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Overview

Want to calculate the probability that an event will happen? Be able to spot fake data? Prove beyond
doubt whether one thing causes another? Or learn to be a better gambler? You can do that and much
more with 75 practical and fun hacks packed into Statistics Hacks. These cool tips, tricks, and
mind-boggling solutions from the world of statistics, measurement, and research methods will not only
amaze and entertain you, but will give you an advantage in several real-world situations-including
business.

This book is ideal for anyone who likes puzzles, brainteasers, games, gambling, magic tricks, and those
who want to apply math and science to everyday circumstances. Several hacks in the first chapter
alone-such as the "central limit theorem,", which allows you to know everything by knowing just a
little-serve as sound approaches for marketing and other business objectives. Using the tools of
inferential statistics, you can understand the way probability works, discover relationships, predict events
with uncanny accuracy, and even make a little money with a well-placed wager here and there.

Statistics Hacks presents useful techniques from statistics, educational and psychological measurement,

and experimental research to help you solve a variety of problems in business, games, and life. You'll
learn how to:

Play smart when you play Texas Hold 'Em, blackjack, roulette, dice games, or even the lottery

Design your own winnable bar bets to make money and amaze your friends

Predict the outcomes of baseball games, know when to "go for two" in football, and anticipate the
winners of other sporting events with surprising accuracy

Demystify amazing coincidences and distinguish the truly random from the only seemingly
random--even keep your iPod’s "random" shuffle honest

Spot fraudulent data, detect plagiarism, and break codes

How to isolate the effects of observation on the thing observed

Whether you're a statistics enthusiast who does calculations in your sleep or a civilian who is entertained
by clever solutions to interesting problems, Statistics Hacks has tools to give you an edge over the
world’s slim odds.
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Preface

Chance plays a huge part in your life, whether you know it or not. Your particular genetic makeup mutated
slightly when you were created, and it did so based on specific laws of probability. Performance in school
involves human errors, yours and others’, which tends to keep your actual ability level from being

reflected precisely in your report card or on those high-stakes tests. Research on careers even suggests tha
what you do for a living was probably not a result of careful planning and preparation, but more likely due

to happenstance. And, of course, chance determines your fate in games of chance and plays a large role in
the outcome of sporting events.

Fortunately, an entire set of scientific tools, the various applications of statistics, can be used to solve the
problems caused by our fate-influenced system. Inferential statistics, a field of science based entirely on
the nature of probability, allows us to understand the way things work, discover relationships among
variables, describe a huge population by seeing just a small bit of it, make uncannily accurate predictions,
and, yes, even make a little money with a well-placed wager here and there.

This book is a collection of statistical tricks and tools. Statistics Hacks presents useful tools from statistics,
of course, but also from the realms of educational and psychological measurement and experimental
research design. It provides solutions to a variety of problems in the world of social science, but also in the
worlds of business, games, and gambling.

If you are already a top scientist and do statistical calculations in your sleep, you'll enjoy this book and the
creative applications it finds for those rusty old tools you know so well. If you just like the scientific
approach to life and are entertained by cool ideas and clever solutions to interesting problems, don’t
worry. Statistics Hacks was written with the nonscientist in mind, too, so if that is you, you’ve come to the
right place. It's written for the nonstatistician as well, so if this still describes you, you'll feel safe here.

If, on the other hand, you are taking a statistics course or have some interest in the academic nature of the
topic, you might find this book a pleasant companion to the textbooks typically required for those sorts of
courses. There won't be any contradictions between your textbook and this book, so hearing about
real-world applications of statistical tools that seem only theoretical won’t hurt your development. It’s just
that there are some pretty cool things that you can do with statistics that seem more like fun than like
work.

Why Statistics Hacks?

The term hacking has a bad reputation in the press. They use it to refer to people who break into systems
or wreak havoc, using computers as their weapon. Among people who write code, though, the term hack
refers to a "quick-and-dirty" solution to a problem or a clever way to get something done. And the term
hacker is taken very much as a compliment, referring to someone as being creative, having the technical
chops to get things done. The Hacks series is an attempt to reclaim the word, document the good ways
people are hacking, and pass the hacker ethic of creative participation on to the uninitiated. Seeing how
others approach systems and problems is often the quickest way to learn about a new technology.



The technologies at the heart of this book are statistics, measurement, and research design. Computer
technology has developed hand-in-hand with these technologies, so the use of the term hacks to describe
what is done in this book is consistent with almost every perspective on that word. Though there is just a
little computer hacking covered in these pages, there is a plethora of clever ways to get things done.

How ThisBook |Is Organized

You can read this book from cover to cover if you like, but each hack stands on its own, so feel free to
browse and jump to the different sections that interest you most. If there’s a prerequisite you need to know
about, a cross-reference will guide you to the right hack.

The earlier hacks are more foundational and probably provide generalized solutions or strategic
approaches across a variety of problems to a greater extent than later hacks. On the other hand, later hacks
provide much more specific tricks for winning games or just information to help you understand what's
going on around you.

The book is divided into several chapters, organized by subject:
Chapter 1, The Basics

Use these hacks as a strong set of foundational tools, the ones you will use most often when you are
stat-hacking your way into and out of trouble. Think of these as your basic toolkit: your hammer,
saw, and various screwdrivers.

Chapter 2, Discovering Relationships

This chapter covers statistical ways to find, describe, and test relationships among variables. You will
be able to make the invisible visible with these hacks.

Chapter 3, Measuring the World

A variety of tips and tricks for measuring the world around you are presented here. You'll learn to
ask the right questions, assess accurately, and even increase your own performance on high-stakes
tests.

Chapter 4, Beating the Odds

This chapter is for the gambler. Use the odds to your advantage, and make the right decisions in
Texas Hold 'Em poker and just about every other game in which probability determines the outcome.

Chapter 5, Playing Games

From TV game show strategy to winning Monopoly to enjoying sports to just having fun, this chapter
presents different hacks for getting the most out of your game playing.

Chapter 6, Thinking Smart



This chapter is perhaps the most cerebral of them all. Get your mind right, play mind games, make
discoveries, and unlock the mysteries of the world around us using the statistics hacks you'll find
here.

Conventions Used in This Book
The following is a list of the typographical conventions used in this book:
Italics

Used to indicate key terms and concepts, URLSs, and filenames.
Constant width

Used for Excel functions and code examples.
Constant width italic

Used for code text that should be replaced by user-supplied values.
Gray type

Used to indicate a cross-reference within the text.

You should pay special attention to notes set apart from the text with this icon:

— | Thisis atip, suggestion, or general note. It contains useful supplementary
& information about the topic at hand.

The thermometer icons, found next to each hack, indicate the relative complexity of the hack:

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, that means the book
is available online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands
of top tech books, cut and paste code samples, download chapters, and find quick answers when you need
the most accurate, current information. Try it for free at http://safari.oreilly.com.

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find that
the rules or characteristics of a given situation are different than described here. As a reader of this book,
you can help us to improve future editions by sending us your feedback. Please let us know about any
errors, inaccuracies, misleading or confusing statements, and typos that you find anywhere in this book.


http://safari.oreilly.com/

Please also let us know what we can do to make this book more useful to you. We take your comments
seriously and will try to incorporate reasonable suggestions into future editions. You can write to us at:

O’Reilly Media, Inc.

1005 Gravenstein Hwy N.
Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

To ask technical questions or to comment on the book, send email to:
bookquestions@oreilly.com

The web site for Statistics Hacks lists examples, errata, and plans for future editions. You can find this
page at:

[http://www.oreilly.com/catalog/statisticsiks

For more information about this book and others, see the O’Reilly web site:

|http://www.oreilly.conm

Got aHack?

To explore Hacks books online or to contribute a hack for future titles, visit:

|http://hacks.oreilly.com
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| 4 PREV |
Chapter 1. The Basics

There' sonly asmall group of tools that statisticians use to explore the world, answer questions, and solve
problems. It isthe way that statisticians use probability or knowledge of the normal distribution to help
them out in different situations that varies. This chapter presents these basic hacks.

Taking known information about a distribution and expressing it as a probability [Hack #1] is an essential
trick frequently used by stat-hackers, asis using atiny bit of sample datato accurately describe all the
scoresin alarger population [Hack #2]. Knowledge of basic rules for calculating probabilities [Hack #3] is
crucial, and you gotta know the logic of significance testing if you want to make statistically-based
decisions [Hacks #4 and #8].

Minimizing errorsin your guesses [Hack #5] and scores [Hack #6] and interpreting your data [Hack #7]
correctly are key strategies that will help you get the most bang for your buck in avariety of situations.
And successful stat-hackers have no trouble recognizing what the results of any organized set of
observations or experimental manipulation really mean [Hacks #9 and #10< /a>].

Learn to use these core tools, and the later hacks will be a breeze to learn and master.
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Hack 1. Know the Big Secret

IE

Statisticians know one secret thing that makes them seem smarter than everybody else.

The primary purpose of statistics as a scientific methodology is to make probability statements about
samples of scores. Before we jump into that, we need some quick definitions to get us rolling, both to
understand this hack and to lay a foundation for other statistics hacks.

Samples are numeric values that you have gathered together and can see in front of you that represent
some larger population of scores that you have not gathered together and cannot see in front of you.
Because these values are almost always numbers that indicate the presence or level of some characteristic
measurement folks call these values scores. A probadidigment is a statement about the likelihood of

some event occurring.

Probability is the heart and soul of statistics. A common perception of statisticians, in fact, is that they
mainly calculate the exact likelihood that certain events of interest will occur, such as winning the lottery
or being struck by lightning. Historically, the person who had the tools to calculate the likely outcome of a
dice game was the same person who had the tools to describe a large group of people using only a few
summary statistics.

So, traditionally, the teaching of statistics includes at least some time spent on the basic rules of
probability: the methods for calculating the chances of various combinations or permutations of possible
outcomes. More common applications of statistics, however, are the use of descriptive statistics to
describe a group of scores, or the use of inferential statistics to make guesses about a population of scores
using only the information contained in a sample of scores. In social science, the scores usually describe
either people or something that is happening to them.

It turns out, then, that researchers and measurers (the people who are most likely to use statistics in the rea
world) are called upon to do more than calculate the probability of certain combinations and permutations

of interest. They are able to apply a wide variety of statistical procedures to answer questions of varying
levels of complexity without once needing to compute the odds of throwing a pair of six-sided dice and
getting three 7s in a row.

— | Those odds are .005 or 1/2 of 1 percent if you start from scratch. If you have
@ already rolled two 7s, you have a 16.6 percent chance of rolling that third 7.




The Big Secret

The key reason that probability is so crucial to what statisticians do is because they like to make
probability statements about the scores in real or theoretical distributions.

— | A distribution of scores is a list of all the different values and, sometimes, how
g}f many of each value there are.

For example, if you know that a quiz just administered in a class you are taking resulted in a distribution

of scores in which 25 percent of the class got 10 points, then | might say, without knowing you or

anything about you, that there is a 25 percent chance that you got 10 points. | could also say that there is a
75 percent chance that you did not get 10 points. All | have done is taken known information about the
distribution of some values and expressed that information as a statement of probability. This is a trick. It

is the secret trick that all statisticians know. In fact, this is mostly all that statisticians ever do!

Statisticians take known information about the distribution of some values and express that information as
a statement of probability. This is worth repeating (or, technically, threepeating, as | first said it five
sentences ago). Statisticians take known information about the distribution of some values and express that
information as a statement of probability.

Heavens to Betsy, we can all do that. How hard could it be? Imagine that there are three marbles in an
otherwise empty coffee can. Further imagine that you know that only one of the marbles is blue. There are
three values in the distribution: one blue marble and two marbles of some other color, for a total sample
size of three. There is one blue marble out of three marbles. Oh, statistician, what are the chances that,
without looking, | will draw the blue marble out first? One out of three. 1/3. 33 percent.

To be fair, the values and their distributions most commonly used by statisticians are a bit more abstract or
complex than those of the marbles in a coffee can scenario, and so much of what statisticians do is not
quite that transparent. Applied social science researchers usually produce values that represent the
difference between the average scores of several groups of people, for example, or an index of the size of
the relationship between two or more sets of scores. The underlying process is the same as that used with
the coffee can example, though: reference the known distribution of the value of interest and make a
statement of probability about that value.

The key, of course, is how one knows the distribution of all these exotic types of values that might interest
a statistician. How can one know the distribution of average differences or the distribution of the size of a
relationship between two sets of variables? Conveniently, past researchers and mathematicians have
developed or discovered formulas and theorems and rules of thumb and philosophies and assumptions that
provide us with the knowledge of the distributions of these complex values most often sought by
researchers. The work has been done for us.



A Smaller, Dirtier Secret

Most of the procedures that statisticians use to take known information about a distribution of scores and
express that information as a statement of probability have certain requirements that must be met for the
probability statement to be accurate. One of these assumptions that almost always must be met is that the
values in a sample have been randomly drawn from the distribution.

Notice that in the coffee can example | slipped in that "without looking" business. If some force other than
random chance is guiding the sampling process, then the associated probabilities reported are simply
wrong andhere’s the worst partwe can’t possibly know how wrong they are. Much, and maybe most, of

the applied psychological and educational research that occurs today uses samples of people that were not
randomly drawn from some population of interest.

College students taking an introductory psychology course make up the samples of much psychological
research, for example, and students at elementary schools conveniently located near where an educational
researcher lives are often chosen for study. This is a problem that social science researchers live with or
ignore or worry about, but, nevertheless, it is a limitation of much social science research.
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Hack 2. Describethe World Using Just Two Numbers

IE3

Most of the statistical solutions and tools presented in this book work only because you can look at a
sample and make accurate inferences about a larger population. The Central Limit Theorem is the
meta-tool, the prime directive, the king of all secrets that allows us to pull off these inferential tricks.

Statistics provide solutions to problems whenever your goal is to describe a group of scores. Sometimes
the whole group of scores you want to describe is in front of you. The tools for this task are called
descriptivestatistics. More often, you can see only part of the group of the scores you want to describe,

but you still want to describe the whole group. This summary approach is called infetatitiads. In

inferential statistics, the part of the group of scores you can see is called a sample, and the whole group of
scores you wish to make inferences about is the population.

It is quite a trick, though, when you think about it, to be able to describe with any confidence a population
of values when, by definition, you are not directly observing those values. By using three pieces of
informationtwo sample values and an assumption about the shape of the distribution of scores in the
populationyou can confidently and accurately describe those invisible populations. The set of procedures
for deriving that eerily accurate description is collectively known as the Central Limit Theorem.

Some Quick Statistics Basics
Inferential statistics tend to use two values to describe populations, the mean and the standard deviation.
Mean

Rather than describe a sample of values by showing them all, it is simply more efficient to report some fair
summary of a group of scores instead of listing every single score. This single number is meant to fairly
represent all the scores and what they have in common. Consequently, this single number is referred to as
the central tendency of a group of scores.

Typically, the best measure of central tendency, for a variety of reasons, is the mean [Hack #21]. The
mean is the arithmetic average of all the scores and is calculated by adding together all the values in a
group, and then dividing that total by the number of values. The mean provides more information about all
the scores in a group than other central tendency options (such as reporting the middle score, the most
common score, and so on).

In fact, mathematically, the mean has an interesting property. A side effect of how it is created (adding up
all scores and dividing by the number of scores) produces a number that is as close as possible to all the
other scores. The mean will be close to some scores and far away from some others, but if you add up
those distances, you get a total that is as small as possible. No other number, real or imagined, will
produce a smaller total distance from all the scores in a group than the mean.



Standard deviation

Just knowing the mean of a distribution doesn’t quite tell us enough. We also need to know something
about the variability of the scores. Are they mostly close to the mean or mostly far from the mean? Two
wildly different distributions could have the same mean but differ in their variability. The most commonly
reported measure of variability summarizes the distances between each score and the mean.

As with the mean, the more informative measure of variability would be one that uses all the values in a
distribution. A measure of variability that does this is the standard deviation. The standard deviation is the
average distance of each score from the mean. A standard deviation calculates all the distances in a
distribution and averages them. The "distances" referred to are the distance between each score and the
mean.

— 1 Another commonly reported value that summarizes the variability in a
ﬁ distribution is the variance. The variance is simply the standard deviation
squared and is not particularly useful in picturing a distribution, but it is helpful

when comparing different distributions and is frequently used as a value in
statistical calculations, such as with the independent t test [Hack #17].

The formula for the standard deviation appears to be more complicated than it needs to be, but there are
some mathematical complications with summing distances (negative distances always cancel out the
positive distances when the mean is used as the dividing point). Consequently, here is the equation:

S means to sum up. The x means each score, and the n means the number of scores.
Central Limit Theorem
The Central Limit Theorem is fairly brief, but very powerful. Behold the truth:

If you randomly select multiple samples from a population, the means of each of those samples will be
normally distributed.

Attached to the theorem are a couple of mathematical rules for accurately estimating the descriptive values
for this imaginary distribution of sample means:

The mean of these means (that's a mouthful) will be equal to the population mean. The mean of a
single sample is a good estimate for this mean of means.

The standard deviation of these means is equal to the sample standard deviation divided by the square
root of the sample size, n:



These mathematical rules produce more accurate results, and the distribution is closer to the normal curve
as the sample size within any sample gets bigger.

— | 30 or more in a sample seems to be enough to produce accurate applications of
g}, the Central Limit Theorem.

So What?

Okay, so the Central Limit Theorem appears somewhat intellectually interesting and no doubt makes
statisticians all giggly and wriggly, but what does it all mean? How can anyone use it to do anything cool?

As discussed in "Know the Big Secret" [Hack #1], the secret trick that all statisticians know is how to
solve problems statistically by taking known information about the distribution of some values and
expressing that information as a statement of probability. The key, of course, is how one knows the
distribution of all these exotic types of values that might interest a statistician. How can one know the
distribution of average differences or the distribution of the size of a relationship between two sets of
variables? The Central Limit Theorem, that's how.

For example, to estimate the probability that any two groups would differ on some variable by a certain
amount, we need to know the distribution of means in the population from which those samples were
drawn. How could we possibly know what that distribution is when the population of means is invisible
and might even be only theoretical? The Central Limit Theorem, Bub, that's how! How can we know the
distributions of correlations (an index of the strength of a relationship between two variables) which could
be drawn from a population of infinite possible correlations? Ever hear of the Central Limit Theorem,
dude?

Because we know the proportion of values that reside all along the normal curve [Hack #23], and the
Central Limit Theorem tells me that these summary values are normally distributed, | can place
probabilities on each statistical outcome. | can use these probabilities to indicate the level of statistical
significance (the level of certainty) | have in my conclusions and decisions. Without the Central Limit
Theorem, | could hardly ever make statements about statistical significance. And what a drab, sad life that
would be.

Applying the Central Limit Theorem

To apply the Central Limit Theorem, | need start with only a sample of values that | have randomly drawn
from a population. Imagine, for example, that | have a group of eight new Cub Scouts. It's my job to teach
them knot tying. | suspect, let’s say, that this isn’t the brightest bunch of Scouts who have ever come to me
for knot-tying guidance.

Before | demand extra pay, | want to determine whether they are, in fact, a few badges short of a bushel. |
want to know their IQ. | know that the population’s average IQ is 100, but | notice that no one in my

group has an intelligence test score above 100. | would expect at least some above that score. Could this
group have been selected from that average population? Maybe my sample is just unusual and doesn’t
represent all Cubbies. A statistical approach, using the Central Limit Theorem, would be to ask:



Is it possible that the mean 1Q of the population represented by this sample is 100?

If | want to know something about the population from which my Scouts were drawn, | can use the
Central Limit Theorem to pretty accurately estimate the population’s mean IQ and its standard deviation. |
can also figure out how much difference there is likely to be between the population’s mean 1Q and the
mean IQ in my sample.

| need some data from my scouts to figure all thi e 1-1 should provide some good information.

Table Scout smarts

Scout 1Q
Jimmy 100
Perry 95
Clark 90
Lex 92
Neil 85
Billy 88
Greg 93
John 91

The descriptive statistics for this sample of eight |Q scores are:

Mean 1Q = 91.75

Standard deviation = 4.53

So, | know in my sample that most scores are within abbiyt B points of 91.75. It is the invisible

population they came from, though, that | am most interested in. The Central Limit Theorem allows me to
estimate the population’s mean, standard deviation, and, most importantly, how far sample means will
likely stray from the population mean:

Mean 1Q

Our sample mean is our best estimate, so the population mean is likely close to 91.75.



Sandard deviation of 1Q scoresin the population

The formula we used to calculate our sample standard deviation is designed especially to estimate the
population standard deviation, so we’ll guess 4.53.

Sandard deviation of the mean

This is the real value of interest. We know our sample mean is less than 100, but could that be by
chance? How far would a mean from a sample of eight tend to stray from the population mean when
chosen randomly from that population? Here's where we use the equation from earlier in this hack.
We enter our sample values to produce our standard deviation of the mean, which is usually called
the standard error of the mean:

We now know, thanks to the Central Limit Theorem, that most samples of eight Scouts will produce
means that are within 1.6 1Q points of the population mean. It is unlikely, then, that our sample mean of
91.75 could have been drawn from a population with a mean of 100. A mean of 93, maybe, or 94, but not
100.

Because we know these means are normally distributed, we can use our knowledge of the shape of the
normal distribution [Hack #23] to produce an exact probability that our mean of 91.75 could have come
from a population with a mean of 100. It will happen way less than 1 out of 100,000 times. It seems very
likely that my knot-tying students are tougher to teach than normal. | might ask for extra money.

WhereElselt Works
A fuzzy version of the Central Limit Theorem points out that:
Data that are affected by lots of random forces and unrelated events end up normally distributed.

As this is true of almost everything we measure, we can apply the normal distribution characteristics to
make probability statements about most visible and invisible concepts.

We haven'’t even discussed the most powerful implication of the Central Limit Theorem. Means drawn
randomly from a population will be normally distributed, regardless of the shape of the population. Think
about that for a second. Even if the population from which you draw your sample of values is not
normaleven if it is the opposite of normal (like my Uncle Frank, for example)the means you draw out will
still be normally distributed.

This is a pretty remarkable and handy characteristic of the universe. Whether | am trying to describe a
population that is normal or non-normal, on Earth or on Mars, the trick still works.

=1 NExT
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Hack 3. Figurethe Odds

IE

Will I win the lottery? Will | get struck by lightning and hit by a bus on the same day? Will my basketball
team have to meet our hated rival early in the NCAA tournament? At its core, statistics is all about
determining the likelihood that something will happen and answering questions like these. The basic rules
for calculating probability allow statisticians to predict the future.

This book is full of interesting problems that can be solved using cool statistical tricks. While all the tools
presented in these hacks are applied in different ways in different contexts, many of the procedures used in
these clever solutions work because of a common core set of elements: the rules of probability.

The rules are a key set of simple, established facts about how probability works and how probabilities
should be calculated. Think of these two basic rules as a set of tools in a beginner’s toolbox that, like a
hammer and screwdriver, are probably enough to solve most problems:

Additiverule

The probability of any one of several independent events occurring is the sum of each event’s
probability.

Multiplicative rule

The probability of a series of independent events all occurring is the product of each event's
probability.

These two tools will be enough to answer most of your everyday "What are the chances?" questions.

Questions About the Future

When a statistician says something like "a 1 out of 10 chance of happening,” she has just made a
prediction about the future. It might be a hypothetical statement about a series of events that will never be
tested, or it might be an honest-to-goodness statement about what is about to happen. Either way, she’s
making a statistical statement about the likelihood of an outcome, which is just about all statisticians ever
say [Hack #1].

the ability necessary to act and think like a stat hacker: "If there are 10 things
that might happen and all 10 things are equally likely to happen, then any 1 of
those things has a 1 out of 10 chance of happening."

t — ] If the following statement makes some intuitive sense to you, then you have all




Research is full of questions that are answered using statistics, of course, and probability rules apply, but
there are many problems in the world outside the laboratory that are more important than any stupid old
science problemlike games with dice, for example! Imagine you are a part-time gambler, baby needs a
new pair of shoes and all that, and the values showing the next time you throw a pair of dice will
determine your future. You might want to know the likelihood of various outcomes of that dice roll. You
might want to know that likelihood very precisely!

You can answer the three most important types of probability questions that you are likely to ask using
only your two-piece probability toolkit. Your questions probably fall into one of these three types:

°
How likely is it that a specific single outcome of interest will occur next? For example, will a dice
roll of 7 come up next?

°
How likely is it that any of a group of outcomes of interest will occur next? For example, will either a
7 or 11 come up next?

°

How likely is it that a series of outcomes will occur? For example, could an honest pair of dice really
be thrown all night and a 7 never (I mean never!) come up?! | mean, really, could it?! Could it?!

Probability Jargon

Before we talk about probability and how to determine it, we need to learn how to talk like a
statistician. Remember the "1 out of 10 chance of happening" statement? Here are three ways
of answering the question "What are the chances?":

As a percentage
1 out of 10 can be expressed as 10 percent.

As odds

The odds in a 1 out of 10 situation are 9 to 1 againsti.e., nine chances of losing against one
chance of winning.

As a proportion

10 percent can be expressed as 0.10. Technically, probabilities should be expressed gds
proportions or they should be called something else.




Likelihood of a Specific Outcome

When you are interested in whether something is likely to happen, that "something" can be called a
winning event (if you are talking about a game) or just an outcome of interest (if you are talking about
something other than a game). The primary principle in probability is that you divide the number of
outcomes of interest by the total number of outcomes. The total number of outcomes is sometimes
symbolized with an S (for set), and all the different outcomes of interest are sometimes symbolized as A
(because it is the first letter of the alphabet, | guess; what am I, a mathematician?).

So, here’s the basic equation for probability:

Figuring the chances of any particular outcome or event is a matter of counting the number of those
outcomes, counting the number of all possible outcomes, and comparing the two. This is easily done in
most situations with a small number of possible outcomes or a description of a winning outcome that is
simple and involves a single event.

To answer a typical dice roll question, we can determine the chances of any specific value showing up on
the next roll by counting the number of possible combinations of two six-sided dice that adds up to the
value of interest. Then, divide that number by the total number of possible outcomes. With two 6-sided
dice, there are 36 possible rolls.

For example, there are six ways to throw a 7 (I peeked ahpad to Tdble 1-2), and 6/36 = .167, so the
percentage chance of throwing a 7 on any single roll is about 17 percent.

— | Calculate the total number of possible dice rolls, or outcomes, by multiplying the
E total number of sides on each die: 6x6 = 36.

Likelihood of a Group of Outcomes

If you are interested in whether any of a group of specific outcomes will occur, but you don’t care which
one, the additive rule states that you can figure your total probability by adding together all the individual
probabilities. To answer our dice questi¢ns, Tablg 1-2 borrows some information from "Play with Dice
and Get Lucky" [Hack #43] to express probability for various dice rolls as proportions.

Table Probability of independent dicerolls

Dice | Number of

Probability
roll | outcomes

0.028

0.056

0.083

0.111

0.139

0.167

0.139
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Dice | Number of Probability
roll | outcomes

10 3 0.083

11 2 0.056

12 |1 0.028




Dice
roll

Number of
outcomes

Probability

Total

36

1.0

provides information for various outcomes. For example, there are
different ways to roll a 3. Two winning outcomes divided by a total of 36 diffe
possible outcomes results in a proportion of .056. So, about 6 percent of the
you'll roll a 3 with two dice. Notice also that the probabilities for every possibl
event add up to a perfect 1.0.

Let's apply the additive rule to see the chances of winning when, to win, we
get any one of several different dice rolls. If you will win with a roll of a 10, 17
12, for instance, add up the three individual probabilities:

.083 +.056 +.028 = .167

You will roll a 10, 11, or 12 about 17 percent of the time. The additive rule is
here because you are interested in whether any one of several independent
will happen.

Likelihood of a Series of Outcomes

What about when the probability question is whether more than one indepen
event will happen? This question is usually asked when you want to know wi
a sequence of specific events will occur. The order of the events usually doe|
matter.

Using the data ip Table 1-2 and the same three values of interest from our p|
example (10, 11, and 12), we can figure the chance of a particular sequence
events occurring. What is the probability that, on a given series of three dice
in a row, you will roll a 10, an 11, and a 12?7 Under the multiplicative rule, mu|
the three individual probabilities together:

.083x.056x.028 = .00013

This very specific outcome is very unlikely. It will happen less than .1 percen
1/10 of 1 percent of the time. The multiplicative rule is used here because yo|
interested in whether all of several independent events will happen.

What Probability Means

This hack talks about probability as the likelihood that something will happen|
have placed our discussion within the context of analyzing possible outcome
is an appropriate way to think about probability. Among philosophers and so
scientists who spend a lot of time thinking about concepts such as chance al
future and what's for lunch, there are two different views of probability.

Analytic view

This classic view of probability is the view of the mathematician and the appn
used in this hack. The analytic view identifies all possible outcomes and prod
proportion of winning outcomes to all possible outcomes. That proportion is |
probability.

We are predicting the future with the probability statement, and the accuracy|
prediction is unlikely to ever be tested. It is like when the weather forecaster

there is a 60 percent chance of rain. When it doesn't rain, we unfairly say thg
forecast was wrong, though, of course, we haven't really tested the accurac

probability statement.

Relative frequency view

Under the framework of this competing view, the probability of events is
determined by collecting data and seeing what actually happened and how g
happened. If we rolled a pair of dice a thousand times and found that a 10 or
or a 12 came up about 17 percent of the time, we would say that the chance
rolling one of those values is about 17 percent.

Our statement would really be about the past, not a prediction of the future.
might assume that past events give us a good idea of what the future holds,
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who can know for sure? (Those of us who hold the analytic view of probability can

know for sure, that's who.)
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Hack 4. Reject the Null

iz

Experimental scientists make progress by making a guess that they are sure is wrong.

Science is a goal-driven process, and the goal is to build a body of knowledge about the world. The body
of knowledge is structured as a long list of scientific laws, rules, and theories about how things work and
how they are. Experimental science introduces new laws and theories and tests them through a logical set
of steps known as hypothesis testing.

Hypothesis Testing

A hypothesis is a guess about the world that is testable. For example, | might hypothesize that washing my
car causes it to rain or that getting into a bathtub causes the phone to ring. In these hypotheses, | am
suggesting a relationship between car washing and rainfall or between bathing and phone calls.

A reasonable way to see whether these hypotheses are true is to make observations of the variables in the
hypothesis (for the sake of sounding like statisticians, we’ll call that collecting data) and see whether a
relationship is apparent. If the data suggests there is a relationship between my variables of interest, my
hypothesis is supported, and | might reasonably continue to believe my guess is correct. If no relationship
is apparent in the data, then | might wisely begin to doubt that my hypothesis is true or even reject it
altogether.

There are four possible outcomes when scientists test hypotheses by collect[ng data.|Table 1-3 shows the
possible outcomes for this decision-making process.

Table Possible outcomes of research hypothesis testing

Hypothesis is correct: the Hypothesis is wrong: the world

world really is this way really is not this way
Data does support hypothesis:A. Correct decision: science | B. Wrong decision: science is
accept hypothesis makes progress. thwarted!
Data does not support C. Wrong decision: drat, foiled| D. Correct decision:science makeg
hypothesis: reject hypothesis | again! progress.

Outcomes A and D add to science’s body of knowledge. Though A is more likely to make a research
scientist all wriggly, D is just fine. Outcomes B and C, though, are mistakes, and represent misinformation
that only confuses our understanding of the world.



Statistical Hypothesis Testing

The process of hypothesis testing probably makes sense to youit is a fairly intuitive way to reach
conclusions about the world and the people in it. People informally do this sort of hypothesis testing all the
time to make sense of things.

Statisticians also test hypotheses, but hypotheses of a very specific variety. First, they have data that
represents a sample of values from a real or theoretical population about which they wish to reach
conclusions. So, their hypotheses are about populations. Second, they usually have hypotheses about the
existence of a relationship among variables in the population of interest. A generic statistician’s research
hypothesis looks like this: there is a relationship between variable X and variable Y in the population of
interest.

Unlike research hypothesis testing, with statistical hypothesis testing, the probability statement that a
statistician makes at the end of the hypothesis testing process is not related to the likelihood that the
research hypothesis is true. Statisticians produce probability statements about the likelihood that the
research hypothesis is false. To be more technically accurate, statisticians make a statement about whether
a hypothesis opposite to the research hypothesis is likely to be correct. This opposite hypothesis is

typically a hypothesis of no relationship among variables, and is called the null hypothesis. A generic
statistician’s null hypothesis looks like this: there is no relationship between variable X and variable Y in

the population of interest.

The research and null hypotheses cover all the bases. There either is or is not a relationship among
variables. Essentially, when having to choose between these two hypotheses, concluding that one is false
provides support for the other. Logically, then, this approach is just as sound as the more intuitive
approach presented earlier and utilized naturally by humans every day. The preferred outcome by
researchers conducting null hypothesis testing is a bit different than the general hypothesis-testing

approach presented 1-3.

As|Table 1-f1 shows, statisticians usually wish to reject their hypothesis. It is by rejecting the null that
statistical researchers confirm their research hypotheses, get the grants, receive the Nobel prize, and one
day are rewarded with their faces on a postage stamp.

Table Possible outcomes of null hypothesis testing

Null hypothesis is correct:there is| Null hypothesis is wrong: there is
no relationship in the population | a relationship in the population

Data does support null
hypothesis: fail to reject the
null

| A. Correct decision: science make8. Wrong decision: science is
progress. thwarted!

Data does not support nullf C. Wrong decision: drat, foiled | D. Correct decision:science makes$
hypothesis: reject the null | again! progress.




Although outcome A is still OK (as far as science is concerned), it is now outcome D that pleases
researchers because it indicates support for their real guesses about the world, their research hypotheses.
Outcomes B and C are still mistakes that hamper scientific progress.

Why It Works

Statisticians test the null hypothesisguess the opposite of what they hope to findfor several reasons. First,
proving something to be true is really, really tough, especially if the hypothesis involves a specific value,

as statistical research often does. It is much easier to prove that a precise guess is wrong than prove that a
precise guess is true. | can’t prove that | am 29 years old, but it would be pretty easy to prove | am not.

It is also comparatively easy to show that any particular estimate of a population value is not likely to be
correct. Most null hypotheses in statistics suggest that a population value is zero (i.e., there is no
relationship between X and Y in the population of interest), and all it takes to reject the null is to argue
that whatever the population value is, it probably isn’t zero. Support for researchers’ hypotheses generally
come by simply demonstrating that the population value is greater than nothing, without specifically
saying what that population value is exactly.

— | Quite a perk for the professional statistician, eh? All the statistician has to do is
tell you that your answer is wrong, not tell you what the right answer is!

Even without using numbers as an example, philosophers of science have long argued that progress is best
made in science by postulating hypotheses and then attempting to prove that they are wrong. For good
science, falsifiable hypotheses are the best kind.

It is the custom to conduct statistical analyses this way: present a null hypothesis that is the opposite of the
research hypothesis and see whether you can reject the null. R.A. Fisher, the'tadyn@20y’s greatest
statistician, suggested this approach, and it has stuck. There are other methods, though. Plenty of modern
statisticians have argued that we should concentrate on producing the best estimate of those population
values of interest (such as the size of relationships among variables), instead of focusing on proving that
the relationship is the size of some nonspecified number not equal to zero.

=2 wExT
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Hack 5. Go Big to Get Small

s

The best way to shrink your sampling error is to increase your sample size.

Whenever researchers are playing around with samples instead of whole populations, they are bound to
make some mistakes. Because the basic trick of inferential statistics is to measure a sample and use the
results to make guesses about a population [Hack #2], we know that there will always be some error in our
guesses about the values in those populations. The good news is that we also know how to make the size
of those errors as small as possible. The solution is to go big.

An early principle suggested in a gambling context was presented by Jakob Bernoulli (in 1713), who

called his principle the Golden Theorem. It was later labeled by others (starting with Sim\x8e on-Denis
Poisson in 1837) as the Law of Large Numbers. It is likely the single most useful discovery in the history

of statistics and provides the basis for the key generic advice for all researchers: increase your sample size!



18th centuries) is framed in the language of gambling and probability. This
might be because it gave the gentlemen scholars of the time an excuse to
combine their intellectual pursuits with pursuits of a less intellectual nature. The
Laws of Probability, of course, are legitimately the mathematical basis for
statistical procedures and inferences, so it might be that gambling applications
were used simply as the best teaching examples for these central statistical
concepts.

& The early history of the science of applied statistics (we're talking the 17th and

Laying Down the Law

One application of the Law is its effect on probability and occurrences. The Law includes the
consequence that the increase in the accuracy of predicting outcomes governed by chance is a
set amount. That is, the increase in accuracy is known. The expected distance between the
probability of a certain outcome and the actual proportion of occurrences you observe
decreases as the number of trials increases, and the exact size of this expected gap between
expected and observed can be calculated. The generic name for this expected gap is the
standard error [Hack #18].

The size of the difference between the theoretical probability of an outcome and the proportion
of times it actually occurs is proportional to:

You can think of this formula as the mathematical expression of the Law of Large Numbers.

For discussions of accuracy in the context of probability and outcome, the sample size is the
number of trials. For discussion of accuracy in the context of sample means and population

means, the sample size is the number of people (or random observations) in the sample.

Improving Accuracy
The specific values affected by the Law depend on the scale of measurement used and the
amount of variability in a given sample. However, we can get a sense of the improvement or

increase in accuracy made by various changes in samplg sizes. Thble 1-5 shows proportional
increases in accuracy for all inferential statistics. So speaketh the Law.

Table Effect of increasing sample size

Relative
Sample | jecreasein Meaning
size N
error size
1 1 The error is equal to the standard deviation of the variable i the
population.
The error is about a third of its previous size. Just using 10
10 3.16 observations instead of 1 has dramatically increased our
accuracy.
30 5.48 An increase from 1 to 30 people will dramatically improve
i accuracy. Even the jump from 10 to 30 is useful.
A sample of 100 people produces an estimate much closer {o the
100 10 population value (or expected probability). The size of the efror
with 100 people in a sample is just 1/10 of a standard deviafion.
1,000 31.62 Estimates with so many observations are remarkably precife.
Why It Works

Let's look at this important statistical principle from several different angles. I'll state the law
using three different approaches, beginning with the gambler’s concerns, moving on to the
issue of error, and ending with the implications for gathering a representative sample. All of the
entries in this list are the exact same rule, just stated differently.

Gambling

If an event has a certain probability of occurring on a single trial, then the proportion of
occurrences of the event over an infinite number of trials will equal that probability. As the
number of trials approaches infinity, the proportion of occurrences approaches that probability.

Error

If a sample is infinitely large, the sample statistics will be equal to the population parameters.

For example, the distance between the sample mean and the population mean decreases as the
sample size approaches infinity. Errors in estimating population values shrink toward zero as

the number of observations increases.

Implications

Samples are more representative of the population from which they are drawn when they

include many people than when they include fewer people. The number of important
characteristics in the population represented in a sample increases, as does the precision of their
estimates, as the sample size gets larger.

based on the assumption that the occurrences or the sampling take

All these statements of the Law of Large Numbers are true only if
place randomly.

In addition to providing the basis for calculations of standard errors, the Law of Large Numbers
affects other core statistical issues such as power [Hack #8] and the likelihood of rejecting the
null hypothesis when you should not [Hack #4]. Jakob Bernoulli's gambling pals might have
been most interested in his Golden Theorem because they could get a sense of how many dice
rolls it would take before the proportion of 7s rolled approached .166 or 16.6 percent, and could
then do some solid financial planning.

For the last 300 years, though, all of social science has made use of this elegant tool to estimate
how accurately something we see describes something we cannot see. Thanks, Jake!

SeeAlso
L]
“Find Out Just How Wrong You Really Are" [Hack #18]
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Hack 6. Measure Precisely

I3

Classical test theory provides a nice analysis of the components that combine to produce a score on any
test. A useful implication of the theory is that the level of precision for test scores can be estimated and
reported.

A good educational or psychological test produces scores that are valid and reliable. Validity is the extent
to which the score on a test represents the level of whatever trait one wishes to measure, and the extent to
which the test is useful for its intended purpose. To demonstrate validity, you must present evidence and
theory to support that the interpretations of the test scores are correct.

Reliability is the extent to which a test consistently produces the same score upon repeated measures of the
same person. Demonstrating reliability is a matter of collecting data that represent repeated measures and
analyzing them statistically.

Classical Test Theory

Classical test theory, or reliability theory, examines the concept of a test score. Think of the observed
score (the score you got) on a test you took sometime. Classical test theory defines that score as being
made up of two parts and presents this theoretical equation:

Observed Score = True Score + Error Score
This equation is made up of the following elements:
Observed score

The actual reported score you got on a test. This is typically equal to the number of items answered
correctly or, more generally, the number of points earned on the test.

True score

The score you should have gotten. This is not the score you deserve, though, or the score that would
be the most valid. True score is defined as the average score you would get if you took the same test
an infinite number of times. Notice this definition means that true scores represent only average
performance and might or might not reflect the trait that the test is designed to measure. In other
words, a test might produce true scores, but not produce valid scores.

Error Score

The distance of your observed score from your true score.



Under this theory, it is assumed that performance on any test is subject to random error. You might guess
and get a question correct on a social studies quiz when you don't really know the answer. In this case, the
random error helps you.

I L ] Notice this is still a measurement "error," even though it increased your score.
&‘I.-.

You might have cooked a bad egg for breakfast and, consequently, not even notice the last set of questions
on an employment exam. Here, the random error hurt you. The errors are considered random, because they
are not systematic, and they are unrelated to the trait that the test hopes to measure. The errors are
considered errors because they change your score from your true score.

Over many testing times, these random errors should sometimes increase your score and sometimes
decrease it, but across testing situations, the error should even out. Under classical test theory, reliability
[Hack #31] is the extent to which test scores randomly fluctuate from occasion to occasion. A number
representing reliability is often calculated by looking at the correlations among the items on the test. This
index ranges from 0.0 to 1.0, with 1.0 representing a set of scores with no random error at all. The closer
the index is to 1.0, the less the scores fluctuate randomly.

Standard Error of Measurement

Even though random errors should cancel each other out across testing situations, less than perfect
reliability is a concern because, of course, decisions are almost always made based on scores from a single
test administration. It doesn’t do you any good to know that in the long run, your performance would

reflect your true score if, for example, you just bombed your SAT test because the person next to you wore
distracting cologne.

Measurement experts have developed a formula that computes a range of scores in which your true level
of performance lies. The formula makes use of a value called the standard error of measurement. In a
population of test scores, the standard error of measurement is the average distance of each person’s
observed score from that person’s true score. It is estimated using information about the reliability of the
test and the amount of variability in the group of observed scores as reflected by the standard deviation of
those scores [Hack #2].

The formula for the standard error of measurement is:

Here is an example of how to use this formula. The Graduate Record Exam (GRE) tests provide scores
required by many graduate schools to help in making admission decisions. Scores on the GRE Verbal
Reasoning test range from 200 to 800, with a mean of about 500 (it's actually a little less than that in
recent years) and a standard deviation of 100.

Reliability estimates for scores from this test are typically around .92, which indicates very high

reliability. If you receive a score of 520 when you take this exam, congratulations, you performed higher
than average. 520 was your observed score, though, and your performance was subject to random error.
How close is 520 to your true score? Using the standard error of measurement formula, our calculations
look like this:



The square root of .08 is .28

100x.28 = 28

The standard error of measurement for the GRE is about 28 points, so your score of 520 is most likely
within 28 points of what you would score on average if you took the test many times.

Building Confidence Intervals

What does it mean to say that an observed score is most likely within one standard error of measurement
of the true score? It is accepted by measurement statisticians that 68 percent of the time, an observed score
will be within one standard error of measurement of the true score. Applied statisticians like to be more

than 68 percent sure, however, and usually prefer to report a range of scores around the observed score
that will contain the true score 95 percent of the time.

To be 95 percent sure that one is reporting a range of scores that contain an individual’s true score, one
should report a range constructed by adding and subtracting about two standard errors of measurement.
shows what confidence intervals around a score of 520 on the GRE Verbal test look like.

Figure 1-1. Confidenceintervalsfor a GRE score of 520
" e coficeimond
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Why It Works

The procedure for building confidence intervals using the standard error of measurement is based on the
assumptions that errors (or error scores) are random, and that these random errors are normally distributed.
The normal curve [Hack #25] shows up here as it does all over the world of human characteristics, and its
shape is well known and precisely defined. This precision allows for the calculation of precise confidence
intervals.

The standard error of measurement is a standard deviation. In this case, it is the standard deviation of error
scores around the true score. Under the normal curve, 68 percent of values are within one standard
deviation of the mean, and 95 percent of scores are within about two standard deviations (more exactly,
1.96 standard deviations). It is this known set of probabilities that allows measurement folks to talk about
95 percent or 68 percent confidence.



What It Means

How is knowing the 95 percent confidence interval for a test score helpful? If you are the person who is
requiring the test and using it to make a decision, you can judge whether the test taker is likely to be
within reach of the level of performance you have set as your standard of success.

If you are the person who took the test, then you can be pretty sure that your true score is within a certain
range. This might encourage you to take the test again with some reasonable expectation of how much
better you are likely to do by chance alone. With your score of 520 on the GRE, you can be 95 percent
sure that if you take the test again right away, your new score could be as high as 576. Of course, it could
drop and be as low as 464 the next time, too.

=2
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Hack 7. Measure Up

E
Four levels of measurement determine how the scores produced in measurement can be used. If you have
not measured at the right level, you might not be able to play with those scores the way you want.

Statistical procedures analyze numbers. The numbers must have meaning, of course; otherwise, the
exercises are of little value. Statisticians call numbers with meaning scores. Not all the scores used in
statistics, however, are created equal. Scores have different amounts of information in them, depending on
the rules followed for creating the scores.

When you decide to measure something, you must choose the rules by which you assign scores very
carefully. The level of measurement determines which sorts of statistical analyses are appropriate, which

will work, and which will be meaningful.



Measurement is the meaningful assignment of numbers to things. The things can
such as focks, o . such as inteligence.

Here's an example of what | mean when | say not all scores are created equal. Imagine your
five children took a spelling test. Chuck scored a 90, Dick and Jan got 80s, Bob scored 75, and
Don got only 50 out of 100 correct. If a friend asked how your kids did on the big test,

might report that they averaged 75. This is a reasonable summary. Now, imagine that your five
children ran a foot race against each other. Bob was first, Jan second, Dick third, Chuck fourth,
and Don fith. Your nosey friend again asks how they did. With a proud smile, you report that
they averaged third place. This is not such a reasonable summary, because it provides no
information. In both cases, though, scores were used to indicate performance. The difference
lies only in the level of measurement used.

There are four levels of measurementihat i, four ways that numbers are used as scores. The
levels differ in the amount of information provided and the types of mathematical and
statistical analyses that can be meaningfully conducted on them. The four levels of
measurement are nominal, ordinal, interval, and ratio.

Using Numbersas L abels
If you are D\anmng to use scores to indicate only that the things belong to different groups,

easure at the vel. The nominal level of measurement uses numbers only as names:
Tabel for daious Caegonies (nomina means i nae ony.

For example, a scientist who collects data on men and women, using a 1 1o indicate a male.
subject and a 2 1o indicate a female subject, is using the numbers at a nominal level. Notice that
even though the number 2 is mathematically greater than the number 1, a 2 in this data set does
not mean more of anything. It is used only as a nam

Using Numberto Show Sequence

Ifyou lyze your scores in ways that

on

Ordins ides e
nomaion he ol el prowtdes, 6t adds iformaton  apout e ovde ot sooen
Numbers with greater values can be compared with numbers at lower values, and the people or
otters or whatever was measured can be placed into a meaningul order.

Take, for example, your rank order in your high school class. The valedictorian is usually the
person who received a score of 1 when grade point averages are compared. Notice that you can

compare scores to each other, by ot now anyiing about e distance betves
cores. In a footrace, the first-place finisher might have been just a second ahead of
second-place runner, whie the second-place runner might have been 30 seconds ohen ofhe

runner who came in third place.
Using Numbersto Show Distance

Interval level measurement uses numbers in a way that provides all the information of earlier
levels, but adds an element of precision. This level of measurement produces scores that are
interpreted as having an equal difference between any two adjacent scores.

For example, on a Fahrenheit thermometer, the meaningful difference between 70 and 69
degrees1 degreeis equal to the difference between 32 and 31 degrees. That one degree is
assumed to be the same amount of heat (or, if you prefer, pressure on the liquid in the
thermometer), regardiess of where on the scale the interval exists.

The ntenalovel povkies much e fomaton thnthe ordal evl and you can now
ge scores. ind psychological takes place at
the inenval evel,

Though intenvlevel measurement would seem o soe all of outprbiems i ems of uhat
we can and c: there are still sor that are not
meaningll at evel For ntance. we don't ke comparieans sing ctons of
peoparions. ik about the ey we tak about aperatrs, I s 4D degrss dayfolows on
B0 Geotes day, e do not Sa. 14 hlf a hot tday s yestrdey.- We 10 don reer 1 a
studentwith a 120 IQ as "one-third smarter” nan & Susdorswih 290 Q.

Know those tall towers or turrets where archers were stationed for
defense? Around the circular tops, there was typically a pattern of a
protective stone, then a gap for launching arrows, followed by another
protective stone, and so on. The gaps were called intervals ("between
walls"), and the best designed defenses had the stones and gaps at
equal intervals to provide 360-degree protection.

t ﬂ ‘The word interval s a term from old-time castle architecture. You

Using Numbersto Count in Concrete Ways

The highest level of measurement, ratio, provides all the information of the lower
levels but also allows for proportional comparisons and the creation of percentages.
Ratio level measurement s actually the most common and intuitive way in which we
observe and take accounting of the natural world. When we count, we are at the ratio
level. How many dogs are on your neighbor's porch? The answer is at the ratio level

Ratio evel measurement provides 5o much information and allows fo all possible
statistical manipulations because ratio scales use a frue zero. A true zero means that a
n could score 0 o the scale and realy have zero of the characteristic being
measured. Though a Fahvenheit temperature scale, for example, does have a zero on
it, a zero-degree day does not mean there is absolutely no heat. On interval scales,
Such as i our thermometer example, scores can be negative numbers. At the ratio

level of measurement, there are no negative numbers,

Choosing Your Level of Measurement

Which level of measurementis right for you? Because of the advaniages of moving
o tloat e nenallvel,most sosal sieist prefer 0 meesre a he el o
ratio level. At the intervallevel, you can saely produce descripive staistics and
o nfrenielsaisical aalyses, suh as i, analyses ofvance, and
correlational analysekTaDIE]1-6 provides a summary of the strengihs and
weaknesses of each level of measurement.

Table L evels of measurement

Level of

J— Weskes
esanement
Desaes
Nominal | eagonel | Numbors o ot ndeats quntty
data.
Aows
comparson
B o [ T——
ou
D ol e p—————
Posome

Some variables of interest do not have a true ze}

To choose the correct statistical analysis of date|
crealed by others, identity the level of measurerfent

using the highest level of measurement that you]

Controversial Tools

Since the levels of measurement became commfonly
‘accepted in the 1950s, there has been some debate
h

at
interal \eve\ 1o conduc statsicalanayses Thee
's of measurement (e.g.,
ttude scals, nowledge toss o personaly
measures) that are not unequivocally at the inte
fovl but might e somewhere nearthe top
ordinal level range. safely use this level of
data in analyses vequmng renval scaing?

E

A majority consensus in the research lterature i
True 2810 | inatif you are at least at the ordinal level and
allows for all pelieve that you can make meaning out of
Ratio possible | interval-level statistical analyses, then you can
statistical | safely perform inferential satistcal analyses on |h
analyses. In the real world o research, by th
way, almost everybody chooses this approach
(whether they know it or o)

“The basic value of making analytical decisions
based on level of measurement is hard to deny.|
however. A classic example of the importance of
measurement levels is described by Frederick Lf
in his 1953 article *On the Statistical Treatment
Football Numbers" (American Psychologist, Vol
750-751). An absent-minded statistcian eagerly|
analyzes some data given him concerning the
college football team, and produces a report ful
means and standard deviations and other
sophisticated analyses. The date, though, turm ot to
be the numbers from the backs of the players'
jerseys. A clear instance of not paying attention

H
B
E]
£

't know where they came from; the{s
behave the same way regardiess.
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Hack 8. Power Up

HACK
#8
Success in social science research is typically defined by the discovery of a statistically significant finding.

To increase the chances of finding something, anything, the primary goal of the statistically savvy
super-scientist should be to increase power.

There are two potential pitfalls when conducting statistically based research. Scientists might decide that
they have found something in a population when it really exists only in their sample. Conversely,
scientists might find nothing in their sample when, in reality, there was a beautiful relationship in the
population just waiting to be found.

The first problem is minimized by sampling in a way that represents the population [Hack #19]. The
second problem is solved by increasing power.

Power

In social science research, a statistical analysis frequently determines whether a certain value observed in a
sample is likely to have occurred by chance. This process is called a test of significance. Tests of
significance produce a p-value (probability value), which is the probability that the sample value could

have been drawn from a particular population of interest.

The lower the p-value, the more confident we are in our beliefs that we have achieved statistical
significance and that our data reveals a relationship that exists not only in our sample but also in the whole
population represented by that sample. Usually, a predetermined level of significance is chosen as a
standard for what counts. If the eventual p-value is equal to or lower than that predetermined level of
significance, then the researcher has achieved a level of significance.

relationships among variables, but the most common analyses (t tests, F tests,
chi-squares, correlation coefficients, regression equations, etc.) usually serve this
purpose. | talk about relationships here because they are the typical effect you're
looking for.

t — | Statistical analyses and tests of significance are not limited to identifying

The power of a statistical test is the probability that, given that there is a relationship among variables in
the population, the statistical analysis will result in the decision that a level of significance has been
achieved. Notice this is a conditional probability. There must be a relationship in the population to find;
otherwise, power has no meaning.

Power is not the chance of finding a significant result; it is the chance of finding that relationship if it is
there to find. The formula for power contains three components:



Sample size

The predetermined level of significance (p-value) to beat (be less than)

The effect size (the size of the relationship in the population)

Conducting a Power Analysis

Let's say we want to compare two different sample groups and see whether they are different enough that
there is likely a real difference in the populations they represent. For example, suppose you want to know
whether men or women sleep more.

The design is fairly straightforward. Create two samples of people: one group of men and one group of
women. Then, survey both groups and ask them the typical number of hours of sleep they get each night.
To find any real differences, though, how many people do you need to survey? This is a power question.

whether there is a significant difference [Hack #17]. In this case, statistical
significance means that the difference between scores in the two populations
represented by the two sample groups is probably greater than zero.

— | Attest compares the mean performance of two sample groups of scores to see
s&:"

Before a study begins, a researcher can determine the power of the statistical analysis that will be used.
Two of the three pieces needed to calculate power are already known before the study begins: you can
decide the sample size and choose the predetermined level of significance. What you can't know is the
true size of the relationship between the variables, because data for the planned research has not yet been
generated.

The size of the relationship among the variables of interest (i.e., the effect size) can be estimated by the
researcher before the study begins; power also can be estimated before the study begins. Usually, the
researcher decides on the smallest relationship size that would be considered important or interesting to
find.

Once these three pieces (sample size, level of significance, and effect size) are determined, the fourth
piece (power) can be calculated. In fact, setting the level of any three of these four pieces allows for
calculation of the fourth piece. For example, a researcher often knows the power she would like an
analysis to have, the effect size she wants to be declared statistically significant, and the preset level of
significance she will choose. With this information, the researcher can calculate the necessary sample size.



identifies a power goal of .80 and assigns a preset level of significance of .05. A
power of .80 means that a researcher will find a relationship or effect in her
sample 80 percent of the time if there is such a relationship in the population
from which the sample was drawn.

t — | For estimating power, researchers often use a standard accepted procedure that

The effect size (or index of relationship size [Hack #10]) with t tests is often expressed as the difference
between the two means divided by the standard deviation in each group. This produces effect sizes in
which .2 is considered small, .5 is considered medium, and .8 is considered large. The power analysis
guestion is: how big a sample in each of the two groups (how many people) do | need in order to find a
significant difference in test scores?

The actual formula for computing power is complex, and | won’t present it here. In real life, computer
software or a series of dense tables in the back of statistics books are used to estimate power. | have done
the calculations for a series of options, though, and present tiem in Tdble 1-7. Notice that the key
variables are effect size and sample size. By convention, | have kept power at .80 and level of significance
at .05.

Table Necessary sample sizesfor various effect sizes

Effect size Samplesize
10 1,600
.20 400
.30 175
40 100
.50 65
1.0 20

Imagine that you think the actual difference in your gender-and-sleep study will be real, but small. A
difference of about .2 standard deviations between groups in t test analyses is considered small, so you
might expect a .2 effect size. To find that small of an effect size, you need 400 people in each group! As
the effect size increases, the necessary sample size gets smaller. If the population effect size is 1.0 (a very
large effect size and a big difference between the two groups), 20 people per group would suffice.

< [a>
Making I nferences About Beautiful Relationships

Scientists often rely on the use of statistical inference to reject or accept their research hypotheses. They
usually suggest a null hypothesis that says there is no relationship among variables or differences between
groups. If their sample data suggests that there is, in fact, a relationship between their variables in the
population, they will reject the null hypothesis [Hack #4] and accept the alternative, their research



hypothesis, as the best guess about reality.

Of course, mistakes can be made in this progess. Table 1-8 identifies the possible types of errors that can
be made in this hypothesis-testing game. Rejecting the null hypothesis when you should not is called a
Type | error by statistical philosophers. Failing to reject the null when you should is called a Type Il error.

Table Errorsin hypothesistesting

Null
Action hypothesis Null hypothesisisfalse
istrue

Reject null

hypothesis Type | error| Significant finding




Action

Null
hypothesis
istrue

Null hypothesisisfalse

Fail to
reject null

Correct
decision

Type Il error

What you want to do as a smart scientist is avoid the two types of errof
produce a significant finding. Reaching a correct decision to not reject

null when the null is true is okay too, but not nearly as fun as a significd
finding. "Spend your life in the upper-right quadrant of the table," my U
Frank used to say, "and you will be happy and wealthy beyond your wi
dreams!"

To have a good chance of reaching a statistically significant finding, on
condition beyond your control must be true. The null hypothesis must
false, or your chances of "finding" something are slim. And, if you do "f
something, it's not really there, and you will be making a big errora Typ
error. There must actually be a relationship among your research varial
the population for you to find it in your sample data.

So, fate decides whether you wind up in the column on the rifjhtinTab
[1-§. Power is the chance of moving to the top of that column once you
there. In other words, power is the chance of correctly rejecting the nul
hypothesis when the null hypothesis is false.

Why It Works
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This relationship between effect size and sample size makes sense. Think of

an animal hiding in a haystack. (The animal is the effect size; just work|
me on this metaphor, please.) It takes fewer observations (handfuls of
to find a big oI’ effect size (like an elephant, say) than it would to find a
animal (like a cute baby otter, for instance). The number of people repn
the number of observations, and big effect sizes hiding in populations 4
easier to find than smaller effect sizes.

The general relationship between effect size and sample size in power
the other way, too. Guess at your effect size, and just increase your sal
size until you have the power you need. Remerhber, Taljle 1-7 assume

want to have 80 percent power. You can always work with fewer peoplg

you'll just have less power.

Wherelt Doesn’'t Work

It is important to remember that power is not the chance of success. It
even the chance that a level of significance will be reached. It is the ch
that a level of significance will be reached if all the values estimated by
researcher turn out to be correct. The hardest component of the formul
guess or set is the effect size in the population. A researcher seldom k
how big the thing is that he is looking for. After all, if he did know the si
of the relationship between his research variables, there wouldn’'t be m|
reason to conduct the study, would there?
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Hack 9. Show Cause and Effect

s

Statistical researchers have established some ground rules that must be followed if you hope to
demonstrate that one thing causes another.

Social science research that uses statistics operates under a couple of broad goals. One goal is to collect
and analyze data about the world that will support or reject hypotheses about the relationships among
variables. The second goal is to test hypotheses about whether there are cause-and-effect relationships
among variables. The first goal is a breeze compared to the second.

There are all sorts of relationships between things in the world, and statisticians have developed all sorts
of tools for finding them, but the presence of a relationship doesn’t mean that a particular variable causes
another. Among humans, there is a pretty good positive correlation [Hack #11] between height and
weight, for example, but if | lose a few pounds, | won't get shorter. On the other hand, if | grow a few
inches, | probably will gain some weight.

Knowing only the correlation between the two, however, can't really tell me anything about whether one
thing caused the other. Then again, the absence of a relationship would seem to tell me about cause and
effect. If there is no correlation between two variables, that would seem to rule out the possibility that one
causes the other. The presence of the correlation allows for that possibility, but does not prove it.

Designing Effective Experiments

Researchers have developed frameworks for talking about different research designs and whether such
designs even allow for proof that one variable affects another. The different designs involve the presence
or absence of comparison groups and how participants are assigned to those groups.

There are four basic categories of group designs, based on whether the design can provide strong
evidence, moderate evidence, weak evidence, or no evidence of cause and effect:

Non-experimental designs

These designs usually involve just one group of people, and statistics are used to either describe the
population or demonstrate a relationship between variables. An example of this design is a
correlational study, where simple associations among variables are analyzed [Hack #11]. This type of
design provides no evidence of cause and effect.

Pre-experimental designs

These designs usually involve one group of people and two or more measurement occasions to see
whether change has occurred. An example of this design is to give a pretest to a group of people, do
something to them, give them a post-test, and see whether their scores change. This type of design
provides weak evidence of cause and effect because forces other than whatever you did to the poor



folks could have caused any change in scores.
Quasi-experimental designs

These designs involve more than one group of people, with at least one group acting as a comparison
group. Assignment to these groups is not random but is determined by something outside the
researcher’s control. An example of this design is comparing males and females on their attitudes
toward statistics. At best, this sort of design provides moderate evidence of cause and effect. Without
random assignment to groups, the groups are likely not equal on a bunch of unmeasured variables,
and those might be the real cause for any differences that are found.

Experimental designs

These designs have a comparison group and, importantly, people are assigned to the groups
randomly. The random assignment to groups allows for researchers to assume that all groups are
equal on all unmeasured variables, thus (theoretically) ruling them out as alternative explanations for
any differences found. An example of this design is a drug study in which all participants randomly
get either the drug being tested or a comparison drug or a placebo (sugar pill).

Does Weight Cause Height?

Earlier in this hack, | mentioned a well-known correlational finding: in people, height and weight tend to

be related. Taller males weigh more, usually, then shorter males, for example. | laughed off the suggestion
that if we fed people more, they would get tallerbecause of what | think | know about how the body grows,
the suggestion that weight causes height is theoretically unlikely. But what if you demanded scientific
proof?

| could test the hypothesis that weight causes height using a basic experimental design. Experimental
designs have a comparison group, and the assignment to such groups must be random. Any relationships
found under such circumstances are likely causal relationships. For my study, I'd create two groups:

Group 1

Thirty college freshmen, who | would recruit from the population of the Midwestern university where
| work. This group would be the experimental group; | would increase their weight and measure
whether their height increases.

Group 2

Thirty college freshmen, who | would recruit from the population of the Midwestern university where
| work. This group would be the control group; | would not manipulate their weight at all and would
then measure whether their height changes.

don’t care what causes it) and height the dependent variable (because we wonder

— | Inthis design, scientists would call weight the independent variable (because we
s&:"
L whether it depends on, or is caused by, the independent variable).




Because this design matches the criteria for experimental designs, we could interpret any relationships
found as evidence of cause and effect.

Fighting Threatsto Validity

Research conclusions fall into two types. They have to do with the cause-and-effect claim and whether any
such claim, once it is established, is generalizable to whole populations or outside the laporatdry. Table
displays the primary types of validity concerns when interpreting research results. These concerns are
the hurdles that must be crossed by researchers.

Table Validity of research results

Validity concern Validity question

Statistical conclusion

- Is there a relationship among variables?
validity

Internal validity Is the relationship a cause-and-effect relationship?

Is the cause-and-effect relationship among the variables you believe should

Construct validity be affected?

External validity Does this cause-and-effect relationship exist everywhere for everyong?

Even when researchers have chosen a true experimental design, they still must worry that any results
might not really be due to one variable affecting another. A cause-and-effect conclusion has many threats
to its validity, but fortunately, just by thinking about it, researchers have identified many of these threats
and have developed solutions.

them, the identification of threats to validity in research design, and the tools to
guard against the threats are pretty much entirely due to the extremely influential
works of Cook and Campbell, cited in the "See Also" section of this hack.

t — | Researchers’ understanding of group designs, the terminology used to describe

A few threats to the validity of causal claims and claims of generalizability are discussed next, along with
some ways of eliminating them. There are dozens of threats identified and dealt with in the research
design literature, but most of them are either unsolvable or can be solved with the same tools described
here:

History

Outside events could affect results. A solution is to use a control group (a comparison group that does
not receive the drug or intervention or whatever), with random assignment of subjects to groups.
Another part of the solution is to control both groups’ environments as much as possible (e.g., in
laboratory-type settings).



Maturation

Subijects develop naturally during a study, and changes might be due to these natural developments.
Random assignment of participants to an experimental group and a control group solves this problem
nicely.

Sdection

There might be systematic bias in assigning subjects to groups. The solution is to assign subjects
randomly.

Testing

Just taking a pretest might affect the level of the research variable. Create a comparison group and
give both groups the pretest, so any changes will be equal between the groups. And assign subjects to
the two groups randomly (are you starting to see a pattern here?).

| nstrumentation

There might be systematic bias in the measurement. The solution is to use valid, standardized,
objectively scored tests.

Hawthorne Effect

Subjects’ awareness that they are subjects in a study might affect results. To fight this, you could
limit your subjects’ awareness of what results you expect, or you could conduct a double-blind study
in which subjects (and researchers) don’'t even know what treatment they are receiving.

The validity of research design and the validity of any claims about cause and effect are similar to claims
of validity in measurement [Hack #28]. Such arguments are open and unending, and validity conclusions
rest on a reasoned examination of the evidence at hand and consideration for what seems reasonable.

See Also
@
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Hack 10. Know Big When You See It

o

You've just read about an amazing new scientific discovery, but is such a finding really a big deal? By
applying effect size interpretations, you can judge the importance of such announcements (or lack thereof)
for yourself.

Something is missing in most reports of scientific findings in nonscientific publications, on TV, on the
radio, anddo | even have to mentionon the Web. Although reports in such media typically do a pretty good
job of only reporting findings that are "statistically significant,” this is not enough to determine whether
anything really important or useful has been discovered. A big drug study can report "significant” results,
but still not have found anything of interest to the rest of us or even other researchers.

As we repeat in many places in this book, significance [Hack #4] means only that what you found is likely
to be true about the bigger population you sampled from. The problem is that this fact alone is not nearly
enough for you to know whether you should change your behavior, start a new diet, switch drugs, or
reinterpret your view of the world.

What you need to know to make decisions about your life and reality in light of any new scientific report
is the size of the relationship that has just been brought to light. How much better is brand A than brand
B? How big is that SAT difference between boys and girls in meaningful terms? Is it worth it to take that
half an aspirin a day, every day, to lower your risk of a heart attack? How much lower is that risk anyway?

The strength of that relationship should be expressed in some standardized way, too. Otherwise, there is no
way to really judge how big it is. Using a statistical tool known as effect size will let you know big when
you see it.

Seeing Effect Sizes Everywhere

An effect size is a standardized value that indicates the strength of a relationship between two variables.
Before we talk about how to recognize or interpret effect sizes, let's begin with some basics about
relationships and statistical research.

Statistical research has always been interested in relationships among variables. The correlation
coefficient, for example, is an index of the strength and direction of relationships between two sets of
scores [Hack #11]. Less obvious, but still valid, examples of statistical procedures that measure
relationships include t tests [Hack #17] and analysis of variance, a procedure for comparing more than two
groups at one time.



relationships between variables. With a t test, for instance, a significant result
means that it matters which group a person is in. In other words, there is an
association between the independent variable (which defines the groups) and the
dependent variable (the measured outcome).

t — | Even procedures that compare different groups are still interested in

Finding or Computing Effect Sizes

This hack is about finding and interpreting effect sizes to judge the implications of scientific findings
reported in the popular media or in scientific writings. Often, the effect size is reported directly and you
just have to know how to interpret it. Other times, it is not reported, but enough information is provided so
that you can figure out what the effect size is.

When effect sizes are reported, they are typically one of three types. They differ depending on the
procedure used and the way that procedure quantifies the information of interest. In each case, the effect
size can be interpreted as estimates of the "size of the relationship between variables." Here are the three
typical types of effect sizes:

Correlation coefficient

A correlation, symbolized by r, is already a measure of the relationship between variables and, thus,
is an effect size. Because correlations can be negative, though, the value is sometimes squared to
produce a value that is always greater than zero. Thus, the valdéinterpreted as the

"proportion of variance" shared by variables.

d
This value, symbolized by d strangely enough, summarizes the difference between two group means
used in a t test. It is calculated by dividing the mean difference of the two groups by the average
standard deviation in the two groups.
] Here’s an alternative, easy, super-fun, ultra-cool, and neato-swell way to
calculate d:
Eta-sguared

The effect size most often reported for the results of an analysis of variance is symbolzed as h
Similar to r?, it is interpreted as the "proportion of variance” in the dependent variable (the outcome
variable) accounted for by the independent variable (what group you are in).



Inter preting Effect Sizes

With levels of significance, statisticians have adopted certain sizes that are "good" to achieve. For
example, most statistical researchers hope to achieve a .05 or lower level of significance. With effect sizes,
though, there are not always certain values that are clearly good or clearly bad. Still, some standards for
small, medium, and large effect sizes have been suggested.

The standards for big, medium, and little are based, for the most part, on the effect sizes that are hormally
found in real-world research. If a given effect size is so large as to be rarely found in published research, it
is considered to be big. If the effect size is tiny and easy to find in real-life research, then it is considered
to be small.

You should decide yourself, though, how big an effect size is of interest to you when interpreting research

results. It all depends on the area of investigation. Tabl¢ 1-10 provides the rules of thumb for how big is
big.

Table Effect size standards

Effect sze Small Medium Large
r +/-.10 +/-.30 +/-.50
r? .01 .09 25
d 2 5 8
h? .01 .06 14

I nter preting Resear ch Findings

The advantage of talking about effect sizes when discussing research results is that everyone can get a
sense of what impact the given research variable (or intervention, or drug, or teaching technique) is really
having on the world. Because they are typically reported without any probability information (level of
significance), effect sizes are most useful when provided alongside traditional level of significance
numbers. This way, two questions can be answered:

Does this relationship probably exist in the population?

How big is the relationship?

Remember our example of whether you should decide to take half an aspirin each day to cut down your
chances of having a heart attack? A well-publicized study in the late 1980s found a statistically significant
relationship between these two variables. Of course, you should talk with your doctor before you make
any sort of decision like this, but you should also have as much information as possible to help you make



that decision. Let’s use effect size information to help us interpret these sorts of findings.
Here is what was reported in the media:

A sample of 22,071 physicians were randomly divided into two groups. For a long period of time, half

took aspirin every day, while the other half took a placebo (which looked and tasted just like aspirin). At

the end of the study period (which actually ended early because the effectiveness of aspirin was
considered so large), the physicians taking aspirin were about half as likely to have had a heart attack than
the placebo group. 1.71 percent of the placebo physicians had attacks versus about 1 percent (.94 percent)
of the aspirin physicians. The findings were statistically significant.

The "clear" interpretation of such findings is that taking aspirin cuts your chances of a heart attack in half.
Assuming that the study was representative and the physicians in the study are like you and me in
important ways, this interpretation is fairly correct.

Another way to interpret the findings is to look at the effect size of the aspirin use. Using a formula for
proportional comparisons, the effect size for this study is .06 standard deviations, or a d of .06. Applying
the effect size standards showh in Table]1-10, this effect size should be interpreted as smallvery small,
really. This interpretation suggests that there is really quite a tiny relationship between aspirin-taking and
heart attacks. The relationship is real, just not very strong.

One way to think about this is that your chances of having a heart attack during a given period of time is
pretty small to begin with. 98.76 percent of everyone in the study did not have a heart attack, whether they
took aspirin or not. Although taking aspirin does lower your chances, they go from small to a little smaller.
It is similar to the idea that entering the lottery massively increases your chances of winning compared to
those who do not enter, but your chances are still slim.

Why It Works

A researcher can achieve significant results, but still not have found anything for anyone to get excited
about. This is because significance tells you only that your sample results probably did not occur by
chance. The results are real and likely exist in the population. If you have found evidence of a small
relationship between two variables or between the use of a drug and some medical outcome, the
relationship might be so small that no one is really interested in it. The effect of the drug might be real, but
weak, so it's not worth recommending to patients. The relationship between A and B might be greater than
zero, but so tiny as to do little to help understand either variable.

Modern researchers are still interested in whether there is statistical significance in their findings, but they
should almost always report and discuss the effect size. If the effect size is reported, you can interpret it. If
it is not reported, you can often dig out the information you need from published reports of scientific
findings and calculate it yourself. The cool part is that you might then know more about the importance of
the discovery than the media who reported the findings and, maybe, even the scientists themselves.
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Chapter 2. Discovering Relationships

There are invisible webs of relationships around us. Variable A causes Variable B, which influences
Variable C, which is entirely independent of Variable D, unless Variable E comes into play. The hacksin
this chapter allow you to discover these connections and describe them accurately. These are the hacks
that reveal the hidden reasons for why people do the things they do and why things are the way they are.

The connections between onetrait and another, between a cause and an effect, are relationships that are
easily revealedwith the right tricks. Begin by identifying the strength of any association [Hack #11], and
then draw what it looks like [Hack #12]. Next, use your knowledge of that relationship to make
predictions [Hack #13], and then improve the accuracy of those predictions [Hack #14]. Some
relationships appear through the observation of unexpected occurrences [Hacks #15 and #16] or by
noticing real differences between groups [Hack #17].

Because we cannot measure every example of a person, fish, or pine tree that we might be interested in,
we must rely on representative samples [Hack #19] to provide our observations. Sampling can mislead us
[Hack #18], however, or it can work in surprisingly cool ways [Hack #20].

To share your findings with others or understand what these findings have to tell you, you need to avoid
both being deceived and deceiving others. Be careful not to misinterpret any numbers [Hack #21] or
pictures [Hack #22].

Pack these toolsin your tool belt and head out to find whatever there isto find.
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Hack 11. Discover Relationships

i

Revealing the invisible connections in the world is just a matter of recording observations and computing
the magical, mystical correlation coefficient.

You probably make all sorts of assumptions about why people feel the way they feel or do the things they
do. Statistical researchers would call these assumptions hypotheses about the relationship among
variables.

Regardless of what science calls it, you probably do it. You might make these guesses about associations
between attitudes and behavior or between attitudes and attitudes or behaviors and behaviors. You might
do it informally as you seek to understand people in the world around you, or you might need to do it as a
marketing specialist to understand your customer, or you might be a struggling psychology graduate
student who needs to complete a class assignment that requires statistical analysis of the relationship
between self-esteem and depression.

In statistics, such a relationship is called a correlation. The number describing the size of that relationship
is a correlation coefficient. By computing this useful value, you can get answers to any question you have
about relationships (except in terms of dating relationships; you're on your own there).

Testing Hypotheses About Relationships

Imagine a study in which a researcher for the American Cheesecake Sellers Association has a hypothesis
that the reason people like cheesecake is that they like cheese. She is guessing that there is a relationship
between attitude toward cheese and attitude toward cheesecake. If her hypothesis turns out to be correct,
she’ll purchase the huge mailing list of cheese lovers from the American Cheese Lovers Association and
send them informative brochures about the healing properties of cheesecake. If she’s right, sales will
rocket up!

To test her hypothesis, she creates two surveys. One asks respondents to say how they feel about cheese,
and the other asks how they feel about cheesecake. A score of 50 means the person loves cheese (or
cheesecake), and a score of 0 means the person hates cheesecake (qr cheesd). Table 2-1 shows the result
for the data she collects from five people on the bus on her way to work.



Table Data for therelationship between cheese and cheesecake attitudes

Person Attitude toward cheese Attitude toward cheesecake
Larry 50 36
Moe 45 35
Curly Joe 30 22
Shemp 30 25
Groucho 10 20

Let's look at the data and see if there seems to be a relationship between the two variables. (Go ahead, I'll
give you 30 seconds.)

I'd say there is a pretty clear relationship there. The people who scored the highest on the cheese scale alsc
scored the highest on the cheesecake scale. The groups of people didn't score exactly the same on both
scales, of course, and the rank order isn’'t even the same, but, relatively speaking, the position of each
person to each of the other people when it comes to cheese attitude is about the same as when it comes to
cheesecake attitude. The Association’s marketer has support for her hypothesis.

Computing a Correlation Coefficient

Just eyeballing two columns of numbers from a sample, though, is usually not enough to really know
whether there is a relationship between two things. The marketing specialist in our example wants to use a
single number to more precisely describe whatever relationship is seen.

The correlation coefficient takes into account all the information we used when we looked at our two
columns of numbers |n Table 2-1 and decided whether there was a relationship there. The correlation
coefficient is produced through a formula that does the following things:

1.
Looks at each score in a column
Sees how distant that score is from the mean of that column

Identifies the distance from the mean of its matching score in the other column

Multiplies the paired distances together



Averages the results of those multiplications

If this were a statistics textbook, I'd have to present a somewhat complicated formula for calculating the
correlation coefficient. To call it somewhat complicated is generous. Frankly, it is terrifically frightening.

For your own sanity, I'm not even going to show it to you. Trust me. Instead, I'll show you this pleasant,
friendly looking formula (which works just as well):

Z refers to a Z-score, which is the distance of a score from the mean. These distances are then divided by
the standard deviation for that distribution. Zomeans all the Z-scores from the first column, Znd

means all the Z-scores from the second colurdy means multiply them together. The S symbol means

add up. So, the equation says to multiply together all the pairs of Z-scores and add those cross-products
together. Then, divide by the numbBl) of pairs of scores minus 1.

The mean is the arithmetic average of a group of scores. It is produced by adding up all the numbers and
dividing by the number of scores. A standard deviation for a group of numbers is the average distance of
each score from the mean.

Before | produce the Z-scores used in our correlation formula, | need to know the means and standard
deviations for each column of data. Equations for calculating these key values are provided in "Describe
the World Using Just Two Numbers" [Hack #2]. Here are the means and standard deviations for our two
variables:

Attitude toward cheese

Mean = 33; standard deviation = 15.65
Attitude toward cheesecake

Mean = 27.6; standard deviation = 7.44

Table 2-P shows some of the calculations for our cheese attitude data.



Table Calculationsfor discovering relationship between cheese attitude and cheesecake

attitude
Per son Attitude Attitudetoward | Z-scoresfor Z-scoresfor Cross products
toward cheese cheesecake cheese cheesecake of Z-scores
Larry 50 36 1.09 1.13 1.23
Moe 45 35 g7 .99 .76
%‘gy 30 22 -19 -75 14
Shemp | 30 25 -.19 -.35 .07
Groucho| 10 20 -1.47 -1.02 1.50

The correlation is .93. This is very close to 1.0, which is the strongest a positive correlation can be, so the
cheese-to-cheesecake correlation represents a very strong relationship.

Interpreting a Correlation Coefficient

Somewhat magically, the correlation formula process produces a number, ranging in value from -1.00 to
+1.00, that measures the strength of relationship between two variables. Positive signs indicate the
relationship is in the same direction. As one value increases, the other value increases. Negative signs
indicate the relationship is in the opposite direction. As one value increases, the other value decreases. An
important point to make is that the correlation coefficient provides a standardized measure of the strength
of linear relationship between two variables [Hack #12].

The direction of a correlation (whether it is negative or positive) is the artificial result of the direction of

the scale one chooses to use to measure the variables. In other words, strong correlations can be negative.
Think of a measure of golf skill correlated with average golf score. The higher the skill, the lower the

score, but you would still expect a strong relationship.

Statistical Significance and Correlations

Our marketing specialist is likely also interested in whether a sample correlation is large enough that it is
likely to have been drawn from a population where the correlation is bigger than zero. In other words, is
the correlation we found in our sample so large that it must have come from a population where there is at
least some sort of relationship between these variables?

The marketer in our example trusts correlations between a large number of pairs more than she does
correlations from a small sample (such as our five bus riders). If she were to report this relationship to her
boss and it wasn'’t true about most people, she might find herself selling cheesecake out of her minivan for
a living.

Table 2-8 shows how large a correlation in a sample must be before statisticians are sure that there is a
relationship greater than zero in the population it represents.



Table Correlationsthat likely did not occur by chance

Samplesize Smallest correlation considered statistically significant
5 .88
10 .63
15 51
20 44
25 .40
30 .38
60 .26
100 .20

With our sample of five people, any correlation at least as big as .88 would be treated as statistically
significant (which means "so big it probably exists in whatever population you took your sample from").

WhereElse It Works

You can produce a correlation coefficient as a measure of the strength of a relationship between any two
variables as long as certain conditions are met:

You must be able to measure the variables in a way where numbers have real meaning and represent
some underlying continuous concept. Examples of continuous variables are attitude, feelings,
knowledge, skill, and things you can count, such as pounds gained because of love of cheesecake. (If
the thing you are measuring is not continuous, as in the case when you have different categories, such
as gender or political party, you can still calculate a correlation, just not with the formula shown

here.)

The variables must actually vary. If everyone felt the same about cheese, you couldn’t calculate a
correlation with attitude towards cheesecake or chocolate or anything. The math requires some
variability.

The minimum correlation sizes required to have statistical significance (shpwn in Tédble 2-3) are
precisely accurate only when the sample is randomly drawn from the population. Researchers, such
as our cheesecake marketer, must decide whether their sample is representative in the way a random
sample would be.



Dire Warning About Correlations

It's tempting to treat correlational evidence as evidence of cause and effect. Of course, there might be all
sorts of reasons why two things are related that have nothing to do with one thing causing the other.

For example, in the presence of such a strong correlation between attitude toward cheese and attitude
toward cheesecake, you might want to conclude that a person’s affinity for cheese causes him to like
cheesecake because there is cheese in it. There might be noncausal explanations, though. The same peopl
who like cheese might tend to like cheesecake because they like all foods that are kind of soft and

smooshy.
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Hack 12. Graph Relationships
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Whenever a relationship between two variables is discovered and defined, we can use one variable to
guess another. Drawing a regression line allows you to picture the relationship and make predictions.

So, you've just been named assistant regional manager of ice cream sales for 10,000 square feet of prime
beachfront retail space along the shores of Sunflower Lake in northeast Kansas. Congratulations! You
have a lot of responsibility and many strategic decisions to make about how to maximize profit. One
dilemma that you will confront is whether to even open. Being open costs money and uses resources, and
if you will sell few ice cream cones that day, it probably won’t be worth it to even unlock the service
window of your brightly painted plywood shack.

If only there were some way to magically know how good business will be on any given day. As an
amateur statistician, you assume there must be a scientific way to guess how many cones will sell without
having to actually open for business and test the market for the day. You're in luck. There is a way to
make estimates of the value or score on some variable (such as ice cream sales) by using other
information.

The key is that the other information must come from a variable that is related to the variable of interest.
By drawing a line that shows the relationship among your variables for the days you know, you can look
at the line as it extends into the future (or the past) for the days you do not know and guess what will
happen. Such a graphic tool is called a regression line.

Drawing a Picture of the Future

Observant folks often discover correlations between variables [Hack #11]. The usefulness of knowing that
a relationship exists goes beyond descriptive statistics, however.

Imagine that you have data on the activities around Sunflower Lake. Among other things, you have
collected information about the amount of ice cream sales under the former assistant regional manager of
ice cream sales (in number of ice cream cones sold) and the high temperature for each day (in degrees
Fahrenheit). The correlation coefficient that represents the relationship between heat and craving for ice
cream should be positive and fairly large. That is, as the heat increases, sales probably increase.

Intuitively, it makes sense that with some experience, you could look at the thermometer and get a sense
of how busy the ice cream stand is going to be that day. Once you know that there is a positive or negative
relationship between two variables, it makes sense that knowing the score on one will give you a general
idea of what the score is on the other.

Once you find a relationship between two variables like this, it is reasonable to assume that the
relationship between your two variables is linear. In other words, if you produce a graph with all the
possible values of one variable as the X-axis (the horizontal line along the bottom) and all the possible



values of the other variable as the Y-axis (the vertical line along the side) and then plot each pair of scores,
the resulting dots form an essentially straight line.

Connecting the Dots

shows a way to graph the relationship between the temperature and ice cream sales at the
beach.

Figure2-1. A linear relationship between sales and temperature
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Graph A places dots to represent both values on the two variables, based on historic information you have
collected. For instance, the lowest dot means that at 70 degrees, 50 ice cream cones were sold. At 90
degrees, 60 cones were sold. There is a clear pattern here, and the relationship looks like a straight line.
For every 10-degree jump in temperature, sales go up 5 cones. For every 1-degree change in temperature,
there is al/,-cone increase in sales. Graph B draws a line based on this rule. The line goes through every
dot.

In , analyze Graph B to get a sense of the power of a regression equation. The line includes
territory that is not sampled by the data. For instance, we do not have data for 100-degree days. With the
regression equation, though, we can estimate what sales might be. If we place a dot on the line at the
100-degree mark, it appears to match up with the 65-cones mark. Using this regression equation, we could
estimate that on 100-degree days, 65 cones would be sold. We could do the same for cooler days. Our
graph suggests that on a 60-degree day, 45 cones would be sold.

Playing " What 1f?"

The relationship between heat and cone sales can be expressed mathematically. Our data for graphs A and
B in[Figure 2-1 look like this:

High
temperature

I ce cream cones sold

70 50

80 55




High
temperature

I ce cream cones sold

90

60

So, let's see how we could build an equation that describes the relationship using
numbers. Regression lines are statistical tools, after all. Notice that if we start with|70

degrees, we get 50 cones. If we enter 70 into our formula, we want 50 to be the oytput.

We also want 80 to get us 55, and 90 to get us 60.

| played around with different possibilities using these values in an attempt to figure out

what must be done to the input number to get the correct output number. | noticed| that

the “ice cream cones sold" value was always smaller than the temperature variablg, so |

wanted an equation that would shrink the temperature. Linear equations require a
constant (some value to use in every equation) in order to produce a straight line, so |
needed to have a constant in my equation as well. Rather than use trial and error,|you

could also enter this data into a statistics program, such as SPSS, or a spreadshept, such

as Excel, to produce the correct components. | found that this formula works well:

Cones Sold = 15 + (Temperature x.50)

standard amount that is altered only through basic mathematical
functions, such as multiplication, you will define a straight line
that can be graphed.

t Algebraically, if you begin with a constant and then add some

"What if?" is a fun game to play with regression lines. Enter a value in one end angl a
guess comes out the other end; you can get an answer even for unrealistic scenatios.
Throw some crazy value onto the line, such as 200 degrees, and you can still get an

estimate for cone sales: 115!

The regression equation for this relationship would describe a line that could be diawn to
show this relationship visually. With real data, the relationship is seldom as clear gs it is

in our example. (The correlation for our small fictional data set is a perfect 1.0.)

coefficient, the means, and the standard deviations of both
groups of variable scores, regardless of the strength of the
relationship in the data set. "Use One Variable to Predict
Another" [Hack #13] presents statistical methods for producing a
regression equation.

tg In statistics, regression formulas make use of the correlation

Why It Works

The accuracy of these sorts of regression estimates depends on a couple
important factors. First, the relationship between variables must be fairly large|
Small relationships produce dots all over the place in patterns that aren't
straight at all, and a regression line drawn through such a mess misses a lot gf
dots and is not accurate. Unfortunately, in the social sciences, we don’t find
very many really strong relationships, so regression predictions tend to produge
a certain number of errors. In statistics, errors come with the territory.

Second, the relationship must be at least sort of linear. As in our ice cream cope
example, if the nature of the relationship changes somewhere along the
regression line, the regression line will miss some of the data. Fortunately, mds
relationships in the natural world are linear or at least close to it.

Where It Doesn’t Work

The actual relationship might not be exactly linear, but if it is essentially so,
then regression analysis works pretty well. For example, with our ice cream
example, maybe there is a certain increase in sales for every degree jump in the

temperature. If that increase is the same regardless of where we are on the s¢ale,
we'll see a linear relationship. It is possible, though, that sales jump once a
certain temperature is reached. Perhaps once it is over 90 degrees at the beach,
people really flock to get relief.

Graphs C and D {n Figure 2-2 show what happens if the true relationship isn’t
exactly linear.

Figure 2-2. A nonlinear relationship
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Following the requirements of linear regression, the regression equation alwa
produces a straight line and, in this case, two of the dots fall right on it, but ong
does not. This line does a decent job of explaining the data by picturing the
relationship, but because the relationship is not linear, the regression equation
makes some errors.
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Hack 13. Use One Variableto Predict Another
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Simple linear regression is a powerful tool for measuring something you cannot see or for predicting the
outcome of events that have not happened yet. With some help from our special friend statistics, you can
make a precise guess of how someone will score on one variable by looking at performance on another.

Many professionals, both in and outside of the social sciences, often need to predict how a person will
perform on some task or score on some variable, but they cannot measure the critical variable directly.
This is a common need when making admission decisions into college, for example. Admissions officers
want to predict college performance (perhaps grade point average or years until completion). However,
because the prospective student has not actually gone to college yet, admissions officers must use
whatever information they can get now to guess what the future holds.

Schools often use scores on standardized college admissions tests as an indicator of future performance.
Let's imagine that a small college decides to use scores on the American College Test (ACT) as a
predictor of college grade point average (GPA) at the end of students’ first years. The admissions office
goes back through a few years of records and gathers the ACT scores and freshman GPAs for a couple
hundred students. They discover, to their delight, that there is a moderate relationship between these two
variables: a correlation coefficient of .55.

Correlation coefficients are a measure of the strength of linear relationships between two variables [Hack
#11], and .55 indicates a fairly large relationship. This is good news because the existence of a relationship
between the two makes ACT scores a good candidate as a predictor to guess GPA.

Simple linear regression is the procedure that produces all the values we need to cook up the magic
formula that will predict the future. This procedure produces a regression line that we can graph to
determine what the future holds [Hack #12], but once we have the formula, we don’t actually need to do
any graphing to make our guesses.

Cooking Up the Equation

First, examine the recipe for creating the formula (seg the "Regression Formula Recipe" sidebar), and then
we’ll see how to use it with real data. You can clip this recipe out and keep it in the kitchen drawer.




Regression Formula Recipe

Ingredients

2 samples of data from correlated variables:

1 criterion variable (the one you want to predict)

1 predictor variable (the one you will predict with)

1 correlation coefficient of the relationship between the 2 variables

2 sample means

2 sample standard deviations

Container

An empty equation shaped like this:

Directions

Calculate the weight by which you will multiply your predictor variable:
Calculate the constant:

Fill the regression equation with the weight and constant you just prepared.
Serves

Anyone interested in guessing what would happen if....

The regression recipe calls for two other ingredients, means and standard deviations for both variables.
Here are those statistics for our example:

Variable Mean Standard deviation

ACT scores 20.10 2.38

GPA 2.98 .68

— ] You can review means and standard deviations in "Describe the World Using
E Just Two Numbers" [Hack #2].




The admissions office built a regression equation from this information. Consequently, as each applicant’s
letter came into the admissions office, an officer could enter the student’s ACT score into the regression
formula and predict his GPA. Let’s figure out the parts of the regression equation in this example:

By placing all this information into the regression equation format, we get this formula for predicting
freshman GPA using ACT scores:



t Notice that the constant in this case is a negative number. That's OK.

Predicting Scores

In our college admissions example, imagine two letters arrive. One applicant, Melissa, has an
ACT score of 26. The other applicantlet's call him Brucehas an ACT score of 14.

Using the regression equation we have built, there would be two different predictions for these
folks’ eventual grade point averages:

For Melissa

Predicted GPA = -.24 + (26x.16)
Predicted GPA =-.24 + 4.16

Predicted GPA = 3.90

For Bruce

Predicted GPA = -.24 + (14x.16)
Predicted GPA =-.24 + 2.24

Predicted GPA = 2.00

I hope, for Bruce's sake, there is more than one spot available.

different scales, with ACT scores typically running between 1 and 36
and GPA ranging from 0 to 4.0. Part of the magic of correlational
analyses is that the variables can be on all sorts of different scales and
it doesn’t matter. The predicted outcome somehow knows to be on the
scale of the criterion variable. Kind of spooky, huh?

t The two variables in this example, ACT scores and GPA, are on

Why It Works

When two variables correlate with each other, there is overlap in the information they
provide. It is as if they share information. Statisticians sometimes use correlational
information to talk about variables sharing variance.

If some of the variance in one variable is accounted for by the variance in another
variable, it makes sense that smart mathematicians can use one correlated variable to
estimate the amount of variance from the mean (or distance from the mean) on
another variable. They would have to use numbers that represent the variables’
means and variability, and a number that represents the amount of overlap in
information. Our regression equation uses all that information by including means,
standard deviations, and the correlation coefficient.

WhereElselt Works

Regression is helpful in answering research questions beyond making predictions.
Sometimes, scientists just want to understand a variable and how it operates or how it
is distributed in a population. They can do this by looking at how that variable is
related to another variable that they know more about.

it is easy, but because it uses only one predictor variable. It is
simple as compared to complex. Real-life predictions like
those in our example usually use many predictors, not just
one. The method of predicting a criterion variable using more
than one predictor is called multiple regression [Hack #14].

ta Statisticians call simple linear regression simple not because

Wherelt Doesn’'t Work

There will be error in predictions under three circumstances. First, if the correlation

is less than perfect between two variables, the prediction will not be perfectly
accurate. Since there are almost never really large relationships between predictors
and criteria, let alone perfect 1.0 correlations, real-world applications of regression
make lots of mistakes. In the presence of any correlation at all, though, the prediction
is more accurate than blind guessing. You can determine the size of your errors with
the standard error of estimate [Hack #18].

Second, linear regression assumes that the relationship is linear. This is discussed in
"Graph Relationships" [Hack #12] in greater detail, but if the strength of the
relationship varies at different points along the range of scores, the regression
prediction will make large errors in some cases.

Finally, if the data collected to first establish the values used in the regression
equation are not representative of future data, results will be in error. For example, in
our college admissions example, if an applicant presents with an ACT score of 36,
the predicted GPA is 5.52. This is an impossible value that does not even fit on the
GPA scale, which maxes out at 4.0. Because the past data that was used to establish
the prediction formula included few or no ACT scores of 36, the equation was not
equipped to deal with such a high score.

[ ¢ rricv |
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Hack 14. Use More Than One Variableto Predict Another

(liia

The super powers of predicting the future and seeing the invisible are available to any statistics hackers
who feel they are worthy. Statisticians often answer questions and use correlational information to solve
problems by using one variable to predict another. For more accurate predictions, though, several predictor
variables can be combined in a single regression equation by using the methods of multiple regression.

"Graph Relationships" [Hack #12] discusses the useful prophetic qualities of a regression line. Those
procedures allow administrators and statistical researchers to predict performance on assessments never
taken, understand variables, and build theories about relationships among those variables. They
accomplish these tricks using just a single predictor variable.

"Use One Variable to Predict Another" [Hack #13] presents the problem colleges have when deciding
which applicants to admit. They want to admit students who will succeed, so they try to predict future
performance. The solution in that hack uses one variable (a standardized test score) to estimate
performance on a future variable (college grades).

Often, real-life researchers want to make use of the information found in a bunch of variables, not just one
variable, to make predictions or estimate scores. When they want greater accuracy, scientists attempt to
find several variables that all appear to be related to the criterion variable of interest (the variable you are
trying to predict). They use all this information to produce a multiple regression equation.

Choosing Predictor Variables

You probably should read or reread "Use One Variable to Predict Another" [Hack #13] before going
further with this hack, just to review the problem at hand and how regression solves it. Here is the
equation we built in that hack for using a single predictor, ACT scores, to estimate future college
admission:

Predicted GPA = -.24 + (ACT Scorex.16)

This single predictor produced a regression equation with output that correlated .55 with the criterion.
Pretty good, and pretty accurate, but it could be better.

Imagine our administrator decides she’s unhappy with the level of precision she could get using the
regression line or equation she had built, and wants to do a better job. She could get a more accurate result
if she could find more variables that correlate with college grades. Let's imagine that our amateur
statistician found two other predictor variables that correlated with college performance:



An attitude measure

The quality of a written essay

Perhaps performance on a college attitude survey is collected by the college (scores range between 20 and
100), and is found to have some correlation with future GPA. Additionally, a score of 1 to 5 on a personal
essay could correlate with college GPA and might be included in the multiple regression equation.

Building a M ultiple Regression Equation

Let's look first at the abstract format of the regression equation in general. Then, we’ll apply the tool to
the task at hand. Here is the basic regression equation using just one predictor variable:

Criterion = Constant + (PredictorxWeight)

If you want to use more information, you can extend this equation to include more predictors. Here’s an
equation with three predictors, but you could expand the equation form to include any humber of
predictors:

Criterion = Constant +
(Predictor 1xWeight 1) +
(Predictor 2xWeight 2) +
(Predictor 3xWeight 3)

Each predictor has its own associated weight, which is determined through statistical formulas that are
based on the correlation between the predictor and the criterion variable. The equations for this process are
somewhat complex, so | won’t show them here. (You're welcome.) In real-life regression equation

building, computers are almost always used to produce multiple regression equations.

using data, often fictional, that | entered into SPSS data files. Microsoft's Excel

— | | used the statistical software SPSS for many of the computations in this book,
R ! niere St
is another handy tool for performing simple statistical analyses.

Using realistic data that we might find with three predictors that correlate with the criterion, as well as
correlate with each other somewhat, we might produce a regression equation with values like this:

Predicted GPA = 3.01 +
(ACT Scorex.02) +
(Attitude Scorex.007) +
(Essay Scorex.025)

With the imaginary data | used on my computer to produce these weights, the overall equation predicted
college GPA very well, finding a correlation of .80 between observed GPA values and predicted GPA
values. This is much better than the .55 correlation of our single predictor.



variables and how they are related), specifically the attitude measure and the
essay score, the weight for the ACT score changes. This is because of the use of
partial correlations instead of one-to-one correlations for each predictor. In
addition, the constant changes. This is discussed later, in the "Why It Works"
section of this hack.

t — |1 When we add two other predictors to the model (a description of a group of

Making Predictions and Under standing Relationships

To estimate what a prospective student’s college performance will be, our administrator takes the scores
for that student on each of the predictors and enters them into the equation. She multiplies each predictor
score by its weight and adds the constant. The resulting value is the best guess for future performance. It
might not be exactly right, of course (and, in fact, is most likely not exactly right), but it is a better guess
than having no information at all.

college, you should guess that she will earn the mean GPA, whatever that is for

t — | If you have no information at all and have to guess how a student will do in
your institution.

What if you want to do more than just predict the future, and want to really understand the relationships
between your predictors and the criterion? You might do this because you want to build a more efficient
formula that doesn’t require a bunch of information that isn’t very useful. You also might do it just

because you want to build theory and understand the world, you crazy scientist, you! The problem is that it
is hard to know the independent contribution of each predictor by just looking at the weights.

The weights for each variable in a multiple regression equation are scaled to the actual range of scores on
each variable. This makes it hard to compare each predictor to figure out which provides the most
information in predicting the criterion. Comparing these raw weights can be misleading, as a variable
might have a smaller weight just because it is on a bigger scale.

Compare the weight for ACT score with the weight for attitude score, for example. The weight of .02 for
ACT is larger than the weight of .007 for attitude, but don't be fooled into thinking that ACT scores play a
larger role in predicting GPA than attitude. Remember, GPA scores range from about 1.0 to 4.0, whereas
attitude scores range from 20 to 100. A smaller weight for attitude actually results in a bigger jump on the
criterion than does the larger weight for ACT scores.

Computer program results for multiple regression analyses often provide information in the format shown

in[Table 2-4.

Table Multipleregression results

Nonstandar dized

Criterion weights

Standar dized weights

Constant | 3.01 | -

ACT

.02 321
scores

Attitude

.007 .603
scores




Criterion

Nonstandar dized
weights

Standar dized weights

Essay
scores

.156

The third column ifi Table 2-4 is more useful than the "Nonstandarglized
weights" values in identifying the key predictors and comparing the
unique contributions of each predictor to estimating the criterion.

Standardized weights are the weights you would
g get if you first convert all the raw data into z

scores [Hack #26]: the distance of each raw score

from the mean expressed in standard deviations.

The standardized weights have placed all predictors on the same gcale.
By doing this, the relative overlap of each predictor with the criterign
can be fairly compared and understood. For example, with this dat, it is
probably appropriate to say that attitude explains twice as much aljout

college GPA than does ACT performance, because the standardizpd
weight for attitude is .603, about twice as much as the standardizel
weight for ACT scores (.321).

Why It Works

Multiple linear regression does a better job in predicting outcomes fthan
simple linear regression because multiple regression uses an additional
bit of information to compute the exact weights for each predictor.
Multiple regression knows the correlation of each predictor with the
other predictors and uses that to create more accurate weights.

This bit of complexity is necessary because if the predictors are related
to each other, they share some information. They aren't really
independent sources of prediction if they correlate with each other] To
make the regression equation as accurate as possible, statistical
procedures remove the shared information from each predictor in the
equation. This produces independent predictors that come at the
criterion from different angles, producing the best prediction possitjle.

Imagine two predictor variables that correlate

g perfectly with each otherthat is, correlation equals
1.00. Using both variables in a regression
equation would be no more accurate than using
just one (doesn’t matter which one) by itself. By
extension, any overlap between predictors (i.e.,
any correlation between predictors greater or less
than 0.00) is redundant information.

lustrates the use of multiple sources of independent
information to estimate a criterion score.

Figure 2-3. Multiple predictorsin multiple regression

Py P
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The correlation information used to determine the weight for each
predictor in multiple regression is not the one-to-one correlation

between a predictor and the criterion. Instead, it is the correlation
between a predictor and the criterion when the overlap among all
predictors has been removed.

@

This process produces predictor variables that are somewhat diffefent
than the actual measure variables. By statistically removing (or
controlling for) the shared information among predictors, the predidgtors
are conceptually different than they were beford. As Figufe 2-3 shqws,
now they are independent predictors with a different "shape.” The
correlations between these altered variables and the criterion varigble
are used to produce the weights.

Correlations between predictor variables and a
g criterion variable when all the redundant shared
information has been statistically removed from
the predictors are called partial correlations.
Partial correlations are the one-on-one
correlations you would get between each
predictor and the criterion if the predictor
variables do not correlate with each other.

WhereElselt Works

Multiple regression is used every day by real people in the real wofld
for one of two reasons. First, multiple regression allows for the
construction of a prediction equation, so people can use scores onfa

group of variables that they have in front of them to estimate a scofe on
another variable that they cannot have in front of them (because it js
either in the future or cannot be measured easily for some reason)| This
is how the tool of multiple regression is used to solve problems in the

world of applied science.

Multiple regression also allows for examination of the independent|
contribution that a group of variables make to some other variable ||
allows us to see where there is information overlap among variablgs and
build theories to understand or explain that overlap. This is how th¢ tool
of multiple regression is used to solve problems in the world of bagic
science.

[« rrcv |
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Hack 15. Identify Unexpected Outcomes

liis

How do you know if your observations are correct or if you are just biased? How do you know when there
is more or less of something than should have occurred by chance? You can find out for sure by using the
flexible one-way chi-square test.

In science, the oldest type of observational research involved counting people, animals, and things:

How many people are on this boat?

What proportions of butterflies have little green spots on their wings?

As the field of inferential statistics matured, the questions became more specific:

Were an equal number of boys and girls born in London in 18127

Are an equal number of crimes committed at different times of day?

The research question for these situations is "are they equal?" (or, at least, are they close enough that any
fluctuations are probably due to chance). The implication of an unequal distribution is that something is
going on. What, exactly, is going on cannot be answered by this sort of question. It is a start, though, and a
good first question to ask.

Have you ever noticed that something seemed to be going on, but weren't sure if it was just your
imagination? Do a greater number of hippies shop at the local community mercantile than would be

expected by chance? If the answer is yes, and you are looking to meet hippies, you should start hanging
out there.

In business, and for those who have to provide services, identifying where there is the most need is crucial.
Observational data can be used to solve that problem. Even just in everyday life, we all have our beliefs
(which might be biased) that are based on observations. | have noticed a lot of hippies at the community
mercantile, but maybe | am just on the lookout for hippies when | am in that store. Are there really more
hippies than normal there? More hippies than, say, nonhippies?



These sorts of questions can be answered using a statistical tool appropriate for seeing whether the numbel
of "things" within each of a number of categories is more unequal than would normally be found by
chance. This tool is named the one-way chi-square.

critical value generated is an C, which is the Greek letter chi (pronounced
"kye"). The values needed in the calculations are all squared, thus we call this
whole thing a chi-square or chi-squared.

t — | This statistical analysis is called chi-square because the symbol used for the

Deter mining Whether Something Is Going On

Imagine you are responsible for scheduling the police officers in your town. The problem is that you don't
know whether to schedule the same amount of officers for every shift or whether more crime might occur
during particular shifts. If one shift is likely to be busier, you should probably assign more officers. Of
course, another reason to assign more officers during that time is that their patrolling might cut crime
down a bit.

Here is an example of some imaginary data describing crime events for three periods of time. Imagine the
data was collected over a 30-day period, and you would like to use this data to plan for the coming year.
The numbers indicate how many crimes were committed during each of three police shifts.

Midnight - 8 a.m. 8am.-4pm. 4 p.m. - Midnight Total

120 90 90 300

It certainly looks like more crimes occur late at night. By observation alone, we might conclude that there
is more crime late at night. Perhaps that is just in our sample, though, and there really isn’t a difference in
the population of all the data we could have collected.

Calculating the Chi-Square

We could compute a chi-square for this data. If the chi-square is really big, then the 120 crimes is
unusually larger than the other two crime periods. How big "really big" needs to be is an important
guestion that we will explore later in this hack.

crimes committed in one 24-hour period, we would expect 33.3 percent of them,
or 100, to occur in each of three equally long time intervals during the day. If
there is more or less than 100 for each of those intervals, something is going on.
Perhaps the time of day matters in the commission of crimes. Of course, there
might be some chance fluctuation, but the larger the difference between the
expected and the actual frequencies, the less likely that those differences are just
chance.

t — | Here's how to think about the analysis we are about to do. If there are 300




Here is the chi-square formula:
S is a symbol that means to sum or add up the things that follow it.

Let’s calculate a chi-square for this data. The observed frequency for each category is given. The expected
frequency for each cell would be 300 divided by three categories, or 100:

The chi-square for this data is 6. Okay. Now what? Is 6 big or small or what? Could a chi-square as big as
6 occur by chance?

< la>

Determining if the Chi-Squarels" Really Big"

As with all statisticssuch as correlation coefficients [Hack #11], t tests [Hack #17], proportions, and so
onstatisticians have mapped out the distribution of the chi-square. In other words, we know the likelihood
that chi-squares of different sizes will occur by chance. The likelihood of finding chi-squares of particular
magnitudes depends on the number of categories.

shows a portion of a theoretically giant table that shows the chi-square values that one must beat
in order to be 95 percent sure (level of significance = .05) that the value didn’t get that big just because of
chance fluctuations in the sample. We know these critical values occur by chance 5 percent or less of the
time because chi-squares, like almost everything else in the orderly world of statistics, have a known
distributioni.e., a known set of likelihoods that certain values will occur. Like the normal curve, the
chi-square distribution is well-defined [Hack #23].

Table Critical chi-square values at the .05 level of significance

Two categories Three categories Four categories Five categories

3.84 5.99 7.82 9.49

Our chi-square value is 6, which is higher than the critical value for three categories (5.99). This means
something very specific, so I'll emphasize it. Though | am specifically referring to the crime rate problem
at hand, | am using the same pattern of words that describe all statistical findings that are significant at the
.05 level.

at the three times of day, you would occasionally draw out random samples with
differences that produce a chi-square of 6 or larger, but it would happen less
than 5 percent of the time.

— | If, in the population, there are no differences in the number of crimes committed
s&f

It seems reasonable to conclude, then, that in the population there are differences in frequency of crime
based on time of day. Because these differences are "real," it is reasonable to schedule a year's worth of
police patrols based on them.



Why It Works

Data for chi-square analyses are laid out in a way in which the observed number of things in each category
can be compared with the expected number of things in each category. The "expected number of things in
each category" is usually defined as an equal number. If nothing is going on (i.e., if the category makes no
difference), we expect an equal number of things in each category.

Chi-squares work with categorical data. Essentially, the difference between what was expected and what
was observed is computed for each category. The differences are compared to the expected frequency (as
way to standardized all the differences), and then those ratios are all added together. The size of the
resulting number determines its likelihood of occurring by chance. The bigger the number, the less likely
that chance alone explains things. There is a known distribution (list of probabilities associated with each
possible chi-square value) that is used by a table (or computer) to assign a specific probability to each
chi-square value.

If there are two or more categories and the researcher wants to know whether the actual distribution across
these categories is what would be expected by chance alone, then the chi-square is an appropriate test. The
actual value that is tested is the difference between what the researcher expects to find and what actually
occurs.

The chi-square test is used in the framework of having certain expectations and seeing whether they are
met by the observed data. This is a simple form of model testing. The researcher has a belief system, in the
form of some model or hypothesis of how the world should behave. She then observes the world (collects
data) and compares her observations to her model. If the data fits the model, this is support for her
hypotheses. The chi-square test, consequently, is considered a goodness-of-fit statistic. It answers the
guestion of how well the data fits a model.

chi-square, so don't get confused. But what are you doing reading some other

— | Some statistics textbooks refer to the one-way chi-square as the single sample
s&l' >
statistics book anyway?

Statisticians know the size of normal fluctuations in observed frequencies compared to expected
frequencies. With this knowledge, they can compute the likelihood that any observed deviation from the
expected occurs by chance or because something else is going on.

WhereElselt Works

Though a simple and historically ancient (about 80 years old, which is old by statistics standards!)
statistical method, the chi-square is very useful for a variety of statistical questions at both low levels of
measurement and, surprisingly, very advanced statistical methods. Because it is a fairly straightforward
way to model test (or quantify "goodness of fit"), the chi-square is used as part of complex correlational
analyses and measurement diagnostics.

Chi-square analyses are used to see whether complicated theoretical models of the worldcomprehensive
maps of relationships among variablesactually match real-world data. If the real world deviates too much
from the expectations implied by one of these models, it is concluded that the model is weak. A significant



chi-square is the criterion used for "too much" deviation.

For example, if test developers are concerned about item bias (that one item might work differently for

one identifiable group over anothersuch as races, genders, and so on), they will check whether the patterns
of answer options meet certain expectations regardless of which group generated the data. The chi-square
analysis compares the expectations to actual test performance.

See Also

"ldentify Unexpected Relationships” [Hack #16]
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Hack 16. I dentify Unexpected Relationships

[l

If you want to verify whether a relationship you have observed between two variables is real, you have a
variety of statistical tools available. A problem arises, though, when you have measured these variables
without much precision, using categorical measurement. The solution is a two-way chi-square test, which,
among other things, can be used to make unsubstantiated assumptions about the characteristics of people
you have just met.

"Identify Unexpected Outcomes" [Hack #15] used the one-way chi-square test to make police scheduling
decisions based on whether equal numbers of crimes were committed at different times of day. That tool
works well to solve any analytical problem when:

The data is at the categorical level of measurement (e.g., gender, political party, ethnicity).

You want to determine whether there is a greater frequency of scores in certain categories than would
be expected by chance.

You face another common analytic problem when you're curious to know whether two categorical
variables are related to each other. Relationships between categorical variables can be examined with the
handy two-way chi-square test.

along a continuum), the correlation coefficient [Hack #11] is the best tool to use,

t — ] If two variables are measured at the interval level (many scores are possible
but it doesn’t work well with categorical measurement.

We make assumptions all the time about relationships between these sorts of variables. Many of our
common stereotypes about categories of people have implicit hypotheses about these relationships. Here
are a few assumptions you might have that imply a relationship between categorical variables:

Professors are absent-minded.

Computer programmers play Dungeons and Dragons.



Adults who collect comics write Statistics Hacks books.

Professors are absent-minded.

If you meet a computer programmer at a party and you hold this stereotype belief about this type of
person, you might assume that she is familiar with 20-sided dice. If you are wrong, though, that might lead
to much awkward conversation. It would be nice to know if there really were such relationships between
these categorical variables of interest. Calculating a two-way chi-square solves this problem and can verify
or cast doubt on these assumptions about people.

< table cellspacing="0" width="90%" border="1" cellpadding="5">

Review of the One-Way Chi-Square

The chi-square test is used in the framework of having certain expectations and seeing whether they are
met by the observed data. Statisticians know the size of normal fluctuations in observed frequencies
compared to expected frequencies. With this knowledge, they can place a likelihood that any observed
deviation from the expected occurred by chance or whether something else is going on. The raw data for
these analyses is usually the number of people (the frequency) in each category of some variable.

Here is the general chi-square formula:

S means to add up the things that follow it. The bigger the chi-square, the less likely it is that the outcomes
occurred randomly.

Answering Relationship Questions

While the one-way chi-square analyzes a single categorical variable, two-way chi-squares analyze the
relationship between two categorical variables. The process is the same: compare the expected frequencies
with actual frequencies for each category or combination of categories. If the differences add up to a big
number, then something is going on.

Here is a categorical relationship question that we might like to have answered. It is similar to other issues
of stereotype that could be explored:

Are females more likely to be Democrats or Republicans?

You probably already have some assumption about this, but how would you go about checking the
accuracy of such an assumption?



Conduct preliminary analyses

Look af Table 246 for an example of categorical frequency data for, to start, a single categorical variable.
This data is fictional, but consistent with published studies, which typically find that Republicans are more
likely to be male and that females tend to more commonly identify as Democrats.



T

Males

Females

45

30

In this random sample of 75 Republicans, 45 are males and 30 are females. That's 60 p

able Hypothetical sample of Republicans

rcent

male and 40 percent female. Can we conclude that Republicans in general are more like]y to be
male than female? If not, we would expect there to be 50 percent males and 50 percent females

in our sample.
A one-way chi-square could see whether more Republicans are male
than female, but that's not the hack we are exploring here.

This isn't our research question, though.

Compute the two-way chi-square

Our initial question included only Republicans, so while political party might have seemedi like a
variable in our first analysis, it was really just a description of the population; it did not vafy at
all. We can add party to our analysis, though, by adding another categoryDemocrat, for gxample
and recruiting 75 more participants, and suddenly we have data with two variables. Imagjne
frequency data as show 2-7.
Table Hypothetical sample of voters
Party Males Females Totals

Republican 45 30 75

Democrat 34 41 75

Totals 79 71 150

Here we have two categorical variables: party affiliation and sex. We could go ahead and use a

one-way analysis to look at either of the two rows by themselves. However, a more typic;
question would be, "Is there a relationship between party and sex?"

Q: "Is there a relationship between party and sex?"

A: Reminds me of my freshman year.

(Ha! | got a million of 'em. I'll be here all week. Good night,
everybody!)

To calculate a standardized measure of the difference between the expected frequencieg and the

observed frequencies, we use the same formula as with the one-way chi-square. As "ldeptify
Ur Outcomes" [Hack #15] we start by totaling up the differences|
between expected and observed frequencies in each cell (each square of a table).
We do the same with the two-way chi-square. The expected frequency in each cell is eqyal to
the number of people in that cell's row multiplied by the number of people in that cell's cdlumn
and then divided by the total sample size. Using the ditain Table 2-7, the calculations fgr
expected frequencies are showfiin Tablg 2-8.
Table Expected frequencies for two-way chi-square analysis
Party Males Females
Republican (75x79) / 150 = 39.5 (75x71) / 150 = 35.5
Democrat (75x79) / 150 = 39.5 (75x71) / 150 = 35.5
Thus, the two-way chi-square calculations look like this:
Determineif the chi-squareis big enough
Statisticians know that the critical chi-square value for 2x2 tables (like the chi-square we just

computed) is 3.84. Chi-square values greater than 3.84 are found by chance about 5 percent of

the time or less [Hack #15].

Because our chi-square value was 3.24 and that is less than the key 5 percent value of 3

.84, we

know that such a fluctuation can occur by chance somewhat greater than 5 percent of the time.
We cannot claim statistical significance here, and so we must conclude that though our sample

seemed to show a relationship between the two categorical variables of party affiliation and sex,
it might have occurred because of chance sampling error. In the population from which the
sample was drawn, there might not be any relationship.
Why It Works
A two-way chi-square answers this relationship question by looking at differences. This might
seem counterintuitive, because most statistics look for differences in order to show, well,|a
difference, not to show similarities. But here’s the thinking:
.
If there is no relationship between party and sex, then each sex should be equally split
between Republicans and Democrats.
.
Also, if there is no relationship, then each party should be equally split between mal¢s and
females.
.
This equal distribution in both directions is what is expected by chance. Large deviafions
from those expectations suggest that something is going on.
The problem solved with this hack was one of knowing whether a stereotype belief we h¢ld was
correct. Of course, outside of the real world, in the scientific world, researchers use this tpol to
explore a wide variety of complex questions.
Two-way chi-squares, sometimes called contingency table analyses, are useful anytime you have

two categorical variables and want to see whether there is some dependency of one varigble on

the other. Our example used variables with just two categories, but similar analyses can
on variables with many categories. The technical requirements are a bit more complex, i
procedure is the same.
See Also

.

“Identify Unexpected Outcomes" [Hack #15]
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Hack 17. Compare Two Groups

7

Which is better? Which has more? Do people really differ? Quantitative questions like these dominate the
polite conversations of our times. If you want some real evidence for your beliefs about the best, most, and
least, you can use a statistical tool called the "t test" to support your point.

My Uncle Frank is full of opinions. Green M&Ms taste better than blue. Women never get speeding
tickets. The Brady Bunch kids could sing better than the Partridge Family. Plaid is back. He can argue all
day spouting half-baked idea after half-baked idea. While | disagree with him on all four points (especially
the position that plaid is backatfter all, it never left!), | have only my opinions to fight with.

If only there were some scientific way to prove whether Uncle Frank is right or wrong! You no doubt
recognize the rhetorical nature of my plea. After all, there are only about a gazillion statistical tools that
exist to test hypotheses like these. One of the simplest tools is designed to test the simplest of claims. If
the problem is deciding whether one group differs from another, the procedure known as an independent t
test is the best solution.

Proving Uncle Frank Wrong (or Right)

To apply at test to investigate one of Uncle Frank’s theories, we have to compute a t value. Let's imagine
that | decided to actually challenge Uncle Frank and collect some data to see whether he is right or wrong.

Uncle Frank believes that males get speeding tickets more frequently than females. To test this hypothesis,
imagine that | select two groups of 15 drivers randomly [Hack #19] from his neighborhood. One group is
female, and the other is male. | ask them some questions. Pretend that over the course of the last five
years, the male group averaged 1.71 speeding tickets with a variance of .71. The female group averaged
1.35 speeding tickets with a variance of .25.

calculated by finding the distance of each score in the group from the mean

t — | Variance is the total amount of variability in a given group of numbers. Itis
score. Square those distances and average them to get the variance.

Here is the equation for producing a t value:

The larger the t value, the less likely that any differences found between your sample groups occurred by
chance. Typically, t values larger than about 2 are big enough to reach the conclusion that the differences
exist in the whole population, not just in your samples.



of people in them. A similar formula that averages the variance information is

— | The tformula shown here works best when both groups have the same number
s&l' ;
used when there are unequal sample sizes.

Is there support for Uncle Frank’s belief? To determine that, our calculations require thg data in Jable 2-9.

Table Data for speeding ticket t test

Group 1 (males) Group 2 (females)
Mean 1.71 1.35
Variance 71 .25
Sample Size 15 15

If we place those key values into our t formula, it looks like this:
The calculations work out this way:

In this case, a mean difference of .36 produces a t value of 1.42.

Interpreting the t Value

Could our t value of 1.42 have occurred by chance? In other words, if the actual difference in the
population is zero, could two samples drawn from that single population produce means that differ by that
much?

Earlier, | mentioned that values of 2 or greater are typically required to reach this conclusion. Under this
standard, we would conclude that there is no evidence that males really do get more tickets than females.
They did in our sample, of course, but might not if we measured everybody (the whole population). There
is no evidence that Uncle Frank is right. This is different in an important way from concluding that he is
wrong, but it still means he should lose this particular argument.

Statistics is all about precision, though, so let's explore our 1.42 a little further. How big, exactly, would it
need to be for us to conclude that Uncle Frank is actually right?

The answer, determined through custom, is that if the t is bigger than would occur by chance 5 percent of
the time or less, then the t is big enough. Fortunately, the chances of tsdingarious sizes when

drawn randomly from a population has been determined by hard-working mathematicians using
assumptions of the Central Limit Theorem [Hack #2]. The exact t value required for statistical significance
depends on the total sample size in both groups compined. Taljle 2-10 provides t values that you must
meet or beat to declare statistical significance at the .05 level.



Table t values occurring by chance less than 5 percent of the time

Sample size in both groups combined Critical t value
4 4.30
20 2.10
30 2.05
60 2.00
100 1.99
\x91 (infinity) 1.96

rough t value you need to meet or beat by estimating the value between the
values shown. Also, the chart assumes that you want to identify differences
between groups in either direction. It assumes you want to know whether either
group mean is larger than the other. This is what statisticians call a two-tailed
test, and it is usually the comparison of interest.

t — | For sample sizes other than those shown in Tabl¢ 2-10, you can figure out the

Using[ Table 2-1j0, we see that a t value of 1.42 is less than the critical value for a total of 30 subjects. We
need to see a t value greater than 2.05 to be confident that the sample differences we observed did not
occur just by chance.

Why It Works

Social scientists use this comparison method all the time. Experimental and quasi-experimental designs
often have two groups of people who are believed to be different in some way or another. You might be
interested in the differences between Republicans and Democrats or girls and boys, or you might want to
see if a group taking a new drug has fewer colds than a group not taking a drug at all.

Such designs produce two sets of scores, and those sets of values often differ, at least in the samples used.
Researchers (and I, too, when it comes to proving Uncle Frank wrong) are more interested in whether
there would be differences in the populations represented by the two samples.

population of scores. If the samples differ on some variable, that difference
might be reflected in the populations from which they were drawn. Or that
difference might be due to errors resulting from the sampling.

t — | The logic of inferential statistics is that a sample of scores represents a larger

A t test answers the question of whether any differences found between two samples are real (i.e., they
probably exist in the populations from which the samples were drawn) or due to sampling error (i.e., they
probably exist only in the samples). If the difference between the samples is too large to have occurred by
chance, researchers conclude that there is a real difference between the populations.



The t test formula uses information about the shape of the sample distributions of scores. The needed
information is the mean score on the research variable in each group, each group’s variance, and the
sample size of each group. The sample mean provides a good guess as to the population mean, the
variances give an indication as to how much the sample mean might have varied from the population

mean, and the sample size suggests the precision of the estimate. The difference between the two means is
standardized and is expressed as a t value.

drawn from different populations." The way you and | and researchers might
talk about real differences is "Republicans and Democrats differ” or "the drug
reduces the chance of getting a cold."

t — | The way statisticians talk about real differences is "the two samples were likely

Where Else It Works

Numbers don’'t know where they come from. You can use t tests to look at differences in any
two sets of numbers, whether those numbers describe people or things. In fact, the t test was
first developed to determine the quality of an entire elevator full of grain used in beer
production.

Instead of examining all the grain, a beer statistician (how’s that for a dream job?) wanted a
method that requires looking at a small sample only, randomly drawn from the larger
population of grain. The rest is history, and so we can say today that much of the work done by
statistical researchers is literally driven by beer.

e prcv NExT
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Hack 18. Find Out Just How Wrong You Really Are

s

Anytime you have used statistics to summarize observations, you've probably been wrong. If you need to
know how close you have come to the truth, use standard errors.

Statisticians are perhaps the only professionals who not only proudly admit that their answers are probably
wrong, but will go to great lengths to tell you exactly how wrong they are. When you conduct a survey,
record observations, or conduct some sort of experiment, your results describe only your samplethe
customers, patients, students, goldfish, or pieces of Kryptonite that you have in front of you. Inferential
statistics uses values computed for a sample to estimate what that value would be for the population it is
meant to represent. For example, the mean of a sample is a pretty good guess for the mean of the
population. The problem is knowing whether to trust your results.

Calibrating Error and Calculating Precision

It is unlikely that the mean of a sample is exactly the same as the mean of the population, but it is likely to
be close. If you want to know how far wrong you are, you can calibrate your precision using standard
errors. The standard error of the mean gives us an estimate of the distance between our sample mean
estimate and the actual population mean.
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Hack 19. Sample Fairly

lliia

If you want to find something out about every single customer or employee in your business, you could
talk to every single one of them. If you are concerned about the quality of the beer you serve at your bar,
you could taste every one before serving. Or, to save time, money, and brain cells, "sample" efficiently
instead.

Management thrives on knowing the characteristics of every widget produced, every transaction
conducted, and every client helped. Of course, the whole set of all of these widgets, interactions, and
people can never be brought together under one microscope and observed and evaluated. No specimen
slide is big enough.

The same is true for those of us in social scienceresearchers interested in people simply cannot measure
everybody. As much as we’d like to probe, shock, inject, hassle, embarrass, and generally bother everyone
in the world, we just can’t do it. We don’t have the time, space, or money, and, frankly, no one really

wants to get to know so many people.

The problem is, "How can you know about everything, without being able to look at everything?" As is
the case with all hacks in this book, the solution is provided by statistics. There are scientifically sound
ways to accurately describe any whole set of things by just looking at a small subset of those things.

Using Samplesto Make Inferences

Inferential statistics allows us to generalize to a larger population, based on data from a smaller sample.
For these generalizations to be valid, though, the sample has to represent the population fairly.

or city or planet in the way the term is used in social studies. In inferential
statistics, a population is a description of the type of person or thing you're
studying. Populations can be third-grade boys in Nebraska, nurses at Shawnee
Mission Medical Center in Merriam, Kansas, South American giant otters, or
books in the Library of Congress. The only rule is that a population is bigger
than its corresponding sample.

t — | A population, in the sense we use it here, is rarely the "population” of a country

A good sample represents a population. This means that the distribution of every important characteristic
in a population must be distributed, proportionately, in the same way in the sample. Much of this hack is
about how to construct a good sample, so let’'s look at a good sample.

Imagine a population of squares, diamonds and triangles, as shown in Figure 2-4.



Figure 2-4. A sample within a population

A fair sample taken from a population of squares, diamonds, and triangles would contain those shapes in
the same proportion as in the population. In our diagram, the outer oval represents a population, and the
different shapes are distributed as 40 percent squares, 20 percent triangles, and 40 percent diamonds. The
inner oval is the sample, which contains a subgroup of those elements in the population. The shapes in the
sample are distributed in the exact proportions as in the population: 40 percent squares, 20 percent
triangles, and 40 percent diamonds.

This sample is fair. It represents the population well, at least in terms of the characteristic of shape. When
sampling people or things, samples typically represent a variety of traits. People and things are not entirely
triangles or squares, so a sample of people is representative when its mean level of traits matches well with
the population levels. Each person will have some level of all the characteristics, and won't be entirely one
trait, unlike our shape example. (Though my Uncle Frank is pretty much entirely square, according to my
Aunt Heloise.)

— | The person asking the question gets to pick the population he is interested in, but
he is then accurate when generalizing to that population only, not any other.

If you knew that the sampling methods used to produce this sample (the elements in the inner oval) were
correct, you could infer something about the population by just looking at the sample. The procedure is
simple and intuitive:

1.

Observe the sample. For example, 20 percent of the sample is triangles.

Infer to the population. | bet 20 percent of the population is triangles.



Instead of abstract triangles in a theoretical population, imagine you are interested in checking the quality
of the beer you sell in your bar. To get an idea of the beer population, construct a good sample of the beers
you sell and taste each of them:

1.

Observe the sample. For example, 20 percent of the beers have just a hint of a possum aftertaste.

Infer to the population. | bet 20 percent of all the beers you sell have just a hint of a possum
aftertaste. You might consider cleaning your beer tap.

Inference is pretty easy to do, but it works well only when the sample is good. Constructing a good sample
is the key.

Constructing the Best Random Sample

A good sample represents the population. Representative sampling begins with defining the universe, or,
in other words, the population of things from which a researcher wishes to sample. There are a variety of
ways to conceptualize these elements and various levels of grouping that are explicitly or implicitly
identified when choosing a population and selecting a sample. You have to know about these ways of
organizing your population; otherwise, you cannot create a good sample:

General universe

Abstract population to which a researcher hopes to generalize his findings. For example, | might want
to say something about all comic book collectors.

Working universe

Concrete population that allows for sampling to occur. | can’t really be sure | have located or counted
all comic book collectors, but | could operationalize that population by defining it as all the
subscribers to the Comics Buyer’s Guide, a monthly magazine that most serious collectors read. This
working population is not exactly the same as the general universe, but it should be almost as large
and will capture most of the abstract population of interest.

Sampling unit

Element that defines the population. In our example, a single subscriber to the monthly magazine
would be a sampling unit.

Sampling frame

List, real or imagined, of sampling units in a population. In our example, this would be the literal list
of subscribers that | might be able to purchase from the magazine.



of your sample is said to be generalizable. If a sample does not represent a

— |1 An observation that is likely true about the people and things that were not part
s&:"
L population, the sample is biased (a bad sample).

The best sampling strategy, without question, is to sample randomly from a valid sampling frame.
Random selection will do the best job of creating a sample that represents all the traits of interest in the
population. The real power of random selection, though, is that you are also representing all sorts of
variables you haven't even considered that might otherwise have an impact on your observations.

Technically, the term random describes a sampling process that gives every member of a population an
equal and independent chance of being selected. Equal means that every sampling unit in the sampling
frame has as good a chance as anyone else. Independent means that a person’s or thing’s chances of bein
selected are unrelated to whether any other particular person or thing has been selected.

S0, suppose a selection process calls customers on a client list to ask for participation but stops trying to
contact people if they aren’t home or in the office during the first attemptthis does not give all possible
participants an equal chance of being selected. People who aren't easily available are less likely to be
chosen, and if people are not solicited to participate when someone in their office has already been chosen,
each member of the population does not have an independent chance of being chosen.

Random sampling can be done by numbering all names on the sampling frame list and using some method
of choosing a random number to pick each participant.

Sampling Strategiesfor the Real World

In the real world, it is often difficult or impossible to sample randomly. Here are some sampling strategies
that aren’t quite as good as random sampling, but are more realistic outside of some imaginary scientific
laboratory:

Convenience sampling

The sample is chosen based on accessibility. This is sometimes called haphazard sampling. Head
down to the local mall and ask the first 10 people you see how they feel about your company’s
widgets, and you have engaged in convenience sampling.

Systematic sampling

Units are chosen from the sampling frame at equal intervals. For example, you might take every 10th
person from a long list. As long as the order of names on the list is unrelated to whatever you are
trying to determine, this might do as good a job of representing the population as true random
selection. Statistical theorists and practitioners actually have academic debates over this issue.

Stratified sampling

The sampling frame is divided into meaningful subgroups, and units are randomly chosen from each
subgroup. This could result in greater representativeness than even random sampling if the
characteristics that define the subgroups are important to the question you are asking.



Cluster sampling

Groups of units are randomly chosen, and all units in those groups are sampled. For example, you
might choose a publishing company at random and then interview every employee about how to
succeed in publishing.

Judgment sampling

The sample is chosen based on your expert judgment as to whether the sample will represent the
population. You might choose to talk to only your best customers, because they know the most about
your widgets.

Choosing a Sample Size

If you are able to construct a good sample, as we have defined it, even a small sample can be effective. As
with chocolate chip cookies, though, bigger is better. The larger the sample, the more representative of the
population it is. Consequently, the observations are more generalizable and you can better trust their
accuracy.

Also, if there is some interesting relationship between variables in your observations, you are more likely
to find that relationship and be sure that it did not occur by chance when you have observed many
elements in your sample than when you have looked at just a few.

Finally, if you do have some social science purpose for your sampling, there are certain technical
statistical characteristics that must be met to perform certain analyses. These standards are easier to meet
in larger samplessuch as, say, samples consisting of 30 or more widgets.

See Also

"Find Out Just How Wrong You Really Are" [Hack #18] shows how to determine error size in
inferential statistics.

=2 wExT
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Hack 20. Sample with a Touch of Scotch

20

When statisticians choose samples of people from populations, they are really sampling from continuous
distributions of variables. Sampling is sometimes easier to understand, though, by treating your variables
as discrete objects, not continuous scores.

The most powerful statistical procedures use scores at the interval level of measurement or higher [Hack
#7]. To sample scores from a population, social science researchers usually choose people, though, not
scores. The people are then measured, which results in a sample of scores. So far, so good.

When discussing the sampling process, however, smart researchers sometimes sound not-so-smart when
they refer to their sampling strategy. For example, if a researcher is interested in measuring the effects of
some treatment on a continuous variable such as happiness, he might say (and think), "OK, first | need to
get a sample full of happy and unhappy people." He, at least for the moment of the thought, is treating
happiness as if it were a dichotomous variable.

— | Dichotomous is statistics jargon meaning "having only two values." For
. example, biological sex is a dichotomous variable.

He is referring to people as if they are either completely happy or entirely unhappy. In reality, of course,
he thinks there is a large range of happiness scores that describe people, which is why he is using statistics
that make the assumption of interval measurement.

He refers to his participants as either/or because doing so makes it easier for him to picture the
representativeness of his sampling. It's a smart strategy, because by thinking of samples as representing
big, discrete categories instead of more precise, continuous values, this sometimes makes questions about
sampling easier to answer and justify.

A Sampling Problem

Here’s a brainteaser that centers on a sampling question. A drunk, untenured statistician (I've met a few) is
mixing drinks at a party. He is making a Scotch and soda for his department chair. The chair demands a
drink with some exact proportion of Scotch to water (it doesn’t matter what the specific request is; our

hero never makes it that far).

The statistician starts with two glasses of the same size. One glass (the first glass) has two ounces of
Scotch in it; the other (the second glass) has two ounces of water in it. He starts by pouring an ounce of
water from the water glass into the Scotch. He apparently already screwed up, because he changes his
mind and pours an ounce of the new mixture (three ounces of Scotch and water mixed up) back into the
water glass. Both glasses now have two ounces of liquid in them, but the liquid in each glass is some mix



of water and Scotch.
Nervously, the statistician attempts to start all over, but his department chair stops him. She says:

| have a proposition for you. We can’t possibly know the exact proportion of Scotch and water in each

glass right now, because we can’t know how mixed up everything is. But if you can answer the following
guestion correctly, I'll write a strong letter of support to your tenure committee. If not, well, I'm sure
someone with your qualifications should have no trouble finding work in the hotel/motel or food service
industry. Here’s the question: right now, does the first glass have more water in it, or does the second glass
have more Scotch in it?

Think of the question as a sampling issue. Does the first sample, the liquid in the first glass, have more
water in it, or does the second sample, the liquid in the second glass, have more Scotch in it? Because both
Scotch and water are made up of really small particles, it is difficult to picture how much of each liquid is
represented in each sample. Even proportionately, we can’t be sure how many water particles (or sampled
scores that equal "water") are mixed into the sample of "Scotch" scores, because who knows how much
water drifted down into the bottom of the first glass and would have remained there as the top part of the
liquid near the surface was poured back into the second glass. An intuitive answer is called for.
Unfortunately, it is wrong.

The intuitive answer typically generated by smart people is that the first glass, the Scotch glass, has more
water in it than the water glass has Scotch in it. This makes sense because pure water was poured into the
Scotch, while some mix of water and Scotch was poured back into the water glass. Amazingly, this clever
thinking leads us astray. The correct answer is that the proportions are equal! There is the same amount of
water in the Scotch glass as there is Scotch in the water glass.

Using M etaphor to Solve the Problem

The solution to the sampling problem is clearer if we imagine that our variables are not tiny particles, but
instead are large categories, such as blue and white marbles. Instead of a glass of Scotch, imagine a glass
of 100 blue marbles. Instead of a glass of water, imagine a glass of 100 white marbles.

The glasses are big, so the marbles can get mixed together well. Think large glass fishbowls. This is
necessary to ensure that random selection is possible, as was likely with the mixed-up liquids. Keep your
eye on the marbles through each step of the mixing.

Our hero takes 50 white marbles from the second glass and mixes them into the first glass. The
distribution of the two variables is now:

Sample 1
100 blue marbles, 50 white marbles
Sample 2

50 white marbles



Now, he (randomly, remember, to simulate the mixed liquids) takes any 50 marbles from the first glass
and mixes them back into the second glass. Let's imagine a variety of possibilities.

If by chance he selects all the white marbles, they go back into the second glass and the distribution is
now:

Sample 1
100 blue marbles
Sample 2
100 white marbles
If by chance he selects no white marbles and puts 50 blue marbles into the second glass, the distribution is:
Sample 1
50 blue marbles, 50 white marbles
Sample 2
50 white marbles, 50 blue marbles

Now imagine a more likely scenario: some of the marbles he randomly draws are white and some are blue.
For example, he could draw out 10 white marbles and 40 blue marbles and place them in the second glass.
In that case, the new distribution is:

Sample 1

60 blue marbles, 40 white marbles
Sample 2

60 white marbles, 40 blue marbles

Try this with any mix of marbles you wish, but remember you have to draw out a total of 50 marbles (to
duplicate the one ounce, or half, of the water originally mixed up).

Notice that any mixture you try results in 100 marbles in each glass at the end. Also, most importantly,
notice that the ratio of blue to white marbles in the first glass at the end is always equal to the ratio of
white to blue marbles in the second glass. Any blue marble that is not in the second glass must be in the
first glass, and any white marble that is not in the first glass must be in the second glass.

The same is true for Scotch and water. The correct answer is that the proportions will be equal, no matter
how they were originally mixed up.



WhereElselt Works

Real-life polling companies, who make their living and stake their reputations on the accuracy of election
predictions, are also primarily concerned with the proportion of samples who are in each of several crucial
categories. If people have just voted and there are two candidates, anyone who did not vote for candidate
A voted for candidate B. Their absence in one category guarantees their presence in the other. Reporting
predictions as percentages creates the potential for greater accuracy. It also allows for greater error, as a
voter predicted to be in category A who ends up in category B has therefore produced error in both
categories.

When statistical social science researchers want to be convinced that their sample is representative of its
population, their primary concern is always the proportions of characteristics in their sample, not the
number of people with those characteristics. What matters most is that the proportions of each score for
the key research variables are the same in both samples and their populations.

e prcy NEXT
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Hack 21. Choose the Honest Average

Hizi

Data-driven decisions, such as whether you can afford to buy a house in a new town or who the core
market is for your business, often rely on the "average" as the best description for a large set of data. The
problem is that there are three completely different values that can be labeled as the "average," and the
different averages often result in different decisions. Make your decisions using the correct average.

When most people hear a statement like "the average price for a house in this town is $290,000" (which
might sound low, high, or just right, depending on where you call home), they imagine that this figure was
determined by adding up all of the sales prices from all of the houses in the town, and then dividing that
sum by the number of houses. But statisticians know there is more than one way to determine the
"average," and sometimes one kind is better than another.

Whether that $290,000 really represents the typical housing price depends on whether the average is
actually the mean, median, or mode. It also depends on the shape of the distribution of all the numbers that
are averaged. Wise folks will make sure they are making their decisions using the best summary value.
Here’s when to trust each type of average.

M easures of Central Tendency

The purpose of determining an average for a set of valueswhether those values are house prices, grades
from a final exam, or the number of students in a yoga classis to efficiently communicate the central
tendency for those values. It's true that, most of the time, central tendency is determined by adding up all
of the values in a distribution, and then dividing the sum by the number of values. Statisticians don't call
this the average, though; they call it the mean. So, why not always use the mean to determine central
tendency? Because in some situations, the mean doesn’t represent any of the actual values!

Consider the opening example about the average price of a house. Let's say you collect data for 300
houses in a town and want to determine the average sales price in that sample. Generally speaking, the
mean is not a very good indicator of central tendency for house prices. Fidure 2-5 illustrates why.

Figure 2-5. Mean as a misleading average
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The mean is not a very honest average in this situation, because the distribution of sales prices is skewed
by a few outlying values that are very large. Of the 300 houses sampled, 231 of them were sold for prices
in between $100,000 and $600,000. The remaining 69 houses sold for prices above $600,000, with 56 of

those above a million dollars. The mean is heavily influenced by these outlying values and therefore is not
very representative of any house in the sample.

Means don’t work well as averages for most money variables. The average income reported as a mean is
much higher than what most people earn. There are always a few Bill Gates and J.K. Rowling types who
pull the mean way up.

So, what's the "honest average" for these types of values? Instead of reporting the mean, with distributions
like the one i Figure 2}5, honest statisticians generally prefer the median. The median is that value in a
distribution at the 50th percentile, such that half of all values are below it and the other half are above it
(just like, on a highway, the median divides the road in half). The median for this distribution of data is

just under $290,000, and thus works very well as a measure of central tendency.

Choosing the Middle Ground

The median works well in these instances because it is much less sensitive to outlying values than the
mean, and thus is preferred whenever a distribution is skewed in one direction or another. The median is
therefore also the most "honest" measure of central tendency when the distribution is skewed by a few
outlying values that are much smaller than the rest,[as in Figire 2-6, a fictional set of 50 students’ exam
scores.

Figure 2-6. Median as the honest measur e of central tendency
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shows another type of data in which a mean might lead to a wrong conclusion. Relying on the
median here would result in a more accurate interpretation of class performance.

Wherelt Doesn’'t Work

Not even the median will always be honest, though. Consider the following scenario. Say you're a yoga
instructor, and half of the students in your class are between 25 and 35 years old, and the other half are
between 50 and 60. How would you describe the average age of your students?

The problem in situations like these is that neither the mean nor the median will adequately describe the
group of individuals. What to do? The most honest choice for an average in this situation is to report the
mode, which is simply the most frequently occurring value in a sample of data, as shown in the example in

[Figure 2-7.

Figure 2-7. Mode as the honest average
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In this case, there are two modes: one at 30 years old and the other at 54 years old. Reporting both of these
values is the best way to choose the honest average. The mean and median both mislead for these sorts of
data.

How to Choose the Honest Average

So, when is the mean the honest average? Basically, the mean is the best choice when there is only one
mode and the distribution is symmetric, which means that there is no obvious skew in either direction. If
your yoga class were attended by your 25- to 35-year-old students only, the mean would be the honest
average.

When all is said and done, how do you choose the most appropriate average? Following these three simple
rules will keep you honest if you are reporting summaries, and will help you make informed choices if you
are the one making decisions based on the data:

Choose the mode if there are two or more "trends" in the data (i.e., two or more areas of
high-frequency values), and report one mode for each trend.

Choose the median if the distribution is skewed (i.e., a small number of outliers is heavily influencing
the mean).

Choose the mean if the distribution is fairly symmetric with one mode.

It is interesting to note that in most cases, the mean, the median, and the mode will all be fairly close to
equal. So why bother with the mean? The mean remains as the most common way to report the average
because it is most likely to be replicated if we were to take another sample of data and look for the central
tendency. Medians and modes tend to be a lot more variable, but the mean stays nice and stable.

William Skorupski

=2 wExT



[ prev |
Hack 22. Avoid the Axis of Evil

iz

Graphs are powerful tools to represent quantities, relationships, and the results of research studies. But in
the wrong hands, they can be made to deceive. Choose your destiny, young Luke (or, if you are under the
age of 25, "young Anakin"), and avoid the dark side.

There was a time when only scientists, engineers, and mathematicians ever saw a graph. With the advent
of more and more news outlets aimed at the general public, visual representations of numeric information
have become more and more common. Just think of yesterday’s issue of USA Todayit contained at least a
dozen graphs.

In business conferences, graphs are used frequently to communicate information and demonstrate success
(or failure). If the creator of a graph isn’t careful, though, choices that might seem arbitrary will affect the
interpretation of the information. Without changing the data, you can change the meaning.

So, if you want to avoid manipulating your audience when you create a graph, or if you just want to be
able to spot a misleading (whether intentional or not) chart, then use this hack to help you create and
interpret graphs effectively.

Choosing the Honest Graph

To understand correct and incorrect graphing options, we first have to cover some graphing basics. There
are various pieces to a graph, and the manipulation of those pieces can lead or mislead.

Typical graphs have two axes, because they describe two different variables. Axes are the lines along the
bottom, called the X-axis, and along the side, called the Y-axis.

little letter Y is reaching its cute little hands up, vertically, toward the sky. Get

— 1 You can remember that the vertical axis is called the Y-axis because the cute
E it? (Welcome to the creative world of statistics education.)

The sort of graph that is appropriate (and nondeceptive) for showing the variables you have measured
depends on the level of measurement of your variables [Hack #7]. You can choose from three common
types of graphs, and only one will be the right one for your variables:

Bar chart

In[Eigure 2-8, the X-axis represents categories or groups, such as males and females. The Y-axis is
continuous: the taller the bars, the higher the value on variable Y.



Figure 2-8. Bar chart
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Histogram

In[Figure 2-9, the X-axis represents continuous values. A histogram is often used when the X-axis
represents common categories that reflect an underlying continuous variable, such as months of the
year or some other distinctive set of groupings that can be placed in a meaningful order. These look
like bar charts, except that the bars are pushed together with no spaces between them.

Figure 2-9. Histogram
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Line chart

In|Figure 2-1D, both the X- and Y-axis are continuous variables; in this example, they’re time and
value. The higher the line at any point, the greater the quantity as represented by the Y-axis.



Figure 2-10. Line chart
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To pick the right kind of graph (i.e., the one with the format that is the least deceptive and the most
intuitive), identify the types of X variable you are using (notice that Y is continuous in all of these
formats):

If X represents different categories and Y is continuous, use a bar chart.

If X can be conceived of as categories, but there is also some meaningful order among them and Y is
continuous, use a histogram.

If X and Y are both continuous, use a line chart.

Graphic Violence

A common error in graphing, either intentional or not, has to do with setting the scale for the X-axis.
Here’s why this is a problem and how you can avoid it.

Graphs with two variables invite comparisons across categories or time or across different values of one
variable. Pictures are worth a thousand words, as they say, and a graph can be very persuasive evidence.
Anytime lines or bars are used to compare values, the comparison is accurate only when the height of the
line or the length of the bar is judged against some standard minimum value. That minimum value is often
zero. If the graph is not calibrated to some reasonable base value, small differences look huge.

Compare the two graphs showij in Figure P-11, for example. Both convey exactly the same data, and yet
your interpretation of each might be wildly different. The histogram in the top left reflects performance of
the U.S. stock market over the last five days. Notice a rather frightening-looking drop on day five. No
doubt, earth-shaking news hit near the end of day 4. You might also notice that the Y-axis (the Dow Jones
Index) does not begin at zero; it begins at 9,900, a value that is low enough to contain the top of all five



bars, but that is otherwise not meaningful.

Figure 2-11. The power of the Y-axis
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Look more closely at the second histografn in Figure] 2-11, on the bottom right. Both charts present the
same data, but the second graph uses zero as the starting point. The interpretation of the data as presented
in this graph shows very little fluctuation across the last five days, and the frightening drop at day 5 is

barely a hiccup.

Which display is the correct one? Both reflect a drop of 2.8 percent in stock market value from day 4 to
day 5. It really depends on the intent of the graph constructor and the intended audience. When number
counts are involved, or money, the most meaningful and fairest starting point is usually nothing. Many
newspapers provide daily stock information in the format as shown in the first histogram. They believe
their readers are interested in small changes, so they set a Y-axis starting value that is as high as possible
but low enough to contain all data points on the X-axis.

After all, to an avid investor who changes her portfolio often and buys and sells frequently, a drop of 2.8
percent is serious business. A graph designed to make small changes look serious might be the most valid
for that reader. If an investor is one of those "in it for the long haul" types, a relatively small change is
meaningless, however.

To get the most meaning out of graphs like these, always check the bottom value on the Y-axis. This way,
you can get a sense of the real differences on the X-axis as you crawl from bar to bar. If you are making
graphs like these, think about the most honest way to present the information. You want to inform, not
deceive (probably).



See Also

The book that first pointed out to the general public how charts can deceive, especially in advertising,
was How to Lie With Statistics. Huff, D. (1954). New York: Norton and Company.
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Chapter 3. Measuring the World

Hacks 23-< a class="docLink"
href="1-0596101643-CHP-3-SECT-12.html#1-0596101643-CHP-3-SECT-12">34

There is great value in understanding phenomena by hanging a quantity on it. Though sometimes a
something important islost in the trandation from idea to number, creating scores to represent whatever
we areinterested in does allow for alevel of precision in understanding, and it also allows for comparison.
These hacks all involve measurement and interpretation of scores.

A whole family of hacks relies on the normal distribution [Hack #23] and its presence everywhere we
look. With the normal curve, you can tell where you stand compared to everyone else [Hack #24], know
how you are likely to perform on atest before you even take it [Hack #25], and understand your test
results at a deeper level [Hacks #26 and #27< /a>].

Speaking of testing, you'll learn how to produce a good set of questions [Hack #28] and make a quality
test [Hacks #31 and #32< /a>]. Y ou can identify bad items, worthless questions, and do well on atest
without knowing the answers [Hack #29]. Y ou can also improve your test performance without cracking a
single book [Hack #30].

Finally, by learning a couple of solid measurement principles, you can determine the lifespan of an era,
person, or business [Hack #33] and also learn how to use medical information [Hack #34] to maybe
increase your own lifespan.

Measure by measure, here is awhole chapter full of measurement hacks.

=1 NExT
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Hack 23. See the Shape of Everything

iz

Almost everything in the natural world is distributed in the same way. As long as you can measure the
thing, whatever it is, and scores are allowed to vary, it has a well-defined "normal distribution." If you
know the specifics about the shape of this normal curve, you can make very accurate predictions about
performance.

There are a few miracles in the world of statistics. There are at least three toolsthree discoveriesthat are so
cool and magical that once students of statistics learn about them and begin to comprehend their beauty,
they frequently explode.

Well, maybe | am exaggerating a bit, but here are three dandy tools for understanding the world:

The correlation coefficient [Hack #11]
The Central Limit Theorem [Hack #2]

The normal curve

Since we've discussed the uses of the first two miracles in other hacks, let's spend our time now getting to
know the shape and uses of the third:rtblmal curve. | am pleased to present the normal curve, the
normal distribution, the bell-shaped curve, the whole world, as shdwn in Figlire 3-1.

Figure 3-1. Thenormal curve
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Applying Areas Under the Normal Curve

Statisticians have defined the normal curve very specifically. Using both calculus and hundreds of years of
real-world data collection, the two methods have reached the same set of conclusions about the exact
shape of the normal distributidn. Figure]3-2 shows the important characteristics of the normal curve. The
mean is in the middle, and there is room for fewer and fewer scores as you move away from that center.

Figure 3-2. Areasunder the normal curve
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Though the normal curve is theoretically infinitely wide, three standard deviations on either side of the
mean is usually enough to contain all the scores.



A distribution’s standard deviation is the average distance of each score from the
mean [Hack #2].

Predicting test performance

Recall the claim | made earlier that anything you measure will distribute itself as a normal

curve. By implication, then, anything we measure will have most of the scores close to the
mean and only a few scores far from the mean. Measure enough people and you will get the
occasional extreme score very far from the mean, but scores far from the mean will be rare. The
expected proportion of people getting any particular score gets smaller as that score moves
away from the mean.

That next test you take? | don't know the test or anything about you, but I am willing to wager
that you will get a score close to the mean. | predict your score will be average. You might get
above average or below average, but the normal curve tells me that you will likely be pretty
close to the mean.

To make these sorts of predictions, and to be pretty confident about their accuracy, you can use
the known normal curve's dimensions to estimate the percentage of scores that will fall

between any two points on the X-axis (the bottom, horizontal part of the graph). The

percentage of scores between pairs of standard deviation points on the scale are shown in
[Figure 3-2. The percentages add up to 100 percent, but that is because of rounding. Remember
that some scores, though just a few, will be further than three standard deviations away from
the mean.

Here are some key facts about the curve that you can use to predict performance:

About 34 percent of scores fall between the mean and one standard deviation above the
mean. See the shaded sectiop in Figure 3-2? If you took some ink and colored in the entire
space beneath the normal curve, you would use 34 percent of the ink on this section.

About 34 percent of scores fall between the mean and one standard deviation below the
mean.

About 14 percent of scores fall between one and two standard deviations above the mean.

About 2 percent of scores fall between two and three standard deviations below the mean.
You can also combine the percentages to make other statements such as:

About 68 percent of all scores will be within one standard deviation of the mean.

About 50 percent of scores will be below the mean.

You can use these known percentages to make predictions and statements of probability. We
can speak of the normal curve as either the percentage of scores that fall under given areas on
the curve or the likelihood that any given test taker will fall under given areas:

There is a 2 percent chance that you will score more than two standard deviations above
the mean on your next test.

There is only a 16 percent chance that this applicant will score lower than one standard
deviation below the mean on our job skills test.

Setting standards

Policy makers rely on the assumption that ability is normally distributed when they establish
levels of performance. They choose levels of performance that will guarantee them a certain
percentage of qualifying people. The normal distribution is an invaluable tool for setting policy
for admissions or services if one wants to magically know ahead of time how many people will
qualify.

For example, a college with high academic standards might require scores on an ability test that
are at least one standard deviation above the mean. This way, they ensure themselves of
accepting only the top 16 percent in ability.

Likewise, special education policy in the United States establishes certain cut scores for
students on tests that qualify them for special education status (and, thus, federal and state
funding). Cut scores are specific scores that a person must score above (or below). If policy
makers have the budget to pay for special programming and staff for only, say, two percent of
all children, they set the cut score at two standard deviations below the mean. Faith in the
normal curve allows them to calculate the number of children who will need funding.

Appreciating the Beauty of the Normal Curve

To appreciate the wonder of the normal distribution, you can always build your own. Imagine
you measured something (such as attitude, knowledge, height, or speed). You have some
scoring system in which scores are allowed to vary (such as scores on an attitude survey, or
SAT scores, or inches, or miles per hour). You have lots of scores because you measured lots
of people, buildings, or sparrows. Now, plot these scores on a graph such that the X-axis
represents the actual score value from lowest to highest, left to right (or the other direction if
you'd like). The Y-axis (the vertical left side part) should represent the relative frequency of
each value in your group of scores.

On such a chart, the height of the line or dot represents the relative proportion of scores that
were at any particular value. Notice on the normal curve that the highest points are in the

middle and the lowest points are on the ends. The middle score is the average score and the
most popular score. On the normal curve, the median is equal to the mean, which is equal to the
mode [Hack #21].

Notice also that the normal curve is symmetrical: you could fold it in half and one side would
perfectly cover the other. The other characteristic of the normal curve that is important to know
is that it goes on forever. It is a theoretical curve, so the two ends of the curve will never touch
the baseline.

The normal curve is the common truth that connects all of nature. It is perfectly balanced. It is
forever. Itis eternal. It also kind of looks like a dinosaur, which is cool.

PREY NEXT B
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Hack 24. Produce Per centiles

24

A simple but powerful way of understanding test performance is through the use of percentile ranks.
Here’s how to take a raw score with little explanatory value and transform it into something much more
informative and useful.

In school, teachers (or counselors, or whoever reported standardized test results) might have reported
results to you without ever telling you your score. Instead, you probably saw a number that looked like a
percentage and was described as telling you how you (or your child) compared to others who took the test.
This type of score is called a percentile rank.

If you have been shown a percentile rank that represents your test performance, it won't be useful unless
you know what it means. On the flip side, if you have to explain someone’s test performance and you
show the test taker a raw score only, you aren’t really being very helpful. Being able to build or interpret
percentile ranks is a useful skill for both sides of the testing game.

Norm-referenced scoring [Hack #26] is an approach to making test scores more informative by comparing
scores to each other. The norm-referenced score you see most often in the real world is the percentile rank.
The percentile rank is defined as "the percentage of scores in a distribution that are less than a given score
of interest.” For example, if you get 15 items correct out of 20 on a quiz and half the class got fewer

correct than you, your percentile rank is 50.

Producing and Reporting Per centile Ranks

If you are a classroom teacher, human resources manager, or anyone who has to report test results to
others, being able to report a percentile rank instead of a raw score will help test takers understand how
well they performed and also help decision makers understand the consequences of setting various
standards of performance.

Organizeyour data

Producing percentiles begins with organizing all your test scores. For a small data set, it is fairly simple to
build a frequency table, which answers all sorts of questions in addition to providing percentile ranks.
Here is a sample distribution for 30 scores on a classroom test (arranged from lowest to highest) in which
100 points was the highest possible score:

59, 65, 72, 75, 75, 75, 80, 83, 83, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 88, 88, 88, 90, 90, 90, 90, 90,
92, 94, 97



Compute frequencies and per centages

For efficiency’s sake, this data can be displayed and the frequency of each score can be computed, as

shown in Table 34{1.

Table Cumulative frequency for a classroom test

Score | Frequency Cumulative frequency Per centage Cumulative per centage
59 1 1 3.33 percent 3.33 percent
65 1 2 3.33 percent 6.67 percent
72 1 3 3.33 percent 10.00 percent
75 3 6 10.00 percent 20.00 percent
80 1 7 3.33 percent 23.33 percent
83 2 9 6.67 percent 30.00 percent
85 6 15 20.00 percent 50.00 percent
86 4 19 13.33 percent 63.33 percent
88 3 22 10.00 percent 73.33 percent
90 5 27 16.67 percent 90.00 percent
92 1 28 3.33 percent 93.33 percent
94 1 29 3.33 percent 96.67 percent
97 1 30 3.33 percent 100.00 percent

shows each score that someone actually got, how many people got that score, the total number
of people getting a given score or lower, the percentage of all people getting each score, and the total
percentage of people getting a given score or lower. The cumulative columns always report the total
number of people (or scores) in the distribution (30 in our example) and the total percentage of people
(always 100 percent).

Determine percentileranks

To determine the percentile rank for any score in the distribution, use the "Cumulative percentage"

column. Find the score of interest and look at the cumulative percentage in the row just above that score’s
row. For instance, for a score of 94, the percentile rank is 93.33 or about the 93rd percentile. For a score of
86, the percentile rank is 50.



are actually two different and competing definitions for a percentile rank. |

prefer "the percentage of scores in a distribution that are less than a given score
of interest,” but some books give "the percentage of scores in a distribution that
are equal to or less than a given score of interest." Both definitions are
reasonable and percentile ranks can be calculated either way using a frequency
table. Under the first use of the term, there can be no 100th percentile. Under the
second, there can be no Oth percentile. Pick the definition you prefer and go with
it, but always share your definition along with your results.

t If you review a dozen statistics or measurement textbooks, you'll find that there

I nter preting the Per centile Rank

Imagine that you are sitting down with your guidance counselor and have been told that your
percentile rank is 93. So, what does this mean? Well, the most direct interpretation is that 93
percent of all people who took the test scored less than you did. It is also correct to say that 7
percent of people scored equal to you or higher. We can also think of percentile ranks as saying
how far the score is from normal. The mean percentile rank is usually around the 50th
percentile and will be exactly that if scores are normally distributed, as they (ahem) normally
are. So, we could also say that the 93rd percentile is pretty far above average.

Don’'t make the mistake that many otherwise savvy stat-hackers sometimes make. Earlier in
this hack, we used an example of a test score in which you got 15 items correct out of 20 on a
quiz and half the class got fewer correct than you. Your percentile rank in that example was 50.
Notice that in that example, your percent correct is 75 percent (15/20), but your percentile rank
is 50. Don’t confuse the two! Knowing your percentile rank does not tell you how many
guestions you got right.

Wherelt Doesn’t Work

Remember that a percentile rank is useful only when you're looking for a norm-referenced
interpretation. If you want to know whether you have mastered a key set of skills, it does not
help to know what percentage of people have mastered more or less of those skills. To know
where you are compared to some set of standards, not compared to other people, you want a
criterion-referenced score [Hack #26]. A percent correct type of score is more meaningful for
you in this case than a percentile rank.

See Also
[ ]

If you assume that your scores are normally distributed, or at least drawn from a
population that is normally distributed, you can just convert any standardized score
directly to the percentile rank, using information about the areas under the normal curve
[Hack #25].

=l NEXT
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Hack 25. Predict the Futurewith the Normal Curve

li2s

Because almost anything we measure in the natural world has a known distributional shape, the "normal
curve," we can use the precise details of that distribution to predict the future and answer all sorts of
probability questions.

A variety of hacks in this book capitalize on statisticians’ close personal relationship with the normal
curve. "See the Shape of Everything" [Hack #23] shows how to use the normal curve to predict test
performance in a general way. We can do better than that, though.

So much is known about the exact shape of this mystical curve that we can make exact predictions about
the probability that scores in a certain range will be obtained. There are many other types of questions that
can be asked related to test performance, and statistics can help us to answer these sorts of questions
before we ever take the test!

For example:
°
What are the chances that you will score between any two given scores?
How many people will score between those two scores?
What are the chances that you will pass your next test?
Will you get accepted into Harvard?

What percent of students in the U.S. will qualify as National Merit Scholars?

What are the chances that my Uncle Frank could pass the Mensa qualifying exam?

For these types of questions, a precise tool is needed. This hack provides that tool: a table of areas under
the normal curve.



The Table of AreasUnder the Normal Curve

The normal curve is defined by the mean and standard deviation of a distribution, and the shape of the
curve is always the same, regardless of what we measure, as long as the scoring system allows scores to
vary. The proportions of scores falling within various areas beneath the curve, such as the space between
certain standard deviations and distances from the mean, have been specified.

This hack relies on a complicated-looking table, but it is so full of useful information that it will quickly
become a primary tool in your hacker’s toolbox. Without further ado, take a deep breath anfi Took]at Table

B2

Table Areasunder the normal curve

z Proportion of scoresbetween | Proportion of scoresinthe | Proportion of scoresin the
score themean and z larger area smaller area
.00 .00 .50 .50
A2 .05 .55 .45
.25 .10 .60 .40
.39 15 .65 .35
52 .20 .70 .30
.67 .25 75 .25
.84 .30 .80 .20
1.04 | .35 .85 .15
1.28 | .40 .90 .10
165 | .45 .95 .05
196 | 475 975 .025
4.00 | .50 1.00 .00

Deciphering the Table

Before we use this nifty tool, we need to take a second deep breath and get the lay of the land. | have
simplified the information on this table in a couple of ways. First, | have listed only a few of the values

that could be computed. Indeed, many tables in statistical books have every value between a z of .00 and a
z of 4.00, increasing at the rate of .01. That's a lot of information that could be presented, so | have chosen
to show only a glimpse of the most commonly needed values, including the z scores necessary for 90
percent confidence (1.65) and 95 percent confidence intervals (1.96); see "Measure Precisely" [Hack #6]
for more on confidence intervals.



| have also rounded the proportions to two decimal places. Finally, | used the symbol z in the table to
indicate the distance from the mean in standard deviations. You can learn more about z scores in "Give
Raw Scores a Makeover" [Hack #26].

After understanding the simplifications made to the table, the first step toward using it to make probability
predictions about performance or answer statistical questions is to understand the four columns.

The z column

Picture the normal curve [Hack #23]. If you are interested in some score that could fall along the
bottom horizontal line, it is some distance from the mean. It could be greater than the mean score or
less than it. The distance to the mean expressed in standard deviations is the z score. A z score of 1.04
describes a score that is a little more than one standard deviation away from the mean. Because the
normal curve is symmetrical, we don’t bother to note whether the distance is negative or positive, so

all of thesez scores are shown as positive.

Proportion of scores between the mean and z

In that space between a given score and the mean, there will be a certain proportion of scores. This is
the probability that a random score will fall in the area defined by the mean and any z.

Proportion of scoresin the larger area
You could also describe the area between any given z and a z of 4.00, or the end of the curve.

The curve doesn't really ever end, theoretically, but a z score of 4.00 will come very close to
including 100 percent of the scores.

There are two ends of the curve, though. Unless your z is 0.0, the distance between the z and one end
of the curve will be greater than the distance between the z and the other end. This column refers to
the area between the z and that furthest end of the curve, and the value in this column is the
proportion of scores that will fall in that space. In other words, it is the chance that a random person
will produce a score in that area.

Proportion of scoresin the smaller area

This column refers to the area between the z and that closest end of the curve. It is the proportion of
scores that will fall in that space.

Estimating the Chance of Scoring Above or Below Any Score

If you need to know your chances of getting into your college of choice, identify the necessary score you
need to beat, also known as the cut score, on that school’'s admissions tests. Once you know the score, find
out the mean and standard deviation for the test. (All of this info is probably on the Web.) Convert your

raw score to a z score [Hack #26], and then find that z score, or something closd to it, in Jable 3-2.



Determine whether the cut score is above the mean:

If it is, look at the "Proportion of scores in the smaller area" column. That represents your chances of
scoring at or above that cut score, and your chances of getting in.

If the cut score is below the mean (unlikely, but for the sake of completely training you on how to use
this tool), identify "Proportion of scores in the larger area." That's the proportion of students being
accepted and, thus, your chances, all things being equal.

For the chances of scoring below a given score, the process is the opposite of the options just mentioned.
The chance of getting below a specific cut score that is below the mean is shown in the "smaller area"
column. The chance of scoring below a given cut score that is above the mean is shown in the "larger
area" column.

Estimating the Chance of Scoring Between Any Two Scor es

The chances of getting a score within any range of scoringscores can be determined by looking at the
proportion of scores that will normally fall in that range.

If you want to know what proportion of scores falls between any two points under the curve, define those
points by their z score and figure out the relevant proportion. Depending on whether both scores fall on the
same side of the mean, one of two methods will give you the correct proportion between those points:

If the z scores are on the same side of the curve, look up the proportion of scores in either the "larger
area" or "smaller area" column for batkcores and subtract the lower value from the higher value.

If the z scores fall on both sides of the mean with the mean between them, use the "Proportion of
scores between the mean and z" column. Look up the value for both scores and add them together.

Producing Per centile Ranks

A third use of the table is to compute percentile ranks. You can read more about such norm-referenced
scores in "Produce Percentiles" [Hack #24]. For scores above the mean, the percentile rank is "Proportion
of scores between the mean and z" plus .50. For scores below the mean, the percentile rank is "Proportion
of scores in the smaller area."

Determining Statistical Significance

Another use for these sorts of tables is to assign statistical significance [Hack #4] to differences in scores.
By knowing the proportion of scores that will fall a certain distance from each other or further, you can
assign a statistical probability to that outcome.



More usefully, other statistical values such as correlations and proportions can be convesteddas,
and this table can be used to compare those values to zero or to each other.

Why It Works

"See the Shape of Everything" [Hack #23] provides a good picture of the normal curve. However, just by
looking at the way these values chande in Table 3-2, you can get a good sense of the normal distribution’s
shape. Near the mean, where the rows have smaitares, a goodly proportion of scores will fall. As

you move further and further away from the mean, it takes larger and larger areas of the curve to contain
the same proportion of scores.

For example, it takes a jump from a z of 1.65 to 4 just to cover that last 5 percent of the distribution. Near
the mean, though, it requires only a jump from z = .12 to z = .25 to cover 5 percent of scores. The table
demonstrates how common it is to be common and how rare it is to be scarce.

See Also

You will be able to compute your own exact areas under the normal curve by using this web site:
[http://lwww.psychstat.missouristate.edu/introbook/sbk11n.htm. A good discussion and some
interactive calculators are part of this site maintained by David Stockburger. When you visit, don’t be
confused by words likMu and Sigma. That's stats talk for mean and standard deviation,

respectively.
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Hack 26. Give Raw Scores a M akeover

iz

A raw score on a test has little or no meaning. Change that pitiful raw score to a "z score," though, and you
will scarcely believe how much information is crammed into that one little super number.

It is surprising how little information is conveyed by that single raw score plastered at the top of
something like a high school test. Here’s what | mean. If | come home from school and tell my mom that |
got a 16 on the big exam in school today, she’ll probably say a few things, including "Why are you still
living at home at age 427" and "That’s nice, dear. Is 16 good?"

When you just tell someone a raw score, very little real information has been shared. You don’t know if 16
is good. You don’t know if 16 is relatively high or low. Did most people get a 16 or higher, or did most
people get something less than 16? Even if we know the range of scores on that test and the points
possible and so on, we still can’t compare performance on that test to performance on the past test or the
next test or a test on some other subject. Raw scores are virtually meaningless.

Don't fret! You can still understand your performance and the performances of others. You can still make
selection decisions and compare performance across people and across tests. There is still hope!

Raw scores can be changed into a new number that does all the things that that 97-pound weakling, the
raw score, could never do. Raw scores can be transformed into a super number: a z score. Unlike a raw
score, a z tells you whether the performance is above or below average, and how far above or below
average it is. A z also allows you to compare performance across tests and occasions, and even between
people.

Calculating z Scor es

A z score is a raw score that has been transformed in such a way that the new number indicates how far
above or below the mean the raw score is.

Here’s the equation:

To change a raw score into a z, subtract the mean from it and then divide by the standard deviation. The
standard deviation of a distribution is the average distance of each score from the mean [Hack #2].

Under standing Perfor mance

Z scores typically take on a range of values between -3 and +3. Examine the top part of the z score
equation and you might notice the following:



If the raw score is greater than the mean, the z will be positive.
If the raw score is below the mean, the z will be negative.
If the raw score is exactly the mean, the z will be 0.

— | zscores tend to range between -3 and +3 because the normal distribution of
@ scores is typically just six standard deviations wide [Hack #23].

Smart measurement professionals use the z score trick when they report results. Instead of supplying raw
scores, all you see are scores based on z scores, known generically as standardized scores [Hack #27].
These standardized scores have known stable characteristics. Therefore, if you know these scores’
characteristics (their mean and standard deviation), you can turn them back into z scores and know how
you did compared to other people.

To see how to use this formula to reveal hidden information about your performance, let's use the example
of ACT tests. The American College Test is taken by juniors in many high schools across the U.S. and is
required by many colleges for admission. It is a test of achievement and ability believed to predict
performance in college.

Scores on any portion of the test range from 1 to 36. Though the actual test’s descriptive statistics have
drifted over the last few decades (as performance has improved), the official ACT mean is often reported
as 18 with a standard deviation of 6. Imagine three students take the ACT and receive three different
scores. We could use the mean and standard deviation from the ACT score distribution to transform them
to z scores, as shown in Table 3-3.

Table 3-3. Transforming raw scores to 2 scores

raw score — mean

Student ACT score standard deviation Z score
Zack 14 14-18 4 —-.67
B 6
Taylor 18 18-18 0 0.00
6 6
Isaac 24 24 -18 _ § 1.00
5] b




Zack’s z is negative, so we know he scored below average. He scored about two-thirds of a standard
deviation below the mean. Taylor’'s z of 0.00 means he performed average compared to others who have
taken the ACT over the years. Isaac did the best, scoring a full standard deviation above the mean.

given. The real mean and standard deviation for the last few years has been

t — | The actual ACT mean and standard deviation changes every year the test is
around a mean of 21 and a standard deviation of about 4.5.

I dentifying the Rarity of Your Performance

Though knowing how you scored in comparison with others who took the test is more useful than just
knowing a raw score, the real interpretative power of z scores comes from its relationship to the normal
curve[Figure 3]3 is a chart of the normal distribution, similar to the one shown in "See the Shape of
Everything" [Hack #23].

Figure 3-3. z scores and the normal curve

Standard
deviation

=100 = 200 =300

Fi 14% % % 14% %

F=-3.00 F=-10 f=-100 Mean

The difference between the figure in "See the Shape of Everything" [Hack #23] and this one is that instead
of showing the distance of each standard deviation from the fnean, Figure 3-3 shows those values as z
scores. By using knowledge of areas under the normal curve, you can learn even more from a z score. If
the scores are normally distributed, there is a great deal you can say about the probability of scores in a
certain range occurring.

The scores for the students shown in Table 3-3 can also be interpreted as the number of students they did
better (or worse) than. Taylor’'s z of 0.00 means he did better than 50 percent of students. The kids’ scores
can also be expressed in a probabilistic sense. There was a 50 percent chance that Taylor would get a z of
0.00 or better. There is only a 16 percent chance of getting a z of 1.00 or better on any test, so Isaac did
well compared to other students who took the test.



Why It Works

If converting raw scores to z scores so we can compare people to each other makes some sense to you,
then you are not alone. For the last 100 years in the world of educational measurement, social scientists
(and anyone who must evaluate human performance) have been attracted to the simplicity of
norm-referenced interpretations. If we aren’t sure what the score on a test really means, we can at least
compare your score to how everyone else has done. We at least know whether you have more or less of
whatever it is we just measured than other people have.

The alternative way to interpret educational and psychological scores is criterion-referenced. That
approach requires knowing more about the trait or content that we have just measured and deciding
beforehand how much is enough. Criterion-referenced measurement allows for everyone to get the same
score as long as they meet the same criteria. The former approach has been and continues to be the most
popular interpretative method, while the latter has just recently started to catch on.

=2
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Hack 27. Standardize Scor es

iz

Surprisingly, none of those well-known high-stakes tests, such as the SAT or ACT or intelligence tests,
ever reports your raw score. Instead, test reports have transformed that useless number into a more
meaningful score, one that can be used to understand your performance compared to everyone else who
ever took the same test. Once you understand "standardized" scores, you can calculate them yourself and
even invent your own.

"Give Raw Scores a Makeover" [Hack #26] discusses the superpowers of z scores. These standardized
scores take meaningless raw scores and add all sorts of information to them. That's all well and good, and
anyone using this book can interpret z scores and make decisions based on that information.

If you want to interpret many score reports, though (such as those SAT results you just got), you will not
see a z score reported anywhere, but instead some weirdo customized standardized score, used only by
that company, which is kind of like a z score but different enough to be meaningless for the uninitiated.

Never fear. Here are the tools you need to both interpret these strange standardized scores and, if you
want, even create your own (for when you report scores to other people from your own weirdo test that is
just about to sweep the nation and make you as rich as Mr. ACT or Ms. 1Q or whoever makes money from
our test-based society).

Problemswith z Scores

There is a certain, shall | say, ugliness to z scores that prevents their widespread use when reporting
performance to test takers or their parents or the colleges and employers who are considering them.
Instead, most test companies use the z score as the first step in creating a more attractive standardized
score, which is then reported.

A raw score is transformed into a z score using this formula:

As described in greater detail in "Give Raw Scores a Makeover" [Hack #26], this equation creates z scores
that tend to range between -3.00 and +3.00, with 0.00 as the average and a standard deviation equal to one
Though very useful as a tool for interpreting test performance, people don't like these numbers when they
see them because of a few problems:

It can be negative. In fact, half of all z scores will be negative. It is hard to convince people who take
tests that a negative score can be anything but bad news.



A score of 0.00 is the average score! If we can't explain to people that a negative number isn’t
necessarily a bad thing, imagine trying to convince parents that we expect little Billy to get zero on the big
test and we are pleased when he does.

The highest score you can expect is a 3.00, and only 1 out of a 100 test takers will ever get that. It
seems like an awful lot of hard work in test preparation just to get a measly 3!

Measurement folks have searched for and found other standardized scales to report test performance that
have more pleasing properties. The trick is to start with a z score, and then convert it onto some other scale
with a mean and standard deviation that is friendlier.

Creating and Interpreting T Scores

One problem with z scores is that the mean is zero. Reporting zero as if it is an okay thing rubs some
teachers, parents, and students the wrong way. We can solve that problem by moving down the alphabet
formaztoaT.

T scores are a transformation of z scores into a new distribution that has a mean of 50 and a standard
deviation of 10. The equation for a T score uses this backwards transformation approach. Here’s the T
score formula:

So, if little Billy’s performance on a big test is average and he gets a z score of 0.00, instead of reporting
that frightening score to his parents, we can transformitintoa T:

and report that Billy scored a 50. Congratulations! To make the score meaningful, a good teacher or school
counselor would explain that T scores range from about 20 to 80, and 50 is average.

T scores are used on some test reports as a better alternative to z scores. Scores cannot be negative, and t
mean is a more substantial-seeming 50.



Minnesota Multiphase Personality Inventory-Il, a psychological test that
measures depression, schizophrenia, and so on. Mean scores on each MMPI-I
subscale are 50, with a standard deviation of 10. By putting each subtest score
on the same scale, you can compare across traits and develop a profile of scores
to understand the test taker more completely.

t One popular test that reports scores using the T score distribution is the

Creating Customized Standar dized Scores

Test developers have found other ways of reporting standard §cores. Thble 3-4 lists many of the
best-known high-stakes tests that most people have taken or will take someday.

Table Common standar dized score distributions

= e Ty Sonirs
z scores -3.00 to 3.00 0 1
T scores 20to 80 50 10
American College Test (ACT) 1to 36 18 6
SAT 200 to 800 500 | 100
Graduate Record Exam (GRE) 200 to 800 500 100
gind:‘?)le Management Admission Test 200 to 800 500 | 100
Law School Admission Test (LSAT) 120 to 180 15 10
Medical College Admission Test (MCAT), 1to 15 8 25
\(/I\IQeﬁjslte)r Intelligence Scales 55 to 145 100 | 15
Stanford-Binet Intelligence Test (IQ Test, 52 to 148 100 16

Because test performance is normally distributed, you can interpret any of these scores by
placing it against the normal curve and seeing whether your performance was average,
unusually low, or unusually high [Hack #23].

Create Your Own Standardized Score

For fun, you can create your own standardized score distribution with any mean and standard
deviation you wish. Don't like your SAT score of 3507 Transform it into a score within a
distribution of your choosing.

Imagine, for example, that you'd prefer a distribution with a mean of 752,365 and a standard
deviation of 216,456 (and who wouldn't?). Let's call this distribution the Frey Score
Distribution. Generalizing the T score formula, you could transform your SAT score of 350
into a Frey score. Remember, you have to start with the z score for an SAT score of 350:

and then transform it into a Frey score:

Now, doesn’t a score of 427,681 sound better than a score of 350? Because you know the mean
of the Frey distribution, the interpretation of both scores is the same; they are still below
average, and they are stift/, standard deviations below the mean. You haven’t changed

reality, just the numbers you use to describe it.

Why It Works

The distribution of z scores has a mean of 0 and a standard deviation of 1. This is because of
the equation used. By dividing a group of values by its standard deviation, the standard
deviation of the new distribution is 1. By subtracting the mean from each score in a
distribution, the new values distribute themselves around a mean of 0.

If we want the scores we use to have a particular mean and standard deviation of our own
choosing, we can take each z score and reverse engineer it, replacing the mean of 0 with
anything we want and the standard deviation of 1 with anything we want.

Under standing Nor m-Referenced Scoring

We have talked about the information inherent in norm-referenced scoring and its intuitive
appeal from a statistical perspective, but it is not the only way to produce meaningful scores,
and it's not always the best method.

As discussed in "Give Raw Scores a Makeover" [Hack #26], there are really two philosophies
from which you can choose when designing scoring systems and building tests:

Norm-referenced scoring

Driven by the philosophy that to best understand performance on a task (such as acting in
a movie or taking the ACT), the level of performance for one person should be compared
to how other people performed

Criterion-referenced scoring

Evaluates performance based on a set of criteria, such as a base of knowledge, a set of
skills, instructional objectives, and diagnostic characteristics

If the norm-referenced approach makes sense to you, then you will want to use the tools
presented here to interpret your performance on these common standardized tests.
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Hack 28. Ask the Right Questions

If you are a classroom teacher, a job interviewer, or in any situation where you want to measure
someone’s understanding, you have a variety of ways to ask a question. Here are some tools from the
science of measurement that allow you to ask the right question in the right way.

For more than a hundred years, classrooms have been an environment of questions and answers. Outside
of school, tests are more and more common in the workplace and in hiring decisions. Even in my free
time, | can’t pick up a Cosmo without having to respond to a relationship quiz about whether | am

"friendly" or "frosty" when it comes to meeting people at parties. (I'm frosty. Want to make something of
it?)

Many professions have to ask good questions or write good tests:

Teachers ask students questions while lecturing or one-on-one in private conferences to assess
student understanding.

Trainers write questions to evaluate the effectiveness of workshops.

Personnel officers develop standard questions to measure applicants’ skills.

Anyone who ever has to assess how much someone else knows is faced with the dilemma of deciding
what sort of question to ask to really get to the heart of the matter. This hack provides solutions to the two
most common problems when writing tests or designing questions meant to measure knowledge or
understanding:

How do | construct a good question?

What should | ask about?



Constructing a Good Question

For measuring knowledge quickly and efficiently, it is hard to beat the multiple-choice item as a question
format.

question or instruction (called the stem), and then asks them to select the correct
answer or response from a list of answer options. These types of items are
sometimes referred to as selection items because people select the answer.

t — | Multiple-choice questions are a type of item that presents respondents with a

To give us the right terms to use as we talk about how to write a good multiple-choice item, a quick primer
is in order.

Here is an example of a multiple-choice item:

Who wrote The Great Gatsby? Stem

A. Faulkner Distractor

B. Fitzgerald Correct answer ("keyed" answer)
C. Hemingway Distractor

D. Steinbeck Distractor

As you see, each part of the question has a name. The correct answer is called the correct answer (how's
that for scientific jargon?), and wrong answers are called distractors.

Not much, but some real-world research has been done on the characteristics of multiple-choice items and
how to write good ones. To write good multiple-choice items, follow the following critical item-writing
guidelines from this research:

Include 3 to 5 answer options

Items should have enough answer options that pure guessing is difficult, but not so many that the
distractors are not plausible or the item takes too long to complete.

Do not include "All of the Above" as an answer option

Some people will guess this answer option frequently, as part of a test-taking strategy. Others will
avoid it as part of a test-taking strategy. Either way, it does not operate fairly as a distractor.
Additionally, to evaluate the possibility that "All of the Above" is correct requires analytical abilities
that vary across respondents. Measuring this particular analytic ability is likely not the targeted goal
of the test.



Do not include "None of the Above" as an answer option

This guideline exists for the same reasons as the previous guideline. Additionally, for some reason,
teachers do tend to create items where "None of the Above" is most likely to be the correct answer,
and some students know this.

Make all answer options plausible

If an answer option is clearly not correct because it does not seem related to the other answer options,
it is from a content area not covered by the test, or the teacher is obviously including it for humorous
reasons, it does not operate as a distractor. Students are not considering the distractor, so a
four-answer-option question is really a three-answer-option question and guessing becomes easier.

Order answer options logically or randomly

Some teachers develop a tendency to write items where a certain answer option (e.g., B or C) is
correct. Students might pick up on this with a given teacher. Additionally, some courses on doing

well on standardized multiple-choice tests suggest this technique as part of a test-taking strategy.
Teachers can control for any tendencies of their own by placing the answer options in an order based
on some rule (e.g., shortest to longest, alphabetical, chronological).

|

Another solution to this ordering problem is for teachers to scroll through the

first draft of the test on their word processors and attempt to randomize the order
of answer options. Computerized randomization is the solution, of course, for
commercial standardized test developers as well.

Make the stem longer than answer options

An item is processed more quickly if the bulk of the reading is in the stem, followed by brief answer

options.



Because longer stems followed by shorter answer options allows for easier
processing for test takers, a good multiple-choice item should ook like this

Do not use negative wording

more carefully ind the
wort not can eadly be missed. Even f1he word i emphasized $0.70 one can miss .

of non-facts or
but i likely stored as a collection of positively worded truths.

Make answer options grammatically consistent with stem
For example, f the grammar used n the stem makes it lear that the right answer is a
female o is plural, make sure that all answer options are female or plural
Use complete sentences for stems
Ifa stem is a complete question ending with a question mark, or a complete instruction

ending with a period, students can begin to identiy the answer before examining answer
options. Students must work harder if stems end with a blank or a colon, or i its simply
sentence. h ]

Asking a Question at the Right Level

Identiying the right level of question to ask is the second major problem that must be
overcome when creating tests. Some questions are easy; they only assess one's abilty to recall
intormaton and ndicate iy ow evofknowiedge Oter ueston ae mrs il and
ek  response thalconiines xising nowen ofspples 1. e robem

tuation. f

e acke o the i g useful to
enterprise.

A smartffow nc et rossamcher, Berlein Elor, kg the 19508, sesod a

Vi of tikingsbout quesions ad te vl of nersianding require to respond corecly

Hsclsiicaton syt hasbecome knaun o Blores Taxonory, classmcalmn ysem ot
the level

‘mastery. Bloom and coll They

are, in order from lowest to highest

1. Knowledge
Abiity 0 recallwords, facts, and concepts
2. Comprehension
Abity t0 undersiand and communicate about a opic
3. Application
Abiity 0 use generalized knowedge t solve an unfariliar problem
4. Analysis
Abity 0 break an idea into parts and understand their relaionship.
5. Synthesis
Abity 0 create a new pattern or idea out of existing knowledge
6. Evaluation
Abity to make informed judgments about the value of new ideas

Choosing therright cognitive level

Let's use teach I a
Teachers choose th Tevel for . and a quality
Most tems.
tests tesbooks and teacting ks,
re at the knowledge el vt esearchers comer e mforate class

objecives shoudbe (and ususl are) thighercognie Tovls han s\mv\y memoraing
infor

fhen new material is being introduced, however (at any agepreschool through advanced

professional training), an assessment probably should include at least a check that basic new
have been learmed. When teachers decide to measure beyond the knowledge level, the

Spproprine vt o ems depends on the developmental leve o Stucnte. The cognie level

of sudsrts, pariulry et abikty o ik and understnd sbsracty,and i bty to

multiple steps, e best level for
i helre e st o ok b Researcnrs bt it eachers shovd et ovr
what they teach, in the same way that they teach it

So, any time you find yourself wanting to assess the knowledge hidden inside someone’s head,
think about what level of understanding you want to assess. Is basic memorized knowledge
enough? If so, then the knowledge level is the e el or a gueston. 0 you vanc o
Job appcant can use roblems she has never
e eoptcaton e 3 e v

that abily.
Designing questionsat different cognitive levels

Follow the guidelines {LTABIE35 for creating items or tasks at each level of Bloom's
onomy.

Table Questionsat different cognitive levels

Bloom'sleve Question characteritics task
1o wots The Grea Gasby?
Reguires only rote memory abilty af. Faulkner
Knowledge | Such Sils asrecal ecognon, ang8. Fizgeraid
repeating back C. Hemingway
D. Steinbeck

Comprehensio hatis a prehensile tail?

" s such
‘summarizing, and explaining
Requires skils such as performing
operations and salving problems, art]'?,
inls werds such a5 use, o
and producs

a farmer owns 40 acres of lant
&nd buys 16 acres more, how man

Application
ficres of land does she own?

Requires skills such as outlining.
Kstenig, og,arcksarvon,and e . 1ap ofyour gt o

Analysis identify each home

down

Requies skils such Based on your understanding of

Synthesis | and design, and includes words suc
as compare and contrast

[happen in a sequel to Flowers fof

Algermon.
Requires skills such as criicism and Which musical fim performer wals

Evaluation , an o st athlete? Defen|
such as support and explain your answer.

When to use Bloom's Taxonomy

‘There s an implied hierarchy to Bloom's categories, with knowiedge representing the simplest
level of cognition and Anyone

writing questions to assess knowledge can write tems for any given level. Teachers can

identi match those levels.
With objectively scored item formats, itis airly simple to tap lower levels of Bloom's

taxonomy and more difficult, but not impossible, to measure at higher levels

‘You should about he betueen e i evels as defined by
Bloom. For example, i

itis the abilty to apply what is learned o lcton comprehension. Moot tesing thoarits and.
classroom teachers today pay the most attention to the distinction between the knowledge level
ond sl h est of e lves. Most tachirs xept o inocctr stages of b new ers.
prefer to teach and that
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Hack 29. Test Fairly

iz

Classroom teachers frequently create their own tests to measure their students’ learning. They often worry
whether their tests are too hard or too easy and whether they measure what they are supposed to measure.
Item analysis tools provide the solutions to teachers’ concerns.

Classroom assessment is perhaps the single most common activity in the modern schoolroom. Teachers
are always making and grading tests, students are always studying for and taking tests, and the whole
process is meant to support student learning. Tests must not be too hard (or too easy), and they must
measure what the teacher wants them to measure. Test scores and grades are the way that teachers
communicate with parents, students, and administrators, so the score at the top of the test needs to be fair.
It must accurately reflect student learning, and it should be the result of a quality assessment.

Concerned teachers constantly work to improve their tests, but they are often working in the dark without
solid data to guide them. What can a smatrt, caring teacher do to improve his tests or improve the validity
of his grading? A family of statistical methods called item analysis can provide direction to teachers as
they seek to develop fair assessments and grading.

Item Analysis

Item analysis is the process of examining classroom performance on individual test items. A classroom
teacher might want to examine performance on parts of a test she has written, to see what areas are being
mastered by her students and what areas need more review. A commercial test developer producing exams
for nursing certification might want to know which items on his test are the most valid and which seem to
measure something else and should therefore be removed.

In both cases, the developer of the test is interested in item difficulty and item validity. Though one
example involves a high school teacher making tests for her own students, and the other example involves
a large for-profit corporation, both developers are interested in the same types of data, and both can apply
the same tools of item analysis.

Three Types of Classroom Assessment Problems

If you are a classroom teacher worried about your own assessments, there are three different types of
guestions that you probably need to answer. Fortunately, there are three item-analysis tools that will
provide you with the three different types of information you need.



Aremy test questionstoo hard?

The difficulty of any specific test question can be calculated fairly easily using the formula for the

difficulty index. You can produce a difficulty index for a test item by calculating the proportion of

students taking the test that got that item correct. The larger the proportion, the more test takers who know
the information measured by the item.

measure of how easy the item is, not the difficulty of the item. An item with a

t — | The term difficulty index is counterintuitive, because it actually provides a
high difficulty index is an easy item, not a tough one.

How hard is too hard? You get to decide that yourself. Some teachers treat difficulty indices at .50 or
below as too hard because most people missed the item. You might have higher standards. If you believe
that most students should have learned the material and your difficulty index for an item suggests that a
substantial portion of your class missed it, it might be too hard.

Iseach test question measuring what it is supposed to?

Measurement experts say that if a test item measures what it is supposed to, then it is valid [Hack #32].
The discrimination index is a basic measure of the validity of an item, in addition to its reliability. It
measures an item’s ability to discriminate between those who scored high on the total test and those who
scored low.

Though there are several steps in its calculation, once computed, this index can be interpreted as an
indication of the extent to which overall knowledge of the content area or mastery of the skills is related to
the response on an item.



Discrimination s the abily to identify whether one who got an tem correct is in

A discrimination index s not so named because it suggests test bias.
ahigh-scoring group or a low-scoring group.

Why did my studentsmiss a question?

In addiion to examining the performance of an entire test tem, teachers are often interested in
‘examining the performance of mdlvldua\ distractors (incorrect answer option:

rullechoke e Brough st of answer opins. By ekt e proporionof
et opton. 1

making concepis? Do ot the

material?

“To improve how well the item works from a measurement perspective, teachers also can
identity which distractors are “working” and appear atiractive to students who do not know the
correct answer, and which distractors are simply taking up space and are not being chosen by
many students.

guesses that result in corr chance, teachers and test
dovelopere want 5 many pausible crracors 6 1 eseibe. Anayeot of responee optons
fine-tune and improve iter ight want to use again with

<la>

Conducting Item Analysesand Inter preting Results

Here arothe procedures ot e calcuaons imoved i fem anayss, usig dat o an
xample e For s exapl, magn aclasroom of 2 studertswho ook a st

Incuot the e [TTBEIS 3.0 (eep i mind, nough, tht even argescae sandrcized est
velopers use 1 Same pockdres o 065 aken by Mk of hoands ofpoop)

correct answer.

g ‘The asterisk for the answer optionf T TaBIE 3-6 indicates that B is the

‘Table Sampleitem for item analysis

Answer to question: *Who wrole TheGreal | Number of studentswho chose each
Gatshy?' answer
A. Faulkner 4
8. Fitzgerald* 16
. Hemingway s
D. Steinbeck o
To calculate the difficulty index:
1
‘Count the number of people who got the correct answer.
2.

Divide by the total number of people who took the test,
On the item shown fLTEBIE3-6, 16 out of 25 people ot the item right
16125= 64

Oty incices tnge rom £010.1., 1 our xampl, e had i ndex of 54
his means that 64 percent of students knew the

If a teacher believes ma! 645 100 low, there are a couple of actions she can take. She could

decide to change the way she teaches 1o better meet the objective represented by the item
Avthetintrpretadon might b bt e fom s oo iffcul o confusing o nval, n hich
case the teacher can replace o modiy the item, perhaps using information from the item's

merminaton o or naiyee of response. oplmns
To calculate the discrimination index:
1

Sort your tests by total score, and create two groupings of tests: the high scores, made up
of the top half of tests, and the low scores, made p of the bottom half of tests.

For each group, calculate  difficulty index for the tem.

Subtract the for group from the for the high
scores group.

Imagine that in our example 10 out of 13 students (or tests) in the high group and 6 out of 12
students in the low group got the item correct, The high group difficulty index is .77 (10/13)

ihe low index s 50 (6/12), so discrimination index
like so0:

77-50= 21

index for the item is .27. indices range from -1.0to 1.0. The
rester the posiv value (he coser 10 10) th srongr th relatnship s beusen overal
test performance and performance on that

e disriminasn index s negaive, that means ha, for some reason, students who scored
low on the test were more likely to get the answer correct. This is a strange situation, and it
Suggests poor vl Toran e o hat v anwer key was Incorret.Taashers Usualy wont
‘each item on the test o tap into the same knowledge or skl as the rest of the test.

inthe
the low-scoring group, the number is positive. At a minimum, then, a
teacher would hope for a positive value, because that would indicate
that knowledge resulted in the correct answer.

g ‘The formula for the discrimination index is such that if more students
the

We can use the information provided T-TBI8 3-6 to look at the populariy of different answer

opions, as shown [ Table 3-7.

Table Item analysis of * Who wrote The Great Gatshy?"

Answer Popularity of options Difficulty index
A Faulkner 4125 16
8. Fitzgerald* 16125 64
C. Hemingway 5125 20
D. Steinbeck o025 00

“The analysis of response options shows that students who missed the item were about equally
ket choase ansier A a ansier C.No suens chassanser D 0 answsr option 0 coes
not act as a distractor. Students are not choosing between four answer oplions on this tem; they
are really choosing between only three: mens‘ since they are not even considering answer D.

This malkes guessing correcty more ikely,ich hurts th valdy o an tem. A teacher might
imerpre i data

) and Fitzgerald, and that the vdonts i dor e v conmosioncar fereniate
e Fakos and Hemingway very well

<la>

Suggestionsfor Item Analysisand Test Fairness

To improve the qualiy of tests, item analysi can identiy tems that are too diffcult (or too
asy, f a teacher has that concern), don't differentiate between those who have learned the

content and those who have not, o have distractors that are not plausible.

1f you as a teacher have concerns about test faimess, you can change the way you teach, change
the way you test, or change the way you grade the tess

Change the way you teach
1f some items are too hard, you can adjust the way you teach. Emphasize unleamed

material or might specifi
o correct a confusing misunderstanding about the content.

Change the way you test

ifitems have low or negative discrimination values, they can be removed from the current
test, and you can remove them from the pool of items for future tests. You can also
o

reaer the rumber o iausiedistacters, the mor acurate, vald, nd sale g
typically bec
Grange the vy you grade

‘You might use item analysis information to decide that the material was not taught ar
for e ke offaiess, femove. he o fom he cuent o and recaleatsseorcs Tre

as rescoring the test as if the item never existed, but this way students stil get credit if
they got a hard or tricky item correct, which seems fairer to most teachers.

‘These concerns that teachers have about the quality of their tests are not much different than

ihe research uesions that scentists ak Jus ke siensts, teachers can colect data i her

classroom, analyze the data, and interpret results. They can then decide, based on their own

personal philosophies, how 1o act on those results.
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Hack 30. Improve Your Test Score While Watching Paint Dry

If you don’t like the score you just got on that important high-stakes test, maybe you should take the test
again. Or should you?

We've already discussed how to measure anything precisely by applying concepts of reliability [Hack #6].
Reliability is the consistency with which a test assesses some outcome. In other words, a reliable test
produces a stable score, and an unreliable test does not. Because tests that are less than perfectly reliable
produce scores at least partly due to random chance, their scores can move around in ways that
statisticians can predict. Because your test score when you retake a test will tend to move toward the
average score on that test, this effect is called regression toward the mean.

When you take a high-stakes test such as the SAT, ACT, GRE, LSAT, or MCAT, you often have the
option of retaking it to try to improve your score. Your decision on whether it is worth the time, hard
work, and money to try to improve your test score should be made with an understanding of the test’s
reliability and how much change is possible simply through regression to the mean.

Regressingtothe Mean

First, let's make regression to the mean occur, so you'll believe that scores can change in a predictable
direction for no reason other than the characteristics of the normal curve [Hack #23]. Seeing is believing,
and | hope to make this invisible magical phenomenon happen before your eyes.

Give the true/false quiz shown[in Table]3-8 to 100 of your closest friends. Well, OK, maybe 10 people,
counting you. 1,000 would be even better, but | just need enough to prove to you that this regression thing
happens. As we proceed, keep in mind that if we had 100 or 1,000 takers of this very difficult (or very
easy) test, the results would be even more convincing.

Oh, and for this test, you don't have to see the actual questions themselves. Scores will change on this test
without any change in the construct that is being measured [Hack #32]. So, all you can do on this quiz is
guess. Because they are true/false questions, you will have a 50 percent chance of getting any question
correct, and the average performance for your group of 10 test takers (or 100 if you are really serious
about this...can you do at least 30 maybe?...anyone?) should be a score of 5 out of 10.

Table Advanced Quantum Physics Quiz

Question Circle Your Answer




Question Circle Your Answer

True or False
Administer the Advanced Quantum Physics Quiz to all the people you were abie to gef. And

‘when you and the others take this quiz, don't cheat by looking at the answer key, ever though
itis only inches away from your eyes right no 3.9)

Table Answer key for the Advanced Quantum Physics Quiz

e [z Joree | o | st |
[orase  [rrase | ome | sime | sora |

Collect the completed tests (make sure they put their names on them) and score then up,
using the answer key [ Table B-9.

Now, pick your highest scorer (this represents someone like you, perhaps, who scores; higher
than average on standardized tests such as the SAT) and the lowest scorer (this reprgsents
someone not like you, perhaps, who scores lower than average). Give these two peofjle the
quiz again (without them seeing the correct answers) and score them again.

Here's where regression to the mean kicks in. | am pretty surewithout knowing you or jyour
friends or what their answers areof two things:

The person who scored lowest the first time will score higher than he did before.

‘The person who scored highest the first time will score lower than she did before.

It it worked, then ahat I told you so. I it didn't work, | told you | was only "
With a larger sample, it is much more likely to work.

retty sure.

Why It Works

‘What we expect to happen with the two scores is that all the test scores that are below 5 (or
whtever yourlst mean was) would move up oward he mean,and hose scores abe 5
‘would move down toward the mean. This may or may not have happened with your to
Seores bt the most pronable autcome

Remember this was a test in which knowledge had no effect on scores. Scores were due
entirely to chance both times. This effect occurs with real tests, though, even when
knowledge does influence your score. That's because no real test is perfectly reliable [and
chance plays some role in performance on every test. This demonstration just exaggefated the
effect by presenting a test in which chance accounts for 100 percent of the test takerJ score.

So, why are scores likely to change and move closer to the mean on second occasiorfs? In the
long run, with 100 or 1,000 Sets of test scores, we would expect the outcomes (o be
something like the normal distribution. Just like fiipping a coin (which can come up hegds or
tails, with a 50 percent chance of either), probabiliies are associated with particular
outcomes on a trueffalse test (or any test, for that mtien). Table 3-10 shows the possible
scores and the likelinood of a test taker receiving them for the Advanced Quantum Physics
Quiz

Table Likely quiz score distribution
soore Probability
0001
0010
0044
0117
0205
0246
0205
0117
0044
0010

10 0.001
Why would more extreme scores become less extreme with repeated testing? Look af the
likelihood of getting two extreme scores (such as a score of 2 and then another score of 2)
versus getting a score of 2 (probability = .044), and then a score of 4 (probability = .205). Its

imost five times as likely that a person with a 2 the first time will score a 4 on a sec
administration. Itis almost 95 percent certain that he wil score higher than 2 (1 - .044- 010
945).

DEREEEERRE

famous (and half cousin to Charles Darwin) Francis Galton, who
studied the heights of parents and their children. He found that the
average height of the children was closer to the mean height of all
children than to the mean of the average height of e children's
parents. While Galton called this observation "regression toward
‘mediocrity” (Galion was not known to be a diplomat), we're a bit
kinder. It has nothing to o with genefics and everything to do
withyou guessed itstatstcs.

10 E ‘The phrase "regression toward the mean” gets its name from the

‘With this test, in which scores were entirely due to chance, there is a 65.6 percent chance of
Scoring at or very near the mean (combining probabilies of scores 4, 5, and 6). With fnost
tests, which have a greater number of tems and produce normal distributions, you hae a 68
percent chance of scoring at or near the mean [Hack #23]

Predicting the Likelihood of aHigher Score

This is all very interesting, but how will it help you decide whether it is worth it to take  test

a second time? Back to our original dilemma. Taking these important tests (such as cgllege

adnissions test) a second ime akes more money. e, stess, an, perhap, prepsfatn, so
one needs to be strategic in deciding when to try agai

level of whatever knowledge the test is measuring. You are liely to
score higher if you prepare for an exam through study, taking
praciice exams or preparation courses, and 5o on. If You score very
Tow, though, you are likely to do better without having done
anything between test administrations, just because of regression to
the mean. You can watch paint dry between testing times and your
score will il probably increase. Lucky dog!

tﬂ Of course, you can do beter on a test by actualy increasing your

The likelihood that you will do better on a test by just taking it @ second time depends bn two
things: your score the first time and the reliabilty of the test

Your score.

Because scores are likely (by chance alone) to move toward the mean, the change of you
doing better given a second chance depends on whether your first score is below or
above the mean. Think of the mean as that big sucking sound you hear, pulling all the
scores along a distribution towards . Scores below the mean are more likely to ifcrease
than are scores above the mean,

Testreiability

Measurement statisticians use a number for reliability, which represents the propgrtion
of score variability that is not due to chance. The higher the reliabilty, then, the les of a
role chance wil play in determining your score. Reliable scores are stable scores| and

the super-sucking powers of the mean are no match for a reliable score.

Statistcians have developed a formula that you can apply to give you a good idea of How
much wiggle 100 you have around your score. If there is plenty of room to grow, you|might
consdera second shot att. A usel ol o use e s e standard eror of measurgment

Here's the formula for the standard error of measurement [Hack

Most standardized tests publish their levels of reliability and the expected standard depiation
the many hundreds of thousands of scores produced by the test during eact
adminsration. By lugging vales for these tests nio the sandard erorof measurerfent
2 g6t & Ganéral sense of the vanalion f Seores ffom (ost o etest i might
e peseible wiout ary et change i 1e person being meesures

However, even the standard error is misleading for extreme scores. Very low scores gnd very
high scores are likely to move a greater distance by chance alone than the standard ror

would suggest. The further you are from normal, the harder it is to resist the gravitatiopal
forces of normal. Extreme scores cannot resist that pull, unless they are perfectly relidble.

In sum, here's some sound advice on how to decide whether to retake a test:

If you scored very high, relatively speaking, but not as high as you would like, it i
probably not worth the trouble to take the test a second time.

If you scored very low (far below average), it s almost certain that you will score figher
the second time. Try again. You might study a ltl this time, too.

Neil Salkind

K==
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Hack 31. Establish Reliability

llisi

People who use, make, and take high-stakes tests have a vested interest in establishing the precision of a
test score. Fortunately, the field of educational and psychological measurement offers several methods for
both verifying that a test score is consistent and precise and indicating just how trustworthy it is.

Anyone who uses tests to make high-stakes decisions needs to be confident that the scores that are
produced are precise and that they’re not influenced much by random forces, such as whether the job
applicant had breakfast that morning or the student was overly anxious during the test. Test designers need
to establish reliability to convince their customers that they can rely on the results produced.

Most importantly, perhaps, when you take a test that will affect your admission to a school or determine
whether you get that promotion to head beverage chef, you need to know that the score reflects your
typical level of performance. This hack presents several procedures for measuring the reliability of
measures.

Why Reliability Matters

Some basics, first, about test reliability and why you should seek out reliability evidence for important
tests you take. Tests and other measurement instruments are expected to behave consistently, both
internally (measuring the same construct behaving in similar ways) and externally (providing similar
results if they are administered again and again over time). These are issues of reliability.

Reliability is measured statistically, and a specific number can be calculated to represent a test’s level of
consistency. Most indices of reliability are based on correlations [Hack #11] between responses to items
within a test or between two sets of scores on a test given or scored twice.

Four commonly reported types of reliability are used to establish whether a test produces scores that do
not include much random variance:

Internal reliability

Is performance for each test taker consistent across different items within a single test?
Test-retest reliability

Is performance for each test taker consistent across two administrations of the same test?
Inter-rater reliability

Is performance for each test taker consistent if two different people score the test?



Parallel forms reliability

Is performance for each test taker consistent across different forms of the same test?

Calculating Reliability

If you have produced a test you want to usewhether you are a teacher, a personnel officer, or a
therapistyou will want to verify that you are measuring reliably. The methods you use to compute your
level of precision depend on the reliability type you are interested in.

Internal reliability

The most commonly reported measure of reliability is a measure of internal consistency referred to as
coefficient (or Cronbach’s) alpha. Coefficient alpha is a number that almost always ranges from .00 to
1.00. The higher the number, the more internally consistent a test’s items behave.

If you took a test and split it in halfthe odd items in one half and the even items in the other, for
exampleyou could calculate the correlation between the two halves. The formula for split-half correlations
is the correlation coefficient formula [Hack #11] and is a traditional method for estimating reliability,
though it is considered a bit old-fashioned these days.

Mathematically, the formula for coefficient alpha produces an average of correlations between all possible
halves of a test and has come to replace a split-half correlation as the preferred estimate of internal
reliability. Computers are typically used to calculate this value because of the complexity of the equation:

where n = the number of items on the test, SD = standard deviation of the test, S means to sum up, and
SD; = standard deviation of each item.

Test-retest reiability

Internal consistency is usually considered appropriate evidence for the reliability of a test, but in some
cases, it is also necessary to demonstrate consistency over time.

If whatever is being measured is something that should not change over time, or if it should change very
slowly, then responses from the same group should be pretty much the same if they were administered the
same test on two different occasions. A correlation between these two sets of scores would reflect a test’s
consistency over time.

Inter-rater reliability

We can also calculate reliability when more than one person scores a test or makes an observation. When
different raters are used to produce a score, it is appropriate to demonstrate consistency between them.
Even if only one scorer is used (as with a teacher in a classroom), if the scoring is subjective at all, as with
most essay questions and performance assessments, this type of reliability has great theoretical
importance.



To demonstrate that an individual's score represents typical performance in these cases, it must be shown
that it makes no difference which judge, scorer, or rater was used. The level for inter-rater reliability is
usually established with correlations between raters’ scores for a series of people or with a percentage that
indicates how often they agreed.

Parallel formsreliability

Finally, we can demonstrate reliability by arguing that it doesn’t matter which form of a test a person
takes; she will score about the same. Demonstrating parallel forms reliability is necessary only when the
test is constructed from a larger pool of items.

For example, with most standardized college admission tests, such as the SAT and the ACT, different test
takers are given different versions of the test, made up of different questions covering the same subijects.
The companies behind these tests have developed many hundreds of questions and produce different
versions of the same test by using different samples of these questions. This way, when you take the test in
Maine on a Saturday morning, you can’t call your cousin in California and tell him specific questions to
prepare for before he takes the test next week, because your cousin will likely have a different set of
guestions on his test.

When companies produce different forms of the same test, they must demonstrate that the tests are equally
difficult and have other similar statistical properties. Most importantly, they must show that you would
score the same on your Maine version as you would if you took the California version.

Inter preting Reliability Evidence

There are a variety of approaches to establishing test reliability, and tests for different purposes should
have different types of reliability evidence associated with them. You can rely on the size of the reliability
coefficients to decide whether a test you have made needs to be improved. If you are only taking the test
or relying on the information it provides, you can use the reliability value to decide whether you trust the
test results.

Internal reliability

A test designed to be used alone to make an important decision should have extremely high internal
reliability, so the score one receives should be very precise. A coefficient alpha of .70 or higher is
most often considered necessary for a claim that a test is internally reliable, though this is just a rule
of thumb. You decide what is acceptable for the tests you make or take.

Test-retest reliability

A test used to measure change over time, as in various social science research designs, should display
good test-retest reliability, which means any changes between tests are not due to random fluctuations
in scores. An appropriate size for a correlation of stability depends on how theoretically stable a
construct should be over time. Depending on its characteristics, then, a test should produce scores
over time that correlate in the range of .60 to 1.00.



Inter-rater reliability

Inter-rater reliability is interesting only if the scoring is subjective, such as with an essay test.
Objective, computer-scored multiple-choice tests should produce perfect inter-rater reliability, so that
sort of evidence is typically not produced for objective tests. If an inter-rater correlation is used as the
estimate of inter-rater reliability, .80 is a good rule of thumb for minimum reliability.

Sometimes, reliability across raters is estimated by reporting the percentage of time the two scorers
agreed. With a percentage agreement reliability estimate, 85 percent is typically considered good
enough.

Parallel formsreliability

Only tests with different forms can be described as having parallel forms reliability. Your college
professor probably doesn’t need to establish parallel forms reliability when there is only one version
of the final, but large-scale test companies probably do.

Parallel forms reliability should be very high, so people can treat scores on any form of the test as
equally meaningful. Typically, correlations between two forms of a test should be higher than .90.
Test companies conduct studies in which one group of people takes both forms of a test in order to
determine this reliability coefficient.

Before you take a high-stakes test that could determine which roads are open to you, make sure that the
test has accepted levels of reliability. The type of reliability you'd like to see evidence of depends on the
purpose of the test.

Improving Test Reliability

The easiest way to ensure a high coefficient alpha or any other reliability coefficient is to increase the
length of your test. The more items asking about the same concept and the more opportunities respondents
have to clarify their attitudes or display knowledge, the more reliable a total score on that test would be.
This makes sense theoretically, but also increases reliability mathematically because of the formula used

to calculate reliability.

Look back at the equation for coefficient alpha. As the length of a test increases, the variability for the

total test score increases at a greater rate than the total variability across items. In the formula, this means
that the value in the parentheses gets larger as a test gets longer. The n/n-1 portion also increases as the
number of items increases. Consequently, longer tests tend to produce higher reliability estimates.

Why It Works

Correlations compare two sets of scores matched up so that each pair of scores describes one individual. If
most people perform consistentlyeach of their two scores is high, low, or about average when compared to
other individuals, or a high score on one test matches consistently with a low score on anotherthe
correlation will be close to 1.00 or -1.00.



An inconsistent relationship between scores produces a correlation close to 0. Consistency of scores, or the
correlation of a test with itself, is believed to indicate that a score is reliable under the criteria established
within Classical Test Theory [Hack #6]. Classical Test Theory suggests, among other things, that random
error is the only reason that scores for a single person will vary if the same test is taken many times.

=1 NExT
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Hack 32. Establish Validity

The single most important characteristic of a test is that it is useful for its intended purpose. Establishing
validity is important if anyone is to trust that a test score means what it is supposed to mean. You can
convince yourself and others that your test is valid if you provide certain types of evidence.

A good test measures what it is intended to measure. For example, a survey that is supposed to find out
how often high school students wear seatbelts should, obviously, contain questions about seatbelt use. A
survey without these items could reasonably be criticized as not having validity. Validity is the extent to
which something measures whatever it is expected to measure. Surveys, tests, and experiments all require
validity to be acceptable. If you are building a test for psychological or educational measurement, or just
want to be sure your test is useful, you should be concerned about establishing validity.

Validity is not something that a test score either has or does not have. Validity is an argument that is made
by the test designer, those relying on the test’s results, or anyone else who has a stake in the acceptance of
the test and its results.

Consider a spelling test that consists of math problems. Clearly, a test with math problems is not a valid
spelling test. While it is not a valid spelling test, though, it might well be a valid math test. The validity of
a test or survey is not in the instrument itself, but in the interpretation of the results.

A test might be valid for one purpose, but not another. It would not be appropriate to interpret a child’s
score on a spelling test as an indication of her math ability; the score might be valid as a measure of verbal
ability, but not as a measure of numerical fluidity. The score itself is neither valid nor invalid; it is the
meaning attached to the score that is arguably valid or not valid.

To illustrate how to solve the problem of establishing validity, imagine you have designed a new way of
measuring spelling ability. You want to sell the test forms to school districts across the country, but first
you must produce visible evidence that your test measures spelling ability and not something else, such as
vocabulary, test anxiety, reading ability, or (in terms of other factors that might affect scores) gender or
race.

Strategiesfor Winning the Validity Argument

Validity might seem like an argument that can never be won, because as an invisible indicator of quality, it
can never be completely established. As a test developer, though, you want to be able to convince your
test-takers and anyone who will be using the results of your test that you are measuring substantially
whatever it is you are supposed to measure. Fortunately, there are a number of accepted ways in which
evidence for the validity of a test can be provided.



The most commonly accepted type of validity evidence is also, interestingly, theoretically the weakest
argument one can make for validity. This argument is one of face validity, and it runs as follows: this test
is valid because it looks (on its face) like it measures what it is supposed to measure. Those presenting or
accepting an argument for face validity believe that the test in question has the sort of items that one
would expect to find on such a test. For example, the seatbelt use survey mentioned earlier would be
accepted as valid if it has items asking about seatbelt use.

The face validity argument is weak because it relies on human judgment alone, but it can be compelling.
Common sense is a strong argument, perhaps even the strongest, for convincing someone to accept any
aspect of an assessment. Though face validity seems less scientific than other types of validity evidence
(and in a real sense, it is less scientific), few test instruments would be acceptable to those who make and
use them if face validity evidence is lacking. If you, as a test developer or user, cannot supply the types of
validity evidence discussed in the rest of this hack, you are expected to provide a test that at least has face
validity.

— | Foryour spelling test, if test takers are asked to spell, you have established face
k validity.

Four somewhat more scientific types of validity evidence are generally accepted by those who rely on
assessments. They are all part of the range of arguments that can be made for validity.

Content-based arguments

Do the items on the test fairly represent the items that could be on the test? If a test is meant to cover
some well-defined domain of knowledge, do the questions fairly sample from that domain?

Criterion-based arguments

Do scores on the test estimate performance on some other test?
Construct-based arguments

Does the score on the test represent the trait or characteristic you wish to measure?
Consequences-based arguments

Do the people who take the test benefit from the experience? Is the test biased against certain groups?
Does taking the test cause so much stress that, no matter how you score, it isn’'t worth it?

Content-Based Arguments

If you decide to measure a concept, there are many aspects of that concept and many different questions
that can be asked on a test. Some demonstration that the items you choose for your test represent all
possible items would be a content-based argument for validity.



This sounds like a daunting requirement. Traditionally, this sort of evidence has been considered more
important for tests of achievement. In areas of achievementmedicine, law, English, mathematicsthere are
fairly well-defined domains and content areas from which a valid test should sample. A classroom teacher
also, presumably, has defined a set of objectives or content areas that a test should measure. Such
concisely defined aspects of a subject are rarely available, however, when testing a range of behaviors,
knowledge, or attitudes. Consequently, making a reasonable argument that you have selected questions
that are representative of some imaginary pool of all possible questions is difficult.

So, what is necessary for content evidence of validity in test construction? It seems that, at a minimum,
test construction calls for some organized method of question selection or construction. When measuring
self-esteem, for example, questions might cover how the test taker feels about himself in different
environments (e.g., work, home, or school), while performing different tasks (e.g., sports, academics, or
job duties), or how he feels about different aspects of himself (e.g., his appearance, intelligence, or social
skills).

last few weeks, a table of specifications (an organized list of topics covered and

— | Foraclassroom teacher measuring how much students have learned during the
at;"" Lo EEES . :
L weights indicating their importance) is a good method.

The choice of how to organize a concept or how to break it down into components belongs to the test
developer. The developer might have been inspired by research or other tests, or she might just be
following a common-sense scheme. The key is to convince yourself, so that you can convince others that
you are covering the vital aspects of whatever area you are measuring.

For your spelling test, if you can establish that the words students are asked to spell represent a larger pool
of words that students should be able to spell, you are providing content-based validity evidence.

Criterion-Based Arguments

Criterion evidence of validity demonstrates that responses on a test predict performance in some other
situation. "Performance" can mean success in a job, a test score, ratings by others, and so on.

If responses on the test are related to performance on criteria that can be measured immediately, the
validity evidence is referred to as concurrent validity. If responses on the test are related to performance
on criteria that cannot be measured until some future time (e.g., eventual college graduation, treatment
success, or eventual drug abuse), the validity evidence is called predictive validity.

It might go without saying that the measures you choose to support criterion validity should be relevant;
the criteria should be measures of concepts that are somehow theoretically related. This form of validity
evidence is most persuasive and important when the express purpose of a test is to estimate or predict
performance on some other measure.

Criterion-based evidence is less persuasive, and perhaps irrelevant, for tests that do not claim to predict the
future or estimate performance on some other measure. For example, such evidence might not be useful
for your spelling test. On the other hand, it is possible that you can demonstrate that high scorers on your
test do well in the National Spelling Bee.



Construct-Based Arguments

The third category of validity evidence is construct evidence. A construct (pronounced with an emphasis
on the first syllable: con-struct) is the theoretical concept or trait that a test is designed to measure. We
know that we can never measure constructs such as intelligence or self-esteem directly. The methods of
psychological measurement are indirect. We ask a series of questions we hope will require the respondent
to use the part of her mind we are measuring or reference the portion of her memory that contains
information on past behaviors or knowledge, or, at the very least, direct the respondent to examine her
attitudes and feelings on a particular topic.

We further hope that the test takers accurately and honestly respond to test items. In practice, test results
are often treated as a direct measure of a construct, but we shouldn’t forget that they are educated guesses
only. The success of this whole process depends on another set of assumptions: that we have correctly
defined the construct we are trying to measure and that our test mirrors that definition.

Construct evidence, then, often includes both a defense of the defined construct itself and a claim that the
instrument used reflects that definition. Evidence presented for construct validity can include a
demonstration that responses behave as theory would expect responses to behave. Construct validity
evidence continues to accumulate whenever a survey or test is used, and, like all validity arguments, it can
never be fully convincing. In a sense, construct validity arguments include both content and criterion
validity arguments, because all validity evidence seeks to establish a link between a concept and the
activity that claims to measure it.

For your spelling test, there might be research on the nature of spelling ability as a cognitive activity or
personality trait or some other well-defined entity. If you can define what you mean by spelling ability and
demonstrate that your test’s scores behave as your definition would expect, then you can claim
construct-based validity evidence. Does theory suggest that better readers are better spellers? Show that
relationship, perhaps with a correlation coefficient [Hack #11], and you have presented validity evidence
that might convince others.

Consequences-Based Arguments

Until the last decade or two, measurement folks interested in establishing validity were concerned only

with demonstrating that the test score reflected the construct. Because of increasing concerns that certain
tests might unfairly penalize whole groups of people, plus other concerns about the social consequences of
the common use of tests, policy makers and measurement philosophers now look at the consequences
experienced by the test taker because of taking a test.

The idea is that we have gotten so used to testing and making high-stakes decisions based on those test
scores that we should take a step back occasionally and ask whether society is really better off if we rely
on tests to make these decisions. This represents a broadening of the definition of validity from a score
representing the construct to a test fulfilling its intended purpose. Presumably, tests are here to help the
world, not hurt it, and consequences-based validity evidence helps to demonstrate the societal value of
testing.



— ] Like people from the government in all those old jokes, tests are "here to help
‘ E us."

For your spelling test, the key negative consequences you want to rule out involve test bias. If
your theory of spelling ability expects no differences across gender, race, or socio-economic
status, then spelling scores should be equal between those groups. Produce evidence of similar
scores between groups, perhaps with a t test [Hack #17], and you will be well on your way to
establishing that your test is fair and valid.

Choosing from the Menu of Validity Options

The variety of categories of validity evidence described here represents a strategic menu of
options. If you want to demonstrate validity, you can choose from across the range of validity
evidence types.

Clearly, not all tests need to provide all types of validity evidence. A small teacher-made

history test meant for a group of 25 students might require only some content-based validity
evidence to convince the teacher to trust the results. Criterion-based validity evidence is
unnecessary, because estimating performance on another test is not an intended purpose of this
sort of test.

On the other hand, higher-stakes tests, such as college admissions tests (e.g., the ACT, SAT,
and GRE) and intelligence tests used to identify students as eligible for special education
funding, should be supported with evidence from all four validity areas. For your spelling test,
you can decide which type of evidence, and which type of argument, is most convincing.
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Hack 33. Predict the Length of a Lifetime

[liss

Many of us instinctively trust that things that have been around a long time are likely to be around a lot
longer, and things that haven't, aren’t. The formalization of this heuristic is known as Gott’s Principle, and
the math is easy to do.

Physicist J. Richard Gott Ill has so far correctly predicted when the Berlin Wall would fall and calculated

the duration of 44 Broadway showsControversially, he has predicted that the human race will probably

exist between 5,100 and 7.8 million more years, but no longer. He argues that this is a good reason to
create self-sustaining space colonies: if the human race puts some eggs in other nests, we might extend the
life span of our species in case of an asteroid strike or nuclear war on the homé planet.

Gott believes that his simple calculations can be extended to almost anything at all, within certain
parameters. To predict how long something will be around by using these calculations, all you need to
know is how long it has been around already.

In Action

Gott bases his calculations on what he calls the Copernican Principle (and what some people call, in this
specific application, Gott’s Principle). The principle says that when you choose a moment in time to
calculate the lifetime of a phenomenon, that moment is probably quite ordinary, not special or privileged,
just as Copernicus told us the Earth does not occupy a privileged place in the universe.

It's important to choose subjects at ordinary, unprivileged moments. Biasing your test by choosing
subjects that you already believe to be near the beginning or end of their life spansuch as the human
occupants of a neonatal ward or a nursing homewill yield bad results. Further, Gott’s Principle is less
useful in situations where actuarial data already exists. Plenty of actuarial data is available on the human
life span already, so Gott's Principle is less useful here.

Having chosen a moment, let's examine it. All else being equal, there’s a 50 percent chance the moment is
somewhere in the middle 50 percent of the phenomenon’s lifetime, a 60 percent chance it's in the middle
60 percent, a 95 percent chance it's in the middle 95 percent, and so on. Therefore, there’s only a 25
percent chance that you've chosen a moment in the first fourth of its lifetime, a 20 percent chance it's in
the first fifth, a 2.5 percent chance it's in the last 2.5 percent of the subject’s lifetime, and so on.

Table 3-1]L provides equations for the 50 percent, 60 percent, and 95 percent confidence levels. The
variable a5t represents how long the object has existed, gpgktrepresents how long it is expected to

continue.



Table Confidence levels under Gott’s Principle

Confidence level Minimum t yture Maximum t fture
50 percent tpast'3 tpast
60 percent tpast4 Apast
95 percent tpast'39 39Mast

Let's look at a simple example. Quick: whose work do you think is more likely to be listened to 50 years
from now, Johann Sebastian Bach’s or Britney Spears’? Bach'’s first work was performed around 1705. At
the time of this writing, that's 300 years ago. Britney Spears’ first aloum was released in January 1999,
about 6.5 years or 79 months ago.

Consultind Table 3-11, for the 60 percent confidence level, we see that the minjgnisttyasf4, and

the maximum is 45t Since pagt for Britney’s music is 79 months, there is a 60 percent chance that
Britney’s music will be heard for between 79/4 months and 79x4 months longer. In other words, we can
be 60 percent sure that Britney will be a cultural force for somewhere between 19.75 months (1.6 years)
and 316 months (26.3 years) from now.

By the same token, we can expect people to listen to Bach’s music for somewhere between another 300/4
and 300x4 years at the 60 percent confidence level, or somewhere between 75 years and 1,200 years from

now. Thus, we can predict that there’s a good chance that Britney’s music will die with her fans, and
there’s a good chance that Bach will be listened to in the fourth millennium.

Sixty percent is a good confidence level for quick estimation; not only is it a
better-than-even chance, but the factors 1/4 and 4 are easy to use.

How It Works

Suppose we are studying the lifetime of some object that we'll call the target. As we've already seen,
there’s a 60 percent chance we are somewhere in the middle 60 percent of the object’d lifetime (Figure

B-4).2
Figure 3-4. The middle 60 percent of the lifetime

Now? Now?

3 g
0% 60% F20%

v A




If we are at the very end of this middle 60 percent, we are at the second point marked "how?" |n Figure

[3-4. At this point, only 20 percent of the target’s lifetime is remairfing (Figufe 3-5), which means that
tuture 1S €qual to one-fourth of4s; (80 percent). This is the minimum remaining lifetime we expect at the

60 percent confidence level.

Figure 3-5. The minimum remaining lifetime (60 percent confidence level)

Now
B
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Yuturz = Tpast /4

Similarly, if we are at the beginning of the middle 60 percent (the first point marked "ndw?" in]Figure
[3-4), 80 percent of the target's existence lies in the future, as depifted in Figure 3-6. Thergfer80t
percent) is equal to 4xs; (20 percent). This is the maximum remaining lifetime we expect at the current

confidence level.

Figure 3-6. The maximum remaining lifetime (60 percent confidence level)

Now
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ioture = Yot X 4

Since there’s a 60 percent chance we’re between these two points, we can calculate with 60 percent
confidence that the future duration of the targgf.(t) is betweenj,s/4 and 4xpast.

In Real Life

Suppose you want to invest in a company and you want to estimate how long the company will be around
to determine whether it's a good investment. You can use Gott’s Principle to do so. Although it's not
publicly traded, let's take O’Reilly Media, the publisher of this book, as an example.



information is available about how long companies tend to last, but let’s try
Gott's Principle as a rough-and-ready estimate of O'Reilly’s longevity anyway.
After all, there’s probably good data on the longevity of Broadway shows, but
Gott didn't shrink from analyzing themand | hesitate to say that now that
O'Reilly has published Mind Performance Hacks, its immortality is assured.

t @ | certainly didn’t pick O'Reilly Media at random, and plenty of historical

According to the Wikipedia, O'Reilly started in 1978 as a consulting firm doing technical
writing. It's July 2005 as | write this, so O’Reilly has existed as a company for approximately
27 years. How long can we expect O’Reilly to continue to exist?

Here's O'Reilly’s likely lifetime, calculated at the 50 percent confidence level:
Minimum
27/3 = 9 years (until July 2014)
Maximum
27x3 = 81 years (until July 2086)
Here are our expectations at the 60 percent confidence level:
Minimum
27/4 = 6 years and 9 months (until April 2012)
Maximum
27x4 = 108 years (until July 2113)
Finally, here’s our prediction with 95 percent confidence:
Minimum
27/39 = 0.69 years = about 8 months and 1 week (until mid-March 2006)
Maximum
27x39 = 1,053 years (until July 3058)

In the post-dot-com economy, these figures look pretty good. For example, Apple Computer’s
aren’t much better, and Microsoft was founded in 1975, so the same can be said for it. A real
investor would want to consider many other factors, such as annual revenue and stock price,
but as a first cut, it looks as though O’Reilly Media is at least as likely to outlive a hypothetical
investor as to tank in the next decade.

Endnotes
1.

Ferris, Timothy. "How to Predict Everything." The New Yorker, July 12, 1999.

Gott, J. Richard IlI. "Implications of the Copernican Principle for Our Future Prospects.”
Nature, 363, May 27, 1993.

Gott, J. Richard IlI. "A Grim Reckonind.” http://pthbb.org/manual/servicesfgrim.
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Hack 34. Make Wise Medical Decisions

i34

Medical tests provide diagnostic screening information that is often misunderstood by patients and,
sometimes, even by doctors. Understanding the probability characteristics called "sensitivity" and
"specificity" can provide a more accurate and (sometimes) reassuring picture.

As a consumer of medical information, you have to make decisions about behavior, treatment, seeking a
second opinion, and so on. You likely rely on medical informationnewspaper stories, your doctor’s advice,
test resultsto make those decisions. However, much of the medical information you get from your doctor
has a known amount of error. This is especially true about diagnostic test results that indicate the
probability that you have a certain condition.

This hack is all about using information about the characteristics of those medical tests to get a more
accurate picture of reality and, hopefully, make better decisions about treatment.

Statistics and Medical Screening

To use medical test information wisely, we have to learn just a bit about what the concept of accuracy
means for these tests. The four possible outcomes of medical tests, in terms of accuracy, are shown in

Table 3-1P.




Patient actually does not have condition (8)

Test resulf

condition

True negative (score is correct)

“The reliability [Hack #6] of medical screening tesis is summarized by
proporonscalled sensityand secily.Essenaly ose whor
on these tests are concerned with three questions of accuracy:

If 2 person has the disease, how likely is the person to score a
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Understanding Breast Cancer Screening
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Table Theoretical mammogram resuls for 10,000 women

Patient actually has | Patient actually does nof
breast cancer (A) | have breast cancer (B)
N=120 880

Mammogram | Sensitvity0 False posilivess

Mammogram doed False negatives10 | Specificityo2

False
negative(scorel
is wrong)

T2 313 also shows the outcomes for 10,000 hypothetical women|
based on the base rate of breast cancer in the population, which is a
1.2 percent
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s, i a person scores a positive res

i
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altogether, and they will not receive treatment.

Why It Works
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chances that... is a conditional probabilty question.
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Chapter 4. Beating the Odds

Why risk more than you have to when you take risks? Casino games require you to take some chances, but
this chapter of real-world stat hacks will help you keep your edge and perhaps even overcome the house’s
edge.

Start with Texas Hold 'Em poker [Hack #36]. (Maybe you've heard of it?) When you play poker [Hack
#37], play the odds [Hack #38].

Make sure, of course, to always gamble smart [Hack #35], regardless of what you play, though when it
comes to the level of risk you take, some games [Hacks #39 and #40] are better than others [Hack #41].

If you like to make friendly wagers with friends or strange wagers with strangers, you can use the power
of statistics to win some surprisingly winnable bar bets with cards [Hacks #42 and #44< /a>], dice [Hack
#43], or just about anything else you can think of [Hack #46], including your friends’ birthdays [Hack
#45].

Speaking of weird gambling games (and | think we were), there are some odd statistical quirks [Hacks

#47< [la> and #49< /a>] you'll need to know when you play them, even if it is just flipping a coin [Hack
#48].
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Hack 35. Gamble Smart

i35

Whatever the game, if money and chance are involved, there are some basic gambling truths that can help
the happy statistician stay happy.

Although this chapter is full of hacks aimed at particular games, many of them games of chance, there are
a variety of tips and tools that are useful across the board for all gamblers. Much mystery, superstition, and
mathematical confusion pervade the world of gambling, and knowing a little more about the geography of
this world should help you get around. This hack shows how to gamble smarter by teaching you about the
following things:

The Gambler’'s Fallacy, an intuitive yet false belief system that has cost many an otherwise
well-informed gamer

Casinos and money

Systems, sophisticated money management, and wagering procedures that do not work

The Gambler’s Fallacy

Did you ever have so many bad blackjack hands in a row that you increased your bet, knowing that things
were due to change anytime now? If so, you succumbed to the gambler’s fallacy, a belief that because
there are certain probabilities expected in the long run, a short-term streak of bad luck is likely to change
soon.

The gambler’s fallacy is that there is a swinging pendulum of chance and it swings in the region of bad
outcomes for a while, loses momentum, and swings back into a region of good outcomes for a while. The
problem with following this mindset is that luck, as it applies to games of pure chance, is a series of
independent events, with each individual outcome unrelated to the outcome that came before. In other
words, the location of the pendulum in a good region or bad region is unrelated to where it was a second
before, andhere’s the rubthere isn’t even a pendulum. The fickle finger of fate pops randomly from

possible outcome to possible outcome, and the probability of it appearing at any outcome is the probability
associated with each outcome. There is no momentum. This truth is often summarized as "the dice have no
memory."



Examples of beliefs consistent with the gambler’s fallacy include:

A slot machine that hasn't paid out in a while is due.

A poker player who has had nothing but bad hands all evening will soon get a super colossal hand to
even things out.

A losing baseball team that has lost the last three games is more likely to win the fourth.

Because rolling dice and getting three 7s in a row is unlikely to occur, rolling a fourth after having
just rolled three straight must be basically impossible.

A roulette ball that has landed on eight red numbers in a row pretty much must hit a black number
next.

Avoid fallacies like this at all costs, and gambling should cost you less.

Casinosand Money

Casinos make money. One reason they make a profit is that the games themselves pay off amounts of
money that are slightly less than the amount of money that would be fair. In a game of chance, a fair
payout is one that makes both participants, the casino and the player, break even in the long run.

An example of a fair payout would be for casinos to use roulette wheels with only 36 numbers on them,
half red and half black. The casino would then double the money of those who bet on red after a red
number hits. Half the time the casino would win, and half the time the player would win. In reality,
American casinos use 38 numbers, two of them neither red nor black. This gives the house a 2/38 edge
over a fair payout. Of course, it's not unfair in the general sense for a casino to make a profit this way; it's
expected and part of the social contract that gamblers have with the casinos. The truth is, though, that if
casinos made money only because of this edge, few would remain in business.

The second reason that casinos make money is that gamblers do not have infinitely deep pockets, and they
do not gamble an infinite period of time. The edge that a casino hasthe 5.26 percent on roulette, for
exampleis only the amount of money they would take if a gambler bet an infinite number of times. This
infinite gambler would be up for a while, down for a while, and at any given time, on average, would be
down 5.26 percent from her starting bankroll.

What happens in real life, though, is that most players stop playing sometime, usually when they are out of
chips. Most players keep betting when they have money and stop betting when they don’t. Some players,
of course, walk away when they are ahead. No player, though, keeps playing when they have no money



(and no credit).

Imagine that Table 4}1 represents 1,000 players of any casino game. All players started with $100 and
planned to spend an evening (four hours) playing the games. We'll assume a house edge of 5.26 percent,
as roulette has, though other games have higher or lower edges.

Table Fate of 1,000 hypothetical gamblers

Time soent plaving | Havesomemoney | Mean bankroll Havelost all their Still
spent playing left |eft money playing

After an hour of play| 900 $94.74 100 900
After two hours of 800 $94.74 200 800
play

After three hours of 700 $94.74 300 700
play

Sf:)a/r four hours of 600 $94.74 400 600

In this examplewhich uses made-up but, | bet, conservative dataafter four hours, the players still have
$56,844, the casino has $43,156, and from the total amount of money available, the casino took 43.16
percent. That's somewhat more than the official 5.26 percent house edge.

It is human behaviorthe tendency of players to keep playingnot the probabilities associated with a
particular game, that makes gambling so profitable for casinos. Because the house rules are published and
reported, statisticians can figure the house edge for any particular game.

Casinos are not required to report the actual money they take in from table games, however. Based on the
depth of the shag carpet at Lum’s Travel Inn of Laughlin, Nevada (my favorite casino), though, I'm
guessing casinos do okay. The general gambler’'s hack here is to walk away after a certain period of time,
whether you are ahead or behind. If you are lucky enough to get far ahead before your time runs out,
consider running out of the casino.

Systems

There are several general betting systems based on money management and changing the amount of your
standard wager. The typical system suggests increasing your bet after a loss, though some systems sugges
increasing your bet after a win. As all these systems assume that a streak, hot or cold, is always more

likely to end than continue, they are somewhat based on the gambler’s fallacy. Even when such systems
make sense mathematically, though, anytime wagers must increase until the player wins, the law of finite
pocket size sabotages the system in the long run.

Here’s a true story. On my first visit to a legal gambling establishment as a young adult, | was eager to use
a system of my own devising. | noticed that if | bet on a column of 12 numbers at roulette, | would be paid
2to 1. That is, if | bet $10 and won, | would get my $10 back, plus another $20. Of course, the odds were



against any of my 12 numbers coming up, but if | bet on two sets of 12 numbers, then the odds were with
me. | had a 24 out of 36 (okay, really 38) chance of winningbetter than 50 percent!

| understood, of course, that | wouldn't triple my money by betting on two sets of numbers. After all, |
would lose half my wager on the set of 12 that didn’t come up. | saw that if | wagered $20, about
two-thirds of the time | would win back $30. That would be a $10 profit. Furthermore, if I didn’t win on

the first spin of the wheel, | would bet on the same numbers again, but this time | would double my bets!

(I am a super genius, you agree?) If by some slim chance | lost on that spin as well, | would double my bet
one more time, and then win all my money back, plus make that 50 percent profit. To make a long story
short, | did just as | planned, lost on all three spins and had no money left for the rest of the long weekend
and the 22-hour drive home.

The simplest form of this sort of system is to double your bet after each loss, and then whenever you do
win (which you are bound to do), you are back up a little bit. The problem is that it is typical for a long
series of losses to happen in a row; these are the normal fluctuations of chance. During those losing
streaks, the constant doubling quickly eats up your bankroll.

Table 4-? shows the results of doubling after just six losses in a row, which can happen frequently in
blackjack, roulette, craps, video poker, and so on.

Table The" double after aloss' system

L oss number Bet size Total expenditure
1 $5 $5
2 $10 $15
3 $20 $35
4 $40 $75
S $80 $155
6 $160 $315

Six losses in a row, even under an almost 50/50 game such as betting on a color in roulette, is very likely
to happen to you if you play for more than just a couple of hours. The actual chance of a loss on this bet

for one trial is 52.6 percent (20 losing outcomes divided by 38 possible outcomes). For any six spins in a
row, a player will lose all spins 2.11 percent of the time (.526x.526x.526x.526x.526x.526).

Imagine 100 spins in two hours of play. A player can expect six losses in a row to occur twice during that
time. Commonly, then, under this system, a player is forced to wager 32 times the original bet, just to win
an amount equal to that original bet. Of course, most of the time (52.6 percent), when there have been six
losses in a row, there is then a seventh loss in a row!



Systems do exist for gambling games in which players can make informed strategic decisions, such as
blackjack (with card counting) and poker (reading your opponent), but in games of pure chance,
statisticians have learned to expect the expected.
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Hack 36. Know When to Hold "Em

In Texas Hold 'Em, the "rule of four" uses simple counting to estimate the chance that you are going to
win all those chips.

Texas Hold 'Em No Limit Poker is everywhere. As | write this, | could point my satellite dish to ESPN,
ESPN2, ESPN Classics, FOX Sports, Bravo, or E! and see professional poker players, lucky amateurs,
major celebrities, minor celebrities, and even (Lord help us, on the Speed channel) NASCAR drivers
playing this simple game.

You probably play yourself, or at least watch. The most popular version of the game is simple. All players
start with the same amount of chips. When their chips are gone, so are they. Every round, players get two
cards each that only they (and the patented tiny little poker table cameras) see. Then, three community
cards are dealt face up. This is the flop. Another community card is then dealt face up. That's the turn.
Finally, one more community card, the river, is dealt face up. Betting occurs at each stage. Players use any
five of the seven cards (five community cards, plus the two they have in their hands) to make the best
five-card poker hand they can. The best hand wins.

Because some cards are face up, players have information. They also know which cards they have in their
own hands, which is more information. They also know the distribution of all cards in a standard 52-card
deck. All this information about a known distribution of values [Hack #1] makes Texas Hold 'Em a good
opportunity to stat hack all over the place [Hdckg #36 and #38< /a>].

One particularly crucial decision point is the round of betting right after the flop. There are two more cards
to come that might or might not improve your hand. If you don’t already have the nuts (the best possible
hand), it would be nice to know what the chances are that you will improve your hand on the next two
cards. The rule of four allows you to easily and fairly accurately estimate those chances.

How It Works

The rule of four works like this. Count the number of cards (without moving your lips) that could come off
of the deck that would help your hand. Multiply that number by four. That product will be the percent
chance that you will get one or more of those cards.

Example 1

You have a Jack of Diamonds and a Three of Diamonds. The flop comes King of Clubs, Six of Diamonds,
and Ten of Diamonds. You have four cards toward a flush, and there are nine cards that would give you
that flush. Other cards could help you, certainly (a Jack would give you a pair of Jacks, for example), but
not in a way that would make you feel good about your chances of winning.



So, nine cards will help you. The rule of four estimates that you have a 36 percent chance of making that
flush on either the turn or the river (9x4 = 36). So, you have about a one out of three chance. If you can
keep playing without risking too much of your stack, you should probably stay in the hand.

Example 2

You have an Ace of Diamonds and a Two of Clubs. The flop brings the King of Hearts, the Four of
Spades, and the Seven of Diamonds. You could count six cards that would help you: any of the three Aces
or any of the three Twos. A pair of twos would likely just mean trouble if you bet until the end, so let's say
there are three cards, the Aces, that you hope to see. You have just a 12 percent chance (3x4 = 12). Fold
‘em.

Why It Works

The math involved here rounds off some important values to make the rule simple. The thinking goes like
this. There are about 50 cards left in the deck. (More precisely, there are 47 cards that you haven’t seen).
When drawing any one card, your chances of drawing the card you want [Hack #3] is that number divided
by 50.

— 1 | know, it's really 1 out of 47. But | told you some things have been simplified
to make for the simple mnemonic "the rule of four."

Whatever that probability is, the thinking goes, it should be doubled because you are drawing twice.



— ] This also isn’t quite right, because on the river the pool of cards to draw from is
. slightly smaller, so your chances are slightly better.

For the first example, the rule of four estimates a 36 percent chance of making that flush. The
actual probability is 35 percent. In fact, the estimated and actual percent chance using the rule
of four tends to differ by a couple percentage points in either direction.

Other Places|t Works

Notice that this method also works with just one card left to go, but in that case, the rule would
be called the rule of two. Add up the cards you want and multiply by two to get a fairly

accurate estimate of your chances with just the river remaining. This estimate will be off by
about two percentage points in most cases, so statistically savvy poker players call this the rule
of two plus two.

Wherelt Doesn’'t Work

The rule of four will be off by quite a bit as the number of cards that will help you increases. It
is fairly accurate with 12 outs (cards that will help), where the actual chance of drawing one of
those cards is 45 percent and the rule of four estimate is 48 percent, but the rule starts to
overestimate quite a bit when you have more than 12 cards that can help your hand.

To prove this to yourself without doing the calculations, imagine that there are 25 cards (out of
47) that could help you. That's a great spot to be in (and right now | can’t think of a scenario
that would produce so many outs), but the rule of four says that you have a 100 percent chance
of drawing one of those cards. You know that’s not right. After all, there are 22 cards you could
draw that don’t help you at all. The real chance is 79 percent. Of course, making a
miscalculation in this situation is unlikely to hurt you. Under either estimate, you’'d be nuts to
fold.
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Hack 37. Know When to Fold "Em

iz

In Texas Hold 'Em, the concept of pot odds provides a powerful tool for deciding whether to call or fold.

If you watch any poker on TV, you quickly pick up a boatload of jargon. You'll hear about big slick and
bullets and all-in and tilt. You'll also hear discussions about pot odds, as in, "He might call here, not
because he thinks he has the best hand, but because of the pot odds."

When the pot odds are right, you should call a hand even when the odds are that you will lose. So, what
are pot odds and why would | ever put more money into a pot that | am likely to lose?

Pot Odds

Pot odds are determined by comparing the chance that you will win the pot to the amount of chips you
would win if you did win the pot. For example, if you estimate that there is a 50 percent chance that you
will win a pot, but the pot is big enough that winning it would win you more than double the cost of
calling the bet in front of you, then you should call.

To see how pot odds works in practice, here is a scenario with four players: Thelma, Louise, Mike, and
Vince. As shown ip Table 4-3, Thelma is in the best shape before the flop.

odds at each point in a round. Read the following tables left to right, following
each column all the way down, to see what Thelma thinks and does, then what
Louise thinks and does, and so on.

t — | The tables that follow show the decisions each player makes based on the pot

Table Players starting hands

Player Thelma Louise Mike Vince
Cards Ace Clubs, Ace 2 Clubs, 4 4 Hearts, 5 King Diamonds, 10
Hearts Clubs Spades Diamonds
Opening | g 50 50 50
bet

Then comes the flop: Ace Spades, 3 Diamonds, 6 Diamjonds. Taple 4-4 shows the revised analysis of the
players’ positions. After the flop, three of them are hoping to improve their hands, while one of them,
Thelma, would be satisfied with no improvement of her hand, thinking she has the best one now. Thelma
is driving the betting, and the other three players are deciding whether to call.



Table Analysis after the flop

Player Thelma Louise Mike Vince
Needed cards Any of four | Any of four 2s or four A_ny of nine
5s 7s diamonds
Chance of getting card 16 percent 32 percent 36 percent
Current pot 200 250 250 300
ggft to call as percentage of 20 percent 20 percent 17 percent
Action Bet 50 | Fold Call 50 Call 50

Table 4-4 shows the use of pot odds after the flop. Thelma has a pair of aces to start and hits the third ace
on the flop. Consequently, she begins each round by betting. The other players who have yet to hit
anything must decide whether to stick around and hope to improve their hands into strong, likely winners.

Pot odds come into play primarily when making the decision whether to stick around or fold. Louise needs
a five to make her straight, and she estimates a 16 percent chance of getting that 5 somewhere in the next
two cards. However, with that pot currently at $250 and a $50 raise from Thelma, which she would have

to call, Louise would have to pay 20 percent of the pot. This is a 20 percent cost compared with a 16
percent chance of winning the pot. The risk is greater than the payoff, so Louise folds. Mike and Vince,
however, have more outs, so pot odds dictate that they stick around.

Then comes the turn: the Jack of Clubs. As shoyn in Talle 4-5, after the turn, with only one card left to
go, Mike’s pot odds are no longer better than his chances of drawing a winning card, and he folds. Though
Vince starts out with a potentially better hand than Mike, he too eventually folds when the pot odds
indicate he should.

Table Analysis after theturn

Player Thelma | Louise| Mike Vince

Same
as Same as before
before

Needed
cards

Chance of 18

getting card percent 20 percent

Current pot| 350 450 450

Cost to call
as 22

percentage percent
of pot

22 percent




Player

Thelma

Louise

Mike

Vince

Action

Bet 100

Fold

Fold

Let's assume that the players are using only pot odds to 1
their decisions, ignoring for the sake of illustration that theg
are probably trying to get a read on the other players (e.g|
who could bluff, raise, and so on). By the way, players ar
calculating the chance that they will get a card to improve|
their hand using the rule of four and the rule of 2 + 2 [Had
#36).

Why It Works

Imagine a game that costs a dollar to play. Pretend the ry
are such that half the time you will win and get paid three
dollars. The other half of the time you would lose one doll
and gain two dollars. Over time, if you kept playing this cr|
game, you would make a whole lot of money.

It is the same sort of thinking that governs the use of pot
in poker. With a 36 percent chance of making a flush, a
perfectly fair bet would be to wager 36 percent of the pot.
You would get your flush 36 percent of the time and breal
even over the long run. If you could play a game in which
could pay less than 36 percent of the pot and still win 36
percent of the time in the long run, you should play that ci
game, right? Well, every time you find yourself in a situati
in which the pot odds are better than the proportion of the]
you have to wager, you have an opportunity to play just s
a crazy game. Trust the statistics. Play the crazy game.

WhereElse It Works

Experienced players not only make use of pot odds to mg
decisions about folding their hands, but they even make |
a slightly more sophisticated concept known as implied p
odds. Implied pot odds are based not on the proportion o
current pot that a player must call, but on the proportion g
pot total when the betting is completed for that betting roy

If players have yet to act, a player who is undecided aboy
whether to stay in based on pot odds might expect other
players to call down the line. This increases the amount
final pot, increases the amount the player would win if sh
one of her wish cards, and increases the actual pot odds
all the wagering is done.

The phrase "implied pot odds" is also sometimes used to
to the relative cost of betting compared to the final, total p
after all rounds of betting have been completed. | have al
heard the term "pot odds" used to describe the idea that i
happen to " hit the nuts” (get a strong hand that’s unlikely|
be beaten) or close to it, then you are likely to win a pot n
bigger than the typical pot. Some players spend a lot of
energy and a lot of calls just hoping to hit one of these su
hands and really clean up.

Implied pot odds works like this. In the scenarip in Tablg
Mike might have called after Fourth Street (the fourth car
revealed), anticipating that Vince would also call. This wo
have increased the final pot to 650, making Mike’s
contribution that round only 15 percent and justifying his

Interestingly, if Vince had been betting into a slightly large
pot that contained Mike’s call, the pot odds for Vince's
100-chip call would then have dropped to 18 percent and
Vince might have called. In fact, if Mike were a super
genius-type player, he well could have called on the turn
knowing that would change the pot odds for Vince and
therefore encourage him to call. Real-life professional po
playerswho are really, really goodreally do think that way
sometimes.

Wherelt Doesn’'t Work

Remember that pot odds are based on the assumption th
will be playing poker for an infinite amount of time. If you

in a no-limit tournament format, though, where you can't

into your pockets, you might not be willing to risk all or m
of your chips on your faith about what will happen in the |
run.

The other problem with basing life and death decisions on
odds is that you are treating a "really good hand" as if it
a guaranteed winner. Of course, it's not. The other player|
may have really good hands, too, that are better than you

3

les

Al
zy

dds

you

pn
pot
ch

se of

the
if the
nd.

t

f the
hit
hen

refer

per

At you
re

ig

st

ng

pot
ere

B
Is.




[ prev |
Hack 38. Know When to Walk Away

In Texas Hold 'Em, when you are "short-stacked," you have only a couple of choices: go all-in right now
or go all-in very soon. As you might have guessed, knowing when to make your last stand is all about the
odds.

| hear the TV poker commentators talking about how "easy" it is in Texas Hold 'Em tournaments to play
when you are short-stacked. They mean it is easy because you don’t have many options from which to
choose.

The term "short-stacked" can be used in a couple of different ways. Sometimes, it is used to refer to
whoever has the fewest chips at the table. Under this use of the term, even if you have thousands of chips
and can afford to pay a hundred antes and big blinds, you are short-stacked if everyone else has more
chips.

A better definition, which is more applicable to statistics-based decision making, is that you are
short-stacked when you can only afford to pay the antes and blinds for a few more times around the table.
Under this definition, there is mounting pressure to bet it all and hope to double or triple up and get back
in the game. | prefer this use of the term because without pressure to play, being "short-stacked" is not a
particularly meaningful situation.

It doesn't feel easy, though, does it, when you are short-stacked and have to go all-in (bet everything you
have)? It feels very, very hard for two reasons:

You are probably not going to win the tournament. You realize that you are down to very few chips
and would have to double up several times to get back in the game. Realistically, you doubt that you
have much of a chance. That's depressing, and any decision you make when you are sad is difficult.

One mistake and you are out. There is little margin for error, and it is hard to pull the trigger in such a
high-stakes situation.

Applying some basic statistical principles to the decision might help make you feel better. At least you'll
have some nonemotional guidelines to follow. When you lose (and you still probably will; you're
short-stacked, after all), now you can blame me, or the fates, and not yourself.



Recognizing a Short-Stacked Situation

In tournament settings, at some point you often will have so few chips that you will run out soon. Unless
you bet and win soon, you will be blinded outthe cost of the mandatory bets will bleed you dry.

How few chips must you have to be short-stacked? Even if we define short-stacked as having some
multiple of the big blind (the larger of two forced bets that you must make on a rotating basis), how many
of those big blinds you need is a matter of style, and there is no single correct number. Here are some
different perspectives on how many chips you must have in front of you to consider yourself
short-stacked.

Twelve timesthe big blind or less

Though you could play quite a while longer without running out of chips, you will want to bet on any
decent hand. You hope to win some blinds here. The more blinds you win, the longer you can wait for
killer hands. If you are raised, at least consider responding with an all-in.

Players who start to think of themselves as short-stacked in this position wish to go all-in now on a good
hand, rather than being forced to go all-in on a mediocre hand later on. Another advantage of starting to
take risks is that an announcement of "all-in" will still pull some weight here. You will have enough chips
to make someone think twice before they call you. Later on, your miserable little stack won't be enough to
push anyone around.

response. Your raise of all-in against another small stack will be much more
powerful than the same tactic against a monster stack. By the same token, if you
want a call, don’t hesitate to go all-in against players with tons of chips. They
will be more than happy to double you up.

— | Choose your opponent wisely, if you can, when you go all-in and want a fold in
s&:"

Eight timesthebig blind or less

In any position, whether you are on the button, in the big blind, or the first to bet, consider announcing
all-in with any top-10 hand. You still have enough chips here to scare off some players, especially those
with similarly sized stacks.

You are starting to get low enough, though, that you really want to be called. If you can play some low
pairs cheaply, try it, but bail out if you don’t get three of a kind in the flop. You need to keep as many big
blinds as you can to coast on until you get that all-in opportunity.

Here are the 10 hands that are the most likely to double you up:

A pair of Aces, Kings, Queens, Jacks, or 10s



Ace-King, Ace-Queen, Ace-Jack, or King-Queen of the same suit

Ace-King of different suits

Four timesthe big blind or less

At this point, you need to go all-in, even on hands that have a more than 50 percent chance of losing.
Purposefully making a bad wager seems counterintuitive, but you are fighting against the ever-shrinking
base amount you hope to double up. If you wait and wait until you have close to a sure thing, whatever
stack remains will have to be doubled a few extra times to get you back.

A form of pot odds [Hack #37] kicks in at this point. If you pass up a 25 percent chance of winning while
waiting for a 50 percent chance, you might be able to win only half as much when (and if) you ever get to
play the better hand. Definitely go all-in on any pair, an Ace and anything else, any face card and a good
kicker, or suited connectors.

are fewer than four times the big blind) is to bet it all as soon as you get a hand
that adds up to 18 or better. Kings count as 13, Queens 12, Jacks 11, and the rest
are their face value. Aces count as 14, but you are already going all-in with an
Ace-anything, so that doesn’t matter. Eighteen-point hands include 10-8, Jack-7,
Queen-6, and King-5.

t — | A good rule of thumb when you're very, very short-stacked (i.e., your total chips

Statistical Decision Making

The statistical question that determines when you should make your movewhether it is announcing all-in
or, at least, making a decision to be pot committed (so many chips in the pot that you will go all-in if
pushed)is, "Am | likely to get a better hand before | run out of chips?"

I’'m going to group 50 decent, playable starting Texas Hold 'Em poker hands, hands that give you a
chance to win against a small number of opponents. I'll be using three groupings, shown ih Thbles 4-6,
[4-7, and 4B. While different poker experts might quibble a bit about whether a given hand is good or just
okay, most would agree that these hands are all at least playable and should be considered when
short-stacked.

— | By the way, these hands are not necessarily in order of quality within each
E grouping.




Table Ten great starting hands

Pairs Same suit lef(?rent
suits
Ace—AceKing—KingQueen—QueenJack—JacklO—Q?neégrL%eA:e'Queen Ace-Jack Ace-King

Table Fifteen good starting hands

Pairs Same suit Different suits
Ace-Ten King-Jack .
9-98-87-7| . Ace-QueenAce-JackKing-Que
King-10Queen-JackQueen-10Jack-10Jack-910-99-8 Q 9-Q
Table Twenty-five okay starting hands
Pairs Same suit Different suits
6-65-5| Ace-9Ace-8Ace-7Ace-6Ace-5Ace-4Ace-3Ace-2King-9Queen-910-89-78-78-67-66-55-4 Ace-10King-JackQueen-JackKing-10Queen

When you are short-stacked and the blinds and antes are coming due, you know you have a certain numbel
of hands left before you have to make a mpve. Table 4-9 shows the probability that you will be dealt a

great, good, or okay hand over the next certain number of deals.

Table Chance of getting a playable hand

Hand quality Next hand In5deals In 10 deals In 15 deals In 20 deals
Great 4 percent 20 percent 36 percent 49 percent 59 percernt
Good 7 percent 29 percent 50 percent 65 percent 75 percert
Okay 11 percent 46 percent 70 percent 84 percent 91 percerft
Okay or better 22 percent 72 percent 92 percent 98 percent 99 percent

|

| calculated the probabilities fpr Table J-9 by first figuring the probabilities for
any specific pair (you are just as likely to get a pair of Aces as a pair of 2s):
.0045. | then figured the probabilities for getting any two specific different cards
that are the same suit (.003), and the chances of getting any two specific
different cards that are not the same suit (.009). Then, for each categorygreat,
good, or okayl multiplied the appropriate probability by the number of pairs,
unpaired suited hands, and so on, in that category. | then calculated the chance
of one of these hands not hitting across the given number of opportunities and
subtracted that value from 1 to get the values for each cell in the table.

10Jack-10



Here is how to uge Table 4-9. Imagine you are short-stacked and have just been dealt a good hand. If you
think you really have to go all-in sometime during the next five hands, there is only a 20 percent chance
that you will be dealt a better hand. You should probably stake everything on this good hand.

If you can hang on for 20 more deals, there is a greater than 50 percent chance that you will get a
gangbuster hand, so if you want to be conservative, you can lay these cards down for now. More
commonly, short-stacked players consider going all-in with a hand that is not even a top-50
handsomething like King-8 unsuited, for example. Using the probabilifies in Table 4-9, you might safely
lay it down and hope for a better hand in the next five hands. There is a 72 percent chance you will get it.

Finally, imagine that you have just a few hands left because the blinds are shrinking your stack down to
nothing. You look down and see a decent hand, an okay hand, such as 8-7 in the Table 4-9
allows you to answer the big question: is it likely that your very next hand will be better than this one?
There is about an 11 percent chance of getting a good or great hand next. So, no, it is unlikely you will
improve. Stake your future on this hand.

Getting Your Mind Right

We talked earlier about why it is so emotionally difficult to play when short-stacked. Here are some
psychological tips to fight the pain of being caught between a rock and a hard place:

Berealistic

In blackjack, when a player hits her 16 against the dealer’'s 7, she knows she is likely to bust. She
does it anyway because the dealer is likely to have a 10-card down, and it gives her the best chances
in an almost no-win situation. She takes pleasure in knowing she did all she could to give herself the
best chances of surviving. The same thinking applies here: take pleasure in knowing you gave
yourself the best chances to come back and win.

Enjoy the all-in experience

There is nothing more exciting than having it all on the line. Because you had no real choice about
going all-in, just relax and enjoy it the best you can. No player will chide you about doing "such a
stupid thing," because you just did the smartest thing you could.

Take control

To avoid feeling forced to do something you don’t want to do, start your comeback attempt before
you have to. Play to avoid the short-stacked situation by starting to make your moves when you still
have 10 to 12 times the big blind in chips. You have a lot more choices at this point than you will
have later on, and so you can play with more subtlety, basing your bet on position, opponents, tells,
and so on. The smaller your stack gets, the less power you have to control your own destiny.
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Hack 39. Lose Slowly at Roulette
HACK
1i39

Roulette has so many pretty colors and shiny objects that kittens love it. Plus, you'll look pretty cool
playing it. But in the long run, you'll lose money, and with your cat allergy and all....

Like most games in a casino, roulette is a game of pure chance. No one has any skill when it comes to
predicting which of the 37 (European-style) or 38 (U.S.-style) partitioned sections the tiny ball will end up
in. The best a player can do is know the odds, manage his money, and assume going in that he will lose.

Of course, he might get lucky and win some money, which would be dandy, but the Law of Big Numbers
[Hack #2] must be obeyed. In the long run, he is most likely to have less money than if he had never
played at all. In fact, if he plays an infinite amount of time, he is guaranteed to lose money. (Most roulette
players play for a period of time somewhat less than infinity, of course.) To extend your amount of
playing time, there is important statistical information you should know about this game with the spinning
wheel, the orbiting ball, and the black and red layout.

Basic Wagers

shows the betting layout of a typical roulette game. This is an American-style layout, which
means there are two green numbers, 0 and 00, which do not pay off any bets on red and black or odd and
even. European-style roulette wheels have only one green number, 0, which cuts in half the house
advantage compared to U.S. casinos.

Figure 4-1. Typical roulette betting layout
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Players can bet in a large variety of ways, which is one reason roulette is so popular in casinos. For
example, a player could place one chip over a single number, touching two numbers, on a color, adjacent
to a column of 12 numbers, and so on. Like any other probability question, the chance of randomly getting
the desired outcome is a function of the number of desired outcomes (winning) divided by the total
number of outcomes.

There are 38 spaces on the wheel and, because all 38 possible outcomes are equally likely, the calculations
are fairly straightforward. Table 4410 shows the types of bets players can make, the information necessary
to calculate the odds of winning for a single spin of the wheel and a one-dollar bet, the actual amounts the
casino pays out, and the house advantage.

Table Statistics of roulette for each $1 bet

Type of Numbgr of Number of Casino | House edge| House
wager winning losing outcomes Odds pays equation edge
outcomes

Single 1 37 37t01 $35 5.26
number percent
Two 36to2 5.26
numbers 2 36 orl8to 1 17 percent
Single 20to 18 5.26
color 18 20 orl.1lltol $1 percent
Even or 20to 18 5.26
odd 18 20 orl.lltol $1 percent
Twelve 26t0 12 5.26
numbers 12 26 or2.17to 1 $2 percent

The house advantage is figured by first determining what the casino should pay back for each dollar bet if
there were no advantage to the casino. The fair payback would be to give the winner an amount of money
equal to the risk taken. The amount of risk taken is, essentially, the number of possible losing outcomes.
This actual amount paid to the winner is then subtracted from the amount that should be paid if there were
no house advantage. These "extra" dollars that the house keeps is divided by the proportion of total
outcomes to winning outcomes. If there are no extra dollars, the game is evenly matched between player
and casino and the house edge is 0 percent.

If you study the statistics of roulette]in Table 4-10, a couple of conclusions are apparent. First, the casino
makes its profit by pretending that there are only 36 humbers on a roulette wheel (i.e., only 36 possible
outcomes) and pays out using that pretend distribution.

Second, regardless of the type of wager that is made at a roulette wheel, the house edge is a constant 5.26
percent. This is true except for one obscure wager, which is allowed at most casinos. Players are often
allowed to bet on the two zeros and their adjacent numbers, 1, 2 and 3, for a total of five numbers. This is
done by placing a chip to the side, touching both the 0 and the 1. I'd tell you more about checking with the



person who spins the wheel to make sure they take this wager, and so on, except that this is the worst bet
at the roulette table and no statistician would advise it. Casinos who allow this bet pay out as if it were a
bet on six numbers. So, the casino’s usual edge of 5.26 percent is even larger here: 7.89 percent, as shown

in[Table 4-1]L.

Table Statistics for betting on five numbers in roulette (an inadvisable wager)

Type of Number of Number of Odds Casino | House edge | House
wager | winning outcomes| losing outcomes pays equation edge
Five 33t05 7.89
numbers S 33 or6.6to 1l %6 percent
Why It Works

Roulette’s popularity is based partly on the fact that so many different types of wagers are possible. A
gambler with a lot of chips can spread them out all over the table, with a wide variety of different bets on
different numbers and combinations of numbers. As long as she avoids the worst bet at the table (five
numbers), she can rest assured that the advantage to the house will be the same honest 5.26 percent for
each of her bets. It is one less thing for the gambler to worry about.

The fact that there is such a large variety of bets that can be placed on a single layout is no lucky
happenstance, though. The decision to use 36 numbers was a wise one, and no doubt it was made all those
years ago because of the large number of factors that go into 36. Thirty-six can be evenly divided by 1, of
course, but also by 2, 3, 4, 6, 9, 12, and 18, making so many simple bets possible.
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Hack 42. Play with Cardsand Get L ucky

i

While it is true that Uncle Frank spends much of his time in taverns using dice to win silly bar bets and
smiling real charming-like at the ladies, there is more to his life than that. For instance, sometimes he uses
playing cards instead of dice.

People, especially card players, and especially poker players, feel pretty good about their level of
understanding of the likelil that different combination of cards will appear. Their experience has
taught them the relative rarity of pairs, three-of-a-kind, flushes, and so on. Generalizing that intuitive
knowledge to playing-card questions outside of game situations is difficult, however.

My stats-savvy uncle, Uncle Frank, knows this. Sometimes, Uncle Frank uses his knowledge of statistics
for evil, not good, | am sorry to say, and he has perfected a group of bar bets using decks of playing cards,
which he claims helped pay his way through graduate school. I'll share them with you only for the purpose
of ing certain basic istical principles. | trust that you will use your newfound knowledge to
entertain others, fight crime, or win inexpensive nonalcoholic beverages.

GettingaLi’l Flush

In poker, a flush is five cards, all of the same suit. For my Uncle Frank, though, there is seldom time to
deal out complete poker hands before he is asked to leave whatever establishment he is in. Consequently,
Uncle Frank often makes wagers based on what he calls li’l flushes.

Thebet

Alittle flush (oops, sorry; | mean Il flush) is any two cards of the same suit. Frank has a wager that he
almost always wins that has to do with finding two cards of the same suit in your hand. Again, because of
time constraints, his poker hands have only four cards, not five.

The wager is that you deal me four cards out of a random deck, and | will get at least two cards of the
same suit. While this might not seem too likely, it is actually much less likely that there would be four
cards of all different suits. | figure the chance of getting four different suits in a four-card hand is about 11
percent. So, the likelihood of getting a Ii'l flush is about 89 percent!

Why it works

There are a variety of ways to calculate playing-card hand probabilities. For this bar bet, | use a method
that counts the number of possible winning hand combinations and compares it to the total number of hand
combinations. This is the method used in "Play with Dice and Get Lucky" [Hack #43].

To think about how often four cards would represent four different suits, with no two-card flushes
amongst them, count the number of possible four-card hands. Imagine any first card (52 possibilities),
imagine that card combined with any remaining second card (52x51), add a third card (52x51x50) and a
fourth card (52x51x50x49), and you'll get a total of 6,497,400 different four-card hands.

Next, imagine the first two cards of a four-card hand. These will match only .2352 of the time (12 cards of
the same suit remain out of a 51-card deck). So, about one-and-a-half million four-card deals will find a
flush in the first two cards. They won't match another .7648 of the time. This leaves 4,968,601 hands with
two differently suited first two cards.

Of that number of hands, how many will not receive a third card that does not suit up with either of the
first two cards? There are 50 cards remaining, and 26 of those have suits that have not appeared yet. So,
26/50 (52 percent) of the time, the third card would not match either suit.

That leaves 2,583,673 hands that have three first cards that are all unsuited. Now, of that number, how
many will now draw a fourth card that is the fourth unrepresented suit? There are 13 out of 49 cards
remaining that represent that final fourth suit. 26.53 percent of the remaining hands will have that suit as
the fourth card, which computes to 685,464 four-card combinations with four different suits. 685,464
divided by the total number of possible hands is .1055 (685,464/6497400).

There’s your 11 percent chance of having four different suits in a four-card hand. Whew! By the way,
some super-genius-type could get the same proportion by using just the relevant proportions, which we
used along the way during our different counting steps, and not have to count at all:

Finding a Match with Two Decks of Cards

You have a deck of cards. | have a deck of cards. They are both shuffled (or, perhaps, souffi\x8e d, as my
spell check suggested | meant to say). If we dealt them out one at a time and went through both decks one
time, would they ever match? | mean, would they ever match exactly, with the exact same cardfor
example, us both turning up the Jack of Clubs at the same time?

The bet

Most people would say no, or at least that it would certainly happen occasionally, but not too frequently.
Astoundingly, not only will you often find at least one match when you pass through a pair of decks, but it
would be out of the ordinary not to. If you make this wager or conduct this experiment many times, you
will get at least one match on most occasions. In fact, you will not find a match only 36.4 percent of the
time!

Why it works

Here's how to think about this problem statistically. Because the decks are shuffled, one can assume that
any two cards that are flipped up represent a random sample from a theoretical population of cards (the
deck). The probability of a match for any given sample pair of cards can be calculated. Because you are
sampling 52 times, the chance of getting a match somewhere in those attempts increases as you sample
more and more pairs of cards. It is just like getting a 7 on a pair of dice: on any given roll, it is unlikely,
but across many rolls, it becomes more likely.

To calculate the probability of hitting the outcome one wishes across a series of outcomes, the math is
actually easier if one calculates the chances of not getting the outcome and multiplying across attempts.
For any given card, there is a 1 out of 52 chance that the card in the other deck is an exact match. The
chances of that not happening are 51 out of 52, or .9808.

You are trying to make a match more than once, though; you are trying 52 times. The probability of not
getting a match across 52 attempts, then, is .9808 multiplied by itself 52 times. For you math types, that's
.98082,

Wait a second and I'll calculate that in my head (.9808 times .9808 times .9808 and so on for 52 times
is...about...0.3643). OK, so the chance that it won't happen is .3643. To get the chance that it will happen,
we subtract that number from 1 and get .6357.

You'll find at least one match between two decks about two-thirds of the time! Remarkable. Go forth and
win that free lemonade.







Hack 43. Play with Dice and Get L ucky

i

Here are some honest wagers using honest dice. Just because you aren't cheating, though, doesn’t mean
you won't win.

Itis an that icians are gl gi nerds who never have a
beer with the gang. This is such an absurd belief, that just thinking about it last Saturday and Sunday at my
weekly Dungeons & Dragons gathering, | laughed so hard that my monocle almost landed in my sherry.

The truth is that displaying knowledge of simple probabilities in a bar can be quite entertaining for the
patrons and make you the life of the party. At least, that's what happens according to my Uncle Frank,
who for years has used his stats skills to win free drinks and pickled eggs (or whatever those things are in
that big jar that are always displayed in the bars | see on TV)

Here are a few ways to win a bet using any fair pair of dice.

Distribution of Dice Outcomes

First, let's get acquainted with the possibilities of two dice rolled once. You'll recall that most dice have
six sides (my fantasy role-playing friends and | call these six-sided dice) and that the values range from 1
to 6 on each cube.

Calculating the possible outcomes is a matter of listing and counting[fiem. Fidure 4-2 shows all possible
outcomes for rolling two dice.

Figure 4-2. Possible outcomes for two dice
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This distribution results in the frequencies showfn_in Table] 4-15.

Table Frequency of outcomes for rolling two dice

Total roll Chances Frequency

2.8 percent

5.6 percent

8.3 percent

11.1 percent

13.9 percent

16.7 percent

13.9 percent

©[w [~ oo ]& o]~

11.1 percent

10
11
12
Total number of possible outcomes 36 100 percent

The game of craps, of course, is based entirely on these expected frequencies. Some interesting wagers
might come to mind as you look at this frequency distribution. For example, while a 7 is the most common
roll and many people know this, it is only slightly more likely to come up than a 6 or 8.

8.3 percent

5.6 percent

RN w s ]|o]o o] ]|w |~ ]e

2.8 percent

In fact, if you didn't have to be specific, you could wager that a 6 or an 8 will come up before a 7 does. Of
all totals that could be showing when those dice are done rolling, more than one-fourth of the time (about
28 percent) the dice will total 6 or 8. This is substantially more likely than a 7, which comes up only
one-sixth of the time.

Bar Betswith Dice

My Uncle Frank used to bet any dull-witted patron that he would roll a 5 or a 9 before the patron rolled a
7./Uncle Frank won 8 out of 14 times.

Sometimes, old Frankie would wager that on any one roll of a pair of dice, there would be a 6 or a 1
showing. Though, at first thought, there would seem to be at least a less than 50 percent chance of this
happening, the truth is that a 1 or 6 will be showing about 56 percent of the time. This is the same
probability for any two different numbers, by the way, so you could use an attractive stranger's birthday to
pick the digits and maybe start a conversation, which could lead to marriage, children, or both

If you are more honest than my Uncle Frank (and there is a 98 percent chance that you are), here are some:
even-money bets with dice. The outcomes in column A are equally as likely to occur as the outcomes in
column B:

<la>
A B
2o0r12 3
2,3 0r4 7
56,017 8,9,10, 11, or 12

The odds are even for either outcome.

Why It Works
For the bets presented in this hack, here are the calculations demonstrating the probability of winning:
Wager Number of winning outcomes | Calculation | Resultingproportion
5 or 9 versus 7 8 versus 6 8/14 571
1 or 6 showing 20 20/36 556
20r 12 versus 3 2 versus 2 2/4 500
2,3 or 4 versus 7 6 versus 6 6112 500
5,6 or 7 versus 8 or higher| 15 versus 15 15/30 500

The "Wager" column presents the two competing outcomes (€.g., will a 5 or 9 come up before a 72). The
“Number of winning outcomes" column indicates number of different dice rolls that would result in either
side of the wager (e.g.. 8 chances of getting a 5 or 9 versus only 6 chances of getting a 7). The "Resulting
proportion” column indicates your chances of winning.

You can win two different ways with these sorts of bets. If it is an even-money bet, you can wager less
than your opponent and still make a profit in the long run. He won't know the odds are even. If chance
favors you, though, consider offering your target a slightly better payoff, or pick the outcome that i likely
to come up more often.






Hack 44. Sharpen Your Card-Sharping

§EH

In Texas Hold"Em and other poker games, there are a few basic preliminary skills and a bit of basic
knowledge about probability that will immediately push you from absolute beginner to the more
comfortable level of knowing just enough to get into trouble as a card sharp.

The professional Texas Hold "Em poker players who appear on television are different from you and me in
just a couple of important ways. (Well, they likely differ from you in just a couple of important ways; they
differ from me in so many important ways that even my computer brain can't count that high.) Here are
two areas of poker playing that they have mastered:

Knowing the rough probability of hitting the cards they want at different stages in a hand (in the flop,
on the river, and so on)

Quickly identifying the possible better hands that could be held by other players

This hack presents some tips and tools for moving from novice to semi-pro. These are some simple hunks
of knowledge and quick rules of thumb for making decisions. Like the other poker hacks in this book, they
provide strategy tips based purely on statistical probabilities, which assume a random distribution of cards
in a standard 52-card deck.

Improving Your Hand

Half the time, you will get a pair or better in Texas Hold 'Em. I'l repeat that because it is so important in
understanding the game. Half the time (a little under 52 percent actually), if you stay in long enough to see
seven cards (your two cards plus all five community cards), you will have at least one pair. It might have
been in your hand (a pocket or wired pair), it might be made up of one card in your hand and one from the
community cards, or your pair might be entirely in the community cards for everyone to claim.

If for the majority of the time the average player will have a pair when dealt seven cards, then sticking
around until the end with a low pair means you areonly statistically speaking, of courselikely to lose. In
other words, there is a greater than 50 percent chance that the other player has at least a pair, and that pair
will probably be 8s or higher (only six out of thirteen pairs are 7s or lower.)

Knowing how common pairs are explains why Aces are so highly valued. Much of the time, heads-up
battles come down to a battle of pair versus pair. Another good proportion of the time, the Ace plays an
important role as a kicker o tiebreaker. Aces are good to have, and it's all because of the odds.

Probabilities

Decisions about staying in or raising your bet in an attempt to lower the number of opponents you have to
beat can be made more wisely if you know some of the common probabilities for some of the commonly
hoped-for outcomef. Table 4}16 presents the probability of drawing a card that helps you at various stages
in a hand. The probabilities are calculated based on how many cards are left in the deck, how many
different cards will help you (your outs), and how many more cards will be drawn from the deck. For
example, if you have an Ace-King and hope to pair up, there are six cards that can make that happen; in
other words, you have six outs. If you have only an Ace high but hope to find another Ace, you have three
outs. If you have a pocket pair and hope to find a powerful third in the community cards, you have just

two outs.

Table Probability of improving your hand

Cards

leftto be | SX | Three Two outs
outs outs
dealt
5
49
(before 19 percent
the flop) | Pereent| percent|
2 (after |24 12 & percent
the flop) | percent| percent| © P*
4 percent

3

The situations described here assume you have already been dealt
cards. After all, in most poker games, the bet before the flop is
predetermined, so there are no decisions to be made. By the way, bdcause
you should probably back out of hands that did not amount to anythifg in
the flop, you'll want to know your chances of improving in the flop itsgf.

They are:

Remaining outs | Odds you'l hit a winning card in the flop
6 32 percent

3 17 percent

2 12 percent

Implications

Here are a few quick observations and implications to etch in your m{nd
based on the distribution describefin Table}4-16.

Half the time, you will pair up. This is true for high cards, such as Big
Slick (Ace-King) or low cards, such as 2-7. You can even pick from the
two cards you have and pair that one up 28 percent of the time.
Implication: when low on chips in tournament play, go all-n as soon
you get that Ace.

I you don't hit the third card, you need to turn a pair into a set (three fof a
kind) on the flop, and there is only an 8 percent chance you will hit it
down the road. Implication: don't spend too much money waiting arofind
1(after [13 |7 for your low pair to turn into a gangbuster hand.
the turn) | percent| percent|
Your Ace-King or Ace-Queen that looked pretty good before the flop
diminishes in potential as more cards are revealed without paiing up{ o
getting straight draws. 87 out of 100 times, that great starting hand
remains a measly high-card-only hand if you haven't hit before the riyes
Implication: stay in with the unfulfiled dream that is Ace-King only if you
can do so cheaply.

Reading the Community Cards in a Flash

Here are some common-sense statements about your opponents’ hgnds
that must be true but aren't always said out loud:

If the community cards do not Your opponent(s) cannot
have...

A pair Four of a kind

A pair Afull house

Three cards of the same suit Aflush

Three cards within a five-card range A straight

You can make quicker decisions about what your opponents might hfve
by learning these rules. Then, you can automatically rule out killer hajnds
when the situation is such that they are impossible. You may not be
worried about speed, but you can spend your time concentrating on fnore
important decisions if you don't have to waste mental energy figuring
these things out from scratch each time.

e o |






Hack 45. Amaze Y our 23 Closest Friends

i
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Hack 46. Design Your Own Bar Bet

i

With a few calculations, and perhaps some spreadsheet software, you can figure the probabilties
associated with all sorts of "spontaneous" friendly wagers.

Several of the statistics hacks elsewhere in this chapter use decks of cards [Hack #42] or dice [Hack #43]
s props to demonstrate how some seemingly rare and unusual outcomes are fairly common. As someone
who's interested in educating the world on statistical principles, you no doubt wil wish to use these
teaching examples to impress and instruct others. Hey, if you happen to win a litle money along the way,
that's just one of the benefits of a teacher's life
But there’s no need to rely on the specific examples provided here, or even to carry cards and dice around
(though, knowing you the way I think | do, you might have plenty of other reasons to carry cards and dice
around). Here are a couple of basic principles you can use to make up your own bar bet with any known
distribution of data, such as the alphabet, numbers from 1 to 100, and 50 on:
Principle 1

An unlikely event increases in likeliood if there are repeated opportunities for it to occur.
Principle2

Ifthere are a large number of possible events, the chance of any specific event occurring seems small

‘The rest of this hack will show you how to use these principles to your advantage in your own
custom-made bar bets.

Principle

‘The probability of any given event occurring is equal to the number of outcomes, which equal the event
divided by the number of possible outcomes. For example, what are the chances that you and | were born
in the same month? Pretending for a second that births are distributed equally across all months, the
probabilty is 1/12. There is only one outcome that counts as a match (your birth month), and there are 12
possible outcomes (the 12 months of the year).

What about the probability that any one of two people reading this book has the same birth month as me?
Intuitively, that should be a bit more likely than 1 out of 12. The formula to figure this out is not quite as
simple as one would like, unfortunately. It is not 1/12 times itself, for example. That would produce a
smaller probability than we began with (i.e., 1/24). Nor is the formula 1/12 + 1/12. Though 2/12 seems to
have promise as the right answerbecause it is bigger than 1/12, indicating a greater likelinood than
beforethese sorts of probabiliies are not additive. To prove to yourself that simply adding the two
fractions together won't work, imagine that you had 12 people in the problem. The chance of finding a
match with my birth month among the 12 is obviously not 12/12, because that would guarantee a match,
The actual formula for computing the chances of an event occurring across multiple opportunities is based
on the notion of taking the proportional chance that an event will not happen and multiplying that
proportion by itself for each aditional “roll of the dice." At the conclusion of that process, subtracting the
result from 1.0 should give the chance that the event will happen.

This formula has a theoretical appeal because it is logically equivalent to the more intuitive methods (it
uses the same information). It s appealing mathematically, too, because the final estimate is bigger than
the value associated with a single occurrence, which is what our intuition believes ought to be the case.
‘Think about it this way: how many times will it not happen, and among those times, how many times will

it not happen on the next occurrence?

Here's the equation to compute the probabiliy that someone among two readers will have the same birth
month as | do;

Principle 2
o get someone to accept a wager of to amaze an audience with the occurrence of any given outcome, the
likelihood must sound smal. So, wagers or magic tricks having to do with the 365 days in a year, or the 52
cards in a deck, or al the possible phone numbers in a phone book are more effeciive and astounding
because those numbers seem big in comparison to the number of winning outcomes (e.g., one).
The chance of any unlikely event occurring on any single eventis indeed small, o the intuitive belief
expressed in this principle is correct. As we have seen, though, the chances of the event occurting
increases if you get more than one shot at it and it can increase rapicy.
Rolling Your Own Bar Bet
Let's walk through the steps that verfy my advantage for a couple of wagers | just made up.
Letters of thealphabet
For this wager, Il pick five letters of the alphabet. | bet that if | choose six people and ask them to
randomly pick any single leter, one or more of them will match one of my five leters. Here's how the bet
Number of possible choices
There are 26 letters in the alphabet.
Probabilityof a single atempt failing
There are 21 out of 26 possibilies that are not matches: 21/26 = .808.
Nurber of attempts.
6
Probabilityof all 6 attemys failing
8086 = 278
Probability of something other than the previous options occurring
1-278=722
“The chance of my winning this bet is 72 percent.
Pick anumber, any number
This time, 'l pick 10 numbers from 1 to 100. | bet that f | choose 10 people and ask them to randomly
pick any single number from 110 100, one or more of them will match one of my ten numbers. Here's
how this one works out:
Number of possile choices
There are 100 numbers to choose from,
Probabilityof a single atem failing
There are 90 out of 100 possibilies that are not matches: 90/100 = .90.
Number of atempis.
10
Probabilityof all 10 attenptsfailing
9010 = 349
Probability of something other than the previous options occurring
1-349= 651
“The chance of my winning this bet is 65 percent
On your own

Copy the steps and calculations just shown to develop your own original party tricks. None of these
demonstrations require any props, just a willing and honest volunteer.

Notice that the calculations are based on people randomly picking numbers. In reality, of course, people
will not pick a letter or number that they have just heard someone else pick. In other words, their choices
will not be independent of other choices. If the choices are made based on the knowledge that previous
answers are not correct, this helps your odds a litle bit. For example, on the 10-0ut-0f-100 numbers.
wager, if there is no chance that the 10 people will choose a number that has already been chosen, your
chances of getting a match go from 65 percent to 67 percent.

Make Surethe Sucker Isn't You!

Itis fun to play with others, but you never know when you will get caught in someone else's clever

statistics trap. For instance, remember that 1-out-of-12 chance that you have the same birth month as me? |
fooled you | was bon in February. There are fewer days in that month than the others, so your chances of
being bon in that month are actually less than 1 out of 12, There are 28.25 days in February (an
occasional February 29 accounts for the 25) and 365.25 days in the year (the occasional Leap Year
‘accounted for again). The chance that you were born in the same month as me is 28.25/365.25, or 7.73
percent, not the 8.33 percent that is 1 out of 12.

So, you are less likely to have the same birth month as me. Come to think of it, the records of my birth, my
birth certificate, and so on were lost in a fire many years ago. So, the original data about my birth is now
missing

For all | know, | might not even be born yet!

==






Hack 47. Go Crazy with Wild Cards
ack
i

Wild cards are added to a poker game to ratchet up the fun. Statistically, though, they make things all
discombobulated.

Hundreds of years ago, poker players settled on  rank order of hands and decided what would beat what.
Pleasantly, for the field of statistics, the order they settled on is a perfect match with the probabiliy that a
player will be dealt each hand. Presumably, the developers of poker rules either did the calculations or
referenced their own experience as to how frequently they saw each kind of hand in actual play. It also
possible that they took a deck of cards, paper and pencil, and a free afternoon, dealt themselves many
thousands of random poker hands, and collected the data. Whatever the method, the rank order of poker
hands is a perfect match with the relative scarcity of being dealt those particular combinations of cards.

Rank ordering, though, does not take into account the meaningful distance between one type of hand and
the type of hand ranked immediately below it. A straight flush, for example, is 16 times less likely to

oceur than the hand ranked immediately below it, which is four of a kind, while a flush is only half as

likely as a straight, the hand ranked immediately below a flush.

Before we talk about the problem with playing with wild cards (cards, often jokers, that can take on any
value the holder wishes), let's review the ranking of poker hinds. Table 4-17 shows the probability that a
given hand will occur in any random five cards, as well as each hand's relative rarity when compared to
the hand ranked just below it in the table.

Table Poker hands, probabilities, and comparisons

Hand Probability Relative rarity

Straight flush .000015 16 times less likely
Four of a kind 00024 5.8 times less likely
Full house 0014 1.4 times less likely
Flush 0019 2.1 times less likely
Straight 0039 4.4 times less likely
Three of a kind 021 2.3 times less likely
Two pair 048 8.8 times less likely
One pair 42 1.2 times less likely
Nothing .50

To gamblers, there are several observations of notelfrom Table 4-17. First, with five cards, half the time.
players have nothing. Almost half the time, a player has a pair. A player will have something better than a
pair only 8 percent of the time.

Second, some hands treated as if they are wildly different in rarity are almost equally likely to occur.
Notice that a flush and a full house occur with about the same frequency.

Finally, after three of a kind, the likelihood of a better hand occurring drops quickly. In fact, there are two
giant drops in probabilty: having either nothing or a pair occurs most of the time (92 percent), then two
pair or three of a kind occurs another 7 percent of the time, and something better than three of a kind is
seen less than 1 percent of the time.

The Problem with Wild Cards

This is all very interesting, but what does it have to do with the use of wild cards? Well, adding wild cards

to the deck screws up all of these time-tested probabiliies. Assuming that the holder of a wild card wishes
to make the best hand possible, and also assuming that one wild card, a joker, has been added to the deck,
shows the new probabilities, compared to the traditional ones.

Table Probability of poker handswith onewild card in the deck

Probability with wild Classic Changein probability with wild
card card

Hand probability

Five of a kind | .0000045 -

Straight flush | 000064 000015 +327 percent
Four of a kind| .0011 00024 +358 percent
Full house | 0023 0014 +64 percent
Flush 0027 0019 +42 percent
Straight 0072 0039 +85 percent
Thiecota | g o 4129 percent
Two pair 043 048 -10 percent
One pair 44 42 +5 percent
Nothing 45 50 -10 percent

‘The problem with wild cards is apparent as we look at the new probabiliies, especially when we look at
three of a kind and two pair. Three of a kind is now more common than two pair!

“The rank order that traditionally determines which hand beats what is no longer consistent with actual
probabilties. Addtionally, the chances of getting two pair actually drop when a wild card is added. Other
probabilties change, of course, with al the other playable hands becoming more likely. Some super
hands, while remaining rare, increase their frequency quite dramatically: hands better than three of a kind
are about twice as common as they were before.

Knowing these new probabilities gives smart poker players an edge. In fact, contrary to the stereotype that
experienced and professional poker players avoid games with wild cards because they are childish or for
amateurs, some informed players seek out these games because they believe they have the advantage over
your more naive types. (You know, those naive types, lie people who don't read Hacks books?)

Why It Works

As you can see {0 Table 4118, using wild cards lessens the chance of getting two pair. But why would this
be? Surely adding a wild card means that sometimes | can turn a one-pair hand into a two-pair hand. This
is true, but why would I? Imagine a player has one pair in her hand, and she gets a wild card as her fifth
card. Yes, she could match that wild card up with a singleton and call it a pair, declaring a hand with two
pairs. On the other hand, it would be smarter for her to match it up with the pair she already has and
declare three of a kind. Given the option between two pair and three of a kind, everyone would choose the
stronger hand

The Other Problem with Wild Cards

The existence of wild cards creates a paradox that drives game theorists crazy. The paradox works like
this:

1

‘The ranking of hands and their relative value in a poker game should be based on the frequency of
their occurrence. The less frequently occurring hand should be valued more than more commonly
occurring hands.

In the case of choosing whether to use a wild card to tum a hand into two pair o three of a kind,
players will usually choose to create three of a kind. This changes the frequency in practice such that
two pair becomes less common than three of a kind.

Because rankings should be based on probabilties, the rules of poker should be changed when wild
cards are in play to make two pair more valuable than three of a kind

With revised rankings, three of a kind would be worth less than two pair, so now smart players would
use their wild card to make two pair instead of three of kind, 50 two pair would quickly become more
common than three of a kind.

‘The ranking rules would then have to be changed again to match the actual frequencies resulting from
the previous rule change, and a never-ending cycle would begin

able -1 avoids this paradox by assuming that players want to make their best hand based on traditional
rankings. Clever of me, huh? Want to play cards?

==






Hack 48. Never Trust an Honest Coin

i

Of all that is sacred in the often secular world of statistics, no concept has more faith than the honest spin
of an honest coin. Fifty percent chance of either heads or tails, right? The troubling answer is,
apparently...no!

A basic explanation of chance and how it operates almost always includes a simple example of flipping or
spinning a coin. "Heads you win; tails | win" is the customary method for settling a variety of disputes,
and the binomial distribution [Hack #66] is usually described and taught as the pattern of random coin
outcomes.

But as it turs out, if you spin a coin, especially a brand-new coin, it might land tails up more often than
heads up.

Shiny New Pennies

‘You know the look and feel of a brand-new, mint-condition penny? It's so bright that it looks fake. It's so
detailed and sharp around the edges that you have to be careful not to cut yourself.

Well, get yourself one of them bright, sharp little fellas and spin it 100 times or so. Collect data on the
heads-or-tails results, and prepare to be amazed because tails is likely to come up more than 50 times. If
our understanding of the fairness of coins is correct, a coin should come up tails more than half the time
less than half the time. (Say that last sentence out loud and it makes more sense.) Not with the spin of a
new penny, though.

New coins, at least new pennies, tend to have a crisp edge that actually is a bit longer or taller on the tail's
side (the tail side is imprinted a little deeper into the penny than the heaff side). Figure 4-4 gives a sense of
how this edge looks. If you spin an object shaped like this, there is a tendency for the side with the extra
long edge to land face-up.

Figure 4-4. Spinning a new penny

Imagine spinning the cap from a bottle of beer or soda pop. Not only would it not spin so well, but you
also wouldn't be surprised to see it land with the edge side up. A new penny is shaped kind of like a bottle
cap, just not quite so asymmetrical. The little extra edge, though, is enough over many spins to give tails
the advantage.

Binomial Expectations

The possible existence of a bottle-cap effect presents a testable hypothesis:

The probability of a freshly minted spinning penny landing with tails up is greater than 50 percent.

Of course, just by chance, over a few flips we might find a coin landing tails up more often than heads, but
that wouldn't really prove anything. We know that chance will bring results in small samples that don't
represent the nature of the population from which the samples were drawn.

Our sample of coin spins should represent a population of infinite coin spins. If we spin a coin 100 times
and find 51 tails, is that evidence for our Probably not; chance could be the

explanation for a proportion other than .50. How about 52 tails? How about 52 percent tails and a million
spins?

Statistics comes to the rescue once again and provides a standard by which to judge the outcome of our
experiment. We know from the binomial distribution that 100 spins of a theoretically fair coin (one
without the unbalanced edge weirdness) will produce 51 or more tails 42 percent of the time. Old-school
statistical procedures require that an outcome must have a 5 percent or lower chance of occurring to be
treated as statistically significantnot likely to have occurred by chance. So, we probably wouldn't accept
51 percent after 100 spins as acceptable support for the hypothesis.

On the other hand, if we spun that hard-working coin 6,774 times and got 51 percent tails, that would
happen by chance only 5 percent of the time. Our level of significance for that resuf(is-05. Table 4-19
shows the likelihood of getting a certain proportion of tails just by chance, when the expected outcome is
50 percent tails. Deviations from this expected proportion that are statistically significant can be treated as
evidence of support for our hypothesis.

Table Coin spinsand probability of certain outcomes

Number of spins | Proportion of tails Probability of the given proportion or higher
100 51 42
100 55 .16
100 58 .05
500 51 33
500 55 .01
500 58 .0002
1,000 51 26
1,000 55 .001
1,000 58 .0000002

Notice that the power of this analysis really increases as the sample size gets big [Hack #8]. You need
only a slight fluctuation from the expected to support your hypothesis if you spin that coin 500 or 1,000
times. With 100 spins, you need to see a proportion of tails at or above .58 to believe that there really is an
advantage for tails with a newly minted penny.

The distance of the observed proportion from the expected proportion is expressed as[a z sdore [Hack
#26]. Here's the equation that produces z scores and generated th¢ data in Tible 4-19:

The probability assigned is the area under the normal curve, which remains above that z score.
Where It Doesn’t Work

Once you prove to yourself that this tail advantage is real, heed this reminder before you go running off to
win all sorts of crazy wagers. You must spin the coin! Don't flip it. Say it with me: spin, don't flip.

SeeAlso
.
The term bottle-cap effect was onan web page that includes a nice discussion
of the extra-tall edge on penny tails. It is by Dr. Gary Ramseyer at

icramsey/< /3>.



http://www.ilstu.edu/~gcramsey/




Hack 49. Know Your Limit

it

Humans don' ah when

o expected paya could o nuge and the odds a . The St Petersbur Paradox gives a exampl of a
perfectly fair gambling game that perfectly healhy statisticians probably wouldn' play, ust because they
happen to be human.

ayoft for a ‘and the cost to play, ikely to break
e o vater et make & oo money. Theig o ot rodce oz o ssica analyses of
gambig a abou when  person shoud and shoultplay,the psychology of e human min

The Game of . Petershurg

‘The game of St Petersburg is about 300 years old. The parameters of the game were described by Daniel
Bernoulliin 1738 Here are the rules:

1

You pay me afee to play upfront
Filp a coin. If it comes up heads, you win and 1l pay you $2.
ifit doesn't come up heads, we'l fip again. f heads comes up that time, Il pay /(4.

‘Supposing heads siil hasn't come up, we fip again. Heads on this third i, and | paj (8).2

o far, it sounds pretty good and more than fair or you. But it gets better. We keep fipping uni heads
comes up. When it eventually arrives, | pay you $2n, where n s the number of lips it 00k (o et heads.

Great game, at east fom your perspecive. But ere' the kil queston: how much wouldyou pay
play?

gemblng gamen e sreets of o ime Russe bt s beanused a3 8

The game of St. Petersburg might not really have ever existed as a popular
oney is

involve
Esgece oueames" ke m o hoads. The paper wa acsly PubIonc, by
the way, by St. Petersburg Academy, thus the name.

Deciding youwould
oy py Ay se ar 53 Ev wihot h o b payoff possibilties, betting you will get
heads on a cain flip and getting paid more than the cost of playing is clearly a great bet, and you'd go for it
inashot.

‘You also probably would gladly pay a full $2. You willwin the $2 back haif the time, and the other half of
the time you will get much more than that! This is a game you are guaranteed to win eventualy, 50 its not
the frst time, yt ¥

0. When
back, and possibly morepossibly much more.

maybe you'd pay $4 o play. Of course, occasionally, your payoff would be really big moneyS8, $16,
S meoreheaty. e paylf couls e o o i Bk mew mch ot Yo pay? Thors e
4dollar question.

Statistical Analysis

rchers fou
o, mayhe s e more. Few would pay much more. What abot SAISICal, (houghs Wha s he most |
you should pay?

Well, this is where | inmy Stats

You T coneekanswet T les o1 bopdbity a5 oy et 1 Guming et peole sho ly
this game at any cost. Yes, a statstician would tell you to play this game for any price! As long as the cost
s something shortof nfiity, this s, theoretically, a good wager.

Lets figure this out. Here's the payolt for the first six coin flips:

Flips | _Likeiinood Proportion of games Winnings

1 Loutof2 50 s2 s1
2 Toutofa 2 s st
3 Loutofs 125 58 s1
4 Loutof1s | 0625 516 s1
5 1 outof 32 03125 532 51
3 Toutof 64 015625 s64 st

money average across all
For a singe fip, for heads, youwin
52, for the other possibily, tails, you get $0. The average payoutis S1, the

expeciet payaft for one cin i (and, 1 s ot or any farmber e flps).

1f you play this game 64 tmes, coin fip just once,
those 64 times 52, The average p buck. Occasionally, though,
avery longtme, . you alot of money.
. you have no idea g twil go and K could b very long indeed (a ot ke

aPeter Jackson fiim).

Notice a few things about this series of fips and how the chances drop at the same rate as the winnings go
up:

Only six coin fips are shown. Theoretically, the fipping could go on forever, though, and no head
might ever come up.

Wi each o i, the winings amount contines todouble and the proporton ofgames where tat
number of fips would be reached continues to be cut in hal

The Propoton of games” courin never adds 0 0.1 100 percert, because hee s aays some
‘o mater how very small, that one mre fip will be needied.
m decision rule among us Stats Fan Club members for whether to play a gambling game is whether the
playing. Expe calculated by adding up the

expectes payortTor all possile outcomes.

ou'lecal that e expected paylf o each possive il s 1. There are an nfnterumber ofposse
coin could just keep fipping forever. To get the expected value, we sur

e soosof S and go  noge ol T expeced el o o garme & e dolars Sees You

shouid play any game where the cost of playing is less than the expected value, you should play this game

for any amount of money less than infiny.

Why It Does't Work

Of course, i real Ife, people won't pay much more than $2 for such a game, even f they knew all the.
statsics No on realy Knows o s why smart peope um thir Noses Up atpaying ery much money
for such a prospect, but here are some thet

Infiniteisalot

Evenif you accept in spirt that the game is fair over the long run and would occasionally pay off really

b fyou played t many,marytmes, hat Tong ur s nfinteylong,which s an awfly ong me,
deep enough

domands such a large fee
Decreasing marginal utility
The rginstor of the prolem, Bermoull, blleved ha pcpleperie maney s valiatl, bt the

y. In other words, sbenariun
is relative value

having $8,
compared to $64.

. at some point, the infiite doubling of money stops being equally meaningiul as a prize. Bernoull also
believed that it you have a ot of money, a small wager is less meaningfulthan ifyou have very litle
‘money. (Kind of light their bils)

Risk versusreward

Humans e 1o b ik ver. Tha s, they wil occasinaly sk someting i exhange o 8 rewar, bt
they want that risk to be fairy close to the chan . ILis true that the game of St Petersburg has
& Chance for & masshve reward, bt the chancs m\gm e Soom s oo e compared 10 a sk of even S

Infinity doesn't exist
Some prilosopterswout rve htpeple ot accenth conceptof iy s corete ey, Any
be

sales pitch
Compéling

“This might be why | don't buy lottery tickets. | don't play the lottery because my odds of winning are.
increased only slightly by actualy playing. In my mind, the odds of me winning are infintely small, o
close enough o it that | don' reat the possibily of winning as real.

SeeAlso

*Gamble Smart”[Hack #35]

A very interesting and thoughiful discussion of the St. Petersburg Paradox s i the Stanford
Encyclopedia of Philosophy. The online entry can be found at
T Tpalo STanTord eduientiesTparadox-Sipeter}ourg.


http://plato.stanford.edu/entries/paradox-stpetersburg

| @ PREV
Chapter 5. Playing Games

Hacks 50-< a class="docLink"
href="1-0596101643-CHP-5-SECT-11.html#1-0596101643-CHP-5-SECT-11">60

Games don’t have to involve gambling to involve statistics. Y ou can use knowledge of game-specific
probabilitiesto win on TV game shows [Hack #50], at Monopoly [Hack #51], or when coaching afootball
team [Hack #58].

The most common place you see statisticsin your everyday lifeis probably in the world of sports, though
the word "statistics" isn’t really used the same way a stat-hacker usesit. Sports fans tend to think of the
data as the statistic. Regardless, there are plenty of hacks that can help you predict the outcome of a game
beforeit is over [Hack #56] or even begun [Hack #55].

Since history is always our best guide to the future, your best predictions will require various waysto
track, visualize [Hack #57], and rank [Hack #59] the performance of teams and players.

Of course, if you have the heart of atrue statistics hacker, then you think that some statistical gamessuch
as building alearning computer out of coconuts [Hack #52], doing card tricks through the mail [Hack
#53], keeping your iPod honest [Hack #54], or estimating the value of pi purely by chance [Hack #60]are
fun all by themselves.
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Hack 50. Avoid the Zonk

i

On the TV game show Let's Make a Deal, contestants often had to choose between three curtains. For
these sorts of situations, there is a statistical strategy that will help you to win the Buick instead of the
lietime supply of Rice-A-Roni.

Imagine, if you will, that you are traveling with your Uncle Frank through an uncharted region of
‘Tonganoxie, Kansas. You come to a fork in the road that branches out into three possible paths: A, B, and
C. You don't know which will lead you to your destination, the fabled world's largest bal of twine (in
Cawker City, Kansas). An old prospector is resting with his burro at the crossroads.

*Say, old timer." you say, “which road leads to the world's largest ball of twine?"

"Well," says he, "I know, but | won't tell you. What | will do, though, is tell you that one road is the
correct road. Two are wrong and lead to certain disaster (or at least poorly maintained restrooms). Go
ahead and take your pick, city slicker. As you drive off, look back at me. | won't signal whether you are
right or wrong, but | will point at one of the other two roads. The one I point at wil be a wrong road. You
stil won't know for sure whether you guessed right or not, of course, but | guarantee that I'l point at one
of the two roads you are not on and it will be a wrong road.”

You accept the strange man's offer (what choice do you really have?) and you ask Uncle Frank, the
experienced gambler among you, to pick a road. He does so randomly and you head off optimistically
down one of the three pathslet's say A. As you look back, the kindly prospector points to one of the other
roadslet's say B. Immediately, you slam on the brakes and back the car up. Over the objections of Uncle
Frank, you head down the remaining road, C, with the peddle to the metal, fairly confident that you are
now on the right path.

Crazy, are you? Suffering from white-line fever? No, you've just applied the statistical solution to what is
known as the Monty Hall problem and chosen the road among the three that has the greatest chance of
being correct. Hard to believe? Read on, my friend, and prepare to win riches beyond your wildest dreams.

The best strategy in this case is so counterintuitive and downright weird that the world's smartest people
have disagreed aggressively about whether it even really is the best strategy. But believe meit is.

TheMonty Hall Problem and Game Show Strategy

In our example with the three roads and the prospector, there is, in fact, a two-thirds (about 67 percent)
change that C is the correct road. To apply this odd strategy to a more realistic situation, think of
contestants on game shows or gamblers in any game in which prizes are hidden in boxes or behind doors.
As typically discussed among game show theorists and cranky statisticians, the problem is presented as a
fairly common actual situation on the game show Let's Make a Deal (which had its heyday in the 1960s.
and 1970s), but itis a situation still seen today in TV game shows. The host of Let's Make a Deal was
Monty Hall, 5o the problem carries his name.

As a game show scenario, the problem goes like this. Monty presents to you three curtains. He knows
what is behind each curtain. He explains that behind one of the curtains is a brand-new car. The other two
curtains hide worthless prizes, what Monty used to call zonks. (Zonks were often something like a donkey
or a giant rocking chair, something that wouldn't be of any real use.) He lets you pick a curtain, and you
will win whatever is behind it. Let's say you pick curtain A. He then opens one of the unchosen curtains,
for exampleto show you that it has a zonk behind it. He then offers to let you trade your original choice for
the remaining curtain, C. Should you switch?

As with the three roads problem, the answer is yes, you should switch. The answer just never seems right
the first time one hears it. But, if you want to increase your odds of winning the car, you should now
switch,

Why You Should Always Switch

“Think of the probability of you guessing the correct curtain. Let's assume that it is a random guessnone of
this "I notice that one curtain moved, so | figured there was a donkey behind it* stuff

Three curtains, with only one curtain being a winner, means there is a 1 out of 3 chance that you will guess
right and win the car. That's about 33 percent. On that first guess, with no additional information, you are
likely to be wrong; in fact, you have a 2 out of 3 chance of being wrong. In other words, there is about a

67 percent chance that the car is somewhere behind the two curtains you did not pick.

Once you know that one of those other two curtains does not have the car, that doesn't change the original
probability that the car is 67 percent likely to be somewhere behind those two unselected curtains.
Remember, Monty will always have a wrong curtain he can open, no matter which one you choose. The
67 percent chance that the car is behind B or C remains true, even after B is revealed to not be hiding the
car. The 67 percent likelihood now transfers to curtain C. That's why you should always switch to the

other curtain

other two curtains, you'd switch in a second wouldn't you? That's essentially

If you were given the option of swapping your pick of one curtain for both the
g what i offered in the Monty Hall problem.

Some figures might be necessary to persuade your inner skeptic. (60K at Thble 5-1, which shows the
probability breakdown for the three options at the start of the game. You have a one-third chance of
guessing the winning curtain and a two-thirds chance of picking a nonwinning curtain

Table Probability of car'slocation at start of game

[ Curtain A [ Curtain B [ Curtain C |

33.33 percent | 3333 percent | s3.33 percent |

Shows the same probabiliies grouped in a different way, but it hasn't changed any of the
parameters of the problem.

Table Restated probability of car’slocation at start of game

[ Curtain A | Curtain B or Curtain C |
3333 percent | 66.66 percent |

[Table 5-} shows the probabilties after Monty reveals one of the nonchosen curtains (Curtain B) to be a
nonwinner. The 67 percent likelihood now transfers to curtain

Table Probability of car'slocation after curtain B is opened

[ Curtain A [ Curtain B [ CurtainC |

[33.33 percent | 0.00 percent | 66.66 percent |

In any situation like this, you should switch. You might be wrong, of course, but you have a better shot of
winning that car or whatever other prize you are playing for if you accept any offers to switch. This is
always the best strategy, if a few criteria are met

‘The host knows what is behind each curtain,

The host reveals one of the unchosen curtains and the prize is not behind it.

Your original choice was random.

The Controversy

The Monty Hall problem and the general game show strategy that resulted was first
introduced to the masses in 1991 by Marilyn Vos Savant, a columnist for Parade Maggzine.
Because she is known for being a “high IQ genius,” Vos Savant answered questions fi
readers, sometimes of a brain teaser nature. Someone sent in the problem as I've destribed it,
and she published the answer | have given here.

E

Apparently, she received many letters, some angry, from statisticians, philosophers, aid such
claiming that she got it wrong. I scholarly journals, there were even published debateks about
whether her answer was correct. My read of the debate is that it turned out that most df the
arguments centered on a key ingredient of the question: Monty knows what is behind ¢ach
door, 0 when he opens that first curtain, he knows it will be a zonk. Otherwise, the reyeal
does not count as new information and the answer Vos Savant gave does become debatable.
Most of the critics of her answer missed that part of the original published question.

Don't be too concerned if the correctness of this solution isn't immediately apparent. Really smart people
often first view the new odds as being 50/50 between the two unopened curtains and, therefore, it doesn't
matter if you switch. The key to remember, though, is that your original chance of picking the correct
door, 33.3 percent, cannot change no matter what happens after you make your choice. Even experts
sometimes disagree aboLt the best way to view this question. Even people as wise as the old prospector
you met out in Tonganoxie that started our discussion don't always know the right answer to the Monty
Hall problem. How do you think he won that burro?

==






Hack 51. Pass Go, Collect $200, Win the Game

i

Monopoly is a game of chance (and Chance cards). As such, the best strategies for winning capitalize on
probabiliy.

Wiring the popul PaterGrthees boar gene Maropoy rires asqosting ki, cevr morey
. and insightful inve It bit of luck.

As two six-sided dice (and a randomly shuffled pile of cards) are the primary determinants for deciding
what square you land on, luck pays more than just a smallrole n the outcome. Competitve statisticians
such as you and me (or, at least, me) are drawn to any game in which probabillty plays a key part because,
by abphig a few robabiy basics, we should win more often than your average, run-ofhe-mil railfoad

Monopoly Statistical Basics

Let's start by examining the simpl effects of rolling two. 5-1 shows the most common
Squares landed on in the first couple of tuns for everyone.

Figure5-1. Likely openingrolls.
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Imagine the start of the game, when everybody is on Go. With two six-sided dice, there s a 44.5 percent
chance that a 6, 7, or 8 will be rolled, with 7 as the most likely outcome (16.7 percent). For your first two
dice rols, then, some squares are more likely o be hit (e.g., the light blues and Virginia Avenue) and
‘some less likely (Baltic Avenue or Income Tax). Based on opening dice rolls alone, not all squares are
equally likely to be landed on.

because a dice rol of 1 is not possible with two dice. Have you ever noticed that

Poor Mediterranean Avenue cannot even be landed on when starting at Go,
itis almost always one of the last properties still available for purchase?

The Go square is a good starting point to begin calculating the various likelihoods for landing. Not only
does everyone sat e a the egiing, but ere i also a Crance cad hat sencsplayers there. On he
other hand, if a player hits the "Go to Jail” space, she goes directly o jal, bypassing Go. So,

probabilty for landing on Go s affected by not just the possible permutations of dice rolls, oo

Various Chance car, which send payers various places, and i e of the came s, which nclude
squares that make things happen, going to jailsituations, and getting out of jail stuations

Key Properties

I've been using Go as an example square, but, of course, Go isn't even a square we can purchase. What we
really want to know is what properties to buy or trade for and where to build first. We want high traffic

areas; the secret 1o real estate success is "location, location, location” (and, apparently, for some reason
I've never understood, a nice wooden deck).

J shows the top 20 most landed-upon squares, taking all rules into account. The table also shows

e chance that & player willCome o fest on any one of hose sauares. Keep in mind that an “average-
‘square has a 2.5 percent chance of being your final resting place (40 squares divided by 100 s 2.5).

Table Best real estatein all of Atlantic City

Square Rank Chanceof ending your turn on it
Jai 1 1160 percent
Hinois Avenue 2 2.99 percent
Go 3 2,91 percent
8 & 0 Rairoad a 2.89 percent
Free Parking 5 2,83 percent
Tennessee Avenue 6 282 percent
New York Avenue 7 2,81 percent
Reading Railroad 8 2.80 percent
St. James Place 9 2,68 percent
Water Works 10 2,65 percent
Pennsylvania Avenue u 2,64 percent
Kentucky Avenue 12 2,61 percent
Electric Company. 13 2,61 percent
Indiana Avenue 14 2,56 percent
St. Charles Place 15 2.56 percent
Atantic Avenue 16 2,54 percent
Pacific Avenue 7 2.52 percent
Ventnor Avenue 18 2:52 percent
Boardwalk 19 2.48 percent
North Carolina Avenue 20 2.47 percent

is derived from information provided by Truman Collins on his web sie at

Kes-collins comltruman/monopolyfmonopoly.shtml. Clever Mr. Coliins developed both
pmhawxy rees and a computer simulation 1o verify these values, and offers them for two siuations:
when players wish to remain in jail as long as possible (to eam rent and not have to pay rent) and when
they wish to get out of jail as quickly as possible (1o buy sill available properlies). | reported the values
that apply to the former strategy.

You can draw some important tactical conclusions from this data:
Capitalize on thefailbirds

A remarkable 12 percent of the time, your opponent will begin a turn on the Jail square. Clearly,
owning and developing the land that recenty released parolees are most ikely to land upon s a wise
goal. This amounts o the orange propertes (St. James and his brothers) and, (o a lesser extent, the.
reds (e.g.. linois Avenue) and the purples (St. Charles and friends).

Own the oranges

Al three orange properties are in the top 10. About 1 out of every 12 rolls will result in a hit on
Tennessee r New Yrk Avenueor S, Jomes Placs. Geting the moncpoly wilhise poperses and
developing quickly would seem to be the strategy that a pure statistician would choos

Avoid the far side

Properties on the far side of the boardthe greens, Boardwalk, and Park Placeare less likely to be
landed upon, even deep into the game. Only Boardwalk and Pacific Avenue rank high, and
Boardwalk is there, no doubt, because there is a Chance card that sends players there. These
properties are also the most expensive to develop, o including these monopolies prominently in
one's game plan is a bit isky.

Importance of the Monopoly Prison System

Without a statistical analysis, it might not be so clear the crucial fole that the Jail and "Go to Jail’ squares

play in the overall true value of real estate. One wishes it was for sale. Players will tart or end their turn
on the Jail square more often than they will land on any monopoly on the board. A constant stream of
released prisoners flood across one side of the board, increasing the opportunity to collect rents on
properties all the way up to llinois.

Jail can also provide a welcome respite from having to travel the streets paying rent o other players,
though early i the game, Jail can prevent you from buying p your dream properties. A final observation
on the importance of Jait there is only one square that you can never end your tur on. Can you name it?
Got0 Jall

SeeAlso
.
Bt Bt s ancther v st tht presans the procabilies ssccioed with Moroaly ot
rangobill comMorapaly hiiml. Among other things, the site hosts a discussion of the
e Slcaaton GHTeulies raalied when ane wianes o petuds every real-ife detail of

Monopoly play, such as keeping track of whether a particular Chance or Community Chest card has
been drawn already.

The basicformulafor caleuatng the probabity f fanding o a square (wih ol London, England,
gireet names in the example s preserted



http://www.tkcs-collins.com/truman/monopoly/monopoly.shtml
http://www.durangobill.com/Monopoly.html
http://hometown.aol.co.uk/monopolycheat/prob/method.html




Hack 52. Use Random Selection as Artificial Intelligence

i

‘Statisticians have been able to build intelligent, learning computers long before the advent of the.
microprocessor. You can use coconut shells and the laws of probability to build a machine that will leam
10 never lose a Tic-Tac-Toe.

‘A common joke about the 1960 TV show Gillgan's Island s that the Professor was always building
computers or wasFing machines orrocket shlps outof coconus and vines | con' know about wasting

ways have buit
Computers outof Socamevou can, 00. I you are ever suanded on a desen land and want &
companion, build one.

‘You won't need a volleyball like Tom Hanks's buddy in Castaway, and it won't have much personality,
but your computer will be able to play games with you, and it will even learn and get smarter. The driving
forces behind the learning algorithm are chance and the power of random selection.

Trial-and-Error Learning
According to behavioral s, all animals (including humant I
feam essently th same vay. Exnenence rosons stualons n which chaos load o oucomes. AS he

ml ecores feedback about he oucome, t adapts.If the utcome was posiive, th creaur s more
ity to make tre same Ghore n the future. 1 (e outcome was negatne, e creaute = loos ey 0
make tat hoice agan

Notice that there is no guarantee that a *good” behavior is always repeated or that a bad behavior becomes
extinct; it s only a matter of probabilty. The right decision is more liely to be made and the wrong

decision i less likely to be made. To make a machine that mimics the way that animals learn, we must
buid on this probability angle.

hof learning are easily interpreted
55 st 8 i) o negathve (s 053).ngemes, thefeecheck s oen immeclat,and stcies show

closeness in time between the choice and the feedback is a key factor in whether leaming has occurred.
nd learning, remember, is defined here as an increase in the likelihood of correct choices or a decrease in
the likelinood of incorrect choices.

Building a Tic-Tac-Toe Machine

Stuck on this island with no friends, you might want to fight boredor by playing games with a smart
opponent. Here are instructions for building a contraption that does not use any electricity or silicon, but
will play a game and provide decent competiton.

“This machine leas: the more times you play against it the better it will be. The game this machine plays
is Tic-Tac-Toe, but theoretically, you could build a device for any two-person strategy game using the.
‘same principles. Tic-Tac-Toe is simple enough that it demonstrates well the methods of design,
construction, and operation.

If the Professor on Gillgan's Island ever did build a computer out of coconuts, he was likely influenced by
the pioneering work of biologist Donald Michie and his matchboxes. Michie published an article in the.
very first issue of the Computer Journal in 1963, a few years before Gilligan and his pals were stranded on
their island. Michie describes how he designed and actually buit a nonelectric computer with the.

following complete list of parts:

287 matchboxes

Each matchbox has a litle drawer that can be opened. Michie labeled each matchbox with one of 287
different possible Tic-Tac-Toe configurations throughout a game. There are actually many more
possible positions, but because the standard Tic-Tac-Toe layout of three rows and three columns is
‘symmetical, four different unique positions can be summarized with just one position. At any point

in the game, the current layout of the "board" directs the human operator to the corresponding
matchbox.

‘Alarge supply of beads o nine different colors

‘The nine colors represent each of the nine different spaces on the Tic-Tac-Toe board. Each matchbox
begins with an equal supply of beads for each of the possible next moves. Only beads representing
legal moves are put in each box. Different positions and matchboxes, of course, correspond to only a
‘small set of legal next moves, so each box has a slighily different mixture of beads.

‘The Professor would have used coconut shells instead of matchboxes and sand pebbles o seeds (or
perhaps Mr. Howell's . which he never instead of beads. Gather
these supplies from your . organize the efficient
grouping, and you have your desertisland game-playing computer. Yes, you'l need to find 287 coconuts,
but do you have anything better to do?

Operating the Computer
To play a game of Tic-Tac-Toe against your pebble-powered PC, follow these instructions:
1

“The computer goes first. Find the coconut that is labeled with the current position. (For the first
move, itis a blank layout) Close your eyes and randomly draw out a pebble

Mark an X on your board (draw in the sand, Im assuming) in the space indicated by the color of the
pebble. Set the pebble aside in a safe place.

Make your move, marking an O in your chosen space.

‘There is a new position on me board now. Go to the corresponding coconut and randornly draw out a.
pebble from it. Retun to stef

Repeat steps 2 through 4 untilthere is a winner or a draw.

What happens next s the most important part because it results in the computer learning o play betier.
Behavioral psychologists callthis final stage reinforcement.

If the computer loses, by taking the pebbles that you drew randomly from the coconuts and

unish’
throwing them into the acean.

If the machine wins or draws the game, return the pebbles to the coconuts from which they came and
“reward" it by adding an additional pebble of the same color

Why It Works
“The process of rewarding or punishing the compuer essentially duplicates the process by which animals
leam. Posilive results lead to an increase in the likelihood of the rewarded behavior, while negative resuits
lead to a decrease in the likelinood of the punished behavior. By adding of removing pebbles, you are
literally increasing or decreasing the true probability of the machine making certain moves in the game.

Consider this stage of a game, where the computer, playing X, must make its move:

[x o x |

} } § } }

‘You probably recognize that the best mweveauy, the only. move | to consideris for the. cumpuler to b\wk
‘your impending win by putting its X in the bottom center space. The computer, thougt

. recognizes sev
possibilies. It considers any legal move. Two moves that it i consier (uich means. mevauy, et
o allow 0 b0 Grawn oty ot of he conont shell are he hest move and &

[x o [x [ Ix Jo [x |
I lo | 1 [o | |
[ x | [ K | | J

When thecomputar fet st playing the game, b these moues (o bahauors)aro el oy, Othar
moves are also possible in this situation, and they are also equally ikely. Th it probably
o resulina oss, t leest o Immecialey. 80 o3 pebbie representng tat mave a2 e acde o e

cocor ves. The move on the right
pmbamy ends n a loss (except against Giligan, maybe), 50 the nanes of ok e being selected next
time mathematically decreases, as there are fewer pebbles of that color to be randomly selected.

‘The probabilty of any given move being selected can be represented by this simple expression:

‘The machine begins with an equal number of pebbles or, in other words, an equal likelitood of any of a
variety of moves being chosen. Of course, some moves look foolish to our experienced game-playing eye
‘and would never be made in a real game except by the most naive of players. The point that behavioral
psychologists argue, though, is that all creatures are novices until they have built up a large pool of
experiences that have shaped the basic probabilies that they will engage in a behavior.

Hacking the Hack

‘There are several ways to modify your machine to make it smarter. For example, you can choose to reward
moves that lead to wins more than moves that lead to ties. This should produce a good player more.
quickly. Michie suggested three beads for a win and one bead for a te.

If you want to simulate the way animal learning occurs, you can adjust the system so that moves near the.
end of the game are more crucial than those made at the beginning. This is meant to mirror the observation
that reinforcement that comes closest i time to when the behavior occurs is most effective. In the case of
Tic-Tac-Toe, mistakes that lead to immediate losses should be dealt with and punished more effectively.

By having fewer total beads in use for moves late in the game, the learming will occur more quickly

An obvious upgrade is to make your computer smarter by not even allowing bad moves. Don't even place
pebbles representing moves that wil result in immediate defeat into your containers. This will Solve the
problem of your computers initial low intelligence, but it doesn't really reflect the way animals learn. So,
while this might make for a stronger competitor, the Professor would be disappointed in your lack of
scientic rigor.

==






Hack 53. Do Card Tricks Through the Mail

[liz3

Vou have never met.

1

Cutthe deck.

Cuthe deck again

.
Shuftethecards one moretime using arifle shufe,
s
Cuthe deck agein
6
wie it down,
7
Cutthe deck agai
s
Stufte agan
B
Cutone more tme.
10

Mal s dock back 0 the enlosed adares (a post ffce boxin Tonganoxie, Kansas, o some oher
place wifa name it conures up wonder and whimsy).

week atr,a smaller
and n ofe o precict your uture bt you st vow he offer away.)
mazing,yes? impossive,
than possie,
How It Works
thats qute
Shuffs
poker, spades, or brdge
otginaloveral order
but these princiles all aply 10 a full 52-carddeck.
Table Effect of prfect shuffing on card disribution

Becresute Aner
1 Ace of Cubs 1 Ace of s
2 Two of Cls 7. Seven of Cubs
3 Thvee of Ciubs 2 Two of Gubs
4 Fourol Cubs s Eigniol ciubs
5 Fie of i 3 Thvee of Cibs
5. Sixof Gl 9. Nine o Clobs
7. Seven of Ciubs 4 Four o Clubs
8 Exghiof Cibs 10 Tenof Cubs.
9. Nine o Cubs 5. Fve of s
10.Ten of Cubs 11 Jack of Civbs
1. Jack of it 5. Soxof Gl
12 Queen of Civbs 12 Queen of s

ey wil st be
Ll appeas out of place”
Sequences. Thi,of
5,
e deck e car:
belongs.
10 shufe

badly s human

might.unpredi

THE6 shows ons possile oucome of & more human, e perfct shffe,

Table Possible dfect of soppy shuffling on card ditibution

Bdcresutic
1 Ace of Cubs 1 Ace of Cubs

2 Two of Gl 7. Seven of ks
3 Thvee of Clus s Eignior ciubs

4 Fouror Cubs 2 Two of Cubs

5. Fve of Cls 3. Thvee of Ciobs

5 Sixof Gl 9. Nine of Clubs

7. Seven of Clobs 10, Tenof Cubs.

8 Exghtof Clbs. 5 Fe of s

9. Nine o Cubs. 4 Fourof s
10.Ten o Cubs 11 2ackof Clubs
11, Jack of Clubs & Sixof Gl

12 Quoen of Clubs 12 Quoen of Gubs
opportuniy.

which adds some sk 0 e tick.

uncerany, e bewiderment wil b even greater.

Probability of Success

described o ths magi k. (Presumably he faculy a these Insituons has a ot f fee me on s
pands?)

e
he ek works
prety e,

Table Chance f puling of the seemingly imposible:

[ o o | o | e s e s | e st |
[ 07 pocens |_559 e |_z65porco 0 poref_ 2o

2

00 porcers | 043 pocem | 67 porco 168 perm 3 peems

B Tio0percen | 005 prcen | 550 orceh 290 e 123 e
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ST 5  noces

e o
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ooy e i v
Swhm
e _—
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princioe (se6 e fofowing o bulles).

Willams, C.0. (1912). A cardreading  The Magican Monthy. 5, 7.

Jordan, €T, (19

16)
ich ihe efec deserbed n i hack & based.

“The Sphinx, 15, 57.







Hack 54. Check Your iPod's Honesty

i

Find out how random your iPod's 'random” shufe eally is.

pe Je. though .
s
£
] S
T
.

only one second in duration

o Jani
Pl mger et
Vo mormng.
Table Song seectiondsibution

Rancom saecio] Sased on ]
Song ] Taves paved Times payda
None [ 9105 o T0percen | 2052 35 porcon
f oo weepeen | oz 11 percent
P om0 w667 percen_| 8125 5. percent
B o e O
0 sa Tosspeen | 121 | z30pecen
s 1% e
Tom[saswr w0 pere | same 100 percent

e e

g pears o bt o 13 perent 02 pcan ot e e S, Mavn o
owt ot s ot rcen Whie
one s

Your iPod assumes that f you haven't provided a raing for a song, you must
wantto

9. a
Mmovie that hasn' been reviemed.

o Randon” bars i the
same height. The linear nature ofthe "Rating Biasedr bars can be Judged by imagining whether
there are equal Jumps in height a5 one moves fom a rating of 10 a rating of 5.

Figure 5-2. Patiems of song selection
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Calculating the Statistis of the Selection Process

selecion. 9up

“The chance of

by the
unes algorthim for each rating).

sampling run, here's the resuling expression.

five-sar  other songs.
distru ratng
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rating song
count,

‘Table Typical song rating distribution

‘Song raing Number of songs

None 72

p
2
B 1a12
0
5

11 run these hypor
e

looks like[Figare 5.

Figure 5-3. Probabilty distibution of song selection
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Explaining Statistical Surprises

buLAF1's Death of Seasons” was lsted twice in  fow three racks later.

1 use the “Play higher option,
3-starsongs,
i

I average
10 hours at work each day and averagé/a dninute song duration, odds say | should hear a
consecutve repeat i s than a month.

Many claim to il see patiers as iTunes rambles trough their music collection, bt he.
majority of

songs fnshes,
This can be.
calculated following this equation:
ts simp
See Also
Levy, Steven."Does Your Pod Play Favories " January 31, 2005
e e CorVERA TS e,
Hoffeth, Jerrod. “Using Party Shuffle i Tunes * Augusi 22, 2004
i T0lune om/ndex ST USTIG GarTy ST hunes!.
Brian Hansen
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Hack 55. Predict the Game Winners

i

“The information provided by correlations allows for predicting any outcome, especially sports. With
multiple regression techniques and a lttle Software, you can guess the winner before the game is played.
The trick i picking the right predictors.

The conventional use of correlations [Hack #11] is to find out how much two variables share in
commonor, more technically, how much variance is shared between the two variables.

information reflected in two variables. When lots of variance is shared,
prediction is easy and accurate because knowledge of one variable leads to
knowledge about a second. Shared variance is estimated by squaring the
correlation.

ti Shared variance is a mathematical term to describe the amount of redundant

But our everyday world consists of way more than only one variable predicting another. In fact, in most
cases there are several or multiple variables that predict a particular outcome. Here we are not dealing with
the prediction of just one variable from another, but the prediction of one variable from several. This tool

is called multiple regression (because there is more than one predictor variable).

Serious sports gamblers, bookies, and casino operators are familiar with multple regression, or at least
they should be. So much information is available about sports teams that there are almost certainly all
sorts of variables that, in the right combinations, can fairly accurately predict which team will win.

Betting on professional football is one of the most common of all gambling practices (or so | have been
told). This hack shows how to gather data and use multiple regression to predict the winner of any football
match up. This example involves predicting who will win the Super Bowl, the National Football League's
championship game.

Choosing Predictor Variables

The first step is to build your model (the predictors and their weights that you will use to make your
prediction). For football, there are dozens of statistics kept and available about teams' past performances
and player characteristics. Some make sense as predictors of future performance (e.g., past performance),
while others do not (e.g., cuteness of the mascot). The chance to win money, though, is a powerful
motivator, s0 | would take the time and effort to collect just about every statistic | could find about every
team and every game. ‘The key is to find variables that on their own correlate pretty well with winning the
Super
Let's pretend that you have done your research and found six variables that correlate with whether a team
wins or loses. Some make sense; some do not. You are interested in getting the most accurate real-lfe
prediction you can get, so you are willing to include the kitchen sink if it will make a difference. To be
clear, you took each year that a team was in a Super Bowl and then gathered data for that team from that
year.
Imagine you've found that the following variables are of interest and might be useful in predicting this
outcome based on previous years' performance and the characteristics of 30 teams. The variables you'll be
using in your model begin with the outcome of interestnamely, did the team win the Super Bow! during
the year that the data is gathered from (Yes = 1, No = 2)?
The following variables were found to correlate with the outcome:

.

Number of easy wins during the season (won by more than nine points)
Average attendance during the season

Average number of hot dogs sold per game

Average temperature of team's Gatorade

Average weight of defensive linemen
When you do this analysis with real data, you'll likely find a different mix of potential predictors.

Entering the Data into a Spreadsheet

Social scientists often use statistical software such as SPSS or SAS, but for this example, | used an Excel

worksheetand Excelsvery cool Data Analysis Toolpack (and the Regression Too). | etered some
made-up but realistic data into the spreadsheet shcwm in Table

the outcomes of foothall games? I'm only showing you how to make your own

& What? You thought | was going to show you a real secret formula for predicting
'l keep mine to myself, thank you very much!

Table Super Bowl predictors

Team | Won Super Bowl? | Easywins | Attendance | Hotdogs | Gatorade | Weight
A 1 1 56,533 4,798 56 276
B 2 9 44,543 5715 7 311
c 1 8 45,543 9,753 45 315
) 1 6 45,768 8,020 46 311
E 1 8 76,786 5395 56 256
F 1 1 56,533 1054 67 217
G 2 9 56,554 750 76 256
H 2 12 44,675 6576 7 254
! 2 11 56,667 9,187 77 287
J 2 10 65,545 4,533 87 301
K 2 12 78,756 1,963 86 243
[Table 5-1 shows some of the 30 rows of fictional data | collected, representing 30 examples | used in my

Tab
statistical analysis. The more rows of data, the more instances you can get and the more accurate your
eventual predictions will be.

Building a Regression Equation

You might remember from your high school days that the formula for a simple straight line looks
‘something like this:

‘This equation is made up of the following variables:

v
Predicted score on variable Y
b
The slope of the line
X
The score of a single predictor
a

The intercept (where the straight line crosses the Y o vertical axis)

So, for example, if you wanted to predict human height from weight and had a bunch of data to create
such a formula after plugging in the various values, you might get something that looks like this

This means that if your weight (the X variable) is 125 pounds, the prediction is that you will be about 64
inches tall, or about 5 feet 3 inches.

But when we have more than one predictor variable, things get more interesting and more fun. There is a
longer series of predictors (many Xs) and weights (many bs).

I ran a multiple regression analysis using this data in SPSS, a statistical software program, but you can get
much of the same information using Excel (sed The "Gefting Reqression Info h Excel” sidebar).

<table cellspacing="0" width="90%" border- S

* cellpadding



tion and enter
llowing you to plug in
rs. This method works best when there is just one predictor.

olPak, an Excel add-on (which
est the significance of the
toattest [Hack #17)

The results (a.k.a. the output) are shown in T4bleg 5-11 anld 5-12. Let’s see which of the variables best
assist us in predicting whether a team will win the Super Bowl.

Table Regression statistics

Multiple R R square Observations

0.8483 0.7196 30

Table Regression equation

Variable Coefficients T stat P-value
Intercept -0.784 -1.010 0.323
Easy wins 0.119 4.274 0.000
Attendance 0.000 -0.822 0.416
Hot dogs sold 0.000 1.043 0.308
Gatorade 0.013 2.457 0.022
Weight 0.001 0.580 0.567

Table 5-1P shows a coefficient (a weight) for each of the five variables that were entered into the equation

to test how well each one predicts Super Bowl wins. For example, the coefficient associated with "Easy
wins" is .119.

If we combine all of these into one big equation for predicting Super Bowl outcomes, here’s the model we
get:

So, for each of the predictors (variableg trough %), there is specific weight (the bs in the formula or
the coefficients in the results).

Now, the same formula in English:
b*Wins + b*Average Attendance + b*Hot Dogs + b*Temp + b*Weight + a

And using the numbers from the output sho 5-12, here’s the real live regression equation:

< la>



Interpreting and Applying the Regression Equation

Imagine using this equation with all the rows of data you entered into your spreadsheet. There would be a
pretty high correlation between the actual Super Bowl outcomes and the predicted outcome. | know this
because of the "Multiple R" part of the output showjn in Table] 5-11, which shows a pretty high correlation.
0.84 is close to 1, which is the highest correlation you could get.

— | The "R square" of .72 is the proportion of shared variance that we talked about
earlier in this hack.

What does this mean? The combination of these predictor variables is a pretty effective way to judge
whether a team will win the Super Bowl. Foolproof? Of course not, since the combination of these
variables does not perfectly predict the outcome, but it does a pretty solid job.

So, let’s say that this year’s Denver Cannonballs has the data points shown in Tdble 5-13.

Table Data for Denver Cannonballs

Variable Value
Easy wins 13
Attendance 35,678
Hot dogs 4,567
Gatorade 65
Weight 267

Plugging this data into the equation shown earlier, here’s what we get for a predictor of Y:

The final value for Y is 1.875, a bit closer to 2 (meaning they are not predicted to win) than to 1 (meaning
they are predicted to win).

What's the key to a good set of predictors?

All the predictors should be independent of each other (if at all possible) since you want them to
make a unique contribution to the understanding of what you are predicting.

Each of the predictors should be as highly related as possible to the outcome that you are predicting.



Improving Your Regression Equation

A careful examination of the equation produced in this hack indicates that the bulk of the predictive power
comes from just two variables: the number of easy victories and the temperature of the team’s Gatorade.
Also, many of the predictors have zero weights, which means you don’t need them at all. You could
remove these unhelpful variables (attendance and hot dogs sold) to streamline your formula. In fact,
collecting data on easy wins and Gatorade temperature alone is enough to make fairly accurate predictions
in our example.

Neil Salkind
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Hack 56. Predict the Outcome of a Baseball Game

lisi

Turn your radio on in the middle of a baseball game for five seconds and then turn it off. Without hearing
the score, you'll be able to name the winner, and you'll be right more than half of the time.

Look, I'm a busy guy. I'm always looking for a way to save time on the less important things in life, such
as following my local baseball team, so I'll have more time to spend on the important things in lifefriends,
family, debating the logic of the Holms' i p as the appropriate follow-up
method to analysis of variance, and so on. A case in point happened just the other day. Wanting to know
whether the Kansas City Royals would win a baseball game that was in progress, | hardly had time to wait
until the game was over. | wanted to know right now!

Much like Veruca Salt and her interest in owning one of Willy Wonka's
Oompa-Loompas "now!", | don’t have much patience.

Like a bolt from the blue, | realized that | could turn on my car radio for just a few seconds and have
enough information to guess the outcome of the game. And | could do that without hearing the score or
who was on base.

How It Works

During the first couple hours of a baseball game, turn on the radio broadcast of that game. Listen just long
enough to identify the team that is at bat. That team has a greater than 50 percent chance of winning that
game.

Why It Works

Baseball is a game where the longer you are on offense, the more points you can score. As more batters
come to bat in a single inning, the chances of moving runners along the base paths and across home plate
increases. Another way to look at it is to imagine the end of an inning that was huge for one team. If a
team scored a lot of runs, they had to have used considerably more than the minimum of three batters in
that inning and, been at bat a longer length of time than the other team.
Over the course of a game, the team that is at bat longest is more likely to score more (or have more
productive innings).

Sampling theory [Hack #19] suggests that a sample is most likely to capture the most common elements of
a population. Our population here is all the moments during a game that we could listen to. The most
common characteristic in the population (in terms of who is at bat) belongs to the team that is at bat the
most.

suggests a possible distribution of at-bat time for a regulation nine-inning game. In this
example, the winning team was on offense for 58 percent of the time. In retrospect, a random tuning in to
the broadcast had a 58 percent chance of finding the winning team at bat.
Figure5-4. Timeat bat for winning and losing teams
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The accuracy of prediction should be above 50 percent over the long run of baseball broadcasts, but it
won't be really, really accurate. This is because the relationship between time at bat and scoring a victory
is not a perfect correlation [Hack #11]. Players can score quicklyhit a homerun on their first pitch, for
exampleor they can take their time getting many hits but strand many runners and never score.

Overall, the correlation between the two variables should be positive, however. Even the perhaps
unimpressive 58 percent accuracy in my imagined dfta in Figyre 5-4 means that you will be right 16
percent more often than a blind guess. With such an advantage at the blackjack tables, you would be a
millionaire in a week.

Proving It Works

To test the accuracy of my claim, you can use the data that appears in your daily newspaper. While most
box scores do not include information about total time-at-bat for each team, there is a variable that
provides almost the same information. There will almost certainly be a "total at-bats" reported. While this
statistic is not the same as time spent at bat, it should correlate pretty highly. Each day, this information is
provided for more than a dozen games, and just a few days’ worth of data should be enough to test my
theory. Gather the total at-bats for each team, including which team won the game.

like to know about, and us using number of at-bats instead of time at bat is good
example of this. Instead, we must settle for the next best thing available.
Scientists call these substitutes proxy variables or surrogate variables.

tﬂ Real-life researchers often don't have access to the variable they would really

My hypothesis is that the team with the most at-bats should win the game more than 50 percent of the
time. Out of curiosity, | tested this hypothesis myself. | used the Chicago Cubs as an example, because
their stats were readily available on the Web. | arbitrarily chose 2003 and the Cubs’ first 25 games. An
analysis of these games found that the team with the most at-bats won 56 percent of the time. If | had
eliminated the three situations where there were ties in at-bats, | could have predicted with 63 percent
accuracy.

While the team with the fewest at-bats sometimes did win the Chicago Cubs games, the larger the
discrepancy between at-bats, the more likely the team with the most at-bats was to win the game. When
the most-at-bats teams won, they averaged 4.14 more at-bats than the loser. When the least-at-bats teams
won, they averaged only 2.88 at-bats less than the loser.

Other Places |t Works

Some people have suggested that in the case of my team, the Kansas City Royals, if | want to be right
more than half the time, | should always predict a loss. Yes, yes, very funny.

Where It Doesn’t Work

The accuracy of this method should be low if you turn on the radio in the ninth inning, which is why |
suggest you try it during the first couple hours of the game. Under the rules of baseball, if the home team
is leading after the top of the ninth inning, they never come to bat. They win. Game over. As home teams
win more often than visiting teams, this means that often the winning team never comes to bat at all in the
ninth inning.

This presents an interesting variation of this prediction method that applies only to the ninth inning. Turn

on the game in the ninth inning; if your team is batting, things don't look so good. The data presented for
the Chicago Cubs that found the winning team occasionally having fewer at-bats than their opponent can
be partly explained by the fact that the winning team sometimes bats in only eight innings.

This method doesn't work for all sports. In basketball, for example, time of possession wouldn't be
expected to positively correlate with points scored and, in the case of high-energy, fast-scoring teams,
might even negatively correlate. In football, on the other hand, time of position is considered a key
indicator of quality performance and usually correlates with a win.






Hack 57. Plot Histogramsin Excel
[
#57
Use Microsoft Excel to plot data distributions so that you can have a better understanding of statistics.

There is some truth to the clich\x@e "a picture is worth a thousand words." A picture s often the best way
to understand 1,000 numbers. People are visually oriented. We're good at looking at a picture and
observing different characteristics; we're bad at looking at a list of 1,000 numbers.

One of the most powerful tools available for understanding data istbgram, a picture of the
distribution of values. Here is the idea of a histogram. Suppose you have a lot of datasay, the batting
averages for all 6,032 baseball players between 1955 and 2004 who averaged 3.1 or more plate
appearances per game. Let's also assume you want to know how these values are distributed. What are the
lowest and highest values? Are there more low values than high values? Were batting averages totally
random numbers between 0 and .400, or was there some pattern?

Batting average can take many different values. Between 1955 and 2004, 6,032 players had qualifying
batting averages, and there were 1,229 unique values for batting average. You can plot the number of
players with each unique batting average (though | can't imagine what this graph would look like). But we
don't really care about each unique value; for example, the fact that 13 players had a batting average of
2862 is not that interesting. Instead, we might want to know the number of players with very similar
batting averagessay, between 285 and .290.

Let's think of each range as a bucket. Every player-season goes into a bucket. For example, in 1959, Hank
Aaron had a 354 average, so we'll put that season in the .350-.355 bucket. So, here’s our plan: we'll put
each player-season into a bucket, count the number of player-seasons in each bucket, and draw a graph
showing (in ascending order) the number of players in each bucket. This single diagram is a histogram.

The Code

In this example, | wanted to look at the distribution of batting average. | used a table containing the total
batting statistics for each player in each year (and the list of all teams for which each player played), and |
called the tablée_and_t . I selected only batters with enough plate appearances to qualify for a league
title, and only those players who played between 1955 and 2004:

SELECT b.playeriD, M.nameLast, M.nameFirst, b.yeariD,
bteamG,

FROM b_and_t b inner join Master M
on b playeriD=m.playerlD

WHERE yearlD > 1954

AND b.AB + b.BB +bHBP +b.SF > bteamG * 3.1;

After running this query, | saved the results to an Excel file named batting_averages.xls.
One way to draw histograms in Excel is to use the Analysis ToolPak add-in. You can add this by selecting
Add-Ins... from the Tools menu, and then selecting Analysis ToolPak. This adds a new menu item to the
Tools menu, called Data Analysis, which introduces several new functions, including a Histogram
function. But | find this interface confusing and inflexible, so I do something else.

Here is my method for creating  histogram:

1

In the data worksheet, create a new column cilisge.

In the first cell of this column, use a function to round the value for which you would like to plot the
distribution. The simple way to do this is to use the Significant Figures option BQb&Bunction.

In my worksheet, columh contained the value for which | wanted to calculate the distribution
(batting average), so | could use a formula SURGEND(12,2) ~to round to the nearest 010
Personally, | find a bucket size of .005 to be more descriptive, so | use a trick. You can multiply a
value inside th&OUNDunction and then divide outside the function to get buckets of almost any
size. Inside thOUNDunction, | multiply by the reciprocal of the bucket sizein this cage,005

=200. Outside the function, | multiply by the bucket size. In my worksheet, coluoumtained the
average values. So, | usBOUND(12* 200,0) / 200 as my formula. Copy and paste this

formula into every row of the worksheet. (You can double-click the bottom-right coner of the cell to
do this quickly.)

Now, we're ready to count the number of players in each bucket. Select all of the data in the
worksheet, including the neRange column. From the Data menu, select Pivot Table and Pivot

Chart Report. Select Pivot Chart Report and click Finish (we'll use all the defaults). We will select
two fields for our pivot table. From the Pivot Table Field List palette, select Range. Drag-and-drop
this onto the Drop Row Fields Here part of the pivot table. Next, drag-and-drop “playerID" onto the
Drop Data Item Here part of the pivot table. By default, Excel will count the number of player IDs in
the underlying data that match each range value. The pivot table is now showing the number of items
in each bucket. You should see a (very ugly) graph with the number of players in each bucket.

Clean up the graph. (I like to erase the background fill and lines and change the width of the
columns. [Figure 5:5 shows an example of a cleaned-up graph.

Figure 5-5. Histogram from a pivot chart report
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Looking at the histogram, we see that the distribution looks similar to a bell curve; it skews toward the
right and is centered at around .275.

Hacking the Hack

One of the nice things about calculating bins with formulas is that you can easily change the formula for
binning. Here are a few suggestions for other formulas:

ROUNDDOWN(<val ue>, <si gni fi cance>) and ROUNDUP&val ue> ,<si gni fi cance>)
This ROUNDDOW#Mction rounds down to the nearest significant figure. For example,
ROUNDDOWN(3.59,0) equals3, andROUNDDOWN(3.59,1) equals3. 5 . Similarly, ROUNDUP
rounds up to the nearest significant figROUNDUP(3.59, 0) equalsd, and
ROUNDUP(3.59,1) equals3.6 .

LOG(<val ue> , <base>)

‘Sometimes its useful to plot a value on a logarithmic scale, and to use logarithmic-size bins. You can
combinel OGfunctions withROUNDunctions to create variable-size bins.

CCONCATENATE...)
The CONCATENATEnction doesn't compute numbers, it puts text together. If you want to
explicity list ranges (such as 3.500-3.599), you can usEBRCATENATEcion to create these;
for example CONCATENATE(ROUNDDOWN(3.59,1),"to ",ROUNDUP(3.59,1)-0.01)
returns3.5 to 3.59
If you want to take this to the next level, you can replace the bin size with a named value. (For example,
name cell Albi n_si ze.) This makes it easy to change the bin size dynamically and experiment with
different numbers of bins.

Joseph Adler

==






Hack 58. Go for Two

i

In football, when s the two-point conversion attempt the right choice? Regardless of which "chart” you're
using, the problem gets even more complicated when statisticians enter the debate,

A fewyoarsback. | was nioying waiching my loca rofessionl fotball team as hey were losing  close
n't entertained by my team’s dismal per s much as | was delighted by my team's
Deivaded conchr e e atempted f et and v o point conversion chart.

points), the scoring team has two options for Scoring an "exira point” or two.
Ustally. e eam chooses o kik a singe exa paint rough th uprighs ke
& shortdistance field goal), but ey mightlso hooso 0 go for e

(knoun as the v point conversion), whih nlves the ofense g or
passingforanother i ino the en

& In football, after a touchdown is scored (the touchdown itself is worth six

Atthe time, as was later “confirmed" by sportswiiters, it was clear that he was't sure how o read the
char. Speciical,when inerpreing he coimn on thechat it sted how many s hehmﬂ or ahead
meant how many points ahead or behin made the

te
ot aher conversion,

As | mused about how an NFL head coach might never have leamed to read such a chart, | began to
vionder who produce his hartand what princpes vas based on. Later, as | searchedfor the
“official chart," | found two "official” charts, and they didn't always agree.

More reenty, an across  chat based on asasical analysi of e probabily ofpossbe utcomes
n the amount of time remaining (as indicated by the number of possessions remaining). This chart
' gt wihaither ofhe carerchars | Ciscovered.

“This hack is for you, Coach. It examines from a statistical perspective when to go for two points and when
to setle for one.

Traditional Two-Point Conversion Charts

When you see a coach on TV holding a plastic laminated card and studying it before deciding whether to

9o for two, sportscasters like to refer to the card as the chart, though, as mentioned in the previous section,

there's more than one chart in use. The siight differences might be due to the fact that one is identified as

ng s n i N i ot I i 5  clasis st of st daclans usa n cobage
footbal

‘The differences might also be based on the fact that the college chart was produced for a certain team that
may have had a more aggressive or confident style. The college chart seems to play for a victory, not a te.
‘Though college ball now has overtime rules, they are a fairly recent development, whereas the pros have
had overtime for a while.

The N chartisprovided on Nomn Hizges web e (o s abroadcaser n Dallssand an sk around
sports guru) TP 77w NOMATZES comhechar.him. The coliege chart (found at

P i A EOTaAS s P 5 entife a he one s h 19705 and developed at
ho Unkersy of Calfonia, Lo Angees (U AT TAIER: 14 podes th suggeste decksons o boh
charts and is condensed a bi

Table Classic decision making for two-point attempts

Points behind or ahead

3 1]2]a[a]s[6[ 7] g o 10 11 1
Behind (NFL) 1 AEERER 2 1| 1
Behind (College) EE 1| 2 7

3 1]2]a[a]s[6[ 7] 6 o 10 11 1
Anead (NFL) 1 EEREE! 1 2] 2
Ahead (College) E| 4

‘The UCLA chart does not provide suggestions for when the score is tied or when your team is behind by
four points. The NFL chart, on the other hand, is full of advice for all occasions. As discussed, the primary
difference seems to be whether you're willing to play for the tie or not. UCLA clearly did not wish to play
for the tie, while the NFL chart has no such hesitancy.

Modern Super-Scientific Chart
In the real world, a set of satistical probabilies controls the ovtcome of a sporting event, and the decision
about whether 10 go fortwo o take the exira point should be based on more information than just the
Score and whether your team is wining or losing. In actual game siuations, smart coaches take the
following aditonal factors nto account

“The likelihood that their field goal kicker will make the field goal
‘The likelihood that their team wil score on a given two-point conversion play
‘The current health, attitude, and skill of their players

How many more possessions their team will eceive

Past statistics show that the average NFL football team makes about 98 percent of its extra points
it 40 prcant of 15 o point tempts. Goaches mustuse et exparience and muion o gauge e
players' current abilty level, and a chart isn' much help on that score.

s for possessions ok however, s 1 oxact he o of nloaion tht dcln sysas based on
probabilty need to take into account. Based on a process of working backward from the ending of
ypathetealoabal game ta akes e orobabily of Success on other opion (36 percent (0 oned pmm
plays and 40 percent for two-point plays) into account, statisticians have pr do

Oy on ne et 5606, s on it et of possessons remaning for bon tsame.

In a 2000 issue of Chance magazine (Vol. 13, No. 3), Harold Sackrowitz presented the results of such an
analysis using a process called dynanic program{fiing. Table 5-15 shows a portion of Dr. Sackrowitz's
chart

‘Table Modern decision making for two-point attempts

Points behind or ahead|
o AEEEE 14 1} 1
Possessions remaining
1 Behind| 1 1 9
Ahead | 1 E|
2 Behind| 1 1 4 2|
Ahead | 1 El
3 Behind| 1 1 9 2]
Anead | 1 EE| 4 4 4
4 Behind| 1 12 2 4
Ahead | 1 EE| IR
5 Behind| 1 1 9 2 4
Anead | 1 EE| 4 9 4
6 Behind| 1 1 9 ERIE!
Anead | 1 EE| R
“This two-point conversion chart is based on the branching possibiliies starting at different points in the.

‘game and assuming basic probabiliies of success for either an extra point or a two-point conversion. An
average NFL quarter sees six possessions in total, o think of this chart as being most useful in the fourth
quarter. Sackrowitz also assumes a 50 percent chance for overtime victories.

How It Works

[TahE s like this simpl ol
Imagine you are down by one point without much chance of getting the ball again.

ou have a 98 percen chance of makingan extra pont ik and 0 percent hance ofwiing in
overtime. Going for the extra point results in a victory 49 percent of the time (.98 x .50 = .49).

You have a 40 percent chance of converting a two-point play, 50 going for two points results in a
victory 40 percent of the time. Failure ends the game, and success wins the game.

49 percentis better than 40 percent, 5o you should elect to go for the extra point. Notice that if you
believe your team's chances of converting the two-point play are betier than 49 percent, you should
o for it. Calculations like these, but over a longer series of possessions, fesult in the decision tree

reflected if Table 5-35.

Which chart should you use the next time you find yourself coaching in a crucial football game with a key
decision to male? Tha's up [0 you, but just remember that befuddied foatball coach | watched on TV a
fow years ago. Not only was he replaced the next year by Dick Vermeil, considered ane of the brighter
football coaches around, but it was Vermel who helped develop the UCLA two-point conversion chart
shown i Table 5-14. Now you know the rest of he siory!



http://www.normhitzges.com/thechart.htm
http://www.NFL.com/fans/twopointconv.html




Hack 59. Rank with the Best of Them

~59

There are many ways o use data o make judgments about who s bestn any spor. Al th inive ways
individual sports

My friends and | are a compettive lot, Our arena of combat, most recently, has been poker. On a regular
basis, my friends and | gather at my home and take part in a Texas Hold 'Em poker tournament, Its an
informal affair, but we all take it very senously e vy ot Dukev loumaments wor,everyone tas
Wk thesams armourtof hips, e when “There s a first one out, a last one.
verything in between. So, for examme 't Soven peume ey, someone cores i 15, second,
o o, i i antsove

all think of pretty good and, we have longed for
of comparing performance across mamarte Ao one ot he ratatans rine group, | ook it upon
myself

yself
tocampars ek prormence wih sech oler tocecde one and o al ho I e bt gy ard whois
any lcky now and again This s e stoy of my et and te tasca soluons | chose. Not o g

the ending away, but | learned that there s no single best s

How to Rank Fairly

“This business of how to identify the best is a common proble for competitive organizations such as
5o eagues and sssocatons. The problemis haw 0 summarize prormance across a vaietyof
categories, venues, and occasion

‘There are three methods commonly used in the world of sports to make determinations about whois the
“best” All of the has
advantages and disadvantages.

First lts ok a ok t e ntre of e dta o arye, Y ol be siir shethr

ekly horn game or you run the Professional Golf Association. Though poker is
Yo oy oA comps endoorer providescaa for s Tale 5-16shows h resuls
from eight tournaments in my own summer poker leagu

‘Table Summer poker league data

Paul |sa | ey |8) |Mak |Buce | caty | Tim | Davd
5146 5 e s |2 1

521 |3 6 |4 s |7 2 1

5128 s 4 |1 3 2

64 4 6 |3 7 2 s |1
611 4 5 |6 1 2 3

618 s 4 |2 3 1

6125 1 4 |3 5 2

12 1 s |4 3 2

You can see that nine players took part in at least one tournament, but no event had participation from all
players. If a person received no points on a given night, it was because she didn't play. This is commonly
the case in sports such as golf and tennis as well

o occasions, seven paolepayed. bt on e occasians s fe s e sat down ageter, Four
penple have playet
Ravt & i o & problem récogniing what s mporant i ) One peyer, e, Dlayeu oy one
toumnament

“The points under each player's name indicate the order in which they went out If there are six players and
it first, you get one point for taking last place. Ifyou are the winner among six players, you get
Six points for taking first.

How, then, to rank players in the poker league? Here are three common solutions, allof which work to
some extent

Total points
The st thought that came (o was 0 simply add up
and rark their total points. Thi ankedty

o o bk Ohmers e ek by e e of e 1 perlcaing & ot moves 1 5
mese fankings T begoter f theyear,youhave (0 have played i many everts, in adion o ey
Mean performance

A second method is to average the points by dividing the total poits by the number of tournaments in
hicha piayer pariciate The beaury of prodng an verage s hatyou get & rumber it represents a

typicallevelof p . such as talent. Your average
poker (or be the best of abily.

Total wins.

Athird method, the simplest and r

o wing most often s th bes player. T method works welfor toumamentstyle poker uhe prt
play) and any events in which there is one compettor wha is the clear winner.

Comparing the Three Methods

‘Though each h has some clear d does the job aflEQUEIEIY] Table 517 shows
et o anch player under all three ranking systems.

‘Table Summarizing poker performance

Pau [Lsa |Bily [B) |Mak |Bruce | cay | Tm | David
Points_| o 1 |28 |3 |28 25 12 8 1
Mean |45 |55 |35 |as|3s | 313 | im | 40| 10
wins |1 1 2 1|2 2 o o |o

sens e best has v under
each of the three systems! s ter\am\y 3 fustatng g or o pokev scientist like me. Because one
could defend any of the three methods 1 way 10 rank, it is a bi of a paradox that each method

produces a different "best” poker plajer. Table b- 18 ‘shows how the rankings differ under each scoring
method

Table Poker rankings

Paul_|Usa | Bily |B) | Mak | Buce | Cay | Tm | David
Pons |7 |6 |25 |1 |25 |4 5 s | o
Mean |25 |1 |ss |2s|ss | 7 8 4 | o
wns |4 4|2 |2 2 6 s s

Notice how the "best player" is different under each system. BJ is the best under the Points system. Lisa is

he best under the Mean ystem. Thice Paogiate o et e the Ui ysm, bt B Lisaare e

‘among them. The only real David v,

(Sory, Dave, but e don . And sory ou e e nc Maybe | can make it up (0 you
aree copy of this book?)

were tied. In other words, Bill, Mark, and myself were all tied for the numt
one ranking under the wmssyslem o ing ot o1 1. 3. a3 mverage 103, and
that was our ranking.

g ket uhen assiging arkings by averaging e tanking among hsewho

three it rankings, it is clear they cannot all be.
equany vald. They canmot alproduce scores hat ruy reflect the Varablo of nerest which s
the single
best appmach It was not my goal to identify the best system and go with it; my goal was to
provide valid information and let othe the data.

My solution was o provide all three rankings based on the three scoring methods. That way,
players could choose to focus on the ranking results from the method that makes the most sense

The End of the Story

1o the players in my p que turned out 0 be the one
that ranked them the highest, Imagine that.
1 leep a ight secure in he knowedge that any ofthe methods s p and
“accurate. After all, none of the mistake of .uemwmg

best player. That's got to be some sort of validity oviente mane ot to

the advantages
each system by creating of g o impr
oo e and gk (i wrramen: pover, o) nides

‘Combining performance data over a long period of time.

Using both the mean performance and total points together to reward excellence and
frequent participation

Itis a bit ironic that these that are likely faier and e

by the press and fans as overly complex and crazy. Attempts to make the ranking systems more:

valid have resulted, often, in a rejection of the systems by the public as invali.

=7







Hack 60. Estimate Pi by Chance

i

Statisticians like to think that anything important can be discovered using statistics. That might actually be
true, since it turns out thatt you can use statistics to estimate the value of one of the most important basic
values in science: pi.

“The ability to calculate pi is one of the routine skils for all budding geniuses. | remember, for example,
that dividing 22 by 7 comes pretty close. There are a variety of other ways, some more accurate than
others. My favorite method, though, requires the element of chance and a long, lonely sea voyage or other
period of enforced solitude. Intrigued? Read on, Gilligan.
Before showing how to estimate the value of pi, Il begin our discussion by presenting a couple of basic
facts from geometry. Don't panic; | don't know much about geometry, so we won't spend alot of time on
this. 11l just cover the basics we need to appreciate the magic of this hack.
Pi
In geometry, key relationships have been found between pi, a number that s roughly 3.14159 (symbolized
by p), and the way various parts of a circle fit together, as shdwn in Figjire 5-6

Figure5-6. Calculating pi

fie Creanfen

/Dianeer

For example, if you take the diameter of a circle and multiply it by pi, you will get the circumference of
the circle. If you take the radius of a circle, square it, and multiply that value by pi, you will get the
circle's area.

Al pretty cool, perhaps, but it is primarily of interest to those who like to play with geometry, not with
statistics. But just wait.
Pi and Falling Needles

In the 17005, Georges-Louis Lecerc presented a half-geometry/half-statistics puzzle to the world. He was
the Count of Buffon, or something, so this problem is known as Buffon's Needle Problem. He presented it
generaly, without specifics, and | summarize it here:

Imagine a needle lands randomly on a drawing of two parallel horizontal lines. The lines are further apart
than the length of the needle. What are the chances that the needle willland in such a way that it touches
one of the lines?

“This is one of those problems that seem impossible to solve the first ime you hear it, but it is solvable.
There's no need to spend any time calculating the solution here, though | certainly could do it, | assure
you. Really, | could. Really. The solution has to do with geometry, and it takes into account two key
components of information. The keys to any given random landing position are:

Where the center of the needle is in terms of distance from the closest line

“The angle of the neede in relationship to the perpendicular of the closest line

Defining the random position of the needle with these two bits of information allows for some general
observations that help to simplify the problem:

If the center of the needle is exactly on one of the lines, then the needle will always touch that line,
regardless of its angle.

If the center of the needle is close enough to a line, within half the needle’s length, then the needle
will sometimes touch a line. The angle of the needle determines whether the needle touches a line.

If the center of the needle is further away from a line than half the needle’s length, then the needle
will never touch that line, regardiess of its angle.

The closer to a line, the greater the chances are of a needle touching that line.

All the possible needle locations can be graphed as a curve, ilustrating all possible distances from a line
and all possible angle-fi le. ters the picture here, and
mathematicians have defined such a curve with this equation:

“This is the answer to the problem. Let's try it quickly with some real numbers, just to check Leclerc’s
work. Imagine a needle three inches long falling randomly on a sewing table with  pattem on the grain
such that there are two parallellines four inches apart. What proportion of the time will the needle touch
one of the two lines? Here are the necessary computations:

The needle will touch a line about 48 percent of the time.

full of needle-dropping and lines on the floor and such. Go for it; more power to
you. This principal is already in play in some camival games you've probably
seen. Ever notice how rarely those ping-pong balls land in those fishbowis or the
football gets through that hoop?

tg Already, your gambling juices might be flowing as you envision a large room

Probability and Pi

1 promised you that you could use chance to estimate pi, though, not use pi to figure chance. The power of
math allows us to move around any element of any equation, and so any element to the right of the equals
sign can be moved to the left. We can scramble our probability equation to produce a pi equation like so:

1l prove it works by using the same numbers we used when we tested the probability equation. We
already know what the right answer for pi is, 0 let's see if the equation works:

This equation calculates pi as 3.1447, which is pretty darn close to 3.14159. If we had allowed our
numbers to go many places past the decimal, we would have had an even more accurate answer.

Estimating Pi Using Probability

In our example, we knew the probabilty, 5o we could calculate pi using that information. But what f you
didn't know pi and needed to calculate it? What if you were stuck on a desert island or on a long ocean
voyage or in bed with a broken leg and had no access to reference works that included a fairly exact value
for pi? Further, suppose you needed to calculate the circumference of a circle or the volume of a sphere or
any of a number of other values in geometry or finance or physics that make se of the pi value? A
nightmare scenario, eh? You could use this formula to calculate pi pretty accurately by just conducting an
experiment and collecting data.

Set up an area with two horizontal ines, drop some needles, and keep track. Measure the distance between
your lines and the length of your needle, and let the random whims of chance do all the cognitive heavy
lifting. Collect a large sample of data from many needle drops to get a probabiliy that is precise to several
places past the decimal, perhaps a thousand drops or so. Good luck and keep careful records.

Let's say that you drew two lines that were 8 inches apart and used a knitting needle about 7 inches long.
If you used this equipment for a large number of drops, you would likely find that the needle touched a
line somewhere between 50 and 60 percent of the time. Let's say it was 55 percent. To use this data to
calculate pi, you would apply the math like this:

You'll find that 3.18 is pretty close to the ratio of the circumference to the diameter sHoWR in Figure 5-6.

If your eyesight isn'twhat it used to be, there's no need to use a hard-to-see needle. You can apply the
same logic using a pencil falling off your desk, or a marble rolling across the floor into a defined area, or a
parachutist landing on a rectangular target. You need two parallel lines that the pencil, marble, or
parachutist can have a chance of landing on, and you need to know the length of the object. As long as the
outcome is random, anything will work, and a parachutist landing on a haystack is a ot easier to find than
aneedle somewhere in one.
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Hacks 61-< a class="docLink"
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This chapter concentrates on hacks that help you to think more clearly, cleverly, or creatively. Start out by
using the rules of probability and proving yourself smarter than a superhero [Hack #61]. Keep feeling
smart by mastering statistical shortcuts [Hack #66] and the ability to detect fraud [Hack #64].

Continue impressing yourself and others by tapping into your skeptical side: demystify amazing
coincidences [Hack #62] and hack your way to the truth about weird phenomena [Hack #63]. After
disproving (or perhaps proving) the existence of ESP [Hack #68], your friends will be amazed when you
read their minds [Hack #67].

Finally, wrap up your self-improvement course by learning to avoid a common illogical trap [Hack #69].

Now that you are so smart, it should be a breeze to notice things around you that others do not. You can
master the fine art of the traffic jam [Hack #74], explore your connections to Kevin Bacon and everybody
else [Hack #72], and spot bogus election systems [Hack #73] known only to political scientists.

Round out this chapter by expanding your horizons. Try out different exciting professions such as
espionage and code breaking [Hack #70], and discover new species [Hack #71] and, perhaps, even life on
other planets [Hack #75].
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Hack 61. Outsmart Superman

! #61

Hhing can ke tic n e same lac, b s very unke. The s of probabity sl us o
calculate the keliood of aseries of rare occurrences happening allin

Occasionally, we hear storie

otz b Sruck by Jging sven nes for e, & New Jrsey coule wining
include an

et prolessr, who eSimates th 0 af such a g happening

“The math series ple. The
“Then, ply multpt

get the total likeihood for

Lucky LoisLane

To show the . Ive chosen an
“This series of rare escribed in the L

56, pubished by OC ComicsnAg o 1665, A coan st 1 he e nvoled Los ha

iheond o th sor, e ot to

have some simple explanation.

book hero Superman, was a pular character in the ne of DC comic
books n the 19608 and 16705 Armong sophisicated comic aficonados Lois
Lane comics of

comic writing. Lois tended o beat the odds almost on a daily basis. Her comics
should be requred reading in statistcs courses.

g Lot ane, pow e ot omer gfiend cxd numberane ) e comic

P “explained by

o Long Doas Lainand ey 064 sc00 0 g

Itworks al 0o well, as she s kidnapped by Larkin and forced to provide him vith “telepathic’
informaiion so he can commit crimes. Fortunately for Lois, and for the mobster, her bind guesses tum out
alive. Her L

actually has psychic povers.

It
Aswunﬂmgl% o snonael ok Ever ot o s of Lo ety it e Ierwmy sores

arethe ois performs, but the author of
review, Lois

makes, doaur Steel's math. For
tis serie we will apply the multpl [Hack #25),
The Guesses
In the story, random,

1

Which of five dup e truck:
2

“The combination to a safe that holds a large company’s payroll funds.

“The unlisted phone number © the riches person in town

Under which of 20,000 trees a bank robber's oot is buried

‘She finally fals, jperman has rescued her, ‘Superman
explains to Ms. L 0
t01,0r Loutof-

e, Supemanshe sas 1 wasuky enough o il one chance” Ve sy Superman s
all. o (or ot hat

by Superm: iy s 50

Gl Giess 5 i e 1 v o miatous.

The Calculations.

Let's work through our own calculations. For guesses 1.and 4, we can figure pretty close 1 the 0dds of
quessing the answier For a3,

assumptons.

Here again are the guesses Lois made and real calculations of the odds for each one, taken by themselves.

part for o
q the starting values, the

wild,

partcul

e, eyt o an i tustons whers e o can be
known, not real-ife problems like those of

Guess1

hich of s dupicatearmore ks s sl canying Wt Bark s This s the
easiest one. Five possibilies, one cortect choice. The chances are 1 out of 5 or 115

Guess2
Thisis areal
Dosser Nty docs Lo quess he e mmbers it one Shoul e 4l 10, e 0
guesses that there is a sequence of ive different numbers that must be used, and the directions.
that the wheel must be tured.

Inth el wor, o ars vty of dflen ypesof orbination ok prouce, 5o tis

hard to know for
Teseatch b <ol rackng o e s o i ack e s and eameda e about
combination safes. Usualy, there s  total of om one to eight numbers.
e namberain The
range of values, but 0 larger safes, such as

the payrol safe n the story.

So, for sarters, 4
fve-number combination. are Loutof2,

a number flom 010 9 aach tme: 1 outf 100, or 1100,  foresch Tamber e Seenes Sne
also has 10 guess the starting direction. Let's say that most safes, 80 percent, sart o the left,
oy 20 perent. L out o5, St 10 he g (i er Qo9

o far, 50 good. It gets vry tricky hee, though, because of the combination Lo actually

Suggests. She predicts "L1 right...13 lefL..5 left..back (o 8..forward to 15." This s a very odd.

combination. First a combination s usually read in a different order: eft 13, instead of 13 lft

Second, what can i possibly mean to o eft twice in a row Surely you have to change.

direction of the dial to lock i each number in the sequence. After all the dial passes over many.
P

as a part of Sequence? I a

. 1d have
lo0p of confusion, with my fingers over the keyboard, never able to continue.
Finally, why does Lois start saying "back” and “forward” instead of eft and right? This just
makes her directions unciear (perhaps o cover herself in case of ailure?). Again, ' going to

mean 3 [

right, i
quess, then, That's 1

set
out of 100,000,000,000.

Guess3

L tothe There are a couple
of ways to figure this.

Firs, f Lois were a bit naive (and, no offense to Lois's fans, but Im guessing she is), she.

0. Under e s, ere ar 000,000 posil pane numbers. Thi assumes it e stat
0 pos:

it ad o o v nomer 0506000

swm orles numbers (nerears 599,99 of tose).Thsan sven milln possiies we
is scenari, Loi's chance o guesin he rube of

om0 115000000 1
e oA guess et oo shame i of ol s mmbersshe ko oy et 1
quess there are maybe 10 of those. So, Lois would have 1 out of 8,999,990 1o choose from.

A smarter Lois (lets say for the sake of argumen) might know the partcular exchanges in use

InMetopos, ot thoss ey 1 be used for usted rumbers, o forh ch o o, o

whal . ther

pamcmav area o kroun 33 exchange@ “Ncty he size of Mevopalis mght v iy or s0
st commonly, so

o, iow, i)
oo, o 0000, ahaneen gt vive weon L oot of 5356005 V500000 My
but she.
i epore o  major metopolian newspaper 50 she may have s knowedge. Le(s be
chariable and go with i

Guess4.

iy, Lot guesesurde o 20000 wees s bk otbers ot e, Lkeguees
1 Ifthere really
oo bued (and s rmber 5 probably an estimte o founded of. e chance of
quessing correctly is 1 out of 20,000 or 1/20,000.

Final Probability

so. iung Lo allsosof
hensms m s dou o il sons o i s safos and oo rumbern
ucky

vesse ccnig . Consnstey. vk o1 5000 0000003005050 Coovn meve
remarkable than the already hard to befieve 1 out of 326,454,839,048.

*I see, Supermant | was lucky enough to it that ane chance.” Lois concludes. Indeed. Of
course, the odds were even worse that Superman would propose 10 Lois someday, and that
happened. So, who am |10 rain on Mr. and Mrs. Superman's parade?
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Hack 62. Demystify Amazing Coincidences

coincidences that seem unbelievable.

one
o Sprses roun vy sorme e e i .l e, ummevesnng place. I'm about to do.

i here, 5 fyouwould ather keep weaig 05 coored lasss, put tem on o, s i hack,and
ok anaher o poly [

ifyou
. unexpe 95). piing Something
mystical, or psychic, When | witess an
. 1am tempted to pitof suchas

fate or synchroniciy.

Jung used for
P He saw them as
nner world of

xplanations (0 them as well. He was not a statistician.

perhaps yours, meis to think a bit and apply
This way, | can get a a treat such

in. | can
of chance, for mystcal, H
tacking the next amazing coincidence you come across.

Comparethe Number of Possible Outcomes.

‘When | was akid, | used to see a common advertisement n the comic books | read (e..
Staboy and s Fying Dog. Paramete. The d 50d U, peies that nad bee alred 0
Il s ot af o . Kenncy n scdtion f the sarcerd Ll profe To sty why
long
e

recall, if|
pennies, | would even get a small poster that sted these similarties.)

e It nclude ngs beyond e ovious,such 3 the acsthat bothvere assassrated and
ceeded by vice presidents named Johnson. | could (and did) interpret these

L ] h is there an
these

;

something o do with co-ncidents.

one her d Kable or
d then

coincidence) is uniikely to have occurred by chance. This is the approach taken when

predicting shared birthdays in a large group [Hack #45],

Cotmn o o THFEE 1
ook s s S oo 1o el ype pblcatons. Colurn o shows abrf st
ekt ot o e aodls v sheved

Table Comparing Abraham Lincoln and John F. K ennedy

Both assassinated Different heighs.
Both elected in years ending with 60, Different weighs.
ina theater. | when

Lincoln was shot in Ford's theater. Kennedy v[aihey were born on different dates in
Shotina Ford. difterent years.

Both were kiled on a Friday. Both men had different midde name:

Both men had wives with difierent namgs.

Bt were kiled whie siting nextta theirwiver oL 1A LS Wil AT

Both succeeded by men named Johnson Succeeded men wi different nares,

Lincoln had  beard; Kennedy did ot
(Come to think of i, their faces are
diferent in hundreds of ws

Kennedy probably had bowled
occasionally; Lincoln never bowled a
game in his ffe.

[
hits) and ignoring all the non-his, of which there are almost infntely more, i is easy o
mspercene e exstence of someuncamyInk. Ofcoure,here sl might b some ncanny
link, but the “coincidences™ do not provide evidence for i

Figure Out the Actual Odds

play pok g ifyouarea . you

a royal d hand with
the 10, Jack, Queen, King, and Ace allof one . If your opponent were dealt a royal flush,
would that be 2

hands you have seen in your lfetime, | guess, or perhaps in recent memory.

L math. To hances.
flush on one deal o five cards, we wiould first calculate the number of possible fve-card poker
of A fush.

The process takes three steps:
L
Calculate the po: iforder
is easiest then any one of the.

femaiing 1 coulbe next then ay onecrd ut of .41 50 an o o anyanecard
01 48. S0, the number of possible hands when the order m:

order though. So, we divide the

cards. This number
5xx3x2x1. = 120, 50 the number of possible fve-card poker hands is

Because there are only four possible royal flushes, one for each suit we divide this
59,9

60),
for a probabily of 000001539, or 1 out of 649,740,

Your coponanto o shouks e des s car tht ks oyl fush ance avary 640140
hands. So, i it does happen, i are. I it happens.

You decide. |
know what my calculator and | would guess.

Texas Hold ‘Em, players have an opportunity o improve their hand or

‘What about drawing t0 a royal flush? Afer al, in draw poker and in
atleast guide it oward some objective. I draw poker, if you have four

wish o w
ar youhave s 10Ut f 47 chance o1 sucsss, o 021 prce. Iyou

to improve your hand, the odds go up 0 043
et orahot L ot fovey 25 amerts,

Remove Meaning Assigned to Meaningless Events.

The human brain i at s best when it must make meaning out of data. Our remarkable
inteligence can find meaning even where there is none. Often, thisis the case when we think

them

ighly day, and every every hour. The

o nteresting “Think of our
poker example. Because there are about 2.6 million possible five-card poker hands, the chances
of any specific hand are one out of about 2.6 million. The odds are the same for the hands we
v decided are partuiary meaningl, such 5. 10, Jack, Quee, King,and Ace o Spaces,
as they are for hands that we have decided are not pariicularly meaningful, s
Clibs, 6 o Spades, ack f iamonds, Qucen of Spaes.and Ac of e e Wiy o omaing
that you

The pr “or al poker nands,
0 particular outcome.

such as a baseball or airpor,
Know, because
vou nappen ves, that
butiie un
I oer peopl. All nose the people fust happen o be ther e same tme.you ar 15 &
Coincidende, and 1 il IprSvabie at e partuls ool s s 1 e ane
tis nota

o count anybosy youknow: et say you ko 200 pople and ou.

The odds are even good that you wiould run into someone you know, if
.90 o a Kansas City Royals baseball game one night. f

each o
waty meve e B e g, o of s 200 peopie s 1

vz jour Uncle Frark, for
et gy lkly . semeone you ko il hre

There is about a 92 percent chance that ane or more of your 200 pals
e thers,even hougheacho e ey gos o a game. Evn

you
ot o ot o e

o
Occasionally, have meaning 1o us, and so
these more

K=a (=3






Hack 63. Sense the Real Randomness of Life
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What Does Random L ook Like?

equally liely outcomes, any of them can happen. The way the human mind works, though, many people

a
way, a way that somehow looks random (whaever that means).

For example, L when fippin th
probable outcomes are those that look the most mixed up. To llstate this ideal EOK BT Table 6-2. (Avoid
looking ips do you think is
most ikely 1o occur?

Table Coin-flip patterns,with probabilities not shown

Ansver Pattern Probaility
A Heads, Tails, Heads, Heads, Tails B

3 Talls, Tails, Tais, Tals, Tails 2

c Heads, Heads, Talls, Tails, Tals B

o Heads, Heads, Heads, Heads, Talls 2

Many people give the ansiwer "A." Maybe you did, (o0 When asked (0 explain why A seems the most
likely outcome, the answers include statements ke these:

"The others are 100 ordered.

"Ais more mixed up. 0 it's more fkely.”

"A looks more random, like it could really happen.

Even though you know tha coin fiping is rando (assuming the coin isnt weighted), looking random
ing more probable. All L as
Shown by the math [ TaBle 3.

‘Table Coin-flip patterns, with probabilities

Ao | patom o resasanarals Proabiny
A e Tats, e, Heass Tats || e - 132 = Gaizs
& [vars s, Tats, Tais, Tats o - - caizs
C[oass,Hoats. Tal. Tal, Tals Vo= 2= onzs
[ ioass, Heads, Heacs, Heads,Tals voz= oaizs
becauseeach o e con o it ot o

nether Tals, so there is itis
supposed to land on the next ime it s flpped. A coin, ke dice or a roulete wheel, has no memory.

How to Spot Random Outcomes

To know an . you
be  permutaton. I pr
g at the pr two

and two.
Tais, such as Heads, Tails, Heads, Heads, Tail, i that particular order).

" r whether

have occurred by chance, you are b o

number of Heads and Tailsin any order, for example, or the number of diferent ways of drawing five

distincions between the two:

‘Combinations.
p
populaton. Coin from a theoretically
infinitely large population madie up of 50 percent Heads and 50 percen Tais. The number of
. depending is nterested in. In other words,

fips, there
five heads. So, drawing three heads s likelie than five heads.

Permuaions
Permutations are the number of ways that a given number of elements could be arranged. I other
words, nour Y
Lof 2 values resuls in o,

nown i TABIE 613 wil oceur 1 out o every 32 times.

How to Calculate Combinations.

The number of por one draw
(2.9. two values for a coin: Heads or Tails) and multplying i by isel or each draw:

There are 32 possile combinatons of 5 coin 32

s 10 get ap (eg..
particular number of elements drawn from a population s
‘The previous equation requires these variables:
The number of elements or draws (e.g., 5 coin fips).
The particular draw of nterest (e.9. 3 Heads).
Factoria, the 1, then by that
number ds0on, 1. For example, 5¢ =120
(which, by the way, is why there are cards in [
#62),

So, the number of ways to get three Heads out of five coin fips s:

coin 5 times 10/32 fimes, or about 31 percent of the time.

<P

Statistics Hacking on a Desert | sland

1fyou were on a desert island and did' have access to books or equations and had t¢ ind
flips, you coufd use
lising f ow marfy of
. vith the outcome

them
eads) shown in bold

HHHHH THHHH HHHHT THHHT HHTTH THTTH HHTTT THTTT HHHTH THHTH
HHHTT THHTT HHTHH THTHH HHTHT THTHT HTHHH TTHHH HTHHT TTHHT
HTTTH TTTTH HTHTT TTHTT HTTHH TTTHH HTTTT TTTTT HTHTH TTHTH
HTTHT TTTHT

When to Be Suspicious
Deciding whether a pattern is random (.., wha one would expect by chance) s a matter of:

Fighting the P

Let's return to our hown noWf T TaBR
of interest.

Table Coin-flip outcomes and probabilities

Order Order probability | Outcome | Outcome prabability
Heads. Talls, Heads, Heads, Tals | 03125 Thiee Hehds 31250
Tails, Tails, Tails, Talls, Tails 03125 Five Talls | 03125
Heads. Heads, Tals, Tals, Tails 03125 Thee Talk 31250
Heads. Heads, Heads. Heads. Tals| 03125 Four Hejds 15625
The rarest of als, o C o
five coin fips. pper but
f a up.
occur by chance? 5 percent.
less of the time, be significant and s

though, being a cheat. Good uck on
‘making that decision! It should resull i fstfights less than 5 percent of the time.

i Lohmeer with Bruce Frey.
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Hack 65. Give Credit Where Credit Is Due

Stylometrics s a statistcal procedure that identif that defi h
style. It uses the method of factor analysis 1o judge who wrote what.

Professor Howe-Mutch had a problem. Two of his best students were siting in his office, hoping to
resolve a dispute. Dr. Howe-Mutch had awarded an A+ 1o Paul’ final paper (on the historical importance
of chooolate A, Tha problem westat s csled 1o have vt . Anscclsaton of pegan
been made! Both were good students who had written many quality papers for him in the past. S

Cotion s 0 1ue autnoIap was N A SIHE one,nor st reaeation (et o of s vt sutrts
was a cheat

Forunately the goo docorofphilsophy had mary years o experionce and was vise han s adjunct
position at State Community College and Trucking School might have suggested. Among other obs
taisiclobbis.Dr. Haws Mutch dabbiedn e rof sy, sl method or ca(egnnzmg
the style of writien works. The method can also be used to identify anonymous authors. It wor

hen here i couple of passipilies o Sucpects o chooss fom, andwhe he el wnung aviesof
the suspects are known and have been quantified. Let's watch as the broken-hearted professor applies.
these techniques to find the true author,

Building a Model

First, Dr. Howe-Mutch asks Paul and Lisa to bring in al the other papers they have each written in the past
and about which there is no dispute. In just a few moments, the papers are scanned into a computer,
providing a database of all the different words used by both witers

Or they were sent to him electronically S0 no scanning was necessary; none of
this is relevant to the story, so why are you questioning me about i

For the first analysis, all the words written by the two writers are kept together. Dr. Howe-Mutch counts
the frequency with which each word is used and identiies the 50 to 100 most commonly used words in the
‘combined database. These words become the items o key variables that supply the data for a factor
anaysis: Factoranalysis i a stasical process thatlooks tthe corelatons Hack #11] among groups of
variables and identii riables ong they do with other
variables. is assumed to be a factor,
component, or dimension that they al share.

For the sake of our story, Il show only 10 of the words that Dr. Howe-Mutch identified as most common
across both writers' workE_TaBIE B}14 shows the words and their frequency of use. When looking at all

the words Paul and Lisa wrote, the was used 4.2 percent of th time, weasel was used 1 percent of the

time, and 50 on

Table Paul and Lisa's commonly used words and their frequency

Word Frequency
the 4.2 percent

and 2.1 percent

to 1.8 percent

aoran 1.2 percent

weasel 1.0 percent

of 0.8 percent

in 0.8 percent

that 05 percent

it 0.4 percent

not 0.2 percent

‘These words act as variables (0 ty (0 identify the underlying factors that describe one or more dimensions

of style. Paul and Lisa's styles might be at different places along these dimensions. It might be that only
one dimension or factor is necessary to account for variabillty in the usage of these words, or there might
be many dimensions. Once these dimensionsdefined by the variables that correlate together, or load, on the.
dimensionare identified, be placed in framed by the factors.

‘The data for Dr. Howe-Mutch's factor analysis are supplied by each section of 500 words in the writing
samples. Each section receives a score on each of the word variables. The score will be the number of
times the word is used in that paragr4Bh TaBTE|6-15 shows examples of the data Mr. Howe-Mutch
colecs.

Table Sample of study data

the | and | 10 | aan | weasel | of| in| thar| i not
Section 1 2 |8 |us 4 o [0l o 2
Section 2 0 |7 |55 2 w[ 1] o0 o o
Section 3 s s |s |2 6 2|24 1 o
Section 4 o |2 Jals 1 a]els il o
Section 5 e Ju Jw[e 3 s[slo [ 1

sections.

tﬂ In[TEBIEET5, scores indicate the number of times each word appears in the text

Factor Analysis

Next, Dr. Howe-Mutch performs the factor analysis, a fairly complex mathematical process that these days.
is done using computers, while the researcher makes many theory-driven decisions at different points
along the way. Basically, the factors are identified by exploring the relationships among variables until a
‘small number of variable groupings are found that see to account for as much variabilty as possible
scoss th daa. The commonaly share by variales in each ooupingprovids the mathemaia lodcer
tha defines the factor. Once the factors are chosen, any observalionin this case, a sample of te

receive scores on the factor and then be placed in that theoretical space, with the factor scores serving as
coordinates.

Inihis case, he ana) that two f describing Factor 1is.
ned by e use o word auch a5 he and afan i one end and of and n at 16 ather. I oier words, the
texl sectons oo besed on how requently they used aries,and the sectons et e  igher
frequency of article use tended to be lower in their use of prepositions. Factor 2 is defined by th
"equency of the use of the word weasel,

In exploratory factor analysis, typically researchers are interested in discovering and naming th
underlying constructs (i., invisible trits) that account for human behaviors and characteristcs. For this
use, though, Professor Howe-Mutch is interested only in defining these dimensions based on the variables
(e.9., word use) that anchor them at both ends. He is not interested in figuring out why those text sections
that tend to contain the word the frequently also tend to contain a or an frequently. He also is not inferested
10 why o ofthe v co als betean s ilernturng sapie. Fot s

purposes, that these two good axes to map the space
e ris tht o i thors chas 1 vttt samples.

When the factor scores from each of Paul and Lisats sample papers are computed, it becomes clear that the
two authors have diferent styles. Lisa tends {0 use Irequnty than Pau her papers
score high on Factor 2. Lisa's papers also tend toward the high use of aticles and receiv faily i

et acoce. Bauts apers o e s hangs 10 i v o o e wordwesceland o
toward the prepositon end of Factor 1.

ms i dMakn gaspusg words alone, so an ilustration will help draw a picture to demonsirate the.

ment of 4o}, g 6.5 shows the wo factrs, e word usage ha defines hem, and
oy mneremwmmg samplesloaded on the tw factor.For he sake of convenlence o this
iscussiorL EGUTET piays on o fon of he i samples and mape only in T

e
anfTaDE 6 5A\sﬂmc\udedmmengurewslhep\acemenlollhednspuledpapevmwsmeelehcal
dimensional space.

Figure 6-5. Factor analysis of text samples

‘The solution to the mystery is now clear. The disputed paper shares the characteristics of Lisa's papers,
not Paul’s. Because Paul and Lisa's earlier papers display a consistent but different style, at least as.
defined by word counts, the factor map is a useful tool to ideniy the most ikely author of the paper.

Dr. Howe-Mutch awards the A+ to Lisa, accuses Paul of plagiarism, and is now engaged in a lengthy court
batlle with Paus attormeys, which will no doubt leave our fine statistician friend penniless. The important
thing, though, is that able to make Science triumphed once
again,

See Also

"Who wrote the 15th book of 0z2," by J.N.G. Binongo in Chance, 16, 2, 9-17.

[erc ]






Hack 66. Play a Tune on Pascal's Triangle

i

quick and
1t worked for 300
fora variety of situatons. A fipping a coin. 1o wager
heads or tails,
outcome on a single coin ip s 1 out of 2, or 112
number of
and there are:
y bit harc

9

citeria. For example, f | wan two heads w0 coin fips, | could | y

examples, though, or tickets, or

For example, of

choosing through some ofher random selection process.

None of you like each other much, 50 you need some far way to decide who wil it where. You wil
randomly pick two names to drive together in the font seat,

Ap Uncle Frank:
R last Thank: Als the
famiy, but we agree it vould be best f you brought your own car next year.

with

front seat. o n

long car s, Pascal's

Presenting Pascal's Triangle

pascals 6. This ayou of

properes. p of 10 0ws, wih but it can
frows. The outer

s L but ncrease by 1 as they g

Figure6-6. Pascal's Triangle.

iar Triangle.
the sum of the two numbers above i34 i 56+ 28, 7 6 + 1, and so on. These cool palterns
. however, Instead,

that the Triangle
calculate the probabiltes for  variet of ouicomes.

Calculating Probability Using the Triangle

Pascal's Triangle, 3 P
16005), has.
avariety of questons.

id nol, and never claimed (0 have, orginated il Simiar patterns of
numbers were presented by Pascal's teacher, HixBe rigone, as viel as
other colleagues writing at about the same time.

g Though this patiern of numbers is known as Pascals Triangle, Pascal

a certain type. This
the term

general
the formula
o w0 outcomes). pos

Arange of
Pascal’s map. The n in the equation, which represents the number of rias or events, indicates
goto. The 1s

2010, 50, . we start

counting at 0.

“The exclamation poin aer some numbers in this formula means.
factoral, which, i turn, means that you are supposed to count down

you g
For example, 5 factorial means 5x4x3x2x1, or 120. By the way, by
ule, Of counts as 1.

Assessing the probability of flipped coin outcomes

For our second, slightly the
o times,
1
The entry we
il count over 2
With our X 3 ow
2
121
3
“Then, count over 1. Our answer s 1
il get o heads.
s

But 1 chance out of how many chances? Add up all the numibers in the row you are in o
get that answer! 1 +2 + 1= 4, 5o our chances are 1 outof 4, or 25 percen.

. as wel heads.

The
outof six con flps:
1

o count the top of

1615201561
Count over three. i
eads could come up in six coin fps.
4
2 g all e
20 out of 64 times you wil get exactly three heads (or three tais). That's about 31 percent.
e time.

of

‘Assessing the probability o abad car rip

Another a certain
number Ourcar. in how many
possible combinalions of to people can be drawn from a group of six.

Fi For this

and the two names to be cran as the k

1
" 15 There are 15
possible combinations of o people dran from six people.
Inthis case, chances of being in
i That's 1 combination 15 possible

combinations. So. you wil be matched up with your annoying Uncle Frank. or Aunt
Tille, or whomever, in the front seatjust 1 outof 15 times.

Why It Works.

X a
along the way. The patterns of the numbers, their rogression, are consistent wilh other
formulas used in determining probabiy

For instance, the total
onthe

derived that formua for number fora coin:

Sar o e 5 2 94

Asfor Sixand that the.
the

people (our
rangle saic 1 out of 15. But you also could have figured i s way:
1

(Chance of being In a group of two people outof six = 2/6 = 33

Chance of a specifc “ther” person being chosen = 1 person out of 5 “others” = U5 = 20

Chance of both outcomes occurring = 33x20 = 066, and 066 = 1 outof 15

So, when you

Pascal's Tiangle biing peace t your roubled mind.






Hack 67. Control Random Thoughts

i

‘The rambling nature of our inner thoughts is often pevceweu s el an eedittirandompoth,
‘You can take advantage of thi uess ights of those around you ing
robabiltythat they wilocus on whatover you widh.

No stranger to creepy scenes, Edgar Allen Poe relates this one in Murders in the Rue Morgue:

ecupied wih inought nethr of us had spoken a yllable forfteen minutes ateas. At once, Dupin
broke forth i s: "He is a very ltle fellow, that's true, and would do better for the Theat

los Varites There can b o doub of a1 eplied umwitingly.."Dupin” aid | gavely.
beyond my comprehension. | do not hesitate to say | am amazed, and can scarcely credit my senses. How
was it possible you should know (what) | was thinking of...?"

Have you ever been talking to someone, and your mind wanders off for a litde while? Then, you bring up
whatever it was that you were thinking about and, lo and behold, the other person was thinking about the
exact same thing!

Why does this happen? Can you make it happen? Can you predict what the other person is going to say?
More than likely, yes, you can sometimes make it happen, and sometimes you can predict what the other
person is going to say. This is especially true f the two of you share a common background.

Mind Control

ur memoris are filed it words, thovgits, sorie,and soonthat ae sssocited with ather words,
thoughts, and stories. If you want someane to think of a certain topic 5o that you can read her mind, the
Chaiost way 1 110k et 1t tninking whet you want het t ik 5 by bRGING up & 0P hat 4 Hloscly

related to the desired topic

For example, if you want your friend to start thinking about lions and tigers and bears, you might prime.
her thought process with words that are associated with that themewords such as Wizard of Oz, Dorothy,
Toto, o even stripes, since stripes and tigers are highly associated with each other.

Allwords have a eran equency of occurence i witen and spoken language. Some words have  very
High fequency of ocurrence (such as the, , tc). wie other wordshave very lowfequency of

occurrence (such as aardvark). Addiionally, some words occur with other words quite nequenny (suchas
salt and pepper o rhythm and biues). In fact, they oceur so often with the other words that research has
found that people think both words even when only one is said.

By learning these associations, we can process incoming information more quickly. f we hear salt and are
already thinking salt and pepper, we are one step ahead and can begin to reach for both before our dinner
companion even finishes asking us to pass them.

So, it you want to “control” someones mind, the trck is simply to know which things occur most
frequenty together. The more frequent a word is,the more likely someone is to think i. Likewise, the.
more frequently two words occur together, the more liely one is to think of both words when only one is
stated.

Probability and Word Association

Researchers interested in those words that tend to be associated have collected data over the years to see
what is normal for us humans. Psychiatrists use knowledge of typical fre associations between words as a
100l for reading the subconscious. Cognitive psychologists use the same information to map the way the.
brain processes information,

A huge amount of information s known about cues (the word presented that might lead o an association)
and targets (the words thought of after the cue is presefied). Tal
the probabilty that normal people, such as your fiends, will think of partcular targets. The table provides
arange of good cues and bad cues to give you an idea of how most minds work.

Table Chances of word associations.

cue Targe Probability
condom sex 53
bumpy sex 01
broccoli green 25
broccoli gross o1
pajamas sleep 36
accident car 36
accident oops o1
mother father 60
mother goose. 02
orthodontist teeth 42
hero Superman 17
hero Batman 02
statistics. numbers 2
statistics boring 03
coleslaw. fish o1

Information fike this s useful for when you want your subject o think of certain words or ideas. With sex,
for example, you will have more luck cueing with condom than you will with bumpy.

thousands of words fou redulFreeAssoation!, provided
Nelson, McEvoy,and Seivaier tosearhers at e Unersites of Souh i
and Kans

tﬂ b draws on he seemmg\y exhaustve s of ypical associaions (o

Building a List of Word Associations

‘Associated ideas and words form slightly different webs of connections in each person, but within groups
of people with a shared culture (pop o otherwise) and shared experiences, the networks are similar. To be
able to start saying your friends’ thoughts out loud (and spooking the heck out of them), you'll need to
know the likely associations in your metaphorical corner of the worl.

‘You can conduct a smal study to help you determine which words among your friends are most strongly
‘associated with each other. Create a sample of a few representative friends or family members. Make up a
list of test words, and ask your sample to say the first thing that comes to mind when you say each word
Words in common phrases or ttles work well. Words that elicit thoughts of favorite in-okes, movies, or
songs, though, are the type of words that should work best for use in actual conversation later on

that real-world cognitive psychologists use in their research to learn more about

Your mini-study s a quick way to get a small sample of the same kinds of data.
thought processes.

Ifthere are some words that many of your fiends give in response 1o a word, you can assume it s strongly.
associated with the test word. You want words with the highest probabilty of priming the mental pump
toward a predictable outcome.

Why It Works

“The human brain is 5o eficient that it processes words or deas in the context of whatever iords or
concepts have been previously over-leamed. Research studies have found that when people are asked to
state whether a series of letters is a word, they respond more quickly to words that have been primed or
preactivated by words that were shown to them just prior to the identification task. For example, if stripes.
is shown, and then either tiger or lemon, people willrespond more quickly for tiger than for lemon.

By talking about words or topics that are closely related to other words o topics, you begin a thought
process in your friend's brain in which activation of neurons spreads to neurons that generally fre at the
same time. Your brain has learned that certain words and topics almost aways occur together, 50 it knows
that when one of the associated words or topics is activated, it should also fie in the regions where those
associated words and topics are activated. That way, your thought process can proceed smoothly.

WhereElselt Works

“This particular mind trick has some risk of ailure, especially when the associations that you are relying on
are low-probability associations. However, you might just enjoy knowing that you are secretly
manipulating others and don't have to make a big show out of it

We can prime people to do lots of things that seem to just come naturally because they occur so
effortlessly and often. For example, itis likely that you can make someone yawn simply by yawning
yoursell. You might even be able to et a friend to yawn by talking about yawning or sleep. (In fact, as |
wrote this, | yawned) Likewise, if there is something that sounds good to you for dinner, you might be.
able to get your family members to crave it too by mentioning that kind of food.

You probably have been primed yoursell many imes. When you ae stering toyou avorie CD and ane
song ends, o you stathearig the nextsonginyourhead efore i even begin? I you know whl hings
someone associates with other things, it becomes relatively easy to predict someone's thoughts

Yo imed tem. i s prtly why mared peopl can oen Tneh cech ohers serences.

Wherelt Doesn't Work

If someone doesn't share your language background, because they speak either  different language or a
different dialect, they might not have the same word associations that you have.

It also might not work if a word has several equally ikely word associations. For example, if you prime.
‘someone with the word hot, some people might start thinking about the weather (hot and cold). Some
might think about food (hot dogs). Others might start thinking about people they admire (a hot babe)
What do you think of next when you see the word hot? | knew you were going to say that!

Jill Lohmeder with Bruce Frey


http://w3.usf.edu/FreeAssociation/




Hack 68. Search for ESP
i

You or your riend or yor

iy exist, they might be wrong.
find out

percept the
raditon five senses: sight, hearing, touch, taste, and smell. The irst 1o use the term was a psychologist
aLDuke Uniersi in e 19205 and 19305 named J.8. Rhine. There was mueh exciment i he e, 25

ities. In the

o 19705, it was even taken for
certain degree.

Today, though, you dont really hear 3 thatsucha

thing probably does not exist. any

v ypatesized henomeron
add to the data, though, by conducting your own studies and identiying whether you
oo ona gt be pyene

Identifying Psychic Abilties

s called Zener cards.
The acef five symbols: a
cwde cmss ‘square, star, or wavy lines, as shofim i Fials
Figure 6.7. Zener cards
[ X . you can make them
cards and a black i e
chic, t00). each symbol for a total of 25
sendr it to
who s siting nearby.
A person in another room or in a distantlocation looks al the face of each card and attempis o send it
‘another person over ‘Sometimes, the:
in the room with the sender and can see the card.
and misses. outof the 25 did in some studies, the receiver
s old how he is doing e is not told untl he
end of the experiment the percentage
dentifed.

g In ESP research,the person who s trying to read someane's thoughts s the

Analyzing the Results

i alone,
not psychic. If . that outcome
Suggests that the subject might have ESP.

each

Imagine, or example,

type,
e acros 25 imes, come.
wpe your average
s wou e e ok of 5 o 30 et

20 percent, th 25 umes,
for a success rate of 24 p than chance is
a ] o ideniy

be considered 0 unusual ‘something so

outcome. For our experiment, a statisticaly signficant outcome doesn' prove:
oniy. frer al, the

o ards
reflected in the sender's glasses, or some other less ineresting cause.

in s that
difr from We sce o, in
. espe P n fact,
sample value and the

population value s directy related 1o the size of the sample.

For o : g 3
pop any.
corect; that Mthere s a
chanceis likely operating
Itis similr o other tests,

Such as ttests [Hack #17], which calcul

 population with
certain characterisics.

For example, fafter 25
mpts. a person guessed 24 prcent cortecy nstead of e expectad 20 percet, he
nfommaon necded o s s ot be

A sample size of 25
An observed proportion of 24

An expected proportion of 20

b ysis,
Sult.

corvecl'y a1 parcam the time. Another way of sayg ht that ot o 100 e gong

i iy, 3

T Natonal
n it rates [Tk 617

rate of 20 percent,

‘Table Likelihood of selected ESP it rates

Number | Percent
corect Probabilty of hi rate or betier
quesses| (vt rate)

B |oacen |opereem
B | [1peren
B | perom |poreem
B |oacen | ovpereem
100 | en |sopercent
100 | e | Lo
100 | porem | 00001 percent
200000000001 prcet

likelinood for
sampl iz nreases For amplo, wih st 2 uesse, h cles

e 13 s 200 ey ey 80 i e
e tme o0 ook 100 guasses, hough. maybe 66ing irough(ne
deckour s,y ol et 40 pecent o betercrtct st ut
of 100,000,000,000,000 ti

How Much Is Enough?

1fyou want to conduct ESP experiments, you should establish a
standard for how unlikely a performance must b for you o consifer it

50| el in sausical et aesutis eyt ocs by chgnce
percent |5 percent of the ime orless. is considered statistcally
Sig

H)
%
23
Y]

g

you will guess 8 of more cards correctly about 7 percent of the i
‘You wil quess 8 or more correctly just 2 percent of the time. So, fome
Standard between 8 or 9 his is sciendfically reasonable.

“The skepticin me feels compeled (o leave you with a warning, flou

somecne ke, hats ety col . can eeat g, g

replicating the experiment wih the same person and geting simifa
e, has when ol a0 et oxciin! vt hoppens, sopd
me a telegram immediately. I sell my house, buy a train, and wi
it the roa to fame and fortune!







Hack 69. Cure Conjunctionitus

[lic3

arthe

pary You chat

oclore dinner.

e ind game vith you and expians

Tngomg o

Johnis  computr scietst.

Jotn s car ssman,

3ot s former basebalplayer.

Johnis  Repudlcan.

John s computr sienst who used 0 play baseball,

John s preacher who runs marathons.

Johi plays the clainet.

are feasonatle guesses based on the conversaton you 1ad.

Condion ha esus npeople making poor probabiy udgments

e new siep
1510 undersiand thecondison s thatheaingcan begin

TheProblem

Someinag, e pobai
e o

o cold star by ocking a base rates.

. car salsman ormer
Ths. s mos hely

hat John s maiec. Where 6 you rank at possbiy”

Ve do know
e

Most peope, hawever,

oo o
Makes thom more kel © b rve. Even , and maybe especaly i, he second Tact by sl seems.
ey,

‘Conjunction Junction, What's Your Function?

coteague Amos.

pton included bt the ighy Smiar and he ncongruentoptns.

leastin cogrive pychology cices) Linda Proben:

Jo otspoken, and very bight. dert, sh

aniuckar Gemonsiatons.

Lintais  teacher in sementar schoo.

Linda works i  bookstoe and takes Yoga casses.

Lindas acive n the femnis moverment

Lindais  psychiaric socal worker.

Lindais a member of the League o Wamen Vorers.

Lindais  bank teer

Linda s an insurance saesperson.

Linda s  bank el and i active i thefeminist movement.

Katneman and

o hatvay.

g conjuncion . Th fact hat many poopl often boleve hat e conjncton of

conpancon alacy.

Thecure

Cutitout

sop

oontdotnat

payer who

ol

Hita home un

Strke outand it a home run

Bl cannot e S0

&

More probable. However, s e ony f e can never cur winout e
oer

e,
arena. Is George W. Bush more kel

Nominate a moderate Supreme Coutjuste

You 6 oo, once,

Tersky, A and Kahneman, . (1974, “Judgment under uncerainy:Heurstcs and biases” Scienc,
185, 11241231,

i Lotmeer







Hack 70. Break Codes with Etaoin Shrdlu

Sl ks v, Agert 003 1415

a1 when oy v conered on 2 ey

irens
appiis
oo it
s b inad By Vanna Whis on TV,
‘Single Substiuton Ciphers
For
e 1 h i ) 1o o s o h bt o (e lher 0.
Tabie A singe subsiion pher
Franex] 2] J K|
o [u[afo]ee|c[ o] of B EREE

Vo e h 0 showr T T 4. o i 1 e

appears o cpher et he s

causg e cpan

oI Tom Sauyer o fevea el

Using Probabilty to Decode Substtuton Ciphers

0y 0 Ao o o S4ts 1 Engieh e s

The o cormon e, in s ofuesge i Engie, s €

The st commonty sed ot s 2.

anaxae sl s, 25150

(O T I R——

iy At 1 us i on oo o i i

T passage. T st Commonk appsanng drs 1 h Gared s a1 P and . Bocauss i 5
wneE (v

oo o€

st o  and .

M Tabe 610

Shons 0 thay ditibuion o ach e o h aprbet

TableFrequency disvbution ofeters i Englsh

Coner Freweney
60t pooet
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&
B
H

B
ETAGIN SHRDLU

o sang pvofEETADITSERD] L is a memonic dovio (nemory o) for emembring o most

o ce
St g o ramember <t any et
ot s cout. Yo cn 10 P It st of i e nd ey, and some e
Sy om o

i se sane

Baugsucnas .

Wheel of Fortune Strategy

e TV gameshos WheelofFrune beors sling e i puzze s e nd, e

g s Ty poide. 5 L 41 T e g s, s

Statistcal Analysis of Coved Texts

nmaton o TS 10

S, e e
9 st e SpOWTETABE 1 5 bong v
Figute -8, Engish ete requency (ef)and coded e requency (ight)

oo b .

e
essesscund il Enpsh cs st et

Other Common Letter Pattems.

fematon abo ot patams o Bt
it s most kel 0S4 T, O, A, W, B
st worts e vl an €. 7,0, or 5.

1o cers aro douse i o, oy v st ey o be 55, EE T, FF, or L

Freauonty ppoarng ot words nckde o, .., 20 .

Lt ittt come i s e T, HE, AN, N, ER.

The most roqenty used words r h, o and ., ., 1, o, .

Surprisnghycommon
See iso

A g0 panaion of s sbstuion chers anbe e e ey o Feuency s
‘BT e ol ey sl

Some of e sastes epore n s eck were fou B BT AR PSSR TARE: o3
TR S o, Goo aton and e o oMY MRS s o S5
g Sais can o o 1 0 5



http://en.wikipedia.org/wiki/Frequency_analysis
http://www.scottbryce.com/
http://www.scottbryce.com/




Hack 71. Discover a New Species

|

et previousy known. Surpisnaly,satstial oo, ot ioogical ok, can do e 1

few years bac. v species  ypeofpossum, was denfid. The new specis was ramed
trichosurus cunninghami. Trichosurus means, um...possum (I guess). and the cunninghamii part refers o,
{65 icoversr, Ross Cuninghar, a saistian al Aisrallan Nalional Unwersty. 10wt e t have &
species named for you, here’s how statistics can help.

Identifying Species with Statistics

Thereis a family of statistical bunch of variables and
p are identified on the basis of the

\em. Typically,
correlations among them [Hack #11]

‘One procedure that uses this strategy attempts to find underlying dimensions or invisible, giant basic.
variables that account for a bunch of ess important variables. This procedure is factor analysis, and
elsewhere we see how it can, among other things, be used to identity writers' styles [Hack #65].

fullof similar underlying causes, and groupings. The
idenify

goal of
new species.

For some ve it must sh; biologic:
characterisics that make it istinctfrom Similar animals. Sure, animals within the same family all look &
lite different from each other, but then, people look ot different from each other and we are all one
species (my Uncle Frank being perhaps the exception that proves the rule)
118 atoup ofarmas, such s D Cuinghan's possuts ave o 1 common wih ach thr than

ey other creatures in their species, they might be candidates for consideration as a species in
el ow Ght. Statisics can deteminetat ‘re 1 eachotht and more dferen o the restf i
species than chance alone would produce” poin.

Using Cunninghas discovery as  model, there are a few steps to follow for you to make your own
discovery.

Collect some data

‘This possum existed in Australia near people for more than 200 years and no one noticed. To be fai, it
looked

caled the short-cared possum.

It was assumed for some time that there was really ust this one species of te litle guys. Part of Dr.
Cunninghar's for him. Consequenty,
he had a ton of very specific quantiative descriptions of various possum partseyes, ears, nose, and
throatand measuremens of other physical characteristcs.

Choose a statistical method

et ' 2 10 factor analysis but with canonical

o of e e hmssed i bk o focto ansysi, maronerl e s i thrs are
‘many other procedures that would

tunctionally th ‘multvariate

nalysis er procedure
Compostes ofvaases i e o of coneepualy dotng e o more
distincty different groups.

E o0 e rnly sty s, l eyt o tat cacriad

‘Cunningham used this statistical procedure to examine the descriptive data for this presumably single
K there were

species.

Select a hypothesis and analyze the data

S0 you g there is oris

not

in

hero, C that
data. Then, the of course) identified

e g vedes o in

& ‘The difference between using this tool, canonical variate ana\ysns and

regression,

oo’ they beong 0 IHack #13]. Here, e rocadne works bindy
swer s. Instead, it

made the most difrent wi e variales a hand.

Here are the variables Cunningham used:

Head length

Skl vidih

Eyesize

Ear length

Body length (from tp of nose 1o tip of uncuried tail)

Taillength

Chestwidh

Foot length

While 3
found to be most important in distinguishing one species from another and also because they

Interpret results

The . d found. For
pecies in enough detai to

difierentiate it form other, similar speces.

The igham identified ol
each of the biolog| 10 find the best identified two
the ) are similar 1o regression

equations,
Here's e ang bestaquation ht sccounted o n astoising 89 prcent ofthe variaby
on these characteristics for all the possums in his databass

(head lengthx.44) + (skull widthx.07) + (eye sizex.05) + (ear lengthx.82) + (body.
lengthe.35) + (ail lengihx.72) + (chest widthx.16) + (foot lengthx.70)

Ive provided from the study, P to each oter.
The larger weights indicate the possum
chosen two groups of possums.

In i dta.youcoudfnd e groups ofposum hat e he st based n o e
taillength, “The amo ol . statsically,
d that i

of possums found inthe data were actually o diferent species of possum, and the species.
could be defined by their ear length and a couple of other variables. The larger the weights in
the more th pats.

Two Possum Species
jier=: ) sticumiiod as such by

atics. 2

mathem:
found i the statistical analysis!

‘Table Two common Australian possums

rchosurus caninus richosurus cunninghami
Common name | Short-eared possum Mountain brushtail possum
Habtat Lives in the north Lives i the south
Ears Shorter ears Longer ears
Feat Smaller feet Larger feet
Head Bigger head Smaller head
Tail Longer ai Smallertail
so Gwn data on those odd, Screen door and
you are el on your way pecies of sink bug or

wo? You tell me.
See Also

1 first leamed about this approach to identiying species i this fine aricle: Hall, P. (2003).
Chance, 16, 1.






Hack 72. Feel Connected

The conceptof

M word, en?
almost anybody in the worl.

he cocktal pary.

‘Six Degressof Separation

il Smih n

Connection ith actor Kevin Bacon.

Have you ever been

acausintances,

wel, sove

Kow oach other, maybe we have a fend in common?

The quesiion, therelore, Toget
the answer,do a big study or  small stucy using the methods i this hack,

Deing a Big Sdy

duplcate the methods used by Stasley Migram.

Chooatarge
Massachusets, where Migram
iwved
Universiy's
president.

Recruit paticipates

Nebrasia. This sampling

the popuiatn.
have tme or.

“Train particpates

he leter,
and soon.

In your own stu . these o i

teraly i,

Callet and analyze theresults

On each
leter,

longest chain, and you have the maximu disiance.

Notce, However,
fight number. Iy, not wordic

not empincaly derived.

doit
even i ey disagree vith them.

networks is about si oreven a e less

Doing a Small Study

The goalof the
aciity coukd b scientficorJust pary un.

Milgram via email

vitualy costee.

o,
fandomy. A

By the
Shoukdn' have (0 worty about vilaing any Inernet rotocols.

Throwaparty

the person.

on the borom
prove to your guests tha they al relly know each other

Just Doing theMath

100. st
names, oo, presumably
Separation. (Acually, 10,100, i total, counting the 100 people who are wihi one degree of you.) It
woul s )

Fa.

‘Table Degrees of separation and corresponding connections
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oy, e e e s
There s not
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Ko el on many ofrent s o that g
B
The Grandpar ent Paradox
vounsa
paens. ars four
Sanerabns 0 ge 2. e bt of o
e o eat for ot e
000 years o 50 Whre it e 0t al hese aher grandparets? upter. pehaps?
Tho answe, of course,
Chidren
ra
akes s ah e art o 3 macommunty
.
3 Wimets T
7. e Day Ao e
g e
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Sechisn
Payehcony Tooay y

y
NovemberlDecember 2003 ssue.

Wats, D.J.(2003). Six degrees. New York: Norton. A book on the new science of networks.

incluing the i deqrees o separaion concept






Hack 73. Learn to Ridea Votercycle
wACK
#73
Though a free election seems to be the fairest and wisest system for making policy decisions and electing

officials, statisticians sometimes fear that a paradox political scientists call "vote cycling" can result in a
win for the minority. There's a better way to hold an election.

When | was a little child statistician, my parents would occasionally allow me to make choices about
personal thingswhat to wear, what to eat, which story book to read at bedtime, and so on. I noticed that
sometimes the choice was open-ended: "Your choice, Bruce: when would you like to go to bed?” And
sometimes the choice was presented as a set of alternatives for me to choose between: “Your choice,
Bruce: would you like to go to bed now or in five minutes?"

Of course, the second choice isn't much of a choice, really. When I had to choose between various
alternatives, my true opinion wasn't reflected as accurately as when | could choose anything | wanted.

Democracy works like that as well. When it is time to vote for President, or Mayor, or Dogcatcher, we
usually must choose between several alternatives. We might not be happy with any of the options, but we
vote anyway (at least statisticians do).

Did you ever leave the voting booth, though, and feel that somehow your real feelings weren't represented
very well by those choices? Political scientists know that feeling. They have analyzed the sometimes
unsatisfying outcomes of votes between alternatives and discovered that such a process can result in
outcomes in which no one is happy (except the winner, of course)

Vote Cycling

There are a variety of ways that elections can be structured. Imagine that an electorate (such as the
residents of a city, members of a club, o faculty at a university) is asked to vote on a policy and there are
three choices. Imagine, also, that there are three groups of supporters that each favor one of the three
options over the others. The election could ask people to vote for their favorite policy. Under that system,
the policy favored by the largest group is likely to win the most votes. This seems fair, and this is the
system we most commonly see.

Another system that makes good sense, too, at least on the surface, would be to present each pair of
options against each other and have a kind of runoff election, in which A is compared to B, B is compared
to C, and C is compared to A. The biggest vote getter in this sort of system should result in an equally fair
decision. It turns out, though, that this type of system, called vote cycling, is difficult to use fairly because
the order in which you present the options can determine the outcome of the election!

basketball tournament: the order in which the games occurred could affect who

Vote cycling in elections works in the same way as how you put together a
wins the whole thing

How It Works

Here's an example of how vote cycling can work. Imagine that your scout troop has to decide what color
to paint the inside of the troop clubhouse (or wherever scouts meet these days). As a group, you will be
voting for Red, White, or Blue. Different political "groups" have formed among your colleagues who
favor different color choices.

There are the Apples who prefer red, the Elephants who favor white, and the Jayhawks who like blue best.

The groups also differ on which color they like second best and which color they liE Teast. Table 6-22
shows the three groups and their political agendas.

Table Painting preference and politics

Group Per centage of electorate First choice | Second choice | Third choice
Apples 20 percent Red White Blue
Elephants | 40 percent White Blue Red
Jayhawks | 40 percent Blue Red White

To determine the will of the scouts, you could hold a two-stage election. Stage one presents two
alternatives. The winner of that stage then "competes" with the third alternative to pick a winner. The two
stages and results could ook like this:

1

Red or White? Referring fo Table 622, it is likely that Red would receive 60 percent of the vote,
knocking out White. Now, the winner goes up against Blue.

Red or Blue? In this matchup, Red receives 20 percent of the vote and Blue wins with a huge 80
percent

So, blue paint must be the will of the people! This is a paradoxical outcome, though, because only one
group, representing 40 percent of scouts, liked blue best. An equal number liked white best, and another
20 percent hated blue. The order of decision making affected the outcome. Let's do it again in a different
order:

1

Red or Blue? Blue wins with 80 percent of the vote.

Blue or White? White wins this match with 60 percent of the vote.

We have a different outcome than before, just because of the order of matchups. This is fun; let's do it one
more time. Maybe we can arrange for red to win this time:

1

Blue or White? White will get 60 percent of the vote in this battle and survive to face off with Red.

White or Red? Red wins this one, with a majority of 60 percent. Well done, Red. Red clearly is the
favorite color!

Three potential orders of matchups result in three completely different policy decisions.
Getting Off the Votercycle

If we think of voting systems as measurement systems, this matchup method of making decisions has low
validity. There is information that could be gleaned from the voters that is being lost here. However, there
are a couple solutions that come to mind to solve the problem of vote cycling.

If the designers of the voting system are interested in the rank-order preferences of voters, voters could be
asked to rank-order all candidates. The lowest mean rank wins. This is a fairer method that uses all the
information available, but it can lead to choices that no one is really thrilled about.

For example, such a system resulted in my family's infamous decision to go see
Home Alone as our Christmas Eve movie many years back

Another solution is to make all candidates available for a single vote, with the majority winning. This is
the most common system, but it does have the of choosing that have
no majority support.

For elections in which there are many candidates (in some mayoral or governor elections, for example),
there is often a runoff election in which the larger number of candidates is whittled down to a smaller
number. This doesn't have the weakness of vote cycling, because all altermatives are considered at the
same time. It also eliminates the weakness of the single-trip-to-the polls approach because it increases the
likelihood of a winning candidate with majority support.






Hack 74. Live Life in the Fast Lane (You're Already In)

e

#74)
By applying the aws of chance, knowledge of human nature, and some facts about highway.-driving
behavior, you can make wiser lane-changing decisions.

Nothing is more frustrating than being stuck in a traffc jam, especially when the other cars are moving
faster than you. While it i tempting to change 10 a faster lane, it turns out that your judgment might be.

flawed and the other lane is probably not really any faster than yours.

Decding o shangeanes uhen you shaudntis o dangrcusproposton Not ol ar e oty ofcar
in the U.S.

crashes
diver is

patiently
he's just

due o driver error, but 300,000 c
Changig anes, Gf cotess, 0478 1 & hry anc the lana i 1y s v ore LY,

do 50 safely, why shouldn't a smart driver move into the fast lanes of ife? After all, as I've
explained to court authorities a number of times, a *good" driver isn't necessarily a safer driver:
adriver who gets where he wants to go as quickly as possible.

e ol htrcen researh voing sttt bsed computer sinulatons sugets it arvers
will usually judge another lane is moving more quickly than theirs, even if it s actually moving at the

ame spocl Ths ispercepuon, sunvey resedreh showe, s nough for most drvers oy 1 change ino
that other lane.

Skips, Slips, and Epochs

Our perceptual world while on a busy highway or in a traffic jam consists of the big truck in front of us,

the cars

we see to the right and left o us, and the poor sap stuck behind us. To judge our speed of travel,

while we do have a speedometer, the most compeling data tends to be the cars on efther side of us. (Are
they passing us or are we passing them?)

‘Traffic researchers call the times when you are passing other cars skips and the times when other cars

passing you
probably does not surprise you th

cars are
sl Recent research refes 0 kps as  passing epochs and s as being overtaken epochs. 1

An epoch is a period of ime. Drivers' ives while driving in heavy traific are
essentially defined by series of epochs of very short duration.

Inaddiion to \aokmn forfastr lanes to move nto divers have another goel, which s o keep telrown
vehicle moving as quickly as possibl t clos

i o e
they are

ossible, or at least o their target speed (which might be the speed
Campio) I hete rt percehd gape hetween thomseives and he vehice  ont o them.and
not currently moving at their target speed, drivers will accelerate to close the gap. It is these bursts

of acceleration that account for the skips (periods of passing other cars) and slips (periods of other cars
passing them). We are likely to experience more periods of time when we are being passed than periods
when we are doing the passing. Itis this perceived inequity that can result in drivers concluding that they
are in the slow lane, even if both lanes are equally siow.

Imagine
form ran

twoanes ofrafc side by side that are movngat he same average speed. Gaps between cars
domly; more accurately, they form ed o

Gaps are filed as they form, and when gaps are filed, cars heve sccelrated

by a period of time. So, if cars in two lanes cover 1,000 yards in five minutes,

& Average speed for a lane of traffic can be calculated as distance traveled divided

Drivers

they both have the same average speed of 200 yards per minute, or 6.8 miles per
our

on crouded roads occasionaly have gapsthey seck o close,but hey acualy spend much more
i

i
tme (latvly speaking) movig sowly o nol moving t al. During those tmesof

ich, of cox

o ek more tme, there wil oecasionaly be cars n bher 2nes ing gaps and passing the

avers it s lemporarly S anes.

‘As measured by epochs, for any one driver there will be more time spent being passed than there will be

time sper
are movi

nt doing the passing. This is because you pass while moving quickly and you are passed when you
ing slowhf Figure 6-9 paints a picture of this perception.

Figure 6-0. The perception of time spent getting passed
=] » [

Sitting stil g other lerate 1o il tes the illusion that our lane is moving
e slowly.
Probability and Traffic Patterns

anadian researchers Donald Redelmeier and Robert Tobshirani, who conducted computer simulations to
determine the accuracy of driver perceptions of other lanes' speed, made some assumptions about traffic

tterns t

ihat were based on the normal distribution [Hack #23].

“To mirror the reality that a particular patten of spacing on a crowded highway has several caus

(conditio

on two nor

ses
s, exits and entrances, and so on), they randomly assigned intervals between moving cars based
rmal distributions: 90 percent of intervals were about two meters apart, give or take a 10th of a

meter, while 10 percent of the intervals were 100 meters apart, give or take 5 meters. At the start of each

of hundreds of simulations, cars were created and spaced following this randomization plan.

The researcherscreald data fo o lanes of vaff moving inthesame drectonaithe same speed, ul of

huneds of maginay vetices wih ypical acelraton and braling capabies. They program

safe driver strategy of moving up when there was space in a lane, but not getting too close. Their
Simulated rvere were notalowerl o gt 00 close to another veicke's aite. Al ey were ot
allowed to change lanes, which must have been frustrating for the litlle computer-controlled drivers. No
accidents here.

vehicles, Redelmeier and Tibshirani chose typical statistical specifications (the
ability to go from 0 to 63 miles per hour in 10 seconds and the ability to go from
63 miles per hour 10 0in 5 seconds), which happen to pretty much match a
Honda Accord.

t ﬂ In terms of the average acceleration and braking speed for their simulated

Making Wise Lane-Changing Decisions

Redelmeier and Tobshirani found that 13 percent of the time, cars are either passing or being
passed. Most of the time, cars are running equal to each other. While there was a better chance
that any particular driver was being passed than that she was doing the passing, when she did
pass cars, she passed a bunch. The math worked out to a draw in terms of cars passed and the
number of cars doing the passing. The total number of cars overtaken by our driver was equal
o the number of cars that passed her.

Under crowded driving conditions, the other lane will seem greener much of the time. There
e some ways to deal with the misperception and make wiser (and statistically safer) driving
choices:

.

As a logical scientist, you can evaluate your driving by the length of the journey, not by
whether you won or lost the traffic jam competiton. It shouldn't really matter if you think
more cars passed you than the other way around.

Keep this other lane is better misperception in mind and find better ways to judge the
speed of other lanes. Pick a unique car in the other lane, and after a few minutes compare
your position to it After all, there sometimes are faster lanes than others; it just that you
can't ook at passing cars as the best evidence for speed.

On large highways, pick a lane far to the left or ight of upcoming exits, as traffic exiting
and entering the road is the main cause for siowi-downs and speed-ups.

Curb your aggressive tendencies in both driving and in car purchasing. Interestingly, the
simuaion showed ihat aggressive dning,such as mininizng e siandard olowng
distance between you and another vehicle, will actually increase the amount of time you'll
s ohercars passing you. Ao aser cars (noss it can acceerate quicky spond
less time passing because they can o it quicker. So, your super-powered sports car might
lead to more frustration for you on crowded highways.

“The wisest tactic when it comes to dealing with the likely misperception that the other lane is
faster than yours might be the simplest. Just don't pay attention to it. The simulations show that
if you look at other lanes half as often, you'll nolice cars passing you half as often.
I'suppose, though, that we don't need a statistical analysis to tell us this. Instead of the cars
beside you, pay more attention to the cars behind you. You're way ahead of them and there are
thousands of them. You've already won that game.
See Also

.

Redeimeie, DA, and Tbshiar, R..(1900) Wiy carsin the nextane seem 0 g0
fastor Natire, 40, 3. The onginal sty r6porting e mos ecent 1 analyss

Redelmeier, D.A. and Tibshirani, R.J. (2000). “Are those other drivers really going
faster?” Chance, 13, 3, 8-14. A more detailed description of the findings reported in the
Nature article
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Hack 75. Seek Out New Lifeand New Civilizations

i

The search for extraterrestrial life is alive and well. You can use statistical sampling and probability to
focus the search.

The scientific quest to make contact with life on other worlds requires that decisions be made. First, one
must decide if life exists at all beyond on our own planet (mine's Earth, what's yours?). Second, one must
determine how and where to look for it. You can apply statistical procedures to make both these decisions.
Estimating the Number of Smart Planets

In 1961, Frank Drake, an astronomer who was interested in looking at the universe from afar by reading
radio waves (a bunch of which are bouncing off Earth all the time), decided to estimate how many other
technologically advanced civilizations probably exist.

Being a little Milky Way-centric, he was most interested in determining the number of advanced worlds
(planets willing and able to talk with us) that are nearby, in our own galaxy. Drake suggested this
equation:

Shows the meanings of the abbreviations in Drake's equation.

Table Drake equation components

Term Meaning
R Rate at which new stars are produced in the galaxy (per year)
Ny Average number of planets orbiting each star that can support life
F Proportion of planets (from §) on which life does develop
Fi Proportion of planets (fromFon which intelligent lfe develops
Fe Proportion of planets (from,Fon which ivilizations develop
L Average lfetime (in years) of civilizations (from.F

‘The formula is really nothing more than a chain of probabilties. The number of expected positive
outcomes is determined by multiplying all the separate likelinoods together. Though a simpler equation
without all the different permutations of F would work just as well, the specific different components were
included to help scientists identify the important questions that needed (o be answered to estimate the
probabilty that we are not alone.

Applying Drake's Equation

To calculate a realistic number of planets in our galaxy that currently have intelligent ife, you have to
plug in some realistic numbers. Also, we know that the correct answer (the solution) must be at least 1,
because there is intelligent ife on Earth (insert your own joke here), and must be no more than
250,000,000,000 (the number of stars in the Milky Way) times the average number of planets around stars
that could support lfe

When the equation was first introduced, only one of the terms could be estimated with any consensus.
‘among astronomers. R, the number of new stars produced in our galaxy each year, is believed (o be about
10.

If R were known to be 10in the 1960s, | guess the correct number of stars in our
galaxy would be closer to 250 billion + 40.

In 1980, Carl Sagan, popularizer of astronomy, discussed the Drake equation in his television series and
book, Cosmos. Because we knew less about the planets in our own solar system then and, more
importantly, knew nothing about planets in other solar systems (or even f there were such things), Sagan's
estimates for each value and his best-guess solution was somewhat speculative, but his answer was that
‘about six million planets in the Milky Way at any given time have the technology to communicate with us.

Using what we know todaly, Table 624 provides one set of values that produces one possible answer.
‘These values are taken from an essay in an October 2005 edition of Astrobiology Magazine (you probably
have a copy on your coffee table) by Dr. Steven Soter of New York University. In some cases, | chose an
exact value from Soter's discussion of a range of values.

Table Oneapplication of Drake's equation

Term Estimates Calculations
R 10 per year 10
Ny 01 (1 planet out of 100 stars) 10x.01 = 10
F 1 (assuming Earth is representative) 10x10= 10
Fi 001 (Soter suggests "small fraction") 10x.001 = 0001
Fo 20 0001x.20 = 00002
L 100,000 years 00002¢100,000 = 2

With these numbers, the equation estimates a total of two planets in the entire galaxy who could
‘communicate with each other at any given time. Earth is one of those. What is the other?

As Sagan, Soter, and other authors point out, the number of planets in our galaxy that support advanced
lite at any given time depends on so many arbitrarily estimated factors that any it choice one makes
when entering values dramatically changes the result. There is an important difference between six millon
possible friends and only two possible friends, but both estimates come from reasonable sets of
assumptions.

Notice how the solution to the equation changes as you try different estimates for each component. If most
groups of intelligent 80 percent, for roduce civiizations, the number of
‘smart planets jumps to eight. If the average number of planets around a star that could support lfe is
actually 2 (as Sagan suggests), our 8 would jump to 1,600 planets.

Soter advises that different reasonable estimates could produce an answer between a couple thousand and
50 few that our own planet's radio capabiliies make it a statistical improbabilty. placing us as the only.
‘advanced civilization across many thousands of galaxies.

Finding our Space Chums

One possible outcome of the Drake equation is that there are only two planets in our galaxy with advanced
intelligent civilizations capable of sending and receiving radio waves. If we really have only one other
potential cosmic pen pal, it will be tough to find him or her or it in such a large haystack of planets. So,

The current strategy in seeking new life and new civilizations is to scan the skies with microwave
receivers. Radio signals have a wide range of spectrums. Some occur naturally, and others are a
particularly narrow range that are believed to only be created artificiallysuch as from the transmission of
Three's Company TV episodes, or by radar, for example. By paying particular attention to those signals
that are within this supposed artifical spectrum, those who search for alien lfe forms hope to discover and
isolate either the random output of an advanced civilization or, perhaps, intentional signals broadcast for
the benefit of any interested observer.

them to the favored frequency for hunting life on other planets: 1.42 gigahertz. It

I you own your own array of microwave listening stations, you'll want to tune
is believed unlikely that any natural source would emit waves at that frequency.

‘The sky is big, though, and researchers use both targeted and convenience sampling techniques to decide
where 10 look. The search strategy is to focus on a subpopulation of stars that meet two criteria

They are suns that share characteristics of our own.

‘They are nearby (within a mere 100 light years of Earth).
Data Analysis

If the number of planets that could be emitting these key signals of lfe is very small (as some of the Drake
equation permutations suggest), a search of this sample must be very thorough; otherwise, we might miss
it Statisticians would refer (o this situation as a study that needs a great deal of power [Hack #8] because
the effect size is so small.

There is so much data being collected as part of systematic efforts to scan the skies, no one person or even
one computer can possibly analyze it al. You can help! SETI@home is a Berkeley University-based
program that arranges for regular people with regular home or office computers to receive some of this
data, 5o their computers can analyze it when they're not doing something else. SET! is the acronym for
‘Search for Extraterrestrial Intelligence. The program works like a screensaver and can be downloaded for

free af hiip/setiathome berkely bdu.

The data won't make sense (o you when you get it, but your computer will begin to use statistical analyses
to sort through the signal information, looking for the telitale nonrandom narrow bandwidths that might
mean another planet has reached the level of sophistication to produce something like Gomer Pyle or
Melrose Place. You could be the first o discover life on other planets, so get to work!

[ere |


http://setiathome.berkely.edu/
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counting
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standardizing scores 2nd
test versions and
z scores and
additive rule 2nd 3rd
Adler, Joseph
aliquot parts
all-in
analysis level (learning) 2nd
analysis of answer options
analysis of variance
answer options
analysis of
multiple-choice questions 2nd 3rd 4th
Apple iTunes
application level (learning)
artificial intelligence
averages
axes, graphs and

=2 wExT



=2

| ndex

ES]YMBOL] [Al [B] [CT D] [E] [F] [G] [H] [1] [31 [K] [L] [M] [N] [O] [P] [Q] [R][S] [T] [V1 W] [X] [Y]
Z
Bach, Johann Sebastian 2nd
Bacon, Kevin 2nd 3rd
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matches in two card decks

sharing birthdays 2nd
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base invariance
base rates 2nd 3rd
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Bayes, Thomas 2nd
Becker, T. J.
behavior, driving
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Benford’s law
Benford, Frank 2nd
Bernoulli, Daniel 2nd
Bernoulli, Jakob 2nd
betting systems
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big blind
Big Slick
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binomial distribution 2nd 3rd
Binongo, J.N.G.
birthdays, sharing
blackjack
blinded out
Bloom’s Taxonomy
Bloom, Benjamin 2nd 3rd
bottle-cap effect 2nd 3rd
breast cancer screening
Browne, M.
Buffon’s Needle Problem
bust (blackjack) 2nd
Butler, Bill
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Campbell, D.T. 2nd
canonical variate analysis 2nd
card games
card-sharping
counting cards 2nd
getting lucky
matches with two decks
probabilities and
rank ordering 2nd 3rd 4th
shuffling cards for
wild cards
card tricks
card-sharping
casinos
card counting in
improving chances against
money and 2n
profit on roulette
categorical measurement
categorical variables
cause-and-effect relationships
correlation and
lottery numbers and
showing
Central Limit Theorem
<Emphasis>t</> tests and
beauty of
overview
central tendency, measures of
chi-square test
one-way
two-way
ciphers, decoding
classical test theory 2nd
cluster sampling
coefficient alpha 2nd 3rd
coin toss
heads or tails
Law of Total Probability
possible outcomes
probability of patterns 2nd
St. Petersburg Paradox
coincidences, interpreting
collecting data
Collins, Truman
combinations 2nd 3rd
community cards
flop as
improving hands and 2nd
reading quickly
comparison groups
<Emphasis>t</> test
pretests and
comprehension level (learning)
CONCATENATE function
concurrent validity
conditional probabilities 2nd 3rd
confidence intervals
building 2nd 3rd 4th
Gott's Principle 2nd
normal curve and
standard errors and 2nd
conjunction fallacy
conjunction rule
Conjunctionitus
connections
consequences-based arguments (validity) 2nd 3rd
constants, linear equations and
construct-based arguments (validity) 2nd 3rd
constructs
content-based arguments (validity) 2nd 3rd
contingency table analyses
continuous values
discrete values vs.
graphs and 2nd 3rd
control groups
convenience sampling
Cook, T.D. 2nd
Copernican Principle
correct answers 2nd
correlation
between variables 2nd
cause and effect and
defined 2nd
direction of
effect size standards
factor analysis and
negative 2nd
partial
positive 2nd 3rd 4th
predictor variables and 2nd
standard error of the estimate and
statistical significance and 2nd
test reliability and 2nd
variable groupings
variance and
z scores and
correlation coefficient (<Emphasis>r</>)
beauty of
computing
conditions
defined 2nd 3rd
effect size standards
establishing validity
formula
interpreting
linear regression and 2nd 3rd
counting method
counting cards 2nd
rule of four
craps (dice game)
criterion variables
defined
multiple regression and
predictor variables and
criterion-based arguments (validity) 2nd
criterion-referenced scores
defined
functionality 2nd
Cronbach’s alpha
Cunningham, Ross
cut score
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Darwin, Charles
Data Analysis ToolPak (Excel) 2nd 3rd
data sets, checking authenticity
decoding ciphers
dependent variables
<Emphasis>t</> tests and 2nd 3rd
defined
descriptive statistics 2nd
Diaconis, Persi 2nd
dice roll
gambler’s fallacy about 2nd
Law of Large Numbers and
likelihood of group of outcomes
likelihood of series of outcomes
likelihood of specific outcome 2nd
overview
dichotomous variables
difficulty index 2nd
discrete values, continuous vs.
discriminant analysis
discrimination index 2nd 3rd 4th
distances
in distributions
interval level of measurement
distractors
distribution [See also normal distribution]
binomial 2nd 3rd
chi-square values
defined
dice outcomes 2nd
distances in
histograms and
letters in English alphabet
probabilities for cards
probability and
sample
standard deviation of 2nd 3rd
standardized score
Texas Hold 'Em
well-defined
Z score
double down 2nd
dovetail shuffles 2nd
Downing, S.M
Drake equation
Drake, Frank
draw poker
drawing the card you want [See drawing the card you want (see outcomes\\]
driving, lane-changing while
dynamic programming
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Edwards, L.M.

effect size
applying interpretations
power and
sample size and 2nd

statistical significance and 2nd

elections, voting cycle
epochs 2nd
error [See also standard error]
hypothesis testing and
random 2nd 3rd
sampling 2nd
trial and error
Type 1 error
Type | error
Type Il error 2nd
error score
ESP (extra-sensory perception)

<Symbol>h<Default Para Font><!sthkSuperscript>2<Default Para Font> (eta-squared) 2nd

ETAOIN SHRDLU

evaluation level (learning) 2nd 3rd

Excel (Microsoft)

DATAS software

histograms

predicting football games
exclamation point (!)
expected payoff 2nd
expected value
experimental designs

comparison groups 2nd

defined

effective 2nd

validity of
experimental groups
extra-sensory perception (ESP)
extraterrestrial life

NEXT B



=2

| ndex

ES]YMBOL] [A] [B][C] [D] [E] [F][G] [H] [1] [3] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [VT [W] [X] [Y]
Z
face validity argument
factor analysis 2nd
factorials
fair payouts
Fawcett, W.
feedback, trial-and-error learning
Ferris, Timothy
first significant digit law
Fisher, R. A.
flop

defined

improving hands and

pot odds after
football

betting on

two-point conversion
fractions
frequency tables

dice rolls

percentile ranks 2nd
Frey, Bruce
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Galton, Francis
gambler’s fallacy 2nd
gambling
basic truths
blackjack
card-sharping
coin toss
designing bar bets
knowing your limits
lottery
playing cards
playing with dice
pot odds
roulette
rule of four
sharing birthdays
short-stacked
wild cards
game playing
card tricks
estimating pi
histograms in Excel
iPods and
Monopoly
predicting baseball games
predicting game winners
random selection and
ranking players
strategies
two-point conversion
game shows 2nd
games of chance
fair payouts
Monopoly
roulette as
general universe
generalizations
cause-and-effect and 2nd
inferential statistics and
samples and
Gigerenzer, G.
Gilligan’s Island 2nd
GMAT (Graduate Management Admission Test)
Golden Theorem
goodness-of-fit statistic 2nd
Gott's Principle
Gott, J. Richard, Ill 2nd 3rd
Grandparent Paradox
graphing relationships 2nd
GRE (Graduate Record Exam)
group designs 2nd 3rd
Guare, John
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Haladyna, T.M.

Hale-Evans, Ron

Hall, P.

Hanks, Tom

Hansen, Brian

haphazard sampling

Hastings, J.T.

Hawthorne Effect

heads or tails coin toss
Law of Total Probability
overview
randomness and

high scores

higher scores, likelihood of

Hill, Theodore 2nd 3rd 4th

histograms 2nd

hit the nuts

Hitzges, Norm

Hofferth, Jerrod

house edge 2nd 3rd

Huff, D.

hypothesis [See also null hypothesis]
defined
research 2nd 3rd 4th
statistical

hypothesis testing
errors in
interpreting findings
rejecting null 2nd
about relationships 2nd
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implied pot odds 2nd
independent events 2nd 3rd
independent variables 2nd 3rd 4th
inferential statistics
controversial tools
defined 2nd
overview
populations and
relationships and
samples and
insurance in card games
intelligence tests 2nd
inter-rater reliability
INTERCEPT function
internal reliability 2nd
interval level of measurement
controversial tools
defined 2nd
negative numbers
power of
strengths/weaknesses 2nd
iPods
item analysis
iTunes (Apple) 2nd
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Jordan, C.T.

judgment sampling

Jung, Carl
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Kahneman, Daniel 2nd 3rd

Kennedy, John F.

knowledge level (learning) 2nd

known information 2nd
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labels
lane-changing decisions
law of finite pocket size
Law of Large Numbers 2nd
Law of Total Probability
learning
cognitive levels of 2nd
trial-and-error
Leclerc, Georges-Louis 2nd
Let's Make a Deal
level of significance [See statistical significance]
Levy, Steven
Ii'l flushes
lifetime, predicting length of
likelihood of outcomes [See likelihood of outcomes (see outcomes\\|
Lincoln, Abraham
line charts 2nd
linear regression [See also multiple regression]
graphing relationships
multiple predictor variables
predicting outcome of events
Lithgow, John
LOG function
Lohmeier, Jill 2nd 3rd
Lois Lane
Lord, Frederick
lottery
low scores
LSAT (Law School Admission Test)
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Madaus, G.F.
magic number, lotteries and
MANOVA (multivariate analysis of variance)
MCAT (Medical College Admission Test)
mean [See also standard error of the mean]
ACT
calculating
Central Limit Theorem
central tendency and
cut score and 2nd
defined 2nd
effect size and
linear regression and
normal curve and 2nd
normal distribution
precision of
predicting test performance 2nd
regression toward 2nd 3rd
T scores
z score 2nd 3rd
measurement [See also standard error of measurement]
<Emphasis>t</> tests
asking questions
categorical
converting raw scores
defined
effect of increasing sample size
Gott’s Principle
graphs and
improving test scores
levels of 2nd
normal distribution
percentile ranks
precise
predicting with normal curve
probability characteristics
reliability of
standardized scores 2nd
testing fairly
validity of 2nd 3rd
measures of central tendency
median
central tendency and 2nd 3rd
defined
normal curve and
medical decisions
Michie, Donald
Microsoft Excel
DATAS software
histograms
predicting football games
Milgram, Stanley 2nd 3rd 4th
mind control
Minnesota Multiphase Personality Inventory-II test
mnemonic devices
mode
central tendency and 2nd
defined
normal curve and
models
building 2nd
defined
goodness-of-fit statistic and
money
casinos and 2nd
infinite doubling of
Monopoly
Monty Hall problem
multiple choice questions
analysis of answer options
writing good 2nd 3rd
multiple regression
criterion variables and
defined
multiple predictor variables
predicting football games
multiple regression)
multiplicative rule 2nd
multivariate analysis of variance (MANOVA)
mutually exclusive outcomes
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negative correlation 2nd
negative numbers
negative wording
Newcomb, Simon 2nd

Nigrini, Mark 2nd 3rd 4th 5th 6th
nominal level of measurement 2nd 3rd

non-experimental designs
norm-referenced scoring
defined 2nd
percentile ranks
simplicity of
normal curve
Central Limit Theorem and
overview
precision of
predicting with
z score and 2nd
normal distribution
applying characteristics
iTunes shuffle and
overview
shape of
traffic patterns
null hypothesis
defined
errors in testing
Law of Large Numbers and
possible outcomes
purpose 2nd 3rd
research hypothesis and
statistical significance and
nuts 2nd
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O’Reilly Media 2nd
observed score 2nd 3rd

odds [See also odds: (see also gambling\\] [See also odds: (see also gambling\\]

figuring out 2nd
pot odds 2nd
Powerball lottery

one-way chi-square test
ordering scores

ordinal level of measurement
outcomes

blackjack 2nd
coin toss

comparing number of possible 2nd

dice rolls 2nd

gambler’s fallacy about
identifying unexpected
likelihood of 2nd

mutually exclusive
occurrence of specific 2nd
predicting 2nd

predicting baseball games
shuffled deck of cards
spotting random
trial-and-error learning
two-point conversion chart and

outs

NEXT B






Index
E]VMBOL] [AT[B] [C] [D] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Y]

p-values
pairs of cards, counting by
parallel forms reliability

partial correlations

Party Shuffle (iTunes) 2nd 3rd 4th
Pascal's Triangle

Pascal, Blaise

passing epochs

expected 2nd
magic number for lotteries
Powerball lottery
Pearson correlation coefficient 2nd
Pedrotti, J.T.
percentages
ratio level of measurement
sample estimates
of scores
percentile ranks 2nd
performance
criterion-based arguments
ranking players
permutations 2nd 3rd
Petersen, S.E.
Peyton, V.
Phye, G.D.
pi, estimating
pivot tables
plain text
pocket pair 2nd
Poe, Edgar Allen
point system
ranking players
Poisson, Sim\xge on-Denis
poker games [See also Texas Hold 'Em]
odds for royal flush 2nd
shuffiing cards for
wild cards
populations
Central Limit Theorem
defined 2nd
effect size and 2nd
hypothesis testing and 2nd 3rd
inferential statistics and
linear regression and
normal distribution and
samples representative of 2nd 3rd
positive correlation
defined
variables and 2nd 3rd
post-tests
pot odds 2nd
power
effect size and
Law of Large Numbers and
statistical significance and
Powerball lotte
pre-experimental designs
precision
calibrating 2nd
interval level of measurement
test scores and 2n
predictions [See also probability]
baseball game outcomes
coin toss outcomes
criterion-based arguments and
game winners
length of lifetime
likelihood of higher scores
normal curve an
outcome of events
regression analysis and
test performance
predictive validity
predictor variables
combining
defined
predicting football games
pretests 2nd
probability
additive rule
analytic view of

of card distributions
chances of scoring within range
coin toss patterns 2nd
conditional 2nd 3rd
confidence intervals and
Conjunctionitus and
decoding ciphers
defined
dice outcomes 2nd
expressing distributions as
extraterrestial life
focusing on specific thoughts
gambler's fallacy and
of given events 2nd
of independent events 2nd 3rd
I flushes
likelihood of group of outcomes
likelihood of series of outcomes
likelihood of specific event
multiplicative rule
mutually exclusive outcomes 2nd
normal curve an
p-values
Pascal’s Triangle
patterns of
piand
Powerball lottery
sensitivity and specificity
series of events occurring
sharing birthdays
statistical hypothesis testing
traffic patterns
two-point conversion chart and 2nd
various digits
wild cards and 2nd 3rd
word association and
zonks and

probability) 2nd 3rd

proportions
level of measurement and
normal curve and 2nd
ratio level of measurement
sample estimates 2nd 3rd
table of areas under the normal curve
2 score and

proxy variables

psychic abiliies






=2

| ndex

EZYMBOL] [Al [B] [CT D] [E] [F] [G] [H] [1] [31 [K] [L] [M] [N] [O] [P] [Q] [R][S] [T] [V1 W] [X] [Y]
guasi-experimental designs 2nd
guestions

asking

difficulty index
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Ramseyer, Gary
random data
random error 2nd 3rd 4th
random sampling
Benford’s law 2nd
defined 2nd
random selection
game playing and
iTunes option
random shuffle
random thoughts
randomness of life
ranking
determining for players
order of cards 2nd 3rd
ratio level of measurement 2nd 3rd
raw scores
converting to z scores
standardized scores and
Redelmeier, Donald 2nd 3rd
regression [See regression (see linear regression\\]
regression toward the mean
reinforcement
relationships
averages in
comparing groups
determining standard error
discovering 2nd
discrete sampling
effect sizes
efficient sampling
graphing 2nd
hypothesis testing and 2nd
identifying unexpected
identifying unexpected outcomes
lottery numbers and
predicting outcomes
showing cause and effect
six degrees of separation
statistical inference
statistical significance of
reliability
defined
of medical screening tests
standardized tests and
test score precision
reliability theory 2nd
research designs
categories of 2nd
threats to validity
research hypothesis 2nd 3rd 4th
response rate
Rhine, J. B.
riffle shuffles 2nd 3rd
rising sequences
river
Rodriguez, M.C.
Rothman, Ernest E.
roulette
fair payouts
gambler’s fallacy about
overview
ROUND function 2nd
ROUNDDOWN function 2nd
ROUNDUP function 2nd
rule of four
rule of two
rule of two plus two
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Sackrowitz, Harold 2nd
safe cracking
sagan, Carl 2nd
Salkind, Neil 2nd
sample size

coin toss and

effect size and 2nd

sampling error and

statistical significance and 2nd
samples
<Emphasis>t</> tests and
cluster
defined 2nd
discrete/continuous objects in

efficien
extraterrestrial life
inferential statistics and
predicting baseball games
statistical significance of
sampling errors 2nd
sampling frame 2nd
sampling unit 2nd
SAS software
SAT 2nd
Saxbe, Darby
scale invariance
scores [See also scores: (see also test scores\] [See also scores: (see also test scores\]
central tendency of
consistency in
correlation coefficient
defined
error
high
level of measurement
likelihood of higher
observed 2nd 3rd
ordinal level of measurement
percentage of
predicting 2nd
reliability of 2nd 3rd
standardized 2nd
T scores 2nd
true 2nd 3rd
validity of
Search for Extraterrestrial Intelligence (SETI)
sensitivity
serendipity, interpreting
SETI (Search for Extraterrestrial Intelligence)
Shadish, W.R
shared variance 2nd
short-stacked
shufflng cards
significance [See statistical significance]
simple linear regression [See linear regression]
single substitution format
six degrees of separation
six-sided dice 2nd

kips
Skorupski, William 2nd

SLOPE function
slot machines
small-world problem 2nd 3rd
Smart Shuffle (iTunes)
Smith, Will
Soter, Steven 2nd
Spears, Britney 2nd
species, discovering
specificity
splitting hands 2nd 3rd
SPSS software 2nd
St. Petersburg Paradox
standard deviation

ACT

Central Limit Theorem
cutscore an

defined 2nd

of distributions 2nd 3rd

effect size and

formula

linear regression and 2nd
normal curve and 2nd 3rd 4th
regression formulas and
standard error of measurement
standard error of the estimate
standard error of the mean
standardized weights and

T scores

standard error
calibrating precision 2nd
defined

determining
Law of Large Numbers

overview
standard error of measurement
defined 2nd
formula for 2nd 3rd
scores and
standard deviation and
standard error of the estimate
applying
defined 2nd
determining
regression analysis and
standard error of the mean
applying
defined 2nd 3rd 4th
standard error of the proportion
applying
defined
sample sizes and
standardized scores 2nd
standardized weights
Stanford-Binet Intelligence Test
Stanley, J.C.
statistical hypothesis
statistical significance
Central Limit Theorem and
chi-square values
correlation and 2nd
heads or tails
increasing power
judging importance
table of areas under the normal curve
stem 2nd 3rd
stock market 2nd
Stockburger, David
stratified sampling
street addresses
stylometrics
substitution ciphers
sucker bets
Superman
surrogate variables
synchronici
synthesis level (learning) 2nd
systematic sampling
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T scores 2nd
table of areas under the normal curve
table of specifications
tax returns, fraudulent
test scores
establishing reliability
establishing validity
improving
norm-referenced scoring
precision for
predicting performance
regression toward the mean
standard error of measurement
statistical significance
test-retest reliability 2nd 3rd
testing
fairly
improving scores
validity in
tests of significance
Texas Hold 'Em
improving skills
odds for royal flush
pot odds
ranking players
rule of four
short-stacked
thoughts, random
Tibshirani, Robert 2nd 3rd
Tic-Tac-Toe
traffic patterns
trial-and-error learning
true score 2nd 3rd
true zero
turn
TV game shows 2nd
Tversky, Amos 2nd 3rd
two-point conversion (football)
two-tailed test
two-way chi-square test
Type 1 error 2nd
Type | error
Type Il error 2nd






| ndex

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] (W] [X] [Y]

[Z]

validity
establishing
scores and
threats to

variables
categorical
cause-and-effect relationships
correlation and 2nd 3rd
criterion 2nd 3rd
dependent 2nd 3rd 4th
dichotomous
discovering relationships
effect sizes
factor analysis and 2nd
groupings in
independent 2nd 3rd 4th
linear regression and
measuring correlation
predicting outcomes of events
predictor 2nd 3rd
proxy
surrogate

variance
correlation and
defined 2nd
shared 2nd

Vermeil, Dick

Vos Savant, Marilyn

voting cycle paradox
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wagers
betting systems based on
coin toss outcomes
dice and
increasing
roulette and
St. Petersburg Paradox
Watts, D. J.
Wechsler Intelligence Scales
well-defined distribution
Wheel of Fortune
wild cards (card games)
Williams, C.O.
winning events
likelihood of group of outcomes
likelihood of series of outcomes
likelihood of specific event
wired pair
word association
working universe
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X-axis, graphs and

=1 NExT



=2

| ndex
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M][N] [O] [P] [Q] [R]I[S][T][V][W][X][Y]

[Z]
Y -axis, graphs and
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Z score
coin toss and
converting raw scores
defined
mean and 2nd 3rd
normal curve and 2nd 3rd 4th 5th
problems with
standardized score distribution
standardized weights and
Z score)
Z-test
Zener cards
zero, true
zonks
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Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The tool appearing on the cover of Statistics Hacks is a Chinese abacus, or suanpan. Centuries before the
emergence of the written Hindu-Arabic numeral system, the abacus, often constructed of awooden frame
with beads sliding on wires, was used as a calculation tool. Historians place its invention between 2,400
and 300 BC. At that time, when most people could not read or write, it might have seemed ridiculous to
scribble symbols on expensive papyrus when such an excellent calculating device was available. The
suanpan differs from the European abacusin that its board is split into two parts. The lower part holds five
counters on each wire; the upper section holds two. Complex suanpan techniques accomplish not only
simple addition, but also multiplication, division, subtraction, and square and cube root operations
efficiently.

The cover image is a stock photograph from CMCD Everyday Objects. The cover font is Adobe ITC
Garamond. Thetext font is Linotype Birka; the heading font is Adobe Helvetica Neue Condensed; and the
code font is LucasFont’s TheSans Mono Condensed.
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