
INTRODUCTION TO
COMPUTATIONAL

MOLECULAR BIOLOGY

JOAO SETUBAL and JOAO MEIDANIS

University of Campinas, Brazil

N ni i \r u
I N F O R M A T I K

PWS PUBLISHING COMPANY

I(T)P

An International Thomson Publishing Company

BOSTON • ALBANY • BONN • CINCINNATI • DETROIT • LONDON
MELBOURNE • MEXICO CITY • NEW YORK • PACIFIC GROVE • PARIS

SAN FRANCISCO • SINGAPORE • TOKYO • TORONTO

INTRODUCTION TO
COMPUTATIONAL

MOLECULAR BIOLOGY

I

S> PWS PUBLISHING COMPANY
20 Park Plaza, Boston, MA 02116-4324

Copyright ©1997 by PWS Publishing Company,
a division of International Thomson Publishing Inc.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transcribed in
any form or by any means—electronic, mechanical, photocopying, recording, or otherwise—without the
prior written permission of PWS Publishing Company.

International Thomson Publishing
The tradmark ITP is used under license.

Library of Congress Cataloging-in-Publication Data

Setubal, Joao Carlos.
Introduction to computational molecular biology / Joao Carlos

Setubal, Joao Meidanis.
p. cm

Includes bibliographical references (p. 277) and index.
ISBN 0-534-95262-3
1. Molecular biology—Mathematics. I. Meidanis, Joao.

II. Title.
QH506.S49 1997 96-44240
574.8'8'0151-dc20 CIP

Sponsoring Editor: David Dietz
Editorial Assistant: Susan Garland
Marketing Manager: Nathan Wilbur
Production Editor: Andrea Goldman
Manufacturing Buyer: Andrew Christensen
Composition: Superscript Typography
Prepress: Pure Imaging

Printed and bound in the United States of America
97 98 99 00 — 10 9 8 7 6 5 4 3 2 1

Cover Printer: Coral Graphics
Text Printer/Binder: R. R. Donnelley & Sons
Company/Crawfordsville
Interior Designer: Monique A. Calello
Cover Designer: Andrea Goldman
Cover Art: "Digital 1/0 Double Helix" by Steven
Hunt. Used by permission of the artist.

For more information, contact:
PWS Publishing Company
20 Park Plaza
Boston, MA 02116

International Thomson Publishing Europe
Berkshire House 168-173
High Holborn
London WC1V 7 AA
England

Thomas Nelson Australia
102 Dodds Street
South Melbourne, 3205
Victoria, Australia

Nelson Canada
1120 Birchmont Road
Scarborough, Ontario
Canada M1K5G4

International Thomson Editores
Campos Eliseos 385, Piso 7
Col. Polanco
11560 Mexico D.F., Mexico

International Thomson Publishing GmbH
Konigswinterer Strasse 418
53227 Bonn, Germany

International Thomson Publishing Asia
221 Henderson Road
#05-10 Henderson Building
Singapore 0315

International Thomson Publishing Japan
Hirakawacho Kyowa Building, 31
2-2-1 Hirakawacho
Chiyoda-ku, Tokyo 102
Japan

Contents

Preface ix
Book Overview xi
Exercises xii
Errors xii
Acknowledgments xiii

1 Basic Concepts of Molecular Biology 1
1.1 Life 1
1.2 Proteins 2
1.3 Nucleic Acids 5

1.3.1 DNA 5
1.3.2 RNA 8

1.4 The Mechanisms of Molecular Genetics 9
1.4.1 Genes and the Genetic Code 9
1.4.2 Transcription, Translation, and Protein Synthesis 10
1.4.3 Junk DNA and Reading Frames 12
1.4.4 Chromosomes 13
1.4.5 Is the Genome like a Computer Program? 15

1.5 How the Genome Is Studied 15
1.5.1 Maps and Sequences 16
1.5.2 Specific Techniques 17

1.6 The Human Genome Project 21
1.7 Sequence Databases 23
Exercises 30
Bibliographic Notes 30

2 Strings, Graphs, and Algorithms 33
2.1 Strings 33
2.2 Graphs 35
2.3 Algorithms 38
Exercises 43
Bibliographic Notes 45

vi CONTENTS

3 Sequence Comparison and Database Search 47
3.1 Biological Background 47
3.2 Comparing Two Sequences 49

3.2.1 Global Comparison — The Basic Algorithm 49
3.2.2 Local Comparison 55
3.2.3 Semiglobal Comparison 56

3.3 Extensions to the B asic Algorithms 5 8
3.3.1 Saving Space 58
3.3.2 General Gap Penalty Functions 60
3.3.3 Afflne Gap Penalty Functions 64
3.3.4 Comparing Similar Sequences 66

3.4 Comparing Multiple Sequences 69
3.4.1 The SP Measure 70
3.4.2 Star Alignments 76
3.4.3 Tree Alignments 79

3.5 Database Search 80
3.5.1 PAM Matrices 80
3.5.2 BLAST 84
3.5.3 FAST 87

3.6 Other Issues 89
* 3.6.1 Similarity and Distance 89

3.6.2 Parameter Choice in Sequence Comparison 96
3.6.3 String Matching and Exact Sequence Comparison 98

Summary 100
Exercises 101
Bibliographic Notes 103

4 Fragment Assembly of DNA 105
4.1 Biological Background 105

4.1.1 The Ideal Case 106
4.1.2 Complications 107
4.1.3 Alternative Methods for DNA Sequencing 113

4.2 Models 114
4.2.1 Shortest Common Superstring 114
4.2.2 Reconstruction 116
4.2.3 Multicontig 117

*4.3 Algorithms 119
4.3.1 Representing Overlaps 119
4.3.2 Paths Originating Superstrings 120
4.3.3 Shortest Superstrings as Paths 122
4.3.4 The Greedy Algorithm 124
4.3.5 Acyclic Subgraphs 126

4.4 Heuristics 132
4.4.1 Finding Overlaps 134
4.4.2 Ordering Fragments 134
4.4.3 Alignment and Consensus 137

Summary 139

CONTENTS vii

Exercises 139
Bibliographic Notes 141

5 Physical Mapping of DNA 143
5.1 Biological Background 143

5.1.1 Restriction Site Mapping 145
5.1.2 Hybridization Mapping 146

5.2 Models 147
5.2.1 Restriction Site Models 147
5.2.2 Interval Graph Models 149
5.2.3 The Consecutive Ones Property 150
5.2.4 Algorithmic Implications 152

5.3 An Algorithm for the CIP Problem 153
5.4 An Approximation for Hybridization Mapping with Errors 160

5.4.1 A Graph Model 160
5.4.2 A Guarantee 162
5.4.3 Computational Practice 164

5.5 Heuristics for Hybridization Mapping 167
5.5.1 Screening Chimeric Clones 167
5.5.2 Obtaining a Good Probe Ordering 168

Summary 169
Exercises 170
Bibliographic Notes 172

6 Phylogenetic Trees 175
6.1 Character States and the Perfect Phylogeny Problem 177
6.2 Binary Character States 182
6.3 Two Characters 186
6.4 Parsimony and Compatibility in Phylogenies 190
6.5 Algorithms for Distance Matrices 192

6.5.1 Reconstructing Additive Trees 193
* 6.5.2 Reconstructing Ultrametric Trees 196

6.6 Agreement Between Phylogenies 204
Summary 209
Exercises 209
Bibliographic Notes 211

7 Genome Rearrangements 215
7.1 Biological Background 215
7.2 Oriented Blocks 217

7.2.1 Definitions 219
7.2.2 Breakpoints 221
7.2.3 The Diagram of Reality and Desire 222
7.2.4 Interleaving Graph 228
7.2.5 Bad Components 231
7.2.6 Algorithm 234

7.3 Unoriented Blocks 236

viii CONTENTS

7.3.1 Strips 238
7.3.2 Algorithm 241

Summary 242
Exercises 243
Bibliographic Notes 244

8 Molecular Structure Prediction 245
8.1 RNA Secondary Structure Prediction 246
8.2 The Protein Folding Problem 252
8.3 Protein Threading 254
Summary 259
Exercises 259
Bibliographic Notes 260

9 Epilogue: Computing with DNA 261
9.1 The Hamiltonian Path Problem 261
9.2 Satisfiability 264
9.3 Problems and Promises 267
Exercises 268
Bibliographic Notes and Further Sources 268

Answers to Selected Exercises 271

References 277

Index 289

PREFACE

Biology easily has 500 years of exciting problems to work on.
— Donald E. Knuth

Ever since the structure of DNA was unraveled in 1953, molecular biology has witnessed
tremendous advances. With the increase in our ability to manipulate biomolecular se-
quences, a huge amount of data has been and is being generated. The need to process
the information that is pouring from laboratories all over the world, so that it can be of
use to further scientific advance, has created entirely new problems that are interdisci-
plinary in nature. Scientists from the biological sciences are the creators and ultimate
users of this data. However, due to sheer size and complexity, between creation and use
the help of many other disciplines is required, in particular those from the mathematical
and computing sciences. This need has created a new field, which goes by the general
name of computational molecular biology.

In a very broad sense computational molecular biology consists of the development
and use of mathematical and computer science techniques to help solve problems in
molecular biology. A few examples will illustrate. Databases are needed to store all the
information that is being generated. Several international sequence databases already
exist, but scientists have recognized the need for new database models, given the spe-
cific requirements of molecular biology. For example, these databases should be able to
record changes in our understanding of molecular sequences as we study them; current
models are not suitable for this purpose. The understanding of molecular sequences in
turn requires new sophisticated techniques of pattern recognition, which are being de-
veloped by researchers in artificial intelligence. Complex statistical issues have arisen
in connection with database searches, and this has required the creation of new and spe-
cific tools.

There is one class of problems, however, for which what is most needed is efficient
algorithms. An algorithm, simply stated, is a step-by-step procedure that tries to solve
a certain well-defined problem in a limited time bound. To be efficient, an algorithm
should not take "too long" to solve a problem, even a large one. The classic example of a
problem in molecular biology solvable by an algorithm is sequence comparison: Given
two sequences representing biomolecules, we want to know how similar they are. This
is a problem that must be solved thousands of times every day, so it is desirable that a
very efficient algorithm should be employed.

The purpose of this book is to present a representative sample of computational

x Preface

problems in molecular biology and some of the efficient algorithms that have been pro-
posed to solve them. Some of these problems are well understood, and several of their
algorithms have been known for many years. Other problems seem more difficult, and
no satisfactory algorithmic approach has been developed so far. In these cases we have
concentrated in explaining some of the mathematical models that can be used as a foun-
dation in the development of future algorithms.

The reader should be aware that an algorithm for a problem in molecular biology is
a curious beast. It tries to serve two masters: the molecular biologist, who wants the algo-
rithm to be relevant, that is, to solve a problem with all the errors and uncertainties with
which it appears in practice; and the computer scientist, who is interested in proving that
the algorithm efficiently solves a well-defined problem, and who is usually ready to sac-
rifice relevance for provability (or efficiency). We have tried to strike a balance between
these often conflicting demands, but more often than not we have taken the computer sci-
entists' side. After all, that is what the authors are. Nevertheless we hope that this book
will serve as a stimulus for both molecular biologists and computer scientists.

This book is an introduction. This means that one of our guiding principles was to
present algorithms that we considered simple, whenever possible. For certain problems
that we describe, more efficient and generally more sophisticated algorithms exist; point-
ers to some of these algorithms are usually given in the bibliographic notes at the end
of each chapter. Despite our general aim, a few of the algorithms or models we present
cannot be considered simple. This usually reflects the inherent complexity of the cor-
responding topic. We have tried to point out the more difficult parts by using the star
symbol (•) in the corresponding headings or by simply spelling out this caveat in the
text. The introductory nature of the text also means that, for some of the topics, our cov-
erage is intended to be a starting point for those new to them. It is probable, and in some
cases a fact, that whole books could be devoted to such topics.

The primary audience we have in mind for this book is students from the mathe-
matical and computing sciences. We assume no prior knowledge of molecular biology
beyond the high school level, and we provide a chapter that briefly explains the basic
concepts used in the book. Readers not familiar with molecular biology are urged how-
ever to go beyond what is given there and expand their knowledge by looking at some
of the books referred to at the end of Chapter 1.

We hope that this book will also be useful in some measure to students from the
biological sciences. We do assume that the reader has had some training in college-level
discrete mathematics and algorithms. With the purpose of helping the reader unfamiliar
with these subjects, we have provided a chapter that briefly covers all the basic concepts
used in the text.

Computational molecular biology is expanding fast. Better algorithms are constantly
being designed, and new subfields are emerging even as we write this. Within the con-
straints mentioned above, we did our best to cover what we considered a wide range
of topics, and we believe that most of the material presented is of lasting value. To the
reader wishing to pursue further studies, we have provided pointers to several sources
of information, especially in the bibliographic notes of the last chapter (and including
WWW sites of interest). These notes, however, are not meant to be exhaustive. In addi-
tion, please note that we cannot guarantee that the World Wide Web Universal Resource
Locators given in the text will remain valid. We have tested these addresses, but due to
the dynamic nature of the Web, they could change in the future.

Preface xi

BOOK OVERVIEW

Chapter 1 presents fundamental concepts from molecular biology. We describe the basic
structure and function of proteins and nucleic acids, the mechanisms of molecular genet-
ics, the most important laboratory techniques for studying the genome of organisms, and
an overview of existing sequence databases.

Chapter 2 describes strings and graphs, two of the most important mathematical ob-
jects used in the book. A brief exposition of general concepts of algorithms and their
analysis is also given, covering definitions from the theory of NP-completeness.

The following chapters are based on specific problems in molecular biology. Chap-
ter 3 deals with sequence comparison. The basic two-sequence problem is studied and
the classic dynamic programming algorithm is given. We then study extensions of this
algorithm, which are used to deal with more general cases of the problem. A section is de-
voted to the multiple-sequence comparison problem. Other sections deal with programs
used in database searches, and with some other miscellaneous issues.

Chapter 4 covers the fragment assembly problem. This problem arises when a DNA
sequence is broken into small fragments, which must then be assembled to reconstitute
the original molecule. This is a technique widely used in large-scale sequencing projects,
such as the Human Genome Project. We show how various complications make this
problem quite hard to solve. We then present some models for simplified versions of the
problem. Later sections deal with algorithms and heuristics based on these models.

Chapter 5 covers the physical mapping problem. This can be considered as fragment
assembly on a larger scale. Fragments are much longer, and for this reason assembly
techniques are completely different. The aim is to obtain the location of some markers
along the original DNA molecule. A brief survey of techniques and models is given.
We then describe an algorithm for the consecutive ones problem; this abstract problem
plays an important role in physical mapping. The chapter finishes with sections devoted
to algorithmic approximations and heuristics for one version of physical mapping.

Proteins and nucleic acids also evolve through the ages, and an important tool in
understanding how this evolution has taken place is the phylogenetic tree. These trees
also help shed light in the understanding of protein function. Chapter 6 describes some
of the mathematical problems related to phylogenetic tree reconstruction and the simple
algorithms that have been developed for certain special cases.

An important new field of study that has recently emerged in computational biology
is genome rearrangements. It has been discovered that some organisms are genetically
different, not so much at the sequence level, but in the order in which large similar chunks
of their DNA appear in their respective genomes. Interesting mathematical models have
been developed to study such differences, and Chapter 7 is devoted to them.

The understanding of the biological function of molecules is actually at the heart of
most problems in computational biology. Because molecules fold in three dimensions
and because their function depends on the way they fold, a primary concern of scientists
in the past several decades has been the discovery of their three-dimensional structure,
in particular for RNA and proteins. This has given rise to methods that try to predict a
molecule's structure based on its primary sequence. In Chapter 8 we describe dynamic
programming algorithms for RNA structure prediction, give an overview of the difficul-
ties of protein structure prediction, and present one important recent development in the

xii Preface

field called protein threading, which attempts to align a a protein sequence with a known
structure.

Chapter 9 ends the book presenting a description of the exciting new field of DNA
computing. We present there the basic experiment that showed how we can use DNA
molecules to solve one hard algorithmic problem, and a theoretical extension that applies
to another hard problem.

A word about general conventions. As already mentioned, sections whose headings
are followed by a star symbol (*) contain material considered by the authors to be more
difficult. In the case of concept definitions, we have used the convention that terms used
throughout the book are in boldface when they are first defined. Other terms appear in
italics in their definition. Many of our algorithms are presented first through English sen-
tences and then in pseudo code format (pseudo code conventions are described in Sec-
tion 2.3). In some cases the pseudo code provides a level of detail that should help readers
interested in actual implementation.

Summaries are provided for the longer chapters.

EXERCISES

Exercises appear at the end of every chapter. Exercises marked with one star (•) are hard,
but feasible in less than a day. They may require knowledge of computer science tech-
niques not presented in the book. Those marked with two stars (••) are problems that
were once research problems but have since been solved, and their solutions can be found
in the literature (we usually cite in the bibliographic notes the research paper that solves
the exercise). Finally exercises marked with a diamond (o) are research problems that
have not been solved as far as the authors know.

At the end of the book we provide answers or hints to selected exercises.

ERRORS

Despite the authors' best efforts, this book no doubt contains errors. If you find any, or
have any suggestions for improvement, we will be glad to hear from you. Please send
error reports or any other comments to us at bio@dcc.unicamp.br, or at

J. Meidanis / J. C. Setubal
Institute de Computac.ao, C. P. 6176
UNICAMP
Campinas, SP 13083-970
Brazil

(The authors can be reached individually by e-mail at meidanis@dcc.unicamp.br and at
setubal@dcc.unicamp.br.) We thank in advance all readers interested in helping us make
this a better book. As errors become known they will be reported in the following WWW
site:

http://www.dcc.unicamp.br/~bio/ICMB.html

Preface xiii

ACKNOWLEDGMENTS

This book is a successor to another, much shorter one on the same subject, written by the
authors in Portuguese and published in 1994 in Brazil. That first book was made possible
thanks to a Brazilian computer science meeting known as "Escola de Computacao," held
every two years. We believe that without such a meeting we would not be writing this
preface, so we are thankful to have had that opportunity.

The present book started its life thanks to Mike Sugarman, Bonnie Berger, and Tom
Leighton. We got a lot of encouragement from them, and also some helpful hints. Bonnie
in particular was very kind in giving us copies of her course notes at an early stage.

We have been fortunate to have had financial grants from FAPESP and CNPq (Braz-
ilian Research Agencies); they helped us in several ways. Grants from FAPESP were
awarded within the "Laboratory for Algorithms and Combinatorics" project and pro-
vided computer equipment. Grants from CNPq were awarded in the form of individual
fellowships and within the PROTEM program through the PROCOMB and TCPAC projects,
which provided funding for research visits.

We are grateful to our students who helped us proofread early drafts. Special thanks
are due to Nalvo Franco de Almeida Jr. and Maria Emilia Machado Telles Walter. Nalvo,
in addition, made many figures and provided several helpful comments.

We had many helpful discussions with our colleague Jorge Stolfi, who also provided
crucial assistance in typesetting matters. Fernando Reinach and Gilson Paulo Manfio
helped us with Chapter 1. We discussed book goals and general issues with Jim Orlin.
Martin Farach and Sampath Kannan, as well as several anonymous reviewers, also made
many suggestions, some of which were incorporated into the text. Our colleagues at the
Institute of Computing at UNIC AMP provided encouragement and a stimulating work en-
vironment.

The following people were very kind in sending us research papers: Farid Alizadeh,
Alberto Caprara, Martin Farach, David Greenberg, Dan Gusfield, Sridar Hannenhalli,
Wen-Lian Hsu, Xiaoqiu Huang, Tao Jiang, John Kececioglu, Lukas Knecht, Rick Lath-
rop, Gene Myers, Alejandro Schaffer, Ron Shamir, Martin Vingron (who also sent lec-
ture notes), Todd Wareham, and Tandy Warnow. Some of our sections were heavily based
on some of these papers.

Many thanks are also due to Erik Brisson, Eileen Sullivan, Bruce Dale, Carlos Edu-
ardo Ferreira, and Thomas Roos, who helped in various ways.

J. C. S. wishes to thank his wife Silvia (a.k.a. Teca) and his children Claudia, Tomas,
and Caio, for providing the support without which this book could not have been written.

This book was typeset by the authors using Leslie Lamport's ETjiX 2£ system, which
works on top of Don Knuth's T^K system. These are truly marvelous tools.

The quotation of Don Knuth at the beginning of this preface is from an interview
given to Computer Literacy Bookshops, Inc., on December 7, 1993.

Joao Carlos Setubal
Joao Meidanis

mm.

1
BASIC CONCEPTS OF MOLECULAR

BIOLOGY

In this chapter we present basic concepts of molecular biology.
Our aim is to provide readers with enough information so that they
can comfortably follow the biological background of this book as
well as the literature on computational molecular biology in gen-
eral. Readers who have been trained in the exact sciences should
know from the outset that in molecular biology nothing is 100%
valid. To every rule there is an exception. We have tried to point
out some of the most notable exceptions to general rules, but in
other cases we have omitted such mention, so as not to transform
this chapter into a molecular biology textbook.

In nature we find both living and nonliving things. Living things can move, reproduce,
grow, eat, and so on — they have an active participation in their environment, as opposed
to nonliving things. Yet research in the past centuries reveals that both kinds of matter
are composed by the same atoms and conform to the same physical and chemical rules.
What is the difference then? For a long time in human history, people thought that some
sort of extra matter bestowed upon living beings their active characteristics — that they
were "animated" by such a thing. But nothing of the kind has ever been found. Instead,
our current understanding is that living beings act the way they do due to a complex ar-
ray of chemical reactions that occur inside them. These reactions never cease. It is often
the case that the products of one reaction are being constantly consumed by another re-
action, keeping the system going. A living organism is also constantly exchanging mat-
ter and energy with its surroundings. In contrast, anything that is in equilibrium with
its surrounding can generally be considered dead. (Some notable exceptions are vegeta-

T
2 CHAPTER 1 BASIC CONCEPTS OF MOLECULAR BIOLOGY

tive forms, like seeds, and viruses, which may be completely inactive for long periods
of time, and are not dead.)

Modern science has shown that life started some 3.5 billions of years ago, shortly
(in geological terms) after the Earth itself was formed. The first life forms were very
simple, but over billions of years a continuously acting process called evolution made
them evolve and diversify, so that today we find very complex organisms as well as very
simple ones.

Both complex and simple organisms have a similar molecular chemistry, or bio-
chemistry. The main actors in the chemistry of life are molecules called proteins and
nucleic acids. Roughly speaking, proteins are responsible for what a living being is and
does in a physical sense. (The distinguished scientist Russell Doolittle once wrote that
"we are our proteins.") Nucleic acids, on the other hand, encode the information neces-
sary to produce proteins and are responsible for passing along this "recipe" to subsequent
generations.

Molecular biology research is basically devoted to the understanding of the structure
and function of proteins and nucleic acids. These molecules are therefore the fundamen-
tal objects of this book, and we now proceed to give a basic and brief description of the
current state of knowledge regarding them.

Most substances in our bodies are proteins, of which there are many different kinds.
Structural proteins act as tissue building blocks, whereas other proteins known as en-
zymes act as catalysts of chemical reactions. A catalyst is a substance that speeds up a
chemical reaction. Many biochemical reactions, if left unattended, would take too long
to complete or not happen at all and would therefore not be useful to life. An enzyme can
speed up this process by orders of magnitude, thereby making life possible. Enzymes are
very specific — usually a given enzyme can help only one kind of biochemical reaction.
Considering the large number of reactions that must occur to sustain life, we need a lot
of enzymes. Other examples of protein function are oxygen transport and antibody de-
fense. But what exactly are proteins? How are they made? And how do they perform
their functions? This section tries briefly to answer these questions.

A protein is a chain of simpler molecules called amino acids. Examples of amino
acids can be seen in Figure 1.1. Every amino acid has one central carbon atom, which
is known as the alpha carbon, or Ca. To the Ca atom are attached a hydrogen atom, an
amino group (NH2), a carboxy group (COOH), and a side chain. It is the side chain that
distinguishes one amino acid from another. Side chains can be as simple as one hydrogen
atom (the case of amino acid glycine) or as complicated as two carbon rings (the case
of tryptophan). In nature we find 20 different amino acids, which are listed in Table 1.1.
These 20 are the most common in proteins; exceptionally a few nonstandard amino acids
might be present.

1.2 PROTEINS

CH3

H2N COOH

HO CH3

\ /

CH

H2N Ca COOH

H

FIGURE 1.1
Examples of amino acids: alanine (left) and threonine.

In a protein, amino acids are joined by peptide bonds. For this reason, proteins are
polypeptidic chains. In a peptide bond, the carbon atom belonging to the carboxy group
of amino acid A,- bonds to the nitrogen atom of amino acid A,+i's amino group. In such
a bond, a water molecule is liberated, because the oxygen and hydrogen of the carboxy
group joins the one hydrogen from the amino group. Hence, what we really find inside a
polypeptide chain is a residue of the original amino acid. Thus we generally speak of a
protein having 100 residues, rather than 100 amino acids. Typical proteins contain about
300 residues, but there are proteins with as few as 100 or with as many as 5,000 residues.

The

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

TABLE 1.1
twenty amino acids commonly found in proteins.

One-letter code Three-letter code Name
A

C
D

E
F

G
H
I

K
L

M

N
P

Q
R
S
T

V

W
Y

Ala
Cys
Asp
Glu
Phe
Gly
His
He
Lys
Leu
Met
Asn
Pro
Gin
Arg
Ser
Thr
Val
Trp
Tyr

Alanine
Cysteine
Aspartic Acid
Glutamic Acid
Phenylalanine
Glycine
Histidine
Isoleucine
Lysine
Leucine
Methionine
Asparagine
Proline
Glutamine
Arginine
Serine
Threonine
Valine
Tryptophan
Tyrosine

4 CHAPTER 1 BASIC CONCEPTS OF MOLECULAR BIOLOGY

The peptide bond makes every protein have a backbone, given by repetitions of the
basic block — N — Ca — (CO)—. To every Ca there corresponds a side chain. See Fig-
ure 1.2 for a schematic view of a polypeptide chain. Because we have an amino group at
one end of the backbone and a carboxy group at the other end, we can distinguish both
ends of a polypeptide chain and thus give it a direction. The convention is that polypep-
tides begin at the amino group (N-terminal) and end at the carboxy group (C-terminal).

Ri

II
II

o

H

1 <t>
A

O

II

FIGURE 1.2

1
1

H

R3

1
^ C

II
II

o

A polypeptide chain. The R,- side chains identify the

component amino acids. Atoms inside each quadrilateral

are on the same plane, which can rotate according to angles

4> and \j/.

A protein is not just a linear sequences of residues. This sequence is known as its
primary structure. Proteins actually fold in three dimensions, presenting secondary,
tertiary, and quaternary structures. A protein 's secondary structure is formed through
interactions between backbone atoms only and results in "local" structures such as he-
lices. Tertiary structures are the result of secondary structure packing on a more global
level. Yet another level of packing, or a group of different proteins packed together, re-
ceives the name of quaternary structure. Figure 1.3 depicts these structures schemati-
cally.

Proteins can fold in three dimensions because the plane of the bond between the
Ca atom and the nitrogen atom may rotate, as can the plane between the Ca atom and
the other C atom. These rotation angles are known as (p and T/T, respectively, and are il-
lustrated in Figure 1.2. Side chains can also move, but it is a secondary movement with
respect to the backbone rotation. Thus if we specify the values of all 0 — ^ pairs in a
protein, we know its exact folding. Determining the folding, or three-dimensional struc-
ture, of a protein is one of the main research areas in molecular biology, for three rea-
sons. First, the three-dimensional shape of a protein is related to its function. Second,
the fact that a protein can be made out of 20 different kinds of amino acids makes the re-
sulting three-dimensional structure in many cases very complex and without symmetry.
Third, no simple and accurate method for determining the three-dimensional structure is
known. These reasons motivate Chapter 8, where we discuss some molecular structure
prediction methods. These methods try to predict a molecule 's structure from its primary
sequence.

The three-dimensional shape of a protein determines its function in the following
way. A folded protein has an irregular shape. This means that it has varied nooks and

1.3 NUCLEIC ACIDS

FIGURE 1.3
Primary, secondary, tertiary, and quaternary structures of

proteins. (Based on a figure from [28].)

bulges, and such shapes enable the protein to come in closer contact with, or bind to,
some other specific molecules. The kinds of molecules a protein can bind to depend on
its shape. For example, the shape of a protein can be such that it is able to bind with
several identical copies of itself, building, say, a thread of hair. Or the shape can be such
that molecules A and B bind to the protein and thereby start exchanging atoms. In other
words, a reaction takes place between A and B, and the protein is fulfilling its role as a
catalyst.

But how do we get our proteins? Proteins are produced in a cell structure called ri-
bosome. In a ribosome the component amino acids of a protein are assembled one by one
thanks to information contained in an important molecule called messenger ribonucleic
acid. To explain how this happens, we need to explain what nucleic acids are.

NUCLEIC ACIDS

Living organisms contain two kinds of nucleic acids: ribonucleic acid, abbreviated by
RNA, and deoxyribonucleic acid, or DNA. We describe DNA first.

1.3.1 DNA

Like a protein, a molecule of DNA is a chain of simpler molecules. Actually it is a dou-
ble chain, but let us first understand the structure of one simple chain, called strand.
It has a backbone consisting of repetitions of the same basic unit. This unit is formed
by a sugar molecule called 2/-deoxyribose attached to a phosphate residue. The sugar
molecule contains five carbon atoms, and they are labeled V through 5' (see Figure 1.4).
The bond that creates the backbone is between the 3' carbon of one unit, the phosphate
residue, and the 5' carbon of the next unit. For this reason, DNA molecules also have an

CHAPTER 1 BASIC CONCEPTS OF MOLECULAR BIOLOGY

H H
H0-5'-H HO~5'-H

base base

4
H / |\ H H
1/ xl\l 1/

y 2
/ H 3' 2/

It It
HO OH HO Hribose 2'-deoxyribose

FIGURE 1.4

Sugars present in nucleic acids. Symbols Y through 5'
represent carbon atoms. The only difference between the

two sugars is the oxygen in carbon 2'. Ribose is present in
RNA and 2' -deoxyribose is found in DNA.

orientation, which by convention, starts at the 5' end and finishes at the 3' end. When we
see a single stranded DNA sequence in a technical paper, book, or a sequence database
file, it is always written in this canonical, 5' -> 3' direction, unless otherwise stated.

Attached to each 1' carbon in the backbone are other molecules called bases. There
are four kinds of bases: adenine (A), guanine (G), cytosine (C), and thymine (T). In Fig-
ure 1.5 we show the schematic molecular structure of each base, and in Figure 1.6 we
show a schematic view of the single DNA strand described so far. Bases A and G belong
to a larger group of substances calledpurines, whereas C and T belong to the pyrimidines.
When we see the basic unit of a DNA molecule as consisting of the sugar, the phosphate,
and its base, we call it a nucleotide. Thus, although bases and nucleotides are not the
same thing, we can speak of a DNA molecule having 200 bases or 200 nucleotides. A
DNA molecule having a few (tens of) nucleotides is referred to as an oligonucleotide.
DNA molecules in nature are very long, much longer than proteins. In a human cell,
DNA molecules have hundreds of millions of nucleotides.

As already mentioned, DNA molecules are double strands. The two strands are tied
together in a helical structure, the famous double helix discovered by James Watson and
Francis Crick in 1953. How can the two strands hold together? Because each base in one
strand is paired with (or bonds to) a base in the other strand. Base A is always paired with
base T, and C is always paired with G, as shown in Figures 1.5 and 1.7. Bases A and T
are said to be the complement of each other, or a pair of complementary bases. Sim-
ilarly, C and G are complementary bases. These pairs are known as Watson-Crick base
pairs. Base pairs provide the unit of length most used when referring to DNA molecules,
abbreviated to bp. So we say that a certain piece of DNA is 100,000 bp long, or 100 kbp.

In this book we will generally consider DNA as string of letters, each letter repre-
senting a base. Figure 1.8 presents this "string-view" of DNA, showing that we repre-
sent the double strand by placing one of the strings on top of the other. Notice the base-
pairing. Even though the strands are linked, each one preserves its own orientation, and
the two orientations are opposite. Figure 1.8 illustrates this fact. Notice that the 3' end of
one strand corresponds to the 5' end of the other strand. This property is sometimes ex-
pressed by saying that the two strands are antiparallel. The fundamental consequence of

T

1.3 NUCLEIC ACIDS

H

Sugar—N

N
\ /

C—N
V \

Adenine

H

Sugar—

N.

H
I

\ /

H + \
,c=cr

H +

o-
H

N — C

H.+ N-=C

H

C— CH3

Thymine

Cytosine

Sugar H

Sugar H

FIGURE 1.5
Nitrogenated bases present in DNA. Notice the bonds that

can form between adenine and thymine and between
guanine and cytosine, indicated by the dotted lines.

FIGURE 1.6
A schematic molecular structure view of one DNA strand.

this structure is that it is possible to infer the sequence of one strand given the other. The
operation that enables us to do that is called reverse complementation. For example,
given strand s — AGACGT in the canonical direction, we do the following to obtain its
reverse complement: First we reverse s, obtaining sf = TGCAGA, and then we replace
each base by its complement, obtaining 5 = ACGTCT. (Note that we use the bar over the
s to denote the reverse complement of strand s.) It is precisely this mechanism that al-
lows DNA in a cell to replicate, therefore allowing an organism that starts its life as one
cell to grow into billions of other cells, each one carrying copies of the DNA molecules
from the original cell.

In organisms whose cells do not have a nucleus, DNA is found free-floating inside
each cell. In higher organisms, DNA is found inside the nucleus and in cell organelles
called mitochondria (animals and plants) and chloroplasts (plants only).

8 CHAPTER 1 BASIC CONCEPTS OF MOLECULAR BIOLOGY

FIGURE 1.7
A schematic molecular structure view of a double

strand of DNA.

5'
3'

TACTGAA
ATGACTT

3'
5'

FIGURE 1.8
A double-stranded DNA sequence represented by

strings of letters.

1.3.2 RNA

RNA molecules are much like DNA molecules, with the following basic compositional
and structural differences:

• In RNA the sugar is ribose instead of 2/-deoxyribose (see Figure 1.4).

• In RNA we do not find thy mine (T); instead, uracil (U) is present. Uracil also binds
with adenine like thymine does.

• RNA does not form a double helix. Sometimes we see RNA-DNA hybrid helices;
also, parts of an RNA molecule may bind to other parts of the same molecule by
complementarity. The three-dimensional structure of RNA is far more varied than
that of DNA.

Another difference between DNA and RNA is that while DNA performs essentially
one function (that of encoding information), we will see shortly that there are different
kinds of RNAs in the cell, performing different functions.

1.4 THE MECHANISMS OF MOLECULAR GENETICS

THE MECHANISMS OF MOLECULAR GENETICS

The importance of DNA molecules is that the information necessary to build each pro-
tein or RNA found in an organism is encoded in DNA molecules. For this reason, DNA
is sometimes referred to as "the blueprint of life." In this section we will describe this
encoding and how a protein is built out of DNA (the process of protein synthesis). We
will see also how the information in DNA, or genetic information, is passed along from
a parent to its offspring.

1.4.1 GENES AND THE GENETIC CODE

Each cell of an organism has a few very long DNA molecules. Each such molecule is
called a chromosome. We will have more to say about chromosomes later, so for the
moment let us examine the encoding of genetic information from the point of view of
only one very long DNA molecule, which we will simply call "the DNA." The first im-
portant thing to know about this DNA is that certain contiguous stretches along it encode
information for building proteins, but others do not. The second important thing is that
to each different kind of protein in an organism there usually corresponds one and only
one contiguous stretch along the DNA. This stretch is known as a gene. Because some
genes originate RNA products, it is more correct to say that a gene is a contiguous stretch
of DNA that contains the information necessary to build a protein or an RNA molecule.
Gene lengths vary, but in the case of humans a gene may have something like 10,000
bp. Certain cell mechanisms are capable of recognizing in the DNA the precise points at
which a gene starts and at which it ends.

A protein, as we have seen, is a chain of amino acids. Therefore, to "specify" a pro-
tein all you have to do is to specify each amino acid it contains. And that is precisely
what the DNA in a gene does, using triplets of nucleotides to specify each amino acid.
Each nucleotide triplet is called a codon. The table that gives the correspondence be-
tween each possible triplet and each amino acid is the so-called genetic code, seen in
Table 1.2. In the table you will notice that nucleotide triplets are given using RNA bases
rather than DNA bases. The reason is that it is RNA molecules that provide the link be-
tween the DNA and actual protein synthesis, in a process to be detailed shortly. Before
that let us study the genetic code in more detail.

Notice that there are 64 possible nucleotide triplets, but there are only 20 amino
acids to specify. The consequence is that different triplets correspond to the same amino
acid. For example, both AAG and AAA code for lysine. On the other hand, three of the
possible codons do not code for any amino acid and are used instead to signal the end of
a gene. These special termination codons are identified in Table 1.2 with the word STOP
written in the corresponding entry. Finally, we remark that the genetic code shown above
is used by the vast majority of living organisms, but some organisms use a slightly mod-
ified code.

10 CHAPTER 1 BASIC CONCEPTS OF MOLECULAR BIOLOGY

TABLE 1.2
The genetic code mapping codons to amino acids.

First
position

A

U

Second position
G

Gly
Gly

Gly
Gly
Arg
Arg

Ser
Ser
Arg
Arg

Arg
Arg
Trp

STOP

Cys
Cys

A

Glu
Glu

Asp
Asp
Lys
Lys

Asn
Asn
Gin
Gin

His
His

STOP
STOP

Tyr
Tyr

C

Ala
Ala

Ala
Ala
Thr
Thr

Thr
Thr
Pro
Pro

Pro
Pro
Ser
Ser

Ser
Ser

U

Val
Val

Val
Val
Met
lie

He
He

Leu
Leu

Leu
Leu
Leu
Leu

Phe
Phe

Third
position

G
A

C

U

G
A

C
U

G

A

C

U

G

A

C

U

1.4.2 TRANSCRIPTION, TRANSLATION,
AND PROTEIN SYNTHESIS

Now let us describe in some detail how the information in the DNA results in proteins. A
cell mechanism recognizes the beginning of a gene or gene cluster thanks to 3. promoter.
The promoter is a region before each gene in the DNA that serves as an indication to the
cellular mechanism that a gene is ahead. The codon AUG (which codes for methionine)
also signals the start of a gene. Having recognized the beginning of a gene or gene cluster,
a copy of the gene is made on an RNA molecule. This resulting RNA is the messenger
RNA, or mRNA for short, and will have exactly the same sequence as one of the strands
of the gene but substituting U for T. This process is called transcription. The mRNA
will then be used in cellular structures called ribosomes to manufacture a protein.

Because RNA is single-stranded and DNA is double-stranded, the mRNA produced
is identical in sequence to only one of the gene strands, being complementary to the other
strand — keeping in mind that T is replaced by U in RNA. The strand that looks like the
mRNA product is called the antisense or coding strand, and the other one is the sense or
anticoding or else template strand. The template strand is the one that is actually tran-
scribed, because the mRNA is composed by binding together ribonucleotides comple-
mentary to this strand. The process always builds mRNA molecules from their 5' end
to their 3' end, whereas the template strand is read from 3' to 5'. Notice also that it is

1.4 THE MECHANISMS OF MOLECULAR GENETICS 11

not the case that the template strand for genes is always the same; for example, the tem-
plate strand for a certain gene A may be one of the strands, and the template strand for
another gene B may be the other strand. For a given gene, the cell can recognize the cor-
responding template strand thanks to a promoter. Even though the reverse complement
of the promoter appears in the other strand, this reverse complement is not a promoter
and thus will not be recognized as such. One important consequence of this fact is that
genes from the same chromosome have an orientation with respect to each other: Given
two genes, if they appear in the same strand they have the same orientation; otherwise
they have opposite orientation. This is a fundamental fact for Chapter 7. We finally note
that the terms upstream and downstream are used to indicate positions in the DNA in
reference to the orientation of the coding strand, with the promoter being upstream from
its gene.

Transcription as described is valid for organisms categorized as prokaryotes. These
organisms have their DNA free in the cell, as they lack a nuclear membrane. Examples
of prokaryotes are bacteria and blue algae. All other organisms, categorized as eukary-
otes, have a nucleus separated from the rest of the cell by a nuclear membrane, and their
DNA is kept inside the nucleus. In these organisms genetic transcription is more com-
plex. Many eukaryotic genes are composed of alternating parts called introns and exons.
After transcription, the introns are spliced out from the mRNA. This means that introns
are parts of a gene that are not used in protein synthesis. An example of exon-intron dis-
tribution is given by the gene for bovine atrial naturietric peptide, which has 1082 base
pairs. Exons are located at positions 1 to 120, 219 to 545, and 1071 to 1082. Introns oc-
cupy positions 121 to 218 and 546 to 1070. Thus, the mRNA coding regions has just
459 bases, and the corresponding protein has 153 residues. After introns are spliced out,
the shortened mRNA, containing copies of only the exons plus regulatory regions in the
beginning and end, leaves the nucleus, because ribosomes are outside the nucleus.

Because of the intron/exon phenomenon, we use different names to refer to the en-
tire gene as found in the chromosome and to the spliced sequence consisting of exons
only. The former is called genomic DNA and the latter complementary DNA or cDNA.
Scientists can manufacture cDNA without knowing its genomic counterpart. They first
capture the mRNA outside the nucleus on its way to the ribosomes. Then, in a process
called reverse transcription, they produce DNA molecules using the mRNA as a tem-
plate. Because the mRNA contains only exons, this is also the composition of the DNA
produced. Thus, they can obtain cDNA without even looking at the chromosomes. Both
transcription and reverse transcription are complex processes that need the help of en-
zymes. Transcriptase and reverse transcriptase are the enzymes that catalyze these pro-
cesses in the cell. There is also a phenomenon called alternative splicing. This occurs
when the same genomic DNA can give rise to two or more different mRNA molecules,
by choosing the introns and exons in different ways. They will in general produce dif-
ferent proteins.

Now let us go back to mRNA and protein synthesis. In this process two other kinds
of RNA molecules play very important roles. As we have already mentioned, protein
synthesis takes place inside cellular structures called ribosomes. Ribosomes are made of
proteins and a form of RNA called ribosomal RNA, or rRNA. The ribosome functions
like an assembly line in a factory using as "inputs" an mRNA molecule and another kind
of RNA molecule called transfer RNA, or tRNA.

Transfer RNAs are the molecules that actually implement the genetic code in a pro-

12 CHAPTER 1 BASIC CONCEPTS OF MOLECULAR BIOLOGY

Replication

DNA

Transcription

RNA

Translation
Protein

Reverse transcription

FIGURE 1.9
Genetic information flow in a cell: the so-called central

dogma of molecular biology.

cess called translation. They make the connection between a codon and the specific
amino acid this codon codes for. Each tRNA molecule has, on one side, a conforma-
tion that has high affinity for a specific codon and, on the other side, a conformation that
binds easily to the corresponding amino acid. As the messenger RNA passes through
the interior of the ribosome, a tRNA matching the current codon — the codon in the
mRNA currently inside the ribosome — binds to it, bringing along the corresponding
amino acid (a generous supply of amino acids is always "floating around" in the cell).
The three-dimensional position of all these molecules in this moment is such that, as the
tRNA binds to its codon, its attached amino acid falls in place just next to the previ-
ous amino acid in the protein chain being formed. A suitable enzyme then catalyzes the
addition of this current amino acid to the protein chain, releasing it from the tRNA. A
protein is constructed residue by residue in this fashion. When a STOP codon appears,
no tRNA associates with it, and the synthesis ends. The messenger RNA is released and
degraded by cell mechanisms into ribonucleotides, which will be then recycled to make
other RNA.

One might think that there are as many tRNAs as there are codons, but this is not
true. The actual number of tRNAs varies among species. The bacterium E. coli, for in-
stance, has about 40 tRNAs. Some codons are not represented, and some tRNAs can bind
to more than one codon.

Figure 1.9 summarizes the processes we have just described. The expression cen-
tral dogma is generally used to denote our current synthetic view of genetic information
transfer in cells.

1.4.3 JUNK DNA AND READING FRAMES

In this section we provide some additional details regarding the processes described in
previous sections.

As mentioned, genes are certain contiguous regions of the chromosome, but they do

1.4 THE MECHANISMS OF MOLECULAR GENETICS 13

not cover the entire molecule. Each gene, or group of related genes, is flanked by regula-
tory regions that play a role in controlling gene transcription and other related processes,
but otherwise intergenic regions have no known function. They are called "junk DNA"
because they appear to be there for no particular reason. Moreover, they accumulate mu-
tations, as a change not affecting genes or their regulatory regions is often not lethal and
is therefore propagated to the progeny. Recent research has shown, however, that junk
DNA has more information content than previously believed. The amount of junk DNA
varies from species to species. Prokaryotes tend to have little of it — their chromosomes
are almost all covered by genes. In contrast, eukaryotes have plenty of junk DNA. In hu-
man beings it is estimated that as much as 90% of the DNA in chromosomes is composed
of junk DNA.

An aspect of the transcription process that is important to know is the concept of
reading frame. A reading frame is one of the three possible ways of grouping bases to
form codons in a DNA or RNA sequence. For instance, consider the sequence

TAATCGAATGGGC.

One reading frame would be to take as codons TAA, TCG, AAT, GGG, leaving out the last
C. Another reading frame would be to ignore the first T and get codons AAT, CGA, ATG,
GGC. Yet another reading frame would yield codons ATC, GAA, TGG, leaving out two
bases at the beginning (TA) and two bases at the end (GC).

Notice that the three reading frames start at positions 1, 2, and 3 in the given se-
quence, respectively. If we were to consider a reading frame starting at position 4, the
codons obtained would be a subset of the ones for starting position 1, so this is actually
the same reading frame starting at a different position. In general, if we take starting po-
sitions / and j where the difference j — i is a multiple of three, we are in fact considering
the same reading frame.

Sometimes we talk about six, not three, different reading frames in a sequence. In
this case, what we have is a DNA sequence and we are looking at the opposite strand as
well. We have three reading frames in one strand plus another three in the complementary
strand, giving a total of six. It is common to do that when we have newly sequenced DNA
and want to compare it to a protein database. We have to translate the DNA sequence
into a protein sequence, but there are six ways of doing that, each one taking a different
reading frame. The fact that we lose one or two bases at the extremities of the sequence is
not important; these sequences are long enough to yield a meaningful comparison even
with a few missing residues.

An open reading frame, or ORF, in a DNA sequence is a contiguous stretch of this
sequence beginning at the start codon, having an integral number of codons (its length is
a multiple of three), and such that none of its codons is a STOP codon. The presence of
additional regulatory regions upstream from the start codon is also used to characterize
an ORF.

1.4.4 CHROMOSOMES

In this section we briefly describe the process of genetic information transmission at the
chromosome level. First we note that the complete set of chromosomes inside a cell is

14 CHAPTER 1 BASIC CONCEPTS OF MOLECULAR BIOLOGY

called a genome. The number of chromosomes in a genome is characteristic of a species.
For instance, every cell in a human being has 46 chromosomes, whereas in mice this
number is 40. Table 1.3 gives the number of chromosomes and genome size in base pairs
for selected species.

TABLE 1.3
Genome sizes of certain species. Apart from our own

species, the organisms listed are important in molecular
biology and genetics research.

Species

Bacteriophage X (virus)
Escherichia coli (bacterium)
Saccharomyces cerevisiae (yeast)
Caenorhabditis elegans (worm)
Drosophila melanogaster (fruit fly)
Homo sapiens (human)

Number of
Chromosomes

(diploid)

1

1

32

12

8

46

Genome Size
(base pairs)

5 x 104

5 x 106

1 x 107

1 x 108

2 x 108

3 x 109

Prokaryotes generally have just one chromosome, which is sometimes a circular
DNA molecule. On the other hand, in eukaryotes chromosomes appear in pairs (and for
this reason the cells that carry them are called diploid). In humans, for example, there are
23 pairs. Each member of a pair was inherited from each parent. The two chromosomes
that form a pair are called homologous and a gene in one member of the pair corresponds
to a gene in the other. Certain genes are exactly the same in both the paternal and the ma-
ternal copies. One example is the gene that codes for hemoglobin, a protein that carries
oxygen in the blood. Other genes may appear in different forms, which are called alle-
les. A typical example is the gene that codes for blood type in humans. It appears in three
forms: A, B, and O. As is well known, if a person receives, say, the A allele from the
mother and the B allele from the father, this person's blood type will be AB.

Cells that carry only one member of each pair of chromosomes are called haploid.
These are the cells that are used in sexual reproduction. When a haploid cell from the
mother is merged with a haploid cell from the father we have an egg cell, which is again
diploid. Haploid cells are formed through a process called meiosis, in which a cell divides
in two and each daughter cell gets one member of each pair of chromosomes.

It is interesting to note that despite the fact that all genes are present in all cells,
only a portion of the genes are normally used (expressed, in biological jargon) by any
specific cell. For instance, liver cells express a different set of genes than do skin cells.
The mechanisms through which the cells in an organism differentiate into liver cells, skin
cells, and so on, are still largely unclear.

1.5 HOW THE GENOME IS STUDIED 15

1.4.5 IS THE GENOME LIKE
A COMPUTER PROGRAM?

Having reviewed the basic mechanisms through which proteins are produced, it is tempt-
ing to view them in light of the so-called "genetic program metaphor." In this metaphor,
the genome of an organism is seen as a computer program that completely specifies the
organism, and the cell machinery is simply an interpreter of this program. The biological
functions performed by proteins would be the execution of this "program."

This metaphor is overly simplistic, due in part to the following two facts:

• The "DNA program" in fact undergoes changes during transcription and transla-
tion, so that one cannot simply apply the genetic code to a stretch of DNA known
to contain a gene in order to know what protein corresponds to that gene.

• Gene expression is a complex process that may depend on spatial and temporal
context. For example, not all genes in a genome are expressed in an organism's
lifetime, whereas others are expressed over and over again; some genes are ex-
pressed only when the organism is subject to certain outside phenomena, such as a
virus invasion. The opposite is also true: Genes that are normally expressed may
be repressed because of outside stimuli. It is true that the expression of certain
genes is essentially context-free, and this is what makes biotechnology possible.
But this is by no means true for all genes. If we view gene expression inside a cell
as a "computing process," we can say that, in the case of the human genome, there
are more than 1018 such processes occurring and interacting simultaneously.

In view of these observations, it seems better to view an organism not as determined
by its genome but rather as the result of a very complex network of simultaneous inter-
actions, in which the genome sequence is one of several contributing factors.

HOW THE GENOME IS STUDIED

In the scientific study of a genome, the first thing to notice is the different orders of mag-
nitude that we have to deal with. Let us use the human genome as an example. The ba-
sic information we want to extract from any piece of DNA is its base-pair sequence.
The process of obtaining this information is called sequencing. A human chromosome
has around 108 base pairs. On the other hand, the largest pieces of DNA that can be se-
quenced in the laboratory are 700 bp long. This means that there is a gap of some 105

between the scale of what we can actually sequence and a chromosome size. This gap
is at the heart of many problems in computational biology, in particular those studied
in Chapters 4 (fragment assembly) and 5 (physical mapping). In this section we briefly
describe some of the lab techniques that underlie those problems.

16 CHAPTER 1 BASIC CONCEPTS OF MOLECULAR BIOLOGY

1.5.1 MAPS AND SEQUENCES

One particular piece of information that is very important is the location of genes in chro-
mosomes. The term locus (plural loci) is used to denote the location of a gene in a chro-
mosome. (Sometimes the word locus is used as a synonym for the word gene.) The sim-
plest question in this context is, given two genes, are they in the same homologous pair?
This can be answered without resorting to molecular techniques, as long as the genes
in question are ones that affect visible characteristics, such as eye color or wing shape.
We have to test whether the characteristics are being inherited independently. We will
say that they are, or more technically, that they assort or segregate independently if an
offspring has about a 50% chance of inheriting both characteristics from the same par-
ent. If the characteristics do assort independently, then the genes are probably not linked;
that is, they probably belong to different chromosomes. Two genes carried in the same
pair should segregate together, and the offspring will probably inherit both characteris-
tics from the same parent.

In fact, as is usually the case in biology, things are not so clear-cut: 100% or 50%
segregation does not always happen. Any percentage in between can occur, due to cross-
ing over. When cells divide to produce other cells that will form the progeny, new gene
arrangements can form. We say that recombination occurs. Recombination can happen
because homologous chromosomes can "cross" and exchange their end parts before seg-
regating. There are an enormous number of recombination possibilities, so what we re-
ally see is that rates of recombination vary a great deal. These rates in turn give informa-
tion on how far apart the genes are in the chromosome. If they are close together, there
is a small chance of separation due to crossing over. If they are far apart, the chances of
separation increase, to the point that they appear to assort independently.

The first genetic maps were constructed by producing successive generations of cer-
tain organisms and analyzing the observed segregation percentages of certain character-
istics. A genetic linkage map of a chromosome is a picture showing the order and relative
distance among genes using such information. Genetic maps constructed from recombi-
nation percentages are important, but they have two drawbacks: (1) They do not tell the
actual distance in base pairs or other linear unit of length along the chromosome; and
(2) If genes are very close, one cannot resolve their order, because the probability of
separation is so small that observed recombinant frequencies are all zero.

Maps that reflect the actual distance in base pairs are called physical maps. To con-
struct physical maps, we need completely different techniques. In particular we have to
work with pieces of DNA much smaller than a chromosome but still too large to be se-
quenced directly. A physical map can tell the location of certain markers, which are pre-
cisely known small sequences, within 104 base pairs or so. Computational problems as-
sociated with physical map construction are studied in Chapter 5.

Finally, for pieces of DNA that are on the order of 103 base pairs, we can use still
other techniques and obtain the whole sequence. We have mentioned that current lab
techniques can sequence DNA pieces of at most 700 bp; to sequence a 20,000-bp piece
(in what is known as large-scale sequencing), the basic idea is to break apart several
copies of the piece in different ways, sequence the (small) fragments directly, and then
put the fragments together again by using computational techniques that are studied in
Chapter 4.

1.5 HOW THE GENOME IS STUDIED 17

Figure 1.10 illustrates the different scales at which the human genome is studied.

Chromosome

Genetic linkage map

(works on 107-108 bp range)

Physical map

(works on 105-106 bp range)

Sequencing

(works on 103-104 bp range)

CGGACACCGACGTCATTCTCATGTGCTTCTCGGCACA

FIGURE 1.10

The different levels at which a genome is studied. (Based on
a figure from [19].)

\ .5.2 SPECIFIC TECHNIQUES

Some special laboratory techniques must be used to obtain maps and sequences. In this
section we give an overview of such techniques.

It is important to realize that lab techniques in molecular biology nearly always pro-
duce data that have errors. For this reason, most algorithms for problems in computa-
tional biology are useful only to the extent that they can handle errors. Such concern
will appear throughout this book.

Viruses and Bacteria

We begin by briefly describing the organisms most used in genetics research: viruses and
bacteria.

18 CHAPTER 1 BASIC CONCEPTS OF MOLECULAR BIOLOGY

Viruses are parasites at the molecular level. Viruses can hardly be considered a life
form, yet they can reproduce when infecting suitable cells, called hosts. Viruses do not
exhibit any metabolism — no biochemical reactions occur in them. Instead, viruses rely
on the host's metabolism to replicate, and it is this fact that is exploited in laboratory
experiments.

Most viruses consist of a protein cap (a capsid) with genetic material (either DNA or
RNA) inside. Viral DNA is much smaller than the DNA in chromosomes, and therefore
is much easier to manipulate. When viruses infect a cell, the genetic material is intro-
duced in the cytoplasm. This genetic material is mistakenly interpreted by the cell mech-
anism as its own DNA, and for this reason the cell starts producing virus-coded proteins
as though they were the cell's own. These proteins promote viral DNA replication and
formation of new capsids, so that a large number of virus particles are assembled inside
the infected cell. Still other viral proteins break the cell membrane and release all the new
virus particles in the environment, where they can attack other cells. Certain viruses do
not kill their hosts at once. Instead, the viral DNA gets inserted into the host genome and
can stay there for a long time without any noticeable change in cell life. Under certain
conditions the dormant virus can be activated, whereupon it detaches itself from the host
genome and starts its replication activity.

Viruses are highly specific; they are capable of infecting one type of cell only. Thus,
for instance, virus T2 infects only E. coli cells; HIV, the human immunodeficiency virus,
infects only a certain kind of human cell involved in defending the organism against in-
truders in general; TMV, the tobacco mosaic virus, infects only tobacco leaf cells; and
so on. Bacteriophages, or just phages, are viruses that infect bacteria.

A bacterium is a single-cell organism having just one chromosome. Bacteria can
multiply by simple DNA replication, and they can do this in a very short period of time,
which makes them very useful in genetic research. The bacterium most commonly used
in labs is the already mentioned Escherichia coli, which can divide in 20 minutes. As a
result of their size and speed of reproduction, millions of bacteria can be easily generated
and handled in a laboratory.

Cutting and Breaking DNA

Because a DNA molecule is so long, some tool to cut it at specific points (like a pair of
scissors) or to break it apart in some other way is needed. We review basic techniques
for these processes in this section.

The pair of scissors is represented by restriction enzymes. They are proteins that
catalyze the hydrolysis of DNA (molecule breaking by adding water) at certain specific
points called restriction sites that are determined by their local base sequence. In other
words, they cut DNA molecules in all places where a certain sequence appears. For in-
stance, EcoRI is a restriction enzyme that cuts DNA wherever the sequence GAATTC
is found. Notice that this sequence is its own reverse complement, that is, GAATTC =
GAATTC. Sequences that are equal to their reverse complement are called palindromes.
So, every time this sequence appears in one strand it appears in the other strand as well.
The cuts are made in both strands between the G and the first A. Therefore, the remain-
ing DNA pieces will have "sticky" ends, that is, their 5' end in the cut point will be four
bases shorter than the 3' end; see Figure 1.11. This favors relinking with another DNA

1.5 HOW THE GENOME IS STUDIED 19

piece cut with the same enzyme, providing a kind of "DNA cut and paste" technique
very useful in genetic engineering for the production of recombinant DNA.

. . . ATCCAGjAATTCTCGGA ATCCAG AATTCTCGGA. . .

. . . TAGGTCTTAAIGAGCCT ... • • • TAGGTCTTAA GAGCCT . . .

DNA before cutting DNA after cutting

FIGURE 1.11

Enzyme that cuts DNA, leaving "sticky" ends.

Some common types of restriction enzymes are 4-cutters, 6-cutters, and 8-cutters. It
is rare to see an odd-cutter because sequences of odd length cannot be palindromes. Re-
striction enzymes are also called endonucleases because they break DNA in an internal
point. Exonucleases are enzymes that degrade DNA from the ends inwards.

In bacteria, restriction enzymes may act as a defense against virus attacks. These
enzymes can cut the viral DNA before it starts its damage. Bacterial DNA on the other
hand protects itself from restriction enzymes by adding a methyl group to some of its
bases.

DNA molecules can be broken apart by the shotgun method, which is sometimes
used in DNA sequencing. A solution containing purified DNA — a large quantity of
identical molecules — is subjected to some breaking process, such as submitting it to
high vibration levels. Each individual molecule breaks down at several random places,
and then some of the fragments are filtered and selected for further processing, in par-
ticular for copying or cloning (see below). We then get a collection of cloned fragments
that correspond to random contiguous pieces of the purified DNA sequence. Sequencing
these pieces and assembling the resulting sequences is a standard way of determining the
purified DNA's sequence. This method can also be used to construct a cloning library —
a collection of clones covering a certain long DNA molecule.

Copying DNA

Another very important tool needed in molecular biology research is a DNA copying
process (also called DNA amplification). We are dealing here with molecules, which are
microscopic objects. The more copies we have of a molecule, the easier it is to study it.
Fortunately, several techniques have been developed for this purpose.

DNA Cloning: To do any experiment with DNA in the lab, one needs a minimum
quantity of material; one molecule is clearly not enough. Yet one molecule is sometimes
all we have to start with. In addition, the material should be stored in a way that per-
mits essentially unlimited production of new material for repetition of the experiment or
for new experiments as needed. DNA cloning is the name of the general technique that
allows these goals to be attained.

Given a piece of DNA, one way of obtaining further copies is to use nature itself:

20 CHAPTER 1 BASIC CONCEPTS OF MOLECULAR BIOLOGY

We insert this piece into the genome of an organism, a host or vector, and then let the
organism multiply itself. Upon host multiplication, the inserted piece (the insert) gets
multiplied along with the original DNA. We can then kill the host and dispose of the
rest, keeping only the inserts in the desired quantity. DNA produced in this way is called
recombinant. Popular vectors include plasmids, cosmids, phages, and YACs.

A plasmid is a piece of circular DNA that exists in bacteria. It is separated from
and much smaller than the bacterial chromosome. It does get replicated when the cell
divides, though, and each daughter cell keeps one copy of the plasmid. Plasmids make
good vectors, but they place a limitation on insert size: about 15 kbp. Inserts much larger
than this limit will make very big plasmids, and big plasmids tend to get shortened when
replicated.

Phages are viruses often used as vectors. One example is phage k, which infects the
bacteria E. coli. Inserts in phage DNA get replicated when the virus infects a host colony.
Phage k normally has a DNA of 48 kbp, and inserts of up to 25 kbp are well tolerated.
Inserts larger than this limit are impossible, though, because the resulting DNA will not
fit in the phage protein capsule. However, if the entire phage DNA is replaced by an insert
plus some minimum replicative apparatus, inserts of up to 50 kbp are feasible. These are
called cosmids.

For very large inserts, on the range of a million base pairs, a YAC (yeast artificial
chromosome) can be used. A YAC is an extra, artificially-made chromosome that can be
built by adding yeast control chromosomal regions to the insert and making it look like
an additional chromosome to the yeast replication mechanism.

Polymerase Chain Reaction: A way of producing many copies of a DNA molecule
without cloning it is afforded by the polymerase chain reaction (PCR). DNA Polymerase
is an enzyme that catalyzes elongation of a single strand of DNA, provided there is a
template DNA to which this single strand is attached. Nucleotides complementary to the
ones in the template strand are added until both strands have the same size and form a
normal double strand of DNA. The small stretch of double stranded DNA at the begin-
ning needed for polymerase to start its job is called a primer.

PCR consists basically of an alternating repetition of two phases: A phase in which
double stranded DNA is separated into two single strands by heat and a phase in which
each single strand thus obtained is converted into a double strand by addition of a primer
and polymerase action. Each repetition doubles the number of molecules. After enough
repetitions, the quantity of material produced is large enough to perform further experi-
ments, thanks to the exponential growth of this doubling procedure.

A curious footnote here is that Kary B. Mullis, the inventor of PCR (in 1983), re-
alized it was a good idea because he "had been spending a lot of time writing computer
programs" and was thus familiar with iterative functions and thereby with exponential
growth processes.

Reading and Measuring DNA

How do we actually "read" the base pairs of a DNA sequence? Reading is done with
a technique known as gel electrophoresis, which is based on separation of molecules
by their size. The process involves a gel medium and a strong electric field. DNA or

1.6 THE HUMAN GENOME PROJECT 21

RNA molecules are charged in aqueous solution and will move to a definite direction
by action of the electric field. The gel medium makes them move slowly, with speed
inversely proportional to their size. All molecules are initially placed at one extremity
in a gel block. After a few hours, the smaller molecules will have migrated to the other
end of the block, whereas larger molecules will stay behind, near the starting place. By
interpolation, the relative sizes of molecules can be calculated with good approximation.

In this kind of experiment, DNA molecules can be labeled with radioactive isotopes
so that the gel can be photographed, producing a graphic record of the positions at the
end of a run. This process is used in DNA sequencing, determination of restriction frag-
ment lengths, and so on. An alternative is to use fluorescent dyes instead of radioactive
isotopes. A laser beam can trace the dyes and send the information directly to a computer,
avoiding the photographic process altogether. Sequencing machines have been built us-
ing this technique.

DNA or RNA bases can be read using this process with the following technique.
Given a DNA molecule, it is possible to obtain all fragments from it that end at every
position where an A appears. Similarly all fragments that end in T, in G, or in C can be
obtained. We thus get four different test tubes, one for each base. The fragments in each
tube will have differing lengths. For example, suppose the original DNA piece is the
following:

GACTTAGATCAGGAAACT

The fragments that end in T are GACT, GACTT, GACTTAGAT, and the whole sequence
itself. Thus if we separate these fragments by size, and we do it simultaneously but sep-
arately for all four test tubes, we will know the precise base composition of the original
DNA sequence. This is illustrated in Figure 1.12.

Some errors may occur in reading a gel film, because sometimes marks are blurred,
especially near the film borders. One other limitation is the size of DNA fragments that
can be read in this way, which is about 700 bp.

THE HUMAN GENOME PROJECT

The Human Genome Project is a multinational effort, begun in 1988, whose aim is to
produce a complete physical map of all human chromosomes, as well as the entire hu-
man DNA sequence. As part of the project, genomes of other organisms such as bacteria,
yeast, flies, and mice are also being studied.

This is no easy task, since the human genome is so large. So far, many virus genomes
have been entirely sequenced, but their sizes are generally in the 1 kbp to 10 kbp range.
The first free-living organism to be totally sequenced was the bacterium Haemophilus in-
fluenzae, containing a 1800 kbp genome. In 1996 the whole sequence of the yeast genome
— a 10 million bp sequence — was also determined. This was an important milestone,
given that yeast is a free-living eukaryote. Mapping the human genome still seems re-
mote, as it is 100 times bigger than the largest genome sequenced so far.

22 CHAPTER 1 BASIC CONCEPTS OF MOLECULAR BIOLOGY

G A T C

G
A
C
T
T
A
G
A
T
C
A
G
G
A
A
A
C
T

mmm^mmm

——

— •

— —

mmmmmm~m

.

_

—

— —

" " " " • • • •

FIGURE 1.12

Schematic view of film produced by gel electrophoresis.
Individual DNA bases can be identified in each of the four
columns. Shorter fragments leave their mark near the top,

whereas longer fragments leave their mark near the bottom.

One of the reasons why other organisms are part of the project is to perfect sequenc-
ing methods so that they can then be applied to the human genome. The cost of sequenc-
ing is also expected to drop as a result of new, improved technology. Another reason lies
in research benefits. All species targeted are largely employed in genetic and molecular
research.

Some lessons have been learned. A large effort like this cannot be entertained by a
single lab. Rather, a consortium of first-rate labs working together is a more efficient way
— and perhaps the only way — of getting the work done. Coordinating these tasks is in
itself a challenge. On the computer science side, databases with updated and consistent
information have to be maintained, and fast access to the data has to be provided. A major
concern is with possible errors in the sequences obtained. The current target is to obtain
DNA sequences with at most one error for every 10,000 bases.

Another problem is that of the "average genome." Different individuals have differ-
ent genomes (this is what makes DNA fingerprinting possible). A gene may have many
alleles in the population, and the sequence of intergenic regions (which do not code for
products) may vary from person to person. It is estimated that the genomes of two distinct
humans differ on average in one in every 500 bases. So the question is: Whose genome
is going to be sequenced? Even if one individual is somehow chosen and her or his DNA
is taken as the standard, there is the problem of transposable elements. It is now known
that certain parts of the genome keep moving from one place to another, so that at best
what we will get after sequencing is a "snapshot" of the genome in a given instant.

Once the entire sequence is obtained, we will face the difficult task of analyzing it.

1.7 SEQUENCE DATABASES 23

We have to recognize the genes in it and determine the function of the proteins produced.
But gene recognition is still in its infancy, and protein function determination is still a
very laborious procedure. Treatment of genetic diseases based on data produced by the
Human Genome Project is still far ahead, although encouraging pioneering efforts have
already yielded results.

SEQUENCE DATABASES

Thanks in part to the techniques described in previous sections, large numbers of DNA,
RNA, and protein sequences have been determined in the past decades. Some institu-
tional sequence databases have been set up to harbor these sequences as well as a wealth
of associated data. The rate at which new sequences are being added to these databases
is exponential. Computational techniques have been developed to allow fast search on
these databases, some of which are described in Chapter 3. Here we give a brief descrip-
tion of some representative sequence databases.

GenBank: Maintained by the National Center for Biotechnology Information (NCBI),
USA, GenBank contains hundreds of thousands of DNA sequences. It is divided into
several sections with sequences grouped according to species, including:

• PLN: Plant sequences

• PRI: Primate sequences

• ROD: Rodent sequences

• MAM: Other mammalian sequences

• VRT: Other vertebrate sequences

• /V7V: Invertebrate sequences

• BCT: Bacterial sequences

• PHG: Phage sequences

• VRL: Other viral sequences

• SYN: Synthetic sequences

• UNA: Unannotated sequences

• PAT: Patent sequences

• NEW: New sequences

Searches can be made by keywords or by sequence. A typical entry is shown in Fig-
ure 1.13. The entry is divided into fields, with each field composed by a field identifier,
which is a word describing the contents of the field, and the information per se. The en-
tries are just plain text. One important field is accession no., the accession number, which
is a code that is unique to this entry and can be used for faster access to it. In the exam-
ple, the accession number is Ml 217 4. Some entries have several accession numbers as a

24 CHAPTER 1 BASIC CONCEPTS OF MOLECULAR BIOLOGY

result of combination of several related but once distinct entries into one comprehensive
entry. Other fields are self-explanatory for the most part.

This database is part of an international collaboration effort, which also includes
the DNA DataBank of Japan (DDBJ) and the European Molecular Biology Laboratory
(EMBL). GenBank can be reached through the following locator:

http://www.ncbi.nlm.nih.gov/

EMBL: The European Molecular Biology Laboratory is an institution that maintains
several sequence repositories, including a DNA database called the Nucleotide Sequence
Database. Its organization is similar to that of GenBank, with the entries having roughly
the same fields. In the EMBL database, entries are identified by two-letter codes (see
Figure 1.14). The accession number, for instance, is identified by the letters AC. Code
XX indicates blank lines. Both GenBank and EMBL separate the sequences in blocks
of ten characters, with six blocks per line. This scheme makes it easy to find specific
positions within the sequence. EMBL can be reached through the following locator:

http://www.embl-heidelberg.de/

PIR: The Protein Identification Resource (PIR) is a database of protein sequences co-
operatively maintained and distributed by three institutions: the National Biomedical Re-
search Foundation (in the USA), the Martinsried Institute for Protein Sequences (in Eu-
rope), and the Japan International Protein Information Database (in Japan). A typical
entry appears in Figure 1.15. Several web sites provide interfaces to this database, in-
cluding the following:

http://www.gdb.org/
http://www.mips.biochem.mpg.de/

PDB: The Protein Data B ank is a repository of three-dimensional structures of proteins.
For each protein represented, a general information header is provided followed by a list
of all atoms present in the structure, with three spatial coordinates for each atom that
indicate their position with three decimal places. An example is given in Figures 1.16
and 1.17. This repository is maintained in Brookhaven, USA. Access to it can be gained
through

h ttp ://w w w. pd b. b n I. go v/

Other Databases: Apart from those mentioned above, many other databases have been
created to keep molecular biology information. Among them we cite ACEDB, a pow-
erful platform prepared for the C. elegans sequencing project but adaptable to similar
projects; Flybase, a database of fly sequences; and databases for restriction enzymes,
codon preferential usage, and so on.

1.7 SEQUENCE DATABASES 25

LOCUS HUMRHOA 539 bp mRNA PRI 04-AUG-1986
DEFINITION Human ras-related rho mRNA (clone 6), partial cds.
ACCESSION M12174
KEYWORDS c-myc proto-oncogene; ras oncogene; rho gene.
SOURCE Human peripheral T-cell, cDNA to mRNA, clone 6.
ORGANISM Homo sapiens

Eukaryota; Animalia; Chordata; Vertebrata; Mammalia;
Theria; Eutheria; Primates; Haplorhini; Catarrhini;
Hominidae.

REFERENCE 1 (bases 1 to 539)
AUTHORS Madaule,P.
JOURNAL Unpublished (1985) Columbia U, 701 W 168th St,

New York, NY 10032
REFERENCE 2 (bases 1 to 539)
AUTHORS Madaule,P. and Axel,R.
TITLE A novel ras-related gene family
JOURNAL Cell 41, 31-40 (1985)
MEDLINE 85201682

COMMENT [2] has found and sequenced a family of highly
evolutionarily conserved genes with homology to the
ras family (H-ras, K-ras, N-ras) of oncogenes.
[2] named this family rho (for ras homology).
In humans at least three distinct rho genes are
present. A draft entry and computer-readable copy of
this sequence were kindly
provided by P.Madaule (07-OCT-1985).

NCBI gi: 337392
FEATURES Location/Qualifiers

source 1..539
/organism="Homo sapiens"

CDS <1..509
/note="rho protein; NCBI gi: 337393"
/codon_start=2

BASE COUNT 105 a 180 c 172 g 82 t
ORIGIN 185 bp upstream of Hinfl site.

1 cgagttcccc gaggtgtacg tgc tatgtggccg acattgaggt
61 ggacggcaag caggtggagc tgg ggccaggagg actacgaccg

121 cctgcggccg ctctcctacc egg atgtgcttct cggtggacag
181 cccggactcg ctggagaaca tec gaggtgaagc acttctgtcc

421 cgaggtcttc gagaeggeca cgc
481 ctgcatcaac tgetgeaagg tgc

cgctacggct cccagaacgg
cgcgcctgcc cctgccggc

FIGURE 1.13
Typical GenBank entry. The actual file was edited to fit the
page. In a real entry each sequence line has 60 characters,

with the possible exception of the last line.

26 CHAPTER 1 BASIC CONCEPTS OF MOLECULAR BIOLOGY

ID ECTRGA standard; RNA; PRO; 7 5 BP.
XX
AC M24860;
XX
DT 24-APR-1990 (Rel. 23, Created)
DT 31-MAR-1992 (Rel. 31, Last updated, Version 3)
XX
DE E.coli Gly-tKNA.
XX
KW transfer RNA-Gly.
XX
OS Escherichia coli
OC Prokaryota; Bacteria; Gracilicutes; Scotobacteria;
OC Facultatively anaerobic rods; Enterobacteriaceae;
OC Escherichia.
XX
RN [1]
RP 1-75
RA Carbon J. , Chang S., Kirk L.L.;
RT "Clustered tRNA genes in Escherichia coli: Transcription
RT and processing";
RL Brookhaven Symp. Biol. 26:26-36(1975).
XX
FH Key Location/Qualifiers
FH
FT tRNA 1..75
FT /note=nGly-tRNA"
XX
SQ Sequence 75 BP; 13 A; 24 C; 19 G; 19 T; 0 other;

gcgggcatcg tataatggct attacctcag ... tgatgatgcg ggttcgattc
ccgctgcccg ctcca

FIGURE 1.14

A typical EMBL entry, edited to fit the page. Actual entries
have 60 characters per line in the sequence section, with

the possible exception of the last line.

1.7 SEQUENCE DATABASES 27

PIR1:CCHP
cytochrome c - hippopotamus

Species: Hippopotamus amphibius (hippopotamus)

Date: 19-Feb-1984 #sequence_revision 19-Feb-1984 #text_change
05-Aug-1994

Accession: A00008

Thompson, R.B.; Borden, D.; Tarr, G.E.; Margoliash, E.
J. Biol. Chem. 253, 8957-8961, 1978
Title: Heterogeneity of amino acid sequence in hippopotamus
cytochrome c.

Reference number: A00008; MUID:79067782
Accession: A00008
Molecule type: protein
Residues: 1-104 <THO>
Note: 3-Ile was also found

Superfamily: cytochrome c; cytochrome c homology

Keywords: acetylated amino end; electron transfer; heme;
mitochondrion; oxidative phosphorylation; respiratory chain

Feature
Modified site: acetylated amino end (Gly)

#status predicted
Binding site: heme (Cys) (covalent) #status
predicted

Binding site: heme iron (His, Met) (axial
ligands) #status predicted

Residues
1

14,

18,

,17

,80

6
2
5
3
2

Ala
Arg
Asn
Asp
Cys

A
R

N
D
C

4
8

14
3
6

Composition
Gin
Glu
Gly
His
H e

Q
E
G
H
I

6
17
2
4
4

Leu
Lys
Met
Phe
Pro

L
K
M
F
P

2
8
1
4
3

Ser
Thr
Trp
Tyr
Val

S
T
W
Y
V

Mol. wt. unmod. chain = 11,53 0 Number of residues = 104

10 15 20 25 30
1 G D V E K G K K I F V Q K C A Q C H T V E K G G K H K T G P

3 1 N L H G L F G R K T G Q S P G F S Y T D A N K N K G I T W G
6 1 E E T L M E Y L E N P K K Y I P G T K M I F A G I K K K G E
9 1 R A D L I A Y L K Q A T N E

FIGURE 1.15
A typical PIR entry, edited to fit the page.

28

HEADER
TITLE
TITLE
COMPND
COMPND
COMPND
COMPND
COMPND
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
KEYWDS
EXPDTA
AUTHOR
REVDAT
JRNL
JRNL
JRNL
JRNL
JRNL
JRNL
JRNL
JRNL
REMARK
REMARK
REMARK
REMARK
REMARK
REMARK
REMARK
REMARK
REMARK
REMARK
REMARK
REMARK
REMARK
REMARK
REMARK
REMARK
REMARK
REMARK
REMARK

CHAPTER 1 BASIC CONCEPTS OF MOLECULAR BIOLOGY

;

2
:

2
3
4
5

2
3
4
5

1

1
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

MYOGLOBIN (CARBONMONOXY) 19-JUL-95 1MCY
SPERM WHALE MYOGLOBIN (MUTANT WITH INITIATOR MET AND
WITH HIS 64 REPLACED BY GLN, LEU 2 9 REPLACED BY PHE

MOL_ID: 1;
MOLECULE: MYOGLOBIN (CARBONMONOXY);
CHAIN: NULL;
ENGINEERED: YES;
MUTATION: INS(MET 0), F29L, Q64H, N122D

MOL_ID: 1;
SYNTHETIC: SYNTHETIC GENE;
ORGANISM_SCIENTIFIC: PHYSETER CATODON;
ORGANISM_COMMON: SPERM WHALE;
EXPRESSION_SYSTEM: ESCHERICHIA COLI

HEME, OXYGEN TRANSPORT, RESPIRATORY PROTEIN
X-RAY DIFFRACTION
T.LI,G.N.PHILLIPS JUNIOR

07-DEC-95 1MCY 0
AUTH X . ZHAO, K . VYAS, B . D . NGUYEN, K . RAJARATHNAM,
AUTH 2 G.N.LAMAR,T.LI,G.N.PHILLIPS JUNIOR,R.EICH,
AUTH 3 J.S.OLSON,J.LING,D.F.BOCIAN
TITL A DOUBLE MUTANT OF SPERM WHALE MYOGLOBIN
TITL 2 MIMICS THE STRUCTURE AND FUNCTION OF
TITL 3 ELEPHANT MYOGLOBIN
REF J.BIOL.CHEM. V. 270 20763 1995
REFN ASTM JBCHA3 US ISSN 0021-9258 0071

RESOLUTION. 1.7 ANGSTROMS.

REFINEMENT.
PROGRAM X-PLOR
AUTHORS BRUNGER
R VALUE 0.182
RMSD BOND DISTANCES 0.020 ANGSTROMS
RMSD BOND ANGLES 1.82 DEGREES

NUMBER OF REFLECTIONS 23187
RESOLUTION RANGE 5.0 - 1 . 7 ANGSTROMS
DATA CUTOFF 0.0 SIGMA(F)

DATA COLLECTION.
NUMBER OF UNIQUE REFLECTIONS 257 87
RESOLUTION RANGE INFINITY - 1.7 ANGSTROMS
COMPLETENESS OF DATA 95.8 %

FIGURE 1.16

A typical PDB entry, partial header. The last columns
containing the characters 1MCY i, where i is the line
number, are omitted. Some other editing was done

to fit the page.

1.7

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

SEQUENCE DATABASES

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

•* 3 4

35
36
37
38
39
40
41
42

N
CA
C
O
CB
CG
SD
CE
N
CA
C
0
CB
CGI
CG2
N
CA
C
0
CB
CG
CD1
CD2
N
CA
C
0
CB
OG
N
CA
C
0
CB
CG
CD
OE1
OE2
N
CA
C
0

MET
MET
MET
MET
MET
MET
MET
MET
VAL
VAL
VAL
VAL
VAL
VAL
VAL
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
SER
SER
SER
SER
SER
SER
GLU
GLU
GLU
GLU
GLU
GLU
GLU
GLU
GLU
GLY
GLY
GLY
GLY

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
5
5
5
5

24.486
24.542
25.882
26.833
24.399
24.756
24.017
24.761
25.951
27.185
27.330
26.444
27.270
28.532
27.275
28.435
28.691
29.289
30.129
29.661
29.036
28.556
30.058
28.996
29.696
31.096
31.397
28.861
29.019
31.947
33.293
33.173
34.026
34.135
35.491
36.537
36.355
37.569
32.182
32.039
31.669
32.251

FIGURE 1

8.308
9.777
10.156
9.391
10.484
9.581
10.289
12.009
11.334
11.834
13.341
14.135
11.547
12.207
10.038
13.739
15.142
15.737
15.110
15.356
15.387
13.983
15.904
17.003
17.733
18.141
18.121
18.954
19.969
18.561
18.956
20.215
20.457
19.270
19.937
19.020
17.787
19.550
21.062
22.287
22.025
22.638

.17

-9.406
-9.621
-10.209
-10.078
-8.303
-7.138
-5.719
-5.824
-10.816
-11.382
-11.124
-11.452
-12.912
-13.526
-13.163
-10.500
-10.318
-11.599
-12.276
-9.134
-7.726
-7.402
-6.689
-11.826
-12.852
-12.385
-11.174
-13.223
-12.261
-13.310
-12.937
-12.047
-11.206
-14.198
-13.932
-13.295
-13.230
-12.840
-12.313
-11.532
-10.056
-9.140

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

29

37.00
36.40
34.30
34.80
39.00
41.80
44.80
41.00
31.10
28.40
26.30
26.60
29.30
28.60
29.70
23.00
20.80
20.10
19.50
20.90
20.40
19.60
19.50
18.80
19.40
19.50
19.10
20.60
22.10
18.40
19.00
19.20
19.10
19.60
21.10
22.60
23.90
24.60
18.30
19.10
18.20
18.60

A typical PDB entry, coordinates. The last columns,
containing the characters IMCY i, where i is the line

number, are omitted. A few blank characters in each line
were removed.

30 CHAPTER 1 BASIC CONCEPTS OF MOLECULAR BIOLOGY

EXERCISES

1. Consider the sequence TAATCGAATGGGC. Derive the six possible protein sequences
translated from it.

2. Given the fictitious "gene" below, find

a. the sequence of the corresponding mRNA.

b. the sequence of the resulting protein (use the standard genetic code).

ATGATACCGACGTACGGCATTTAA
TACTATGGCTGCATGCCGTAAATT

3. Given the protein sequence LMK, how many DNA sequences could possibly have given
rise to it? Hint: One of them is CTGATGAAG.

4. Find the cut patterns of restriction enzymes BamHI and Hindlll.

5. Suppose we have a DNA molecule of length 40,000 and digest it with a 4-cutter re-
striction enzyme. Assuming a random distribution of bases in the molecule, how many
pieces can we expect to get?

6. Browse through the GenBank viral sequences section and find a disease-causing agent
you have never heard of before.

BIBLIOGRAPHIC NOTES

Readers completely new to molecular biology may wish to take a look at the introductory
"comic-book" by Rosenfeld, Ziff, and van Loon [165]. Readers who wish to go beyond
the overview we have given should look at the standard references in molecular biology,
some of which are:

• Watson, Hopkins, Roberts, Steitz, and Weiner [203, 204].

• Alberts, Bray, Lewis, Raff, Roberts, and Watson [7].
• Lewin [124].

The reader should keep in mind that such books are constantly being updated, due to the
rapid progress in molecular biology research.

Other textbooks that we found useful in preparing this chapter were as follows. For
biochemistry, Mathews and van Holde [131]; for genetics, Tamarin [183]; for protein
structures, Branden and Tooze [28].

The quote from R. F. Doolittle on page 2 is from [50], which is a good review of
proteins for the "educated layperson," and appears on a special issue dedicated to the
"molecules of life." An entertaining account of the discovery of PCR by Mullis appears
in [141]. The quote on page 20 was taken from that article.

BIBLIOGRAPHIC NOTES 31

Robbins [162] and Frenkel [66] provide articles discussing the difficulties of the
Human Genome Project from the point of view of computer science. Robbins has em-
phasized the view of an organism as the result of a complex interaction of many "cell
processes." Lewontin [125] presents a sobering critique of the Human Genome Project.

The problems with the "genetic program metaphor" were pointed out by many peo-
ple; our source was the paper by Atlan and Koppel [17]. On the other hand, the interested
reader may wish to take a look at the book by Hofstadter [96], which contains an inter-
esting discussion of parallels between molecular biology and mathematical logic.

STRINGS, GRAPHS, AND ALGORITHMS

This chapter presents notation, conventions, and a brief review of
the main mathematical and computer science concepts used in
this book. It is not intended to be an introduction to the subjects
treated. To the reader who is not trained in these topics we suggest
several books in the bibliographic notes.

Strings are the basic type of data we deal with in this book. A string is an ordered suc-
cession of characters or symbols drawn from a finite set called the alphabet. The term
sequence is used throughout as a synonym of string. Most of our examples use either the
DNA alphabet {A, C, G, T} of nucleotides or the 20-character alphabet of amino acids
(see Chapter 1). But we note that some of the results presented make sense and are valid
for all alphabets. In particular, the definitions we give here are valid in general.

Strings may have repeated characters, for example, s = AATGCA. The length of a
string s, denoted by \s |, is the number of characters in it. In the previous example, \s \ = 6.
The character occupying position / in a string s is denoted by s[i]. Character indices start
from 1 and go up to \s\. Using the same example again we have s[\] = A, ̂ [2] = A,
s [3] = T, and so on. There is a string of length zero, called the empty string. We denote
the empty string by the special symbol e.

Whereas the terms string and sequence have the same meaning, the terms substring
and subsequence represent distinct concepts. A subsequence of s is a sequence that can
be obtained from s by removal of some characters. For instance, TTT is a subsequence of
ATATAT, but TAAA is not. The empty string is a subsequence of every sequence. When
sequence t is a subsequence of sequence s, we say that s is a supersequence of t.

In contrast to the subsequence concept, a substring of s is a string formed by con-
secutive characters of 5, in the same order as they appear in s. For instance, TAC is a
substring of AGTACA, but not of TTGAC. Being a substring of some string means be-
ing a subsequence as well, but not all subsequences of a sequence s are substrings of s.

33

34 CHAPTER 2 STRINGS, GRAPHS, AND ALGORITHMS

When sequence t is a substring of sequence s we say that s is a superstring of t.
Sometimes a substring w of u appears several times inside w, as when w = TT and

w = CTTTAGCATTAA. In certain cases, it is important to distinguish these occurrences,
and for this we use the concept of interval. An interval of a string s is a set of consecutive
indices [i.J] such that 1 < i < 7 4- 1 < |s| 4- 1. The interval contains all indices
between i and 7, including i and j themselves. For [i.J] an interval of s,s [i.J] denotes
the substring s[i]s[i 4- 1] . . . s[j] of s if i < 7, and the empty string when i — j 4- 1.
Therefore, for any substring t of s there is at least one interval [i.J] ofs with t — s[i.J].

The concatenation of two strings s and t is denoted by st and is formed by append-
ing all characters of t after s, in the order they appear in t. For instance, if s = GGCTA
and t = CAAC, then s-f = GGCTACAAC. The length of st is \s\ 4- |f |. The concatenation
of several copies of the same string s is indicated by raising s to a suitable power, as in
s3 = sss.

A prefix of s is any substring of s of the form sf l . J] for 0 < j < \s\. We admit
7 = 0 and define j[1..0] as being the empty string, which is a prefix of s as well. Note
that t is a prefix of s if and only if there is another string u such that s = tu. Sometimes
we need to refer to the prefix of s with exactly k characters, with 0 < k < |s|, and we
use the notation prefix(s, k) to denote this string.

Analogously, a suffix of s is a substring of the form s[/..|s|] for a certain i such that
1 < i < \s\ 4- 1. We admit i = \s\ 4- 1, in which case s[\s\ 4- l..|s|] denotes the empty
string. A string t is a suffix of s if and only if there is u such that s = ut. The notation
suffix(s, k) denotes the unique suffix of s with k characters, for 0 < k < \s\.

The Killer Agent All strings s satisfy \s\ > 0. To simplify certain arguments, we pos-
tulate the existence of a special string K such that

This string functions as a killer agent that destroys characters it comes in contact with
by concatenation, shortening strings in the process. For instance,

/cGCTAGT = CTAGT.

Notice that the result is a suffix of the original string. In general, concatenation with pow-
ers of K can be used to indicate prefixes, suffixes, and substrings in general.

There is one drawback in using the killer agent. Concatenation is no longer associa-
tive when K is present. For instance,

(ATCK)GTC = ATGTC

whereas

ATC(/cGTC) = ATCTC.

Hence, the meaning of ATC/cGTC is not uniquely defined without parentheses. However,

2.2 GRAPHS 35

we still have the equality

where s and t are general string expressions, possibly involving K.

A graph can be described by two sets. One of them is V, the set of nodes, or vertices; the
other is E, the set of edges, which is a set of distinct pairs of vertices. A graph is denoted
by G = (V, E), vertices by letters such as u, v, or w, and edges by letters such as e or by
pairs of vertices in parentheses, as in (w, v). A graph can be undirected, in which case an
edge is an unordered pair of vertices [so that (w, v) = (u, u)], or directed, in which case
an edge is an ordered pair of vertices [so that (u, v) ^ (i>, u)]. When we mention graphs
in the rest of this book without qualifications, we mean an undirected graph; in this sec-
tion, the unqualified term "graph" means that the statement applies to both directed an
undirected graphs. Although graphs are abstract mathematical objects, they are usually
depicted by drawings such as those in Figure 2.1. Unless otherwise stated, all graphs in
this book are simple graphs, meaning that they do not contain loops, which are edges of
the form (w, M), or multiple edges between the same pair of vertices [but note that in a
directed graph the edges (u, v) and (v, u) are not considered to be multiple]. We denote
the number of vertices of a graph by | V| or n; and the number of edges by \E\ or m.

Given edge (M, V) we say that u and v are its endpoints. We also say that u and v are
incident to (w, v) and that (w, v) is incident to u and v. If (u, v) is a directed edge, u is
the tail of this edge and v is its head. When u and v are the endpoints of an undirected
edge, we say that u and v are adjacent. The degree of a vertex v in an undirected graph
is the number of vertices adjacent to it. In the case of directed graphs a vertex v has an
outdegree, which is the number of edges of the form (v,x), and an indegree, which is the
number of edges of the form (x, v). For example, the degree of vertex i>2 in Figure 2.1 is
three; the degree of vertex u5 is one. The indegree of vertex u^ is one, and its outdegree
is two.

FIGURE 2.1
Examples of graphs, (a) An undirected graph; (b) a directed

graph.

36 CHAPTER 2 STRINGS, GRAPHS, AND ALGORITHMS

In a weighted graph we associate a real number with each edge. Depending on con-
text, the weight of an edge (u, v) is called its cost, the distance between u and i>, or just
its weight.

Given graphs G = (V, E) and G' = (V, £"), we say that G' is a subgraph of G
when V c V and £ ' c E. If G' is a subgraph of G but G' / G, we say that G' is a
proper subgraph of G. If G' is a subgraph of G and V = V we say that G' is a spanning
subgraph of G. If V is the set of all vertices incident to some edge of E', for a given E'',
we say that G' is the graph induced by £'. Conversely, if £ ' is the set of edges whose
endpoints are both in V, for a given V\ we say that G' is the graph induced by V.

A path in a graph is a list of distinct vertices {y\, V2, •. •, u*) such that (u,-, t>/+i) is
an edge in the graph for 1 < i < k. A cycle in a directed graph is a path such that k > 1
and i>i = i>£. A cycle in an undirected graph is a path such that v\ = u* and no edge
is repeated. Unless otherwise stated, all cycles are simple, which means that all vertices
except the first and last are distinct. An example of a (simple) cycle is (v\, u2, i>3, v\) in
the undirected graph of Figure 2.1. We say that vertex v is reachable from vertex w when
there is a path between u and i>. In weighted graphs the weight of a path is the sum of
the weights of its edges.

In an undirected graph G, if every vertex is reachable from every other vertex, we
say that the graph is connected. If a graph is not connected, we can find its connected
components. The notion of connected component is intuitive. For example, Figure 2. l(a)
shows an undirected graph with two connected components. More formally, the set of
connected components of a graph G is the set of all connected subgraphs of G such that
no element of the set is a subgraph of another element of the set. In the case of directed
graphs, we say that it can be strongly connected, weakly connected, or not connected.
In a strongly connected graph, every vertex can be reached from every other vertex. In
a weakly connected graph this is true only if we disregard edge directions (thus the un-
derlying undirected graph is connected); such is the case of the directed graph of Fig-
ure 2.1(b). If neither of the two properties is true, the graph is not connected.

Graph theory classifies graphs in classes according to certain properties. Some im-
portant examples are:

• The acyclic graph: a graph without cycles.

• The complete graph: a graph where for every pair of vertices i; and w, (v, w) € E
[and (w, v) e E as well, in the case of directed graphs].

• The bipartite graph: a graph where vertices are separated into two disjoint subsets
U and V, such that any edge has one of its endpoints in U and the other in V.

• The tree: an acyclic and connected graph. A graph whose connected components
are trees is called a forest.

Trees are an important class of graphs and have their own terminology. A leaf is a
node of the tree with degree 1. All other nodes are interior nodes. A tree can be rooted,
which means that one of its nodes is distinguished and called the root (denoted by r).
Given a node u and another node v on the path from u to r, we say that v is an ancestor
of u and that u is a descendant of u; if w and v are adjacent, then v is the parent of u and
u is the child of v. Leaves are nodes without children; the root has no parent. The depth
of a node v is the number of edges on the path from v to r. The lowest common ancestor
of two nodes u and v is the deepest node that is ancestor of both u and v.

2.2 GRAPHS 37

Another important class of graphs in computational biology is the class of interval
graphs. An interval graph G = (V, E) is an undirected graph obtained from a collection
C of intervals on the real line. To each interval in C there corresponds a vertex in G; we
place an edge between vertices u and v if and only if their intervals have a nonempty
intersection.

Below we list a few important problems on graphs that are especially relevant in
this book:

1. Given a directed or undirected graph, find a cycle such that every edge of the
graph is in the cycle but each edge appears exactly once (vertices may be re-
peated). Graphs for which this can be done are called Eulerian graphs. A ver-
sion of this problem requires that we find a. path in the graph fulfilling the same
condition (the graph is said to contain an Eulerian path).

2. Given a directed or undirected graph, find a cycle in the graph such that every
vertex of the graph is in the cycle but each vertex appears exactly once (except
for the first and last vertices). Graphs for which this can be done are called Hamil-
tonian graphs. A version of this problem requires that we find a path in the graph
such that every vertex of the graph is in the path but each vertex appears exactly
once (the graph is said to contain a Hamiltonianpath). Still another version of this
problem is defined on weighted graphs: Find a Hamiltonian cycle of minimum
weight. This is also known as the traveling salesman problem, since cities can be
modeled as vertices and roads as edges, and traveling salesmen presumably are
interested in minimizing the distance they travel when visiting many cities.

3. Given an undirected weighted connected graph, find a spanning tree such that
the sum of the weights of its edges is minimum among all spanning trees. This
is known as the minimum spanning tree problem.

4. Given an undirected graph, find the minimum number of colors necessary to ob-
tain a coloring. A vertex-coloring (or simply coloring) of a graph is a function
that assigns integers (the colors) to vertices so that no two adjacent vertices have
the same color.

5. Given an undirected graph, find a maximum cardinality matching. A matching
is a subset M of the edges such that no two edges in M share an endpoint. The
weighted version of this problem asks for a matching of maximum total weight.

Graphs can be represented in computer programs in a variety of ways. One of the
most common is the adjacency matrix representation. Given a n n x n matrix M, we set
Mij = lif(i,j) e E and A//,- = 0 otherwise. If the graph is weighted, we replace the Is
in the matrix by the weight of each corresponding edge. This representation uses on the
order of n2 storage space. Another way of representing graphs is through the adjacency
list representation. In this case, we store all vertices in a list, and for every vertex in the
list we create another list containing its adjacent vertices. In the case of directed graphs,
we may wish to keep two lists per vertex v: one for edges that go out of v and another
for edges that go into v. This representation uses on the order of n -\- m storage space.
Adjacency lists have the advantage of using less storage space than adjacency matrices
when the number of edges in the graph is relatively small. Such graphs are called sparse.
When m is much larger than n we say that the graph is dense.

38 CHAPTER 2 STRINGS, GRAPHS, AND ALGORITHMS

ALGORITHMS

In a general sense an algorithm is a well-defined and finite sequence of steps used to
solve a well-defined problem. An example of an algorithm is the sequence of steps we
use to multiply two integers. Algorithms are meant to be executed by persons or ma-
chines. It is important to specify who or what is going to execute the algorithm, because
that is what gives meaning to "well defined" in the preceding definition of algorithm. In
this book we are interested primarily in algorithms that can be understood by people but
that could (with details added) be executed by machines. The machine we have in mind
is not a concrete machine but an abstraction called the random access machine model.
Briefly, this model has the following components: one processor, which can execute the
steps sequentially; a finite memory (a collection of words)', and a finite set of registers
(another collection of words). In each word a single integer or real number can be stored.
The processor executes the steps of a program, which is the algorithm coded using the
machine's instructions. In this book we abuse the term machine instruction and allow
informal instructions, which are meant to be understood by people but require consider-
able expansion before they can be actually implemented on a real computer.

Algorithms in this book are expressed both in informal English sentences and in
pseudo programming language code. One of the goals in presenting such pseudo-code
is to help readers who wish to implement the algorithms described. We do not formally
define this code, but simply explain it with reference to well-known programming lan-
guages such as C or Pascal. First we describe the notation conventions:

2. Algorithms are headed by the keyword Algorithm.

2. The input: and output: keywords are used to show the algorithm's input and
output, respectively.

3. Keywords are typeset in boldface.

4. Variable, procedure, and function names are typeset in italic.

5. Constants are typeset using SMALL CAPS.

6. Comments begin with the symbol / , extend to the rest of the line, and are typeset
in slanted font

7. Informal statements and conditions are typeset in normal type.

8. Different statements generally appear in different lines; semicolons are used only
to separate statements in the same line. When an informal statement needs more
than one line, indentation is used from the second line onward.

9. Block structure is denoted by indentation, without begins or ends. Occasionally
we use comments to signal the end of a long block.

70. Indexing of arrays is done by square brackets (as in V[i]) and indexing of records
is done by the dot notation (as in R.field).

11. The parameters in a procedure or function call appear in parentheses, separated
by commas.

2.3 ALGORITHMS 39

Below we describe the formal statements we use in our algorithms. Most of them
are similar to those occurring in any modern procedural computer language.

1. The assignment statement, as in a <— a + 1.

2. The for iterative statement, as in for i <— 1 to n do. Variations include the key-
word downto and expressing the iteration in informal terms (as in for each ele-
ment of set S do).

3. The conditional statement if <condition> then ... else

4. The iterative statement while <condition> do
5. The iterative statement repeat... until <condition>.

6. The break statement, which stops execution of the innermost enclosing iterative
statement.

7. The return statement, which stops execution of the function where it appears and
returns a value or structure to whomever called the function.

The <condition> in statements above can be expressed either formally or informally.
Algorithms are meant to solve all instances of the problems for which they were

designed; when they do, they are said to be correct. Hence for any algorithm a proof
of correctness is essential. Another important aspect of algorithms is their running time.
The running time of an algorithm is the number of machine instructions it executes when
the algorithm is run on a particular instance. Presenting a proof of correctness and an
estimate of the running time are aspects of the analysis of the algorithm.

We estimate the running time of algorithms rather than count the exact number of
machine instructions because we want to have an idea of the algorithm's behavior on any
instance of the problem. To obtain such information two rules are necessary. The first is
that the running time be given for the worst case instance of the problem. The second is
that we make the running time depend on the size of the instance being solved. Hence,
instead of being a number, the running time is a function. For example, we could say that
the running time of algorithm A is 5n2 + 3n -f 72, where n measures the problem size.
Running time functions are simplified by dropping all constants and lower-order terms.
In the example above, 3n and 72 are lower-order terms with respect to n2. Hence, the
running time of A becomes O(n2), where the O (big-oh) notation is used precisely to
indicate that we are not caring for constants or lower-order terms. A consequence of this
is that we will be able to compare algorithms only in terms of their asymptotic behavior.
Thus an O(n2) algorithm may be faster than an O{ri) algorithm for small values of n\
however, we know that for a sufficiently large value of n the O (n) algorithm will be
faster. Incidentally, algorithms whose running times are O(n) are said to be linear-time;
when the running time is O (n2) they are quadratic.

From the discussion in the previous paragraph it is clear that in order to compare the
running time of algorithms expressed with the O notation we must be able to compare the
rate of growth of functions. That is, given two functions that take integers to reals, which
one grows faster than the other? We assume the reader is capable of comparing simple
functions using the following formal definitions. Given two functions f{n) and g(w),
from the integers to the reals, we say that g(n) = O(f(n)) when there exist constants c
and no such that for all n > no, g(n) < cf(n). In other words, if gin) = 0{f{n)) then
we know that function g{n) grows no faster than function f(n); f is an upper bound

40 CHAPTER 2 STRINGS, GRAPHS, AND ALGORITHMS

for g. For example, this is true if g(n) = log n and f{n) = ^fn. Given that we do not
care for constants, the base of logarithms (when it is a constant) is irrelevant inside the
O, because loga n and logb n are related by a multiplicative constant when a and b are
constants.

Sometimes it is desirable to describe a function g{ri) as growing at least as fast as
some other function / (n). In this case we say that g (n) = Q (/(«))• Formally, this means
that there exist constants c and no such that for all n > no, g(n) > cf(ri). Function /
provides a lower bound for g. When g{n) is both O(f(n)) and Q(f(n)), we say that
g(n) = ©(/(/i)).

In this book we are primarily interested in efficient algorithms. An algorithm is ef-
ficient for a problem of size n when its running time is bounded by a polynomial p(n).
An algorithm whose running time is £2(2") is not efficient, since the function 2" grows
faster than any polynomial on n.

One of the main tasks of theoretical computer scientists is to classify problems in
two classes: those for which there exist efficient algorithms (which belong to class P),
and those for which such algorithms do not exist (this task is known as complexity anal-
ysis). Unfortunately, there is a very important class of problems for which the classifi-
cation is as yet undecided. Nobody has been able to find efficient algorithms for them,
but neither has it been shown that no such algorithms exist. These are the NP-complete
problems. These problems belong to class NP, the class of problems whose solution,
once found, can be checked in polynomial time. This class also includes the class P as a
subset. In a very precise sense, NP-complete problems are the hardest problems in class
NP. This means that any instance of any problem in class NP can be transformed in poly-
nomial time to an instance of an NP-complete problem. A particular case of this state-
ment is that all NP-complete problems are equivalent under polynomial transformations.
This in turn means that if a polynomial-time algorithm is found for just one NP-complete
problem, then all NP-complete problems can be solved in polynomial time.

The undecided question alluded to above is known as the P = NP problem. In words
it means: Can all problems of the class NP be solved in polynomial time? If P = NP,
then there are efficient algorithms for every problem in NP, and in particular for the
NP-complete problems; if P ^ NP, then NP-complete problems are all computation-
ally hard, and P is a proper subset of NP. Most computer scientists believe the latter is
true.

NP-complete problems appear frequently in this book. Another related term used is
NP-hard problem. To explain the difference between the two, we have to make more
precise our statements about problem classes made above. Strictly speaking, classes P
and NP include only decision problems: The answer must be yes or no. A typical exam-
ple is the problem of deciding whether a graph is Hamiltonian. However, most problems
we will meet in this book are optimization problems, meaning that there is some function
associated with the problem and we want to find the solution that minimizes or maxi-
mizes the value of this function. A typical example is the traveling salesman problem,
mentioned in Section 2.2. An optimization problem can be transformed into a decision
problem by including as part of the input a parameter K and asking whether there is a
solution whose value is < K (in the case of minimization problems) or > K (in the case
of maximization problems). This trick enables us to speak of the decision version of ev-
ery optimization problem and hence try to classify it as being in class P or in class NP.
Thus it can be shown that the decision version of the traveling salesman problem is an

2.3 ALGORITHMS 41

NP-complete problem. But how about the traveling salesman problem itself? It does not
belong to class NP, since it is not a decision problem; but clearly it is at least as hard as
its decision version. Problems that are at least as hard as an NP-complete problem but
which do not belong to class NP are called NP-hard. All optimization problems whose
decision versions are NP-complete are themselves NP-hard.

For the problems in Section 2.2, the following is known. To decide whether a graph
is Eulerian is a problem that belongs to class P, given that it can be done in O(n + rri)
time. To decide whether a graph is Hamiltonian is an NP-complete problem. As already
mentioned, the traveling salesman problem is NP-hard. A minimum spanning tree can be
found in time O(n2), and hence (its decision version) is in P. Vertex coloring is another
NP-hard problem. Finally, the matching problems can be solved in polynomial time.

When we first meet a problem X of unknown complexity, we have two choices: We
can try to find an algorithm that solves X efficiently (that is, we try to prove that the
problem belongs to class P), or we can try to prove that X is NP-complete. A very brief
description of how one goes about doing the latter is as follows. We first must show that
the problem belongs to class NP (can its solution, once found, be checked in polynomial
time?). Then we must show that a known NP-complete problem Y reduces to X. This
is done by showing that if we did have a polynomial-time algorithm for solving X, then
we could use it to solve Y also in polynomial time. Finding the NP-complete problem Y
that allows the easiest reduction is usually the hardest part in NP-completeness proofs.
The fact that more than a thousand problems have been shown to be NP-complete has
made this task considerably easier.

What are we to do when we face an NP-complete or NP-hard problem? Here are
some possibilities:

1. Verify whether the instances to be solved are really general. In some cases, solv-
ing an NP-hard problem on a restricted class of inputs can be done in polynomial
time. A classical example is graph coloring. Finding a minimum coloring for gen-
eral graphs is an NP-hard problem, but if the inputs are restricted to be bipartite
graphs then it can be done in polynomial time (any bipartite graph can be colored
using at most two colors).

2. Devise an exhaustive search algorithm (that is, an algorithm that enumerates all
possible solutions and picks the best one). This is generally practical only for
small instances of the problem, since the running time of such an algorithm is
exponential.

3. Devise a polynomial-time approximation algorithm. Such an algorithm finds a
solution that is guaranteed to be close to optimal, but it is not necessarily an op-
timal solution. The guarantee can be expressed in terms of the ratio between the
value of the solution found by the algorithm and the optimal solution. For ex-
ample, there exists an approximation algorithm for one version of the traveling
salesman problem that is guaranteed to give a solution whose weight is no larger
than 1.5 times the optimal value. This guarantee may or may not have practical
significance, depending on the guarantee itself and the problem being solved.

4. Devise heuristics. These are polynomial-time algorithms with no guarantee what-
soever on the solution's value. In many cases heuristics have satisfactory perfor-
mance in practice and are widely used.

42 CHAPTER 2 STRINGS, GRAPHS, AND ALGORITHMS

Let us now leave the NP-complete problems and describe a few important prob-
lems for which efficient algorithms are known. The first of these is to verify whether
an undirected graph is connected. This problem can be solved using well-known graph
traversal techniques. One of them is depth-first search: Beginning at an arbitrary vertex
v, visit it, then go to one of the unvisited adjacent vertices. We repeat this process until
all vertices have been visited or if we get stuck (all reachable vertices have been visited,
but there are still un visited vertices). In the first case the graph is connected, and in the
second it is not. Another technique is breadth-first search, in which we use a queue to
process vertices. We visit all neighbors of the first vertex in the queue, then put them all
in the queue for further exploration. We then get the next vertex from the queue, and so
on. Both algorithms run in time O(n -f m). These same techniques can be used in many
other graph problems; depth-first search, in particular, can be used to verify whether a
graph is acyclic. Trees can also be traversed using one of these techniques. A tree is of
course connected, but the techniques provide a systematic and useful way of visiting its
nodes.

The minimum spanning tree (MST) problem can be solved efficiently, although with
techniques that are more elaborate than simple traversals. On a graph with n vertices, we
can find an MST with a simple algorithm in time O(n2). The idea is to start at an arbi-
trary vertex, and from it grow the tree by adding the smallest weight edge that connects
a vertex in the tree to a vertex not yet in the tree. It is surprising that such a simple idea
works, because we are choosing edges based purely on what appears "locally" to be the
best choice. Algorithms that use such techniques are called greedy.

Another problem in the class P is sorting. Given a vector with n distinct numbers,
sort it in increasing or decreasing order. It can be shown that sorting requires © (n log n)
time, when the numbers are arbitrary. If the numbers are bounded by some constant, or
even by a fixed-degree polynomial (such as rc3), then the problem can be solved in linear
time.

We now close this section mentioning a few ideas and tools for the design of algo-
rithms. One powerful idea is that of induction. In broad terms, the idea is this. Given a
problem whose instances have size n, we begin by finding a way to solve very small in-
stances of the problem (e.g., how to sort 1 number) and by assuming that we know how
to solve instances of size n — 1. Then we see what must be done to extend the solution of
instances of size n — 1 to instances of size n. In many cases this extension is simple, and
by mathematical induction it can be shown that we have solved the problem in general.
When designing algorithms using this technique, the result is frequently expressed using
recursion. In programming language terms, a recursive function is a function that calls
itself (directly or indirectly). These ideas are depicted in the example of Figure 2.2.

A particularly important algorithm design technique for this book is called dynamic
programming. The basic idea is that we obtain a solution for a problem by building it up
from solutions of many smaller but similar subproblems. It can be seen as a special case
of design by induction. Concrete examples are given in Chapter 3. Note that there is no
relation between this technique and computer programming, in the modern sense of the
word. The technique has this name for historical reasons.

Data structures are another kind of tool used in algorithm design. These are struc-
tures that store data and are designed to support certain operations like retrieval or inser-
tion in a very efficient manner, usually in constant time or O(log n) time, where n is the
number of items stored. The types of data structures used vary depending on the problem.

EXERCISES 43

Algorithm RSort
input: array A with n distinct elements
output: array A sorted in increasing order
if n = 1 then

return A
else

x <— min(A) / min returns the smallest element
Remove x from A
RSort (A) II recursive call
return x : A //we concatenate x to the beginning of A

FIGURE -2.2

A recursive algorithm to sort n elements.

Among the best known data structures are special kinds of lists called stacks and queues,
hash tables, and binary search trees. Readers unfamiliar with these structures may wish
to consult books cited in the bibliographic notes. One structure used in this book but not
so well known as those above is the disjoint-set forest data structure. It supports opera-
tions on a dynamic collection of disjoint sets, such that initially each data item is in a set
by itself, and as the algorithm progresses the sets are gradually joined to each other. This
data structure supports three basic operations: MakeSet(a), which puts element a in a set
by itself; FindSet(a), which returns the set to which element a currently belongs; and
Union(S, T), which joins sets S and T (for this reason, data structures that support such
operations are also known as union-find data structures). If we have n total elements, a
disjoint-set forest coupled with two other techniques allows a series of m > n FindSet
and/or Union operations to be done in time O(ma(m, rc)), where a(m,n) is a function
that grows so slowly that for all practical purposes it can be considered a constant.

1. How many distinct substrings does ACTAC have? how many distinct subsequences?
how many intervals?

2. Design and analyze an algorithm that checks whether a string p is a substring of another
string t. Can you design an algorithm that runs in time O(\p\ + \t\)l

3. Write a computer program using your favorite programming language that accepts as
input a DNA sequence of any size and returns its reverse complement.

4. How many edges does an n-vertex complete directed graph have? how many if the
graph is undirected? How many edges does an n-node tree have?

5. Show that in an undirected graph G = (V, E), J2vev 5 (v) = 2I#I, where 8(v) is the
degree of vertex v.

6. Give adjacency matrix and adjacency list representations for the graphs depicted in
Figure 2.1.

44 CHAPTER 2 STRINGS, GRAPHS, AND ALGORITHMS

7. Explain how an O (n2) algorithm can be faster than an O(«) algorithm for small values
of n.

8. Say you have two algorithms A\ and A2 for the same problem, whose size is defined
by parameter n. If A\ runs in time O(n/ logn) and A 2 runs in time O(^/n), which one
is the fastest asymptotically?

9. Leonhard Euler showed that a graph is Eulerian if and only if it is connected and all
vertices have even degree. Based on this observation, propose an algorithm that finds
an Eulerian cycle in a graph if such a cycle exists.

10. Show that in a weighted undirected graph where all edge costs are distinct the minimum
spanning tree is unique.

11. Completely design an algorithm for the minimum spanning tree problem based on the
information given in the text. Analyze your algorithm.

12. A topological ordering for the vertices of a directed graph G is such that for all edges
(u, v), u appears before v in the ordering. Topological orderings are well defined only
for directed acyclic graphs. Design and analyze an algorithm that determines a topo-
logical ordering of a directed acyclic graph G.

13. Assume you have a disjoint-set forest data structure. Use it to design an algorithm that
will determine the connected components of an undirected graph G. Compare your
algorithm with another based on breadth-first or depth-first search.

14. Suppose you have a problem X whose complexity is unknown. You succeed in reduc-
ing it to a known NP-complete problem. What can you say about Z's complexity?

15. The vertex cover problem is defined over an undirected graph G = (V, E) and asks
for a minimum set of vertices W c V such that for any edge e e E, at least one of its
endpoints belongs to W. Write out the decision version of this problem.

16. A clique in a graph G is a subgraph of G that is complete. The clique problem is defined
over an undirected graph G = (V, E) and asks for a maximum set of vertices C c V
such that C is a clique. Given that the vertex cover problem defined in the previous
exercise is NP-complete, show that the clique problem is also NP-complete.

17. Given that the Hamiltonian cycle problem is NP-complete, show that the Hamiltonian
path problem between two given vertices u and v is NP-complete.

18. An approximation algorithm for the vertex cover problem (defined in Exercise 15) is
the following. Begin with an empty cover W. Build up a vertex cover by choosing any
edge (M, V) and adding both u and v to W. Then delete u and v from G (that is, remove
any other edges incident to them), and go on repeating these steps until no more edges
are left. Show that this algorithm finds a vertex cover whose size is at most twice the
size of the minimum vertex cover.

19. Design and analyze an exhaustive search algorithm for the Hamiltonian cycle
problem.

20. The knapsack problem is the following. Given a set of n objects, object i having weight
Wi, and a positive integer K (the knapsack's capacity), determine whether there exists a
subset of the objects whose total weight is exactly K. This is an NP-complete problem,
but it is possible to design an algorithm for it that runs in time O(nK). There is no con-
tradiction here, because the value of K may be arbitrarily large (for example, it could
be 2"), and hence this algorithm is not strictly polynomial. Design such an algorithm
using the dynamic programming technique mentioned in the text.

BIBLIOGRAPHIC NOTES 45

BIBLIOGRAPHIC NOTES

Two books are devoted solely to algorithms on strings, one by Stephen [180] and the
other by Crochemore and Rytter [39]. A useful survey is given by Aho [6]. The forth-
coming book by Gusfield [85] should be especially relevant for computational biology.

Readers unfamiliar with graph theory might wish to read a chapter on this subject
in a college textbook on discrete mathematics. One such book, by Rosen [163], contains
additional references on books devoted to graph theory. Our notation and exposition of
graph theory concepts were based on Chapter 1 of Tarjan's book [184].

Two excellent books on algorithms are by Manber [129] and by Cormen, Leiserson,
and Rivest [37]. Manber stresses the use of induction in the design of algorithms, while
Cormen et al. provide a more encyclopedic coverage. Sedgewick [170] and Gonnet and
Baeza-Yates [76] are handy references on algorithms for a variety of problems.

The classical reference on NP-complete problems and the general theory of NP-
completeness is the book by Garey and Johnson [68]. A more recent book that covers
computational complexity as a whole is by Papadimitriou [151].

SEQUENCE COMPARISON AND
DATABASE SEARCH

In this chapter we present some of the most practical and widely
used methods for sequence comparison and database search. Se-
quence comparison is undoubtedly the most basic operation in
computational biology. It appears explicitly or implicitly in all
subsequent chapters of this book. It has also many applications
in other subareas of computer science.

BIOLOGICAL BACKGROUND

Why compare sequences? Why use a computer to do that? How to compare sequences
using computers? These are the main questions that will concern us in this chapter. We
will answer the first two in this section, and devote the rest of the chapter to the last one.

Sequence comparison is the most important primitive operation in computational bi-
ology, serving as a basis for many other, more complex, manipulations/Roughly speak-
ing, this operation consists of rinding which parts of the sequences are alike and which
parts differ. However, behind this apparently simple concept, a great variety of truly dis-
tinct problems exist, with diverse formalizations and sometimes requiring completely
different data structures and algorithms for an efficient solution.

As examples, we will give a list of problems that often appear in computational bi-
ology. In these examples we use two notions that will be precisely defined in later sec-
tions. One is the similarity of two sequences, which gives a measure of how similar the
sequences are. The other is the alignment of two sequences, which is a way of placing
one sequence above the other in order to make clear the correspondence between similar
characters or substrings from the sequences. The examples (and the whole chapter) also
use basic concepts about strings, which are defined in Section 2.1. Here are the examples.

1. We have two sequences over the same alphabet, both about the same length (tens
of thousands of characters). We know that the sequences are almost equal, with

&~7

48 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

only a few isolated differences such as insertions, deletions, and substitutions of
characters. The average frequency of these differences is low, say, one each hun-
dred characters. We want to find the places where the differences occur.

2. We have two sequences over the same alphabet with a few hundred characters
each. We want to know whether there is a prefix of one which is similar to a suf-
fix of the other. If the answer is yes, the prefix and the suffix involved must be
produced.

3. We have the same problem as in (2), but now we have several hundred sequences
that must be compared (each one against all). In addition, we know that the great
majority of sequence pairs are unrelated, that is, they will not have the required
degree of similarity.

4. We have two sequences over the same alphabet with a few hundred characters
each. We want to know whether there are two substrings, one from each sequence,
that are similar.

5. We have the same problem as in (4), but instead of two sequences we have one
sequence that must be compared to thousands of others.

Problems like (1) appear when, for instance, the same gene is sequenced by two differ-
ent labs and they want to compare the results; or even when the same long sequence is
typed twice into the computer and we are looking for typing errors. Problems like (2) and
(3) appear in the context of fragment assembly in programs to help large-scale DNA se-
quencing. Problems like (4) and (5) occur in the context of searches for local similarities
using large biosequence databases.

We will see in this chapter that a single basic algorithmic idea can be used to solve all
of the above problems. However, this may not be the most efficient solution. Sometimes
less general but faster methods are better suited to each task.

The use of computers hardly needs justification when we deal with large quantities
of data, as in searches in large databases. Yet, even in cases where we could conceivably
do comparisons "by hand," the use of computers is safer and more convenient, as the
following examples, taken from a paper by Smith and coworkers [176], illustrate.

In a 1979 paper, Sims and colleagues examined similar regions from the DNA of
two bacteriophages [173]. They presented an alignment between regions of the H-gene
from phages St-1 and G4 containing 11 matches (that is, 11 columns in which there are
equal characters in both sequences). The procedure they used to obtain good alignments
was described as the "insertion of occasional gaps to maximize homology [number of
identities]." Smith and colleagues [176], however, produced 12 matches in an alignment
found by computer, which was certainly overlooked by the first group of researchers.

In another 1979 paper, Rosenberg and Court completed a study aligning 46 promoter
sequences from various organisms [164]. The multiple alignment was constructed start-
ing from the alignment of certain regions reputed relatively invariant and then extending
this "seed" alignment in both directions without introducing gaps. Although the resulting
alignment was good as a whole, the pairwise alignments obtained from it were relatively
poor. This happens fairly frequently in multiple alignments, but in this case Smith and
colleagues found, with the help of a computer, an alignment between two substrings of
the sequences involved that had 44 identical characters over a total of 45. This is cer-
tainly an astonishingly good local alignment, and the fact that it is not even mentioned

3.2 COMPARING TWO SEQUENCES 49

by Rosenberg and Court must mean again that they were not able to find it by hand.
These two examples show that the use of computers can reveal intriguing similari-

ties that might go unnoticed otherwise.

COMPARING TWO SEQUENCES

In this section we study methods for comparing two sequences. More specifically, we are
interested in finding the best alignments between these two sequences. Several versions
of this problem occur in practice, depending on whether we are interested in alignments
involving the entire sequences or just substrings of them. This leads to the definition
of global and local comparisons. There is also a third kind of comparison in which we
are interested in aligning not arbitrary substrings, but prefixes and suffixes of the given
sequences. We call this third kind semiglobal comparison. All the problems mentioned
can be solved efficiently by dynamic programming, as we will see in the sequel.

3.2.1 GLOBAL COMPARISON —
THE BASIC ALGORITHM

Consider the following DNA sequences: GACGGATTAG and GATCGGAATAG. We can-
not help but notice that they actually look very much alike, a fact that becomes more
obvious when we align them one above the other as follows.

GA-CGGATTAG
GATCGGAATAG

The only differences are an extra T in the second sequence and a change from A to T in
the fourth position from right to left. Observe that we had to introduce a space (indicated
by a dash above) in the first sequence to let equal bases before and after the space in the
two sequences align perfectly.

Our goal in this section is to present an efficient algorithm that takes two sequences
and determines the best alignment between them as we did above. Of course, we must
define what the "best" alignment is before approaching the problem. To simplify the dis-
cussion, we will adopt a simple formalism; later, we will see possible generalizations.

To begin, let us be precise about what we mean by an alignment between two se-
quences. The sequences may have different sizes. As we saw in the recent example,
alignments may contain spaces in any of the sequences. Thus, we define an alignment
as the insertion of spaces in arbitrary locations along the sequences so that they end up
with the same size. Having the same size, the augmented sequences can now be placed
one over the other, creating a correspondence between characters or spaces in the first
sequence and characters or spaces in the second sequence. In addition, we require that
no space in one sequence be aligned with a space in the other. Spaces can be inserted
even in the beginning or end of sequences.

50 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

Given an alignment between two sequences, we can assign a score to it as follows.
Each column of the alignment will receive a certain value depending on its contents and
the total score for the alignment will be the sum of the values assigned to its columns. If
a column has two identical characters, it will receive value +1 (a match). Different char-
acters will give the column value —1 (a mismatch). Finally, a space in a column drops
down its value to —2. The best alignment will be the one with maximum total score. This
maximum score will be called the similarity between the two sequences and will be de-
noted by simO, t) for sequences s and t. In general, there may be many alignments with
maximum score.

To exercise these definitions, let us compute the score of alignment (3.1). There are
nine columns with identical characters, one column with distinct characters, and one col-
umn with a space, giving a total score of

9 x 1 + 1 x (-1) + 1 x (-2) = 6.

Why did we choose these particular values (-f 1, —1, and —2)? This scoring system is
often used in practice. We reward matches and penalize mismatches and spaces. In Sec-
tion 3.6.2 we discuss in more detail the choice of these parameters.

One approach to computing the similarity between two sequences would be to gen-
erate all possible alignments and then pick the best one. However, the number of align-
ments between two sequences is exponential, and such an approach would result in an
intolerably slow algorithm. Fortunately, a much faster algorithm exists, which we will
now describe.

The algorithm uses a technique known as dynamic programming. It basically con-
sists of solving an instance of a problem by taking advantage of already computed solu-
tions for smaller instances of the same problem. Given two sequences s and t, instead of
determining the similarity between s and t as whole sequences only, we build up the so-
lution by determining all similarities between arbitrary prefixes of the two sequences. We
start with the shorter prefixes and use previously computed results to solve the problem
for larger prefixes.

Let m be the size of s and n the size of t. There are m 4-1 possible prefixes of s and
n + 1 prefixes of f, including the empty string. Thus, we can arrange our calculations in
an (m + 1) x (n + 1) array where entry (z, j) contains the similarity between s[\..i] and
t[l.jl

Figure 3.1 shows the array corresponding to s = AAAC and t = AGC. We placed s
along the left margin and t along the top to indicate the prefixes more easily. Notice that
the first row and the first column are initialized with multiples of the space penalty (—2
in our case). This is because there is only one alignment possible if one of the sequences
is empty: Just add as many spaces as there are characters in the other sequence. The score
of this alignment is — 2k, where k is the length of the nonempty sequence. Hence, filling
the first row and column is easy.

Now let us concentrate on the other entries. The key observation here is that we
can compute the value for entry (/, j) looking at just three previous entries: those for
(z — 1, j) , (1 — 1,7 — 1). a nd 0\ j ~ 1)- The reason is that there are just three ways
of obtaining an alignment between ,s[l..i] and t[l..j], and each one uses one of these
previous values. In fact, to get an alignment for s [1..i] and t [1.. j] , we have the following
three choices:

3.2 COMPARING TWO SEQUENCES 51

0

A 1

A 2

A 3

C 4

0

0

i

-2

-4

i

-6

-8

+

\

]

-2

1
1

1
-1

1
-3

-1
-5

*

2

-4

-1
-1

-1
0

-1
-2

-1
-4

* "

\

\

3

-6

-1
-3

-1
-2

-1
-1

1
-1

FIGURE 3.1

Bidimensional array for computing optimal alignments. The
value in the upper left corner of cell (i, j) indicates whether

s[i] = t[j]. Indices of rows and columns start at zero.

• Align ,s[l../] with t[l..j — 1] and match a space with t[j], or

• Align s[l..i — 1] with t[l..j — 1] and match s[i] with t[j], or

• Align s[l..i - 1] with t[l..j] and match s[i] with a space.

These possibilities are exhaustive because we cannot have two spaces paired in the
last column of the alignment. Scores of the best alignments between smaller prefixes are
already stored in the array if we choose an appropriate order in which to compute the
entries. As a consequence, the similarity sought can be determined by the formula

52 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

f
s i m (j [l . . i] , t[l.J]) = max I s im(>[l . . / - 1], t[l..j - 1]) + p(i, j) (3.2)

[
where p(i, j) is +1 if s[i] = t[j] and —1 if s[i] •=/=- t[j]. The values of p(i, j) are written
in the upper left corners of the boxes in Figure 3.1. If we denote the array by a, this
equation can be rewritten as follows:

[a[iJ-l]-2
fl[i,jf] = max | a[i - IJ - 1] + p(i, j) (3.3)

[a[i-\J]-2.

As we mentioned earlier, a good computing order must be followed. This is easy to
accomplish. Filling in the array either row by row, left to right on each row, or column by
column, top to bottom on each column, suffices. Any other order that makes sure a[i, j —
1], a[i — 1, j — 1], and a[i — I, j] are available when a[i, j] must be computed is fine,
too.

Finally, we drew arrows in Figure 3.1 to indicate where the maximum value comes
from according to Equation (3.3). For instance, the value of a[l, 2] was taken as the max-
imum among the following figures.

•a[l, 1] — 2 = —1
a[0, 1] - 1 = - 3
a[0, 2] - 2 = - 6 .

Therefore, there is only one way of getting this maximum value, namely, coming from
entry (1, 1), and that is what the arrows show.

Figure 3.2 presents an algorithm for filling in an array as explained. This algorithm
computes entries row by row. It depends on a parameter g that specifies the space penalty

Algorithm Similarity
input: sequences s and t
output: similarity between s and t
m +- \s\
n+-\t\
for i <— 0 to m do

a[i, 0] <r- i x g
for j +- 0 to n do

a[0, j] <- j x g
for / <- 1 to m do

for j <- 1 to n do
a[i, j] +- max(a[i - 1, j] + g,

a[i-l,j - 1] + /?(/, j),

return a [in, n]

FIGURE 3.2

Basic dynamic programming algorithm for comparison of
two sequences.

3.2 COMPARING TWO SEQUENCES 53

(usually g < 0) and on a scoring function p for pairs of characters. We have used g =
- 2 , p(a,b) = 1 if a = b, and p(a, b) = - 1 if a ^ 6 in Figure 3.1.

Optimal Alignments

We saw how to compute the similarity between two sequences. Here we will see how to
construct an optimal alignment between them. The arrows in Figure 3.1 will be useful
in this respect. All we need to do is start at entry (ra, n) and follow the arrows until we
get to (0, 0). Each arrow used will give us one column of the alignment. In fact, consider
an arrow leaving entry (f, j). If this arrow is horizontal, it corresponds to a column with
a space in s matched with t[j]\ if it is vertical, it corresponds to s[i] matched with a
space in t\ finally, a diagonal arrow means s[i] matched with t[j]. Observe that the first
sequence, s, is always placed along the vertical edge. Thus, an optimal alignment can
be easily constructed from right to left if we have the matrix a computed by the basic
algorithm. It is not necessary to implement the arrows explicitly — a simple test can be
used to choose the next entry to visit.

Figure 3.3 shows a recursive algorithm for determining an optimal alignment given
the matrix a and sequences s and t. The call Align(m, n, len) will construct an optimal
alignment. The answer will be given in a pair of vectors aligns and align-t that will hold
in the positions 1. .len the aligned characters, which can be either spaces or symbols from
the sequences. The variables aligns and align-t are treated as globals in the code. The

Algorithm Align
input: indices i, j , array a given by algorithm Similarity
output: alignment in aligns, align-t, and length in len
if i =0and; =0then

len «-0
else if i > 0 and a[i, j] = a[i — 1, j] -f g then

Align(i — I, j , len)
len <- len + 1
aligns[len] <— s[i]
align-t[len] <

else if i > 0 and j > 0 and a[i, j] = a[i — 1, j — 1] + p(i, j) then
Align{i — 1, j — 1, len)
len «- len + 1
align-s[len] «— s[i]
align-t[len] <— t[j]

else / has to be j > 0 anda[i, j] = a[i, j — 1] + g
Align(i, y — 1, len)
len <- len + 1
aligns[len] <
align-t[len] <- t[j]

FIGURE 3.3

Recursive algorithm for optimal alignment.

n
54 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

length of the alignment is also returned by the algorithm in the parameter len. Note that
max(|s|, |r|) < len < m + n.

As we said previously, many optimal alignments may exist for a given pair of se-
quences. The algorithm of Figure 3.3 returns just one of them, giving preference to the
edges leaving (z, j) in counterclockwise order (see Figure 3.4).

maximum
preference

preference

FIGURE 3.4

Arrow preference.

As a result, the optimal alignment returned by this algorithm has the following general
characteristic: When there is choice, a column with a space in t has precedence over a
column with two symbols, which in turn has precedence over a column with a space in
s. For instance, when aligning s = AT AT with t = TATA, we get

-ATAT
TATA-

rather than

ATAT-
-TATA

which is the other optimal alignment for these two sequences. Similarly, when aligning
s = AA with t = AAAA, we get

--AA
AAAA

although there are five other optimal alignments. This alignment is sometimes referred
to as the upmost alignment because it uses the arrows higher up in the matrix. To reverse
these preferences, we would reverse the order of the if statements in the code, obtaining
the downmost alignment in this case. A column appearing in both the upmost and down-
most alignments will be present in all optimal alignments between the two sequences
considered.

It is possible to modify the algorithm to produce all optimal alignments between s
and t. We need to keep a stack with the points at which there are options and backtrack
to them to explore all possibilities of reaching (0, 0) through the arrows. However, there
might be a very large number of optimal alignments. In these cases, it is often advisable

3.2 COMPARING TWO SEQUENCES 55

to keep some sort of short representation of all or part of these alignments, for instance,
the upmost and downmost ones.

Let us now determine the complexity of the algorithms described in this section.
The basic algorithm of Figure 3.2 has four loops. The first two do the initialization and
consume time O (m) and O (n), respectively. The last two loops are nested and fill the rest
of the matrix. The number of operations performed depends essentially on the number
of entries that must be computed, that is, the size of the matrix. Thus, we spend time
O (mn) in this part and this is the dominant term in the time complexity. The space used is
also proportional to the size of the matrix. Hence, the complexity of the basic algorithm
is O(mn) both for time and space. If the sequences have the same or nearly the same
length, say n, we get O(n2). That is why we say that these algorithms have quadratic
complexity.

The construction of the alignment — given the already filled matrix — is done in
time Oilen), where len is the size of the returned alignment, which is O(m + n).

3.2.2 LOCAL COMPARISON

A local alignment between s and t is an alignment between a substring of s and a sub-
string of t. In this section we present an algorithm to find the highest scoring local align-
ments between two sequences.

This algorithm is a variation of the basic algorithm. The main data structure is, as
before, an (m + 1) x (n -f 1) array. Only this time the interpretation of the array values is
different. Each entry (i, j) will hold the highest score of an alignment between a suffix
of s[l..z] and a suffix of t[l..j]. The first row and the first column are initialized with
zeros.

For any entry (i, j)> there is always the alignment between the empty suffixes of
s[l../] and t[l..j], which has score zero; therefore the array will have all entries greater
than or equal to zero. This explains in part the initialization above.

Following initialization, the array can be filled in the usual way, with a[i, j] depend-
ing on the value of three previously computed entries. The resulting recurrence is

0,

that is, the same as in the basic algorithm, except that now we have a fourth possibility,
not available in the global case, of an empty alignment.

In the end, it suffices to find the maximum entry in the whole array. This will be
the score of an optimal local alignment. Any entry containing this value can be used as
a starting point to get such an alignment. The rest of the alignment is obtained tracing
back as usual, but stopping as soon as we reach an entry with no arrow going out. Alter-
natively, we can stop as soon as we reach an entry with value zero.

In general, when doing local comparison, we are interested not only in the optimal
alignments, but also in near optimal alignments with scores above a certain threshold.
References to methods for retrieving near optimal alignments are given in the biblio-
graphic notes.

56 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

3.2.3 SEMIGLOBAL COMPARISON

In a semiglobal comparison, we score alignments ignoring some of the end spaces in the
sequences. An interesting characteristic of the basic dynamic programming algorithm is
that we can control the penalty associated with end spaces by doing very simple modi-
fications to the original scheme.

Let us begin by defining precisely what we mean by end spaces and why it might
be better to let them be included for free in certain situations. End spaces are those that
appear before the first or after the last character in a sequence. For instance, all the spaces
in the second sequence in the alignment below are end spaces, while the single space in
the first sequence is not an end space.

CAGCA-CTTGGATTCTCGG
CAGCGTGG '

Notice that the lengths of these two sequences differ considerably. One has size 8, and the
other has 18 characters. When this happens, there will be many spaces in any alignment,
giving a large negative contribution to the score. Nevertheless, if we ignore end spaces,
the alignment is pretty good, with 6 matches, 1 mismatch, and 1 space.

Observe that this is not the best alignment between these sequences. In alignment
(3.5) below we present another alignment with a higher score (—12 against —19 of the
previous one) according to the scoring system we have been using so far.

CAGCACTTGGATTCTCGG
CAGC G-T GG

In spite of having scored higher and having matched all characters of the second se-
quence with identical characters in the first one, this alignment is not so interesting from
the point of view of finding similar regions in the sequences. The second sequence was
simply torn apart brutally by the spaces just for the sake of matching exactly its char-
acters. If we are looking for regions of the longer sequence that are approximately the
same as the shorter sequence, then undoubtedly the first alignment (3.4) is more to the
point. This is reflected in the scores obtained when we disregard (that is, not charge for)
end spaces: (3.4) gets 3 points against the same —12 for (3.5).

Let us now describe a variation of the basic algorithm that will ignore end spaces.
Consider initially the case where we do not want to charge for spaces after the last charac-
ter of s. Take an optimal alignment in this case. The spaces after the end of s are matched
to a suffix of t. If we remove this final part of the alignment, the remaining is an align-
ment between s and a prefix of f, with score equal to the original alignment. Therefore,
to get the score of the optimal alignment between s and t without charge for spaces after
the end of s, all we need to do is to find the best similarity between s and a prefix of t. But
we saw in Section 3.2.1 that the entry (/, j) of matrix a contains the similarity between
s[l..i] and t[l..j]. Hence, it suffices to take the maximum value in the last row of a, that
is,

sim(^, t) = maxfl[m, j].
7 = 1

Notice that in this section we have changed the definition of sim(s, t) so that it now in-
dicates similarity, ignoring final spaces in s. The expression above gives the score of the

3.2 COMPARING TWO SEQUENCES 57

best alignment. To recover the alignment itself, we proceed just as in the basic algorithm,
but starting at (m, k) where k is such that sim^, t) = a[m, k].

An analogous argument solves the case in which we do not charge for final spaces
in t. We take the maximum along the last column of a in this case. We can even combine
the two ideas and seek the best alignment without charging for final spaces in either se-
quence. The answer will be found by taking the maximum along the border of the matrix
formed by the union of the last row and the last column. In all cases, to recover an op-
timal alignment, we start at an array entry that contains the similarity value and follow
the arrows until we reach (0, 0). Each arrow will give one column of the alignment as in
the basic case.

Now let us turn our attention to the case of initial spaces. Suppose that we want the
best alignment that does not charge for initial spaces in s. This is equivalent to the best
alignment between s and a suffix of t. To get the desired answer, we use an (m + 1) x
(n -f-1) array just as in the basic algorithm, but with a slight difference. Each entry (/, j)
now will contain the highest similarity between j[l../] and a suffix of a prefix, which is
to say a suffix oft[l..j].

Doing that, it is clear that a[m, n] will be the answer. What is less clear, but nev-
ertheless true, is that the array can be filled in using exactly the same formula as in the
basic algorithm! That is Equation (3.3). The initialization will be different, however. The
first row must be initialized with zeros instead of multiples of the space penalty because
of the new meaning of the entries. We leave it to the reader to verify that Equation (3.3)
works in this case.

We can apply the same trick and initialize the first column with zeros, and by doing
this we will be forgiving spaces before the beginning of t. If in addition we initialize
both the first row and the first column with zeros, and proceed with Equation (3.3) for
the other entries, we will be computing in each entry the highest similarity between a
suffix of s and a suffix of t. To find an optimal alignment, we follow the arrows from the
maximum value entry until we reach one of the borders initialized with zeros, and then
follow the border back to the origin.

Table 3.1 summarizes these variations. There are four places where we may not want
to charge for spaces: beginning or end of s, and beginning or end of t. We can com-
bine these conditions independently in any way and use the variations above to find the
similarity. The only things that change are the initialization and where to look for the
maximum value. Forgiving initial spaces translates into initializing certain positions with
zero. Forgiving final spaces means looking for the maximum along certain positions. But
filling in the array is always the same process, using Equation (3.3).

TABLE 3.1
Summary of end space charging procedures.

Place where spaces are not charged for

Beginning of first sequence
End of first sequence
Beginning of second sequence
End of second sequence

Action
Initialize first row with zeros
Look for maximum in last row
Initialize first column with zeros
Look for maximum in last column

i
58 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

EXTENSIONS TO THE BASIC ALGORITHMS

The algorithms presented in Section 3.2 are generally adequate for most applications.
Sometimes, however, we have a special situation and we need a better algorithm. In this
section we study a few techniques that can be employed in some of these cases.

One kind of improvement is related to the problem's computational complexity. We
show that it is possible to reduce the space requirements of the algorithms from quadratic
(mn) to linear (m+n), at a cost of roughly doubling computation time. On the other hand,
we show a way of reducing also the time complexity, but this only works for similar
sequences and for a certain family of scoring parameters.

Another improvement has to do with the biological interpretation of alignments.
From the biological point of view, it is more realistic to consider a series of consecutive
spaces instead of individual spaces. We study variants of the basic algorithms adapted
to this point of view.

3.3.1 SAVING SPACE

The quadratic complexity of the basic algorithms makes them unattractive in some ap-
plications involving very long sequences or repeated comparison of several sequences.
No algorithm is known that uses asymptotically less time and has the same generality,
although faster algorithms exist if we restrict ourselves to particular choices of the pa-
rameters.

With respect to space, however, it is possible to improve complexity from quadratic
to linear and keep the same generality. The price to pay is an increase in processing
time, which will roughly double. Nevertheless, the asymptotic time complexity is still
the same, and in many cases space and not time is the limiting factor, so this improvement
is of great practical value. In this section we describe this elegant space-saving technique.

We begin by noticing that computing sim(.s, t) can be easily done in linear space.
Each row of the matrix depends only on the preceding one, and it is possible to perform
the calculations keeping only one vector in memory, which will hold partly the new row
being computed and partly the previous row. This is done in the code shown in Figure 3.5.
Obviously, the same is valid for columns, and if m < n, using this trick with the columns
uses less space. Notice that at the end of each iteration in the loop on i in Figure 3.5 the
vector a contains the similarities between s[l..i] and all prefixes of t. This fact will be
used later.

The hard part is to get an optimal alignment in linear space. The algorithm we saw
earlier depends on the whole matrix to do its job. To remove this difficulty, we use a
divide and conquer strategy, that is, we divide the problem into two smaller subproblems
and later combine their solutions to obtain a solution for the whole problem.

The key idea is the following. Fix an optimal alignment and a position i in s, and
consider what can possibly be matched with s[i] in this alignment. There are only two
possibilities:

3.3 EXTENSIONS TO THE BASIC ALGORITHMS 59

Algorithm BestScore
input: sequences s and t
output: vector a
m+-\s\
n*-\t\
for j «~ 0 to n do

a[j] «- j x g
for i «— 1 to m do

oW «- a[0]

for j <- 1 to n do
temp <— ajj]
ajj] <-max(a[j]-f-g,

old <— temp

FIGURE 3.5

Algorithm for similarity in linear space. In the end, a[n]
contains sim(s, t).

1. The symbol t[j] will match s[i], for some j in l..n.

2. A space between t[j] and t[j + 1] will match s[i], for some j in O..rc.

In the second case the index j varies between 0 and n because there is always one
more position for spaces than for symbols in a sequence. We also abused notation when
j = 0 or j = n. What we mean in these cases is that the space will be before t[l] or
after t[n], respectively.

Let

Optimal

denote an optimal alignment between x and y. Every alignment between s and t, optimal
or not, satisfies (1) or (2). In particular, our fixed optimal alignment must satisfy one of
these as well. If it satisfies (1), to obtain all of it we must concatenate

t[j\ 1..,]

while in case (2) we must concatenate

< 3 7)

These considerations give us a recursive method to compute an optimal alignment, as
long as we can determine, for a given i, which one of the cases (1) or (2) occurs and
what is the corresponding value of j .

This can be done as follows. According to Equations (3.6) and (3.7) we need, for
fixed i, the similarities between s[l..i — 1] and an arbitrary prefix of t, and also the simi-
larities between s[i + l..m] and an arbitrary suffix of t. If we had these values, we could

60 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

explicitly compute the scores of the j alignments represented in (3.6) and of the j + 1
alignments represented in (3.7). By choosing the best among these, we will have the in-
formation necessary to proceed in the recursion.

As we saw earlier, it is possible to compute in linear space the best scores between
a given prefix of s and all prefixes of t (see Figure 3.5). A similar algorithm exists for
suffixes. Hence, our problem is almost solved. The only thing left is to decide which
value of i to use in each recursive call. The best choice is to pick / as close as possible to
the middle of the sequence. The complete code appears in Figure 3.6. In this code, the
call

BestScore(s[a..i — 1], t[c..d],pref-sim)

returns inpref-sim the similarities between s[a..i — 1] and t[c..j] for all j in c — \..d.
Analogously, the call

BestScoreRev(s[i + l..b], t[c..d], suff-sim)

returns in suff-sim the similarities between s [i + 1 . .b] and t [j +1..d] for all j in c — 1..d.
The call

Align(l, ra, 1, n, 1, len)

will return an optimal alignment in the global variables aligns and align-t, and the size
of this alignment in len.

One last concern remains: Can the processing time go up too much with these ad-
ditional calculations? Not really. In fact, the time roughly doubles, as we show below.

Let T(m, n) be the number of times a maximum is computed in the internal loop of
BestScore or BestScoreRev as a result of a call Align(a, b, c, d, start, end) where m =
b — a + 1 and n = c — d + 1. It is easy to see that the total processing time will be
proportional to T(m, n) plus linear terms due to control and initializations. We claim
that T(m,n) < 2mn.

A proof can be developed by induction on m. For m = 1 no maximum computations
will occur, so obviously !T(1, n) < 2n. For m > 1 we will have a call to BestScore
with at most mn/2 maximum computations, another such amount for BestScoreRev, and
two recursive calls to Align, producing at most T(m/2, j) and T(m/2, n — j) maximum
computations. Adding this all up, we have

T(m9 n) < ^ + ^ + T(m/2, j) + T(m/2, n - j)

< mn + mj + m(n — j)

= 2mn,

proving the claim.

3.3.2 GENERAL GAP PENALTY FUNCTIONS

Let us define a gap as being a consecutive number k > 1 of spaces. It is generally ac-
cepted that, when mutations are involved, the occurrence of a gap with k spaces is more
probable than the occurrence of k isolated spaces. This is because a gap may be due to a

3.3 EXTENSIONS TO THE BASIC ALGORITHMS 61

Algorithm Align
input: sequences s and r, indices a, b, c, d, start position start
output: optimal alignment between s[a..b] and t[c..d] placed in vectors aligns

and align-t beginning at position start and ending at end
if s[a..b] empty or t[c..d] empty then

/ Base case: s[a..b] empty ort[c..d] empty
Align the nonempty sequence with spaces
end 4— start + max(|j|, \t\)

else
/ General case

BestScore(s[a..(i — 1)], t[c..d], pref-sim)
BestScoreRev(s[(i 4- l)..b], t[c..d], suff-sim)

posmax <— c — 1
typemax <- SPACE
vmax <— pref-sim[c — 1] 4- g 4- suff-sim[c — 1]
for j +- c to d do

if pref-sim[j — 1] 4- /?(i, y) -f- suff-sim[j] > vmox then
posmax <- j
typemax <- SYMBOL
vraax *-pref-sim[j — 1] + p(/, 7) + suff-sim[j]

if pref-sim[j] + g + suff-sim[j] > vmax then
posmax «— 7
typemax «— SPACE
vmax: —̂ pref-sim[j] + g 4- suff-sim[j]

if typemax = SPACE then
Alignia, i — 1, c, posmax, start, middle)
align-s[middle] «— s[i]
align-t[middle] ̂ - SPACE
Alignii + 1, b, posmax + 1, a7, middle 4-1,

else / typemax = SYMBOL
Alignia, i — 1, c,posmax — 1, start, middle)
align-s[middle] <- s[i]
align-t[middle] <- t[posmax]
Align{i 4-1, b,posmax + \,d, middle + 1,

FIGURE 3.6

A/2 optimal alignment algorithm that uses linear space.

single mutational event that removed a whole stretch of residues, while separated spaces
are most probably due to distinct events, and the occurrence of one event is more com-
mon than the occurrence of several events.

Up to now, we have not made any distinction between clustered or isolated spaces.
This means that a gap is penalized through a linear function. Denoting by w(k), for k >
1, the penalty associated with a gap with k spaces, we have

62 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

w(k) = bk,

where b is the absolute value of the score associated with a space.
In this section we present an algorithm that computes similarities with respect to

general gap penalty functions w. The algorithm has time complexity O (n3) for sequences
of length n and is therefore slower than the basic algorithm. The algorithm still has a
lot in common with the basic algorithm. The main difference is the fact that the scoring
scheme is not additive, in the sense that we cannot break an alignment in two parts and
expect the total score to be the sum of the partial scores. In particular, we cannot sepa-
rate the last column of an alignment and expect the alignment score to be the sum of the
score for this last column and the score for the remaining prefix of the alignment. How-
ever, score additivity is still valid if we break the alignment in block boundaries. Every
alignment can be uniquely decomposed into a number of consecutive blocks. There are
three kinds of blocks, enumerated below.

1. Two aligned characters from £

2. A maximal series of consecutive characters in t aligned with spaces in s

3. A maximal series of consecutive characters in s aligned with spaces in t

The term maximal means that it cannot be extended further. Figure 3.7 shows an
alignment and its blocks. Blocks in the first category above receive score p(a,b), where
a and b are the two aligned characters. Blocks in categories (2) and (3) receive score
—w(k), where k is the length of the gap series.

J i AAC AATTCCGACTAC
s2 ACTACCT CGC —

Si ACC

TATCCG AC

FIGURE 3.7

An alignment and its blocks.

The scoring of an alignment is not done at the column level now but rather at the
block level. Accordingly, only if we break in block boundaries can we expect score ad-
ditivity to hold. This implies some significant changes in our dynamic programming al-
gorithm to compute the similarity under a general gap penalty function. Instead of rea-
soning on the last column of the alignment, we must reason on the last block. Further-
more, blocks cannot follow other blocks arbitrarily. A block of type 2 or 3 above cannot
follow another block of the same type. This requires that we keep, for each pair (i, j) ,
not only the best score of an alignment between prefixes s[l..i] and t[l..j], but rather
the best score of these prefixes that ends in a particular type of block.

To compare sequence s of length m to sequence t of length n, we use three arrays of
size (m-fl)x(n-f-l), one for each type of ending block. Array a is used for alignments
ending in character-character blocks; b is used for alignments ending in spaces in s\ and
c is used for alignments ending with spaces in t.

3.3 EXTENSIONS TO THE BASIC ALGORITHMS 63

Initialization of the first row and column is done as follows, according to the mean-
ing of the arrays:

fl[0, 0] = 0

b[0, j] = -w(j)

All other values in the initial row and column should be set to — oo to make them harm-
less in the maximum computations that use them.

We now ask the standard question — What type of block terminates our optimal
alignment? The answer determines which array, a, b, or c, will be updated. The recur-
rence relations are as follows:

I a[i-lJ-l]
b[i - l , y - 1]
cli-lj-l]

i, j — k] — w (k) , f o r l < k < j
= m a x \ r . . , , / , x r i T

' c[i,j -k] - w(k), for 1 < k < j
a[i - K j] - w(k), for 1 < k < i
b[i - k, j] — w{k), for 1 < k < i.

As usual, p(i, j) indicates the score of a matching between s[i] and t[j].
Notice that entries in arrays b and c depend on more than one earlier value, be-

cause the last block can have variable length. Also, when computing an entry of by we do
not look at previous b entries, because type 2 blocks cannot immediately follow type 2
blocks. Likewise, c entries do not depend directly on earlier c entries. To obtain the final
answer, that is, the value of sim(,s, t), we take the maximum among a[m, «], b[m, ri\,
and c[m, n].

The time complexity of the algorithm is O (mn2 -f m2n). To see this, count the num-
ber of times some entry of some array is read, based on the given formulas. This is the
dominant term in the time complexity. It is easy to see that to compute a[i, j], b[i, j],
and c[i, j], we need to perform

3 + 2 . / + 2 i

accesses to previous array entries, which sum up to

i=i j=\

accesses for the entire arrays. The sum above can be computed in closed form as follows.
n

£ (2 / + 2j + 3) = 2ni + n(n + 1) + 3n = 2ni +n2 + 4n

m

^ 2 (2m + n2 + An) = nm{m + 1) + mn2 + Amn = m2n + 5mn + mn2.

Getting an optimal alignment is straightforward. The same ideas used in the pre-
vious algorithms work. We trace back in the arrays the entries that contributed to the

64 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

maximum computations, at the same time keeping track of which array we used.
Thus, we see that it is possible to use any gap penalty function. However, the price to

pay for this generality is a considerable increase in computing time and in storage space
(the three auxiliary arrays). This can be critical when sequence comparison by dynamic
programming is the bottleneck of a larger computation.

3.3.3 AFFINE GAP PENALTY FUNCTIONS

We have seen that the basic algorithm with a linear gap function runs in O (n2) time, for
sequences of length n\ we have also seen that allowing general gap functions makes the
running time go up to O(n3). The question we now pose is: If we use a less general gap
penalty function but one that still charges less for a gap with k spaces than for k isolated
spaces, can we still get an O(n2) algorithm? In this section we show that this is in fact
possible.

If we want to introduce the idea that k spaces together are more probable than k
isolated spaces (or at least equally probable), we must have

w{k) < kw{\)

or, in general,

w(ki +k2-\ + kn) < w(ki) -f w(k2) + h w(kn). (3.8)

A function w that satisfies Equation (3.8) is called a subadditivefunction. An affine func-
tion is a function w of the form w(k) = h + gk, k > 1, with w(0) = 0. It will be
subadditive if h, g > 0.

Another way of thinking about a function w as above is by saying that the first space
in a gap costs h + g, while the other spaces cost g. This cost is based on the difference
Aw(k) = w(k) — w(k — 1) of the penalty from k — 1 spaces to k spaces.

Let us now describe the dynamic programming algorithm for this case. The main
difference between the basic algorithm and this one is that here we need to make a dis-
tinction between the first space in a gap and the others, so that they can be penalized
accordingly. This is accomplished by the use of three arrays, a, b, and c, as was done for
the general gap function case. The entries in each one of these arrays have the following
meaning:

a[i, j] = maximum score of an alignment between s[l..i] and
t[l..j] that ends in s[i] matched with t[j].

b\i, j] = maximum score of an alignment between s[l..z] and
t[l..j] that ends in a space matched with t[j].

c[i, j] = maximum score of an alignment between J [1 . . /] and
t[l..j] that ends in s[i] matched with a space.

The entries (/, j) of these arrays depend on previous entries according to the fol-
lowing formulas, valid for 1 < / < m and 1 < j < n:

f a[i~lj-l]
a[i, j] = p(i, j) + max I b[i - 1 , 7 - 1]

c[i~ 1 , 7 - 1]

3.3 EXTENSIONS TO THE BASIC ALGORITHMS 65

b[i, j] = max <

c[i, j] = max «

As before, p(i, j) indicates the score of a matching between s[i] and t[j].
Let us understand the preceding formulas. The formula for a[i, j] includes the term

p(i* j)* which is the score of the last column, plus the best score of an alignment between
the prefixes s[l..i — 1] and t[l..j — 1].

For b[i, j], we know that the last column will contain a space. We still have to check
whether this is the first space of a gap or a continuation space, so that we can penalize
it correctly. Furthermore, we need to read from the arrays the values of the best scores
for the prefixes involved, namely, J [1 . . I] and t[\..j — 1]. That is why we always look
at entries (i, j — 1) in the formulas for b[i, j]. Alignments corresponding to a[i, j — 1]
and c[i, j — 1] do not end with a space in s, hence the final space must be penalized
as the first of a gap, that is, subtracting h + g. Alignments corresponding to b[i, j — 1]
already have a space in s at the end, so the space matched with t[j] must be penalized as
a continuation space, that is, subtracting g. These three possibilities are exhaustive, so
taking the maximum among them gives the correct value. A similar argument explains
the formula for c[i, j].

The initialization of the arrays requires some care. Again, it will depend on whether
we want to charge for initial spaces. To make it concrete, let us assume that we want to
charge for all spaces, leaving to the reader the task of adapting the algorithm to the other
cases.

The entries that need initialization are those with indices of the form (/, 0) for 0 <
/ < m or (0, j) for 0 < j < n. The initialization has to be done according to the contents
of each array as given in the definition. Thus, for array b, for instance, we have

b[i, 0] = —oo for 0 < i < m and
b[0, j] = -(h + gj) for 1 < j < n.

We assign the value — oo to b[i, 0] to be consistent with the definition, because there
is no alignment between J[1. . I] and f [1 ..0] (an empty sequence) in which a space is
matched with t[0], since there is no f [0]. Hence, if there are no alignments, the maximum
value must be — oo, which is the identity for maximum computations. On the other hand,
there is exactly one alignment ending with a space in s between s[1 ..0] (empty sequence
again) and t[l..j], and this alignment has score —{h + gj).

In an analogous manner we initialize c letting

c[i, 0] = — (h + gi) for 1 < / < m and
c[0, j] = —oo for 0 < j < n,

and, finally,

a[0, 0] = 0,
a[i, 0] = —oo for 1 < i < m and
<?[0, j] = —oo for 1 < j < n.

66 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

In the initialization of a we used alignments that do not end in spaces, generalizing
the given definition. To get the final result, that is, the similarity, it suffices to take the
maximum among a[m, w], b[m, «], and c[m, w], given that this covers all possibilities.

We can construct an optimal alignment in a manner analogous to the case of general
gap functions. Just trace back from the final position (ra, n) the entries that were chosen
as maxima in the process of filling the arrays until the initial position (0, 0) is reached.
During this traceback, it is necessary to remember not only the current position but also
which array (a, b, or c) it belongs to.

We leave to the reader the task of verifying that the time complexity of this algorithm
is indeed 0(mn). The version just described has space complexity O(mn) as well, but
linear-space versions have been developed (see the bibliographic notes).

3.3.4 COMPARING SIMILAR SEQUENCES

Two sequences are similar when they "look alike" in some sense. We have already devel-
oped our intuition about the concept of similarity and have formalized it through align-
ments and scores. So, for us, two sequences are similar when the scores of the opti-
mal alignments between them are very close to the maximum possible (where "maxi-
mum possible" will be made precise). This section is about faster algorithms to find good
alignments in this case. We analyze global alignments only.

Let us first treat the case where the two sequences of interest, s and t, have the same
length n. This is a fair assumption, given that we are focusing on similar sequences. If s
and t have the same length, the dynamic programming matrix is a square matrix and its
main diagonal runs from position (0, 0) to (/?, n). Following this diagonal corresponds to
the unique alignment without spaces between s and t. If this is not an optimal alignment,
we need to insert some spaces in the sequences to obtain a better score. Notice that spaces
will always be inserted in pairs, one in s and one in t.

As we insert these space pairs, the alignment is thrown off the main diagonal. Con-
sider for a moment the following two sequences:

s — GCGCATGGATTGAGCGA

t = TGCGCCATGGATGAGCA.

The optimal alignments correspond to paths that reach up to the diagonal twice removed
from the main one, as in Figure 3.8. The best alignments include two pairs of spaces.
In this case, the number of space pairs is equal to how far the alignment departed from
the main diagonal, but this does not always happen. One thing is certain, though: The
number of space pairs is greater than or equal to the maximum departure.

The basic idea then goes as follows. If the sequences are similar, the best alignments
have their paths near the main diagonal. To compute the optimal score and alignments,
it is not necessary to fill in the entire matrix. A narrow band around the main diagonal
should suffice.

The algorithm KBand in Figure 3.9 performs the matrix fill-in in a band of horizon-
tal (or vertical) width 2k + 1 around the main diagonal. At the end, the entry a[nt n]
contains the highest score of an alignment confined to that band. This algorithm runs in
time O(kn), which is a big win over the usual O(n2) if k is small compared to n.

3.3 EXTENSIONS TO THE BASIC ALGORITHMS 67

T
G
C
G
C
C
A
T
G
G
A
T
G
A
G
C
A

-GCGC-ATGGATTGAGCGA
TGCGCCATGGAT-GAGC-A

G C G C A T G G A T T G A G C G A

\
o \

o \
o \

o \
o
o

\

o
\

o
\

o
\

o
\

o
\

o
\
o \

o \
o \

o \
o \

FIGURE 3.8

An optimal alignment and its corresponding path in the
dynamic programming matrix. A line is drawn along the

main diagonal

Observe that we do not use entries outside of the fc-strip at all. We do not initialize
them, and we do not consult them for maximum computations. To test whether a certain
position (f, j) is inside the fc-strip, we use the following criterion:

InsideStrip(i, j,k) = (-k <i - j <k).

As in the other dynamic programming algorithms, each entry a[i, j] depends on a[i —
1, j], atf — ljj — 1], and a[i, j — 1]. In the code, we need not test position (i — 1, j — 1),
because it is in the same diagonal as (i, j), so it will always be inside the strip. Tests must
be performed for (i — 1, j) and (i, j — 1), which may be outside the strip when (i, j) is
in the border.

How can we use algorithm KBandl We choose a value for k and run the algorithm. If
a[n,n] is greater than or equal to the best score that could possibly come from an align-
ment with k -f 1 or more space pairs, we are lucky: We have found an optimal alignment
with just O(kn) steps. The best possible score, given that we have at least k + 1 space
pairs, is

M(n-k-\)+ (3.9)

which is computed assuming that there are exactly k -f 1 space pairs and that the other
pairs are matches. Here M is the score of a match, and g is added for each space. We will
assume that M > 0 and g < 0.

68 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

Algorithm KBand
input: sequences s and t of equal length n, integer k
output: best score of alignment at most k diagonals away from main diagonal
7 I < - | J |
for / « - 0 to k do

a[i, 0] +- i x g
for j <— 0 to k do

tf [0, ;] <- j x g
for i «— 1 to 7i do

for d < k to k do
j ? « - i + d
if 1 < j; < n do

// compute maximum among predecessors
a[i, j] <- a[i - l , y - l] + p(i, y)
if InsideStrip{i — 1, j,k) then

a[i, j] ^- max(tf(7, y], a[i - 1, j] + g)
if InsideStrip(i, j -\,k) then

a[z, ;] ^ - max(<2[/, j], a[i, j - 1] + g)
return a[/2, n]

FIGURE 3.9

Algorithm for k-strip around main diagonal.

If a [n, ft] is smaller than the quantity (3.9), we double k and run the algorithm again.
If the initial value of A: is 1, further values will be powers of two. The stop condition
becomes

ak[n, n]>M(n-k-l) + 2(k + l)g,

which is equivalent to

* - M-2g

At this point, we have already run the algorithm many times, each time with a larger
k, so that the total complexity is

n -f In + An -\ h kn < 2kn,

assuming we use powers of two. To bound this total complexity, we need an upper bound
on k. Now, we did not stop earlier, so

k_ Mn -aic/2[n,n] _
2 < M - 2g

If a^ln, n] = akji\n, n], then this is the optimum score sim(5, i), and our bound is

s i m (, , 0 A
- 2g)M

If ajfe [n, n] > ak/i[n, n], then optimal alignments have more than k/2 pairs of spaces,

3.4 COMPARING MULTIPLE SEQUENCES 69

and therefore

s,t)

which leads to

<M (n- - -

Mn-sim(s,t)

M-2g
almost the same bound as above.

Observe that M — 2g is a constant. The time complexity is then O(dn), where d
is the difference between the maximum possible score Mn — the score of two identical
sequences — and the optimal score. Thus, the higher the similarity, the faster the answer.

It is straightforward to extend this method to general sequences, not necessarily with
the same length. Space-saving versions can also be easily derived.

COMPARING MULTIPLE SEQUENCES

So far in this chapter we have concentrated on the comparison between a pair of se-
quences. However we often are given several sequences that we have to align simultane-
ously in the best possible way. This happens, for example, when we have the sequences
for certain proteins that have similar function in a number of different species. We may
want to know which parts of these sequences are similar and which parts are different.
To get this information, we need to build a multiple alignment for these sequences, and
that is the topic of this section.

The notion of multiple alignment is a natural generalization of the two-sequence
case. Let s\, . . . , Sk be a set of sequences over the same alphabet. A multiple alignment
involving si, . . . , Sk is obtained by inserting spaces in the sequences in such a way as to
make them all of the same size. It is customary to place the extended sequences in a ver-
tical list so that characters — or spaces — in corresponding positions occupy the same
column. We further require that no column be made exclusively of spaces. Figure 3.10
shows a multiple alignment involving four short amino acid sequences. (Multiple align-
ments are more common with proteins, so in some of our examples in this section we
use sequences of amino acids.)

One important issue to decide in multiple alignment is the precise definition of the

MQPILLL
MLR-LL-
MK-ILLL
MPPVLIL

FIGURE 3.10

Multiple alignment of four amino acid sequences.

70 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

quality of an alignment. We will next study one way of scoring a multiple alignment
based on pairwise alignments. In addition, scientists also look at multiple alignments by
placing the sequences in a tree structure rather than piling them up. This leads to different
measures of quality that we discuss in subsequent sections.

3.4.1 THE SP MEASURE

Scoring a multiple alignment is more complex than its pairwise counterpart. We restrict
ourselves to purely additive functions here; that is, the alignment score is the sum of col-
umn scores. Therefore we need a way to assign a score to each column and then add them
up to get the alignment score. However, to score a column, we want a function with k
arguments, where k is the number of sequences. Each one of these arguments is a char-
acter or a space. One way to do that would be to have a fc-dimensional array that could
be indexed with the arguments and return the value. The problem with this approach is
that it is necessary to specify a value for each possible combination of arguments, and
there could be as many as 2k — 1 such combinations. A typical value for /c is 10, and that
results in more than 1000 possibilities. Some more manageable methods to define such
a function are necessary.

Such methods can be obtained by determining "reasonable" properties that such a
function should have. First, the function must be independent of the order of arguments.
For instance, if a column has I , -, I , V and another has V, I , I , -, they should both
receive the same score. Second, it should be a function that rewards the presence of many
equal or strongly related residues and penalizes unrelated residues and spaces. A solution
that satisfies these properties is the so-called sum-of-pairs (SP) function. It is defined as
the sum of pairwise scores of all pairs of symbols in the column. For instance, the score
of a column with the above content is

SP-score(l, - , I ,V) = p(I , -) + p(I , I) + p(I,V) +

where p(a,b) is the pairwise score of symbols a and b. Notice that this may include
a space penalty specification when either a or b is a space. This is a very convenient
scheme, because it relies on pairwise scores like the ones we use for two-sequence com-
parison. The SP scoring system is widely used due to its simplicity and effectiveness.

A small but important detail needs to be addressed to complete the definition. Al-
though no column can be composed exclusively by spaces, it is possible to have two
or more spaces in a given column. When computing the SP score, we need a value for
p(~, -) . This value is not specified in two-sequence comparison because it never appears
there. However, it is necessary for SP-based multiple comparison. The common practice
is to set p(-,-) = 0. This may seem strange, given that spaces are generally penalized
(i.e., when there is a space, the pairwise score is negative), so two spaces should be even
more so. Nevertheless, there are good reasons to define p(- , -) as zero. One of them is
related to pairwise alignments again. We often draw conclusions about a multiple align-
ment by looking at the pairwise alignments it induces. Indeed, in any multiple alignment,
we may select two of the sequences and just look at the way they are aligned to each
other, forgetting about all the rest. It is not difficult to see that this produces a pairwise

3.4 COMPARING MULTIPLE SEQUENCES 71

alignment, except for the fact that we may have columns with two spaces in them. But
then we just remove these columns and derive a true pairwise alignment. An example
of this procedure is presented in Figure 3.11. This is what we call the induced pairwise
alignment, or the projection of a multiple alignment.

A very useful fact, which is true only if we have p (- , -) = 0, is the following for-
mula for the SP score of a multiple alignment a:

SP-score(a) =]pscore(a0) , (3.10)

where a,y is the pairwise alignment induced by a on sequences s,- and Sj. This is true
because it reflects two ways of doing the same thing. We may compute the score of each
column and then add all column scores, or compute the score for each induced pairwise
alignment and then add these scores. In any case, we are adding, for each column c and
for each pair (i, j), the score p(sf

t[c], Sj[cJ), where sr indicates the extended sequence
(with spaces inserted). But this is true only if /?(- ,-) = 0, because these quantities
appear in the first computation only.

Multiple alignment

1 PEAALYGRFT IKSDVW
2 PEAALYGRFT IKSDVW
3 PESLAYNKF SIKSDVW
4 PEALNYGRY SSESDVW
5 PEALNYGWY SSESDVW
6 PEVIRMQDDNPFSFQSDVY

Get only sequences 2 and 4

PEAALYGRFT IKSDVW
PEALNYGRY S SESDVW

Remove columns with two spaces

PEAALYGRFT-IKSDVW
PEALNYGRY-SSESDVW

FIGURE 3.11

Induced pairwise alignment (projection).

Dynamic Programming

Having decided on a measure, or score, for determining the quality of a multiple align-
ment, we would like to compute the alignments of maximum score, given a set of se-
quences. These will be our optimal alignments.

It is possible to use a dynamic programming approach here, as we did in the two-
sequence case. Suppose, for simplicity, that we have k sequences, all of the same length n.

72 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

We use a ^-dimensional array a of length n + 1 in each dimension to hold the optimal
scores for multiple alignments of prefixes of the sequences. Thus, a[i\,..., i*] holds the
score of the optimal alignment involving £i[l . . / i] , . . . , .s*P ••*'*]•

After initializing with a[0, . . . , 0] <- 0, we must fill in this entire array. Just to store
it requires O(nk) space. This is also a lower bound for the computation time, because we
have to compute the value of each entry. The actual time complexity is higher for a num-
ber of reasons. First, each entry depends on 2k — 1 previously computed entries, one for
each possible composition of the current column of the alignment. In this composition,
each sequence can participate with either a character or a space. Because we have k se-
quences, we have 2k compositions. Removing the forbidden composition of all spaces,
we obtain the final count of 2k — 1. This incorporates a factor of 2k to the already expo-
nential time complexity.

Then there is the question of accessing the data in the array. Very few programming
languages, and certainly none of the most popular ones, will let users define an array
with the number of dimensions k set at run-time. The alternative is to implement our
own access routines. In any case, with or without language support, we can expect to
spend O(k) steps per access.

Another issue is the computation of column scores. The SP method requires O(k2)
steps per column, as there are k(k — l)/2 pairwise scores to add up. Simpler schemes —
for instance, just count the number of nonspace symbols — require at least O (k) steps,
given that we have to look at all arguments.

Finally, there is the actual computing of the value of a[i\,..., /*], which involves a
maximum operation. Using boldface letters to indicate ^-tuples, the command we must
perform can be written as

a[i] <- max{<z[i — b] + SP-score(Column(s, i, 6))},

where b ranges over all nonzero binary vectors of k elements, and

Column(s, i, b) = {Cj)\<j<k

with

c = { sjUj] ifbj = l

The total running time estimate for this first plan for implementation is therefore
O(k22knk) if we use SP, or O(k2knk) if column scores can be computed in O(k). If k
is fixed, k nested for loops can be used to fill in the array. Optimal alignments can be
recovered from this array by a backtracking procedure analogous to the one used in the
pairwise case (Section 3.2.1). Straightforward extensions yield a similar method for the
case where the sequences do not necessarily have the same length. In any case, the com-
plexity of this algorithm is exponential in the number of input sequences, and the ex-
istence of a polynomial algorithm seems unlikely: It has been shown that the multiple
alignment problem with the SP measure is NP-complete (see the bibliographic notes).

3.4 COMPARING MULTIPLE SEQUENCES 73

Saving Time

The exponential complexity of the pure dynamic programming approach makes it unap-
pealing for general use. The main problem is the size of the array. For three sequences
we already have a cube of O(n3) cells, and as the number & of sequences grows we have
larger and larger "volumes" to fill in. Clearly, if we could somehow reduce the amount
of cells to compute, this would have a direct impact on processing time.

This section describes a heuristic that does exactly that. We will show how to incor-
porate it into the dynamic programming algorithm to speed up its computation. It is a
heuristic because in the worst case all cells will have to be computed; in practice, how-
ever, we can expect a good speedup. The heuristic is based on the relationship between a
multiple alignment and its projections on two-sequence arrays, and, in particular, it uses
Equation (3.10) relating SP scores to pairwise scores. Thus, the method we are about to
see works only for the SP measure.

The outline of the method is as follows. We have k sequences of length w,, for 1 <
/ < k, and we want to compute the optimal alignments according to the SP measure. We
will still use dynamic programming, but now we do not want to treat all cells. We just
want the cells "relevant" to optimal alignments, in some sense. But exactly which cells
will we deem relevant, and why?

The answer is to look at the pairwise projections of the cell. In a preprocessing step,
we create conditions that will allow us to perform a test of relevance for arbitrary cells.
To take advantage of this test and reduce the number of cells we need to look at, we have
to modify the fill-in order as well.

Relevance Test

Let a be an optimal alignment involving si , . . . , $ * . The first thing we must know is that
even though a is optimal its projections are not necessarily the best ones for the given
sequence pair. Figure 3.12 shows a case in which a projection fails to be optimal. It is
unfortunate that such cases can happen. Were it not for them, we could easily establish
a test for relevant cells: A cell is relevant when each of its pairwise projections is part of
an optimal alignment of the two sequences corresponding to the projection.

Before going on, let us remark that it is easy to use the comparison algorithms we
have seen for two sequences s and t to produce a matrix in which each entry (/, j) con-

AT
A -
- T
AT
AT

Optimal multiple
alignment

FIGURE

A -
- T

Nonoptimal
projection

3.12

Optimal alignment with nonoptimal projection.

74 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

tains the highest score of an alignment that includes the cut (i, j). A pairwise alignment
a contains a cut (/, j) when a can be divided into two subalignments, one aligning s [1. .i]
with t[l..j] and the other aligning the rest of s with the rest of t.

To obtain the desired values, we add two dynamic programming matrices a and b
with the contents,

b[i, j] = sim(s[j -f l..n], t[j 4- l..m]),

where n = \s\ and m = \t\. The matrix a is just the standard matrix we have been
using all along. The matrix b can be computed just like a, but backward. We initialize
the last row and column and proceed backward until we reach b[0, 0]. We did this in
Section 3.3.1, when we discussed linear space implementations of dynamic program-
ming algorithms. The function BestScoreRev there does what we want in b. Then, sum
c — a -\-b contains exactly the highest score of an alignment that cuts at (i, j). We call
c the matrix of total scores, while a and b are the matrices of prefix and suffix scores,
respectively.

The matrix c is more appealing to the eyes than either a or b. We can quickly spot the
best alignments just by looking at c, a feat that is considerably more difficult to do with
either a orb. Let us explain this with an example. In Figure 3.13 we have the matrices a
and c for a certain pair of sequences and a certain scoring system. Can you see exactly
where the optimal alignments are by looking at a? It is much easier with c because we
merely follow the cells with the highest score.

A

T

T

C

G

G

0
-2
-4
-6
-8

-10
-12

G

-2
-1
-3
-5
-7
-7
-9

A

-4
-1
-2
-4
-6
-8
-8

T

-6
-3
0
-1
-3
-5
-7

T

-8
-5
-2
1
-1
-3
-5

C

-10
-7
-4
-1
2
0
-2

A

T

T

C

G

G

-2
-7
-10
-13
-14
-17
-22

G

-2
-4
-7
-10
-13
-14
-17

A

-7
-2
-5
-7
-10
-13
-14

T

-12
-7
-2
-5
-5
-8
-11

T

-17
-12
-7
-2
-4
-4
-7

C

-22
-17
-12
-7
-2
-2
-2

FIGURE 3.13
Dynamic programming matrices: prefix scores (left) and

total scores (right).

Although projections of optimal alignments may not be optimal themselves, we can
establish a lower bound for the projection scores, as long as we have a lower bound for
the optimal score. The following result tells us exactly how this works.

THEOREM 3.1 Let a be an optimal alignment involving s\,
L, then

. . , sk. If SP-score(a) >

3.4 COMPARING MULTIPLE SEQUENCES 75

where

Lij — L — ^ P (sim(sx, sy)).
x < y

Proof. We have, successively,

SP-score(a) > L,

^ score (axy) > L,

^T^ (score (a^)) > L — score (a tj),
x < y

y (simfe, sy)) > L —
x < y

from which the result follows. •

We are now in a position to test whether a cell with index i = (i\,..., /&) is relevant
to optimal alignments with respect to lower bound L. Simply put, this cell is relevant if
all of its projections satisfy the conditions of the previous theorem. In other words, i is
relevant when

r 17 i 1 > T

for all x and y such that 1 < x < y < k, where cxy is the matrix of total scores for sx and
sy. According to the theorem, only relevant cells can participate in optimal alignments,
although not all relevant cells will participate in optimal alignments. Nevertheless, this
affords a reduction in the number of cells that are potential candidates for an optimal
alignment. This reduction becomes more significant as L approaches the true optimal
score.

To obtain a suitable bound L, we may just choose an arbitrary multiple alignment
involving all sequences and take its score as L. Of course this is a lower bound since
optimal alignments have the highest possible score. If we already have a reasonably good
alignment, we can use its score and improve the alignment to get an optimal one by the
method just sketched. An alternative lower bound can be obtained using the results of
Section 3.4.2.

Implementation Details

We have to be a bit careful when implementing the heuristic just described. It is not
enough to test all cells for relevance and then use only the relevant ones. This will achieve
no appreciable time reduction, because we are still looking at all the cells to test them.

76 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

We need a way of actually cutting off completely the irrelevant cells, so that they are not
even looked at.

Here is one possible strategy. We start with the cell at 0 = (0, 0 , . . . , 0), which
is always relevant, and expand its influence to dependent relevant cells. Each one of
these will in turn expand its influence, and so on, until we reach the final corner cell at
(ni,..., nk). In the whole process, only relevant cells will be analyzed.

To explain the strategy better, we need a few definitions. A cell i influences another
cell j if i is one of the cells used in the maximum computation to determine the value
of a[j]. In this case, we also say that j depends on i. Another characterization of this
fact is that b — j — i is a vector with either 0 or 1 in each component, and % ^ j . So,
each cell depends on at most 2* — 1 others, and influences at most 2k — 1 others. We say
"at most" because border cells may influence or depend on less than 2* — 1 other cells.

We keep a pool of cells to be examined. Initially, only 0 is in the pool. The pool
contains only relevant cells at all times. When a cell i enters the pool, its value a[i] is
initialized. During its stay in the pool, this value is updated. When this cell is removed
from the pool, the current value of a[i] is taken as the true value of this cell and used in
a propagation to the relevant cells that depend on i.

The value of a cell is propagated as follows. Let j be a relevant cell that depends
on i. If j is not in the pool, we put it there and initialize its value with the command

a{ j] <— a[i] + SP-score(Column(s, i, b)).

If j is already in the pool, we conditionally update its value with the command

#[j] —̂ max(a[j], a[i] + SP-score(Column(s, i, 6))).

It is important to make sure that each time some cell is to be removed from the pool,
the lexicographically smaller one is selected. This guarantees that this cell has already
received the influences due to other relevant cells, and its value need not be further up-
dated. The process stops when we reach cell (wi,. . . , ft*), which is necessarily the last
cell examined; its value is the SP score sought. The algorithm for computing the score
is shown in Figure 3.14. To recover the optimal alignments, we need to keep track of the
updates somehow. One way is to construct a dependence graph where the relevant cells
are nodes and the edges represent influences that provided the maximum value. Time
and space complexity of this algorithm are proportional to the number of relevant cells.

3.4.2 STAR ALIGNMENTS

Computing optimal multiple alignments can take a long time if we use the standard dy-
namic programming approach, even with the savings sketched in the previous section;
so other methods have been developed. These alternative ways are often heuristic, in
the sense that they do not yield any guarantee on the quality of the resulting alignment.
They are simply faster ways of getting an answer, which in many cases turns out to be a
reasonably good answer.

One such method is what has been termed the star alignment method. It consists
in building a multiple alignment based upon the pairwise alignments between a fixed
sequence of the input set and all others. This fixed sequence is the center of the star. The

3.4 COMPARING MULTIPLE SEQUENCES 77

Algorithm Multiple-Sequence Alignment
input: s = (s\,... ,Sk) and lower bound L
output: The value of an optimal alignment
/ Compute Lxy, 1 < x < y < k
for all x and y, l<x<y<kdo

Compute cxy, the total score array for sx and sy

for all x and y, l<x<y<kdo

Lxy +-L- £(„,*)*(*.» s im(^ , sq)
II Compute array a
pool <- {0}
while pool not empty do

i «<— the lexicographically smallest cell in the pool
pool *- pool \{i]
if cxy[iXJ iy] > Lxy, Vx, y, 1 < x < y < k, then / Relevance test

for all j dependent on i do
if j <£ pool then

pool <- pool U { j}
a[j] «— a[i] + SP-score{Column(s, i, j — i))

else
a[j] —̂ max(a[j] , a[i] + SP-score(Column(s, i, j — i)))

return a[n\,..., w]̂

FIGURE 3.14

Dynamic programming algorithm for multiple-sequence
comparison with heuristics for saving time.

alignment a constructed is such that its projections aJ7 are optimal when either i or j is
the index of the center sequence.

Let s\, . . . , Sk be k sequences that we want to align. To construct a star alignment,
we must first pick one of the sequences as the center. We will postpone the discussion
as to how this selection should be done. For the moment, let us just assume that the cen-
ter sequence has been selected and its index is a number c between 1 and k. Next we
need, for each index i ^ c, an optimal alignment between st and sc. This can be ob-
tained with standard dynamic programming, so this phase takes O(kn2) time, assuming
all sequences have O{n) length.

We aggregate these pairwise alignments using a technique known as "once a gap,
always a gap," applied to the center sequence sc. The construction starts with one of the
pairwise alignments, say the one between s\ and sc, and goes on with each pairwise align-
ment being added to the bunch. During the process, we progressively increase the gaps
in sc to suit further alignments, never removing gaps already present in sc — once a gap
in sc, always a gap.

Each subsequent pairwise alignment is added using sc as a guide. We have a multi-
ple alignment involving sc and some other sequences in one hand, and a pairwise align-
ment between sc and a new sequence in the other. We add as few gaps as necessary in
both alignments so that the extended copies of sc agree. Then just include the new ex-
tended sequence in the cluster, given that it now has the same length as the other extended
sequences.

The time complexity of this joining operation depends on the data structure used to

78 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

represent alignments, but it should not be higher than O (kl) using reasonable structures,
where / is an upper bound on the alignment lengths. Because we have O(k) sequences
to add, we end up with O(k2l) for the joining phase. The total time complexity is then
O (kn2 + k2l). If we want to know the resulting score, this costs an extra O(k2l), but the
asymptotic complexity remains the same.

How should we select the center sequence? One way is to just try them all and then
pick the best resulting score. Another way is to compute all O(k2) optimal pairwise
alignments and select as the center the string that maximizes

~ sc). (3.11)

Example 3.1 Consider the following five DNA sequences. We begin by constructing
a table with the pairwise similarities among the sequences (see Figure 3.15). The score
system used is the same as in Section 3.2.1, where we explain the basic algorithm.

S\ = ATTGCCATT

52 = ATGGCCATT

53 = ATCCAATTTT

54 = ATCTTCTT

s5 = ACTGACC

Sl

S2

S3

s4

S5

S\

1
-2
0

- 3

7

- 2
0

- 4

^3

- 2
- 2

0
- 7

FIGURE 3.

s4

0
0
0

- 3

15

s5

- 3
- 4
- 7
- 3

Pairwise scores for the sequences in Example 3.1.

From the table we see that the first sequence, s\, is the one that maximizes expres-
sion (3.11). Our next step is then to choose optimal alignments between 51 and all the
other sequences. Suppose we choose the following optimal alignments:

ATTGCCATT
ATGGCCATT

ATTGCCATT—
ATC-CAATTTT

3.4 COMPARING MULTIPLE SEQUENCES 79

ATTGCCATT
ATCTTC-TT

ATTGCCATT
ACTGACC

In this example the only spaces introduced in s\, the center sequence, and in all align-
ments were the two spaces at the end forced by sequence S3. Therefore, s\ will have just
these two gaps in the final multiple alignment. The other sequences are aligned to s\ as
in the chosen alignments. The result is shown here:

ATTGCCATT—
ATGGCCATT—
ATC-CAATTTT
ATCTTC-TT--
ACTGACC

3.4.3 TREE ALIGNMENTS

An alternative to comparing multiple sequences is discussed in this section. The motiva-
tion for this approach is that sometimes we have an evolutionary tree for the sequences
involved (evolutionary trees are the subject of Chapter 6). In this case, we can compute
the overall similarity based on pairwise alignments along tree edges. Contrast this with
the SP measure, which takes into account all parwise similarities.

Suppose that we are given k sequences and a tree with exactly k leaves, with a one-
to-one correspondence between leaves and sequences. If we assign sequences to the
interior nodes of the tree, we can compute a weight for each edge, which is the simi-
larity between the two sequences in the nodes incident to this edge. The sum of all these
weights is the score of the tree with respect to this particular sequence assignment to in-
terior nodes. Finding a sequence assignment that maximizes the score is what has been
called the tree alignment problem. Star alignments can be viewed as particular cases of
tree alignments in which the tree is a star.

Example 3.2 Consider the input shown in Figure 3.16. Assigning sequence CT to ver-
tex x and sequence CG to vertex y, we have a score of 6. The scoring system used is
p(a, b) = 1 if a = b and 0 otherwise, and p(a, —) = —1.

The tree alignment problem is NP-hard. There exists an algorithm that finds an opti-
mal solution, but it is exponential in the number of sequences. By using the ideas devel-
oped in Section 3.4.1 it is possible to improve space and time requirements in practice.
Approximation algorithms with good performance guarantees have been designed for
the case when edge weights are defined in terms of distance rather than similarity (see

80 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

CAT v , CTG

/ " ' \
GT CG

FIGURE 3.16

Input for a tree alignment problem.

Section 3.6.1). In this case we look for a sequence assignment that minimizes the dis-
tance sum. References for these results are given in the bibliographic notes.

DATABASE SEARCH

With the advent of fast and reliable technology for sequencing nucleic acids and proteins,
centralized databases were created to store the large quantity of sequence data produced
by labs all over the world. This created a need for efficient programs to be used in queries
of these databases. In a typical application, one has a query sequence that must be com-
pared to all those already in the database, in search of local similarities. This means hun-
dreds of thousands of sequence comparisons.

The quadratic complexity of the methods we have seen so far for computing similar-
ities and optimal alignments between two sequences makes them unsuitable for search-
ing large databases. To speed the search, novel and faster methods have been developed.
In general, these methods are based on heuristics and it is hard to establish their theoret-
ical time and space complexity. Nevertheless, the programs based on them have become
very important tools and these techniques deserve careful study.

In this section we concentrate on two of the most popular programs for database
search. Neither uses pure dynamic programming, although one of them runs a variant of
the dynamic programming method to refine alignments obtained by other methods.

Before we start describing these programs we make a little digression to explain
the foundations of certain scoring matrices for amino acids, which are very important in
database searches and in protein sequence comparison in general.

3.5.1 PAM MATRICES

When comparing protein sequences, simple scoring schemes, such as +1 for a match, 0
for a mismatch, and — 1 for a space, are not enough. Amino acids, the residues that make
up protein sequences, have biochemical properties that influence their relative replace-
ability in an evolutionary scenario. For instance, it is more likely that amino acids of sim-
ilar sizes get substituted for one another than those of widely different sizes. Other prop-

3.5 DATABASE SEARCH 81

erties such as the tendency to bind with water molecules also influence the probability
of mutual substitution. Because protein comparisons are often made with evolutionary
concerns in mind, it is important to use a scoring scheme that reflects these probabilities
as much as possible.

The factors that influence the probability of mutual substitution are so numerous
and varied that direct observation of actual substitution rates is often the best way of
deriving similarity scores for pairs of residues. A standard procedure toward this goal
is based on an important family of scoring matrices, the so-called PAM matrices, very
popular among practitioners in the area. The acronym PAM stands for Point Accepted
Mutations, or Percent of Accepted Mutations, in a reference to the fact that the basic
1-PAM matrix reflects an amount of evolution producing on average one mutation per
hundred amino acids. In this section we briefly describe how PAMs are computed and
what they mean.

Our description departs slightly from the original derivation of the matrices, but it
highlights the role played by amino acid frequencies and mutabilities in coming up with
the scores. In particular, the definition of mutability may be different in different sources.

Before anything else, the user has to choose an evolutionary distance at which to
compare the sequences. These matrices are functions of this distance. For instance, a
250-PAM matrix is suitable for comparing sequences that are 250 units of evolution
apart. In our derivation, we first construct the matrix corresponding to 1 PAM and then
obtain the matrices for other distances from this one. Also, mutations are viewed at the
amino acid level only, not at the DNA level.

For each evolutionary distance we have a probability transition matrix M and a
scores matrix S. The scores matrix is obtained from the probability matrix, so we start
our description with M. The necessary ingredients for building the 1-PAM matrix M are
the following:

• A list of accepted mutations

• The probabilities of occurrence pa for each amino acid a

An accepted mutation is a mutation that occurred and was positively selected by the
environment; that is, it did not cause the demise of the particular organism where it oc-
curred. One way to collect accepted mutations is to align two homologous proteins from
different species, for example, the hemoglobin alpha chain in humans and in orangutans.
Each position where the sequences differ will give us an accepted mutation. We consider
these accepted mutations as undirected events; that is, given a pair a, b of aligned amino
acids, we do not know for sure which one mutated into the other. Whichever was present
in this same position in the ancestral sequence is the one that mutated into the other, but
we do not know the ancestral sequence. It is even possible that the ancestral sequence
contained a third amino acid that mutated into the two present ones, but this possibility is
minimized taking very closely related sequences. It is important for the basic 1-PAM ma-
trix that we consider immediate mutations, a -> b, not mediated ones like a —• c -> b.

The probabilities of occurrence can be estimated simply by computing the relative
frequency of occurrence of amino acids over a large, sufficiently varied protein sequence
set. These numbers satisfy

82 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

From the list of accepted mutations we can compute the quantities fab, the number
of times the mutation a «-> b was observed to occur. Recall that we are dealing with
undirected mutations here, so fab = fba- We will also need the sums

fa — / \fab,

which is the total number of mutations in which a was involved, and

= £/„,
the total number of amino acid occurrences involved in mutations. The number / is also
twice the total number of mutations.

The frequencies fab and the probabilities pa are all that is needed to build a 1-PAM
transition probability matrix M. This is a 20 x 20 matrix with Mab being the probability
of amino acid a changing into amino acid b. Note that a and b may be the same, in which
case we have the probability of a remaining unchanged during this particular evolution-
ary interval. For PAM matrices, the computation of Maa is done based on the relative
mutability of amino acid a, defined as

The mutability of an amino acid is a measure of how much it changes. It is the proba-
bility that the given amino acid will change in the evolutionary period of interest. Hence,
the probability of a remaining unchanged is the complementary probability

Maa = 1 -ma.

On the other hand, the probability of a changing into b can be computed as the prod-
uct of the conditional probability that a will change into b, given that a changed, times
the probability of a changing. We estimate the conditional probability as the ratio be-
tween the a «-> b mutations and the total number of mutations involving a. Therefore,

Mab = Pr(a -> b)
= Pr(a —• b \ a changed) Pr(a changed)

fab= -j-ma.
Ja

Notice that we are computing these probabilities using a simplified model of protein
evolution. For instance, an amino acid is supposed to mutate independently of its past
history, which may not be true given the nature of the genetic code. Also, we are ignoring
the influence that other amino acids in the same sequence may have on the mutation of
a given residue. The independence from past history in particular leads to a Markov-
type model of evolution, which has good mathematical properties, some of which will
be mentioned in the sequel.

It is easy to verify that M has the following properties.

J^Mab = \ (3.13)

3.5 DATABASE SEARCH 83

Equation (3.13) is merely saying that by adding up the probability of a staying the same
and the probabilities of it changing into every other amino acid we get 1. Thus we are
justified in calling these numbers "probabilities." Recall that these probabilities refer to
a unit of evolutionary change. It is tempting to think of unit of evolution as unit of time,
but it is generally accepted that different things change at different speeds, so time and
amount of evolution are not directly proportional in a universal sense.

The unit of evolution used in this model is the amount of evolution that will change
1 in 100 amino acids on average. This will be referred to as 1 PAM evolutionary distance.
The transition probability matrix has been normalized to reflect this fact as we can see
from Equation (3.14). We achieve this normalization by using 100 in the denominator of
Equation (3.12). Had we used another number, say 50, instead of 100 there, we would
have obtained a matrix with exactly the same properties except that (3.14) would reflect
a 1 in 50 average change, which is to say a 0.98 chance of no change. Thus, the unit of
evolution would mutate one in 50 amino acids on average.

Once we have the basic matrix M we can derive transition probabilities for larger
amounts of evolution. For instance, what is the probability that a will change into b in
two PAM units of evolution? Well, in the first unit period a changes into any amino acid
c, including itself, with probability Mac and then c changes into b in the second period
with probability Mcb. Adding this all up, we conclude that the final figure is nothing more
than M%b, that is, an entry in the square of M. In general, Mk is the transition probability
matrix for a period of k units of evolution.

One interesting fact here (that can be proved) is that as k grows very large, say, on
the order of a thousand, Mk converges to a matrix with identical rows. Each row will
contain the relative frequency pt, in column b. That is, no matter what amino acid you
pick to start with, after this long period of evolution the resulting amino acid will be b
with probability pb.

We are now ready to define the scoring matrices. The entries in these matrices are
related to the ratio between two probabilities, namely, the probability that a pair is a mu-
tation as opposed to being a random occurrence. This is called a likelihood or odds ratio.

Let us then compute this ratio for two amino acids a and b. Suppose that we paired a
with b in a given alignment. Taking the point of view of a, the probability that b is there
in the other sequence due to a mutation is Ma\,. On the other hand, there is a chance of
Pb for a random occurrence of b. The ratio is then

Mab

Pb '

The reasoning is the same even if b equals a. The actual score is 10 times the logarithm of
this ratio, because when we align several pairs the sum of the individual scores will then
correspond to the product of the ratios. In practice, the actual values used are rounded to
the nearest integer to speed up calculations. The logarithm is multiplied by 10 to reduce
the discrepancy between the correct value and the integer approximation.

The foregoing discussion refers to 1 PAM. But we can use exactly the same scheme
for an arbitrary evolutionary distance. The scoring matrix for k PAM distance is defined
as follows:

Mk

scorek(a, b) = 101og10 ——.
Pb

84 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

It may not be clear at first sight, but this is actually a symmetric matrix. Scoring matrices
should be symmetric to yield a comparison score that does not depend on which sequence
is given first. It is easy to verify the symmetry for k = 1, since

Mab _ fabma

Pb faPb
fab

lOOfPaPb

For larger values of k, the symmetry can be shown to hold as well (see Exercise 15).
This stems from the fact that the accepted mutations considered are undirected so that
the same quantity fab = fba is used in the computation of the probability of a changing
into b and of b changing into a.

In spite of being generated from observed accepted mutations and overall amino
acid frequencies alone, these scoring matrices end up reflecting several important chem-
ical and physical properties of amino acids, such as their affinity to water molecules and
their size. In fact, it is usually the case that residues with similar properties have high
pairwise scores and that unrelated residues have lower scores. This should not be too
surprising, because similar amino acids are more frequently interchanged in accepted
mutations than are unrelated residues. Substitutions of similar residues tend to preserve
most properties of the protein involved.

We said in the beginning that we need to fix the PAM distance in order to pick a
scoring matrix and perform our comparisons. But sometimes we have two sequences
and no information whatsoever on their true evolutionary distance. In this case, the rec-
ommended approach is to compare the sequences using two or three matrices that cover
a wide range, for instance, 40 PAM, 120 PAM, and 250 PAM. In general, low PAM num-
bers are good for finding short, strong local similarities, while high PAM numbers detect
long, weak ones.

3.5.2 BLAST

In this section we give an overview of the BLAST family of sequence similarity tools.
The BLAST programs are among the most frequently used to search sequence databases
worldwide. BLAST is an acronym for Basic Local Alignment Search Tool.

It is important to observe that here the term database refers simply to a usually large
set of catalogued sequences. It does not imply any extra capabilities of fast access, data
sharing, and so on, commonly found in standard database management systems. For us,
therefore, this "database" is merely a collection of sequences, although sequence infor-
mation is copiously complemented with additional information such as the origin of the
data, bibliographic references, sequence function (if known), and others.

BLAST returns a list of high-scoring segment pairs between the query sequence and
sequences in the database. Before explaining what this means and how BLAST obtains
its results, we will briefly introduce some terminology on segment pairs to keep this dis-
cussion consistent with the original paper describing BLAST.

A segment is a substring of a sequence. Given two sequences, a segment pair be-
tween them is a pair of segments of the same length, one from each sequence. Because

3.5 DATABASE SEARCH 85

the substrings in a segment pair have the same length, we can form a gapless align-
ment with them. This alignment can be scored using a matrix of substitution scores. No
gap-penalty functions are needed, as there are no gaps. The score thus obtained is by
definition the score of the segment pair. An example of a segment pair scored with the
PAM120 substitution matrix is given in Figure 3.17. Segment pairs are basically gapless
local alignments.

K
V

- 4

A
A

3

L
K

4

M
N

- 3

R
S

1 _ v

FIGURE 3.17

Total: - 9

Segment pair and its score under PAM120.

We are now in possession of all the information necessary to describe precisely what
BLAST does. Given a query sequence, BLAST returns all segment pairs between the
query and a database sequence with scores above a certain threshold S. The parameter
S can be set by the user, although a default value is provided in most servers that run the
program. We have mentioned that a characteristic of reported alignments is the absence
of gaps. This is actually a major reason why BLAST is so fast, since looking for good
alignments with gaps is a good deal more time consuming.

A maximum segment pair (MSP) between two sequences is a segment pair of maxi-
mum score. This score is a measure of sequence similarity and can be computed precisely
by dynamic programming. However, BLAST estimates this number much faster than
any dynamic programming method. The program also returns locally maximal segment
pairs, that is, those that cannot be improved further by extending or shortening them.

How BLAST Works

The BLAST approach to computing high-scoring segment pairs is as follows. It finds
certain "seeds," which are very short segment pairs between the query and a database
sequence. These seeds are then extended in both directions, without including gaps, un-
til the maximum possible score for extensions of this particular seed is reached. Not all
extensions are looked at. The program has a criterion to stop extensions when the score
falls below a carefully computed limit. There is a very small chance of the right exten-
sion not being found due to this time optimization, but in practice this tradeoff is highly
acceptable.

We may think of BLAST as a three-step algorithmic procedure, undertaking the fol-
lowing tasks.

1. Compile list of high-scoring strings (or words, in BLAST jargon).
2. Search for hits — each hit gives a seed.
3. Extend seeds.

The particular algorithmic steps depend on the type of sequences compared: DNA
or protein. We detail each case next.

86 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

For protein sequences, the list of high-scoring words consists of all words with w
characters (called tu-mers) that score at least T with some tu-mer of the query, using a
PAM matrix to compute scores. Here w and T are program parameters. Note that this
list may not contain all query iu-mers! If a query u;-mer consists of very common amino
acids, it may be left out because even its score with itself may fall below T. However,
there is an option to force inclusion of all query w-mers. The recommended value of w,
the seed size, is 4 for protein searches.

Two approaches are tried for scanning the database in search for hits in the list con-
structed in the previous step. One of them is to arrange the list words into a hash table.
Then, for each database word of size w, it is easy to get their index in the table and com-
pare it to the words there, which will be a small fraction of all list words.

The second method uses a deterministic finite automaton to search for hits. This de-
vice has states and transitions and operates like a machine. It begins in a fixed initial state,
and for each character in the database a transition is made to another state. Depending
on the state and on the transition, a word from the list is recognized. The automaton is
built only once, using the list of high-scoring words as input, and is a compact way of
storing all these words. The search is fast, as it requires only a transition per character.

The final extension is straightforward. As we mentioned, to save time the algorithm
stops when the score falls a certain distance below the best one obtained to that point
for shortest extensions. This is done in both directions, and the high-scoring segment
pair originated from this seed is kept. There is a small probability of missing important
extensions, but it is negligible.

For DNA searches, the initial list contains only the query w-mers. Because scor-
ing of DNA sequences is easier, this is enough for all practical purposes. The scanning
strategy is radically different from the protein case. Taking advantage of the fact that the
alphabet size is 4, the database is first compressed so that each nucleotide is represented
using 2 bits. Four nucleotides fit in a byte. Apart from the space saved, the search can
now be made much faster, because a byte is compared each time. There is an extra fil-
tering step that removes from the initial list very common words from the database, to
avoid a large number of spurious hits.

Extension is done in a way similar to the case of proteins. In both cases, the exten-
sion is based on a well-founded statistical theory that gives exact distribution of gapless
local maximum score for random sequences, and permits a very accurate computation
of the probability that the segment pair found could be possible due to chance alone. The
smaller this probability, the more significant is the match.

We briefly sketch now the main points of this statistical theory. The distribution of
the MSP score (defined above) for random sequences s and t of lengths m and n, respec-
tively, can be accurately approximated as described next. This approximation gets better
as m and n increase.

Given a matrix of replacement costs si; for the pairs of characters in the alphabet,
and the probability pt of occurrence of each individual character in the sequences, we
first compute a value X, solving the equation

3.5 DATABASE SEARCH 87

The parameter A. is the unique positive solution to this equation and can be obtained
by Newton's method. Once k is known, the expected number of distinct segment pairs
between s and t with score above S is

Kmne~xs,

where K is a calculable constant. Actually, the distribution of the number of segment
pairs scoring above S is a Poisson distribution with mean given by the previous formula.
From this, it is easy to derive expressions for useful quantities like the average score,
intervals where the score will fall 90% of the time, and so on.

3.5.3 FAST

FAST is another family of programs for sequence database search. The first program to
be made generally available, FASTP, is designed to search a database of sequences look-
ing for similarities to a given query sequence. The basic algorithm used by FASTP is to
compare each database string in turn to the query and report those found significantly
similar to it, along with alignments and other relevant information. The speed of FASTP
is therefore mainly due to its ability to compare two sequences very quickly. Accord-
ingly, our focus in this section is on how FASTP performs this basic step.

Let s and t denote the two sequences being compared, and let us assume for the
moment that they are protein sequences. Their lengths are denoted by m = |s| and n =
\t\. The comparison starts by determining fc-tuples common to both sequences, with k =
1 or 2. The value of k is a parameter called ktup in the program. In addition, the offset of
a common A;-tuple is important in the algorithm. The offset is a value between —n + l
and m — 1 that determines a relative displacement of one sequence relative to the other.
Specifically, if the common A;-tuple starts at positions s[i] and t[j], we say that the offset
is i — / .

The following data structures are needed: (1) a lookup table, and (2) a vector in-
dexed by offsets and initialized with zeros. Sequence s is scanned and a table listing
all positions of a given fc-tuple in s is produced (see Figure 3.18). Then sequence t is
scanned and each fc-tuple in it is looked up in the table. For all common occurrences the
vector entry of the corresponding offset is incremented. Figure 3.18 exhibits the final
contents of the offset vector and the lookup table for sequences s = HARFYAAQIVL
and t = VDMAAQIA. Notice that offset +2 has the highest entry value, meaning that
many matches were found at this offset. This method is known as the diagonal method,
because an offset can be viewed as a diagonal in a dynamic programming matrix. One
possible use of the highest offset is to run a dynamic programming algorithm around the
diagonal corresponding to this offset.

But FASTP does a more detailed analysis of the common fc-tuples and joins two or
more such fc-tuples when they are in the same diagonal and not very far apart. The exact
criteria are heuristic. These combined fc-tuples form what is called a region. A region can
be thought of as a segment pair, in the terminology of BLAST, or else as a gapless local
alignment. Regions are given a certain score depending on the matches and mismatches
contained in them. The important thing to remember is that regions have no gaps.

The next step consists in rescoring the five best regions received from the previous

88 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

1 2 3 4 5 6 7 8 9 10 11
S = H A R F Y A A Q I V L

1 2 3 4 5 6 7
t = V D M A A Q I

A
F
H
I

L

Q
R

V
Y

others

2,6,7
4

1
9
11
8
3

10
5
_

offsets +9
-2
+2
+3

-3
+ 1
+2

+2 +2 -6
-2
-1offset vector

.7 _6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6+7+8+9+10

1 1 2 1 1 4 1 1

FIGURE 3.18
Lookup table and offset vector for sequence comparison by

FASTP. The value ofktup is 1.

phase using a PAM matrix, usually PAM120 or PAM250. The best of these new scores
is a first measure of the similarity between s and t and is termed the initial score. An ini-
tial score is computed for every database sequence with respect to the query sequence.
These values are reported in histogram form along with the mean score. The initial score
is also used to rank all database sequences. For the highest ranking such sequences, an
optimized score is computed running a dynamic programming algorithm restricted to a
band around the initial alignment — the one that produced the initial score. This pro-
cedure is much like the method exposed in Section 3.3.4. In practice, when sequences
are truly related, the optimized score is usually significantly higher than the initial score.
This observation often helps distinguish between good alignments occurring by chance
and true relationships.

The value of ktup affects the performance of the algorithm in terms of its sensitivity
and selectivity. Sensitivity is the ability of a search tool to recognize distantly related se-
quences. Selectivity is the ability of the tool to discard false positives — matches between
unrelated sequences. In general, sensitivity and selectivity are opposite goals. When us-
ing FASTP and other programs in the family, low ktup increases sensitivity and high ktup
favors selectivity.

Apart from the search tools, the FAST family includes a program that is useful in
assessing the statistical significance of a score. This tool works by scrambling one of the
sequences, say, t, maintaining the amino acid composition but changing their order, and
running a full dynamic programming algorithm between the scrambled version of t and
the original s. This is repeated many times, so that the average score and its standard
deviation can be computed. From these, a z -value is determined by the formula

z =
score — average score

standard deviation of scores
However, since the statistical distribution of similarity scores for random sequences is
not a normal distribution, these z-values have limited usefulness.

3.6 OTHER ISSUES 89

Improvement to the FASTP program led to FASTA. One added feature is the abil-
ity to process DNA as well as protein sequences. In this respect, FASTA can be seen
as a combination of FASTP with FASTN, a program designed specifically to work with
nucleotide sequences. Another program in the family — TFASTA — is devoted to com-
paring a protein query sequence to a DNA database, doing the necessary translations as
it goes.

Another addition is related to the. computation of initial scores. FASTA takes an ex-
tra step after the best regions have been selected and tries to join nearby regions, even if
they do not belong to the same diagonal. With this, initial scores improve significantly for
related sequences and get closer to the improved scores ("optimized scores" in FASTA
parlance). Furthermore, the ten best regions are kept in FASTA as opposed to five best in
FASTP. Other programs using the same techniques are also part of the package. LFASTA
is a tool for local similarity, in the sense that it reports more than one good alignment be-
tween a pair of sequences.

The statistical significance tool was also improved. Its most outstanding addition
is the possibility of doing local shuffling of sequences. It was observed that very often
a biologically unimpressive alignment got a high z -value because shuffling destroyed
an uneven distribution of residues in the sequence. Local shuffling mitigates this prob-
lem. Shuffling is done in blocks of 10 to 20 residues, thus yielding shuffled sequences
that are random yet have the same local composition of the original one. Then, if high
scores were due to biased local composition, this will affect the mean score of the locally
shuffled sequences. Other improvements in this tool include flexibility in choosing the
scoring matrix and calculation of more scores for each shuffled sequence.

OTHER ISSUES

We now study some miscellaneous topics related to sequence comparison. The first has
to do with the notion of distance between sequences and what its relationship is to sim-
ilarity. In the second topic we discuss rules for the various choices we have when com-
paring sequences. Finally we briefly discuss the topics of string matching and exact se-
quence comparison.

* 3.6.1 SIMILARITY AND DISTANCE

Similarity and distance are two approaches to comparing character strings. In the sim-
ilarity approach, we are interested in the best alignment between two strings, and the
score of such an alignment gives a measure of how much the strings are alike. In the dis-
tance approach, we assign costs to elementary edit operations and seek the less expen-
sive composition of these that transforms one string into the other. Thus, the distance is
a measure of how much the strings differ. In either case we are looking for a numeric
value that measures the degree by which the sequences are alike or are different.

90 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

Up to now we have concentrated on computing similarity. This section introduces
the concept of distance and relates it to similarity. We show that in many cases these two
measures are related by a simple formula, so that we can easily obtain one measure from
the other.

We must stress that our study of distances is restricted to global comparison only.
The distance approach is not suitable for local comparison. This limitation is one of the
reasons we based this chapter on the similarity approach. Table 3.2 summarizes the main
differences between similarity and distance. Some of the terms may not be clear to the
reader now, but they are explained in what follows.

TABLE 3.2
Summary of properties of similarity and distance.

Triangle inequality?
Local comparison?
p(a, a) ^ p(b, b) possible?

Similarity
no
yes
yes

Distance
yes
no
no

We start by defining precisely our notions of similarity and distance. Let s, t be two
sequences over an alphabet S. This alphabet will usually be the DNA or amino acid
alphabet, but the results here hold for more general cases. Recall that we are looking for
a number that measures how much the strings are similar or are different. As before, we
denote similarity by simCs, /), distance by dist(s, t).

Similarity

A similarity measure is always based on alignments. Let us recall and refine the precise
definition of alignment. An alignment between s and t is a pair of sequences (V, tr) ob-
tained from s and t, respectively, by insertion of space characters in them. The alignment
a = (V, /') must satisfy:

L \s'\ = \t'\.

2. Removal of all spaces from sr gives s.

3. Removal of all spaces from t' gives t.

4. For each i, either s'[i] or t'[i] is not a space.

An alignment creates a connection between symbols s;[i] and t'[i] that occupy the
same position i in each sequence. Symbols s;[i] and t'[i] are said to be aligned under a.

The similarity is the highest score of any alignment. We assume an additive scoring
system. Let us also review and refine what we mean by a scoring system. A scoring sys-
tem is composed of a pair (p, g) whose members are a function p : S x S h> R, used
to score pairs of aligned characters, and a space penalty g used to penalize spaces. Usu-
ally, g < 0, but we do not require this. With such a scoring system we are able to assign
a numerical value, or score, to each possible alignment. We add p(a,b) each time a is

3.6 OTHER ISSUES 91

matched with b in a, and add g every time a character a is paired with a space symbol.
The total sum is the score of a, denoted score(a). The similarity between two sequences
s and t according to this scoring system is

simO, t) = max score (a),
aeA(s,t)

where A(s, t) is the set of all alignments between s and t. This scoring system is called
additive because if we cut any alignment in two consecutive blocks, the score of the en-
tire alignment is the sum of the scores of the blocks.

Distance

A distance on a set E is a function d : E x E i-> R such that

1. d(x, x) = 0 for all x e E and d(x, y) > 0 for x ^ y

2. d(x, y) — d(y, x) for all x, y e E (d is symmetric)

3. d(x, y) < d(x, z) + d(yt z) for all x, y, and z e E.

The third condition is known as the triangle inequality. This property is very useful in
many contexts, and many algorithms rely on its validity. In the case of strings it is pos-
sible to define a distance on the set of all strings over £ based on the amount of effort
needed to transform one of them into the other.

By successive application of a number of admissible operations, any string can be
transformed into any other. If we assign a cost to each admissible operation, we can de-
fine the distance between two strings as the minimum total cost needed to transform one
into the other. Admissible operations are as follows.

1. Substitution of a character a by a character b

2, Insertion or deletion of an arbitrary character

To charge for these operations, we use a cost measure (c, h), where c is a function
c : £ x X i-> R and h is a real value. The substitution of b for a costs c(a, b). Insertion
or deletion of a character costs h. The cost of a series a of operations is just the sum of
individual costs and is denoted by cost(a).

The distance between two sequences s and t according to a cost measure is

distO, t) = min cost(a),
aeS(s,t)

where S(s, t) is the set of all series of operations transforming s into t.
Some restrictions on (c, h) are necessary to make this definition sound. First of all,

we deal only with nonnegative cost values, otherwise the minimum would not make
sense. We also assume that the cost function c is a symmetric function, otherwise the dis-
tance would not be necessarily symmetric. These minimal requirements guarantee that
dist(s, t) is symmetric and satisfies the triangle inequality. To make sure it is a distance,
we also need the property that c(a, b) > 0 for a ^ b and that h > 0. This is necessary
to avoid cases where two sequences s and / are not equal but distO, t) = 0. We want the
distance to be zero only when the sequences are identical.

92 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

We will also assume that c satisfies the triangle inequality, that is,

c(x,y) <c(x,z) + c(yyZ) (3.15)

for all x, y, and z in E. The reason for this last assumption is that even if we start with
a pair (c, h) that does not satisfy it, we can always define a new pair (c;, h) that does
satisfy it and produces the very same distance function. For instance, if three characters
x, y, and z are such that c(x, y) > c(x, z) -f- c(z, y), then every time we need to replace
x by y we will not do it directly but rather replace x by z and later z by y, producing
the same effect at a lower cost. For all practical matters, it looks as though the effective
cost of replacing x by y is c(x, z) + c(z, y), not c(x, y), as the former is the actual cost
incurred for the substitution. By using (3.15) we avoid such situations.

Example 3.3 Taking

0 if JC = y,
c(x,y) = , x

and h = 1, we have the so-called edit distance between two sequences, also known as
the Levenshtein distance.

Computing the Distance

Given a cost measure (c, h) and a constant M, we can define a scoring system (p, g) as
follows:

p(a,b) = M -c(a,b), (3.16)

g = -/i + y . (3.17)

If we have an alignment a between two sequences s and t, it is possible to define a
series a of operations such that

M
score{a) + cost(a) — —(m + n), (3.18)

where m = \s\ and n = \t\. To get a, it suffices to divide the alignment a in columns as
we did previously to compute the score. The columns correspond to admissible opera-
tions in a natural way. Character matches correspond to substitutions. Spaces correspond
to insertions or deletions. The operations can be applied in any order because they act
on disjoint regions of the alignment and do not interfere with one another.

Let us call a the series of these operation done left to right. We shall now compute
the score of a and the cost of a. Suppose there are exactly / character matches in a, with
the /th match formed by ai in s and b[in t. Suppose further that there are exactly r spaces
in a. Granted that, we have the following expression for the score of a.

i

score(a) = ^ p(fl/, £/) + rg.
i=\

3.6 OTHER ISSUES 93

On the other hand, the cost of a is
/

cost(o) = ^ c (f l / , bt) + rh.
i=i

Memberwise addition of these equations and relations (3.16) and (3.17) give

M
scoreiot) + cost(cr) = IM + r — . (3.19)

Observe that the values of / and r are not independent. They must satisfy a relation in-
volving also the total number of characters in the two sequences. Indeed, each match
used two characters, while a space uses just one character. Therefore, the total number
of characters m + n must be

m + n = 2l + r. (3.20)

With this, we can see that (3.19) can be rewritten as

M
score(a) + cost(a) = —(m + n),

which is exactly Equation (3.18).
This is true for any alignment. In particular, if a is an optimal alignment, we have

M
simCs, t) + cost{o) = —(m + n),

where a represent the series of operations derived from a. Since the distance between s
and t is the minimum cost of any series of operations, we end up with

M
sim(s, 0 + distCs, t) < —(m + n).

We now summarize the above result in a theorem for future reference.

THEOREM 3.2 Given a cost measure (c, h) and the corresponding scoring system as
above for a certain M, for every pair of strings s and t we have

M
dist(s, t) + sim(5, t) < —Qs\ + \t\).

Theorem 3.2 gives us an upper bound for the value of distCy, t). We now want to
show that this is also a lower bound and that the distance can in fact be obtained from
the similarity in a straightforward fashion.

THEOREM 3.3 Under the conditions of Theorem 3.2, we have

M
sim(j, /) + dist(j, /) > — (\s\ + \t\).

Proof. We follow the steps of Theorem 3.2. First of all, given a series a of admissible
operations, we build an alignment a with the property that

M
score(a) + cost(a) > —(m+n). (3.21)

Notice that we cannot have equality here in general, as we did in the previous proof.

94 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

This case is a little bit different, because a series of operations can go around and around
and the corresponding alignment will show only the net effect. For instance, if o at some
point inserts a character a somewhere and then immediately removes it, the net effect is
null and we are charged for two operations just the same. The foregoing equation has to
account for all series of operations, be them efficient or not, and that is why we have an
inequality instead of an equality there.

Let us prove relation (3.21) by induction on the number of operations in o. If \o \ =
0, no operation was performed, so s = t. The alignment (s, s) has score Mm = Mn —
M(m + n)/2, and the relation holds in this case.

If cr has at least one operation, consider its last operation. We can write a = o'u,
where u is this last operation, so that

a' , u

that is, t' is the string obtained from s by applying all but the last operation, and t is
obtained from t' by applying u.

Our induction hypothesis is that we have an alignment a' between s and t' such that

M
score(a') -f cost{p') > —(m + ri),

where n' — \t'\. Because cost (a) — cost(o') + cost(u), all we need is to find an align-
ment a between s and t such that

M
score(a) > score{a') -\ (n — ri) — cost{u). (3.22)

Memberwise addition of these two inequalities will give us the desired result. There are
three cases to consider, according to the type of operation that u is: substitution, insertion,
deletion.

Case 1: u is a substitution.
In this case cost{u) = c(a,b),n — n'', and t differs from t in just one position, as

shown here:

s .. .x...
t' ...a...
t ...b...

We can build a simply replacing a by b in a', which in the figure corresponds to ignoring
the middle line. If the symbol x in s is an ordinary character, then

score(a) = score(a') — p(a, x) -f- p{b, x)

— scoreia') — M + c(a, x) + M — c(£>, x)

= score(a') + c(a, x) — c(b, x)

> score(af) — c(a,b),

where the last step is a consequence of the triangle inequality for c. Thus, we have what
we need in this case.

3.6 OTHER ISSUES 95

If x is a space, the scores of a and a' are equal, hence

scoreia) == score(otr) > sc6>re(c/) — c(a, b)

because c(a,b) > 0 by hypothesis. This concludes the case where u is a substitution.

Case 2: « is an insertion.
In this case cost{u) = h and n' = n — 1. The alignment a' has to be "opened" in a

certain position to allow the insertion of a character, as shown here:

An extra space is introduced in s. With this, the difference in score between a and a' is
due to this extra space in a:

score{a) = score(ot') + g
M

= score(af) — h -\ .
This proves the validity of relation (3.22) in the case where u is an insertion.

Case 3: u is a deletion.
Now cost{u) = h again but n' = n -f 1. We have this situation:

s .. .x...
t1 ...a...

We distinguish two subcases, according to x being a space or not. If x is a character, then

scoreia) — score(ar) — p(a, x) + g
M

= score{a') — M + c(a, JC) — /z H

M
= score(al) — h (- c(a, x)

M
> score(af) — h ,

as desired, because c(a, x) > 0. If x is a space, we have

.scc>re(a) = scoreiot') — g
M

= score(af) — h -\
M

> sc<?re(c/) — h ,

since h > 0.
This completes the inductive argument and shows that relation (3.21) holds. In par-

ticular, it holds for a minimum cost a and therefore
M

score(a) + dist(s, t) > —(m + n),

96 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

or taking into account that simO, t) is the largest possible alignment score between s and
t,

M
sim(a) + dist(s, t) > — (m -f n),

proving the theorem.

Combining Theorems 3.2 and 3.3, we can write

M
sim(a) + dist(,s, t) = —(m + w), (3.23)

which shows us how to compute the distance given the similarity. Thus, distance com-
putations can be reduced to similarity computations. To compute a distance, all we need
to do is select a suitable M, define scoring parameters p and g as in (3.16) and (3.17),
and apply one of the algorithms for global comparison we have seen so far. The resulting
similarity is converted to distance by the above formula.

For instance, in the case of the edit distance, we may choose M = 0 and run a simi-
larity algorithm with match = 0, mismatch = — 1, and space = — 1. Or we may take
M = 2 and have match = 2, mismatch = 1 and space = 0. Both scoring systems
yield the same optimal alignments, although with different scores. But after applying
formula (3.23) the distance is the same.

Before we close, a comment on the constant M is in order. It may seem suspicious
that any value of M will do for Theorem 3.2. If M is a large, positive number, the scoring
system may result in negative values of the space penalties wf(k) for many, and possibly
all, values ofk. This contradicts our intuition, given that spaces should be penalized in-
stead of rewarded. The same goes for a negative, but very large in absolute value, M. The
function p this time would be negative, again contradicting our intuition. The reason for
this apparent anomaly lies in the fact that we consider global comparisons only. When
we change the value of M, all alignments increase or decrease on their score in a uniform
manner, so that the optimal ones always remain the same. For local alignments, Equa-
tion (3.20) is not valid, and by varying M we can give preference to longer or shorter
local alignments.

3.6.2 PARAMETER CHOICE IN
SEQUENCE COMPARISON

In this section we present considerations concerning the choice of parameters in a scoring
system and the choice of algorithm given the particular sequence comparison that must
be made.

Many issues must be taken into consideration when choosing the scoring system for
a particular application. This includes, in its simplest form, the scores for a match (M),
for a mismatch (m), and for a space (g < 0).

In any scoring system it is important to assure that a match is worth more than a
mismatch, so that we encourage alignments of identical characters. Another rule that is
normally used is to assure that a mismatch is preferred over a pair of spaces. For instance,

3.6 OTHER ISSUES 97

the following leftmost alignment should score higher than the rightmost one:

A -A
C C-.

The rules above translate at once into inequalities involving the scoring parameters:

2g < m < M.

Notice that if we multiply all weights by a positive constant, the optimal alignments re-
main the same. This property can be used to transform all weights to integers, which are
generally processed with much greater speed than floating point numbers in the majority
of modern computers.

Consider now the transpositions. If we have, for instance, sequences AT and TA,
there are essentially two alignments that compete for the best score:

AT -AT
TA TA-.

(There is still a third alignment with the same score as the second one above aligning the
T's.) The corresponding scores are 2m and M + 2g, respectively. Thus, if m is equal to
the arithmetic mean between M and 2g, the two preceding alignments are equivalent in
terms of score. To give preference to one of them, we must choose m closer to one of the
extremes of the interval [2g, M].

In the same vein, it is possible to imagine other instances of pairs of short sequences
and postulate which is the most desirable alignment in each case. This gives us more
inequalities involving m, M, and g. For instance, when comparing ATCG to TCGA, we
may prefer the first of the two following alignments:

ATCG- ATCG
-TCGA TCGA.

This will be reflected in the score if Am < 3M -f 2g. The values used in Section 3.2.1
were chosen based on such criteria, among other reasons.

In practice, scoring systems more sophisticated than the simple M, m, g method
are often needed. The subadditive space penalty functions mentioned in Section 3.3.3
are usually preferred. Among these, affine functions are very popular because of the
quadratic running time algorithm, as opposed to cubic for general functions. Another
important property, especially in comparisons of protein sequences, is the ability to dis-
tinguish among the various matchings of amino acids. A match involving amino acids
with similar chemical or physical characteristics, such as size, charge, hydrophobicity,
and so on, receives more points than a matching between not so similar ones. In this
context, scoring systems based on identity only are in general insufficient. For protein
comparison, the use of PAM matrices is commonplace.

Nevertheless, the simple identity/nonidentity method is versatile enough to include
as particular cases several well-known problems in sequence comparison. One of these
problems is to find the longest common subsequence (LCS) of a pair of sequences. This
is equivalent to using M = l,m = g = 0 in the basic algorithm. Thus, we can solve this
problem in O{mri) time and O(min(m, n)) space for sequences of sizes m and n. This
problem has received a great deal of attention, and several faster algorithms have been
described for particular cases.

98 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

We now discuss the choice of algorithms. The decision whether to charge for end
spaces and the choice of local or global methods depends heavily on the kind of applica-
tion we are interested in and the results sought. If we want to compare sequences that are
approximately the same length and relatively alike, a global comparison charging for all
spaces is likely to be more appropriate. For instance, here we could include the case of
two tRNAs of different organisms, or else two tRNAs of the same organism but carrying
different amino acids.

If, on the other hand, one of the sequences is short and the other much longer, it is
more advisable to charge for end spaces in the shorter sequence only. This will allow us
to find all approximate occurrences of the short sequence in the long one. Such a search
is useful when trying to locate relatively well-conserved structures in recently sequenced
DNA.

Local comparison should be used when we have two relatively long sequences that
may contain regions of high similarity. A typical case is protein sequences with similar
functionality from reasonably well-separated organisms in terms of evolution. Because
the proteins perform similar functions, it is probable that some high-similarity regions
(active sites, motifs, functionally equivalent structures, etc.) exist, separated by unrelated
regions that accumulated mutations and that do not have much influence on the protein's
functionality.

If sequence comparison is done to test the hypothesis of common origin, care must
be used when interpreting results. In general, optimal alignments are the most unlikely
to have occurred by chance in some probabilistic sense. However, it is always advisable
to compare the score obtained to what would be expected on average from completely
unrelated sequences with the same characteristics as the two sequences compared. If the
optimal score is well above average, this is a good indication that the similarity between
the sequences is not due to chance. Even then, this result per se does not imply homology
or any kind of evidence of common origin. Further experiments, based on the informa-
tion the alignment gives, are in general carried out to strengthen or refute the hypothe-
sis of common ancestry. On the other hand, if the similarity is nearly equal to what is
expected by chance, it is likely that the sequences are unrelated. However, in biology
there are no rules without exceptions, and cases of homologous proteins with no traces
of similarity at the sequence level are known. Other pieces of evidence, such as three-
dimensional structure, were used in these cases to ascertain homology.

3.6.3 STRING MATCHING AND EXACT
SEQUENCE COMPARISON

Two other important problems that have relevance in computational molecular biology
are the string matching problem and exact sequence comparison. In string matching we
are given a string s, \s\ = n, and a string t, \t\ —m, and we want to find all occurrences
of t in s. In other words, is t a substring of si If it is, what are all the positions in 5 where
we can find tl This is a classic computer science problem, and can be solved efficiently.
In fact, there are algorithms that can solve this problem in time O(n+m), which is much
faster than the quadratic complexity of the basic algorithm for two-sequence compari-
son. We will not describe such algorithms here; they can be found on any good textbook

3.6 OTHER ISSUES 99

on algorithms, such as those referenced in the bibliographic notes of Chapter 2. We note
that efficient algorithms have also been developed for the approximate string matching
problem, where we allow a certain number of errors when looking for a match. Such
algorithms are important, of course, in molecular biology. References are given in the
bibliographic notes.

We have devoted most of this chapter to sequence comparisons where we allow er-
rors to be present in the sequences. This is certainly the case in the majority of appli-
cations in real-life sequence comparison, but in some situations we need exact compar-
isons. Many problems of this nature can be solved by a very useful and versatile structure
known as suffix tree. A sample of such problems follows.

• We will see in Chapter 4 that repeated substrings of a sequence are one of the ma-
jor problems when doing large-scale DNA sequencing. Given a DNA sequence,
a natural problem then is to find its longest repeated substring.

• When using the polymerase chain reaction (described in Section 1.5.2), we need
to find a short piece of DNA called a primer that does not occur in the DNA we
want to multiply. This problem can be formalized as follows. Given two strings,
A (long) and B (short), for each position i in 5, find the shortest string from B
starting at position i that is nowhere in A.

• We also saw in Section 1.5.2 that the restriction sites for restriction enzymes are
even-length palindromes. Another problem is to find all maximal palindromes of
a given DNA sequence.

We now describe what a suffix tree is. It basically contains all suffixes of a string
s, factoring out common prefixes as much as possible in the tree structure. Formally, a
suffix tree for 5 = s\S2 . . . sn is a rooted tree T with n -f- 1 leaves with the following
properties:

• Edges of T are directed away from the root, and each edge is labeled by a sub-
string from 5.

• All edges coming out of a given vertex have different labels, and all such labels
have different prefixes (not counting the empty prefix).

• To each leaf there corresponds a suffix from s, and this suffix is obtained by con-
catenating all labels on all edges on the path from the root to the leaf.

Figure 3.19 shows an example of a suffix tree. In order to avoid problems with the
empty suffix, we usually append to 5 an extra character $ not occurring anywhere else
in the string. Suffix trees can be built using a nice algorithm that we will not describe
but that runs in time O(n), assuming that the alphabet size is a constant. Once a suffix
tree is built, most problems using it can be solved in time 0{ri). That is the case of the
problems just described. The primer problem can be solved in time Oi\B\). We leave
as exercises to the reader the task of figuring out how to apply suffix trees to solve such
problems.

A related structure called suffix array can also be used to solve exact comparison
problems. This structure consists basically of all suffixes of 5 lexicographically sorted.

100 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

CTAGG$

G$

TATCTAGG$

FIGURE 3.19
An example of a suffix tree for string GTATCTAGG. A dollar

sign marks the end of the string.

We began our study by looking at the comparison of just two sequences. An algorithm
design technique called dynamic programming can be successfully applied in this case,
leading to precise and efficient algorithms. We then studied several extensions to the ba-
sic dynamic programming algorithms. Some of these extensions allow us to save on the
amount of time or space needed for the computation in certain cases. Others are aimed
at solving more general forms of the problem necessary in some biological applications.

The following is a brief reminder of the various types of comparison and their uses:

• Global: compares sequences in their entirety

• Local: finds similar pieces in sequences

• Semiglobal: finds suffix-prefix or containment similarities

All these algorithms have quadratic complexity in both time and space. However, space-
saving versions exist for all of them. These versions consume linear space, but may dou-
ble the running time.

EXERCISES 101

The following table summarizes the characteristics of the algorithms according to
the type of gap penalty function used.

Type of function

linear
affine

general

Expression
w(k) = ak

w(k) = ak + b
any w(k)

Complexity
O(n2)
O(n2)
O(n3)

Space used
one array

three arrays
three arrays

The multiple-sequence case was studied next. A dynamic programming approach
here led to an inefficient algorithm, so other techniques had to be considered; we de-
scribed a number of these alternative techniques. Another situation in which dynamic
programming is not fast enough is when we want to search a database for a given se-
quence or pattern. We studied this problem in Section 3.5, examining heuristics used in
software systems specifically designed for database search.

Most of this chapter is based on the notion of similarity. However, this is not the only
approach to sequence comparison. The notion of distance, which attempts to measure
by how much two sequences differ, is also important. In Section 3.6.1 we studied the
relationship between these two concepts. We finished the chapter with a brief discussion
on the several choices of comparison style and parameters one faces when entertaining
a sequence comparison task.

1. Find the correspondence between the algorithms listed below and the problems cited
in Section 3.1.
semiglobal comparison
filter and then apply semiglobal comparison
K-Band
database search
local comparison

2. Score alignment (3.1) of page 49 according to the following system: p(a, b) = 1 if
a = b, p(a, b) = 0 if a ^ b, andg = — 1.

3. Find all optimal alignments between AAAG and ACG, with the scoring system used in
Section 3.2.1.

4. The downmost and upmost alignments (see end of Section 3.2.1) often comprise all
optimal alignments between the two sequences compared. However, this is not always
true. Find an example when this does not occur.

5. Consider the scoring system of Exercise 2 and the one used in Section 3.2.1. Find two
sequences for which the optimal alignments are different for the two scoring systems.

6. Modify algorithm Align of Figure 3.3 so that it finds an optimal semiglobal alignment
between s and t not charging for gaps in any extremity of s or t. Assume that array a

102 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

has been filled in the proper way for this style of comparison.

7. Find the best local alignment between ATACTACGGAGGG and GAACGTAGGCGTAT.
Use your favorite scoring system.

8. Given two sequences, which value is larger: their local similarity or their global simi-
larity? Why? How does their semiglobal similarity compare with the other two values?

* 9. Develop linear space versions for local and semiglobal similarity, including the con-
struction of an optimal alignment.

10. Decide whether the following statement is true or false and justify your answer. Two
optimal alignments between s and t will have the same number of blocks (see Sec-
tion 3.3.2 for a definition of alignment blocks).

11. Recall the concepts from Section 3.3.4. Find a pair of sequences such that the best score
for k = 0 is the same as the best for k = 1, but strictly lower than the best for k = 2.
Use M = \,m = g = — l i n this problem.

12. Modify algorithm KBand (Figure 3.9) so that it handles sequences of unequal length.
What is the resulting time complexity?

13. Find all optimal multiple alignments between ATC, CAGC, and CGC using the sum of
pairs measure with p(a,b) = 1 if a and b are both letters and a = b\ p(a,b) = 0 if a
and b are both letters and a •=/=. b; and p(a, -) = — 1.

14. How much space does algorithm Multiple-Sequence Alignment of Figure 3.14 need
apart from the pool of relevant cells?

15. Prove that the A:-PAM scores matrix is symmetric for every k.

16. We saw in the text that a 1-PAM matrix changes on average 1% of amino acids. Can
we say that a 2-PAM matrix changes on average 2%?

17. Query sequence GAATTCCAATAGA against GenBank using BLAST. Which database
sequences did you hit?

18. A gap penalty function w is concave when A w (k) > A w (k + 1). Prove that a concave
function for which w(0) = 0 is subadditive. (See page 64 for a definition of Aw(k).)

* 19. True or false: A subadditive, nondecreasing gap penalty function w is necessarily con-
cave.

20. Consider an alignment of length / between sequences s and t. Divide this alignment in
two parts, one going from column 1 to column k, and the other going from k + 1 to /.
Which properties of the scoring system guarantee that the score of whole alignment is
the sum of the scores of its parts, for any kl

21. Is the assignment presented in Example 3.2 optimal?

22. According to the relationship between similarity and distance explored in Section 3.6.1,
give one possible scoring system corresponding to edit distance.

o 23. Given two random DNA sequences of lengths m and n, respectively, find the distribu-
tion of the global similarity between them. Does it approximate any known distribution
as n and m grow?

24. Design an algorithm to find the Shortest Common Supersequence between two sequen-
ces. Hint: This can be done with a simple adaptation of the basic sequence comparison
algorithm.

25. Show how to use suffix trees to solve the problems mentioned in Section 3.6.3.

BIBLIOGRAPHIC NOTES 103

BIBLIOGRAPHIC NOTES

Sankoff and Kruskal's book [168] is a classic reference in sequence comparison. The
work by Waterman [196] is a good review on optimal alignments, similarity, distance,
and related algorithms. Pearson and Miller's review [156] concentrates on dynamic pro-
gramming methods and is rather complete. Heijne's book [191] is another useful source
on sequence comparison.

The well-known paper by Needleman and Wunsch [146] is generally considered the
first important contribution in sequence comparison from the point of view of biologists,
although S. Ulam had already considered distances on sequence spaces in the 1950s. The
algorithm described by Needleman and Wunsch has a fixed penalty for a gap, indepen-
dent of its length. In that paper no complexity analysis was given. Later analysis showed
that the algorithm as presented ran in cubic time. Now we know how to perform the same
computation in quadratic time, using the algorithm for afflne space penalty functions,
which includes constant functions. In any case, the name "Needleman and Wunsch al-
gorithm" is often used to designate any kind of global alignment algorithm based on dy-
namic programming.

A similar phenomenon occurred with local alignments. The seminal paper of Smith
and Waterman [175] was very influential, lending its name to designate almost any local
alignment dynamic programming algorithm. The paper itself is very short (three pages
only) and provides a formula for filling in the array, but no complexity analysis. The
example shown in that paper uses an affine space penalty function. Later, Huang and
coworkers developed quadratic time, linear space versions for this algorithm [100]. Wa-
terman [197] described versions that can efficiently retrieve near optimal alignments.

It is not clear when the basic algorithm presented in Section 3.2.1 first appeared.
It was probably rediscovered many times in different contexts [172]. The useful space-
saving trick is due to Hirschberg [94]. It was later extended to most of the important
versions of dynamic programming sequence comparison algorithms [100, 145].

Much attention has been devoted in the literature to concave space penalty functions
[140], partly because they model well the idea of charging more for separate spaces, just
as the subadditive functions do. Concavity and subadditivity are in general incompara-
ble, although concavity plus the additional condition 2iu(l) > w(2) implies subadditiv-
ity (see Exercise 18).

Our section on comparison of similar sequences is based mainly on a paper by Fick-
ett [63]. Ukkonen [188], Myers [142], and Chang and Lawler [34] have developed more
efficient algorithms for scoring schemes with certain special properties.

PAM matrices were introduced by Margareth Dayhoff and coworkers [45]. A good
introduction is given in [70]. Altschul [10] gives a sound analysis on which PAM dis-
tances should be chosen for particular comparisons. This depends heavily on considera-
tions of statistical significance covered by Karlin and Altschul [109] and Karlin, Dembo,
and Kawabata [110]. See also Altschul and others [11] for a discussion of many issues
in searching sequence databases. Alternatives to PAM matrices have been proposed by
Henikoff and Henikoff [93]. These are known as the BLOSUM matrices.

Researchers have also studied ways of computing optimal alignments simultane-

104 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

ously for many score choices. Such methods are reviewed by Waterman [198].
The FAST implementation is described by Lipman and Pearson [127], Pearson and

Lipman [155], and Pearson [153]. A thorough comparison between FASTA and pure dy-
namic programming was done by Pearson [154]. The BLAST program is described by
Altschul et al.[12]. The idea of using common windows that can be found very quickly
so that larger alignments can be built is a recurring theme. Among the various appli-
cations, we cite the work by Chao, Zhang, Ostell, and Miller [36] on local comparison
between extremely long sequences. See also Chao and Miller [35] and Joseph, Meidanis,
andTiwari[104].

A number of papers discuss the relationship between distance and similarity. The
standard transformation used in Section 3.6.1 was already considered by Smith, Water-
man, and Fitch [176]. The review chapter by Waterman [197] devotes a section to this
topic. An algorithm for alignments that allow space-space matches is given in [134].

The projections method for saving time in multiple alignment is due to Carrillo and
Lipman [32]. Altschul and Lipman [13] generalized it to star alignments. Star align-
ments were also considered by Gusfield [83], who proved performance guarantees with
respect to a sum-of-pairs distance measure. Gupta, Kececioglu, and Schaffer [81] de-
scribe their implementation of Carrillo and Lipman's algorithm, known as the Multiple
Sequence Alignment (or MSA) program. Kececioglu [113] formalized the notion of "a
multiple alignment that is as close as possible to a set of pairwise alignments," calling
it the maximum weight trace problem. He proved the problem NP-hard and presented a
branch-and-bound algorithm. See also [137] for an alternative, heuristic method for se-
quence alignment based on the notion of trace. The NP-hardness of the multiple align-
ment with SP measure problem and the tree alignment problem were shown by Wang and
Jiang [193]. The exponential-time algorithm for tree alignment is due to Sankoff [166].
Approximation algorithms for distance-based tree alignment were described by Wang
and Gusfield [192], who improved on an earlier result by Jiang, Lawler, and Wang [102].
Some heuristics for multiple alignment must solve the problem of aligning alignments.
Two references on this topic are Miller [139] and Gotoh [77]. For a survey on multiple-
sequence comparison methods see Chan, Wong, and Chiu [33].

Because certified methods for finding the best alignments are in practice sometimes
prohibitively slow, the use of parallel computers is often regarded as a way of speeding
up the process. One such attempt is described by Jones et al. [103].

Suffix trees and many other algorithms for strings are described in the book by Cro-
chemore and Rytter [39] and in the book by Stephen [180]. Suffix arrays appeared in a
paper by Manber and Myers [130]. The application of suffix trees to the primer selection
problem and to the palindrome problem cited in Section 3.6.3 were given in a talk by
Dan Gusfield. Gusfield is preparing a new book that will describe in depth many string
algorithms and their applications in computational biology [85].

FRAGMENT ASSEMBLY OF DNA

In Chapter 1 we saw the biological aspects of DNA sequencing.
In this chapter we discuss the computational task involved in se-
quencing, which is called fragment assembly. The motivation for
this problem comes from the fact that with current technology it is
impossible to sequence directly contiguous stretches of more than
a few hundred bases. On the other hand, there is technology to cut
random pieces of a long DNA molecule and to produce enough
copies of the pieces to sequence. Thus, a typical approach to se-
quencing long DNA molecules is to sample and then sequence
fragments from them. However, this leaves us with the problem
of assembling the pieces, which is the problem we study in this
chapter. We present formal models for the problem and algorithms
for its solution.

BIOLOGICAL BACKGROUND

To sequence a DNA molecule is to obtain the string of bases that it contains. In large-
scale DNA sequencing we have a long target DNA molecule (thousands of bp) that we
want to sequence. We may think of this problem as a puzzle in which we are given a
double row of cards facing the table, as in Figure 4.1. We do not know which letter from
the set {A, C, G, T} is written on each card, but we do know that cards in the same po-
sition of opposite strands form a complementary pair. Our goal is to obtain the letters
using certain hints, which are (approximate) substrings of the rows. The long sequence
to reconstruct is called the target.

In the biological problem, we know the length of the target sequence approximately,
within 10% or so. It is impossible to sequence the whole molecule directly. However, we
may instead get a piece of the molecule starting at a random position in one of the strands
and sequence it in the canonical (5' —• 30 direction for a certain length. Each such se-
quence is called a fragment. It corresponds to a substring of one of the strands of the

106 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

5'
3'

...ananaan..-
•-.0000000...

FIGURE 4.1

3'
5'

Unknown DNA to be sequenced.

target molecule, but we do not know which strand or its position relative to the beginning
of the strand in addition it may contain errors. By using the shotgun method (described
in Section 1.5.2), we obtain a large number of fragments and then we try to reconstruct
the target molecule's sequence based on fragment overlap. Depending on experimental
factors, fragment length can be as low as 200 or as high as 700. Typical problems involve
target sequences 30,000 to 100,000 base-pairs long, and total number of fragments is in
the range 500 to 2000.

The problem is then to deduce the whole sequence of the target DNA molecule.
Because we have a collection of fragments to put together, this task is known as frag-
ment assembly. We note that it suffices to determine one of the strands of the original
molecule, since the other can be readily obtained because of the complementary pair rule.

In the remainder of this section we give additional details of a biological nature that
are important in the design of fragment assembly algorithms.

4.1.1 THE IDEAL CASE

The best way of studying the issues involved is by looking at an example. Be aware,
however, that real instances are much larger than the examples we present. Suppose the
input is composed of the four sequences

ACCGT
CGTGC
TTAC
TACCGT

and we know that the answer has approximately 10 bases. One possible way to assemble
this set is

--ACCGT—
CGTGC

TTAC
-TACCGT--

TTACCGTGC

Notice that we aligned the input set, ignoring spaces at the extremities. We try to
align in the same column bases that are equal. The only guidance to assembly, apart from
the approximate size of the target, are the overlaps between fragments. By overlap here
we mean the fact that sometimes the end part of a fragment is similar to the beginning
of another, as with the first and second sequences above. By positioning fragments so
that they align well with each other we get a layout, which can be seen as a multiple
alignment of the fragments.

4.1 BIOLOGICAL BACKGROUND 107

The sequence below the line is the consensus sequence, or simply consensus, and
is the answer to our problem. The consensus is obtained by taking a majority vote among
all bases in each column. In this example, every column is unanimous, so computing the
consensus is straightforward. This answer has nine bases, which is close to the given tar-
get length of 10, and contains each fragment as an exact substring. However, in practice
fragments are seldom exact substrings of the consensus, as we will see.

4.1.2 COMPLICATIONS

As mentioned above, real problem instances are very large. Apart from this fact, several
other complications exist that make the problem much harder than the small example
we saw. The main factors that add to the complexity of the problem are errors, unknown
orientation, repeated regions, and lack of coverage. We describe each factor in the sequel.

Errors

The simplest errors are called base call errors and comprise base substitutions, inser-
tions, and deletions in the fragments. Examples of each kind are given in Figures 4.2,
4.3, and 4.4, respectively. Transpositions are also common but we can treat them as com-
positions of an insertion and a deletion or two substitutions.

Input: Answer:

ACCGT
CGTGC
TTAC
TGCCGT

FIGURE 4.2

—ACCGT--
CGTGC

TTAC
-TGCCGT--
TTACCGTGC

In this instance there was a substitution error in the second
position of the last fragment, where A was replaced by G.
The consensus is still correct because of majority voting.

Base call errors occurs in practice at rates varying from 1 to 5 errors every 100 char-
acters. Their distribution along the sequence is not uniform, as they tend to concentrate
towards the 3' end of the fragment. As we can see from the examples, it is still possi-
ble to reconstruct the correct consensus even in the presence of errors, but the computer
program must be prepared to deal with this possibility and this usually means algorithms
that require more time and space. For instance, it is possible to find the best alignments
between two sequences in linear time if there are no errors, whereas we saw in Chapter 3
that quadratic algorithms are needed to account for gaps.

Apart from erroneous base calls, two other types of errors can affect assembly. One
of them is the artifact of chimeric fragments, and the other is contamination by host or
vector DNA. We explain each type in what follows.

108 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

Input: Answer:

ACCGT --ACC-GT--

CAGTGC
TTAC AC
TACCGT -TACC-GT--

TTACC-GTGC

FIGURE 4.3

In this instance there was an insertion error in the second
position of the second fragment. Base A appeared where

there should be none. The consensus is still correct because
of spaces introduced in the multiple alignment and majority

voting. Notice that the space in the consensus will be
discarded when reporting the answer.

Input: Answer:

- -ACCGT--ACCGT

TTAC
CGTGC CGTGC

TTAC
T A P P T — 1AC—CJ±

TTACCGTGC

FIGURE 4.4

In this instance there was a deletion in the third (or fourth)
base in the last fragment. The consensus is still correct
because of spaces in the alignment and majority voting.

Chimeric fragments, or chimeras, arise when two regular fragments from distinct
parts of the target molecule join end-to-end to form a fragment that is not a contiguous
part of the target. An example is shown in Figure 4.5. These misleading fragments must
be recognized as such and removed from the fragment set in a preprocessing stage.

Sometimes fragments or parts of fragments that do not have anything to do with the
target molecule are present in the input set. This is due to contamination from host or
vector DNA. As we saw in Section 1.5.2, the process of replicating a fragment consists
of inserting it into the genome of a vector, which is an organism that will reproduce and
carry along copies of our fragment. In the end, the fragment must be purified from the
vector DNA, and here is where contamination occurs — if this purification is not com-
plete. If the vector is a virus, then the infected cell — generally a bacterial cell — can
also contribute some genetic material to the fragment.

Contamination is a rather common phenomenon in sequencing experiments. Wit-
ness to this is the significant quantity of vector DNA that is present in the community
databases. Scientists sometimes fail to screen against the vector sequence prior to as-
sembly and submit a contaminated consensus to the database.

As with chimeras, the remedy for this problem is to screen the data before starting
assembly. The complete sequences of vectors commonly used in DNA sequencing are
well known, and it is not difficult to screen all fragments against these known sequences

4.1 BIOLOGICAL BACKGROUND 109

Input:

ACCGT
CGTGC
TTAC
TACCGT
TTATGC

Answer:

FIGURE 4.5

--ACCGT--
CGTGC

TTAC
-TACCGT--
TTACCGTGC

TTA TGC

The last fragment in this input set is a chimera. The only
way to deal with chimeras is to recognize and remove them

from the input set before starting assembly proper.

to see whether a substantial part of them is present in any fragment. Chimeric fragment
detection leads to interesting algorithmic problems, but we will not detail them any fur-
ther in this book. Pointers to relevant references are given in the bibliographic notes.

Unknown Orientation

Fragments can come from any of the DNA strands and we generally do not know to
which strand a particular fragment belongs to. We do know, however, that whatever the
strand the sequence read goes from 5' to 3'. Because of the complementarity and opposite
orientation of strands, the fact that a fragment is a substring of one strand is equivalent to
the fact that its reverse complement is a substring of the other. As a result, we can think of
the input fragments as being all approximate substrings of the consensus sought either
as given or in reverse complement. Figure 4.6 shows an assembly problem involving
fragments in both orientations, initially unknown, but with no errors. In practice, we have
to deal with both errors and unknown orientation at the same time.

Because the orientations are unknown, in principle we should try all possible corn-

Input: Answer:

CACGT ~*
ACGT ~*

CACGT-
-ACGT-

ACTACG *~ --CGTAGT-

GTACT
ACTGA
CTGA

-AGTAC
ACTGA
-CTGA

CACGTAGTACTGA

FIGURE 4.6

Fragment assembly with unknown orientation. Initially we
do not know the orientation of fragments. Each one can be
used either in direct or reverse orientation. In the solution,
we indicate by an arrow the chosen orientation: —> means

fragment as is, <— means its reverse complement.

110 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

binations, which are 2n for a set with n fragments. Of course, this method is unacceptable
and is not the way it is done in an assembly program, but it does hint at the complexity
introduced by the orientation issue.

Repeated Regions

Repeated regions or repeats are sequences that appear two or more times in the target
molecule. Figure 4.7 shows an example. Short repeats, that is, repeats that can be entirely
covered by one fragment, do not pose difficulties. The worst problems are caused by
longer repeats. Also, the copies of a repeat do not have to be identical to upset assembly.
If the level of similarity between two copies of a repeat is high enough, the differences
can be mistaken for base call errors. Remember that the assembler must be prepared to
deal with errors, so there is usually some degree of tolerance in overlap detection.

X\ X2

FIGURE 4.7

Repeated regions. The blocks marked X\ and X2 are
approximately the same sequence.

The kinds of problems that repeats cause are twofold. First, if a fragment is totally
contained in a repeat, we may have several places to put it in the final alignment, as it may
fit reasonably well in the several repeat copies. One could argue that it does not matter
where we put it, since in any copy of the same repeat the consensus will be approximately
the same. But the point is that, when the copies are not exactly equal, we may weaken
the consensus by placing a fragment in the wrong copy.

Second, repeats can be positioned in such a way as to render assembly inherently
ambiguous; that is, two or more layouts are compatible with the input fragments and ap-
proximate target length at equivalent levels of fitness. Two such cases are shown in Fig-
ures 4.8 and 4.9, respectively. The first one features three copies of the same repeat, and
the second has two interleaving copies of different repeats. The common feature between
these two cases is the presence of two different regions flanked by the same repeats. In
the first example, both B and C are flanked by X and X. In the second, both B and D
are flanked by X and Y.

So far we discussed direct repeats, namely, repeated copies in the same strand.
However, inverted repeats, which are repeated regions in opposite strands, can also oc-
cur and are potentially more dangerous. As few as two copies of a long, inverted repeat
are enough to make the instance ambiguous. An example is given in Figure 4.10.

Lack of Coverage

Another problem is lack of adequate coverage. We define the coverage at position i
of the target as the number of fragments that cover this position. This concept is well

4.1 BIOLOGICAL BACKGROUND 111

A X B X C X D

A X C X B X D

FIGURE 4.8

Target sequence leading to ambiguous assembly because of
repeats of the form XXX.

C X D

A X D Y C X B

FIGURE 4.9

Target sequence leading to ambiguous assembly because of
repeats of the form XYXY.

X rotate 180°

FIGURE 4.10

Target sequence with inverted repeat. The region marked X
is the reverse complement of the region marked X,

112 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

Target DNA

Fragments

Uncovered
area

FIGURE 4.11

Example of insufficient coverage.

defined, but it is impossible to compute it because we do not know the actual positions
of the fragments in the target. Even after assembly, all we have is our best guess about
these positions. We can compute the mean coverage, though, by adding up all fragment
lengths and dividing by the approximate target length.

If the coverage is equal to zero for one or more positions, then there is not enough
information in the fragment set to reconstruct the target completely. Figure 4.11 shows
an example in which there is an uncovered area. In such cases, the best we can hope to
achieve is a layout for every one of the contiguously covered regions, called contigs.
There are two contigs in Figure 4.11.

Lack of coverage occurs because the sampling of fragments is essentially a random
process; it is therefore possible that some parts end up not being well covered or not cov-
ered at all. In general, we want not only one, but several different fragments covering any
given point. The more fragments we have, the safer is our assessment of the consensus
based on voting. It is also desirable to have fragments from both strands covering a given
region, for it has been observed in practice that certain kinds of errors occur consistently
in one strand only.

Insufficient coverage can usually be dealt with by sampling more fragments, but
we must be careful with this approach. If everything is well covered except for a small
portion of the target, sampling at random can be a very inefficient way of covering the
gaps. An approach, called directed sequencing or walking (see Section 4.1.3), can be
used in this case. To avoid the formation of these little gaps, some researchers advocate
sampling at very high coverage rates, collecting fragments whose combined length is
enough to cover the target molecule 8 times or more.

It is important to know how many fragments we need to generate in order to achieve
a given coverage. The answer cannot be absolute, of course, since sampling is a random
process, but reasonable bounds can be derived. We mention here an important result that
is valid under certain simplifying assumptions.

Let T denote the length of the target molecule. Assume that all fragments have about
the same length / and that we can safely recognize overlaps of at least t bases. If we
sample n fragments at random, the expected number p of apparent contigs is given by
the formula

p = ne-nil-°/T. (4.1)

4.1 BIOLOGICAL BACKGROUND 113

The term "apparent contig" refers to the fact that we are assuming that we are able
to recognize overlaps only if they have size at least t. Thus some of the contigs we have
may in fact overlap by less that t bases, so they are really parts of a longer true contig
but "appear" to be two separated contigs to us.

Notice that p approaches zero as the number n of fragments grows, which seems
strange because we know there will always be at least one apparent contig. This happens
because formula (4.1) is an approximation. It can be used also in the context of DNA
mapping, where the number of contigs is much larger, so a difference of one or two is
negligible. The formula is useful in the sense that it provides a reliable ballpark in a wide
variety of situations.

A formula for the fraction of the target molecule covered by the fragments is also
available. With the same notation as above, the fraction covered by exactly k fragments
is given by

k\
where c = nl/T is the mean coverage.

(4.2)

4.1.3 ALTERNATIVE METHODS
FOR DNA SEQUENCING

We mention here a few supplementary and alternative approaches to DNA sequencing.
We start with directed sequencing, a method that can be used to cover small remaining
gaps in a shotgun project. In direct sequencing a special primer is derived from the se-
quence near the end of a contig, so that fragments spanning the region including the end
of this contig and the continuation of it in the target are generated. These new fragments
are then sequenced and give the sequence adjacent to the contig, thereby augmenting it.
Continuing in this fashion, we can cover the gap to the next contig. The problem with
this approach is that it is expensive to build special primers. Also, the next step can be
accomplished only after the current one, so the process is essentially sequential rather
than parallel (but can be done for all gaps in parallel).

Another technique that has become very popular is called dual end sequencing. In
a shotgun experiment several copies of the target DNA molecule are broken randomly
and short pieces are selected for cloning and sequencing. We recall from Section 1.5.2
that these pieces are called inserts because they are inserted into a vector for amplifica-
tion. Inserts sizes range from 1 to 5 kbp, but only about 200 to 700 bases can be directly
read from one extremity to yield a fragment. However, it is also possible to read the other
extremity if we have a suitable primer. The two fragments thus obtained belong to op-
posite strands, and they should be separated in the final alignment by roughly the insert
size minus the fragment size. This extra information is extremely useful in closing gaps,
for instance. Sometimes the dual end is sequenced only if it is necessary to close a gap.
Notice that dual end sequencing exploits the fact that inserts are usually larger than the
portion read from them.

A radically different approach from shotgun methods has been proposed recently.
Called sequencing by hybridization (SBH), it consists of assembling the target molecule

114 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

based on many hybridization experiments with very short, fixed length sequences called
probes. A hybridization simply checks whether a probe binds (by complementarity) to
a DNA molecule. The idea is to design a DNA chip that performs all the necessary hy-
bridizations simultaneously and delivers a list of all strings of length w, or w-mers, that
exist in the target. With current technology it is possible to construct such chips for probes
of length up to eight bases. Larger probe sizes seem still prohibitive at this point.

Important issues in SBH include the following. It is clear that not all target molecules
can be reconstructed with a probe size as small as eight (see Exercise 10). One important
problem then is to characterize the molecules that can actually be reconstructed with a
given probe size. Another problem is that the hybridization experiments do not provide
the number of times a given w-mex appears in the target, just whether an u>-mer does ap-
pear. Clearly, it would help to have the extra information on how many copies do appear.
Finally, problems with errors in the experiments and orientation need to be tackled. One
proposed strategy is to reduce the shotgun data to hybridization data by simply using all
the w-mers of the fragments instead of the fragments themselves and to think of them as
generated by hybridization experiments. However, this strategy throws away informa-
tion, because it is generally impossible to recover the fragments from the w-mers, while
it is possible to generate the w-mers from the fragments. Algorithms for the SBH prob-
lem are not covered in this book, but references are given in the bibliographic notes at
the end of this chapter.

We will now examine formalisms for fragment assembly. We present in this section three
models for the problem: shortest common superstring (SCS), RECONSTRUCTION, and
MULTICONTIG. Each throws light on the diverse computational aspects of the problem,
although none of them completely addresses the biological issues. All three assume that
the fragment collection is free of contamination and chimeras.

4.2.1 SHORTEST COMMON SUPERSTRING

One of the first attempts to formalize fragment assembly was through a string problem in
which we seek the shortest superstring of a collection of given strings. Accordingly, this
is called the Shortest Common Superstring problem, or SCS. Although this model has
serious shortcomings in representing the fragment assembly problem — it does not ac-
count for errors, for instance — the techniques used to tackle the resulting computational
problem have application in other models as well. It is worthwhile, therefore, to study
these techniques. The Shortest Common Superstring problem is defined as follows:

PROBLEM: SHORTEST COMMON SUPERSTRING (SCS)
INPUT: A collection T of strings.

4.2 MODELS 115

OUTPUT: A shortest possible string S such that for every / € T, S is a super-
string of / .

Example 4.1 Let T = {ACT, CTA, AGT}. The sequence S = ACTAGT is the shortest
common superstring of T. It obviously contains all fragments in T as substrings. To see
that it is the shortest, notice that any string S' that has both u — ACT and v = AGT as
substrings must have length at least 6. Moreover, with \S'\ = 6 we have just the con-
catenations uv and vu. But CTA is a substring of uv = S only.

In the context of fragment assembly, the collection T corresponds to the fragments,
each one given by its sequence in the correct orientation, and S is the sequence of the
target DNA molecule.

Notice that the computational problem specifies that S should be a perfect super-
string of each fragment, not an approximate superstring, so it does not allow for exper-
imental errors in the fragments. Furthermore, the orientation of each fragment must be
known, which is seldom the case. Finally, even in a perfect assembly project in which all
these factors could be somehow controlled, the shortest common superstring may not be
the actual biological solution because of repeated sections in the target DNA sequence,
as the following example shows.

Example 4.2 Suppose that the target molecule has two copies of an exact repeat and
that fragments are sampled as shown in Figure 4.12. Notice that the repeat copies are long
and contain many fragments. In this case, even if the fragments are exact substrings of the
consensus, and even if we know their correct orientation, finding the shortest common
superstring may not be what we want.

X X

FIGURE 4.12

Target sequence with long repeat that contains many
fragments. This example shows that even with no errors and

known orientation, the SCS formulation fails in the
presence of repeats.

Indeed, Figure 4.13 shows a different assembly, with a shorter consensus for the
same fragment set. Observe that because the repeat copies are identical, a superstring
may contain only one copy, which will absorb all fragments totally contained in any of
the copies. The other copy can be shorter, as it must contain only fragments that cross
the border between X and its flanking regions. The shortened version of X is denoted by
X' in this figure.

116 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

X X'

FIGURE 4.13

Alternative assembly for the fragments in the previous
figure. This assembly leads to a shorter consensus, because

all fragments totally contained in the rightmost copy (the
dashed fragments) were moved to the leftmost copy, causing

a decrease in length of the rightmost copy.

Notice that although shorter, this alternative assembly is poorer in terms of both cov-
erage and linkage. The coverage is uneven, with many fragments spanning X and much
fewer spanning X'. The linkage is poor because no fragment links the leftmost part of Xf

to its rightmost part. In fact, this consensus is the concatenation of two unrelated parts
u and v, with u going from the beginning to about the middle of X', and v going from
the middle of X' to the end. As far as shortest substrings are concerned, vu would be a
perfectly equivalent consensus.

The Shortest Common Superstring problem is NP-hard, but approximation algo-
rithms exist. However, given all the shortcomings of this model with respect to the real
biological problem, such algorithms are primarily of theoretical interest.

4.2.2 RECONSTRUCTION

This model takes into account both errors and unknown orientation. To deal with er-
rors, we need a few preliminary definitions. Recall from Chapter 3 that we can configure
the basic dynamic programming sequence comparison algorithm to suit many different
needs. Here we will use distance rather than similarity and a version that charges for gaps
in the extremities of the second sequence only. The scoring system is edit distance; that
is, one unit of distance is charged for every insertion, deletion, or substitution, except for
deletion in the extremities of the second sequence, which are free of charge. The distance
thus obtained will be called substring edit distance, to distinguish it from the classical
edit distance that charges for end deletions in both strings. We denote it by ds and define
it formally by the expression

ds(a,b)= min d(a, s),
szS(b)

where S(b) denotes the set of all substrings of b and d is the classical edit distance. Notice
that substring edit distance is asymmetric, that is, in general ds(a, b) ^ ds(b, a).

4.2 MODELS 117

GC-GATAG
CAGTCGCTGATCGTACG

FIGURE 4.14

Optimal alignment for substring edit distance, which does
not charge for end deletions in the second string.

Example 4.3 If a = GCGATAG and b = CAGTCGCTGATCGTACG, then the best
alignment is as indicated in Figure 4.14 and the distance is ds(a, b) = 2.

Let 6 be a real number between 0 and 1. A string / is an approximate substring of
S at error level e when

ds(f,S)<e\fl

where | / | is the length of / . This means that we are allowed on average e errors for each
base in / . For instance, if € = 0.05 we are allowed five errors per hundred bases. We are
now ready for the definition of fragment assembly according to the RECONSTRUCTION
model.

PROBLEM: RECONSTRUCTION

INPUT: A collection T of strings and an error tolerance e between 0 and 1.
OUTPUT: A shortest possible string S such that for every / G T we have

where / is the reverse complement of / .

The idea is to find a string S as short as possible such that either / or its reverse
complement must be an approximate substring of S at error level e. This formulation
will assemble correctly all the examples in Section 4.1 except for the one involving a
chimeric fragment. However, the general problem is still NP-hard. This is not surprising,
though, as it contains the SCS as a particular case with 6 = 0 (see Exercise 18).

In summary, RECONSTRUCTION models errors and orientation but does not model
repeats, lack of coverage, and size of target.

4.2.3 MULTICONTIG

The MULTICONTIG model adds a notion of good linkage to the answer. The previous
models do not care about the internal linkage of the fragments in the layout — only the
final answer matters. Thus, it is also necessary to accept answers formed by several con-
tigs, and for this reason it is called "multicontig."

We define first an error-free version of the MULTICONTIG model. Given a collection
T of fragments, we consider a multiple alignment, or layout. This layout must be such
that every column contains only one kind of base. This is where the error-free hypothe-
sis comes in. Also, to contemplate orientation, we require that either the fragment or its
reverse complement be in the alignment, but not both.

118 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

Let us call this layout £. We number the columns from 1 to the length \C\ of the
layout. According to this numbering, each fragment / has a left endpoint / (/) and a
right endpoint r (/) , so that | / | = r (/) — / (/) + 1. We say that fragments / and g
overlap in this layout if the integer intervals [I(/)../-(/)] and [Z(g)..r(g)] intersect. The
nonempty intersection [/(/)..r (/)] O [/(#)..r (g)] is called the overlap between / and g.
The size of this overlap is just the size of the intersection. Because we are using integer
intervals, all sets are finite.

Among all the overlaps between fragments, we are interested in the most important
ones, the ones that provide linkage. We say that an overlap [*..}>] is a nonlink if there is
a fragment in T that properly contains the overlap on both sides, that is, if the fragment
contains interval [(x — 1) ..(y -f-1)]. If no fragment has this property, the overlap is a link.
The weakest link in a layout is the smallest size of any link in it. Finally, we say that a
layout is a t-contig if its weakest link is at least as large as t. If it is possible to construct
a J-contig from the fragments of a collection j r , we say that T admits a f-contig.

We can now formalize the fragment assembly problem according to the MULTICON-
TIG model. Given a collection of fragments T and an integer t, we want to partition T
in the minimum number of subcollections d, 1 < i < fc, such that every C, admits a
f-contig.

Example 4.4 Let T — {GTAC, TAATG, TGTAA}. We want to partition T in the mini-
mum number of r-contigs. If t = 3, this minimum is two, as follows.

—TAATG GTAC
TGTAA—

There is no way to make one single contig with all three fragments, so two contigs is the
minimum possible in this case. Notice that GTAC is its own reverse complement.

If t = 2, the same solution is a partition in 2-contigs, since every 3-contig is a 2-
contig. However, another solution exists now:

TAATG GTAC
TGTAA

Here again it is impossible to assemble T into one f-contig.
Finally, if t = 1, we see that a solution with one f-contig exists:

TGTAA
—TAATG

GTAC

A version contemplating errors can be defined as follows. The layout is not required
to be error-free, but with each alignment we must associate a consensus sequence S of
the same length, possibly containing space characters (-). The numbers / (/) and r(f)
are still defined as the leftmost and rightmost columns of / in the alignment, but now we
may have \f\ •=/=• r (/) — / (/) + 1. The image of an aligned fragment / in the consensus
is S[l(f)..r(f)]. Given an error tolerance degree 6, we say that S is an €-consensus for

4.3 ALGORITHMS 119

this contig when the edit distance between each aligned fragment / and its image in the
consensus is at most e | / | . We are now ready for the formal definition.

PROBLEM: MULTICONTIG
INPUT: A collection T of strings, an integer t > 0, and an error tolerance €

between 0 and 1.
OUTPUT: A partition of T in the minimum number of subcollections C,-, 1 <

i < k, such that every C,- admits a /-contig with an e-consensus.

Notice that in the RECONSTRUCTION model a fragment is required to be an approx-
imate substring of S, but the particular place in S where it is aligned is not important.
In contrast, in the MULTICONTIG formulation we need to specify explicitly where each
fragment should go.

The MULTICONTIG formalization of fragment assembly is NP-hard, even in the sim-
plest case of no errors and known orientation. It contains as a special case the problem
of finding a Hamiltonian path in a restricted class of graphs.

This formulation models errors, orientation, and lack of coverage but has no pro-
vision to use information on the approximate size of the target molecule. In addition, it
partially models repeats, in the sense that it can satisfactorily solve some instances with
repeats, although not all of them. For instance, it can correctly reconstruct the instance
given in Figure 4.12.

• ALGORITHMS

In this section we present two algorithms for the case of fragments with no errors and
known orientation. One of them is known as the greedy algorithm, and many practical
systems are based on the same idea, with additions that contemplate errors and unknown
orientation. The other algorithm is based on the MULTICONTIG model and is useful when
we can obtain an acyclic overlap graph by discarding edges with small weight. It should
be mentioned that both algorithms are of little practical value in themselves, because of
the restrictive hypothesis. Nevertheless, the ideas behind them can be useful in designing
algorithms that deal with real instances of the problem.

4.3.1 REPRESENTING OVERLAPS

Common superstrings correspond to paths in a certain graph structure based on the col-
lection T. We can translate properties of these superstrings to properties of the paths. Be-
cause researchers have studied paths in graphs for a long time, many people feel more
comfortable dealing with graphs, and relating a new problem to them is often a good
idea.

The overlap multigraph OM (J7) of a collection T is the directed, weighted multi-
graph defined as follows. The set V of nodes of this structure is just T itself. A directed

120 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

edge from a e T to a different fragment b e T with weight t > 0 exists if the suffix of
a with t characters is a prefix of b. In symbols, this is equivalent to

suffix(a, t) = prefix(b, t),

or

or

where /c is the killer agent defined in Section 2.1. Notice that we must have \a\ > / and
|Z?| > r for this edge to exist. Observe also that there may be many edges from atob, with
different values of t. This is why the structure is called a multigraph instead of simply
a graph. Note that we disallow self-loops, that is, edges going from a node to itself. On
the other hand, edges of zero weight are allowed.

A word must be said about edge weights. These weights represent overlaps between
fragments, and we use the overlaps to join fragments into longer strings, sharing the over-
lapping part. This joining means that we believe that the two fragments come from the
same region in the target DNA. Now this belief has to be based on solid evidence. In our
case, this evidence is the size of the overlap. A short overlap provides weak evidence,
whereas a long overlap gives strong evidence. When dealing with hundreds of fragments,
each one a few hundred characters long, it is foolish to assume that two fragments share
ends based on an overlap of, say, three characters. For this reason, sometimes we impose
a minimum acceptable amount of overlap, and throw away all edges with weight below
this threshold. But, in principle, we will keep all the edges in the multigraph, including
the zero weight edges. There are n(n — 1) such edges, because any two strings share a
common part of zero characters.

4.3.2 PATHS ORIGINATING SUPERSTRINGS

The overlap multigraph is important because directed paths in it give rise to a multiple
alignment of the sequences that belong to this path. A consensus sequence can then be
derived from this alignment, providing a common superstring of the involved sequences.
Let us investigate this process more closely.

Given a directed path P in OMiJ7), we can construct a multiple alignment with
the sequences in P as follows. Each edge e = (/, g) in the path has a certain weight r,
which means that the last t bases of the tail / of. e are a prefix of the head g of e. Thus,
/ and g can be aligned, with g starting t positions before / ' s end.

An example is given in Figure 4.15. Only edges with strictly positive weight were
drawn. The collection T is {a, b, c, d], where

a = TACGA,

b = ACCC,

c = CTAAAG,

d = GACA.

4.3 ALGORITHMS 121

TACGA

CTAAAG

FIGURE 4.15
Overlap multigraph with zero-weight edges omitted.

Usually, we indicate paths by a list of the form vertex, edge, vertex, edge, ..., ver-
tex, with each edge connecting its two neighboring vertices in the list. However, in this
example there are no parallel edges, so, for simplicity, we will indicate the paths by just
a list of the vertices involved. The path Pi = dbc leads to the following alignment:

GACA
ACCC

CTAAAG

whereas path P^ = abed originates the following alignment.

TACGA
ACCC

CTAAAG
GACA

In general, let P be a path in OM.(T), and let A be the set of fragments involved
in P. Paths by definition cannot repeat vertices, so we have exactly |A| — 1 edges in P.
The common superstring derived from P as above will be called S(P).

The relationship between the total length of A, the path's weight, and the superstring
length is given by the following equation.

||A|| = u;(P) + |S(P)|, (4.3)

where \\A\\ = YlaeA \a\ ls> m e s u m °^ lengths of all sequences in A, and w(P) is the
weight of P. Is this really true? Let us check it for some simple cases.

Start with a path with just one fragment and no edges. Then A = {/}, ||A|| = | / | ,
and w(P) = 0, since P has no edges. Furthermore, S(P) is simply / . It is easy to see
that Equation (4.3) holds in this case. Let us try something larger. Suppose that P =
f\e\f2^2 •'' fi an(3 that the formula holds for P. What happens if we consider an addi-
tional edge? We have P' = Pei+\fi+\ and

w(P') = w{P) + w(el+l) = w(P) + k,

if w(ei+\) = k.

122 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

On the other hand, S(P') = S(P)suffix(fi+i, \fi+\\ - k), because the first k char-
acters of fi+i are already present in S(P). We need to concatenate the remaining suffix
of fi+\ only. Then,

= \\Af\\-w(Pf)

and the formula holds. We have just proved Equation (4.3) by induction.

Another way of seeing it is by using the killer character. If P = f\e\fiei...//,

S(P) = flK
wiex) f2K

w{ei) • • • Kwie'-Ofh

The right-hand side is not ambiguous in this case because

(.flKWM)fi+l = MKWMfl+l),

by definition of edge weight.
Computing the length,

\S(P)\ = | / i | - w(e{) + |/2 | - w(e2) +

1=1

So, every path originates a common superstring of the fragments involved. This is par-
ticularly important when we have a path that goes through every vertex. Such paths are
called Hamiltonianpaths (see Section 2.2). If we get a Hamiltonian path, we have a com-
mon superstring of A = T. In this case Equation 4.3 becomes

\S(P)\ = \\F\\-w(P) (4.4)

and, since ||JF|| is constant, that is, independent of the particular Hamiltonian path we
take, we see that minimizing |5(P)| is equivalent to maximizing w(P).

4.3.3 SHORTEST SUPERSTRINGS AS PATHS

We have seen that every path corresponds to a superstring. Is the converse true? Not
always, as the following example shows. For the fragment set that originated the graph
in Figure 4.15, the superstring

GTATACGACCCAAACTAAAGACAGGG

does not correspond to any path, and it easy to see why. Superstrings may contain un-
necessary characters not present in any fragment.

But shortest superstrings cannot waste any characters. So, do shortest superstrings
always correspond to paths? The answer is affirmative, and we will prove this result in
the sequel. We first observe that it is true for certain collections that are substring-free,
defined below, and then generalize the result to any collection.

4.3 ALGORITHMS 123

A collection T is said to be substring-free if there are no two distinct strings a and b
in T such that a is a substring of b. The advantage of dealing with substring-free collec-
tions is that a partial converse of the path-to-superstring construction is easier to prove,
as illustrated by the following result.

THEOREM 4.1 Let T be a substring-free collection. Then for every common super-
string S of T there is a Hamiltonian path P in OMiT} such that S(P) is a subsequence
of 5.

Proof. The string S is a common superstring of T, so for each / e T there is an in-
terval [/(/)..r(/)] of S such that S[l(f)..r(f)] = / . For some fragments there may be
many positions in which to anchor them. Never mind. Take one of them and fix it for the
rest of this proof.

No interval of the form [/(/)..r(/)] is contained in another such interval, because
T is substring-free. These intervals have the following important property: All left end-
points are distinct and all right endpoints are distinct, although there may be left end-
points equal to right endpoints. Moreover, if we sort the fragments in increasing order
of left endpoint, the right endpoints end up in increasing order as well. Indeed, if we had
two strings / and g in T with / (/) < l(g) and r (/) > r {g), then the interval of g would
be contained in the interval of / , which is impossible. So, we have the intervals sorted
by increasing initial and final endpoints. Let (/!)i=i,...,m be this ordering. The fragments
in this order make up the claimed path.

Consider the relationship between ft and ft+\, for each i such that 1 < i < m — 1.
If l(fi+1) <r(fi) + l, then there is an edge in OM{T) with weight r(ft) + 1 -l(fi+i).
lfl(fi+i) > r(fi) + l, then take the edge of weight zero from /; to ft+\. The characters
S[j] for r(ft) + 1 < j < l(ft+\) — 1 will be discarded, because they do not belong
to any interval and are therefore superfluous as far as making a common superstring is
concerned. These characters are in S but not in 5(P), which is therefore a subsequence
of 5. •

COROLLARY 4.1 Let T be a substring-free collection. If 5 is a shortest common su-
perstring of T, there is a Hamiltonian path P such that S = S(P).

Proof. By the previous theorem, there is such a path with S (P) a subsequence of S. But
S(P) is also a common superstring, because P is Hamiltonian. Because S is a shortest
common superstring, we have |S(P)| > |.S| and therefore S = S(P). •

We now generalize this result to any collection. First, a few definitions are in order.
A collection of strings T dominates another collection Q when every g e Q is a substring
of some / € T. For instance, if Q c T, then T dominates Q. Two collections T and Q
are said to be equivalent, denoted T = Q, when T dominates Q and Q also dominates
T. Equivalent collections have the same superstrings, so this notion is important for us.

LEMMA 4.1 Two equivalent substring-free collections are identical.

Proof. If T = G and ^ is substring-free, then T c Q. To see that, consider / € T.
Since T is dominated by Q, there must be g e Q such that / is a substring of g. But T

124 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

also dominates Q, so there is a superstring h of g in T. By transitivity, / is a substring
of h. But ,F is substring-free, so / = h, and, since g is "in between" them, / = g = /z.
It follows that f = g e Q. Since / is arbitrary, we conclude that f e g , The same
argument with J7 and Q interchanged shows that Q c j ; Hence, J7 = Q. •

The next theorem helps us understand how to obtain a substring-free collection from
an arbitrary collection of fragments.

THEOREM 4.2 Let T be a collection of strings. Then there is a unique substring-free
collection Q equivalent to T.

Proof. Uniqueness is guaranteed by the previous lemma. Now let us turn to the exis-
tence. We want to show that for every T there is a substring-free collection Q equivalent
to T. We do that by induction on the number of strings in T.

For \T\ = 0, T itself is substring-free, so we are done. For \T\ > 1, T may or may
not be substring-free. If it is, we are again done. If it is not, then there are a and b in T
such that a is a substring of b. Remove a from T, obtaining a smaller collection T' —
T — {a}. By the induction hypothesis, T' has an equivalent substring-free collection Q.
But it is easy to verify that T = T'. Obviously T dominates T', which is a subset of T.
On the other hand, the only string that is in T but not in T1 is a, which is covered by
b 6 T'. Hence, Q is also equivalent to T and we are done. •

This result tells us that if we are looking for common superstrings, we might as well
restrict ourselves to substring-free collections, because given any collection there is a
substring-free one equivalent to it, that is, having the same common superstrings. Inci-
dentally, the proof of Theorem 4.2 also gives us a way of obtaining the unique substring-
free collection equivalent to a given T\ Just remove from T all strings that are substrings
of other elements of T.

4.3.4 THE GREEDY ALGORITHM

We now know that looking for shortest common superstrings is the same as looking for
Hamiltonian paths of maximum weight in a directed multigraph. Moreover, because our
goal is to maximize the weight, we can simplify the multigraph and consider only the
heaviest edge between every pair of nodes, discarding other, parallel edges of smaller
weight. Any path that does not use the heaviest edge between a pair of nodes can be
improved, so it is not a maximum weight path. Let us call this new graph the overlap
graph of JF, denoted by OQ (T). In an actual implementation we would not construct
these edges one by one. Using suffix trees (see Section 3.6.3), we can build the edges si-
multaneously, saving both space and time in the computer (see the bibliographic notes).
The same structures can help in deciding which fragments are substrings of other frag-
ments and may therefore be left out of the graph.

The following algorithm is a "greedy" attempt at computing the heaviest path. The
basic idea employed in it is to continuously add the heaviest available edge, which is
one that does not upset the construction of a Hamiltonian path given the previously cho-

4.3 ALGORITHMS 125

sen edges. Because the graph is complete, that is, there are edges between every pair of
nodes, this process stops only when a path containing all vertices is formed.

In a Hamiltonian path, or in any path for that matter, we cannot have two edges leav-
ing from the same node, or two edges leading to the same node. In addition, we have to
prevent the formation of cycles. So these are the three conditions we have to test before
accepting an edge in our Hamiltonian path. Edges are processed in nonincreasing order
by weight, and the procedure ends when we have exactly n — 1 edges, or, equivalently,
when the accepted edges induce a connected subgraph.

Figure 4.16 shows the algorithm. For each node, we keep its current indegree and
outdegree with respect to the accepted edges. This information is used to check whether
a previously chosen edge has the same tail or head as the currently examined edge. In
addition, we keep the disjoint sets that form the connected components of the graph in-
duced by the accepted edges. It is easy to see that a new edge will form a cycle if and
only if its tail and head are in the same component. Therefore, this structure is needed to
check for cycles. The disjoint sets are maintained by a disjoint-set forest data structure
(mentioned in Section 2.3).

We described the greedy algorithm in terms of graphs, but it can be implemented
using the fragments directly. The algorithm corresponds to the following procedure be-
ing continuously applied to the collection of fragments, until only one fragment remains.
Take the pair (/, g) of fragments with largest overlap k, remove the two fragments from
J~, and add fickg to T. We assume that the collection T is substring-free.

This greedy strategy does not always produce the best result, as shown by the fol-
lowing example.

Algorithm Greedy
input: weighted directed graph OQ{T) with n vertices
output: Hamiltonian path in OQ{Jr)
II Initialize
for i «— 1 to n do

in[i] <-0 jf how many selected edges enter i
out[i] <- 0 // how many selected edges exit i
MakeSet{i)

II Process
Sort edges by weight, heaviest first
for each edge (/, g) in this order do

/ test edge for acceptance
if in[g] = 0 and out[f] = 0 and FindSet(f) # FindSet(g)

select (/, g)
in[g] <- 1
out[f] +- 1
Union(FindSet(f), FindSet(g))

if there is only one component
break

return selected edges

FIGURE 4.16

Greedy algorithm to find Hamiltonian path.

126 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

GCC

ATGC f > O T G C A T

3

FIGURE 4.17

A graph where the greedy algorithm fails.

Example 4.5 Suppose we have

T = {GCC, ATGC, TGCAT}.

The overlap graph looks like Figure 4.17, where we omitted the zero edges to avoid clut-
tering the drawing.

In this graph, the edge of weight 3 is the first one to be examined and is obviously
accepted because the first edge is always accepted. However, it invalidates the two edges
of weight 2, so the algorithm is forced to select an edge of weight zero to complete the
Hamiltonian path. The two rejected edges form a path of total weight 4, which is the
heaviest path in this example.

This example shows that the greedy algorithm will not always return the shortest
superstring. Is there an algorithm that works in all cases? Apparently not. We are trying
to solve the SCS problem through the Hamiltonian path (HP) problem; but as we have
seen in Section 2.3, the HP problem is NP-complete. Perhaps we could have better luck
trying another approach to solve the SCS problem. Unfortunately this is probably not
the case either, since, as already mentioned, it can be shown that the SCS problem is
NP-hard.

4.3.5 ACYCLIC SUBGRAPHS

The hardness results we mentioned in the previous section apply to an arbitrary collec-
tion of fragments. In this section we consider the problem of assembling fragments with-
out errors and known orientation assuming that the fragments have been obtained from
a "good sampling" of the target DNA. As shown in the sequel, this assumption enables
us to derive algorithms that deliver the correct solution and are particularly efficient.

What do we mean by a "good sampling"? Basically, we want the fragments to cover
the entire target molecule, and the collection as a whole to exhibit enough linkage to
guarantee a safe assembly. Recall from Section 4.2.3 the definition of r-contig. Our def-
initions here are based on similar concepts.

Suppose that S is a string over the alphabet {A, C, G, T}. Recall from Section 2.1

4.3 ALGORITHMS 127

that an interval of S is an integer interval [i..j] such that 1 < / < j -\- I < |S| + 1. A
sampling of S is a collection A of intervals of S. The sampling A covers S if for any i
such that 1 < / < |5 | we have at least one interval [j..k] e A with i e [j..k].

We say that two intervals a and fi are linked at level t \f \a C\ f$\ > f. The entire
sampling A is said to be connected at level t if for every two intervals a and ft m A
there is a series of intervals «/ for 0 < i < I such that a = ao, /? = az and at is linked
to (ty+i at level t for 0 < / < Z — 1. Note that we are using parameter t to measure how
strong a link is. A sampling A will be considered good if it is connected at level t.

Our goal is to study fragment collections coming from connected at level t sam-
plings that cover a certain string S. The value of t is around 10 in typical, real instances,
but in our study we will not fix it. We do assume that t is a nonnegative integer, though.

The fragment collection generated by a sampling A is

S[A] = [S[a] \aeA).

We say that a sampling A is subinterval-free if there are no. two intervals [i..j] and [k.J]
in A with [i.J] c [k.J]. The following observation about subinterval-free samplings
will be coming into play again and again. In a subinterval free sampling, no two inter-
vals can have the same left endpoint. Otherwise, whichever has the larger right endpoint
would contain the other. An analogous argument holds for right endpoints.

We consider also modified forms of our overlap graphs. Given a collection T and a
nonnegative integer t define OM.{T, i) as the graph obtained from OMiJ7) by keeping
only the edges of weight at least t. A similar construction defines OQ(F\ t). This reduces
the overall number of edges, keeping only the stronger ones.

We will use the symbol a -^ fi to mean that \ot\>wt\p\>w9 and /(/?) + w — 1 =
r(a). Similarly, f -> g means that there is an edge from / to g in OM-iJ7) of weight w.

Suppose now that we got such a collection T and would like to recover S. How can
we do that? What are the good algorithms for it? It turns out that the answer depends
strongly on the repeat structure of S. If S does not have any repeats of size t or more,
then it is easy to reconstruct it. But if S has such repeats, the problem gets more complex,
and in some cases S cannot be recovered without ambiguity.

One thing that is independent of the repeat structure of S is the existence of a Hamil-
tonian path in the graph OM{J~', t). We state and prove this basic result here, before
embarking on an analysis of the repeat structure of S. First, an auxiliary lemma.

LEMMA 4.2 Let S be a string over {A, C, G, T} and A be a subinterval-free, connected
at level t sampling of S, for some t > 0. If a is an interval in A such that there is another
interval /? in A with I (a) < I (ft), then fi can be chosen so that

Proof. We know A is connected at level r, therefore there is a sequence (a/)o<;</ of
intervals in A such that a = ao, fi = «/, and |a,- O ai+\ \ > t for 0 < i < / — 1.

Let i be the smallest index such that I (a) < /(«/). Because fi = a\ satisfies this
property, we know that / < /. On the other hand, i > 0 because a = ao does not satisfy
the property. Because i is the smallest index with the property, we have / (a< _ i) < I (a) <
Z(«/). It follows that r(or,_i) < r(a) < r(a,), since A is subinterval-free. The picture
looks like Figure 4.18.

128 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

FIGURE 4.18 m

Three mutually overlapping intervals.

We also know that |aj_i Ha/1 > r.But|anor/| > |or/_inof/| > t (look at Figure 4.18),
so oit is an interval in A such that

Now, the Hamiltonian path existence result.

THEOREM 4.3 Let S be a string over {A, C, G, T} and A be a subinterval-free, con-
nected at level t sampling of 5, for some t > 0. Then the multigraph OM.(T, t), where
T is the fragment collection generated by A, admits a Hamiltonian path P. Furthermore,
if A covers S, then P can be chosen so that S(P) = S.

Proof. Let (a,) i </ <n be all the intervals in A sorted by left endpoint. Because A is sub-
interval-free, this sequence is also sorted by right endpoint. Let ft = 5[a,] for 1 <i < n.

ki

We claim that fi —> f+\ for some ki > t, so that the /) in the above order form a
Hamiltonian path.

Let ott be any interval except the last one. By the previous lemma, there is another
interval fi € A such that /(«/) < /(/?) and r(a/) + 1 - /(/?) > £. The sequence (a/)i</<n
is sorted by left endpoint, so I (at) < l(ai+\) < l(p). (The intervals a,+i and fi may be
the same.) Hence,

kt = fa n a / + i | = ![/(a/+i)..r(af)]| = r fe) - /(a /+1) + 1 > r(at) + 1 - l(fi) > r.

This shows that an edge fi->fi+i really exists in OM.(T, t) and concludes the proof of
the first part.

The second part, which says that S(P) = 5, is a consequence of the following fact.
Every time we have a ^ ^ w e also have S[a] -^ S[fi] and S[a]KwS[fi] = S[a U fi].

The presence of repeated regions, or repeated elements, in the target string S is re-
lated to the existence of cycles in the overlap graph. In this and following sections we
make this relationship more explicit.

A repeated element, or just a repeat in S, occurs when two different intervals of S
give rise to the same substring. In other words, there are two intervals a ^ fi such that
S[a] = S[fi]. The size of this repeat is |5[a]|, which is the same as | £[/?]!. The repeat is
self-overlapping when a f) fi ^ 0, otherwise we have disjoint occurrences of the repeat.

4.3 ALGORITHMS 129

Our next result shows that cycles in an overlap graph are necessarily due to repeats
in S. The converse is not necessarily true; that is, we may have repeats but still an acyclic
overlap graph. Again, a couple of intermediate results are needed before we can prove
an important fact.

LEMMA 4.3 If a -^ p then I (a) < l(P) and r(a) <r(P).

Proof. From|a| > w wehaveZ(a)+u; — 1 < r(a).Fromo; -> p weget/(y3)+u;—1 =
r{a). Therefore l(a) + w - 1 < l(P) + w - 1, that is, l(a) < l(/3). Similarly, \P\ > w
implies l(p) + w — 1 < r(P), or r(a) < r(/*), in view of previous equations. •

We need a few more definitions before proceeding. A false positive at level t is a
pair of intervals a and p such that there is a w > t with S[a] —> S[fi] but a —* p does
not hold. The name refers to the fact that we assumed that S[a] and S[p] came from
intersecting regions in the target molecule because their sequences overlap, but this is
not the case. They look overlapping but they are not, so they constitute a false positive.

LEMMA 4.4 The existence of a false positive at level t implies the existence of a repeat
of size at least t.

Proof. Because S[a] A S[0], we have \a\ > w and \/3\ > w. If l(/3) = r(a) - w + 1,
then we would have a -> ft, since a ^ ft by hypothesis. Hence, l(/3) ̂ r(a) — w -f 1.

The relation S[a] A S[fi] also implies that S[a'] = S[fi% where a' is the last w
elements of a and P' is the first w elements of p. Because l(P) ^ r(a) — w 4-1, a' and
p' axe different intervals giving rise to the same substring; that is, we have a repeat of
size w > t. •

THEOREM 4.4 Let T be a collection generated by a sampling A of S. If OQ(T, t)
has a directed cycle, then there is a repeat in S of size at least t.

Proof. Let / i —• f2 - > • • • - > / / -* /i be a directed cycle in OQ(T, t). Consider
intervals o?i,..., or/ such that 5[a/] = /), for 1 < / < /. We will show that at least one
of the pairs (a,, o?;+i), including (a/, a?i), is a false positive, which implies the existence
of a repeat in S by Lemma 4.4.

Suppose they are all true positives. Then a, -* a,_|_i for 1 < / < / and QL\ -»
«i. It follows that /(c*i) < /(a2) < • • • < /(a/) < /(ai). So, all the /(cO are equal.
An analogous observation holds for the r(a/). But then a\ = ct2 — • • • = a/, which
is impossible, since the ft are distinct by hypothesis. Hence, there is at least one false
positive and the result is proved. •

All these considerations lead to a satisfactory solution for fragment assembly when
the target string S does not have repeats.

THEOREM 4.5 Let S be a string over {A, C, G, T}, A a subinterval-free, connected at
level t sampling of S that covers S, and T = S[A\. If S has no repeats of size t or larger,
then the graph OQ(T, t) has a unique Hamiltonian path P and S(P) — S.

130 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

Proof. We have seen that OQ(T\ t) is acyclic (Theorem 4.4) and that OJW(f, 0 has
a Hamiltonian path P with S(P) — S.

To begin with, notice that QM(T, t) = OQ{T", t) if S has no repeats of size t or
larger. This follows from the absence of false positives. It is clear that the vertex sets of
OM{T, t) and OQ{?\ t) are the same. It is also clear that every edge of OQ(T, i) is
also in OMiJ7, t). What we need is to convince ourselves that all edges in OM.{?", t)
areinCXyCT7, t).

Let / 4- g be an edge in OM(JF, t). Then w > /. If this edge is not in OQ(F, f),
this is due to the existence of another edge / -4- g with x > w. Let a and /3 be intervals
in A with S[a] = / and S[fi] — g. Since there are no false positives, we must have
at the same time a -^ j6 and a -4 /?, which is impossible. The weight in this edge is
uniquely determined by w = r(a) — /(/3) -f- 1.

So, OQ{T, t) is an acyclic graph with a Hamiltonian path. It turns out that every
time an acyclic graph has a Hamiltonian path this path is unique. To see why this is true,
consider the nodes in the graph that have indegree zero (the sources). Because the graph
is acyclic, it must have at least one source. But, having a Hamiltonian path, it can have
at most one source: the starting point of this path. All other vertices have at least one
incoming edge. We conclude that our graph must have exactly one source, and it must
be the starting point of the Hamiltonian path.

Now, if we remove this source from the graph, the remaining graph is still acyclic,
and has a Hamiltonian path, because the vertex we removed is an extremity of the old
Hamiltonian path. Proceeding in this way, we see that the Hamiltonian path is unique,
and we know how to construct it: just keep removing sources from the graph. •

The algorithm just described is well known in computer science (see Exercise 12
of Chapter 2). It is called topological sorting and, in its more general context, is used to
find an ordering of nodes that is consistent with an acyclic set of edges in the following
sense: For all edges / -> g the node / appears before g in the ordering. If the graph has
a Hamiltonian path besides being acyclic, then this ordering is unique, as we just saw.

We end this section with an example where Greedy does not work, but there is an
acyclic subgraph for a suitable threshold f, so that topological sorting will find the cor-
rect path. When we say that Greedy does not work, we mean that it does not do a good
job regarding assembly, although it does do a good job finding a shortest common super-
string. In this example the fragments come from a target sequence that does have repeats
longer than t. This goes to show that the absence of long repeats is not necessary to yield
an acyclic graph. It is merely sufficient, in mathematical jargon.

Example 4.6 Consider the following target string S and fragments w, z, w, x, and y:

S = AGTATTGGCAATCGATGCAAACCTTTTGGCAATCACT

w = AGTATTGGCAATC

Z = AATCGATG

u = ATGCAAACCT

x =CCTTTTGG

y= TTGGCAATCACT

4.3 ALGORITHMS 131

Choosing a threshold value of t = 3, we get the overlap graph depicted in Figure 4.19. A
greedy assembly will result in a shortest common superstring, formed by concatenation
of the contig wK9y with the contig ZK3UK3X in any order, as shown in Figures 4.20 and
4.21. This solution has length 36, one character shorter than the target sequence, which
is also a superstring. However, the solution given by the Hamiltonian path has better
linkage.

Overlap graph for a given set of five fragments.

AGTATTGGCAATC AATCGATG • -
ATGCAAACCT

TTGGCAATCACT CCTTTTGG
AGTATTGGCAATCACTAATCGATGCAAACCTTTTGG

FIGURE 4.20

A bad solution for an assembly problem, with a multiple
alignment whose consensus is a shortest common

superstring. This solution has length 36 and is generated by
the Greedy algorithm. However, its weakest link is zero.

AGTATTGGCAATC CCTTTTGG •-
AATCGATG TTGGCAATCACT

ATGCAAACCT
AGTATTGGCAATCGATGCAAACCTTTTGGCAATCACT

FIGURE 4.21

Solution according to the unique Hamiltonian path. This
solution has length 37, but exhibits better linkage. Its

weakest link is 3.

132 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

HEURISTICS

We have seen that none of the formalisms proposed for fragment assembly are entirely
adequate, so in practice we must often resort to heuristic methods. We review some of
these in this section, starting by pointing out relevant properties of a good assembly lay-
out.

Fragment assembly can be viewed as a multiple alignment problem with some addi-
tional features. The most striking such feature is perhaps the fact that each fragment can
participate with either the direct or the reverse-complemented sequence. A second spe-
cial feature is that the sequences themselves are usually much shorter than the alignment
itself. This leads us to charge internal gaps and external gaps in the fragments differently,
with internal gaps being much more penalized. If we charge both kinds of gaps the same
or nearly the same penalty, then there would be no incentive to keep fragment charac-
ters together, potentially causing them to scatter along the entire length of the alignment.
Moreover, the fact that fragments are short compared to the alignment forces us to look
at other criteria, besides the score, to assess the quality of an alignment. These extra cri-
teria include coverage and linkage. The latter measures how strongly the sequences are
linked in terms of their overlap, as we have seen in Sections 4.2.3 and 4.3.5. We now
discuss these criteria in more detail.

Scoring: In each column of the multiple alignment we have a certain coverage (defined
in Section 4.1.2). The ideal situation is when all sequences participating in a column
have the same character there. In general, uniformity is good and variability is bad in
a column.

This suggests the use of a concept called entropy to measure the quality of a column.
Entropy is a quantity that is defined on a group of relative frequencies, and it is low when
one of these frequencies stands out from the others, and high when they are all more or
less equal. In our context, the lower the entropy, the better. The frequencies we use are
the frequencies of each character, where a character here can be an ordinary base A, C,
G, T, or an internal space.

Suppose that we have n sequences covering a certain column, and relative frequen-
cies p&, PQ, PQ, pip, and pspace for each character. The entropy of this distribution is
defined as

E = -J2
c

If pc = 1 for a certain character c and all other frequencies are zero, then we have (as-
sume 0 log 0 = 0)

E = 0.

If, on the other hand, all frequencies are equal, we have pc = 1/5 for each c and then

E = -5 x - log - = log 5,

which is the maximum value possible for five frequencies.

4.4 HEURISTICS 133

Recall from Section 3.4 that we used the sum-of-pairs scoring scheme when we dis-
cussed multiple alignments. This scheme combines in a single number both the cover-
age and the uniformity of a column. The larger the coverage, the larger the sum-of-pairs
value, provided the uniformity is high. Also, for constant coverage, the sum-of-pairs
value increases with uniformity. In contrast, the entropy is independent of coverage. It
measures uniformity alone. Depending on the situation, a scientist may want to use sum-
of-pairs, a combined measure, or the coverage and entropy separately.

Coverage: In Section 4.1.2 we defined the coverage of a set of fragments with respect
to the target from which they were obtained. Here we define an analogous concept for a
layout. A fragment covers a column / if it participates in this column either with a charac-
ter or with an internal space. Let / (/) and r (/) be the leftmost position and the rightmost
position, respectively, of a character of / (or of its reversed complement) in the layout.
The previous definition means that fragment / covers column / if/(/) < / < r (/) .

Having defined what the coverage is in each column, we may speak of minimum,
maximum, and mean coverage of a layout. The meanings are as expected. If the coverage
ever reaches value zero for a column /, then we do not really have a connected layout.
Indeed, no fragment image spans column i, so the parts of the layout to the left and to
the right of / are in some sense independent. For instance, the right part could be placed
to the left of the other, giving an alternative layout as good as the original one.

This means that if we have more columns with zero coverage, any permutation of
the intervening regions is acceptable. Each one of these regions corresponds to what we
have called a contig. Coverage is also important to give confidence to the consensus se-
quence. If there are several fragments covering a column, we have more information on
the particular base call for this column. It is also important to have enough fragments
from both strands in the layout.

Linkage: Apart from the score and the coverage, the way individual fragments are
linked in the layout is another determinant of layout quality. For example, consider the
layout of Figure 4.22. The coverage is high, but there are no real links between the frag-
ments. Each block is composed of many almost exact copies of a certain sequence, but
the blocks themselves do not seem related at all. Fragment images should have overlap-
ping ends to show some evidence of linkage.

ACTTTT
TCCGAG ACGGAC

TCCGAG ACGGAC
ACTTTT

TCCGAG ACGGAC
TCCGAGACTTTTACGGAG

FIGURE 4.22

Good coverage but bad linkage.

134 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

Assembly in Practice

A good assembly program must balance these requirement and find all solutions that
satisfy them reasonably well. This is no easy task, and, coupled with the fact that no
perfect formalisms exist, it makes algorithm design very difficult. As a result, practical
implementations often divide the whole problem in three phases, each one using results
produced by the previous phases. A typical division encompasses the following phases:

• Finding overlaps

• Building a layout

• Computing the consensus

Such partitioning makes the problem more manageable, because each phase can be
treated more or less independently as a different problem. However, it becomes more
difficult to understand the relationship between the initial input and the final output. Of-
ten, the methods used in these phases are heuristic, and no clear guarantees can be given
with respect to solution quality. Nevertheless, many existing implementations perform
well in practice and it is worthwhile to know some of the techniques used.

4.4.1 FINDING OVERLAPS

The first step in any assembly program is fragment overlap detection. We need to try all
pairs of fragments and their reverse complements to determine whether there is a prefix
of a fragment that matches well with the suffix of another. In general, we will need all
such pairs. Also, we are interested in fragments entirely contained in other fragments.
All these comparisons are made within an error threshold.

We mention here a way of comparing two fragments with the goal of finding such
overlaps. In a real problem we could apply this method to all pairs, including reverse
complements, but this is seldom done, because it would take too long due to its being
based on a quadratic time algorithm. However, it is one of the most reliable methods of
assessing overlap.

The comparison method consists in applying the dynamic programming algorithm
described in Section 3.2.3, which is a variant of the basic algorithm. This variant does
not charge for gaps in any extremity. Figure 4.23 presents the results of using such an
algorithm for two fragments. The score system used in this comparison is 1 for matches,
— 1 for mismatches, and —2 for gaps. Notice that the algorithm does not charge for the
gaps after the first sequence or before the second one, so it was able to find a prefix-suffix
similarity. The same algorithm would find an approximate containment.

4.4.2 ORDERING FRAGMENTS

In this section we briefly discuss one aspect of layout construction in a real assembly
problem, namely, the issue of finding a good ordering of the fragments in a contig. Given
such an ordering, and knowing that each fragment overlaps with the next one, a layout

4.4 HEURISTICS 135

AGGAGAAGAATTC ACCGCTAT
TTCCCCT-TATTCAATTCTAA

T T C C C C T T A T T C A A T T C T A A

A
G
G
A
G
A
A
G
A
A
T
T
C
A
C
C
G
C
T
A
T

o

o

o

o

o

o

o

o

o.

o

o

o

FIGURE 4.23

An optimal semiglobal alignment and its corresponding
path in the dynamic programming matrix. The algorithm is
configured to find prefix—suffix or containment alignments,

which are appropriate for fragment assembly.

can be built using the methods of the next section. Unfortunately, there is no algorithm
that is simple and general enough, even resorting to heuristics. Therefore, rather than
presenting an algorithm, we point out important considerations that should be taken into
account when trying to construct good fragment orderings.

In a real instance we have to deal with reverse complements, so it is necessary to
extend the input collection T with the reverse complements of the fragments. Define

and

VT =

In a real problem we have to worry about errors as well, and this means considering ap-
proximate matching. We will use the notation / —> g in a slightly different sense from
previously: It now indicates that the end of fragment / is approximately the same as the
beginning of fragment g in some sense. We also assume that whenever / -> g we also

136 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

have ~g -> / , because it is reasonable to expect that whatever criterion is used to assess
the similarity between two sequences, the same criterion would apply to their reverse
complements. This can be shown as follows: If / -> g, we have that / = uv, g = wx,
and v and w are similar. This implies that "g = lew, f = Vu, with w and v similar,
which is equivalent to ~g -> /. We will use the notation / c g meaning that / is an
approximate substring of g. An argument analogous to the one just presented shows that
/ c g =» / c g.

The graph we will be interested in is then OQCDJ7), with edges indicating approxi-
mate overlap. In addition it is important to know which fragments are approximate sub-
strings of others.

Finding a good ordering of overlapping fragments is essentially equivalent to find-
ing directed paths in OQiVJ7). These paths originate contigs. Notice that for any path

A -* fi -* • • • -»• /*

in this graph there is a corresponding "complementary" path

fk -> fk-i

which gives rise to a contig with a consensus that is the reverse complement of the first
path. This means that both strands of the target DNA are being constructed simultane-
ously. Ideally we would like to get a pair of complementary paths such that every non-
contained fragment belongs to exactly one path in the pair. Contained fragments can be
positioned afterward so their presence in the paths is not essential. Actually, forcing their
presence may prevent the formation of a path (see Exercise 14). In rare occasions con-
tained fragments may provide an important link, so we consider them optional fragments
when building a path.

Two obstacles may prevent the ideal goal of a pair of paths covering all noncon-
tained fragments: lack of coverage and repeats. A disconnected overlap graph is usually
an indication of lack of coverage. Repeats cause the appearance of cycles in the overlap
graph, if coverage is good, or may show up as edges f —> g and f —> h with g and h
unrelated (g and h are unrelated if g •/> h,h -/> g, g g h, and h % g). This happens
when / is a fragment near the end of a repeat X and g and h are fragments leading from
X to distinct flanking regions in the target. A cycle involving both / and / for a certain
fragment / indicates the presence of an inverted repeat.

Another indication of repeated regions is unusually high coverage (see Figure 4.13).
All fragments from all copies of a given repeat are piled together, causing coverage to
increase to about the average value times the number of repeat copies (assuming an ap-
proximately uniform distribution of fragments along the target).

In conclusion, there are four issues to keep in mind when building paths: (1) Every
path has a corresponding complementary path; (2) it is not necessary to include con-
tained fragments; (3) cycles usually indicate the presence of repeats; and (4) unbalanced
coverage may be related to repeats as well.

4.4 HEURISTICS 137

4.4.3 ALIGNMENT AND CONSENSUS

We briefly discuss in this section the problem of building a layout from a path in an over-
lap graph. This is straightforward if the overlaps are exact, but approximate overlaps re-
quire extra care. We present here two techniques related to alignment construction. The
first one helps in building a good layout from a path in the presence of errors. The sec-
ond one focuses on locally improving an already constructed layout. To introduce the
first technique, we use the following example.

Example 4.7 Suppose we have a path / -> g -> h with

/ =CATAGTC

g=TAACTAT

h = AGACTATCC

The two optimal semiglobal alignments between / and g are

CATAGTC CATAGTC
—TAA-CTAT --TA-ACTAT

We do not have any reason to prefer one of them over the other, since their score is
the same. However, when sequence h enters the scene, it becomes clear that the second
optimal alignment (where the second A of g is matched to a T in /) is better:

CATAGTC
—TA-ACTAT—

AGACTATCC
CATAGACTATCC

The consensus S satisfies ds(f, S) = l,ds(g,S) — 1, and ds(h, S) = 0. Had we
aligned A with G, the voting in column 6 would have been ambiguous, with T, A, and -
all tied with one occurrence each. In the consensus any choice other than A in this column
would have led to a worse result, in the sense that the sum ds (/, S) + ds (g, S) 4- ds (h, S)
would be greater than with the first solution. .

To avoid such problems, we use a structure that represents alignments distinguishing
between bases that are actually matched to some other base, and bases that are "loose,"
as is the case of the second base A of sequence g in the above example. We can imple-
ment this idea as follows. Each sequence is represented by a linked list of bases. When an
alignment is formed, matched bases are unified and become the same node in the overall
structure. If unsure about matching a particular base, we can leave it unmatched, as we
did in Figure 4.24 for the sequences / and g of Example 4.7. Then, as new sequences are
added, some of their bases will be unified according to suitable alignments. The structure
can be seen as an acyclic graph, and a traversal in topological order yields a layout. Ap-
plying this technique to Example 4.7, we get the best possible layout. When h is added,
an arrow from G to the A node just below it will be added, as well as additional bases
that belong to h alone.

138 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

c A _> T A
/

G T

A

C
\ ^

T — • A - * • T

FIGURE 4.24
Linked structure for approximate overlaps.

ACT-GG
ACTTGG
AC-TGG
ACT-GG
AC-TGG
ACTTGG

FIGURE 4.25

ACT-GG
ACTTGG
ACT-GG
ACT-GG
ACT-GG
ACT-GG

Two layouts for the same sequences. The layout to the right
is better, but an assembly program might produce the left

one due to ambiguities in pairwise alignments.

Our second technique concerns improving a given layout. One common problem in
practice is illustrated by the following example.

Example 4.8 Figure 4.25 shows two layouts for the same set of sequences. In the left-
hand layout, the consensus ends up with two Ts by majority voting, but four of the five
sequences have just one T. The layout to the right is better, for its consensus agrees with
the majority of the sequences.

One idea to solve such problems is to perform a multiple alignment locally. We se-
lect a short range of consecutive columns that need doctoring, extract from each frag-
ment its portion contained in these columns, and align the portions. For moderate values
of the local coverage and width of the range the multiple alignment algorithm will run in
a reasonable amount of time, despite its exponential complexity. A sum-of-pairs scoring
scheme seems adequate here. In Example 4.8, the right-hand layout maximizes the sum-
of-pairs score, assuming p{a, b) = 1 if a = b, p(a, b) = 0 if a i=- b, p(a, -) = —1,
and/?(-, -) = 0.

EXERCISES 139

In this chapter we studied the fragment assembly problem, which appears in large-scale
DNA sequencing. Basically, it consists of assembling in the correct order and orientation
a collection of fragments coming from a long, unknown DNA sequence.

We began by reviewing the biological setting of this problem, and how the biologi-
cal factors influence the input. Then we presented attempts that have been made to cap-
ture the problem into a mathematical framework. The proposed models fail to address all
the issues involved. In particular, it is hard to deal with repeated regions and to take into
account information about the size of the target sequence. Also, all models assume that
the collection of fragments is free of chimeras and that there is no vector contamination.
Algorithms based on the models were also presented.

Fragment assembly requires a particular kind of multiple alignment, also called lay-
out, in which we have to worry about fragment orientation, coverage, and linkage. We
do not charge for end spaces when scoring this alignment.

Because of the difficulties in finding a precise formulation for the problem, heuris-
tic methods are often used in practice. The problem is usually broken into three phases:
finding overlaps between fragments, building a layout, and computing the consensus.
Programs based on this approach perform well in real instances without repeats. We pre-
sented an overview of such heuristics.

New techniques, such as sequencing by hybridization, may radically change the way
large-scale sequencing is done. If this happens, new algorithms will be required.

1. Suppose we have the following fragments
/i : ATCCGTTGAAGCCGCGGGC
f2 : TTAACTCGAGG
f3 : TTAAGTACTGCCCG
f4 : ATCTGTGTCGGG
f5 : CGACTCCCGACACA
/6 : CACAGATCCGTTGAAGCCGCGGG
/7 : CTCGAGTTAAGTA
/8 : CGCGGGCAGTACTT

and we know that the total length of the target molecule is about 55 base pairs. Assem-
ble these fragments and obtain a consensus sequence. Be prepared to deal with errors.
You may also have to use the reverse complement of some of the fragments.

2. What are the minimum, maximum, and average coverage for the layout on page 106?

3. What is the smallest value of € such that the answer in Figure 4.2 is valid under the
RECONSTRUCTION model?

140 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

4. Repeat Exercise 3, this time for the layouts in Figures 4.3 and 4.4.

5. In Figure 4.8, suppose there is a fragment composed by the end of B, a copy of X, and
the beginning of D. How would this fragment affect the assembly?

6. Construct the overlap graph for T = {AAA, TTA, ATA}. Find a shortest common su-
pers tring for this collection.

7. Find sequences that give rise to the following overlap graph, where only edges with
positive weights are shown. The particular weights you come up with are not important,
as long as they are strictly positive.

8. Describe an algorithm to find the largest exact overlap between two strings of lengths
m and n respectively that runs inO(m + n) time.

* 9. Devise a way of locating approximate repeats in a DNA sequence.

10. Give an example of a DNA sequence that cannot be reconstructed unambiguously from
the set of its 8-mers.

11. Show that the SCS formulation fails for the examples in Section 4.1. What is the short-
est common superstring in each case?

12. Let T = {ATC, TCG, AACG). Find the best layout for this collection according to the
RECONSTRUCTION model with € = 0.1 and e = 0.25. Be sure to consider reverse
complements.

13. Let T = {TCCCTACTT, AATCCGGTT, GACATCGGT}. Find the best set of contigs for
this collection according to the MULTICONTIG model with e = 0.3 and t = 5.

14. Give an example of a collection T such that the shortest superstring of T does not
correspond to a path in OQ(T).

15. For every m > 0, find a substring-free collection Tm such that the greedy algorithm
returns a superstring at least m characters longer than the shortest possible for Tm.

16. Let A, B, C, D, E, X, Y, and Z be blocks in a target DNA sequence. Suppose that these
blocks are larger than any fragment that can be sampled from the target molecule. Fill
in the blanks below with letters X, Y, or Z so that this sequence becomes inherently
ambiguous to assemble.

target = A X B . . . C Y D ... E Z

17. How would you use BLAST or other database search program to screen fragments for
vector contamination?

18. Find a polynomial time reduction of SCS to RECONSTRUCTION.

* 19. Suppose that a sequence has an overlapping repeat S. Show that S is either of the form
XXX or of the form X(YX)k for some nonempty blocks X and Y and some k > 2.

o 20. Design an algorithm that receives a collection of DNA sequences and constructs a com-
mon superstring of length at most twice the minimum possible.

BIBLIOGRAPHIC NOTES 141

BIBLIOGRAPHIC NOTES

The shortest common superstring problem has been intensively studied. Turner [187]
described several algorithms, including the greedy method, and showed a performance
guarantee with respect to the sum of the overlaps. Li [126] gave the first performance
guarantee for the actual length of the superstring, providing an O (n log n) upper bound,
where n is the optimal length. Then Blum, Jiang, Li, Tromp, and Yannakakis [24] im-
proved this to a 3n guarantee and also showed that the greedy algorithm yields super-
strings at most 4n long. This prompted a series of papers using more and more refined
techniques and achieving better and better ratios. In this line, Teng and Yao [185] proved
a ratio of 2 + 8/9; Czumaj, Gasienec, Piotrow, and Rytter [41] proved a ratio of 2 + 5/6;
Kosaraju, Park, and Stein [118] proved a ratio of 2+50/63; and Armen and Stein proved
ratios of 2 + 3/4 [15] and 2 + 2/3 [16]. Most of these algorithms run in time O(\S\+n3),
where |5 | is the superstring size and n is the number of fragments (see, for instance, the
work by Gusfield [84]). The graph OQ{T) can be constructed in time Oi\T\ +n2) with
the help of suffix trees using a method due to Gusfield, Landau, and Schieber [86].

The RECONSTRUCTION model appeared in a paper by Peltola, Soderlund, Tarhio,
and Ukkonen [157]. Kececioglu's thesis [114] and the paper by Kececioglu and Myers
[115] derived from it are based on this formulation. The MULTICONTIG formalism was
developed by the authors. Myers [144] proposed a method based on the distribution of
fragment endpoints in the layout as a powerful formulation of fragment assembly, es-
pecially good in instances involving repeats. He also proposed an algorithm based on a
special kind of graph different from those covered in this book. Figure 4.12 is based on
an example that appeared in this paper.

Several groups have implemented programs to perform DNA fragment assembly.
Early systems include [71, 138]. A pioneering effort toward integrating a sound math-
ematical formalism with actual implementation was done by Peltola, Soderlund, and
Ukkonen [158]. Huang [98] described a successful fragment assembly program, later
improved to deal with repeats, detect chimeric fragments, and automatically edit lay-
outs [99]. Kececioglu and Myers [115] divided the entire process in three phases, provid-
ing careful formal models as well as exact and approximate algorithms for each phase.
Staden [178,46] maintains a sequence processing system with strong fragment assembly
capabilities since the late 1970s. The GCG system [47], very popular in lab computers
around the world, also provides assembly support. Design goals for fragment assembly
systems were summarized by Myers [143]. A good general reference on automated DNA
processing is the book edited by Adams, Fields, and Venter [1]. Details on the technique
discussed in Section 4.4.3 can be found in an article by Meidanis and Setubal [137].

Engle and Burks [53, 54] described a set of tools for generating artificial instances
for fragment assembly. Data generated in a real sequencing project was made available as
a test instance for computerized assembly tools by Seto, Koop, and Hood [171]. Equa-
tions (4.1) and (4.2) describing the progress of a shotgun project appear in Waterman
[199, Section 7.1.5]. Early work on this topic was done by Lander and Waterman [120].

Waterman [199, Section 7.3] presents an algorithm for SBH, giving also a pointer
to a paper with more details.

142 CHAPTER 4 FRAGMENT ASSEMBLY OF DNA

Fragment assembly was one of the topics of an implementation workshop at the NSF
Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) in 1995.
A volume with contributed papers from that workshop is forthcoming. See also

http://dimacs.rutgers.edu/SpecialYears/1994J995/challenge.html

for more details on the workshop.

PHYSICAL MAPPING OF DNA

As we saw in Chapter 1, a human chromosome is a DNA
molecule with about 108 base pairs. The techniques we have stud-
ied so far for sequencing are restricted to pieces of DNA with up
to tens of thousands of base pairs. This means that whenever we
sequence such a piece we will be looking at an extremely small
part of a chromosome. It is as though we were viewing Earth from
the moon with a telescope that enabled us to see features that are
a couple of inches apart (a DNA base) but with a field of vision
no greater than a mile (a piece of DNA with 15,000 bases; see
Figure 1.10). Such a telescope would not be a good instrument to
study large-scale structures, such as mountain ranges, continents,
and islands. To perceive those structures, we would need some
other instrument. Analogously, molecular biologists use special
techniques to deal with DNA molecules comparable in size to a
chromosome. These techniques enable them to create maps of en-
tire chromosomes or of significant fractions of chromosomes. In
this chapter we examine computational techniques that can help
biologists in the map-generation process.

BIOLOGICAL BACKGROUND

A physical map of a piece of DNA tells us the location of certain markers along the
molecule. These markers are generally small but precisely defined sequences. Such a
map helps molecular biologists further explore a genome. For example, suppose a cer-
tain stretch of DNA has been completely sequenced, giving us sequence S. If we know
which chromosome S came from, and if we have a physical map of this chromosome,
we could try to find one of the map's markers in S. If we succeed, we have located S in
the chromosome. See an illustration in Figure 5.1.

So the question now is, How do we create such maps? The first task is to obtain

144 CHAPTER 5 PHYSICAL MAPPING OF DNA

FIGURE 5.1
Sketch of a physical map. In this figure a very long DNA

molecule (e.g., a chromosome) is represented by the curved
solid line. Markers along the molecule are represented by
the diamond symbols. Each marker is distinct, and this is

shown by the letters associated with each. Segment S
represents a DNA fragment that has been sequenced,

containing, for example, a gene. Thanks to the map, S can
be located on the chromosome.

several copies of the DNA molecule we want to map (known as the target DNA). Each
copy must then be broken up into several fragments, using restriction enzymes. (DNA
fragmentation by restriction enzymes is described in Section 1.5.2.) Mapping is done by
carefully comparing the fragments obtained, in particular by observing overlaps. Note
that in general each fragment is a DNA piece still too long to be sequenced, so we can-
not determine overlap by sequencing and comparing fragments, as is done in fragment
assembly (Chapter 4). Instead, we obtain overlap information by generating fingerprints
of the fragments. A fingerprint should describe part of the information contained in a
fragment in some unique way, just like our fingerprints uniquely describe some part of
ourselves. Two popular ways of getting fingerprints are restriction site analysis and hy-
bridization.

In restriction site mapping the aim is to locate the restriction sites of a given en-
zyme on the target DNA. The restriction sites are thus the markers previously mentioned.
The technique used for location is based on fragment length measurement; a fragment's
length is thus its fingerprint. In hybridization mapping we check whether certain small
sequences bind to fragments; the subset of such small sequences that do bind to the frag-
ment become its fingerprint. The fingerprint of a fragment can also be given by hybridiza-
tion information and fragment lengths, but in this chapter we consider each technique
separately for clarity of exposition. In any case, by comparing fingerprints we try to de-
termine whether the fragments overlap and thus determine their relative order (which
was lost during the break-up process).

Just as in other problems from molecular biology, possible lack of information and
the presence of numerous experimental errors make the physical mapping problem es-
pecially hard. In particular, it may not be possible with a given collection of fragments
to obtain one contiguous physical map. This may happen simply because the fragmen-
tation process did not produce fragments covering certain sections of the target DNA.
When this happens, the physical map pieces are called contigs (the same name used in

5.1 BIOLOGICAL BACKGROUND 145

fragment assembly). This is a feature common to all physical mapping processes. We
now discuss each of the techniques mentioned above in more detail.

5.1.1 RESTRICTION SITE MAPPING

In this section we briefly present two possible techniques for mapping based on measur-
ing lengths of fragments between restriction sites.

One way to obtain fragments of many different sizes is to apply not one, but two
restriction enzymes to the target DNA. We will explain this technique by an example.
Suppose we have two restriction enzymes, A and B, each recognizing a different se-
quence (restriction site). Applying A to one copy of the target DNA, we obtain fragments
measuring 3, 6, 8, and 10 length units (for example, thousands of base pairs). Applying
B to another copy of the target DNA, we obtain fragments measuring 4, 5, 7, and 11
units. Applying now both enzymes to a third copy of the target DNA we obtain fragments
measuring 1,2, 3, 3,5,6, and 7 units. The problem now is, How can we order these frag-
ments in such a way that the order we determine is consistent with experimental results?
This is known as the double digest problem, because the process of breaking a molecule
by an enzyme is known as a digest. A solution for this particular example is shown in
Figure 5.2.

A

B

AB

3 8

4

3 1

5 1

5 1 2

6

11

6

10

3

7

7

FIGURE 5.2

Solution to a double digest problem.

A variant of the double digest approach is partial digest. Here we subject the target
DNA to one enzyme only but perform many experiments on copies of the DNA, varying
the time during which the enzyme acts on each copy. By giving more or less time to
the enzyme, more or less restriction sites will be recognized, thus yielding fragments of
different lengths. Ideally the experiments should provide us with at least one fragment
for every pair of restriction sites. We then try to pinpoint the location of the restriction
sites by analyzing fragment lengths. For example, in Figure 5.2 enzyme A recognizes
three restriction sites. A partial digest experiment based on this enzyme would result in
the following fragment sizes: 3,11, 17, and 27 (fragments between the left endpoint and
all other sites); 8, 14, and 24 (fragments between the first restriction site and those to its
right); 6 and 16 (fragments between the second restriction site and those to its right); and
10 (last fragment).

Several kinds of experimental errors may occur with digestion data. First, there is
uncertainty in length measurement. This is done by gel electrophoresis (Section 1.5.2),
where there could be an error of up to 5%. Second, if fragments are too small, it may
not be possible to measure their lengths at all. Third, some fragments may be lost in the

146 CHAPTER 5 PHYSICAL MAPPING OF DNA

digestion process, leading to gaps in the DNA coverage. As can be expected, all these
errors bring complications to the mapping process. We will see later on that even when
there are no errors the associated computational problems seem very hard.

5.1.2 HYBRIDIZATION MAPPING

Recall that, in hybridization mapping, overlap information between fragments is based
on partial information about each fragment's content. Before explaining what this par-
tial information is, we note that in this context fragments are called clones, replicated
using a technique called cloning (described in Section 1.5.2). After each copy of the tar-
get DNA has been broken up (in a different way), and after each resulting fragment has
been cloned, we obtain a collection of many thousands of clones (a clone library), each
clone being typically several thousands of base pairs long.

Partial information about a clone is obtained through hybridization experiments. In
these experiments we try to verify whether a small sequence known as a probe binds
(or hybridizes) to the clone. If the binding does occur, this means that the clone con-
tains the sequence complementary to the probe sequence. We can do this experiment on
a clone using several different probes. The clone's fingerprint will be the set of probes
that successfully hybridized to the clone. Two clones that share part of their respective
fingerprints are likely to have come from overlapping regions of the target DNA. For
example, if we know that probes x, y, and z bound to clone A, whereas probes x, tu, and
z bound to clone B, we have good reason to believe that clones A and B overlap each
other, for example as shown in Figure 5.3 (unless there are repeats; more on this later).
Notice that with this kind of information we will not in general be able to tell the loca-
tion of the probes along the target DNA, but only their relative order. We return to this
important point further on.

Clone A

Clone B

Probes

FIGURE 5.3
An example of how four probes can hybridize to two clones.

Many kinds of errors may happen in hybridization experiments. First, a probe may
fail to bind where it should; this creates a false negative. Second, a probe may bind to
a site where it should not; this creates a false positive. Sometimes there is human mis-
reading of experimental results, also resulting in false negatives or false positives. Errors

5.2 MODELS 147

may have appeared even before the hybridization itself. During the cloning process, two
separate pieces of the target DNA may join and be replicated as if they were one single
clone. This is known as a chimeric clone, and from it false inference about relative probe
order can be made. Chimerism occurs frequently and is thus one of the most severe prob-
lems in hybridization mapping. Some estimates say that in many clone libraries between
40% and 60% of all clones are in fact chimeric. Another type of error in the cloning pro-
cess is the deletion, in which an internal piece of a clone is lost, thus again joining two
fragments that are not contiguous in the target DNA.

Two other situations can cause problems to hybridization mapping. One happens
when probes are not unique, meaning that there may be more than one site along the tar-
get DNA to which the probe can bind; these are the repeats. A technique called Sequence
Tagged Site (STS) avoids this problem by generating probes that hybridize to unique sites
along the target DNA. Another problematic situation is simply lack of data, as it may not
be feasible to perform all hybridization experiments required. Pooling techniques have
been developed to deal with this problem.

Having looked at the various mapping strategies, we now review some of the corre-
sponding mathematical models. Our aim is to explore the computational complexity of
the mapping problems derived from these models. As we will see, mapping appears to be
algorithmically hard, but it also brings up several interesting issues in problem solving
that we discuss at the end of this section.

5.2.1 RESTRICTION SITE MODELS

Initially we will look at a model for the double digest problem, which we shorten to DDR
In this model we consider each fragment to be represented by its length. We will assume
that the digestion process is perfect, meaning that lengths have no measurement errors,
and all fragments are present. This is clearly unrealistic, but as we will see shortly even
with these oversimplifications the resulting computational problem appears to be very
hard.

Placing the experimental results in the model framework, we get a collection of
lengths (positive integers) for each experiment performed. Digesting the target DNA by
the first enzyme gives us collection A = {a\,ci2,... ,an}. Some of these fragments may
have the same length, which means that this collection is actually a multiset. Similarly,
from the second enzyme we get B — {b\, bj,..., bm). Finally, from the digestion with
both A and B we get the multiset O = {o\, 02,..., 0*}.

Given these multisets, what is it that we want to find? We want a permutation TTA of
the elements from A and a permutation TTB of the elements from B, such that the follow-
ing can be achieved. We plot the lengths from A on a line according to the order given by

148 CHAPTER 5 PHYSICAL MAPPING OF DNA

7TA . Similarly, we plot the lengths from B following TZB , but we do it on top of the pre-
vious plot. Due to overlap, we may now have several new subintervals. It should now
be possible to establish a one-to-one correspondence between each resulting subinterval
and each element from O. If this can be done, we will say that nA and ixB are solutions
to the DDR

Finding these permutations is an NP-complete problem, and here is the proof. First,
it is not difficult to see that given a solution to the DDP it is easy to check whether it
is a true solution. All we have to do is sort O and the plotted subintervals to determine
whether we get identical results. To complete the proof, we note that, as stated, the DDP
is simply a generalization of the set partition problem, a. well-known NP-complete prob-
lem.

In the set partition problem we are given a set of integers X = {x\, * 2 , . . . , */} and
want to know whether we can partition X into sets X\ and X2 such that the sum of all
elements in X\ is the same as those in X2. This corresponds to a double digest problem
in which A = X, B = {K/2, K/2], and O = A, where K = J2xex xi-In o t h e r words,
the set partition problem is a DDP in which one of the enzymes produced only two frag-
ments, and both of the same length.

Considering that we are always seeking the true solution to the DDP, this problem
has one other facet that makes this search a great deal harder: The number of solutions
may be exponential. To see this, consider the case where between two sites cut by en-
zyme A there are three sites b\, £2, ̂ 3 cut only by enzyme B. In this case we will not be
able to tell the order of fragments [b\, b^[and [Z?2, b{\. In general, with a run of k restric-
tion sites from one enzyme we will have (k — 1)! solutions. In fact, the situation is even
worse than that because of the so-called coincidences. A coincidence happens when a
restriction site for enzyme A is very close to a restriction site for enzyme B (they cannot
exactly coincide; why?). When we have consecutive coincidences, the corresponding
fragments for the A digestion and the B digestion will appear to have the same length
(due to measurement inaccuracy). Therefore a run of n consecutive coincidences will
also result in n! possible solutions. Taking this argument still further, it is possible to
show that the number of solutions increases exponentially with the target DNA length
(see the bibliographic notes).

Thus we see that even with a very simple model double digestion poses serious com-
putational problems. The NP-completeness of partial digest has not been proved, and in
addition the problem seems to be more tractable for the following reason. In mapping by
partial digest there are n restriction sites (including endpoints), and by experiment we ob-
tain at least one fragment for every pair of sites, or Q) fragments. When measured, these
fragments yield a multiset of distances. The problem is to determine the location of the
sites on the line such that the set of distances between these locations is the same as the
lengths obtained by the digests. What makes the problem easier is that researchers have
shown that the maximum number of solutions is small, thus making partial digest, from
a combinatorial point of view, a good alternative to double digest.

5.2 MODELS 149

5.2.2 INTERVAL GRAPH MODELS

We can have a first look at the computational complexity of hybridization mapping (or
more generally, fingerprint mapping) using simple models based on interval graphs (see
definition in Section 2.2). These models abstract away many of the complications of
mapping; yet, simple as they are, they also give rise to problems that are NP-hard, as
was the case with the double digest problem seen earlier.

In these models we create graphs whose vertices represent clones and whose edges
represent overlap information between clones. If we had complete and correct informa-
tion about clone overlapping, the resulting graph would be an interval graph, and this is
a key observation in these models.

In the first model, we create two graphs. The first graph is Gr = (V, Er). If (/, j) e
Er, this means that we know for sure that clones / and j overlap. The second graph
is Gt = (V, Et), where Et represents known plus unknown overlap information (thus
Er ^ Et). Gt is not necessarily complete, because we may know for sure that certain
pairs of clones do not overlap and hence the corresponding edge would be left out of Et.
The problem we want to solve is this: Does there exist a graph Gs = (V, Es) such that
Er c Es c Et and such that Gs is an interval graph? Notice that it is not necessarily the
case that Gr or Gt are interval graphs (in which case a solution would be trivial). See
example in Figures 5.4, 5.5, and 5.6.

FIGURE 5.4

Example of clone overlapping patterns.

FIGURE 5.5

The interval graph corresponding to Figure 5.4.

150 CHAPTER 5 PHYSICAL MAPPING OF DNA

FIGURE 5.6
Possible graphs Gr and Gtfor the example from

Figure 5.4. None of them is an interval graph.

In the second model, we do not assume that the known overlap information is re-
liable. We construct a graph G = (V, E) using that information anyway. The problem
we want to solve is this: Does there exist graph G' = (V, E') such that E' c E, G' is
an interval graph and \E'\ is maximum? The requirement that E' c E means that, to
get a solution for this problem, we may have to discard some edges of G, which would
be interpreted as false positives. The solution is the interpretation that has the minimum
number of false positives.

In the third model, we use overlap information together with information about the
source of each clone as follows. Because clones come from different copies of the same
molecule, a reasonable idea is to label each clone with the identification of the molecule
copy it came from. We assume we have k copies of the target DNA, and different restric-
tion enzymes were used to break up each copy. We now build a graph G = (V, £"), with
known overlap information between clones. Because clones are labeled, we can think
that the corresponding vertices are colored, using k colors (one color for each molecule
copy). The graph constructed will not have an edge between vertices of the same color,
because they correspond to clones that came from the same molecule copy and hence
cannot overlap. We thus say that the graph has a valid coloring. The problem we want
to solve is this: Does there exist graph Gr — (V, Er) such that E c £', G' is an inter-
val graph, and the coloring of G is valid for G'l In other words, can we add edges to G
transforming it into an interval graph without violating the coloring?

We have just described three different models for hybridization mapping, and all are
relatively simple. However, it turns out that all three problems described are NP-hard.
We will not give the proofs here; they can be found in the references cited at the end of
the chapter. We now proceed to describe more specialized models.

5.2.3 THE CONSECUTIVE ONES PROPERTY

The models described in the previous section apply to hybridization mapping, but in
principle they can be used in any situation where we can obtain some kind of finger-
print for each fragment. We now present a model that uses as a clone fingerprint the set
of probes that bind to it. In this model we make the following assumptions:

5.2 MODELS 151

• The reverse complement of each probe's sequence occurs only once along the
target DNA ("probes are unique").

• There are no errors.

• All "clones x probes" hybridization experiments have been done.

The reader might think that another NP-hard problem is coming up. For once, this is
not the case. As we will see the resulting problem is polynomial-time solvable, although
some of its generalizations are indeed NP-hard.

Assuming there are n clones and m probes, the experimental data will enable us to
build an n x m binary matrix M, where entry M/7 tells us whether probe j hybridized to
clone / (Mtj = 1) or not (Mfj = 0). Obtaining a physical map from this matrix becomes
the problem of finding a permutation of the columns (probes) such that all 1 s in each row
(clone) are consecutive. A binary matrix for which such a permutation can be found is
said to have the consecutive Is property for rows, or CIP for short. Below we also use
the terms CIP permutation and CIP problem, with the obvious meanings.

Verifying whether a matrix has this property and then finding a valid permutation
is a well-known problem for which polynomial algorithms exist. We present one such
algorithm in Section 5.3. However, the model is clearly too simple. If errors are present,
even in the true permutation some rows may not have all Is in consecutive positions. So
why bother? The answer is that looking at the error-free case helps us to gain insights that
are useful when designing algorithms for data with errors. In particular, we can use the
following important assumption. Laboratory researchers try to minimize the number of
errors in their experiments. If their experiments were perfect, the resulting hybridization
matrix would have the CIP. This means that any algorithm that tries to find or approx-
imate the true column permutation should give solutions that minimize the number of
situations that must be explained by experimental error. Hence, such algorithms should
be able to find a CIP permutation if one exists.

Note that even if a CIP permutation exists, we cannot claim that it is the true permu-
tation. For one thing, there may be several such permutations for a given input matrix.
How can we say which is the true one? The answer is that we cannot, in general. We can
only say that all permutations that make all Is consecutive are likely candidates for the
true permutation. For this reason an algorithm for the CIP problem should give us not
one possible solution, but all of them. In addition, given that errors do exist, it may even
be the case, as noted above, that the true permutation is not a CIP permutation, even if
there is one.

On the other hand, how can we modify the model to account for errors? There are
many possibilities. Instead of requiring exactly one block of consecutive Is per row, we
may try to find a column permutation such that in each row there are at most k blocks
of consecutive Is, where k's value could be 2 or 3. Or we may try to minimize the total
number of blocks of consecutive Is in the matrix. By doing this, we may expect that
most rows will have just one block of consecutive Is, while an occasional row might
have four or five. Unfortunately, as already hinted above, these generalizations yield NP-
hard problems (see Exercise 16). NP-hardness comes up again if we relax the assumption
that probes must be unique, even if no errors are present (see the bibliographic notes for
references on these results).

152 CHAPTER 5 PHYSICAL MAPPING OF DNA

5.2.4 ALGORITHMIC IMPLICATIONS

Before describing algorithmic techniques for obtaining physical maps, we would like to
explore a bit the constraints forced upon us by the difficulty of the problem. These con-
siderations give a new light on what it means to "solve" a problem using an algorithm,
and should therefore be of interest outside physical mapping as well.

The first consideration is that what we are really trying to solve is a real-life problem,
not an abstract mathematical problem. And the real-life problem is this: We want to know
what the true ordering of the clones is in the target DNA. It is a combinatorial problem:
There are finitely many possible orderings, and one of them is the one we want.

We will try to discover this true ordering by means of abstract models that give rise
to optimization problems. These problems may be themselves very hard, notwithstand-
ing the fact that they are abstractions of a yet harder problem. For example, the opti-
mization versions of all problems we saw in Section 5.2.2 are NP-hard. In general we
will not be able to find optimal solutions to these problems quickly; and even if we did
solve one of them to optimality within a reasonable time, we will have no guarantee that
the solution found corresponds to the true solution. Thus it looks like we are in a terrible
predicament.

However, the situation is not as bleak as it seems. First, since we have no guarantee
that any optimal solution is the true solution, good approximate solutions may serve our
purposes just as well. Second, we must remember that algorithms in molecular biology
should be used in an iterative process. The scientist obtains experimental data and feeds
it to an algorithm. Based on the solution or solutions given by the algorithm, the scientist
can make more experiments and obtain more data and thus use the algorithm again. At
each step we may expect that "better" (or "closer to the truth") solutions will be found.

These observations suggest desirable features of a mapping algorithm, which we
now list:

• It should work better with more data, assuming that the error rate stays the same.

• It should present a solution embedded in a rich framework of details, in partic-
ular showing how the solution was obtained, distinguishing "good" parts of the
solution (groups of clones for which there was strong evidence for the ordering
reported) from "not so good" parts. This greatly facilitates further experiments.

• If several candidate solutions meet the optimization criteria, all of them should be
reported. If too many solutions are reported, the optimization criteria may be too
weak (or the input data may contain too many errors). Conversely, if no solutions
are reported, the optimization criteria may be too strong.

We would also like to have some guarantee that the true solution is among the set of
approximate/optimal solutions found by the algorithm. In general this will not be pos-
sible. Instead, we try to obtain a few different optimization functions and respective al-
gorithms whose optima share properties with the true solution. The hope is that the true
solution will lie in the intersection of the solution sets found by each algorithm with high
probability. We give one example of such a guarantee in Section 5.4.2.

Note that instead of using several algorithms as suggested, we may try to design
an algorithm that can optimize multi-objective functions. This is an important research
area.

5.3 AN ALGORITHM FOR THE C1 P PROBLEM 153

AN ALGORITHM FOR THE C1 P PROBLEM

In this section we present a simple algorithm that determines whether anwxw binary
matrix M has the C IP for rows. The goal of the algorithm is to find a permutation of the
columns such that in each row all Is are consecutive. For simplicity we assume all rows
are different (that is, no two clones have the same fingerprint) and that no row is all zeros
(that is, every clone is hybridized by at least one probe).

Understanding the algorithm requires that we look first at the way rows can relate
to each other. For this we need a definition.

DEFINITION 5.1 For each row / of M, let Sj be the set of columns k where Mjj = 1.

With this definition we can now relate a row to another row. Given two rows / and
j three situations can arise:

1. Si n Sj = 0.

2. Si c Sj or Sj c Si.

3. Sf fl Sj ^ 0, and none of them is a subset of the other.

We can clearly deal separately with rows that fall into the first of these situations,
since the permutation of columns corresponding to the elements of 5/ will not interfere
with those from Sj. In such a case we can place / and j into different components and deal
with each component separately. Now, how about rows that have nonempty intersection?
(We are abusing language a bit here and speaking of rows instead of their respective sets
5.) Should they all be in the same component? Let us look at this case more carefully.

Let us initially lump together in a component all rows that have nonempty intersec-
tion. Suppose there is a row k in this component such that S* is either a subset of or is
disjoint from 5/ for all / ^ k in this component. It is clear that we can leave row k out
(and any others with the same property) while dealing with this component. Row k will
thus be in its own component, possibly sharing it with other rows. What exactly these
other rows are will be made clear.

Based on the intuition just given, we give a formal way to determine when two rows
belong to the same component. We build a graph Gc using matrix M. In Gc each vertex
will be a row from M. There is an undirected edge from vertices / to j if St D Sj ^ 0
and none of them is a subset of the other. The components we want will be the connected
components of Gc- As an example, Figure 5.7 shows the graph Gc for the matrix in
Table 5.1.

We can now sketch the algorithm: Separate rows into components according to the
rule above, permute the columns of each component, and then somehow join compo-
nents together. This leaves us with two subproblems: how to find the right permutation
for one component, and how to join components together. Let us first work on the column
permutation inside a component.

154 CHAPTER 5 PHYSICAL MAPPING OF DNA

(h)

FIGURE 5.7
Graph GQ corresponding to the matrix of Table 5.1.

Connected components are indicated by Greek letters.

TABLE 5.1
A binary matrix.

l\
h
h
u
h
h
h
h

C\

1
0
0
0
0
0
0
0

c2

1
1
1
0
0
0
1
0

0
1
0
1
1
0
0
0

c4

1
1
1
0
0
1
0
1

C5

1
1
1
0
0
0
0
1

ce
0
1
0
0
1
0
0
0

Cl

1
1
1
0
0
1
1
0

c8

0
1
0
1
0
0
0
0

c9

1
1
1
0
0
0
0
1

Taking Care of a Component

To explain this part of the algorithm, we shall make use of the example matrix shown in
Table 5.2 (assume it is just a section of some matrix with more than three rows).

Let us look first only at row l\. If it were the only row in this component, all we
would have to do is permute the columns such that all Is become consecutive. Note that
if there are A; Is in this row, we will have k\/2 possible permutations. We are not counting
reversals as distinct solutions, because they do not matter for keeping Is consecutive. In
the case of row /i the Is are in columns 2,7, and 8. Then one set of possible permutations
is 2, 7, 8, or 7, 2, 8 or 2, 8, 7. We can encode all these solutions by associating a set
of possible columns for each element equal to 1 in a given row (we will call these sets
the column sets). For just one row this set is set S defined above, and we describe the
resulting configuration as follows:

5.3 AN ALGORITHM FOR THE C1 P PROBLEM 155

TABLE 5.2
A section of a binary matrix.

h
h
h

C\

0
0
1

1
1
0

0
0
0

C\

0
0
1

C5

0
1
0

ce
0
0
0

1
1
1

1
0
1

h
{2,7,8} {2,7,8} {2,7,8}

0 1 1 1 0

Now let us look at the following row, li. Because this row is in the same component
as l\ it must be the case that h has Is in some columns where l\ also has Is, and some
other Is where l\ does not. Now we have to place h with respect to l\ in a consistent
manner. We have two choices for this placement: Either put the Is of h to the left of
those of 11 or to the right. This means placing column 5 either to the left or to the right
of columns 2 and 7. Suppose we place 5 to the left. The possible solutions, encoded by
the sets above each column, now become

0
0

{5}
0
1

{2,7}
1
1

{2,7}
1
1

{8}
1
0

0
0

If these were the only two rows in this component we would have arrived at two
possible permutations for its columns: 5, 2, 7, 8 and 5, 7, 2, 8. If we had chosen to place
5 on the right, we would obtain the reverse of these two permutations. This means that
the direction we choose to place the second row does not matter, and this is a key obser-
vation.

Now let us consider the third row, I3. Because it is in the same component as the
other two, we know that in graph GQ we should find edge (h,l\), or edge (I3, h), or
both. In our example both edges are present. Let us now place h with respect to h. It
seems that again we have the choice of placing I3 to the left or to the right of h- But now
we have to take into account the relation between I3 and l\ as well. The way to do this is
by considering the number of elements in the intersections between S\, S2, and S3. Let
x • y — \SX H Sy\, for any two sets x and y (the internal product of rows x and y). If
h - h < min(/i - h,h ' h)> row I3 must go in the same direction that h was placed with
respect to l\. If l\-h > min(7i -h,h- h), then we must place h in the opposite direction
used to place h with respect to l\ (we cannot have equality; why?). In either case, if the
component is C1P, it must be the case that l\ and I3 are properly placed; conversely, if l\
and h are not properly placed, then the component is not C1P. The reason for this lies on
the fact that the only choice we made up until now was in the placing of h with respect
to l\, and we know that both possibilities (left or right) result in the same solutions up to
reversal.

In our example above, 53 = {1, 4, 7, 8}. Then 1-3 = 2, 1-2 = 2, 3 - 2 = 1 , which
means we have to put 1-$ to the right of I2, as in the following figure:

156 CHAPTER 5 PHYSICAL MAPPING OF DNA

{5} {2} {7} {8} {1,4} {1,4}
h-+ ... 0 0 1 1 1 0 0 0 . . .
Z 2 - + . . . O 1 1 1 0 0 0 0 . . .
z3 -* . . . 0 0 0 1 1 1 1 0 . . .

We now know that the right permutation for columns 2 ,5 ,7 , and 8 is 5,2,7, 8. Other
columns may be determined as we consider more rows. But how do we handle additional
rows? As we saw, in placing the third row we had no choice of placement. The same is
true for all other rows in the same component. All we have to do for a new row k is find
two previously placed rows i and j such that there exist edges (k,i) and (z, j) in Gc,
and proceed as we did with the three-row case above. Note how the algorithm preserves
possible permutations of a component in the sets above each column. Considering that
after placing the first two rows there are no other choices of placement for remaining
rows, we see that this algorithm gives us all possible column permutations of a compo-
nent having the C1P, up to reversal. In the example above, if the component had only
three rows, the two possible permutations would be 5, 2, 7, 8, 1,4 and 5, 2, 7, 8,4, 1. As
we have already mentioned, keeping track of all possible solutions is a desirable feature
in the case of DNA mapping.

An implementation of the preceding algorithm is simple: Construct Gc and traverse
it using depth-first search. When visiting a vertex invoke procedure Place, presented in
Figure 5.8. To check whether the algorithm has found a C1P permutation, we can verify
the consistency of the column sets as we try each new placement, as indicated in the
last line of procedure Place. If we attempt to place a row and we find out that one of its
columns should go, say, to the right, and the existing placement tells us that it should go
to the left, then the component, and hence the matrix, does not have the C1R

Algorithm Place
input: u, v, w, vertices of Gc = (V, E) such that (u, v) e E and (u, w) e E.
II v and w can have value nil
output: A placement for row w, if possible
if v = nil and w = nil then

Place all 1 s of row u consecutively
else if w = nil then

Left- or right-place the Is of u with respect to the Is of v
Record direction used

else
if u • w < min(w • v, v • w) then

Place u with respect to v using same direction used in u, if placement
Record direction used

else
Place u with respect to v using opposite direction used in v, w placement
Record direction used

Check consistency of column sets.

FIGURE 5.8

The procedure to place a row given two others.

5.3 AN ALGORITHM FOR THE C1 P PROBLEM 157

Let us analyze the running time of this algorithm. Building graph Gc takes O(nm)
time. We then process the n rows as sketched above, spending O(m) per row to check
consistency of column sets. Total time is thus Oinrri).

Joining Components Together

We now tackle the second part of the algorithm, component-joining. For this we need
another graph, GM, which will tell us how components fit together. Each component of
the original matrix M will be a vertex in GM- A directed edge will exist between vertex
a and vertex p if the sets 5/ for all i e p are contained in at least one set Sj of com-
ponent a (we are making no distinction between a row j and its corresponding set Sj).
The graph GM corresponding to the components of the matrix from Table 5.1 is shown
in Figure 5.9.

FIGURE 5.9
Graph GM corresponding to the components of the matrix

from Table 5.1.

From the discussion in the beginning of this section we know that the containment
relations between a set of ft and sets of a are the same for all sets of p. Let us make this
more clear. Suppose set 5/ belonging to component p is contained in set Sj belonging to
another component a. Because the rows / and j are in different components, there is no
row k in component a such that 5/ is not contained in Sk and 5/ Pi S^ ̂ 0. In other words,
Si is contained in some sets of a and is disjoint from the others. We claim that the exact
same containments and disjunctions hold for all other sets from p. Suppose not and let
us analyze one such exception. Suppose /, / e p, Si H Si # 0, j 6 a, and 5/ c Sj, but
Si £ Sj. In this case the only way / could be out of a is if 5/ O Sj = 0. But this cannot
be, since Si and 5/ have at least one element in common and Sj is contained in Sj. We
leave other cases to the reader.

The joining of components depends on the way sets in one component contain or are
contained in sets from other components. Intuitively, we should process first components

158 CHAPTER 5 PHYSICAL MAPPING OF DNA

that have sets that are not contained anywhere else. Because containment is given by
edge direction, we have to process GM in topological ordering. (We can only do this if
GM is acyclic. Is it? Yes, and this is not difficult to prove.)

After having correctly permuted the columns of all components individually, we se-
lect all vertices in GM without incoming edges, and freeze their columns. We then take
the next vertex in topological order. Suppose we are following edge (a, P). This means
that we must find some sort of "reference column" in component a that will tell us how
to place the rows of p. Choose the row I from p that has the leftmost 1, and call the col-
umn where this 1 is cp. We know that Si is contained in some St of a but not in others.
Find all rows from a that contain Sh and find the leftmost column where all such rows
have Is (and call this column ca). This is the reference column we are looking for, since
we can now make ca and cp one and the same.

Let us illustrate this process with the matrix from Table 5.1 and the graph from Fig-
ure 5.9, and let us consider its components in topological ordering. One such ordering is
a, P, 8, y. Here are the rows of component a with columns permuted so that its Is are
consecutive:

h
h

{1}
1
0

{2,4,5,7,9}
1 1 1 1 1
1 1 1 1 1

{3,6,8}
0 0 0
1 1 1

We will now join the next component, which is p, a singleton row:

h
{2,4,5,7,9)

1 1 1 1 1

As should be clear, all we have to do is join I3 with the rows from a, without any
rearrangements:

h
h
h

{1} I {2,4,5,7,9} I {3,6,8}
1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 0 0 0

The next component is 8. Here are its rows, with consecutive Is:

k
h
h

{9,5}
0 0
0 0
1 1

{4}
1
0
1

{7}
1
1
0

{2}
0
1
0

We can see that in component 8 it is 1% that has the leftmost 1 (in either column 5 or
9). In component a both rows l\ and h contain /g, and it is the second column (represent-
ing a bunch of possible columns) that has all Is. Therefore that second column should
coincide with columns 9 or 5 from component 8. This is the result:

5.3 AN ALGORITHM FOR THE C1P PROBLEM 159

{1} {9,5} {4} {7} {2} {3,6,8} ...
1
0
0
0
0

1
1
1
0
0

1
1
1
0
0

1
1
1
1
0

1
1
1
1
1

1
1
1
0
1

0
1
0
0
0

0
1
0
0
0

0
1
0
0
0

Z 8 - » . . . 0 1 1 1 0 0 0 0 0 . . .

We finally glue in component y. Its rows are

{6} {3} {8}
U-> ... 0 1 1
Z5 -» . . . 1 1 0 . . .

Joining with the rows above we obtain the final matrix with all Is consecutive:

{1} {9,5} {4} {7} {2} {6} {3} {8}
h -> i i i i i i o o o
Z2 -> 0 1 1 1 1 1 1 1 1
h -> o i i i i i o o o
Z6-> 0 0 0 1 1 0 0 0 0
Z y - ^ O O O O 1 1 0 0 0
Z8 -> 0 1 1 1 0 0 0 0 0
Z 4 ^ 0 0 0 0 0 0 0 1 1
Z5 -* 0 0 0 0 0 0 1 1 0

Notice that one of the column sets is not a singleton, indicating that we have found
two solutions. In this particular case the reason is that columns 5 and 9 are identical.
But in general there may be multiple solutions that do not involve just the permutation
of identical columns. For example, 1, 2, 7, 4, 9, 5, 8, 3, 6 is another solution for this
same matrix. Multiple solutions may exist because GM may allow different topological
orderings, and this is compounded by the facts that each component may on its own have
several solutions and each of them can be used in two ways (the permutation and its
reversal).

We now analyze the running time of the algorithm. Topological sorting of GM takes
time O{n + m). It is possible to preprocess the entries of M so that the queries needed
when traversing GM take constant time. For example, we can store for each row the col-
umn where its leftmost 1 is. Such preprocessing takes at most O(nm). Therefore this is
the time needed for joining components. Total time for processing each component was
seen to be O(nm) as well, so this is the running time of the whole algorithm.

Another algorithm exists that can find a C1P in time O(n-\-m -+• r), where r is the
total number of Is in the matrix. In addition, the algorithm encodes in a compact way all
possible solutions. This algorithm, however, is considerably more complicated than the
algorithm we presented in this section. References are given in the bibliographic notes.

160 CHAPTER 5 PHYSICAL MAPPING OF DNA

AN APPROXIMATION FOR HYBRIDIZATION
MAPPING WITH ERRORS

In the previous section we studied an algorithm that solves the consecutive Is problem.
We saw that such a problem is a good model of hybridization mapping when there are no
errors and when probes are unique. If errors are present, some other approach is needed,
and that is the subject of this section.

Let us first examine the effect errors can have on a clones x probes binary matrix
M. Suppose M is presented to us with the true column permutation. Given one row, if
there are no errors, all its Is will be consecutive. If a row corresponds to a chimeric clone,
where two fragments were joined, we will see two blocks of Is separated by some num-
ber of Os (assuming no other errors are present in this row). We will call a consecutive
block of Os bordered by 1 s a gap. Notice that this is different from the use of the term gap
in other chapters of this book. We can thus say that a gap was created in this row because
of the chimeric fragment. If, on another row, there is a false negative, the corresponding
0 may separate two blocks of Is, creating another gap, as shown below:

0 1 1 0 1 1 1 1 0 0
t

A false negative

The gap will not be created if the probe was leftmost or rightmost for this clone. Fi-
nally, a false positive may split a block of 0s in two, thus possibly creating yet another
gap. In this way we see that there is a close correspondence between errors and gaps in
the matrix. Given the basic assumption that we want to avoid explaining gaps by exper-
imental error as much as possible, a reasonable approach is to try to find a permutation
where the total number of gaps in the matrix is minimum. Such an approach has the de-
sirable property that, if there is a CIP permutation, it will have the minimum number of
gaps. In other words, gap minimization can be seen as a generalization of the consecu-
tive Is problem. We have mentioned in Section 5.2.3 that some extensions to the C1P are
NP-hard. Such is the case also with the gap minimization problem just sketched. How-
ever, for this particular NP-hard problem, we can use many special techniques to get
approximate solutions that we can expect to be reasonably good, as we show next.

5.4.1 A GRAPH MODEL

It turns out that gap minimization is equivalent to solving a well-known graph problem.
This is the traveling salesman problem (TSP), described in Section 2.2.

The input to this version of the TSP is a complete undirected weighted graph G. The
vertices of G correspond to columns of the clones x probes binary matrix M\ that is,
they correspond to probes. For reasons that will soon become clear, we also have to add
an extra column to M filled with zeros, and G must have the corresponding vertex. The

5.4 AN APPROXIMATION FOR HYBRIDIZATION MAPPING WITH ERRORS 161

weight on each edge of G is the number of rows where the two corresponding columns
differ (this is also known as the Hamming distance between the rows). For example, in
Table 5.3 we have an example of a binary matrix, and in Figure 5.10 we see the corre-
sponding graph. We will now argue that a minimum-weight cycle in G corresponds to a
column permutation in M with the least.number of gaps.

TABLE 53
A clones x probes matrix with added column

C\

Cl

C3

CA

P\
1
0
1
1

Pi
1
1
0
1

P3
1
1
0
1

PA
0
1
1
1

P5
0
0
1
0

Pi
0
0
0
0

P5

P4

FIGURE 5.10

TSP graph for matrix of Table 5.3.

To see this, note that given a permutation of the columns, a gap in a row means that
at a certain point we have a transition from 1 to 0 and further on we have a transition
from 0 to 1. Thus for each gap we have two transitions and each gap contributes exactly
2 to the weight of the cycle corresponding to the given column permutation. However
edge weights may also be increased by extremal transitions, that is, transitions between
elements in extremal (1 or m) columns, and these do not correspond to gaps. To ensure
that every row has a pair of extremal transitions we include an extra column of zeros in
column m -f- 1. Without such a column, cycles in the graph correspond to permutations
where we allow consecutive Is to wrap around in each row, and we do not want this to
happen. The relationship between cycles and permutations now becomes

162 CHAPTER 5 PHYSICAL MAPPING OF DNA

cycle weight = number of gap transitions -f- In.

This means that for a given n minimizing cycle weight is the same as minimizing the
number of gaps.

What we have just done is to show how we can reduce the gap minimization problem
to the TSR It is well known that the TSP is an NP-hard problem, so in principle we have
not accomplished much. However, a large array of techniques is available to solve or
approximate traveling salesman problems, and these techniques can now be used in this
context. The existence of such techniques is not in itself enough to give us confidence
that solving traveling salesman problems will give us the true probe permutation. What
we need are guarantees that such solutions are, in some sense, close to the true solutions.
We shall show one such guarantee in Section 5.4.2.

Before that, let us go back to the gap minimization problem and present an example
of the ideas outlined at the end of Section 5.2.4. We have defined above a function that,
given an input matrix, returns the total number of gaps in the matrix. We have further
argued that obtaining a permutation that has the minimum value for this function (or
approximately minimum) will help us find the true column permutation. Since we do
not have a guarantee that the true permutation will be among the solutions we find, we
should look for other functions that might also be helpful. The idea is that by carefully
defining several such optimization functions and developing algorithms for them we will
increase the likelihood of hitting upon the true solution. In particular, it is reasonable to
expect that the true solution will be in the intersection of all solution sets. This will only
be the case, however, if each function represents one property that true solutions do have
or are likely to have.

Here is an example of another optimization function. One possible drawback of gap
minimization is that in a permutation with a minimum value for this function one or a
few rows may have many gaps, while others may have none. Having many gaps in one
row is undesirable, since it would mean that one clone was subject to many more errors
than other clones, which contradicts laboratory experience. Therefore we could try to
minimize the number of gaps per row. We leave as Exercise 15 how to show that we
can still use the preceding graph model. The resulting graph problem is known as the
bottleneck traveling salesman problem, which is also NP-hard.

5.4.2 A GUARANTEE

In this section we give a formal proof that the TSP approach outlined in the last section
will give us, with high probability, the true permutation. The proof we present depends on
two basic assumptions: that the number of probes is sufficiently large, and that the map-
ping process obeys a certain mathematical model. This model seems to be a good rep-
resentation of what actually happens in large mapping projects. We describe the model
next.

First we assume that the DNA molecule we are dealing with is so long that we may
think of it as an interval on the real line, extending from 0 to N. The clones are subin-
tervals of this long interval, and we assume that all of them have the same length; for
convenience each clone is one unit long. To simplify the exposition, we will speak of
clone permutations rather than probe permutations. The unit length assumption makes

5.4 AN APPROXIMATION FOR HYBRIDIZATION MAPPING WITH ERRORS 163

them equivalent. This means that we will be looking for consecutive Is in columns, not
in rows, and that each vertex in the associated TSP will correspond to a clone. We use
each clone's left endpoint as a clone locator. We, of course, do not know the precise po-
sition of each clone along the molecule; and because we are dealing with hybridization,
all we will be able to determine is relative clone order.

A critical feature of this model is clone distribution along the target DNA. We will
assume that each clone's position is an independent random variable, that clone locators
are distributed uniformly over [0, N — 1], and that the clones cover the interval [0, N]
(that is, for every subinterval / of [0, N], there always exists at least one clone C such
that C n / # 0).

Another important aspect of the model is probe distribution. We will not assume
that each probe is unique; instead, we will assume that each probe occurs rarely along
the target DNA. More formally, we will say that the occurrences of a given probe obey
a Poisson process with rate X. Moreover, the Poisson process of any one probe is inde-
pendent of all the others. This part of the model lets us immediately obtain an expression
for the probability of a specific probe hybridizing to a clone. The expression is

kk

Pr{a given probe occurs k times in a given clone} = e~k —. (5.1)

This expression can be obtained from any textbook formula for Poisson processes, using
the fact that our clones are unit length intervals.

This completes the model description. We shall now argue that, given a clones x
probes binary matrix, the row permutation given by solving the associated TSP is a good
approximation to the true permutation, in the following precise sense: The probability
that both permutations are the same tends to 1 as the number of probes increases. Note
that the number of probes is fixed for a given instance of the problem. We are just claim-
ing that in larger and larger instances of the problem (and we are measuring size here by
number of probes) the TSP permutation will be the same as the true permutation with
higher and higher probability.

To prove this claim, we must argue in terms of graph weights, or more appropriately,
clone distances. As we mentioned, the weight of each edge of the graph associated with
input matrix M is called the Hamming distance between its two endpoints (clones). We
denote by hij the Hamming distance between clone i and clone j . We can also think of
the true distance between clones. Denoting a clone's coordinates by / (left) and r (right)
we can define this distance to be

Uj = \lj -U\ + \rj -n\ = 2\lj -hi (5.2)

given that clones are all of the same size.
Suppose now that we knew all true distances. Then it is clear that the largest such

distance would give us the clones that are farthest apart, which is to say, the clones that
occur at opposite ends of the interval [0, N]. The next largest such distance gives us an-
other similar pair that occurs between the previous two, and so on. This means that given
the true distance we are able to obtain the true clone permutation, which is not surpris-
ing. However, we have distances h^ and not distances ty. But because we are trying to
obtain only the true relative order of clones, it would suffice if we could say that, given

164 CHAPTER 5 PHYSICAL MAPPING OF DNA

any four clones i, j , r and s, htj < hrs implies that ttj < trs and vice versa. The rea-
son is that some notion of order between clone distances was all we needed to place
clones relative to each order using the true distances. If we prove that the probability
that hjj < hrs <==$> tij < trs tends to 1 as the number of probes increases, we will have
the result we need.

Let us look at a pair of clones / and j , and let us find the probability that a certain
probe p contributes to their Hamming distance. This will happen if probe p hybridizes
to i but not to j or vice versa. Referring to Equation (5.1) we see that the probability that
probe p does not occur on clone j is e~x, since k = 0. On the other hand, the probability
of probe p occurring at least once in clone i is the same as the complement of the proba-
bility of probe p not occurring in that section of / that does not overlap j . If this overlap
is Zij, we obtain the following result:

Pr{/? hybridizes to i and not to j or vice versa} = ptj = 2e~x{\ — e~X{l~~Zij)). (5.3)

This essentially means that there is a well-defined probability of this event happen-
ing. We can now take into account all probes, and each of them will have a certain prob-
ability of hybridizing to clones i and j . Assume we have m probes, and consider hij/m.
This represents the mean contribution of each probe to the Hamming distance between
clones i and j . (Note that a probe's contribution to the Hamming distance is either 0 or
1.) If the number of probes is large, we can invoke the law of large numbers and say that
hij/m approaches /?//. Or, for any fixed small positive real number 6, that

> ^ | -> 0

asm —> co. Note now that since clones are unit length, the true distance between two
overlapping clones i and j with an intersection measuring ztj is given by ty = 2 — 2zij
(see Equation 5.2). This allows us to substitute Uj for Zij in Equation (5.3), effectively
showing us that ttj > trs if and only if p/y- > prs, for pairs of clones i, j and r, s. But if
this is the case, then we can say that

This implies that htj < hrs <$=$• t^ < trs, which is what we wanted to prove.

5.4.3 COMPUTATIONAL PRACTICE

In this section we present some actual results of computational tests with algorithms for
the hybridization mapping problem. Before presenting these results, however, we must
make considerations regarding the way the results of such tests can be interpreted. Some
of these considerations are valid for many problems in computational biology.

Initially we shall look at the input data using another graph. By doing so it will be-
come clearer what we can expect of any algorithm that tries to obtain the true probe per-
mutation. This graph will also be used in the next section.

We define the hybridization graph H as a bipartite graph (U, V, E) that is built us-
ing information from the hybridization matrix: Clones are the vertices of the U partition,
and probes are the vertices of the V partition. There is an edge between two vertices if

5.4 AN APPROXIMATION FOR HYBRIDIZATION MAPPING WITH ERRORS 165

the corresponding probe hybridized to the corresponding clone. In Figure 5.11 we can
see the bipartite graph H that was built based on matrix M shown in Table 5.3, but ex-
cluding the all-zeros column.

© ©
FIGURE 5.11

Hybridization graph H corresponding to hybridization
matrix from Table 5.3, without the added column.

The first thing to notice is that H may not be connected, even if all entries in the hy-
bridization matrix are correct. If this is the case, then no matter how good our algorithm
is, we will not be able to tell the relative order between probes that belong to different
connected components; the information to do so is simply not present in the hybridiza-
tion matrix. A connected component may be as simple as a singleton vertex, meaning
that there is a probe that did not hybridize to any clone or a clone that was not hybridized
to any probe. Another observation is that there may be redundant probes, or probes that
hybridize to exactly the same set of clones. This could happen if the probes, although
different, hybridize to parts of the target DNA that are close together. It could also hap-
pen if certain clones for that particular DNA stretch are missing, leaving some probes
without any positive hybridization results.

Connected components of H show up when we solve the corresponding consecutive
Is problem. Redundant probes can also be easily seen in the hybridization matrix: They
are columns that have exactly the same Is and Os. But if there are errors we may get
wrong information regarding the number and structure of connected components of H
and whether a probe pair is redundant. We say that errors may mask these properties.
So notice the difficult situation that errors create: The input matrix without errors may
lack information necessary to find the true permutation (for example, the errorless H
has several components), and we may have a lot of trouble just to recognize that lack
of information (because our errorful H has only one component). Assuming matrix in
Table 5.3 is errorless, probes /?2 and p^ are redundant, but if there were a false positive
between clone ci and probe p3 we would not be able to recognize that.

Given this situation, it is clear that evaluation of a mapping algorithm is a difficult
task (in addition to mapping itself!). We will now take a look at how we can evaluate
such algorithms assuming that we somehow know the correct answer to any mapping

166 CHAPTER 5 PHYSICAL MAPPING OF DNA

problem. This can be done, for example, if we use a computer program to generate arti-
ficial instances of mapping problems, simulating experimental errors. If such instances
are faithful to real instances, it should be clear from the above discussion that the input
matrix may lack information to enable an algorithm to determine the true probe order.
Therefore we should try to evaluate how "close" the solution found by a particular map-
ping algorithm is to the true probe order. The question now becomes: How should we
define closeness in this context? At the moment there is no consensus on how to do this.
However, to give some idea of the performance of current mapping algorithms in prac-
tice, we will present as an example one definition that has appeared in the literature. It
is a reasonable definition, but even if it becomes widely accepted, it may still undergo
some refinements.

We will measure a mapping algorithm by the fraction of strong adjacencies reported
by it. Strong adjacencies are defined in terms of the number b of blocks of consecutive Is
present in a hybridization matrix with a given probe permutation n = p\, P2, . . . , pm.
We analyze the effect of translocations, which are operations that reverse the order of
a set of consecutive probes. We say that two adjacent probes pt and pi+\ represent a
strong adjacency if placing these probes apart by any translocation increases b in each
row. When such an increase takes place we have some evidence (albeit not conclusive)
that probes pt and pi+\ should stay adjacent in all solutions.

Based on this concept, we can define the strong adjacency cost of a given permuta-
tion. This is given by the formula

100 > S i] , (5.4)

where 5/ = 1 if pi and pt+\ is a strong adjacency in the true permutation but these probes
are not adjacent in the proposed permutation, and <5/ = 0 otherwise. Note that the cost is
given as a percentage. Good permutations should have low strong adjacency cost.

With this definition we are finally able to give the reader an idea of algorithm per-
formance. Table 5.4 presents the strong adjacency cost of two algorithms. One of them
is "random": A random probe permutation is selected. The other is based on the TSP ap-
proach; this is how it works. Given the TSP graph the algorithm builds a cycle by choos-
ing pairs of vertices and making them adjacent on a path. The pair (w, v) chosen at each
iteration must fulfill the following conditions: If both u and v already belong to paths,
and these paths are different, the paths can be joined only if u and v are endpoints in
their respective paths (that is, they each have just one neighbor); and they must be the
closest among all qualifying pairs. After all vertices are on the same path, that path is
closed forming a cycle. This solution is then submitted to another algorithm, which tries
to improve the solution by applying another heuristic.

In Table 5.4 we can see that the TSP-based approach (called "greedy") performs
well compared to "random." The paper from which these results were obtained presents
the performances of three other, much more sophisticated algorithms, and the results are
similar to those shown above for "greedy TSP." This can be seen as a point in favor of
the TSP approach, but in a sense it is yet another measure of how difficult the mapping
problem is. The table also shows that in the presence of false negatives the solution of
"greedy TSP" was fairly poor. It is fair to assume that results would be even worse if all

5.5 HEURISTICS FOR HYBRIDIZATION MAPPING 167

TABLE 5.4

Strong adjacency costs for two algorithms on matrices with
different kinds of errors. Error rates are indicated in the

heading of each column (only one type of error per
column). Coverage in all cases is 10, where coverage is the

ratio between the total length of all clones and target
DNA length.

Greedy TSP
Random

C1P
0
1.9

86.4

Chimerism
0.5
0.9

89.7

False Positives
0.04

16.0
94.4

False Negatives
0.32

28.3
94.9

kinds of errors were combined in the same instance. This motivates our next section, in
which we present a heuristic that appears to be robust in the presence of false negatives.

HEURISTICS FOR HYBRIDIZATION MAPPING

As the previous sections have shown, mapping is a difficult problem, and no general and
good algorithms for it have been found. As a consequence, what we see in practice is that
researchers resort to various heuristics to help them arrive at a solution. In this section
we present two such heuristics that have yielded good results in hybridization mapping
projects.

5.5.1 SCREENING CHIMERIC CLONES

As noted above, chimeric clones occur with high frequency in clone libraries, and their
presence brings serious problems to any mapping algorithm. In this section we present
a simple heuristic that tries to split chimeric clones into fragments. Such a heuristic is
very useful as a screening procedure, which can be used as a preprocessing step before
employing more sophisticated techniques.

The idea is very simple: if a clone is chimeric (and let us assume it is composed
of only two fragments), the probes that hybridize to one of its fragments should not be
related to the probes hybridizing to the other fragment. The key here is of course the
concept of "relatedness". This is made concrete by looking at the following graph.

Take clone i and the set of probes that hybridize to it, P,. We create a graph Ht =
(Pi, E) for every clone /. We create an edge between two probes from Pt if they hy-
bridize to a clone other than /. If the resulting graph is connected, we say that i is not
chimeric. If it has more than one component, we say that i is chimeric and we replace i
by new "artificial" clones, each new clone given by a connected component of Hi. This

168 CHAPTER 5 PHYSICAL MAPPING OF DNA

Pty Probes

Clones

FIGURE 5.12
Above the line we show the hybridization graph H for some
clones x probes matrix. Below the line at left is graph Hb
for clone b. This clone is probably not chimeric, because

Hb is connected. At right is graph Hefor clone e. This clone
could be chimeric, because He is not connected.

method can be refined by requiring that an edge exists between probes p and q in Hi
only if p and q hybridize to at least k other clones, where A; is a parameter depending on
the particular problem at hand. See Figure 5.12 for an example.

Experience has shown that this heuristic behaves well. On the other hand it may
consider a clone chimeric when in fact it is not. Therefore, another useful heuristic would
be one that combines two clones that are actually one. See Exercise 22.

5.5.2 OBTAINING A GOOD PROBE ORDERING

The heuristic presented here is more ambitious than the one we saw in the previous sec-
tion. It aims at actually solving the problem, that is, obtaining a permutation of the probes.
The idea is to estimate for every probe p the number of probes to its left and the number
of probes to its right by looking at the hybridization graph H (defined in Section 5.4.3).
We can then sort the probes using this estimate and thus obtain one "good" permutation.

Given a probe we will be able to count the number of probes to its left and to its
right if we can somehow split the other probes into two separate components: one left
component and one right component. Probes near the ends of the target DNA may not
split the others in two; therefore, the probes for which we can obtain two components
will be called splitters. The method for detecting splitters is described next.

Given a probe p build a set of vertices Sp (whose elements are clones and probes)
by including p in Sp and every other probe that shares a clone with p. Include in Sp all
clones that are incident to any probe in Sp. Now remove all vertices in Sp from H. We
will say that p is a splitter if the resulting graph has exactly two components. Using this
method, the heuristic for obtaining a good probe ordering is described in Figure 5.13.

SUMMARY 169

Algorithm Probe Permutation Heuristic
input: clones x probes hybridization matrix
output: a "good" permutation for the probes
Identify splitters as described in the text
for every splitter / do Determine the components A, and B(

for each probe p do Initialize lp and rp with zero
Select a pair (A*, Bk) arbitrarily
for each probe p do

for each pair of components (A,, Bt) do
if p e Aj then

if |A,- fl Ak\ > |A/ n Bk\ then
Increment lp

else
Increment rp

else if p e Bt then
if |5/ HAk\ > \Bi HBk\ then

Increment lp

else
Increment rp

Sort probes in decreasing order of lp — rp.

FIGURE 5.13

Heunstic to obtain a "good" probe permutation.

For each probe p, the algorithm keeps two counters, lp and rp, recording the number
of left and right regions that contain p. These counters are initialized with zero and are
incremented using the splitters. It is not obvious how to do this, because although we
know the two components A/ and Bt of a splitter /, we cannot tell which one goes to the
left or to the right. To solve this difficulty we rely on a fixed arbitrary splitter k that we
use as a reference. We assume that A* lies to the left of 2?*. Then, given another splitter
/, a component X of / (either A; or Bt) is the leftmost one when \X C\ A*| > \X n 2?*|.
Once we have the final counts, we sort probes so that the ones with higher left bias lp—rp

come first. A simple improvement to this heuristic is in the choice of splitter k. The more
"central" this splitter, the better should the results be.

As with the heuristic of the previous section, experience has shown that this one
performs well. In particular, it is relatively robust with respect to false negatives. In ad-
dition, one can envisage this heuristic also used as delivering its result to other algorithms
or heuristics that could try to improve the solution.

In this chapter we studied two methods that yield data for DNA mapping: digestion by
restriction enzymes and hybridization experiments. One way to use restriction enzyme

170 CHAPTER 5 PHYSICAL MAPPING OF DNA

data is to measure and compare the corresponding fragment lengths. This leads to the
double digest and partial digest problems. We showed that the double digest problem is
NP-complete. Data about fragments can also be used to characterize a fragment's finger-
print. In this case the order of fragments can be reconstructed by determining overlaps
between fragments based on fingerprints. This can be modeled in various ways by inter-
val graphs, but most models result in NP-complete problems.

In hybridization mapping, we use as primary data a clones x probes hybridization
matrix. If we place the stringent requirements on this matrix that probes are unique and
that there are no errors, the resulting problem can be solved in polynomial time. All we
have to do is to determine whether the matrix has the consecutive ones property. We
presented one algorithm for this problem. When errors are present, we must resort to ap-
proximations, and we showed how mapping can be reduced to one version of the travel-
ing salesman problem. This reduction, coupled with another model for the hybridization
process, yields a guarantee that a solution to the TSP will be very close to the solution
of the mapping problem. The algorithmic difficulties of mapping motivate the search for
algorithm evaluation criteria. We presented one such criterion and showed that a TSP-
based approach behaves well under this criterion compared to other more sophisticated
approaches. We closed the chapter by presenting two heuristics that aid in screening er-
rors and in recovering a good probe ordering.

EXERCISES

1. Find an alternative solution to the problem in Figure 5.2.

2. Given the following results of double digest experiments, try to find a solution:

Enzyme A: 4 ,5,7, 8, 12.

Enzyme B: 3, 4, 4, 6, 9, 10.

Enzyme A + B: 1, 2, 3, 3, 4, 4, 4, 4, 5, 6.

3. Given the following results of a partial digest experiment, try to find a solution: 2, 3,
7, 8, 9, 10, 11, 12, 17, 18, 19, 21, 26, 29.

4. Design an exhaustive search algorithm for solving the DDP problem.

5. Explain why two restriction sites for two different restriction enzymes cannot coincide.

* 6. A necessary condition for a graph G to be interval is that any cycle in G containing
four or more vertices has a chord, that is, an edge joining two nonconsecutive vertices
belonging to the cycle. Prove this fact.

7. Show that the condition Exercise 6 is not sufficient.

8. Show that an interval graph where no interval is properly contained in any other is
equivalent to an interval graph in which all intervals have the same length.

9. Execute the CIP algorithm from Section 5.3 on the input matrix given in Table 5.5 and
obtain a permutation for the columns that leaves the Is consecutive in each row.

10. Characterize binary matrices that have the C1P for both rows and columns.

EXERCISES 171

TABLE 5.5
The input binary matrix for Exercise 9.

1
2
3
4
5
6
7
8
9
10

1
0
1
1
0
0
0
1
1
0
0

2
1
1
0
1
0
1
0
0
1
1

3
0
0
0
0
0
0
0
1
0
0

4
0
1
0
0
1
1
1
0
1
0

5
0
0
0
0
0
0
1
1
0
0

6
0
1
0
1
1
1
0
0
1
0

7
0
1
0
0
1
1
1
0
1
0

8
0
1
1
0
0
0
1
0
0
0

9
0
1
0
1
1
1
0
0
1
1

10
0
1
0
0
0
0
1
0
0
0

** 11. Characterize interval graphs using the C1P. That is, given a graph G, propose a binary
matrix M based on G such that G is an interval graph if and only if M has the C1R

• 12. Based on the answer to Exercise 11 design an efficient algorithm to recognize interval
graphs.

13. In the C1P algorithm of Section 5.3, prove that the containment relations between a set
of component fi and sets of another component a are the same for all sets of /3. It is a
case-by-case proof; one case was already given in the text.

14. Prove that the graph GM defined in Section 5.3 is acyclic.

15. Develop the model related to gap minimization per row alluded to at the end of Sec-
tion 5.4.1.

16. Prove that the decision version of the problem of obtaining a column permutation in
a binary matrix such that the total number of blocks of consecutive 1 s is minimum is
NP-complete. Hint: Reduce from the Hamiltonian path problem.

17. Run the TSP greedy algorithm sketched at the end of Section 5.4.3 on the graph of
Figure 5.10.

18. Theoretical and practical results show that it is a little easier to solve TSP problems
if distances obey the constraints given in Section 3.6.1. Does the Hamming distance
obey those constraints?

o 19. Hybridization experiments sometimes are not conclusive: The probe may or may not
have hybridized to that clone. Assume that the result of each experiment is a real num-
ber between 0 and 1 that gives the degree of confidence that the hybridization actually
occurred. Propose an algorithm to find the true probe permutation based on such data.

* 20. Propose an algorithm for hybridization mapping based on the minimum spanning tree
heuristic for the TSP problem. A description of this heuristic can be found, for example,
in [152].

21. In hybridization mapping sometimes we have the information that, among all probes,
some of them hybridize to ends of clones, and we know which ones. What kind of
matrix results from this information? How would you reformulate the problem to be
solved? Is it any easier than the problem without endprobe information?

22. Propose a heuristic that tries to combine clones that have been wrongly separated by the

172 CHAPTER 5 PHYSICAL MAPPING OF DNA

screening heuristic described in Section 5.5.1. Your heuristic should be used as a post-
processing step; that is, it should receive as input one possible ordering for the probes
obtained in a previous step.

23. In the heuristic to obtain a good probe ordering, presented in Section 5.5.2, show how
the choice of a bad central splitter will put another splitter in the wrong position in the
ordering.

24. Fragment assembly and hybrization mapping are similar problems. Are any of the tech-
niques from Chapter 4 applicable to hybridization mapping?

25. One of the main institutions working on the physical map of the human genome is the
Whitehead Institute for Biomedical research from MIT. Check out their Web site at
http://www-genome.wi.mit.edu/ and find out about the current status of the Human
Genome Project.

BIBLIOGRAPHIC NOTES

A nice overview of mapping problems was given by Karp [111]. A good survey of re-
striction mapping was presented by Lander [119]. In the same paper Lander described
algorithms for genetic linkage mapping, a topic that we have not covered and that uses
data coming from important genetic markers known as restriction fragment length poly-
morphisms (RFLPs).

Double digest mapping has been studied by Goldstein and Waterman [73] and by
Schmitt and Waterman [169], among others. The proof that DDP is NP-complete is taken
from [73]. In [169] it is shown that the number of solutions to DDP may increase expo-
nentially with the target DNA length. In this paper some hope is placed on a general
treatment based on equivalence classes of fragments, but this hope is unfortunately not
fulfilled by the extensive study made by Pevzner [160], who concluded that a multiple
digest approach should be pursued. The partial digest problem was studied by Skiena
and Sundaram [174], who propose a branch-and-bound algorithm to solve it. They re-
port promising experimental results.

Waterman and Griggs [200] present an algorithm for the following problem from
restriction site mapping. The target DNA is digested separately by two enzymes. Then
overlap information between the fragments of each digest is obtained. The problem is to
discover the order of the restriction sites based on this information.

Computational complexity analyses of physical mapping appear in [72,59,75]. Sec-
tion 5.2.2 was based on these papers, and they contain the NP-completeness proofs al-
luded to in that section. Kaplan, Shamir, and Tarjan [108] present an algorithm for the
following problem, related to physical mapping: Transform the input graph into a proper
interval graph by adding as few edges as possible. A proper interval graph is one in which
no interval properly contains another (or, equivalently, one in which all intervals have
equal length). They present an algorithm that runs in linear time if the maximum num-
ber of edges to be added is a fixed k.

BIBLIOGRAPHIC NOTES 173

The algorithm for the consecutive Is problem presented in Section 5.3 is from Fulk-
erson and Gross [67]. A much more sophisticated algorithm was presented by Booth and
Lueker [27]. It runs in time O(n + m + r) and encodes in a compact manner all possible
solutions (r is the total number of Is in the matrix). However, the algorithm is cumber-
some and attempts have been made to provide better alternatives. See, for instance, the
work by Hsu [97] and by Meidanis and Munuera [136].

Mapping by hybridization with unique probes was studied by Greenberg and Is-
trail [78, 79] and by Alizadeh et al. [9]. The paper [79] is an excellent description of
many aspects of the problem, and several algorithms are presented. The results from
Section 5.4.3 were taken from there, and Section 5.2.4 owes much to that paper as well.
A number of other techniques are described in [9] and the heuristics from Section 5.5
came from this paper. Grigoriev, Mott, and Lehrach [80] also describe a heuristic for
chimeric clone detection. Alizadeh et al. [8] studied hybridization mapping where probes
are not unique; Section 5.4 was mainly based on that paper. The Poisson process model
for clone distribution is from Lander and Waterman [120], the same model presented in
Section 4.1.2 under the topic of coverage. This model is also used in mapping projects
to determine the number of clones necessary for a desired coverage.

A software package for physical mapping with a graphic interface is described by
Soderlund and Burks [177], and in the same paper they mention software for automatic
generation of test instances.

PHYLOGENETIC TREES

In this chapter we describe the problem of reconstructing phylo-
genetic trees. This is a general problem in biology. It is used in
molecular biology to help understand the evolutionary relation-
ships among proteins, for example. We present models and algo-
rithms for two basic kinds of input data: characters and distances.

Modern science has shown that all species of organisms that live on earth undergo a slow
transformation process through the ages. We call this process evolution. One of the cen-
tral problems in biology is to explain the evolutionary history of today's species and, in
particular, how species relate to one another in terms of common ancestors. This is usu-
ally done by constructing trees, whose leaves represent present-day species and whose
interior nodes represent hypothesized ancestors. These kinds of trees are called phylo-
genetic trees. One example is shown in Figure 6.1. According to this tree human beings
and chimpanzees are genetically closer to each other than to the other primates in the
tree. This means that they have a common ancestor that is not an ancestor of any of the
other primates. The tree also shows a similar situation between gibbons and siamangs.

The problem with phylogenetic tree construction is that generally we do not have
enough data about distant ancestors of present-day species; and even if we did, we could
not be 100% sure that a particular fossil belongs to a species that really is the ancestor
of two or more current species. Therefore we have to infer the evolutionary history of
current organisms, and re-create their phylogenetic tree, generally using as primary data
comparisons between today's species. For this reason the tree shown in Figure 6.1 is not
necessarily the true one; it is simply a hypothesis.

Phylogenetic trees, or more simply, phytogenies, have been proposed since the last
century for all sorts of groups of organisms. The methods used up to the 1950s were
generally based on researchers' experience and intuition. Gradually mathematical for-
malisms were introduced and these were incorporated into numerical methods. Today
there is an immense body of work on the mathematics and algorithmics of phylogeny
reconstruction. There are also software packages offering a host of programs to aid sci-
entists in re-creating phylogenies.

It is not our aim in this chapter to survey computational methods for phylogeny re-
construction; a whole book would be required for this. Our goal is rather to study some

176 CHAPTER 6 PHYLOGENETIC TREES

siamang gibbon orangutan gorilla human chimpanzee

FIGURE 6.1
A phylogenetic tree for some primates.

problems of this area that are amenable to algorithmic solution. The reader should be
aware that this is a very narrow and biased treatment, considering the extent and diver-
sity of the literature on this topic. Pointers to more general texts on the subject are given
in the bibliographic notes for this chapter.

In evolutionary biology, we can build phylogenetic trees for species, populations,
genera, or other taxonomical units. (Taxonomy is the "science of classification." The
term numerical taxonomy is used to describe the collection of numerical methods used
for any kind of grouping. This chapter's topic can be seen as a subfield of numerical
taxonomy.) Because nucleic acids and proteins also evolve, we can also build phyloge-
nies for them, which explains why molecular biologists are also interested in methods
for phylogeny reconstruction. To keep the exposition as general as possible we will use
the term object for the taxonomical units for which we want to reconstruct a phylogeny.

Let us recall the definition of trees from Section 2.2. A tree is an undirected acyclic
connected graph. We distinguish between its exterior nodes, or leaves, and the interior
nodes. Leaves have degree one, whereas interior nodes have degree greater than one. To
the leaves we associate the objects under study. Thus we can say that a leaf is labeled by
an object or a set of objects.

Scientists are interested in two main aspects of phylogenetic trees. One is its topol-
ogy, that is, how its interior nodes connect to one another and to the leaves. (Some au-
thors use the term branching pattern for this.) Another important aspect is the distance
between pairs of nodes, which can be determined when the tree edges are weighted. This
distance is an estimate of the evolutionary distance between the nodes. Depending on
many assumptions that we will not discuss, the distance between an interior node (an-
cestral object) to a leaf (present-day object) can be interpreted as an estimate of the time

6.1 CHARACTER STATES AND THE PERFECT PHYLOGENY PROBLEM 177

it took for one to evolve into the other. But the reader should be aware evolutionary dis-
tance in general is not equivalent to elapsed time.

Another important feature of a phylogenetic tree is whether it has a root. A tree with
a root implies ancestry relationships between interior nodes. However, in many of the
problems that we will study there is not enough information in the data to allow us to
determine the root; in those cases the reconstructed tree will be unrooted.

We mentioned that phylogenies are reconstructed based on comparisons between
present-day objects. We can classify input data for phylogeny reconstruction into two
main categories:

1. Discrete characters, such as beak shape, number of fingers, presence or absence
of a molecular restriction site, etc. Each character can have a finite number of
states. The data relative to these characters are placed in an objects x characters
matrix, which we call character state matrix.

2. Comparative numerical data, which we call distances between objects. The re-
sulting matrix is called the distance matrix.

Each of these categories gives rise to different methods for phylogeny reconstruc-
tion. One significant difference between the categories is that character state matrices
are in general not square matrices, since the number of objects need not be equal to the
number of characters. On the other hand, distance matrices are triangular matrices, be-
cause we have a distance for each pair of objects and these distances are symmetric. In
the following sections we present representative algorithms for several of these meth-
ods. There is also a third category of continuous character data, but we will not cover
this case.

CHARACTER STATES AND THE PERFECT
PHYLOGENY PROBLEM

We start this section with some general remarks about assumptions on characters and the
meaning of states in interior tree nodes.

The basic assumption regarding characters is a somewhat obvious one: that the char-
acters being considered are "meaningful" in the context of phylogenetic tree reconstruc-
tion. The task of defining what is meaningful and checking that the chosen characters are
meaningful according to this definition rests largely with the scientist, or "user" of the
tree. Nevertheless, we briefly mention two assumptions that underlie all character-based
phylogeny reconstruction methods.

The first is that characters can be inherited independently from one another; this
is crucial for all algorithms we will discuss. Another assumption is that all observed
states for a given character should have evolved from one "original state" of the nearest
common ancestor of the objects being studied. Characters that obey this assumption are
called homologous. This is also important when the objects are biological sequences. In
such cases, a character will be a position in the sequence, and its states, in the case of

178 CHAPTER 6 PHYLOGENETIC TREES

DNA, will be A, T, C, and G. If we are comparing position, say, 132 of sequence s to po-
sition 722 of sequence t, we should make sure that these two positions owe their present
state to the same position in an ancestral sequence.

Regarding interior nodes, we recall that they represent hypothetical ancestor objects.
The algorithms we describe assign specific states to these nodes, but the set of states of an
interior node does not necessarily have biological significance. By this we mean that the
characterization of interior nodes should not be taken as a back-prediction of the features
of ancestral objects; the main goal is always the grouping of present-day objects, and the
reconstruction of ancestor objects is just a means to this end. Nevertheless we have to
be cautious about the assignment of states to interior nodes, in order to obtain a tree as
close as possible to the true tree.

Having made these introductory remarks, we pass on to a formal definition of the
character state matrix. We define the character state matrix as a matrix M with n rows
(objects) and m columns (characters). Thus Af,-;- denotes the state the object i has for
character j . There can be at most r states per character and states are denoted by non-
negative integers. A given row of this matrix is the state vector for an object. Since we
will also assign states to interior nodes in the tree, we will also say that interior nodes
have associated state vectors. An example of a character state matrix is seen in Table 6.1.

TABLE 6.1
A character state matrix.

Object
A
B
C
D
E

C\

1
0
1
0
1

Character

c2

1
0
1
1
1

0
1
0
1
0

c4

0
0
0
1
0

c5

0
1
1
0
1

When trying to create a phylogeny from a character state matrix, we encounter some
difficulties. The first arises when two or more objects have the same state for the same
character. Almost all methods for phylogeny reconstruction are based on the assumption
that objects that share the same state are genetically closer than objects that do not. How-
ever there exists the possibility that two objects share a state but are not genetically close.
A case in point is the presence of wings in bats and birds. Such phenomena are called
convergence or parallel evolution. We observe in nature that such cases are rare; there-
fore, we will deal with this difficulty in the definition of our tree reconstruction problems
in the following manner: Convergence events should not happen, or their number should
be minimized.

The second difficulty has to do with the relationships among different states of the
same character. Let us illustrate this problem using the matrix shown in Table 6.1. Sup-
pose that there was an ancestral object X from which objects A and B evolved. Which
state should we assign to X relative to character c\l Note that c\ = 1 for A and c\ = 0
for B. If we make c\ = 0 for X we are saying that 0 is the ancestral state and that 1 is the

6.1 CHARACTER STATES AND THE PERFECT PHYLOGENY PROBLEM 179

derived state. Assume we have made such a choice, and now suppose that objects C and
D have as ancestral object Y j^ X. Further assume we have decided that F's state for c\
is 1. In this case notice that object D presents a reversal to the ancestral state 0 for char-
acter c\. In this particular case, since the characters are binary, we could interpret this
situation in terms of gains and losses of the character. That is, A has acquired the char-
acter with respect to its ancestor X, whereas D has lost it with respect to its ancestor Y.
As in the case of the difficulty discussed in the previous paragraph, we observe in nature
that such reversals are uncommon. Therefore we will handle reversals the same way we
did with convergence events: We will require reversals not to happen, or that their num-
ber be minimized. Notice that we may not know beforehand which state is ancestral and
which is derived. If we do not, we will have to choose, and then remain consistent with
this choice in order to avoid or minimize reversals.

In the previous example we dealt with a binary character. Because in general there
can be r states for a given character, the relationships between them may be more com-
plex. Depending on how much we know about these relationships, characters can be clas-
sified as ordered or unordered. For an unordered character we assume nothing about
the way states can change; that is, any state can change into any other. In the case of or-
dered characters extra information is known. For example, a given character with four
states may have the following linear order: 3 *> 1 «•> 4 <-> 2. This means, among other
things, that in the reconstructed tree there should be no change of state 3 directly into
state 4; state 1 should always be an intermediate. In other words, if there is a node with
state 3 for the given character, there should be no edge linking it to another node with
state 4. Characters may also be partially ordered, in which case there is a derivation tree
that shows how states are derived from one another by means of a tree. Note that even
with ordered characters we are not saying anything about the direction in which state
changes must take place; characters for which the direction of change is known are said
to be directed. In the literature unordered characters are also known as qualitative char-
acters and ordered characters as cladistic characters. Directed characters are also known
as polar characters. Intuitively, ordered characters provide us with much more informa-
tion on how we should build the phylogeny, and this intuition is useful in understanding
some computational complexity results below.

If we want to altogether avoid convergence events and reversals, the considerations
above require that the desired tree T have the following property: for each state s of each
character c, the set of all nodes u (leaves and interior nodes) for which the state is s with
respect to c must form a subtree of T (that is, a connected subgraph of T). This means
that the edge e leading to this subtree is uniquely associated with a transition from some
state w to state s. A phylogeny with this property is a. perfect phylogeny. We are now
ready to state the central problem of phylogeny reconstruction based on character state
matrices. This problem is known as the perfect phylogeny problem:

PROBLEM: PERFECT PHYLOGENY
INSTANCE: A set O with n objects, a set C ofm characters, each character hav-

ing at most r states (n,m,r positive integers).
QUESTION: IS there a perfect phylogeny for 0?

For the matrix shown in Table 6.1, assuming 0 is ancestral and 1 is derived, such a
phylogeny does not exist, as will be shown in the next section. For the matrix shown in
Table 6.2 a perfect phylogeny does exist and is shown in Figure 6.2. A character labeling

180 CHAPTER 6 PHYLOGENETIC TREES

an edge in the figure indicates that a transition from state 0 to state 1 takes place along
that edge, such that the subtree below the edge contains all objects that have state for 1
that character and no others.

TABLE 6.2
Another character state matrix.

Object
A
B
C
D
E

C\

0
1
0
1
0

c2

0
1
0
0
0

Character
c3

0
0
0
1
0

c4

1
0
1
0
1

1
0
1
0
0

ce
0
0
1
0
0

c4

D

FIGURE 6.2
A phylogeny corresponding to the matrix in Table 6.2.

Edges where state transitions take place are labeled by the
corresponding character.

Whenever a set of objects defined by a character state matrix admits a perfect phy-
logeny, we say that the defining characters are compatible. This notion of compatibility
will be later refined for the special cases of the problem that we will study.

6.1 CHARACTER STATES AND THE PERFECT PHYLOGENY PROBLEM 181

Having defined the problem, the first question we would like to ask is this: Is there an
efficient algorithm for solving it? We shall answer this question in a moment, but first let
us have an idea of how many different trees can we build for n objects. Suppose we want
only unrooted binary trees. Recall that we are interested in trees where objects are the
leaves; hence in general it does matter which object is what leaf. For three objects there
is only one tree, shown in Figure 6.3. For four objects there are three trees, as shown
in Figure 6.4. It can be shown (see Exercise 2) that in general there are]~I?=3(2* — 5)
trees for n objects. This number grows faster than n!, so this rules out any algorithm that
builds all trees trying to find one that is a perfect phylogeny. We would like an algorithm
for this problem that runs in time proportional to a polynomial in n, m, and r.

FIGURE 6.3
The unique tree for three objects.

FIGURE 6.4
The three trees for four objects.

It turns out that whether the perfect phylogeny problem is computationally hard de-
pends on the nature of the characters. If they are unordered, we have bad news: The prob-
lem is NP-complete. But if they are ordered, then it can be efficiently solved. Having
these two facts as background, we now proceed to study in more detail some special
cases of the problem that represent a sample of algorithmic results for character state
matrices.

182 CHAPTER 6 PHYLOGENETIC TREES

BINARY CHARACTER STATES

First we examine the special case of the perfect phylogeny problem in which characters
are binary, such as those from Tables 6.1 and 6.2. Notice that for this case the distinction
between ordered and unordered characters depends on knowing whether the characters
are directed. This means that if we know that state 0 is ancestral and 1 is derived (or
vice versa) then the character is ordered; otherwise it is unordered. As we will see, with
binary characters (ordered or unordered) the perfect phylogeny problem can be solved
efficiently; we present in this section an algorithm that runs in time O(nm).

We present the algorithm as working in two phases. (In an actual implementation
these two phases can be combined, but for presentation purposes this separation is bet-
ter.) In the first phase the algorithm decides whether the input matrix M admits a perfect
phylogeny. If it does, then the second phase of the algorithm will construct one possible
phylogeny.

In the algorithm to be presented we assume that state 0 is ancestral and state 1 is
derived. We will see later on how to drop this restriction. Notice that because we are
dealing with directed binary characters, a rooted tree T that is a perfect phylogeny for
input matrix M will have the following property, already mentioned in the previous sec-
tion: To every character in input matrix M there corresponds an edge in T, and this edge
marks the transition from state 0 to state 1 for that character. Such edges will be labeled
by their respective characters. The root always has character state vector (0, 0, . . . , 0)..
This means that when we traverse the path linking an object i in a leaf to the root the
edge labels found along the way correspond to characters for which object / has state 1.
(See Figure 6.2.)

In the special case under study, there is a very simple necessary and sufficient con-
dition that enables us to tell whether a given matrix M admits a perfect phylogeny. To
state this condition, we first need a few definitions.

Each column j of M is a character. Thus we use without distinction the terms column
and character. Each row i of M is an object, and we also use without distinction the terms
row and object.

DEFINITION 6.1 For each column j of M, let Oj be the set of objects whose state is
1 for j . Let Oj be the set of objects whose state is 0 for j .

The simple condition is the following:

LEMMA 6.1 A binary matrix M admits a perfect phylogeny if and only if for each pair
of characters i and j the sets Ot and Oj are disjoint or one of them contains the other.

Proof. Let us assume that M admits a perfect phylogeny. Because M is binary, we
know that to each character / we can uniquely associate an edge (w, v) in the tree. More-
over, the subtree rooted at v (assuming it is the deeper of the two nodes) contains all
nodes having state 1 for character /; and any node having state 0 for character i does not
belong to this subtree. Suppose now that there are three objects A, £, and C such that

6.2 BINARY CHARACTER STATES 183

A, B e Ot, C & Oi and B, C e Oj, A $ Oj. This means that, according to character z,
A and B belong to the same subtree but C does not. However, according to character j ,
B and C do belong to the same subtree, which is a contradiction.

Let us now suppose that all pairs of columns of M satisfy the condition stated in the
lemma. We will show inductively how to build a rooted perfect phylogeny. Assume we
have only one character, say 1. This character partitions the objects into two sets, A = O\
and B = O\. Create a root and then node a for set A and node b for set B. Link node
a to the root with an edge labeled by 1. Link node b to the root by an unlabeled edge.
As a final step, we split each child of the root into as many leaves as there are objects
in them. The tree thus created is clearly a perfect phylogeny; this is our base case. Now
assume we have built a tree T for k characters, but without having executed the final step
(that is, there are no leaves; nodes still contain sets of objects). We now want to process
character k+l. This character also induces a partition in the object set, and using it we
should be able to get tree T from T. We will be able to do this as long as the partition
induced by character k + l separates objects belonging to the same node. If this were
not the case, we would be forced to label two edges with label k + 1 and the resulting
phylogeny would not be perfect. But such a situation cannot happen. Suppose it did; that
is, suppose character k + l separates objects belonging to the nodes a and b. Because
these are different nodes, there must be a character i that led them to be in different nodes
in the first place. It is the case that 0, n Ok+i ̂ 0, because either the objects in a or those
in b belong to 0/. But it is also the case that 0; does not contain nor is contained in Ok+\,
because either the objects in a or those in b are not in Oi. But this would contradict our
hypothesis, and the lemma is proved. •

From this lemma it is easy to see why the character state matrix shown in Table 6.1
does not admit a perfect phylogeny: Columns c\ and cs do not satisfy the lemma's con-
dition. We say that those characters are not compatible. The notion of compatibility be-
tween characters can here be given a precise meaning and is just another way to state
Lemma 6.1: A collection of binary directed characters is compatible if and only if they
are pairwise compatible, where pairwise compatibility is given by the set relationships
in the lemma's statement.

We mentioned that we would present the algorithm for the binary case in two phases:
In the first we decide whether the matrix admits a perfect phylogeny, and in the second
we construct one, if possible. Lemma 6.1 already gives us an algorithm for the decision
phase: Simply consider each column in turn and check whether it is compatible with all
others. Each such check takes 0(n) and we have to make 0(m2) checks, resulting in
an algorithm with running time O{nm2). From the lemma's proof it is also possible to
develop an algorithm for the construction phase, with the same time bounds. Our aim,
however, is to present an algorithm running in time O(nm).

How can we attain this goal? For the decison phase, the algorithm just sketched
scans all remaining columns each time a new column is checked. To get the efficiency
we want, we should scan all columns just once, perhaps imposing some order on the
columns. Which order should this be? One idea is to process first characters for which a
maximum number of objects has state 1. Intuitively, once we have processed this char-
acter we can "forget" about it, as all other characters are either subsets of it or are disjoint
from it. And that is exactly what we do. The algorithm is shown in Figure 6.5.

Let us now show that the algorithm is correct. First note that if Oj c 0*, then k

184 CHAPTER 6 PHYLOGENETIC TREES

Algorithm Perfect Binary Phytogeny Decision
input: binary matrix M
output: TRUE if M admits a perfect phylogeny, FALSE otherwise
/ Assumes all columns are distinct
Sort columns based on the number of Is in each column using radix-sort

(columns with more Is come first)
/ Initialize auxiliary matrix L
for each L,y do

Lij +- 0
/ Compute L
for i <— 1 to n do

k < 1
for j <- 1 to m do

if My = lthen
Lu <- k
II k is the rightmost column to the left of j such that
jj Mik = 1. If no such column exists, k = — 1

/ check columns ofL
for each column j of L do

if L^ ^ Lij for some i, I and both L(j and Ltj are nonzero then
return FALSE

return TRUE

FIGURE 6.5

An algorithm that decides whether a collection of directed
binary character states admits a perfect phylogeny.

is to the left of j in M, that is, k < j . Suppose that M has a perfect phylogeny but the
algorithm tells us otherwise. That is, M has column j such that Ltj = k and L/y = k' <
k. This means (looking now at column k) that element M/* is zero but element Mik is 1.
Thus Ok fl Oj T̂ 0. On the other hand neither set is a subset of the other: Oj is not a
subset of Ok because M^ is zero and My is one; and Ok is not a subset of Oj because
k is to the left of j . Therefore columns k and j do not satisfy Lemma 6.1 and this is a
contradiction.

We now argue that if the algorithm tells us that there is a perfect phylogeny, then
this is true. We will show that for every pair of columns of M Lemma 6.1 is satisfied.
Consider an arbitrary column j and the column k to the left of j such that Oj c Ok and k
is maximum (that is, k is the common nonzero value of column j of L). By this definition,
any column p between k and j has the property that OpnOj = 0. If k > 0 we can apply
the same argument to show that the intersection between Oj and all columns q between
k and kf (where k! is the common nonzero value of column k in L) is also empty. We
thus showed that for an arbitrary column j the corresponding Oj is contained in some
sets to its left and has an empty intersection with the others, which was exactly what we
set out to prove.

The running time of the algorithm is O(nm) because the radix-sorting of M takes
time O(nm) (O(n) per column), and the other steps can easily be done in the same time
bound.

6.2 BINARY CHARACTER STATES 185

The Construction Phase

The idea in the construction is to process objects in turn, building the tree as we go. We
start with a tree with a single node: the root. For each object, we look at the characters
for which its state is 1. Whenever we see that there is no edge so far labeled with such
a character, we create a new node and link it to the current node by an edge labeled by
this character. The new node becomes the current node. If there already exists an edge
labeled with this character, we simply move on to the next character, letting the current
node be the endpoint of this edge. The algorithm is described formally in Figure 6.6.
Notice that the tree obtained is rooted, but we can unroot it simply by removing the root
and connecting its children. Let us now show that the tree constructed in this algorithm
is a perfect phylogeny for M, and that the running time is O(nm).

Algorithm Perfect Binary Phylogeny Construction
input: binary matrix M with columns sorted in nonincreasing order by number of Is
output: perfect phylogeny for M
Create root
for each object i do

curNode <— root
for j' +- 1 to m do

if Mij = 1 then
if there already exists edge (curNode, u) labeled j then

curNode <— u
else

Create node u
Create edge {curNode, u) labeled j
curNode «— u

Place / in curNode
for each node u except root do

Create as many leaves linked to u as there are objects in u

FIGURE 6.6

An algorithm that constructs a perfect phylogeny from
directed binary characters.

We first recall that each character in M must correspond to one and only one edge of
the tree, and that is precisely what the algorithm does. In addition, in a path from the root
to a leaf (object) / we should traverse the edges corresponding to the characters for which
/ has state 1, and no others, and again that is what happens. The running time is O(nm)
given that we look at each element from M exactly once, and we spend constant time
per element. Applying the algorithm to the matrix in Table 6.2 we obtain the phylogeny
shown in Figure 6.2.

We have mentioned that the case where the characters are unordered can also be
solved efficiently. In fact, the same algorithm can be used, provided a simple transfor-
mation is performed. When characters are unordered, think of the states as denoted by
the letters a and b. The transformation is the following: For each character, determine

186 CHAPTER 6 PHYLOGENETIC TREES

the state that occurs more often. The majority state becomes 0 and the other 1. If both
occur with equal frequency, then we can choose either one to be 0 and the other to be
1. Now we can use the algorithm above. The reason why this works derives from the
following fact:

Fact: There exists a perfect phylogeny for a collection of objects on two binary un-
ordered characters i and j (that is, these two characters are compatible) if and only if
both Ot, Oj and 0;, Oj obey the conditions stated in Lemma 6.1.

We leave it as an exercise to show that the preceding transformation preserves the
compatibility between unordered characters as required by the fact above.

We now close this section with two observations. The first is that a simple argument
shows that there cannot be a faster algorithm than the one described. It should be clear
that any algorithm that solves this problem has to look at least once at every element in
the matrix, and this gives us a lower bound of Q (nrn). This means that the algorithm pre-
sented above is optimal. However, if the input is given as a list of characters for each ob-
ject, there are algorithms that solve the problem and run in time proportional to the total
lengths of such lists, which is O (n -f ra). The second observation is that polynomial-time
algorithms are known for unordered characters whenever the number of states is fixed.
For details on both observations, see the bibliographic notes at the end of this chapter.

TWO CHARACTERS

Here we study another special case of the perfect phylogeny problem. We allow the more
general situations in which characters can be unordered and have an arbitrary number of
states. This time, however, we place a restriction on the maximum number of characters;
in particular we study the case when only two characters are allowed.

As was the case for binary states, we will see that having only two characters makes
the problem computationally easy. We present in what follows a very simple algorithm
for this problem, but one that makes use of nontrivial results from graph theory. We begin
by stating some definitions.

DEFINITION 6.2 A triangulated graph is an undirected graph in which any cycle
with four or more vertices has a chord, that is, an edge joining two nonconsecutive ver-
tices of the cycle.

Recall that a subtree is a connected subgraph of a tree, and that the set of tree nodes
that have the same state for a given character make up a subtree in a perfect phylogeny.
The connection between triangulated graphs and the perfect phylogeny problem is given
by the following theorem:

THEOREM 6.1 To every collection of subtrees {7\, T 2 , . . . , 7}} of a tree T there cor-
responds a triangulated graph and vice versa.

6.3 TWO CHARACTERS 187

We will not present the proof of this theorem, but we will describe the graph that
should correspond to the given collection of subtrees. This graph turns out to be a con-
venient tool to help us determine whether a set of characters is compatible (i.e., if there
is a perfect phylogeny for the corresponding objects). As will become clear shortly, we
will be able to say that a set of characters is compatible if and only if the graph built ac-
cording to the theorem can be triangulated. To understand this graph we need some more
definitions.

DEFINITION 6.3 An intersection graph for a collection C of sets is the graph G that
we get by mapping each set in C to a vertex of G, and linking two vertices in G by an
edge if the corresponding sets have a nonempty intersection.

The graph specified in the proof of Theorem 6.1 is an intersection graph. To describe
it, we first present another graph, which we call state intersection graph, or SIG, and
which represents an intermediate step. Given a character state matrix, its SIG is obtained
in the following way. For each state of each character we create a vertex in the SIG. Note
that to each state, and thus vertex, there corresponds a set, the set of objects that have that
state for that character. We then create an edge between vertices u and v of the SIG if
and only if the corresponding sets have a nonempty intersection. This is why we call
such a graph a state intersection graph. An example can be seen in Figure 6.7, which
was obtained from the matrix in Table 6.3.

FIGURE 6.7
The SIG corresponding to the matrix in Table 6.3. The
subscript of each vertex label is the color of the vertex.

Note that the graph mentioned in Theorem 6.1 is built based on a set of subtrees. The
graph we described in the previous paragraph is built based on a set of objects, which
are leaves in the phylogeny. To arrive at the graph mentioned in the theorem, we must
enlarge the SIG (by adding new edges) to account for the interior nodes. It is in this

188 CHAPTER 6 PHYLOGENETIC TREES

TABLE 6.3
A matrix of objects x characters.

Object
A
B
C
D

Character
C\ C2 C3

Xi X2 Z3

xi y2 x3

yi yi y3

y\ zi Z3

enlarged graph that we will check for the triangulated property. In fact, we will try to
add edges to the SIG with the hope of making it triangulated. However we cannot add
edges at will; we must take into account the relationships between objects according to
each character. To explain this we need one more definition.

DEFINITION 6.4 Given a graph G = (V, E) with a coloring c on V, we say that G
can be c-triangulated if there exists a triangulated graph H = (V, £")> s u c n that E c E'
and c is a valid coloring for H. In other words, any edge present in E' but not in E must
link two vertices with different colors.

Now observe that the set of characters of a character state matrix defines a coloring
for the SIG, as an object cannot have two different states for the same character. We thus
obtain a new formulation for Theorem 6.1 that makes clear the connection between the
SIG and the phylogeny.

THEOREM 6.2 A character state matrix M, with a character set defining a coloring c,
admits a perfect phylogeny if and only if its corresponding SIG can be c-triangulated.

In the example of Figure 6.7 the color of each vertex is given by the character that
is part of the label of the vertex. To triangulate this graph, all we need do is create an
edge between vertices yi and zs', this is possible because these two vertices have differ-
ent colors [but we would not be able to create edge (x\, y\) because they have the same
color]. This means that the matrix in Table 6.3 admits a perfect phylogeny.

Note the generality of Theorem 6.2: nothing is said about fixed number of charac-
ters. Recalling the fact that the perfect phylogeny problem for unordered characters is in
general NP-complete, you should not be surprised to learn that c-triangulation of graphs
is also an NP-complete problem. However, if M has only two characters, the SIG will
have only two colors, which gives us the following result.

THEOREM 6.3 A character state matrix M with only two characters admits a perfect
phylogeny if and only if its corresponding SIG is acyclic.

Proof. First note that if the SIG is acyclic it is already c-triangulated, and thus, by The-
orem 6.2, M admits a phylogeny. To show the only-if part, it suffices to use a classical
result from graph theory, which states that a graph can be colored with two colors if and

6.3 TWO CHARACTERS 189

only if all its cycles are of even length. From Theorem 6.2 we know that the SIG can
be 2-triangulated, which means that it can be colored with two colors. It follows that the
SIG cannot have odd-length cycles. A triangle is a cycle of odd length. Hence the only
way that the SIG can satisfy the 2-triangulation property is if it is acyclic. •

With the above theorem we now have a simple and efficient algorithm to check
whether a two-character state matrix admits a phylogeny, since a test for acyclicity takes
0(|V| + |Zs|)ona graph with | V | vertices and | E | edges. In our case the number of ver-
tices is O (n) (since there are only two characters, there can be at most 2n states) and the
number of edges is also O(n). Hence the algorithm runs in linear time. The reconstruc-
tion of the perfect phylogeny T, if one exists, proceeds as follows. Create an auxiliary
graph G = (V, E) such that there exists a vertex in V for each edge in the SIG. In this
way, to a vertex v e V corresponding to edge (x, y) in the SIG there also corresponds a
set Ly of objects: the intersection between the x set and the y set (recall that a vertex in
the SIG corresponds to a set of objects). Create an edge between two vertices w, v e V
if Lu fl Lv ^ 0. The desired tree is any spanning tree of G (which means that the tree
may not be unique), with the objects in Lv added as leaves to each node v. The resulting
tree is unrooted and can be obtained in time O(n). This construction applies only to the
two-character case. If there are more characters, the nodes in the tree should correspond
to maximal complete subgraphs (that is, maximal cliques) in the triangulated SIG. This
fact comes from the proof of Theorem 6.1, which we omitted, and which also explains
how to connect the nodes thus obtained to build the tree.

As an example of the two-character tree construction see Figure 6.8, which is the tree
obtained from the matrix in Table 6.4. We can verify that this tree is a perfect phylogeny
by checking that all objects with the same state for a given character form a subtree. For
example, objects A, C, F, and H all have state x\ for character c\; and indeed they form
a subtree. By contrast, E and G do not form a subtree. See also Exercise 9.

FIGURE 6.8
The reconstructed tree from data in Table 6.4.

The results presented provide the foundation for a much more general result: An al-
gorithm that runs in polynomial time for any fixed value of m (in other words, m appears
as an exponent in the running time function). A description of this result is beyond our
scope, but a reference is given in the bibliographic notes.

190 CHAPTER 6 PHYLOGENETIC TREES

TABLE 6.4
An example of a two-character state matrix.

Object
A
B
C
D
E
F
G
H

Character
C\ Ci

X\ Xi

y\ yi

zi yi

PARSIMONY AND COMPATIBILITY IN PHYLOGENIES

We have seen in the previous sections that even though the perfect phylogeny problem
is NP-complete for unordered characters, the fixed-parameter special cases are solvable
in polynomial time. Fixed parameter algorithms might seem good enough in practice,
but the problem is that real character state matrices are unlikely to admit perfect phylo-
genies. The reason is twofold: Experimental data in biology always carries errors, and
the assumptions made by the algorithms mentioned (no reversals and no convergence)
sometimes are violated. For these reasons other approaches for reconstructing phyloge-
nies are necessary.

Ignoring errors but working around the assumptions, two approaches suggest them-
selves. The first is to allow reversal and convergence events, but to try to minimize their
occurrence. This is known as the parsimony criterion. The second is to insist in avoid-
ing reversals and convergence, but to exclude characters that cause such "problems."
It is obviously a good idea to try to exclude as few characters as possible. This means
that in this approach we try to find a maximum set of characters such that we can find
a perfect phylogeny for them (or, in other words, a maximum set of characters that are
compatible). This is known as the compatibility criterion.

Both criteria result in optimization problems. Such problems are in general harder
than decision problems, such as the perfect phylogeny problem considered in Section 6.1.
Because we know that deciding perfect phylogeny for unordered characters is an NP-
complete problem, the problems just sketched should be at least just as hard; and so they
are. But we might have better luck in the case of ordered characters, since, as noted in
Section 6.1, for them the perfect phylogeny problem is polynomially solvable. Unfortu-
nately we have no such luck, and both criteria outlined above result in NP-hard problems
for ordered characters as well. Below we discuss these problems in more detail.

When using the parsimony criterion, we try to minimize reversal and/or conver-
gence events, as already mentioned. In general this means that we want to minimize the
number of state transitions (that is, edges) in the reconstructed phylogeny. If we allow

6.4 PARSIMONY AND COMPATIBILITY IN PHYLOGENIES 191

reversals but forbid convergence, we get what is known as the Dolloparsimony criterion.
If, on the other hand, we forbid reversals but minimize convergence events we get the
Camin-Sokalparsimony criterion. Both criteria result in NP-hard problems. The proofs
are based on the Steiner tree problem, a classic optimization problem in graphs.

The concept of parsimony also appears in the literature in connection with a different
problem. Given a set of objects and the tree through which they are related, assign states
to the interior nodes such that a minimum number of state transitions occur from node
to node. This is a problem for which efficient algorithms exist depending on the exact
characterization of the problem. We will not cover such algorithms; we give references
at the end of this chapter.

We now turn our attention to the compatibility criterion and present the proof that the
associated decision problem is NP-complete. The proof uses the clique problem, which
is well-known to be NP-complete. In fact, we show that clique and compatibility are
equivalent. This means that enumerative algorithms for clique can be used for the com-
patibility problem, and there are phylogeny software packages that take advantage of
this. We are of course very limited in the size of problems that we can solve by this ap-
proach, but it seems to be useful nevertheless.

The version of the compatibility problem to be shown NP-complete is the following:

PROBLEM: COMPATIBILITY

INSTANCE: a character state matrix M with n objects and m directed binary
characters, and a positive integer B <m.

QUESTION: IS there a subset L of the characters that satisfies Lemma 6.1 with
\L\ > Bl

Notice that we are looking at a very restricted form of the problem, as characters are
binary and directed. With such restrictions, the corresponding notion of compatibility is
precisely that given by Lemma 6.1. As mentioned, the NP-completeness proof uses the
clique problem, which can be formally characterized as follows:

PROBLEM: CLIQUE

INSTANCE: Graph G = (V, £) , and positive integer K <\V\.
QUESTION: Does G contain a subset V c V with | V'\ > K such that every

pair of vertices in Vf is linked by an edge in El

As we have said we want to show that COMPATIBILITY is NP-complete and that it
is equivalent to CLIQUE. As described in Section 2.3, this task requires that we show
that both problems are in class NP, and that each can be transformed in polynomial time
to the other. We are already assuming that CLIQUE is an NP-complete problem, so it is
immediate that it belongs to NP. The other parts are given in the following theorems.

THEOREM 6.4 COMPATIBILITY is NP-complete.

Proof. Given a solution to COMPATIBILITY, we can easily check that it in fact solves
the problem by using the polynomial-time algorithm described in Section 6.2. Thus we
see that COMPATIBILITY is in NP. We now show how to transform CLIQUE to COMPAT-
IBILITY in polynomial time.

Given an instance G = (V, E) of CLIQUE, we construct an instance M of COMPAT-
IBILITY as follows. We let m = | V|; that is, for every vertex V(in V we create character

192 CHAPTER 6 PHYLOGENETIC TREES

/ in M. The number of objects (rows) of M is given by n = 3m(m — l)/2; that is, we
create three objects for every possible pair of characters. We now have to fill in M. For
every pair (uz, Vj) such that it is not an edge in E we create three objects r, s, and t in
M with the following values for the corresponding elements of M: Mri = 0, Msi = 1,
and Mti = 1; and Mr;- = 1, MSj = 1, and Mtj = 0. It is easy to see that with such
values, characters / and j will not be compatible (see Lemma 6.1). The remaining ele-
ments of M should be zero. The transformation just given can clearly be accomplished
in polynomial time.

We now have to show that G contains a clique V, with | V'\ > K if and only if M
contains a compatible character subset L, with \L\ > K. First assume that such a clique
exists. Then to every edge of this clique there corresponds a pair of characters in M, such
that whenever one of them has state 1 for an object, the other has state 0 (or both have
0). All these pairs therefore satisfy Lemma 6.1 and hence are compatible. Now assume
that L exists, \L\ > K. Then to every pair of characters of L there corresponds a pair
of vertices in V linked by an edge. All these pairs taken together form a clique of size
greater than or equal to K. •

THEOREM 6.5 COMPATIBILITY can be transformed to CLIQUE in polynomial time.

Proof. Given an instance M of COMPATIBILITY, obtain an instance G — (V, E) of
CLIQUE as follows. For each character of M create a vertex in V. Join two vertices u,
and Vj if and only if characters / and j are compatible. The checking of compatibility
between pairs of characters can be easily done in polynomial time. Lemma 6.1 ensures
that G contains a clique of size B or more if and only if M contains a subset of compatible
characters whose size is also greater than or equal to B. •

ALGORITHMS FOR DISTANCE MATRICES

In this section we consider the problem of reconstructing trees based on comparative
numerical data between n objects. The basic input here is an n x n matrix M, whose
element Mjj is a nonnegative real number, which we call the distance between objects
i and j . Such distances come from comparisons between the objects. For example, if
the objects are DNA sequences, we could use the notion of distance between sequences
described in Section 3.6.1.

The first problem we will consider can be informally stated as follows. Given dis-
tance matrix M, we would like to build an edge-weighted tree where each leaf corre-
sponds to only one object of M and such that distances measured on the tree between
leaves i and j correspond exactly to the value of Mzy-. When such a tree can be con-
structed, we say that the distances in M are additive.

We will see that in practice distance matrices are rarely additive and that trying to
minimize the deviation from additivity leads to NP-hard problems. This prompts our sec-
ond problem, in which the tree to be constructed uses as input two matrices instead of

6.5 ALGORITHMS FOR DISTANCE MATRICES 193

one. These matrices give us lower and upper bounds on the pairwise distances between
objects, and the problem is to find a tree that fits "between" these bounds.

6.5.1 RECONSTRUCTING ADDITIVE TREES

When discussing distances we need the concept of a metric space. We have already seen
this concept in Section 3.6.1, where it was called distance. We repeat the definition here
for convenience. A metric space is a set of objects O such that to every pair i, j e O we
associate a nonnegative real number djj with the following properties:

dij > 0 for/ / ; , (6.1)

dij =0 for/ =j, (6.2)

d^ = djt for all / and j , (6.3)

dij < dtk 4- dkj for all /, 7, and k (the triangle inequality). (6.4)

We will require our input matrix M to be a metric space. This means in particular
that it will be a symmetric matrix (from Property 6.3). We now must define exactly what
we mean by constructing a tree based on M.

Because M is an n x n matrix, our tree must have n leaves. The leaves are nodes with
degree one; all other nodes must have degree three; such a tree is therefore unrooted. All
edges in the tree have nonnegative weight. (This requirement coupled with the degree
requirement means that rather than have an interior node with degree four, we will split
it into two nodes of degree three attached by an edge of length zero.) The weight of a path
between nodes u and v on the tree is the sum of the weights of the edges that form the
path. The final requirement is that the weight of the path between any two leaves / and
7 must be equal to M,-y. If such a tree T can be found, we say that M and T are additive.

Given this framework, the basic questions we have are: Given matrix M which is a
metric space, is it also additive? And if it is, how do we build the corresponding additive
tree? The answer to the first of these questions is given by the following lemma.

LEMMA 6.2 A metric space O is additive if and only if given any four objects of O
we can label them /, 7, Jc, and / such that

dij + dki — dik + dji > dn + djk.

We will not present the proof of this elegant result (which is known as the four point
condition); please see the bibliographic notes. Rather, we will concentrate on the answer
to the second question: an algorithm to build an additive tree. This is a polynomial-time
algorithm, and the best way to understand it (or to design it) is through induction.

Let us assume that the condition of Lemma 6.2 has already been verified for matrix
M. Suppose now that the number n of objects is 2 (call them x and v). Then it is easy to
build a tree: It is simply an edge with weight Mxy joining nodes x and y. Now suppose we
add a third object, z. How should we include it in the tree? It is clear that we should obtain
a tree that looks like the one in Figure 6.9. The problem is to discover where exactly
between nodes x and y the central node (call it c) should be located; or in other words,

194 CHAPTER 6 PHYLOGENETIC TREES

FIGURE 6.9

The additive tree for three objects.

what the lengths of edges (z,c),(x,c), and (y, c) should be. Denoting the length of edge
0\ j) by dtj, we can formulate the following equations:

Mxz - dxc + dzc (6.5)

Myz = dyc -f dzc (6.6)

On the other hand, we know that

dyc = Mxy — dxc. (6.7)

If we now subtract Equation (6.6) from (6.5), and replace dyc using (6.7), we get

Mxy + Mxz - Myz

dxc = ^ ' (^

Notice that thanks to the triangle inequality (Equation 6.4), dxc > 0. We can proceed
similarly for the other two unknowns and get

Mxy + Myz-Mxz lf .
dyc = (6.9)

MX7 H- MV7 — Mxy

We now have an additive tree corresponding to the three objects. Notice that this
tree is unique, just as in the two-object case. Now let us add a fourth object, w. (The
reason we are looking at so many base cases of the induction is that we will use them
later to show that the additive tree is unique for any number of objects.) Object w will
create another interior node that we will call c2. The problem now is to decide whether
c2 should split edge (x,c),(y,c), or (z, c). We choose any two of the nodes already on
the tree, say x and y, and apply Equations (6.8), (6.9), and (6.10) with z replaced by w.
If we find that node C2 should either split (JC , c) or (v, c), we are done. But if we find that
c-i coincides with node c, this means that edge (z, c) is the one that should be split, and
we have to apply the same equations again, this time using z and replacing x (or y) by
w. What if there are two additive trees for four objects? In this case, we have the choice
of placing c2 in two different edges, for example (x, c) and (z, c). But this in turn means
that there are two different trees for the three objects x, z, and w, which contradicts our
earlier result that for any three objects there is always only one tree. So we conclude that
for four objects there is again only one tree.

We now assume we have built a tree for k objects. The process of adding object k +1
to the tree is similar to what we did for the fourth object. We select any two objects x

6.5 ALGORITHMS FOR DISTANCE MATRICES 195

and y that are already on the tree and compute the position of the new interior node. If
this new node does not coincide with any existing node, we are done. That is, we know
exactly the edge that must be split in order to attach object k-\-1 to the tree. Otherwise, the
split position falls on an existing node, say u. Because u is an interior node, we know that
there is a subtree hanging from it (it could be a subtree with just one leaf). We choose
now any object belonging to this subtree, say r, and apply Equations (6.8), (6.9), and
(6.10) on objects x (or y), r, and object k + 1. We repeat this process until the right split
position is found.

This algorithm clearly builds an additive tree if one exists. For every object that we
add to the tree, we may have to check all other already placed objects, spending constant
time per check. This means that in the worst case the algorithm runs in time O(n2).

Example 6.1 Let us build an additive tree for the objects shown in Table 6.5. We begin
by creating edge (A, B) with 63 length units. We now add object C. By applying Equa-
tions (6.8), (6.9), and (6.10) we find that a new node x\ should be created at a distance of
39 units from A and 24 units from B, We then add new edge (x\, C), 55 units long. Now
let us consider object E. If we apply the equations using A and C as objects already on
the tree we find that E should go in the same subtree as B. Therefore we have to apply
the equations to E, B, and (say) A. Doing this we find the position of new node X2, 18
units from x\ and 6 units from B. Going on in this fashion, we obtain the final tree shown
in Figure 6.10.

TABLE 6.5
Input matrix M for Example 6.1.

A
B
C
D
E
F

B
63

C
94
79

D
111
96
47

E
67
16
83
100

F
23
58
89
106
62

G
107
92
43
20
96
102

We now close the uniqueness argument, showing that for n > 4 both the topol-
ogy and the edge lengths of the additive tree are unique. We first look at the topology.
Any three leaves determine one unique interior node, and this node in turn determines a
unique partition {Pi, P2, P3} of all leaves. If there are two distinct topologies, then there
must be a set of three leaves, say x, y, and z, that determine partition {Pi, P2, P3} in the
first tree and partition {Q\, Q2, Q3} in the second tree, such that these two partitions are
different. Then it must be the case that one of the leaves, say x, belongs to Pi and to Q2,
but Pi 7̂ Q2- This in turn means that there must be some other object, say w, that be-
longs to Pi but does not belong to Q2. But this is equivalent to saying that there are two
different trees for the four objects x,y,z, and u;, which we know cannot be true.

196 CHAPTER 6 PHYLOGENETIC TREES

14
25 40

10

18

FIGURE 6.10
Additive tree for Example 6.1 with edge lengths indicated.

Now we prove that edge lengths are the same. Any edges leading to a leaf x must
have unique length, because the tree determined by x and any two other objects in the
tree is unique. Interior edges are also unique, since they partition the leaves into sets P\,
Pi, P3, and P4. Taking a leaf from every set we obtain four objects, and again we know
that with them we can only build one tree; hence the edge length of the interior edge must
be unique.

We have presented a simple and nice algorithm for reconstructing additive trees.
However, this result has limited use in practice, because real-life distance matrices are
rarely additive. This situation is not necessarily due to errors in the distance measure-
ments. It is possible to construct examples of biological sequences related by a tree where
the ancestor sequences undergo multiple changes in the same site (for example, a par-
ticular DNA base might change from A to C and then to G). In other words, the record
of earlier changes is destroyed by later changes. In addition, convergent evolution can
also happen. Allowing these possibilities may result in pairwise distances that are not
additive. Such a scenario is particularly probable in the case of protein sequences.

These facts lead us to generalize the additive tree problem. One possibility is the
following: Obtain a tree that is as close as possible to an additive tree. Unfortunately
it has been shown that under several notions of "closeness" the resulting problems are
NP-hard. But there is another way of approaching the problem that is tractable; that is
the topic of the next section.

• 6.5.2 RECONSTRUCTING ULTRAMETRIC TREES

Pairwise distance measures sometimes carry an uncertainty. Suppose this uncertainty can
be quantified so that each measurement is expressed in terms of an interval. This inter-
val defines a lower bound and an upper bound for the true distance. From such data we

6.5 ALGORITHMS FOR DISTANCE MATRICES 197

can obtain two distance matrices, Ml and Mh, containing, respectively, pairwise distance
lower bounds and pairwise distance upper bounds. The problem we have now is to re-
construct an evolutionary tree such that the distances measured on the tree fit "between"
these two input matrices. In other words, let dy be the distance measured on the tree
between objects i and j . Then the following inequality should hold:

M\- <du <Mfr (6.11)

We call Equation (6.11) the sandwich constraints. We will show in this section that if
we impose one additional requirement on the desired tree this problem can be solved
efficiently. This requirement is that the tree be ultrametric. A tree is ultrametric when
it is additive and can be rooted in such a way that the lengths of all leaf-root paths are
equal. The biological meaning of this requirement is that the objects being studied have
evolved at equal rate from a common ancestor.

Because the ultrametric property is a special case of the additive property, real-life
matrices are also rarely ultrametric. On the other hand, by requiring the tree simply to be
"between" matrices Ml and Mh the problem becomes more realistic; and as we will see
the algorithm that solves it is quite interesting. It is also the most involved algorithm we
present in this chapter. For this reason the presentation will follow this structure: First we
present a few definitions and concepts; then we present the algorithm itself, but in a high-
level view; next we detail the algorithm, explaining how every part is to be implemented,
and giving a running time analysis; finally we prove that the algorithm works.

The first concept we need is the interpretation of a distance matrix as an undirected
edge-weighted graph. Given annxn distance matrix M, we can interpret it as a complete
graph on n vertices, where the weight of edge (/, j) is given by Af/y. This interpretation
is used extensively below. We assume that A//y is defined for every pair i, j , so that the
corresponding graph is always connected. We let Ma = 0 for every /. With this interpre-
tation we will talk about graphs Gl and Gh, which correspond, respectively, to matrices
Ml and Mh defined above. We refer to edge weights by the function W, as in W{e) or
W(a, b), where e and (a, b) are edges.

Another concept we will need is that of a minimum spanning tree (MST). This con-
cept is described in Section 2.3. The reader should be careful not to confuse the tree we
want to reconstruct (a phylogenetic ultrametric tree) with the minimum spanning tree,
which is just a tool to help solve the problem. We distinguish between the two by al-
ways referring to the ultrametric tree by U and to the MST by T.

The MST T is defined over graph Gh. We compute T because its edges will direct
the way tree U is built. In particular, given any two nodes a and b in T, the largest-weight
edge in the unique path from a to b in T is called the link of a and b and denoted by
(#, £)max- The link is used in the following crucial function definition on edges of T:

DEFINITION 6.5 The cut-weight of an edge e of the minimum spanning tree of Gh

is given by

CW{e) = max{Ml
ab\e = (a, b)max}.

Let us understand the meaning of this definition. Given matrix Mh, we can compute
the minimum spanning tree T of the corresponding graph Gh. Each edge e = (a,b) e T
is the link of at least one pair of vertices of T (namely, a and b)\ it may be the link of

198 CHAPTER 6 PHYLOGENETIC TREES

more pairs. Now take all pairs of vertices for which edge e is link; and choose the largest
entry of the other matrix (i.e., Ml) among these pairs. This is the cut-weight of e.

An intuition about the role of cut-weights helps in understanding the algorithm. Con-
sider leaf nodes a and b in U, such that their distance dab is the largest interleaf distance
in U. It is clear that daj, should be greater than the largest entry in Ml, which we denote
by maxz. But on the other hand, dat need not be larger than maxz. Therefore we should
have dab — maxz, and a should belong to one subtree of the root and b to the other. We
now use T to determine a partition of the remaining nodes between the two subtrees.
The properties of T and the definition of cut-weights ensure that Ml

xy < dxy < Mxy for
all objects x and y in different subtrees, and that the resulting tree is ultrametric. All this
will be shown in the proofs of Lemma 6.4 and Theorem 6.6. We are now ready to give
a first sketch of the algorithm, as follows:

1. Compute a MST T of Gh\

2. For each edge e eT compute CW(e);

3. Build ultrametric tree U.

The first step is simple, since we can use well-known algorithms and spend O(n2)
time. The other two steps are more involved, and we examine each in detail.

Cut-Weight Computation

The basic information we need in order to compute cut-weights is (a, b)max for every pair
of vertices a and b. We find these edges by building yet another tree, which we denote
by R. This is a rooted binary tree, with the objects in the leaves. In every interior node
of R we store an edge of T. Our aim is the following: for every pair of objects a and b,
the interior node of R that is the lowest common ancestor of a and b contains (a, b)max.
For example, at the root of R we store the largest-weight edge of T. The reason is that
for every pair of objects a and b, such that they are on opposite sides of T with respect
to the largest-weight edge, precisely this edge is {a, b)max. We could use this observa-
tion to design an algorithm that works in a top-down fashion: First we create the root of
R and store in it the largest-weight edge e\ then we do the same thing recursively first
considering nodes on one side of e (whose root will be the left child of the overall root),
and then considering the nodes on the other side of e (whose root will be the right child
of the overall root). However, it is more efficient to build R from the bottom up, as is
done in the algorithm shown in Figure 6.11. This algorithms uses a disjoint-set forest
data structure (see Section 2.3), represented by routines MakeSet, FindSet, and Union.
The running time analysis is as follows. Sorting the edges takes O{n log n) time. Build-
ing R takes O(na(n, n)) time (because of the disjoint-set forest data structure). Hence
total time is O(n log n).

With R it becomes easy to compute cut-weights. The basic operation that we have to
apply on it is the lowest common ancestor operation for any two leaves. This is a classic
computer science problem, and algorithms exist that can preprocess a tree with n leaves
in time O(n) so that future lowest common ancestor queries take constant time. The re-
sulting pseudo-code is shown in Figure 6.12. The time spent on computing cut-weights
can now be summed up: it is O{n2), since we process every pair of objects, spending
constant time per pair.

6.5 ALGORITHMS FOR DISTANCE MATRICES 199

Algorithm Construction of R
input: minimum spanning tree T of Gh

output: tree R
for each object / do

MakeSet(i)
Create one-node tree for i

Sort edges of T in nondecreasing order of weights
for each edge e — (a, b) e T in this order do

A <r- FindSet{a)
B <- FindSet(b)
if A ̂ B then

/ join trees
ra <- tree that contains a
rb <— tree that contains b
create tree R
R.edge <— e
R.leftChild <- ra

R.rightChild 4- rh

Union(A, B)
return R

FIGURE 6.11

Construction of tree R using disjoint-set operations.

Algorithm Cut-weight Computation
input: matrix Ml, trees T and R
output: cut-weight array CW
Pre-process R for lowest common ancestor (led) queries
for each edge e e T do

CW[e] <- 0
for each pair of objects a and b do

e *- lca(R,a,b)
ifMl

ab > CW[e] then
CW[e] <- Ml

ab

return CW

FIGURE 6.12
Computation of cut-weights.

Building U

We now present the final part of the algorithm, where we build the ultrametric tree U it-
self. As we will see, the construction process is essentially the same as the one we used to
build R, but instead of using edge weights, we use edge cut-weights. We use cut-weights
to sort the edges of T, and then, as we build U out of smaller trees, we use the cut-weights
to determine the edge weights of U. The algorithm is shown in Figure 6.13.

200 CHAPTER 6 PHYLOGENETIC TREES

Algorithm Construction of U
input: trees R and T, array CW
output: tree U
for each object i do

MakeSetii)
Create one-node tree for i
height[i] <- 0 / auxiliary array

Sort edges of T in nondecreasing order of cut-weights
for each edge e = (a, b) e T in this order do

A <- FindSet(a)
B <r- FindSet(b)
if A # B then

/ join trees
ua <— tree that contains a
ub <- tree that contains b
create tree 1/
U.leftChild «-. wa

U.rightChild +- ub

height[U] <- CW[e]/2
W(ua, U) <- height[U] - height[ua]
W(ub, U) <- height[U] - height[ub]
Union(A,B)

return U

FIGURE 6.13

Construction of ultrametric tree U.

At this point the reader may think that the algorithm is rather mysterious. In a mo-
ment we will present a proof that it works, and this proof contains some of the intuition
behind the algorithm. Before that, however, let us complete the running time analysis.
The time spent in building U is the same as the one for building R: O(n log w). There-
fore, the total time of the algorithm is: O(n2) for the MST computation, plus O(n2) for
the cut-weights computation, and plus O(nlogn) for constructing U. The O(n2) term
dominates the other two and that is the final running time.

Example 6.2 We will work out an example based on input matrices Ml and Mh as
shown in Table 6.6. Graph Gh and one of its minimum spanning trees T appear in Fig-
ure 6.14. Tree R appears in Figure 6.15. The cut-weights we can derive from R are:

CW[B, D] = 1,

CW[A,C] = 2,

CW[A,E] = 3,

CW[A,D]=4.

The resulting ultrametric tree is shown in Figure 6.16.

6.5 ALGORITHMS FOR DISTANCE MATRICES 201

TABLE 6.6
Input matrices Ml and Mh for Example 6.2

A
B
C
D

B
3

Ml

C
2
4

D
4
1
3

E
3
1
3
1

B
1

Mh

C
3

10

D
6
4
8

E
5
8
5
7

FIGURE 6.14
Graph Gh and MST T for Example 6.2

®

(a,d)

(a,e)

C B

FIGURE 6.15

Tree R for Example 6.2.

(b,d)

202 CHAPTER 6 PHYLOGENETIC TREES

0.5

1.5

0.5

FIGURE 6.16
Ultrametric tree U for Example 6.2. Edge labels are

distances between nodes.

A Proof That the Algorithm Works

To prove that the preceding algorithm is correct, we need to know more about ultramet-
ric distances. We have mentioned that in an ultrametric tree the root-leaf distance is the
same for all leaves. Although such a notion is easy to grasp, we need an alternative char-
acterization of ultrametric distances, given by the following lemma.

LEMMA 6.3 An additive matrix M is ultrametric if and only if in the corresponding
complete weighted graph G, the largest-weight edge in any cycle is not unique.

We leave the proof of this lemma as Exercise 19. We pass on to the first evidence
that the algorithm works as claimed.

LEMMA 6.4 The tree U constructed by the algorithm is ultrametric.

Proof. Create graph G from U: It is simply the complete graph having as vertices the
n objects and having as edge weights the distances assigned between objects by the al-
gorithm. Now consider a cycle C in this graph, and the largest-weight edge {a, b) on
this cycle. The weight of this edge is a cut-weight of some edge e e T (because that is
the way the algorithm works). In the algorithm, when e is considered, one of two things
can happen: Either a and b already belong to the same subtree (and hence their respec-
tive subtrees were joined before) or they belong to different subtrees. In the first case,
because the nodes already belong to the same subtree, their distance in U is already set;
hence it must be the case that there is another edge in C of equal weight to e, which was
considered before e. This satisfies Lemma 6.3. In the second case, consideration of e led

6.5 ALGORITHMS FOR DISTANCE MATRICES 203

to the joining of a and b for the first time. And because e is a largest-weight edge of C,
no other pair of vertices belonging to C was joined after e was examined. But in this
case some other pair of vertices x and y from C was also joined for the first time. Oth-
erwise a and b would be leaves of U and would remain with their distances to the other
vertices of C unset, which we know is not the case. Therefore the weight of (x, y) in C
is CW(e), and this again satisfies Lemma 6.3. •

We still have to prove that the distances obey the sandwich constraints. We will do
this through a theorem that in fact lies at the heart of the algorithm.

THEOREM 6.6 An ultrametric tree U that lies between matrices Ml and Mh exists if
and only if for every pair of objects a and b it is true that Ml

ab < W((a, b)max).

Proof. Suppose U is ultrametric and obeys the sandwich constraints, but there is a pair
of objects a, b that does not satisfy the inequality above. Then Ml

ab > W((a, b)max). But
by definition (a, b)max is a largest-weight edge in a path from a to bin MST T. Hence, for
(x, y) any edge on the path from a to b in T, we get the following string of inequalities:

Mh
ab > du

ah > Ml
ab > W«a, b)max) > Mh

xy > d?y > Ml
xy

Now consider the cycle created in T by including edge (a,b). [Edge (a, b) cannot
be in T because in that case (a, b)max = (a, b) and Ml

ab > W((a, b)mSiX) = Mh
ah, which

clearly cannot happen.] This is a cycle where (a, b) is a unique largest-weight edge (due
to the central strict inequality above), which is a contradiction.

The converse of the theorem was already partly proved in Lemma 6 A It only re-
mains to show that the distances computed by the algorithm obey the sandwich con-
straints. We will examine first the case of Ml. Consider an arbitrary pair of vertices a, b,
and let e e T be the edge that led a and b to be first joined in U. We have two cases.
Suppose e = {a, b)max. Then the distance between a and b in U is C W(e) > Ml

ab, by the
definition of cut-weights. If e ̂ (a, b)max, then CW((a, b)max) > CW(e), and (a, b)max

is an edge not yet considered by the algorithm. But it is easy to show that when the al-
gorithm joins a pair u, v in U all edges on the unique path from u to v in T (including
e) have already been considered, which is a contradiction.

We now prove that the upper bounds are also respected. Consider again an arbitrary
pair of vertices a, b, and let e € T be the edge that led a and b to be first joined in U.
Now take the pair p, q such that (p, q)max = e and such that CW(e) = Ml

pq. That is,
p, q is the pair that was used to determine CW(e). The pair p, q satisfies the condition
of the theorem, that is, Ml

pq < W((p, q)max). But W((/?, ^)max) = Mh
e < Mh

ab. The last
inequality follows because T is a minimum spanning tree and e is the on the unique path
from a to b in T. •

This finishes our discussion of algorithms for distance matrices. We note that the
algorithms presented in this section are still mainly of theoretical interest, in part because
they make too many assumptions about the input data. Practitioners generally rely on
various heuristics for reconstructing trees based on distances, and one example is given
in Exercise 14.

204 CHAPTER 6 PHYLOGENETIC TREES

AGREEMENT BETWEEN PHYLOGENIES

In the past sections we have considered several different methods for phylogeny recon-
struction; in the specialized literature it is possible to find many more. In practice it oc-
curs quite often that two different methods applied on the same data (or at least on the
same set of objects) yield different trees (in the topological sense). Sometimes even the
same method on the same data (but arranged differently) yields different trees . In those
cases, which tree should a researcher choose? This is a difficult and intensely debated
question. We introduce the reader to this area by presenting in this section a simple re-
lated problem and its algorithmic solution.

The problem is the following: Suppose we are given two different rooted trees T\
and T2 for the same set ofn objects, such that every interior node has exactly two children
(except the root, which may have only one). We would like to know whether T\ andT2
agree, where agreement is given by the following definition.

DEFINITION 6.6 We say that a tree Tr refines another tree Ts whenever Tr can be
transformed into Ts by contracting selected edges from Tr. Two trees T\ and T2 agree
when there exists a tree T^ that refines both.

The term tree compatibility is also used in the literature. We chose the term agree-
ment to avoid confusion with the compatibility concept studied in previous sections. In-
tuitively this notion of agreement means that whatever information is contained in T\ and
not in T2 may be added to T\ without causing a contradiction, and vice versa. Examples
of trees that agree are shown in Figures 6.17 and 6.18; the tree that refines both is shown
in Figure 6.19. Two trees that do not agree are shown in Figure 6.20. These examples are
so simple that a mere eye inspection can tell us whether the trees shown agree; of course
it is much more of a problem when the trees have dozens or hundreds of leaves.

A,B

1
E,F

C D

FIGURE 6.17

Tree T\.

6.6 AGREEMENT BETWEEN PHYLOGENIES 205

FIGURE 6.18
Tree T2.

FIGURE 6.19
Tree T3, which refines Tx and T2.

A,B,C D,E A,B

FIGURE 6.20

Two trees that do not agree.

C,D,E

206 CHAPTER 6 PHYLOCENETIC TREES

In the foregoing examples, the input trees have leaves containing several objects.
This is the general case, but as a first step let us first deal with the case where each leaf
contains or is labeled by only one object. In this case what we are really trying to verify
is whether trees T\ and T2 are isomorphic. Two trees T\ and T2 are isomorphic when
there is an one-to-one correspondence between their nodes such that for every pair u, v
of corresponding nodes, u e T\ and v e T2, the objects contained in leaves below u are
the same as the objects contained in leaves below v.

Although graph isomorphism is a difficult problem, binary tree isomorphism can be
solved by a simple algorithm. The basic idea is to compare both trees from the bottom
up, removing nodes as we go. Once we have determined that two pairs of sibling leaves
(one pair in T\ and the other in Ti) are isomorphic, we can remove them, and mark the
parent of each pair as containing a new, "artificial" object. After removing all leaves,
their parents become leaves themselves, and we repeat the process until we have pro-
cessed all nodes or found that the trees are not isomorphic. The algorithm relies on the
following data structures and functions: a set S, from which we can add and remove spe-
cific elements (objects), and test for emptiness; a function object(u), which returns the
object associated with node u\ a function sib(u), which returns the sibling node of node
u\ a function parent (u), which returns the parent of node u; a marking of nodes that can
tell whether a node is a leaf; an array L1 indexed by objects that gives us the leaf node
in tree T\ where object i appears; and an analogous array L2. The algorithm is shown in
Figure 6.21.

The algorithm can be seen as a careful comparison of the input trees T\ and T2 node
by node, and hence its correctness is straightforward. The running time is O(n), for all
we are doing is traversing trees with O(n) nodes a constant number of times and spend-
ing constant time per node.

We now consider the general case where leaves in the input trees may contain sev-
eral objects. The idea in the algorithm is similar to the isomorphism test above: Care-
fully compare the two trees node by node. However, instead of removing nodes from
the trees, we inspect 7\ with respect to T2 and possibly modify T\ using the extra infor-
mation found on T2. As an example, consider the leafnode containing objects A and B
in tree T\ from Figure 6.17. A quick look at tree T2 in Figure 6.18 tells us that A and
B should actually be split into two separate nodes, and we modify T\ accordingly. We
try to perform these kinds of modifications considering all nodes of T\, and then we do
the same with T2. In the algorithm we keep the number of objects stored at each subtree,
which enables us to quickly tell whether two subtrees are not isomorphic. If the number
is the same in both T\ and T2, we proceed to compare the actual objects stored in each.
After both trees have been possibly modified we apply an isomorphism test to the (pos-
sibly) modified T\ and the (possibly) modified T2. This test is essentially the same as the
one in Figure 6.21. A detailed view of the algorithm is given in Figure 6.22.

The running time analysis of this algorithm is as follows. In the initialization we
spend time O(n) traversing the trees a constant number of times. In the main loop, no-
tice that once nodes are declared inactive, they remain so for the rest of the algorithm,
and each active node is examined at most once. Checking that nodes contain the same
objects also requires traversing parts of each tree only once. So up to here we have spent
time O(n). Finally there is the isomorphism checking. We must modify the isomorphism
algorithm presented earlier, because in the input trees leaves may contain more than one
object. First, the function object(u) must return all objects associated with leaf u (see

6.6 AGREEMENT BETWEEN PHYLOGEN1ES 207

Algorithm Binary Tree Isomorphism
input: Trees T\ and T2

output: TRUE if T\ and T2 are isomorphic, FALSE otherwise
/ Initializations
k <— n I/ k counts the number of objects plus "new" objects
By appropriate depth-first searches in tree Tx do

if node u is a leaf then
L\[object(u)] <- u
if sib(u) is a leaf then

add(S, u)
By appropriate depth-first searches in tree T2 do

if node u is a leaf then
L2[object(u)] <r- u

II Main loop
while S ^ 0 do

u «— remove(S)
j «— object(u)
v <- L2[j]
y <— sib(u)
w <— sib(v)
if w is not a leaf or object(w) =̂ object(y) then

return FALSE
p\ +-parent (u)
p2 +- parent (v)
Remove nodes u,v,w,y from respective trees
Mark p\ and p2 as leaves
k <-k + l
Ldk]*-P]

L2[k] <- p2

II p\ and p2 now contain "new object" k
if sib(p\) is leaf then

add(S, px)
II end while
return TRUE

FIGURE 6.21

Isomorphism testing of rooted binary trees.

initialization part in Figure 6.21). Then in the main loop of the algorithm the tests to
check whether two nodes are labeled by the same object must be modified to check for set
equality. We leave the implementation of these modifications such that total time spent
in this checking is O (n) as Exercise 18. The overall running time of the algorithm is thus
O(n).

This finishes our brief introduction to the subject of phylogeny agreement. More
sophisticated problem formulations can be given, and some references to work in this
area are presented in the bibliographic notes.

208 CHAPTER 6 PHYLOGENETIC TREES

Algorithm Rooted Binary Tree Agreement
input: Trees T\ and T2

output: TRUE if Ti and T2 agree, FALSE otherwise
By an appropriate depth-first search in tree T\ do

if node u is leaf then
for every object i stored in leaf u do

K\ [i] +- number of objects stored in leaf u
else J\ [u] -<— number of objects in this subtree

By an appropriate depth-first search in tree T2 do
if node u is leaf then

for every object / stored in leaf u do
L2[i] <- u
K2[i] <- number of objects stored in leaf u

else J2[u] «— number of objects in this subtree
for each object / do

active[i] «- TRUE
/ we now examine tree T2 with respect to T\ and possibly modify T\
for each object i do

if active[i] and #,[/] > K2[i] then
/ T2 contains more information about object i
w <- L2[i]
repeat

w <— parent(w) // we go up in the tree
until J2[VJ] > Ki[i]

II We have reached the root wofa subtree of T2 that has
II at least as many objects in it as the leaf of i in T\
if J2[w] / K} [i] then return FALSE
Traverse subtree of T2 rooted at w checking that

every object of L\[i] is in a leaf of this subtree
if this test fails then return FALSE
Replace node L\[i] in T\ with subtree of T2 rooted at w
for each object j stored at L\[i] do

Update L}[j]
active[j] «— FALSE

/ End of outermost for
/ here we must repeat what was done above, but this time examining T\
II with respect to T2 and possibly modifying T2 in the process
II (similar code omitted)
Run algorithm Binary Tree Isomorphism on T\ and T2

return TRUE if trees are isomorphic and FALSE otherwise.

FIGURE 6.22

An algorithm to test the agreement of two rooted
binary trees.

EXERCISES 209

SUMMARY

Phylogenetic trees are an important tool to help in the understanding of relationships
between objects that evolve through time, in particular molecular sequences. Building a
tree requires that objects be compared, for which there are two basic criteria. One is the
usage of discrete characters, in which we select a set of characters and we list for each
object the states that that object has for each character. All such lists taken together form
a character state matrix, from which a tree may be constructed. The idea is that objects
that share more states should be closer in the tree. Another criterion is distance between
objects, where the concept of distance depends on the objects being grouped. Again here
the idea is that objects that are close in terms of distance should be close in the tree as
well.

If the comparison data is in a character state matrix, and if we impose certain restric-
tions on the desired tree, reconstruction can be cast as the perfect phylogeny problem.
Depending on the characters this problem can be NP-complete. We presented algorithms
for some special cases that admit efficient algorithms. One was for binary states and the
other was for the case of only two characters. In this last case we saw that graph theory
concepts greatly facilitate algorithm development, being also the basis for more general
cases.

Real data almost never support a perfect phylogeny. Hence we must relax the restric-
tions on the desired tree, and that leads us to optimization problems like the most par-
simonious tree, or the largest set of compatible characters. We saw that these problems
are NP-hard, which means that algorithms for these problems either perform exhaustive
searches or try somehow to approximate the optimum value.

When objects are compared through distances, we may require that the observed
distance be equal to the distance measured on the reconstructed tree. This is the additive
tree problem, and we presented a simple algorithm that solves it. But again here, real data
rarely support additive trees. A way around this was the idea of building a tree where
distances obey lower and upper bounds. When we impose the additional restriction that
the tree be ultrametric — all leaf-root paths must have equal length — it is possible to
devise an efficient algorithm, which we described.

Because there are so many methods for building phylogenies, the ability to compare
different trees for the same set of objects is desirable. We presented a simple algorithm
that determines a tree given two others, incorporating information from both input trees
in the output tree. The algorithm produces the agreement tree as long as the two input
trees agree in a very precise sense.

EXERCISES

1. Phylogenetic trees have many applications. Two of them are for grouping languages

210 CHAPTER 6 PHYLOGENETIC TREES

and medieval manuscripts. Try to apply the concepts of ordered and unordered char-
acters and distances to these applications.

2. Show that the number of labeled unrooted binary trees is I~Ii=3 @i — 5). (Hint: Start by
finding how many interior nodes and interior edges such a tree has. Then use induction,
by noting what happens when you add one more object to the tree by making it branch
out from an existing edge.)

3. Propose a linear representation for a rooted phylogenetic tree. Such a representation
can be used, for example, in the output of a phylogeny computer program.

4. The algorithm in Figure 6.5 assumes that all columns are distinct. How would you mod-
ify the algorithm to handle columns that are not distinct?

5. The algorithm for binary states (Section 6.5) was presented in two phases. How would
you merge them into just one phase?

6. Notice the similarity between Lemma 6.1 and the conditions used in the algorithm for
the consecutive ones problem in Section 5.3. Show that binary character matrices that
admit a perfect phylogeny have the CIP for columns. Can you design an algorithm that
will find the row pennutation that makes Is consecutive, thus taking advantage of the
special nature of this matrix?

7. Show that the transformation outlined at the end of Section 6.2 to change unordered
binary characters into ordered binary character works, using the fact mentioned there.

8. Suppose we have the following character state matrix:

A
B
C

C\

0
1
1

1
1
0

According to the results for binary characters (Section 6.2) this input does not have a
perfect phylogeny, in that c\ and Co are not compatible. But, according to the results
for two characters (Section 6.3), the input does have a perfect phylogeny, because the
SIG is acyclic. Which interpretation is correct?

9. If a character state-based phylogeny is perfect, we should be able to assign to each of
its edges a character state transition. Assign such transitions to the edges of the tree in
Figure 6.8.

** 10. Design an algorithm for the perfect phylogeny problem when the number of states in
each character is at most three.

** 11. Design an algorithm for the perfect phylogeny problem when the number of characters
is at most three.

* 12. Design an algorithm for the perfect phylogeny problem when the number of characters
is at most three and the number of states in each character is at most three.

13. Suppose we have an algorithm that finds maximum cliques in graphs, and we want to
use it to solve the general character state compatibility problem. By general we mean
that character states are not necessarily binary. The proof of Theorem 6.5 shows how
to do this for the case of binary characters. What should be changed for the case of
general characters?

14. A well-known heuristic for building a phylogenetic tree using distance data is as fol-

BIBLIOGRAPHIC NOTES 211

lows. Select the pair of objects closest to each other, say A and B. Make them children
of new object O, and set each edge length to d(A, B)/2. Now remove A and B from
the distance matrix, and add 0 , setting the distance between O and every other object i
to (d(A, i)+d(B, i))/2. Find the closest pair again, and repeat the process until all ob-
jects are in the tree. (When linking two objects by a new interior node we have to take
into account the edge leghths that may already exist below the objects being linked.)
Apply this heuristic to the matrix in Table 6.5. Does it find an additive tree?

15. In the presentation of the algorithm for constructing additive trees, we assumed that
the input matrix M is additive. Suppose we do not know whether M is additive. What
should we do?

** 16. Suppose that in the additive tree problem we know that interior nodes have bounded
degree. Show that in this case it is possible to obtain an algorithm running in time
0 (ft log n).

17. Prove that ultrametric distances can also be characterized in the following way: For
any three objects /, j and k, we have Mtj < max{M/*, Mjk}.

18. Modify the tree isomorphism algorithm in Figure 6.21 to account for the possibility
that leaves may contain more than one object.

19. Prove Lemma 6.3.

BIBLIOGRAPHIC NOTES

As we mentioned at the beginning of this chapter, our coverage of phylogenetic tree al-
gorithms is narrow relative to the vastness of the field. In particular, we have not covered
algorithms based on statistical analyses of the problem, commonly known as maximum
likelihood methods. We now provide some references for the interested reader.

A good starting point for more details on phylogeny reconstruction for molecular
data is the excellent review paper by Swofford and Olsen [182]. Another good, but older
reference is Felsenstein [60]. The molecular evolution book by Nei [147] has a useful
review in Chapter 11. Penny, Hendy, and Steel [159] present a short survey.

The perfect phylogeny problem for unordered characters mentioned in Section 6.1
was shown to be NP-complete by Bodlaender, Fellows, and Warnow [25], and indepen-
dently by Steel [179]. The algorithm of Section 6.2 is due to Gusfield [82], and simplified
by Waterman [199]. McMorris [132] showed how to convert unordered binary charac-
ters to directed binary characters.

As mentioned in the text, whenever the number of characters is fixed, the perfect
phylogeny problem can be solved in polynomial time. This discovery is due to Agarwala
and Fernandez-Baca [4], and the running time of their algorithm is O(23r(nm3 + m4)).
Algorithms have also been proposed for particular values of r. For r = 3 there are
two algorithms: by Dress and Steel [52], which runs in 0(nm2) time, and by Kannan
and Warnow [107], which runs in O(n2m) time. The algorithm by Kannan and Warnow
works for the case where r = 4 as well. This is an important algorithm because it can

212 CHAPTER 6 PHYLOGENETIC TREES

be applied to DNA sequences aligned without gaps. In this case we can interpret each
position in the alignment as a character that can have one of four states (A, C, G, or T).

Agarwala, Fernandez-Baca, and Slutzki [5] and Meidanis and Munuera [135] pre-
sented algorithms for binary phylogeny when the input is given as lists of characters for
each object rather than as a matrix.

The presentation used in Section 6.3 was based on the paper by Warnow [194]. The-
orem 6.1 is due to Buneman [29]; Table 6.3 and Figure 6.7 were adapted from there.
McMorris, Warnow, and Wimer [133] described an algorithm for fixed number of char-
acters running in time O(rm+lmm+l + nm2). Three papers describing algorithms for the
case m = 3 are Bodlaender and Kloks [26], Kannan and Warnow [106], and Idury and
Schaffer [101].

The proof that the parsimony criterion yields an NP-complete problem appears in
Day, Johnson, and Sankoff [43]; they used a previous important result relating phyloge-
nies to the Steiner tree problem due to Foulds and Graham [64]. The survey by Swofford
and Olsen mentioned above supplies more pointers to the parsimony literature. Swof-
ford and Maddison [181] provided a parsimony algorithm for the assignment of ancestral
character states under the another criterion called the Wagner parsimony criterion. The
NP-completeness proof for the compatibility criterion presented in Section 6.4 is due to
Day and Sankoff [44].

The four-point condition that appears in Section 6.5.1 was proved by Buneman (as
cited in [202]) and independently by Dobson [49]. The additive tree reconstruction al-
gorithm presented in Section 6.5.1 is by Waterman, Smith, Singh, and Beyer [202]. Cul-
berson and Rudnicki [40] and Hein [90] present faster algorithms for the case when it is
known that interior nodes have bounded degree. The problem of obtaining the tree that
best approximates the additive tree under various metrics was shown to be NP-complete
by Day [42]. The algorithm for sandwich ultrametric trees is due to Farach, Kannan,
and Warnow [56]. In this paper the authors further show that the requirement that the
tree be ultrametric is essential, because finding an additive tree that satisfies the sand-
wich constraints is an NP-complete problem. They also present other complexity results
concerning additive and ultrametric trees. Agarwala and others [3] have used the result
on ultrametric trees to present an approximation algorithm for the additive tree problem
with a performance guarantee. They have further shown that obtaining approximations
better than a certain threshold is an NP-hard problem.

The algorithms presented in Section 6.6 are due to Gusfield [82]. Warnow [195] pre-
sented a more general algorithm for the case where the trees are not necessarily binary.
She also showed how this algorithm could be used in a branch-and-bound algorithm
for the unordered character perfect phylogeny problem. A recent result on agreement
of trees by Amir and Keselman [14] showed that obtaining a subtree that agrees with k
input trees while maximizing the number of objects contained in it is already NP-hard
for A: = 3. They presented a polynomial-time algorithm for the case when one of the
trees has bounded degree, and this result was later improved by Farach, Przytycka, and
Thorup [57].

When the objects under study are molecular sequences, it is common to start the
phylogeny reconstruction using as input a multiple alignment of the sequences. On the
other hand, it is very useful to have a phylogeny for the sequences when aligning them.
This situation led a number of researchers to propose algorithms that perform both tasks
simultaneously. One version of this problem is known as "tree alignment," and a brief

BIBLIOGRAPHIC NOTES 213

description is given in Section 3.4.3. Some pointers for this topic are given in the bib-
liographic notes of Chapter 3. Additional references that give heuristic solutions to the
combined problems of multiple alignment and phylogeny reconstruction are Hein [89,
91, 92] and Vingron and von Haeseler [190].

Two popular phylogeny reconstruction software packages are PHYLIP (phylogeny
inference package), by Felsenstein [61], and PAUP (phylogenetic analysis using parsi-
mony), by Swofford (a reference to this package is given in [182]). Both provide many
ways of building phylogenies.

GENOME REARRANGEMENTS

In previous chapters we have seen how differences in genes at the
sequence level can be used to infer the evolutionary relationship
among related species. There are cases, however, when compar-
isons of corresponding genes in two or more species yield less in-
formation than comparisons of larger portions of the genome, or
even of the entire genome. The comparison of these larger por-
tions is done at a higher level. Instead of looking at the sequences,
we compare the positions of several related genes and try to deter-
mine gene rearrangement operations that transform one genome
into the other. A rich mathematical theory has been developed to
model these situations, and this chapter presents an introductory
view of this theory.

BIOLOGICAL BACKGROUND

When comparing entire genomes across species, we want to compute a form of distance
between them, but we want to use a set of basic operations different from those seen in
Chapter 3. We are no longer interested in point mutations such as substitutions, deletions,
and insertions, but rather in larger mutations. Pieces of chromosomes can be exchanged
in various ways, affecting sections consisting of a significant percentage of the chromo-
some. A piece can be moved or copied to another location, or it can leave one chromo-
some and land in another. Such movements are called genome rearrangements.

In some cases, for instance, when studying chloroplast or mitochondrial genomes,
a single type of rearrangement event — the reversal — appears to be almost the only
way to effect evolutionary change. It makes sense in these cases to measure the evolu-
tionary distance between two genome organizations by the number of reversals needed
to transform one of them into the other.

As an example, consider the chloroplast genomes of alfafa and pea, two related plant
species, depicted in Figure 7.1. There each labeled arrow denotes a block. A block here is

215

216 CHAPTER 7 GENOME REARRANGEMENTS

Alfafa

7 6 5 4 3 2 1 11 10

3 2 8 7 1 5 6 11 10
Garden pea

FIGURE 7.1

Relation between the chloroplast genomes of alfafa and
garden pea. (Adapted from [150].)

a section of the genome possibly containing more than one gene, which is transcribed as
a unit. The arrow denotes the fact that blocks have orientation. The reason that blocks are
oriented has to do with the particular strand from where transcription takes place, as was
explained in Section 1.4.2. Two blocks in different genomes have the same numerical
label if they are homologous, that is, if they contain the same genes. Notice finally that
the distances between genes are not always the same in both genomes.

The reversal operation for oriented blocks can be defined as follows. It operates in
a contiguous segment of blocks. It inverts the order of the affected blocks and also flips
their arrows. Given this definition, we are interested in the following question: What is
the minimum number of reversals that leads from one genome to the other? One possible
solution is given in Figure 7.2. The first line represents the alfafa genome, the last line
represents the garden pea genome, and each line except the first is obtained from the
previous one by a reversal involving the underlined blocks. But, how do we know that
no shorter series of reversals exists to accomplish the required transformation? We would
like to have a polynomial-time algorithm to give us such an answer, and that is precisely
the topic of the this chapter.

The reason that we want a shortest possible series of reversals is the same parsimony
assumption given in other sections of this book that deal with minimization problems.
We assume that Nature always finds paths that require a minimum of change, and there-
fore, if we want to know how alfafa could have changed into pea or vice versa, we should
try to find a minimum series of reversals that accomplishes this task.

A similar rearrangement problem without the orientation can be conceived. Some-
times the information that we have about genes is not accurate enough to ascertain their
relative orientation, but it does give out their relative order. In this case, we would look
for a shortest series of reversals that transforms one block order into the other, without
regard to orientation. For instance, suppose that we did not know the orientations of the
blocks in Figure 7.1. In that case a series of three reversals would be enough to solve the
problem, as shown in Figure 7.3.

The next sections explore both versions of the problem, which is known as sorting
by reversals. It is interesting to note that while there is a polynomial-time algorithm to
find a minimum series of reversals in the oriented case, the unoriented version has been
shown to be NP-hard.

7.2 ORIENTED

X

r

t
X

X

X

X

BLOCKS

r x
r
t
t

t
-f

t

t

X

r
r
r

r
r

r
t

X

t
t
t

t

X

X

r
r
r
t

t

r

~t

r
r

t
r
r
X

t r x
FIGURE 7.2

T

T

T

f

X

X

X

tr

tr

tr

tr

tr

tr

tr

tr

217

to r
to r
to r

to r
to r

to r

T« r
its ^

A solution to the problem of Figure 7.1.

7 6 5 4 3 2 1 11 10 9

8 7 1 2 3 4 5 6 11 10 9

4 3 2 1 7 8 5 6 11 10 9

4 3 2 8 7 1 5 6 11 10 9

FIGURE 7.3

A solution to the same problem, but with unoriented blocks.

ORIENTED BLOCKS

We start the study of the oriented version of the problem with an example. Suppose we
have two genomes divided in homologous blocks as indicated in Figure 7.4. Each of
these blocks represents a contiguous segment that is well conserved in both genomes. In
this example, a series of three reversals does the job and is the shortest possible as we
show below. There are many other series that work, but all of them have three or more
reversals.

Figure 7.5 displays one possible solution, with labels on each block showing the
action of reversals. The arrows above the labels indicate the orientation of homologous
blocks. Because the labels are arbitrary, we use the numerals from 1 to n (n = 5 in this

218 CHAPTER 7 GENOME REARRANGEMENTS

1 2 3 4

FIGURE 7.4
Two genomes with homologous blocks. Arrows represent

the blocks in each genome. Homologous blocks are linked
by lines. A small circle around a line indicates that the

block has different orientations in the two genomes.

T

~f

~T

r

r
r

r
T

r

X

t
r

t r r
FIGURE 7.5

T

t
X

X

A solution to the problem of the previous figure. Each line is
obtained from the previous one by a reversal involving the

underlined elements.

example) and assign them in the natural order to the upper genome. With this, the la-
bels in the lower genome are uniquely determined. Each block gets the same number as
its homologous block, and the arrows reflect the actual orientations. In the figure, rever-
sals are indicated by a line running under the affected blocks. The initial permutation is
changed step by step to the final arrangement.

How do we know that no shorter series of reversals exists that accomplishes the re-
quired transformation? In the case of this particular setting there is an easy argument
that confirms that less than three reversals are not enough. The argument relies on the
concept of a breakpoint. A breakpoint is a point between consecutive labels in the initial
permutation that must necessarily be separated by at least one reversal in order to reach
the target permutation. In other words, these two consecutive labels are not consecutive
in the target, or, even if they are, the orientations are not the same in a relative sense. In
addition, a breakpoint exists before the first label if it is not the first label — with the
same orientation — in the target. Figure 7.6 shows the breakpoints for our initial per-
mutation relative to the target in Figure 7.4. Each breakpoint is indicated by a bullet (•).
For instance, the location between labels 2~ and 3 is a breakpoint because in the tar-
get blocks 2 and 3 are not consecutive. If no reversal separates these labels, they will

7.2 ORIENTED BLOCKS 219

FIGURE 7.6
is a breakpoint.

remain together until the end and will be then in the wrong order. In contrast, 1 , 2 is
not 2L breakpoint because this is exactly the way these two blocks appear in the target.
Our initial permutation has four breakpoints altogether.

A reversal can remove at most two breakpoints, because it cuts the permutation in
exactly two locations. The target permutation has zero breakpoints and it is the only per-
mutation with this property. Hence we need at least two reversals to fix the four break-
points in our example. But a more careful inspection reveals that no single reversal can
remove two breakpoints from our initial permutation. Indeed, to remove the first break-
point, the one before 1 , we would have to move 5 to the first position, and even this is
not enough. The only reversal that can bring 1 there also flips its arrow, and the result-
ing permutation still has a breakpoint before the first position. The label is in its correct
position but the orientation is wrong.

A similar argument convinces us that there is no way of removing the last breakpoint
with one reversal. Our only hope of removing two breakpoints relies on the two cen-
tral ones. However, the only reversal affecting these two locations does not remove any
breakpoint! So, we know now that the first reversal will decrease the number of break-
points by at most 1. Then we will have at least three breakpoints left, and another two
reversals are needed, for a total of at least three reversals. This shows that the solution
presented earlier is optimal.

7.2.1 DEFINITIONS

Genome rearrangements is a topic that requires us to be very careful in our definitions
and to employ a coherent notation. Let us first define what an oriented permutation is.
Given a finite set C of labels, of oriented labels from £, where

aeC

The set C° has twice as many elements as C. For x e C°, denote by |x| the element of
C obtained by removing x's arrow. Thus, | tT| = \~ct\ =afor any a e C. Let n be the
number of elements of C An oriented permutation over £ is a mapping a : [l..n] H> C°
such that for any label a e C there is exactly one i e [l..n] with \a(i)\ = a. Informally,
a permutation "picks" for each index / an oriented label 1r or ~ct from £°, but if 1r is
picked for some index, ~ct cannot be picked by any other index and vice versa. There
being n = \£\ indices guarantees that for each a e C either t r or ~ct will be picked
exactly once.

We represent a permutation a as a list of the elements a (1), a (2), . . . , a(n). Usually
we just list the elements separated by blanks, as in the previous section, but sometimes
we use commas and parentheses to avoid ambiguities. In most of cases our set C will be

220 CHAPTER 7 GENOME REARRANGEMENTS

just the first n positive integers: 1, 2 , . . . , n. Thus, for instance, for n = 6, the following
is an example of a permutation over C = {1, 2 , . . . , 6}:

a = (If, T, T, If, If, X). (7.1)
So, in the above example, a(l) = z , a (2) = 3 , and so on. The identity permutation
is the permutation / such that /(/) = / for all / between 1 and n.

A reversal is an operation that transforms one permutation into another by revers-
ing the order of a contiguous portion of it, and at the same time flipping the signs of the
elements involved. Let / and j be two indices with 1 < i, j < n. A reversal affecting
elements a(i) through a(j) is indicated by [/, j]. The reversal [/, j] is actually a map-
ping from {1, 2, . . . , n] into itself, and it can be composed with an oriented permutation
a to give another mapping from {1,2, . . . , n} to £°, that is, another permutation. The
composition of mappings a and p, denoted by ap, is the mapping defined by

For instance, applying the reversal [2, 4] to the permutation a of Equation (7.1) results
in

a[2,4] = CT, tr, T, ~t, 1r, X).
In general, a reversal p = [/, j] changes a permutation a into ap defined by

?+ y -*) ift - * -y'
ffi otherwise,

where 7 is label / with its arrow flipped. There are n(n + l)/2 different reversals in a
setting involving n blocks. This includes the unitary reversals [/, i] that just flip the arrow
ofa(i).

Our main interest in this section is in the problem of sorting by reversals. Given two
oriented permutations a and /3 over the same label set £, we seek the minimum number
of reversals that will transform a into p. In other words, using the notation just intro-
duced, we seek a series of reversals pi, P2» • • •» Pr» with as few reversals as possible,
such that

The number t is called the reversal distance of a with respect to f3 and is denoted by
dp (a). Oriented permutation a is called the initial permutation and f3 is the target. This
process is called sorting a with respect to p.

Notice that while t = dp (a) is fixed for a given pair a, /?, the actual series of rever-
sals that sort a is generally not unique. Usually we will be interested in finding a reversal
p that "makes progress" toward p. Such a reversal is called a sorting reversal of a with
respect to /3; it is characterized by the property

dfi(ap) < dp (a),

which is equivalent to

dp(ap) =dp(a) - 1

because the distances of a and ap cannot differ by more than one.

7.2 ORIENTED BLOCKS 221

It is important to observe that the reversal distance is symmetric, that is, dp(a) —
da(fi). This stems from the fact that any reversal has no net effect if applied twice. In
other words, for every reversal p, pp has no effect. Therefore, if

apip2...pt = P,

then, composing both sides of this equation successively with pt, pt-i, ..., p\, we get

a = /5ptpt-i...pi.

We conclude that the same reversals transform /3 into a, but they have to be applied in
reverse order. Thus, the sorting reversals of ft with respect to a are not necessarily the
same as the sorting reversals of a with respect to /3.

We will abbreviate dp(a) to just d(a) when the target /3 is clear from the context.
Likewise, if this is the case, we will omit ft when talking about sorting reversals, break-
points, and so on.

7.2.2 BREAKPOINTS

Let us now formalize the concept of a breakpoint. Given a permutation a, the first thing
we have to do in order to define breakpoints is to consider the extended version of a,
which is obtained from a by adding a new, artificial label L (for left) before the first real
label a (I) and also another new label R (for right) after the last label a(n). Thus, for the
permutation a of Equation (7.1), the extended version is

(L, IT, IT, T, if, IT, X, R). U.D

A breakpoint of a with respect to ̂ is a pair x, y of elements of C° such that xy
appears in the extended version of a but neither xy nor the reverse pair y 3c appear in ex-
tended /3. For instance, if a is the permutation in (7.2) and fi is the identity, then break-
points are L^T, *T*3~, *T~t, "iflf, i f IT, and %R. The pair IT V is not a break-
point, because its reverse pair 4 5 appears in /3.

The number of breakpoints of a permutation a is denoted by bp(a) or just by b(a)
if ft is clear from the context. In our example, b(a) = 6.

Notice that artificial labels L and R never move. So, L is involved in a breakpoint
only if the first labels of a and /3 are different, or are equal but with different orientations.
An analogous observation holds for R.

A Lower Bound

Let /3 be fixed. As we mentioned earlier, a reversal can remove at most two breakpoints
from a permutation. In our notation,

b(a) - b(ap) < 2, (7.3)

for any permutation a and any reversal p. This observation leads immediately to a lower
bound on the reversal distance as follows. Let p\, p2,..., pt be a series of reversals (not

222 CHAPTER 7 GENOME REARRANGEMENTS

necessarily optimal) that converts a into /3. Then

so

b{apiP2...Pt) = b(P) = 0. (7.4)

Notice that /3 has zero breakpoint with respect to itself. But, by Equation (7.3)

b(a) - b(aPl) < 2,
b(api) - b(apip2) < 2,

Z?(api . . .A_i) - b(api...pt) < 2.

Adding these inequalities, and taking Equation (7.4) into account, we get

b(a) < It.

This is true for any sorting of a. Now if we apply this result to a shortest series, then
t = d(a) and we have

This is a lower bound for d(a), that is, a quantity that specifies a minimum value
under which we can be sure d(a) will not lie. If we ever find a series of reversals with the
size of a lower bound for a particular permutation a, we know we have found a solution
in this case. However, this lower bound is not always achievable. For instance, we saw
at the beginning of Section 7.2 a pair of permutations a and /? with bp(a) = 4, hence
the lower bound is 2, but dp (a) = 3.

A surprising fact in this context is that there are reversals that remove two break-
points but are not sorting reversals, that is, they lead us in the wrong way as far as sorting
a is concerned. See Exercise 5.

7.2.3 THE DIAGRAM OF REALITY AND DESIRE

The lower bound d(a) > b(a)/2 is not very tight. For a significant portion of the per-
mutations it is far from being an equality. In this section we derive a better lower bound,
based on a structure called the reality-desire diagram of a permutation with respect to
another, which will be defined shortly.

To acquire some intuition about this structure, let us try to determine what makes
a reversal remove breakpoints from a. A general situation is depicted below, where the
reversal is indicated by the two vertical lines:

••• x \ y ••• z \ w • • • .

After the indicated reversal is performed, we end up with the sequence

••• x z ••• 7 w • • •,

where, recalling from above, 7 means the label / with flipped arrow. Assuming that the

7.2 ORIENTED BLOCKS 223

breakpoint xy was removed, we have that either xz is in fi or zx is in /3. However, xy
was a breakpoint, so xy and 7 * do not appear in fi, although xy appears in a.

When we have a breakpoint, it is caused by two labels that are adjacent in a but that
do not "want" to be adjacent. They want to be adjacent to other labels. Thus, we observe a
deviation between the reality, that is, the neighbor a certain label has in a, and its desire,
that is, the neighbor this same label has in j3. Actually labels are oriented entities, so they
have a specific desire for each one of their ends. An oriented label can be viewed as a
battery with charged terminals indicated by positive and negative signs, as in Figure 7.7.

FIGURE 7.7
Oriented label as battery. The positive terminal is always at
the tip of the arrow, while the negative terminal is at the tail

Let us then analyze the particular reality and desire situation in the situation above.
We draw each label as a box. In addition, we draw "reality" lines linking label ends that
are in contact in the present permutation, and we draw "desire" lines linking label ends
that will be in contact in the target permutation. The result for the case under study is
shown in Figure 7.8. Notice that the removal of a breakpoint resulted in a desire line
linking the same terminals; that is, desire became reality after this reversal. In this par-
ticular case we do not know which terminals are positive or negative, but this is not the
most relevant issue.

The above considerations motivate us to construct the reality and desire diagram
of a permutation a with respect to /?, denoted RDp (a), as follows. We want to represent
each label by two nodes, so that we can keep track of the orientation of the labels. For
each label I. e C we include two nodes / and / in RD(a). The node / represents
the tail of the arrow and / is the head. We also include two extra nodes L and R to be

Desire

a —

ap —

• X (
f

• y < • z < ' W *

Reality
/

Desire
Reality

" x < O z ° y w

Reality
\
Reality

FIGURE 7.8
Reality and desire lines in breakpoint removal.

224 CHAPTER 7 GENOME REARRANGEMENTS

Extended a: L T If T T ? /?

Replace labels •
by terminals: -3 +3 +2 -2 +1 -1 -4 +4 +5 -5

Reality edges: -3 +3 +2 -2 +1 -1 -4 +4 +5 -5 R

Reality and
desire edges:

-3 +3 +2 -2 +1

FIGURE 7.9

-4 +4 +5 -5

Construction of a diagram of reality and desire.

able to record the reality and desire of end labels.This is the same for all permutations.
The diagram RD(a) has two types of lines or edges: the reality edges and the desire

edges. Reality edges connect terminals of consecutive labels in permutation a. Also, L is
connected to the first terminal and the last terminal is linked to R. Desire edges connect
terminals according to permutation fi. Finally we arrange all terminal nodes around a cir-
cle, with L and R occupying the top two positions, L to the left of R, and the other nodes
following a counterclockwise. Figure 7.9 displays a step-by-step construction of the re-
ality and desire diagram of the permutation 3 2 1 4 5 with respect to the identity.
Figure 7.10 shows the diagram arranged in a circle. Reality edges go along the circum-
ference. Desire edges are chords. Notice that sometimes there are two parallel edges,
one of type reality and one of type desire, between the same pair of vertices. This occurs
exactly in the points that are not breakpoints. Reality equals desire there. On the other
hand, there are no self-loops.

The reality and desire diagram is sometimes called graph of reality and desire. We
prefer to use the term diagram to stress the fact that we draw it in a particular way. A
graph can be drawn in any way as long as the vertices are correctly labeled and the edges
make the correct connections. But our diagram RD(a) must be drawn in such a way as to
follow the order of labels in the permutation a. This will be particularly important when
we talk about crossing desire edges in some of the later sections. In spite of that, we
will use the standard graph terminology when referring to the diagram, with the obvious
meanings.

An important property for us is that every node has degree two in RD(a). This is
because both A, the set of reality edges, and B, the set of desire edges, are matchings in
RD(a). This means that each node is incident to exactly one edge from A and exactly
one from B. The union A U B forms a number of connected components, each one being
a cycle with edges alternating between A and B. Furthermore, each such cycle has an
even number of edges, half of them reality edges and half of them desire edges. The
number of cycles of RD(a) is denoted by cp(a), or just c(a) if /3 is implicit. Then note
that cp(/3) = n -f 1, because f3 has no breakpoints, so all the cycles are composed by

7.2 ORIENTED BLOCKS 225

R

+4

-4

-1

FIGURE 7.10

Diagram of reality and desire.

two parallel edges between the same pair of nodes. Because there are 2rc + 2 nodes, we
have n + 1 cycles. Furthermore this is the only permutation for which cp(a) = n + 1.

So, in a way, we can see the process of sorting a permutation as a process of trans-
forming RD(a) into a graph with as many cycles as possible. That does not necessarily
mean that every reversal that increases the number of cycles is good — see Exercise 6.
However, a very natural question in this context is, How does a reversal affect the cycles
in RD{a)l This is what the following result tells us. Observe first that a reversal is char-
acterized by the two points where it "cuts" the current permutation, which correspond
each to a reality edge.

THEOREM 7.1 Let (s, t) and (u, v) be two reality edges characterizing a reversal p,
with 0, t) preceding (w, v) in the permutation a. Then RD(ap) differs from RD(a) as
follows.

1. Reality edges (s, t) and (u, v) are replaced by (s, u) and (t, v).

2. Desire edges remain unchanged.
3. The section of the circle going from node t to node u, including these extremities,

in counterclockwise direction, is reversed.

Proof. The transformation on the reality edges is the same as the one discussed in
page 222, and the only difference is that here we are dealing with terminals instead of
labels. In any case, no other reality edges are affected. Desire edges are not changed be-
cause they depend only on the target permutation. Finally, the reversal of terminals is a
direct consequence of the action of a reversal on labels. Figures 7.11 and 7.12 show a
diagram before and after a reversal. •

226 CHAPTER 7 GENOME REARRANGEMENTS

L R

d u "

FIGURE 7.11

Reality and desire diagram before reversal indicated by two
reality lines.

The following result tells us how the number of cycles is affected by a reversal. We
need another important definition before stating and proving it. Let e and / be two reality
edges belonging to the same cycle in RD(a). Think for a moment of both e and / as
being oriented counterclockwise in the diagram. Each one of them induces an orientation
of the common cycle. If the orientations induced by e and / coincide, we say that they
are convergent or that they converge', otherwise we say they are divergent, or that they
diverge.

Every time we need to think of reality edges as directed, we write them as an ordered
pair. The first element is the tail and the second is the head of the edge. The orientation
of reality edges is important to determine good cycles, as we will see below.

THEOREM 7.2 Let p be a reversal acting on two reality edges e and / of RD(a). Then

1. If e and / belong to different cycles, c(ap) = c(a) — 1.

2. If e and / belong to the same cycle and converge, then c(ap) = c(a).

3. If e and / belong to the same cycle and diverge, then c(ctp) = c(a) + 1.

Proof. Figure 7.13 will help to clarify the argument. The new edges in RD(ap) are
indicated by dashed arrows there. Edges e and / are oriented as described above. Notice
that we did not draw the cycles as part of the diagram, because here all that we need from
RD{a) are the orientations on e and / .

As mentioned earlier, only the cycles containing e and / can be affected, as far as
the number of cycles is concerned. The other cycles will not change as connected com-
ponents. Let us then discuss each case separately.

If e and / belong to different cycles, these cycles are joined into a single one (see
Figure 7.13a). Thus, the number of cycles decreases by one. If e and / converge, the new
edges are such that the cycle remains connected (see Figure 7.13b). Thus the number

7.2 ORIENTED BLOCKS 227

FIGURE 7.12
Reality and desire diagram of permutation obtained from

Figure 7.11 after the indicated reversal.

\V V/

(a) (b)

/

(c)

FIGURE 7.13
The effect of a reversal in the cycles of a reality—desire
graph: (a) edges from different cycles, (b) convergent

edges, and (c) divergent edges.

of cycles remains the same. If e and / diverge, the cycle gets broken into two pieces,
causing an increase by one in the number of cycles (see Figure 7.13c). •

Theorem 7.2 has an important consequence: The number of cycles changes by at
most one with each reversal. This leads to another lower bound for the reversal distance.

Suppose that a series of reversals p\, p2,..., pt takes a to /3, that is,

(7.5)

Computing the number of cycles, we get

228 CHAPTER 7 GENOME REARRANGEMENTS

On the other hand, by Theorem 7.2, we have

c(api) - c(a)
- c(api)

c(api...pt) - c(api ... pt-i) < 1.

Adding all this up and canceling terms, we get

n + 1 - c(a) < t.

If pi, p2, . . . , pt is an optimal sorting, then t = d(a) and

rc + 1 -c(a) <d(a). (7.6)

This lower bound is very good, unlike the one derived in Section 7.2.2. For most
oriented permutations, it comes very close to the actual distance. The reason that it does
not always work is explained in the following sections.

7.2.4 INTERLEAVING GRAPH

Based on Theorem 7.2, we can classify the cycles of RD(a) as good or bad in the follow-
ing sense. A cycle is good if it has two divergent reality edges; otherwise it is called bad.
Good cycles can be spotted in the reality and desire diagram because they have at least
two desire edges that cross. We must be careful, however, because not all cycles with
crossing desire edges are good. The presence of crossing edges is just an indication that
the cycle might be good. When in doubt, we should check directly the definition; that is,
we should look for divergent reality edges. The characterization of crossing edges relies
strongly on the arrangement of the diagram around a circle. If we were allowed to draw
the graph any way we wished, we could make edges cross or not at will. But in our dia-
grams desire edges must be chords, and although we sometimes draw them a bit curved
when they would be too close to the circumference, their crossing properties relative to
other chords are conserved. This classification does not apply to cycles with one reality
edge. Such cycles do not represent breakpoints and never need to be touched in sorting
a permutation. Let us cail proper cycles the cycles with at least four edges.

It turns out that if we have only good cycles in a permutation a, then the lower bound
(7.6) is actually an equality, and we can sort a increasing the number of cycles at the rate
of one cycle per reversal. Of course, we must be careful in choosing the reversals. We
will deal with this question later.

Even when there are bad cycles, that is, cycles in which all reality edges induce the
same orientation, it is sometimes possible to sort at the rate of one cycle per reversal. This
happens because a reversal can twist a bad cycle, transforming it into a good one. Thus,
while we are breaking one cycle, we may be twisting another one, so that we always
have a pair of divergent edges to do the next step, until we reach the target permutation.
However, twisting one cycle while breaking another is possible only if the two cycles
are such that some desire edge from one of the cycles crosses some desire edge from the
other one. We say that two cycles in this situation interleave. Notice that we are relying
again on the fact that desire edges are chords on a circle.

7.2 ORIENTED BLOCKS 229

Therefore, it is important to verify which cycles interleave with which other cycles
in RD(a). We construct a new graph called the interleaving graph of a with respect to /3
taking as nodes the proper cycles of RD(o?) and making two nodes adjacent if and only
if the corresponding cycles interleave. This graph is denoted by Ip(a). Apart from the
graph structure, we also label each cycle as good or bad. The connected components of
Ip (a) are classified based on the cycles they contain, as follows. If a component consists
entirely of bad cycles, it is called a bad component. Otherwise, it is a good component.
Thus, a component with at least one good cycle is good.

Examples of good and bad cycles and components are given next. The diagram in
Figure 7.14 shows a permutation with six cycles, each one containing two reality edges
and two desire edges. Cycles C and F are good and all the rest are bad. Good cycles are
represented in gray. The same figure also shows the interleaving graph for this permuta-
tion. There are two good components and one bad component in this case. The only bad
component is the one containing the bad cycles A and E.

FIGURE 7.14
Reality and desire diagram of a permutation. Cycles are
labeled with the letters A through F. The interleaving

graph of this permutation appears on the right, with good
cycles in gray.

Figure 7.15 shows a diagram with two interleaving bad cycles. There are no good
cycles, and this means that no reversal will increase the number of cycles in this case. It
follows that the reversal distance here is strictly greater than the lower bound n+1 —c(a).
Actually, this argument applies to any diagram that contains a bad component. Because
reversals that act on a given cycle A can only twist cycles that interleave with A, a bad
component will remain bad as long as reversals act on cycles of other components. The
only way to sort a bad component is by using a reversal that does not increase the number
of cycles. Thus the lower bound n -f 1 — c(a) will not be tight for permutations with bad
components.

230 CHAPTER 7 GENOME REARRANGEMENTS

L

R

FIGURE 7.15

A diagram with no good cycles.

Another example is presented in Figure 7.16. There we have two proper cycles, B
and C, with B a bad cycle and C a good one.

+3

+1

R

+2

-2

FIGURE 7.16
A diagram with three cycles. Notice that only proper cycles

take part in the interleaving graph.

7.2 ORIENTED BLOCKS ' 231

We now use this last example to illustrate the sorting of a good component. Recall
that we need to choose two divergent edges in the same cycle to define a reversal that
increases the number of cycles. In Figure 7.16 the only good cycle has three reality edges:
e = (L, +3), / = (—3, —4), and g = (—1, +2). Edges / and g converge, so this pair
is not a good choice. Edges e and g diverge, and the reversal defined by them produces
two good components, each containing a single cycle. Edges e and / diverge as well,
and produce a single good component with two cycles. In both cases, we do not create
bad components. Thus, there are two sorting reversals in this example.

We end this section with the following result, which summarizes our conclusions so
far. The proof is simply a repetition of the arguments we used in the illustrative examples.

THEOREM 7.3 A reversal characterized by two divergent edges of the same cycle is
a sorting reversal if and only if its application does not lead to the creation of bad com-
ponents.

This theorem characterizes sorting reversals of a particular kind, but it does not tell
us anything about their existence. In fact, it is true that as long as we have a good cycle,
there will always be a sorting reversal of the kind that increases the number of cycles,
but the proof of this will be omitted.

7.2.5 BAD COMPONENTS

Having sorted all the good components with the methods of Section 7.2.4, we now turn
our attention to the bad ones. Our goal in this section is to classify bad components in a
hierarchy and, based on that, to provide an exact formula for the reversal distance of a
permutation with respect to a target.

Bad components are classified according to Figure 7.17. We first distinguish hurdles
from nonhurdles. Among hurdles, we distinguish super hurdles from single hurdles. We
define all these concepts below.

We say that a component B separates components A and C if all chords in RD(a)
that link a terminal in A to a terminal in C cross a desire edge of B. Desire edges can
be viewed as chords as well, so the usual definition of chord crossing applies here. Fig-
ure 7.18 illustrates this concept. Letters A to F indicate components, all of which are bad.
In this example, B separates A and C. Other examples of separation include: E separates
F and C, B separates F and D. Exercise 10 asks for all the separations in this diagram.

Separation is an important concept, in that a reversal through reality edges in differ-
ent components A and C will result in every component B that separates A and C being
twisted. A bad component becomes good when twisted, but a good component can re-
main good or become bad upon twisting. To avoid complications, we resort to twisting
only when there are no good components around.

A hurdle is a bad component that does not separate any other two bad components. If
a bad component separates others, then it is a nonhurdle. We denote by h(a) the number
of hurdles of a.

We say that a hurdle A protects a nonhurdle B when removal of A would cause B
to become a hurdle. In other words, B is protected by A when every time B separates

232 CHAPTER 7 GENOME REARRANGEMENTS

Bad Components

Nonhurdles Hurdles

Simple Hurdles Super Hurdles

FIGURE 7.17

Classification of bad components.

FIGURE 7.18

A diagram with no good cycles. Bad components that
separate other bad components.

7.2 ORIENTED BLOCKS 233

two bad components, A is one of them. In Figure 7.18, F protects E, and this is the only
case of protection in this diagram.

A hurdle A is called a super hurdle if it protects some nonhurdle B. Otherwise it is
called a simple hurdle. Notice that a hurdle can protect at most one nonhurdle. In Fig-
ure 7.18 the only super hurdle is F. All other hurdles are simple.

A permutation a is called a. fortress when its reality and desire diagram contains an
odd number of hurdles and all of them are super hurdles. Fortresses are permutations that
require one extra reversal to sort, due to their special structure, as we will see below. A
fortress must have at least 24 labels, given that we need at least two labels to make a
proper cycle, four labels to make a bad component, eight labels to make a super hurdle
and its corresponding protected nonhurdle, and at last three such super hurdles and ac-
companying hurdle pairs to make a fortress. Figure 7.19 shows the diagram of such a
smallest possible fortress.

FIGURE 7.19
A smallest possible fortress.

We are now ready to write the exact formula for reversal distance of oriented per-
mutations. We have

d(a) = n + 1 - c(a) + h(a) + (7.7)

where c(a) is the number of cycles (including proper and nonproper), h(a)is the number
of hurdles, and f(a) is 1 or 0 according to a being a fortress or not, respectively.

The term n 4-1 — c(a) accounts for good components and any components that are
initially bad but become good in the process of sorting. The term h (a) is needed because
bad components sometimes need an extra reversal to make them good. We do not need
to include nonhurdles as these will be twisted. Finally, an extra reversal is needed for
fortresses, because a nonhurdle becomes a hurdle at some point in the process.

234 CHAPTER 7 GENOME REARRANGEMENTS

7.2.6 ALGORITHM

In this section we describe an algorithm for sorting an arbitrary oriented permutation,
using the formula for reversal distance presented previously. The algorithm chooses at
each step a sorting reversal, thereby guaranteeing that we reach the target permutation
with the minimum number of reversals.

We will later analyze in detail the complexity of the algorithm. Let us now verify
that it is indeed a correct procedure. Before explaining the algorithm, we define special
kinds of reversals that are used in the sorting procedure.

As we saw, when there are no good cycles, we are forced to use either a reversal
on two convergent edges or a reversal on edges of different cycles. In the first case, the
number of cycles remains constant, whereas in the second case the number of cycles
decreases by one.

When choosing a reversal on convergent edges, it is better to do this in a hurdle
than in a nonhurdle. The reason is that this operation transforms the bad component into
a good one, without modifying the number of cycles. If we get rid of a nonhurdle, we do
not modify the number of hurdles or the fortress status of the current permutation, so the
reversal distance will remain the same according to formula (7.7). It does not help to do
it in a super hurdle either, because then the nonhurdle it protects will become a hurdle,
keeping h(a) constant. Thus, every time we have to use a reversal on convergent edges
we will do so on a simple hurdle. It does not matter which cycle in the simple hurdle we
use — they are all equivalent for this purpose. We call a reversal characterized by reality
edges of the same cycle in a hurdle a hurdle cutting.

Hurdle cutting does not change c(a) and decreases h(a) when the hurdle is simple,
but we have to be careful or f(a) may increase. To eliminate this possibility, we will use
hurdle cutting only when h(a) is odd. Then the remaining hurdles are even in number
and we can rest assured that the resulting permutation is not a fortress. Therefore, hurdle
cutting is a sorting reversal when the hurdle is simple and h(a) is odd.

The other possibility is to use a reversal on edges of different cycles. This will de-
crease the number of cycles, that is, it will increase the term n + 1 — c{a) in the rever-
sal distance, but we can still make progress if we manage to reduce h(a) by two with
this reversal. The only way to do it is by choosing edges in different hurdles. A reversal
characterized by reality edges of different hurdles is called a hurdle merging. Its effect is
that these two hurdles become good components, as well as any nonhurdle that separates
them.

There is the danger of a hurdle merging transforming a nonhurdle into a hurdle (see
Figure 7.20). This happens when the two hurdles being merged "protect" the nonhurdle
in a similar way as a super hurdle protects a nonhurdle. To solve this problem we need
an additional definition. We call two hurdles A and B opposite when we find the same
number of hurdles when walking around the circle counterclockwise from A to B as we
find walking from B to A counterclockwise. Notice that opposite hurdles exist only if
h(a) is even. Choosing opposite hurdles A and B we are safe, because this guarantees
that we are not creating new hurdles when merging A and B, and hence n + 1 — c(a) +
h(a) will decrease by one.

We still have to be careful with f(a). If we have even h (a), there is nothing to worry
about, for hurdles merging on opposite hurdles will then decrease h(a) by exactly two,

7.2 ORIENTED BLOCKS 235

B

C

FIGURE 7,20

Merging hurdles A and B will transform nonhurdle C into
a hurdle. A sorting reversal must merge either A or B with

some hurdle separated from it by C.

keeping it even. If h(a) is odd and there is a simple hurdle, there are no opposite hurdles,
but we apply a sorting hurdle cutting and then we have even h(a). If h(a) is odd and
there are no simple hurdles, we have a fortress, so /(a?) is already equal to 1 and cannot
increase. We conclude that hurdles merging is a sorting reversal as long as we pick two
opposite hurdles to merge.

We summarize all this in the routine Sorting Reversal presented in Figure 7.21. This
function finds a sorting reversal given an oriented permutation a. The complete algo-
rithm to sort by reversals consists merely of a loop in which we call the function and
apply the returned reversal until we reach the target.

Let us now give a rough estimate of the running time in terms of the permutation
size n. We start by analyzing the construction of all structures defined in this section that
are relevant for the algorithm. Constructing the diagram RDp (a) takes linear time, since
all we have to do is to determine the reality and desire edges. Finding the cycles in this
diagram also takes O(n) time. For each cycle we must determine whether it is good or
bad, and this takes O(n) per cycle, for a total of O(n2). Next, we must determine the
interleaving relationships between cycles. This can be done by examining each pair of
desire edges and by storing the interleaving graph as an adjacency matrix in O (n2) time.
Counting the number of good and bad components, nonhurdles, simple hurdles, and su-
per hurdles can all be done in linear time once we have the information on good and
bad cycles (see Exercise 11). Therefore, an overall time bound to construct the needed
structures would be O{n2).

In algorithm Sorting Reversal the most time-consuming part is the one involving
good components. We need to try several reversals and see whether the structures of the

236 CHAPTER 7 GENOME REARRANGEMENTS

Algorithm Sorting Reversal
input: distinct permutations a and J3
output: a sorting reversal for a with target ft
if there is a good component in RDpict) then

pick two divergent edges e, f in this component,
making sure the corresponding reversal does not
create any bad components

return the reversal characterized by e and /
else

if h(a) is even then
return merging of two opposite hurdles

else
if h(a) is odd and there is a simple hurdle

return a reversal cutting this hurdle
else
/ fortress

return merging of any two hurdles

FIGURE 7.21
An algorithm that returns a sorting reversal for a with

target ft, provided a ^ p.

resulting permutation — after the reversal is applied — have some property. Since a
reversal is identified by a pair of edges, we have to try at most O in1) reversals. For each
one, O(n2) time has to be spent checking the resulting permutation. Hence, the worst
case running time estimate for Sorting Reversal is O(n4). We need to call this function
dp (a) times in order to sort a permutation a with respect to /3, so the final time bound is
O(n5). Faster implementations have been proposed (see the bibliographic notes).

UNORIENTED BLOCKS

In this version of the problem the orientation of blocks in the genomes is unknown. All
we know is their ordering. A similar theory can be developed for this case, with some
results analogous to what we had in the oriented case, but with many differences as well.
One very important difference is the fact that the unoriented case results in an NP-hard
problem, whereas the oriented case, as we saw, can be solved in polynomial time.

We start by giving some definitions, most of which are analogous to the ones given
for the oriented case. An unoriented permutation a is a mapping from {l ,2 , . . . ,n}to
a set C of n labels. Usually C is the same as the domain of a. A reversal is defined as
in the case of oriented permutations, except that it does not flip arrows, as there are no
arrows. It just reverses the order of a segment of consecutive labels. Notice that here it
does not make sense to have a unitary reversal, because it does not change a at all.

7.3 UNORIENTED BLOCKS 237

The goal is again to obtain a shortest possible series of reversals that transform a.
into p. If p\, P2, •. •, Pt is a shortest series of reversals such that

then t is the reversal distance of a with respect to p, denoted by dp (a). Sorting reversals
are defined accordingly. The same argument used in the oriented case holds to show that
dp (a) = da(fi). If the target is clear from the context, we drop explicit mention to it.
The identity in this context is the permutation defined by /(/) = i for all / in l..n. The
following example should clarify our discussion.

Example 7.1 Figure 7.22 shows two chromosomes with homologies between blocks
indicated by lines. We assigned labels 1 through 8 to the blocks in the lower chromo-
some, and then transferred the labels to the upper one giving equal labels to homologous
blocks. Thus we obtain a starting permutation in the upper chromosome and our goal is
to sort it into the lower one, the identity. A series of four reversals that sort this permu-
tation is given in Figure 7.23.

4 5 6 '

FIGURE 7.22

Two chromosomes with homologous blocks.

2 1 3 7 5 4 8 6

1 2 3 7 5 4 8 6

1 2 3 4 5 7 8 6

1 2 3 4 5 7 6

1 2 3 4 5 6 7 8

FIGURE 7.23

Sorting permutation 21375486.

Can we obtain a shorter series of reversals? Not in this case. To make a convincing
argument that four reversals are necessary, we look at the breakpoints of this permuta-

238 CHAPTER 7 GENOME REARRANGEMENTS

tion, just as we did in the oriented case. For simplicity, we assume that the target is the
identity permutation for the rest of this chapter.

A breakpoint of an unoriented permutation a is a pair of labels adjacent in a but not
in the target, or, equivalently, adjacent labels that are not consecutive. Breakpoints are to
be considered in the extended version of a, which includes extra left (L) and right (R)
elements. The expression b(a) denotes the number of breakpoints of a. The permutation
in question has seven breakpoints, as shown in Figure 7.24. The only pairs that are not
breakpoints are 2, 1 and 5, 4.

L m 2 ! # 3 # 7 # 5 4 # 8

FIGURE 7.24
Breakpoints of an unoriented permutation indicated

by the symbol •.

A reversal can remove at most two breakpoints, just as with oriented permutations.
Hence, the same bound we had previously for oriented permutations applies here, which
is

d(a) > *£. (7.8)
With this in mind, it now becomes obvious why one cannot sort the permutation a

of Figure 7.24 with less than four reversals. From Equation (7.8) we see that d(ct) >
3.5, but, because d(a) is an integer, this implies d(a) > 4. So, our solution with four
reversals is optimal.

7.3.1 STRIPS

Consider the permutation a displayed below in its extended form, and with breakpoints
marked by bullets:

Observe that between two consecutive breakpoints we have a sequence of consec-
utive labels, either increasing or decreasing. A bit of thought persuades us that this is
actually a general phenomenon. Indeed, if we have two adjacent labels that do not make
a breakpoint, they must be of the form

or

- . . * (* - 1) . . -

In the first case, if x + 1 is not part of a breakpoint, then the label to its right must be
x +2, because its other consecutive label, x, has been used already. Thus, the increasing
sequence extends to the right as far as the next breakpoint or until the end of the permu-

7.3 UNORIENTED BLOCKS 239

tation is reached. A similar argument can be applied to the left of x and also to both sides
of the second case above.

A sequence of consecutive labels surrounded by breakpoints but with no internal
breakpoints is called a strip. We have two kinds of strips, increasing and decreasing ones.
A single label surrounded by breakpoints is itself a strip, and in this case it is both an
increasing and a decreasing strip. Exceptions to this rule are the labels L and R, which
are always considered part of an increasing strip, even if they are all by themselves in
a strip. In fact, we identify these extreme elements into a single one for the purpose of
defining strips. So, for instance, if 0 is involved in a longer increasing strip 0, 1 , . . . and
n + 1 is also part of a longer strip . . . , n, n + 1, we consider these two sequences as a
single strip. They are linked by the common element L = R.

Example 7.2 The following example has five strips: two increasing ones (L = R, 1,
2 and 5, 6), one decreasing strip (8, 7), and two strips that are both increasing and de-
creasing (3 and 4).

L 1 2 8 7 3 5 6 _ 4 _ R

Looking at strips can help us remove breakpoints, as the following result shows.

THEOREM 7.4 If label k belongs to a decreasing strip and k—1 belongs to an increas-
ing strip, then there is a reversal that removes at least one breakpoint.

Proof. Labels k — 1 and k cannot belong to the same strip, because the only strips at
the same time increasing and decreasing are composed of a single element. Therefore,
they belong to different strips. This in turn implies that each one is the last element in its
strip, that is, each one is immediately followed by a breakpoint, as in Figure 7.25.

FIGURE 7.25

Possible relative positions of strips ofk and k — 1.

This figure presents the two possible schemes. The strip of k — 1 may either follow
or precede the strip of k in the permutation. In both cases, the reversal that cuts the two
breakpoints immediately following k — 1 and k brings these two labels side by side, thus
reducing the number of breakpoints by at least one. •

We know that all permutations have at least one increasing strip, the one containing
L (or R). In contrast, a permutation may not have any decreasing strip. If, however, a

,! •

240 CHAPTER 7 GENOME REARRANGEMENTS

permutation does have a decreasing strip, then we can use the preceding result and con-
clude that there is a breakpoint-removing reversal. This happens because when there are
both increasing and decreasing strips, they must "meet" somewhere, in the sense of their
ordering in the identity permutation. Another way of seeing that is by taking the smallest
label belonging to a decreasing strip, and calling it k. Certainly k — 1 belongs to an in-
creasing strip, otherwise k would not be the minimum. A similar result holds with k + 1
substituted for k — 1 in the statement, as the following theorem shows.

THEOREM 7.5 If label k belongs to a decreasing strip and k + 1 belongs to an increas-
ing strip, then there is a reversal that removes at least one breakpoint.

Proof. As in the previous theorem, k and k + 1 cannot be in the same strip. Thus, each
one is the first element of its strip, and is immediately preceded by a breakpoint. The
reversal cutting through these two breakpoints reduces the total number of breakpoints,
since k and k -f- 1 will end up side by side. •

These two results mean that, as long as we have decreasing strips, we can always
reduce the number of breakpoints. Notice that this applies also to single-element strips.
However, sometimes we do not have a decreasing strip. The following result provides
a compensation when we have to create a permutation with no decreasing strips in the
process of sorting.

,! THEOREM 7.6 Let a be a permutation with a decreasing strip. If all reversals that re-
• 11 move breakpoints from a leave no decreasing strips, then there is a reversal that removes

two breakpoints from a.

Proof. Let k be the smallest label involved in a decreasing strip. As we saw in the proof
of Theorem 7.4, there is a reversal p that unites k and k — 1. If k — 1 is to the right of k,
p leaves a decreasing strip, contradicting our hypothesis. So, k—\ must be to the left of
k (see Figure 7.26a).

(a) • • • (* - !) .

!|| (b) • • • . l '" # (/ + 1) • • •
ji'1,

I
j i i j FIGURE 7.26
! i!! Permutations without reversals that leave a
1! i decreasing strip.

l\ Now let / be the largest label involved in a decreasing strip. From Theorem 7.5 there
\ is a reversal a that unites / and / + 1 . If / + 1 is to the left of /, a leaves a decreasing strip,
| so / + 1 must be to the right of / (see Figure 7.26b). Observe that k must be inside the
'•• interval reversed by cr, otherwise o would leave fc's decreasing strip intact. Likewise, /

must belong to the interval of p.

7.3 UNORIENTED BLOCKS 241

We claim that these two intervals are actually the same, that is, p = a. Indeed, if
this is not true, there is a strip that belongs to the interval of only one of these reversals.
Suppose for a moment that this strip belongs to the interval of p. If the strip is increasing,
p would make it into a decreasing strip. If it is decreasing, then it will survive in aa,
because a can only augment it. So, neither case is possible. A similar argument can be
drawn if there is a strip exclusive to a. Thus, the claim holds. But in this case this reversal
removes two breakpoints, because it joins k — 1 with k and I with / + 1. •

7.3.2 ALGORITHM

We are now ready to present an algorithm that sorts a permutation using at most twice as
many reversals as the minimum possible, d(a). This is therefore an approximation algo-
rithm. It relies on the theorems we just saw. The idea behind it is simple. There is a main
loop, where we look at the current permutation and select the best possible reversal to
apply to it, following certain criteria. We then update the current permutation and report
the reversal applied to it. The loop stops when the current permutation is the identity.

The criteria we use to select reversals are based on the previous results. If the cur-
rent permutation has a decreasing strip, we look for a reversal that reduces the number of
breakpoints and leaves a decreasing strip. Good candidates for this are the reversals that
appeared in the proofs of Theorems 7.4, 7.5, and 7.6. If no such reversal exists, we know
there is a reversal that encompasses all the decreasing strips and removes two break-
points. Finally, if the current permutation has no decreasing strips, we select a reversal
that cuts two breakpoints. We know that there are at least two breakpoints, otherwise the
current permutation would be the identity. No permutation has exactly one breakpoint, so
all permutations different from the identity have at least two breakpoints. Furthermore a
reversal that cuts through two breakpoints is guaranteed not to increase the total number
of breakpoints. The resulting algorithm is shown in Figure 7.27.

We know that this algorithm terminates because the number of breakpoints is re-
duced at every iteration, except when we encounter permutations with no decreasing
strips. But this situation cannot happen twice in a row. So we can certainly say that the
number of breakpoints decreases at least one unit every two iterations. In fact, we have a
larger average rate of breakpoints removed per iteration, as the following result shows.

THEOREM 7.7 The number of iterations in algorithm Sorting Unoriented Permuta-
tion (Figure 7.27) is less than or equal to the number of breakpoints in the initial permu-
tation.

Proof. Our goal is to prove that, on average, each iteration removes at least one break-
point. The only difficulty is caused by the reversals chosen when there are no decreas-
ing strips. But each time we reach this situation, the previous iteration just removed two
breakpoints, sustaining the average of at least one breakpoint removed per iteration. This
argument does not work for the first iteration, if we happen to get an initial permutation
with no decreasing strip. But then the very last iteration, that produces the identity, re-
moves two breakpoints and compensates for this special case. •

242 CHAPTER 7 GENOME REARRANGEMENTS

Algorithm Sorting Unoriented Permutation
input: permutation a
output: series of reversals that sort a
list «— empty
while a ^ / do

if a has a decreasing strip then
k <— the smallest label in a decreasing strip
p <— the reversal that cuts after k and after k — 1
if ap has no decreasing strip then

/ +- the largest label in a decreasing strip
p «— the reversal that cuts before / and before / •+-1

else
p <— the reversal that cuts the first two breakpoints

a <- ap
list <- list + p

return list

FIGURE 7.27

An algorithm for sorting unoriented permutation with a
guarantee: The number of reversals used is not greater than

twice the minimum.

SUMMARY

The genetic material of organisms changes as they evolve. In this chapter we were con-
cerned with large transformations at the genome level, as opposed to point mutations at
the sequence level. We concentrated our study in one particularly common such transfor-
mation, the reversal. Given two genomes, we seek the minimum number of reversals that
lead from one to the other. This is the reversal distance between them, and it represents
the most parsimonious explanation of their differences.

Depending on available information on gene orientation, we have two versions of
this problem: one involving oriented permutations and another for the unoriented case. A
remarkable fact is that, while the reversal distance can be computed in polynomial time
for the former, the problem is NP-hard for the latter.

We presented an elegant theory that leads to a polynomial-time algorithm for the
oriented case. This theory relies on simple concepts such as breakpoints and the reality
and desire diagram, as well as on more complex ones such as hurdles and fortresses.

For the unoriented case, we developed a number of tools that provide important in-
formation on the actual distance, then presented an approximation algorithm that gener-
ates a series of reversals at most twice as long as the optimal one.

EXERCISES 243

1. Consider the following piece of DNA

5' • • • CCTCACTAGCGACCAGACTATAAATTACGTGACCTGT • • • 3'
2>f • • • GGAGTGATCGCTGGTCTGATATTTAATGCACTGGACA • • • 5'

and the "genes" a = GGTCA, b — AATTAC, c = AGTCTGG, and d = CACTAG. Find
out where these genes occur in the DNA piece and write a permutation over {a, b, c, d}
describing their position and orientation.

2. Find the breakpoints of t r b ~t a *e~ with respect to target ~a* b ~t a it.

3. We have two permutations a = jUDCDpa and j$ =#DDDpn. Someone erased the la-
bels, leaving only the breakpoints of a with respect to p and of ft with respect to a. Can
you write oriented labels in the empty boxes so that the breakpoints are as assigned?

4. Reconstruct a and /3 knowing that RDp (a) has the following edges.
Reality: (L, - 3) , (- 1 , - 2) , (R, +1), (+2, +3).
Desire: (L, - 1) , (-2 , +1), (R, +3), (- 3 , +2).

5. Consider oriented permutations. Show a reversal that removes two breakpoints but is
not a sorting reversal.

6. Consider oriented permutations. Show a reversal that increases the number of cycles
in RD(a) but is not a sorting reversal.

7. Prove the following statement: An oriented permutation admits a reversal that increases
the number of cycles if and only if it has at least one label with a right-to-left arrow.
Assume that the target is the identity.

8. Show that every desire edge which does not coincide with a reality edge must cross
some other desire edge in a reality and desire diagram.

9. Prove that bp(a)/2 < n + 1 — cp(a) for any oriented permutation a and target p.

10. Find all triples XYZ of bad component such that Y separates X and Z in the diagram
of Figure 7.18.

11. Show how to compute the number of nonhurdles, simple hurdles, and super hurdles in
O(n) time given information on good and bad cycles and the interleaving graph.

12. Given an oriented permutation and a target, can you find all sorting reversals for them?

13. Prove that any unoriented permutation over n elements can be sorted with at most n — 1
reversals.

14. Sort by reversals all the 24 unoriented permutations over {1, 2, 3, 4}. How many need
three reversals?

15. Find an unoriented permutation that cannot be sorted optimally solely with reversals
that cut breakpoints.

16. A knot of an unoriented permutation a over [l..n] is an interval [i.J] such that i < j
and i < a(k) < j for every k e [i.J]. Note that [l..n] is a knot of every permutation.
Prove that if [1../] is a knot of a for some / < n, then d(a) < n — 2.

17. A Golan permutation over [l..w] is a permutation a with [l..n] as its only knot and
such that |a(/) - z| < 2 for all / e [l..n].

244 CHAPTER 7 GENOME REARRANGEMENTS

18.

19.

a. Show that the inverse of a Golan permutation is a Golan permutation.

b. Show that for every n > 3 there are only two Golan permutations over [l..w], one
being the inverse of the other.

c. Show that b{a) = n + 1 if a is a Golan permutation and n > 4.

Show that a Golan permutation a over [1 ..n] satisfies d(a) = n — 1.

Show that the Golan permutations are the only permutations over [l..w] with reversal
distance equal to n — 1.

BIBLIOGRAPHIC NOTES

Most of this chapter is based on the work by Bafna and Pevzner [18], Hannenhalli and
Pevzner [87], and Kececioglu and Sankoff [116]. With respect to these papers you will
notice a number of differences in our notation, particularly the use of arrows instead of
plus and minus signs and the absence of padding in our treatment. We also use the terms
unoriented and oriented instead of their unsigned and signed to refer to permutations.

Berman and Hannenhalli [23] gave a more efficient implementation for algorithm
Sorting Reversal of Figure 7.21. Hannenhalli and Pevzner [88] presented a polynomial
time solution for the problem of genome rearrangements involving sets of chromosomes.
Ferreti, Nadeau, and Sankoff [62] studied the problem of inferring evolution based on
information about which genes occur in which chromosomes.

An analysis of genomic evolution is given by Sankoff [167]. Watterson, Ewens, and
Hall [205] examined the problem of sorting circular permutations and posed a number
of conjectures.

Biology papers in which genome rearrangements appear implicitly or explicitly in-
clude Koonin and Dolja's study of RNA viruses [117]; Palmer's [148] and Palmer, Os-
orio, and Thompson's [150] studies of chloroplast DNA; Fauron and Havlik's compari-
son of maize mitochondrial genomes [58]; Palmer and Herbon's analysis of several mi-
tochondrial genomes in the Brassica family, which includes turnip and cabbage [149];
and Hoffmann, Boore, and Brown's study of a mollusk's mitochondrial DNA [95].

Caprara, Lancia, and Ng [31] propose an algorithm to sort unoriented permutations
that achieves good performance in practice. Caprara [30] showed recently that this prob-
lem is NP-hard. Gates (of Microsoft fame) and Papadimitriou [69] worked on a related
problem in which sorting must be done using prefix reversals only.

8
MOLECULAR STRUCTURE PREDICTION

Up to now we have studied biomolecules considering only their
basic, linear sequence. But as we saw in Chapter 1 a biomolecule
such as RNA or a protein is actually a three-dimensional ob-
ject. Knowing a biomolecule's precise spatial structure is one of
the foremost goals of molecular biology, for it is this structure
that determines the molecule's function. However, determining
the three-dimensional structures of proteins and RNA using tech-
niques such as x-ray crystallography and nuclear magnetic reso-
nance has proved to be difficult, costly, and not always feasible.
This presents a contrast to the ease with which it is possible to
determine the primary sequence of these molecules (the bases in
the case of the RNA and amino acids in the case of proteins). As
a result, there currently exists a gap between the number of pro-
teins for which the sequence is known (in the thousands) and the
number for which the three-dimensional structure is known also
(in the hundreds); this gap has been widening every year. Such
a situation has created an intense search for structure prediction
methods: methods that can predict the three-dimensional struc-
ture of a molecule based on its primary sequence, properties of
its ranging from molecular dynamics simulation to neural net pro-
grams. In this book, however, we are primarily interested in al-
gorithmic techniques. Such techniques apparently are not yet ap-
plicable in general to molecule structure prediction, since they
have to rely on reasonably accurate models of the molecule fold-
ing process; no such general models as yet exist. Nevertheless,
for special cases an algorithmic formulation can be given, and its
results have been useful in practice for a number of years. Such
is the case of RNA structure prediction, which we address in the
next section. We then discuss the protein folding problem, the so-
lution of which is a sort of "holy grail" in molecular biology. We
describe the problem and present one algorithmic approach that
has shown great promise.

245

246 CHAPTER 8 MOLECULAR STRUCTURE PREDICTION

RNA SECONDARY STRUCTURE PREDICTION

We recall from Chapter 1 that an RNA molecule is a single-stranded chain of the nu-
cleotides A, C, G, U. The fact that RNA is single-stranded makes all the difference with
respect to DNA: A nucleotide in one part of the molecule can base-pair with a com-
plementary nucleotide in another part, and thus the molecule folds. Furthermore, the
nucleotide sequence uniquely determines the way the molecule folds, and this is why
we can attempt to predict RNA's structure by analyzing its sequence. However, the real
three-dimensional structure is still too complicated for current prediction methods; in-
stead, we concentrate on secondary structure prediction, which simply tries to determine
which bases pair to which.

We consider an RNA molecule as a string of n characters R — r\ r2 . . . rn such that
r; € {A, C, G, U}. Typically n is in the hundreds, but could also be in the thousands. The
secondary structure of the molecule is a collection S of pairs (r,-, r,) of bases such that
1 < / < j < n. If (n, ry) e S, in principle we should require that rf- be a complement to
rj and that j — i > r, for t a certain threshold (because it is known that an RNA molecule
does not fold too sharply on itself). However, the prediction method to be used is based
on the computation of minimum free-energy configurations; thus we can avoid the situa-
tions above simply by imposing large free-energies on the corresponding configurations.

There is one natural configuration that we shall exclude: the so-called knots. A knot
exists when (r,, r,-) € S and (r&, 77) € S, and i < k < j < /. Without knots, S becomes
a planar graph. Knots do occur in RNA molecules but their exclusion simplifies the prob-
lem. A better reason for excluding knots is that secondary structure predictions are used
to infer RNA three-dimensional structures, and knots can be inferred at that stage as well.

Having laid the foundations, we now ask: What kind of algorithm could possibly be
proposed to predict the secondary structure of an RNA molecule? Before we answer this
question, let us examine the problem more closely. We have mentioned above that we
will compute minimum free-energy structures. For this we need some way to attribute
energy values to a given structure. We will simply assume that there exists one or more
empirically derived functions that accomplish this task for us. Thus the simplest of all
algorithms would be this: Enumerate all possible structures, and choose the one with
lowest free energy. Unfortunately, the number of possible structures is exponential in
the number of bases, and such an algorithm would not be practical for large molecules
(but it is worthwhile to note that some researchers have actually developed and used such
enumerative algorithms). Therefore we need to look at other, more efficient ways of de-
termining the lowest free-energy structure. We present in what follows two formulations
that yield simple dynamic programming algorithms for attaining this objective.

Independent Base Pairs

The first formulation we describe for finding a structure of lowest free-energy makes the
assumption that in any RNA structure the energy of a base pair is independent of all the
others. This is a gross approximation, but it is useful and will help us to understand the

8.1 RNA SECONDARY STRUCTURE PREDICTION 247

foundations of more sophisticated algorithms. With such an assumption, the total free-
energy E of a structure S is given by

where a(77, r ;) gives the free energy of base pair (r,-, r7). We adopt the convention that
<*0*i i rj) < 0» if* # 7» a n (i of(r/, r ;) = 0, if / = 7.

The assumption that base-pair energies are independent provides the key to an ef-
ficient algorithm, since we can use solutions for smaller strings in determining the so-
lutions for larger strings. Suppose for example that we want to determine a secondary
structure Sij of minimum energy for string Ritj = r/r/+i . ..rj. Consider now what can
happen to base rj. Either it forms a pair with some base between / and j or it does not.
If it does not, then E(Sjj) = E(Stj-i). If r7- is base-paired with r,-, then we can say that
E(Sfj) = a(r/, rj) + E(Si+ij-\). Finally, it could be that r7- is base-paired with some
rjfc, for i < k < j . In this case we can split the string in two: /?/,*_! and R^j, and say that
E(S(j) = E(Si,k-i) + E(Skj), for some k. (We can do this because we have assumed
there are no knots.) The problem here is that we do not know which k gives the lowest
overall energy, so we should actually have E(Sij) = min{is (£/,*_ 1) + E(Skj)}, where
k should vary between / and j . What this all means is that we can compute the value of
E(Sij) based on values for shorter strings. This situation is familiar to us: It means we
can use a dynamic programming technique to solve the problem. In particular, we can
write the above equations in the following way, which is very similar to the recurrence
relations seen in Chapter 3:

k<jm
 (8 ' 2)

(The case in which j is not base-paired is subsumed by the second case above, be-
cause when k = j we have E(Sjj) = 0.) The algorithm to obtain E(S\,n) is very similar
to those seen in Section 3.2 (just fill in values inannxn matrix) and will not be repeated
here. But notice that, as in Section 3.2, solving the recurrence provides us with a value
for the lowest free-energy; the actual structure must be found by some postprocessing on
the dynamic programming matrix, just as we did to get an alignment from the sequence
comparison matrix.

Let us compute the running time of the above algorithm. In the basic sequence com-
parison algorithm we saw in Section 3.2 we spend constant time per element of the ma-
trix; hence the running time is O(n2), for ann xn matrix. Here things are a little differ-
ent because we have to compute sums using a variable number of previous entries of the
matrix for every pair /, j , as indicated in Expression (8.2). The exact overall number of
sums is given by

- * - 1) ' (8 3)

which is O(n3), and this is the algorithm's running time.

248 CHAPTER 8 MOLECULAR STRUCTURE PREDICTION

Structures with Loops

Now let us relax the independence assumption to include the fact that the free energy
of a base pair depends on adjacent base pairs. This relaxation leads us to consider RNA
structures called loops. Suppose (r;, r7) is a base pair in S, and consider positions u, u,
and w such that i<u<v<w<j. We say that base rv is accessible from (77, r7) if
(rw, rw) is not a base pair in S for any u and to. A loop is the set of all bases accessible
from a base pair (77, r ;). Figure 8.1 shows various kinds of loops. The assumption that
no knots occur implies that any structure S decomposes string R into disjoint loops.

The size of a loop is the number of unpaired bases it contains. We generalize the
concept of loop to include base pairs as loops of size zero. When several base pairs occur
next to each other, we get the so-called "stacked pairs" or "helical regions." Thus the
number of loops in a structure is given by the number of base pairs it contains.

An example of the dependence of free energy on the presence or absence of certain
structures comes from the fact that helical regions have negative (stabilizing) free energy,
whereas loops of size greater than zero have positive (destabilizing) energy. This has
the following consequence: When (77, r7) is the base pair that closes a loop, structure
$i+ify_i may not be the minimum free energy for substring Ri+\j-i. In other words,
it could be that there exists structure S'i+l j _ x that has lower energy than S,-+ij_i but
when we add the energy of pair (77, r,-) to the energy St+ij-i, the stabilizing energy of
the pair more than makes up for the difference. This means that we have to formulate
new recurrence relations in addition to those in (8.2).

These recurrence relations still contain some simplifications with respect to a fully
general loop model. These simplifications are necessary to make the dynamic program-
ming algorithm more efficient. It is possible to show that a general model leads to an
algorithm that runs in exponential time.

The first simplification is that we will disregard the free energies of bases that do
not belong to any loops. A second simplification is that in order to obtain the overall
free energy of a structure we can simply add the energy of its components. Finally, we
will assume we have to deal only with the kinds of loops depicted in Figure 8.1. Let us
see the details of this.

We want to determine Stj for string Ritj. First suppose 77 is not base-paired. Then
E(Stj) = E (Si+ij). Suppose now r;- is not base-paired. Similarly, E(Sit;) = E(Sij-\).
Now suppose 77 and r;- are base-paired, but not with each other. Then we can say (as we
did for the situation without loops above) that E(Sij) = min{.E(S^*) -f E(Sk+ij)}, for
/ < k < j , where T> is any base between the pair of i and the pair of j . The final case
happens when (77, r7) is a base pair. This means that there may be one or more loops
between / and j . Denote by Ltj the minimum free-energy structure in this case (to be
detailed below). Writing up the full recurrence relation we get:

= min

E(Si+lJ)

min{E(Si k) + E(Sk+i j)} for i <k (8 4)

Now let us detail the case of Ltj. We have to account for the various kinds of loops
shown in Figure 8.1, and for that we need to express free-energy values. As before, we
will assume that experimental procedures have determined what these values are and that

8.1 RNA SECONDARY STRUCTURE PREDICTION 249

(a)

7 - 1

(c)

7 - 1

FIGURE 8.1
RNA secondary structures without knots. The bullets are
ribonucleotides and the horizontal double lines show the
base pairs, (a) hairpin loop; (b) bulge on i; (c) interior

loop; (d) helical region. (Adaptedfrom [105].)

250 CHAPTER 8 MOLECULAR STRUCTURE PREDICTION

they are available to us in the form of functions. Again, a(77, rj) gives the free energy
of base pair (77, rj). In addition, we have these other free-energy functions:

= destabilizing free energy of a hairpin loop with size k

rj = stabilizing free energy of adjacent base pairs

fi(k) = destabilizing free energy of a bulge of size k

y (k) = destabilizing free energy of an interior loop of size k

With these functions we can write the following recurrence relations for

aiji, rj) 4- £(y — / — 1), if Ltj is a hairpin loop (8.5)

afo > rj) -f 77 + E(Si+ij-i), if Ltj is a helical region (8.6)

min{a(rh r,-) + 0(k) + E(Si+k+ij-i)}, if Ljj is a bulge on i (8.7)

mm{a(n, rj) + /3(k) -f E(Si+u-.k-i)}, if Litj is a bulge on j (8.8)

min {a(r/, 77) -\-yiki -f &2) 4- 2s(«S/+i+*lf</_i_#2)}, if Ltj is an interior loop (8.9)

The value of E(Ltj) is found by taking the minimum over all values computed us-
ing the recurrences above. These equations, together with Equation (8.4) give us all the
necessary information to set up a familiar matrix-based dynamic programming algorithm
for predicting RNA secondary structure with loops. The schematic matrix layout in Fig-
ure 8.2 shows which regions of the matrix must have their values known before we can
compute E(Lij), for each of the recurrences involved.

Because the most complicated part of the algorithm is the computation of the re-
currence relations for E(L(j), let us now examine these relations in more detail. The
simplest cases happen when Ltj is a helical region or hairpin loop. In these cases we
spend constant time per (/, j) pair, and thus the running time is O(n2). In the case of
bulges, the parameter k ranges between 1 and j — i. Therefore this case is similar to the
computation of minimum energies without loops, and the running time is O(n3) (see
Equation 8.3). The final case is that of interior loops. Because we are dealing with the
two parameters k\ and &2> in this case we have to look at previous values of E which
appear in the submatrix delimited by / and j . Intuitively, this means that for every pair
i, j we have to look at a submatrix having as many as O(n2) elements, giving a total of
O(n4). More formally, we have:

E E
for some constant c. The value of this constant is given by the time it takes to compute
a(n, rj) + y(k\ + k2) + E(Si+i+kltj-i-k2) for specific values of/, j , k\, and k2. I

\l

8.1 RNA SECONDARY STRUCTURE PREDICTION 251

J

\

1 \ . (8.8)

\ . (8.9)

(8.6)

(8.7)

a, j)

FIGURE 8.2

Matrix layout for computation of recurrence
relations 8.6-8.9. The equation numbers label the matrix
regions where previous values ofE(Ljj) must be known.

Improving the Efficiency of Interior
Loop Computation

It is thus clear that in the framework presented, the computation of interior loops is the
most expensive. We now show how its running time can be lowered to O(n3). This can
be done using the fact that along diagonals the size of a loop is constant. Let us give an
example.

The parameter for the y function is the size of the interior loop, or k\ -f k2i as above.
The constraints on k\ and k2 are that 2 < k\ + k2 < j — i — 2 — l^n, where l^n is
the minimum loop size. Suppose we want to compute E(L^is) and that /min = 1. Then
2 < k\ + k2 < 11. We could have then at a certain point k\ — 2 and k2 = 6, meaning
that we need to evaluate y(S) and E(S\o,u), and at another point k\ = 5 and k2 = 3,
meaning that we have to evaluate y(8) again and E(Sj^i). What is happening is that
(10, 14) and (7, 11) lie along the same diagonal, and there loop sizes are constant.

This suggests the following trick. We store for each pair (/, j) a vector Vjj indexed
by all possible loop sizes. There are at most 2n — 1 diagonals, so this vector has at most

252 CHAPTER 8 MOLECULAR STRUCTURE PREDICTION

that many elements. In each element we store the minimum value found for each diago-
nal. Then, when we have to evaluate E(L(j) for an interior loop and given pair (i, j), we
need only compute the minimum of {a(rt, r,-) + y (/) + Vtj [/]}, for all possible values of
/, the loop size. This will take O(n) per pair (z, j), giving a total of <9(n3). For this trick
to work we must have an auxiliary matrix to store all V(j vectors, and we have to update
the vectors as we scan the original matrix M. Fortunately we can do this incrementally.
For example, when we move from row i to row i + 1, to each element in row / + 1 there
corresponds an element (a diagonal in M) from Vjj. The elements of Vi+\j can be ob-
tained by comparing the elements in row / + 1 of M to elements in Vfj, which also takes
O(n). Hence we also spend O(n?) overall updating the V/j vectors. What this all means
is that we can shave a factor of n from the running time for interior loop computation,
but we double the storage space.

This running time can be further improved if we look carefully at the kinds of free-
energy functions we have, similarly to the improvements obtained in Chapter 3 for gap-
penalty functions. We will not describe these improvements, given that the resulting al-
gorithms are much more complicated than those seen so far; some pointers are given
in the bibliographic notes. We remark that with linear destabilizing functions the time
above can be improved to O{n2) (for interior loops and bulges). Experiments, however,
have shown that destabilizing functions grow logarithmically.

The algorithms that we have described for RNA structure prediction have one im-
portant flaw: They predict only one structure. In practice we would like to have a set of
possible solutions, some of them possibly suboptimal in terms of free energy. The rea-
son is the same as in other problems considered in this book: Given the abstractions in
the model used to set up the algorithm, the optimal solution (or any optimal solution)
is not necessarily the true structure. For this reason it would be important to extend the
above algorithms to find optimal as well as suboptimal solutions within a certain energy
threshold. A reference is given in the bibliographic notes regarding this extension.

THE PROTEIN FOLDING PROBLEM

We recall that in the protein folding problem the main goal is to determine the three-
dimensional structure of a protein based on its amino acid sequence. This problem has
been intensely researched since the early 1950s, and as yet no completely satisfactory
solution has been found. There is a vast body of work on this topic, and this section is
intended to be a very brief introduction. In the next section we present one particular
approach to the problem, among the many that exist. We believe that these two sections
contain enough material to give the reader a good start on the subject. References for
further reading are given at the end of the chapter.

An important assumption of all protein folding prediction methods is that the amino
acid sequence completely and uniquely determines the folding. This assumption is sup-
ported by the following experimental evidence. If we unfold a protein in vitro, such that
no other substances are present, and then release it, the protein immediately folds back to

8.2 THE PROTEIN FOLDING PROBLEM 253

the same three-dimensional structure it had before. The folding process takes less than a
second. Thus it appears that all information necessary for the protein to achieve its "na-
tive" structure is contained in its amino acid sequence. (This is not true of all proteins
because there are some that need "auxiliary molecules" to fold.)

Before discussing the difficulties of protein folding prediction, we briefly describe
the main facts about protein three-dimensional structure. Recall from Chapter 1 that pro-
teins have several levels of three-dimensional structure. Above the primary linear struc-
ture are the secondary structures, of which there are basically three kinds: the a-helices,
the f$-sheets, and structures that are neither helices nor sheets, called loops.

An a-helix is a simple helix having on average 10 residues, or three turns of the he-
lix; some helices can have as many as 40 residues. Research has shown that some amino
acids appear more frequently on helices than other amino acids, a fact that helps in sec-
ondary structure prediction but is not strong enough to allow accurate results.

A J3-sheet consists of the binding between several sections of the amino acid se-
quence. Each participating section is called a fi -strand and has generally between 5 and
10 residues. The strands become adjacent to each other, forming a kind of twisted sheet.
Certain amino acids show a preference for being in /?-strands, but again in this case these
preferences are not so positive as to allow accurate prediction.

Loops are the sections of the sequence that connect the other two kinds of secondary
structure. In contrast to helices and sheets, loops are not regular structures, both in shape
and in size. In general, loops are outside a folded protein, whereas the other structures
form the protein core. Proteins that are evolutionary related usually have the same he-
lices and sheets, but may have very different loop structures. In this case we say that core
segments are conserved. The concept of a core is very important for the next section.

Proteins have also higher-level structures. These are called motifs and domains. A
motif is a simple combination of a few secondary structures that appears in several differ-
ent proteins. An example of a motif is the helix-loop-helix. Research has shown that this
motif is used as a binding site for calcium atoms, so this structure has a clear function.
Other motifs appear to play no role at all in protein function. A domain is a more complex
combination of secondary structures that by definition has a very specific function, and
therefore contains an active site. An active site is the section of the protein where some
binding to an external molecule can take place. A protein may have only one domain, or
may contain several. All of them taken together form the protein's tertiary structure.

We can now state the folding problem in more detail. Given the amino acid sequence
of a protein, we would like to process it and determine where exactly all of its a-helices,
/^-sheets, and loops are, and how they arrange themselves in motifs and domains. Given
enough and reliable chemical and physical information about the each component amino
acid, in principle it should be possible to compute the free energy of foldings. A predic-
tion method could simply enumerate all possible foldings, compute the free energy of
each, and choose the one with minimum free energy (assuming that such a folding is the
protein's native structure, which is not an established fact). Now let us have an idea of
how many possible foldings a typical protein can achieve. Recall from Section 1.2 that
proteins can fold thanks in large part to the angles (p and \/f between the alpha carbon and
neighboring atoms. Experiments have shown that these angles can assume only a few
values independently of each other; for each pair of values in each residue we would
have one configuration. Let us suppose that each angle can assume only three values.
Therefore each residue can be in only one of nine configurations. For a protein with 100

254 CHAPTER 8 MOLECULAR STRUCTURE PREDICTION

residues, which can be considered small, there are thus 9100 possible configurations, an
astronomical number that rules out enumerative algorithms.

To make matters worse, even if researchers agree that the native structure is the one
with minimum free energy, there is no agreement on how to compute the energy of a
configuration. There are far too many factors to take into account, such as shape, size,
and polarity of the various component molecules, the relative strength of interactions at
the molecular level, and so on. From current knowledge it is possible only to formulate
some general rules, such as the requirement that hydrophobic amino acids stay "inside"
the protein and hydrophilic amino acids stay "outside" the protein, in the case of proteins
in solution (water is the universal solvent found both inside and outside cells).

Such a state of affairs has led researchers to concentrate on prediction methods for
protein secondary structures. The observation above about the difficulties in assigning
free-energy values to tertiary structures applies to secondary structures as well. Hence,
no general and reliable dynamic programming approach is known for the prediction of
protein secondary structure. What we find in practice is the use of an assortment of meth-
ods, ranging from programs based on neural nets to pattern-recognition methods based
on statistical properties of residues in proteins with known structure. However, these
methods are still not as reliable as scientist want them to be. For this reason still other
techniques have been developed to help cope with the problem, and it is one such tech-
nique that is the topic of the next section.

PROTEIN THREADING

An early method used for secondary structure prediction was based on the idea that simi-
lar sequences should have similar structures. If we know the structure of protein A (from
x-ray crystallography, say) and protein B is very similar to it at the sequence level, it
seems reasonable to assume that #'s structures will be the same or nearly the same as
A's. Unfortunately this is not true in general. Similar proteins at the sequence level may
have very different secondary structures. On the other hand it has been observed that
certain proteins that are very different at the sequence level are structurally related in
the following sense: Although they have different kinds of loops, they have very simi-
lar cores. These observations have led researchers to propose the inverse protein folding
problem. Instead of trying to predict the structure from the sequence, we try to fit a known
structure to a sequence.

To fit a structure to a sequence, we have to be more precise about what we mean by
"structure." In this section, structure actually means structural model, and such a model
can be obtained in the following way. Given a protein whose structure is known, we ob-
tain a structural model by replacing amino acids by place-holders, but keeping associated
with each place-holder some basic properties of the original amino acid. These properties
can vary depending on the model adopted, but they should retain the fact that the origi-
nal amino acid was in an a -helix or /?-strand, or in a loop, and reflect spatial constraints
of the structure such as distances to other amino acids, how much inside or outside the

8.3 PROTEIN THREADING 255

whole structure the place-holder is, and so on. Here we will not give details of such mod-
els but will assume instead that such a characterization of local structure is possible.

With a given structural model we can now get a protein with unknown structure and
try to align it to the model, taking into consideration the properties recorded for that par-
ticular model. This special kind of alignment is known as protein threading. As we will
see this technique results in a precise combinatorial optimization problem, since there
can be many ways of threading one protein sequence into a model. As was the case with
many other problems in this book, this one turns out to be NP-hard, too. However, the
problem can be cast in such a way that a well-known technique for handling NP-hard
problems can be used. The success obtained with this approach is our motivation for
this section. We now proceed to describe the problem in more detail.

We asssume that the input is given in the following way:

1. A protein sequence A with n amino acids at.

2. A core structural model C, with m core segments C;. For this model we have the
following information:

a. The length cf- of each core segment.

b. Core segments C,- and C/+i are connected by loop region A.,-, and for each A;
we know its maximum (/™ax) and minimum (/™in) lengths.

c. The local structural environment for each amino acid position in the model
(chemical properties, spatial constraints, etc).

3. A score function to evaluate a given threading.

The desired output is a set T = {t\, t>i,..., tm] of integers, such that the value of tt

indicates what amino acid from A occupies the first position from core segment i. It is
thus clear that a threading is an alignment between the sequence and the core structural
model.

In this formulation the score function obviously plays a key role. Given a threading
and local structure environments, the score function should be able to evaluate sequence
amino acids individually in their alloted positions in the model, as well as the resulting
interactions between the various amino acids. Interactions can potentially be between
pairs of amino acids, triples, quadruples, and so on.

If we ignore interactions between amino acids, while allowing variable-length loop
regions, the problem can be solved by standard dynamic programming techniques. If we
allow pairwise interactions, the problem becomes NP-hard (see the bibliographic notes).
Instead of oversimplifying in order to fall back on the (by now) familiar dynamic pro-
gramming algorithms, here we will allow pairwise interactions and show how to solve
the problem exactly with a standard technique for handling NP-hard problems. This tech-
nique is known as branch-and-bound. We now digress in order to explain this technique
and then we will see how it can be applied to solve the threading problem with pairwise
interactions.

Branch-and-Bound

In a combinatorial optimization problem we want to find an optimum solution among
many possibilities in the solution space. The optimum refers to the maximum (or min-

256 CHAPTER 8 MOLECULAR STRUCTURE PREDICTION

imum) value of some function / that can be computed for each candidate solution. For
most problems the solution space is exponentially large, although for problems in class
P the optimum can be found in polynomial time. In the case of NP-hard problems, how-
ever, no algorithm is known that can search the solution space and find the optimum
in polynomial time. Therefore the only alternative to obtain the optimum solution for
sure is to enumerate and evaluate each possible solution one by one and choose the best.
However, we can try to speed up this process a bit by applying the following technique.

First, it should be possible to separate the solution space into subspaces according to
some constraints. For example, given solution space S, we could perhaps partition it into
two subsets S\ and S2. S\ could consist of all the solutions that have a certain property,
and 62 all of those that do not. This is the branching part of branch-and-bound.

Second, it should be possible to obtain a bound on the value of the optimization
function / for all candidate solutions in a set. This bound can be used to eliminate many
solutions from consideration in the following way. Suppose that we have a minimization
problem and that we already know the value f(s) of some candidate solution s. Now
consider a subset X of the solution space, and suppose that we can obtain a lower bound
/ on the value of any solution from X. Finally suppose that / > f(s). This means that
any solution from X cannot hope to improve on the solution we already have, and should
therefore be discarded. If on the other hand / < f(s), we should explore set X, because
the optimum may lie there.

Thus we see that the key ingredients in a branch-and-bound minimization algorithm
are a rule to split the solution space in some efficient way and a lower bound on the value
of the optimization function for candidate solutions. The lower bound should be as close
to the actual function value as possible, so that we can find the optimum faster than with
a weaker lower bound; it should also be efficient to compute. However, we should keep
in mind that the worst-case running time of branch-and-bound algorithms applied to NP-
hard problems is always exponential.

We will now apply these concepts to the protein threading problem. We first must
define the possible solutions, and for this we must list the constraints faced by each pos-
sible threading. The spacing constraints can be given by the following inequalities:

1 + £ > ; + /fn) < ti < n + 1 - Y,(CJ + /fn)-

Another constraint comes from the fact that any threading should obey the order of core
segments in the model. (This could be relaxed in a more general approach.) This results
in:

ti + a + lfn < ff+i < tt + a + if**.

These constraints imply that each tt must lie in an interval given by values b[and ei.
Thus a set of possible threadings can be expressed by a collection of intervals, one for
each of the m J/'s. Figure 8.3 illustrates this.

The branching part of the algorithm can now be explained. Choose one core seg-
ment, say /, and a position w, inside the interval [&;, e{\. Split the solution set into three
sets: one in which the new interval for U will be [&/, w/ — 1], another in which the new
interval for tt will be [ut + 1, e{\, and another in which tt is forced to be equal to w/. We
have not specified which core segment to choose nor which position inside the segment's
interval. These choices can be made based on considerations such as interval size.

8.3 PROTEIN THREADING 257

FIGURE 8.3
Sets of threadings. Core segments are the polygons labeled
by i — 1, i, and i -f 1. Between them are loop regions. The
line at the bottom is the sequence being threaded, and the

dashed arrows show the intervals where the first position of
each core segment can assume values in the sequence,

hence depicting sets of possible threadings.

We now turn to the lower bound. The score function can be given by the following
equation, assuming T is some threading:

/CO - d, j , ti9tj). (8.10)

Note that the score function deals with core segments rather than individual amino
acids. The reason is that the value of *,- determines the position of all amino acids from
sequence A in core segment i, hence the pair of arguments (/, t{) encapsulates all that is
happening with segment /. The first term in the right-hand side above gives the contri-
bution of each individual core segment to the total, whereas the second term gives the
contribution of pairs of core segments. Functions g\ and #2 are part of the input.

Given a set of threadings T, a simple lower bound is given by:

nun f(T) = nun g x (/ , /,-) - f] P g 2 (i , j \ U , t j) \
L j>i J

min gi(i, x) +
bi<x<ei

min g2(i,j,y,z)
bi<y<ei

(8.11)

(8.12)

258 CHAPTER 8 MOLECULAR STRUCTURE PREDICTION

This lower bound is obtained by summing up the lower bounds on each term sep-
arately. A stronger lower bound is possible (see Exercise 7). It is desirable to obtain a
lower bound that corresponds to one particular threading, because this threading can then
be used in the splitting process. Suppose threading T currently has the lowest value for
the lower bound. We choose one core segment Q from it and split it at point ut given by
the threading. The core segment chosen can be the one with the largest interval size. A
description of the algorithm is given in Figure 8.4.

Algorithm Protein Threading
input: protein sequence, core structural model, score functions,

lower bound function / ^
output: a threading T
T <- all possible threadings
lb <- flb(T)
II We use a priority queue Q to keep threadings
II In Q each element is a set of threadings and its lower bound
Insert(Q,T,lb)
while TRUE do

/ We remove a candidate set of threadings from Q
% «- RemoveMin(Q)
if\Tc\ = 1 then

return Tc

I The only remaining threading is the solution
else

Spiit(Tc)
for each new subset % from % do

Insert(Q,Ti,lbi)

FIGURE 8.4

The branch-and-boundprotein threading algorithm.

This finishes the description of branch-and-bound applied to protein threading. We
close this section with a few comments regarding the usage of such a technique. First,
this is a recent development and must therefore undergo many tests. These tests can be
roughly divided in three categories. In the first, after a structural model is obtained from
a structure, we perform a self-threading; that is, we thread the very protein sequence
that gave rise to the structural model. Another test involves proteins that are genetically
close (and hence have similar sequences) and share a similar structure (calledprotein ho-
mologs). A final test involves proteins that have different sequences but are structurally
similar (called structural analogs). In these tests all structures are known beforehand,
so we know exactly what the result should be and can detect anomalies. Encouraging
results have been obtained, in that the structure obtained is usually very close to correct.
When there are errors, it is relatively easy to insert additional constraints to correct them.
This is another advantage of this technique, and it can thus use the extensive knowledge
on the quirks of protein structure that has been accumulating over the years.

EXERCISES 259

An application of this technique to the real world should work like this. A database
of structural models is maintained. A researcher comes up with a new protein sequence
and submits it to the database server. The server then threads the sequence on all models
from the database, returning one or a few models where a good fit was found. Note that
this would mean solving one protein threading problem for each structural model in the
database, a task that requires a fast solution to each such problem.

SUMMARY

In this chapter we presented a brief sampling of algorithmic results for molecular struc-
ture prediction. We studied two dynamic programming algorithms for RNA secondary
structure prediction, and showed how to improve the running time of the more complex
algorithm from O(n4) to O(n3). We then briefly explained the protein folding problem,
pointing out that extensive research has led to many approaches to the problem, of which
we presented one, called protein threading. This approach allows an algorithmic treat-
ment based on a familiar technique for handling NP-hard problems.

EXERCISES

1. Given RNA sequence AUGGCAUCCGUA, find a structure with the greatest number of
base pairs.

2. Give an example of an RNA sequence where a knot may appear.

3. Write out in detail the dynamic programming algorithm for RNA structure prediction
where the energy of each base pair is independent of all the others.

4. Give the algorithm that will retrieve the RNA secondary structure computed using re-
currence relation (8.2).

5. We mentioned that the kind of destabilizing function used in RNA secondary structure
prediction may influence the running time of the dynamic programming algorithm. Ex-
plain why this is so using as examples functions that are linear, logarithmic, quadratic,
or simple table look-up.

6. Prove that the protein threading problem is NP-complete.

7. Propose a stronger lower bound for the threading score function.

8. List other NP-hard problems in this book and try to design branch-and-bound algo-
rithms for them.

9. The computation of the lower bound (8.10) requires the computation of all points that
fall within some interval (in the case of g\), or all points that fall in some area (in the
case of #2). How can we preprocess all points to answer these queries efficiently?

260 CHAPTER 8 MOLECULAR STRUCTURE PREDICTION

BIBLIOGRAPHIC NOTES

The overall organization of Section 8.1 was based primarily on the paper by Zuker [207],
which contains much additional material. The improvement in running time for interior
loop computation is due to Waterman and Smith [201]. Further improvements in running
time for special classes of functions were achieved by Eppstein, Galil, and Giancarlo [55]
and by Larmore and Schieber [121]. Work on computing optimal and suboptimal struc-
tures within a certain energy threshold has been done by Zucker [206]. A good survey
on RNA structure prediction in general is given by Turner and Sugimoto [186].

The protein folding problem has an immense body of literature. Here we point out
a few important recent surveys. Richards [161] presents an overview for a general au-
dience. Creighton [38] presents a technical survey. The different molecular interactions
that play a role in protein folding are discussed by Dill [48]. Our discussion of protein
folding was based in part on the paper by Kanehisa and DeLisi [105]. Two of our figures
were based on figures from this paper. The computational difficulty of protein folding
prediction has been studied by Unger and Moult [189] and Fraenkel [65], who prove
that obtaining minimum-energy foldings of proteins based on simple lattice models is
an NP-hard problem. Berger [21] and Berger and Wilson [22] present a successful ap-
proach for protein motif recognition.

The section on protein threading was based on the work by Lathrop and Smith [123].
Figure 8.3 was based on a similar figure from their paper. This paper contains much ad-
ditional material on the tests performed as well as detailed description of the various
techniques used to speed up computation. Lathrop [122] proved that the protein thread-
ing problem with variable-length loop regions and pairwise amino acid interactions is
NP-complete.

EPILOGUE: COMPUTING WITH DNA

Throughout this book we have seen many algorithms that help
solve problems in molecular biology. In this chapter we present
surprising results that go in the opposite direction: how to use
molecular biology to solve hard algorithmic problems. These re-
sults have created an exciting new field, called DNA computing,
whose ultimate aim is the creation of very efficient biomolecular
computers. It is still far from being a practical field, but intense
research is addressing each of its shortcomings, and new devel-
opments are certain to appear in the near future.

THE HAMILTONIAN PATH PROBLEM

In this section we describe how to solve the Hamiltonian path problem in directed graphs
with DNA molecules in a laboratory using a method whose number of laboratory proce-
dures grows linearly with the number of vertices in the graph. Recall from Section 2.3
that the Hamiltonian path problem is NP-complete. This method is not a proof that P =
NP, because at its heart the method is a brute-force algorithm executing an exponential
number of operations. What enables the method to have a linear number of laboratory
procedures is the fact that an exponential number of operations is done in parallel in the
first such procedure.

Formally, the problem to be solved is this. Given a directed graph G = (V, E), such
that |V\ = n and \E\ = m, and two distinguished vertices s and t, verify whether the
graph has a path (s, v\, V2, . . . , t) whose length (in number of edges) is n — 1 and whose
vertices are all distinct. We denote this problem by HDPP, the Hamiltonian directed path
problem. See an example in Figure 9.1. A brute-force algorithm is very simple. Generate
all possible paths with exactly n — 1 edges, and then verify whether one of them obeys
the problem constraints. There are at most (n — 2)! such paths, because for the first vertex
on the path we can choose (n — 2) vertices, for the second vertex on the path we have
(n — 3) choices, and so on.

261

262 CHAPTER 9 EPILOGUE: COMPUTING WITH DNA

FIGURE 9.1
A directed graph. An st-Hamiltonian path is

0, 2, 4, 6, 3, 5, 0.

In the method to be presented below paths are not generated as above. Rather, in
the first step an enormous number of random paths are created. The fact that random
paths are being generated makes possible the generation of each path independent of all
the others, and hence all of them can be created simultaneously. On the other hand, this
makes the algorithm probabilistic. The complete algorithm is as follows:

1. Generate random paths.

2. From all paths created in the previous step, keep only those that start at s and end
atr.

3. From all remaining paths, keep only those that visit exactly n vertices.

4. From all remaining paths, keep only those that visit each vertex at least once.

5. If any path remains, return yes; otherwise return no.

We now describe how each of these steps can be implemented in the laboratory.

Random Path Generation

We assume that random single-stranded DNA sequences with 20 nucleotides are avail-
able, and that the generation of astronomical numbers (more than 1010) of copies of short
DNA strands is easy to do. Recall that S represents the reverse complement of DNA
string S.

• Vertex representation: Choose at random n distinct single-stranded 20-character
DNA sequences, and to each vertex v associate sequence Sv. For each such se-
quence obtain its reverse complement Sv. Generate many copies of each Sv se-
quence in test tube T\.

• Edge representation: If (u, v) e E, then build sequence Suv by concatenating the
10-base suffix of Su to the 10-base prefix of Sv. Suffixes and prefixes are distin-
guished by the 5'-3' direction of DNA strands. When u = s the whole of Ss is
used, and hence Ssv has 30 bases. Similarly for the case when v = t. Note that
with this construction, Suv j^ Svu. Generate many copies of each Suv sequence in
test tube T2.

9.1 THE HAMILTONIAN PATH PROBLEM 263

• Path construction: Pour T\ and 7*2 into T3. We assume that in T3 any binding be-
tween sequences can freely take place (that is, in T3 many ligase reactions will
take place).

By executing the three steps above we get many random paths. Why? We will ex-
plain by an example. Consider the sequences Su, Sv, Sw, Suv and Svw, for u, v and w
distinct vertices. Because many copies of these sequences are floating about in tube T?,,
with high probability the 10-base suffix of one Su sequence will bind to the 10-base pre-
fix of one Suv sequence (since one is complementary to the other); at the same time the
10-base suffix of the same sequence Suv binds to the 10-base prefix of one Sv sequence,
whose 10-base suffix binds to the 10-base prefix of one Svw sequence. And still at the
same time the 10-base suffix of this Svw sequence binds to the 10-base prefix of one Sw

sequence. The final double strand thus obtained encodes path (u, v, w) in G. Let us make
this clear by seeing what happens in the example of Figure 9.1. That graph has n = 1
vertices. Suppose that the sequences chosen to represent vertices 2, 4, and 5 are the fol-
lowing:

S2 =GTCACACTTCGGACTGACCT
54 = TGTGCTATGGGAACTCAGCG
55 =CACGTAAGACGGAGGAAAAA

The reverse complement of these sequences are:

S2 = AGGTCAGTCCGAAGTGTGAC
54 = CGCTGAGTTCCCATAGCACA
~S5 =TTTTTCCTCCGTCTTACGTG

We build edges (2, 4) and (4, 5) obtaining the following sequences:

(2, 4) = GGACTGACCTTGTGCTATGG
(4, 5) = GAACTCAGCGCACGTAAGAC

Finally, the path (2, 4, 5) will be encoded by the following double strand:

(2,4)
5' ,
GTCACACTTCGGACTGACCTTGTGCTATGG. . .
CAGTGTGAAGCCTGACTGGAACACGATACCCTTGAGTCGC . . .

(4,5)

. . . GAACTCAGCGCACGTAAGAC GGAGGAAAAA
.. . GTGCATTCTG CCTCCTTTTT

Further steps of the algorithm depend on the assumption that with high probability
all possible paths in the graph with n vertices will be represented by at least one double
strand. Note also that the number 20 was chosen so as to make it very unlikely that two
sequences assigned to two different vertices would share long subsequences. Should this
happen, we might have double-stranded sequences that would not encode any paths in
the graph.

264 CHAPTER 9 EPILOGUE: COMPUTING WITH DNA

Remaining Steps in the Algorithm

In the remaining steps we place the contents of T3 through successive biochemical sieves
that select paths with desired properties. Step (2) is implemented by a polymerase chain
reaction (see Section 1.5.2) using primers Ss and St. Step (3) is implemented by sepa-
rating double-stranded DNA having exactly 20n bases, which therefore represent paths
with exactly n vertices. Step (4) is implemented by retaining strands where Su is present
for each u e V different from s and t. In the final step we simply see what has remained
through a conventional gel experiment.

We can analyze this algorithm as follows. We need a number of operations propor-
tional to the size of the graph in order to build it. After that we need to perform a number
of operations that are proportional to the number of vertices in the graph, mainly because
of step (4) above. In that step we have to check sequentially the presence of each vertex-
representing sequence in the test tube.

SATISFIABILITY

In this section we describe how we can use an approach similar to the one described in the
previous section to solve the satisfiability problem (SAT). This is a very important prob-
lem in the theory of computing, since it was the very first one to be shown NP-complete.
Moreover, a generalization of the algorithm described here leads to a general approach
for solving any NP-complete problem directly (see Exercise 4).

To explain the SAT problem, we need a few definitions. A boolean variable is a
variable that can take either 0 or 1 as a value. Boolean variables may be put together in
a formula using the operators v (logical or), A (logical and), and parentheses. Further-
more we can also use a variable x in its negated form, 3c. This means that if x's value is
1, then J's value is 0, and vice versa. The actual way in which we use a variable is called
a literal. It can be shown that any boolean formula can be expressed by a collection of
clauses\ where each clause is a collection of literals connected only by the operator v,
each clause is delimited by parentheses, and clauses are connected to each other by the
operator A (we say that such formulas are in conjunctive normal form). An example of
such a formula is F = (x\ VJC2) A (3t~2 vxs) A (X3). We will consider formulas constructed
using n variables, m clauses, and a fixed number of literals per clause. The SAT problem
consists of determining whether there is an assignment of values to the variables that sat-
isfies a given formula, in other words, an assignment that makes the formula evaluate to
1. In the above example, x\ = 1, x2 = 0, and X3 = 0 satisfies F, whereas any other as-
signment does not. In general, a formula may have more than one satisfying assignment
or it may have none.

An algorithm to test whether a formula is satisfiable is this: Try out all possible val-
ues for the variables. If there are n variables, there are 2n such assignments. A more sys-
tematic way of trying out all possible assignments, and the one actually used to solve
SAT with DNA, is as follows:

9.2 SATISFIABILITY 265

1. Generate all possible 2n assignments and place them in set SQ.

2. From all assignments in set So keep only those that satisfy clause 1, and place
them in set S\.

3. From all assignments in set Si keep only those that satisfy clause 2, and place
them in set S2.

m. From all assignments in set Sm-\ keep only those that satisfy clause m, and place
them in set Sm.

After step m, perform one more operation: If set Sm is nonempty return yes; otherwise
return no.

To implement this using DNA, we must have a way of encoding boolean variable
assignments. We do this by using a graph. We will have one graph for each distinct num-
ber of variables; thus Gn will be the graph to be used in a problem with n variables. In
Figure 9.2 we show Gn for n = 3. Notice that it is a directed graph and that it has three
kinds of vertices: the i>/ vertices, 1 < i < n + 1, the Xj vertices, and the "XJ vertices,
1 < j < n. Each possible assignment will correspond to one particular (i>i-u/2_f-i)-path
in this graph in the following way. Starting from vertex v\, we can go either to x\ or to
x\. Choosing *i means assigning 1 to variable x\; choosing J\ means assigning 0 to x\.
Then the path must go through i>2, and again we have a choice, which will correspond to
the value assigned to variable X2, and so on. Thus a (i;i-fn+i)-path in the graph encodes
an n -bit number, which corresponds to one particular assignment of boolean values to n
variables.

FIGURE 9.2

An example of a graph whose {v\ — vn+\)-paths encode
boolean variable assignments.

Having determined this encoding, the next step is the construction of all paths in
graph Gn, which we do in the same manner as was done for the HDDP (see previous
section). The starting point in our DNA SAT algorithm is thus a test tube To containing
an enormous number of sequences representing paths in Gn, and with high probability
sequences representing all (vi-vn+\)-paths will be present in To.

For the implementation of the next steps we need two kinds of operations on test
tubes: Detect and Extract. Detect is an operation already employed in the HDPP problem
(step 5 in that algorithm); it simply reports whether a test tube has any DNA sequence

266 CHAPTER 9 EPILOGUE: COMPUTING WITH DNA

at all. The Extract operation is similar to the operations employed in the HDDP algo-
rithm, in the sense that we use it to extract sequences having a certain property. Here
we are interested in only one particular property: We apply Extract to test tube T in or-
der to extract the DNA sequences in T that contain a given precise DNA substring of
fixed length. It is not required that all such sequences be extracted from T; thus it is not
a problem if among the remaining sequences in T there are still some that contain the
given substring. But it is a problem if we extract sequences that do not have the desired
property, or if we fail to extract any relevant sequences even if T contains some. Even
though these failures can happen in practice, in this section we assume Extract works as
described.

We will now describe how we deal with the first clause in our formula F. Let us
assume that this clause is (JCI v 3c2) • Consider the first literal in this clause, x\. Because it
is not negated, an assignment that makes x\ = 1 is a candidate for the desired solution.
Thus the corresponding n-bit number has a 1 in its first position (first from left to right).
Similarly, an assignment that makes X2 = 0 is another candidate. By combining these
two, we can say that only the n-bit numbers with a 1 in their first position, or with a 0 in
the second position are the numbers that can possibly satisfy F; all others are out. This
means that we should extract from To all sequences encoding n-bit numbers that satisfy
this requirement. Those sequences will then be the input for the treatment of the next
clause.

From the above description it is clear that we need the Extract operation in the fol-
lowing format: Extract(T, i, b), where T is a test tube, / is the index of a variable, and b
is a boolean value. We can now sketch more formally the steps that take care of the first
clause, assuming that it has 2 literals:

/ 7b, 7i, Ai, A\, A2 are test tubes
II v\ is the first literal
if v\ = x\ then

Ax +-Extract(T0, 1,1)
else / vi = x~i

A\ « - Extract(T0, 1,0)
A\ <— To II the remainder
II t>2 is the second literal
if v2 = X2 then

A2 <-Extract(A\, 1,1)
else A2 4-Extract(A'v 1,0)
T\ <— A\ + A2 II We mix the tubes

Notice that when dealing with the second literal we extracted sequences from the re-
mainder of the first extraction. This is essential to make the algorithm work. If the clause
were (x\ v l 2) it should be clear that in tube T\ we end up with all sequences encoding n-
bit numbers that have a 1 in the first position (which were in tube A\) and all sequences
encoding n-bit numbers that have a 0 in the second position (which were in tube A2).
Using tube T\ we are ready to proceed to the next clause, where the steps are similar to
the ones described. The whole algorithm is given in Figure 9.3.

This algorithm clearly executes O(m) Extract operations and only one Detect op-
eration.

9.3 PROBLEMS AND PROMISES 267

Algorithm DNA Satisfiability
input: test tube To containing sequences that encode all n-bit numbers,

and boolean formula F in conjunctive normal form
(n variables and m clauses)

output: YES if F is satisfiable, NO if not.
/ We use a fixed number of auxiliary test tubes At

for i 4- 1 to m do
A'0+-l
for j <-

if
- 1 to /,- do / // is the number o
vj = Xj then

Aj «- Extract{A'.x,j, 1)
else A; <-Extract(A'^x,j,O)
A1

Tt «- A
if Detect(Tm)

y —̂ A^._, / remainder

then return YES else return NO

FIGURE 9.3

The DNA algorithm to solve the SAT problem.

PROBLEMS AND PROMISES

When the algorithm from Section 9.1 was first used (on a graph of seven vertices) it was
successful and demonstrated the feasibility of the approach. But there are several prob-
lems that need to be solved before the promise of DNA computing can be fulfilled. We
list here some of the difficulties.

Is the DNA approach competitive with state-of-the-art algorithms on electronic com-
puters for solving the HDPP? Not at the moment, by a very long shot, for two reasons.
First, only small HDPP instances can currently be solved by this approach. For a graph
with n vertices, let us assume conservatively that we need at least 2n molecules, each
one encoding one distinct path. So, for a graph with 100 vertices, we would need about
1030 molecules. In one gram of water there are no more than 1023 molecules. Thus to
solve an instance with 100 vertices, we would need 107 grams, or 10 tons of water, at
the very least. The second reason is that the laboratory procedures to be used, although
few in number, are time-consuming. However, it is expected that much of it can be auto-
mated. On the other hand, there are computer programs today that can solve instances of
the traveling salesman problem (which is, of course, at least as hard as the HDPP) with
100 vertices in a matter of minutes; in addition, much larger instances (with thousands
of vertices) have also been solved, although it does not follow that these programs can
quickly solve any large instance.

What are the errors that can occur? As we have seen throughout this book, bio-
chemical experiments always contain errors; and that certainly applies to the procedures
described here. Note that there is a randomizing component to the approach right at the
start, but the biochemical errors are much more of a concern. These can happen as we try
to isolate the strands that interest us, using the Extract operation, as mentioned above.

268 CHAPTER 9 EPILOGUE: COMPUTING WITH DNA

We may miss a "good" strand, or a "bad" strand may be extracted where none should.
There are various techniques that can be used to decrease the possibility of such events
happening, and this is a current research topic. Another source of errors comes from the
fact that DNA in vitro decays through time, so laboratory procedures cannot take too
long.

Can this approach be used for other problems? The descriptions above are suited to
solve just the HDPP and SAT Even though every NP-complete problem is transformable
into any other in polynomial time, it would be nice if we could use these ideas to solve
any NP-complete problem directly. The SAT algorithm is actually a step in this direc-
tion; see Exercise 4. The ultimate goal, however, is a general-purpose computer based
on DNA. The results of this chapter suggest that such a computer is in principle possible,
and that it could be much faster and use much less energy than conventional computers.
If and when this dream comes true, maybe we will be able to use such a machine to de-
cipher the remaining mysteries of molecular biology.

1. In the HDPP DNA algorithm, suppose the input graph has 1,000 vertices. After the
algorithm is finished, and assuming a path was found, how can we determine the path
itself?

2. Show how we can use DNA to check whether a directed graph has a Hamiltonian cycle.

3. Determine the probability that a nonvalid path may be created in the HDDP algorithm
for a graph with seven vertices. That is, determine the probability that the 10-base suf-
fix of a random 20-base sequence is the reverse complement of the 10-base suffix of
another random 20-base sequence. How does this probability change with the number
of bases in the sequence? How does this probability change with the number of vertices
in the graph?

* 4. Generalize the DNA algorithm for the SAT problem so that any boolean formula can be
solved. A general boolean formula is defined by the following recursive definition, (a)
Any variable x is a formula; (b) if F us a formula so is F; (c) if F\ and F2 are formulas,
then so are F\ v F2 and Fi A F2.

BIBLIOGRAPHIC NOTES AND FURTHER SOURCES

The breakthrough that created the field of DNA computing is due to Adleman [2], who
showed how to solve the HDPP using DNA molecules. Lipton [128] then extended the
result to the SAT problem and used that to prove that any NP-complete search prob-

BIBLIOGRAPHIC NOTES AND FURTHER SOURCES 269

lem can be solved directly by a DNA approach. Karp, Kenyon, and Waarts [112] studied
methods that deal with errors inherent in DNA computations, and they pointed to many
other papers dealing with this topic. Although the field of DNA computing wasn't born
until the end of 1994, the related literature is already growing fast.

In this final chapter we take the opportunity to provide pointers to sources for fur-
ther information on computational molecular biology as covered in this book. One very
important book on the subject, Waterman [199], contains topics that we do not cover,
in particular with respect to statistical issues. The one journal dedicated to the area, The
Journal of Computational Biology, started publication in 1994 and can be reached at:

http://brut.gdb.org/compbio/jcb/

Theoretical computer science and mathematics journals, such as The Journal of Al-
gorithms, The SIAM Journal on Computing, The SIAM Journal on Discrete Mathemat-
ics, and Advances in Applied Mathematics, run occasional papers on computational bi-
ology. Other relevant journals are The Bulletin of Mathematical Biology and Computer
Applications in the Biosciences.

More up-to-date research results can be found in proceedings from research con-
ferences. There is one annual conference dedicated to the area, the International Con-
ference on Computational Molecular Biology (RECOMB); the first one is scheduled for
January 1997. Another important meeting is the annual conference Intelligent Systems
for Molecular Biology, where one finds papers using artificial intelligence techniques,
among others. The annual conference Combinatorial Pattern Matching is also an im-
portant forum for research results in algorithmic techniques for computational biology.

As with journals, important conferences on the theory of computing present occa-
sional papers on computational biology. Among them are the ACM-SIAM Symposium
on Discrete Algorithms, the ACM Symposium on the Theory of Computing, the IEEE
Symposium on Foundations of Computer Science, and the International Colloquium on
Automata, Languages and Programming.

The very latest is, of course, the World Wide Web. Some WWW sites were given
earlier in the text (look under "WWW site" in the index). Here we mention course ma-
terial that was available in 1996. At least three courses on computational biology have
material available through the Web. One of them is coordinated by Dalit Naor and Ron
Shamir from Tel Aviv University. More information on this course can be found at:

http://www.math.tau.ac.il/~shamir/algmb.html

Another set of lecture notes, by Richard Karp, Larry Ruzzo, and Martin Tompa from the
University of Washington, is available at:

http://www.cs.washington.edu/education/courses/590bi/

Finally, the "Virtual School of Natural Sciences BioComputing Division," a group of
research faculty and students coordinated by Robert Giegerich and Georg Fuellen from
the University of Bielefeld, offers course material at:

http://www.techfak.uni-bielefeld.de/bcd/Curric/welcome.html

ANSWERS TO SELECTED EXERCISES

1.

2.

Sequence as is:
rf l : TAA

stop
rf2: AAT

Asn
rf3: ATC

He

TCG
Ser

CGA
Arg
GAA
Glu

Reverse Complement:
rf l : GCC

Ala
rf2: CCC

Pro
rf3: CCA

Pro
The strand that

CAT
His
ATT
He

TTC
Phe

AAT
Asn
ATG
Met
TGG

3M '

^napier i —

GGG
Gly
GGC
Gly

GCCCATTCGATTA
TCG
Ser

CGA
Arg
GAT
Asp

ATT
He

TTA
Leu

starts with AUG is the coding strand. The top strand goes 5' to 3', and
the bottom one goes 3' to 5'.
a. AUGAUACCGACGUACGGCAUUUAA

b. M I P T Y G I

3. There are twelve possibilities: Eight of them can be represented by CTNATGAAR,
where N stands for any base and R stands for either A or G. The remaining four are
given by TTRATGAAR.

5. A 4-cutter cuts once every 44 = 256 bases. So, we expect 40000/256 = 156.25 cuts,
that is, about 157 pieces.

6. Hungarian grapevine chrome mosaic nepovirus.

Chapter 2

1. It has three distinct substrings with one character, three with two, three with three, two
with four, and one with five, for a total of 12 distinct substrings.

4. A complete directed graph has n(n — 1) edges, and half this much if it is undirected.
An rc-vertex tree has n — 1 edges.

271

272 ANSWERS TO SELECTED EXERCISES

7. If one algorithm runs in n2/2 time and the other in lOn time, then for n = 4 the
quadratic algorithm takes 8 units versus 40 for the linear one.

8. The O («Jn) algorithm is faster.

12. Section 4.3.5 presents a method that can be generalized for any acyclic graph as fol-
lows. Repeat the following step: Find a source in the graph and remove it. The sequence
of removed sources is a topological ordering. Sources are vertices with indegree one.

13. Start with one set for each node. For each edge, if its extremes are not in the same
sets, join their sets. After all edges are processed, the resulting sets are the connected
components.

15. Given a graph G and an integer Kt is there a vertex cover of size at most K in G?

17. Need to show that HC can be reduced to HP. Given a procedure for HP, test HC as fol-
lows. For each edge in the input graph, remove it from the graph and call the procedure
for HP. HC is true if and only if at least one of these answers from HP is true.

20. Hint: Use an n x K array where position (i, j) means that there is a solution involving
objects up to / and weight exactly j .

Chapter 3

1. Problem (1): KBand
Problem (2): semiglobal comparison
Problem (3): filter and then semiglobal
Problem (4) : local comparison
Problem (5) : database search

2. Score is 8.

3. AAAG AAAG AAAG
AC-G A-CG -ACG

4. Try sequences CGCG and GCGC.

7. ACGGAGG
ACGTAGG

8. We have always global < semiglobal < local, because every global alignment is a
semiglobal alignment, and every semiglobal alignment is a local alignment.

11. The alignment

GAGTTATCCGCCATC
AAGAGTTATCCGCCA

has score —7. No alignment with k < 1 — at most one pair of gaps — has a better
score. But the following alignment, with two pairs of gaps, has a score of 4-9:

--GAGTTATCCGCCATC
AAGAGTTATCCGCCA--

14. It needs O(J^ /<7-«/«;) space to hold the total score arrays cxy.

15. Let D be a diagonal matrix with Daa = \/pa- Scores are symmetric if MkD is sym-
metric, that is, if (MkDY = MkD, where the superscript / indicates transpose. The
text shows the result for k = 1, that is,

(MDY = DM1 = MD.

ANSWERS TO SELECTED EXERCISES 273

Assuming the result for k — 1 is true, we have

(MkDY = (MMk~lDy = {Mk"lU)tMt = Mk~l DM* = Mk~xMD = MkD.

16. No. The actual figure is lower than 2% because there is a small chance of an amino
acid changing back to its initial kind after two mutations.

17. Coix lacrima-jobi a-coixin genes.

18. Use double induction. First prove that w (k +1) < w (k) + w (1) by induction on k, and
then w(k + m) < w(k) + w(m) by induction on m.

20. The gap penalty function must be additive, that is, w(x + y) — w (x) + w(y).

22. One possible such system would be p(a, b) = 2 if a — b, p(a,b) = 1 if a ^ b, and

Chapter 4

1. One possible assembly follows.
CCTCGAGTTAA GCCCGCGGCTTCAACGGAT

TTAAGTACTGCCCG ATCTGTGTCGGG-
AAGTACTGCCCGCG TGTGTCGGGAGTCG

- CTCGAGTTAAGTA CCCGCGGCTTCAACGGATCTGTG •-
CCTCGAGTTAAGTACTGCCCGCGGCTTCAACGGATCTGTGTCGGGAGTCG

2. Minimum is 1, maximum is 3, average is 2.22.

3. The smallest possible is € = 1/6.

4. The values are 6 = 1/6 for Figure 4.3 and 6 = 1/5 for Figure 4.4.
5. It would resolve the ambiguity because the only layout compatible with this fragment

is the bottom one in Figure 4.8.

6. The SCS is TTAAATA.

7. Sequence at source vertex: AC. Sequence at sink vertex: GT. Sequences in the middle:

CG, CAG, and CTG.

8. Hint: Use suffix trees.

10. AAAAAAAAAA.
12. For £ = 0.1 we have

- -CGTT
ATC
- T C G - -

ATCGTT,
and, for € = 0.25,

AACG
ATC-
-TCG

ATCG.

13. The minimum number of contigs is one, as follows.
TCCCTACTT .

AATCCGGTT
GACATC-GGT-.

274 ANSWERS TO SELECTED EXERCISES

14. Hint: Do not take a substring-free collection.

15. Here is one collection with three strings: AC*G*, C*T, G*AC*. Call them / , gt h, re-
spectively. Then w{h, f) = k + 1 , w(/, h) = k, and w(h, g) = k are the only nonzero
edges. The heaviest one invalidates the other two, which together produce a path of
weight 2k, against k + 1 of the single maximum weight edge.

16. Fill in the blanks with Y and Y, or with Z and X, in this order.

17. Use the vector sequence as a query sequence and the collection of fragments as your
database.

18. Given an instance T for SCS, replace each character x in every fragment / e T by
AAJCCC. Give the resulting collection to a RECONSTRUCTION solver, together with
e = 0. The resulting reconstruction will have to use all the fragments in the same ori-
entation, as AAxCC = GGJTT will not match anything in direct orientation.

Chapter 5

1. Enzyme A: 3, 10, 8, 6. Enzyme B: 5, 7, 4, 11.

2. Enzyme A: 4, 7, 5, 12, 8. Enzyme B: 6, 4, 9, 3, 10, 4.

3. 3, 7, 2, 9, 8.

9. A permutation for the columns: 3, 5, 1, 8, 10, 4, 7, 6, 9, 2.

11. See [67] or [74].

21. Denote end probes by the number 2. The problem now is to obtain a column permu-
tation such that all Is in each row are consecutive and possibly flanked by one or two
2s. It makes the problem a little easier but not much. See [9].

20. This is the cycle basis algorithm from [79].

23. Choose k to have a small A* and a large Bk, and choose another splitter / so that | A/1 ^
\Bi\.

Chapter 6

3. Use parenthesis notation. For example, (a((b) (c(d) O)))) could be a representation for
a tree with a as root, b and c as children, and d and e as children of c.

4. Sort columns interpreting each column as a binary number, and remove columns that
are equal. The new matrix admits a perfect phylogeny if and only if the old does too.

8. The input has a perfect phylogeny. Characters c\ and C2 are compatible if we take 1 as
the ancestral state.

6. For a simple algorithm see [82].

10. See [107].

11. See [106].

13. Character pairwise compatibility (to define the edges of the graph) should be deter-
mined using the algorithm from Section 6.3.

15. Run the algorithm and then compare pairwise distances on the tree with distances on
the matrix. If they are equal, the matrix is additive; otherwise it is not.

ANSWERS TO SELECTED EXERCISES 275

Chapter 7

1.

2.

4.

5.

6.

t

a =

t
--C
r

~t •

r

<a~.

IT ~t
T t

10. A5C, ABD, AEF, BEF, CBE, CBF, CEF, DBE, DBF, DEF, and their re-
verses.

11. Walk around the reality and desire diagram and write down a circular list recording
the components that each reality edge belongs to. Record bad components only; if a
reality edge belongs to a good component, just ignore it. Also, avoid recording the same
component name twice in a row. For instance, for the diagram of Figure 7.18 we would
get the circular list EFEBDCBA and then back to E. Given this list, it is easy to
compute the information sought: Hurdles correspond to elements that appear just once;
a hurdle X protects nonhurdle Y when the list contains YXY and these are the only
occurrences of Y in the list.

Chapter 8

5. See Section 3.3.3.

6. Reduce from the SAT problem (defined in Section 9.2) restricted as follows: Every
clause has exactly three literals, and we look for a satisfying assignment where in each
clause exactly one literal makes the clause true. Details can be found in [122].

9. Use techniques for range-searching. For one dimension a simple binary search tree
suffices. For two dimensions, use a 2D tree. See [170].

Chapter 9 — — —

1. Such a path will be encoded by a sequence having 20,000 base pairs. To determine the
path, we would need to apply the techniques of Chapter 4.

4. See [128].

REFERENCES

1. M. A. Adams, C. Fields, and J. C. Venter, editors. Automated DNA Sequencing and Analysis.
New York: Academic Press, 1994.

2. L. M. Adleman. Molecular computation of solutions to combinatorial problems. Science,
266:1021-1024, 1994.

3. R. Agarwala, V. Bafna, M. Farach, B. Narayanan, M. Paterson, and M. Thorup. On the ap-
proximability of numerical taxonomy. In Proceedings of the Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 365-372, 1996.

4. R. Agarwala and D. Fernandez-Baca. A polynomial-time algorithm for the phylogeny prob-
lem when the number of character states is fixed. SIAM Journal on Computing, 23(6): 1216—
1224, 1994.

5. R. Agarwala, D. Fernandez-Baca, and G. Slutzki. Fast algorithms for inferring evolution-
ary trees. In Proceedings of the 30th Allerton Conference on Communication, Control, and
Computation, pages 594-603, 1992.

6. A. V. Aho. Algorithms for finding patterns in strings. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume A, pages 255-300. Amsterdam/Cambridge, MA:
Elsevier/MIT Press, 1990.

7. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular Biology of
the Cell New York & London: Garland Publishing, 1994.

8. F. Alizadeh, R. M. Karp, L. A. Newberg, and D. K. Weisser. Physical mapping of chromo-
somes: A combinatorial problem in molecular biology. Algorithmica, 13(l/2):52-76, 1995.

9. F. Alizadeh, R. M. Karp, D. K. Weisser, and G. Zweig. Physical mapping of chromossomes
using unique probes. Journal of Computational Biology, 2(2):159-184, 1995.

10. S. F. Altschul. Amino acid substitution matrices from an information theoretical perspective.
Journal of Molecular Biology, 219:555-565, 1991.

11. S. F. Altschul, M. S. Boguski, W. Gish, and J. C. Wootton. Issues in searching molecular
sequence databases. Nature Genetics, 6:119-129, Feb. 1994.

12. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. A basic local alignment
search tool. Journal of Molecular Biology, 215:403-410, 1990.

13. S. F. Altschul and D. J. Lipman. Trees, stars, and multiple biological sequence alignment.
SIAM Journal on Applied Mathematics, 49(1): 197-209, 1989.

14. A. Amir and D. Keselman. Maximum agreement subtrees in multiple evolutionary trees. In

277

278 REFERENCES

Proceedings of the IEEE Thirty-Fifth Annual Symposium on Foundations of Computer Sci-
ence, pages 758-769, 1994.

15. C. Armen and C. Stein. Short superstrings and the structure of overlapping strings. Journal
of Computational Biology, 2(2):307-332, 1995.

16. C. Armen and C. Stein. A 2 2/3-approximation algorithm for the shortest superstring prob-
lem. In Proceedings of the Seventh Symposium on Combinatorial Pattern Matching, volume
1075 of Lecture Notes in Computer Science, pages 87-103. Berlin: Springer-Verlag, 1996.

17. H. Atlan and M. Koppel. The cellular computer DNA: program or data? Bulletin of Math-
ematical Biology, 52(3):335-348, 1990.

18. V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals. SIAM Journal
on Computing, 25(2):272-289, 1996.

19. G. I. Bell. The human genome: an introduction. In Bell and Marr [20], pages 3-12.

20. G. I. Bell and T. M. Marr, editors. Computers and DNA. Reading, MA: Addison-Wesley,
1990.

21. B. Berger. Algorithms for protein structural motif recognition. Journal of Computational
Biology, 2(1): 125-138, 1995.

22. B. Berger and D. B. Wilson. Improved algorithms for protein motif recognition. In Proceed-
ings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 58-67,1995.

23. P. Berman and S. Hannenhalli. Fast sorting by reversal. In Proceedings of the Seventh Sym-
posium on Combinatorial Pattern Matching, volume 1075 of Lecture Notes in Computer Sci-
ence, pages 168-185. Berlin: Springer-Verlag, 1996.

24. A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear approximation of shortest su-
perstrings. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Com-
puting, pages 328-336, 1991.

25. H. L. Bodlaender, M. R. Fellows, and T. J. Warnow. Two strikes against perfect phylogeny.
In Proceedings of the International Colloquium on Automata, Languages and Programming,
volume 623 of Lecture Notes in Computer Science, pages 273-283. Berlin: Springer-Verlag,
1993.

26. H. L. Bodlaender and T. Kloks. A simple linear time algorithm for triangulating three-colored
graphs. Journal of Algorithms, 15:160-172, 1993.

27. K. S. Booth and G. S. Lueker. Testing of the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences,
13(3):335-379, 1976.

28. C. Branden and J. Tooze. Introduction to protein structure. New York & London: Garland
Publishing, 1991.

29. P. Buneman. A characterisation of rigid circuit graphs. Discrete Mathematics, 9:205-212,
1974.

30. A. Caprara. Sorting by reversals is difficult. In Proceedings of the First Annual International
Conference on Computational Molecular Biology, 1997.

31. A. Caprara, G. Lancia, and S.-K. Ng. A column-generation-based branch-and-bound algo-
rithm for sorting by reversals. Presented at the 4th DIMACS Implementation Challenge Work-
shop, 1995.

32. H. Carrillo and D. Lipman. The multiple sequence alignment problem in biology. SIAM
Journal on Applied Mathematics, 48(5): 1073-1082, Oct. 1988.

REFERENCES 279

33. S. C. Chan, A. K. C. Wong, and D. K. Y. Chiu. A survey of multiple sequence comparison
methods. Bulletin of Mathematical Biology, 54(4):563-598, 1992.

34. W. I. Chang and E. L. Lawler. Approximate string matching in sublinear expected time. In
Proceedings of the IEEE Thirty-First Annual Symposium on Foundations of Computer Sci-
ence, pages 116-124, 1990.

35. K.-M. Chao and W. Miller. Linear-space algorithms that build local alignments from frag-
ments. Algorithmica, 13:106-134, 1995.

36. K.-M. Chao, J. Zhang, J. Ostell, and W. Miller. A local alignment tool for very long DNA
sequences. Computer Applications in the Biosciences, 11(2):147-153, 1995.

37. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. Cambridge,
MA/New York: MIT Press/McGraw-Hill, 1990.

38. T. E. Creighton. Protein folding. Biochemistry Journal, 270:1-16, 1990.

39. M. Crochemore and W. Rytter. Text Algorithms. Oxford: Oxford University Press, 1994.

40. J. C. Culberson and P. Rudnicki. A fast algorithm for constructing trees from distance ma-
trices. Information Processing Letters, 30:215-220, 1989.

41. A. Czumaj, L. Gasienec, M. Piotrow, and W. Rytter. Parallel and sequential approximations
of shortest superstrings. In Proceedings of the Fourth Scandinavian Workshop on Algorithm
Theory, pages 95-106, 1994.

42. W. E. Day. Computational complexity of inferring phylogenies from dissimilarity matrices.
Bulletin of Mathematical Biology, 49(4): 461-467, 1987.

43. W. E. Day, D. S. Johnson, and D. Sankoff. The computational complexity of inferring rooted
phylogenies by parsimony. Mathematical Biosciences, 81:33-42, 1986.

44. W. E. Day and D. Sankoff. Computational complexity of inferring phylogenies by compat-
ibility. Systematic Zoology, 35(2):224-229, 1986.

45. M. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change in proteins.
In M. Dayhoff, editor, Atlas of Protein Sequence and Structure, volume 5, pages 345-352.
National Biomedical Research Foundation, Silver Spring, MD, 1978. Supplement 3.

46. S. Dean and R. Staden. A sequence assembly and editing program for efficient management
of large projects. Nucleic Acids Research, 19(14):3907-3911, 1991.

47. J. Devereux, P. Haeberli, and D. Smithies. A comprehensive set of sequence analysis pro-
grams for the VAX. Nucleic Acids Research, 12:387-395, 1984.

48. K. A. Dill. Dominant forces in protein folding. Biochemistry, 29(31):7133-7155, 1990.

49. A. J. Dobson. Unrooted trees for numerical taxonomy. Journal of Applied Probability, 11:32-
42, 1974.

50. R. F. Doolittle. Proteins. Scientific American, 253(4):74-83, Oct. 1985.

51. R. F. Doolittle, editor. Molecular Evolution: Computer Analysis of Protein and Nucleic Acid
Sequences, volume 183 of Methods in Enzymology. New York: Academic Press, 1990.

52. A. Dress and M. Steel. Convex tree realizations of partitions. Applied Mathematics Letters,
5(3):3-6, 1992.

53. M. L. Engle and C. Burks. Artificially generated data sets for testing DNA fragment assembly
algorithms. Genomics, 16:286-288, 1993.

54. M. L. Engle and C. Burks. Genfrag 2.1: New features for more robust fragment assembly
benchmarks. Computer Applications in the Biosciences, 10:567-568, 1994.

55. D. Eppstein, Z. Galil, and R. Giancarlo. Speeding up dynamic programming. In Proceedings
of the IEEE Twenty-Ninth Annual Symposium on Foundations of Computer Science, pages
488-495, 1988.

56. M. Farach, S. Kannan, and T. Warnow. A robust model for finding optimal evolutionary trees.
Algorithmica, 13:155-179, 1995.

57. M. Farach, T. M. Przytycka, and M. Thorup. On the agreement of many trees. Unpublished
manuscript, 1995.

58. C. Fauron and M. Havlik. The maize mitochondrial genome of the normal type and the cy-
toplasmic male sterile type have very different organization. Current Genetics, 15:149-154,
1989.

59. M. R. Fellows, M. T. Hallett, and H. T. Wareham. DNA physical mapping: Three ways dif-
ficult. In Proceedings of the First Annual European Symposium on Algorithms, volume 726
of Lecture Notes in Computer Science, pages 157-168. Berlin: Springer-Verlag, 1993.

60. J. Felsenstein. Numerical methods for inferring evolutionary trees. The Quarterly Review
of Biology, 57(4):379-404, 1982.

61. J. Felsenstein. PHYLIP — Phylogeny Inference Package (Version 3.2). Cladistics, 5:164-
166, 1989.

62. V. Ferreti, J. H. Nadeau, and D. Sankoff. Original synteny. In Proceedings of the Seventh
Symposium on Combinatorial Pattern Matching, number 1075 in Lecture Notes on Computer
Science, pages 159-167. Berlin: Springer-Verlag, 1996.

63. J. Fickett. Fast optimal alignment. Nucleic Acids Research, 12(1): 175-179, 1984.

64. L. R. Foulds and R. L. Graham. The Steiner problem in phylogeny is NP-complete. Advances
in Applied Mathematics, 3:43-49, 1982.

65. A. S. Fraenkel. Complexity of protein folding. Bulletin of Mathematical Biology, 55(6): 1199—
1210, 1993.

66. K. A. Frenkel. The human genome project and informatics. Communications of the ACM,
34(11), Nov. 1991.

67. D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific Journal
of Mathematics, 15(3):835-855, 1965.

68. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory ofNP-
Completeness. New York: Freeman, 1979.

69. W. H. Gates and C. H. Papadimitriou. Bounds for sorting by prefix reversal. Discrete Math-
ematics, 27:47-57, 1979.

70. D. G. George, W. C. Barker, and L. T. Hunt. Mutation data matrix and its uses. In Doolittle
[51], pages 333-351.

71. T. Gingerias, J. Milazzo, D. Sciaky, and R. Roberts. Computer programs for assembly of
DNA sequences. Nucleic Acids Research, 7:529-545, 1979.

72. P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir. Three strikes against physical
mapping of DNA. Unpublished manuscript, 1993.

73. L. Goldstein and M. S. Waterman. Mapping DNA by stochastic relaxation. Advances in
Applied Mathematics, 8:194-207, 1987.

74. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. New York: Academic
Press, 1980.

REFERENCES 281

75. M. C. Golumbic, H. Kaplan, and R. Shamir. On the complexity of physical mapping. Ad-
vances in Applied Mathematics, 15:251 -261, 1994.

76. G. H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Structures, 2nd ed.
Reading, MA: Addison-Wesley, 1991.

77. O. Gotoh. Optimal alignments between groups of sequences and its application to multiple
sequence alignment. Computer Applications in the Biosciences, 9(3):361-370, 1993.

78. D. Greenberg and S. Istrail. The chimeric mapping problem: Algorithmic strategies and per-
formance evaluation on synthetic genomic data. Computers and Chemistry, 18(3):207-220,
1994.

79. D. Greenberg and S. Istrail. Physical mapping by STS hybrdization: Algorithmic strategies
and the challenge of software evaluation. Journal of Computational Biology, 2(2):219-274,
1995.

80. A. Grigoriev, R. Mott, and H. Lehrach. An algorithm to detect chimeric clones and random
noise in genomic mapping. Genomics, 22:482-486, 1994.

81. S. K. Gupta, J. Kececioglu, and A. A. Schafrer. Improving the practical space and time effi-
ciency of the shortest-paths approach to sum-of-pairs multiple sequence alignment. Journal
of Computational Biology, 2(3):459-472, 1995.

82. D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:19-28,1991.

83. D. Gusfield. Efficient methods for multiple sequence alignment with guaranteed error bounds.
Bulletin of Mathematical Biology, 55(1): 141-154, 1993.

84. D. Gusfield. Faster implementation of a shortest superstring approximation. Information
Processing Letters, 51:271-274, 1994.

85. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Compu-
tational Biology. Cambridge, UK: Cambridge University Press, 1997. Forthcoming.

86. D. Gusfield, G. M. Landau, and B. Schieber. An efficient algorithm for the all pairs suffix-
prefix problem. Information Processing Letters, 41:181-185, 1992.

87. S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip (polynomial algorithm
for sorting signed permutations by reversals). In Proceedings of the Twenty-Seventh Annual
ACM Symposium on Theory of Computing, pages 178-189, 1995.

88. S. Hannenhalli and P. A. Pevzner. Transforming men into mice (polynomial algorithm for
genomic distance problem). In Proceedings of the IEEE Thirty-Sixth Annual Symposium on
Foundations of Computer Science, pages 581-592, 1995.

89. J. Hein. A new method that simultaneously aligns and reconstructs ancestral sequences for
any number of homologous sequences, when the phylogeny is given. Molecular Biology and
Evolution, 6(6):649-668, 1989.

90. J. Hein. An optimal algorithm to reconstruct trees from additive distance data. Bulletin of
Mathematical Biology, 51(5):597-603, 1989.

91. J. Hein. A tree reconstruction method that is economical in the number of pairwise compar-
isons used. Molecular Biology and Evolution, 6(6):669-684, 1989.

92. J. Hein. Unified approach to alignment and phylogenies. In Doolittle [51], pages 626-645.

93. S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein blocks. Pro-
ceedings of the National Academy of Sciences of the U.S.A., 89:10915-10919, 1992.

94. D. Hirschberg. A linear space algorithm for computing maximal common subsequences.
Communications of the ACM, 18:341-343, 1975.

282 REFERENCES

95. R. J. Hoffmann, J. L. Boore, and W. M. Brown. A novel mitochondrial genome organization
for the blue mussel, mytilus edulis. Genetics, 131:397-412, 1992.

96. D. Hofstadter. Godel, Escher, Bach. New York: Basic Books, 1979.

97. W.-L. Hsu. A simple test for the consecutive ones property. In Proceedings of the Interna-
tional Symposium on Algorithms & Computation (ISAACJ, 1992.

98. X. Huang. A contig assembly program based on sensitive detection of fragment overlaps.
Genomics, 14:18-25, 1992.

99. X. Huang. An improved sequence assembly program. Genomics, 33:21-31, 1996.

100. X. Huang, R. C. Hardison, and W. Miller. A space-efficient algorithm for local similarities.
Computer Applications in the Biosciences, 6(4):373-381, 1990.

101. R. Idury and A. Schaffer. Triangulating three-colored graphs in linear time and linear space.
SI AM Journal on Discrete Mathematics, 6(2), 1993.

102. T. Jiang, E. Lawler, and L. Wang. Aligning sequences via an evolutionary tree: complexity
and approximation. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory
of Computing, pages 760-769, 1994.

103. R. Jones, W. Taylor, IV, X. Zhang, J. P. Mesirov, and E. Lander. Protein sequence comparison
on the connection machine CM-2. In Bell and Marr [20], pages 99-108.

104. D. Joseph, J. Meidanis, and P. Tiwari. Determining DNA sequence similarity using max-
imum independent set algorithms for interval graphs. In Proceedings of the Third Scandi-
navian Workshop on Algorithm Theory, volume 621 of Lecture Notes in Computer Science,
pages 326-337. Berlin: Springer-Verlag, 1992.

105. M. Kanehisa and C. DeLisi. The prediction of a protein and nucleic acid structure: problems
and prospects. In G. Koch and M. Hazewinkel, editors, Mathematics of Biology, pages 115-
137. Dordrecht: D. Reidel, 1985.

106. S. K. Kannan and T. J. Warnow. Triangulating 3-colored graphs. SI AM Journal on Discrete
Mathematics, 5(2):249-258, 1992.

107. S. K. Kannan and T. J. Warnow. Inferring evolutionary history from DNA sequences. SIAM
Journal on Computing, 23(4):713-737, 1994.

108. H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized completion problems
on chordal and interval graphs: Minimum fill-in and physical mapping. In Proceedings of the
IEEE Thirty-Fifth Annual Symposium on Foundations of Computer Science, pages 780-791,
1994.

109. S. Karlin and S. F. Altschul. Methods for assessing the statistical significance of molecular
sequence features by using general scoring schemes. Proceedings of the National Academy
of Sciences of the U.S.A., 87:2264-2268, 1990.

110. S. Karlin, A. Dembo, and T. Kawabata. Statistical composition of high-scoring segments
from molecular sequences. Annals of Statistics, 18(2):571-581, 1990.

111. R. M. Karp. Mapping the genome: some combinatorial problems arising in molecular biol-
ogy. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
pages 278-285, 1993.

112. R. M. Karp, C. Kenyon, and O. Waarts. Error-resilient DNA computation. In Proceedings of
the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 458-467, 1996.

REFERENCES 283

113. J. Kececioglu. The maximum weight trace problem in multiple sequence alignment. In Pro-
ceedings of the Fourth Symposium on Combinatorial Pattern Matching, volume 684 of Lec-
ture Notes in Computer Science, pages 106—119. Berlin: Springer-Verlag, 1993.

114. J. D. Kececioglu. Exact and approximation algorithms for DNA sequence reconstruction.
Ph.D. thesis, University of Arizona, 1991.

115. J. D. Kececioglu and E. W. Myers. Combinatorial algorithms for DNA sequence assembly.
Algorithmica, 13:7-51, 1995.

116. J. D. Kececioglu and D. Sankoff. Exact and approximate algorithms for sorting by reversals,
with application to genome rearrangement. Algorithmica, 13:180-210, 1995.

117. E. V. Koonin and V. V. Dolja. Evolution and taxonomy of positive-strand RNA viruses: im-
plications of comparative analysis of amino acid sequences. Critical Reviews in Biochemistry
and Molecular Biology, 28(5):375-430, 1993.

118. R. Kosaraju, J. Park, and C. Stein. Long tours and short superstrings. In Proceedings of the
IEEE Thirty-Fifth Annual Symposium on Foundations of Computer Science, pages 166-177,
1994.

119. E. S. Lander. Analysis with restriction enzymes. In Waterman [196], pages 35-51.

120. E. S. Lander and M. S. Waterman. Genomic mapping by fingerprinting random clones: a
mathematical analysis. Genomics, 2:231-239, 1988.

121. L. Larmore and B. Schieber. On-line dynamic programming with applications to the predic-
tion of RNA secondary structure. In Proceedings of the First Annual ACM-SI AM Symposium
on Discrete Algorithms, pages 503-512, 1990.

122. R. H. Lathrop. The protein threading problem with sequence amino acid interaction prefer-
ences is NP-complete. Protein Engineering, 7(9): 1059-1068, 1994.

123. R. H. Lathrop and T. F. Smith. Global optimum protein threading with gapped alignment and
empirical pair score functions. Journal of Molecular Biology, 25 5 (4): 641-665, 1996.

124. B.Lewin. Genes V. Oxford: Oxford University Press, 1994.

125. R. Lewontin. Biology as Ideology. New York: HarperPerennial, 1993.

126. M. Li. Towards a DNA sequencing theory (learning a string). In Proceedings of the IEEE
Thirty-First Annual Symposium on Foundations of Computer Science, pages 125-134, 1990.

127. D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity search. Science,
227:1435-1441, 1985.

128. R. J. Lipton. Using DNA to solve NP-complete problems. Science, 268:542-545, 1995.

129. U. Manber. Introduction to Algorithms. Reading, MA: Addison-Wesley, 1989.

130. U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches. In
Proceedings of the First Annual ACM-SIAMSymposium on Discrete Algorithms, pages 319-
327, 1990.

131. C. K. Mathews and K. E. van Holde. Biochemistry. Redwood City, CA: Benjamin/Cummings,
1990.

132. F. R. McMorris. On the compatibility of binary qualitative taxonomic characters. Bulletin
of Mathematical Biology, 39:133-138, 1977.

133. F. R. McMorris, T. Warnow, and T. Wimer. Triangulating vertex-colored graphs. SIAM Jour-
nal on Discrete Mathematics, 7(2), May 1994.

ZB4 REFERENCES

134. J. Meidanis. Distance and similarity in the presence of nonincreasing gap-weighting func-
tions. In Proceedings of the Second South American Workshop on String Processing, pages
27-37, Valparaiso, Chile, Apr. 1995.

135. J. Meidanis and E. G. Munuera. A simple linear time algorithm for binary phylogeny. In Pro-
ceedings of the Fifteenth International Conference of the Chilean Computing Society, pages
275-283, 1995.

136. J. Meidanis and E. G. Munuera. A theory for the consecutive ones property. In Proceed-
ings of the Third South American Workshop on String Processing, volume 4 of International
Informatics Series, pages 194-202. Carleton University Press, 1996.

137. J. Meidanis and J. C. Setubal. Multiple alignment of biological sequences with gap flexibility.
In Proceedings of Latin American Theoretical Informatics, volume 911 of Lecture Notes in
Computer Science, pages 411-426. Berlin: Springer-Verlag, 1995.

138. J. Messing, R. Crea, and P. H. Seeburg. A system for shotgun DNA sequencing. Nucleic
Acids Research, 9:309-321, 1981.

139. W. Miller. Building multiple alignments from pairwise alignments. Computer Applications
in the Biosciences, 9(2): 169-176, 1993.

140. W. Miller and E. W. Myers. Sequence comparison with concave weighting functions. Bul-
letin of Mathematical Biology, 50(2):97-120, 1988.

141. K. B. Mullis. The unusual origin of the polymerase chain reaction. Scientific American,
262(4):56-65, Apr. 1990.

142. E. W. Myers. An 0{ND) difference algorithm and its variations. Algorithmica, 1:251-266,
1986.

143. E. W. Myers. Advances in sequence assembly. In Adams et al. [1], pages 231-238.

144. E. W. Myers. Toward simplifying and accurately formulating fragment assembly. Journal
of Computational Biology, 2(2):275-290, 1995.

145. E. W. Myers and W. Miller. Optimal alignments in linear space. Computer Applications in
the Biosciences, 4(1):11-17, 1988.

146. S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similari-
ties in the amino acid sequence of two proteins. Journal of Molecular Biology, 48:443-453,
1970.

147. M. Nei. Molecular Evolutionary Genetics. New York: Columbia University Press, 1987.

148. J. D. Palmer. Chloroplast DNA evolution and biosystematic uses of chloroplast DNA vari-
ation. The American Naturalist, 130:S6-S29, 1987. Supplement.

149. J. D. Palmer and L. A. Herbon. Unicircular structure of the brassica hirta mitochondrial
genome. Current Genetics, 11:565-570, 1987.

150. J. D. Palmer, B. Osorio, and W. F. Thompson. Evolutionary significance of inversions in
legume chloroplast DNAs. Current Genetics, 14:65-74, 1988.

151. C. H. Papadimitriou. Computational Complexity. Reading, MA: Addison-Wesley, 1994.

152. C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity. Englewood Cliffs, NJ: Prentice-Hall, 1982.

153. W. R. Pearson. Rapid and sensitive sequence comparison with FASTP and FASTA. In Doolit-
tle [51], pages 63-98.

REFERENCES 285

154. W. R. Pearson. Searching protein sequence libraries: Comparison of the sensitivity and se-
lectivity of the Smith-Waterman and FASTA algorithms. Genomics, 11:635-650, 1991.

155. W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison. Pro-
ceedings of the National Academy of Sciences of the U.S.A., 85:2444-2448, 1988.

156. W. R. Pearson and W. Miller. Dynamic programming algorithms for biological sequence
comparison. In L. Brand and M. L. Johnson, editors, Numerical Computer Methods, volume
210 of Methods in Enzymology, pages 575-601. New York: Academic Press, 1992.

157. H. Peltola, H. Soderlund, J. Tarhio, and E. Ukkonen. Algorithms for some string matching
problems arising in molecular genetics. In Information Processing 83 .'Proceedings of the In-
ternational Federation for Information Processing (IFIP) Ninth World Computer Congress,
pages 53-64. Amsterdam: North Holland, 1983.

158. H. Peltola, H. Soderlund, andE. Ukkonen. SEQAIDS: ADNA sequence assembling program
based on a mathematical model. Nucleic Acids Research, 12:307-321, 1984.

159. D. Penny, M. D. Hendy, and M. A. Steel. Progress with methods for constructing evolution-
ary trees. Trends in Ecology and Evolution, 7(3):73-79, 1992.

160. P. A. Pevzner. DNA physical mapping and alternating Eulerian cycles in colored graphs.
Algorithmica, 13(l/2):77-105, 1995.

161. F.M.Richards. The protein folding problem. Scientific American, 264(1):54-63, Jan. 1991.

162. R. J. Robbins. Challenges in the human genome project. IEEE Engineering in Medicine and
Biology, ll(l):25-34, Mar. 1992.

163. K. H. Rosen. Discrete Mathematics and Its Applications, 2nd ed. New York: McGraw-Hill,
1991.

164. M. Rosenberg and D. Court. Regulatory sequences involved in the promotion and termina-
tion of RNA transcription. Annual Review of Genetics, 13:319-353, 1979.

165. I. Rosenfeld, E. Ziff, and V. van Loon. DNA for beginners. Writers and Readers, 1984.

166. D. Sankoff. Minimal mutation trees of sequences. SI AM Journal on Applied Mathematics,
28:35-42, 1975.

167. D. Sankoff. Analytical approaches to genomic evolution. Biochimie, 75(409-413), 1993.

168. D. Sankoff and J. B. Kruskal. Time Warps, String Edits, and Macromolecules: the Theory
and Practice of Sequence Comparison. Reading, MA: Addison-Wesley, 1983.

169. W. Schmitt and M. S. Waterman. Multiple solutions of DNA restriction mapping problems.
Advances in Applied Mathematics, 12:412-427, 1991.

170. R. Sedgewick. Algorithms, 2nd ed. Reading, MA: Addison-Wesley, 1988.

171. D. Seto, B. Koop, and L. Hood. An experimentally derived data set constructed for testing
large-scale DNA sequence assembly algorithms. Genomics, 15:673-676, 1993.

172. I.Simon. Sequence comparison: some theory and some practice. In Proceedings of the LITP
Spring School on Theoretical Computer Science, volume 377 of Lecture Notes in Computer
Science, pages 79-92. Berlin: Springer-Verlag, 1987.

173. J. Sims, D. Capon, and D. Dressier. dnaG (Primase)-dependent origins of DNA replication.
Journal of Biolical Chemistry, 254:12615-12628, 1979.

174. S. S. Skiena and G. Sundaram. A partial digest approach to restriction site mapping. Bulletin
of Mathematical Biology, 56(2):275-294, 1994.

286 REFERENCES

175. T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Journal
of Molecular Biology, 147:195-197, 1981.

176. T. F. Smith, M. S. Waterman, and W. M. Fitch. Comparative biosequence metrics. Journal
of Molecular Evolution, 18:38-46, 1981.

177. C. Soderlund and C. Burks. GRAM and genfragll: solving and testing the single-digest, par-
tially ordered restriction map problem. Computer Applications in the Biosciences, 10(3):349-
358, 1994.

178. R. Staden. A strategy of DNA sequencing employing computer programs. Nucleic Acids
Research, 6:2601-2610, 1979.

179. M. A. Steel. The complexity of reconstructing trees from qualitative characters and subtrees.
Journal of Classification, 9:91-116, 1992.

180. G.A.Stephen. String Searching Algorithms. Singapore: World Scientific, 1994.

181. D. L. Swofford and W. P. Maddison. Reconstructing ancestral character states under Wagner
parsimony. Mathematical Biosciences, 87:199-229, 1987.

182. D. L. Swofford and G. J. Olsen. Phylogeny reconstruction. In D. M. Hillis and C. Moritz,
editors, Molecular Systematics, pages 411-501. Sunderland, MA: Sinauer Associates, 1990.

183. R. Tamarin. Principles of Genetics. Dubuque, IA: Wm. C. Brown, 1991.

184. R. E. Tarjan. Data Structures and Network Algorithms. CBMS-NSF Regional conference
series in applied mathematics. Society for Industrial and Applied Mathematics, 1983.

185. S.-H. Teng and F. Yao. Approximating shortest superstrings. In Proceedings of the IEEE
Thirty-Fourth Annual Symposium on Foundations of Computer Science, pages 158—165,1993.

186. D. H. Turner and N. Sugimoto. RNA structure prediction. Annual Review of Biophysics and
Biophysical Chemistry, 17:167-192, 1988.

187. J. S. Turner. Approximation algorithms for the shortest common superstring problem. In-
formation and Computation, 83:1-20, 1989.

188. E. Ukkonen. Algorithms for approximate string matching. Information and Control, 64:100-
118, 1985.

189. R. Unger and J. Moult. Finding the lowest free energy conformation of a protein is an NP-
hard problem: proof and implications. Bulletin of Mathematical Biology, 55(6): 1183-1198,
1993.

190. M. Vingron and A. von Haeseler. Towards integration of multiple alignment and phyloge-
netic tree construction. Unpublished manuscript, 1995.

191. G. von Heijne. Sequence Analysis in Molecular Biology: Treasure Trove or Trivial Pursuit?
New York: Academic Press, 1987.

192. L. Wang and D. Gusfield. Improved approximation algorithms for tree alignment. In Pro-
ceedings of the Seventh Symposium on Combinatorial Pattern Matching, volume 1075 of
Lecture Notes in Computer Science, pages 220-233. Berlin: Springer-Verlag, 1996.

193. L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal of Com-
putational Biology, l(4):337-348, 1994.

194. T. J. Warnow. Constructing phylogenetic trees efficiently using compatibility criteria. Un-
published manuscript, 1993.

195. T. J. Warnow. Tree compatibility and inferring evolutionary history. Journal of Algorithms,
16:388-407, 1994.

REFERENCES 287

196. M. S. Waterman, editor. Mathematical Methods for DNA Sequences. Boca Raton, FL: CRC
Press, 1989.

197. M. S. Waterman. Sequence alignments. In Waterman [196], pages 53-92.

198. M.S. Waterman. Parametric and ensemble sequence alignment algorithms. Bulletin of Math-
ematical Biology, 56(4):743-767, 1994.

199. M. S. Waterman. Introduction to Computational Biology. London: Chapman & Hall, 1995.

200. M. S. Waterman and J. R. Griggs. Interval graphs and maps of DNA. Bulletin of Mathemat-
ical Biology, 48(2):189-195, 1986.

201. M. S. Waterman and T. F. Smith. Rapid dynamic programming algorithms for RNA sec-
ondary structure. Advances in Applied Mathematics, 7:455-464, 1986.

202. M. S. Waterman, T. F. Smith, M. Singh, and W. A. Beyer. Additive evolutionary trees. Jour-
nal of Theoretical Biology, 64:199-213, 1977.

203. J. D. Watson et al. Molecular Biology of the Gene, volume 1. Redwood City, CA: Ben-
jamin/Cummings, 1987.

204. J. D. Watson et al. Molecular Biology of the Gene, volume 2. Redwood City, CA: Ben-
jamin/Cummings, 1987.

205. G. A. Watterson, W. J. Ewens, and T. E. Hall. The chromosome inversion problem. Journal
of Theoretical Biology, 99:1-7, 1982.

206. M. Zuker. On finding all suboptimal foldings of an RNA molecule. Science, 244:48-52,
1989.

207. M. Zuker. The use of dynamic programming algorithms in RNA secondary structure predic-
tion. In Waterman [196], pages 159-185.

Index

accession number, 23
active site

in proteins, 253
additive

distances, 192
function, 62
matrix, 192
trees, 193

adjacency
list, 37
matrix, 37

affine
function, 64
gap penalty function, 64

agreement
between phylogenies, 204

algorithm
analysis, 39
branch^and-bound, 255
definition, 38
for consecutive ones, 153
greedy, 42
greedy for SCS, 124
greedy for TSP, 166
notation, 38
RAM model, 38
running time, 39
statements, 39

algorithm code
binary tree isomorphism, 206
construction of R tree, 198
construction of ultrametric tree f/, 199
cut-weight computation, 199
Hamiltonian path greedy, 125
KBand, 66
multiple alignment, 76
optimal alignment, 53

optimal alignment in linear space, 60
perfect binary phylogeny decision, 183
placement of rows in C1P, 157
probe permutation, 169
protein threading, 258
rooted binary tree agreement, 206
similarity in linear space, 58
sorting, 42
sorting reversal (oriented), 235
sorting unoriented permutation, 241

alignment
between two sequences, 49
downmost, 54
local, 55
multiple, 69-80
score, 50
semiglobal, 56
star, 76
tree, 79
upmost, 54

allele, 14
a-helix, 253
alphabet, 33
amino acid

structure, 2
table, 3

anticoding strand, 10
antiparallel strands, 6
antisense strand, 10
approximation algorithm

definition, 41
sorting unoriented permutation, 241
tree alignment, 79
vertex cover, 44

bacteria, 17
bacteriophage, 18

290 INDEX

base
complementary, 6
in DNA, 6
pair, 6

basic local alignment search tool, 84
£-sheet, 253
^-strand, 253
BLAST, 84
block

in sequence alignment, 62
of genes, 216

BLOSUM matrices, 103
bp (base pair), 6
branch-and-bound, 255
breadth-first search, 42
breakpoint, 218, 221
bulge

in RNA, 248

C1P, 150
central dogma, 12
character

in phylogenies, 177
in strings, 33

character state matrix, 178
chimerism

in fragment assembly, 108
in physical mapping, 147
screening in physical mapping, 167

chloroplast, 7
chromosome

definition, 9
homologous, 14
in physical mapping, 143
number, 14

cladistic characters
in phylogenies, 179

clique, 189, 191
clone

chimeric, 147
in physical mapping, 146
library, 146

cloning, 19
code

genetic, 10
coding strand, 10
codon,9
coloring

graph, 37
interval graphs, 150
triangulated graphs, 188

compatibility
between trees, 204
maximizing in phylogenies, 191
of binary characters, 183,186
of characters in phylogenies, 180

complementary bases, 6
complexity analysis, 40
concave penalty function, 102
connected components, 36
consecutive ones problem, 150
consensus sequence

computation, 137
definition, 107

contig
apparent, 113
in fragment assembly, 112, 133
in physical mapping, 145

convergence
of reality edges, 226
of states in phylogenies, 178

core
in protein secondary structure, 253

cosmid, 20
coverage

in fragment assembly, 110
in physical mapping, 166
of layout in fragment assembly, 133
of sampling in fragment assembly, 112

Crick, Francis H. C, 6
cycle

Eulerian, 37
graph definition, 36
Hamiltonian, 37
in reality and desire diagrams, 224

database
of sequences, 23
search, 80

degree
in graphs, 35

deoxyribonucleic acid, 5
depth-first search

definition, 42
in tree isomorphism algorithm, 206

derivation tree, 179
diploid cells, 14
directed characters

in phylogenies, 179
directed sequencing, 113
discrete characters

in phylogenies, 177

INDEX 291

disjoint-set forest
definition, 43
in algorithm for ultrametric trees, 198
in greedy algorithm for Hamiltonian paths,

125
distance

edit, 92
Hamming, 161
in phylogenies, 177, 192
in sequence comparison, 89
Levenshtein, 92
reversal, 220, 237

divergence
of reality edges, 226

divide and conquer
in similarity algorithm, 58

DNA
amplification, 19
computing with, 261
copying, 19
cutting and breaking, 18
double helix, 6
junk, 13
orientation, 6
reading and measuring, 20
structure, 5

domain
in protein structure, 253

Doolittle, Russell R, 2
double digest problem, 145, 147

NP-completeness, 148
downstream, 11
dual end sequencing, 113
dynamic programming

in general, 42
in multiple alignment, 71
in RNA structure prediction, 247
in sequence comparison, 50

edit distance, 92
efficient algorithm

definition, 40
electrophoresis, 20
EMBL, 24
end spaces

in sequence alignment, 56
endonucleases, 19
entropy

in fragment assembly, 132

enzyme
definition, 2
restriction, 18

errors
in digestion data, 145
in DNA computing, 267
in fragment assembly, 107
in gel reading, 21
in hybridization mapping, 146

eukaryotes, 11
Eulerian

cycle, 37
path, 37

European Molecular Biology Laboratory, 24
exons, 11
exonucleases, 19

false negative
in hybridization mapping, 146

false positive
in fragment assembly, 129
in hybridization mapping, 146

FAST, 87
fingerprints

in physical mapping, 144
finite automaton

used in BLAST, 86
fortress, 233
fragment, 105
free energy

in RNA, 246

gap
in sequence alignment, 60

gap penalty functions, 60
gel, 20
Genbank, 23
gene

definition, 9
expression, 14
locus, 16

genetic code, 10
genetic linkage map, 16
genome

average, 22
definition, 14
example sizes, 14
levels, 17
rearrangements, 215

INDEX

global sequence comparison, 49
graph

acyclic, 36
bipartite, 36
clique, 191
complete, 36
connected components, 36
definition, 35
degree, 35
dense, 37
directed, 35
Eulerian, 37
Hamiltonian, 37
indegree, 35
interleaving, 228
intersection, 187
interval, 37
outdegree, 35
sparse, 37
triangulated, 186
undirected, 35

greedy algorithm
definition of, 42
for shortest common superstring, 124
forTSP, 166
for weighted Hamiltonian path in multi-

graphs, 124

hairpin loop
in RNA, 248

Hamiltonian
cycle, 37
directed path, 261
graphs, 37
path, 37
paths in SCS model, 122

Hamming distance, 161
haploid cells, 14
helical region

in RNA, 248
heuristic

definition, 41
for traveling salesman problem, 166
in fragment assembly, 132
in hybridization mapping, 167

homologous
characters in phylogenies, 177
chromosomes, 14
gene blocks, 216

host organism
in cloning, 20

Human Genome Project
description, 21
WWW site, 172

hurdle, 231
hybridization

graph, 164
in physical mapping, 144, 146
in sequencing, 113

hydrophilic amino acids, 254
hydrophobic amino acids, 254

indegree, 35
induced pairwise alignment, 71
induction

in algorithm design, 42
insert, 20
interleaving graph, 228
intersection graph, 187
interval

of a string, 34
interval graph

definition of, 37
in physical mapping, 149

introns, 11
inverse protein folding problem, 254
isomorphism

in trees, 206

junk DN A, 13

killer agent, 34
knapsack problem, 44
knots

in RNA, 246
Knuth, Donald Ervin, ix

large-scale sequencing, 105
layout

in fragment assembly, 106
Levenshtein distance, 92
ligase reaction, 263
linkage

in fragment assembly, 118, 133
local alignment, 55
locus, 16
longest common subsequence, 97
loops

in proteins, 253
in RNA, 248

lowest common ancestor, 198

INDEX 293

map
genetic linkage, 16
physical, 16, 143

marker
in physical mapping, 143—144

match
in sequence alignment, 50

matching
in graphs, 37

metric space, 193
minimum spanning tree

algorithm, 42
definition, 37
in phylogeny algorithm, 197

mismatch
in sequence alignment, 50

mitochondrion, 7
motif

in protein structure, 253
mRNA, 10
Mullis, Kary B., 20
MULTICONTIG

model for fragment assembly, 117
multigraph, 120
multiple alignment, 69-80
multiple-sequence comparison, 69-80

nondeterministic polynomial time (NP), 40
nonhurdle, 231
NP (class of problems), 40
NP-complete problem

bottleneck traveling salesman, 162
c-triangulation of graphs, 188
character compatibility, 191
clique, 191
definition, 40
double digest, 148
graph coloring, 41
Hamiltonian cycle, 41
Hamiltonian path, 261
how to deal with, 41
hybridization mapping with nonunique

probes, 151
interval graph models, 149-150
MULTICONTIG, 119
multiple alignment, 72
optimizing consecutive ones, 151
parsimony in phylogenies, 191
perfect phylogeny, 181
protein threading, 255
RECONSTRUCTION, 117

satisfiability, 264
set partition, 148
shortest common superstring, 116
solved with DNA, 261
sorting unoriented permutation, 236
traveling salesman, 41
tree alignment, 79

NP-hard problem
definition, 40
list. See NP-complete problem

nucleotide
in DNA, 6

object
in phylogenies, 176

oligonucleotide, 6
open reading frame, 13
ordered characters

in phylogenies, 179
orientation

in fragments, 109
in proteins, 4
of DNA, 6
of gene blocks, 216

oriented permutation, 219
outdegree, 35
overlap

between fragments, 106
overlap graph, 124
overlap multigraph, 119

P (class of problems), 40
palindrome, 18
PAM matrix, 80
parsimony

in genome rearrangements, 216
in phylogenies, 190

partial digest problem, 145
path

Eulerian, 37
graph definition, 36
Hamiltonian, 37

PCR, 20
PDB, 24
peptide bond, 3
percent of accepted mutations matrix, 80
perfect phylogeny problem, 179
permutation

oriented, 219
unoriented, 236

phage, 18, 20

294 INDEX

phylogenetic tree, 175
phylogeny, 175
physical map, 16
physical mapping

approximation, 160
hybridization, 146
restriction site mapping, 145

PIR, 24
plasmid, 20
Poisson distribution

in BLAST, 87
Poisson process

in mapping model, 163
polar characters

in phylogenies, 179
polymerase chain reaction, 20, 264
polynomial time, 40
polypeptidic chain, 3
prefix

of a string, 34
primer, 20, 99
probe

in physical mapping, 146
in sequencing by hybridization, 114

projection
of a multiple alignment, 71

prokaryotes, 11
promoter, 10
proper

cycle, 229
interval graph, 172
subgraph, 36

protein
active site, 253
folding, 252
function, 4
orientation, 4
secondary structure, 253
structure, 4
threading, 255

protein data bank, 24
protein identification resource, 24

qualitative characters
in phylogenies, 179

quaternary structure, 4
query sequence

in database search, 80

random access machine, 38
reading frame, 13

reality and desire diagram, 222
recombination, 16
RECONSTRUCTION

model for fragment assembly, 116
recurrence relation

in RNA structure prediction, 247,248,
250

in sequence comparison, 55, 63
recursion

definition, 42
in optimal alignment algorithm, 53
in sorting algorithm, 42

reduction
in computational complexity, 41

repeat
in fragment assembly, 110, 128
in physical mapping, 147

residue
protein, 3

restriction enzymes
definition, 18
in physical mapping, 144, 145

restriction sites
definition, 18
in physical mapping, 144

reversal
distance (oriented), 237
distance (unoriented), 220
in genome rearrangements, 216
in oriented genome rearrangements, 220
of states in phylogenies, 179

reverse complementation, 7
ribonucleic acid, 8
ribosome, 5, 11
RNA

description, 8
messenger, 10
ribosomal, 11
secondary structure prediction, 246-252
transfer, 11

rRNA, 11

SAT, 264
satisfiability problem, 264
SBH, 113
score

alignment, 50
in BLAST, 86
in fragment assembly, 132
in FAST, 88

scoring system, 90, 92, 96

INDEX 295

SCS, 114
secondary structure

protein, 4
RNA, 246

segment pair, 84
selectivity

in database searches, 88
semiglobal alignment

applied to fragment assembly, 134
definition, 56

sense strand, 10
sensitivity

in database searches, 88
sequence, 33
sequence comparison

exact, 99
parameter choice, 96

sequence databases, 23
sequence tagged site

in physical mapping, 147
sequencing

by hybridization, 113
definition, 15
directed, 113
dual end, 113
large-scale, 105
shotgun method, 106

set partition problem, 148
shortest common superstring, 114
shotgun method

definition, 19
in fragment assembly, 106

SIG, 187
similarity

definition, 50
global, 50
in BLAST, 85
in sequence comparison, 89
local, 55
semiglobal, 57

sorting by reversals
in genome rearrangements, 216

SP measure
in multiple alignment, 70

space
in sequence alignment, 49

spanning subgraph, 36
star alignment, 76
state

in phylogenies, 177
state intersection graph, 187

string
as path in a graph, 119
definition, 33
empty, 33
killer agent, 34
prefix, 34
suffix, 34

string matching, 98
strips, 238
structure prediction, 245-260
subadditive function, 64
subgraph, 36
subinterval free, 127
subsequence

definition, 33
longest common, 97

substring, 33
substring free, 123
suffix

of a string, 34
suffix array, 99
suffix tree

definition, 99
in SCS algorithm, 124

sum-of-pairs measure
in multiple alignment, 70

supersequence, 33
superstring

definition, 34
shortest common, 114

target DNA
in fragment assembly, 105
in physical mapping, 144

taxonomical unit, 176
taxonomy, 176
template strand, 10
tertiary structure

protein, 4
threading

proteins, 255
topological ordering

definition, 44
in consecutive ones algorithm, 158
in heuristic for fragment assembly, 137
in SCS algorithm, 130

topology
of trees, 176

transcription, 10
translation, 12

traveling salesman problem
definition of, 37
heuristic, 166
in hybridization mapping, 160, 166

tree
definition, 36
refinement, 204
subtree, 179

tree alignment, 79
triangulated graph, 186
tRNA, 11
TSP, 37

ultrametric trees, 196
union-find data structure, 43
unordered characters

in phylogenies, 179
unoriented permutation, 236
upstream, 11

vector organism
in cloning, 20

virus, 17

walking
in sequencing, 112

Watson, James D., 6
Watson-Crick base pairs, 6
weakest link

in fragment assembly, 118
word, 85
WWW site

courses, 269
for this book, xiii
Human Genome Project, 172
Journal of Computational Biology, 269
sequence databases, 23

YAC, 20
yeast artificial chromosome, 20

