docs_e.htm. Description: The annual
world trade report of the World Trade
Organization (WTO). This summary
increasingly looks at outsourcing and the
numbers behind it.

http://globaltechforum.eiu.com/index.asp?
layout=channelid_6&channelid=6&title=
Global+Technology. Description: Doing
eBusiness in... provides world-wide

http://www.bcg.com/documents/file25452.pdf
http://www.bcg.com/documents/file25452.pdf
http://www.cia.gov/cia/publications/factbook/geos/xx.html
http://www.cia.gov/cia/publications/factbook/geos/xx.html
http://www.doingbusiness.org/reports/doing-business/doing-business-2011
http://www.doingbusiness.org/reports/doing-business/doing-business-2011
http://www.wto.org/english/docs_e/docs_e.htm
http://www.wto.org/english/docs_e/docs_e.htm
http://globaltechforum.eiu.com/index.asp?layout=channelid_6&channelid=6&title=Global+Technology
http://globaltechforum.eiu.com/index.asp?layout=channelid_6&channelid=6&title=Global+Technology
http://globaltechforum.eiu.com/index.asp?layout=channelid_6&channelid=6&title=Global+Technology

348 Bibliography

country descriptions and a ranking on
their eBusiness readiness.

Housk, R. J., P. J. HANGES, M. JAVIDAN,
P. W. DorFMAN, and V. GupTA. Culture,
Leadership and Organizations: The Globe
Study of 62 Societies. Sage Publications,
Thousand Oaks, CA, 2004. Description:
This report has looked over many years
into 62 societies or what we often call
“cultures” across the world and
investigated the beliefs, values, and
major paradigms driving those societies.
It is a great work to get insight into why
certain societies behave as they do and
how to cope with opposed society
explanatory factors, such as time
or trust.

International
Conferences

The IEEE-sponsored International
Conference on Global Software
Engineering is fully devoted toward
improving the state of practice in global
software engineering and IT by bringing
together researchers and practitioners
from universities and industries. It is
organized on an annual basis. Details:
http://www.icgse.org

The Outsourcing World Summit is the
annual event of the International

Association of Outsourcing Professionals.
This conference is based on a simple
premise: that outsourcing can be
successful only when all participants—
customers, providers, and consultants
alike—come together to break through
the myths, misunderstandings, and
occasional missteps that come with
change of this magnitude. Details:
http://www.outsourcing professional.org

Internet Resources and
Newsletters

Articles, literature, and news on
outsourcing:

http://www.outsourcing-journal.com/

http://www.outsourcing-books.com/

Newsletters with outsourcing events and
news specifically for IT and global
software engineering:

http://www.globalservicesmedia.com/News

http://www.outsourcing-alert.com
http://www.outsourcing-news.com
http://www.blogsource.org/
http://www.offshore-outsourcing.com/
http://www.outsourcing-events.com

News, events, and information on
organizational change management:
http://www.vector.com/change

http://www.icgse.org
http://www.outsourcingprofessional.org
http://www.outsourcing-journal.com/
http://www.outsourcing-books.com/
http://www.globalservicesmedia.com/News
http://www.outsourcing-alert.com
http://www.outsourcing-news.com
http://www.blogsource.org/
http://www.offshore-outsourcing.com/
http://www.outsourcing-events.com
http://www.vector.com/change

Index

accountability 285

accounting 161

achievements 23

activities 10

aerospace 193

agile development 19, 22, 55, 64, 84, 106,
118, 139, 173, 242

allocation 227, 231, 232, 294

application life-cycle management 127

application service providing 8, 13

architecture 59, 234

ASP 8, 13

automotive industry 209

aviation 193

backup 82

benchmarks 23, 24, 31

benefits 15, 23, 222

best practices 286

BPO 8, 11

break-even 24

business case 15, 19, 23, 24, 33, 48, 96,
172, 207, 298

business goal 46

business model 9, 27, 287, 298

business process outsourcing 8, 11

capabilitiy 107

captive center 220

case study 59, 69, 109, 141, 193, 209, 249,

257, 269

challenges 19, 299

change management 81, 101

checklist 138, 152, 198
getting started 303
risk management 315
self-assessment 309

China 211, 285

CMMI 46, 53, 128, 134, 137, 166, 168,
172, 284

coaching 245, 246

COBIT 46, 128, 134, 166, 168, 172, 284

coherence 231

collaboration 61, 95, 98, 109, 128, 145,
169, 249, 253

collaboration tools 95, 98, 109

colocation 92, 230, 294

communication 21, 65, 169, 217, 230, 252,
259, 287

community source software 87

competence management 245

competencies 173

complexity management 31, 174

compliance 46, 166

concurrent engineering 233

configuration management 43, 76, 81, 101,
173

consulting 285, 290

contract 134, 136

contract management 22

coordination 60, 110

cost 19, 23, 96, 172, 174, 195, 207, 222,
296

cost control 162, 286

cost of non-quality 294

cost of quality 161

COTS 13

countries 10

culture 20, 65, 169, 205, 211, 249, 252,
259

customer relationship management 105

dashboard 98, 157

defect estimation 90, 295
defects 90, 222, 234, 295
development tools 95, 98, 109

Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing,

First Edition. Christof Ebert.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by

John Wiley & Sons, Inc.

349

350 Index

distance 110, 169
diversity 273

earned value 157

Eastern Europe 211, 228, 285
ecosystem 13

education 269

efficiency 18, 299

estimation 45, 47, 293, 296
estimation techniques 47

feasibility analysis 51
flexibility 17
friction-free economy 11, 297

global management 21
global software engineering
definition 12
global team 30
governance 46, 128, 166, 191, 239, 276,
284
GSE 12
guidelines 232

India 205, 210, 222, 228, 272, 285

information technology (IT)
infrastructure 201, 239
outsourcing 8, 12, 141

infrastructure 82

instability 173

intellectual property 176, 189

interface management 31

IPR 176, 189

IPR management 176

ISO 830 41

ISO 1220 128

ISO 1233 41

ISO 9001 128, 134

ISO 9126 41

ISO 12207 128

ISO 15288 128

ISO 15504 128

ITIL 46, 128, 134, 166, 168, 172,

284

IT infrastructure 201, 239

IT outsourcing 141

ITO 8, 12

Japan 211

knowledge 269

knowledge management 105
know-how 271

KPI 231

labor cost 15, 16, 23, 48, 174, 195
legal issues 22

legal regulations 128, 166

lessons learned 18, 24, 49, 53
life-cycle 127, 145, 177
localization 78

lock-in 175

maintenance 296

management techniques 21, 127, 131, 135,
141, 286, 290

management tools 95, 98, 109

market 34

maturity 284

measurement 51, 98, 157, 162, 222, 234,
287, 294

monitoring 98, 151

montoring 290

motivation 15, 92, 160

netsourcing 13

objectives 153, 231, 287

offshoring manager 239

open source software 9, 83

organization 21, 63, 92, 202, 220, 227,
237,239

0SS 13

outlook 297

outsourcing 141, 191

overhead 207, 294

overheads 217

Pareto principle 296

patents 176

people 205, 211, 227, 237, 241, 249, 284,
287, 297

people management 31, 35, 230, 245,
254

performance management 162

PERT 157

pilot 287

pilot project 198

planning 45, 47, 180, 293

presence 17

process 53, 96, 98, 106, 128, 203, 213,
284, 299

process framework 98

process standard 106

product data management 104

productivity 217, 222, 294, 296, 299

product life-cycle 128, 129

product life-cycle management 127

program management 149

progress review 152

project failures 20

project management 64, 98, 151, 180, 202,
230, 239, 254, 290

project tracking 51, 57, 151, 157

quality 89, 169, 222, 234, 294, 295
quality control 89, 161, 295
quality management 89

recovery 82

relationship management 131

requirements engineering 39, 51, 128, 257,
294

requirements specification 41

responsibilities 237, 287

rightshoring 283

risk assessment 182

risk heuristics 182

risk management 18, 28, 46, 96, 138, 165,
168, 177, 182, 189, 286, 290

risk simulation 182

risks 20, 49, 53, 165, 168, 206

roles 237, 287

rotation 290

rules of thumb 293

safety 166
Sarbanes—Oxley Act 166
scenarios 48

Scrum 55, 64, 118, 139, 173, 242
security 166, 189
security management 191
security protection 191
service 141

simulation model 183
skill management 51, 269
skills 173

SLA 42,239

Index 351

social network 259

soft factors 205

soft skills 149, 241, 249

software architecture 59

software sourcing 8, 13

Sourcing 13

South America 228

SoW 201, 208

stability 212

stakeholder 287

standard cost 162

standardization 106

strategic outsourcing 9

strategy 20, 28, 34, 237

supplier agreement management 136

supplier evaluation 131, 135

supplier management 22, 30, 128, 131,
132, 135, 141, 171, 190, 202

supplier selection 131, 133, 135

SWOT 286

system design 62

tactical outsourcing 9
talent 17, 298
task description 204
team 228
team management 239
team size 293
teamwork 15, 60, 110, 184, 233, 249, 253
template
getting started 303
risk management 315
self assessment 309
test 296
time 169
tools 82, 95, 96, 98, 106, 109, 253, 271, 290
bug tracking 111
CDE 104
collaboration 102, 104
collaborative development environment 104
communication 102, 114
configuration management 82, 100, 111
design 99
knowledge center 113
knowledge management 105
modeling 99, 112
requirements engineering 99
test 100
workflow management 104

352 Index

traceability 43

training 231, 245, 269, 290
trends 297

turnover 171

turnover rate 23

validation 295, 296

value 15

values 276, 284

variance analysis 162, 163
verification 295

version control 71

virtual team 228
vision 34

wages 195

WBS 48, 157

Wiki 65

work breakdown 48, 157, 234
work items 70

work organization 21, 227
work transfer 74

workflow management 104

	Global Software and IT: A Guide to Distributed Development, Projects, and Outsourcing
	Contents
	Foreword
	About the Author
	Introduction
	Part I: Strategy
	Chapter 1: Different Business Models
	Chapter 2: The Bright Side: Benefits
	Chapter 3: The Dark Side: Challenges
	Chapter 4: Deciding the Business Model
	Chapter 5: Preparing the Business Case

	Part II: Development
	Chapter 6: Requirements Engineering
	Chapter 7: Estimation and Planning
	Chapter 8: Development Processes
	Chapter 9: Practice: Global Software Architecture Development
	Chapter 10: Practice: Software Chunks and Distributed Development
	Chapter 11: Configuration Management
	Chapter 12: Open Source Development
	Chapter 13: Quality Control
	Chapter 14: Tools and IT Infrastructure
	Chapter 15: Practice: Collaborative Development Environments

	Part III: Management
	Chapter 16: Life-Cycle Management
	Chapter 17: Supplier Selection and Evaluation
	Chapter 18: Supplier Management
	Chapter 19: Practice: IT Outsourcing—A Supplier Perspective
	Chapter 20: Monitoring Cost, Progress, and Performance
	Chapter 21: Risk Management
	Chapter 22: Practice: Risk Assessment in Globally Distributed Projects
	Chapter 23: Intellectual Property and Information Security
	Chapter 24: Practice: Global Software Engineering in Avionics
	Chapter 25: Practice: Global Software Engineering in Automotive

	Part IV: People and Teams
	Chapter 26: Work Organization and Resource Allocation
	Chapter 27: Roles and Responsibilities
	Chapter 28: Soft Skills
	Chapter 29: Training and Coaching
	Chapter 30: Practice: People Factors in Globally Distributed Projects
	Chapter 31: Practice: Requirements Engineering in Global Teams
	Chapter 32: Practice: Educating Global Software Engineering

	Part V: Advancing Your Own Business
	Chapter 33: Key Take-Away Tips
	Chapter 34: Global Software and IT Rules of Thumb
	Chapter 35: The World Remains Flat

	Appendices
	Appendix A: Checklist/Template: Getting Started
	Appendix B: Checklist/Template: Self Assessment
	Appendix C: Checklist/Template: Risk Management

	Glossary and Abbreviations
	Bibliography
	Index

