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Preface

THE purpose of this book is to convey to the reader some feeling for
what is surely one of the most important and exciting voyages of discovery
that humanity has embarked upon. This is the search for the underlying
principles that govern the behaviour of our universe. It is a voyage that
has lasted for more than two-and-a-half millennia, so it should not sur-
prise us that substantial progress has at last been made. But this journey
has proved to be a profoundly difficult one, and real understanding has,
for the most part, come but slowly. This inherent difficulty has led us
in many false directions; hence we should learn caution. Yet the 20th
century has delivered us extraordinary new insights—some so impressive
that many scientists of today have voiced the opinion that we may be
close to a basic understanding of all the underlying principles of physics.
In my descriptions of the current fundamental theories, the 20th century
having now drawn to its close, I shall try to take a more sober view.
Not all my opinions may be welcomed by these ‘optimists’, but I expect
further changes of direction greater even than those of the last cen-
tury.

The reader will find that in this book I have not shied away from
presenting mathematical formulae, despite dire warnings of the severe
reduction in readership that this will entail. I have thought seriously
about this question, and have come to the conclusion that what I have
to say cannot reasonably be conveyed without a certain amount of
mathematical notation and the exploration of genuine mathematical
concepts. The understanding that we have of the principles that actually
underlie the behaviour of our physical world indeed depends upon some
appreciation of its mathematics. Some people might take this as a cause
for despair, as they will have formed the belief that they have no
capacity for mathematics, no matter at how elementary a level. How
could it be possible, they might well argue, for them to comprehend the
research going on at the cutting edge of physical theory if they cannot
even master the manipulation of fractions? Well, 1 certainly see the
difficulty.

XV



Preface

Yet I am an optimist in matters of conveying understanding. Perhaps I
am an incurable optimist. I wonder whether those readers who cannot
manipulate fractions—or those who claim that they cannot manipulate
fractions—are not deluding themselves at least a little, and that a good
proportion of them actually have a potential in this direction that they are
not aware of. No doubt there are some who, when confronted with a line
of mathematical symbols, however simply presented, can see only the stern
face of a parent or teacher who tried to force into them a non-compre-
hending parrot-like apparent competence—a duty, and a duty alone—and
no hint of the magic or beauty of the subject might be allowed to come
through. Perhaps for some it is too late; but, as I say, I am an optimist and
I believe that there are many out there, even among those who could never
master the manipulation of fractions, who have the capacity to catch some
glimpse of a wonderful world that I believe must be, to a significant degree,
genuinely accessible to them.

One of my mother’s closest friends, when she was a young girl, was
among those who could not grasp fractions. This lady once told me so
herself after she had retired from a successful career as a ballet dancer. 1
was still young, not yet fully launched in my activities as a mathematician,
but was recognized as someone who enjoyed working in that subject. ‘It’s
all that cancelling’, she said to me, ‘I could just never get the hang of
cancelling.” She was an elegant and highly intelligent woman, and there is
no doubt in my mind that the mental qualities that are required in
comprehending the sophisticated choreography that is central to ballet
are in no way inferior to those which must be brought to bear on a
mathematical problem. So, grossly overestimating my expositional abil-
ities, I attempted, as others had done before, to explain to her the simpli-
city and logical nature of the procedure of ‘cancelling’.

I believe that my efforts were as unsuccessful as were those of others.
(Incidentally, her father had been a prominent scientist, and a Fellow of
the Royal Society, so she must have had a background adequate for the
comprehension of scientific matters. Perhaps the ‘stern face’ could have
been a factor here, I do not know.) But on reflection, I now wonder
whether she, and many others like her, did not have a more rational
hang-up—one that with all my mathematical glibness I had not noticed.
There is, indeed, a profound issue that one comes up against again and
again in mathematics and in mathematical physics, which one first en-
counters in the seemingly innocent operation of cancelling a common
factor from the numerator and denominator of an ordinary numerical
fraction.

Those for whom the action of cancelling has become second nature,
because of repeated familiarity with such operations, may find themselves
insensitive to a difficulty that actually lurks behind this seemingly simple

xvi



Preface

procedure. Perhaps many of those who find cancelling mysterious are
seeing a certain profound issue more deeply than those of us who press
onwards in a cavalier way, seeming to ignore it. What issue is this? It
concerns the very way in which mathematicians can provide an existence
to their mathematical entities and how such entities may relate to physical
reality.

I recall that when at school, at the age of about 11, I was somewhat
taken aback when the teacher asked the class what a fraction (such as %)
actually is! Various suggestions came forth concerning the dividing up of
pieces of pie and the like, but these were rejected by the teacher on the
(valid) grounds that they merely referred to imprecise physical situations
to which the precise mathematical notion of a fraction was to be applied,
they did not tell us what that clear-cut mathematical notion actually is.
Other suggestions came forward, such as % is ‘something with a 3 at the top
and an 8§ at the bottom with a horizontal line in between’ and I was
distinctly surprised to find that the teacher seemed to be taking these
suggestions seriously! I do not clearly recall how the matter was finally
resolved, but with the hindsight gained from my much later experiences as
a mathematics undergraduate, I guess my schoolteacher was making a
brave attempt at telling us the definition of a fraction in terms of the
ubiquitous mathematical notion of an equivalence class.

What is this notion? How can it be applied in the case of a fraction and
tell us what a fraction actually is? Let us start with my classmate’s ‘some-
thing with a 3 at the top and an 8 on the bottom’. Basically, this is
suggesting to us that a fraction is specified by an ordered pair of whole
numbers, in this case the numbers 3 and 8. But we clearly cannot regard the
fraction as being such an ordered pair because, for example, the fraction %
is the same number as the fraction %, whereas the pair (6, 16) is certainly not

the same as the pair (3, 8). This is only an issue of cancelling; for we can
3x2

write % as 525 and then cancel the 2 from the top and the bottom to get %
Why are we allowed to do this and thereby, in some sense, ‘equate’ the pair
(6, 16) with the pair (3, 8)? The mathematician’s answer—which may well
sound like a cop-out—has the cancelling rule just built in to the definition of
a fraction: a pair of whole numbers (a x n, b x n)is deemed to represent the
same fraction as the pair (a, b) whenever 7 is any non-zero whole number
(and where we should not allow b to be zero either).

But even this does not tell us what a fraction is; it merely tells us
something about the way in which we represent fractions. What is a
fraction, then? According to the mathematician’s “equivalence class”
notion, the fraction %, for example, simply is the infinite collection of all

pairs

(3,8),(—3,—-28),(6,16), (—6,—16), (9, 24), (-9, —24), (12, 32),...,
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where each pair can be obtained from each of the other pairs in the list by
repeated application of the above cancellation rule.* We also need defini-
tions telling us how to add, subtract, and multiply such infinite collections
of pairs of whole numbers, where the normal rules of algebra hold, and
how to identify the whole numbers themselves as particular types of
fraction.

This definition covers all that we mathematically need of fractions (such
as % being a number that, when added to itself, gives the number 1, etc.), and
the operation of cancelling is, as we have seen, built into the definition. Yet it
seems all very formal and we may indeed wonder whether it really captures
the intuitive notion of what a fraction is. Although this ubiquitous equiva-
lence class procedure, of which the above illustration is just a particular
instance, is very powerful as a pure-mathematical tool for establishing
consistency and mathematical existence, it can provide us with very top-
heavy-looking entities. It hardly conveys to us the intuitive notion of what %
is, for example! No wonder my mother’s friend was confused.

In my descriptions of mathematical notions, I shall try to avoid, as far
as I can, the kind of mathematical pedantry that leads us to define a
fraction in terms of an ‘infinite class of pairs’ even though it certainly
has its value in mathematical rigour and precision. In my descriptions here
I shall be more concerned with conveying the idea—and the beauty and
the magic—inherent in many important mathematical notions. The idea of
a fraction such as % is simply that it is some kind of an entity which has the
property that, when added to itself 8 times in all, gives 3. The magic is that
the idea of a fraction actually works despite the fact that we do not really
directly experience things in the physical world that are exactly quantified
by fractions—pieces of pie leading only to approximations. (This is quite
unlike the case of natural numbers, such as 1, 2, 3, which do precisely
quantify numerous entities of our direct experience.) One way to see that
fractions do make consistent sense is, indeed, to use the ‘definition’ in
terms of infinite collections of pairs of integers (whole numbers), as
indicated above. But that does not mean that % actually is such a collection.
It is better to think of % as being an entity with some kind of (Platonic)
existence of its own, and that the infinite collection of pairs is merely one
way of our coming to terms with the consistency of this type of entity.
With familiarity, we begin to believe that we can easily grasp a notion like %
as something that has its own kind of existence, and the idea of an ‘infinite
collection of pairs’ is merely a pedantic device—a device that quickly
recedes from our imaginations once we have grasped it. Much of math-
ematics is like that.

* This is called an ‘equivalence class’ because it actually is a class of entities (the entities, in this
particular case, being pairs of whole numbers), each member of which is deemed to be equivalent,
in a specified sense, to each of the other members.
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To mathematicians (at least to most of them, as far as I can make out),
mathematics is not just a cultural activity that we have ourselves created,
but it has a life of its own, and much of it finds an amazing harmony with
the physical universe. We cannot get any deep understanding of the laws
that govern the physical world without entering the world of mathematics.
In particular, the above notion of an equivalence class is relevant not only
to a great deal of important (but confusing) mathematics, but a great deal
of important (and confusing) physics as well, such as Einstein’s general
theory of relativity and the ‘gauge theory’ principles that describe the
forces of Nature according to modern particle physics. In modern physics,
one cannot avoid facing up to the subtleties of much sophisticated math-
ematics. It is for this reason that I have spent the first 16 chapters of this
work directly on the description of mathematical ideas.

What words of advice can I give to the reader for coping with this?
There are four different levels at which this book can be read. Perhaps you
are a reader, at one end of the scale, who simply turns off whenever a
mathematical formula presents itself (and some such readers may have
difficulty with coming to terms with fractions). If so, I believe that there is
still a good deal that you can gain from this book by simply skipping all
the formulae and just reading the words. I guess this would be much like
the way I sometimes used to browse through the chess magazines lying
scattered in our home when I was growing up. Chess was a big part of the
lives of my brothers and parents, but I took very little interest, except that
I enjoyed reading about the exploits of those exceptional and often strange
characters who devoted themselves to this game. I gained something from
reading about the brilliance of moves that they frequently made, even
though I did not understand them, and I made no attempt to follow
through the notations for the various positions. Yet I found this to be
an enjoyable and illuminating activity that could hold my attention.
Likewise, I hope that the mathematical accounts I give here may convey
something of interest even to some profoundly non-mathematical readers
if they, through bravery or curiosity, choose to join me in my journey of
investigation of the mathematical and physical ideas that appear to under-
lie our physical universe. Do not be afraid to skip equations (I do this
frequently myself) and, if you wish, whole chapters or parts of chapters,
when they begin to get a mite too turgid! There is a great variety in the
difficulty and technicality of the material, and something elsewhere may be
more to your liking. You may choose merely to dip in and browse. My
hope is that the extensive cross-referencing may sufficiently illuminate
unfamiliar notions, so it should be possible to track down needed concepts
and notation by turning back to earlier unread sections for clarification.

At a second level, you may be a reader who is prepared to peruse
mathematical formulae, whenever such is presented, but you may not
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have the inclination (or the time) to verify for yourself the assertions that
I shall be making. The confirmations of many of these assertions consti-
tute the solutions of the exercises that I have scattered about the mathemat-
ical portions of the book. I have indicated three levels of difficulty by the
icons —

é@ very straight forward

needs a bit of thought
not to be undertaken lightly.

It is perfectly reasonable to take these on trust, if you wish, and there is no
loss of continuity if you choose to take this position.

If, on the other hand, you are a reader who does wish to gain a facility
with these various (important) mathematical notions, but for whom the
ideas that I am describing are not all familiar, I hope that working through
these exercises will provide a significant aid towards accumulating such
skills. It is always the case, with mathematics, that a little direct experience
of thinking over things on your own can provide a much deeper under-
standing than merely reading about them. (If you need the solutions, see
the website www.roadsolutions.ox.ac.uk.)

Finally, perhaps you are already an expert, in which case you should
have no difficulty with the mathematics (most of which will be very
familiar to you) and you may have no wish to waste time with the
exercises. Yet you may find that there is something to be gained from
my own perspective on a number of topics, which are likely to be some-
what different (sometimes very different) from the usual ones. You may
have some curiosity as to my opinions relating to a number of modern
theories (e.g. supersymmetry, inflationary cosmology, the nature of the Big
Bang, black holes, string theory or M-theory, loop variables in quantum
gravity, twistor theory, and even the very foundations of quantum theory).
No doubt you will find much to disagree with me on many of these topics.
But controversy is an important part of the development of science, so |
have no regrets about presenting views that may be taken to be partly
at odds with some of the mainstream activities of modern theoretical
physics.

It may be said that this book is really about the relation between
mathematics and physics, and how the interplay between the two strongly
influences those drives that underlie our searches for a better theory of the
universe. In many modern developments, an essential ingredient of these
drives comes from the judgement of mathematical beauty, depth, and
sophistication. It is clear that such mathematical influences can be vitally
important, as with some of the most impressively successful achievements
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of 20th-century physics: Dirac’s equation for the electron, the general
framework of quantum mechanics, and Einstein’s general relativity. But
in all these cases, physical considerations—ultimately observational
ones—have provided the overriding criteria for acceptance. In many of
the modern ideas for fundamentally advancing our understanding of the
laws of the universe, adequate physical criteria—i.e. experimental data, or
even the possibility of experimental investigation—are not available. Thus
we may question whether the accessible mathematical desiderata are suffi-
cient to enable us to estimate the chances of success of these ideas. The
question is a delicate one, and I shall try to raise issues here that I do not
believe have been sufficiently discussed elsewhere.

Although, in places, I shall present opinions that may be regarded as
contentious, I have taken pains to make it clear to the reader when I am
actually taking such liberties. Accordingly, this book may indeed be used
as a genuine guide to the central ideas (and wonders) of modern physics. It
is appropriate to use it in educational classes as an honest introduction to
modern physics—as that subject is understood, as we move forward into
the early years of the third millennium.
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Notation

(Not to be read until you are familiar with the concepts, but perhaps find
the fonts confusing!)

I have tried to be reasonably consistent in the use of particular fonts in
this book, but as not all of this is standard, it may be helpful to the reader
to have the major usage that I have adopted made explicit.

Italic lightface (Greek or Latin) letters, such as in w?, p" logz,
cos0, e, or e are used in the conventional way for mathematical vari-
ables which are numerical or scalar quantities; but established numerical
constants, such as e, i, or © or established functions such as sin, cos, or log
are denoted by upright letters. Standard physical constants such as ¢, G, A,
h, g, or k are italic, however.

A vector or tensor quantity, when being thought of in its (abstract)
entirety, is denoted by a boldface italic letter, such as R for the Riemann
curvature tensor, while its set of components might be written with italic
letters (both for the kernel symbol its indices) as R,.4. In accordance with
the abstract-index notation, introduced here in §12.8, the quantity R p.q
may alternatively stand for the entire tensor R, if this interpretation is
appropriate, and this should be made clear in the text. Abstract linear
transformations are kinds of tensors, and boldface italic letters such as T
are used for such entities also. The abstract-index form 7%, is also used
here for an abstract linear transformation, where appropriate, the stagger-
ing of the indices making clear the precise connection with the ordering of
matrix multiplication. Thus, the (abstract-)index expression S%, 7", stands
for the product ST of linear transformations. As with general tensors, the
symbols S%, and T®. could alternatively (according to context or explicit
specification in the text) stand for the corresoponding arrays of compon-
ents—these being matrices—for which the corresponding bold upright
letters S and T can also be used. In that case, ST denotes the correspond-
ing matrix product. This ‘ambivalent’ interpretation of symbols such as
Rupeq or S% (either standing for the array of components or for the
abstract tensor itself) should not cause confusion, as the algebraic (or
differential) relations that these symbols are subject to are identical for
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both interpretations. A third notation for such quantities—the diagram-
matic notation—is also sometimes used here, and is described in Figs.
12.17, 12.18, 14.6, 14.7, 14.21, 19.1 and elsewhere in the book.

There are places in this book where I need to distinguish the 4-dimen-
sional spacetime entities of relativity theory from the corresponding ordin-
ary 3-dimensional purely spatial entities. Thus, while a boldface italic
notation might be used, as above, such as p or x, for the 4-momentum or
4-position, respectively, the corresponding 3-dimensional purely spatial
entities would be denoted by the corresponding upright bold letters p or x.
By analogy with the notation T for a matrix, above, as opposed to T for an
abstract linear transformation, the quantities p and x would tend to be
thought of as ‘standing for’ the three spatial components, in each case,
whereas p and x might be viewed as having a more abstract component-
free interpretation (although I shall not be particularly strict about this).
The Euclidean ‘length’ of a 3-vector quantity a = («a,a2,a3) may be written
a, where a® = a% + a% + a%, and the scalar product of a with b = (b1,b,,03),
written aeb = a;b| + axb, + aszbs. This ‘dot’ notation for scalar products
applies also in the general n-dimensional context, for the scalar (or inner)
product @ @ £ of an abstract covector @ with a vector &.

A notational complication arises with quantum mechanics, however,
since physical quantities, in that subject, tend to be represented as linear
operators. I do not adopt what is a quite standard procedure in this
context, of putting ‘hats’ (circumflexes) on the letters representing the
quantum-operator versions of the familiar classical quantities, as I believe
that this leads to an unnecessary cluttering of symbols. (Instead, I shall
tend to adopt a philosophical standpoint that the classical and quantum
entities are really the ‘same’—and so it is fair to use the same symbols for
each—except that in the classical case one is justified in ignoring quantities
of the order of 7, so that the classical commutation properties ab = ba can
hold, whereas in quantum mechanics, ab might differ from ba by some-
thing of order /.) For consistency with the above, such linear operators
would seem to have to be denoted by italic bold letters (like 7), but that
would nullify the philosophy and the distinctions called for in the preced-
ing paragraph. Accordingly, with regard to specific quantities, such as the
momentum p or p, or the position x or x, I shall tend to use the same
notation as in the classical case, in line with what has been said earlier in
this paragraph. But for less specific quantum operators, bold italic letters
such as @ will tend to be used.

The shell letters IV, 7Z, IR, ©, and IF,, respectively, for the system of
natural numbers (i.e. non-negative integers), integers, real numbers, com-
plex numbers, and the finite field with ¢ elements (¢ being some power of a
prime number, see §16.1), are now standard in mathematics, as are the
corresponding IN”, 72", IR", C", ]F‘Z, for the systems of ordered n-tuples
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of such numbers. These are canonical mathematical entities in standard
use. In this book (as is not all that uncommon), this notation is extended
to some other standard mathematical structures such as Euclidean 3-space
&3 or, more generally, Euclidean n-space IE". In frequent use in this book
is the standard flat 4-dimensional Minkowski spacetime, which is itself a
kind of ‘pseudo-’ Euclidean space, so I use the shell letter IMI for this space
(with IM[" to denote the n-dimensional version—a ‘Lorentzian’ spacetime
with 1 time and (n — 1) space dimensions). Sometimes I use € as an
adjective, to denote ‘complexified’, so that we might consider the complex
Euclidean 4-space, for example, denoted by CCIE”". The shell letter IP can
also be used as an adjective, to denote ‘projective’ (see §15.6), or as a noun,
with IP" denoting projective n-space (or I use IRTP" or CIP" if it is to be
made clear that we are concerned with real or complex projective n-space,
respectively). In twistor theory (Chapter 33), there is the complex 4-space
', which is related to M (or its complexification CMI) in a canonical
way, and there is also the projective version IP7I'. In this theory, there is
also a space IN of null twistors (the double duty that this letter serves
causing no conflict here), and its projective version IP1IN.

The adjectival role of the shell letter € should not be confused with that
of the lightface sans serif C, which here stands for ‘complex conjugate of’
(as used in §13.1,2). This is basically similar to another use of C in particle
physics, namely charge conjugation, which is the operation which inter-
changes each particle with its antiparticle (see Chapters 24, 25). This
operation is usually considered in conjunction with two other basic par-
ticle-physics operations, namely P for parity which refers to the operation
of reflection in a mirror, and T, which refers to time-reveral. Sans serif
letters which are bold serve a different purpose here, labelling vector
spaces, the letters V, W, and H, being most frequently used for this
purpose. The use of H, is specific to the Hilbert spaces of quantum
mechanics, and H” would stand for a Hilbert space of n complex dimen-
sions. Vector spaces are, in a clear sense, flat. Spaces which are (or could
be) curved are denoted by script letters, such as M, S, or 7, where there is
a special use for the particular script font ¥ to denote null infinity. In
addition, I follow a fairly common convention to use script letters for
Lagrangians (£) and Hamiltonians (), in view of their very special status
in physical theory.
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AM-TEP was the King’s chief craftsman, an artist of consummate skills. It
was night, and he lay sleeping on his workshop couch, tired after a
handsomely productive evening’s work. But his sleep was restless—per-
haps from an intangible tension that had seemed to be in the air. Indeed,
he was not certain that he was asleep at all when it happened. Daytime had
come—quite suddenly—when his bones told him that surely it must still be
night.

He stood up abruptly. Something was odd. The dawn’s light could not
be in the north; yet the red light shone alarmingly through his broad
window that looked out northwards over the sea. He moved to the
window and stared out, incredulous in amazement. The Sun had never
before risen in the north! In his dazed state, it took him a few moments to
realize that this could not possibly be the Sun. It was a distant shaft of a
deep fiery red light that beamed vertically upwards from the water into the
heavens.

As he stood there, a dark cloud became apparent at the head of the
beam, giving the whole structure the appearance of a distant giant parasol,
glowing evilly, with a smoky flaming staff. The parasol’s hood began to
spread and darken—a daemon from the underworld. The night had been
clear, but now the stars disappeared one by one, swallowed up behind this
advancing monstrous creature from Hell.

Though terror must have been his natural reaction, he did not move,
transfixed for several minutes by the scene’s perfect symmetry and awe-
some beauty. But then the terrible cloud began to bend slightly to the east,
caught up by the prevailing winds. Perhaps he gained some comfort from
this and the spell was momentarily broken. But apprehension at once
returned to him as he seemed to sense a strange disturbance in the ground
beneath, accompanied by ominous-sounding rumblings of a nature quite
unfamiliar to him. He began to wonder what it was that could have
caused this fury. Never before had he witnessed a God’s anger of such
magnitude.
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His first reaction was to blame himself for the design on the sacrificial
cup that he had just completed—he had worried about it at the time. Had
his depiction of the Bull-God not been sufficiently fearsome? Had that god
been offended? But the absurdity of this thought soon struck him. The fury
he had just witnessed could not have been the result of such a trivial
action, and was surely not aimed at him specifically. But he knew that
there would be trouble at the Great Palace. The Priest-King would waste
no time in attempting to appease this Daemon-God. There would be
sacrifices. The traditional offerings of fruits or even animals would not
suffice to pacify an anger of this magnitude. The sacrifices would have to
be human.

Quite suddenly, and to his utter surprise, he was blown backwards
across the room by an impulsive blast of air followed by a violent wind.
The noise was so extreme that he was momentarily deafened. Many of his
beautifully adorned pots were whisked from their shelves and smashed
to pieces against the wall behind. As he lay on the floor in a far corner of
the room where he had been swept away by the blast, he began to recover
his senses, and saw that the room was in turmoil. He was horrified to see
one of his favourite great urns shattered to small pieces, and the wonder-
fully detailed designs, which he had so carefully crafted, reduced to
nothing.

Am-tep arose unsteadily from the floor and after a while again ap-
proached the window, this time with considerable trepidation, to re-exam-
ine that terrible scene across the sea. Now he thought he saw a
disturbance, illuminated by that far-off furnace, coming towards him.
This appeared to be a vast trough in the water, moving rapidly towards
the shore, followed by a clifflike wall of wave. He again became transfixed,
watching the approaching wave begin to acquire gigantic proportions.
Eventually the disturbance reached the shore and the sea immediately
before him drained away, leaving many ships stranded on the newly
formed beach. Then the cliff-wave entered the vacated region and struck
with a terrible violence. Without exception the ships were shattered, and
many nearby houses instantly destroyed. Though the water rose to great
heights in the air before him, his own house was spared, for it sat on high
ground a good way from the sea.

The Great Palace too was spared. But Am-tep feared that worse might
come, and he was right—though he knew not how right he was. He did
know, however, that no ordinary human sacrifice of a slave could now be
sufficient. Something more would be needed to pacify the tempestuous
anger of this terrible God. His thoughts turned to his sons and daughters,
and to his newly born grandson. Even they might not be safe.

Am-tep had been right to fear new human sacrifices. A young girl and a
youth of good birth had been soon apprehended and taken to a nearby
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temple, high on the slopes of a mountain. The ensuing ritual was well
under way when yet another catastrophe struck. The ground shook with
devastating violence, whence the temple roof fell in, instantly killing all the
priests and their intended sacrificial victims. As it happened, they would lie
there in mid-ritual—entombed for over three-and-a-half millennia!

The devastation was frightful, but not final. Many on the island where
Am-tep and his people lived survived the terrible earthquake, though the
Great Palace was itself almost totally destroyed. Much would be rebuilt
over the years. Even the Palace would recover much of its original splen-
dour, constructed on the ruins of the old. Yet Am-tep had vowed to leave
the island. His world had now changed irreparably.

In the world he knew, there had been a thousand years of peace,
prosperity, and culture where the Earth-Goddess had reigned. Wonderful
art had been allowed to flourish. There was much trade with neighbouring
lands. The magnificent Great Palace was a huge luxurious labyrinth, a
virtual city in itself, adorned by superb frescoes of animals and flowers.
There was running water, excellent drainage, and flushed sewers. War was
almost unknown and defences unnecessary. Now, Am-tep perceived the
Earth-Goddess overthrown by a Being with entirely different values.

It was some years before Am-tep actually left the island, accompanied
by his surviving family, on a ship rebuilt by his youngest son, who was a
skilled carpenter and seaman. Am-tep’s grandson had developed into an
alert child, with an interest in everything in the world around. The voyage
took some days, but the weather had been supremely calm. One clear
night, Am-tep was explaining to his grandson about the patterns in the
stars, when an odd thought overtook him: The patterns of stars had been
disturbed not one iota from what they were before the Catastrophe of the
emergence of the terrible daemon.

Am-tep knew these patterns well, for he had a keen artist’s eye. Surely,
he thought, those tiny candles of light in the sky should have been blown
at least a little from their positions by the violence of that night, just as his
pots had been smashed and his great urn shattered. The Moon also had
kept her face, just as before, and her route across the star-filled heavens
had changed not one whit, as far as Am-tep could tell. For many moons
after the Catastrophe, the skies had appeared different. There had been
darkness and strange clouds, and the Moon and Sun had sometimes worn
unusual colours. But this had now passed, and their motions seemed
utterly undisturbed. The tiny stars, likewise, had been quite unmoved.

If the heavens had shown such little concern for the Catastrophe, having
a stature far greater even than that terrible Daemon, Am-tep reasoned,
why should the forces controlling the Daemon itself show concern for
what the little people on the island had been doing, with their foolish
rituals and human sacrifice? He felt embarrassed by his own foolish
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thoughts at the time, that the daemon might be concerned by the mere
patterns on his pots.

Yet Am-tep was still troubled by the question ‘why?” What deep forces
control the behaviour of the world, and why do they sometimes burst forth
in violent and seemingly incomprehensible ways? He shared his questions
with his grandson, but there were no answers.

A century passed by, and then a millennium, and still there were no
answers.

Amphos the craftsman had lived all his life in the same small town as his
father and his father before him, and his father’s father before that. He
made his living constructing beautifully decorated gold bracelets, earrings,
ceremonial cups, and other fine products of his artistic skills. Such work
had been the family trade for some forty generations—a line unbroken
since Am-tep had settled there eleven hundred years before.

But it was not just artistic skills that had been passed down from
generation to generation. Am-tep’s questions troubled Amphos just as
they had troubled Am-tep earlier. The great story of the Catastrophe
that destroyed an ancient peaceful civilization had been handed down
from father to son. Am-tep’s perception of the Catastrophe had also
survived with his descendants. Amphos, too, understood that the heavens
had a magnitude and stature so great as to be quite unconcerned by that
terrible event. Nevertheless, the event had had a catastrophic effect on the
little people with their cities and their human sacrifices and insignificant
religious rituals. Thus, by comparison, the event itself must have been the
result of enormous forces quite unconcerned by those trivial actions of
human beings. Yet the nature of those forces was as unknown in
Amphos’s day as it was to Am-tep.

Amphos had studied the structure of plants, insects and other small
animals, and crystalline rocks. His keen eye for observation had served
him well in his decorative designs. He took an interest in agriculture and
was fascinated by the growth of wheat and other plants from grain. But
none of this told him ‘why?’, and he felt unsatisfied. He believed that there
was indeed reason underlying Nature’s patterns, but he was in no way
equipped to unravel those reasons.

One clear night, Amphos looked up at the heavens, and tried to make
out from the patterns of stars the shapes of those heroes and heroines who
formed constellations in the sky. To his humble artist’s eye, those shapes
made poor resemblances. He could himself have arranged the stars far
more convincingly. He puzzled over why the gods had not organized the
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stars in a more appropriate way? As they were, the arrangements seemed
more like scattered grains randomly sowed by a farmer, rather than the
deliberate design of a god. Then an odd thought overtook him: Do not seek
for reasons in the specific patterns of stars, or of other scattered arrange-
ments of objects; look, instead, for a deeper universal order in the way that
things behave.

Amphos reasoned that we find order, after all, not in the patterns that
scattered seeds form when they fall to the ground, but in the miraculous
way that each of those seeds develops into a living plant having a superb
structure, similar in great detail to one another. We would not try to seek
the meaning in the precise arrangement of seeds sprinkled on the soil; yet,
there must be meaning in the hidden mystery of the inner forces control-
ling the growth of each seed individually, so that each one follows essen-
tially the same wonderful course. Nature’s laws must indeed have a
superbly organized precision for this to be possible.

Amphos became convinced that without precision in the underlying
laws, there could be no order in the world, whereas much order is indeed
perceived in the way that things behave. Moreover, there must be precision
in our ways of thinking about these matters if we are not to be led seriously
astray.

It so happened that word had reached Amphos of a sage who lived in
another part of the land, and whose beliefs appeared to be in sympathy
with those of Amphos. According to this sage, one could not rely on the
teachings and traditions of the past. To be certain of one’s beliefs, it was
necessary to form precise conclusions by the use of unchallengeable
reason. The nature of this precision had to be mathematical—ultimately
dependent on the notion of number and its application to geometric forms.
Accordingly, it must be number and geometry, not myth and superstition,
that governed the behaviour of the world.

As Am-tep had done a century and a millennium before, Amphos took
to the sea. He found his way to the city of Croton, where the sage and his
brotherhood of 571 wise men and 28 wise women were in search of truth.
After some time, Amphos was accepted into the brotherhood. The name
of the sage was Pythagoras.






1
The roots of science

1.1 The quest for the forces that shape the world

WHAT laws govern our universe? How shall we know them? How
may this knowledge help us to comprehend the world and hence guide
its actions to our advantage?

Since the dawn of humanity, people have been deeply concerned by
questions like these. At first, they had tried to make sense of those
influences that do control the world by referring to the kind of understand-
ing that was available from their own lives. They had imagined that
whatever or whoever it was that controlled their surroundings would do
so as they would themselves strive to control things: originally they had
considered their destiny to be under the influence of beings acting very
much in accordance with their own various familiar human drives. Such
driving forces might be pride, love, ambition, anger, fear, revenge, passion,
retribution, loyalty, or artistry. Accordingly, the course of natural
events—such as sunshine, rain, storms, famine, illness, or pestilence—
was to be understood in terms of the whims of gods or goddesses motiv-
ated by such human urges. And the only action perceived as influencing
these events would be appeasement of the god-figures.

But gradually patterns of a different kind began to establish their reli-
ability. The precision of the Sun’s motion through the sky and its clear
relation to the alternation of day with night provided the most obvious
example; but also the Sun’s positioning in relation to the heavenly orb of
stars was seen to be closely associated with the change and relentless
regularity of the seasons, and with the attendant clear-cut influence on
the weather, and consequently on vegetation and animal behaviour. The
motion of the Moon, also, appeared to be tightly controlled, and its phases
determined by its geometrical relation to the Sun. At those locations on
Earth where open oceans meet land, the tides were noticed to have a
regularity closely governed by the position (and phase) of the Moon.
Eventually, even the much more complicated apparent motions of the
planets began to yield up their secrets, revealing an immense underlying
precision and regularity. If the heavens were indeed controlled by the
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whims of gods, then these gods themselves seemed under the spell of exact
mathematical laws.

Likewise, the laws controlling earthly phenomena—such as the daily
and yearly changes in temperature, the ebb and flow of the oceans, and the
growth of plants—being seen to be influenced by the heavens in this
respect at least, shared the mathematical regularity that appeared to
guide the gods. But this kind of relationship between heavenly bodies
and earthly behaviour would sometimes be exaggerated or misunderstood
and would assume an inappropriate importance, leading to the occult and
mystical connotations of astrology. It took many centuries before the
rigour of scientific understanding enabled the true influences of the
heavens to be disentangled from purely suppositional and mystical ones.
Yet it had been clear from the earliest times that such influences did indeed
exist and that, accordingly, the mathematical laws of the heavens must
have relevance also here on Earth.

Seemingly independently of this, there were perceived to be other regu-
larities in the behaviour of earthly objects. One of these was the tendency
for all things in one vicinity to move in the same downward direction,
according to the influence that we now call gravity. Matter was observed
to transform, sometimes, from one form into another, such as with the
melting of ice or the dissolving of salt, but the total quantity of that matter
appeared never to change, which reflects the law that we now refer to as
conservation of mass. In addition, it was noticed that there are many
material bodies with the important property that they retain their shapes,
whence the idea of rigid spatial motion arose; and it became possible to
understand spatial relationships in terms of a precise, well-defined geom-
etry—the 3-dimensional geometry that we now call Euclidean. Moreover,
the notion of a ‘straight line’ in this geometry turned out to be the same as
that provided by rays of light (or lines of sight). There was a remarkable
precision and beauty to these ideas, which held a considerable fascination
for the ancients, just as it does for us today.

Yet, with regard to our everyday lives, the implications of this math-
ematical precision for the actions of the world often appeared unexciting
and limited, despite the fact that the mathematics itself seemed to repre-
sent a deep truth. Accordingly, many people in ancient times would allow
their imaginations to be carried away by their fascination with the subject
and to take them far beyond the scope of what was appropriate. In
astrology, for example, geometrical figures also often engendered mystical
and occult connotations, such as with the supposed magical powers of
pentagrams and heptagrams. And there was an entirely suppositional
attempted association between Platonic solids and the basic elementary
states of matter (see Fig. 1.1). It would not be for many centuries that the
deeper understanding that we presently have, concerning the actual
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Fig. 1.1 A fanciful association, made by the ancient Greeks, between the five
Platonic solids and the four ‘elements’ (fire, air, water, and earth), together with
the heavenly firmament represented by the dodecahedron.

relationships between mass, gravity, geometry, planetary motion, and the
behaviour of light, could come about.

1.2 Mathematical truth

The first steps towards an understanding of the real influences controll-
ing Nature required a disentangling of the true from the purely suppos-
itional. But the ancients needed to achieve something else first, before
they would be in any position to do this reliably for their understanding of
Nature. What they had to do first was to discover how to disentangle the
true from the suppositional in mathematics. A procedure was required for
telling whether a given mathematical assertion is or is not to be trusted as
true. Until that preliminary issue could be settled in a reasonable way, there
would be little hope of seriously addressing those more difficult problems
concerning forces that control the behaviour of the world and whatever
their relations might be to mathematical truth. This realization that the key
to the understanding of Nature lay within an unassailable mathematics was
perhaps the first major breakthrough in science.

Although mathematical truths of various kinds had been surmised
since ancient Egyptian and Babylonian times, it was not until the
great Greek philosophers Thales of Miletus (¢.625-547 BC) and
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Pythagoras'® of Samos (¢.572-497 BC) began to introduce the notion of
mathematical proof that the first firm foundation stone of mathematical
understanding—and therefore of science itself—was laid. Thales may have
been the first to introduce this notion of proof, but it seems to have been the
Pythagoreans who first made important use of it to establish things that
were not otherwise obvious. Pythagoras also appeared to have a strong
vision of the importance of number, and of arithmetical concepts, in
governing the actions of the physical world. It is said that a big factor in
this realization was his noticing that the most beautiful harmonies produced
by lyres or flutes corresponded to the simplest fractional ratios between
the lengths of vibrating strings or pipes. He is said to have introduced the
‘Pythagorean scale’, the numerical ratios of what we now know to be
frequencies determining the principal intervals on which Western music is
essentially based.? The famous Pythagorean theorem, asserting that the
square on the hypotenuse of a right-angled triangle is equal to the sum of
the squares on the other two sides, perhaps more than anything else, showed
that indeed there is a precise relationship between the arithmetic of numbers
and the geometry of physical space (see Chapter 2).

He had a considerable band of followers—the Pythagoreans—situated
in the city of Croton, in what is now southern Italy, but their influence on
the outside world was hindered by the fact that the members of the
Pythagorean brotherhood were all sworn to secrecy. Accordingly, almost
all of their detailed conclusions have been lost. Nonetheless, some of these
conclusions were leaked out, with unfortunate consequences for the
‘moles’—on at least one occasion, death by drowning!

In the long run, the influence of the Pythagoreans on the progress of
human thought has been enormous. For the first time, with mathematical
proof, it was possible to make significant assertions of an unassailable
nature, so that they would hold just as true even today as at the time that
they were made, no matter how our knowledge of the world has pro-
gressed since then. The truly timeless nature of mathematics was beginning
to be revealed.

But what is a mathematical proof? A proof, in mathematics, is an
impeccable argument, using only the methods of pure logical reasoning,
which enables one to infer the validity of a given mathematical assertion
from the pre-established validity of other mathematical assertions, or from
some particular primitive assertions—the axioms—whose validity is taken
to be self-evident. Once such a mathematical assertion has been estab-
lished in this way, it is referred to as a theorem.

Many of the theorems that the Pythagoreans were concerned with were
geometrical in nature; others were assertions simply about numbers. Those

*Notes, indicated in the text by superscript numbers, are gathered at the ends of the chapter
(in this case on p. 23).

10



The roots of science §1.2

that were concerned merely with numbers have a perfectly unambiguous
validity today, just as they did in the time of Pythagoras. What about the
geometrical theorems that the Pythagoreans had obtained using their
procedures of mathematical proof? They too have a clear validity today,
but now there is a complicating issue. It is an issue whose nature is more
obvious to us from our modern vantage point than it was at that time of
Pythagoras. The ancients knew of only one kind of geometry, namely that
which we now refer to as Euclidean geometry, but now we know of many
other types. Thus, in considering the geometrical theorems of ancient
Greek times, it becomes important to specify that the notion of geometry
being referred to is indeed Euclid’s geometry. (I shall be more explicit
about these issues in §2.4, where an important example of non-Euclidean
geometry will be given.)

Euclidean geometry is a specific mathematical structure, with its own
specific axioms (including some less assured assertions referred to as postu-
lates), which provided an excellent approximation to a particular aspect of
the physical world. That was the aspect of reality, well familiar to the ancient
Greeks, which referred to the laws governing the geometry of rigid objects
and their relations to other rigid objects, as they are moved around in 3-
dimensional space. Certain of these properties were so familiar and self-
consistent that they tended to become regarded as ‘self-evident’ mathemat-
ical truths and were taken as axioms (or postulates). As we shall be seeing in
Chapters 17-19 and §§27.8,11, Einstein’s general relativity—and even the
Minkowskian spacetime of special relativity—provides geometries for the
physical universe that are different from, and yet more accurate than, the
geometry of Euclid, despite the fact that the Euclidean geometry of the
ancients was already extraordinarily accurate. Thus, we must be careful,
when considering geometrical assertions, whether to trust the ‘axioms’ as
being, in any sense, actually true.

But what does ‘true’ mean, in this context? The difficulty was well
appreciated by the great ancient Greek philosopher Plato, who lived in
Athens from ¢.429 to 347 BC, about a century after Pythagoras. Plato
made it clear that the mathematical propositions—the things that could be
regarded as unassailably true—referred not to actual physical objects (like
the approximate squares, triangles, circles, spheres, and cubes that might
be constructed from marks in the sand, or from wood or stone) but to
certain idealized entities. He envisaged that these ideal entities inhabited a
different world, distinct from the physical world. Today, we might refer to
this world as the Platonic world of mathematical forms. Physical structures,
such as squares, circles, or triangles cut from papyrus, or marked on a flat
surface, or perhaps cubes, tetrahedra, or spheres carved from marble,
might conform to these ideals very closely, but only approximately. The
actual mathematical squares, cubes, circles, spheres, triangles, etc., would
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not be part of the physical world, but would be inhabitants of Plato’s
idealized mathematical world of forms.

1.3 Is Plato’s mathematical world ‘real’?

This was an extraordinary idea for its time, and it has turned out to be a
very powerful one. But does the Platonic mathematical world actually
exist, in any meaningful sense? Many people, including philosophers,
might regard such a ‘world’ as a complete fiction—a product merely of
our unrestrained imaginations. Yet the Platonic viewpoint is indeed an
immensely valuable one. It tells us to be careful to distinguish the precise
mathematical entities from the approximations that we see around us in
the world of physical things. Moreover, it provides us with the blueprint
according to which modern science has proceeded ever since. Scientists will
put forward models of the world—or, rather, of certain aspects of the
world—and these models may be tested against previous observation and
against the results of carefully designed experiment. The models are
deemed to be appropriate if they survive such rigorous examination and
if, in addition, they are internally consistent structures. The important
point about these models, for our present discussion, is that they are
basically purely abstract mathematical models. The very question of the
internal consistency of a scientific model, in particular, is one that requires
that the model be precisely specified. The required precision demands that
the model be a mathematical one, for otherwise one cannot be sure that
these questions have well-defined answers.

If the model itself is to be assigned any kind of ‘existence’, then this
existence is located within the Platonic world of mathematical forms. Of
course, one might take a contrary viewpoint: namely that the model is
itself to have existence only within our various minds, rather than to take
Plato’s world to be in any sense absolute and ‘real’. Yet, there is something
important to be gained in regarding mathematical structures as having a
reality of their own. For our individual minds are notoriously imprecise,
unreliable, and inconsistent in their judgements. The precision, reliability,
and consistency that are required by our scientific theories demand some-
thing beyond any one of our individual (untrustworthy) minds. In math-
ematics, we find a far greater robustness than can be located in any
particular mind. Does this not point to something outside ourselves,
with a reality that lies beyond what each individual can achieve?

Nevertheless, one might still take the alternative view that the math-
ematical world has no independent existence, and consists merely of
certain ideas which have been distilled from our various minds and
which have been found to be totally trustworthy and are agreed by all.
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Yet even this viewpoint seems to leave us far short of what is required. Do
we mean ‘agreed by all’, for example, or ‘agreed by those who are in their
right minds’, or ‘agreed by all those who have a Ph.D. in mathematics’
(not much use in Plato’s day) and who have a right to venture an ‘authori-
tative’ opinion? There seems to be a danger of circularity here; for to judge
whether or not someone is ‘in his or her right mind’ requires some external
standard. So also does the meaning of ‘authoritative’, unless some stand-
ard of an unscientific nature such as ‘majority opinion’ were to be adopted
(and it should be made clear that majority opinion, no matter how
important it may be for democratic government, should in no way be
used as the criterion for scientific acceptability). Mathematics itself indeed
seems to have a robustness that goes far beyond what any individual
mathematician is capable of perceiving. Those who work in this subject,
whether they are actively engaged in mathematical research or just using
results that have been obtained by others, usually feel that they are merely
explorers in a world that lies far beyond themselves—a world which
possesses an objectivity that transcends mere opinion, be that opinion
their own or the surmise of others, no matter how expert those others
might be.

It may be helpful if I put the case for the actual existence of the Platonic
world in a different form. What I mean by this ‘existence’ is really just the
objectivity of mathematical truth. Platonic existence, as I see it, refers to
the existence of an objective external standard that is not dependent upon
our individual opinions nor upon our particular culture. Such ‘existence’
could also refer to things other than mathematics, such as to morality or
aesthetics (cf. §1.5), but I am here concerned just with mathematical
objectivity, which seems to be a much clearer issue.

Let me illustrate this issue by considering one famous example of a
mathematical truth, and relate it to the question of ‘objectivity’. In 1637,
Pierre de Fermat made his famous assertion now known as ‘Fermat’s Last
Theorem’ (that no positive nth power? of an integer, i.e. of a whole
number, can be the sum of two other positive nth powers if # is an integer
greater than 2), which he wrote down in the margin of his copy of the
Arithmetica, a book written by the 3rd-century Greek mathematician
Diophantos. In this margin, Fermat also noted: ‘I have discovered a
truly marvellous proof of this, which this margin is too narrow to contain.’
Fermat’s mathematical assertion remained unconfirmed for over 350
years, despite concerted efforts by numerous outstanding mathematicians.
A proof was finally published in 1995 by Andrew Wiles (depending on the
earlier work of various other mathematicians), and this proof has now
been accepted as a valid argument by the mathematical community.

Now, do we take the view that Fermat’s assertion was always true, long
before Fermat actually made it, or is its validity a purely cultural matter,
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dependent upon whatever might be the subjective standards of the com-
munity of human mathematicians? Let us try to suppose that the validity
of the Fermat assertion is in fact a subjective matter. Then it would not be
an absurdity for some other mathematician X to have come up with an
actual and specific counter-example to the Fermat assertion, so long as X
had done this before the date of 1995.4 In such a circumstance, the
mathematical community would have to accept the correctness of X’s
counter-example. From then on, any effort on the part of Wiles to prove
the Fermat assertion would have to be fruitless, for the reason that X had
got his argument in first and, as a result, the Fermat assertion would now
be false! Moreover, we could ask the further question as to whether,
consequent upon the correctness of X’s forthcoming counter-example,
Fermat himself would necessarily have been mistaken in believing in the
soundness of his ‘truly marvellous proof’, at the time that he wrote his
marginal note. On the subjective view of mathematical truth, it could
possibly have been the case that Fermat had a valid proof (which would
have been accepted as such by his peers at the time, had he revealed it) and
that it was Fermat’s secretiveness that allowed the possibility of X later
obtaining a counter-example! I think that virtually all mathematicians,
irrespective of their professed attitudes to ‘Platonism’, would regard such
possibilities as patently absurd.

Of course, it might still be the case that Wiles’s argument in fact
contains an error and that the Fermat assertion is indeed false. Or there
could be a fundamental error in Wiles’s argument but the Fermat assertion
is true nevertheless. Or it might be that Wiles’s argument is correct in its
essentials while containing ‘non-rigorous steps’ that would not be up to the
standard of some future rules of mathematical acceptability. But these
issues do not address the point that I am getting at here. The issue is the
objectivity of the Fermat assertion itself, not whether anyone’s particular
demonstration of it (or of its negation) might happen to be convincing to
the mathematical community of any particular time.

It should perhaps be mentioned that, from the point of view of math-
ematical logic, the Fermat assertion is actually a mathematical statement
of a particularly simple kind,> whose objectivity is especially apparent.
Only a tiny minority® of mathematicians would regard the truth of such
assertions as being in any way ‘subjective’—although there might be some
subjectivity about the types of argument that would be regarded as being
convincing. However, there are other kinds of mathematical assertion
whose truth could plausibly be regarded as being a ‘matter of opinion’.
Perhaps the best known of such assertions is the axiom of choice. 1t is not
important for us, now, to know what the axiom of choice is. (I shall
describe it in §16.3.) It is cited here only as an example. Most mathemat-
icians would probably regard the axiom of choice as ‘obviously true’, while
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others may regard it as a somewhat questionable assertion which might
even be false (and I am myself inclined, to some extent, towards this
second viewpoint). Still others would take it as an assertion whose
‘truth’ is a mere matter of opinion or, rather, as something which can be
taken one way or the other, depending upon which system of axioms and
rules of procedure (a ‘formal system’; see §16.6) one chooses to adhere to.
Mathematicians who support this final viewpoint (but who accept the
objectivity of the truth of particularly clear-cut mathematical statements,
like the Fermat assertion discussed above) would be relatively weak Pla-
tonists. Those who adhere to objectivity with regard to the truth of the
axiom of choice would be stronger Platonists.

I shall come back to the axiom of choice in §16.3, since it has some
relevance to the mathematics underlying the behaviour of the physical
world, despite the fact that it is not addressed much in physical theory. For
the moment, it will be appropriate not to worry overly about this issue. If
the axiom of choice can be settled one way or the other by some appropri-
ate form of unassailable mathematical reasoning,” then its truth is indeed
an entirely objective matter, and either it belongs to the Platonic world or
its negation does, in the sense that I am interpreting this term ‘Platonic
world’. If the axiom of choice is, on the other hand, a mere matter of
opinion or of arbitrary decision, then the Platonic world of absolute
mathematical forms contains neither the axiom of choice nor its negation
(although it could contain assertions of the form ‘such-and-such follows
from the axiom of choice’ or ‘the axiom of choice is a theorem according
to the rules of such-and-such mathematical system’).

The mathematical assertions that can belong to Plato’s world are pre-
cisely those that are objectively true. Indeed, I would regard mathematical
objectivity as really what mathematical Platonism is all about. To say that
some mathematical assertion has a Platonic existence is merely to say that
it is true in an objective sense. A similar comment applies to mathematical
notions—such as the concept of the number 7, for example, or the rule of
multiplication of integers, or the idea that some set contains infinitely
many elements—all of which have a Platonic existence because they are
objective notions. To my way of thinking, Platonic existence is simply a
matter of objectivity and, accordingly, should certainly not be viewed as
something ‘mystical’ or ‘unscientific’, despite the fact that some people
regard it that way.

As with the axiom of choice, however, questions as to whether some
particular proposal for a mathematical entity is or is not to be regarded as
having objective existence can be delicate and sometimes technical. Des-
pite this, we certainly need not be mathematicians to appreciate the
general robustness of many mathematical concepts. In Fig. 1.2, I have
depicted various small portions of that famous mathematical entity known
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Fig. 1.2 (a) The Mandelbrot set. (b), (¢), and (d) Some details, illustrating blow-
ups of those regions correspondingly marked in Fig. 1.2a, magnified by respective
linear factors 11.6, 168.9, and 1042.

as the Mandelbrot set. The set has an extraordinarily elaborate structure,
but it is not of any human design. Remarkably, this structure is defined by
a mathematical rule of particular simplicity. We shall come to this expli-
citly in §4.5, but it would distract us from our present purposes if I were to
try to provide this rule in detail now.

The point that I wish to make is that no one, not even Benoit Mandel-
brot himself when he first caught sight of the incredible complications in
the fine details of the set, had any real preconception of the set’s extraor-
dinary richness. The Mandelbrot set was certainly no invention of any
human mind. The set is just objectively there in the mathematics itself. If it
has meaning to assign an actual existence to the Mandelbrot set, then that
existence is not within our minds, for no one can fully comprehend the set’s
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endless variety and unlimited complication. Nor can its existence lie within
the multitude of computer printouts that begin to capture some of its
incredible sophistication and detail, for at best those printouts capture
but a shadow of an approximation to the set itself. Yet it has a robustness
that is beyond any doubt; for the same structure is revealed—in all its
perceivable details, to greater and greater fineness the more closely it is
examined—independently of the mathematician or computer that examines
it. Its existence can only be within the Platonic world of mathematical
forms.

I am aware that there will still be many readers who find difficulty with
assigning any kind of actual existence to mathematical structures. Let me
make the request of such readers that they merely broaden their notion of
what the term ‘existence’ can mean to them. The mathematical forms of
Plato’s world clearly do not have the same kind of existence as do ordinary
physical objects such as tables and chairs. They do not have spatial
locations; nor do they exist in time. Objective mathematical notions
must be thought of as timeless entities and are not to be regarded as
being conjured into existence at the moment that they are first humanly
perceived. The particular swirls of the Mandelbrot set that are depicted
in Fig. 1.2c or 1.2d did not attain their existence at the moment that they
were first seen on a computer screen or printout. Nor did they come about
when the general idea behind the Mandelbrot set was first humanly put
forth—not actually first by Mandelbrot, as it happened, but by R. Brooks
and J. P. Matelski, in 1981, or perhaps earlier. For certainly neither
Brooks nor Matelski, nor initially even Mandelbrot himself, had any
real conception of the elaborate detailed designs that we see in Fig. 1.2c
and 1.2d. Those designs were already ‘in existence’ since the beginning of
time, in the potential timeless sense that they would necessarily be revealed
precisely in the form that we perceive them today, no matter at what time
or in what location some perceiving being might have chosen to examine
them.

1.4 Three worlds and three deep mysteries

Thus, mathematical existence is different not only from physical existence
but also from an existence that is assigned by our mental perceptions. Yet
there is a deep and mysterious connection with each of those other two
forms of existence: the physical and the mental. In Fig. 1.3, I have
schematically indicated all of these three forms of existence—the physical,
the mental, and the Platonic mathematical—as entities belonging to three
separate ‘worlds’, drawn schematically as spheres. The mysterious connec-
tions between the worlds are also indicated, where in drawing the diagram
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Platonic
mathematical
world

Fig. 1.3 Three ‘worlds’—
the Platonic mathematical,
the physical, and the
mental—and the three
Physcal  profound mysteries in the
world connections between them.

I have imposed upon the reader some of my beliefs, or prejudices, con-
cerning these mysteries.

It may be noted, with regard to the first of these mysteries—relating the
Platonic mathematical world to the physical world—that I am allowing
that only a small part of the world of mathematics need have relevance to
the workings of the physical world. It is certainly the case that the vast
preponderance of the activities of pure mathematicians today has no
obvious connection with physics, nor with any other science (cf. §34.9),
although we may be frequently surprised by unexpected important appli-
cations. Likewise, in relation to the second mystery, whereby mentality
comes about in association with certain physical structures (most specifi-
cally, healthy, wakeful human brains), I am not insisting that the majority
of physical structures need induce mentality. While the brain of a cat may
indeed evoke mental qualities, I am not requiring the same for a rock.
Finally, for the third mystery, I regard it as self-evident that only a small
fraction of our mental activity need be concerned with absolute mathemat-
ical truth! (More likely we are concerned with the multifarious irritations,
pleasures, worries, excitements, and the like, that fill our daily lives.) These
three facts are represented in the smallness of the base of the connection of
each world with the next, the worlds being taken in a clockwise sense in the
diagram. However, it is in the encompassing of each entire world within
the scope of its connection with the world preceding it that I am revealing
my prejudices.

Thus, according to Fig. 1.3, the entire physical world is depicted as
being governed according to mathematical laws. We shall be seeing in later
chapters that there is powerful (but incomplete) evidence in support of this
contention. On this view, everything in the physical universe is indeed
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governed in completely precise detail by mathematical principles—
perhaps by equations, such as those we shall be learning about in chapters
to follow, or perhaps by some future mathematical notions fundamen-
tally different from those which we would today label by the term ‘equa-
tions’. If this is right, then even our own physical actions would be entirely
subject to such ultimate mathematical control, where ‘control’ might still
allow for some random behaviour governed by strict probabilistic
principles.

Many people feel uncomfortable with contentions of this kind, and 1
must confess to having some unease with it myself. Nonetheless, my
personal prejudices are indeed to favour a viewpoint of this general nature,
since it is hard to see how any line can be drawn to separate physical
actions under mathematical control from those which might lie beyond it.
In my own view, the unease that many readers may share with me on this
issue partly arises from a very limited notion of what ‘mathematical
control’ might entail. Part of the purpose of this book is to touch upon,
and to reveal to the reader, some of the extraordinary richness, power, and
beauty that can spring forth once the right mathematical notions are hit
upon.

In the Mandelbrot set alone, as illustrated in Fig. 1.2, we can begin to
catch a glimpse of the scope and beauty inherent in such things. But even
these structures inhabit a very limited corner of mathematics as a whole,
where behaviour is governed by strict computational control. Beyond this
corner is an incredible potential richness. How do I really feel about the
possibility that all my actions, and those of my friends, are ultimately
governed by mathematical principles of this kind? I can live with that. 1
would, indeed, prefer to have these actions controlled by something resid-
ing in some such aspect of Plato’s fabulous mathematical world than to
have them be subject to the kind of simplistic base motives, such as
pleasure-seeking, personal greed, or aggressive violence, that many
would argue to be the implications of a strictly scientific standpoint.

Yet, I can well imagine that a good many readers will still have difficulty
in accepting that all actions in the universe could be entirely subject to
mathematical laws. Likewise, many might object to two other prejudices
of mine that are implicit in Fig. 1.3. They might feel, for example, that I
am taking too hard-boiled a scientific attitude by drawing my diagram in a
way that implies that all of mentality has its roots in physicality. This is
indeed a prejudice, for while it is true that we have no reasonable scientific
evidence for the existence of ‘minds’ that do not have a physical basis, we
cannot be completely sure. Moreover, many of a religious persuasion
would argue strongly for the possibility of physically independent minds
and might appeal to what they regard as powerful evidence of a different
kind from that which is revealed by ordinary science.
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A further prejudice of mine is reflected in the fact that in Fig. 1.3 I have
represented the entire Platonic world to be within the compass of mental-
ity. This is intended to indicate that—at least in principle—there are no
mathematical truths that are beyond the scope of reason. Of course, there
are mathematical statements (even straightforward arithmetical addition
sums) that are so vastly complicated that no one could have the mental
fortitude to carry out the necessary reasoning. However, such things
would be potentially within the scope of (human) mentality and would
be consistent with the meaning of Fig. 1.3 as I have intended to represent
it. One must, nevertheless, consider that there might be other mathemat-
ical statements that lie outside even the potential compass of reason, and
these would violate the intention behind Fig. 1.3. (This matter will be
considered at greater length in §16.6, where its relation to Godel’s famous
incompleteness theorem will be discussed.)®

In Fig. 1.4, as a concession to those who do not share all my personal
prejudices on these matters, I have redrawn the connections between the
three worlds in order to allow for all three of these possible violations of
my prejudices. Accordingly, the possibility of physical action beyond the
scope of mathematical control is now taken into account. The diagram
also allows for the belief that there might be mentality that is not rooted in
physical structures. Finally, it permits the existence of true mathematical
assertions whose truth is in principle inaccessible to reason and insight.

This extended picture presents further potential mysteries that lie even
beyond those which I have allowed for in my own preferred picture of the
world, as depicted in Fig. 1.3. In my opinion, the more tightly organized
scientific viewpoint of Fig. 1.3 has mysteries enough. These mysteries are
not removed by passing to the more relaxed scheme of Fig. 1.4. For it

Platonic
mathematical

Fig. 1.4 A redrawing of
Fig. 1.3 in which violations
of three of the prejudices of
the author are allowed for.
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remains a deep puzzle why mathematical laws should apply to the world
with such phenomenal precision. (We shall be glimpsing something of the
extraordinary accuracy of the basic physical theories in §19.8, §26.7,
and §27.13.) Moreover, it is not just the precision but also the subtle
sophistication and mathematical beauty of these successful theories that
is profoundly mysterious. There is also an undoubted deep mystery in how
it can come to pass that appropriately organized physical material—and
here I refer specifically to living human (or animal) brains—can somehow
conjure up the mental quality of conscious awareness. Finally, there is also
a mystery about how it is that we perceive mathematical truth. It is not just
that our brains are programmed to ‘calculate’ in reliable ways. There is
something much more profound than that in the insights that even the
humblest among us possess when we appreciate, for example, the actual
meanings of the terms ‘zero’, ‘one’, ‘two’, ‘three’, ‘four’, etc.”

Some of the issues that arise in connection with this third mystery will be
our concern in the next chapter (and more explicitly in §§16.5,6) in relation
to the notion of mathematical proof. But the main thrust of this book has
to do with the first of these mysteries: the remarkable relationship between
mathematics and the actual behaviour of the physical world. No proper
appreciation of the extraordinary power of modern science can be
achieved without at least some acquaintance with these mathematical
ideas. No doubt, many readers may find themselves daunted by the
prospect of having to come to terms with such mathematics in order to
arrive at this appreciation. Yet, I have the optimistic belief that they may
not find all these things to be so bad as they fear. Moreover, I hope that I
may persuade many reader that, despite what she or he may have previ-
ously perceived, mathematics can be fun!

I shall not be especially concerned here with the second of the mysteries
depicted in Figs. 1.3 and 1.4, namely the issue of how it is that mentality—
most particularly conscious awareness—can come about in association with
appropriate physical structures (although I shall touch upon this deep
question in §34.7). There will be enough to keep us busy in exploring the
physical universe and its associated mathematical laws. In addition, the
issues concerning mentality are profoundly contentious, and it would dis-
tract from the purpose of this book if we were to get embroiled in them.
Perhaps one comment will not be amiss here, however. This is that, in my
own opinion, there is little chance that any deep understanding of the nature
of the mind can come about without our first learning much more about the
very basis of physical reality. As will become clear from the discussions that
will be presented in later chapters, I believe that major revolutions are
required in our physical understanding. Until these revolutions have come
to pass, it is, in my view, greatly optimistic to expect that much real progress
can be made in understanding the actual nature of mental processes.!?
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1.5 The Good, the True, and the Beautiful

In relation to this, there is a further set of issues raised by Figs. 1.3 and 1.4.
I have taken Plato’s notion of a ‘world of ideal forms’ only in the limited
sense of mathematical forms. Mathematics is crucially concerned with the
particular ideal of Truth. Plato himself would have insisted that there are
two other fundamental absolute ideals, namely that of the Beautiful and of
the Good. I am not at all averse to admitting to the existence of such ideals,
and to allowing the Platonic world to be extended so as to contain
absolutes of this nature.

Indeed, we shall later be encountering some of the remarkable interrela-
tions between truth and beauty that both illuminate and confuse the issues
of the discovery and acceptance of physical theories (see §§34.2,3,9 par-
ticularly; see also Fig. 34.1). Moreover, quite apart from the undoubted
(though often ambiguous) role of beauty for the mathematics underlying
the workings of the physical world, aesthetic criteria are fundamental to
the development of mathematical ideas for their own sake, providing both
the drive towards discovery and a powerful guide to truth. I would even
surmise that an important element in the mathematician’s common con-
viction that an external Platonic world actually has an existence independ-
ent of ourselves comes from the extraordinary unexpected hidden beauty
that the ideas themselves so frequently reveal.

Of less obvious relevance here—but of clear importance in the broader
context—is the question of an absolute ideal of morality: what is good and
what is bad, and how do our minds perceive these values? Morality has a
profound connection with the mental world, since it is so intimately related
to the values assigned by conscious beings and, more importantly, to the
very presence of consciousness itself. It is hard to see what morality might
mean in the absence of sentient beings. As science and technology progress,
an understanding of the physical circumstances under which mentality is
manifested becomes more and more relevant. I believe that it is more
important than ever, in today’s technological culture, that scientific ques-
tions should not be divorced from their moral implications. But these issues
would take us too far afield from the immediate scope of this book. We need
to address the question of separating true from false before we can ad-
equately attempt to apply such understanding to separate good from bad.

There is, finally, a further mystery concerning Fig. 1.3, which I have left
to the last. I have deliberately drawn the figure so as to illustrate a
paradox. How can it be that, in accordance with my own prejudices,
each world appears to encompass the next one in its entirety? I do not
regard this issue as a reason for abandoning my prejudices, but merely for
demonstrating the presence of an even deeper mystery that transcends
those which I have been pointing to above. There may be a sense in
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which the three worlds are not separate at all, but merely reflect, individu-
ally, aspects of a deeper truth about the world as a whole of which we have
little conception at the present time. We have a long way to go before such
matters can be properly illuminated.

I have allowed myself to stray too much from the issues that will
concern us here. The main purpose of this chapter has been to emphasize
the central importance that mathematics has in science, both ancient and
modern. Let us now take a glimpse into Plato’s world—at least into a
relatively small but important part of that world, of particular relevance to
the nature of physical reality.

Notes

Section 1.2

1.1. Unfortunately, almost nothing reliable is known about Pythagoras, his life, his
followers, or of their work, apart from their very existence and the recognition by
Pythagoras of the role of simple ratios in musical harmony. See Burkert (1972).
Yet much of great importance is commonly attributed to the Pythagoreans.
Accordingly, I shall use the term ‘Pythagorean’ simply as a label, with no impli-
cation intended as to historical accuracy.

1.2. This is the pure ‘diatonic scale’ in which the frequencies (in inverse proportion to
the lengths of the vibrating elements) are in the ratios 24 : 27 :30: 36 : 40 : 45 : 48,
giving many instances of simple ratios, which underlie harmonies that are pleasing
to the ear. The ‘white notes’ of a modern piano are tuned (according to a
compromise between Pythagorean purity of harmony and the facility of key
changes) as approximations to these Pythagorean ratios, according to the equal
temperament scale, with relative frequencies 1:0>:a*:o:a’:0”:a!'l: a2, where

o= /2=105946.... (Note: o’ means the fifth power of o, i.e.

o X o X o X o X a. The quantity /2 is the twelfth root of 2, which is the number

whose twelfth power is 2, i.e. 2!/12, so that «!2 = 2. See Note 1.3 and §5.2.)

Section 1.3

1.3. Recall from Note 1.2 that the nth power of a number is that number multiplied by
itself n times. Thus, the third power of 5 is 125, written 5° = 125; the fourth power
of 3 is 81, written 3* = 81; etc.

1.4. In fact, while Wiles was trying to fix a ‘gap’ in his proof of Fermat’s Last Theorem
which had become apparent after his initial presentation at Cambridge in June
1993, a rumour spread through the mathematical community that the mathemat-
ician Noam Elkies had found a counter-example to Fermat’s assertion. Earlier, in
1988, Elkies had found a counter-example to Euler’s conjecture—that there are no
positive solutions to the equation x* + y* + z* = w*—thereby proving it false. It
was not implausible, therefore, that he had proved that Fermat’s assertion also
was false. However, the e-mail that started the rumour was dated 1 April and was
revealed to be a spoof perpetrated by Henri Darmon; see Singh (1997), p. 293.

1.5. Technically it is a IT;-sentence; see §16.6.

1.6. I realize that, in a sense, I am falling into my own trap by making such an
assertion. The issue is not really whether the mathematicians taking such an
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extreme subjective view happen to constitute a tiny minority or not (and I have
certainly not conducted a trustworthy survey among mathematicians on this
point); the issue is whether such an extreme position is actually to be taken
seriously. I leave it to the reader to judge.

1.7. Some readers may be aware of the results of G6del and Cohen that the axiom of
choice is independent of the more basic standard axioms of set theory (the
Zermelo-Frankel axiom system). It should be made clear that the Godel-
Cohen argument does not in itself establish that the axiom of choice will never
be settled one way or the other. This kind of point is stressed, for example, in the
final section of Paul Cohen’s book (Cohen 1966, Chap. 14, §13), except that,
there, Cohen is more explicitly concerned with the continuum hypothesis than the
axiom of choice; see §16.5.

Section 1.4
1.8. There is perhaps an irony here that a fully fledged anti-Platonist, who believes
that mathematics is ‘all in the mind’ must also believe—so it seems—that there
are no true mathematical statements that are in principle beyond reason. For
example, if Fermat’s Last Theorem had been inaccessible (in principle) to reason,
then this anti-Platonist view would allow no validity either to its truth or to its
falsity, such validity coming only through the mental act of perceiving some
proof or disproof.
1.9. See e.g. Penrose (1997b).
1.10. My own views on the kind of change in our physical world-view that will be
needed in order that conscious mentality may be accommodated are expressed in
Penrose (1989, 1994, 1996,1997).
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2
An ancient theorem and a modern question

2.1 The Pythagorean theorem

LET us consider the issue of geometry. What, indeed, are the different
‘kinds of geometry’ that were alluded to in the last chapter? To lead up to
this issue, we shall return to our encounter with Pythagoras and consider
that famous theorem that bears his name:! for any right-angled triangle,
the square of the length of the hypotenuse (the side opposite the right
angle) is equal to the sum of the squares of the lengths of the other two
sides (Fig. 2.1). What reasons do we have for believing that this assertion is
true? How, indeed, do we ‘prove’ the Pythagorean theorem? Many argu-
ments are known. I wish to consider two such, chosen for their particular
transparency, each of which has a different emphasis.

For the first, consider the pattern illustrated in Fig. 2.2. It is composed
entirely of squares of two different sizes. It may be regarded as ‘obvious’
that this pattern can be continued indefinitely and that the entire plane is
thereby covered in this regular repeating way, without gaps or overlaps, by
squares of these two sizes. The repeating nature of this pattern is made
manifest by the fact that if we mark the centres of the larger squares, they
form the vertices of another system of squares, of a somewhat greater size
than either, but tilted at an angle to the original ones (Fig. 2.3) and which
alone will cover the entire plane. Each of these tilted squares is marked in
exactly the same way, so that the markings on these squares fit together to

, Fig.2.1 The Pythagorean
theorem: for any right-angled
triangle, the squared length of the
hypotenuse c is the sum of the
a squared lengths of the other two

R+ B2 =2 sides a and b.
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Fig. 2.2 A tessellation of the plane by  Fig. 2.3 The centres of the (say) larger
squares of two different sizes. squares form the vertices of a lattice of
still larger squares, tilted at an angle.

form the original two-square pattern. The same would apply if, instead of
taking the centres of the larger of the two squares of the original pattern,
we chose any other point, together with its set of corresponding points
throughout the pattern. The new pattern of tilted squares is just the same
as before but moved along without rotation—i.e. by means of a motion
referred to as a translation. For simplicity, we can now choose our starting
point to be one of the corners in the original pattern (see Fig. 2.4).

It should be clear that the area of the tilted square must be equal to the
sum of the areas of the two smaller squares—indeed the pieces into which
the markings would subdivide this larger square can, for any starting point
for the tilted squares, be moved around, without rotation, until they fit
together to make the two smaller squares (e.g. Fig. 2.5). Moreover, it is
evident from Fig. 2.4 that the edge-length of the large tilted square is the
hypotenuse of a right-angled triangle whose two other sides have lengths
equal to those of the two smaller squares. We have thus established the
Pythagorean theorem: the square on the hypotenuse is equal to the sum of
the squares on the other two sides.

The above argument does indeed provide the essentials of a simple proof
of this theorem, and, moreover, it gives us some ‘reason’ for believing that
the theorem has to be true, which might not be so obviously the case with
some more formal argument given by a succession of logical steps without
clear motivation. It should be pointed out, however, that there are several
implicit assumptions that have gone into this argument. Not the least of
these is the assumption that the seemingly obvious pattern of repeating
squares shown in Fig. 2.2 or even in Fig. 2.6 is actually geometrically
possible—or even, more critically, that a square is something geometrically
possible! What do we mean by a ‘square’ after all? We normally think of a
square as a plane figure, all of whose sides are equal and all of whose
angles are right angles. What is a right angle? Well, we can imagine two
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Fig. 2.4 The lattice of tilted squares Fig. 2.5 For any particular starting
can be shifted by a translation, here so  point for the tilted square, such as that
that the vertices of the tilted lattice lie depicted, the tilted square is divided
on vertices of the original two-square into pieces that fit together to make the
lattice, showing that the side-length of  two smaller squares.

a tilted square is the hypotenuse of a

right-angled triangle (shown shaded)

whose other two side-lengths are those

of the original two squares.

o Fig. 2.6 The familiar lattice of equal
- R v - squares. How do we know it exists?

straight lines crossing each other at some point, making four angles that
are all equal. Each of these equal angles is then a right angle.

Let us now try to construct a square. Take three equal line segments AB,
BC, and CD, where ABC and BCD are right angles, D and A being on the
same side of the line BC, as in Fig. 2.7. The question arises: is AD the same
length as the other three segments? Moreover, are the angles DAB and
CDA also right angles? These angles should be equal to one another by a
left-right symmetry in the figure, but are they actually right angles? This
only seems obvious because of our familiarity with squares, or perhaps
because we can recall from our schooldays some statement of Euclid that
can be used to tell us that the sides BA and CD would have to be ‘parallel’
to each other, and some statement that any ‘transversal’ to a pair of
parallels has to have corresponding angles equal, where it meets the two
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A t ID
E
Fig. 2.7 Try to construct a square. Take
ABC and BCD as right angles, with
AB = BC = CD. Doses it follow that DA is also
equal to these lengths and that DAB and CDA are
B ' C also right angles?

parallels. From this, it follows that the angle DAB would have to be
equal to the angle complementary to ADC (i.e. to the angle EDC, in
Fig. 2.7, ADE being straight) as well as being, as noted above, equal to
the angle ADC. An angle (ADC) can only be equal to its complementary
angle (EDC) if it is a right angle. We must also prove that the side AD
has the same length as BC, but this now also follows, for example, from
properties of transversals to the parallels BA and CD. So, it is indeed
true that we can prove from this kind of Euclidean argument that
squares, made up of right angles, actually do exist. But there is a deep
issue hiding here.

2.2 Euclid’s postulates

In building up his notion of geometry, Euclid took considerable care to see
what assumptions his demonstrations depended upon.? In particular, he
was careful to distinguish certain assertions called axioms—which were
taken as self-evidently true, these being basically definitions of what he
meant by points, lines, etc.—from the five postulates, which were assump-
tions whose validity seemed less certain, yet which appeared to be true of
the geometry of our world. The final one of these assumptions, referred to
as Euclid’s fifth postulate, was considered to be less obvious than the
others, and it was felt, for many centuries, that it ought to be possible to
find a way of proving it from the other more evident postulates. Euclid’s
fifth postulate is commonly referred to as the parallel postulate and 1 shall
follow this practice here.

Before discussing the parallel postulate, it is worth pointing out the
nature of the other four of Euclid’s postulates. The postulates are con-
cerned with the geometry of the (Euclidean) plane, though Euclid also
considered three-dimensional space later in his works. The basic elements
of his plane geometry are points, straight lines, and circles. Here, I shall
consider a ‘straight line’ (or simply a ‘line’) to be indefinitely extended in
both directions; otherwise I refer to a ‘line segment’. Euclid’s first postu-
late effectively asserts that there is a (unique) straight line segment
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connecting any two points. His second postulate asserts the unlimited
(continuous) extendibility of any straight line segment. His third
postulate asserts the existence of a circle with any centre and with any
value for its radius. Finally, his fourth postulate asserts the equality of all
right angles.?

From a modern perspective, some of these postulates appear a little
strange, particularly the fourth, but we must bear in mind the origin of the
ideas underlying Euclid’s geometry. Basically, he was concerned with the
movement of idealized rigid bodies and the notion of congruence which
was signalled when one such idealized rigid body was moved into coinci-
dence with another. The equality of a right angle on one body with that on
another had to do with the possibility of moving the one so that the lines
forming its right angle would lie along the lines forming the right angle of
the other. In effect, the fourth postulate is asserting the isotropy and
homogeneity of space, so that a figure in one place could have the ‘same’
(i.e. congruent) geometrical shape as a figure in some other place. The
second and third postulates express the idea that space is indefinitely
extendible and without ‘gaps’ in it, whereas the first expresses the basic
nature of a straight line segment. Although Euclid’s way of looking at
geometry was rather different from the way that we look at it today, his
first four postulates basically encapsulated our present-day notion of a
(two-dimensional) metric space with complete homogeneity and isotropy,
and infinite in extent. In fact, such a picture seems to be in close accord-
ance with the very large-scale spatial nature of the actual universe,
according to modern cosmology, as we shall be coming to in §27.11 and
§28.10.

What, then, is the nature of Euclid’s fifth postulate, the parallel postu-
late? As Euclid essentially formulated this postulate, it asserts that if two
straight line segments ¢ and b in a plane both intersect another straight line
¢ (so that ¢ is what is called a transversal of a and b) such that the sum of
the interior angles on the same side of ¢ is less than two right angles, then a
and b, when extended far enough on that side of ¢, will intersect some-
where (see Fig. 2.8a). An equivalent form of this postulate (sometimes
referred to as Playfair’s axiom) asserts that, for any straight line and for
any point not on the line, there is a unique straight line through the point
which is parallel to the line (see Fig. 2.8b). Here, ‘parallel’ lines would be
two straight lines in the same plane that do not intersect each other (and
recall that my ‘lines’ are fully extended entities, rather than Euclid’s
‘segments of lines’).[>11

@9 [2.1] Show that if Euclid’s form of the parallel postulate holds, then Playfair’s conclusion of the
uniqueness of parallels must follow.
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c

A a

If sum of these
angles is less

than 2 right angles
then a and b meet

Unique parallel (b)
to a through P

Fig. 2.8 (a) Euclid’s parallel postulate. Lines a and b are transversals to a third
line ¢, such that the interior angles where a and b meet ¢ add to less than two right
angles. Then a and b (assumed extended far enough) will ultimately intersect each
other. (b) Playfair’s (equivalent) axiom: if ¢ is a line in a plane and P a point of the
plane not on a, then there is just one line parallel to « through P, in the plane.

Once we have the parallel postulate, we can proceed to establish the
property needed for the existence of a square. If a transversal to a pair of
straight lines meets them so that the sum of the interior angles on one
side of the transversal is two right angles, then one can show that the
lines of the pair are indeed parallel. Moreover, it immediately follows
that any other transversal of the pair has just the same angle property.
This is basically just what we needed for the argument given above
for the construction of our square. We see, indeed, that it is just the
parallel postulate that we must use to show that our construction
actually yields a square, with all its angles right angles and all its sides
the same. Without the parallel postulate, we cannot establish that
squares (in the normal sense where all their angles are right angles) actu-
ally exist.

It may seem to be merely a matter of mathematical pedantry to worry
about precisely which assumptions are needed in order to provide a
‘rigorous proof” of the existence of such an obvious thing as a square.
Why should we really be concerned with such pedantic issues, when a
‘square’ is just that familiar figure that we all know about? Well, we shall
be seeing shortly that Euclid actually showed some extraordinary perspi-
cacity in worrying about such matters. Euclid’s pedantry is related to a
deep issue that has a great deal to say about the actual geometry of the
universe, and in more than one way. In particular, it is not at all an
obvious matter whether physical ‘squares’ exist on a cosmological scale
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in the actual universe. This is a matter for observation, and the evidence at
the moment appears to be conflicting (see §2.7 and §28.10).

2.3 Similar-areas proof of the Pythagorean theorem

I shall return to the mathematical significance of not assuming the parallel
postulate in the next section. The relevant physical issues will be re-
examined in §18.4, §27.11, §28.10, and §34.4. But, before discussing such
matters, it will be instructive to turn to the other proof of the Pythagorean
theorem that I had promised above.

One of the simplest ways to see that the Pythagorean assertion is indeed
true in Euclidean geometry is to consider the configuration consisting of
the given right-angled triangle subdivided into two smaller triangles by
dropping a perpendicular from the right angle to the hypotenuse (Fig. 2.9).
There are now three triangles depicted: the original one and the two into
which it has now been subdivided. Clearly the area of the original triangle
is the sum of the areas of the two smaller ones.

Now, it is a simple matter to see that these three triangles are all similar
to one another. This means that they are all the same shape (though of
different sizes), i.e. obtained from one another by a uniform expansion or
contraction, together with a rigid motion. This follows because each of the
three triangles possesses exactly the same angles, in some order. Each of
the two smaller triangles has an angle in common with the largest one and
one of the angles of each triangle is a right angle. The third angle must also
agree because the sum of the angles in any triangle is always the same.
Now, it is a general property of similar plane figures that their areas are in
proportion to the squares of their corresponding linear dimensions. For
each triangle, we can take this linear dimension to be its longest side, i.e. its
hypotenuse. We note that the hypotenuse of each of the smaller triangles is

Fig. 2.9 Proof of the Pythagorean
theorem using similar triangles.
Take a right-angled triangle and
drop a perpendicular from its right
angle to its hypotenuse. The two
triangles into which the original
triangle is now divided have areas
which sum to that of the original
triangle. All three triangles are
similar, so their areas are in
proportion to the squares of their
respective hypotenuses. The Py-
thagorean theorem follows.
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the same as one of the (non-hypotenuse) sides of the original triangle.
Thus, it follows at once (from the fact that the area of the original triangle
is the sum of the areas of the other two) that the square on the hypotenuse
on the original triangle is indeed the sum of the squares on the other two
sides: the Pythagorean theorem!

There are, again, some particular assumptions in this argument that we
shall need to examine. One important ingredient of the argument is the fact
that the angles of a triangle always add up to the same value. (This value of
this sum is of course 180°, but Euclid would have referred to it as ‘two right
angles’. The more modern ‘natural’ mathematical description is to say that
the angles of a triangle, in Euclid’s geometry, add up to =. This is to use
radians for the absolute measure of angle, where the degree sign ‘>’ counts as
7/180, so we can write 180° = n.) The usual proof is depicted in Fig. 2.10.
We extend CA to E and draw a line AD, through A, which is parallel to
CB. Then (as follows from the parallel postulate) the angles EAD and
ACB are equal, and also DAB and CBA are equal. Since the angles EAD,
DAB, and BAC add up to & (or to 180°, or to two right angles), so also
must the three angles ACB, CBA, and BAC of the triangle—as was
required to prove. But notice that the parallel postulate was used here.

This proof of the Pythagorean theorem also makes use of the fact that
the areas of similar figures are in proportion to the squares of any linear
measure of their sizes. (Here we chose the hypotenuse of each triangle to
represent this linear measure.) This fact not only depends on the very
existence of similar figures of different sizes—which for the triangles of
Fig. 2.9 we established using the parallel postulate—but also on some
more sophisticated issues that relate to how we actually define ‘area’ for
non-rectangular shapes. These general matters are addressed in terms of
the carrying out of limiting procedures, and I do not want to enter into

Fig. 2.10 Proof that the sum
of the angles of a triangle
ABC sums to t (= 180° = two
right angles). Extend CA to E;
draw AD parallel to CB. It
follows from the parallel
postulate that the angles EAD
and ACB are equal and the
angles DAB and CBA are
equal. Since the angles EAD,
DAB, and BAC sum to =, so
also do the angles ACB, CBA,
E  and BAC.
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this kind of discussion just for the moment. It will take us into some deeper
issues related to the kind of numbers that are used in geometry. The
question will be returned to in §§3.1-3.

An important message of the discussion in the preceding sections is that
the Pythagorean theorem seems to depend on the parallel postulate. Is this
really so? Suppose the parallel postulate were false? Does that mean that
the Pythagorean theorem might itself actually be false? Does such a
possibility make any sense? Let us try to address the question of what
would happen if the parallel postulate is indeed allowed to be taken to be
false. We shall seem to be entering a mysterious make-belief world, where
the geometry that we learned at school is turned all topsy-turvy. Indeed,
but we shall find that there is also a deeper purpose here.

2.4 Hyperbolic geometry: conformal picture

Have a look at the picture in Fig. 2.11. It is a reproduction of one of M. C.
Escher’s woodcuts, called Circle Limit I. It actually provides us with a very
accurate representation of a kind of geometry—called hyperbolic (or
sometimes Lobachevskian) geometry—in which the parallel postulate is
false, the Pythagorean theorem fails to hold, and the angles of a triangle
do not add to m. Moreover, for a shape of a given size, there does not, in
general, exist a similar shape of a larger size.

In Fig. 2.11, Escher has used a particular representation of hyperbolic
geometry in which the entire ‘universe’ of the hyperbolic plane is
‘squashed’ into the interior of a circle in an ordinary Euclidean plane.
The bounding circle represents ‘infinity’ for this hyperbolic universe. We
can see that, in Escher’s picture, the fish appear to get very crowded as they
get close to this bounding circle. But we must think of this as an illusion.
Imagine that you happened to be one of the fish. Then whether you are
situated close to the rim of Escher’s picture or close to its centre, the entire
(hyperbolic) universe will look the same to you. The notion of ‘distance’ in
this geometry does not agree with that of the Euclidean plane in terms of
which it has been represented. As we look down upon Escher’s picture
from our Euclidean perspective, the fish near the bounding circle appear to
us to be getting very tiny. But from the ‘hyperbolic’ perspective of the white
or the black fish themselves, they think that they are exactly the same size
and shape as those near the centre. Moreover, although from our outside
Euclidean perspective they appear to get closer and closer to the bounding
circle itself, from their own hyperbolic perspective that boundary always
remains infinitely far away. Neither the bounding circle nor any of the
‘Euclidean’ space outside it has any existence for them. Their entire uni-
verse consists of what to us seems to lie strictly within the circle.
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Fig. 2.11 M. C. Escher’s woodcut Circle Limit I, illustrating the conformal repre-
sentation of the hyperbolic plane.

In more mathematical terms, how is this picture of hyperbolic geometry
constructed? Think of any circle in a Euclidean plane. The set of points
lying in the interior of this circle is to represent the set of points in the
entire hyperbolic plane. Straight lines, according to the hyperbolic geom-
etry are to be represented as segments of Euclidean circles which meet the
bounding circle orthogonally—which means at right angles. Now, it turns
out that the hyperbolic notion of an angle between any two curves, at their
point of intersection, is precisely the same as the Euclidean measure of
angle between the two curves at the intersection point. A representation of
this nature is called conformal. For this reason, the particular representa-
tion of hyperbolic geometry that Escher used is sometimes referred to as
the conformal model of the hyperbolic plane. (It is also frequently referred
to as the Poincaré disc. The dubious historical justification of this termin-
ology will be discussed in §2.6.)

We are now in a position to see whether the angles of a triangle in
hyperbolic geometry add up to  or not. A quick glance at Fig. 2.12 leads
us to suspect that they do not and that they add up to something less. In
fact, the sum of the angles of a triangle in hyperbolic geometry always falls
short of m. We might regard that as a somewhat unpleasant feature of
hyperbolic geometry, since we do not appear to get a ‘neat’ answer for the
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Fig. 2.12 The same Escher picture as Fig. 2.11, but with hyperbolic straight lines
(Euclidean circles or lines meeting the bounding circle orthogonally) and a hyper-
bolic triangle, is illustrated. Hyperbolic angles agree with the Euclidean ones. The
parallel postulate is evidently violated (lettering as in Fig. 2.8b) and the angles of a
triangle sum to less than 7.

sum of the angles of a triangle. However, there is actually something
particularly elegant and remarkable about what does happen when we
add up the angles of a hyperbolic triangle: the shortfall is always propor-
tional to the area of the triangle. More explicitly, if the three angles of the
triangle are o, 5, and y, then we have the formula (found by Johann
Heinrich Lambert 1728-1777)

n—(+p+7y) = C4,

where 4 is the area of the triangle and C is some constant. This constant
depends on the “units’ that are chosen in which lengths and areas are to be
measured. We can always scale things so that C = 1. It is, indeed, a
remarkable fact that the area of a triangle can be so simply expressed in
hyperbolic geometry. In Euclidean geometry, there is no way to express
the area of a triangle simply in terms of its angles, and the expression
for the area of a triangle in terms of its side-lengths is considerably more
complicated.
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In fact, I have not quite finished my description of hyperbolic geometry
in terms of this conformal representation, since I have not yet described
how the hyperbolic distance between two points is to be defined (and it
would be appropriate to know what ‘distance’ is before we can really talk
about areas). Let me give you an expression for the hyperbolic distance
between two points A and B inside the circle. This is

QA -PB

log 22,
°€QB-PA

where P and Q are the points where the Euclidean circle (i.e. hyperbolic
straight line) through A and B orthogonal to the bounding circle meets this
bounding circle and where ‘QA’, etc., refer to Euclidean distances (see
Fig. 2.13). If you want to include the C of Lambert’s area formula (with
C # 1), just multiply the above distance expression by C~!/? (the recipro-
cal of the square root of C)*!>2 For reasons that I hope may become
clearer later, I shall refer to the quantity C—'/? as the pseudo-radius of the
geometry.

If mathematical expressions like the above ‘log’ formula seem daunting,
please do not worry. I am only providing it for those who like to see things
explicitly. In any case, I am not going to explain why the expression works
(e.g. why the shortest hyperbolic distance between two points, defined in
this way, is actually measured along a hyperbolic straight line, or why the
distances along a hyperbolic straight line ‘add up’ appropriately).l>3! Also,
I apologize for the ‘log’ (logarithm), but that is the way things are. In fact,

Fig. 2.13 In the conformal
representation, the hyperbolic distance
between A and B is log {QA.PB/QB.PA}
where QA, etc. are Euclidean distances, P
and Q being where the Euclidean circle
A through A and B, orthogonal to the

Q bounding circle (hyperbolic line), meets

this circle.

%9 [2.2] Can you see a simple reason why ?

3 [2.3] See if you can prove that, according to this formula, if A, B, and C are three successive points
onahyperbolicstraightline, then the hyperbolicdistances ‘AB’, etc. satisfy ‘AB’ + ‘BC’ = ‘AC’. You
may assume the general property of logarithms, log (ab) = loga + log b as described in §§5.2, 3.
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this is a natural logarithm (‘log to the base ¢’) and I shall be having a good
deal to say about it in §§5.2,3. We shall find that logarithms are really very
beautiful and mysterious entities (as is the number ¢), as well as being
important in many different contexts.

Hyperbolic geometry, with this definition of distance, turns out to have all
the properties of Euclidean geometry apart from those which need the
parallel postulate. We can construct triangles and other plane figures of
different shapes and sizes, and we can move them around ‘rigidly’ (keeping
their hyperbolic shapes and sizes from changing) with as much freedom as
we can in Euclidean geometry, so that a natural notion of when two
shapes are ‘congruent’ arises, just as in Euclidean geometry, where ‘congru-
ent’ means ‘can be moved around rigidly until they come into coincidence’.
All the white fish in Escher’s woodcut are indeed congruent to each other,
according to this hyperbolic geometry, and so also are all the black fish.

2.5 Other representations of hyperbolic geometry

Of course, the white fish do not all look the same shape and size, but that is
because we are viewing them from a Euclidean rather than a hyperbolic
perspective. Escher’s picture merely makes use of one particular Euclidean
representation of hyperbolic geometry. Hyperbolic geometry itself is a
more abstract thing which does not depend upon any particular Euclidean
representation. However, such representations are indeed very helpful to
us in that they provide a way of visualizing hyperbolic geometry by
referring it to something that is more familiar and seemingly more ‘con-
crete’ to us, namely Euclidean geometry. Moreover, such representations
make it clear that hyperbolic geometry is a consistent structure and that,
consequently, the parallel postulate cannot be proved from the other laws
of Euclidean geometry.

There are indeed other representations of hyperbolic geometry in terms
of Euclidean geometry, which are distinct from the conformal one that
Escher employed. One of these is that known as the projective model.
Here, the entire hyperbolic plane is again depicted as the interior of a
circle in a Euclidean plane, but the hyperbolic straight lines are now
represented as straight Euclidean lines (rather than as circular arcs).
There is, however, a price to pay for this apparent simplification, because
the hyperbolic angles are now not the same as the Euclidean angles, and
many people would regard this price as too high. For those readers who
are interested, the hyperbolic distance between two points A and B in this
representation is given by the expression (see Fig. 2.14)

1, RA-SB

3°°RBSA
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Fig. 2.14 In the projective representation,
the formula for hyperbolic distance is now
1log {RA.SB/RB.SA}, where R and S are

R the intersections of the Euclidean (i.e.
hyperbolic) straight line AB with the
bounding circle.

(taking C = 1, this being almost the same as the expression we had before,
for the conformal representation), where R and S are the intersections of the
extended straight line AB with the bounding circle. This representation of
hyperbolic geometry, can be obtained from the conformal one by means of
an expansion radially out from the centre by an amount given by

2R?
R>+1r2 ’

where R is the radius of the bounding circle and r. is the Euclidean distance
out from the centre of the bounding circle of a point in the conformal
representation (see Fig. 2.15).>4 In Fig. 2.16, Escher’s picture of Fig. 2.11
has been transformed from the conformal to the projective model using this
formula. (Despite lost detail, Eseher’s precise artistry is still evident.)
Though less appealing this way, it presents a novel viewpoint!

There is a more directly geometrical way of relating the conformal and
projective representations, via yet another clever representation of this
same geometry. All three of these representations are due to the ingenious

Fig. 2.15 To get from the conformal to
the projective representation, expand out
from the centre by a factor 2R? / (R2 + r?),
where R is the radius of the bounding
circle and r, is the Euclidean distance out
of the point in the conformal
representation.

[2.4] Show this. (Hint: You can use Beltrami’s geometry, as illustrated in Fig. 2.17, if you wish.)
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Fig. 2.16 Escher’s picture of Fig. 2.11 transformed from the conformal to the
projective representation.

Italian geometer Eugenio Beltrami (1835-1900). Consider a sphere S,
whose equator coincides with the bounding circle of the projective repre-
sentation of hyperbolic geometry given above. We are now going to find a
representation of hyperbolic geometry on the northern hemisphere S* of S,
which I shall call the hemispheric representation. See Fig. 2.17. To pass
from the projective representation in the plane (considered as horizontal)
to the new one on the sphere, we simply project vertically upwards (Fig.
2.17a). The straight lines in the plane, representing hyperbolic straight
lines, are represented on S by semicircles meeting the equator orthogon-
ally. Now, to get from the representation on S* to the conformal repre-
sentation on the plane, we project from the south pole (Fig. 2.17b). This is
what is called stereographic projection, and it will play important roles later
on in this book (see §8.3, §18.4, §22.9, §33.6). Two important properties of
stereographic projection that we shall come to in §8.3 are that it is con-
formal, so that it preserves angles, and that it sends circles on the sphere to
circles (or, exceptionally, to straight lines) on the plane.[>->}[2:]

A9 [2.5] Assuming these two stated properties of stereographic projection, the conformal repre-
sentation of hyperbolic geometry being as stated in §2.4, show that Beltami’s hemispheric
representation is conformal, with hyperbolic ‘straight lines’ as vertical semicircles.

#5 [2.6] Can you see how to prove these two properties? (Hint: Show, in the case of circles, that the
cone of projection is intersected by two planes of exactly opposite tilt.)
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Fig. 2.17 Beltrami’s geometry, relating three of his representations of hyperbolic
geometry. (a) The hemispheric representation (conformal on the northern hemi-
sphere ST) projects vertically to the projective representation on the equatorial
disc. (b) The hemispheric representation projects stereographically, from the south
pole to the conformal representation on the equatorial disc.

The existence of various different models of hyperbolic geometry, ex-
pressed in terms of Euclidean space, serves to emphasize the fact that these
are, indeed, merely ‘Euclidean models’ of hyperbolic geometry and are not
to be taken as telling us what hyperbolic geometry actually is. Hyperbolic
geometry has its own ‘Platonic existence’, just as does Euclidean geometry
(see §1.3 and the Preface). No one of the models is to be taken as the
‘correct’ picturing of hyperbolic geometry at the expense of the others. The
representations of it that we have been considering are very valuable as
aids to our understanding, but only because the Euclidean framework is
the one which we are more used to. For a sentient creature brought up
with a direct experience of hyperbolic (rather than Euclidean) geometry, a
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model of Euclidean geometry in hyperbolic terms might seem the more
natural way around. In §18.4, we shall encounter yet another model of
hyperbolic geometry, this time in terms of the Minkowskian geometry of
special relativity.

To end this section, let us return to the question of the existence of
squares in hyperbolic geometry. Although squares whose angles are right
angles do not exist in hyperbolic geometry, there are ‘squares’ of a more
general type, whose angles are less than right angles. The easiest way to
construct a square of this kind is to draw two straight lines intersecting at
right angles at a point O. Our ‘square’ is now the quadrilateral whose four
vertices are the intersections A, B, C, D (taken cyclicly) of these two lines
with some circle with centre O. See Fig. 2.18. Because of the symmetry of
the figure, the four sides of the resulting quadrilateral ABCD are all equal
and all of its four angles must also be equal. But are these angles
right angles? Not in hyperbolic geometry. In fact they can be any (positive)
angle we like which is less than a right angle, but not equal to a right
angle. The bigger the (hyperbolic) square (i.e. the larger the circle, in
the above construction), the smaller will be its angles. In Fig. 2.19a,
I have depicted a lattice of hyperbolic squares, using the conformal
model, where there are five squares at each vertex point (instead of the
Euclidean four), so the angle is %n, or 72°. In Fig. 2.19b, I have depicted
the same lattice using the projective model. It will be seen that this does
not allow the modifications that would be needed for the two-square
lattice of Fig. 2.2.127]

Fig. 2.18 A hyperbolic
‘square’ is a hyperbolic

B
quadrilateral, whose vertices
are the intersections A, B, C,
D (taken cyclically) of two
perpendicular hyperbolic

c A straight lines through some

point O with some circle
centred at O. Because of
symmetry, the four sides of
ABCD as well as all the four
angles are equal. These
angles are not right angles,

D

but can be equal to any given
positive angle less than %TC.

5 [2.7] See if you can do something similar, but with hyperbolic regular pentagons and squares.
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@)

Fig. 2.19 A lattice of squares, in hyperbolic space, in which five squares meet at
each vertex, so the angles of the square are Z£ or 72°. (a) Conformal representa-

5 bl
tion. (b) Projective representation.

2.6 Historical aspects of hyperbolic geometry

A few historical comments concerning the discovery of hyperbolic geom-
etry are appropriate here. For centuries following the publication of
Euclid’s elements, in about 300 Bc, various mathematicians attempted to
prove the fifth postulate from the other axioms and postulates. These
efforts reached their greatest heights with the heroic work by the Jesuit
Girolamo Saccheri in 1733. It would seem that Saccheri himself must
ultimately have thought his life’s work a failure, constituting merely an
unfulfilled attempt to prove the parallel postulate by showing that the
hypothesis that the angle sum of every triangle is less than two right angles
led to a contradiction. Unable to do this logically after momentous
struggles, he concluded, rather weakly:

The hypothesis of acute angle is absolutely false; because repugnant to the
nature of the straight line.’

The hypothesis of ‘acute angle’ asserts that the lines ¢ and b of Fig. 2.8.
sometimes do not meet. It is, in fact, viable and actually yields hyperbolic
geometry!

How did it come about that Saccheri effectively discovered something
that he was trying to show was impossible? Saccheri’s proposal for proving
Euclid’s fifth postulate was to make the assumption that the fifth postulate
was false and then derive a contradiction from this assumption. In this
way he proposed to make use of one of the most time-honoured and
fruitful principles ever to be put forward in mathematics—very possibly
first introduced by the Pythagoreans—called proof by contradiction (or
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reductio ad absurdum, to give it its Latin name). According to this proced-
ure, in order to prove that some assertion is true, one first makes the
supposition that the assertion in question is false, and one then argues
from this that some contradiction ensues. Having found such a contradic-
tion, one deduces that the assertion must be true after all.® Proof by
contradiction provides a very powerful method of reasoning in mathemat-
ics, frequently applied today. A quotation from the distinguished math-
ematician G. H. Hardy is apposite here:

Reductio ad absurdum, which Euclid loved so much, is one of a mathemat-
ician’s finest weapons. It is a far finer gambit than any chess gambit: a chess
player may offer the sacrifice of a pawn or even a piece, but a mathematician
offers the game.”

We shall be seeing other uses of this important principle later (see §3.1 and
§§16.4,6).

However, Saccheri failed in his attempt to find a contradiction. He was
therefore not able to obtain a proof of the fifth postulate. But in striving
for it he, in effect, found something far greater: a new geometry, different
from that of Euclid—the geometry, discussed in §§2.4,5, that we now call
hyperbolic geometry. From the assumption that Euclid’s fifth postulate
was false, he derived, instead of an actual contradiction, a host of strange-
looking, barely believable, but interesting theorems. However, strange as
these results appeared to be, none of them was actually a contradiction. As
we now know, there was no chance that Saccheri would find a genuine
contradiction in this way, for the reason that hyperbolic geometry does
actually exist, in the mathematical sense that there is such a consistent
structure. In the terminology of §1.3, hyperbolic geometry inhabits Plato’s
world of mathematical forms. (The issue of hyperbolic geometry’s physical
reality will be touched upon in §2.7 and §28.10.)

A little after Saccheri, the highly insightful mathematician Johann
Heinrich Lambert (1728-1777) also derived a host of fascinating geomet-
rical results from the assumption that Euclid’s fifth postulate is false,
including the beautiful result mentioned in §2.4 that gives the area of a
hyperbolic triangle in terms of the sum of its angles. It appears that
Lambert may well have formed the opinion, at least at some stage of his
life, that a consistent geometry perhaps could be obtained from the denial
of Euclid’s fifth postulate. Lambert’s tentative reason seems to have been
that he could contemplate the theoretical possibility of the geometry on a
‘sphere of imaginary radius’, i.e. one for which the ‘squared radius’ is
negative. Lambert’s formula n — (x4 4+ y) = C4 gives the area, 4, of a
hyperbolic triangle, where o, f, and y are the angles of the triangle and
where C is a constant (—C being what we would now call the ‘Gaussian
curvature’ of the hyperbolic plane). This formula looks basically the same
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as a previously known one due to Thomas Hariot (1560-1621),
A = R*(u+ B +7y —n), for the area A of a spherical triangle, drawn with
great circle arcs® on a sphere of radius R (see Fig. 2.20).[>8] To retrieve
Lambert’s formula, we have to put

1

But, in order to give the positive value of C, as would be needed for
hyperbolic geometry, we require the sphere’s radius to be ‘imaginary’
(i.e. to be the square root of a negative number). Note that the radius R
is given by the imaginary quantity (— C)""/?. This explains the term
‘pseudo-radius’, introduced in §2.4, for the real quantity C~'/2. In fact
Lambert’s procedure is perfectly justified from our more modern perspec-
tives (see Chapter 4 and §18.4), and it indicates great insight on his part to
have foreseen this.

It is, however, the conventional standpoint (somewhat unfair, in my
opinion) to deny Lambert the honour of having first constructed non-
Euclidean geometry, and to consider that (about half a century later) the
first person to have come to a clear acceptance of a fully consistent
geometry, distinct from that of Euclid, in which the parallel postulate is
false, was the great mathematician Carl Friedrich Gauss. Being an excep-
tionally cautious man, and being fearful of the controversy that such a
revelation might cause, Gauss did not publish his findings, and kept them to
himself.® Some 30 years after Gauss had begun working on it, hyperbolic

Fig. 2.20 Hariot’s formula for the
area of a spherical triangle, with angles
o, B, y,is A= R¥oa+ f+7y—m).
Lambert’s formula, for a hyperbolic
triangle, has C = —1/R>.

#5 [2.8] Try to prove this spherical triangle formula, basically using only symmetry arguments
and the fact that the total area of the sphere is 4T R>. Hint: Start with finding the area of a segment
of a sphere bounded by two great circle arcs connecting a pair of antipodal points on the sphere;
then cut and paste and use symmetry arguments. Keep Fig. 2.20 in mind.
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geometry was independently rediscovered by various others, including the
Hungarian Janos Bolyai (by 1829) and, most particularly, the Russian
artillery man Nicolai Ivanovich Lobachevsky in about 1826 (whence
hyperbolic geometry is frequently called Lobachevskian geometry).

The specific projective and conformal realizations of hyperbolic geom-
etry that I have described above were both found by Eugenio Beltrami,
and published in 1868, together with some other elegant representations
including the hemispherical one mentioned in §2.5. The conformal
representation is, however, commonly referred to as the ‘Poincaré
model’, because Poincaré’s rediscovery of this representation in 1882 is
better known than the original work of Beltrami (largely because of the
important use that Poincaré made of this model).!® Likewise, poor old
Beltrami’s projective representation is sometimes called the ‘Klein repre-
sentation’. It is not uncommon in mathematics that the name normally
attached to a mathematical concept is not that of the original discov-
erer. At least, in this case, Poincaré did rediscover the conformal repre-
sentation (as did Klein the projective one in 1871). There are other
instances in mathematics where the mathematician(s) whose name(s)
are attached to a result did not even know of the result in question!!!

The representation of hyperbolic geometry that Beltrami is best
known for is yet another one, which he found also in 1868. This
represents the geometry on a certain surface known as a pseudo-sphere
(see Fig. 2.21). This surface is obtained by rotating a tractrix, a curve
first investigated by Isaac Newton in 1676, about its ‘asymptote’. The
asymptote is a straight line which the curve approaches, becoming
asymptotically tangent to it as the curve recedes to infinity. Here, we
are to imagine the asymptote to be drawn on a horizontal plane of
rough texture. We are to think of a light, straight, stiff rod, at one end
P of which is attached a heavy point-like weight, and the other end R
moves along the asymptote. The point P then traces out a tractrix.
Ferdinand Minding found, in 1839, that the pseudo-sphere has a constant

R Asymptote

(b)

Fig. 2.21 (a) A pseudo-sphere. This is obtained by rotating, about its asymptote
(b)atractrix. To construct a tractrix, imagine its plane to be horizontal, over which is
dragged a light, frictionless straight, stiffrod. One end of the rod is a point-like weight
P with friction, and the other end R moves along the (straight) asymptote.
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negative intrinsic geometry, and Beltrami used this fact to construct the first
model of hyperbolic geometry. Beltrami’s pseudo-sphere model seems to be
the one that persuaded mathematicians of the consistency of plane hyper-
bolic geometry, since the measure of hyperbolic distance agrees with
the Euclidean distance along the surface. However, it is a somewhat awk-
ward model, because it represents hyperbolic geometry only locally, rather
than presenting the entire geometry all at once, as do Beltrami’s other
models.

2.7 Relation to physical space

Hyperbolic geometry also works perfectly well in higher dimensions. More-
over, there are higher-dimensional versions of both the conformal and
projective models. For three-dimensional hyperbolic geometry, instead of
a bounding circle, we have a bounding sphere. The entire infinite three-
dimensional hyperbolic geometry is represented by the interior of this
finite Euclidean sphere. The rest is basically just as we had it before. In the
conformal model, straight lines in this three-dimensional hyperbolic geom-
etry are represented as Euclidean circles which meet the bounding sphere
orthogonally; angles are given by the Euclidean measures, and distances are
given by the same formula as in the two-dimensional case. In the projective
model, the hyperbolic straight lines are Euclidean straight lines, and dis-
tances are again given by the same formula as in the two-dimensional case.

What about our actual universe on cosmological scales? Do we expect that
its spatial geometry is Euclidean, or might it accord more closely with some
other geometry, such as the remarkable hyperbolic geometry (but in three
dimensions) that we have been examining in §§2.4-6. This is indeed a serious
question. We know from Einstein’s general relativity (which we shall come to
in §17.9 and §19.6) that Euclid’s geometry is only an (extraordinarily accur-
ate) approximation to the actual geometry of physical space. This physical
geometry is not even exactly uniform, having small ripples of irregularity
owing to the presence of matter density. Yet, strikingly, according to the best
observational evidence available to cosmologists today, these ripples appear
to average out, on cosmological scales, to a remarkably exact degree (see
§27.13 and §§28.4-10), and the spatial geometry of the actual universe seems
to accord with a uniform (homogeneous and isotropic—see §27.11) geom-
etry extraordinarily closely. Euclid’s first four postulates, at least, would
seem to have stood the test of time impressively well.

A remark of clarification is needed here. Basically, there are three
types of geometry that would satisfy the conditions of homogeneity
(every point the same) and isotropy (every direction the same), referred
to as Euclidean, hyperbolic, and elliptic. Euclidean geometry is familiar
to us (and has been for some 23 centuries). Hyperbolic geometry
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has been our main concern in this chapter. But what is elliptic
geometry? Essentially, elliptic plane geometry is that satisfied by figures
drawn on the surface of a sphere. It figured in the discussion of
Lambert’s approach to hyperbolic geometry in §2.6. See Fig. 2.22a,b,c,

@ (b)

©

Fig.2.22 The three basic kinds of uniform plane geometry, as illustrated by Escher
using tessellations of angels and devils. (a) Elliptic case (positive curvature), (b) Eucli-
dean case (zero curvature), and (c) Hyperbolic case (negative curvature)—in the
conformal representation (Escher’s Circle Limit IV, to be compared with Fig. 2.17).
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for Escher’s rendering of the elliptic, Euclidean, and hyperbolic cases,
respectively, using a similar tessellation of angels and devils in all three
cases, the third one providing an interesting alternative to Fig. 2.11. (There
is also a three-dimensional version of elliptic geometry, and there are
versions in which diametrically opposite points of the sphere are con-
sidered to represent the same point. These issues will be discussed a little
more fully in §27.11.) However, the elliptic case could be said to violate
Euclid’s second and third postulates (as well as the first). For it is a
geometry that is finite in extent (and for which more than one line segment
joins a pair of points).

What, then, is the observational status of the large-scale spatial geom-
etry of the universe? It is only fair to say that we do not yet know, although
there have been recent widely publicized claims that Euclid was right all
along, and his fifth postulate holds true also, so the averaged spatial
geometry is indeed what we call ‘Euclidean’.!> On the other hand, there
is also evidence (some of it coming from the same experiments) that seems
to point fairly firmly to a hyperbolic overall geometry for the spatial
universe.'3 Moreover, some theoreticians have long argued for the elliptic
case, and this is certainly not ruled out by that same evidence that is
argued to support the Euclidean case (see the later parts of §34.4). As
the reader will perceive, the issue is still fraught with controversy and, as
might be expected, often heated argument. In later chapters in this book, I
shall try to present a good many of the considerations that have been put
forward in this connection (and I do not attempt to hide my own opinion
in favour of the hyperbolic case, while trying to be as fair to the others as I
can).

Fortunately for those, such as myself, who are attracted to the beauties
of hyperbolic geometry, and also to the magnificence of modern physics,
there is another role for this superb geometry that is undisputedly funda-
mental to our modern understanding of the physical universe. For the
space of velocities, according to modern relativity theory, is certainly a
three-dimensional hyperbolic geometry (see §18.4), rather than the Euclid-
ean one that would hold in the older Newtonian theory. This helps us to
understand some of the puzzles of relativity. For example, imagine a
projectile hurled forward, with near light speed, from a vehicle that also
moves forwards with comparable speed past a building. Yet, relative to
that building, the projectile can never exceed light speed. Though this
seems impossible, we shall see in §18.4 that it finds a direct explanation
in terms of hyperbolic geometry. But these fascinating matters must wait
until later chapters.

What about the Pythagorean theorem, which we have seen to fail in
hyperbolic geometry? Must we abandon this greatest of the specific
Pythagorean gifts to posterity? Not at all, for hyperbolic geometry—and,
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indeed, all the ‘Riemannian’ geometries that generalize hyperbolic geom-
etry in an irregularly curved way (forming the essential framework for
Einstein’s general theory of relativity; see §13.8, §14.7, §18.1, and §19.6)—
depends vitally upon the Pythagorean theorem holding in the limit of
small distances. Moreover, its enormous influence permeates other vast
areas of mathematics and physics (e.g. the “unitary’ metric structure of
quantum mechanics, see §22.3). Despite the fact that this theorem is, in a
sense, superseded for ‘large’ distances, it remains central to the small-scale
structure of geometry, finding a range of application that enormously
exceeds that for which it was originally put forward.

Notes

Section 2.1

2.1. Itis historically very unclear who actually first proved what we now refer to as the
‘Pythagorean theorem’, see Note 1.1. The ancient Egyptians and Babylonians
seem to have known at least many instances of this theorem. The true role played
by Pythagoras or his followers is largely surmise.

Section 2.2

2.2. Even with this amount of care, however, various hidden assumptions remained in
Euclid’s work, mainly to do with what we would now call ‘topological’ issues that
would have seemed to be ‘intuitively obvious’ to Euclid and his contemporaries.
These unmentioned assumptions were pointed out only centuries later, particu-
larly by Hilbert at the end of the 19th century. I shall ignore these in what follows.

2.3. See e.g. Thomas (1939).

Section 2.4

2.4. The ‘exponent’ notation, such as C~'/2, is frequently used in this book. As already
referred to in Note 1.1, @ means a x a x a x a x a; correspondingly, for a positive
integer n, the product of @ with itself a total of n times is written ¢”. This notation
extends to negative exponents, so that a~! is the reciprocal 1/a of a, and a " is the
reciprocal 1/a" of a”, or equivalently (a*' )". In accordance with the more general
discussion of §5.2, a!/”, for a positive number a, is the ‘nth root of a’, which is the
(positive) number satisfying (a'/")"= a (see Note 1.1). Moreover, @”/" is the mth
power of a'/".

Section 2.6

2.5. Saccheri (1733), Prop. XXXIII.

2.6. There is a standpoint known as intuitionism, which is held to by a (rather small)
minority of mathematicians, in which the principle of ‘proof by contradiction’ is
not accepted. The objection is that this principle can be non-constructive in that it
sometimes leads to an assertion of the existence of some mathematical entity,
without any actual construction for it having been provided. This has some
relevance to the issues discussed in §16.6. See Heyting (1956).

2.7. Hardy (1940), p. 34.

2.8. Great circle arcs are the ‘shortest’ curves (geodesics) on the surface of a sphere;
they lie on planes through the sphere’s centre.
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2.9. It is a matter of some dispute whether Gauss, who was professionally concerned
with matters of geodesy, might actually have tried to ascertain whether there are
measurable deviations from Euclidean geometry in physical space. Owing to his
well-known reticence in matters of non-Euclidean geometry, it is unlikely that
he would let it be known if he were in fact trying to do this, particularly since (as
we now know) he would be bound to fail, owing to the smallness of the effect,
according to modern theory. The present consensus seems to be that he was ‘just
doing geodesy’, being concerned with the curvature of the Earth, and not
of space. But I find it a little hard to believe that he would not also have been
on the lookout for any significant discrepancy with Euclidean geometry; see
Fauvel and Gray (1987).

2.10. The so-called ‘Poincaré half-plane’ representation is also originally due to Bel-
trami; see Beltrami (1868).

2.11. This appears to have applied even to the great Gauss himself (who had, on the
other hand, very frequently anticipated other mathematicians’ work). There is an
important topological mathematical theorem now referred to as the ‘Gauss—
Bonnet theorem’, which can be elegantly proved by use of the so-called ‘Gauss
map’, but the theorem itself appears actually to be due to Blaschke and the
elegant proof procedure just referred to was found by Olinde Rodrigues. It
appears that neither the result nor the proof procedure were even known to
Gauss or to Bonnet. There is a more elemental ‘Gauss—Bonnet’ theorem, cor-
rectly cited in several texts, see Willmore (1959), also Rindler (2001).

Section 2.7

2.12. The main evidence for the overall structure of the universe, as a whole comes
from a detailed analysis of the cosmic microwave background radiation (CMB)
that will be discussed in §§27.7,10,11,13, §§28.5,10, and §30.14. A basic reference
is de Bernardis et al. (2000); for more accurate, more recent data, see Netterfield
et al. (2001) (concerning BOOMERanG). See also Hanany et al. (2000) (con-
cerning MAXIMA) and Halverson et al. (2001) (concerning DASI).

2.13. See Gurzadyan and Torres (1997) and Gurzadyan and Kocharyan (1994) for the
theoretical underpinnings, and Gurzadyan and Kocharyan (1992) (for COBE
data) and Gurzadyan et al. (2002, 2003) (for BOOMERanG data and (2004) for
WMAP data) for the corresponding analysis of the actual CMB data.
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Kinds of number in the physical world

3.1 A Pythagorean catastrophe?

LET us now return to the issue of proof by contradiction, the very principle
that Saccheri tried hard to use in his attempted proof of Euclid’s fifth
postulate. There are many instances in classical mathematics where the
principle has been successfully applied. One of the most famous of these
dates back to the Pythagoreans, and it settled a mathematical issue in a
way which greatly troubled them. This was the following. Can one find a
rational number (i.e. a fraction) whose square is precisely the number 2?
The answer turns out to be no, and the mathematical assertion that I shall
demonstrate shortly is, indeed, that there is no such rational number.

Why were the Pythagoreans so troubled by this discovery? Recall that a
fraction—that is, a rational number—is something that can be expressed
as the ratio a/b of two integers (or whole numbers) a and b, with b non-
zero. (See the Preface for a discussion of the definition of a fraction.) The
Pythagoreans had originally hoped that all their geometry could be ex-
pressed in terms of lengths that could be measured in terms of rational
numbers. Rational numbers are rather simple quantities, being describable
and understood in simple finite terms; yet they can be used to specify
distances that are as small as we please or as large as we please. If all
geometry could be done with rationals, then this would make things
relatively simple and easily comprehensible. The notion of an ‘irrational’
number, on the other hand, requires infinite processes, and this had
presented considerable difficulties for the ancients (and with good reason).
Why is there a difficulty in the fact that there is no rational number that
squares to 2? This comes from the Pythagorean theorem itself. If, in
Euclidean geometry, we have a square whose side length is unity, then
its diagonal length is a number whose square is 1> + 1> = 2 (see Fig. 3.1).
It would indeed be catastrophic for geometry if there were no actual
number that could describe the length of the diagonal of a square. The
Pythagoreans tried, at first, to make do with a notion of ‘actual number’
that could be described simply in terms of ratios of whole numbers. Let us
see why this will not work.
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Fig. 3.1 A square of unit side-length has
diagonal v/2, by the Pythagorean theorem.

1

The issue is to see why the equation

an\ 2
(-
b
has no solution for integers a and b, where we take these integers to be
positive. We shall use proof by contradiction to prove that no such ¢ and b
can exist. We therefore try to suppose, on the contrary, that such an ¢ and

b do exist. Multiplying the above equation by »? on both sides, we find that
it becomes

a* = 2b*

and we clearly conclude' that a*> > b > 0. Now the right-hand side, 20, of
the above equation is even, whence a must be even (not odd, since the square
of any odd number is odd). Hence a = 2¢, for some positive integer c.
Substituting 2¢ for a in the above equation, and squaring it out, we obtain

4¢? = 2b°,
that is, dividing both sides by 2,
b =20,

and we conclude > > ¢ > 0. Now, this is precisely the same equation that
we had displayed before, except that b now replaces a, and ¢ replaces b.
Note that the corresponding integers are now smaller than they were
before. We can now repeat the argument again and again, obtaining an
unending sequence of equations

a> =207 b =20, P =242, d> =26, ...,
where

P> >E>dP >l >,
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all of these integers being positive. But any decreasing sequence of
positive integers must come to an end, contradicting the fact that this
sequence is unending. This provides us with a contradiction to what
has been supposed, namely that there is a rational number which squares
to 2. It follows that there is no such rational number—as was required to
prove.?

Certain points should be remarked upon in the above argument. In
the first place, in accordance with the normal procedures of math-
ematical proof, certain properties of numbers have been appealed to
in the argument that were taken as either ‘obvious’ or having been
previously established. For example, we made use of the fact that the
square of an odd number is always odd and, moreover, that if an
integer is not odd then it is even. We also used the fundamental fact
that every strictly decreasing sequence of positive integers must come
to an end.

One reason that it can be important to identify the precise assumptions
that go into a proof—even though some of these assumptions could be
perfectly ‘obvious’ things—is that mathematicians are frequently inter-
ested in other kinds of entity than those with which the proof might be
originally concerned. If these other entities satisfy the same assumptions,
then the proof will still go through and the assertion that had been proved
will be seen to have a greater generality than originally perceived, since it
will apply to these other entities also. On the other hand, if some of the
needed assumptions fail to hold for these alternative entities, then the
assertion that may turn out to be false for these entities. (For example, it
is important to realize that the parallel postulate was used in the proofs of
the Pythagorean theorem given in §2.2, for the theorem is actually false for
hyperbolic geometry.)

In the above argument, the original entities are integers and we
are concerned with those numbers—the rational numbers—that are
constructed as quotients of integers. With such numbers it is indeed
the case that none of them squares to 2. But there are other kinds
of number than merely integers and rationals. Indeed, the need for
a square root of 2 forced the ancient Greeks, very much against
their wills at the time, to proceed outside the confines of integers
and rational numbers—the only kinds of number that they had previ-
ously been prepared to accept. The kind of number that they found
themselves driven to was what we now call a ‘real number’: a number
that we now express in terms of an unending decimal expansion (although
such a representation was not available to the ancient Greeks). In fact, 2
does indeed have a real-number square root, namely (as we would now
write it)
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V2 = 1.414213 562373095048 801 688 72. .. .

We shall consider the physical status of such ‘real’ numbers more closely in
the next section.

As a curiosity, we may ask why the above proof of the non-existence of
a square root of 2 fails for real numbers (or for real-number ratios, which
amounts to the same thing). What happens if we replace ‘integer’ by ‘real
number’ throughout the argument? The basic difference is that it is not
true that any strictly decreasing sequence of positive reals (or even of
fractions) must come to an end, and the argument breaks down at that
point.3 (Consider the unending sequence 1, %, i, &, 1. 35...., for
example.) One might worry what an ‘odd’ and ‘even’ real number would
be in this context. In fact the argument encounters no difficulty at that
stage because all real numbers would have to count as ‘even’, since for any
real a there is always a real ¢ such that a = 2¢, division by 2 being always
possible for reals.

3.2 The real-number system

Thus it was that the Greeks were forced into the realization that rational
numbers are not enough, if the ideas of (Euclid’s) geometry are to be
properly developed. Nowadays, we do not worry unduly if a certain
geometrical quantity cannot be measured simply in terms of rational
numbers alone. This is because the notion of a ‘real number’ is very
familiar to us. Although our pocket calculators express numbers in
terms of only a finite number of digits, we readily accept that this is an
approximation forced upon us by the fact that the calculator is a finite
object. We are prepared to allow that the ideal (Platonic) mathematical
number could certainly require that the decimal expansion continues
indefinitely. This applies, of course, even to the decimal representation of
most fractions, such as

1=0.333333333...,
2 =2.416666666... ,
2 =1.285714285714285,
#1=1.60135135135.
For a fraction, the decimal expanson is always ultimately periodic, which is
to say that after a certain point the infinite sequence of digits consists of

some finite sequence repeated indefinitely. In the above examples the
repeated sequences are, respectively, 3, 6, 285714, and 135.
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Decimal expansions were not available to the ancient Greeks, but they
had their own ways of coming to terms with irrational numbers. In effect,
what they adopted was a system of representing numbers in terms of what
are now called continued fractions. There is no need to go into this in full
detail here, but some brief comments are appropriate. A continued frac-
tion is a finite or infinite expression a + (b + (¢ + (d+---)~")™")~!, where
a, b, c,d, ... are positive integers:

a—+

1
b+

1
C+d+

Any rational number larger than 1 can be written as a terminating such
expression (where to avoid ambiguity we normally require the final integer
to be greater than 1), e.g. 52/9 =5+ (1+ @3+ @) H H™"
59—2 — 54—
I +——=
341
2
and, to represent a positive rational less than 1, we just allow the first
integer in the expression to be zero. To express a real number, which is not
rational, we simply!3-!I allow the continued-fraction expression to run on
forever, some examples being?

V2=1+Q+QC+Q+Q+--) HHH,
T-V3=54+0C+(0+Q+(0+Q+0+Q+--)HH HHHhHT,
T=34+T+15+10+QR2+A+A+(1+C2+- ) H HHHh=hH=h=hH=1

In the first two of these infinite examples, the sequences of natural
numbers that appear—namely 1, 2, 2, 2, 2, ... in the first case and 5, 3,
1, 2,1, 2, 1, 2, ... in the second—have the property that they are
ultimately periodic (the 2 repeating indefinitely in the first case and the
sequence 1, 2 repeating indefinitely in the second).?-?l Recall that, as

469 [3.1] Experiment with your pocket calculator (assuming you have ‘/ and ‘x~!" keys) to obtain
these expansions to the accuracy available. Take m = 3.141 592 653 589 793 ... (Hint: Keep taking
note of the integer part of each number, subtracting it off, and then forming the reciprocal of the
remainder.)

£3[3.2] Assuming this eventual periodicity of these two continued-fraction expressions, show that
the numbers they represent must be the quantities on the left. (Hint: Find a quadratic equation
that must be satisfied by this quantity, and refer to Note 3.6.)
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already noted above, in the familiar decimal notation, it is the rational
numbers that have (finite or) ultimately periodic expressions. We may
regard it as a strength of the Greek ‘continued-fraction’ representation,
on the other hand, that the rational numbers now always have a finite
description. A natural question to ask, in this context, is: which numbers
have an ultimately periodic continued-fraction representation? It is a re-
markable theorem, first proved, to our knowledge, by the great 18th-
century mathematician Joseph C. Lagrange (whose most important
other ideas we shall encounter later, particularly in Chapter 20) that the
numbers whose representation in terms of continued fractions are ultim-
ately periodic are what are called quadratic irrationals.®

What is a quadratic irrational and what is its importance for Greek
geometry? It is a number that can be written in the form

a+ Vb,

where a and b are fractions, and where b is not a perfect square. Such
numbers are important in Euclidean geometry because they are the
most immediate irrational numbers that are encountered in ruler-and-
compass constructions. (Recall the Pythagorean theorem, which in §3.1
first led us to consider the problem of v/2, and other simple constructions
of Euclidean lengths directly lead us to other numbers of the above
form.)

Particular examples of quadratic irrationals are those cases where a = 0
and b is a (non-square) natural number (or rational greater than 1):

V2, V3, V5, V6, V7, V8, V10, V11, ... .

The continued-fraction representation of such a number is particularly
striking. The sequence of natural numbers that defines it as a continued
fraction has a curious characteristic property. It starts with some number
A, then it is immediately followed by a ‘palindromic’ sequence (i.e.
one which reads the same backwards), B, C, D, ..., D, C, B, followed
by 24, after which the sequence B, C, D, ..., D, C, B, 24 repeats
itself indefinitely. The number /14 is a good example, for which the
sequence is

3,1,2,1,6,1,2,1,6,1,2,1,6,1,2, 1,6, ....

Here A =3 and the palindromic sequence B, C, D, ..., D, C, B is just
the three-term sequence 1, 2, 1.

How much of this was known to the ancient Greeks? It seems very likely
that they knew quite a lot—very possibly all the things that I have
described above (including Lagrange’s theorem), although they may well
have lacked rigorous proofs for everything. Plato’s contemporary Theae-
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tetos seems to have established much of this. There appears even to be
some evidence of this knowledge (including the repeating palindromic
sequences referred to above) revealed in Plato’s dialectics.”

Although incorporating the quadratic irrationals gets us some way
towards numbers adequate for Euclidean geometry, it does not do all
that is needed. In the tenth (and most difficult) book of Euclid, numbers
like Va+ b are considered (with @ and b positive rationals). These
are not generally quadratic irrationals, but they occur, nevertheless, in
ruler-and-compass constructions. Numbers sufficient for such geometric
constructions would be those that can be built up from natural numbers
by repeated use of the operations of addition, subtraction, multiplication,
division, and the taking of square roots. But operating exclusively with
such numbers gets extremely complicated, and these numbers are still
too limited for considerations of Euclidean geometry that go beyond
ruler-and-compass constructions. It is much more satisfactory to take
the bold step—and how bold a step this actually is will be indicated in
§§16.3-5—of allowing infinite continued-fraction expressions that are
completely general. This provided the Greeks with a way of describing
numbers that does turn out to be adequate for Euclidean geometry.

These numbers are indeed, in modern terminology, the so-called ‘real
numbers’. Although a fully satisfactory definition of such numbers is not
regarded as having been found until the 19th century (with the work of
Dedekind, Cantor, and others), the great ancient Greek mathematician
and astronomer Eudoxos, who had been one of Plato’s students, had
obtained the essential ideas already in the 4th century BC. A few words
about Eudoxos’s ideas are appropriate here.

First, we note that the numbers in Euclidean geometry can be expressed
in terms of ratios of lengths, rather than directly in terms of lengths. In this
way, no specific unit of length (such as ‘inch’ or Greek ‘dactylos’ was
needed. Moreover, with ratios of lengths, there would be no restriction as
to how many such ratios might be multiplied together (obviating the
apparent need for higher-dimensional ‘hypervolumes’ when more than
three lengths are multiplied together). The first step in the Eudoxan theory
was to supply a criterion as to when a length ratio a : b would be greater
than another such ratio ¢ : d. This criterion is that some positive integers M
and N exist such that the length a added to itself M times exceeds b added
to itself NV times, while also d added to itself N times exceeds ¢ added to
itself M times.3-31 A corresponding criterion holds expressing the condi-
tion that the ratio a : b be less than the ratio ¢ : d. The condition for
equality of these ratios would be that neither of these criteria hold. With
this ingenious notion of ‘equality’ of such ratios, Eudoxos had, in effect, an

[3.3] Can you see why this works?
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abstract concept of a ‘real number’ in terms of length ratios. He also
provided rules for the sum and product of such real numbers.[34

There was a basic difference in viewpoint, however, between the Greek
notion of a real number and the modern one, because the Greeks regarded
the number system as basically ‘given’ to us, in terms of the notion of
distance in physical space, so the problem was to try to ascertain how these
‘distance’ measures actually behaved. For ‘space’ may well have had the
appearance of being itself a Platonic absolute even though actual physical
objects existing in this space would inevitably fall short of the Platonic
ideal.® (However, we shall be seeing in §17.9 and §§19.6,8 how Einstein’s
general theory of relativity has now changed this perspective on space and
matter in a fundamental way.)

A physical object such as a square drawn in the sand or a cube hewn
from marble might have been regarded by the ancient Greeks as a reason-
able or sometimes an excellent approximation to the Platonic geometrical
ideal. Yet any such object would nevertheless provide a mere approxima-
tion. Lying behind such approximations to the Platonic forms—so it
would have appeared—would be space itself: an entity of such abstract
or notional existence that it could well have been regarded as a direct
realization of a Platonic reality. The measure of distance in this ideal
geometry would be something to ascertain; accordingly, it would be ap-
propriate to try to extract this ideal notion of real number from a geom-
etry of a Euclidean space that was assumed to be given. In effect, this is
what Eudoxos succeeded in doing.

By the 19th and 20th centuries, however, the view had emerged that the
mathematical notion of number should stand separately from the nature of
physical space. Since mathematically consistent geometries other than that
of Euclid had been shown to exist, this rendered it inappropriate to insist
that the mathematical notion of ‘geometry’ should be necessarily extracted
from the supposed nature of ‘actual’ physical space. Moreover, it could be
very difficult, if not impossible, to ascertain the detailed nature of this
supposed underlying ‘Platonic physical geometry’ in terms of the behaviour
of imperfect physical objects. In order to know the nature of the numbers
according to which ‘geometrical distance’ is to be defined, for example, it
would be necessary to know what happens both at indefinitely tiny and
indefinitely large distances. Even today, these questions are without clear-
cut resolution (and I shall be addressing them again in later chapters). Thus,
it was far more appropriate to develop the nature of number in a way that
does not directly refer to physical measures. Accordingly, Richard Dede-
kind and Georg Cantor developed their ideas of what real numbers ‘are’ by
use of notions that do not directly refer to geometry.

15 [3.4] Can you see how to formulate these?
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Dedekind’s definition of a real number is in terms of infinite sets of
rational numbers. Basically, we think of the rational numbers, both posi-
tive and negative (and zero), to be arranged in order of size. We can
imagine that this ordering takes place from left to right, where we think
of the negative rationals as being displayed going off indefinitely to the left,
with 0 in the middle, and the positive rationals displayed going off indefi-
nitely to the right. (This is just for visualization purposes; in fact Dede-
kind’s procedure is entirely abstract.) Dedekind imagines a ‘cut’ which
divides this display neatly in two, with those to the left of the cut being all
smaller than those to the right. When the ‘knife-edge’ of the cut does not
‘hit’ an actual rational number but falls between them, we say that it
defines an irrational real number. More correctly, this occurs when those
to the left have no actual largest member and those to the right, no actual
smallest one. When the system of ‘irrationals’, as defined in terms of such
cuts, is adjoined to the system of rational numbers that we already have,
then the complete family of real numbers is obtained.

Dedekind’s procedure leads, by means of simple definitions, directly to
the laws of addition, subtraction, multiplication, and division for real
numbers. Moreover, it enables one to go further and define limits, whereby
such things as the infinite continued fraction that we saw before

1+Q24+Q2+Q2+Q2+--) HHH!

or the infinite sum

may be assigned real-number meanings. In fact, the first gives us the
irrational number V2, and the second, %n. The ability to take limits is
fundamental for many mathematical notions, and it is this that gives the
real numbers their particular strengths.” (The reader may recall that the
need for ‘limiting procedures’ was a requirement for the general definition
of areas, as was indicated in §2.3.)

3.3 Real numbers in the physical world

There is a profound issue that is being touched upon here. In the develop-
ment of mathematical ideas, one important initial driving force has always
been to find mathematical structures that accurately mirror the behaviour
of the physical world. But it is normally not possible to examine the
physical world itself in such precise detail that appropriately clear-cut
mathematical notions can be abstracted directly from it. Instead, progress
is made because mathematical notions tend to have a ‘momentum’ of their
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own that appears to spring almost entirely from within the subject itself.
Mathematical ideas develop, and various kinds of problem seem to arise
naturally. Some of these (as was the case with the problem of finding the
length of the diagonal of a square) can lead to an essential extension of the
original mathematical concepts in terms of which the problem had been
formulated. Such extensions may seem to be forced upon us, or they may
arise in ways that appear to be matters of convenience, consistency, or
mathematical elegance. Accordingly, the development of mathematics
may seem to diverge from what it had been set up to achieve, namely
simply to reflect physical behaviour. Yet, in many instances, this drive for
mathematical consistency and elegance takes us to mathematical struc-
tures and concepts which turn out to mirror the physical world in a much
deeper and more broad-ranging way than those that we started with. It is
as though Nature herself is guided by the same kind of criteria of consist-
ency and elegance as those that guide human mathematical thought.

An example of this is the real-number system itself. We have no direct
evidence from Nature that there is a physical notion of ‘distance’ that
extends to arbitrarily large scales; still less is there evidence that such a
notion can be applied on the indefinitely tiny level. Indeed, there is no
evidence that ‘points in space’ actually exist in accordance with a geometry
that precisely makes use of real-number distances. In Euclid’s day, there
was scant evidence to support even the contention that such Euclidean
‘distances’ extended outwards beyond, say, about 10'? metres,!* or in-
wards to as little as 10~> metres. Yet, having been driven mathematically
by the consistency and elegance of the real-number system, all of our
broad-ranging and successful physical theories to date have, without
exception, still clung to this ancient notion of ‘real number’. Although
there might appear to have been little justification for doing this from the
evidence that was available in Euclid’s day, our faith in the real-number
system appears to have been rewarded. For our successful modern theories
of cosmology now allow us to extend the range of our real-number
distances out to about 10*® metres or more, while the accuracy of our
theories of particle physics extends this range inwards to 107 metres or
less. (The only scale at which it has been seriously proposed that a change
might come about is some 18 orders of magnitude smaller even than that,
namely 1073 metres, which is the ‘Planck scale’ of quantum gravity that
will feature strongly in some of our later discussions; see §§31.1,6-12,14
and §32.7.) It may be regarded as a remarkable justification of our use of
mathematical idealizations that the range of validity of the real-number
system has extended from the total of about 10'7, from the smallest to the
largest, that seemed appropriate in Euclid’s day to at least the 10*3 that our
theories directly employ today, this representing a stupendous increase by
a factor of some 10%°.
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There is a good deal more to the physical validity of the real-number
system than this. In the first place, we must consider that areas and
volumes are also quantities for which real-number measures are accurately
appropriate. A volume measure is the cube of a distance measure (and an
area is the square of a distance). Accordingly, in the case of volumes, we
may consider that it is the cube of the above range that is relevant. For
Euclid’s time, this would give us a range of about (10'7)"=10°"; for
today’s theories, at least (1043)3: 10'?. Moreover, there are other phys-
ical measures that require real-number descriptions, according to our
presently successful theories. The most noteworthy of these is time.
According to relativity theory, this needs to be adjoined to space to
provide us with spacetime (which is the subject of our deliberations
in Chapter 17). Spacetime volumes are four-dimensional, and it might
well be considered that the temporal range (of again about 10** or more
in total range, in our well-tested theories) should also be incorporated
into our considerations, giving a total of something like at least 10'72.
We shall see some far larger real numbers even than this coming into our
later considerations (see §27.13 and §28.7), although it is not really clear in
some cases that the use of real numbers (rather than, say, integers) is
essential.

More importantly for physical theory, from Archimedes, through Gali-
leo and Newton, to Maxwell, Einstein, Schrédinger, Dirac, and the rest, a
crucial role for the real-number system has been that it provides a neces-
sary framework for the standard formulation of the calculus (see Chapter
6). All successful dynamical theories have required notions of the calculus
for their formulations. Now, the conventional approach to calculus re-
quires the infinitesimal nature of the reals to be what it is. That is to say, on
the small end of the scale, it is the entire range of the real numbers that is
in principle being made use of. The ideas of calculus underliec other
physical notions, such as velocity, momentum, and energy. Consequently,
the real-number system enters our successful physical theories in a funda-
mental way for our description of all these quantities also. Here, as
mentioned earlier in connection with areas, in §2.3 and §3.2, the infinite-
simal limit of small-scale structure of the real-number system is being
called upon.

Yet we may still ask whether the real-number system is really ‘correct’
for the description of physical reality at its deepest levels. When quantum-
mechanical ideas were beginning to be introduced early in the 20th cen-
tury, there was the feeling that perhaps we were now beginning to witness
a discrete or granular nature to the physical world at its smallest scales.!!
Energy could apparently exist only in discrete bundles—or ‘quanta’—and
the physical quantities of ‘action’ and ‘spin’ seemed to occur only in
discrete multiples of a fundamental unit (see §§20.1,5 for the classical
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concept of action and §26.6 for its quantum counterpart; see §§22.8—12 for
spin). Accordingly, various physicists attempted to build up an alternative
picture of the world in which discrete processes governed all actions at the
tiniest levels.

However, as we now understand quantum mechanics, that theory does
not force us (nor even lead us) to the view that there is a discrete or
granular nature to space, time, or energy at its tiniest levels (see Chapters
21 and 22, particularly the last sentence of §22.13). Nevertheless, the idea
has remained with us that there may indeed be, at root, such a fundamen-
tal discreteness to Nature, despite the fact that quantum mechanics, in its
standard formulation, certainly does not imply this. For example, the
great quantum physicist Erwin Schrédinger was among the first to pro-
pose that a change to some form of fundamental spatial discreteness might
actually be necessary:!?

The idea of a continuous range, so familiar to mathematicians in our days, is
something quite exorbitant, an enormous extrapolation of what is accessible
to us.

He related this proposal to some early Greek thinking concerning the
discreteness of Nature. Einstein, also, suggested, in his last published
words, that a discretely based (‘algebraic’) theory might be the way for-
ward for the future physics:!3

One can give good reasons why reality cannot be represented as a continu-
ous field....Quantum phenomena...must lead to an attempt to find a
purely algebraic theory for the description of reality. But nobody knows
how to obtain the basis of such a theory.'

Others!? also have pursued ideas of this kind; see §33.1. In the late 1950s, 1
myself tried this sort of thing, coming up with a scheme that I referred to
as the theory of ‘spin networks’, in which the discrete nature of quantum-
mechanical spin is taken as the fundamental building block for a combina-
torial (i.e. discrete rather than real-number-based) approach to physics.
(This scheme will be briefly described in §32.6.) Although my own ideas
along this particular direction did not develop to a comprehensive theory
(but, to some extent, became later transmogrified into ‘twistor theory’;
see §33.2), the theory of spin networks has now been imported, by
others, into one of the major programmes for attacking the fundamental
problem of quantum gravity.'® 1 shall give brief descriptions of these
various ideas in Chapter 32. Nevertheless, as tried and tested physical
theory stands today—as it has for the past 24 centuries—real numbers
still form a fundamental ingredient of our understanding of the physical
world.
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3.4 Do natural numbers need the physical world?

In the above description, in §3.2, of the Dedekind approach to the real-
number system, I have presupposed that the rational numbers are already
taken as “‘understood’. In fact, it is not a difficult step from the integers to
the rationals; rationals are just ratios of integers (see the Preface). What
about the integers themselves, then? Are these rooted in physical ideas?
The discrete approaches to physics that were referred to in the previous
two paragraphs certainly depend upon our notion of natural number (i.e.
‘counting number’) and its extension, by the inclusion of the negative
numbers, to the integers. Negative numbers were not considered, by the
Greeks, to be actual ‘numbers’, so let us continue our considerations by
first asking about the physical status of the natural numbers themselves.

The natural numbers are the quantities that we now denote by 0, 1, 2, 3,
4, etc., i.e. they are the non-negative whole numbers. (The modern pro-
cedure is to include 0 in this list, which is an appropriate thing to do from
the mathematical point of view, although the ancient Greeks appear not to
have recognized ‘zero’ as an actual number. This had to wait for the Hindu
mathematicians of India, starting with Brahmagupta in 7th century and
followed up by Mahavira and Bhaskara in the 9th and 12th century,
respectively.) The role of the natural numbers is clear and unambiguous.
They are indeed the most elementary ‘counting numbers’, which have a
basic role whatever the laws of geometry or physics might be. Natural
numbers are subject to certain familiar operations, most particularly the
operations of addition (such as 37 4+ 79 = 116) and multiplication (e.g.
37 x 79 = 2923), which enable pairs of natural numbers to be combined
together to produce new natural numbers. These operations are independ-
ent of the nature of the geometry of the world.

We can, however, raise the question of whether the natural numbers
themselves have a meaning or indeed existence independent of the actual
nature of the physical world. Perhaps our notion of natural numbers
depends upon there being, in our universe, reasonably well-defined dis-
crete objects that persist in time. Natural numbers initially arise when we
wish to count things, after all. But this seems to depend upon there
actually being persistent distinguishable ‘things’ in the universe which
are available to be ‘counted’. Suppose, on the other hand, our universe
were such that numbers of objects had a tendency to keep changing.
Would natural numbers actually be ‘natural’ concepts in such a universe?
Moreover, perhaps the universe actually contains only a finite number of
‘things’, in which case the ‘natural’ numbers might themselves come to an
end at some point! We can even envisage a universe which consists only of
an amorphous featureless substance, for which the very notion of numer-
ical quantification might seem intrinsically inappropriate. Would the
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notion of ‘natural number’ be at all relevant for the description of uni-
verses of this kind?

Even though it might well be the case that inhabitants of such a universe
would find our present mathematical concept of a ‘natural number’ diffi-
cult to come upon, it is hard to imagine that there would not still be an
important role for such fundamental entities. There are various ways in
which natural numbers can be introduced in pure mathematics, and these
do not seem to depend upon the actual nature of the physical universe at
all. Basically, it is the notion of a ‘set’ which needs to be brought into play,
this being an abstraction that does not appear to be concerned, in any
essential way, with the specific structure of the physical universe. In fact,
there are certain definite subtleties concerning this question, and I shall
return to that issue later (in §16.5). For the moment, it will be convenient
to ignore such subtleties.

Let us consider one way (anticipated by Cantor and promoted by the
distinguished mathematician John von Neumann) in which natural
numbers can be introduced merely using the abstract notion of set. This
procedure enables one to define what are called ‘ordinal numbers’. The
simplest set of all is referred to as the ‘null set’ or the ‘empty set’, and it is
characterized by the fact that it contains no members whatever! The empty
set is usually denoted by the symbol @, and we can write this definition

=1{1

where the curly brackets delineate a set, the specific set under consider-
ation having, as its members, the quantities indicated within the brackets.
In this case, there is nothing within the brackets, so the set being described
is indeed the empty set. Let us associate @ with the natural number 0. We
can now proceed further and define the set whose only member is &; i.e.
the set {&}. It is important to realize that {&} is not the same set as the
empty set @. The set {&} has one member (namely &), whereas @ itself has
none at all. Let us associate {&} with the natural number 1. We next define
the set whose two members are the two sets that we just encountered,
namely @ and {@}, so this new set is {&, {&} }, which is to be associated
with the natural number 2. Then we associate with 3 the collection of all
the three entities that we have encountered up to this point, namely the set
{@, {@}, {2, {&}}}, and with 4 the set {@, {7}, {¥, {T}}, {D, {T},
{@, {@} } } }, whose members are again the sets that we have encountered
previously, and so on. This may not be how we usually think of natural
numbers, as a matter of definition, but it is one of the ways that mathem-
aticians can come to the concept. (Compare this with the discussion in the
Preface.) Moreover, it shows us, at least, that things like the natural
numbers'” can be conjured literally out of nothing, merely by employing
the abstract notion of ‘set’. We get an infinite sequence of abstract
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(Platonic) mathematical entities—sets containing, respectively, zero, one,
two, three, etc., elements, one set for each of the natural numbers, quite
independently of the actual physical nature of the universe. In Fig.1.3 we
envisaged a kind of independent ‘existence’ for Platonic mathematical
notions—in this case, the natural numbers themselves—yet this ‘existence’
can seemingly be conjured up by, and certainly accessed by, the mere
exercise of our mental imaginations, without any reference to the details
of the nature of the physical universe. Dedekind’s construction, moreover,
shows how this ‘purely mental’ kind of procedure can be carried further,
enabling us to ‘construct’ the entire system of real numbers,!® still without
any reference to the actual physical nature of the world. Yet, as indicated
above, ‘real numbers’ indeed seem to have a direct relevance to the real
structure of the world—illustrating the very mysterious nature of the “first
mystery’ depicted in Fig.1.3.

3.5 Discrete numbers in the physical world

But I am getting slightly ahead of myself. We may recall that Dedekind’s
construction really made use of sets of rational numbers, not of natural
numbers directly. As indicated above, it is not hard to ‘define’ what we
mean by a rational number once we have the notion of natural number.
But, as an intermediate step, it is appropriate to define the notion of an
integer, which is a natural number or the negative of a natural number (the
number zero being its own negative). In a formal sense, there is no
difficulty in giving a mathematical definition of ‘negative’: roughly speak-
ing we just attach a ‘sign’, written as ‘-, to each natural number (except 0)
and define all the arithmetical rules of addition, subtraction, multiplica-
tion, and division (except by 0) consistently. This does not address the
question of the ‘physical meaning’ of a negative number, however. What
might it mean to say that there are minus three cows in a field, for
example?

I think that it is clear that, unlike the natural numbers themselves, there
is no evident physical content to the notion of a negative number of
physical objects. Negative integers certainly have an extremely valuable
organizational role, such as with bank balances and other financial trans-
actions. But do they have direct relevance to the physical world? When 1
say ‘direct relevance’ here, I am not referring to circumstances where it
would appear that it is negative real numbers that are the relevant meas-
ures, such as when a distance measured in one direction counts as positive
while that measured in the opposite direction would count as negative (or
the same thing with regard to time, in which times extending into the past
might count as negative). I am referring, instead, to numbers that are
scalar quantities, in the sense that there is no directional (or temporal)
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aspect to the quantity in question. In these circumstances it appears to be
the case that it is the system of integers, both positive and negative, that
has direct physical relevance.

It is a remarkable fact that only in about the last hundred years has it
become apparent that the system of integers does indeed seem to have such
direct physical relevance. The first example of a physical quantity which
seems to be appropriately quantified by integers is electric charge.'® As far
as is known (although there is as yet no complete theoretical justification
of this fact), the electric charge of any discrete isolated body is indeed
quantified in terms of integral multiples, positive, negative, or zero, of one
particular value, namely the charge on the proton (or on the electron,
which is the negative of that of the proton).?? It is now believed that
protons are composite objects built up, in a sense, from smaller entities
referred to as ‘quarks’ (and additional chargeless entities called ‘gluons’).
There are three quarks to each proton, the quarks having electric charges
with respective values %, %, — % These constituent charges add up to give
the total value 1 for the proton. If quarks are fundamental entities, then
the basic charge unit is one third of that which we seemed to have before.
Nevertheless, it is still true that electric charge is measured in terms of
integers, but now it is integer multiples of one third of a proton charge.
(The role of quarks and gluons in modern particle physics will be discussed
in §§25.3-7.)

Electric charge is just one instance of what is called an additive quantum
number. Quantum numbers are quantities that serve to characterize
the particles of Nature. Such a quantum number, which I shall here
take to be a real number of some kind, is ‘additive’ if, in order to derive
its value for a composite entity, we simply add up the individual values for
the constituent particles—taking due account of the signs, of course, as
with the above-mentioned case of the proton and its constituent quarks. It
is a very striking fact, according to the state of our present physical
knowledge, that all known additive quantum numbers®>' are indeed
quantified in terms of the system of integers, not general real numbers,
and not simply natural numbers—so that the negative values actually do
occur.

In fact, according to 20th-century physics, there is now a certain sense in
which it is meaningful to refer to a negative number of physical entities.
The great physicist Paul Dirac put forward, in 1929-31, his theory of
antiparticles, according to which (as it was later understood), for each
type of particle, there is also a corresponding antiparticle for which each
additive quantum number has precisely the negative of the value that it has
for the original particle; see §§24.2,8. Thus, the system of integers (with
negatives included) does indeed appear to have a clear relevance to the
physical universe—a physical relevance that has become apparent only in
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the 20th century, despite those many centuries for which integers have
found great value in mathematics, commerce, and many other human
activities.

One important qualification should be made at this juncture, however.
Although it is true that, in a sense, an antiproton is a negative proton, it is
not really ‘minus one proton’. The reason is that the sign reversal refers
only to additive quantum numbers, whereas the notion of mass is not
additive in modern physical theory. This issue will be explained in a bit
more detail in §18.7. ‘Minus one proton’ would have to be an antiproton
whose mass is the negative of the mass value of an ordinary proton. But
the mass of an actual physical particle is not allowed to be negative. An
antiproton has the same mass as an ordinary proton, which is a positive
mass. We shall be seeing later that, according to the ideas of quantum field
theory, there are things called ‘virtual’ particles for which the mass (or,
more correctly, energy) can be negative. ‘Minus one proton’ would really
be a virtual antiproton. But a virtual particle does not have an independ-
ent existence as an ‘actual particle’.

Let us now ask the corresponding question about the rational numbers.
Has this system of numbers found any direct relevance to the physical
universe? As far as is known, this does not appear to be the case, at least as
far as conventional theory is concerned. There are some physical curios-
ities?> in which the family of rational numbers does play its part, but it
would be hard to maintain that these reveal any fundamental physical role
for rational numbers. On the other hand, it may be that there is a
particular role for the rationals in fundamental quantum-mechanical
probabilities (a rational probability possibly representing a choice between
alternatives, each of which involves just a finite number of possibilities).
This kind of thing plays a role in the theory of spin networks, as will be
briefly described in §32.6. As of now, the proper status of these ideas is
unclear.

Yet, there are other kinds of number which, according to accepted
theory, do appear to play a fundamental role in the workings of the
universe. The most important and striking of these are the complex
numbers, in which the seemingly mystical quantity v/—1, usually denoted
by ‘1’, is introduced and adjoined to the real-number system. First encoun-
tered in the 16th century, but treated for hundreds of years with distrust,
the mathematical utility of complex numbers gradually impressed the
mathematical community to a greater and greater degree, until complex
numbers became an indispensable, even magical, ingredient of our math-
ematical thinking. Yet we now find that they are fundamental not just to
mathematics: these strange numbers also play an extraordinary and very
basic role in the operation of the physical universe at its tiniest scales. This
is a cause for wonder, and it is an even more striking instance of the
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convergence between mathematical ideas and the deeper workings of the
physical universe than is the system of real numbers that we have been
considering in this section. Let us come to these remarkable numbers
next.

Notes

Section 3.1

3.1. The notations >, <, =, =<, frequently used in this book, respectively stand for ‘is
greater than’, ‘is less than’, ‘is greater than or equal to’, and ‘is less than or equal
to’ (made appropriately grammatical).

3.2. Some readers might be aware of an apparently shorter argument which starts by
demanding that a/b be ‘in its lowest terms’ (i.e. that a and » have no common
factor). However, this assumes that such a lowest-terms expression always exists,
which, though perfectly true, needs to be shown. Finding a lowest-term expression
for a given fraction 4/B (implicitly or explicitly—say using the procedure known
as Euclid’s algorithm; see, for example, Hardy and Wright 1945, p. 134;
Davenport 1952, p. 26; Littlewood 1949, Chap. 4; and Penrose 1989, Chap. 2)
involves reasoning similar to that given in the text, but more complicated.

3.3. One might well object that it is somewhat curious to use real numbers in the above
proof, since the ‘real rationals’ (i.e. quotients of reals) would simply be real
numbers all over again. This does not invalidate what has just been said, however.
It may be remarked that it is as well that @ and b were taken to be integers, in the
original argument, and not themselves taken to be rationals. For, if ¢ and b were
merely rational, then the argument would fail at the ‘decreasing sequence’ part,
even though the result itself would still be true.

Section 3.2

3.4. At a casual glance, expressions like a+ (b + (c+(d+ --- )™H™)~! may look
rather odd. However, they are very natural in the context of ancient Greek
thinking (although the Greeks did not use this particular notation). The procedure
of Euclid’s algorithm was referred to in Note 3.2 in the context of finding the
lowest-term form of a fraction. Euclid’s algorithm (when unravelled) leads pre-
cisely to such a continued fraction expression. The Greeks would apply this same
procedure to the ratio of two geometrical lengths. In the most general case, the
result would be an infinite continued fraction, of the kind considered here.

3.5. For more information (with proofs) concerning continued fractions, see the
elegant account given in Chapter 4 of Davenport (1952). It may be remarked
that in certain respects the continued-fraction representation of real numbers is
deeper and more interesting than the normal one in terms of decimal expansions,
finding applications in many different areas of modern mathematics, including the
hyperbolic geometry discussed in §§2.24,25. On the other hand, continued frac-
tions are not at all well suited for (most) practical calculation, the conventional
decimal representation being far easier to use.

3.6. Quadratic irrationals are so called because they arise in the solution of a general
quadratic equation

Ax* +Bx+C=0,
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3.7.

3.8.

with 4 non-zero, the solutions being

B B\*> C P B\> C

oA (ﬂ) T Ty (ﬂ) i
where, to keep within the realm of real numbers, we must have B> greater than
44C. When A, B, and C are integers or rational numbers, and where there is
no rational solution to the equation, the solutions are indeed quadratic irra-
tionals.
Professor Stelios Negrepontis informs me that this evidence is to be found in
the Platonic dialogue the Statesman ( = Politikos), the third in the ‘trilogy’ the
Theaetetos-the Sophist-the Politikos. See Negrepontis (2000).
See Sorabyji (1983, 1988) for an account of ancient Greek thinking on the nature
of space.

3.9. See Hardy (1914); Conway (1976); Burkill (1962).
Section 3.3
3.10. The scientific notation ‘10'2’ for a ‘million million’ makes use of exponents,

as described in Notes 1.1 and 2.1. In this book, I shall tend to avoid verbal
terms such as ‘million’, and especially ‘billion’, in preference to this much clearer
scientific notation. The word ‘billion’ is particularly confusing, as in American
usage—now commonly adopted also in the UK—billion’ refers to 10°, whereas,
in the older (more logical) UK usage, in agreement with most other European
languages, it refers to 10'2. Negative exponents, such as in 107 (which refers
to ‘one millionth’), are also used here in accordance with the normal scientific
notation.

The distance 10'> metres is about 7 times the Earth-Sun separation.This is
roughly the distance of the planet Jupiter, although that distance was not known
in Euclid’s day and would have been guessed to be rather smaller.

3.11. See, for example, Russell (1927), Chap. 4.

3.12. Schrédinger (1952), pp. 30-1.

3.13. See Stachel (1993).

3.14. Einstein (1955), p. 166.

3.15. See e.g. Snyder (1947); Schild (1949); and Ahmavaara (1965).

3.16. Sce Ashtekar (1986); Ashtekar and Lewandowski (2004); Smolin (1998, 2001);
Rovelli (1998, 2003).

Section 3.4

3.17. The notion of ‘ordinal number’, provided here in the finite case, extends also to
infinite ordinal numbers, the smallest being Cantor’s ‘@’, which is the ordered
collection of all finite ordinals.

3.18. This notion of ‘construct’ should not be taken in too strong a sense, however. We
shall be finding in §16.6 that there are certain real numbers (in fact most of them)
that are inaccessible by any computational procedure.

Section 3.5

3.19. The Irish physicist George Johnstone Stoney was the first, in 1874, to give a

(crude) estimate of the basic electric charge, and, in 1891, coined the term
‘electron’ for this fundamental unit. In 1909, the American physicist Robert
Andrews Millikan designed his famous ‘oil-drop’ experiment, which precisely
showed that the charge on electrically charged bodies (the oil drops, in his
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experiment) came in integer multiples of a well-defined value—the electron
charge.

3.20. In 1959, R. A. Lyttleton and H. Bondi proposed that a slight difference in the
proton and (minus) the electron charges, of the order of one part in 10'8
might account for the expansion of the universe, (for which, see §§27.11,13,
and Chapter 28). See Lyttleton and Bondi (1959). Unfortunately, for
this theory, such a discrepancy was soon disproved in several experiments.
Nevertheless, this idea provided an excellent example of creative thinking.

3.21. I am here distinguishing the ‘additive’ quantum numbers from the numbers that
physicists call ‘multiplicative’, which we shall come to in §5.5.

3.22. For example, in the ‘fractional quantum Hall effect’, one finds rational numbers
playing a key role; see, for example, Frohlich and Pedrini (2000).
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4
Magical complex numbers

4.1 The magic number ‘i’

How is it that —1 can have a square root? The square of a positive number
is always positive, and the square of a negative number is again positive
(and the square of 0 is just 0 again, so that is hardly of use to us here). It
seems impossible that we can find a number whose square is actually
negative. Yet, this is the kind of situation that we have seen before,
when we ascertained that 2 has no square root within the system of
rational numbers. In that case we resolved the situation by extending
our system of numbers from the rationals to a larger system, and we
settled on the system of reals. Perhaps the same trick will work again.
Indeed it will. In fact what we have to do is something much easier and
far less drastic than the passage from the rationals to the reals. (Raphael
Bombelli introduced the procedure in 1572 in his work L’Algebra,
following Gerolamo Cardano’s original encounters with complex numbers
in his Ars Magna of 1545.) All we need do is introduce a single quantity,
called ’, which is to square to —1, and adjoin it to the system of reals,
allowing combinations of i with real numbers to form expressions such as

a+1b,

where a and b are arbitrary real numbers. Any such combination is called a
complex number. It is easy to see how to add complex numbers:

(@a+ib) + (c +id) = (a+ ¢) +i(b + d)

which is of the same form as before (with the real numbers @ + ¢ and b + d
taking the place of the ¢ and b that we had in our original expression).
What about multiplication? This is almost as easy. Let us find the product
of a + ib with ¢ + id. We first simply multiply these factors, expanding the
expression using the ordinary rules of algebra:!

(a +1b)(c +id) = ac + ibc + aid + ibid
= ac + i(bc + ad) + i°hd.
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But i = —1, so we can rewrite this as
(a +1b)(c 4+ 1d) = (ac — bd) + i(bc + ad),

which is again of the same form as our original a + b, but with ac — bd
taking the place of @ and bc + ad taking the place of b.

It is easy enough to subtract two complex numbers, but what about
division? Recall that in the ordinary arithmetic we are allowed to divide by
any real number that is not zero. Now let us try to divide the complex
number « + ib by the complex number ¢ + id. We must take the latter to
be non-zero, which means that the real numbers ¢ and d cannot both be
zero. Hence ¢ + d” > 0, and therefore ¢ + d> # 0, so we are allowed to
divide by ¢? 4 d?. It is a direct exercisel*!] to check (multiplying both sides
of the expression below by ¢ + id) that

(a+ib)_ac+bd+ibc—ad
(c+id) 2+ d? A +d*’

This is of the same general form as before, so it is again a complex
number.

When we get used to playing with these complex numbers, we cease to
think of a + 1b as a pair of things, namely the two real numbers « and b,
but we think of a + ib as an entire thing on its own, and we could use a
single letter, say z, to denote the whole complex number z = a + ib. It may
be checked that all the normal rules of algebra are satisfied by complex
numbers.[*2! In fact, all this is a good deal more straightforward than
checking everything for real numbers. (For that check, we imagine that we
had previously convinced ourselves that the rules of algebra are satisfied
for fractions, and then we have to use Dedekind’s ‘cuts’ to show that the
rules still work for real numbers.) From this point of view, it seems rather
extraordinary that complex numbers were viewed with suspicion for so
long, whereas the much more complicated extension from the rationals to
the reals had, after ancient Greek times, been generally accepted without
question.

Presumably this suspicion arose because people could not ‘see’ the
complex numbers as being presented to them in any obvious way by the
physical world. In the case of the real numbers, it had seemed that
distances, times, and other physical quantities were providing the reality
that such numbers required; yet the complex numbers had appeared to be
merely invented entities, called forth from the imaginations of mathemat-

4 [4.1] Do this.

£3 [4.2] Check this, the relevant rules being w+z=z+w, w+ (u+z) = (W~ u) + z, wz = zw,
w(uz) = (wu)z, wu+z) =wu+wz, w+0=w, wl = w.
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icians who desired numbers with a greater scope than the ones that they
had known before. But we should recall from §3.3 that the connection the
mathematical real numbers have with those physical concepts of length or
time is not as clear as we had imagined it to be. We cannot directly see the
minute details of a Dedekind cut, nor is it clear that arbitrarily great or
arbitrarily tiny times or lengths actually exist in nature. One could say that
the so-called ‘real numbers’ are as much a product of mathematicians’
imaginations as are the complex numbers. Yet we shall find that complex
numbers, as much as reals, and perhaps even more, find a unity with
nature that is truly remarkable. It is as though Nature herself is as
impressed by the scope and consistency of the complex-number system
as we are ourselves, and has entrusted to these numbers the precise
operations of her world at its minutest scales. In Chapters 21-23, we
shall be seeing, in detail, how this works.

Moreover, to refer just to the scope and to the consistency of complex
numbers does not do justice to this system. There is something more
which, in my view, can only be referred to as ‘magic’. In the remainder
of this chapter, and in the next two, I shall endeavour to convey to the
reader something of the flavour of this magic. Then, in Chapters 7-9, we
shall again witness this complex-number magic in some of its most striking
and unexpected manifestations.

Over the four centuries that complex numbers have been known, a great
many magical qualities have been gradually revealed. Yet this is a magic
that had been perceived to lie within mathematics, and it indeed provided
a utility and a depth of mathematical insight that could not be achieved by
use of the reals alone. There had not been any reason to expect that the
physical world should be concerned with it. And for some 350 years from
the time that these numbers were introduced through the works of Car-
dano and Bombelli, it was purely through their mathematical role that the
magic of the complex-number system was perceived. It would, no doubt,
have come as a great surprise to all those who had voiced their suspicion of
complex numbers to find that, according to the physics of the latter three-
quarters of the 20th century, the laws governing the behaviour of the
world, at its tiniest scales, is fundamentally governed by the complex-
number system.

These matters will be central to some of the later parts of this book
(particularly in Chapters 21-23). For the moment, let us concentrate on
some of the mathematical magic of complex numbers, leaving their phys-
ical magic until later. Recall that all we have done is to demand that —1
have a square root, together with demanding that the normal laws of
arithmetic be retained, and we have ascertained that these demands can
be satisfied consistently. This seems like a fairly simple thing to have done.
But now for the magic!
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4.2 Solving equations with complex numbers

In what follows, I shall find it necessary to introduce somewhat more
mathematical notation than previously. I apologize for this. However, it
is hardly possible to convey serious mathematical ideas without the use of
a certain amount of notation. I appreciate that there will be many readers
who are uncomfortable with these things. My advice to such readers is
basically just to read the words and not to bother too much about trying to
understand the equations. At least, just skim over the various formulae
and press on. There will, indeed, be quite a number of serious mathemat-
ical expressions scattered about this book, particularly in some of the later
chapters. My guess is that certain aspects of understanding will eventually
begin to come through even if you make little attempt to understand what
all the expressions actually mean in detail. I hope so, because the magic of
complex numbers, in particular, is a miracle well worth appreciating. If
you can cope with the mathematical notation, then so much the better.

First of all, we may ask whether other numbers have square roots. What
about —2, for example? That’s easy. The complex number iv/2 certainly
squares to —2, and so also does —iv/2. Moreover, for any positive real
number «a, the complex number iy/a squares to —a, and —iy/a does also.
There is no real magic here. But what about the general complex number
a + ib (where a and b are real)? We find that the complex number

\/% (a+ a2+b2> +i\/% (—a+ a? +b2)

squares to a +ib (and so does its negative).[*3] Thus, we see that, even
though we only adjoined a square root for a single quantity (namely —1),
we find that every number in the resulting system now automatically has a
square root! This is quite different from what happened in the passage
from the rationals to the reals. In that case, the mere introduction of the
quantity v/2 into the system of rationals would have got us almost no-
where.

But this is just the very beginning. We can ask about cube roots, fifth
roots, 999th roots, mth roots—or even i-th roots. We find, miraculously,
that whatever complex root we choose and whatever complex number we
apply it to (excluding 0), there is always a complex-number solution to this
problem. (In fact, there will normally be a number of different solutions to
the problem, as we shall be seeing shortly. We noted above that for square
roots we get two solutions, the negative of the square root of a complex
number z being also a square root of z. For higher roots there are more
solutions; see §5.4.)

40 [4.3] Check this.
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We are still barely scratching the surface of complex-number magic. What
I'have just asserted above is really quite simple to establish (once we have the
notion of a logarithm of a complex number, as we shall shortly, in Chapter 5).
Somewhat more remarkable is the so-called ‘fundamental theorem of alge-
bra’ which, in effect, asserts that any polynomial equation, such as

l—z+z4=0
or
T+iz— V41723 + 2% =0,

must have complex-number solutions. More explicitly, there will always be
a solution (normally several different ones) to any equation of the form

a0+ a1z + w2t + a3z + -+ a2t =0,

where ay, a1, az, as , ..., a, are given complex numbers with the a, taken as
non-zero.” (Here n can be any positive integer that we care to choose, as big
as we like.) For comparison, we may recall that i was introduced, in effect,
simply to provide a solution to the one particular equation

1+22=0.

We get all the rest free!

Before proceeding further, it is worth mentioning the problem that Car-
dano had been concerned with, from around 1539, when he first encountered
complex numbers and caught a hint of another aspect of their attendant
magical properties. This problem was, in effect, to find an expression for the
general solution of a (real) cubic equation (i.e. n = 3 in the above). Cardano
found that the general cubic could be reduced to the form

x* =3px +2g

by a simple transformation. Here p and ¢ are to be real numbers, and |
have reverted to the use of x in the equation, rather than z, to indicate that
we are now concerned with real-number solutions rather than complex
ones. Cardano’s complete solution (as published in his 1545 book Ars
Magna) seems to have been developed from an earlier partial solution that
he had learnt in 1539 from Niccolo Fontana (‘Tartaglia’), although this
partial solution (and perhaps even the complete solution) had been found
earlier (before 1526) by Scipione del Ferro.? The (del Ferro—)Cardano
solution was essentially the following (written in modern notation):

X =(q+wf+ (g —w),
where
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1
w=(g" —p’).

Now this equation presents no fundamental problem within the system of
real numbers if

q =p.

In this case there is just one real solution x to the equation, and it is indeed
correctly given by the (del Ferro—)Cardano formula, as given above. But if
T <p,
the so-called irreducible case, then, although there are now three real solu-
tions, the formula involves the square root of the negative number ¢*> — p*
and so it cannot be used without bringing in complex numbers. In fact, as
Bombelli later showed (in Chapter 2 of his L’Algebra of 1572), if we do allow
ourselves to admit complex numbers, then all three real solutions are indeed
correctly expressed by the formula.* (This makes sense because the expres-
sion provides us with two complex numbers added together, where the parts
involving i cancel out in the sum, giving a real-number answer.’) What is
mysterious about this is that even though it would seem that the problem
has nothing to do with complex numbers—the equation having real coeffi-
cients and all its solutions being real (in this ‘irreducible’ case)—we need to
journey through this seemingly alien territory of the complex-number world
in order that the formula may allow us to return with our purely real-
number solutions. Had we restricted ourselves to the straight and narrow
‘real’ path, we should have returned empty-handed. (Ironically, complex
solutions to the original equation can only come about in those cases when

the formula does not necessarily involve this complex journey.)

4.3 Convergence of power series

Despite these remarkable facts, we have still not got very far into complex-
number magic. There is much more to come! For example, one area where
complex numbers are invaluable is in providing an understanding of the
behaviour of what are called power series. A power series is an infinite sum
of the form

ap + a1 x + axx* +azx® + -

Because this sum involves an infinite number of terms, it may be the case
that the series diverges, which is to say that it does not settle down to a
particular finite value as we add up more and more of its terms. For an
example, consider the series

T+ x4+ a0 + x84
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(where 1 have taken ay=1,a,=0,a2=1,a3=0,a4=1, as =0,
ag =1, ...). If we put x = 1, then, adding the terms successively, we get

I, 1+1=2, 1+1+1=3,
1+1+1+1=4, 14+1+14+1+1=5, etc,

and we see that the series has no chance of settling down to a particular
finite value, that is, it is divergent. Things are even worse if we try x = 2,
for example, since now the individual terms are getting bigger, and adding
terms successively we get

I, 1+4=5 14+4+16=21, 1+4+16+64 =285, etc.,
which clearly diverges. On the other hand, if we put x = %, then we get
Loth=f Lrprd=f Lrprded=H e

and it turns out that these numbers become closer and closer to the
limiting value %, so the series is now convergent.

With this series, it is not hard to appreciate, in a sense, an underlying
reason why the series cannot help but diverge for x = 1 and x = 2, while
converging for x = % to give the answer %‘. For we can explicitly write down
the answer to the sum of the entire series, finding(*#

l+ x4+ x4+ x+x3+ =1 =)L

When we substitute x = 1, we find that this answer is (1 — 12! =071,
which is ‘infinity’,® and this provides us with an understanding of why the
series has to diverge for that value of x. When we substitute x = %, the
answer is (1 — 71;)71 = ‘5‘, and the series actually converges to this particular
value, as stated above.

This all seems very sensible. But what about x = 2? Now there is an
‘answer’ given by the explicit formula, namely (1 — 4)~! = — %, although we
do not seem to get this value simply by adding up the terms of the series.
We could hardly get this answer because we are just adding together
positive quantities, whereas —% is negative. The reason that the series
diverges is that, when x =2, each term is actually bigger than the
corresponding term was when x = 1, so that divergence for x = 2 follows,
logically, from the divergence for x = 1. In the case of x = 2, it is not
that the ‘answer’ is really infinite, but that we cannot reach this answer
by attempting to sum the series directly. In Fig. 4.1, 1 have plotted
the partial sums of the series (i.e. the sums up to some finite number of
terms), successively up to terms, together with the ‘answer’ (1 — x2)~!

€9 [4.4] Can you see how to check this expression?
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Not accessed
<— by series

Fig. 4.1 The respective partial sums, 1, 1 +x%, 1 + x> +x* 1 + x>+ x* + x° of
the series for (1 — x2)~! are plotted, illustrating the convergence of the series to
(1 —x»7" for |x| < 1 and divergence for |x| > 1.

and we can see that, provided x lies strictly’ between the values —1 and +1,
the curves depicting these partial sums do indeed converge on this answer,
namely (1 — x?)~!, as we expect. But outside this range, the series simply
diverges and does not actually reach any finite value at all.

As a slight digression, it will be helpful to address a certain issue here
that will be of importance to us later. Let us ask the following question:
does the equation that we obtain by putting x = 2 in the above expression,
namely

1+22 424420428 ... =1 =2%)"! =-3
actually make any sense? The great 18th-century mathematician Leonhard
Euler often wrote down equations like this, and it has become fashionable
to poke gentle fun at him for holding to such absurdities, while one might
excuse him on the grounds that in those early days nothing was properly
understood about matters of ‘convergence’ of series and the like. Indeed, it
is true that the rigorous mathematical treatment of series did not come
about until the late 18th and early 19th century, through the work of
Augustin Cauchy and others. Moreover, according to this rigorous treat-
ment, the above equation would be officially classified as ‘nonsense’. Yet, |
think that it is important to appreciate that, in the appropriate sense, Euler
really knew what he was doing when he wrote down apparent absurdities
of this nature, and that there are senses according to which the above
equation must be regarded as ‘correct’.
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In mathematics, it is indeed imperative to be absolutely clear that one’s
equations make strict and accurate sense. However, it is equally important
not to be insensitive to ‘things going on behind the scenes’ which may
ultimately lead to deeper insights. It is easy to lose sight of such things by
adhering too rigidly to what appears to be strictly logical, such as the fact
that the sum of the positive terms 1 +4 + 16 4 64 4256 + - -+ cannot
possibly be — % For a pertinent example, let us recall the logical absurdity
of finding a real solution to the equation x> + 1 = 0. There is no solution;
yet, if we leave it at that, we miss all the profound insights provided by the
introduction of complex numbers. A similar remark applies to the absurd-
ity of a rational solution to x> = 2. In fact, it is perfectly possible to give a
mathematical sense to the answer ‘— %’ to the above infinite series, but one
must be careful about the rules telling us what is allowed and what is not
allowed. It is not my purpose to discuss such matters in detail here,® but it
may be pointed out that in modern physics, particularly in the area of
quantum field theory, divergent series of this nature are frequently en-
countered (see particularly §§26.7,9 and §§31.2,13). It is a very delicate
matter to decide whether the ‘answers’ that are obtained in this way are
actually meaningful and, moreover, actually correct. Sometimes extremely
accurate answers are indeed obtained by manipulating such divergent
expressions and are occasionally strikingly confirmed by comparison
with actual physical experiment. On the other hand, one is often not so
lucky. These delicate issues have important roles to play in current phys-
ical theories and are very relevant for our attempts to assess them. The
point of immediate relevance to us here is that the ‘sense’ that one may be
able to attribute to such apparently meaningless expressions frequently
depends, in an essential way, upon the properties of complex numbers.

Let us now return to the issue of the convergence of series, and try to see
how complex numbers fit into the picture. For this, let us consider a
function just slightly different from (1 — x?)~!, namely (1 +x?)~', and
try to see whether it has a sensible power series expansion. There would
seem to be a better chance of complete convergence now, because
(1 + x?)~! remains smooth and finite over the entire range of real numbers.
There is, indeed, a simple-looking power series for (1 4+ x2)~!, only slightly
different from the one that we had before, namely

- +x =+ — =+,

the difference being merely a change of sign in alternate terms.[*3] In
Fig. 4.2, T have plotted the partial sums of the series, successively up to
five terms, just as before, together with this answer (1 + x2)~'. What seems
surprising is that the partial sums still only converge on the answer

€9 [4.5] Can you see an elementary reason for this simple relationship between the two series?
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Fig.4.2 The partialsums, 1, 1 —x2, 1 — x> 4+ x* 1 — x> +x* —x%, 1 — x? + x*—
x® 4 x3, of the series for (1 + x?)~! are likewise plotted, and again there is conver-
gence for |x| < 1 and divergence for |x| > 1, despite the fact that the function is
perfectly well behaved at x = + 1.

in the range strictly between values —1 and +1. We appear to be getting a
divergence outside this range, even though the answer does not go to
infinity at all, unlike in our previous case. We can test this explicitly
using the same three values x=1, x =2, x :% that we used before,
finding that, as before, convergence occurs only in the case x = %, where
the answer comes out correctly with the limiting value % for the sum of the
entire series:

1: 1,0,1,0,1,0,1, etc.,
2: 1, =3,13, =51, 205, 819, etc.,

1.3 13 5L 205 819
> 4° 16° 64° 256> 1024~

X
X
X

etc.

N—

We note that the ‘divergence’ in the first case is simply a failure of the
partial sums of the series ever to settle down, although they do not actually
diverge to infinity.

Thus, in terms of real numbers alone, there is a puzzling discrepancy
between actually summing the series and passing directly to the ‘answer’
that the sum to infinity of the series is supposed to represent. The
partial sums simply ‘take off’ (or, rather, flap wildly up and down)
just at the same places (namely x = +1) as where trouble arose
in the previous case, although now the supposed answer to the infinite
sum, namely (1 + x?)~!, does not exhibit any noticeable feature at these
places at all. The resolution of the mystery is to be found if we examine
complex values of this function rather than restricting our attention to
real ones.
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4.4 Caspar Wessel’s complex plane

In order to see what is going on here, it will be important to use the now-
standard geometrical representation of complex numbers in the Euclidean
plane. Caspar Wessel in 1797, Jean Robert Argand in 1806, John Warren
in 1828, and Carl Friedrich Gauss well before 1831, all independently,
came up with the idea of the complex plane (see Fig. 4.3), in which they
gave clear geometrical interpretations of the operations of addition and
multiplication of complex numbers. In Fig. 4.3, I have used standard
Cartesian axes, with the x-axis going off to the right horizontally and the
y-axis going vertically upwards. The complex number

z=x+1y

is represented as the point with Cartesian coordinates (x, y) in the
plane.

We are now to think of a real number x as a particular case of the
complex number z = x + iy where y = 0. Thus we are thinking of the
x-axis in our diagram as representing the real line (i.e. the totality of real
numbers, linearly ordered along a straight line). The complex plane,
therefore, gives us a direct pictorial representation of how the system of
real numbers extends outwards to become the entire system of complex
numbers. This real line is frequently referred to as the ‘real axis’ in the
complex plane. The y-axis is, correspondingly, referred to as the ‘imagin-
ary axis’. It consists of all real multiples of i.

Let us now return to our two functions that we have been trying to
represent in terms of power series. We took these as functions of the real
variable x, namely (I —x?)"! and (1 + x?)~!, but now we are going to
extend these functions so that they apply to a complex variable z. There

Imaginary axis

A
3i
-1+2i 2i| 1+2i i —
YT |
—1+i i 1+i 2+i| 1 3+i
I Fig. 4.3 The complex plane
- = 5 T > i s> of z =X+ iy. In Cartesian .
Real axis  coordinates (x, y), the x-axis
horizontally to the right is the
-1 Sl - 3 real axis; the y-axis vertically
upwards is the imaginary axis.
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is no problem about doing this, and we simply write these extended
functions as (1 — z2)~! and (1 + z2)!, respectively. In the case of the first
real function (1 — x2)~!, we were able to recognize where the ‘divergence’
trouble starts, because the function is singular (in the sense of becoming
infinite) at the two places x = —1 and x = +1; but, with (1 + x?)~!, we saw
no singularity at these places and, indeed, no real singularities at all.
However, in terms of the complex variable z, we see that these two
functions are much more on a par with one another. We have noted the
singularities of (1 —z2)~! at two points z = +1, of unit distance from
the origin along the real axis; but now we see that (1 +z%)~! also has
singularities, namely at the two places z = #i (since then 1+ z*> =0),
these being the two points of unit distance from the origin on the imagin-
ary axis.

But what do these complex singularities have to do with the question of
convergence or divergence of the corresponding power series? There is a
striking answer to this question. We are now thinking of our power series
as functions of the complex variable z, rather than the real variable x, and
we can ask for those locations of z in the complex plane for which the
series converges and those for which it diverges. The remarkable general
answer,’ for any power series whatever

ao+ a1z + az* + azz> + s

is that there is some circle in the complex plane, centred at 0, called the
circle of convergence, with the property that if the complex number z lies
strictly inside the circle then the series converges for that value of z,
whereas if z lies strictly outside the circle then the series diverges for that
value of z. (Whether or not the series converges when z lies actually on the
circle is a somewhat delicate issue that will not concern us here, although it
has relevance to the issues that we shall come to in §§9.6,7.) In this
statement, I am including the two limiting situations for which the series
diverges for all non-zero values of z, when the circle of convergence has
shrunk down to zero radius, and when it converges for all z, in which case
the circle has expanded to infinite radius. To find where the circle of
convergence actually is for some particular given function, we look to
see where the singularities of the function are located in the complex plane,
and we draw the largest circle, centred about the origin z = 0, which
contains no singularity in its interior (i.e. we draw it through the closest
singularity to the origin).

In the particular cases (1 — z2)~! and (1 + z%)! that we have just been
considering, the singularities are of a simple type called poles (arising
where some polynomial, appearing in reciprocal form, vanishes). Here
these poles all lie at unit distance from the origin, and we see that the

1
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Fig. 4.4 In the complex
plane, the functions

> (1—-z)'and (14 22)7!
have the same circle of con-
vergence, there being poles
for the former at z = £+ 1
and poles for the latter at
z = =+ 1, all having the same
(unit) distance from the
origin.

circle of convergence is, in both cases, just the unit circle about the origin.
The places where this circle meets the real axis are the same in each case,
namely the two points z = +1 (see Fig. 4.4). This explains why the two
functions converge and diverge in the same regions—a fact that is not
manifest from their properties simply as functions of real variables. Thus,
complex numbers supply us with deep insights into the behaviour of power
series that are simply not available from the consideration of their real-
variable structure.

4.5 How to construct the Mandelbrot set

To end this chapter, let us look at another type of convergence/divergence
issue. It is the one that underlies the construction of that extraordinary
configuration, referred to in §1.3 and depicted in Fig. 1.2, known as the
Mandelbrot set. In fact, this is just a subset of Wessel’s complex plane
which can be defined in a surprisingly simple way, considering the extreme
complication of this set. All we need to do is examine repeated applica-
tions of the replacement

Z»—>22+c,

where ¢ is some chosen complex number. We think of ¢ as a point in the
complex plane and start with z = 0. Then we iterate this transformation
(i.e. repeatedly apply it again and again) and see how the point z in the
plane behaves. If it wanders off to infinity, then the point ¢ is to be
coloured white. If z wanders around in some restricted region without
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ever receding to infinity, then c is to be coloured black. The black region
gives us the Mandelbrot set.

Let us describe this procedure in a little more detail. How does the
iteration proceed? First, we fix ¢. Then we take some point z and apply the
transformation, so that z becomes z? + ¢. Then apply it again, so we now
replace the ‘2’ in 22 4 ¢ by z2 + ¢, and we get (2% + ¢)* + ¢. We next replace
the 2 in z24c¢ by (24¢)’+c¢, so our expression becomes
((z2 + ¢)* 4+ ¢)* + c. We then follow this by replacing the ‘z’ in z2 + ¢ by
((z2 4 ¢)* + ¢)* + ¢, and we obtain (((z2 + ¢)* + ¢)* + ¢)* + ¢, and so on.

Let us now see what happens if we start at z = 0 and then iterate in this
way. (We can just put z =0 in the above expressions.) We now get the
sequence

0,c ¢ +c (A + c)2 + ¢, (¢ —|—c)2 —|—C)2 +c, ... .

This gives us a succession of points on the complex plane. (On a computer,
one would just work these things out purely numerically, for each individ-
ual choice of the complex number ¢, rather than using the above algebraic
expressions. It is computationally much ‘cheaper’ just to do the arithmetic
afresh each time.) Now, for any given value of ¢, one of two things can
happen: (i) points of the sequence eventually recede to greater and greater
distances from the origin, that is, the sequence is unbounded, or (ii) every
one of the points lies within some fixed distance from the origin (i.e. within
some circle about the origin) in the complex plane, that is, the sequence is
bounded. The white regions of Fig. 1.2a are the locations of ¢ that give an
unbounded sequence (i), whereas the black regions are the locations of ¢
where it is the bounded case (ii) that holds, the Mandelbrot set itself being
the entire black region.

The complication of the Mandelbrot set arises from the fact that there
are many different and often highly involved ways in which the iterated
sequence can remain bounded. There can be elaborate combinations of
cycles and ‘almost’ cycles of various kinds, dotting around the plane in
various intricate ways—but it would take us too far afield to try to
understand in any detail how the extraordinary complication of this set
comes about, and where subtle issues of complex analysis and number
theory are involved. The interested reader may care to consult Peitgen and
Reichter (1986) and Peitgen and Saupe (1988) for further information and
pictures (see also Douady and Hubbard 1985).

Notes

Section 4.1
4.1. See Exercise [4.2] for these rules.
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Section 4.2
4.2. Ttis a direct consequence!*®! that any complex polynomial in the single variable z
factorizes into linear factors,

ao+ a1z + a4 -+ ap" = ay(z — b))z — ba) - (z — by),

and it is this statement that is normally termed ‘the fundamental theorem of
algebra’.

4.3. As the story goes, Tartaglia had revealed his partial solution to Cardano only
after Cardano had been sworn to secrecy. Accordingly, Cardano could not
publish his more general solution without breaking this oath. However, on a
subsequent trip to Bologna, in 1543, Cardano examined del Ferro’s posthumous
papers and satisfied himself of del Ferro’s actual priority. He considered that this
freed him to publish all these results (with due acknowledgement both to Tartaglia
and del Ferro) in Ars Magna in 1545. Tartaglia disagreed, and the dispute had
very bitter consequences (see Wykes 1969).

4.4. For more information, see van der Waerden (1985).

4.5. The reason for this is that we are adding together two numbers which are complex
conjugates of each other (see §10.1) and such a sum is always a real number.

Section 4.3

4.6. Recall from Note 2.4 that 0! should mean (—1) , 1.e. ‘one divided by zero’. It is a
convenient ‘shorthand to express the ‘result’ of this illegal operation ‘0~ = o0’.

4.7. ‘Strictly’ means that the end-values are not included in the range.

4.8. For further information, see, for example, Hardy (1940).

Section 4.4

4.9. See e.g. Priestly (2003), p.71—referred to as ‘radius of convergence’—and Need-
ham (2002), pp. 67,264.

£3 [4.6] Show this. (Hint: Show that no remainder survives if this polynomial is ‘divided’ by z — b
whenever z = b solves the given equation.)
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5
Geometry of logarithms, powers, and roots

5.1 Geometry of complex algebra

THE aspects of complex-number magic discussed at the end of the previous
chapter involve many subtleties, so let us pull back a little and look at
some more elementary, though equally enigmatic and important, pieces of
magic. First, let us see how the rules for addition and multiplication that
we encountered in §4.1 are geometrically represented in the complex plane.
We can exhibit these as the parallelogram law and the similar-triangle law,
respectively, depicted in Fig. 5.1a,b. Specifically, for two general complex
numbers w and z, the points representing w + z and wz are determined by
the respective assertions:

the points 0, w, w + z, z are the vertices of a parallelogram
and

the triangles with vertices 0, 1, w and 0, z, wz are similar.

11 4 wz

w+z

t

@ (b)

Fig. 5.1 Geometrical description of the basic laws of complex-number algebra.
(a) Parallelogram law of addition: 0, w, w 4 z, z give the vertices of a parallelo-
gram. (b) Similar-triangle law of multiplication: the triangles with vertices
0, 1, wand 0, z, wz are similar.
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(Normal conventions about orderings and orientations are being
adopted here. By this, I mean that we go around the parallelogram
cyclicly, so the line segment from w to w+ z is parallel to that from
0 to z, etc.; moreover, there is to be no ‘reflection’ involved in the similar-
ity relation between the two triangles. Also, there are special cases
where the triangles or parallelogram degenerate in various ways.[>-1])
The interested reader may care to check these rules by trigonometry
and direct computation.’-2l However, there is another way of looking
at these things which avoids detailed computation and yields greater
insights.

Let us consider addition and multiplication in terms of different maps
(or ‘transformations’) that send the entire complex plane to itself. Any
given complex number w defines an ‘addition map’ and a ‘multiplication
map’, these being the operations which, when applied to an arbitrary
complex number z, will add w to z and take the product of w with z,
respectively, that is,

z+— w+zand z — wz.

It is easy to see that the addition map simply slides the complex plane along
without rotation or change of size or shape—an example of a translation
(see §2.1)—displacing the origin 0 to the point w; see Fig. 5.2a. The paral-
lelogram law is basically a restatement of this. But what about the multipli-
cation map? This provides a transformation which leaves the origin
fixed and preserves shapes—sending 1 to the point w. In the general case-
it combines a (non-reflective) rotation with a uniform expansion (or

| wz
- w+z \
4 b 1 w
w P + f
.._.____04____24) —_— ¢
o~ . N
@ - ® > -

Fig. 5.2 (a) The addition map ‘4w’ provides a translation of the complex plane,
sending 0 to w. (b) The multiplication map ‘xw’ provides a rotation and expansion
(or contraction) of the complex plane about 0, sending 1 to w.

[5.1] Examine the various possibilities.
[5.2] Do this.
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1
i
-
7
/
-1y . 1
\ / Fig. 5.3 The particular operation ‘multi-
\ N / ply by 1’ is realized, in the complex plane,
~ e as the geometrical transformation ‘rotate
> through right angle’. The ‘mysterious’
equation i> = —1 is rendered visual.

contraction); see Fig. 5.2b.15-3] The similar-triangle law effectively exhibits
this. This map will have particular significance for us in §8.2.

In the particular case w =i, the multiplication map is simply a right-
handed (i.e. anticlockwise) rotation through a right angle (% n). If we apply
this operation twice, we get a rotation through m, which is simply a
reflection in the origin; in other words, this is the multiplication map
that sends each complex number z to its negative. This provides us with
a graphic realization of the ‘mysterious’ equation i> = —1 (Fig. 5.3). The
operation ‘multiply by 1’ is realized as the geometrical transformation
‘rotate through a right angle’. When viewed in this way, it does not
seem so mysterious that the ‘square’ of this operation (i.e. doing it twice)
should give the same effect as the operation of ‘taking the negative’. Of
course, this does not remove the magic and the mystery of why complex
algebra works so well. Nor does it tell us a clear physical role for these
numbers. One may ask, for example: why only rotate in one plane;
what about three dimensions? I shall address different aspects of these
questions later, particularly in §§11.2,3, §18.5, §§21.6,9, §§22.2,3,8-10,
§33.2, and §34.8.

In our description of a complex number in the plane, we used the standard
Cartesian coordinates (x, y) for a point in the plane, but we could alterna-
tively use polar coordinates [r, 0]. Here, the positive real number r measures
the distance from the origin and the angle 6 measures the angle that the
line from the origin to the point z makes with the real axis, measured in an

5 [5.3] Try to show this without detailed calculation, and without trigonometry. (Hinz: This is a
consequence of the ‘distributive law’ w(z| + z3) = wz; + wz,, which shows that the ‘linear’ struc-
ture of the complex plane is preserved, and w(iz) = i(wz), which shows that rotation through a
right angle is preserved; i.e. right angles are preserved.)
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6+2n

@ (b)

Fig. 5.4 (a) Passing from Cartesian (x, y) to polar [r, 0], we have z=x + iy=rei’,
where the modulus r = |z| is the distance from the origin and the argument 0 is the
angle that the line from the origin to z makes with real axis, measured anticlock-
wise. (b) If we do not insist — 7t > 0 =x, we can allow z to wind around origin
many times, adding any integer multiple of 2x to 0.

anticlockwise direction; see Fig. 5.4a. The quantity r is referred to as the
modulus of the complex number z, which we sometimes write as

r=lz|,

and 0 as its argument (or, in quantum theory, sometimes as its phase). For
z = 0, we do not need to bother with 0, but we can still define r to be the
distance from the origin, which in this case simply gives r = 0.

We could, for definiteness, insist that 6 lie in a particular range, such as
—n < 0 = 7w (which is a standard convention). Alternatively, we may just
think of the argument as something with the ambiguity that we are
allowed to add integer multiples of 2n to it without affecting anything.
This is just a matter of allowing us to wind around the origin as many
times as we like, in either direction, when measuring the angle (see Fig.
5.4b). (This second point of view is actually the more profound one, and it
will have implications for us shortly.) We see from Fig. 5.5 and basic
trigonometry that

x=rcosf and y = rsiné,

and, inversely, that
r=+/2+y?and 0 = tan"'Z,
X

where 0 = tan~! (y/x) means some specific value of the many-valued
function tan~!. (For those readers who have forgotten all their trigonom-
etry, the first two formulae just re-express the definitions of the sine and
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(8]

y=rsin @ | . . ;
Fig. 5.5 Relation between the Cartesian

9 - L s> andthe polar forms of a complex
X =rcosé number: x = rcos0 and y = rsin0,
where inversely r = /(x* + »?) and

0 = tan~! (y/x).

cosine of an angle in terms of a right-angled triangle: ‘cos of angle equals
adjacent over hypotenuse’ and ‘sin of angle equals opposite over hypoten-
use’, r being the hypotenuse; the second two express the Pythagorean
theorem and, in inverse form, ‘tan of angle equals opposite over hypoten-
use’. One should also note that tan~! is the inverse function of tan, not the
reciprocal, so the above equation 0 = tan~! (y/x) stands for tan0 = y/x.
Finally, there is the ambiguity in tan~' that any integer multiple of 27 can
be added to 0 and the relation will still hold.)!

5.2 The idea of the complex logarithm

Now, the ‘similar-triangle law’ of multiplication of two complex numbers,
as illustrated in Fig. 5.1b, can be re-expressed in terms of the fact that
when we multiply two complex numbers we add their arguments and
multiply their moduli.>4 Note the remarkable fact here that, as far as
the rule for the arguments is concerned, we have converted multiplication
into addition. This fact is the basis of the use of logarithms (the logarithm
of the product of two numbers is equal to the sum of their logarithms:
logab = loga + logb), as is exhibited by the slide-rule (Fig. 5.6), and this
property had fundamental importance to computational practice in earlier
times.? Now we use electronic calculators to do our multiplication for us.
Although this is far faster and more accurate than the use of a slide-rule or
log tables, we lose something very significant for our understanding if we
gain no direct experience of the beautiful and deeply important logarith-
mic operation. We shall see that logarithms have a profound role to play in
relation to complex numbers. Indeed, the argument of a complex number
really is a logarithm, in a certain clear sense. We shall try to understand
how this comes about.

Also, recall the assertion in §4.2 that the taking of roots for complex
numbers is basically a matter of understanding complex logarithms. We

4 [5.4] Spell this out.
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Fig. 5.6 Slide rules display numbers on a logarithmic scale, thereby enabling
multiplication to be expressed by the adding of distances, in accordance with the
formula log, (p x ¢) = log, p + log, ¢. (Multiplication by 2 is illustrated.)

shall find that there are some striking relations between complex loga-
rithms and trigonometry. Let us try to see how all these things come
together.

First, recall something about ordinary logarithms. A logarithm is the
reverse of ‘raising a number to a power’, or of exponentiation. ‘Raising to a
power’ is an operation that converts addition into multiplication. Why is
this? Take any (non-zero) number b. Then note the formula (converting
addition into multiplication)

b1n+n — bm % bn’

which is obvious if m and n are positive integers, because each side
just represents m + n instances of the number b, all multiplied together.
What we have to do is to find a way of generalizing this so that m and n
do not have to be positive integers, but can be any complex numbers
whatever. For this, we need to find the right definition of ‘b raised to
the power z’, for complex z, and we want the same formula as the
above, namely "% = b" x b*, to hold when the exponents w and z are
complex.

In fact, the procedure for doing this mirrors, to some extent, the very
history of generalizing, step by step, from the positive integers to the
complex numbers, as was done, starting from Pythagoras, via the work
of Eudoxos, through Brahmagupta, until the time of Cardano and Bom-
belli (and later), as was indicated in §4.1. First, the notion of ‘4%’ is initially
understood, when z is a positive integer, as simply b X b x --- x b, with z
b’s multiplied together; in particular, b! = b. Then (following the lead of
Brahmagupta) we allow z to be zero, realizing that to preserve
b"** = b" x b we need to define »° = 1. Next we allow z to be negative,
and realize, for the same reason, that for the case z = —1 we must define
b~ to be the reciprocal of b (i.e. 1/b), and that 5~", for a natural number 7,
must be the nth power of 5~!. We then try to generalize to the situations
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when z is a fraction, starting with the case z = 1/n, where n is a positive
integer. Repeated application of " x b* = b"** leads us to conclude that
(b*)" = b™; thus, putting z = 1/n, we derive the fact that »'/” is an nth root
of b.

We can do this within the realm of the real numbers, provided that the
number b has been taken to be positive. Then we can take b'/” to be the
unique positive nth root of » (when #n is a positive integer) and we can
continue with defining »* uniquely for any rational number z = m/n to be
the mth power of the nth root of » and thence (using a limiting process) for
any real number z. However, if b is allowed to be negative, then we hit a
snag at z = 1, since v/b then requires the introduction of i and we are down
the slippery slope to the complex numbers. At the bottom of that slope we
find our magical complex world, so let us brace ourselves and go all the
way down.

We require a definition of #” such that, for all complex numbers p, ¢,
and b (with b # 0), we have

b =P x bl

We could then hope to define the logarithm to the base b (the operation
denoted by ‘log,’) as the inverse of the function defined by f(z) = b7,
that is,

z=log,w if w=>5".
Then we should expect

log, (p x q) = log, p +log, q,

so this notion of logarithm would indeed convert multiplication into
addition.

5.3 Multiple valuedness, natural logarithms

Although this is basically correct, there are certain technical difficulties
about doing this (which we shall see how to deal with shortly). In the
first place, b* is ‘many valued’. That is to say, there are many different
answers, in general, to the meaning of ‘b*’. There is also an additional
many-valuedness to log, w. We have seen the many-valuedness of b°
already with fractional values of z. For example, if z = %, then ‘b*” ought
to mean °‘some quantity ¢ which squares to b’, since we require
2 =txt=>bt x b = b2 = b = b. If some number ¢ satisfies this prop-
erty, then —¢ will do so also (since ( — 1) x ( — ¢) = > = b). Assuming that
b #0, we have two distinct answers for »'/2 (normally written ++v/b).
More generally, we have n distinct complex answers for 5'/%, when n is
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a positive integer: 1, 2, 3, 4, 5, ... . In fact, we have some finite number
of answers whenever #n is a (non-zero) rational number. If 7 is irrational,
then we have an infinite number of answers, as we shall be seeing
shortly.

Let us try to see how we can cope with these ambiguities. We shall start
by making a particular choice of b, above, namely the fundamental
number ‘¢’, referred to as the base of natural logarithms. This will reduce
our ambiguity problem. We have, as a definition of e:

1 1 1

1
=1ttty t gt = 27182818285,

where the exclamation points denote factorials, i.e.

n=1x2x3x4x---xn,

so that 1! =1, 2! =2, 31 =6, etc. The function defined by f(z) =¢° is
referred to as the exponential function and sometimes written ‘exp’; it may
be thought of as ‘e raised to the power z” when acting on z, this ‘power’ being
defined by the following simple modification of the above series for e:

Z2 Z3 Z4
¢ 1+1 ST TR
This important power series actually converges for all values of z (so it
has an infinite circle of convergence; see §4.4). The infinite sum makes a
particular choice for the ambiguity in ‘4*> when b = e. For example, if
z= then the series gives us the particular positive quantity ++/e rather
than v/e. The fact that z = § L actually gives a quantity e'/? that squares to
e follows from the fact that e°, as defined by this series,[>3! indeed always

has the required ‘addition-to-multiplication’ property

eaer _ eaeb’
1 2 1 1 1,1
so that (&) =erez=e2 =¢! =e.
Let us'try to use this definition of e° to provide us with an unambiguous
logarithm, defined as the inverse of the exponential function:

z=logw if w=¢".

This is referred to as the natural logarithm (and I shall write the function
simply as ‘log’ without a base symbol).?> From the above addition-to-
multiplication property, we anticipate a ‘multiplication-to-addition’ rule:

#5 [5.5] Check this directly from the series. (Hint: The ‘binomial theorem’ for integer exponents
asserts that the coefficient of ¢?b? in (a + b)" is n!/plq!.)
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logab =loga + logb.

It is not immediately obvious that such an inverse to ¢ will necessarily
exist. However, it turns out in fact that, for any complex number w, apart
from 0, there always does exist z such that w =¢*, so we can define
logw = z. But there is a catch here: there is more than one answer.

How do we express these answers? If [r, 0] is the polar representation of
w, then we can write its logarithm z in ordinary Cartesian form
(z=x+1iy) as

z=logr+10,

where log r is the ordinary natural logarithm of a positive real number—the
inverse of the real exponential. Why? It is intuitively clear from Fig. 5.7 that
such a real logarithm function exists. In Fig. 5.7a we have the graph of
r = e*. We just flip the axes over to get the graph of the inverse function
x = logr,asin Fig. 5.7b. It is not so surprising that the real part of z = logw
is just an ordinary real logarithm. What is somewhat more remarkable* is
that the imaginary part of z is just the angle 0 that is the argument of the
complex number w. This fact makes explicit my earlier comment that the
argument of a complex number is really just a form of logarithm.

Recall that there is an ambiguity in the definition of the argument of a
complex number. We can add any integer multiple of 2x to 6, and this will
do just as well (recall Fig. 5.4b). Accordingly, there are many different
solutions z for a given choice of w in the relation w = e°. If we take one
such z, then z + 2min is another possible solution, where # is any integer
that we care to choose. Thus, the logarithm of w is ambiguous up to the

7

@ (b)

Fig. 5.7 To obtain the logarithm of a positive real number r, consider the graph
(a) of r = e*. All positive values of r are reached, so flipping the picture over, we
get the graph (b) of the inverse function x = logr for positve r.
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addition of any integer multiple of 2rwi. We must bear this in mind with
expressions such as logab = loga + log b, making sure that the appropri-
ately corresponding choices of logarithm are made.

This feature of the complex logarithm seems, at this stage, to be just an
awkward irritation. However, we shall be seeing in §7.2 that it is absolutely
central to some of the most powerful, useful, and magical properties of
complex numbers. Complex analysis depends crucially upon it. For the
moment, let us just try to appreciate the nature of the ambiguity.

Another way of understanding this ambiguity in logw is to note the
striking formula

whence e*2M = ¢ = w, etc., showing that z + 2mi is just as good a loga-

rithm of w as z is (and then we can repeat this as many times as we like).
The above formula is closely related to the famous Euler formula

" +1=0

(which relates the five fundamental numbers 0, 1, i, 7, and e in one almost
mystical expression).[>-0]

We can best understand these properties if we take the exponential of
the expression z = logr + 10 to obtain

logr+if _ elogrelﬁ — il

w=¢e"=¢e rev.

This shows that the polar form of any complex number w, which I had
previously been denoting by [r, 0], can more revealingly be written as
w=re.

In this form, it is evident that, if we multiply two complex numbers, we
take the product of their moduli and the sum of their arguments
(reilse'® = rse!®9) so r and s are multiplied, whereas 0 and ¢ are
added—bearing in mind that subtracting 2n from 6 + ¢ makes no differ-
ence), as is implicit in the similar-triangle law of Fig. 5.1b. I shall hence-
forth drop the notation [r, 6], and use the above displayed expression
instead. Note that if r = 1 and 6 = © then we get —1 and recover Euler’s
famous e™ + 1 = 0 above, using the geometry of Fig. 5.4a; if r = 1 and
0 = 2m, then we get +1 and recover ™ = 1.

The circle with » = 1 is called the unit circle in the complex plane (see
Fig. 5.8). This is given by w = ¢!’ for real 0, according to the above
expression. Comparing that expression with the earlier ones x = rcos 6
and y = rsin 6 given above, for the real and imaginary parts of what is

€9 [5.6] Show from this that z + 7i is a logarithm of —w.
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Unit i
circle
d? P
3
[
-1 1

Fig. 5.8 The unit circle, consisting of
unit-modulus complex numbers. The
Cotes—Euler formula gives these as

i e = cos0 +isin 0 for real 0.

now the quantity w = x + iy, we obtain the prolific ‘(Cotes—) Euler for-
mula’

0

e =cosf +isin0,

which basically encapsulates the essentials of trigonometry in the much
simpler properties of complex exponential functions.

Let us see how this works in elementary cases. In particular, the basic
relation e“*? = e%e’, when expanded out in terms of real and imaginary
parts, immediately yields!>7! the much more complicated-looking expres-
sions (no doubt depressingly familiar to some readers)

cos(a+ b) =cosacosb —sinasinb,

sin(a + b) = sinacos b + cosasin b.
Likewise, expanding out €% = (ei6)3, for example, quickly yields®>-8]
cos 30 = cos® 0 — 3cosOsin’ 0,

sin 30 = 3sin 0 cos® 0 — sin’ 0.

There is indeed a magic about the direct way that such somewhat compli-
cated formulae spring from simple complex-number expressions.

5.4 Complex powers

Let us now return to the question of defining w* (or b°, as previously
written). We can achieve such a thing by writing

W = ezlog w

4 [5.7) Check this.
4 [5.8] Do it.
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(since we expect €718 = (el°¢")” and e!°2" = w). But we note that, because
of the ambiguity in log w, we can add any integer multiple of 27i to log w to
obtain another allowable answer. This means that we can multiply or divide
any particular choice of w* by e*>™ any number of times and we still get an
allowable ‘w*’. It is amusing to see the configuration of points in the complex
plane that this gives in the general case. This is illustrated in Fig. 5.9. The
points lie at the intersections of two equiangular spirals. (An equiangular—
or logarithmic—spiral is a curve in the plane that makes a constant angle
with the straight lines radiating from a point in the plane.)>]

This ambiguity leads us into all sorts of problems if we are not care-
ful.5-197 The best way of avoiding these problems appears to be to
adopt the rule that the notation w* is used only when a particular choice
of log w has been specified. (In the special case of ¢, the tacit convention is
always to take the particular choice log e = 1. Then the standard notation
e° is consistent with our more general w*.) Once this choice of log w is
specified, then w* is unambiguously defined for all values of z.

It may be remarked at this point that we also need a specification of log
b if we are to define the ‘logarithm to the base b’ referred to earlier in this
section (the function denoted by ‘log,’), because we need an unambiguous
w = b” to define z = log, w. Even so, log, w will of course be many-valued
(as was log w), where we can add to log,w any integer multiple of
21ti/ log b.15-111

One curiosity that has greatly intrigued some mathematicians in the past
is the quantity i'. This might have seemed to be ‘as imaginary as one could
get’. However, we find the real answer

it = ellogi — ol — o1/2 — (0207879576 .. ,

Fig. 5.9 The different values of

w?( = e°1°¢ ). Any integer multiple

of 2mi can be added to logz, which
multiplies or divides w* by ¢?*™ an integer
number of times. In the general case,

C these are represented in the complex
/ plane as the intersections of two
equiangular spirals (each making a

constant angle with straight lines through
the origin).

#5 [5.9] Show this. How many ways? Also find all special cases.
#55 [5.10] Resolve this ‘paradox’: e = e!+21i g0 ¢ = (el +2m)!+20 — ol dnidn? _ ol-dn’

A€ [5.11] Show this.
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by specifying logi = $1i.512] There are also many other answers, given by
the other specifications of logi. These are obtained by multiplying the
above quantity by e*™, where 7 is any integer (or, equivalently, by raising
the above quantity to any power of the form 4n -+ 1, where n is an
integer—positive or negativel>!3)). It is striking that all the values of i
are in fact real numbers.

Let us see how the notation w* works for z = % We expect to be able to
represent the two quantities ++/w as ‘w!/?’ in some sense. In fact we get
these two quantities simply by first specifying one value for logw and
then specifying another one, where we add 2ni to the first one to get the
second one. This results in a change of sign in w!/? (because of the
Euler formula e™ = —1). In a similar way, we can generate all # solutions
2" =w when n is 3, 4, 5, ... as the quantity w!/”, when successively
different values of the logw are specified.[>14 More generally, we can
return to the question of zth roots of a non-zero complex number w,
where z is any non-zero complex number, that was alluded to in §4.2.
We can express such a zth root as the expression w'!/?, and we generally get
an infinite number of alternative values for this, depending upon which
choice of log w is specified. With the right specified choice for logw!/?,
namely that given by (logw)/z, we indeed get (w'/?)"= w. We note, more
generally, that

(Wa)b: Wab’

where once we have made a specification of log w (for the right-
hand side), we must (for the left-hand side) specify logw* to be
alogw.B13]

When z = n is a positive integer, things are much simpler, and we get
just n roots. A situation of particular interest occurs, in this case, when
w = 1. Then, specifying some possible values of log 1 successively, namely
0, 2mi, 4mi, 6mi, ..., we get 1 = e0, 2™/, ¥/ ebmi/n  for the possible
values of 1!/, We can write these as 1, ¢, €2, €, ..., where ¢ = /", In
terms of the complex plane, we get n points equally spaced around the unit
circle, called nth roots of unity. These points constitute the vertices of a
regular n-gon (see Fig. 5.10). (Note that the choices, —2ni, — 4ni, — 67,
etc., for log 1 would merely yield the same nth roots, in the reverse order.)

It is of some interest to observe that, for a given n, the nth roots of unity
constitute what is called a finite multiplicative group, more specifically, the

@3 [5.12] Why is this an allowable specification?
4 [5.13] Show why this works.

@ [5.14] Spell this out.

E3[5.15] Show this.
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Fig. 5.10 The nth roots of unity
e e?™i/n(r = 1,2, ..., n), equally spaced
around the unit circle, provide the vertices of

¢4
a regular n-gon. Here n = 5.

cyclic group 7., (see §13.1). We have n quantities with the property that we
can multiply any two of them together and get another one. We can also
divide one by another to get a third. As an example, consider the case
n = 3. Now we get three elements 1, w, and w?, where » = e2/3 (so w? =1
and o' = w?). We have the following simple multiplication and division
tables for these numbers:

X 1 o o = 1 w w?
1 1 o o 1 1 ?

w o o 1 w w 1 w?
? o 1 o ? w? w 1

In the complex plane, these particular numbers are represented as the
vertices of an equilateral triangle. Multiplication by w rotates the triangle
through %n (i.e. 120°) in an anticlockwise sense, and multiplication by w?
turns it through %n in a clockwise sense; for division, the rotation is in the
opposite direction (see Fig. 5.11).

w
1
L 4
Fig. 5.11 Equilateral triangle of cube
roots 1, w, and w? of unity. Multiplication
by w rotates through 120° anticlockwise,
w? and by w?, clockwise.
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5.5 Some relations to modern particle physics

Numbers such as these have interest in modern particle physics, providing
the possible cases of a multiplicative quantum number. In §3.5, I commented
on the fact that the additive (scalar) quantum numbers of particle physics
are invariably quantified, as far as is known, by integers. There are also a
few examples of multiplicative quantum numbers, and these seem to be
quantified in terms of nth roots of unity. I only know of a few examples of
such quantities in conventional particle physics, and in most of these the
situation is the comparatively uninteresting case n = 2. There is one clear
case where n = 3 and possibly a case for which n = 4. Unfortunately, in
most cases, the quantum number is not universal, that is, it cannot
consistently be applied to all particles. In such situations, I shall refer to
the quantum number as being only approximate.

The quantity called parity is an (approximate) multiplicative quantum
number with n = 2. (There are also other approximate quantities for which
n = 2, similar in many respects to parity, such as g-parity. I shall not discuss
these here.) The notion of parity for a composite system is built up (multi-
plicatively) from those of its basic constituent particles. For such a constitu-
ent particle, its parity can be even, in which case, the mirror reflection of the
particle is the same as the particle itself (in an appropriate sense); alterna-
tively, its parity can be odd, in which case its mirror reflection is what is
called its antiparticle (see §3.5, §§24.1-3,8 and §26.4). Since the notion of
mirror reflection, or of taking the antiparticle, is something that ‘squares to
unity’, (i.e., doing it twice gets us back to where we started), the quantum
number—Ilet us call it ¢—has to have the property ¢ = 1, so it must be an
‘nth root of unity’, with n = 2 (i.e. ¢ = +1 or ¢ = —1). This notion is only
approximate, because parity is not a conserved quantity with respect to
what are called ‘weak interactions’ and, indeed, there may not be a well-
defined parity for certain particles because of this (see §§25.3.4).

Moreover, the notion of parity applies, in normal descriptions, only to
the family of particles known as bosons. The remaining particles belong to
another family and are known as fermions. The distinction between bosons
and fermions is a very important but somewhat sophisticated one, and we
shall come to it later, in §§23.7,8. (In one manifestation, it has to do with
what happens when we continuously rotate the particle’s state completely
by 2m (i.e. through 360°). Only bosons are completely restored to their
original states under such a rotation. For fermions such a rotation would
have to be done twice for this. See §11.3 and §22.8.) There is a sense in
which ‘two fermions make a boson’ and ‘two bosons also make a boson’
whereas ‘a boson and a fermion make a fermion’. Thus, we can assign the
multiplicative quantum number —1 to a fermion and +1 to a boson to
describe its fermion/boson nature, and we have another multiplicative
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quantum number with n = 2. As far as is known, this quantity is an exact
multiplicative quantum number.

It seems to me that there is also a parity notion that can be applied to
fermions, although this does not seem to be a conventional terminology.
This must be combined with the fermion/boson quantum number to give a
combined multiplicative quantum number with n = 4. For a fermion, the
parity value would have to be +i or —i, and its double mirror reflection
would have the effect of a 2n rotation. For a boson, the parity value would
be +1, as before.

The multiplicative quantum number with n = 3 that I have referred to is
what I shall call quarkiness. (This is not a standard terminology, nor is it
usual to refer to this concept as a quantum number at all, but it does
encapsulate an important aspect of our present-day understanding of
particle physics.) In §3.5, I referred to the modern viewpoint that the
‘strongly interacting’ particles known as hadrons (protons, neutrons,
m-mesons, etc.) are taken to be composed of quarks (see §25.6). These
quarks have values for their electric charge which are not integer multiples
of the electron’s charge, but which are integer multiples of one-third of this
charge. However, quarks cannot exist as separate individual particles, and
their composites can exist as separate individuals only if their combined
charges add up to an integer, in units of the electron’s charge. Let ¢ be the
value of the electric charge measured in negative units of that of the
electron (so that for the electron itself we have ¢ = —1, the electron’s
charge being counted as negative in the normal conventions). For quarks,
we have ¢ = % or — %; for antiquarks, ¢ = % or — % Thus, if we take for the
quarkiness the multiplicative quantum number e 2™, we find that it
takes values 1, o, and w?. For a quark the quarkiness is w, and for an
antiquark it is w?. A particle that can exist separately on its own only if its
quarkiness is 1. In accordance with §5.4, the degrees of quarkiness consti-
tute the cyclic group Zs. (In §16.1, we shall see how, with an additional
element ‘0’ and a notion of addition, this group can be extended to the
finite field 14.)

In this section and in the previous one, I have exhibited some of the
mathematical aspects of the magic of complex numbers and have hinted
at just a very few of their applications. But I have not yet mentioned those
aspects of complex numbers (to be given in Chapter 7) that I myself
found to be the most magical of all when I learned about them as a
mathematics undergraduate. In later years, I have come across yet more
striking aspects of this magic, and one of these (described at the end of
Chapter 9) is strangely complementary to the one which most impressed
me as an undergraduate. These things, however, depend upon certain
basic notions of the calculus, so, in order to convey something of this
magic to the reader, it will be necessary first to say something about
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these basic notions. There is, of course, an additional reason for doing this.
Calculus is absolutely essential for a proper understanding of physics!

Notes

Section 5.1

5.1. The trigonometrical functions cot = cosf/sin® = (tan )", secd = (cos )",
and cosec 0 = (sin0)~! should also be noted, as should the ‘hyperbolic’ ver-
sions of the trigonometrical functions, sinh 7 =j(e' —e™), cosh t = (e’ +¢7),
tanh ¢ = sinh 7/ cosh ¢, etc. Note also that the inverses of these operations are
denoted by cot™!, sinh~!, etc., as with the “tan~! (y/x)’ of §5.1.

Section 5.2
5.2. Logarithms were introduced in 1614 by John Neper (Napier) and made practical
by Henry Briggs in 1624.

Section 5.3

5.3. The natural logarithm is also commonly written as ‘In’.

5.4. From what has been established so far here, we cannot infer that ‘i0’ in the
formula z=log r + 10 should not be a real multiple of i0. This needs calculus.

5.5. Cotes (1714) had the equivalent formula log(cosf +isinf)) =1i0. Euler’s
el = cos 0 + isin 0 seems to have first appeared 30 years later (see Euler 1748).

5.6. I am using the convenient (but somewhat illogical) notation cos’ 0 for (cos 0)%,
etc., here. The notational inconsistency with (the more logical) cos~! 6 should
be noted, the latter being commonly also denoted as arccos(. The formula
sinnf® +icosnb = (sin 0 +icos 0)" is sometimes known as ‘De Moivre’s theorem’.
Abraham De Moivre, a contemporary of Roger Cotes (see above endnote), seems
also to have been a co-discoverer of e = sin 0 4 icos 0.
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Real-number calculus

6.1  What makes an honest function?

CaLcuLus—or, according to its more sophisticated name, mathematical
analysis—is built from two basic ingredients: differentiation and integra-
tion. Differentiation is concerned with velocities, accelerations, the slopes
and curvature of curves and surfaces, and the like. These are rates at which
things change, and they are quantities defined /ocally, in terms of structure
or behaviour in the tiniest neighbourhoods of single points. Integration,
on the other hand, is concerned with areas and volumes, with centres of
gravity, and with many other things of that general nature. These are
things which involve measures of totality in one form or another, and
they are not defined merely by what is going on in the local or infinitesimal
neighbourhoods of individual points. The remarkable fact, referred to as
the fundamental theorem of calculus, is that each one of these ingredients is
essentially just the inverse of the other. It is largely this fact that enables
these two important domains of mathematical study to combine together
and to provide a powerful body of understanding and of calculational
technique.

This subject of mathematical analysis, as it was originated in the 17th
century by Fermat, Newton, and Leibniz, with ideas that hark back to
Archimedes in about the 3rd century Bc, is called ‘calculus’ because it
indeed provides such a body of calculational technique, whereby problems
that would otherwise be conceptually difficult to tackle can frequently be
solved ‘automatically’, merely by the following of a few relatively simple
rules that can often be applied without the exertion of a great deal of
penetrating thought. Yet there is a striking contrast between the oper-
ations of differentiation and integration, in this calculus, with regard to
which is the ‘easy’ one and which is the ‘difficult’ one. When it is a matter
of applying the operations to explicit formulae involving known functions,
it is differentiation which is ‘easy’ and integration ‘difficult’, and in many
cases the latter may not be possible to carry out at all in an explicit way.
On the other hand, when functions are not given in terms of formulae, but
are provided in the form of tabulated lists of numerical data, then it is
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integration which is ‘easy’ and differentiation ‘difficult’, and the latter may
not, strictly speaking, be possible at all in the ordinary way. Numerical
techniques are generally concerned with approximations, but there is also
a close analogue of this aspect of things in the exact theory, and again it is
integration which can be performed in circumstances where differentiation
cannot. Let us try to understand some of this. The issues have to do, in
fact, with what one actually means by a ‘function’.

To Euler, and the other mathematicians of the 17th and 18th centuries, a
‘function’ would have meant something that one could write down expli-
citly, like x? or sin x or log(3 — x + €*), or perhaps something defined by
some formula involving an integration or maybe by an explicitly given
power series. Nowadays, one prefers to think in terms of ‘mappings’,
whereby some array 4 of numbers (or of more general entities) called the
domain of the function is ‘mapped’ to some other array B, called the target of
the function (see Fig. 6.1). The essential point of this is that the function
would assign a member of the target B to each member of the domain A.
(Think of the function as ‘examining’ a number that belongs to 4 and then,
depending solely upon which number it finds, it would produce a definite
number belonging to B.) This kind of function can be just a ‘look-up table’.
There would be no requirement that there be a reasonable-looking ‘formula’
which expresses the action of the function in a manifestly explicit way.

Let us consider some examples. In Fig. 6.2, I have drawn the graphs of
three simple functions', namely those given by x?, |x|, and 0(x). In each
case, the domain and target spaces are both to be the totality of real
numbers, this totality being normally represented by the symbol IR. The
function that I am denoting by ‘x>’ simply takes the square of the real
number that it is examining. The function denoted by ‘|x|" (called the
absolute value) just yields x if x is non-negative, but gives —x if x is
negative; thus |x| itself is never negative. The function ‘0(x)’ is 0 if x
is negative, and 1 if x is positive; it is usual also to define 6(0) = %
(This function is called the Heaviside step function; see §21.1 for another
important mathematical influence of Oliver Heaviside, who is perhaps
better known for first postulating the Earth’s atmospheric ‘Heaviside
layer’, so vital to radio transmission.) Each of these is a perfectly good

Fig. 6.1 A function as a ‘mapping’,
whereby its domain (some array A of
numbers or of other entities) is
‘mapped’ to its target (some other array
B). Every element of 4 is assigned some
particular value in B, though different
elements of 4 may attain the same
value and some values of B may not be
Domain Target reached.
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y =X y=x 7= 0(n)

GY (b) ©

Fig. 6.2 Graphs of (a) |x|, (b) x, and (c) 0(x); the domain and target being the
system of real numbers in each case.

function in this modern sense of the term, but Euler? would have
had difficulty in accepting |x| or 6(x) as a ‘function’ in his sense of the
term.

Why might this be? One possibility is to think that the trouble with |x]|
and 0(x) is that there is too much of the following sort of thing: ‘if x is
such-and-such then take so-and-so, whereas if x is...’, and there is no
‘nice formula’ for the function. However, this is a bit vague, and in any
case we could wonder what is really wrong with |x| being counted as a
formula. Moreover, once we have accepted |x|, we could writel®!l a for-
mula for 6(x):

(although we might wonder if there is a good sense in which this gets the
right value for 6(0), since the formula just gives 0/0). More to the point is that
the trouble with |x| is that it is not ‘smooth’, rather than that its explicit
expression is not ‘nice’. We see this in the ‘angle’ in the middle of Fig. 6.2a.
The presence of this angle is what prevents |x| from having a well-defined
slope at x = 0. Let us next try to come to terms with this notion.

6.2 Slopes of functions

As remarked above, one of the things with which differential calculus is
concerned is, indeed, the finding of ‘slopes’. We see clearly from the graph
of |x|, as shown in Fig. 6.2a, that it does not have a unique slope at the

€9 [6.1] Show this (ignoring x = 0).
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origin, where our awkward angle is. Everywhere else, the slope is well
defined, but not at the origin. It is because of this trouble at the origin that
we say that |x| is not differentiable at the origin or, equivalently, not
smooth there. In contrast, the function x* has a perfectly good uniquely
defined slope everywhere, as illustrated in Fig. 6.2b. Indeed, the function
x? is differentiable everywhere.

The situation with 6(x), as illustrated in Fig. 6.2c, is even worse than
for |x|. Notice that 6(x) takes an unpleasant jump’ at the origin (x = 0).
We say that 0(x) is discontinuous at the origin. In contrast, both the
functions x*> and |x| are continuous everywhere. The awkwardness of
|x| at the origin is not a failure of continuity but of differentiability.
(Although the failure of continuity and of smoothness are different
things, they are actually interconnected concepts, as we shall be seeing
shortly.)

Neither of these failings would have pleased Euler, presumably, and they
seem to provide reasons why |x| and 6(x) might not be regarded as ‘proper’
functions. But now consider the two functions illustrated in Fig. 6.3.
The first, x°, would be acceptable by anyone’s criteria; but what about the
second, which can be defined by the expression x|x|, and which illustrates
the function that is x*> when x is non-negative and —x? when x is negative?
To the eye, the two graphs look rather similar to each other and certainly
‘smooth’. Indeed, they both have a perfectly good value for the ‘slope’ at
the origin, namely zero (which means that the curves have a horizontal
slope there) and are, indeed, ‘differentiable’ everywhere, in the most direct
sense of that word. Yet, x|x| certainly does not seem to be the ‘nice’ sort of
function that would have satisfied Euler.

One thing that is ‘wrong’ with x|x| is that it does not have a well-defined
curvature at the origin, and the notion of curvature is certainly something
that the differential calculus is concerned with. In fact, ‘curvature’ is
something that involves what are called ‘second derivatives’, which

y= X‘X‘

@ (b)
Fig. 6.3 Graphs of (a) x* and of (b) x|x| (i.e. x? if x=0 and —x? if x < 0).
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means doing the differentiation twice. Indeed, we say that the function x|x|
is not twice differentiable at the origin. We shall come to second and higher
derivatives in §6.3.

In order to start to understand these things, we shall need to see what
the operation of differentiation really does. For this, we need to know how
a slope is measured. This is illustrated in Fig. 6.4. I have depicted a fairly
representative-looking function, which I shall call f(x). The curve in
Fig. 6.4a depicts the relation y = f(x), where the value of the coordinate
y measures the height and the value of x measures horizontal displace-
ment, as is usual in a Cartesian description. I have indicated the slope
of the curve at one particular point p, as the increment in the y coordinate
divided by the increment in the x coordinate, as we proceed along the
tangent line to the curve, touching it at the point p. (The technical defini-
tion of ‘tangent line’ depends upon the appropriate limiting proced-
ures, but it is not my purpose here to provide these technicalities. I hope
that the reader will find my intuitive descriptions adequate for our
immediate purposes.®) The standard notation for the value of this slope
is dy/dx (and pronounced ‘dy by dx’). We can think of ‘dy’ as a very tiny
increase in the value of y along the curve and of ‘dx’ as the correspond-
ing tiny increase in the value of x. (Here, technical correctness would
require us to go to the ‘limit’, as these tiny increases each get reduced to
Zero.)

We can now consider another curve, which plots (against x) this slope
at each point p, for the various possible choices of x-coordinate; see
Fig. 6.4b. Again, I am using a Cartesian description, but now it is dy/dx
that is plotted vertically, rather than y. The horizontal displacement is
still measured by x. The function that is being plotted here is commonly
called f”(x), and we can write dy/dx = f'(x). We call dy/dx the derivative
of y with respect to x, and we say that the function f’(x) is the derivative* of

J(x).

6.3 Higher derivatives; C*°-smooth functions

Now let us see what happens when we take a second derivative. This means
that we are now looking at the slope-function for the new curve of Fig.
6.4b, which plots u = f”(x), where u now stands for dy/dx. In Fig. 6.4c, I
have plotted this ‘second-order’ slope function, which is the graph of du/dx
against x, in the same kind of way as I did before for dy/dx, so the value of
du/dx now provides us with the slope of the second curve u = f/(x). This
gives us what is called the second derivative of the original function f(x),
and this is commonly written /”(x). When we substitute dy/dx for u in the
quantity du/dx, we get the second derivative of y with respect to x, which is
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(b)

©

y

dy
slope o«

y =) ~

u=f(x)

/
e

w=f"(x)

Fig. 6.4 Cartesian plot of (a) y = f(x), (b) the derivative u = f'(x) (= dy/dx), and
(c) the second derivative f”(x) = d*y/dx2. (Note that f(x) has horizontal slope just
where f/(x) meets the x-axis, and it has an inflection point where f”(x) meets the

X-axis.)
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(slightly illogically) written d?y/dx? (and pronounced ‘d-two-y by dx-
squared’).

Notice that the values of x where the original function f(x) has a
horizontal slope are just the values of x where f’(x) meets the x-axis (so
dy/dx vanishes for those x-values). The places where f(x) acquires a (local)
maximum or minimum occur at such locations, which is important when
we are interested in finding the (locally) greatest and smallest values of a
function. What about the places where the second derivative f”(x) meets
the x-axis? These occur where the curvature of f(x) vanishes. In general,
these points are where the direction in which the curve y = f(x) ‘bends’
changes from one side of the curve to the other, at a place called a point of
inflection. (In fact, it would not be correct to say that f”(x) actually
‘measures’ the curvature of the curve defined by y = f(x), in general; the
actual curvature is given by a more complicated expression® than f”(x),
but it involves f”(x), and the curvature vanishes whenever f”'(x) vanishes.

Let us next consider our two (superficially) similar-looking functions x3
and x|x|, considered above. In Fig. 6.5a,b,c, I have plotted x* and its first
and second derivatives, as I did with the function f(x) in Fig. 6.4, and, in Fig.
6.5d,e.f, I have done the same with x|x|. In the case of x°, we see that

y=2x8 y=3x2 y = 6x

@) (b) ©

y = xlxl y =2l y = 2+46(x)

(d) (e) 0)

Fig. 6.5 (a), (b), (c) Plots of x3, its first derivative 3x2, and its second derivative 6x,
respectively. (d), (e), (f) Plots of x|x|, its first derivative 2|x|, and the second
derivative — 2 + 40(x), respectively.
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there are no problems with continuity or smoothness with either the first
or second derivative. In fact the first derivative is 3x> and the second is 6x,
neither of which would have given Euler a moment of worry. (We shall see
how to obtain these explicit expressions shortly.) However, in the case of
x|x|, we find something very much like the ‘angle’ of Fig. 6.2a for the first
derivative, and a ‘step function’ behaviour for the second derivative, very
similar to Fig. 6.2c. We have failure of smoothness for the first derivative
and failure of continuity for the second. Euler would not have cared for
this at all. This first derivative is actually 2|x| and the second derivative is
—2 + 40(x). (My more pedantic readers might complain that I should not
so glibly write down a ‘derivative’ for 2|x|, which is not actually differenti-
able at the origin. True, but this is just a quibble: full justification of this
can be achieved using the notions that will be introduced at the end of
Chapter 9.)

We can easily imagine that functions can be constructed for which such
failure of smoothness or of continuity does not show up until many
derivatives have been calculated. Indeed, functions of the form x"|x| will
do the trick, where we can take n to be a positive integer which can be as
large as we like. The mathematical terminology for this sort of thing is to
say that the function f(x) is C"-smooth if it can be differentiated » times (at
each point of its domain) and the nth derivative is continuous.® The
function x”|x| is in fact C"-smooth, but it is not C"™'-smooth at the origin.

How big should = be to satisfy Euler? It seems clear that he would not
have been content to stop at any particular value of n. It should surely be
possible to differentiate the kind of self-respecting function that Euler
would have approved of as many times as we like. To cover this situation,
mathematicians refer to a function as being C*-smooth if it counts as C"-
smooth for every positive integer n. To put this another way, a C>*-smooth
function must be differentiable as many times as we choose.

Euler’s notion of a function would, we presume, have demanded some-
thing like C*-smoothness. At least, we could imagine that he would have
expected his functions to be C*-smooth at most places in the domain. But
what about the function 1/x? (See Fig. 6.6.) This is certainly not C*-
smooth at the origin. It is not even defined at the origin in the modern
sense of a function. Yet our Euler would certainly have accepted 1/x as a
decent ‘function’, despite this problem. There is a simple natural-looking
formula for it, after all. One could imagine that Euler would not have been
so much concerned about his functions being C*-smooth at every point on
its domain (assuming that he would have worried about ‘domains’ at all).
Perhaps things going wrong at the odd point or so would not matter. But
|x| and 6(x) only went wrong at the same ‘odd point’ as does 1/x. It seems
that, despite all our efforts, we still have not captured the ‘Eulerian’ notion
of a function that we have been striving for.
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Fig. 6.6 Plot of L.

Let us take another example. Consider the function /(x), defined by the
rules

0 ifx<0
h(x) = :
) { e 1/Xif x> 0.

The graph of this function is depicted in Fig. 6.7. This certainly looks like a
smooth function. In fact it is very smooth. It is C*°-smooth over the entire
domain of real numbers. (Proving this is the sort of thing that one does in
a mathematics undergraduate course. I remember having to tackle this one
when I was an undergraduate myself.[°-?] Despite its utter smoothness, one
can certainly imagine Euler turning up his nose at a function defined in this
kind of a way. It is clearly not just ‘one function’, in Euler’s sense. It is ‘two

Fig.6.7 Plotofy = h(x) (= 0if x = 0and = e~ /¥ if x > 0), which is C*-smooth.

#5 [6.2] Have a go at proving this if you have the background.
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functions stuck together’, no matter how smooth a gluing job has been
done to paste over the ‘glitch’ at the origin. In contrast, to Euler, % is just
one function, despite the fact that it is separated into two pieces by a very
nasty ‘spike’ at the origin, where it is not even continuous, let alone
smooth (Fig. 6.6). To our Euler, the function A(x) is really no better
than |x| or 6(x). In those cases, we clearly had ‘two functions glued
together’, though with much shoddier gluing jobs (and with 6(x), the

glued bits seem to have come apart altogether).

6.4 The ‘Eulerian’ notion of a function?

How are we to come to terms with this ‘Eulerian’ notion of having just a
single function as opposed to a patchwork of separate functions? As the
example of /4(x) clearly shows, C*°-smoothness is not enough. It turns out
that there are actually two completely different-looking approaches to
resolving this issue. One of these uses complex numbers, and it is decep-
tively simple to state, though momentous in its implications. We simply
demand that our function f(x) be extendable to a function f(z) of the
complex variable z so that f(z) is smooth in the sense that it is merely
required to be once differentiable with respect to the complex variable z.
(Thus f(z) is, in the complex sense, a kind of C!-function.) It is an
extraordinary display of genuine magic that we do not need more than
this. If f(z) can be differentiated once with respect to the complex param-
eter z, then it can be differentiated as many times as we like!

I shall return to the matter of complex calculus in the next chapter. But
there is another approach to the solution of this ‘Eulerian notion of
function’ problem using only real numbers, and this involves the concept
of power series, which we encountered in §2.5. (One of the things that
Euler was indeed a master of was manipulating power series.) It will be
useful to consider the question of power series, in this section, before
returning to the issue of complex differentiability. The fact that, locally,
complex differentiability turns out to be equivalent to the validity of power
series expansions is one of the truly great pieces of complex-number magic.

I shall come to all this in due course, but for the moment let us stick with
real-number functions. Suppose that some function f(x) actually has a
power series representation:

f(x)zao+a1x+a2x2+a3x3—|—a4x4+....

Now, there are methods of finding out, from f(x), what the coefficients
ap, a4y, aa, a3, d4 , ... must be. For such an expansion to exist, it is neces-
sary (although not sufficient, as we shall shortly see) that f(x) be C>-
smooth, so we shall have new functions f’(x), f”(x), /" (x), /" (x), ... ,
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etc., which are the first, second, third, fourth, etc., derivatives of f(x),
respectively. In fact, we shall be concerned with the values of these func-
tions only at the origin (x = 0), and we need the C*-smoothness of f(x)
only there. The result (sometimes called Maclaurin’s series’) is that if f(x)
has such a power series expansion, thenl®-3

! 4 i 1"
ap = f(0), a :fl(!O)’ a :fz(!())’ as :f3(!0), ay :f 450),....
(Recall, from §5.3, that n! =1x2x...xn) But what about the
other way around? If the «&’s are given in this way, does it follow that
the sum actually gives us f(x) (in some interval encompassing the
origin)?

Let us return to our seemingly seamless /(x). Perhaps we can spot a flaw
at the joining point (x = 0) using this idea. We try to see whether A(x)
actually has a power series expansion. Taking f(x) = /(x) in the above, we
consider the various coefficients ay, a;, a3, a3, a4 , ... , noticing that they
all have to vanish, because the series has to agree with the value 4(x) = 0,
whenever x is just to the left of the origin. In fact, we find that they all
vanish also for e/, which is basically the reason why A(x) is C*°-smooth
at the origin, with all derivatives coming from the two sides matching each
other. But this also tells us that there is no way that the power series can
work, because all the terms are zero (see Exercise 6.1) and therefore do not
actually sum to e~ /. Thus there is a flaw at the join at x = 0: the function
h(x) cannot be expressed as a power series. We say that A(x) is not analytic
at x = 0.

In the above discussion, I have really been referring to what would be
called a power series expansion about the origin. A similar discussion
would apply to any other point of the real-number domain of the function.
But then we have to ‘shift the origin’ to some other particular point,
defined by the real number p in the domain, which means replacing x by
x — p in the above power series expansion, to obtain

fX)=ap+ai(x—p)+a(x—pP +as(x—p) +--->
where now

w=r o a =LO, g LDy SO

ol , A3 = 30 yeee

This is called a power series expansion about p. The function f(x) is called
analytic at p if it can be expressed as such a power series expression in some
interval encompassing x = p. If f(x) is analytic at all points of its domain, we

A [6.3] Show this, using rules given towards end of section.
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just call it an analytic function or, equivalently, a C®-smooth function.
Analytic functions are, in a clear sense, even ‘smoother’ than C*-smooth
functions. In addition, they have the property that it is not possible to
get away with gluing two ‘different’ analytic functions together, in the
manner of the examples 6(x), |x|, x|x|, x"|x|, or A(x), given above.
Euler would have been pleased with analytic functions. These are ‘honest’
functions indeed!

However, all these power series are awkward things to be carrying
around, even if only in the imagination. The ‘complex’ way of looking at
things turns out to be enormously more economical. Moreover, it gives us
a greater depth of understanding. For example, the function lx is not
analytic at x = 0; yet it is still ‘one function’.[4 The ‘power series phil-
osophy’ does not directly tell us this. But from the point of view of
complex numbers, % is clearly just one function, as we shall be seeing.

6.5 The rules of differentiation

Before discussing these matters, it will be useful to say a little about the
wonderful rules that the differential calculus actually provides us with—
rules that enable us to differentiate functions almost without really think-
ing at all, but only after months of practice, of course! These rules enable
us to see how to write down the derivative of many functions directly,
particularly when they are represented in terms of power series.

Recall that, as a passing comment, I remarked above that the derivative
of x3 is 3x?. This is a particular case of a simple but important formula: the
derivative of x” is nx"~!, which we can write

d(xn) B
dx

n—1

(It would distract us too much, here, for me to explain why this formula
holds. It is not really hard to show, and the interested reader can find all
that is required in any elementary textbook on calculus.® Incidentally, n
need not be an integer.) We can also express® this equation (‘multiplying
through by dx’) by the convenient formula

d(x") = nx""'dx.

There is not much more that we need to know about differentiating power
series. There are basically two other things. First, the derivative of a sum
of functions is the sum of the derivatives of the functions:

dlf (%) + g(x)] = df(x) + dg(x).

#% [6.4] Consider the ‘one function’ e~/ *_ Show that it is C*, but not analytic at the origin.
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This then extends to a sum of any finite number of functions.! Second, the
derivative of a constant times a function is the constant times the deriva-
tive of that function:

dfa f(x)} = a df(x).

By a ‘constant’ I mean a number that does not vary with x. The coefficients
ap, a1, 4z, a3 , ... in the power series are constants. With these rules, we
can directly differentiate any power series.[6-3]

Another way of expressing the constancy of a is

da = 0.

Bearing this in mind, we find that the rule given immediately above is
really a special case (with g(x) = a) of the ‘Leibniz law’:

d{f(x) g(x)} = f(x) dg(x) + g(x) df(x)

(and d(x")/dx = nx""!, for any natural number 7, can also be derived
from the Leibniz lawl®-%]). A useful further law is

d{f(g(x))} = f'(g(x))g (x)dx.

From the last two and the first, putting /(x)[g(x)]"! into the Leibniz law,
we can deducel®7]

d <f (X)> _ gk df(x) —f(x) dg(x)
g(x) g()c)2 )

Armed with these few rules (and loads and loads of practice), one
can become an ‘expert at differentiation” without needing to have much
in the way of actual understanding of why the rules work! This is the
power of a good calculus.[®8] Moreover, with the knowledge of the deriva-
tives of just a few special functions,!®“ one can become even more of an
expert. Just so that the uninitiated reader can become an ‘instant member’
of the club of expert differentiators, let me provide the main
examples: ! 1[6-10]

@€ [6.5] Using the power series for e* given in §5.3, show that de* = e¥dx.

£3[6.6] Establish this.

€3 [6.7] Derive this.

€9 [6.8] Work out dy/dx for y =(1 — )¢ y=010+x)/0-x).

[6.9] With @ constant, work out d(log, x), d(log, @), d(x¥).

[6.10] For the first, see Exercise [6.5]; derive the second from d(e'°¢¥); the third and fourth from

de™, assuming that the complex quantities work like real ones; and derive the rest from the earlier
ones, using d(sin (sin~! x)), etc., and noting that cos?x + sin’x = 1.
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d(e*) =e* dx,

d(logx) = %,

d(sin x) = cos x dx,

d(cos x) = —sinx dx,
dx
d(tan X) = m ,
d(Sin71 x) — %,
—Xx
d(cos! x) = %,
—X
d(tan™' x) = ] ixxz

This illustrates the point referred to at the beginning of this section that,
when we are given explicit formulae, the operation of differentiation is
‘easy’. Of course, I do not mean by this that this is something that you
could do in your sleep. Indeed, in particular examples, it may turn out that
the expressions get very complicated indeed. When I say ‘easy’, I just mean
that there is an explicit computational procedure for carrying out differ-
entiation. If we know how to differentiate each of the ingredients in an
expression, then the procedures of calculus, as given above, tell us how to
go about differentiating the entire expression. ‘Easy’, here, really means
something that could be readily put on a computer. But things are very
different if we try to go in the reverse direction.

6.6 Integration

As stated at the beginning of the chapter, integration is the reverse of differ-
entiation. What this amounts to is trying to find a function g(x) for which
g (x) = f(x), i.e. finding a solution y = g(x) to the equation dy/dx = f(x).
Another way of putting thisis that, instead of moving down the picturein Fig.
6.4 (or Fig. 6.5), we try to work our way upwards. The beauty of the
‘fundamental theorem of calculus’ is that this procedure is telling us how to
work out areas under each successive curve. Have a look at Fig. 6.8. Recall
that the bottom curve u = f(x) can be obtained from the top curve y = g(x)
because it plots the slopes of that curve, f(x) being the derivative of g(x). This
isjust what we had before. But now let us start with the bottom curve. We find
that the top curve simply maps out the areas beneath the bottom curve. A
little more explicitly: if we take two vertical lines in the bottom picture given
by x = a and x = b, respectively, then the area bounded by these two lines,
the x-axis, and the curve itself, will be the difference between the heights of the
top curve at those two x-values. Of course, in matters such as this, we must
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Fig. 6.8 Fundamental theorem of calculus: re-interpret Fig. 6.4a,b, proceeding
upwards rather than downwards. Top curve (a) plots areas under bottom curve
(b), where area bounded by two vertical lines x = a and x = b, the x-axis, and the
bottom curve is difference, g(b) — g(a), of heights of the top curve at those two x-
values (signs taken into account).

be careful about ‘signs’. In regions where the bottom curve dips below the
x-axis, the areas count negatively. Moreover, in the picture, I have taken
a < b and the ‘difference between the heights’ of the top curve in the form
g(b) — g(a). Signs would be reversed if a > b.

In Fig. 6.9, I have tried to make it intuitively believable why there is this
inverse relationship between slopes and areas. We imagine b to be greater
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Fig. 6.9 Takeb > abya
tiny amount. In the
A bottom picture, the area
of a very narrow strip
between neighbouring

g(b) 4| linesx=a, x=>b1is
FORAI g(b)y-g(a) essentially the product of
= area of the strip’s width b — a with
shaded strip its height (from x-axis to

l

|

| | curve). This height is the

[ » slope of top curve there,
whence the strip’s area is

A ! this slope x strip’s width,
which is the amount by
which top curve rises from
ato b, ie. g(b) — g(a).
Adding many narrow
strips, we find that the
area of a broad strip under
the bottom curve is the

» corresponding amount by
which the top curve rises.

X

than «a by just a very tiny amount. Then the area to be considered, in the
bottom picture, is that of the very narrow strip bounded by the neighbour-
ing lines x =a and x = b. The measure of this area is essentially the
product of the strip’s tiny width (i.e. b — a) with its height (from the x-
axis to the curve). But the strip’s height is supposed to be measuring the
slope of the top curve at that point. Therefore, the strip’s area is this slope
multiplied by the strip’s width. But the slope of the top curve times the
strip’s width is the amount by which the top curve rises from «a to b, that is,
the difference g(b) — g(a). Thus, for very narrow strips, the area is indeed
measured by this stated difference. Broad strips are taken to be built up
from large numbers of narrow strips, and we get the total area by measur-
ing how much the top curve rises over the entire interval.

There is a significant point that I should bring out here. In the passage
from the bottom curve to the top curve there is a non-uniqueness about how
high the whole top curve is to be placed. We are only concerned with
differences between heights on the top curve, so sliding the whole curve up
or down by some constant amount will not make any difference. This is clear
from the ‘slope’ interpretation too, since the slope at different points on the
top curve will be just the same as before if we slide it up or down. What this
amounts to, in our calculus, is that if we add a constant C to g(x), then the
resulting function still differentiates to f(x):
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d(g(x) + C) =dg(x) +dC = f(x) dx + 0 = f(x) dx.

Such a function g(x), or equivalently g(x) + C for some arbitrary constant
C, is called an indefinite integral of f(x), and we write

/f(x) dx = g(x) + const.

This is just another way of expressing the relation d[g(x)+ const.]
= f(x)dx, so we just think of the [’ sign as the inverse of the ‘d’ symbol.
If we want the specific area between x = @ and x = b, then we want what is
called the definite integral, and we write

b
/ £(x) dx = g(b)  g(a).

If we know the function f(x) and we wish to obtain its integral g(x), we do
not have nearly such straightforward rules for obtaining it as we did for
differentiation. A great many tricks are known, a variety of which can be
found in standard textbooks and computer packages, but these do not
suffice to handle all cases. In fact, we frequently find that the family of
explicit standard functions that we had been using previously has to be
broadened, and that new functions have to be ‘invented’ in order to
express the results of the integration. We have, in effect, seen this already
in the special examples given above. Suppose that we were familiar just
with functions made up of combinations of powers of x. For a general
power X", we can integrate it to get x"*!/(n + 1). (This is just using our
formula above, in §6.5, with n + 1 for n: d(x”“)/dx = (n+ 1)x".) Every-
thing is fine until we worry about what to do with the case n = —1. Then
the supposed answer x"*!'/(n + 1) has zero in the denominator, so this
won’t work. How, then, do we integrate x~!? Well, we notice that, by the
greatest of good fortune, there is the formula d(logx) = x~'dx sitting in
our list in §6.5. So the answer is log x + const.

This time we were lucky! It just happened that we had been studying the
logarithm function before for a different reason, and we knew about some
of its properties. But on other occasions, we might well find that there is no
function that we had previously known about in terms of which we can
express our answer. Indeed, integrals frequently provide the appropriate
means whereby new functions are defined. It is in this sense that explicit
integration is ‘difficult’.

On the other hand, if we are not so interested in explicit expressions,
but are concerned with questions of existence of functions that are the
derivatives or integrals of given functions, then the boot is on the other
foot. Integration is now the operation that works smoothly, and differ-
entiation causes the problems. The same applies when performing these
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operations with numerical data. Basically, the problem with differentia-
tion is that it depends very critically on the fine details of the function
to be differentiated. This can present a problem if we do not have an
explicit expression for the function to be differentiated. Integration, on
the other hand, is relatively insensitive to such matters, being concerned
with the broad overall nature of the function to be integrated. In fact,
any continuous function (a C°-function) whose domain is a ‘closed’
interval ¢ < x <b can be integrated,'? the result being C' (i.e. C'-
smooth). This can be integrated again, the result being C2, and then
again, giving a C*-smooth function, and so on. Integration makes the
functions smoother and smoother, and we can keep on going with this
indefinitely. Differentiation, on the other hand just makes things worse,
and it may come to an end at a certain point, where the function
becomes ‘non-differentiable’.

Yet, there are approaches to these issues that enable the process of
differentiation to be continued indefinitely also. I have hinted at this
already, when I allowed myself to differentiate the function |x| to obtain
0(x), even though |x| is ‘not differentiable’. We could attempt to go further
and differentiate 0(x) also, despite the fact that it has an infinite slope at
the origin. The ‘answer’ is what is called the Dirac!?® delta function—an
entity of considerable importance in the mathematics of quantum mech-
anics. The delta function is not really a function at all, in the ordinary
(modern) sense of ‘function’ which maps domains to target spaces. There
is no ‘value’ for the delta function at the origin (which could only have
been infinity there). Yet the delta function does finds a clear mathematical
definition within various broader classes of mathematical entities, the best
known being distributions.

For this, we need to extend our notion of C"-functions to cases where n
can be a negative integer. The function 6(x) is then a C~'-function and the
delta function is C~2. Each time we differentiate, we must decrease the
differentiability class by unity (i.e. the class becomes more negative by one
unit). It would seem that we are getting farther and farther from Euler’s
notion of a ‘decent function’ with all this and that he would tell us to have
no truck with such things, were it not for the fact that they seem to be
useful. Yet, we shall be finding, in due course, that it is here that complex
numbers astound us with an irony—an irony that is expressed in one of
their finest magical feats of alll We shall have to wait until the end of
Chapter 9 to witness this feat, for it is not something that I can properly
describe just yet. The reader must bear with me for a while, for the ground
needs first to be made ready, paved with other superbly magical
ingredients.
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Notes

Section 6.1

6.1. I am adopting a slight ‘abuse of notation’ here, as technically x?, for instance,
denotes the value of the function rather than the function. The function itself
maps x to x*> and might be denoted by x — x?, or by /x{x?] according to Alonzo
Church’s (1941) lambda calculus; see Chapter 2 of Penrose (1989).

6.2. In this section, I shall frequently refer to what Euler’s beliefs might well have been
with regard to the notion of a function. However, I should make clear here that the
‘Euler’ that I am referring to is really a hypothetical or idealized individual. I have
no direct information about what the real Leonhard Euler’s views were in any
particular case. But the views that am attributing to my ‘Euler’ do not appear to be
out of line with the kind of views that the real Euler might well have expressed. For
more information about Euler, see Boyer (1968); Thiele (1982); Dunham (1999).

Section 6.2
6.3. For detalils, see Burkill (1962).
6.4. Strictly, it is the function f” that is the derivative of the function f; we cannot
obtain the value of /" at x simply from the value of f at x. See Note 6.1.

Section 6.3
6.5. Viz., f"(x)/[1 +f"(x)*1/>.
6.6. In fact, this implies that all the derivatives up to and including the nth must be
continuous, because the technical definition of differentiability requires continuity.

Section 6.4
6.7. Traditionally, this power series expansion about the origin is known (with little
historical justification) as Maclaurin’s series; the more general result about the
point p (see later in the section) is attributed to Brook Taylor (1685-1731).

Section 6.5

6.8. See Edwards and Penney (2002).

6.9. For the moment, just treat the following expressions formally, or else mentally
‘divide back through by dx’ if this makes you happier. The notation that I am
using here is consistent with that of differential forms, which will be discussed in
§§12.3-6.

6.10. However, there is a technical subtlety about applying this law to the sum of the
infinite number of terms that we need for a power series. This subtlety can be
ignored for values of x strictly within the circle of convergence; see §2.5. See
Priestly (2003).

6.11. Recall from §5.1 that sin™', cos™!, and tan™' are the inverse functions of
sin, cos, and tan, respectively. Thus sin(sin’1 x) = Xx, etc. We must bear in
mind that these inverse functions are ‘many-valued functions’, however, and it
is usual to select the values for which —J}< sin’lxsg, 0<cos!'x=<n, and
—I<tan 'x <L

Section 6.6

6.12. The significant requirement on the domain is that it be what is called compact;
see §12.6. Finite intervals of the real line including their end-points are indeed
compact.

6.13. Apparently, Oliver Heaviside had also conceived the ‘delta function’ many years
before Dirac.
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7.1 Complex smoothness; holomorphic functions

How are we to understand the notion of differentiation when this is
applied to a complex function f(z)? It is certainly not appropriate, in this
book, that I attempt to address this issue in full detail.! T did not even
properly address such details, in §6.2, for a real function. But at least I can
attempt to convey the gist of what is involved. The following is a very
rapid outline of the essential argument to show what complex differentia-
bility achieves. Afterwards I shall be a little more explicit about some of its
surprising ingredients.

Basically, for complex differentiation, we require that there be a notion
of ‘slope’ of the complex curve w = f(z) at any point z in the function’s
domain. (The function f(z) and the variable z are now both allowed to
take complex values.) For this notion of ‘slope’ to make consistent sense,
as we move the variable z around slightly in different directions in z’s
complex plane, it is necessary for f(z) to satisfy a certain pair of equations
called the Cauchy—Riemann equations® (involving the derivatives of the
real and imaginary parts of f(z), taken with respect to the real and
imaginary parts of z; see §10.5). These equations establish for us something
rather remarkable about complex integration—something which then en-
ables a new notion of integration to be defined, called contour integration.
A beautiful formula can then be given, in terms of this contour integration,
for the nth derivative of f(z). Thus, once we have the first derivative, we get
all higher derivatives free.

We next use this formula to provide us with the coefficients of a
proposed Taylor series for f(z), which we have to show actually converges
to f(z). Having achieved this, we have a Taylor series expression for f(z)
that works inside any circle in the complex z-plane throughout which f(z)
is defined and differentiable. The magical fact thus arises, that any com-
plex function that is complex-smooth is necessarily analytic!

Accordingly, there is no problem, in complex analysis, in recognizing
the limitations of the ‘gluing jobs’ in certain C*-functions, such as the
‘h(x)’ defined in the previous chapter. The power of complex smoothness
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would surely have delighted Euler. (Unfortunately for the real Leonhard
Euler, the astounding power of this complex smoothness was appreciated
too late for him, as it was first found by Augustin Cauchy in 1821, some 38
years after Euler’s death.) We see that complex smoothness provides a
much more economical way of expressing what is required for our ‘Euler-
ian’ notion of a function than does the existence of power series expan-
sions. But there is also another advantage in looking at such functions
from the complex point of view. Recall our troublesome ‘1/x’ that seemed
to be ‘just one function’ despite the fact that the real curve y =1/x
consists of two separate pieces which are not joined ‘analytically’ to each
other through real values of x. From the complex perspective, we see
clearly that 1/z is indeed a single function. The one place where the
function ‘goes wrong’ in the complex plane is the origin z = 0. If we
remove this one point from the complex plane, we still get a connected
region. The part of the real line for which x < 0 is connected to the part for
which x > 0 through the complex plane. Thus, 1/z is indeed one connected
complex function, this being quite different from the real-number situ-
ation.

Functions that are complex-smooth (complex-analytic) in this sense are
called holomorphic. Holomorphic functions will play a vital part in many
of our later deliberations. We shall see their importance in connection with
conformal mappings and Riemann surfaces in Chapter 8, and with Four-
ier series (fundamental to the theory of vibrations) in Chapter 9. They
have important roles to play in quantum theory and in quantum field
theory (as we shall see in §24.3 and §26.3). They are also fundamental to
some approaches to the developing of new physical theories (particularly
twistor theory—see Chapter 33—and they also have a significant part to
play in string theory; see §§31.5,11,12).

7.2 Contour integration

Although this is not the place to spell out all the details of the mathematical
arguments indicated in §7.1, it will nevertheless be illuminating to elaborate
upon the above outline. In particular, it will be of benefit to have an account
of contour integration here, which will provide the reader with some under-
standing of the way in which contour integration can be used to establish
what is needed for the requirements of §7.1. First let us recall the notation
for a definite integral that was given, in the previous chapter, for a real
variable x, and now think of it as applying to a complex variable z:

b
/ F(2)dz = g(b) — g(a).
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where g’(z) = f(z2). In the real case, the integral is taken from one point a
on the real line to another point b on that line. There is only one way to get
from a to b along the real line. Now think of it as a complex formula. Here
we have « and b as two points on the complex plane instead. Now, we do
not just have one route from a to b, but we could draw lots of different
paths connecting a to b. What the Cauchy—Riemann equations tell us is
that if we do our integration along one such path? then we get the same
answer as along any other such path that can be obtained from the first by
continuous deformation within the domain of the function. (See Fig. 7.1.
This property is a consequence of a simple case of the ‘fundamental
theorem of exterior calculus’, described in §12.6.) For some functions,
1/z being a case in point, the domain has a ‘hole’ in it (the hole being
z=0 in the case of 1/z), so there may be several essentially different
ways of getting from a to b. Here ‘essentially different’ refers to the
fact that one of the paths cannot be continuously deformed into another
while remaining in the domain of the function. In such cases, the value
of the integral from « to » may give a different answer for the various
paths.

One point of clarification (or, rather, of correction) should be made here.
When I talk about one path being continuously deformed into another,  am
referring to what mathematicians call homologous deformations, not homo-
topic ones. With a homologous deformation, it is legitimate for parts of
paths to cancel one another out, provided that those portions are being
traversed in opposite directions. See Fig. 7.2 for an example of this sort of
allowable deformation. Two paths that are deformable one into the other in
this way are said to belong to the same homology class. By contrast, homo-
topic deformations do not permit this kind of cancellation. Paths deform-
able one into another, where such cancellation are not permitted, belong to
the same homotopy class. Homotopic curves are always homologous, but
not necessarily the other way around. Both homotopy and homology are to
do with equivalence under continuous motions. Thus they are part of the

Fig. 7.1 Different paths from a to b.
Integrating a holomorphic function f
along one path yields the same answer
as along any other path obtainable
from it by continuous deformation
within /’s domain. For some functions,
the domain has a ‘hole’ in it (e.g. z = 0,
for 1/z), obstructing certain
deformations, so different answers may
be obtained.
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Fig. 7.2 Witha

homologous deformation,
parts of paths cancel each
other, if traversed in

opposite directions.
Sometimes this gives rise to
separated loops.

i

subject of ropology. We shall be seeing different aspects of topology
playing important roles in other areas later.

The function f(z) = 1/z is in fact one for which different answers are
obtained when the paths are not homologous. We can see why this must be
so from what we already know about logarithms. Towards the end of the
previous chapter, it was noted that log z is an indefinite integral of 1/z. (In
fact, this was only stated for a real variable x, but the same reasoning that
obtains the real answer will also obtain the corresponding complex
answer. This is a general principle, applying to our other explicit formulae
also.) We therefore have
b

dz =logb — loga.

e Z

But recall, from §5.3, that there are different alternative ‘answers’ to a
complex logarithm. More to the point is that we can get continuously from
one answer to another. To illustrate this, let us keep « fixed and allow b to
vary. In fact, we are going to allow b to circle continuously once around
the origin in a positive (i.e. anticlockwise) sense (see Fig. 7.3a), restoring it
to its original position. Remember, from §5.3, that the imaginary part of
logb is simply its argument (i.e. the angle that » makes with the positive
real axis, measured in the positive sense; see Fig. 5.4b). This argument
increases precisely by 2n in the course of this motion, so we find that logb
has increased by 2mi (see Fig. 7.3b). Thus, the value of our integral is
increased by 2mi when the path over which the integral is performed winds
once more (in the positive sense) about the origin.

We can rephrase this result in terms of closed contours, the existence of
which is a characteristic and powerful feature of complex analysis. Let us
consider the difference between the second and the first of our two paths,
that is to say, we traverse the second path first and then we traverse the
first path in the reverse direction (Fig. 7.3c). We consider this difference in
the homologous sense, so we can cancel out portions that ‘double back’
and straighten out the rest, in a continuous fashion. The result is a closed
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(@
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Fig. 7.3 (a) Integrating z~!' dz from a to b gives log b—log a. (b) Keep « fixed, and
allow b to circle once anticlockwise about the origin, increasing log b in the answer
by 2mi. (¢) Then return to a backwards along original route. (d) When the part of
the path is cancelled from a, we are left with an anticlockwise closed contour
integral §z7! dz = 2mi.

—
a

path—or contour—that loops just once about the origin (see Fig. 7.3d),
and it is not concerned with the location of either a or b. This gives an
example of a (closed) contour integral, usually written with the symbol §,
and we find, in this example,l’-!]

d
4;—2 = 2mi.

z

Of course, when using this symbol, we must be careful to make clear which
actual contour is being used—or, rather, which homology class of contour
is being used. If our contour had wound around twice (in the positive
sense), then we would get the answer 4mi. If it had wound once around the
origin in the opposite direction (i.e. clockwise), then the answer would
have been —2mi.

It is interesting that this property of getting a non-trivial answer with
such a closed contour depends crucially on the multivaluedness of the
complex logarithm, a feature which might have seemed to be just an
awkwardness in the definition of a logarithm. We shall see in a moment
that this is not just a curiosity. The power of complex analysis, in effect,

@ [7.1] Explain why § z"dz = 0 when # is an integer other than —1.
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depends critically upon it. In the following two paragraphs, I shall outline
some of the implications of this sort of thing. I hope that non-mathemat-
ical readers can get something of value from the discussion. I believe that it
conveys something that is both genuine and surprising in the nature of
mathematical argument.

7.3 Power series from complex smoothness

The above displayed expression is a particular case (for the constant
function f(z) = 2ni) of the famous Cauchy formula which expresses the
value of a holomorphic function at the origin in terms of an integral
around a contour surrounding the origin:*

L (/@) ,
5 3@7@ = £(0).

Here, f(z) is holomorphic at the origin (i.e. complex-smooth throughout
some region encompassing the origin), and the contour is some loop just
surrounding the origin—or it could be any loop homologous to that one,
in the domain of the function with the origin removed. Thus, we have the
remarkable fact that what the function is doing at the origin is completely
fixed by what it is doing at a set of points surrounding the origin. (Cauchy’s
formula is basically a consequence of the Cauchy-Riemann equations,
together with the above expression §z~'dz = 2ni, taken in the limit of
small loops; but it would not be appropriate for me to go into the details of
all this here.)

If, instead of using 1/z in Cauchy’s formula, we use 1/z""!, where n is
some positive integer, we get a ‘higher-order’ version of the Cauchy formula,
yielding what turns out to be the nth derivative f *)(z) of f(z) at the origin:

2mi |zl

(Recall n! from §5.3.) We can see that this formula ‘has to be the right
answer’ by examining the power series for (z),”?! but it would be begging
the question to use this fact, because we do not yet know that the power
series expansion exists, or even that the nth derivative of f exists. All that
we know at this stage is that f(z) is complex-smooth, without knowing
that it can be differentiated more than once. However, we simply use this
formula as providing the definition of the nth derivative at the origin. We
can then incorporate this ‘definition’ into the Maclaurin formula
a, = f ™(0)/n! for the coefficients in the power series (see §6.4)

4 [7.2] Show this simply by substituting the Maclaurin series for f(z) into the integral.
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4

2
ag+ a1z + axz +a3z3+a4z 4+,

and with a bit of work we can prove that this series actually does sum to
f(z) in some region encompassing the origin. Consequently, the function
has an actual nth derivative at the origin as given by the formula.[”-3 This
contains the essence of the argument showing that complex smoothness in
a region surrounding the origin indeed implies that the function is actually
(complex-) analytic at the origin (i.e. holomorphic).

Of course, there is nothing special about the origin in all this. We can
equally well talk about power series about any other point p in the
complex plane and use Taylor’s series, as we did in §6.4. For this, we
simply displace the origin to the point p to obtain Cauchy’s formula in the
‘origin-shifted’ form

L[ f@
2mi {) c_p /@
and also the nth-derivative expression
21‘Ci % (Z _p),H,] dZ _f (p)y

where now the contour surrounds the point p in the complex plane. Thus,
complex smoothness implies analyticity (holomorphicity) at every point of
the domain.

I have chosen to demonstrate the basics of the argument that, locally,
complex smoothness implies analyticity, rather than simply request that
the reader take the result on trust, because it is a wonderful example of the
way that mathematicians can often obtain their results. Neither the prem-
ise (f(z) is complex-smooth) nor the conclusion (f(z) is analytic) contains a
hint of the notion of contour integration or of the multivaluedness of a
complex logarithm. Yet, these ingredients provide the essential clues to the
true route to finding the answer. It is difficult to see how any ‘direct’
argument (whatever that might be) could have achieved this. The key is
mathematical playfulness. The enticing nature of the complex logarithm
itself is what beguiles us into studying its properties. This intrinsic appeal
is apparently independent of any applications that the logarithm might
have in other areas. The same, to an even greater degree, can be said for
contour integration. There is an extraordinary elegance in the basic con-
ception, where topological freedom combines with explicit expressions

£5[7.3] Show all this at least at the level of formal expressions; don’t worry about the rigorous
justification.
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with exquisite precision.[-4 But it is not merely elegance: contour integra-
tion also provides a very powerful and useful mathematical technique in
many different areas, containing much complex-number magic. In particu-
lar, it leads to surprising ways of evaluating definite integrals and explicitly
summing various infinite series.[’>M7:61 Tt also finds many other applica-
tions in physics and engineering, as well as in other areas of mathematics.
Euler would have revelled in it all!

7.4 Analytic continuation

We now have the remarkable result that complex smoothness throughout
some region is equivalent to the existence of a power series expansion
about any point in the region. However, I should make it a little clearer
what a ‘region’ is to mean in this context. Technically, I mean what
mathematicians call an open region. We can express this by saying that if
a point « is in the region then there is a circle centred at @ whose interior is
also contained in the region. This may not be very intuitive, so let me give
some examples. A single point is not an open region, nor is an ordinary
curve. But the interior of the unit circle in the complex plane, that is, the set
of points whose distance from the origin is strictly less than unity, is an
open region. This is because any point strictly inside the circle, no matter
how close it is to the circumference, can be surrounded by a much smaller
circle whose interior still lies strictly within the unit circle (see Fig. 7.4). On
the other hand, the closed disc, consisting of points whose distance from
the origin is either less than or equal to unity, is not an open region,
because the circumference is now included, and a point on the circumfer-
ence does not have the property that there is a circle centred at that point
whose interior is contained within the region.

£3 [7.4] The function f'(z) is holomorphic everywhere on a closed contour I', and also within I"
except at a finite set of points where f has poles. Recall from §4.4 that a pole of order n at z = o
occurs where f(z) is of the form h(z)/(z — «)", where h(z) is regular at «. Show that
§ f(z)dz = 2mi x {sum of the residues at these poles}, where the residue at the pole o is
KD (@)/(n — 1)!

#5 [7.5] Show that fox xsinx dx = % by integrating ze”* around a closed contour I” consisting of
two portions of the real axis, from —R to —c¢ and from ¢ to R (with R > ¢ > 0) and two connecting
semi-circular arcs in the upper half-plane, of respective radii ¢ and R. Then let ¢ — 0 and R — oc.
#5 [7.6] Show that 1 +2%+3% +4%+ --» =% by integrating f(z) = z 2 cot mz (see Note 5.1)
around a large contour, say a square of side-length 2NV + 1 centred at the origin (N being a
large integer), and then letting N — oo. (Hint: Use Exercise [7.5], finding the poles of f(z) and their
residues. Try to show why the integral of f(z) around I' approaches the limiting value 0 as
N — 00.)

129



§7.4 CHAPTER 7

[ ) Fig. 7.4 The open unit disc |x|< 1. Any
{jfj - A : } »  point strictly inside, no matter how close to
o : the circumference, is surrounded by much
\ o o :'_/ smaller circle whose interior still lies strictly
N |y within unit circle. On the other hand, for

N the closed disc |x| =< 1, this fails for points
' on the boundary.

Let us now consider the domain®D of some holomorphic function f(z),
where we take D to be an open region. At every point of D, the function
f(2) is to be complex-smooth. Thus, in accordance with the above, if we
select any point p in D, then we have a convergent power series about p
that represents f(z) in a suitable region containing p. How big is this
‘suitable region’? It will tend to be the case that, for a particular p, the
power series will not work for the whole of D. Recall the circle of conver-
gence described in §4.4. This would be some circle centred at p (infinite
radius permitted) such that for points strictly within this circle the power
series will converge, but for points z strictly outside the circle it will not.
Suppose that f(z) has a singularity at some point ¢, namely a point that the
function f(z) cannot be extended to while remaining complex-smooth.
(For example, the origin ¢ = 0 is a singularity of the function f(z) = 1/z;
see §7.1. A singularity is sometimes referred to as a ‘singular point’ of the
function. A regular point is just a place where the function is non-singular,
and hence holomorphic.) Then the circle of convergence cannot be so large
that it contains ¢ in its interior. We therefore have a patchwork of circles
of convergence (usually infinite in number) which together cover the whole
of D, while generally no single circle will cover it. The case f(z) = 1/z
illustrates the issue (see Fig. 7.5). Here the domain D is the complex plane
with the origin removed. If we select a point p in D, we find that the circle
of convergence is the circle centred at p passing through the origin.[’-71 We
need an infinite number of such circles to cover the entire region D.

This leads us to the important issue of analytic continuation. Suppose
that we are given some function f(z) , holomorphic in some domain D, and
we consider the question: can we extend D to a larger region D’ so that f(z)
also extends holomorphically to D'? For example, f(z) might have been
given to us in the form of a power series, convergent within its particular
circle of convergence, and we might wish to extend f(z) outside that circle.

£3 [7.7] What is the power series, taken about the point p, for f(z) = 1/2?
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Fig. 7.5 For f(z) = 1/z, the
domain D is complex plane with the
origin removed. The circle of
convergence about any point p in D
is centred at p and passes through
the origin. To cover the whole of D
we need a patchwork (infinite) of
such circles.

Frequently this is possible. In §4.4, we considered the series
1 — 22 4 z* — 26 4+ ..., which has the unit circle as its circle of convergence;
yet it has the natural extension to the function (1 + z2)~!, which is holo-
morphic over the entire complex plane with only the two points +i and —i
removed. Thus, in this case, the function can indeed be analytically
extended far beyond the domain over which it was initially given.

Here, we were able to write down an explicit formula for the function, but
in other cases this may not be so easy. Nevertheless, there is a general
procedure according to which analytic continuation may frequently be
carried out. We can imagine starting in some small region where a locally
valid power series expression for the holomorphic function f(z) is known.
We might then go wandering off along some path, continuing the function as
we go by the repeated use of power series based at different points. For this,
we would use a sequence of points along the path and take a succession of
power series expressions successively about each of these points in turn. This
will work provided that the interiors of the successive circles of convergence
can be made to overlap (see Fig. 7.6). When this procedure can be carried
out, the resulting function is uniquely determined by the values of the
function in the initial region and on the path along which it is being con-
tinued.

Fig. 7.6 A holomorphic function
can be analytically continued, using
a succession of power series
expressions about a sequence of
points. This proceeds uniquely
Slngularlt along the connecting path,
assuming successive circles of
convergence overlap.

!
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There is thus a remarkable ‘rigidity’ about holomorphic functions, as
manifested in this process of analytic continuation. In the case of real C*-
functions, on the other hand, it was possible ‘to keep changing one’s mind’
about what the function is to be doing (as with the smoothly patched A(x)
of §6.3, which suddenly ‘takes off” after having been zero for all negative
values of x). This cannot happen for holomorphic functions. Once the
function is fixed in its original region, and the path is fixed, there is no
choice about how the function is to be extended. In fact, the same is true
for real-analytic functions of a real variable. They also have a similar
‘rigidity’, but now there is not much choice about the path either. It can
only be in one direction or the other along the real line. With complex
functions, analytic continuation can be more interesting because of this
freedom of the path within a two-dimensional plane.

To illustrate, consider our old friend logz. It certainly has no power
series expansion about the origin, as it has a singularity there. But if we
like, we can expand it about the point p = 1, say, to obtain the series!”-®!

logZ:(Z—l)—%(z—1)2—|—%(z—1)3—%(z—1)4—|—---~

The circle of convergence is the circle of unit radius centred at z = 1. Let us
imagine performing an analytic continuation along a path that circles the
origin in an anticlockwise direction. We could, if we choose, use power
series taken about the successive points 1, o, ®°, and back to 1, thus
returning to our starting point having encircled the origin once (Fig. 7.7).
Here I have used the three cube roots of unity, regularly placed around the
unit circle, namely 1, ® = ¢*™/3, and ®? = ¢*™/3, as discussed at the end of
§5.4, and the route around the origin can be taken as an equilateral

Fig. 7.7 Startatz =1,
analytically continuing f(z) = logz
along a path circling the origin
anticlockwise (expanding about
successive points 1, o, w?, 1;

o = e¥/3). We find 2ri gets added
to f.

£3 [7.8] Derive this series.
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triangle. Alternatively, I could have used 1,1, —1, —i, 1, which is slightly
less economical. In any case, there is no need to work out the power series,
since we already know the explicit answer for the function itself, namely
log z. The problem, of course, is that when we have gone once around the
origin, uniquely following the function as it goes, we find that we have
uniquely extended it to a value different from the one that we started with.
Somehow, 27i has got added to the function as we went around. Had we
chosen to proceed around the origin in the opposite direction, then we
should have found that 2ni would have been subtracted from the function
that we started from. Thus, the uniqueness of analytic continuation can be
quite a subtle thing, and it can definitely depend upon the path taken. For
‘many-valued’ functions more complicated than logz, we can get some-
thing much more elaborate than just adding a constant (like 2mi) to the
function.

As an aside, it is worth pointing out that the notion of analytic continu-
ation need not refer particularly to power series, despite the fact that |
have found it useful to employ them in some of my descriptions. For
example, there is another class of series that has great significance in
number theory, namely those called Dirichlet series. The most important
of these is the (Euler-)Riemann zeta function,® defined by the infinite sum’

Q) =17 4+27+37+47 457+

which converges to the holomorphic function denoted by {(z) when the
real part of z is greater than 1. Analytic continuation of this function
defines it uniquely (and ‘single-valuedly’) on the whole of the complex
plane but with the point z =1 removed. Perhaps the most important
unsolved mathematical problem today is the Riemann hypothesis, which
is concerned with the zeros of this analytically extended zeta function, that
is, with the solutions of {(z) = 0. It is relatively easy to show that {(z)
becomes zero for z = -2, —4, —6,...; these are the real zeros. The
Riemann hypothesis asserts that all the remaining zeros lie on the line
Re(z) = %, that is, {(z) becomes zero (unless z is a negative even integer)
only when the real part of z is equal to % All numerical evidence to date
supports this hypothesis, but its actual truth is unknown. It has funda-
mental implications for the theory of prime numbers.?

Notes

Section 7.1
7.1. To those readers wishing to explore these fascinating matters in greater geometric
detail, I strongly recommend Needham (1997).
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7.2. 1 shall give them in §10.5, after the notion of partial derivative has been intro-
duced.

Section 7.2

7.3. More explicitly, integration of f ‘along’ a path given by z = p(f) (where p is a
smooth complex-valued function p of a real parameter ) can be expressed as the
definite integral f: F)p' (ndt = f: f(2)dz), where p(u) is the initial point a of the
path and p(v) is its final point b.

Section 7.3

7.4. A ‘reason’ that Cauchy’s formula must be true is that for a small loop around the
origin, f(z) may actually be treated as the constant value f(0) and then the
situation reduces to that studied in §7.2.

7.5. Tt is one of the irritations of the terminology of this subject that the term ‘domain’
has two distinct meanings. The one that is not intended here is a ‘connected open
region in the complex plane’. Here, as before (see §6.1), I mean the region in the
complex plane where the function fis defined, which is not necessarily open or
connected.

7.6. The zeta function was first considered by Euler, but it is normally named after
Riemann, in view of his fundamental work involving the extension of this function
to the complex plane.

7.7. Note the curious ‘upside-down’ relation between this series and an ordinary
power series, namely for (—z) + (— (-2 P+ =—z(1+ 2) L

7.8. For further information on the {-function and Riemann hypothesis, see Apostol
(1976); Priestley (2003). For popular accounts, see Derbyshire (2003); du Sautoy
(2003); Sabbagh (2002); Devlin (1988, 2002).
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8
Riemann surfaces and complex mappings

8.1 The idea of a Riemann surface

THERE is a way of understanding what is going on with this analytic
continuation of the logarithm function—or of any other ‘many-valued
function’—in terms of what are called Riemann surfaces. Riemann’s idea
was to think of such functions as being defined on a domain which is not
simply a subset of the complex plane, but as a many-sheeted region. In the
case of log z, we can picture this as a kind of spiral ramp flattened down
vertically to the complex plane. I have tried to indicate this in Fig. 8.1. The
logarithm function is single-valued on this winding many-sheeted version
of the complex plane because each time we go around the origin, and 2mi
has to be added to the logarithm, we find ourselves on another sheet of the
domain. There is no conflict between the different values of the logarithm
now, because its domain is this more extended winding space—an example
of a Riemann surface—a space subtly different from the complex plane
itself.

Bernhardt Riemann, who introduced this idea, was one of the very
greatest of mathematicians, and in his short life (1826-66) he put forward
a multitude of mathematical ideas that have profoundly altered the course
of mathematical thought on this planet. We shall encounter some of his

Fig. 8.1 The Riemann surface for logz,
pictured as a spiral ramp flattened down
vertically.
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other contributions later in this book, such as that which underlies Ein-
stein’s general theory of relativity (and one very important contribution of
Riemann’s, of a different kind, was referred to at the end of Chapter 7).
Before Riemann introduced the notion of what is now called a ‘Riemann
surface’, mathematicians had been at odds about how to treat these so-
called ‘many-valued functions’, of which the logarithm is one of the
simplest examples. In order to be rigorous, many had felt the need to
regard these functions in a way that I would personally consider distaste-
ful. (Incidentally, this was still the way that I was taught to regard them
myself while at university, despite this being nearly a century after Rie-
mann’s epoch-making paper on the subject.) In particular, the domain of
the logarithm function would be ‘cut’ in some arbitrary way, by a line out
from the origin to infinity. To my way of thinking, this was a brutal
mutilation of a sublime mathematical structure. Riemann taught us we
must think of things differently. Holomorphic functions rest uncomfort-
ably with the now usual notion of a ‘function’, which maps from a fixed
domain to a definite target space. As we have seen, with analytic continu-
ation, a holomorphic function ‘has a mind of its own’ and decides itself
what its domain should be, irrespective of the region of the complex plane
which we ourselves may have initially allotted to it. While we may regard
the function’s domain to be represented by the Riemann surface associated
with the function, the domain is not given ahead of time; it is the explicit
form of the function itself that tells us which Riemann surface the domain
actually is.

We shall be encountering various other kinds of Riemann surface
shortly. This beautiful concept plays an important role in some of the
modern attempts to find a new basis for mathematical physics—most
notably in string theory (§§31.5,13) but also in twistor theory (§§33.2,10).
In fact, the Riemann surface for log z is one of the simplest of such
surfaces. It gives us merely a hint of what is in store for us. The function
z* perhaps is marginally more interesting than log z with regard to its
Riemann surface, but only when the complex number « is a rational
number. When « is irrational, the Riemann surface for z¢ has just the
same structure as that for log z, but for a rational a, whose lowest-terms
expression is @ = m/n, the spiralling sheets join back together again after n
turns.[®1 The origin z = 0 in all these examples is called a branch point. If
the sheets join back together after a finite number 7 of turns (as in the case
2"/ m and n having no common factor), we shall say that the branch
point has finite order, or that it is of order n. When they do not join after
any number of turns (as in the case log z), we shall say that the branch
point has infinite order.

46 [8.1] Explain why.
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Expressions like (1 — 23)1/ ? give us more food for thought. Here the
function has three branch points, at z=1, z= o, and z = ©> (where
o =e?M/3; see §5.4, §7.4), so 1 —z* =0, and there is another ‘branch
point at infinity’. As we circle by one complete turn, around each individ-
ual branch point, staying in its immediate neighbourhood (and for ‘infi-
nity’ this just means going around a very large circle), we find that the
function changes sign, and, circling it again, the function goes back to its
original value. Thus, we see that the branch points all have order 2. We
have two sheets to the Riemann surface, patched together in the way that I
have tried to indicate in Fig. 8.2a. In Fig. 8.2b, I have attempted to show,
using some topological contortions, that the Riemann surface actually has
the topology of a torus, which is topologically the surface of a bagel (or of
an American donut), but with four tiny holes in it corresponding to the
branch points themselves. In fact, the holes can be filled in unambiguously

(b)

Fig.8.2 (a) Constructing the Riemann surface for (1 — z*)"/? from two sheets, with
branch points of order 2 at 1, w, »? (and also o). (b) To see that the Riemann
surface for (1 — z%)'/? is topologically a torus, imagine the planes of (a) as two
Riemann spheres with slits cut from o to w? and from 1 to oo, identified along
matching arrows. These are topological cylinders glued correspondingly, giving a
torus. (c) To construct a Riemann surface (or a manifold generally) we can glue
together patches of coordinate space—here open portions of the complex plane.
There must be (open-set) overlaps between patches (and when joined there must be
no ‘non-Hausdorff branching’, as in the final case above; see Fig. 12.5b, §12.2).
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(with four single points), and the resulting Riemann surface then has
exactly the topology of a torus.[8-2]

Riemann’s surfaces provided the first instances of the general notion of a
manifold, which is a space that can be thought of as ‘curved’ in various ways,
but where, locally (i.e. in a small enough neighbourhood of any of its points),
it looks like a piece of ordinary Euclidean space. We shall be encountering
manifolds more seriously in Chapters 10 and 12. The notion of a manifold is
crucial in many different areas of modern physics. Most strikingly, it forms
an essential part of Einstein’s general relativity. Manifolds may be thought
of as being glued together from a number of different patches, where the
gluing job really is seamless, unlike the situation with the function /(x) at the
end of §6.3. The seamless nature of the patching is achieved by making sure
that thereis always an appropriate (open-set) overlap between one patch and
the next (see Fig. 8.2c and also §12.2, Fig. 12.5).

In the case of Riemann surfaces, the manifold (i.e. the Riemann surface
itself) is glued together from various patches of the complex plane corres-
ponding to the different ‘sheets’ that go to make up the entire surface. As
above, we may end up with a few ‘holes’ in the form of some individual
points missing, coming from the branch points of finite order, but these
missing points can always be unabiguously replaced, as above. For branch
points of infinite order, on the other hand, things can be more compli-
cated, and no such simple general statement can be made.

As an example, let us consider the ‘spiral ramp’ Riemann surface of the
logarithm function. One way to piece this together, in the way of a paper
model, would be to take, successively, alternate patches that are copies of (a)
the complex plane with the non-negative real numbers removed, and (b) the
complex plane with the non-positive real numbers removed. The top half of
each (a)-patch would be glued to the top half of the next (b)-patch, and the
bottom half of each (b)-patch would be glued to the bottom half of the next
(a)-patch; see Fig. 8.3. There is an infinite-order branch point at the origin
and also at infinity—but, curiously, we find that the entire spiral ramp is
equivalent just to a sphere with a single missing point, and this point can be
unambiguously replaced so as to yield simply a sphere.[8-3]

8.2 Conformal mappings

When piecing together a manifold, we have to consider what local struc-
ture has to be preserved from one patch to the next. Normally, one deals
with real manifolds, and the different patches are pieces of Euclidean space

£318.2] Now try (1 —24)"/°.

£3 [8.3] Can you see how this comes about? (Hint: Think of the Riemann sphere of the variable
w( = logz); see §8.3.)
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Fig. 8.3 We can construct the
Riemann surface for logz by
taking alternate patches of

(a) the complex plane with the
non-negative real axis removed,
and (b) the complex plane with
the non-positive real axis
removed. The top half each
(a)-patch is glued to the top half
of the next (b)-patch, and the
bottom half of each (b)-patch
glued to the bottom half of the
(@) (b) next (a)-patch.

(of some fixed dimension) that are glued together along various (open)
overlap regions. The local structure to be matched from one patch to
the next is normally just a matter of preserving continuity or smoothness.
This issue will be discussed in §10.2. In the case of Riemann surfaces,
however, we are concerned with complex smoothness, and we recall, from
§7.1, that this is a more sophisticated matter, invoving what are called
the Cauchy—Riemann equations. Although we have not seen them expli-
citly yet (we shall be coming to them in §10.5), it will be appropriate now
to understand the geometrical meaning of the structure that is encoded
in these equations. It is a structure of remarkable elegance, flexibility,
and power, leading to mathematical concepts with a great range of appli-
cation.

The notion is that of conformal geometry. Roughly speaking, in con-
formal geometry, we are interested in shape but not size, this referring to
shape on the infinitesimal scale. In a conformal map from one (open)
region of the plane to another, shapes of finite size are generally distorted,
but infinitesimal shapes are preserved. We can think of this applying to
small (infinitesimal) circles drawn on the plane. In a conformal map, these
little circles can be expanded or contracted, but they are not distorted into
little ellipses. See Fig. 8.4.

To get some understanding of what a conformal transformation can be
like, look at M. C. Escher’s picture, given in Fig. 2.11, which provides a
conformal representation of the hyperbolic plane in the Euclidean plane,
as described in §2.4 (Beltrami’s ‘Poincaré disc’). The hyperbolic plane is
very symmetrical. In particular, there are transformations which take the
figures in the central region of Escher’s picture to corresponding very tiny
figures that lie just inside the bounding circle. We can represent such a
transformation as a conformal motion of the Euclidean plane that takes
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Fig. 8.4 For a conformal map,
little (infinitesimal) circles can

be expanded or contracted, but
not distorted into little ellipses.

the interior of the bounding circle to itself. Clearly such a transformation
would not generally preserve the sizes of the individual figures (since the
ones in the middle are much larger than those towards the edge), but the
shapes are roughly preserved. This preservation of shape gets more and
more accurate, the smaller the detail of each figure that is being is exam-
ined, so infinitesimal shapes would indeed be completely unaltered. Per-
haps the reader would find a slightly different characterization more
helpful: angles between curves are unaltered by conformal transformation.
This characterizes the conformal nature of a transformation.

What does this conformal property have to do with the complex
smoothness (holomorphicity) of some function f(z)? We shall try to obtain
an intuitive idea of the geometric content of complex smoothness. Let us
return to the ‘mapping’ viewpoint of a function f and think of the relation
w = f(z) as providing a mapping of a certain region in z’s complex plane
(the domain of the function f) into w’s complex plane (the target); see Fig.
8.5. We ask the question: what local geometrical property characterizes
this mapping as being holomorphic? There is a striking answer. Holomor-
phicity of f is indeed equivalent to the map being conformal and non-
reflective (non-reflective—or orientation-preserving—meaning that the
small shapes preserved in the transformation are not reflected, i.e. not
‘turned over’; see end of §12.6).

The notion of ‘smoothness’ in our transformation w = f(z) refers to
how the transformation acts in the infinitesimal limit. Think of the real
case first, and let us re-examine our real function f(x) of §6.2, where the
graph of y = f(x) is illustrated in Fig. 6.4. The function f is smooth at

A Fig. 8.5 The map w = f(2)

has domain an open

N region in the complex
z-plane and target an open

» region in the complex

L/ w-plane. Holomorphicity

N L/ of f'is equivalent to this

being conformal and

z-plane w-plane non-reflective.

—h
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some point if the graph has a well-defined tangent at that point. We can
picture the tangent by imagining that a larger and larger magnification is
applied to the curve at that point, and, so long as it is smooth, the curve
looks more and more like a straight line through that point as the mag-
nification increases, becoming identical with the tangent line in the limit of
infinite magnification. The situation with complex smoothness is similar,
but now we apply the idea to the map from the z-plane to the w-plane. To
examine the infinitesimal nature of this map, let us try to picture the
immediate neighbourhood of a point z, in one plane, mapping this to the
immediate neighbourhood of w in the other plane. To examine the imme-
diate neighbourhood of the point, we imagine magnifying the neighbour-
hood of z by a huge factor and the corresponding neighbourhood of w by
the same huge factor. In the limit, the map from the expanded neighbour-
hood of z to the expanded neighbourhood of w will be simply a linear
transformation of the plane, but, if it is to be holomorphic, this must
basically be one of the transformations studied in §5.1. From this it follows
(by a little consideration) that, in the general case, the transformation from
z’s neighbourhood to w’s neighbourhood simply combines a rotation with
a uniform expansion (or contraction); see Fig. 5.2b. That is to say, small
shapes (or angles) are preserved, without reflection, showing that the map
is indeed conformal and non-reflective.

Let us look at a few simple examples. The very particular situations of
the maps provided by the adding of a constant b to z or of multiplying z by
a constant a, as considered already in §5.1 (see Fig. 5.2), are obviously
holomorphic (z + b and az being clearly differentiable) and are also obvi-
ously conformal. These are particular instances of the general case of the
combined (inhomogeneous-linear) transformation

w=az-+b.

Such transformations provide the Euclidean motions of the plane (without
reflection), combined with uniform expansions (or contractions). In fact,
they are the only (non-reflective) conformal maps of the entire complex
z-plane to the entire complex w-plane. Moreover, they have the very special
property that actual circles—not just infinitesimal circles—are mapped to
actual circles, and also straight lines are mapped to straight lines.
Another simple holomorphic function is the reciprocal function,

w = Z*I,
which maps the complex plane with the origin removed to the complex
plane with the origin removed. Strikingly, this transformation also maps
actual circles to actual circles®# (where we think of straight lines as being

[8.4] Show this.
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particular cases of circles—of infinite radius). This transformation, to-
gether with a reflection in the real axis, is what is called an inversion.
Combining this with the inhomogeneous linear maps just considered, we
get the more general transformation!8->]

az+b
w=—,
cz+d

called a bilinear or Mobius transformation. From what has been said
above, these transformations must also map circles to circles (straight
lines again being regarded as special circles). This Mobius transformation
actually maps the entire complex plane with the point —d/c¢ removed to
the entire complex plane with a/c removed—where, for the transformation
to give a non-trivial mapping at all, we must have ad # bc (so that the
numerator is not a fixed multiple of the denominator).

Note that the point removed from the z-plane is that value (z = —d/c)
which would give ‘w = o0’; correspondingly, the point removed from the
w-plane is that value (w = a/c) which would be achieved by z = c0’. In
fact, the whole transformation would make more global sense if we were to
incorporate a quantity ‘oo’ into both the domain and target. This is one
way of thinking about the simplest (compact) Riemann surface of all: the
Riemann sphere, which we come to next.

8.3 The Riemann sphere

Simply adjoining an extra point called ‘0o’ to the complex plane does not
make it completely clear that the required seamless structure holds in the
neighbourhood of oo, the same as everywhere else. The way that we can
address this issue is to regard the sphere to be constructed from two
‘coordinate patches’, one of which is the z-plane and the other the
w-plane. All but two points of the sphere are assigned both a z-coordinate
and a w-coordinate (related by the Md&bius transformation above). But
one point has only a z-coordinate (where w would be ‘infinity’) and
another has only a w-coordinate (where z would be ‘infinity’). We use
either z or w or both in order to define the needed conformal structure
and, where we use both, we get the same conformal structure using
either, because the relation between the two coordinates is holo-
morphic.

In fact, for this, we do not need such a complicated transformation
between z and w as the general Mobius transformation. It suffices to
consider the particularly simple Mobius transformation given by

46 [8.5] Verify that the sequence of transformations z +— Az + B, z +— z~!, z +— Cz 4+ D indeed
leads to a bilinear map.
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Fig. 8.6 Patching the Riemann sphere from the complex z- and w-planes, via
w=1/z, z=1/w. (Here, the z grid lines are shown also in the w-plane.) The
overlap regions exclude only the origins, z = 0 and w = 0 each giving ‘cc’ in the
opposite patch.

1
w=-—, z=—,
z

where z = 0 and w = 0, would each give oo in the opposite patch. I have
indicated in Fig. 8.6 how this transformation maps the real and imaginary
coordinate lines of z.

All this defines the Riemann sphere in a rather abstract way. We can see
more clearly the reason that the Riemann sphere is called a ‘sphere’ by
employing the geometry illustrated in Fig. 8.7a. I have taken the z-plane to
represent the equatorial plane of this geometrical sphere. The points of the
sphere are mapped to the points of the plane by what is called stereo-
graphic projection from the south pole. This just means that I draw a
straight line in the Euclidean 3-space (within which we imagine everything
to be taking place) from the south pole through the point z in the plane.
Where this line meets the sphere again is the point on the sphere that the
complex number z represents. There is one additional point on the sphere,
namely the south pole itself, and this represents z = co. To see how w fits
into this picture, we imagine its complex plane to be inserted upside down
(with w=1,1, —1, —1 matching z =1, —1, —1, i, respectively), and we
now project stereographically from the north pole (Fig. 8.7b).3%1 An
important and beautiful property of stereographic projection is that it
maps circles on the sphere to circles (or straight lines) on the plane.!

3 [8.6] Check that these two stereographic projections are related by w = z 1.
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1

z

The real circle

Riemann sphere of z = Riemann sphere of w=
0o ™ e

w-plane
(upside-down)

@ (b) (©

Fig. 8.7 (a) Riemann sphere as unit sphere whose equator coincides with the
unit circle in z’s (horizontal) complex plane. The sphere is projected (stereogra-
phically) to the z-plane along straight lines through its south pole, which itself
gives z = oo. (b) Re-interpreting the equatorial plane as the w-plane, depicted
upside down but with the same real axis, the stereographic projection is now
from the north pole (w = o0), where w = 1/z. (c) The real axis is a great circle
on this Riemann sphere, like the unit circle but drawn vertically rather than
horizontally.

Hence, bilinear (M&bius) transformations send circles to circles on the
Riemann sphere. This remarkable fact has a significance for relativity
theory that we shall come to in §18.5 (and it has deep relevance to spinor
and twistor theory; see §22.8, §24.7, §§33.2,4).

We notice that, from the point of view of the Riemann sphere, the real
axis is ‘just another circle’, not essentially different from the unit circle, but
drawn vertically rather than horizontally (Fig. 8.7c). One is obtained from
the other by a rotation. A rotation is certainly conformal, so it is given by
a holomorphic map of the sphere to itself. In fact every (non-reflective)
conformal map which takes the entire Riemann sphere to itself is achieved
by a bilinear (i.e. M&bius) transformation. The particular rotation that we
are concerned with can be exhibited explicitly as a relation between the
Riemann spheres of the complex parameters z and ¢ given by the bilinear
correspondencel®-7!

z—1 —t+1

t=——, =z —.
1z +1 t+1

In Fig. 8.8, I have plotted this correspondence in terms of the complex
planes of ¢ and z, where I have specifically marked how the upper half-
plane of ¢, bounded by its real axis, is mapped to the unit disc of z,
bounded by its unit circle. This particular transformation will have im-
portance for us in the next chapter.

[8.7] Show this.
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t-plane z-plane

Fig. 8.8 The correspondence t = (z — 1)/(iz +1), z = (— t+1)/(¢ + i) in terms of
the complex planes of ¢ and z. The upper half-plane of ¢, bounded by its real axis,
is mapped to the unit disc of z, bounded by its unit circle.

The Riemann sphere is the simplest of the compact—or ‘closed’—Rie-
mann surfaces.> See §12.6 for the notion of ‘compact’. By contrast, the
‘spiral ramp’ Riemann surface of the logarithm function, as I have de-
scribed it, 1s non-compact. In the case of the Riemann surface of (1 — 23)1/ 2,
we need to fill the four holes arising from the branch points to make it
compact (and it is non-compact if we do not do this), but this ‘compac-
tification’ is the usual thing to do. As remarked earlier, this ‘hole-filling’ is
always possible with a branch point of finite order. As we saw at the end of
§8.1, for the logarithm we can actually fill the branch points at the origin
and at infinity, both together, with a single point, to obtain the Riemann
sphere as the compactification. In fact, there is a complete classification of
compact Riemann sufaces (achieved by Riemann himself), which is im-
portant in many areas (including string theory). I shall briefly outline this
classification next.

8.4 The genus of a compact Riemann surface

The first stage is to classify the surfaces according to their topology, that is
to say, according to that aspect of things preserved by continuous trans-
formations. The topological classification of compact 2-dimensional orien-
table (see end of §12.6) surfaces is really very simple. It is given by a single
natural number called the genus of the surface. Roughly speaking, all we
have to do is count the number of ‘handles’ that the surface has. In the
case of the sphere the genus is 0, whereas for the torus it is 1. The surface of
an ordinary teacup also has genus 1 (one handle!), so it is topologically the
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Fig. 8.9 The genus of a
Riemann surface is its
number of ‘handles’. The
genus of the sphere is 0,
that of the torus, or teacup
surface is 1. The surface
of a normal pretzel has
genus 3.

same as a torus. The surface of a normal pretzel has genus 3. See Fig. 8.9
for several examples.

The genus does not in itself fix the Riemann surface, however, except for
genus 0. We also need to know certain complex parameters known as
moduli. Let me illustrate this issue in the case of the torus (genus 1). An
easy way to construct a Riemann surface of genus 1 is to take a region of
the complex plane bounded by a parallelogram, say with vertices
0, 1, 1+ p, p (described cyclicly). See Fig. 8.10. Now we must imagine
that opposite edges of the parallelogram are glued together, that is, the
edge from 0 to 1 is glued to that from p to 1 + p, and the edge from 0 to p is
glued to that from 1 to 1 + p. (We could always find other patches to cover
the seams, if we like.) The resulting Riemann surface is indeed topologic-
ally a torus. Now, it turns out that, for differing values of p, the resulting
surfaces are generally inequivalent to each other; that is to say, it is not
possible to transform one into another by means of a holomorphic map-
ping. (There are certain discrete equivalences, however, such as those
arising when p is replaced by 1 + p, by —p, or by 1/p.B8 Tt can be made
intuitively plausible that not all Riemann surfaces with the same topology

Fig. 8.10 To construct a Riemann surface of genus 1,
take a region of the complex plane bounded by a
parallelogram, vertices 0, 1, 1 + p, p (cyclicly), with
opposite edges identified. The quantity p provides a
modulus for the Riemann surface.

15 [8.8] Show that these replacements give holomorphically equivalent spaces. Find all the special
values of p where these equivalences lead to additional discrete symmetries of the Riemann surface.

146



Riemann surfaces and complex mappings §8.4

Fig. 8.11 Two inequivalent
torus-topology Riemann
surfaces.

can be equivalent, by considering the two cases illustrated in Fig. 8.11. In
one case I have chosen a very tiny value of p, and we have a very stringy
looking torus, and in the other case I have chosen p close to i, where the
torus is nice and fat. Intuitively, it seems pretty clear that there can be no
conformal equivalence between the two, and indeed there is none.

There is just this one complex modulus p in the case of genus 1, but
for genus 2 we find that there are three. To construct a Riemann surface of
genus 2 by pasting together a shape, in the manner of the parallelogram
that we used for genus 1, we could construct the shape from a piece of the
hyperbolic plane; see Fig. 8.12. The same would hold for any higher genus.
The number m of complex moduli for genus g, where g =2, ism = 3g — 3.

One might regard it as a little strange that the formula 3g — 3 for the
number of moduli works for all values of the genusg =2, 3,4, 5, ... butit
fails for g = 0 or 1. There is actually a ‘reason’ for this, which has to do
with the number s of complex parameters that are needed to specify the
different continuous (holomorphic) self-transformations of the Riemann
surface. For g=2, there are no such continuous self-transformations (al-
though there can be discrete ones), so s = 0. However, for g =1, the
complex plane of the parallelogram of Fig. 8.10 can be translated (moved
rigidly without rotation) in any direction in the plane. The amount (and
direction) of this displacement can be specified by a single complex param-
eter a, the translation being achieved by z — z +a,sos = 1 wheng = 1. In
the case of the sphere (genus 0), the self-transformations are achieved by the
bilinear transformations described above, namely z — (az + b)/(cz + d).

Fig. 8.12 An octagonal region of the
hyperbolic plane, with identifications to
yield a genus-2 Riemann surface.
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Fig. 8.13 Every

g = 0 metric
geometry is
conformally
identical to that

of the standard
(‘round’) unit sphere.

Here, the freedom is given by the three® independent ratios @ : b : ¢ : d.
Thus, in the case g = 0, we have s = 3. Hence, in all cases, the difference
m — s between the number of complex moduli and the number of complex
parameters required to specify a self-transformation satisfies

m—s=3g—3.

(This formula is related to some deeper issues that are beyond the scope of
this book.%)

It is clear that there is some considerable freedom, within the family of
conformal (holomorphic) transformations, for altering the apparent
‘shape’ of a Riemann surface, while keeping its structure as a Riemann
surface unaltered. In the case of spherical topology, for example, many
different metrical geometries are possible (as is illustrated in Fig. 8.13); yet
these are all conformally identical to the standard (‘round’) unit sphere.
(I shall be more explicit about the notion of ‘metric’ in §14.7.) Moreover,
for higher genus, the seemingly large amount of freedom in the ‘shape’ of
the surface can all be reduced down to the finite number of complex
moduli given by the above formulae. But there is still some overall infor-
mation in the shape of the surface that cannot be eliminated by the use of
this conformal freedom, namely that which is defined by the moduli
themselves. Exactly how much can be achieved globally by the use of
such freedom is quite a subtle matter.

8.5 The Riemann mapping theorem

Some appreciation of the considerable freedom involved in holomorphic
transformations can, however, be obtained from a famous result known as
the Riemann mapping theorem. This asserts that if we have some closed
region in the complex plane (see Note 8.1), bounded by a non-self-intersect-
ing closed loop, then there exists a holomorphic map matching this
region to the closed unit disc (see Fig. 8.14). (There are some mild restric-
tions on the ‘tameness’ of the loop, but these do not prevent the loop from
having corners or other worse kinds of place where the loop may be not
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A

Y

Fig. 8.14 The Riemann mapping theorem asserts that any open region in the
complex plane, bounded by a simple closed (not necessarily smooth) loop, can be
mapped holomorphically to the interior of the unit circle, the boundary being also
mapped accordingly.

differentiable, as is illustrated in the particular example of Fig. 8.14.) One
can go further than this and select, in a quite arbitrary way, three distinct
points a, b, ¢ on the loop, and insist that they be taken by the map to three
specified points @', b, ¢’ on the unit circle (say @ = 1, ' = o, ¢ = ©?), the
only restriction being that the cyclic ordering of the points «, b, ¢, around
the loop agrees with that of &, b, ¢ around the unit circle. Furthermore,
the map is then determined uniquely. Another way of specifying the map
uniquely would be to choose just one point ¢ on the loop and one
additional point j inside it, and then to insist that ¢ maps to a specific
point &' on the unit circle (say ¢’ = 1) and j maps to a specific point ;' inside
the unit circle (say j/ = 0).

Now, let us imagine that we are applying the Riemann mapping theorem
on the Riemann sphere, rather than on the complex plane. From the point of
view of the Riemann sphere, the ‘inside’ of a closed loop is on the same
footing as the ‘outside’ of the loop (just look at the sphere from the other
side), so the theorem can be applied equally well to the outside as to the inside
of the loop. Thus, there is an ‘inverted’ form of the Riemann mapping
theorem which asserts that the outside of a loop in the complex plane can
be mapped to the outside of the unit circle and uniqueness is now ensured by
the simple requirement that one specified point a on the loop maps to one
specified point ¢’ on the unit circle (say @’ = 1), where now oo takes over the
role of jand ' in the description provided at the end of the above paragraph).>

Often such desired maps can be achieved explicitly, and one of the
reasons that such maps might indeed be desired is that they can provide
solutions to physical problems of interest, for example to the flow of air past
an aerofoil shape (in the idealized situation where the flow is what is called
‘non-viscous’, ‘incompressible’, and ‘irrotational’). I remember being very
struck by such things when I was an undergraduate mathematics student,
most particularly by what is known as the Zhoukowski (or Joukowski)
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w-plane

z-plane

Fig. 8.15 Zhoukowski’s transformation w = %(2 + 1/z) takes the exterior of a
circle through z = —1 to an aerofoil cross-section, enabling the airflow pattern
about the latter to be calculated.

aerofoil transformation, illustrated in Fig. 8.15, which can be given expli-
citly by the effect of the transformation

1
w= 1/2(24—;),

on a suitable circle passing through the point z = —1. This shape indeed
closely resembles a cross-section through the wing of an aeroplane of the
1930s, so that the (idealized) airflow around it can be directly obtained
from that around a ‘wing’ of circular cross-section—which, in turn, is
obtained by another such holomorphic transformation. (I was once told
that the reason that such a shape was so commonly used for aeroplane
wings was merely that then one could study it mathematically by just
employing the Zhoukowski transformation. I hope that this is not true!)
Of course, there are specific assumptions and simplifications involved in
applications such as these. Not only are the assumptions of zero viscosity
and incompressible, irrotational flow mere convenient simplifications, but
there is also the very drastic simplification that the flow can be regarded as
the same all along the length of the wing, so that an essentially three-
dimensional problem can be reduced to one entirely in two dimensions. It
is clear that for a completely realistic computation of the flow around an
aeroplane wing, a far more complicated mathematical treatment would be
needed. There is no reason to expect that, in a more realistic treatment, we
could get away with anything approaching such a direct and elegant use of
holomorphic functions as we have with the Zhoukowski transformation.
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It could, indeed, be argued that there is a strong element of good fortune in
finding such an attractive application of complex numbers to a problem
which had a distinctive importance in the real world. Air, of course,
consists of enormous numbers of individual fundamental particles (in
fact, about 10?° of them in a cubic centimetre), so airflow is something
whose macroscopic description involves a considerable amount of aver-
aging and approximation. There is no reason to expect that the mathemat-
ical equations of aerodynamics should reflect a great deal of the
mathematics that is deeply involved in the physical laws that govern
those individual particles.

In §4.1, I referred to the ‘extraordinary and very basic role’ that complex
numbers actually play at the ‘tiniest scales’ of physical action, and there is
indeed a holomorphic equation governing the behaviour of particles (see
§21.2). However, for macroscopic systems, this ‘complex structure’ gener-
ally becomes completely buried, and it would appear that only in excep-
tional circumstances (such as in the airflow problem considered above)
would complex numbers and holomorphic geometry find a natural utility.
Yet there are circumstances where a basic underlying complex structure
shows through even at the macroscopic level. This can sometimes be seen
in Maxwell’s electromagnetic theory and other wave phenomena. There is
also a particularly striking example in relativity theory (see §18.5). In the
following chapter, we shall see something of the remarkable way in which
complex numbers and holomorphic functions can exert their magic from
behind the scenes.

Notes

Section 8.3

8.1. See Exercise [2.5].

8.2. There is scope for terminological confusion in the use of the word ‘closed’ in the
context of surfaces—or of the more general manifolds (n-surfaces) that will be
considered in Chapter 12. For such a manifold, ‘closed’ means ‘compact without
boundary’, rather than merely ‘closed’ in the topological sense, which is the
complementary notion to ‘open’ as discussed in §7.4. (Topologically, a closed set
is one that contains all its limit points. The complement of a closed set is an open
one, and vice versa—where ‘complement’ of a set S within some ambient
topological space V is the set of members of V which are not in S.) There is
additional confusion in that the term ‘boundary’, above, refers to a notion of
‘manifold-with-boundary’, which I do not discuss in this book. For the ordinary
manifolds referred to in Chapter 12 (i.e. manifolds-without-boundary), the mani-
fold notion of ‘closed’ (as opposed to the topological one) is equivalent to
‘compact’. To avoid confusion, I shall normally just use the term ‘compact’, in
this book, rather than ‘closed’. Exceptions are the use of ‘closed curve’ for a real
1-manifold which is topologically a circle S' and ‘closed universe’ for a universe
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model which is spatially compact, that is, which contains a compact spacelike
hypersurface; see §27.11.

Section 8.4

8.3. The transformation is unaffected if we multiply (rescale) each of «, b, ¢, d by the
same non-zero complex number, but it changes if we alter any of them individu-
ally. This overall rescaling freedom reduces by one the number of independent
parameters involved in the transformation, from four to three.

8.4. This may be thought of as the beginning of a long story whose climax is the very
general and powerful Atiyah-Singer (1963) theorem.

Section 8.5

8.5. It should be noted that only for a loop that is an exact circle will the combination
of both versions of the Riemann mapping theorem give us a complete smooth
Riemann sphere.
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Fourier decomposition and hyperfunctions

9.1 Fourier series

LET us return to the question, raised in §6.1, of what Euler and his
contemporaries might have regarded as an acceptable notion of ‘honest
function’. In §7.1, we settled on the holomorphic (complex-analytic) func-
tions as best satisfying what Euler might well have had in mind. Yet, most
mathematicians today would regard such a notion of a ‘function’ as being
unreasonably restrictive. Who is right? We shall be coming to a very
remarkable answer to this question at the end of this chapter. But first
let us try to understand what the issues are.

In the application of mathematics to problems of the physical world, it
is a frequent requirement that there be a flexibility that neither the holo-
morphic functions nor their real counterparts—the analytic (i.e. C®-)
functions—appear to possess. Because of the uniqueness of analytic con-
tinuation, as described in §7.4, the global behaviour of a holomorphic
function defined throughout some connected open region D of the com-
plex plane, is completely fixed, once it is known in some small open
subregion of D. Similarly, an analytic function of a real variable, defined
on some connected segment R of the real line IR is also completely fixed
once the function is known in some small open subregion of R. Such
rigidity seems inappropriate for the realistic modelling of physical systems.

It would be particularly awkward when the propagation of waves is
under consideration. Wave propagation, which includes the sending of
signals via the electromagnetic vibrations of radio waves or light, gains
much of its utility from the fact that information can be transmitted by
such means. The whole point of signalling, after all, is that there must be
the potential for sending a message that might be unexpected by the
receiver. If the form of the signal has to be given by an analytic function,
then there is not the possibility of ‘changing one’s mind’ in the middle of
the message. Any small part of the signal would completely fix the signal in
its entirety for all time. Indeed, wave propagation is frequently studied in
terms of the question as to how discontinuities, or other deviations from
analyticity, will actually propagate.
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Let us consider waves and ask how such things are described mathemat-
ically. One of the most effective ways of studying wave forms is through
the procedure known as Fourier analysis. Joseph Fourier was a French
mathematician who lived from 1768 until 1830. He had been concerned
with the question of decomposing periodic vibrations into their compon-
ent ‘sine-wave’ parts. In music, this is basically what is involved in repre-
senting some musical sound in terms of its constituent ‘pure tones’. The
term ‘periodic’ means that the pattern (say of physical displacements of the
object which is vibrating) exactly repeats itself after some period of time,
or it could refer to periodicity in space, like the repeating patterns in a
crystal or on wallpaper or in waves in the open sea. Mathematically, we
say that a function f (say! of a real variable y) is periodic if, for all y, it
satisfies

SG+D=s(-

where [ is some fixed number referred to as the period. Thus, if we ‘slide’
the graph of y = f(y) along the y-axis by an amount /, it looks just the
same as it did before (Fig. 9.1a). (The way in which Fourier handled
functions that need not be periodic—by use of the Fourier transform—
will be described in §9.4.)

The ‘pure tones’ are things like sin y or cosy (Fig. 9.1b). These have
period 2w, since

sin (y + 2m) = siny, cos(y + 2m) = cosy,

these relations being manifestations of the periodicity of the single com-
plex quantity e'* = cosy +1isiny,

ei(z+2n) — Cil,
which we encountered in §5.3. If we want periodicity /, rather than 2m, then
we can ‘rescale’ the y as it appears in the function, and take e2/! instead
of e'. The real and imaginary parts cos (2ry/[) and sin (2rty/[) will corres-
pondingly also have period /. But this is not the only possibility. Rather
than oscillating just once, in the period /, the function could oscillate twice,
three times, or indeed n times, where n is any positive integer (see Fig.
9.1c), so we find that each of

2nn)
os< / 4)

ei<2nn;(/l sin <27WX>
) )
has period / (in addition to having also a smaller period /n). In music,
these expressions, for n =2, 3, 4, ..., are referred to as higher harmonics.

One problem that Fourier addressed (and solved) was to find out how to
express a general periodic function f(y), of period /, as a sum of pure tones.
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Fig. 9.1 Periodic functions. (a) f(x) has period [ if f(y)=f(y + 1) for all y,
meaning that if we slide the graph of y=f(y) along the y-axis by /, it looks just
the same as before. (b) The basic ‘pure tones’ sin y or cos y (shown dotted) have
period /=2mr. (¢) ‘Higher harmonic’ pure tones oscillate several times in the period
[; they still have period /, while also having a shorter period (sin 3y is illustrated,
having period /=2n as well as the shorter period 2n/3).

For each n, there will generally be a different magnitude of that pure tone’s
contribution to the total, and this will depend upon the wave form (i.e. upon
the shape of the graph y = f()). Some simple examples are illustrated in
Fig. 9.2. Usually, the number of different pure tones that contribute to 1 (y)
will be infinite, however. More specifically, what Fourier required was the
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Fig. 9.2 Examples of Fourier decomposition of periodic functions. The wave
form (shape of the graph) is determined by the Fourier coefficients. The functions
and their individual Fourier components beneath. (a) f(x) = % +2siny + %
cos2y + §sin2y +1sin3y. (b) f(x) =1+ siny — 1 cos2y — Lsin2y — Lsin3y.
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collection of coefficients ¢, ai, by, a2, by, as, b3, a4, in the decomposition
of f(y) into its constituent pure tones, as given by the expression

S() = ¢+ aicoswy + by sinwy + a; cos 2wy + by sin 2wy -+
az cos 3wy + by sin 3wy + - -,

where, in order to make the expressions look simpler, I have written them
in terms of the angular frequency o (nothing to do with the ‘@’ of §§5.4,5,
§8.1) given by w = 2n/I.

Some readers may well feel that this expression for f(y) still looks
unduly complicated—and such a reader is indeed correct. The formula
actually looks a lot tidier if we incorporate the cos and sin terms together
as complex exponentials (e4% = cos Ay +isin Ay), so that

FG) =+ o 2% 4o e 4 o + 1€ + 0 4 el 4 -
where? 1]

Ay = 0y + 0y, b, =10, — 10_,, c=0y
forn=1,2, 3, 4, ... . The expression looks even tidier if we put z = €%,

and define the function F(z) to be just the same quantity as f(y) but now
expressed in terms of the new complex variable z. For then we get

F)=-+oaaz 4o 1z +ap +ouz' + o + o328 + -+,

where

F(2) = F(e") = f(0).

And we can make it look tidier still by using the summation sign ) ., which
here means ‘add together all the terms, for all integer values of r’:

F(z) = Z o,z

This looks like a power series (see §4.3), except that there are negative as
well as positive powers. It is called a Laurent series. We shall be seeing the
importance of this expression in the next section.-?]

9.2 Functions on a circle

The Laurent series certainly gives us a very economical way of represent-
ing Fourier series. But this expression also suggests an interesting

49 [9.1] Show this.

[9.2] Show that when F is analytic on the unit circle the coefficients o,, and hence the a,, b,,
and ¢, can be obtained by use of the formula o, = 2ni)~! § z"1F(z) dz.
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Period =/ ': - o

Fig. 9.3 A periodic function of a real variable y may be thought of as defined on
a circle of circumference / where we ‘wrap up’ the real axis of y into the circle. With
/=2n, we may take this circle as the unit circle in the complex plane.

alternative perspective on Fourier decomposition. Since a periodic func-
tion simply repeats itself endlessly, we may think of such a function (of a
real variable y) as being defined on a circle (Fig. 9.3), where the function’s
period [ is the length of the circle’s circumference, y measuring distance
around the circle. Rather than simply going off in a straight line, these
distances now wrap around the circle, so that the periodicity is automatic-
ally taken into account.

For convenience (at least for the time being), I take this circle to be the
unit circle in the complex plane, whose circumference is 2r, and I take the
period / to be 2rn. Accordingly,

w=1, soz=-e"

(For any other value of the period, all we need to do is to reinstate ® by
rescaling the y-variable appropriately.) The different cos and sin terms that
represent the various ‘pure tones’ of the Fourier decomposition are now
simply represented as positive or negative powers of z, namely z*” for the
nth harmonics. On the unit circle, these powers just give us the oscillatory
cos and sin terms that we require; see Fig. 9.4.

We now have this very tidy way of representing the Fourier decom-
position of some periodic function f(y). We think of f(y) = F(z) as
defined on the unit circle in the z-plane, with z =e", and then the
Fourier decomposition is just the Laurent series description of this
function, in terms of a complex variable z. But the advantage is not
just a matter of tidiness. This representation also provides us with deeper
insights into the nature of Fourier series and of the kind of function
that they can represent. More significantly for the eventual purpose of
this book, it has important connections with quantum mechanics and,
therefore, for our deeper understanding of Nature. This comes about
through the magic of complex numbers, for we can also use our Laurent
series expression when z lies away from the unit circle. It turns out that
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Fig. 9.4 On the unit circle,
the real and imaginary parts
of the function z”" appear as
nth harmonic cos and sin
waves (the real and imagin-
ary parts of e/, respectively,
where z = e). Here, for

n =5, the real part of z° is
plotted.

this series tells us something important about F(z), for z lying on the
unit circle, in terms of what the series does when z lies off the unit
circle.

Now, let us recall (from §4.4) the notion of a circle of convergence,
within which a power series converges and outside of which it diverges.
There is a close analogue of this for a Laurent series: the annulus of
convergence. This is the region lying strictly between two circles in
the complex plane, both centred at the origin (see Fig. 9.5a). This is
simple to understand once we have the notion of circle of convergence
for an ordinary power series. The part of the series with positive
powers,?

(@ (b)
Fig. 9.5 (a) The annulus of convergence for a Laurent series F(z)=F "+ oy + F~,
where FT=-- 4o sz 24+ a_1z7 !, F-=0az' + 022 + ---- The radius of conver-

gence for F* is A and, in terms of w = z~!, for F~ is B~!'. (b) The same, on the
Riemann sphere (see Fig. 8.7), where z refers to the extended northern hemisphere
and w (= z~') to the extended southern hemisphere.
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F =o' +wmz? oz +...,

will have an ordinary circle of convergence, of radius 4, say, and that part
of the series converges for all values of z whose modulus is less than A.
With regard to the part of the series with negative powers, that is,

Fr= 4oz 4oz 240 427",
we can understand it as just an ordinary power series in the reciprocal
variable w = 1/z. There will be a circle of convergence in the w-plane, of
radius 1/B, say, and that part of the series will converge for values of w
whose modulus is smaller than 1/B. (We are really talking about the
Riemann sphere here, as described in Chapter 8—see Fig. 8.7, with the
z-coordinate referring to one hemisphere and the w-coordinate referring to
the other. See Fig. 9.5b. We shall explore the Riemann sphere aspect of
this in the next section.) For values of z whose moduli are greater than B,
therefore, the negative-power part of the series will converge. Provided
that B < A, these two convergence regions will overlap, and we get the
annulus of convergence for the entire Laurent series. Note that the whole
Fourier or Laurent series for the function f(y) = F (eil ) = F(z) is given by

FGz)y=F"+ay+F,

where the additional constant term o must be included.

In the present situation, we ask for convergence on the unit circle, since
this is where we can have z = e for real values of y, and the question of
the convergence of our Fourier series for f(y) is precisely the question
of the convergence of the Laurent series for F(z) when z lies on the unit
circle. Thus, we seem to need B < 1 < A4, ensuring that the unit circle
indeed lies within the annulus of convergence. Does this mean that, for
convergence of the Fourier series, we necessarily require the unit circle to
lie within the annulus of convergence?

This would indeed be the case if f(y) is analytic (i.e. C®); for then the
function f(y) can be extended to a function F(z) that is holomorphic
throughout some open region that includes the unit circle.* But, if f(y) is
not analytic, an interesting question arises. In this case, either the annulus of
convergence shrinks down to become the unit circle itself—which, strictly
speaking, is not allowed for a genuine annulus of convergence, because the
annulus of convergence ought to be an open region, which the unit circle is
not—or else the unit circle becomes the outer or inner boundary of the
annulus of convergence. These questions will be important for us in §§9.6,7.

For the moment, let us not worry about what happens when f(y) in not
analytic, and consider the simpler situation that arises when f(y) is ana-
lytic. Then we have the unit circle in the z-plane strictly contained within a
genuine annulus of convergence for F(z), this being bounded by circles
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(centred at the origin) of radii A and B, with B <1 < A. The part of
the Laurent series with positive powers, F~, converges for points in the
z-plane whose moduli are smaller than 4 and the part with negative
powers, F, converges for points in the z-plane whose moduli are greater
than B, so both converge within the annulusitself (and, in a very trivial sense,
the constant term oy obviously ‘converges’ for all z). This provides us with a
‘splitting’ of the function F{(z) into two parts, one holomorphic inside the
outer circle and the other holomorphic outside the inner circle, these being
defined, respectively, by the series expressions for F~ and F+.

There is a (mild) ambiguity about whether the constant term ay is to be
included with F~ or with F* in this splitting. In fact, it is better just to live
with this ambiguity. For there is a symmetry between F~ and F, which is
made clearer if we adopt the Riemann sphere picture that was alluded to
above (see Fig. 9.5b). This gives us a more complete picture of the
situation, so let us explore this next.

9.3 Frequency splitting on the Riemann sphere

The coordinates z and w (= 1/z) give us two patches covering the Riemann
sphere. The unit circle becomes the equator of the sphere and the annulus is
now just a ‘collar’ of the equator. We think of our splitting of F(z) as
expressing it as a sum of two parts, one of which extends holomorphically
into the southern hemisphere—called the positive-frequency part of F(z)—as
defined by F*(z), together with whatever portion of the constant term we
choose to include, and the other, extending holomorphically into the north-
ern hemisphere—called the negative-frequency part of F(z)—as defined by
F~(z) and the remaining portion of the constant term. If we ignore the
constant term, this splitting is uniquely determined by this holomorphicity
requirement for the extension into one or other of the two hemispheres.[°-3!

It will be handy, from time to time, to refer to the ‘inside’ and the
‘outside’ of a circle (or other closed loop) drawn on the Riemann sphere by
appealing to an orientation that is to be assigned to the circle. The standard
orientation of the unit circle in the z-plane is given in terms of the direction
of increase of the standard 6-coordinate, i.e. anticlockwise. If we reverse
this orientation (e.g. replacing 6 by —6), then we interchange positive with
negative frequency. Our convention for a general closed loop is to be
consistent with this. The orientation is anticlockwise if the ‘clock face’ is
on the inside of the loop, so to speak, whereas it would be clockwise if the
‘clock face’ were to be placed on the outside of the loop. This serves to
define the ‘inside’ and ‘outside’ of an oriented closed loop. Figure 9.6
should clarify the issue.

[9.3] Can you see why?
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/" Outside

Inside

Fig. 9.6 An orientation assigned to a closed loop
on the Riemann sphere defines its ‘inside’ and
‘outside’ as indicated: this orientation is anti-
clockwise for a ‘clock face’ inside the loop (and
clockwise if outside).

This splitting of a function into its positive- and negative-frequency
parts is a crucial ingredient of quantum theory, and most particularly of
quantum field theory, as we shall be seeing in §24.3 and §§26.2-4. The
particular formulation that I have given here is not quite the most usual
way that this splitting is expressed, but it has some considerable advan-
tages in a number of different contexts (particularly in twistor theory, for
example; see §33.10). The usual formulation is not so concerned with
holomorphic extensions as with the Fourier expansion directly. The posi-
tive-frequency components are those given by multiples of e "%, where # is
positive, as opposed to those given by multiples of ", which are negative-
frequency components. A positive-frequency function is one composed
entirely of positive-frequency components.

However, this description does not reveal the full generality of what is
involved in this splitting. There are many holomorphic mappings of the
Riemann sphere to itself which send each hemisphere to itself, but which
do not preserve the north or south poles (i.e. the points z=0 or
z = 00).P4 These preserve the positive/negative-frequency splitting but
do not preserve the individual Fourier components e " or ¢". Thus,
the issue of the splitting into positive and negative frequencies (crucial to
quantum theory) is a more general notion than the picking out of individ-
ual Fourier components.

In normal discussions of quantum mechanics, the positive/negative-
frequency splitting refers to functions of time ¢, and we do not usually
think of time as going round in a circle. But we can use a simple trans-
formation to obtain the full range of ¢, from the ‘past limit’ # = —oco to the
‘future limit’ t = oo, from a y that goes once around the circle—here I take
% to range between the limits y = —m and y = = (so z = e'¥ ranges round
the unit circle in the complex plane, in an anticlockwise direction, from the
point z = —1 and back to z = —1 again; see Fig. 9.7). Such a transform-
ation is given by

3 [9.4] Which are these mappings, explicitly?
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Fig. 9.7 In quantum mechanics, positive/negative-frequency splitting refers to
functions of time ¢, not assumed periodic. The splitting of Fig. 9.5 can still be
applied, for the full range of ¢ (from —oo to = +00) if we use the transformation of

relating ¢ to z(= '), where we go around unit circle, anticlockwise, from z = —1
and back to z = —1 again, so y goes from —x to 7.
=t !
=tan—-y.
3 X

The graph of this relationship is given in Fig. 9.8 and a simple geometrical
description is provided in Fig. 9.9.

An advantage of this particular transformation is that it extends holo-
morphically to the entire Riemann sphere, this being a transformation that
we already considered in §8.3 (see Fig. 8.8), which takes the unit circle
(z-plane) into the real line (z-plane):°-]

z—1 —t+1

t—f, zZ = —.
1z +1 r+1

The interior of the unit circle in the z-plane corresponds to the upper half-
t-plane and the exterior of the z-unit circle corresponds to the lower half-
t-plane. Hence, positive-frequency functions of ¢ are those that extend
holomorphically into the lower half-plane of ¢ and negative-frequency
ones, into the upper half-plane. (There is, however, a significant additional

4

X=T

Fig. 9.8 Graph of
t = tany/2.

X=-T

[9.5] Show that this gives the same 7 as above.
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Y

Fig. 9.9 Geometry of
t =tanj

technicality that we have to be careful about how we deal with the point
‘00’ of the r-plane; but this is handled appropriately if we always think in
terms of the Riemann sphere, rather than simply the complex ¢-plane.)

In standard presentations, however, the notion of ‘positive frequency’ in
terms of a time-coordinate ¢, is not usually stated in the particular way that
I have just presented it here, but rather in terms of what is called the
Fourier transform of f(y). The answer is actually the same? as the one that I
have given, but since Fourier transforms are of crucial significance for
quantum mechanics in any case (and also in many other areas), it will be
important to explain here what this transform actually is.

9.4 The Fourier transform

Basically, a Fourier transform is the limiting case of a Fourier series when
the period / of our periodic function f(y) is taken to get larger and larger
until it becomes infinite. In this infinite limit, there is no restriction of
periodicity on f(y) at all: it is just an ordinary function.® This has consider-
able advantages when we are studying wave propagation and the potential
for sending of ‘unexpected’ signals. For then we do not want to insist that
the form of the signal be periodic. The Fourier transform allows us to
consider such ‘one-off” signals, while still analysing them in terms of
periodic ‘pure tones’. It achieves this, in effect, by considering our function
f(y) to have period / — oo. As the period / gets larger, the pure-tone
harmonics, having period //n for some positive integer n, will get closer
and closer to any positive real number we choose. (Recall that any real
number can be approximated arbitrarily closely by rationals, for example.)
What this tells us is that any pure tone of any frequency whatever is now
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allowed as a Fourier component. Rather than having f(y) expressed as
a discrete sum of Fourier components, we now have f(y) expressed
as a continuous sum over all frequencies, which means that f(y) is now
expressed as an integral (see §6.6) with respect to the frequency.

Let us see, in outline, how this works. First, recall our ‘tidiest’ expres-
sion for the Fourier decomposition of a periodic function f(y), of period /,
as given above:

F(z)= Z a,z", where z=¢'%

(the angular frequency o being given by w = 2n//). Let us take the period to
be initially 2m, so @ = 1. Now we are going to try to increase the period by
some large integer factor N (whence / = 2nN), so the frequency is reduced
by the same factor (i.e. @ = N~!). The oscillatory wave that used to be the
fundamental pure tone now becomes the Nth harmonic with respect to this
new lower frequency. A pure tone that used to be an nth harmonic would
now be an (nN)th harmonic. When we take the limit as N approaches
infinity, it becomes inappropriate to try to keep track of a particular
oscillatory component by labelling it by its ‘harmonic number’ (i.e. by the
number 77), because this number keeps changing. That is to say, it is inappro-
priate to label this oscillatory component by the integer r in the above sum
because a fixed value of r labels a particular harmonic (r = +n for the nth
harmonic), rather than keeping track of a particular tone frequency. In-
stead, itis /N that keeps track of this frequency, and we need a new variable
to label this. Bearing in mind the important use that Fourier transforms are
due to be put to in later chapters (see §21.11 particularly), I shall call this
variable ‘p’ which, in the limit when N tends to infinity, stands for the
momentum’ of some quantum-mechanical particle whose position is meas-
ured by y. In this limit, one may also revert to the conventional use of x in
place of y, if desired, as we shall find that y actually does become the real part
of z in the limit in the following descriptions.
For finite N, I write

P=a
In the limit as N — oo, the parameter p becomes a continuous variable
and, since the ‘coefficients o;,” in our sum will then depend on the continu-
ous real-valued parameter p rather that on the discrete integer-valued
parameter r, it is better to write the dependence of the coefficients «, on r
by using the standard type of functional notation, say g(p), rather than just
using a suffix (e.g. g,), as in «,. Effectively, we shall make the replacement

o+ g(p)
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in our summation »  «,z", but we must bear in mind that, as N gets larger,
the number of actual terms lying within some small range of p-values gets
larger (basically in proportion to N, because we are considering fractions
n/N that lie in that range). Accordingly, the quantity g(p) is really a
measure of density, and it must be accompanied by the differential quan-
tity dp in the limit as the summation ) becomes an integral [. Finally,
consider the term 2z in our sum Y _ o,z". We have z = el with o = N~ 1;
so z = e/N_ Thus z" = /N = ¢l?7; 5o putting these things together, in the
limit as N — oo, we get the expression

Za,z’ — J

to represent our function f(y). In fact it is usual to include a scaling factor
of (2m)~'/? with the integral, for then there is the remarkable symmetry that
the inverserelation, expressing g(p) in terms of /() has exactly the same form
(apart from a minus sign) as that which expresses f(y) in terms of g(p):

00

g(p)edp

=0 eerdp. s =02 fe iy

The functions f(y) and g(p) are called Fourier transforms of one another.[°-6]

9.5 Frequency splitting from the Fourier transform

A (complex) function f(y), defined on the entire real line, is said to be of
positive frequency ifits Fourier transform g(p) iszero forall p = 0. Thus, £ ()
is composed only of components of the form e with p < 0. (Euler might
well have worried—see §6.1—about such a g(p), which seems to be a blatant
‘gluing job’ between a non-zero function for p < 0 and simply zero forp > 0.
Yet this seems to be representing a perfectly respectable ‘holomorphic’
property of £(). Another way of expressing this ‘positive-frequency’ condi-
tion is in terms of the holomorphic extendability of /(y), as we did before for
Fourier series. Now we think of the variable y as labelling the points on the
real axis (so we can take y = x on this axis), where on the Riemann sphere
this ‘real axis’ (including the point ‘y = o0’) is now the real circle (see Fig.
8.9¢). This circle divides the sphere into two hemispheres, the ‘outside’ one
being that which is the lower half-plane in the standard picture of the
complex plane. The condition that f(y) be of positive frequency is now
that it extend holomorphically into this outside hemisphere.

There is one issue that requires some care, however, when we compare
these two definitions of ‘positive frequency’. This relates to the question of

5 [9.6] Show (in outline) how to obtain the expression for g(p) in terms of f(y) using a limiting
form of the contour integral expression o, = (2mi)~" ¢ 27" F(z)dz of Exercise [9.2].
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how we treat the point z = oo, since the function f(y) will in general have
some kind of singularity there. In fact, provided that we adopt the ‘hyper-
functional’ point of view that I shall be describing shortly (in §9.7), this
singularity at z = co presents us with no essential difficulty. With the
appropriate point of view with regard to ‘f(co)’, it turns out that the two
definitions of positive frequency that I gave in the previous paragraph are
in basic agreement with each other.?

For the interested reader, it may be helpful to examine, in terms of the
Riemann sphere, some of the geometry that is involved in our limit of §9.4,
taking us from Fourier series to Fourier transform. Let us return to the
z-plane description that we had been considering earlier, for a function f'(y)
of period 2m, where y measures the arc length around a unit-radius circle.
Suppose that we wish to change the period to values larger than 2m, in
successively increasing steps, while retaining the interpretation of y as a
distance around a circle. We can achieve this by considering a sequence of
larger and larger circles, but in order for the limiting procedure to make
geometric sense we shall suppose that the circles are all touching each other
at the starting point y = 0 (see Fig. 9.10a). For simplicity in what follows,
let us choose this point to be the origin z = 0 (rather than z = 1), with
all the circles lying in the lower half-plane. This makes our initial circle,

Y

L 72 ~
7/ N7
/ % \ \\ N 0
/ D|_splgced :j_/
\ C= = unit circle \ %
o /
AN //
/\\ - N ZDispIaced
unit circle
(@ (b)

Fig. 9.10 Positive-frequency condition, as / — oo, where / is the period of f(y).
(a) Start with / = 2n, with f defined on the unit circle displaced to have its centre
at z = —i. For increasing /, the circle has radius / and centre at C = —i//2n. In
each case y measures arc length clockwise. Positive frequency is expressed as f being
holomorphically extendible to the interior of the circle, and in the limit / = oo, to
the lower half-plane. (b) The same, on the Riemann sphere. For finite /, the
Fourier series is obtained from a Laurent series about z = —i//2m, but on the
sphere, this point is not the circle’s centre, becoming the point co (lying on it) in
the limit / = oo, where the Fourier series becomes the Fourier transform.
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for period /= 2m, the unit circle centred at z = —i, rather than at the
origin. For a period / > 2x, the circle is centred at the point C = —i//2n
in the complex plane, and, in the limit as / — oo, we get the real axis
itself (so y = x), the circle’s ‘centre’ having moved off to infinity along
the negative imaginary axis. In each case, we now take y to measure
arc length clockwise around the circle (or, in the limiting case, just
positive distance along the real axis), with y = 0 at the origin. Since our
circles now have a non-standard (i.e. clockwise) orientation, their ‘out-
sides’ are their interiors (see §9.3, Fig. 9.6), so our positive frequency
condition refers to this interior. We now have the relation between y and
z expressed asl®7]

— (el _

z= o (e l).
For finite /, we can express f(y) as a Fourier series by referring to a
Laurent series about the point C = —i//2n. We get the Fourier transform
by taking the limit / — oo. For finite /, we obtain the condition of positive
frequency as the holomorphic extendability of f(y) into the interior of
the relevant circle; in the limit / — oo, this becomes holomorphic extend-
ability into the lower half-plane, in accordance with what has been stated
above.

What happens to the Laurent series in the limit / — co? We shall need
tolook at the Riemann sphere to understand what happens in this limit. For
each finite value of /, the point C( = i//2m) is the centre of the y-circle, but,
on the Riemann sphere, the point C need be nothing like the centre
of the circle. As / increases, C moves out along the circle on the Riemann
sphere which represents the imaginary axis (see Fig. 9.10b), and the
point C( = —il/2m) looks less and less like the centre of the circle. Finally,
when the limit / = oo is reached, C becomes the point z = oo on the Rie-
mann sphere. But when C = oo, we find that it actually lies on the circle
which it is supposed to be the centre of! (This circle is, of course, now the
real axis.) Thus, there is something peculiar (or ‘singular’) about the
taking of a power series about this point—which is to be expected, of
course, because we do not get a sum of individual terms any more, but a
continuous integral.

9.6 What kind of function is appropriate?

Let us now return to the question posed at the beginning of this chapter,
concerning the type of ‘function’ that is appropriate to use. We can raise

E3 [9.7] Derive this expression.
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the following issue: what kind of functions can we represent as Fourier
transforms? It would seem to be inappropriate to restrict attention only to
analytic (i.e to C®—) functions because, as we saw above, the Fourier
transform g(p) of a positive-frequency function f(3)—which can certainly
be analytic—is a distinctly non-analytic ‘gluing job’ of a non-zero function
to the zero function. The relation between a function and its Fourier
transform is symmetrical, so it seems unreasonable to adopt such different
standards for each. As a further point, it was noted above that the behav-
iour of f(y) at the point y = oo is relevant to the issue of its positive/
negative-frequency splitting, but only in very special circumstances would
f(x) actually be analytic (C®) at oo (since this would require a precise
matching between the behaviour of f(y) as y — 400 and as y — —o0). In
addition to all this, there is our initial physical motivation, referred to
earlier, for studying Fourier transforms, namely that they allow us to treat
signals which can transmit ‘unexpected’ (non-analytic) messages. Thus, we
must return to the question which confronted us at the beginning of this
chapter: what kind of function should we accept as being an ‘honest’
function?

We recall that, on the one hand, Euler and his contemporaries might
indeed have probably settled for a holomorphic (or analytic) function as
being the kind of thing that they had in mind for a respectable ‘function’;
yet, on the other hand, such functions seem unreasonably restrictive for
many kinds of mathematical and physical problem, including those con-
cerned with wave propagation, so a more general notion is needed. Is
one of these points of view more ‘correct’ than the other? There is prob-
ably a strong prevailing opinion that supporters of the first viewpoint
are ‘old-fashioned’, and that modern concepts lean heavily towards
the second, so that holomorphic or analytic functions are just very special
cases of the general notion of a ‘function’. But is this necessarily the
‘right’ attitude to take? Let us try to put ourselves into an 18th-century
frame of mind.

Enter Joseph Fourier early in the 19th century. Those who belonged to the
‘analytic’ (‘Eulerian’) school of thought would have received a nasty shock
when Fourier showed that certain periodic functions, such as the square
wave or saw tooth depicted in Fig. 9.11, have perfectly reasonable-looking
Fourier representations! Fourier encountered a great deal of opposition
from the mathematical establishment at the time. Many were reluctant to
accept his conclusions. How could there be a ‘formula’ for the square-wave
function, for example? Yet, as Fourier showed, the series

s(y) = sin;{+%sin3}(+%sin51+%sin7x+-~~

actually sums to a square wave, taking this wave to oscillate between the

constant values in and — %n in the half-period = (see Fig. 9.12).
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Fig. 9.11 Discontinuous periodic functions (with perfectly reasonable-looking
Fourier representations): (a) Square wave (b) Saw tooth.

N
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Fig. 9.12 Partial sums of the Fourier series s(y) = siny +%sin 3y +%sin Sy+
%sin Ty +$sin 9y + - -+, converging to a square wave (like that of Fig. 9.11a).

Let us consider the Laurent-series description for this, as given above.
We have the rather elegant-looking expressionl®-8]

2is(y) = ---—%275 —%273 —z! +z+%z3+%25+~--,

where z = €. In fact this is an example where the annulus of convergence
shrinks down to the unit circle—with no actual open region left. However,
we can still make sense of things in terms of holomorphic functions if we
split the Laurent series into two halves, one with the positive powers,
giving an ordinary power series in z, and one with the negative powers,
giving a power series in z~!. In fact, these are well-known series, and can
be summed explicitly:-*1

4 [9.8] Show this.

[9.9] Do this, by taking advantage of a power series expansion for log z taken about z = 1,
given towards the end of §7.4.
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1
S:Z+%Z3+%ZS+"':%IOg(1+2)
; z
and
14z7!
-5 -3 -1 _
St=.. iS5 13 :—%10g<1_2_1),

giving 2is(y) = S~ + S*. A little rearrangement of these expressions leads
to the conclusion that S~ and —S* differ only by +1im, telling us that
s(y) = £1n.919 But we need to look a little more closely to see why we
actually get a square wave oscillating between these alternative values.

It is a little easier to appreciate what is going on if we apply the
transformation 7 = (z — 1)/(iz + i), given in §8.3, which takes the interior
of the unit circle in the z-plane to the upper half-z-plane (as illustrated in
Fig. 8.10). In terms of ¢, the quantity S~ now refers to this upper half-
plane and St to the lower half-plane, and we find (with possible 2mi
ambiguities in the logarithms)

S*:—%logt—i—%logi, S+:%10gt+%10gi.

Following the logarithms continuously from the respective starting points
=1 (where S~ =0) and = —i (where ST =0), we find that along
the positive real 7-axis we have S~ + ST = + %in, whereas along the nega-
tive real 7-axis we have S~ + ST = —1in.*!ll From this we deduce that
along the top half of the unit circle in the z-plane we have s(y) = —1—575,
whereas along the bottom half we have s(y) = — %n. This shows that the
Fourier series indeed sums to the square wave, just as Fourier had asserted.

What is the moral to be drawn from this example? We have seen that a
particular (periodic) function that is not even continuous, let alone differ-
entiable (in this case being a C~!-function), can be represented as a
perfectly sensible-looking Fourier series. Equivalently, when we think of
the function as being defined on the unit circle, it can be represented as a
reasonable-appearing Laurent series, although it is one for which the
annulus of convergence has, in effect, shrunk down to the unit circle itself.
The positive and the negative half of this Laurent series each sums to a
perfectly good holomorphic function on half of the Riemann sphere. One
1s defined on one side of the unit circle, and the other is defined on
the other side. We can think of the ‘sum’ of these two functions as
giving the required square wave on the unit circle itself. It is because
of the existence of branch singularities at the two points z =+1 on

€3 [9.10] Show this (assuming that |s(y)| < 37/2).
[9.11] Show this.

171



§9.7 CHAPTER 9

the unit circle that the sum can ‘jump’ from one side to the other, giving the
square wave that arises in this sum. These branch singularities also prevent
the power series on the two sides from converging beyond the unit circle.

9.7 Hyperfunctions

This example is only a very special case, but it illustrates what we must
do in general. Let us ask what is the most general type of function that
can be defined on the unit circle (on the Riemann sphere) and represented
as a ‘sum’ of some holomorphic function F* on the open region lying
to one side of the circle and of another holomorphic function F~ on the
open region lying to the other side, just as in the example that we
have been considering. We shall find that the answer to this question
leads us directly to an exotic but important notion referred to as a
‘hyperfunction’.

In fact, it turns out to be more illuminating to think of f as being the
‘difference’ between F~ and — F*. One reason for this is that, in the most
general cases, there may be no analytic extension of either F~ or F' to the
actual unit circle, so it is not clear what such a ‘sum’ could mean on the
circle itself. However, we can think of the difference between
F~ and — F* as representing the jump’ between these two functions as
their regions of definition come together at the unit circle.

This idea of a ‘jump’ between a holomorphic function on one side of a
curve in the complex plane and another holomorphic function on the
other—where neither holomorphic function need extend holomorphically
over the curve itself—actually provides us with a new concept of a ‘func-
tion’ defined on the curve. This is, in effect, the definition of a hyperfunc-
tion on an (analytic) curve. It is a wonderful notion put forward by the
Japanese mathematician Mikio Sato in 1958,” although, as we shall shortly
be seeing, Sato’s actual definition is considerably more elegant than just
this. 10

We do not need to think of a closed curve, like the entire unit circle, for
the definition of a hyperfunction, but we can consider some part of a
curve. Indeed, it is more usual to consider hyperfunctions as defined on
some segment ) of the real line. We shall take y to be the segment of the
real line between a and b, where @ and b are real numbers with a < b. A
hyperfunction defined on y is then the jump across y, starting from a
holomorphic function f'on an open set R ~ (having 7y as its upper bound-
ary) to a holomorphic function g on an open set R * (having y as its lower
boundary) see Fig. 9.13.

Simply to refer to a jump’ in this way does not give us much idea of
what to do with such a thing (and it is not yet very mathematically
precise). Sato’s elegant resolution of these issues is to proceed in a rather
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Complex -
plane

Fig. 9.13 A hyperfunction on a segment 7y of the real axis expresses the ‘jump’
from a holomorphic function on one side of y to one on the other.

formally algebraic way, which is actually extrordinarily simple. We merely
represent this jump as the pair (f, g) of these holomorphic functions, but
where we say that such a pair (f, g) is equivalent to another such pair
(fo, go) if the latter is obtained from the former by adding to both fand g
the same holomorphic function /, where / is defined on the combined
(open) region R, which consists of R ~ and R * joined together along
the curve segment y; see Fig. 9.14. We can say

Fig. 9.14 A hyperfunction, on a segment y of the real axis, is provided by a pair
of holomorphic functions (f, g), with f defined on some open region R ~,
extending downwards from y and g on an open region R *, extending upwards
from 7. The actual hyperfunction 4, on v, is ( f, g) modulo quantities ( f+ h, g + h),
where £ is holomorphic on the union R of R ~,y,and R .
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(f,g) Iisequivalent to (f+h, g+ h),

where the holomorphic functions f and g are defined on R~ and R,
respectively, and where £ is an arbitrary holomorphic function on the
combined region R. Either of the above displayed expressions can be
used to represent the same hyperfunction. The hyperfunction itself would
be mathematically referred to as the equivalence class of such pairs, ‘re-
duced modulo’!! the holomorphic functions / defined on R. The reader
may recall the notion of ‘equivalence class’ referred to in the Preface, in
connection with the definition of a fraction. This is the same general idea—
and no less confusing. The essential point here is that adding /# does not
affect the jump’ between fand g, but / can change fand g in ways that are
irrelevant to this jump. (For example, / can change how these functions
happen to continue away from y into the open regions R ~ and R *.)
Thus, the jump itself is neatly represented as this equivalence class.

The reader may be genuinely disturbed that this slick definition seems to
depend crucially on our arbitrary choices of open regions R ~ and R ",
restricted merely by their being joined along their common boundary
line y. Remarkably, however, the definition of a hyperfunction does not
depend on this choice. According to an astonishing theorem, known as the
excision theorem, this notion of hyperfunction is actually quite independ-
ent of the particular choices of R ~ and R *; see top three examples of

Fig. 9.15.

’ @ y %
r\’ ;

(b) .

Fig. 9.15 The excision theorem tells us that the notion of a hyperfunction is
independent of the choice of open region R, so long as R contains the given
curve 7. (a) The region R — 7y may consist of two separate pieces (so we get two
distinct holomorphic functions f and g, as in Fig. 9.14) or (b) the region R — 7%
may be a single connected piece, in which case f'and g are simply two parts of the
same holomorphic function.
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In fact, the excision theorem gives us more than even this. We do not
require that our open region R be divided into two (namely into
R~ and R ™) by the removal of 7. All we need is that the open region
R, in the complex plane, must contain the open!? segment y. It may be
that R —y (i.e. what is left of R when 7y is removed from it'3) consists
of two separate pieces, just as we have been considering up to this
point, but more generally the removal of y from R may leave us with
a single connected region, as illustrated in the bottom three examples
of Fig. 9.15. In these cases, we must also remove any internal end-point
a or b, of y, so that we are left with an open set, which I refer toas R — 7.
In this more general case, our hyperfunctions are defined as ‘holo-
morphic functions on R, reduced modulo holomorphic functions
on R —7%. It is quite remarkable that this very liberal choice
of R makes no difference to the class of ‘hyperfunctions’ that is thereby
defined.1?1 The case when a and b both lie within R is useful for integrals
of hyperfunctions, since then a closed contour in R — % can be used.

All this applies also to our previous case of a circle on the Riemann
sphere. Here, there is some advantage in taking R to be the entire Riemann
sphere, because then the functions that we have to ‘mod out by’ are the
holomorphic functions that are global on the entire Riemann sphere, and
there is a theorem which tells us that these functions are just constants.
(These are actually the ‘constants’ oy that we chose not to worry about
in §9.2.) Thus, modulo constants, a hyperfunction defined on a circle on
the Riemann sphere is specified simply by one holomorphic function on
the entire region on one side of the circle and another function on the
other side. This gives the splitting of an arbitrary hyperfunction on
the circle uniquely (modulo constants) into its positive- and negative-fre-
quency parts.

Let us end by considering some basic properties of hyperfunctions. I
shall use the notation ([ f, gI) to denote the hyperfunction specified by the
pair f and g defined holomorphically on R ~ and R *, respectively
(where I am reverting to the case where y divides R into R~ and R *.
Thus, if we have two different representations (f, g) and ( /o, go) of the
same hyperfunction, that is, ([ f, g]) = (I fo, gol), then f— fy and g — go
are both the same holomorphic function % defined on R, but restricted
to R ~ and R T respectively. It is then straightforward to express the sum
of two hyperfunctions, the derivative of a hyperfunction, and the product
of a hyperfunction with an analytic function ¢ defined on y:

(€ [9.12] Why does ‘holomorphic functions on R, reduced modulo holomorphic functions on
R — ¥ become the definition of a hyperfunction that we had previously, when R — 7 splits into
R~ and R*?

175



§9.7 CHAPTER 9

(/s g+ (fi. &)= (f+/i. g+ 1),

()

q(f. g)== (4. qg)

where, in the last expression, the analytic function ¢ is extended holomor-
phically into a neighbourhood'* of y.131 We can represent ¢ itself as a
hyperfunction by ¢ = (¢, 0) = (0, — g), but there is no general product
defined between two hyperfunctions. The lack of a product is not the fault
of the hyperfunction approach to generalized functions. It is there with all
approaches.!> The fact that the Dirac delta function (referred to in §6.6;
also see below) cannot be squared, for example, causes many quantum
field theorists no end of trouble.

Some simple examples of hyperfunctional representations, in the case
when y = IR, and R~ and R * are the upper and lower open complex
half-planes, are the Heaviside step funtion 6(x) and the Dirac (-Heaviside)
delta function (x)( = df(x)/dx) (see §§6.1,6):

1 1
0(x) = (Iﬁlogz, Elogz— 1]),

1 1
009 = ([F iz ])
where we take the branch of the logarithm for which log 1 = 0. The integral
of the hyperfunction ([ f, g]) over the entire real line can be expressed as the
integral of falong a contour just below the real line minus the integral of g
along a contour just above the real line (assuming these converge), both
from left to right.l”-!4] Note that the hyperfunction can be non-trivial even
when f'and g are analytic continuations of the same function.

How general are hyperfunctions? They certainly include all analytic
functions. They also include discontinuous functions like 6(x) and the
square wave (as our discussions above show), or other C~!-functions
obtained by adding such things together. In fact all C~'-functions are
examples of hyperfunctions. Moreover, since we can differentiate a hyper-
function to obtain another hyperfunction, and any C~2-function can be
obtained as the derivative of some C~!-function, it follows that all C~2-
functions are also hyperfunctions. We have seen that this includes the

E35[9.13] There is a small subtlety here. Sort it out. Hint: Think carefully about the domains of
definition.

£ [9.14] Check the standard property of the delta function that [ ¢(x)3(x)dx = ¢(0), in the case
when ¢(x) is analytic.
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Dirac delta function. We can differentiate again, and then again. Indeed,
any C™"-function is a hyperfunction for any integer n whatever. What
about the C™*°-functions, referred to as distributions (see §6.6). Yes, these
also are all hyperfunctions.

The normal definition of a distribution!® is as an element of what is
called the dual space of the C*°-smooth functions. The concept of a ‘dual
space’ will be discussed in §12.3 (and §13.6). In fact, the dual (in an
appropriate sense) of the space of C"-functions is the space of C~>7"-
functions for any integer n, and this applies also to n = oo, if we write
—2—o00=-00 and —2+ oo =o00. Accordingly, the C *-functions
are indeed dual to the C*-functions. What about the dual (C™®) of
the C®-functions? Indeed; with the appropriate definition of ‘dual’, these
C™“-functions are precisely the hyperfunctions!

We have come full circle. In trying to generalize the notion of ‘function’ as
faras we can away from the apparently very restrictive notion of an ‘analytic’
or ‘holomorphic’ function—the type of function that would have made
Euler happy—we have come round to the extremely general and flexible
notion of a hyperfunction. But hyperfunctions are themselves defined, in a
basically very simple way, in terms of the these very same ‘Eulerian’ holo-
morphic functions that we thought we had reluctantly abandoned. In my
view, thisis one of the supreme magical achievements of complex numbers.!°
If only Euler had been alive to appreciate this wondrous fact!

Notes

Section 9.1

9.1. I am using the greek letter y (‘chi’) here, rather than an ordinary x, which might
have seemed more natural, only because we need to distinguish this variable
from the real part x of the complex number z, which will play an important part
in what follows.

9.2. There is no requirement that f(y) be real for real values of y, that is, for the a,,,b,,,
and ¢ to be real numbers. It is perfectly legitimate to have complex functions of
real variables. The condition that f(y) be real is that «_, be the complex
conjugate of o,,. Complex conjugates will be discussed in §10.1.

Section 9.2

9.3. The odd-looking notational anomaly of using ‘F~’ for the part of the series with
positive powers and ‘F*’ for the part with negative powers springs ultimately
from a perhaps unfortunate sign convention that has become almost universal in
the quantum-mechanical literature (see §§21.2,3 and §24.3). I apologize for this,
but there is nothing that I can reasonably do about it!

9.4. Tt is a general principle that, for any C®-function f, defined on a real domain R,
it is possible to ‘complexify’ R to a slightly extended complex domain CR,
called a ‘complex thickening’ of R, containing R in its interior, such that f
extends uniquely to a holomorphic function defined on CR .
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9.5. See e.g. Bailey et al. (1982).

Section 9.4

9.6. On the other hand, it is usual to impose some requirement that f(y) behaves
‘reasonably’ as y tends to positive or negative infinity. This will not be of
particular concern for us here and, in any case, with the approach that I am
adopting, the normal requirements would be unnecessarily restrictive.

9.7. In quantum mechanics, there is also a constant quantity % introduced to fix the
scaling of p appropriately, in relation to x (see §§21.2,11), but for the moment I
am keeping things simple by taking 7 = 1. In fact, /i is Dirac’s form of Planck’s
constant (i.e. 41/2n, where & is Planck’s original ‘quantum of action’). The choice
/=1 can always be made, by defining our basic units in a suitable way. See
§27.10.

Section 9.5
9.8. See Bailey et al. (1982).

Section 9.7
9.9. See Sato (1958, 1959, 1960).

9.10. See also Bremermann (1965), although the term ‘hyperfunction’ is not used
explicitly in this work.

9.11. Another aspect of the notion ‘modulo’ will be discussed in §16.1 (and compare
Note 3.17).

9.12. Here ‘open segment’ simply refers to the fact that the actual end-points a and b
are not included in y, so that ‘containing’ y does not imply the containing of a
and b within R.

9.13. This “difference’ between sets R,y is also commonly written R \y.

9.14. The technical definition of ‘neighbourhood of” is ‘open set containing’.

9.15. For the more standard (‘distribution’) approach to the idea of ‘generalized
function’, see Schwartz (1966); Friedlander (1982); Gel’fand and Shilov (1964);
Treves (1967); for an alternative proposal, useful in ‘nonlinear’ contexts, and
which shifts the ‘product existence problem to a non-uniqueness problem—see
Colombeau (1983, 1985) and Grosser et al. (2001).

9.16. There are also important interconnections between hyperfunctions and the
holomorphic sheaf cohomology that will be discussed in §33.9. Such ideas play
important roles in the theory of hyperfunctions on higher-dimensional surfaces,
see Sato (1959, 1960) and Harvey (1966).
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10
Surfaces

10.1 Complex dimensions and real dimensions

ONE of the most impressive achievements in the mathematics of the past
two centuries is the development of various remarkable techniques that
can handle non-flat spaces of various dimensions. It will be important for
our purposes that I convey something of these ideas to the reader: for
modern physics depends vitally upon them.

Up to this point, we have been considering spaces of only one dimen-
sion. The reader might well be puzzled by this remark, since the complex
plane, the Riemann sphere, and various other Riemann surfaces have
featured strongly in several of the previous chapters. However, in the
context of holomorphic functions, these surfaces are really to be thought
of as being, in essence, of only one dimension, this dimension being a
complex dimension, as was indeed remarked upon in §8.2. The points of
such a space are distinguished from one another (locally) by a single
parameter, albeit a parameter that happens to be a complex number.
Thus, these ‘surfaces’ are really to be thought of as curves, namely complex
curves. Of course, one could split a complex number z into its real and
imaginary parts (x, y), where z = x + iy, and think of x and y as being two
independent real parameters. But the process of dividing a complex
number up in this way is not something that belongs within the realm of
holomorphic operations. So long as we are concerned only with holo-
morphic structures, as we have been up until now when considering our
complex spaces, we must regard a single complex parameter as providing
just a single dimension. This, at least, is the attitude of mind that I
recommend should be adopted.

On the other hand, one may take an opposing position, namely that
holomorphic operations constitute merely particular examples of more
general operations, whereby x and y can, if desired, be split apart to be
considered as separate independent parameters. The appropriate way of
achieving this is via the notion of complex conjugation, which is a non-
holomorphic operation. The complex conjugate of the complex number
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A
8Z= x+iy
///
-
~ Real axis . 5 .
N > Fig. 10.1 The complex conjugate of
DN z=Xx+1y (x, y real), is z = x — iy,
\\\. _ ) obtained as a reflection of the z-plane
2=y in the real axis.

z = x + 1y, where x and y are real numbers, is the complex number z given
by

Z=x—1y.

In the complex z-plane, the operation of forming the complex conjugate of
a complex number corresponds to a reflection of the plane in the real line
(see Fig. 10.1). Recall from the discussion of §8.2 that holomorphic oper-
ations always preserve the orientation of the complex plane. If we wish to
consider a conformal mapping of (a part of) the complex plane which
reverses the orientation (such as turning the complex plane over on itself),
then we need to include the operation of complex conjugation. But, when
included with the other standard operations (adding, multiplying, taking a
limit), complex conjugation also allows us to generalize our maps so that
they need not be conformal at all. In fact, any map of a portion of the
complex plane to another portion of the complex plane (let us say by a
continuous transformation) can be achieved by bringing the operation of
complex conjugation in with the other operations.

Let me elaborate on this comment. We may consider that holomorphic
functions are those built up from the operations of addition and multipli-
cation, as applied to complex numbers, together with the procedure of
taking a limit (because these operations are sufficient for building up power
series, an infinite sum being a limit of successive partial sums).['1 If we
also incorporate the operation of complex conjugation, then we can
generate general (say continuous) functions of x and y because we can
express x and y individually by

_z+2 _Z—Z
T~ YTy

X

(Any continuous function of x and y can be built up from real numbers by
sums, products, and limits.) I shall tend to use the notation F(z, z), with z
mentioned explicitly, when a non-holomorphic function of z is being
considered. This serves to emphasize the fact that as soon as we move

%3 [10.1] Explain why subtraction and division can be constructed from these.
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outside the holomorphic realm, we must think of our functions as being
defined on a 2-real-dimensional space, rather than on a space of a single
complex dimension. Our function F(z, z) can be considered, equally well,
to be expressed in terms of the real and imaginary parts, x and y, of z, and
we can write this function as f(x, y), say. Then we have f(x, y) = F(z, 2),
although, of course, f’s explicit mathematical expression will in general be
quite different from that of F. For example, if F(z, Z) = z> + 2%, then
f(x,y) = 2x> — 2)°. As another example, we might consider F(z, z) = zz;
then f(x, y) = x> + y2, which is the square of the modulus |z| of z, that
is,[10.2]

- 2
zz = |z|".

10.2 Smoothness, partial derivatives

Since, by considering functions of more than one variable, we are now
beginning to venture into higher-dimensional spaces, some remarks are
needed here concerning ‘calculus’ on such spaces. As we shall be seeing
explicitly in the chapter following the next one, spaces—referred to as
manifolds—can be of any dimension n, where #n is a positive integer. (An
n-dimensional manifold is often referred to simply as an n-manifold.)
Einstein’s general relativity uses a 4-manifold to describe spacetime, and
many modern theories employ manifolds of higher dimension still. We
shall explore general n-manifolds in Chapter 12, but for simplicity, in the
present chapter, we just consider the situation of a real 2-manifold (or
surface) S. Then local (real) coordinates x and y can be used to label the
different points of & (in some local region of ). In fact, the discussion is
very representative of the general n-dimensional case.

A 2-dimensional surface could, for example, be an ordinary plane or an
ordinary sphere. But the surface is not to be thought of as a ‘complex
plane’ or a ‘Riemann sphere’, because we shall not be concerned with
assigning a structure to it as a complex space (i.e. with the attendant
notion of ‘holomorphic function’ defined on the surface). Its only structure
needs to be that of a smooth manifold. Geometrically, this means that we
do not need to keep track of anything like a local conformal structure, as
we did for our Riemann surfaces in §8.2, but we do need to be able to tell
when a function defined on the space (i.e. a function whose domain is the
space) is to be considered as ‘smooth’.

For an intuitive notion of what a ‘smooth’ manifold is, think of a sphere
as opposed to a cube (where, of course, in each case I am referring to the
surface and not the interior). For an example of a smooth function

€3 [10.2] Derive both of these.
181



§10.2 CHAPTER 10
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Fig.10.2 Functionsonasphere S, pictured assittingin Euclidean 3-space, where /1
measures the distance above the equatorial plane. (a) The function / itself is smooth
on & (negative values indicated by broken lines). (b) The modulus |4 (see Fig. 6.2b)
is not smooth along the equator. (c) The square /2 is smooth all over S.

on the sphere, we might think of a ‘height function’, say the distance above
the equatorial plane (the sphere being pictured as sitting in ordinary
Euclidean 3-space in the normal way, distances beneath the plane being
counted negatively). See Fig. 10.2a. On the other hand, if our function is
the modulus of this height function (see §6.1 and Fig. 10.2b), so that
distances beneath the equator also count positively, then this function is
not smooth along the equator. Yet, if we consider the square of the height
function, then this function is smooth on the sphere (Fig. 10.2¢c). It is
instructive to note that, in all these cases, the function is smooth at the
north and south poles, despite the ‘singular’ appearance, at the poles, of
the contour lines of constant height. The only instance of non-smoothness
occurs in our second example, at the equator.

In order to understand what this means a little more precisely, let us
introduce a system of coordinates on our surface S. These coordinates
need apply only locally, and we can imagine ‘gluing’ S together out of
local pieces—coordinate patches—in a similar manner to our procedure for
Riemann surfaces in §8.1. (For the sphere, for example, we do need more
than one patch.) Within one patch, smooth coordinates label the different
points; see Fig. 10.3. Our coordinates are to take real-number values, and
let us call them x and y (without any suggestion intended that they ought
to be combined together in the form of a complex number). Suppose, now,

Fig. 10.3 Within one local patch,
smooth (real-number) coordinates
(x, y) label the points.
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that we have some smooth function ¢ defined on S. In the modern
mathematical terminology, @ is a smooth map from S to the space of
real numbers IR (or complex numbers C, in case @ is to be a complex-
valued function on &) because @ assigns to each point of S a real (or
complex) number—i.e. @ maps S to the real (or complex) numbers. Such a
function is sometimes called a scalar field on S. On a particular coordin-
ate patch, the quantity @ can be represented as a function of the two
coordinates, let us say

P =f(x, ),

where the smoothness of the quantity @ is expressed as the differentiability
of the function f(x, y).

I have not yet explained what ‘differentiability’ is to mean for a function
of more than one variable. Although intuitively clear, the precise definition
is a little too technical for me to go into thoroughly here.! Some clarifying
comments are nevertheless appropriate.

First of all, for f be differentiable, as a function of the pair of variables
(x, y), it is certainly necessary that if we consider f{x, y) in its capacity as a
function of only the one variable x, where y is held to some constant value,
then this function must be smooth (at least C'), as a function of x, in the
sense of functions of a single variable (see §6.3); moreover, if we consider
f(x, y) as a function of just the one variable y, where it is x that is now to be
held constant, then it must be smooth (C') as a function of y. However,
this is far from sufficient. There are many functions f{x,y) which are
separately smooth in x and in y, but for which would be quite unreason-
able to call smooth in the pair (x, y).['31 A sufficient additional require-
ment for smoothness is that the derivatives with respect to x and y
separately are each continuous functions of the pair (x, y). Similar state-
ments (of particular relevance to §4.3) would hold if we consider functions
of more than two variables. We use the ‘partial derivative’ symbol 9 to
denote differentiation with respect to one variable, holding the other(s)
fixed. The partial derivatives of f{x, y) with respect to x and with respect
to y, respectively, are written

#5 [10.3] Consider the real function f(x, y) = xy(x2 + yz)fN, in the respective cases N = 2, 1, and
1. Show that in each case the function is differentiable (C®) with respect to x, for any fixed y-value
(and that the same holds with the roles of x and y reversed). Nevertheless, f'is not smooth as a
function of the pair (x, y). Show this in the case N = 2 by demonstrating that the function is not
even bounded in the neighbourhood of the origin (0, 0) (i.e. it takes arbitrarily large values there),
in the case N = 1 by demonstrating that the function though bounded is not actually continuous
as a function of (x, y), and in the case N = % by showing that though the function is now
continuous, it is not smooth along the line x = y. (Hint: Examine the values of each function
along straight lines through the origin in the (x, y)-plane.) Some readers may find it illuminating to
use a suitable 3-dimensional graph-plotting computer facility, if this is available—but this is by no
means necessary.
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(As an example, we mnote that if f(x,y)= x>+ x>+, then
of /ox = 2x + y? and 9f /dy = 2xy + 3y°.) If these quantities exist and are
continuous, then we say that @ is a (C!-)smooth function on the surface.

We can also consider higher orders of derivative, denoting the second
partial derivative of f with respect to x and y, respectively, by

0% 02
—f and —f .
ax2 0y?

(Now we need C>-smoothness, of course.) There is also a ‘mixed’ second
derivative 9*f /dx dy, which means a(9f /dy)/dx, namely the partial deriva-
tive, with respect to x, of the partial derivative of f with respect to y. We
can also take this mixed derivative the other way around to get the
quantity 8>f /9y dx. In fact, it is a consequence of the (second) differentia-
bility of f that these two quantities are equal:[10-4]

’*f &
ax dy  dy ax’

(The full definition of C?-smoothness, for a function of two variables,
requires this.)l'%3] For higher derivatives (and higher-order smoothness),
we have corresponding quantities:

of ’*f  @Pf oS

- = = , etc.
ax3 ax20y  9x dy dx 9y dx?

An important reason that I have been careful here to distinguish f from
&, by using different letters (and I may be a good deal less ‘careful’” about
this sort of thing later), is that we may want to consider a quantity &,
defined on the surface, but expressed with respect to various different
coordinate systems. The mathematical expression for the function f(x, y)
may well change from patch to patch, even though the value of the quantity
@ at any specific point of the surface ‘covered’ by those patches does not
change. Most particularly, this can occur when we consider a region of
overlap between different coordinate patches (see Fig. 10.4). If a second
set of coordinates is denoted by (X, Y), then we have a new expression,

£3 [10.4] Prove that the mixed second derivatives 9°f/dydx and 9*f/dxdy are always equal if
f(x, y)is a polynomial. (4 polynomial in x and y is an expression built up from x, y, and constants
by use of addition and multiplication only.)

#5 [10.5] Show that the mixed second derivatives of the function f'= xy(x? — y*)/(x* + )?) are
unequal at the origin. Establish directly the lack of continuity in its second partial derivatives at
the origin.
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Fig. 10.4 To cover the whole of S

we may have to ‘glue’ together several
coordinate patches. A smooth function @
on S would have a coordinate expression
® = f(x, y)ononepatchand ¢ = F(X, Y)
on another (with respective local
coordinates (x, y), (X, Y)). On an
overlap region f(x, y) = F(X, Y),

where X and Y are smooth functions

of x and y.

?=F(X,7Y),

for the values of @ on the new coordinate patch. On an overlap region
between the two patches, we shall therefore have

F(Xa Y) :f(X, J’),

But, as indicated above, the particular expression that F represents, in
terms of the quantities X and Y, will generally be quite different from the
expression that f represents in terms of x and y. Indeed, X might be some
complicated function of x and y on the overlap region and so might Y, and
these functions would have to be incorporated in the passage from f to
F.[1061 Such functions, representing the coordinates of one system in terms
of the coordinates of the other,

X=X(x,y) and Y=7Y(x,y)
and their inverses

x=x(X,Y) and y=pX,Y)
are called the transition functions that express the cordinate change from
one patch to the other. These transition functions are to be smooth—Iet
us, for simplicity, say C*°-smooth—and this has the consequence that the

‘smoothness’ notion for the quantity ¢ is independent of the choice of
coordinates that are used in some patch overlap.

10.3 Vector fields and 1-forms

There is a notion of ‘derivative’ of a function that is independent of the
coordinate choice. A standard notation for this, as applied to the function
@ defined on S, is d®, where

(€ [10.6] Find the form of F(X,Y) explicitly when f(x,y) = x> — 3, where X =x —y, ¥ = xy.
Hint: What is x> + xy + »* in terms of X and ¥; what does this have to do with f?
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do = %dx + gdy.
ax ay

Here we begin to run into some of the confusions of the subject, and these
take some while to get accustomed to. In the first place, a quantity such as
‘d®’ or ‘dx’ initially tends to be thought of as an ‘infinitesimally small’
quantity, arising when we apply the limiting procedure that is involved in
the calculus when the derivative ‘dy/dx’ is formulated (see §6.2). In some
of the expressions in §6.5, I also considered things like d(log x) = dx/x. At
that stage, these expressions were considered as being merely formal,? this
last expression being thought of as just a convenient way (‘multiplying
through by dx’) of representing the ‘more correct’ expression
d(logx)/dx = 1/x. When I write ‘d®’ in the displayed formula above,
on the other hand, I mean a certain kind of geometrical entity that is called
a I-form (although this is not the most general type of 1-form; see §10.4
below and §12.6), and this works for things like d(logx) = dx/x, too. A
1-form is not an ‘infinitesimal’; it has a somewhat different kind of inter-
pretation, a type of interpretation that has grown in importance over the
years, and I shall be coming to this in a moment. Remarkably, however,
despite this significant change of interpretation of ‘d’, the formal math-
ematical expressions (such as those of §6.5)—provided that we do not try
to divide by things like dx—are not changed at all.

There is also another issue of potential confusion in the above displayed
formula, which arises from the fact that I have used @ on the left-hand side
and f on the right. I did this mainly because of the warnings about the
distinction between @ and f'that I issued above. The quantity @ is a function
whose domain is the manifold &, whereas the domain of f'is some (open)
region in the (x, y)-plane that refers to a particular coordinate patch. If  am
to apply the notion of ‘partial derivative with respect to x’, then I need to
know what it means ‘to hold the remaining variable y constant’. It is for this
reason that fis used on the right, rather than @, because f ‘’knows’ what the
coordinates x and y are, whereas @ doesn’t. Even so, there is a confusion
in this displayed formula, because the arguments of the functions are
not mentioned. The @ on the left is applied to a particular point p of the
2-manifold &, while fis applied to the particular coordinate values (x, )
that the coordinate system assigns to the point p. Strictly speaking, this
would have to be made explicit in order that the expression makes sense.
However, it is a nuisance to have to keep saying this kind of thing, and it
would be much more convenient to be able to write this formula as

0P
ax

aP
do =—dx+—d
x+ay Vs

or, in ‘disembodied’ operator form,
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ad

d
d= dxa—kdyay

Indeed, I am going to try to make sense of these things. These formulae are
instances of something referred to as the chain rule. As stated, they require
meanings to be assigned to things like ‘9®/9dx” when @ is some function
defined on S.

How are we to think of an operator, such as d/dx, as something that can
be applied to a function, like &, that is defined on the manifold &, rather
than just to a function of the variables x and »? Let us first try to see what
d/dx means when we refer things to some other coordinate system (X, Y).
The appropriate ‘chain rule’ formula now turns out to be

d X 9 Y o

ox axoX Taxay
Thus, in terms of the (X, Y) system, we now have the more complicated-
looking expression (90X /dx)d/dX + (3Y /dx)d/dY to represent exactly the
same operation as the simple-looking 9/dx represents in the (x, y) system.
This more complicated expression is a quantity &, of the form

d d
E=Ax T By

where 4 and B are (C*-) smooth functions of X and Y. In the particular
case just given, with & representing d/dx in the (x, y) system, we have
A =0X/ox and B=09Y/ox. But we can consider more general such
quantities & for which 4 and B do not have these particular forms. Such
a quantity & is called a vector field on S (in the (X, Y)-coordinate patch).
We can rewrite £ in the original (x, y) system, and find that £ has just the
same general form as in the (X, Y) system:

d d
§=a 0x +b ay
(although the functions « and b are generally quite different from 4 and
B).['0.71 This enables us to extend the vector field from the (X, Y)-patch to
an overlapping (x, y)-patch. In this way, taking as many patches as we
need, we can envisage extending the vector field £ to the whole of S.

All this has probably caused the reader great confusion! However, my
purpose is not to confuse, but to find the right analytical form of a very
basic geometrical notion. The differential operator &, which we have called
a ‘vector field’, with its (consequent) very specific way of transforming, as
we pass from patch to patch, has a clear geometrical interpretation, as

[10.7] Find 4 and B in terms of a and b; by analogy, write down « and b in terms of 4 and B.
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Fig. 10.5 The geometrical
interpretation of a vector field £ as
a ‘field of arrows’ drawn on S.

illustrated in Fig. 10.5. We are to visualize & as describing a “field of little
arrows’ drawn on &, although, at some places on S, an arrow may shrink
to a point, these being the places where & takes the value zero. (To get a
good picture of a vector field, think of wind-flow charts on TV weather
bulletins.) The arrows represent the directions in which the function upon
which £ acts is to be differentiated. Taking this function to be @, the action
of & on @, namely &(®P) = a dP/dx + b 9P/Jy, measures the rate of in-
crease of @ in the direction of the arrows; see Fig. 10.6. Also, the magni-
tude (‘length’) of the arrow has significance in determining the ‘scale’, in
terms of which this increase is to be measured. A longer arrow gives a
correspondingly greater measure of the rate of increase. More appropriately,

')
/ P Fig. 10.6 The action of £ on a
scalar field @ gives its rate of
op) § increase along the &-arrows.
& A Think of the arrows as
infinitesimal, each connecting a

point p of &S (‘tail’ of the arrow)

\ / scale to a ‘neighbouring’ poipt pof S

up by (‘head’ of the arrow), pictured by
-1 applying a large magnification
(by a factor e !, where € is small)
to the neighbourhood of p. The
difference @(p’) — @(p), divided
by ¢, is (in the limit ¢ — 0) the
gradient &(@) of @ along &.

188



Surfaces §10.3

we ought to think of all the arrows as being infinitesimal, each one
connecting a point p of S (at the ‘tail’ of the arrow) with a ‘neighbouring’
point p’ of S (at the ‘head’ of the arrow). To make this just a little more
explicit, let us choose some small positive number ¢ as a measure of the
separation, along the direction of £, between two separate points p and p'.
Then the difference @(p’) — ®(p), divided by ¢, gives us an approximation
to the quantity &(®). The smaller we choose ¢ to be, the better approxima-
tion we get. Finally, in the limit when p’ approaches p (so ¢ — 0), we
actually obtain &(&), sometimes called the gradient (or slope) of @ in the
direction of &.

In the particular case of the vector field 9/dx, the arrows all point along
the coordinate lines of constant y. This illustrates an issue that frequently
leads to confusion with the standard mathematical notation ‘9/dx’ for
partial derivative. One might have thought that the expression ‘9/9x’
referred most specifically to the quantity x. However, in a clear sense, it
has more to do with the variable(s) that are not explicitly mentioned, here
the variable y, than it has to do with x. The notation is particularly
treacherous when one considers a change of coordinate variables, say
from (x, y) to (X, Y), in which one of the coordinates remains the same.
Consider, for example the very simple coordinate change

X=x, Y=y+x
Then we find!10-8]

0 d 6] 0 d

oX ox ay’ oY oy’

Thus, we see that 9/9X is different from 9/dx, despite the fact that X is
the same as x—whereas, in this case, d/9Y is the same as d/Jy, even though
Y differs from y. This is an instance of what my colleague Nick Wood-
house refers to as ‘the second fundamental confusion of calculus’!3 Tt is
geometrically clear, on the other hand, why d/0X # 9/dx, since
the corresponding ‘arrows’ point along different coordinate lines
(Fig. 10.7).

We are now in a position to interpret the quantity d®. This is called
the gradient (or exterior derivative) of @, and it carries the information
of how @ is varying in all possible directions along S. A good geometrical
way to think of d@ is in terms of a system of contour lines on S. See
Fig. 10.8a. We can think of S as being like an ordinary map (where by
‘map’ here I mean the thing made of stiff paper that you take with you
when you go hiking, not the mathematical notion of ‘map’), which might

€9 [10.8] Derive this explicitly. Hinz: You may use ‘chain rule’ expressions for d/0X and 9/dY that
are the exact analogies of the expression for d/dx that was displayed earlier.
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y
9
» = const. ay
_ 9
y = const. I - .
f > N
y = const.

X
X

X !
=x

1Suod
=X
JSuod
JSU0d

JSu0d

X

N\

Fig. 10.7 Second fundamental confusion of calculus is illustrated: 9/9X # 9/dx
despite X =x, and 9/0Y =9/dy despite Y #y, for the coordinate change
X = x, Y=y + x. The interpretation of partial differential operators as ‘arrows’
pointing along coordinate lines clarifies the geometry (x = const. agree with X =
const., but y = const. disagree with ¥ = const.).

R ion]

be a spherical globe, if we want to take into account that S might be a
curved manifold. The function @ might represent the height of the ground
above sea level. Then d@ represents the slope of the ground as compared
with the horizontal. The contour lines trace out places of equal height. At
any one point p of &, the direction of the contour line tells us the direction
along which the gradient vanishes (the ‘axis of tilt’ of the slope of the
ground), so this is the direction of the arrow £ at p for which &(®) = 0. We
neither climb nor descend, when we follow a contour line. But if we cut
across contour lines, then there will be an increase or decrease in @, and the
rate at which this occurs, namely £(®), will be measured by the crowding of
the contour lines in the direction that we cross them. See Fig. 10.8b.

10.4 Components, scalar products

According to the expression
d d
=a—+b—,
¢ ox * ay

the vector field & may be thought of as being composed of two parts, one
being proportional to d/dx, which points along the lines of constant y, and
the other, proportional to d/dy, which points along the lines of constant x.
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@ Graph of
height of @

Fig. 10.8 We can
geometrically picture the full
gradient (exterior derivative)
d® of a scalar @ in terms of
a system of contour lines
on 8. (a) The value @ is

- ae here plotted vertically above
Surface 4 gives direction of S, so the contour lines on

contours )

N S (constant @) describe
constant height. (b) At any
one point p of &, the direc-

Axisof  tjon of the contour line tells
; tilt us the direction along which
the gradient vanishes (the

2, ‘axis of tilt’ of the slope of
Edirection  the hill), i.e. the direction of
for which  the arrows £ at p for which
Sé(@ =0 &(d) = 0. Cutting across

‘ contour lines gives an in-
crease or decrease in @, &(P)
measuring the crowding

of the lines in the

(b) direction of &.

Thus, in the (x, y)-coordinate system, the pair of respective weighting
factors (a, b) may be used to label £. The numbers a and b are referred
to as the components of & in this coordinate system; see Fig. 10.9. (Strictly
speaking, the two ‘components’ of & would actually be the two vector
fields @ 9/dx and b 9/dy themselves, of which the vector field & is com-
posed, as displayed in Fig. 10.9—and a similar remark would apply to the
components of d®, below. However, the term ‘component’ has now ac-
quired this meaning of ‘coordinate label’ in much mathematical literature,
particularly in connection with the tensor calculus; see §12.8.)

Similarly, the quantity d& (a ‘1-form’) is composed of the two parts dx
and dy, according to the expression

d® =udx+wvdy

and so (u, v) may be used to label d®, and the numbers u and v are the
components of d® in this same coordinate system. (In fact, we have

191



§10.4 CHAPTER 10

Fig. 10.9 The vector
&=ad/dx+b d/dy may be
thought of as being composed of
two parts, one proportional to
d/9x, pointing along y = const.,
and the other, proportional to
d/dy, pointing along x = const.
The pair of respective weighting
factors (a, b) are called the com-
ponents of & in the (x, y)-coord-
inate system.

u=0®/dx and v=0P/dy here.) The relation between the components
(u, v) of the 1-form d® and the components (a, b) of the vector field & is
obtained through the quantity &(®), which, as we saw above, measures the
rate of increase of @ in the direction of & We find['*] that the value of
&(®) is given by

&(®) = au + bv.

We call au + bv the scalar (or inner) product between &, as represented by
(a, b), and d@, as represented by (u, v). This scalar product will sometimes
be written d@ - £ if we want to express it abstractly without reference to
any particular coordinate system, and we have

do - £ = &().

The reason for having two different notations for the same thing, here, is that
the operation expressed in d@ « & also applies to more general kinds of
1-form than those that can be expressed as d@ (see §12.3). If 5 is such a
1-form, then it has a scalar product with any vector field &, which is written
asn-§&.

In fact the definition of a 1-form is essentially that it is a quantity that can
be combined with a vector field to form a ‘scalar product’ in this way. Thus,
the fact that the quantity d® is something that naturally forms a scalar
product with vector fields is actually what characterizes it as a 1-form. (A
1-form is sometimes called a covector, depending on the context.) Technic-
ally, 1-forms (covectors) are dual to vector fields in this sense. This notion of
a ‘dual’ object will be explored more fully in §12.3, where we shall see that

@3 [10.9] Show this explicitly, using ‘chain rule’ expressions that we have seen earlier.
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these ideas apply quite generally within a ‘surface’ of higher dimension (i.e.
to an n-manifold). The geometrical meaning of a 1-form will also be filled
out more fully in §§12.3-5, in the context of higher dimensions. For the
moment, the family of contour lines itself will do, these lines representing the
directions along which a &-arrow must point if d@ « £ = 0 (i.e. if £&(®) = 0).

10.5 The Cauchy-Riemann equations

But before making this leap to higher dimensions, which we shall be
preparing ourselves for in the next chapter, let us return to the issue that
we started with in this chapter: the property of a 2-dimensional surface
that is needed in order that it can be reinterpreted as a complex 1-mani-
fold. Essentially what is required is that we have a means of characterizing
those complex-valued functions @ which are holomorphic. The condition
of holomorphicity is a local one, so that we can recognize it as something
holding in each coordinate patch, and consistently on the overlaps be-
tween patches. On the (x, y)-patch, we require that @ be holomorphic in
the complex number z = x 4+ iy; on an overlapping (X, Y)-patch, holo-
morphic in Z = X 4+ 1Y. The consistency between the two is ensured by the
requirement that Z is a holomorphic function of z on the overlap and vice
versa. (If @ is holomorphic in z, and z is holomorphic in Z, then ¢ must be
holomorphic in Z, since a holomorphic function of a holomorphic func-
tion is again a holomorphic function.[19-101)

Now, how do we express the condition that ¢ is holomorphic in z, in
terms of the real and imaginary parts of ¢ and z? These are the famous
Cauchy—Riemann equations referred to in §7.1. But what are these equa-
tions explicitly? We can imagine @ to be expressed as a function of z and z
(since, as we saw at the beginning of this chapter, the real and imaginary
parts of z, namely x and y, can be re-expressed in terms of z and Z by using
the expressions x = (z+2)/2 and y = (z —z)/2i). We are required to
express the condition that, in effect, @ ‘depends only on z’ (i.e. that it is
‘independent of 2°).

What does this mean? Imagine that, instead of the complex conjugate pair
of variables z and z, we had a pair of independent real variables « and v, say,
and we wished to express the fact that some quantity ¥ thatis a function of u
and v is in fact independent of v. This independence can be stated as

i
E

0

[10.10] Explain this from three different points of view: (a) intuitively, from general principles
(how could a z appear?), (b) using the geometry of holomorphic maps described in §8.2, and (c)
explicitly, using the chain rule and the Cauchy—Riemann equations that we are about to come to.
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(because this equation tells us that, for each value of u, the quantity ¥ is
constant in v; so ¥ is dependent only on u).# Accordingly, @ being ‘inde-
pendent of Z” ought to be expressed as

0P
P 07
0z

and this does indeed express the holomorphicity of @ (although the
‘argument by analogy’ that I have just given should not be taken as a
proof of this fact)>. Using the chain rule, we can re-express this equa-
tion!%111 in terms of partial derivatives in the (x, y)-system:

op 0P
—+1—=0.
ox ay

Writing @ in terms of its real and imaginary parts,
D =oa+1p,
with o and B real, we obtain the Cauchy—Riemann equations®[10-12]

do.  ap doo  Ip
ax 9y’ ay  ax’

Since, as remarked earlier, on an overlap between an (x, y)-coordinate

patch and an (X, Y)-coordinate patch we require Z = X +1Y to be holo-

morphic in z = x + iy, we also have the Cauchy—Riemann equations hold-

ing between (x, y) and (X, Y):

X 9Y D¢ aY

ox oy’ ay  ox
If this condition holds between any pair of coordinate patches, then we
have assembled a Riemann surface S. (These are the required analytic
conditions that I skated over in §7.1.) Recall that such a surface can also be
thought of as a complex 1-manifold. But, according to the present ‘Cau-
chy-Riemann’ way of looking at things, we think of & as being a real
2-manifold with the particular type of structure (namely that determined
by the Cauchy-Riemann equations).

Whereas there is a certain ‘purity’ in trying to stick entirely to holo-
morphic operations (a philosophical perspective that will have importance
for us later, in Chapter 33 and in §34.8) and in thinking of S as a ‘curve’,
this alternative ‘Cauchy-Riemann’ standpoint is a powerful one in a

#£35[10.11] Do this.

15 [10.12] Give a more direct derivation of the Cauchy—Riemann equations, from the definition of
a derivative.
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number of other contexts. For example, it allows us to prove results by
appealing to many useful techniques in the existence theory of partial
differential equations. Let me try to give a taste of this by appealing to
an (important) example.

If the Cauchy-Riemann equations da/dx = df/dy and dor/dy = —df3/ox
hold, then the quantities « and f§ each individually turn out to satisfy a
particular equation (Laplace’s equation). For we havel!0-13]

Via =0, V=0,

where the second-order differential operator V2, called the (2-dimensional)
Laplacian, is defined by
, @
V= ox2 + a2

The Laplacian is important in many physical situations (see §21.2, §22.11,
§§24.3-6). For example, if we have a soap film spanning a wire loop which
deviates very slightly up and down from a horizontal plane, then the
height of the film above the horizontal will be a solution of Laplace’s
equation (to a close approximation which gets better and better the smaller
is this vertical deviation).” See Fig. 10.10. Laplace’s equation (in three
dimensions) also has a fundamental role to play in Newtonian gravita-
tional theory (and in electrostatics; see Chapters 17 and 19) since it is the
equation satisfied by a potential function determining the gravitational (or
static electric) field in free space.

Solutions of the Cauchy—Riemann equations can be obtained from solu-
tions of the 2-dimensional Laplace equation in a rather direct way. If we
have any o satisfying V2o = 0, then we can construct S by 8 = [ (da/dx) dy;

Fig. 10.10 A soap
film spanning a wire
loop which deviates
only very slightly up
and down from a
horizontal plane. The
height of the film
above the horizontal
gives a solution of
Laplace’s equation
(to an approximation
which gets better the
smaller the vertical
deviation).

463 [10.13] Show this.
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we then find that both Cauchy-Riemann equations are consequently
satisfied.l'%-141 This fact can be used to demonstrate and illuminate some
of the assertions made at the end of the previous chapter.

In particular, let us consider the remarkable fact, asserted at the end of
§9.7, that any continuous function f defined on the unit circle in the
complex plane can be represented as a hyperfunction. This assertion
effectively states that any continuous f is the sum of two parts, one of
which extends holomorphically into the interior of the unit circle and the
other of which extends holomorphically into the exterior, where we now
think of the complex plane completed to the Riemann sphere. This asser-
tion is effectively equivalent (according to the discussion of §9.2) to the
existence of a Fourier series representation of f, where f'is regarded as a
periodic function of a real variable. For simplicity, assume that f'is real-
valued. (The complex case follows by splitting f into real and imaginary
parts.) Now, there are theorems that tell us that we can extend f continu-
ously into the interior of the circle, where f satisfies V2f'= 0 inside the
circle. (This fact is intuitively very plausible, because of the soap-film
argument given above; see Fig. 10.10. Scaling f down appropriately to a
new function ¢ f, for some fixed small ¢, we can imagine that our wire loop
lies at the unit circle in the complex plane, deviating slightly® up and down
vertically from it by the values of ¢f" on the unit circle. The height of the
spanning soap film provides ¢f and therefore f inside.) By the above
prescription (g = [(9f /dx)dy), we can supply an imaginary part g to f,
so that f'+ ig is holomorphic throughout the interior of the unit circle. This
procedure also supplies an imaginary part g to f on the unit circle (gener-
ally in the form of a hyperfunction, so that f+ ig is of negative frequency.
We now repeat the procedure, applying it to the exterior of the unit circle
(thought of as lying in the Riemann sphere), and find that f'— ig extends
there and is of positive frequency. The splitting /=1 (f+ig) + 5 (f — ig)
achieves what is required.

Notes

Section 10.2

10.1 For a detailed discussion of differentiability, for functions of several variables, see
Marsden and Tromba (1996).

Section 10.3

10.2 Although the ‘dx’ notation that Leibniz originally introduced (in the late 17th
century) shows great power and flexibility, as is illustrated by the fact that
quantities like dx can be treated as algebraic entities in their own right, this

£3[10.14] Show this.
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does not extend to his ‘d’x’ notation for second derivatives. Had he used a
modification of this notation in which the second derivative of y with respect to
x were written (d*y — d?x dy/dx)/dx? instead, then the quantity ‘d*x’ would
indeed behave in a consistent algebraic way (where ‘dx?’ denotes dxdx, etc.). It
is not clear how practical this would have been, owing to the complication of this
expression, however.

10.3 The ‘first fundamental confusion’ has to do with the confusion between the use of
fand @ that we encountered in §10.2, particularly in relation to the taking of
partial derivatives. See Woodhouse (1987).

Section 10.5

10.4 We must take this condition in a local sense only. For example, we can have a
smooth function @(u, v) defined on a kidney-shaped region in the (u, v)-plane,
within which 9¢/9dv = 0, but for which @ is not fully consistent as a function of
4 [10.15]

10.5 Although not the most rigorous route to the Cauchy—Riemann equations, this
argument provides the underlying reason for their form.

10.6 In fact, Jean LeRond D’Alembert found these equations in 1752, long before
Cauchy or Riemann (see Struik 1954, p. 219).

10.7 It turns out that the actual soap-film equation (to which the Laplace equation is
an approximation) has a remarkable general solution, found by Weierstrass
(1866), in terms of free holomorphic functions.

10.8 Since f'is continuous on the circle, it must be bounded (i.e. its values lie between a
fixed lower value and a fixed upper value). This follows from standard theorems,
the circle being a compact space. (See §12.6 for the notion of ‘compact’ and Kahn
1995; Frankel 2001). We can then rescale /' (multiplying it by a small constant ),
so that the upper and lower bounds are both very tiny. The soap film analogy
then provides a reasonable plausibility argument for the existence of ¢/ extended
inside the circle, satisfying the Laplace equation. It is not a proof of course; see
Strauss (1992) or Brown and Churchill (2004) for a more rigorous solution to this
so-called, ‘Dirichlet problem for a disc’.

#5 [10.15] Spell this out in the case @(u, v) = 0(v)h(u), where the functions 6 and / are defined as
in §§6.1,3. The kidney-shaped region must avoid the non-negative u-axis.
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11.1  The algebra of quaternions

How do we generalize all this to higher dimensions? I shall describe the
standard (modern) procedure for studying n-manifolds in the next chapter,
but it will be illuminating, for various other reasons, if I first acquaint the
reader with certain earlier ideas aimed at the study of higher dimensions.
These earlier ideas have acquired important direct relevance to some
current activities in theoretical physics.

The beauty and power of complex analysis, such as with the above-
mentioned property whereby solutions of the 2-dimensional Laplace equa-
tion—an equation of considerable physical importance—can be very
simply represented in terms of holomorphic functions, led 19th-century
mathematicians to seek ‘generalized complex numbers’, which could apply
in a natural way to 3-dimensional space. The renowned Irish mathemat-
ician William Rowan Hamilton (1805-1865) was one who puzzled long
and deeply over this matter. Eventually, on the 16 October 1843, while on
a walk with his wife along the Royal Canal in Dublin, the answer came to
him, and he was so excited by this discovery that he immediately carved his
fundamental equations

==K =ik=-1

on a stone of Dublin’s Brougham Bridge.
Each of the three quantities i, j, and k is an independent ‘square root of
—1’ (like the single i of complex numbers) and the general combination

q =1+ ui+ vj+ wk,

where ¢, u, v, and w are real numbers, defines the general quaternion. These
quantities satisfy all the normal laws of algebra bar one. The exception—
and this was the true novelty! of Hamilton’s entities—was the violation of
the commutative law of multiplication. For Hamilton found that(!!-1]

£3 [11.1] Prove these directly from Hamilton’s ‘Brougham Bridge equations’, assuming only the
associative law a(bc) = (ab)c.
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ij=—ji, jk=—kj, ki=—ik,

which is in gross violation of the standard commutative law: ab = ba.

Quaternions still satisfy the commutative and associative laws of add-
ition, the associative law of multiplication, and the distributive laws of
multiplication over addition,!'!?l namely

a+b=>b+a,
a+b+c)=(@a+b) +ec,
a(bc) = (ab)c,
a(b + ¢) = ab + ac,
(a+ b)c = ac + be,

together with the existence of additive and multiplicative ‘identity elem-
ents’ 0 and 1, such that

a+0=a la=al =a.

These relations, if we exclude the last one, define what algebraists call a
ring. (To my mind, the term ‘ring’ is totally non-intuitive—as is much of
the terminology of abstract algebra—and I have no idea of its origins.) If
we do include the last relation, we get what is called a ring with identity.

Quaternions also provide an example of what is called a vector space
over the real numbers. In a vector space, we can add two elements
(vectors?), &€ and m, to form their sum & + %, where this sum is subject to
commutativity and associativity

E§+n=n+§,
E+m+i=&+(n+0),

and we can multiply vectors by ‘scalars’ (here, just the real numbers f'and
g), where the following distributive and associative properties, etc., hold:

(F+8¢ =/&+4¢E,
JE+nm)=f&+/,
/(g6 = ()¢,
1£E=¢.
Quaternions form a 4-dimensional vector space over the reals, because
there are just four independent ‘basis’ quantities 1, i, j, k that span the
entire space of quaternions; that is, any quaternion can be expressed

uniquely as a sum of real multiples of these basis elements. We shall be
seeing many other examples of vector spaces later.

@63 [11.2] Express the sum and product of two general quaternions so that all these indeed hold.
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Quaternions also provide us with an example of what is called an
algebra over the real numbers, because of the existence of a multiplication
law, as described above. But what is remarkable about Hamilton’s quater-
nions is that, in addition, we have an operation of division or, what
amounts to the same thing, a (multiplicative) inverse ¢~' for each non-
zero quaternion ¢. This inverse satisfies

g 'q=qq"' =1,

giving the quaternions the structure of what is called a division ring, the
inverse being explicitly

g ' =qqp",
where the (quaternionic) conjugate q of ¢ is defined by
qg=1—ui—vj—wk,
with ¢ = ¢ + ui + vj + wk, as before. We find that
qq = t2+u2+v2+w2,

so that the real number g¢q cannot vanish unless ¢=0 (i.e.
t=u=v=w=0), so (gq)" " exists, whence ¢! is well defined provided
that ¢ # 0.[113]

11.2 The physical role of quaternions?

This gives us a very beautiful algebraic structure and, apparently, the
potential for a wonderful calculus finely tuned to the treatment of the
physics and the geometry of our 3-dimensional physical space. Indeed,
Hamilton himself devoted the remaining 22 years of his life attempting
to develop such a calculus. However, from our present perspective, as we
look back over the 19th and 20th centuries, we must still regard these
heroic efforts as having resulted in relative failure. This is not to say that
quaternions are mathematically (or even physically) unimportant. They
certainly do have some very significant roles to play, and in a slightly
indirect sense their influence has been enormous, through various types of
generalization. But the original ‘pure quaternions’ still have not lived up to
what must undoubtedly have initially seemed to be an extraordinary
promise.

Why have they not? Is there perhaps a lesson for us to learn concerning
modern attempts at finding the ‘right” mathematics for the physical world?

@ [11.3] Check that this definition of ¢~! actually works.
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First, there is an obvious point. If we are to think of quaternions to be a
higher-dimensional anologue of the complex numbers, the analogy is that
the dimension has gone up not from 2 to 3 dimensions, but from 2 to 4.
For, in each case, one of the dimensions is the ‘real axis’, which here
corresponds to the ‘# component in the above representation of ¢ in
terms of i, j, k. The temptation is strong to take this 7 to represent the
time, so that our quaternions would describe a four-dimensional space-
time, rather than just space. We might think that this should be highly
appropriate, from our 20th-century perspective, since a four-dimensional
spacetime is central to modern relativity theory, as we shall be seeing in
Chapter 17. But it turns out that quaternions are not really appropriate for
the description of spacetime, largely for the reason that the ‘quaternioni-
cally natural’ quadratic form qq = t* +u*> +v* +w? has the ‘incorrect
signature’ for relativity theory (a matter that we shall be coming to later;
see §13.8, §18.1). Of course, Hamilton did not know about relativity, since
he lived in the wrong century for that. In any case, there is a ‘can of worms’
here that I do not wish to get involved with just yet. I shall open it slowly
later! (See §13.8, §§18.1-4, end of §22.11, §28.9, §31.13, §32.2.)

There is another reason, perhaps a more fundamental one, that quater-
nions are not really so mathematically ‘nice’ as they seem at first sight.
They are relatively poor ‘magicians’; and, certainly, they are no match for
complex numbers in this regard. The reason appears to be that there is no
satisfactory* quaternionic analogue of the notion of a holomorphic func-
tion. The basic reason for this is simple. We saw in the previous chapter
that a holomorphic function of a complex variable z is characterized as
being holomorphically ‘independent’ of the complex conjugate z. But we
find that, with quaternions, it is possible to express the quaternionic
conjugate g of ¢ algebraically in terms of ¢ and the constant quantities i,
j, and k by use of the expression.[!1-4]

_ 1 e .
q:—i(q+lql+1q1+qu)-

If ‘quaternionic-holomorphic’ is to mean ‘built up from quaternions by
means of addition, multiplication, and the taking of limits’, then ¢ has to
count as a quaternionic-holomorphic function of ¢, which rather spoils the
whole idea.

Is it possible to find modifications of quaternions that might have more
direct relevance to the physical world? We shall find that this is certainly
true, but these all sacrifice the key property of quaternions, demonstrated
above, that you can always divide by them (if non-zero). What about
generalizations to higher dimensions? We shall be seeing shortly how

46 [11.4] Check this.
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Clifford achieved this, and how this kind of generalization does have great
importance for physics. But all these changes lead to the abandonment of
the division-algebra property.

Are there generalizations of quaternions which preserve the division
property? In fact, yes; but the first point to make is that there are theorems
telling us that this is not possible unless we relax the rules of the algebra
even further than our abandoning of the commutative law of multipli-
cation. About two months after receiving a letter from Hamilton announ-
cing the discovery of quaternions, in 1843, John Graves discovered that
there exists a kind of ‘double’ quaternion—entities now referred to as
octonions. These were rediscovered by Arthur Cayley in 1845. For octo-
nians, the associative law a(bc) = (ab)c is abandoned (although a remnant
of this law is maintained in the form of the restricted identities a(ab) = a*b
and (ab)b = ab?). The beauty of this structure is that it is still a division
algebra, although a non-associative one. (For each non-zero a, there is an
a~! such that a~'(ab) = b = (ba)a'.) Octonions form an eight-dimen-
sional non-associative division algebra. There are seven analogues of the
i, j, and k of the quaternion algebra, which, together with 1, span the eight
dimensions of the octonion algebra. The individual multiplication laws for
these elements (analogues of ij = k = —ji, etc.) are a little complicated and
it is best that I postpone these until §16.2, where an elegant description will
be given, illustrated in Fig. 16.3. Unhappily, there is no fully satisfactory
generalization of the octonions to even higher dimensions if the division
algebra property is to be retained, as follows from an algebraic result of
Hurwitz (1898), which showed that the quaternionic (and octonionic)
identity ‘gg = sum of squares’ does not work for dimensions other than
1, 2, 4, 8. In fact, apart from these specific dimensions, there can be no
algebra at all in which division is always possible (except by 0). This
follows from a remarkable topological theorem?® that we shall encounter
in §15.4. The only division algebras are, indeed, the real numbers, the
complex numbers, the quaternions, and the octonions.

If we are prepared to abandon the division property, then there is
an important generalization of the notion of quaternions to higher dimen-
sions, and it is a generalization that indeed has powerful implications
in modern physics. This is the notion of a Clifford algebra, which
was introduced® in 1878 by the brilliant but short-lived English mathem-
atician William Kingdon Clifford (1845-1879). One may regard Clifford’s
algebra as actually having sprung from two sources, each of which was
geared to the understanding of spaces of dimension higher than the two
described by complex numbers. One of these sources was in fact the
algebra of Hamilton’s quaternions that we have been concerned with
here; the other is an earlier important development, originally put for-
ward’ in 1844 and 1862 by a little-recognized German schoolmaster,
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Hermann Grassmann (1809-1877). Grassmann algebras also have direct
roles to play in modern theoretical physics. (In particular, the modern
notion of supersymmetry—see §31.3—depends crucially upon them, super-
symmetry being close to ubiquitous among modern attempts to develop
the foundations of physics beyond the framework of its standard model.)
It will be important for us to acquaint ourselves with both the Grassmann
and Clifford algebras here, and we shall do so in §11.6 and §11.5, respect-
vely.

Clifford (and Grassmann) algebras involve a new ingredient that comes
from the higher dimensionality of the space under consideration. Before
we can properly appreciate this point, it is best that we consider quater-
nions again, but from a somewhat different perspective—a geometrical
one. This will lead us also into some other considerations that are of
fundamental importance in modern physics.

11.3 Geometry of quaternions

Think of the basic quaternionic quantities i, j, k as referring to three
mutually perpendicular (right-handed) axes in ordinary Euclidean 3-
space (see Fig. 11.1). Now, we recall from §5.1 that the quantity i in
ordinary complex-number theory can be interpreted in terms of the oper-
ation ‘multiply by i’ which, in its action on the complex plane, means
‘rotate through a right angle about the origin, in the positive sense’. We
might imagine that we could interpret the quaternion i in the same kind of
way, but now as a rotation in 3 dimensions, in the positive sense (i.e. right-
handed) about the i-axis (so the (j, k)-plane plays the role of the complex
plane), where we would correspondingly think of j as representing a
rotation (in the positive sense) about the j-axis, and k a rotation about
the k-axis. However, if these rotations are indeed right-angle rotations, as
was the case with complex numbers, then the product relations will not
work, because if we follow the i-rotation by the j-rotation, we do not get
(even a multiple of) the k-rotation.

Fig. 11.1 The basic quaternions i, j, k refer to
3 mutually perpendicular (and right-handed) axes in
i ordinary Euclidean 3-space.
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It is quite easy to see this explicitly by taking some ordinary object and
physically rotating it. I suggest using a book. Lay the book flat on a
horizontal table in front of you in the ordinary way, with the book closed,
as though you were just about to open it to read it. Imagine the k-axis to
be upwards, through the centre of the book, with the i-axis going off to the
right and the j-axis going off directly away from you, both also through the
centre. If we rotate the book through a right angle (in the right-handed
sense) about i and then rotate it (in the right-handed sense) about j, we find
that it ends up in a configuration (with its back spine upwards) that cannot
be restored to its original state by any single rotation about k. (See
Fig. 11.2)

What we have to do to make things work is to rotate about two right
angles (i.e. through 180°, or m). This seems an odd thing to do, as it is
certainly not a direct analogy of the way that we understood the action of
the complex number i. The main trouble would seem to be that if we apply
this operation twice about the same axis, we get a rotation through 360°
(or 2m), which simply restores the object (say our book) back to its original
state, apparently representing i> = 1, rather than i> = —1. But here is
where a wonderful new idea comes in. It is an idea of considerable subtlety
and importance—a mathematical importance that is fundamental to the
quantum physics of basic particles such as electrons, protons, and neu-
trons. As we shall be seeing in §23.7, ordinary solid matter could not exist
without its consequences. The essential mathematical notion is that of a
spinor.®

What is a spinor? Essentially, it is an object which turns into its negative
when it undergoes a complete rotation through 2n. This may seem like an
absurdity, because any classical object of ordinary experience is always
returned to its original state under such a rotation, not to something else.
To understand this curious property of spinors—or of what I shall refer to
as spinorial objects—Iet us return to our book, lying on the table before us.
We shall need some means of keeping track of how it has been rotated. We
can do this by placing one end of a long belt firmly between the pages of
the book and attaching the buckle rigidly to some fixed structure (say a

Fig. 11.2 We can think of the quaternionic
operators i, j, and k as referring to rotations
(through 180°, i.e. m) of some object, which is
here taken to be a book.
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(@ (b) (©

Fig. 11.3 A spinorial object, represented by the book of Fig. 11.2. An even
number of 27 rotations is to be equivalent to no rotation, whereas an odd number
of 27 rotations is not. (a) We keep track of the parity of the number of 2x rotations
of the book by loosely attaching it, using a long belt, to some fixed object (here to
a pile of books). (b) A rotation of our book through 2r twists the belt so that it
cannot be undone without a further rotation. (c) A rotation of the book through
4 gives a twist that can be removed completely by looping the belt over the book.

pile of other books; see Fig. 11.3a). A rotation of the book through 2n
twists the belt in a way that cannot be undone without further rotation of
the book (Fig. 11.3b). But if we rotate the book through an additional
angle of 2m, giving a total rotation through 4m, then we find, rather
surprisingly, that the twist in the belt can be removed completely, simply
by looping it over the book, keeping the book itself in the same position
throughout the manoeuvre (Fig. 11.3c). Thus, the belt keeps track of the
parity of the number of 2r rotations that the book undergoes, rather than
totting up the entire number. That is to say, if we rotate the book through
an even number of 2w rotations then the belt twist can be made to
disappear completely, whereas if we rotate the book through an odd
number of 2r rotations the belt inevitably remains twisted. This applies
whatever rotation axis, or succession of different rotation axes, we choose
to use.

Thus, to picture a spinorial object, we can think of an ordinary object in
space, but where there is an imaginary flexible attachment to some fixed
external structure, this imaginary attachment being represented by the belt
that we have been just considering. The attachment may be moved around
in any continuous way, but its ends must be kept fixed, one on the object
itself and the other on the fixed external structure. The configuration of
our ‘spinorial book’, so envisaged, is to be thought of as having such an
imaginary attachment to some such fixed external structure, and two
configurations of it are deemed to be equivalent only if the imaginary
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attachment of one can be continuously deformed into the imaginary
attachment of the other. For every ordinary book configuration, there
will be precisely two inequivalent spinorial book configurations, and we
deem one to be the negative of the other.

Let us now see whether this provides us with the correct multiplication
laws for quaternions. Lay the book on the table in front of you, just as
before, but where now the belt is held firmly between its pages. Rotate,
now, through w about i following this by a rotation of ® about j. We get a
configuration that is equivalent to a « rotation about k, just as it should
be, in accordance with Hamilton’s ij = k.

Or does it? There is just one small point of irritation. If we carefully
insist that all these rotations are in the right-handed sense, then, keeping
track of the belt twistings appropriately, we seem to get ij = —k, instead.
This is not an important point, however, and it can be righted in a number
of different ways. Either we can represent our quaternions by left-handed
rotations through 2n instead of right-handed ones (in which case we do
retrieve ‘ij = k’) or we take our i, j, k-axes to have a left-handed orienta-
tion rather than a right-handed one. Or, best, we can adopt a convention
of the ordering of multiplication of operators that is quite usual in math-
ematics, namely that the ‘product pq’ represents ¢ followed by p, rather
than p followed by g¢.

In fact, there is a good reason for this odd-looking convention. This has
to do with operators—such as things like 0/0x—generally being under-
stood to act on things written to the right of them. Thus, the operator P
acting on @ would be written P(®), or simply P®. Accordingly, if we apply
first P and then Q to @, we get Q(P(®)) or simply QP &, which is QP acting
on @.

My own way of resolving this awkward sign issue with quaternions will
indeed be to take everything in the standard right-handed sense and to
adopt this ‘usual’ reverse-order mathematical convention for the ordering
of operators. It is now a simple matter for the reader to confirm that all of
Hamilton’s ‘Brougham Bridge’ equations i’ =j* = k> =ijk = —1 are
indeed satisfied by our ‘spinorial book’. We bear in mind, of course, that
ijk now stands for ‘k followed by j followed by i’.”

11.4 How to compose rotations

This curious property of rotation angles being twice what might have
seemed geometrically appropriate can be demonstrated in another way.
It is a particular feature of (proper, i.e. non-reflective) rotations in three
dimensions that if we combine any number of them together then we
always get a rotation about some axis. How can we find this axis in a
simple geometrical way, and also the amount of this rotation? An elegant
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answer was found by Hamilton.!? Let us see how this works. My presenta-
tion here will be a little different from that originally provided by Hamilton.

Recall that when we compose two different displacements that are
simply translations, we can use the standard triangle law (equivalent to
the parallelogram law illustrated in Fig. 5.1a) to get the answer. Thus, we
can represent the first translation by a vector (by which I here mean an
oriented line segment, the direction of the orientation being indicated by
an arrow on the segment) and the second translation by another such
vector, where the tail of the second vector is coincident with the head of
the first. The vector stretching from the tail of the first vector to the head
of the second represents the composition of the two translational motions.
See Fig. 11 .4a.

Can we do something similar for rotations? Remarkably, it turns out that
we can. Think now of the ‘vectors’ as being oriented arcs of great circles
drawn on a sphere—again depicted with an arrow to represent the orienta-
tion. (A great circle on a sphere is the intersection of the sphere with a plane
through its centre.) We can imagine that such a ‘vector arc’ can be used to
represent a rotation in the direction of the arrow. This rotation is to be
about an axis, through the centre of the sphere, perpendicular to the plane
of the great circle on which the arrow resides.

Can we think of the composition of two rotations, represented in this
way, as being given by a ‘triangle law’ similar to the situation that we had
for ordinary translations? Indeed we can; but there is a catch. The rotation
that is to be represented by our ‘vector arc’ must be through an angle that
is precisely twice the angle that is represented by the length of the arc. (For
convenience, we can take the sphere to be of unit radius. Then the angle
represented by the arc is simply the distance measured along the arc. For
the ‘triangle law’ to hold, the angle through which the rotation is to
take place must be twice this arc-length.) The reason that this works is
illustrated in Fig. 11.4b. The curvilinear (spherical) triangle at the centre
illustrates the ‘triangle law’ and the three external triangles are the respect-
ive reflections in its three vertices. The two initial rotations take one of
these external triangles into a second one and then the second one into the
third; the rotation that is the composition of the two takes the first into
the third. We note that each of these rotations is through an angle which is
precisely twice the corresponding arc-length of the original curvilinear
triangle.['1-5 We shall be seeing a variant of this construction in relativistic
physics, in §18.4 (Fig.18.13).

#8 [11.5] In Hamilton’s original version of this construction, the ‘dual’ spherical triangle to this
one is used, whose vertices are where the sphere meets the three axes of rotation involved in
the problem. Give a direct demonstration of how this works (perhaps ‘dualizing’ the argument
given in the text), the amounts of the rotations being represented as twice the angles of this dual
triangle.

207



§11.5 CHAPTER 11

(a) (b) (©

Fig. 11.4 (a) Translations in the Euclidean plane represented by oriented line
segments. The double-arrowed segment represents the composition of the other
two, by the triangle law. (b) For rotations in Euclidean 3-space, the segments are
now great-circle arcs drawn on the unit sphere, each representing a rotation
through twice the angle measured by the arc (about an axis perpendicular to its
plane). To see why this works, reflect the triangle made by the arcs, in each vertex
in turn. The first rotation takes triangle 1 into triangle 2, the second takes triangle
2 into triangle 3, and the composition takes triangle 1 into triangle 3. (c) The
quaternionic relation ij = k (in the form i( — j) = —k), as a special case. The
rotations are each through =, but represented by the half-angle 7.

We can examine this in the particular situation that we considered
above, and try to illustrate the quaternionic relation ij = k. The rotations
described by i, j, and k are each through an angle n. Thus, we use arc-
lengths that are just half this angle, namely 3=, in order to depict the
‘triangle law’. This is fully illustrated in Fig. 11.4c (in the form
i( — j) = —Kk, for clarity). We can also see the relation i> = —1 as illustrated
by the fact that a great circle arc, of length w, stretching from a point on
the sphere to its antipodal point (depicting ‘—1°) is essentially different
from an arc of zero length or of length 2w, despite the fact that each
represents a rotation of the sphere that restores it to its original position.
The ‘vector arc’ description correctly represents the rotations of a ‘spinor-
ial object’.

11.5 Clifford algebras

To proceed to higher dimensions and to the idea of a Clifford algebra, we
must consider what the analogue of a ‘rotation about an axis’ must be. In n
dimensions, the basic such rotation has an ‘axis’ which is an (n — 2)-
dimensional space, rather than just the 1-dimensional line-axis that we
get for ordinary 3-dimensional rotations. But apart from this, a rotation
about an (7 — 2)-dimensional axis is similar to the familiar case of an
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ordinary 3-dimensional rotation about a 1-dimensional axis in that the
rotation is completely determined by the direction of this axis and by the
amount of the angle of the rotation. Again we have spinorial objects with
the property that, if such an object is continuously rotated through the
angle 2x, then it is not restored to its original state but to what we consider
to be the ‘negative’ of that state. A rotation through 4n always does restore
such an object to its original state.

There is, however, a ‘new ingredient’, alluded to above: that in dimen-
sion higher than 3, it is not true that the composition of basic rotations
about (n — 2)-dimensional axes will always again be a rotation about an
(n — 2)-dimensional axis. In these higher dimensions, general (compos-
itions of) rotations cannot be so simply described. Such a (generalized)
rotation may have an ‘axis’ (i.e. a space that is left undisturbed by the
rotational motion) whose dimension can take a variety of different values.
Thus, for a Clifford algebra in n dimensions, we need a hierarchy
of different kinds of entity to represent such different kinds of rotation.
In fact, it turns out to be better to start with something that is even
more elementary than a rotation through n, namely a reflection in an
(n — 1)-dimensional (hyper)plane. A composition of two such reflections
(with respect to two such planes that are perpendicular) provides a
rotation through m, giving these previously basic n-rotations as ‘second-
ary’ entities, the primary entities being the reflections.[!!-6]

We label these basic reflections y,, v,, v3, ..., ¥,, Where ¥y, reverses
the rth coordinate axis, while leaving all the others alone. For the
appropriate type of ‘spinorial object’, reflecting it twice in the same dir-
ection gives the negative of the object, so we have n quaternion-like
relations,

yvi=-1, vi=-1, yvi=-1, ..., vi=-1,

satisfied by these primary reflections. The secondary entities, representing
our original w-rotations, are products of pairs of distinct y’s, and these
products have anticommutation properties (rather like quaternions):

YI)Yq = _’}/q’)/p (p 7é q)

In the particular case of three dimensions (n = 3), we can define the three
different ‘second-order’ quantities

i=77 i=7v7, k=77,

#8 [11.6] Find the geometrical nature of the transformation, in Euclidean 3-space, which is the
composition of two reflections in planes that are not perpendicular.
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and it is readily checked that these three quantities i, j, and k satisfy the
quaternion algebra laws (Hamilton’s ‘Brougham Bridge’ equations).['1.7]

The general element of the Clifford algebra for an n-dimensional space is
a sum of real-number multiples (i.e. a linear combination) of products of
sets of distinct y’s. The first-order (‘primary’) entities are the n different
individual quantities y,. The second-order (‘secondary’) entities are the
%n(n —1) independent products 7v,y, (with p<g); there are
¢n(n—1)(n—2) independent third-order entities v,y,¥y, (with
p<qg<r), ﬁn(n — 1)(n — 2)(n — 3) independent fourth-order entities,
etc., and finally the single nth-order entity y,v,¥;---7¥,. Taking all
these, together with the single zeroth-order entity 1, we get

1 1
1+n+§n(n—1)+6n(n—1)(n—2)+---+1:2"

entities in all,l'!# and the general element of the Clifford algebra is a linear
combination of these. Thus the elements of a Clifford algebra constitute a
2"-dimensional algebra over the reals, in the sense described in §11.1. They
form a ring with identity but, unlike quaternions, they do not form a
division ring.

One reason that Clifford algebras are important is for their role in
defining spinors. In physics, spinors made their appearance in Dirac’s
famous equation for the electron (Dirac 1928), the electron’s state being
a spinor quantity (see Chapter 24). A spinor may be thought of as an
object upon which the elements of the Clifford algebra act as operators,
such as with the basic reflections and rotations of a ‘spinorial object’ that
we have been considering. The very notion of a ‘spinorial object’ is
somewhat confusing and non-intuitive, and some people prefer to resort
to a purely (Clifford-) algebraic!'! approach to their study. This certainly
has its advantages, especially for a general and rigorous n-dimensional
discussion; but I feel that it is important also not to lose sight of the
geometry, and I have tried to emphasize this aspect of things here.

In n dimensions,'? the full space of spinors (sometimes called spin-space) is
2"/2_dimensional if n is even, and 2"~V/2-dimensional if z is odd. When 7 is
even, the space of spinors splits into two independent spaces (sometimes
called the spaces of ‘reduced spinors’ or ‘half-spinors’), each of which is
2("=2/2_dimensional; that is, each element of the full space is the sum of two
elements—one from each of the two reduced spaces. A reflection in the (even)
n-dimensional space converts one of these reduced spin-spaces into the other.
The elements of one reduced spin-space have a certain ‘chirality’ or
‘handedness’; those of the other have the opposite chirality. This appears

A& [11.7] Show this.
£ [11.8] Explain all this counting. Hint: Think of (1 + 1)".
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to have deep importance in physics, where I here refer to the spinors for
ordinary 4-dimensional spacetime. The two reduced spin-spaces are each
2-dimensional, one referring to right-handed entities and the other to left-
handed ones. It seems that Nature assigns a different role to each of these
two reduced spin-spaces, and it is through this fact that physical processes
that are reflection non-invariant can emerge. It was, indeed, one of the
most striking (and some would say ‘shocking’) unprecedented discoveries
of 20th-century physics (theoretically predicted by Chen Ning Yang and
Tsung Dao Lee, and experimentally confirmed by Chien-Shiung Wu and
her group, in 1957) that there are actually fundamental processes in
Nature which do not occur in their mirror-reflected form. I shall be
returning to these foundational issues later (§§25.3,4, §32.2, §§33.4,7,11,14).

Spinors also have an important technical mathematical value in
various different contexts!? (see §§22.8-11, §§22.4,5, §§24.6,7, §§32.3,4,
§§33.4,6,8,11), and they can be of practical use in certain types of compu-
tation. Because of the ‘exponential’ relation between the dimension of the
spin-space (2/2, etc.) and the dimension n of the original space, it is not
surprising that spinors are better practical tools when 7 is reasonably
small. For ordinary 4-dimensional spacetime, for example, each reduced
spin-space has dimension only 2, whereas for modern 11-dimensional
‘M-theory’ (see §31.14), the spin-space has 32 dimensions.

11.6 Grassmann algebras

Finally, let me turn to Grassmann algebra. From the point of view of the
above discussion, we may think of Grassmann algebra as a kind of
degenerate case of Clifford algebra, where we have basic anticommuting
generating elements 0, 195, 13 , ..., 1, similar to the v, ¥, ¥3 ..., ¥,
of the Clifford algebra, but where each n, squares to zero, rather than to
the —1 that we have in the Clifford case:

n%zO, n%zO, e, ni:O.

The anticommutation law
MMy = — MMy

holds as before, except that the Grassmann algebra is now more ‘system-
atic’ than the Clifford algebra, because we do not have to specify ‘p # ¢’ in
this equation. The case 1,1, = —m,7m, simply re-expresses 1;; =0.
Indeed, Grassmann algebras are more primitive and universal than
Clifford algebras, as they depend only upon a minimal amount of
local structure. Basically, the point is that the Clifford algebra needs
to ‘know’ what ‘perpendicular’ means, so that ordinary rotations can be
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built up out of reflections, whereas the notion of a ‘rotation’ is not part of
what is described according to Grassmann algebras. To put this another
way, the ordinary notions of ‘Clifford algebra’ and ‘spinor’ require that
there be a metric on the space, whereas this is not necessary for a Grass-
mann algebra. (Metrics will be discussed in §13.8 and §14.7.)

What the Grassmann algebra is concerned with is the basic idea of
a ‘plane element’ for different numbers of dimensions. Let us think of
each of the basic quantities n, 1,, 13, ..., 1, as defining a line element
or ‘vector’ (rather than a hyperplane of reflection) at the origin of co-
ordinates in some n-dimensional space, each m being associated with
one of the n different coordinate axes. (These can be ‘oblique’ axes,
since Grassmann algebra is not concerned with orthogonality; see
Fig. 11.5.) The general vector at the origin will be some combination

a=an +an+t - +an,,

where ai, ay ,..., a, are real numbers. (Alternatively the a; could be
complex numbers, in the case of a complex space; but the real and complex
cases are similar in their algebraic treatment.) To describe the 2-dimen-
sional plane element spanned by two such vectors @ and b, where

b:blnl+b2n2+'”+bﬂnm

we form the Grassmann product of a with b. In order to avoid confusion
with other forms of product, I shall henceforth adopt the (standard)
notation a A b for this product (called the ‘wedge product’) rather than
Just using juxtaposition of symbols. Accordingly, what I previously wrote

Fig. 11.5 Each basis element

N, N, M3 5. .., Ny, of a Grassmann
algebra defines a vector in n-dimensional
space, at some origin-point O. These
vectors can be along the different
coordinate axes (which can be ‘oblique’
axes; Grassmann algebra not being
concerned with orthogonality). A general
vector at O is a linear combination
a=anm tant+-+am,
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as 1,1, [ shall now denote by 0, A n,. The anticommutation law of these
7’s is now to be written

np/\nq = _nq/\np'

Adopting the distributive law (see §11.1) in defining the product a A b, we
consequently obtain the more general anticommutation propertyl!!-°]

aNb=—-bAa

for arbitrary vectors @ and b. The quantity a A b provides an algebraic
representation of the plane element spanned by the vectors a and b (Fig.
11.6a). Note that this contains the information not only of an orientation
for the plane element (since the sign of @ A b has to do with which of a@ or b
comes first), but also of a ‘magnitude’ assigned to the plane element.

We may ask how a quantity such as a A b is to be represented as a set of
components, corresponding to the way that a« may be represented as

(a1, a2 ,...,a,) and b as (by, by ,..., b,), these being the coefficients
occurring when a and b are respectively presented as linear combinations of
M, M ,--., M, The quantity a A b may, correspondingly, be presented as

a linear combination of n; A n,, n; A 73, etc., and we require the coeffi-
cients that arise. There is a certain choice of convention involved here
because, for example, 9, A i, and 0, A n,; are not independent (one being
the negative of the other), so we may wish to single out one or the other of
these. It turns out to be more systematic to include both terms and to
divide the relevant coefficient equally between them. Then we find!!!-19] the
coefficients—that is, the components—of a A b to be the various quantities
a,bg, where square brackets around indices denote antisymmetrization,
defined by

(qu B A‘II’) ’

N —

A[pq] =

whence

1
apbg = B (apbq - aqbp)'

What about a 3-dimensional ‘plane element™? Taking a, b, and ¢ to
be three independent vectors spanning this 3-element, we can form
the triple Grassmann product a Ab Ac¢ to represent this 3-element
(again with an orientation and magnitude), finding the anticommutation
properties

4 [11.9] Show this.
€ [11.10] Write out a A b fully in the case n = 2, to see how this comes about.
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@ (b)

Fig.11.6 (a) The quantity a A b represents the (oriented and scaled) plane-element
spanned by independent vectors a and b. (b) The triple Grassmann producta Ab A ¢
represents the 3-element spanned by independent vectors a, b and c.

aNbANec=bANcha=cNaANb=—-bNaNc=—aNcANb=—-cANbANa

(see Fig. 11.6b). The components of a A b A ¢ are taken to be, in accordance
with the above,

1
apbgcy = 3 (apbycr + agbycy, + aybycy — aghpe, — apbrcg — arbycy),

the square brackets again denoting antisymmetrization, as illustrated by
the expression on the right-hand side.

Similar expressions define general r-elements, where r ranges up to the
dimension n of the entire space. The components of the rth-order wedge
product are obtained by taking the antisymmetrized product of the com-
ponents of the individual vectors.I'!-111- 111121 Tndeed, Grassmann algebra
provides a powerful means of describing the basic geometrical linear
elements of arbitrary (finite) dimension.

The Grassmann algebra is a graded algebra in the sense that it contains
rth-order elements (where r is the number of #’s that are ‘wedge-pro-
ducted” together within the expression). The number r (where
r=20,1,2, 3, ..., n)is called the grade of the element of the Grassmann
algebra. It should be noted, however, that the general element of the
algebra of grade r need not be a simple wedge product (such asaAb A ¢
in the case r = 3), but can be a sum of such expressions. Accordingly, there
are many elements of the Grassmann algebra that do not directly describe

@ [11.11] Write down this expression explicitly in the case of a wedge product of four vectors.

%9 [11.12] Show that the wedge product remains unaltered if a is replaced by @ added to any
multiple of any of the other vectors involved in the wedge product.
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geometrical r-elements. A role for such ‘non-geometrical’ Grassmann
elements will appear later (§12.7).

In general, if P is an element of grade p and Q is an element of grade ¢,
we define their (p + ¢)-grade wedge product P A Q to have components
P..cQa. s, where P, . and Qy., are the components P and Q respect-
ively. Then we find(!!-13}-[11.14]

PrO= +Q AP if p, g, or both, are even,
| —QAP if pand g are both odd.

The sum of elements of a fixed grade r is again an element of grade r;
we may also add together elements of different grades to obtain a
‘mixed’ quantity that does not have any particular grade. Such elements
of the Grassmann algebra do not have such direct interpretations,
however.

Notes

Section 11.1
11.1. According to Eduard and Klein (1898), Carl Friedrich Gauss had apparently
already noted the multiplication law for quaternions in around 1820, but he had
not published it (Gauss 1900). This, however, was disputed by Tait (1900) and
Knott (1900). For further information, see Crowe (1967).
11.2. The term ‘vector’ has a spectrum of meanings. Here we require no association
with the differentiation notion of a ‘vector field’, described in §10.3.

Section 11.2

11.3. It is not clear to me how seriously Hamilton himself may have yielded to this
temptation. Prior to his discovery of quaternions, he had been interested in the
algebraic treatment of the ‘passage of time’, and this could have had some
influence on his preparedness to accept a fourth dimension in quaternionic
algebra. See Crowe (1967), pp. 23-7.

11.4. Nevertheless, a fair amount of work has been directed at issue of quaternionic
analogues of holomorphic notions and their value in physical theory. See
Giirsey (1983); Adler (1995). One might regard the twistor expressions
(§§33.8,9) for solving the massless free field equations as an appropriate 4-
dimensional analogue of the holomorphic-function method of solution of the
Laplace equation. This, however, uses complex analysis, not quaternionic. For
a general reference on quaternions and octonions, see Conway and Smith
(2003).

11.5. See Adams and Atiyah (1966).

11.6. See Clifford (1878). For modern references see Hestenes and Sobczyk (2001);
Lounesto (1999).

[11.13] Show this.
¢ [11.14] Deduce that PAP = 0, if p is odd.
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11.7. See Grassmann (1844, 1862); van der Waerden (1985), pp. 191-2; Crowe (1967),
Chap. 3.
Section 11.3
11.8. We pronounce this as though it were spelt ‘spinnor’, not ‘spynor’.
11.9. Although I do not know who first suggested this way of demonstrating quater-
nion multiplication, J. H. Conway used it in private demonstrations at the
1978 International Congress of Mathematicians in Helsinki—see also Newman
(1942); Penrose and Rindler (1984), pp. 41-6.
Section 11.4
11.10. See Pars (1968).

Section 11.5

11.11. For an approach to many physical problems through Clifford algebra, see
Lasenby et al. (2000) and references contained therein.

11.12. See Cartan (1966); Brauer and Weyl (1935); Penrose and Rindler (1986),
Appendix; Harvey (1990); Budinich and Trautman (1988).

11.13. See Lounesto (1999); Cartan (1966); Crumeyrolle (1990); Chevalley (1954);
Kamberov (2002) for a few examples.
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12.1  Why study higher-dimensional manifolds?

LET us now come to the general procedure for building up higher-dimen-
sional manifolds, where the dimension n can be any positive integer
whatever (or even zero, if we allow ourselves to think of a single point as
constituting a 0-manifold). This is an essential notion for almost all
modern theories of basic physics. The reader might wonder why it is of
interest, physically, to consider n-manifolds for which » is larger than 4,
since ordinary spacetime has just four dimensions. In fact many modern
theories, such as string theory, operate within a ‘spacetime’ whose dimen-
sion is much larger than 4. We shall be coming to this kind of thing later
(§15.1, §§31.4,10-12,14-17), where we examine the physical plausibility of
this general idea. But quite irrespective of the question of whether actual
‘spacetime’ might be appropriately described as an n-manifold, there are
other quite different and very compelling reasons for considering n-mani-
folds generally in physics.

For example, the configuration space of an ordinary rigid body in
Euclidean 3-space—by which I mean a space C whose different points
represent the different physical locations of the body—is a non-Euclidean
6-manifold (see Fig. 12.1). Why of six dimensions? There are three dimen-
sions (degrees of freedom) in the position of the centre of gravity and three
more in the rotational orientation of the body.l'>!l Why non-Euclidean?
There are many reasons, but a particularly striking one is that even its
topology is different from that of Euclidean 6-space. This ‘topological non-
triviality’ of C shows up simply in the 3-dimensional aspect of the space
that refers to the rotational orientation of the body. Let us call this 3-space
R, so each point of Rrepresents a particular rotational orientation of the
body. Recall our consideration of rotations of a book in the previous
chapter. We shall take our ‘body’ to be that book (which must, of course,
remain unopened, for otherwise the configuration space would have many
more dimensions corresponding to the movement of the pages).

#€9 [12.1] Explain this dimension count more explicitly.
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Fig. 12.1 Configuration space C, each of whose points represents a possible
location of a given rigid body in Euclidean 3-space J&3: C is a non-Euclidean
6-manifold.

How are we to recognize ‘topological non-triviality’? We may imagine
that this is not an easy matter for a 3- or 6-manifold. However, there are
several mathematical procedures for ascertaining such things. Remember
that in our examination of Riemann surfaces, as given in §8.4 (see Fig. 8.9),
we considered various topologically non-trivial kinds of 2-surface. Apart
from the (Riemann) sphere, the simplest such surface is the torus (surface
of genus 1). How can we distinguish the torus from the sphere? One way is
to consider closed loops on the surface. It is intuitively clear that there are
loops that can be drawn on the torus for which there is no way to deform
them continuously until they shrink away (down to a single point),
whereas, on the sphere, every closed loop can be shrunk away in this
manner (see Fig. 12.2). Loops on the Euclidean plane can also be all
shrunk away. We say that the sphere and plane are simply-connected by
virtue of this ‘shrinkability’ property. The torus (and surfaces of higher

Fig. 12.2 Some loops on the torus cannot be shrunk away continuously (down to
single point) while remaining in the surface, whereas on the plane or sphere, every
closed loop can. Accordingly, the plane and sphere are simply-connected, but the
torus (and surfaces of higher genus) are multiply-connected.
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genus) are, on the other hand, multiply-connected because of the existence
of non-shrinkable loops.! This provides us with one clear way, from within
the surface itself, of distinguishing the torus (and surfaces of higher genus)
from the sphere and from the plane.

We can apply the same idea to distinguish the topology of the 3-manifold
R from the ‘trivial’ topology of Euclidean 3-space, or the topology of the
6-manifold C from that of ‘trivial’ Euclidean 6-space. Let us return to our
‘book’, which, as in §11.3, we picture as being attached to some fixed
structure by an imaginary belt. Each individual rotational orientation of
the book is to be represented by a corresponding point of R. If we continu-
ously rotate the book through 27, so that it returns to its original rotational
orientation, we find that this motion is represented, in R, by a certain closed
loop (see Fig. 12.3). Can we deform this closed loop in a continuous manner
until it shrinks away (down to a single point)? Such a loop deformation
would correspond to a gradual changing of our book rotation until it is no
motion at all. But remember our imaginary belt attachment (which we can
realize as an actual belt). Our 2n-rotation leaves the belt twisted; but this
cannot be undone by a continuous belt motion while leaving the book
unmoved. Now this 2n-twist must remain (or be transformed into an odd
multiple of a 2n-twist) throughout the gradual deforming of the book rota-
tion, so we conclude that it is impossible that the 2n-rotation can actually be
continuously deformed to no rotation at all. Thus, correspondingly, there is
no way that our chosen closed loop on Rcan be continuously deformed until
it shrinks away. Accordingly, the 3-manifold R (and similarly the 6-mani-
fold C) must be multiply-connected and therefore topologically different
from the simply-connected Euclidean 3-space (or 6-space).?

It may be noted that the multiple-connectivity of the spaces Rand C is
of a more interesting nature than that which occurs in the case of the

Fig. 12.3 The notion of multiple con-
nectivity, as illustrated in Fig. 12.2, distin-
guishes the topology of the 3-manifold R
. (rotation space), or of the 6-manifold C
gr?rirr?lzitlon (configuration space), from the ‘trivial’
away topologies of Euclidean 3-space and
6-space. A loop on Ror C representing a

2r rotation

does not /. . .
shrink [ continuous rotation through 2w cannot be
away shrunk to a point, so Rand C are multi-

ply-connected. Yet, when traversed twice
(representing a 4m-rotation) the loop does
shrink to a point (topological torsion). See
Fig. 11.3. (N.B. The 2-manifold depicted,
being schematic only, does not actually
have this last property.)
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torus. For our loop that represents a 2n-rotation has the curious property
that if we go around it twice (a 4n-rotation) then we obtain a loop which
can now be deformed continuously to a point.['?-2] (This certainly does not
happen for the torus.) This curious feature of loops in R and C is an
instance of what is referred to as topological torsion.

We see from all this that it is of physical interest to study spaces, such as
the 6-manifold C, that are not only of dimension greater than that of
ordinary spacetime but which also can have non-trivial topology. More-
over, such physically relevant spaces can have dimension enormously larger
than 6. Very large-dimensional spaces can occur as configuration spaces,
and also as what are called phase spaces, for systems involving large numbers
of individual particles. The configuration space K of a gas, where the gas
particles are described as individual points in 3-dimensional space, is of 3N
dimensions, where N is the number of particles in the gas. Each point of I
represents a gas configuration in which every particle’s position is individu-
ally determined (Fig. 12.4a). In the case of the phase space P of the gas, we
must keep track also of the momentum of each particle (which is the particle’s
velocity times its mass), this being a vector quantity (3 components for each
particle), so that the overall dimension is 6 N. Thus, each single point of P
represents not only the position of all the particles in the gas, but also
of every individual particle’s motion (Fig. 12.4b). For a thimbleful of
ordinary air, there are could be some 10" molecules,? so P has something
like 60000000 000000 000000 dimensions! Phase spaces are particularly

) g
/e / ﬂﬂ,
< P U — o
Ve Vv J:R’ . i
\.3n dimensions T - . 6n dimensions .7 ::
4 N Tk 5 Dol NP
n particle n particle
positions  configuration space positions Phase space

and momenta
(@ (b)

Fig. 12.4 (a) The configuration space K, for a system of n point particles in a
region of 3-space, has 3n dimensions, each single point of /X representing the
positions of all n particles. (b) The phase space P has 6n dimensions, each point of
‘P representing the positions and momenta of all n particles. (N.B. momentum =
velocity times mass.)

5 [12.2] Show how to do this, e.g. by appealing to the representation of R as given in Exercise
[12.8].

220



Manifolds of n dimensions §12.2

useful in the study of the behaviour of (classical) physical systems involv-
ing many particles, so spaces of such large dimension can be physically
very relevant.

12.2 Manifolds and coordinate patches

Let us now consider how the structure of an n-manifold may be treated
mathematically. An n-manifold M can be constructed completely analo-
gously to the way in which, in Chapters 8 and 10 (see §10.2), we con-
structed the surface S from a number of coordinate patches. However,
now we need more coordinates in each patch than just a pair of numbers
(x, y) or (X, Y). In fact we need n coordinates per patch, where # is a fixed
number—the dimension of M—which can be any positive integer. For this
reason, it is convenient not to use a separate letter for each coordinate, but
to distinguish our different coordinates

by the use of an (upper) numerical index. Do not be confused here. These
are not supposed to be different powers of a single quantity x, but separate
independent real numbers. The reader might find it strange that I have
apparently courted mystification, deliberately, by using an upper index
rather than a lower one (e.g. x, X2 ,..., X,), this leading to the inevitable
confusion between, for instance, the coordinate x> and the cube of some
quantity x. Confused readers are indeed justified in their confusion. I
myself find it not only confusing but also, on occasion, genuinely irritat-
ing. For some historical reason, the standard conventions for classical
tensor analysis (which we shall come to in a more serious way later in
this chapter) have turned out this way around. These conventions involve
tightly-knit rules governing the up/down placing of indices, and the con-
sistent placing for the indices on the coordinates themselves has come out
to be in the upper position. (These rules actually work well in practice, but
it seems a great pity that the conventions had not been chosen the opposite
way around. I am afraid that this is just something that we have to live
with.)

How are we to picture our manifold M? We think of it as ‘glued
together’ from a number of coordinate patches, where each patch is an
open region of IR". Here, IR" stands for the ‘coordinate space’ whose
points are simply the n-tuples (x!, x> , ..., x") of real numbers, where we
may recall from §6.1 that IR stands for the system of real numbers. In our
gluing procedure, there will be transition functions that express the coord-
inates in one patch in terms of the coordinates in another, wherever in the
manifold M we find one coordinate patch overlapping with another.
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Glue down

to get Non-Hausdorff )
4) on-Hausdor Hausdorff
condition

Need
consistency
on triple

overlap

@ (b) ©

Fig. 12.5 (a) The transition functions that translate between coordinates in
overlapping patches must satisfy a relation of consistency on every triple overlap.
(b) The (open-set) overlap regions between pairs of patches must be appropriate;
otherwise the ‘branching’ that characterizes a non-Haudorff space can occur. (¢) A
Hausdorff space is one with the property that any two distinct points possess
neighbourhoods that do not overlap. (In (b), in order that the ‘glued’ part be an
open set, its ‘edge’, where branching occurs, must remain separated, and it is along
here that the Hausdorff condition fails.)

These transition functions must satisfy certain conditions among them-
selves to ensure the consistency of the whole procedure. The procedure is
illustrated in Fig. 12.5a. But we must be careful, in order to produce the
standard kind of manifold,* which is a Hausdorff space. (Non-Hausdorff
manifolds can ‘branch’, in ways such as that indicated in Fig. 12.5b, see
also Fig. 8.2c.) A Hausdorff space has the defining property that, for any
two distinct points of the space, there are open sets containing each which
do not intersect (Fig. 12.5¢).

Itis important to realize, however, that a manifold M is not to be thought
of as ‘knowing’ where these individual patches are or what the particular
coordinate values at some point might happen to be. A reasonable way to
think of M is that it can be built up in some means, by the piecing together
of anumber of coordinate patches in this way, but then we choose to ‘forget’
the specific way in which these coordinate patches have been introduced.
The manifold stands on its own as a mathematical structure, and the
coordinates are just auxiliaries that can be reintroduced as a convenience
when desired. However, the precise mathematical definition of a manifold
(of which there are several alternatives) would be distracting for us here.>
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12.3 Scalars, vectors, and covectors

As in §10.2, we have the notion of a smooth function ®, defined on M
(sometimes called a scalar field on M) where @ is defined, in any local
coordinate patch, as a smooth function of the n coordinates in that patch.
Here, ‘smooth’ will always be taken in the sense ‘C*-smooth’ (see §6.3), as
this gives the most convenient theory. On each overlap between two
patches, the coordinates on each patch are smooth functions of the coord-
inates on the other, so the smoothness of @ in terms of one set of coordin-
ates, on the overlap, implies its smoothness in terms of the other. In this
way, the local (‘patchwise’) definition of smoothness of a scalar function @
extends to the whole of M, and we can speak simply of the smoothness of
® on M.

Next, we can define the notion of a vector field & on M, which should be
something with the geometrical interpretation as a family of ‘arrows’
on M (Fig. 10.5), where & is something which acts on any (smooth)
scalar field @ to produce another scalar field £(®) in the manner of a differ-
entiation operator. The interpretation of &(®) is to be the ‘rate of increase’
of @ in the direction indicated by the arrows that represent £, just as for the
2-surfaces of §10.3. Being a ‘differentiation operator’, & satisfies certain
characteristic algebraic relations (basically things that we have seen before
in §6.5, namely d(f+ g) = df + dg, d(fg) = f dg + g df, da = 0 if a is con-
stant):

§(P+ V) =&(D)+ &Y,
E(PY) = PE(Y) + VE(D),
&(k) =0 if k is a constant.

In fact, there is a theorem that tells us that these algebraic properties are
sufficient to characterize &€ as a vector field.®

We can also use such purely algebraic means to define a /-form or, what
is another name for the same thing, a covector field. (We shall be coming to
the geometrical meaning of a covector shortly.) A covector field & can be
thought of as a map from vector fields to scalar fields, the action of @ on &
being written @ « & (the scalar product of e with &), where, for any vector
fields & and #, and scalar field @ we have linearity:

acE+m=acftacn,
o+ (0F) = Dla- §).

These relations define covectors as dual objects to vectors (and this is what
the prefix ‘co’ refers to). The relation between vectors and covectors turns
out to be symmetrical, so we have corresponding expressions
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(@+P)-é=a-E+B-¢E,
(Pa) - £ = P(a - &),

leading to the definition of the sum of two covectors and the product of a
covector by a scalar. When we take the dual of the space of covectors we
get the original space of vectors, all over again. (In other words, a ‘co-
covector’ would be a vector.)

We can take these relations to be referring to entire fields or else
merely to entities defined at a single point of M. Vectors taken at a
particular fixed point o constitute a vector space. (As described in
§11.1, in a vector space, we can add elements & and 7, to form their sum
£4+m, with £+n=n+¢& and E+n)+{=£4+(m+ ), and we can
multiply them by scalars—here, real numbers f and g—where
(F+)E=/E+3g&. f(E+m) =&+, [(gd) = (/2), 1 = £) We may
regard this (flat) vector space as providing the structure of the manifold
in the immediate neighbourhood of o (see Fig. 12.6). We call this vector
space the tangent space T,, to M at o. T, may be intuitively understood as
the limiting space that is arrived at when smaller and smaller neighbour-
hoods of 0 in M are examined at correspondingly greater and greater
magnification. The immediate vicinity of o, in M, thus appears to be
infinitely ‘stretched out’ under this examination. In the limit, any ‘curva-
ture’ of M would be ‘ironed out flat’ to give the flat structure of T,.
The vector space T, has the (finite) dimension 7n, because we can find a
set of n basis elements, namely the quantities 9/dx!, ..., /dx", at the point
o0, pointing along coordinate axes, in terms of which any element of 7, can
be uniquely linearly expressed (see also §13.5).

We can form the dual vector space to T, (the space of covectors at 0) in
the way described above, and this is called the cotangent space T, to M at
o. A particular case of a covector field is the gradient (or exterior deriva-
tive) d® of a scalar field @. (We have encountered this notation already, in

Fig. 12.6 The tangent
space T,, to an n-manifold
M at a point o may be in-
tuitively understood as the
limiting space, when smaller
and smaller neighbourhoods
of 0 in M are examined at
correspondingly greater and
greater magnifications.
(Compare Fig. 10.6.) The
resulting 7, is flat: an
n-dimensional vector space.

Tangent
n-plane 7,

. n-manifold 7
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the 2-dimensional case, see §10.3). The covector d® (with components
a®/ax!, ... a®/dx") has the defining property

do - & = &(9).

(See also §10.4.)11231 Although not all covectors have the form d®, for
some @, they can all be expressed in this way at any single point. We shall
see in a moment why this does not extend to covector fields.

What is the geometrical difference between a covector and a vector? At
each point of M, a (non-zero) covector e determines an (n — 1)-dimen-
sional plane element. The directions lying within this (n — 1)-plane element
are those determined by vectors & for which a « & = 0; see Fig. 12.7. In the
particular case when @ = d®, these (n — 1)-plane elements are tangential
to the family of (n — 1)-dimensional surfaces!'?># of constant @ (which
generalizes the notion of ‘contour lines’, as illustrated in Fig. 10.8a).
However, in general the (n — 1)-plane elements defined by a covector a
would twist around in a way that prevents them from consistently touch-
ing any such family of (n — 1)-surfaces (see Fig. 12.8).”

In any particular coordinate patch, with coordinates x', ..., X, we can
represent the vector (field) £ by its set of components (&', &, ..., &"), these
being the set of coefficients in the explicit representation of & in terms of
partial differentiation operators

J 0 J
=8 G+ &gt
X X ax"

in the patch (see §10.4). For a vector at a particular point, g e
will just be n real numbers; for a vector field within some coordinate

Covector
defines an
(n—1)-dimensional

Fig. 12.7 A (non-zero) covector a at a
plane element

point of M, determines an (n — 1)-
dimensional plane element there. The
vectors & satisfying a e & = 0 define the
directions within it.

M . .
n-manifold <L

[12.3] Show that ‘d®’, defined in this way, indeed satisfies the ‘linearity’ requirements of a
covector, as specified above.

4 [12.4] Why?
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Fig. 12.8 The (n — 1)-plane
elements defined by a covector
field @ would, in general, twist
around in a way that prevents
them from consistently touching a
single family of (n — 1)-surfaces—
although in the particular case

a = d@ (for a scalar field @),
they would touch the surfaces

® = const. (generalizing the
‘contour lines’ of Fig. 10.8).

patch, they will be # (smooth) functions of the coordinates x', ..., X" (and
the reader is reminded that ‘¢"” does not stand for ‘the nth power of &,
etc.). Recall that each of the operators ‘9/dx" stands for ‘take the rate
of change in the direction of the rth coordinate axis’. The above expression
for & simply expresses this vector (which, as an operator, we recall asserts
‘take the rate of change in the £-direction’) as a linear combination of the
vectors pointing along each of the coordinate axes (see Fig. 12.9).

@ (b)

Fig. 129 Components in a coordinate patch (x', ..., x") (with n =3 here).
(a) For a vector (field) & these are the coefficients (&', ¢&%...,¢") in
£=2¢9/0x" + E%9/ax? + - 4 £"9/ox", where ‘9/0x"" stands for ‘rate of change
along the rth coordinate axis’ (see also Fig. 10.9). (b) For a covector (field) e, these
are the coefficients (a1, @ ..., o) in @ = aydx! + apdx? + - - - + o,dx”", where dx”
stands for ‘the gradient of x”°, and refers to the (n — 1)-plane element spanned by
the coordinate axes except for the x"-axis.
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In a similar way, a covector (field) e is represented, in the coordinate
patch, by a set of components (a;, o , ..., ,) in the patch, where now we
write

a = odx! + opdx? + - - + o, dX”,

expressing e as a linear combination of the basic 1-forms (covectors)?
dx', dx?, ..., dx". Geometrically, each dx" refers to the (n— 1)-plane
element spanned by all the coordinate axes with the exception of the x’-
axis (see Fig. 12.10).1>31 The scalar product a « & is given by the expres-
sionl!2-6]

@ & =08 + o84,

12.4 Grassmann products

Let us now consider the representation of plane elements of various other
dimensions, using the idea of a Grassmann product, as defined in §11.6. A
2-plane element at a point of M (or a field of 2-plane elements over M)
will be represented by a quantity

ENnm,

where £ and 7 are two independent vectors (or vector fields) spanning the
2-plane(s) (see Figs. 11.6a and 12.10a). A quantity & A i is sometimes
referred to as a (simple) bivector. Its components, in terms of those of &
and %), are the expressions

(fl‘nS _ 53'77!‘)’

N —

) —

as described towards the end of the last chapter. A sum ¥ of simple
bivectors £ A n is also called a bivector; its components y"* have the
characteristic property that they are antisymmetric in r and s, i.e.
lprs — 7¢SV.

Similarly, a 3-plane element (or a field of such) would be represented by
a simple trivector

{6 [12.5] For example, show that dx? has components (0, 1, 0, ..., 0) and represents the tangent
hyperplane elements to x> = constant.

£3[12.6] Show, by use of the chain rule (see §10.3), that this expression for e « £ is consistent with
d® « £ = £(®), in the particular case @ = d®.
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(d)

Fig. 12.10 (a) A 2-plane element at a point of M, being spanned by independent
vectors &, ), is described by the bivector £ A . (b) Similarly, a 3-plane element
spanned by &, m, { is described by & A § A £. (c) Dually, an (n — 2)-plane element,
the intersection of two (n — 1)-plane elements specified by 1-forms e, B, is de-
scribed by e A B. (d) The (n — 3)-plane element of intersection of the three (n — 1)-
plane elements specified by e, B, vy, is described by @ A B A .

EANNL,

where the vectors &, m, { span the 3-plane (Figs. 11.6b and 12.10b), its
components being

é[rnscl] :g(élnbct + ésnt&:r + étanA _ érntzs _ étnacl _ ésnict)_

The general trivector 7 has completely antisymmetric components /%,
and would always be a sum of such simple trivectors. We can go on in a
similar way to define 4-plane elements, represented by simple 4-vectors,
and so on. The general n-vector has sets of components that are completely
antisymmetric. It would always be expressible as a sum of simple n-vectors.

There is an issue arising here which may seem puzzling. It appears
that we now have two different ways of representing an (n — 1)-plane elem-
ent, either as a 1-form (covector) or else as an (n — 1)-vector quantity,
obtained by ‘wedging’ together n — 1 independent vectors spanning the
(n — 1)-plane. There is in fact a geometrical distinction between the quan-
tities described in these two different ways, but it is a somewhat
subtle one. The distinction is that the 1-form should be thought of as
a kind of ‘density’, whereas the (n — 1)-vector should not. In order to
make this clearer, it will be helpful first to introduce the notion of a general
p-form.
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Essentially, we shall proceed just as for multivectors above, but starting
with 1-forms rather than vectors. Given a number p of (independent)
I-forms e, B, ..., 6, we can form their wedge product

aABA---N8,
this having components given by
OC[,‘ﬁS P 5u]

in a coordinate patch (using the general square-bracket-around-
indices notation of §11.6). Such a quantity determines an (n — p)-plane
element (or a field of such), this element being the intersection of the various
(n — 1)-plane elements determined by e, B,...6 individually (Fig.
12.10c,d). This quantity is called a simple p-form. As was the case with p-
vectors, the most general p-form is not expressible as a direct wedge product
of covectors, however (except in the particular cases p =0, 1, n — 1, n), but
is a sum of terms that are so expressible. In components, a general p-form ¢
is represented (in any coordinate patch) by a set of quantities

cIOFS...L{
(where each of r, s, ..., uranges over 1, ..., n) which is antisymmetrical in
its indices r, s, ..., u, these being p in number. As before, antisymmetry

means that if we interchange any pair of index labels, we get a quantity
that is precisely the negative of what we had before. In terms of our square-
bracket notation (§11.6), we can express this antisymmetry property in the
equation(!?7]

(P[rs...u] = Prs..u

It may also be remarked here that the (p + g)-form ¢ A x, which is the
wedge product of the p-form ¢ with a g-form y, has components

Plrs..ukjk...m)>

the antisymmetrization being taken right across all the indices (where
YLik..m are the components of x).'>#1 A similar notation applies for the
wedge product of a p-vector with a g-vector.

12.5 Integrals of forms

Now let us return to the ‘density’ aspect of a p-form. Recall that, in
ordinary physics, the density of an object is its mass per unit volume.

[12.7] Explain why this works.
[12.8] Justify the fact that ¢,y =ocp - A PpAn---v Where @ = op - np, x = Ap - V.
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This density is a property of the material of which the body is composed.
We use this ‘density’ notion when we wish to evaluate the total mass of the
object when we know its total volume and the nature of its material.
Mathematically, what we would do would be to integrate its density
over the volume that it occupies. Basically, the point about a density is
that it is the appropriate kind of quantity that we can integrate over some
region; it is the kind of quantity that we place after an integral sign. We
should be a little careful here to distinguish integrals over spaces different
dimension, however. (‘Mass per unit area’ is a different kind of quantity
from ‘mass per unit volume’, for example.) We shall find that a p-form is
the appropriate quantity to integrate over a p-dimensional space.

Let us start with a 1-form. This is the simplest case. We are concerned
with the integral of a quantity over a 1-dimensional manifold, that is,
along some curve y. Recall from §6.6 that ordinary (1-dimensional) inte-
grals are things that are written

[re e

where x is some real-valued quantity that we can take to be a parameter
along the curve y. We are to think of the quantity ‘f(x) dx’ as denoting a
I-form. The notation for 1-forms has, indeed, been carefully tailored to
be consistent with the notation for ordinary integrals. This is a feature of
the 20th-century calculus known as the exterior calculus, introduced by
the outstanding French mathematician Elie Cartan (1869-1951), whom
we shall encounter again in Chapters 13, 14, and 17, and it dovetails
beautifully with the ‘dx’ notation introduced in the 17th century by
Gottfried Wilhelm Leibniz (1646-1716). In Cartan’s scheme we do not
think of ‘dx’ as denoting an ‘infinitesimal quantity’, however, but as
providing us with the appropriate kind of density (1-form) that one may
integrate over a curve.

One of the beauties of this notation is that it automatically deals with
any changes of variable that we may choose to invoke. If we change the
parameter x to another one X, say, then the I-form e = f(x)dx is deemed
to remain the same—in the sense that [ @ remains the same—even though
its explicit functional expression in terms of the given variable (x or X) will
change.['291 We can also regard the 1-form e as being defined throughout
some larger-dimensional ambient space within which our curve resides.
The parameter x or X could be taken to be one of the coordinates in a
coordinate patch in this ambient space, where we are happy to change to a
different coordinate when we pass to another coordinate patch. Every-
thing takes care of itself. We can simply write this integral as

%9 [12.9] Show this explicitly, explaining how to treat the limits, for a definite integral fab a.
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Ja o [a
R

where R stands for some portion of the given curve y, over which the
integral is to be taken.

What about integrals over regions of higher dimension? For a 2-dimen-
sional region, we need a 2-form after the integral sign.® This could be some
quantity f(x, y)dx A dy (or a sum of things like this) and we can write

/Rf(x, y)dxAdy = /Ra

(or a sum of such quantities), where Ris now a 2-dimensional region over
which the integral is to be performed, lying within some given 2-surface.
Again, the parameters x and y, locally coordinatizing the surface, can be
replaced by any other such pair, and the notation takes care of itself. This
applies perfectly well if the 2-form inhabits some ambient higher-dimen-
sional space within which the 2-region R resides. All this works also for
3-forms integrated over 3-dimensional regions or 4-forms integrated over
4-dimensional regions, etc. The wedge product in Cartan’s differential-
form notation (together with the exterior derivative of §12.6) takes care of
everything if we choose to change our coordinates. (This eliminates the
explicit mention of awkward quantities known as ‘Jacobians’, which
would otherwise have to be brought in.)l12-10]

Recall, from §6.6, the fundamental theorem of calculus, which asserts, for
I-dimensional integrals, that integration is the inverse of differentiation,
or, put another way, that

/ YOy - s,
. dx

Is there a higher-dimensional analogue of this? There are, indeed, ana-
logues for different dimensions that go under various names (Ostro-
gradski, Gauss, Green, Kelvin, Stokes, etc.), but the general result,
essentially part of Cartan’s exterior calculus of differential forms, will be
called here ‘the fundamental theorem of exterior calculus’.!® This depends
upon Cartan’s general notion of exterior derivative, to which we now turn.

12.6 Exterior derivative

A ‘coordinate-free’ route to defining this important notion is to build
up the exterior derivative axiomatically as the unique operator ‘d’, taking

#5[12.10] Let G = [*_ ¢ ¥ dx. Explain why G? = [, e+ dx, dy and evaluate this by chang-
ing to polar coordinates (r,60). (§5.1). Hence prove G = /.
231



§12.6 CHAPTER 12

p-forms to (p+ l)-forms, for each p=0,1, ...n—1, which has the
properties

d(a + B) =da+dg,
da@ny)=darny+(—1Yandy,
d(de) =0,

a being a p-form, and where d® has the same meaning (‘gradient of @) for
a 0-form (i.e. for a scalar) that it did in our earlier discussion (defined from
d® « & = &(P), the ‘d’ in dx also being this same operation). The final
equation in the above list is frequently expressed simply as

d> =0,

which is a key property of the exterior derivative operator d. (We can
perceive that the ‘reason’ for the awkward-looking term ( —1)” in the second
displayed equation is that the ‘d’ following it is really ‘sitting in the wrong
place’, having to be ‘pushed through’ @, with its p antisymmetrical indices.
This is made more manifest in the index expressions below.)l!211]

A 1-form @ which is a gradient &« = d® must satisfy da = 0, by the
above.l>121 But not all 1-forms satisfy this relation. In fact, if a 1-form
satisfies da = 0, then it follows that locally (i.e. in a sufficiently small open
set containing any given point) it has the form @ = d® for some @. This is
an instance of the important Poincaré lemma,''-['2-13] which asserts that if a
p-form B satisfies dB = 0, then locally B has the form B = dvy, for some
(p — 1)-form 7.

Exterior derivative is clarified, and made explicit, by the use of compon-
ents. Consider a p-form @. In a coordinate patch, with coordinates

x!, ..., X", we have an antisymmetrical set of components o, , (= Olfr...d]»
where r, ..., tare p in number; see §11.6) to represent @. We can write this
representation

o= Zocrm, dx" A AdX,

where the summation (indicated by the symbol ") is taken over all sets of p
numbersr, ..., ¢, each running over the range 1, . . ., n. (Some people prefer
to avoid a redundancy in this expression which arises because the antisym-
metry in the wedge product leads to each non-zero term being repeated p!
times. However, the notation works much better if we simply live with this
redundancy—which is my much preferred choice.) The exterior derivative of
the p-form e is a (p + 1)-form that is written de, which has components

£9[12.11] Using the above relations, show that d(Adx + Bdy) = (0B/dx — 04/dy)dx,dy.
€3 [12.12] Why?
#5 [12.13] Assuming the result of Exercise [12.10], prove the Poincaré lemma for p = 1.
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Fig. 12.11 The fundamental
theorem of exterior calculus

Jr de = [, . (a) The classical
(17th century) case f: f(x)dx =
f(b) — f(a), where ¢ = f(x) and R
is the segment of a curve y from a to
b, parametrized by x, so 9y

consists of y’s end-points x = a
(counting negatively) and x = b
(positively). (b) The general case,
for a p-form ¢, where Ris a
compact oriented (p + 1)-
dimensional region with

(@) (b) p-dimensional boundary dR.

[ radr =16)-Aa)

4 b
x

a

Irdp=lorp

ad

(da)qr“,t = m OC)‘...I];

(The notation looks a bit awkward here. The antisymmetrization—which
is the key feature of the expression—extends across all p + 1 indices,
including the one on the derivative symbol.)[12-14-[12.15]

We are now in a position to write down the fundamental theorem of
exterior calculus. This is expressed in the following very elegant (and
powerful) formula for a p-form ¢ (see Fig. 12.11):

/dqa:/ .
R IR

Here R is some compact (p 4+ 1)-dimensional (oriented) region whose
(oriented) p-dimensional boundary (consequently also compact) is de-
noted by IR.

There are various words that I have employed here that I have not
yet explained. For our purposes ‘compact’ means, intuitively, that the
region R does not ‘go off to infinity’ and it does not have ‘holes cut out
of it’ nor ‘bits of its boundary removed’. More precisely, a compact region
R is, for our purposes here,!? a region with the property that any infinite

£35[12.14] Show directly that all the ‘axioms’ for exterior derivative are satisfied by this coordinate
definition.

% [12.15] Show that this coordinate definition gives the same quantity de, whatever choice of
coordinates is made, where the transformation of the components ;. , of a form is defined by the
requirement that the form e« itself be unaltered by coordinate change. Hint: Show that this

transformation is identical with the passive transformation of [2]-valent tensor components, as
given in §13.8.
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Fig. 12.12 Compactness.
(a) A compact space R has
the property that any
infinite sequence of points
P1, P2, D3 » ... In R must
y eventually accumulate at
some point y in R—so
e every open set N'in R
71 s containing y must also
R P2 contain (infinitely many)
Ps members of the sequence.
(b) In a non-compact space
@ (b) this property fails.

sequence of points lying in R must accumulate at some point within R
(Fig. 12.12a). Here, an accumulation point y has the property that
every open set in R (see §7.4) which contains y must also contain
members of the infinite sequence (so the points of the sequence get
closer and closer to y, without limit). The infinite Euclidean plane is
not compact, but the surface of a sphere is, and so is the torus. So also is
the set of points lying within or on the unit circle in the complex
plane (closed unit disc); but if we remove the circle itself from the set, or
even just the centre of the circle, then the resulting set is not compact. See
Fig. 12.13.

The term ‘oriented’ refers to the assignment of a consistent ‘handed-
ness’ at every point of R (Fig. 12.14). For a 0O-manifold, or set of
discrete points, the orientation simply assigns a ‘positive’ (+) or ‘negative
value’ (—) to each point (Fig. 12.14a). For a 1-manifold, or curve, this
orientation provides a ‘direction’ along the curve. This can be represented in
a diagram by the placement of an ‘arrow’ on the curve to indicate
this direction (Fig. 12.14b). For a 2-manifold, the orientation can be
diagrammatically represented by a tiny circle or circular arc with an arrow
on it (Fig. 12.14c¢); this indicates which rotation of a tangent vector at a
point of the surface is considered to be in the ‘positive’ direction. For a
3-manifold the orientation specifies which triad of independent vectors at a
point is to be regarded as ‘right-handed’ and which as ‘left-handed’
(recall §11.3 and Fig. 11.1). See Fig. 12.14d. Only for rather unusual spaces
is it not possible to assign an orientation consistently. A (‘non-orientable’)
example for which this cannot be done is the Mobius strip, as illustrated in
Fig. 12.15.

The boundary dR of a (compact oriented) (p + 1)-dimensional region R
consists of those points of R that do not lie in its interior. If R is suitably
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(a) {b)

Fig. 12.13 (a) Some non-compact spaces: the infinite Euclidean plane, the open
unit disc, and the closed disc with the centre removed. (b) Some compact spaces:
the sphere, the torus, and the closed unit disc. (Solid boundary lines are part of the
set; broken boundary lines are not.)

ot
o4
@ .,
@
[ 23

@ (b) © (d)

Fig. 12.14 Orientation. (a) A (multi-component) 0-manifold is a set of discrete
points; the orientation simply assigns a ‘positive’ (+ ) or ‘negative’ ( —) value
to each. (b) For a 1-manifold, or curve, the orientation provides a ‘direction’
along the curve; represented in a diagram by the placement of an arrow on it.
(c) For a 2-manifold, the orientation can be indicated by a tiny circular arc with
an arrow on it, indicating the ‘positive’ direction of rotation of a tangent vector.
(d) For a 3-manifold the orientation specifies which triads of independent vectors
at a point are to be regarded as ‘right-handed’ (cf. Fig. 11.1).
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Fig. 12.15 The Mobius strip: an example of
a non-orientable space.

non-pathelogical, then dR is a (compact oriented) p-dimensional region,
though possibly empty. Its boundary 99 R is empty. Thus 8> = 0, which
complements our earlier relation d* = 0.

The boundary of the closed unit disc in the complex plane is the unit circle;
the boundary of the unit sphere is empty, the boundary of a finite cylinder
(cylindrical 2-surface) consists of the two circles at either end, but the
orientation of each is opposite, the boundary of a finite line segment consists
of its two end-points, one counting positively and the other negatively. See
Fig. 12.16.13 The original 1-dimensional version of the fundamental theorem

)
B

ot

© (d)

Fig. 12.16 The boundary R of a well-behaved compact oriented (p + 1)-dimen-
sional region R is a (compact oriented) p-dimensional region (possibly empty),
consisting of those points of R that do not lie in the (p + 1)-dimensional interior.
(a) The boundary of the closed unit disc (given by |z| = 1 in the complex plane C)
is the unit circle. (b) The boundary of the unit sphere is empty (& denoting the
empty set, see §3.4). (c) The boundary of a finite length of cylindrical surface
consists of the two circles at either end, the orientation of each being opposite.
(d) The boundary of a finite curve segment consists of two end-points, one positive
and the other negative.
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of calculus, as exhibited above, comes out as a special case of the funda-
mental theorem of exterior calculus, when R is taken to be such a line
segment.

12.7 Volume element; summation convention

Let us now return to the distinction between—and the relation between—a
p-form and an (n — p)-vector in an n-manifold M. To understand this
relationship, it is best to go first to the extreme case where p = n, so we are
examining the relation between an n-form and a scalar field on M. In
the case of an n-form €, the associated n-surface element at a point o of
M is just the entire tangent n-plane at o. The measure that € provides
is simply an n-density, with no directional properties at all. Such an »n-
density (assumed nowhere zero) is sometimes referred to as a volume element
for the n-manifold M. A volume element can be used to convert (n — p)-
vectors to p-forms, and vice versa. (Sometimes there is a volume
element assigned to a manifold, as part of its assigned ‘structure’; in that
case, the essential distinction between a p-form and an (n — p)-vector disap-
pears.)

How can we use a volume element to convert an (n — p)-vector to a
p-form? In terms of components, the n-form & would be represented, in
each coordinate patch, by a quantity with » antisymmetric lower indices:

8)'...\‘V.

(Some people might prefer to incorporate a factor (n!)~! into this; for
see §5.3.) However, I shall not concern myself with the various awkward
factorials that arise here, as they distract from the main ideas.) We can use
the quantity ¢, ,, to convert the family of components y"“" of an (n — p)-
vector ¢ into the family of components «,_, of a p-form a. We do this by
taking advantage of the operations of tensor algebra, which we shall come
to more fully in the next section. This algebra enables us to ‘glue’ the n — p
upper indices of " to n — p of the n lower indices of ¢, _,, leaving us
with the p unattached lower indices that we need for a, ;. The ‘gluing’
operation that comes in here is what is referred to as tensor ‘contraction’
(or ‘transvection’), and it enables each upper index to be paired off with a
corresponding lower index, the two being ‘summed over’, so that both sets
of indices are removed from the final expression.

The archetypical example of this is the scalar product, which combines
the components /5, of a covector B with the components &" of a vector £ by
multiplying corresponding elements of the two sets of components to-
gether and then ‘summing over’ repeated indices to get

B-£=Y B¢,
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where the summation refers to the repeated index r (one up, one down).
This summation procedure applies also with many-indexed quantities,
and physicists find it exceedingly convenient to adopt a convention
introduced by Einstein, referred to as the summation convention. What
this convention amounts to is the omission of the actual summation
signs, and it is assumed that a summation is taking place between a lower
and an upper index whenever the same index letter appears in both pos-
itions in a term, the summation always being over the index values
1, ..., n. Accordingly, the scalar product would now be written simply as

B-&=p<"

Using this convention, we can write the procedure outlined above for
expressing a p-form in terms of a corresponding (n — p)-vector and a
volume form as

u..w
Ot OC Er_fu. Y/

with contraction over the n — p indices u, ..., w. Here, I am introducing
the symbol ‘o’, which stands for ‘is proportional to’, meaning that
each side is a non-zero multiple of the other. This is so that our expressions
do not get confusingly cluttered with complicated-looking factorials. We
sometimes say that the (n — p)-vector ¢ and the p-form a are dual'* to one
another if this relation (up to proportionality) holds, in which case there
will also be a corresponding inverse formula

u..w rotu..w
lp X 0y €

for some suitable reciprocal volume form (n-vector) €, often ‘normalized’
against £ according to
gee=¢ , &""=n!

(although matters of normalization are not our main concern here).

These formulae are part of classical tensor algebra (see §12.8). This
provides a powerful manipulative procedure (also extended to tensor
calculus, of which we shall see more in Chapter 14), which gains much
from the use of an index notation combined with Einstein’s summation
convention. The square-bracket notation for antisymmetrization (see
§11.6) also plays a valuable role in this algebra, as does an additional
round-bracket notation for symmetrization,

1
P =S (" ),
1
l//(abc) < (lpabc l/jacb (//bm l//Imc l/jcab lp(?lm)’

etc.,
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in which all the minus signs defining the square bracket are replaced with
plus signs.

As a further example of the value of the bracket notation, let us see how
to write down the condition that a p-form @ or a g-vector ¢ be simple, that
is, the wedge product of p individual 1-forms or of ¢ ordinary vectors. In
terms of components, this condition turns out to be

o‘[r...tocu]v..,w =0 or l//[r...tl//u]v...w _ 0’

where all indices of the first factor are ‘skewed’ with just one index of the
second.!” If @ and ¢ happened to be dual to one another, then we could
write either condition alternatively as

r..tu
lﬁ Oyy..w = 0,

where a single index of ¢ is contracted with a single index of a. The
symmetry of this expression shows that the dual of a simple p-form is a
simple (n — p)-vector and conversely.[!2-1¢]

12.8 Tensors: abstract-index and diagrammatic notation

There is an issue that arises here which is sometimes seen as a conflict
between the notations of the mathematician and the physicist. The two
notations are exemplified by the two sides of the above equation,
B+ & = B.¢". The mathematician’s notation is manifestly independent of
coordinates, and we see that the expression B « & (for which a notation
such as (B, &) or (B, &) might be more common in the mathematical
literature) makes no reference to any coordinate system, the scalar product
operation being defined in entirely geometric/algebraic terms. The physi-
cist’s expression f5,&", on the other hand, refers explicitly to components in
some coordinate system. These components would change when we move
from coordinate patch to coordinate patch; moreover, the notation
depends upon the ‘objectionable’ summation convention (which is in
conflict with much standard mathematical usage). Yet, there is a great
flexibility in the physicist’s notation, particularly in the facility with
which it can be used to construct new operations that do not come
readily within the scope of the mathematician’s specified operations.
Somewhat complicated calculations (such as those that relate the last
couple of displayed formulae above) are often almost unmanageable if
one insists upon sticking to index-free expressions. Pure mathemat-
icians often find themselves resorting to ‘coordinate-patch’ calculations

15 [12.16] Confirm the equivalence of all these conditions for simplicity; prove the sufficiency of
oprsttgy = 0 in the case p = 2. (Hint: contract this expression with two vectors.)
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(with some embarrassment!)—when some essential calculational ingredi-
ent is needed in an argument—and they rarely use the summation conven-
tion.

To me, this conflict is a largely artificial one, and it can be effectively
circumvented by a shift in attitude. When a physicist employs a quantity
‘&%, she or he would normally have in mind the actual vector quantity
that I have been denoting by &, rather than its set of components in
some arbitrarily chosen coordinate system. The same would apply to a
quantity ‘e,’, which would be thought of as an actual 1-form. In fact,
this notion can be made completely rigorous within the framework of
what has been referred to as the abstract-index notation.'® In this
scheme, the indices do not stand for one of 1,2,...,n, referring to
some coordinate system; instead they are just abstract markers in
terms of which the algebra is formulated. This allows us to retain the
practical advantages of the index notation without the conceptual draw-
back of having to refer, whether explicitly or not, to a coordinate
system. Moreover, the abstract-index notation turns out to have numer-
ous additional practical advantages, particularly in relation to spinor-
based formalisms.!”

Yet, the abstract-index notation still suffers from the visual problem
that it can be hard to make out all-important details in a formula because
the indices tend to be small and their precise arrangements awkward to
ascertain. These difficulties can be eased by the introduction of yet another
notation for tensor algebra that I shall next briefly describe. This is the
diagrammatic notation.

First, we should know what a tensor actually is. In the index notation, a
tensor is denoted by a quantity such as

Qf...h
a...c?
which can have p lower and ¢ upper indices for any p, ¢ = 0, and need
have no special symmetries. We call this a tensor of valence'® [5 J(ora [Z ]-

valent tensor or just a [{q’]-tensor). Algebraically, this would represent a

quantity @ which can be thought of as a function (of a particular kind
known as multilinear'®) of p vectors A, ..., C and g covectors F, ..., H,
where

0A4,...,C;F,...,Hy=A"...C°Q/"F; ... H).

In the diagrammatic notation, the tensor Q would be represented as a
distinctive symbol (say a rectangle or a triangle or an oval, according to
convenience) to which are attached ¢ lines extending downwards (the
‘legs’) and p lines extending upwards (the ‘arms’). In any term of a tensor
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expression, the various elements that are multiplied together are drawn in
some kind of juxtaposition, but not necessarily linearly ordered across the
page. For any two indices that are contracted together, the lines must be
connected, upper to lower. Some examples are illustrated in Figs. 12.17
and 12.18, including examples of various of the formulae that we have just

ab c
abe Qahc_thca
Qfg Iz gf
/g
/1(1
bed
&a 2(d De)b a
ablc fg] pab
cd
a
5b &a
glant] danbgel & e g

Fig. 12.17 Diagrammatic tensor notation. The [2 J-valent tensor Q is represented
by an oval with 3 arms and 2 legs, where the general [’;]-valent tensor picture

would have p arms and ¢ legs. In an expression such as Q}’;C — 20" the diagram-
matic notation uses positioning on the page of the ends of the arms and legs to
keep track of which index is which, instead of employing individual index letters.
Contractions of tensor indices are rezlpresented by the joining of an arm and a leg,
as illustrated in the diagram for éakgb[cD;g),i’. This diagram also illustrates the use of
a thick bar across index lines to denote antisymmetrization and a wiggly bar to
represent symmetrization. The factor {5 in the diagram results from the fact that
(to facilitate calculations) the normal factorial denominator for symmetrizers and
antisymmetrizers is omitted in the diagrammatic notation (so here we need
% X l, = ﬁ). In the lower half of the diagram, antisymmetrizers and symmetrizers
are written out as ‘disembodied’ expressions (by use of the diagrammatic repre-
sentation of the Kronecker delta &; that will be introduced in §13.3,
Fig. 13.6¢). This is then used to express the (multivector) wedge products & A n
and E A AL,
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)Ba A T, ia > $ ; ﬂ'ézﬂafa:i
o(1.1.7.04) -
Symmetric part of (J_'I'_LS is L%I C%Antisymmetric part of %F is % %]
n

A
Ers..w A | .. .I , ETS.W AAS | l, normalization E =n!
e
n

e 2
1 1 =5 f
e o A v
Antisymmetrical

Exterior product: Y 4 \
3-form o ~~> 4form ¢ ~~>

AN i

[0 2Y 71

Duals:

Proportionality signs

~h s N
e = =
V4

Antisymmetric
Equivalent conditions for simplicity:

gl <o R co Bl -0

Fig. 12.18 More diagrammatic tensor notation. The diagram for a covector 8
(1-form) has a single leg, which when joined to the single arm of a vector & gives
their scalar product. More generally, the multilinear form defined by a [?]-valent
tensor Qis represented by joining the p arms to the legs of p variable covectors and the
q legs to the arms of ¢ variable vectors (here ¢ = 3 and p = 2). Symmetric and
antisymmetric parts of general tensors can be expressed using the wiggly lines and
thick bars of the operations of Fig. 12.17. Also, the bar notation combines with a
related diagrammatic notation for the volume n-form &,,_,, (for an n-dimensional
space) and its dual n-vector ¢, normalized according to ¢, _,,¢*" = n! Relations
equivalent to n!éﬁ,éf ... 5£] =e?/g, ,, (n antisymmetrized indices) and
Ea.cu.w €T =plin — p)log, ... 5{:,] (see § 13.3 and Fig. 13.6¢) are also expressed.
Exterior products of forms, the ‘duality’ between p-forms and (n — p)-vectors,
and the conditions for ‘simplicity’ are then succinctly represented diagrammatically.
(For exterior derivative diagrams, see Fig. 14.18.)

encountered. As part of this notation, a bar is drawn across index lines to
denote antisymmetrization, mirroring the square-bracket notation of the
index notation (although it proves to be convenient to adopt a different
convention with regard to factorial multipliers). A ‘wiggly’ bar corres-
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pondingly mirrors symmetrization. Although the diagrammatic notation
is hard to print, in the ordinary way, it can be enormously convenient in
many handwritten calculations. I have been using it myself for over 50
years!?°

12.9 Complex manifolds

Finally, let us return to the issue of complex manifolds, as addressed in
Chapter 10. When we think of a Riemann surface as being 1-dimensional,
we are thinking solely in terms of holomorphic operations being per-
formed on complex numbers. We can adopt precisely the same stance
with higher-dimensional manifolds, considering our coordinates
x',..., X" now to be complex numbers z!, ..., z” and our functions of
them to be holomorphic functions. We again take our manifold to be
‘glued together’ from a number of coordinate patches, where each patch is
now an open region of the coordinate space C"—the space whose points
are the n-tuples (z', 22, ..., z") of complex numbers (and recall from §10.2
that ‘C’, by itself, stands for the system of complex numbers). The transi-
tion functions that express the coordinate transformations, when we move
from coordinate patch to coordinate patch, are now to be given entirely by
holomorphic functions. We can define holomorphic vector fields, covectors,
p-forms, tensors, etc., in just the same way as we did above, in the case of a
real n-manifold.

But then there is the alternative philosophical standpoint according to
which we could express all our complex coordinates in terms of their real
and imaginary parts zZ = X/ +1)/ (or, equivalently, include the notion of
complex conjugation into our category of acceptable function, so that
operations need no longer be exclusively holomorphic; see §10.1). Then,
our ‘complex n-manifold’ is no longer viewed as being an n-dimensional
space, but is thought of as being a real 2rn-manifold, instead. Of course, it is
a 2n-manifold with a very particular kind of local structure, referred to as
a complex structure.

There are various ways of formulating this notion. Essentially, what
is required is a higher-dimensional version of the Cauchy—Riemann equa-
tions (§10.5), but things are usually phrased somewhat differently from
this. Let us think of the relation between complex vector fields and real
vector fields on the manifold. We can think of a complex vector field { as
being represented in the form

(=§+in,

where & and n are ordinary real vector fields on the 2n-manifold. What
the ‘complex structure’ does for us is to tell us how these real vector

243



Notes CHAPTER 12

fields have to be related to each other and what differential equations they
must satisfy in order that { can qualify as ‘holomorphic’. Now, consider
the new complex vector field that arises when the complex field ¢ is
multiplied by i. We see that, for consistency, we must have i{ = —n + i€,
so that the real vector field § is now replaced by —» and likewise 1 must be
replaced by &. The operation J which effects these replacements (i.e.
J(€) = —m and J(n) = &) is what is usually referred to as the ‘complex
structure’.

We note that if J is applied twice, it simply reverses the sign of what it
acts on (since i> = —1), so we can write

J=—1.

This condition alone defines what is referred to as an almost complex
structure. To specialize this to an actual complex structure, so that a
consistent notion of ‘holomorphic’ can arise for the manifold, a certain
differential equation®' in the quantity J must be satisfied. There is a
remarkable theorem, the Newlander—Nirenberg theorem,?? which tells us
that this is sufficient (in addition to being necessary) for a 2n-dimensional
real manifold, with this J-structure, to be reinterpreted as a complex
n-manifold. This theorem allows us to move freely between the two
philosophical standpoints with regard to complex manifolds.

Notes

Section 12.1

12.1. This ‘shrinkability’ is taken in the sense of homotopy (see §7.2, Fig. 7.2), so that
‘cancellation’ of oppositely oriented loop segments is not permitted; thus mul-
tiple-connectedness is part of homotopy theory. See Huggett and Jordan (2001);
Sutherland (1975).

12.2. Strictly speaking this argument is incomplete, since I have presented no convin-
cing reason that the 2n-twist of the belt cannot be continuously undone if the
ends are held fixed.['>!”! See Penrose and Rindler (1984), pp. 41-4.

12.3. Here, we treat the molecules as point particles. The dimension of P would be
considerably larger for molecules with internal or rotational degrees of freedom.

Section 12.2

12.4. The usual notion of ‘manifold’ presupposes that our space M is, in the first
instance, a topological space. To assign a topology to a space M is to specify
precisely which of its sets of points are to be called ‘open’ (cf. §7.4). The open sets

#5 [12.17] By representing a rotation in ordinary 3-space as a vector pointing along the rotation
axis of length equal to the angle of rotation, show that the topology of R can be described as
a solid ball (of radius m) bounded by an ordinary sphere, where each point of the sphere is
identified with its antipodal point. Give a direct argument to show why a closed loop representing
a 2m-rotation cannot be continuously deformed to a point.
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12.5.

are to have the property that the intersection of any two of them is an open set
and the union of any number of them (finite or infinite) is again an open set. In
addition to the Hausdorff condition referred to in the text, it is usual to require
that M’s topology is restricted in certain other ways, most particularly that it
satisfies a requirement called ‘paracompactness’. For the meaning of this and
other related terms, the interested reader is referred to Kelley (1965); Engelking
(1968) or other standard text on general topology. But for our purposes here, it
is sufficient to assume merely that M is constructed from a locally finite
patchwork of open regions of IR", where ‘locally finite’ means that each patch
is intersected by only finitely many other patches.

One final requirement that is sometimes made in the definition of a manifold

is that it be connected, which means that it consists only of ‘one piece’ (which
here can be taken to mean that it is not a disjoint union of two non-empty open
sets). I shall not insist on this here; if connectness is required, then it will be
stated explicitly (but disconnectedness will in any case be allowed only for a
finite number of separate pieces).
See, for example, Kobayashi and Nomizu (1963); Hicks (1965); Lang (1972);
Hawking and Ellis (1973). One interesting procedure for defining a manifold M
is to reconstruct M itself simply from the commutative algebra of scalar
fields defined on M; see Chevalley 1946; Nomizu 1956; Penrose and Rindler
(1984). This kind of idea generalizes to non-commutative algebras and leads
to the ‘non-commutative geometry’ notion of Alain Connes (1994) which
provides one of the modern approaches to a ‘quantum spacetime geometry’
(see §33.1).

Section 12.3

12.6.
12.7.

12.8.

See Helgason (2001); Frankel (2001).

The general condition for the family of (n — 1)-plane elements defined by a
I-form e to touch a 1-parameter family of (n — 1)-surfaces (so @ = Ad® for
some scalar fields A, @) is the Frobenius condition a N dae = 0; see Flanders
(1963).

Confusion easily arises between the ‘classical’ idea that a thing like ‘dx"” should
stand for an infinitesimal displacement (vector), whereas we here seem to be
viewing it as a covector. In fact the notation is consistent, but it needs a clear
head to see this! The quantity dx” seems to have a vectorial character because of
its upper index r, and this would indeed be the case if r is treated as an abstract
index, in accordance with §12.8. On the other hand, if r is taken as a numerical
index, say r = 2, then we do get a covector, namely dx?, the gradient of the
scalar quantity y = x> (“x-two’, not ‘x squared’). But this depends upon the
interpretation of ‘d’ as standing for the gradient rather than as denoting an
infinitesimal, as it would have done in the classical tradition. In fact, if we treat
both the r as abstract and the d as gradient, then ‘dx”” simply stands for the
(abstract) Kronecker delta!

Section 12.5
12.9. This represents a shift in attitude from the ‘infinitesimal’ viewpoint with regard

to quantities like ‘dx’. Here, the anticommutation properties of ‘dx,dy’ tell us
that we are operating with densities with respect to oriented area measures.

12.10. A name suggested to me by N. M. J. Woodhouse. Sometimes this theorem is

simply called Stokes’s theorem. However, this seems particularly inappropriate
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since the only contribution made by Stokes was set in a (Cambridge) examin-
ation question he apparently got from William Thompson (Lord Kelvin).

Section 12.6

12.11. See Flanders (1963). (In this book, what I have called the ‘Poincaré lemma’ is
referred to as the converse thereof.)

12.12. There is a more widely applicable definition of compactness of a topological
space, which, however, is not so intuitive as that given in the text. A space Ris
compact if for every way that it can be expressed as a union of open sets, there is
a finite collection of these sets whose union is still R.

12.13. For more information on these matters, see Willmore (1959).

Section 12.7

12.14. This notion of ‘dual’ is rather different from that which has a covector be ‘dual’
to a vector, as decribed in §12.3. It is, however, closely connected with yet
another concept of ‘duality’—the Hodge dual. This plays a role in electromag-
netism (see §19.2), and versions of it have importance in various approaches to
quantum gravity (see §31.14, §32.2, §§33.11,12) and particle physics (see §25.8).
Unfortunately, this is only one place among many, where the limitations of
mathematical terminology can cause confusion.

12.15. See Penrose and Rindler (1984), pp. 165, 166.

Section 12.8

12.16. See Penrose (1968), pp. 135-41; Penrose and Rindler (1984), pp. 68-103;
Penrose (1971).

12.17. See Penrose (1968); Penrose and Rindler (1984, 1986); Penrose (1971) and
O’Donnell (2003).

12.18. Sometimes the term rank is used for the value of p + ¢, but this is confusing
because of a separate meaning for ‘rank’ in connection with matrices; see Note
13.10, §13.8.

12.19. This means separately linear ineach of 4, ..., C; F, ..., H; see also §§13.7-10.

12.20. See Penrose and Rindler (1984), Appendix; Penrose (1971); Cvitanovi¢ and
Kennedy (1982).

Section 12.9

12.21. This is the vanishing of an expression called ‘the Nijenhuis tensor constructed
from J°, which we can express as J,aJ5; /ax? + J5aJ, /ox" = 0.

12.22. Newlander and Nirenberg (1957).
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13
Symmetry groups

13.1  Groups of transformations

Spaces that are symmetrical have a fundamental importance in modern
physics. Why is this? It might be thought that completely exact symmetry
is something that could arise only exceptionally, or perhaps just as some
convenient approximation. Although a symmetrical object, such as a
square or a sphere, has a precise existence as an idealized (‘Platonic’; see
§1.3) mathematical structure, any physical realization of such a thing
would ordinarily be regarded as merely some kind of approximate repre-
sentation of this Platonic ideal, therefore possessing no actual symmetry
that can be regarded as exact. Yet, remarkably, according to the highly suc-
cessful physical theories of the 20th century, all physical interactions
(including gravity) act in accordance with an idea which, strictly speaking,
depends crucially upon certain physical structures possessing a symmetry
that, at a fundamental level of description, is indeed necessarily exact!
What is this idea? It is a concept that has come to be known as a ‘gauge
connection’. That name, as it stands, conveys little. But the idea is an
important one, enabling us to find a subtle (‘twisted’) notion of differentia-
tion that applies to general entities on a manifold (entities that are indeed
more general than just those—the p-forms—which are subject to exterior
differentiation, as described in Chapter 12). These matters will be the
subject of the two chapters following this one; but as a prerequisite,
we must first explore the basic notion of a symmetry group. This notion also
has many other important areas of application in physics, chemistry, and
crystallography, and also within many different areas of mathematics itself.
Let us take a simple example. What are the symmetries of a square? The
question has two different answers depending upon whether or not we allow
symmetries which reverse the orientation of the square (i.e. for which
the square is turned over). Let us first consider the case in which these
orientation-reversing symmetries are not allowed. Then the square’s sym-
metries are generated from a single rotation through a right angle in the
square’s plane, repeated various numbers of times. For convenience, we can
represent these motions in terms of complex numbers, as we did in
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Chapter 5. We may, if we choose, think of the vertices of the square as
occupying the points 1,1, —1, — iin the complex plane (Fig. 13.1a), and our
basic rotation represented by multiplication by i (i.e. by ‘ix’). The various
powers of 1 represent all our rotations, there being four distinct ones in all:

(Fig. 13.1b). The fourth power i* = 1 gets us back to the beginning, so we
have no more elements. The product of any two of these four elements is
again one of them.

These four elements provide us with a simple example of a group. This
consists of a set of elements and a law of ‘multiplication’ defined between
pairs of them (denoted by juxtaposition of symbols) for which the associa-
tive multiplication law holds

a(bc) = (ab)c,

where there is an identity element 1 satisfying
la=al =a,

and where each element « has an inverse a~', such that!!3-1]
— _ —1 _
a‘a=aa  =1.

The symmetry operations which take an object (not necessarily a square)
into itself always satisfy these laws, called the group axioms.

~DADP.

(@ . .
1\ 4 P, < |- -
O X s A
(c)
C Ci -C —Ci

Fig. 13.1 Symmetry of a square. (a) We may represent the square’s vertices by
the points 1, i, — 1, — i in the complex plane C. (b) The group of non-reflective
symmetries are represented, in €, as multiplication by 1=1i’i=1i,
—1 =1 —i=1, respectively. (c) The reflective symmetries are given, in C, by
C (complex conjugation), Ci, — C, and — Ci.

#% [13.1] Show that if we just assume la = ¢ and a 'a = 1 for all a, together with associativity
a(bc) = (ab)c, then al = a and aa—' = 1 can be deduced. (Hint: Of course a is not the only element
asserted to have an inverse.) Show why, on the other hand, al = a, a 'a = 1, and a(bc) = (ab)c
are insufficient.
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Recall the conventions recommended in Chapter 11, where we think of b
acting first and a afterwards, in the product ab. We can regard these as
operations as being performed upon some object appearing to the right.
Thus, we could consider the motion, b, expressing a symmetry of an object
@&, as @ — b(@P), which we follow up by another such motion a, giving
b(®) — a(b(@)). This results in the combined action @ — a(b(P)), which
we simply write @ — ab(®), corresponding to the motion ab. The identity
operation leaves the object alone (clearly always a symmetry) and the
inverse is just the reverse operation of a given symmetry, moving the
object back to where it came from.

In our particular example of non-reflective rotations of the square, we
have the additional commutative property

ab = ba.

Groups that are commutative in this sense are called Abelian, after the
tragically short-lived Norwegian mathematician Niels Henrik Abel.!
Clearly any group that can be represented simply by the multiplication
of complex numbers must be Abelian (since the multiplication of individ-
ual complex numbers always commutes). We saw other examples of this at
the end of Chapter 5 when we considered the general case of a finite cyclic
group ,, generated by a single nth root of unity.[!3-2]

Now let us allow the orientation-reversing reflections of our square. We
can still use the above representation of the square in terms of complex
numbers, but we shall need a new operation, which I denote by C, namely
complex conjugation. (This flips the square over, about a horizontal line; see
§10.1, Fig. 10.1.) We now find (see Fig. 13.1c¢) the ‘multiplication laws’l!3-3]

Ci=(-1)C, C(-1)=(-1C, C(—-1n=iC, CC=1

(where? I shall henceforth write ( — 1)C as — iC, etc.). In fact, we can obtain
the multiplication laws for the entire group just from the basic relations!!3-41

=1, C*=1, Ci=iC,

the group being non-Abelian, as is manifested in the last equation. The
total number of of distinct elements in a group is called its order. The order
of this particular group is 8.

Now let us consider another simple example, namely the group of rota-
tional symmetries of an ordinary sphere. As before, we can first consider the

@9 [13.2] Explain why any vector space is an Abelian group—called an additive Abelian group—
where the group ‘multiplication’ operation is the ‘addition’ operation of the vector space.

€9 [13.3] Verify these relations (bearing in mind that Ci stands for ‘the operation ix, followed by the
operation C, etc.). (Hint: Y oucan check the relations by just confirming their effects on 1 and i. Why?)

[13.4] Show this.
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Subgroup of
non-reflective
symmetries

0o@)

Space of
reflective

Fig. 13.2 Rotational symmetry of a sphere. The entire symmetry group, O(3), is a
disconnected 3-manifold, consisting of two pieces. The component containing the
identity element 1 is the (normal) subgroup SO(3) of non-reflective symmetries of
the sphere. The remaining component is the 3-manifold of reflective symmetries.

case where reflections are excluded. This time, our symmetry group will
have an infinite number of elements, because we can rotate through any
angle about any axis direction in 3-space. The symmetry group actually
constitutes a 3-dimensional space, namely the 3-manifold denoted by R in
Chapter 12. Let me now give this group (3-manifold) its official name. It is
called® SO(3), the non-reflective orthogonal group in 3 dimensions. If we
now include the reflections, then we get a whole new set of symmetries—
another 3-manifold’s worth—which are disconnected from the first,
namely those which involve a reversal of the orientation of the sphere.
The entire family of group elements again constitutes a 3-manifold, but
now it is a disconnected 3-manifold, consisting of two separate connected
pieces (see Fig. 13.2). This entire group space is called O(3).

These two examples illustrate two of the most important categories of
groups, the finite groups and the continuous groups (or Lie groups; see
§13.6).# Although there is a great difference between these two types of
group, there are many of the important properties of groups that are
common to both.

13.2  Subgroups and simple groups

Of particular significance is the notion of a subgroup of a group. To exhibit
a subgroup, we select some collection of elements within the group which
themselves form a group, using the same multiplication and inversion
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operations as in the whole group. Subgroups are important in many
modern theories of particle physics. It tends to be assumed that there is
some fundamental symmetry of Nature that relates different kinds of
particles to one another and also relates different particle interactions to
one another. Yet one may not see this full group acting as a symmetry in
any manifest way, finding, instead, that this symmetry is ‘broken’ down to
some subgroup of the original group where the subgroup plays a manifest
role as a symmetry. Thus, it is important to know what the possible
subgroups of a putative ‘fundamental’ symmetry group actually are, in
order that those symmetries that are indeed manifest in Nature might be
able to be thought about as subgroups of this putative group. I shall be
addressing questions of this kind in §§25.5-8, §26.11, and §28.1.

Let us examine some particular cases of subgroups, for the examples that
we have been considering. The non-reflective symmetries of the square con-
stitute a 4-element subgroup {1, i, —1, —i} of the entire 8-element group of
symmetries of the square. Likewise, the non-reflective rotation group SO(3)
constitutes a subgroup of the entire group O(3). Another subgroup of the
symmetries of the square consists of the four elements {1, —1, C, —C}; yet
another has just the two elements {1, —1}.113-3Moreover there is always the
‘trivial’ subgroup consisting of the identity alone {1} (and the whole group
itself is, equally trivially, always a subgroup).

All the various subgroups that I have just described have a special
property of particular importance. They are examples of what are called
normal subgroups. The significance of a normal subgroup is that, in an
appropriate sense, the action of any element of the whole group leaves a
normal subgroup alone or, more technically, we say that each element of
the whole group commutes with the normal subgroup. Let me be more
explicit. Call the whole group G and the subgroup S. If 1 select any
particular element g of the group G, then I can denote by Sg the set
consisting of all elements of S each individually multiplied by g on the
right (what is called postmultiplied by g). Thus, in the case of the particular
subgroup S = {1, —1, C, —C}, of the symmetry group of the square, if
we choose g =1, then we obtain Si= {i, —i, Ci, —Ci}. Likewise, the
notation gS§ will denote the set consisting of all elements of S, each
individually multiplied by g on the left (premultiplied by g). Thus, in our
example, we now have iS = {i, —1i, iC, —iC}. The condition for S to be a
normal subgroup of G is that these two sets are the same, i.e.

Sg=gS5, forallgins.

In our particular example, we see that this is indeed the case (since
Ci = —iC and —Ci = iC), where we must bear in mind that the collection

@9 [13.5] Verify that all these in this paragraph are subgroups (and bear in mind Note 13.4).
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of things inside the curly brackets is to be taken as an unordered set (so that it
does not matter that the elements —iC and iC appear in reverse order in the
collection of elements, when Si and iS are written out explicitly).

We can exhibit a non-normal subgroup of the group of symmetries of
the square, as the subgroup of two elements {I, C}. It is non-normal
because {1, C}i = {i, Ci} whereas i{1, C} = {i, —Ci}. Note that this sub-
group arises as the new (reduced) symmetry group if we mark our square
with a horizontal arrow pointing off to the right (see Fig. 13.3a). We can
obtain another non-normal subgroup, namely {1, Ci} if we mark it,
instead, with an arrow pointing diagonally down to the right (Fig.
13.3b).[13:%1 In the case of O(3), there happens to be only one non-trivial
normal subgroup,['37 namely SO(3), but there are many non-normal
subgroups. Non-normal examples are obtained if we select some appro-
priate finite set of points on the sphere, and ask for the symmetries of the
sphere with these points marked. If we mark just a single point, then
the subgroup consists of rotations of the sphere about the axis joining
the origin to this point (Fig. 13.3c). Alternatively, we could, for example,
mark points that are the vertices of a regular polyhedron. Then the
subgroup is finite, and consists of the symmetry group of that particular
polyhedron (Fig. 13.3d).

One reason that normal subgroups are important is that, if a group G
possesses a non-trivial normal subgroup, then we can break G down, in a
sense, into smaller groups. Suppose that S is a normal subgroup of G.
Then the distinct sets Sg, where g runs through all the elements of G, turn

&
«

@ (b) © (d)

Fig. 13.3 (a) Marking the square of Fig. 13.1 with an arrow pointing to the right,
reduces its symmetry group to a non-normal subgroup {1,C}. (b) Marking it with
an arrow pointing diagonally down to the right yields a different non-normal
subgroup {1,Ci}. (c) Marking the sphere of Fig. 13.2 with a single point reduces its
symmetry to a (non-normal) O(2) subgroup of O(3): rotations about the axis
joining the origin to this point. (d) If the sphere is marked with the vertices of a
regular polyhedron (here a dodecahedron), its group of symmetries is a finite
(non-normal) subgroup of O(3).

£9 [13.6] Check these assertions, and find two more non-normal subgroups, showing that there
are no further ones.

15 [13.7] Show this. (Hint: which sets of rotations can be rotation-invariant?)
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out themselves to form a group. Note that for a given set Sg, the choice of
g is generally not unique; we can have Sg; = Sg», for different elements
g1, & of G. The sets of the form Sg, for any subgroup &, are called cosets
of G; but when G is normal, the cosets form a group. The reason for this is
that if we have two such cosets Sg and Sh (g and / being elements of G)
then we can define the ‘product’ of Sg with Sh to be

(82) (Sh) = S(gh),

and we find that all the group axioms are satisfied, provided that S is
normal, essentially because the right-hand side is well defined, independ-
ently of which g and & were chosen in the representation of the cosets on
the left-hand side of this equation.['3-8] The resulting group defined in this
way is called the factor group of G by its normal subgroup S. The factor
group of G by S is written G/S. We can still write G/S for the factor space
(not a group) of distinct cosets Sg even when S is not normal.[!3-9]

Groups that possess no non-trivial normal subgroups at all are called
simple groups. The group SO(3) is an example of a simple group. Simple
groups are, in a clear sense, the basic building blocks of group theory. It is
thus an important achievement of the 19th and 20th centuries in mathe-
matics that all the finite simple groups and all the continuous simple groups
are now known. In the continuous case (i.e. for Lie groups), this was a
mathematical landmark, started by the highly influential German mathem-
atician Wilhelm Killing (1847-1923), whose basic papers appeared in
1888-1890, and was essentially completed, in 1894, in one of the most
important of mathematical papers ever written,> by the superb geometer
and algebraist Elie Cartan (whom we have already encountered in
Chapter 12, and whom we shall meet again in Chapter 17). This classifica-
tion has continued to play a fundamental role in many areas of mathematics
and physics, to the present day. It turns out that there are four
families, known as A,,, B,,, C,, D,(for m =1, 2, 3, ...), of respective
dimension m(m + 2), m(2m + 1), m(2m + 1), m(2m — 1), called the classical
groups (see end of §13.10) and five exceptional groups known as
Es, E;7, Eg, F4, Go, of respective dimension 78, 133, 248, 52, 14.

The classification of the finite simple groups is a more recent (and even
more difficult) achievement, carried out over a great many years during the
20th century by a considerable number of mathematicians (with the aid of
computers in more recent cases), being completed only in 1982.% Again
there are some systematic families and a finite collection of exceptional

[13.8] Verify this and show that the axioms fail if S is not normal.

£3[13.9] Explain why the number of elements in G/S, for any finite subgroup S of G, is the order
of G divided by the order of S.
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finite simple groups. The largest of these exceptional groups is referred to
as the monster, which is of order

= 808017424794512875886459904961710757005754368000000000.
=24 53205 7O 112x 133 x 17x19%x23%x29x 31 x41 x47x59%x 71.

Exceptional groups appear to have a particular appeal for many modern
theoretical physicists. The group Eg features importantly in string theory
(§31.12), while various people have expressed a hope that the huge but
finite monster may feature in some future theory.”

The classification of the simple groups may be regarded as a major step
towards the classification of groups generally since, as indicated above,
general groups may be regarded as being built up out of simple groups
(together with Abelian ones). In fact, this is not really the whole story
because there is further information in how one simple group can build
upon another. I do not propose to enter into the details of this matter here,
butitis worth just mentioning the simplest way that this can happen. If Gand
‘H are any two groups, then they can be combined together to form what is
called the product group G x H , whose elements are simply pairs (g, i), where
g belongs to G and / belongs to H, the rule of group multiplication between
elements (g1, /1) and (g2, h2), of G x H, being defined as

(g1, M) (g2, h2) = (2182, Mh2),

and it is very easy to verify that the group axioms are satisfied. Many of
the groups that feature in particle physics are in fact product groups of
simple groups (or elementary modifications of such).l!3-10]

13.3 Linear transformations and matrices

In the general study of groups, there is a particular class of symmetry
groups that have been found to play a central role. These are the groups
of symmetries of vector spaces. The symmetries of a vector space are
expressed by the linear transformations preserving the vector-space structure.

Recall from §11.1 and §12.3 that, in a vector space V, we have, defining
its structure, a notion of addition of vectors and multiplication of vectors
by numbers. We may take note of the fact that the geometrical picture of
addition is obtained by use of the parallelogram law, while multiplication
by a number is visualized as scaling the vector up (or down) by that
number (Fig. 13.4). Here we are picturing it as a rea/ number, but complex
vector spaces are also allowed (and are particularly important in many

@ [13.10] Verify that G x His a group, for any two groups G and H, and that we can identify the
factor group (G x H)/G with H.
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Fig. 13.4 A linear transformation preserves
the vector-space structure of the space on
which it acts. This structure is defined by the
operations of addition (illustrated by the par-
allelogram law) and multiplication by a scalar
A (which could be a real number or, in the case
of a complex vector space, a complex number).
Such a transformation preserves the ‘straight-
ness’ of lines and the notion of ‘parallel’, keep-
ing the origin O fixed.

contexts, because of complex magic!), though hard to portray in a dia-
gram. A linear transformation of V is a transformation that takes V to
itself, preserving its structure, as defined by these basic vector-space
notions. More generally, we can also consider linear transformations
that take one vector space to another.

A linear transformation can be explicitly described using an array
of numbers called a matrix. Matrices are important in many mathe-
matical contexts. We shall examine these extremely useful entities with
their elegant algebraic rules in this section (and in §§13.4,5). In
fact, §§13.3-7 may be regarded as a rapid tutorial in matrix theory
and its application to the theory of continuous groups. The notions
described here are vital to a proper understanding of quantum
theory, but readers already familiar with this material—or else who
prefer a less detailed comprehension of quantum theory when we
come to that—may prefer to skip these sections, at least for the time
being.

To see what a linear transformation looks like, let us first consider the
case of a 3-dimensional vector space and see its relevance to the rotation
group O(3) (or SO(3)), discussed in §13.1, giving the symmetries of the
sphere. We can think of this sphere as embedded in Euclidean 3-space IE:
(this space being regarded as a vector space with respect to the origin O at
the sphere’s centre®) as the locus

X4y +2=1
in terms of ordinary Cartesian coordinates (x, y, z).[13-1!] Rotations of the
sphere are now expressed in terms of linear transformation of J&*, but of a
very particular type known as orthogonal which we shall be coming to in
§§13.1,8 (see also §13.1).
General linear transformations, however, would squash or stretch
the sphere into an ellipsoid, as illustrated in Fig. 13.5. Geometrically,

@ [13.11] Show how this equation, giving the points of unit distance from O, follows from the
Pythagorean theorem of §2.1.
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a linear transformation is one that preserves the ‘straightness’ of lines and
the notion of ‘parallel’ lines, keeping the origin O fixed. But it need not
preserve right angles or other angles, so shapes can be squashed or
stretched, in a uniform but anisotropic way.

How do we express linear transformations in terms of the coordinates x, y,
z? The answer is that each new coordinate is expressed as a (homogeneous)
linear combination of the original ones, i.e. by a separate expression like
ax + By + vz, where a, B, and y are constant numbers.[13-12] We have 3
such expressions, one for each of the new coordinates. To write all this in a
compact form, it will be useful to make contact with the index notation of
Chapter 12. For this, we re-label the coordinates as (x!, x?, x*), where

xl=x, =y xX*=:
(bearing in mind, again, that these upper indices do not denote
powers see §12.2). A general point in our Euclidean 3-space has co-
ordinates x“, where a =1, 2, 3. An advantage of using the index
notation is that the discussion applies in any number of dimensions, so
we can consider that a (and all our other index letters) run over
1,2, ..., n, where n is some fixed positive integer. In the case just con-
sidered, n = 3.

In the index notation, with Einstein’s summation convention (§12.7), the
general linear transformation now takes the form®-13-13]

X T xP.

Fig. 13.5 A linear transformation acting on IE:3 (expressed in terms of Cartesian
x, y, z coordinates) would generally squash or stretch the unit sphere
x> +3y*+ 22 =1 into an ellipsoid. The orthogonal group O(3) consists of the
linear transformations of I&3 which preserve the unit sphere.

£9[13.12] Can you explain why? Just do this in the 2-dimensional case, for simplicity.
46 [13.13] Show this explicitly in the 3-dimensional case.

256



Symmetry groups §13.3

Calling this linear transformation 7, we see that T is determined by this
set of components T“,. Such a set of components is referred toasann x n
matrix, usually set out as a square—or, in other contexts (see below)
m X n-rectangular—array of numbers. The above displayed equation,
in the 3-dimensional case is then written

xl T11 le T13 xl
X2 = T21 T22 T23 x2 s
x3 T31 T32 T33 X3

this standing for three separate relations, starting with x! — T x!
+T12X2 + T13X3.[13'14]

We can also write this without indices or explicit coordinates,
as x — Tx. If we prefer, we can adopt the abstract—index notation
(§12.8) whereby ‘x* — T%x"’ is not a component expression, but actually
represents this abstract transformation x — Tx. (When it is important
whether an indexed expression is to be read abstractly or as components,
this will be made clear by the wording.) Alternatively, we can use
the diagrammatic notation, as depicted in Fig. 13.6a. In my descriptions,
the matrix of numbers (7%) or the abstract linear transformation T
will be used interchangeably when I am not concerned with the
technical distinctions between these two concepts (the former depending
upon a specific coordinate description of our vector space V, the latter
not).

Let us consider a second linear transformation S, applied following the
application of 7. The product R of the two, written R = ST, would have a
component (or abstract-index) description

Rac _ Sab Tbc
(summation convention for components!).[13-151 The diagrammatic form of

the product ST is given in Fig. 13.6b. Note that, in the diagrammatic
notation, to form a successive product of linear transformations, we string

46 [13.14] Write this all out in full, explaining how this expresses x* — T9,x".

49 [13.15] What is this relation between R, S, and T, written out explicitly in terms of the
elements of 3 x 3 square arrays of components. You may recognize this, the normal law for
‘multiplication of matrices’, if this is familiar to you.
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T ~> T9 nnny

X4 — Tab xb U ~~~» Uab""\") # STU —~>
ie. X — TX

(CY (b)

S"""S"h’w’¢ Ivv>5n>

Fig. 13.6 (a) The linear transformation x? — T%x’, or written without indices as
x — Tx (or read with the indices as abstract, as in §12.8), in diagrammatic form. (b)
Diagrams for linear transformations S, 7, U, and their products ST and STU. In a
successive product, we string them in a line downwards. (¢) The Kronecker delta &,
or identity transformation I, is depicted as a ‘disembodied’ line, so relations
T“b6? = T, = §}T". become automatic in the notation (see also Fig. 12.17).

them in a line downwards. This happens to work out conveniently in the
notation, but one could perfectly well adopt a different convention in
which the connecting ‘index lines” are drawn horizontally. (Then there
would be a closer correspondence between algebraic and diagrammatic
notations.)

The identity linear transformation I has components that are normally
written 8 (the Kronecker delta—the standard convention being that these
indices are not normally staggered), for which

50— 1 ifa=b,
P70 ifa#b,

and we havel!3-16]

T80 = 1% = 84 T°,

giving the algebraic relations 71 = T =IT. The square matrix of
components d; has 1s down what is called the main diagonal,
which extends from the top-left corner to bottom-right. In the case
n =3, this is

1 00

0 1 0

0 0 1
In the diagrammatic notation, we simply represent the Kronecker delta by
a ‘disembodied’ line, and the above algebraic relations become automatic
in the notation; see Fig. 13.6¢c.

46 [13.16] Verify.
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Those linear transformations which map the entire vector space down to
a region (subspace) of smaller dimension within that space are called
singular.'® An equivalent condition for T to be singular is the existence
of a non-zero vector v such thatl(!3-17]

Tv =0.

Provided that the transformation is non-singular, then it will have an
inverse,[13-18 where the inverse of T is written 77!, so that

IT'=1=T17"T,

as is required of an inverse. We can give the explicit expression for this
inverse conveniently in the diagrammatic notation; see Fig. 13.7, where |
have introduced the useful diagrams for the antisymmetrical (Levi-Civita)
quantities ¢, . and € (with normalization &,... €“=n!) that were
introduced in §12.7 and Fig. 12.18.113-19]

The algebra of matrices (initiated by the highly prolific English mathem-
atician and lawyer Arthur Cayley in 1858)!! finds a very broad range of
application (e.g. statistics, engineering, crystallography, psychology, com-
puting—not to mention quantum mechanics). This generalizes the algebra
of quaternions and the Clifford and Grassmann algebras studied in
§§11.3,5,6. 1 use bold-face upright letters (A, B, C,...) for the arrays of
components that constitute actual matrices (rather than abstract linear
transformations, for which bold-face italic letters are being used).

Fig. 13.7 The inverse 7~! of a
non-singular (n x n) matrix T given
here explicitly in diagrammatic form,

-1 using the diagrammatic form of the
_ n Levi-Civita antisymmetric quantities
N €4.c and €%-¢ (normalized by
E €4 €= n!) introduced in §12.7
and depicted in Fig. 12.18.

£3[13.17] Why? Show that this would happen, in particular, if the array of components has an
entire column of Os or two identical columns. Why does this also hold if there are two identical
rows? Hint: For this last part, consider the determinant condition below.

[13.18] Show why, not using explicit expressions.
£3[13.19] Prove directly, using the diagrammatic relations given in Fig. 12.18, that this definition
gives TT™' =1 =T7'T.
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Restricting attention to n x n matrices for fixed n, we have a system in
which notions of addition and multiplication are defined, where the stand-
ard algebraic laws

A+B=B+A, A+B+C)=(A+B)+C, A(BC) = (AB)C,
AB+C)=AB+AC, (A+B)C=AC+BC

hold. (Each element of A+ B is simply the sum of the correspond-
ing elements of A and B.) However, we do not usually have the com-
mutative law of multiplication, so that generally AB # BA. Moreover,
as we have seen above, non-zero n X n matrices do not always have
inverses.

It should be remarked that the algebra also extends to the rectangular
cases of m x n matrices, where m need not be equal to n. However,
addition is defined between an m x n matrix and a p x ¢ matrix only
when m = p and n = ¢; multiplication is defined between them only
when n = p, the result being an m x ¢ matrix. This extended algebra
subsumes products like the Tx considered above, where the ‘column
vector’ x is thought of as being an n x 1 matrix.[13-20]

The general linear group GL(n) is the group of symmetries of an
n-dimensional vector space, and it is realized explicitly as the multiplicative
group of n x n non-singular matrices. If we wish to emphasize that our
vector space is real, and that the numbers appearing in our matrices are
correspondingly real numbers, then we refer to this full linear group as
GL(n,]R). We can also consider the complex case, and obtain the com-
plex full linear group GL(#n, C). Each of these groups has a normal sub-
group, written respectively SL(n, IR) and SL(n, C)—or, more briefly when
the underlying field (see §16.1) IR or C is understood, SL(n)—called
the special linear group. These are obtained by restricting the matrices to
have their determinants equal to 1. The notion of a determinant will be
explained next.

13.4 Determinants and traces

What is the determinant of an n x n matrix? It is a single number
calculated from the elements of the matrix, which vanishes if and only if
the matrix is singular. The diagrammatic notation conveniently describes
the determinant explicitly; see Fig. 13.8a. The index-notation form of this is

1 e mof
AT Ty

4 [13.20] Explain this, and give the full algebraic rules for rectangular matrices.
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@) det =1 e

(b)
V'V

Fig. 13.8 (a) Diagrammatic notation for det (7“;) = det T = |T|. (b) Diagram-
matic proof that det (ST)=detS detT. The antisymmetrizing bar can be
inserted in the middle term because there is already antisymmetry in the index
lines that it crosses. See Figs. 12.17, 12.18.

where the quantities ¢ and ¢,_, are antisymmetric (Levi-Civita) tensors,
normalized accoring to

d

ey g =n!

for an n-dimensional space (and recall that n!=1x2Xx3 x--- X n),
where the indices a,...,d and e, ...,/ are each n in number.

We can refer to this determinant as det (7%) or det T (or sometimes | 7|
or as the array constituting the matrix but with vertical bars replacing the
parentheses). In the particular cases of a 2 x 2 and a 3 x 3 matrix, the
determinant is given byl!3-21]

det<a b> — ad — be,

c d
a b ¢
det| d e f | =aej— afh+ bfg — bdj+ cdh — ceg.
g h j

The determinant satisfies the important and rather remarkable relation

det AB = det A detB,

which can be seen to be true quite neatly in the diagrammatic notation (Fig.
13.8b). The key ingredients are the formulae illustrated in Fig. 12.18[13-22]
which, when written in the index notation, look like

[13.21] Derive these from the expression of Fig. 13.8a.
5 [13.22] Show why these hold.
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(ac &= ! S[fa . 6;]

(see §11.6 for the bracket/index notation) and

e o= (1= 1)1 3.
We also have the notion of the trace of a matrix (or linear transfor-

mation)
traceT:T”Q:T11+T22+...+T"n

(i.e. the sum of the elements along the main diagonal—see §13.3), this
being illustrated diagrammatically in Fig. 13.9. Unlike the case of a deter-
minant, there is no particular relation between the trace of the product AB
of two matrices and the traces of A and B individually. Instead, we have
the relationl!3-23]

trace (A + B) = trace A + trace B.

There is an important connection between the determinant and the trace
which has to do with the determinant of an ‘infinitesimal’ linear trans-
formation, given by an n x n matrix I+ ¢A for which the number ¢ is
considered to be ‘infinitesimally small’ so that we can ignore its square &
(and also higher powers ¢, ¢*, etc.). Then we find!'3-24]

det(I4+¢A)=1+¢trace A

(ignoring &2, etc.). In particular, infinitesimal elements of SL(n), i.e.
elements of SL(n) representing infinitesimal rotations, being of unit deter-
minant (as opposed to those of GL(n)), are characterized by the A
in I4+¢A having zero trace. We shall be seeing the significance of
this in §13.10. In fact the above formula can be extended to finite
(that is, non-infinitesimal) linear transformations through the expres-
sionl13-25]

det eA — etrace A,

Trace = @
Fig. 13.9 Diagrammatic notation for trace T( = 7¢,).

4 [13.23] Show this.
£5 [13.24] Show this.

15 [13.25] Establish the expression for this. Hint: Use the ‘canonical form’ for a matrix in terms of
its eigenvalues—as described in §13.5—assuming first that these eigenvalues are unequal (and see
Exercise [13.27]). Then use a general argument to show that the equality of some eigenvalues
cannot invalidate identities of this kind.
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where ‘e®’” for matrices has just the same definition as it has for ordinary
numbers (see §5.3), i.e.

e =T+A+1/2A7 + 1/6A° +1/24A" + ...

We shall return to these issues in §13.6 and §14.6.

13.5 Eigenvalues and eigenvectors

Among the most important notions associated with linear transforma-
tions are what are called ‘eigenvalues’ and ‘eigenvectors’. These
are vital to quantum mechanics, as we shall be seeing in §21.5 and
§§22.1,5, and to many other areas of mathematics and applications.
An eigenvector of a linear transformation T is a non-zero complex
vector v which T sends to a multiple of itself. That is to say, there is a
complex number A, the corresponding eigenvalue, for which

Tv = v, ie. T = .

We can also write this equation as (7 — AI)v = 0, so that, if A is to be an
eigenvalue of 7, the quantity T — AI must be singular. Conversely, if
T — /I is singular, then A is an eigenvalue of T. Note that if v is an
eigenvector, then so also is any non-zero complex multiple of v. The
complex 1-dimensional space of these multiples is unchanged by the
transformation 7, a property which characterizes v as an eigenvector
(Fig. 13.10).

From the above, we see that this condition for 4 to be an eigenvalue
of Tis

det (T — AI) = 0.

Writing this out, we obtain a polynomial equation[!32% of degree n in A.
By the ‘fundamental theorem of algebra’, §4.2, we can factorize the
J-polynomial det (7 — AI) into linear factors. This reduces the above

equation to
Ah=AD A -ADU=A)...(k—4=0

where the complex numbers A, A2, 43,..., 4, are the various eigen-
values of T. In particular cases, some of these factors may coincide,
in which case we have a multiple eigenvalue. The multiplicity m of an
eigenvalue /4, is the number of times that the factor A, — 4 appears

[13.26] See if you can express the coefficients of this polynomial in diagrammatic form. Work
them out forn =1 and n =2.
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Fig. 13.10 The action of a
linear transformation T. Its
eigenvectors always constitute
linear spaces through the origin
(here three lines). These spaces
are unaltered by T. (In this
example, there are two (unequal)
positive eigenvalues (outward
pointing arrows) and one nega-
tive one (inward arrows).

in the above product. The total number of eigenvalues of T, counted
appropriately with multiplicities, is always equal to n, for an n x n
matrix.[13-27]

For a particular eigenvalue / of multiplicity r, the space of correspond-
ing eigenvectors constitutes a linear space, of dimensionality d, where
1 < d < r. For certain types of matrix, including the unitary, Hermitian,
and normal matrices of most interest in quantum mechanics (see §13.9,
§§22.4,6), we always have the maximum dimensionality d = r (despite the
fact that d = 1 is the most ‘general’ case, for given r). This is fortunate,
because the (more general) cases for which d < r are more difficult to
handle. In quantum mechanics, eigenvalue multiplicities are referred to
as degeneracies (cf. §§22.6,7).

A basis for an n-dimensional vector space V is an ordered set

e=(e,...,e,) of n vectors ey ,..., e, which are linearly independent,
which means that there is no relation of the form oje; + --- +o,e, =0
with o ,..., o, not all zero. Every element of V is then uniquely a

linear combination of these basis elements.[13-28] In fact, this property
is what characterizes a basis in the more general case when V can
be infinite-dimensional, when the linear independence by itself is not
sufficient.

Thus, given a basis e = (e , ..., e,), any element x of V can be uniquely
written
x=xle; + xX’es + -+ +x"e,
=Xe;,

4> [13.27] Show that det T = AjAy - Ay, trace T = Ay + Ao + -+ + .
#55 [13.28] Show this.
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(the indices j not being abstract here) where (x!, x?, ..., x") is the ordered
set of components of x with respect to e (compare §12.3). A non-singular
linear transformation T always sends a basis to another basis; moreover, if
e and fare any two given bases, then there is a unique 7 sending each e, to
its corresponding f;:

Tej :f}

In terms of components taken with respect to e, the components of the
basis elements ej, e; , ..., e, themselves are, respectively, (1, 0, 0, ..., 0),
0,1,0,...,0), ...,(0,0, ...,0,1). In other words, the components of e; are
6!, 5]?, 8} ey 8]’7).[1329] When all components are taken with respect to the
e basis, we find that T is represented as the matrix (77;), where the compon-
ents of f; in the e basis would bel!3-3%!

(T, %, T%,..., T").

It should be recalled that the conceptual difference between a linear
transformation and a matrix is that the latter refers to some basis-
dependent presentation, whereas the former is abstract, not depending
upon a basis.

Now, provided that each multiple eigenvalue of T (if there are any) satisfies
d = r,1.e.itseigenspace dimensionality equals its multiplicity, it is possible to
find a basis (e, e; , ..., e,) for V, each of which is an eigenvector of 7.[13-31]
Let the corresponding eigenvalues be 41, 4 , ..., 4y:

Te, = Lie1, Tery = her,..., Te, = Aye,.

If, as above, T takes the e basis to the fbasis, then the f basis elements are
as above, so we have f| = Ajey, f, = hesr, ..., f, = Ane,. It follows that
T, referred to the e basis, takes the diagonal matrix form

A1 0 ... 0
0 4 ... 0
0o 0 ... A,
thatis T} = Ay, T3 = 42 ,..., T" = J,, the remaining components being

zero. This canonical form for a linear transformation is very useful both
conceptually and calculationally.!?

€9 [13.29] Explain this notation.
[13.30] Why? What are the components of e; in the f basis?

#5 [13.31] See if you can prove this. Hint: For each eigenvalue of multiplicity r, choose r linearly
independent eigenvectors. Show that a linear relation between vectors of this entire collection
leads to a contradiction when this relation is pre-multiplied by 7, successively.
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13.6 Representation theory and Lie algebras

There is an important body of ideas (particularly significant for
quantum theory) called the representation theory of groups. We saw
a very simple example of a group representation in the discussion in
§13.1, when we observed that the non-reflective symmetries of a
square can be represented by complex numbers, the group multiplication
being faithfully represented as actual multiplication of the complex
numbers. However, nothing quite so simple can apply to non-Abelian
groups, since the multiplication of complex numbers is commutative.
On the other hand, linear transformations (or matrices) usually do
not commute, so we may regard it as a reasonable prospect to represent
non-Abelian groups in terms of them. Indeed, we already encountered
this kind of thing at the beginning of §13.3, where we represented the
rotation group O(3) in terms of linear transformations in three dimen-
sions.

As we shall be seeing in Chapter 22, quantum mechanics is all to do
with linear transformations. Moreover, various symmetry groups have
crucial importance in modern particle physics, such as the rotation
group O(3), the symmetry groups of relativity theory (Chapter 18), and
the symmetries underlying particle interactions (Chapter 25). It is not
surprising, therefore, that representations of these groups in particular,
in terms of linear transformations, have fundamental roles to play in
quantum theory.

It turns out that, quantum theory (particularly the quantum field theory
of Chapter 26) is frequently concerned with linear transformations of
infinite-dimensional spaces. For simplicity, however, I shall phrase things
here just for representations by linear transformations in the finite-dimen-
sional case. Most of the ideas that we shall encounter apply also in the
case of infinite-dimensional representations, although there are differences
that can be important in some circumstances.

What is a group representation? Consider a group G. Representation
theory is concerned with finding a subgroup of GL(%) (i.e. a multiplicative
group of n x n matrices) with the property that, for any element g in G,
there is a corresponding linear transformation 7(g) (belonging to GL(n))
such that the multiplication law in G is preserved by the operations of
GL(n), i.e. for any two elements g, i of G, we have

T(9)T(h) = T(gh).
The representation is called faithful if T(g) is different from 7(%) whenever

g is different from 4. In this case we have an identical copy of the group G,
as a subgroup of GL(n).
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In fact, every finite group has a faithful representation in GL(n, IR),
where 7 is the order of G,[13-32 and there are frequently many non-faithful
representations. On the other hand, it is not quite true that every (finite-
dimensional) continuous group has a faithful representation in some
GL(n). However, if we are not worried about the global aspects of the
group, then a representation is always (locally) possible.!?

There is a beautiful theory, due to the profoundly original Norwegian
mathematician Sophus Lie (1842-1899), which leads to a full treatment
of the local theory of continuous groups. (Indeed, continuous groups
are commonly called ‘Lie groups’; see §13.1.) This theory depends
upon a study of infinitesimal group elements.'* These infinitesimal elem-
ents define a kind of algebra—referred to as a Lie algebra—which provides
us with complete information as to the local structure of the group.
Although the Lie algebra may not provide us with the full global
structure of the group, this is normally considered to be a matter of lesser
importance.

What is a Lie algebra? Suppose that we have a matrix (or linear
transformation) I 4 ¢4 to represent an ‘infinitesimal’ element a of some
continuous group G, where ¢ is taken as ‘small’ (compare end of §13.4).
When we form the matrix product of I 4+ ¢4 and I 4 ¢B to represent the
product ab of two such elements a and b, we obtain

(I+eA)(I+¢eB)=1+¢A+B)+AB
=1+¢A+B)

if we are allowed to ignore the quantity &2, as being ‘too small to count’. In
accordance with this, the matrix sum A + B represents the group product
ab of two infinitesimal elements a and b.

Indeed, the sum operation is part of the Lie algebra of the quantities
A, B, . ... But the sum is commutative, whereas the group G could well be
non-Abelian, so we do not capture much of the structure of the group if we
consider only sums (in fact, only the dimension of G). The non-Abelian
nature of G is expressed in the group commutators which are the expres-
sionsl!3-33]

abalp .

£5[13.32] Show this. Hint: Label each column of the representing matrix by a separate element of
the finite group G, and also label each row by the corresponding group element. Place a 1 in any
position in the matrix for which a certain relation holds (find it!) between the element of G
labelling the row, that labelling the column, and the element of G that this particular matrix is
representing. Place a 0 whenever this relation does not hold.

@9 [13.33] Why is this expression just the identity group element when ¢ and b commute?
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Let us write this out in terms of I 4 ¢A, etc., taking note of the power
series expression (I +¢A) ' =1 —ed+ 24> —&4° + - (this series
being easily checked by multiplying both sides by I+ eAd). Now it
is ¢ that we ignore as being ‘too small to count’, but we keep &,
whencel! 3341

(I+¢A) (I+eB) (I +eA)" (I +eB)!
= +¢A) (I+¢B) (I —¢A+&*4*) (I — cB + *B?)

=1+ ¢(AB — BA)

This tells us that if we are to keep track of the precise way in which the
group G is non-Abelian, we must take note of the ‘commutators’, or Lie
brackets

[4, B] = AB — BA.

The Lie algebra is now constructed by means of repeated application of
the operations +, its inverse —, and the bracket operation [ , ], where it is
customary also to allow the multiplication by ordinary numbers (which
might be real or complex). The ‘additive’ aspect of the algebra has the
usual vector-space structure (as with quaternions, in §11.1). In addition,
Lie bracket satisfies distributivity, etc., namely

[A+ B, C]=1[4, C]+[B, C], [A4, B] = J[A, B],

the antisymmetry property
[Aa B] = _[Ba A]a

(whence also [4, C + D] = [4, C]+ [A4,D], [4, AB] = A[A4, B]), and an ele-
gant relation known as the Jacobi identity!!3-3%

[4, [B, C]]+[B,[C,A]]+[C,[4,B]]=0

(a more general form of which will be encountered in §14.6).

We can choose a basis (E, E, ,..., Ey) for the vector space of our
matrices A, B, C, ... (where N is the dimension of the group G, if the
representation is faithful). Forming their various commutators [E,, Eg],
we express these in terms of the basis elements, to obtain relations (using
the summation convention)

[EOU E/i] = Voc/fZEX'

3 [13.34] Spell out this ‘order &’ calculation.
£3[13.35] Show all this.
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The N3 component quantities y,5* are called structure constants for G.
They are not all independent because they satisfy (see §11.6 for bracket
notation)

Vapt = —Vpats Vuprge = 0,

by virtue of the above antisymmetry and Jacobi identity.[!3-3¢] These
relations are given in diagrammatic form in Fig. 13.11.

It is a remarkable fact that the structure of the Lie algebra for a
faithful representation (basically, the knowledge of the structure constants
74p%) 1s sufficient to determine the precise local nature of the group
G. Here, ‘local’ means in a (sufficiently small) N-dimensional open
region A surrounding the identity element 7 in the ‘group manifold’ G
whose points represent the different elements of G (see Fig. 13.12). In
fact, starting from a Lie group element 4, we can construct a correspond-
ing actual finite (i.e. non-infinitesimal) group element by means of
the ‘exponentiation’ operation e? defined at the end of §13.4. (This
will be considered a little more fully in §14.6.) Thus, the theory of
representations of continuous groups by linear transformations (or by
matrices) may be largely transferred to the study of representations of
Lie algebras by such transformations—which, indeed, is the normal prac-
tice in physics.

This is particularly important in quantum mechanics, where
the Lie algebra elements themselves, in a remarkable way, frequently
have direct interpretations as physical quantities (such as angular
momentum, when the group G is the rotation group, as we shall be seeing
later in §22.8).

The Lie algebra matrices tend to be considerably simpler in structure
than the corresponding Lie group matrices, being subject to linear rather

A A4
A AR A

Fig. 13.11 (a) Structure constants y,” in diagrammatic form, depicting antisym-
metry in «, § and (b) the Jacobi identity.

[13.36] Show this.
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Fig. 13.12 The Lie algebra for a (faith-
ful) representation of a Lie group G (ba-
sically, knowledge of the structure
constants y,5%) determines the local
structure of G, i.e. it fixes the structure of
G within some (sufficiently small) open
region N surrounding the identity elem-
ent I, but it does not tell us about the
global nature of G.

than nonlinear restrictions (see §13.10 for the case of the classical groups).
This procedure is beloved of quantum physicists!

13.7 Tensor representation spaces; reducibility

There are ways of building up more elaborate representations of a group
G, starting from some particular one. How are we to do that? Suppose that
G is represented by some family 7 of linear transformations, acting on an
n-dimensional vector space V. Such a V is called a representation space
for G. Any element ¢ of G is now represented by a corresponding
linear transformation 7 in 7, where T effects x — Tx for each x
belonging to V. In the (abstract) index notation (§12.7) we write this
x? — T%x", as in §13.3, or in diagrammatic form, as in Fig. 13.6a. Let
us see how we can find other representation spaces for G, starting from the
given one V.

As a first example, recall, from §12.3, the definition of the dual space V*
of V. The elements of V* are defined as linear maps from V to the
scalars. We can write the action of y (in V*) on an element x in V as
y.x%, in the index notation (§12.7). The notation y e x would have been
used earlier (§12.3) for this (y  x = y,x%), but now we can also use the
matrix notation

yX = yax?,

where we take y to be a row vector (i.e. a 1 x n matrix) and x a column
vector (an n X 1 matrix). In accordance with our transformation x +— TX,
now thought of as a matrix transformation, the dual space V* undergoes
the linear transformation

y—yS, ie y,+— beba,

where S is the inverse of T:
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S=T"' so §%T". =%,

since, if x — Tx, we need y — yT~! to ensure that yx is preserved
by .

The use of a row vector y, in the above, gives us a non-standard
multiplication ordering. It is more usual to write things the other
way around, by employing the notation of the transpose AT of a matrix
A. The elements of the matrix AT are the same as those of A, but with rows
and columns interchanged. If A is square (n x n), then so is AT, its
elements being those of A reflected in its main diagonal (see §13.3). If 4
is rectangular (m x n), then AT is n x m, correspondingly reflected.
Thus y' is a standard column vector, and we can write the above
y — yS as

yT N ST T’

since the transpose operation ' reverses the order of multiplication:
(AB)" = BTAT. We thus see that the dual space V*, of any repre-
sentation space V is itself a representation space of G. Note that the
inverse operation ~' also reverses multiplication order, (AB)™' = B!
A~'[1337 5o the multiplication ordering needed for a representation is
restored.

The same kinds of consideration apply to the various vector spaces
of tensors constructed from V; see §12.8. We recall that a tensor Q
of valence [Z] (over the vector space V) has an index description as a
quantity

"

[
with ¢ lower and p upper indices. We can add tensors to other
tensors of the same valence and we can multiply them by scalars;
tensors of fixed valence [Z ] form a vector space of dimension r’t9

(the total number of components).l!3-381 Abstractly, we think of Q as
belonging to a vector space that we refer to as the tensor product

VieVe.eaVeVeVe..eoV

of ¢ copies of the dual space V* and p copies of V (p, ¢ = 0). (We shall
come to this notion of ‘tensor product’ a little more fully in §23.3.) Recall
the abstract definition of a tensor, given in §12.8, as a multilinear function.

4 [13.37] Why?
# [13.38] Why this number?
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This will suffice for our purposes here (although there are certain subtleties
in the case of an infinite-dimensional V, of relevance to the applications to
many-particle quantum states, needed in §23.8).1°

Whenever a linear transformation x? — T%x" is applied to V, this
induces a corresponding linear transformation on the above tensor prod-
uct space, given explicitly by!!3-3%

o/ 8, . 8T Tl

All these indices require good eyesight and careful scrutiny, in order
to make sure of what is summed with what; so I recommend the
diagrammatic notation, which is clearer, as illustrated in Fig. 13.13.
We see that each lower index of Q- transforms by the inverse
matrix S = T~! (or, rather, by ST), as with y, and each upper index by T,
as with x“. Accordingly, the space of [Z ]-valent tensors over V is also a
representation space for G, of dimension n’*9.

These representation spaces are, however, likely to be what is called
reducible. To illustrate this situation, consider the case of a [é]—valent
tensor Q”. Any such tensor can be split into its symmetric part Q") and
its antisymmetric part Q1% (§12.7 and §11.6):

Qab — Q(ab) + Q[ab],

LA
%g ]

Fig. 13.13 The linear transformation x* — T9x”, applied to x in the vector space
V (with T depicted as a white triangle), extends to the dual space V* by use of the
inverse S =T ! (depicted as a black triangle) and thence to the spaces
_V* ®®V* RVR...QV of [Z]-val‘ent tensors Q. The case p =3, ¢ :% is
illustrated, with @ shown as an oval with three arms and two legs undergoing
Qabcde o Su' B Sh’ W T¢ o T4 o T¢ v Qa/bl("d’e’.

}

£3 [13.39] Show this.
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where

Q(ab) — %(Qab =+ Qba)’ Q[ab] _ %(Qab _ Qba)'

The dimension of the symmetric space V. is %n(n + 1), and that of the
antisymmetric space V_ is $n(n — 1).1134% It is not hard to see that, under
the transformation x* — T%x”, so that 0% — T“.T",;0, the symmetric
and antisymmetric parts transform to tensors which are again, respect-
ively, symmetric, and antisymmetric.l'341 Accordingly, the spaces V, and
V_ are, separately, representation spaces for G. By choosing a basis for V
where the first %n(n+ 1) basis elements are in V, and the remaining
%n(n — 1) are in V_, we obtain our representation with all matrices being
of the n> x n? ‘block-diagonal’ form

(6 %)

where A stands for a jn(n+1) xin(n+1) matrix and B for a
In(n—1) x 1n(n — 1) matrix, the two Os standing for the appropriate
rectangular blocks of zeros.

A representation of this form is referred to as the direct sum of the
representation given by the A matrices and that given by the B matrices.
The representation in terms of [3]—Valent tensors is therefore reducible, in
this sense.['3421 The notion of ‘direct sum’ also extends to any number
(perhaps infinite) of smaller representations.

In fact there is a more general meaning for the term ‘reducible repre-
sentation’, namely one for which there is a choice of basis for which all the
matrices of the representation can be put in the somewhat more compli-

cated form
A C
O B)

where Ais p x p, Bis ¢ x ¢, and Cis p x ¢, with p, ¢ = 1 (for fixed p and
q). Note that, if the representing matrices all have this form, then the A
matrices and the B matrices each individually constitute a (smaller) repre-
sentation of G.l'3431f the C matrices are all zero, we get the earlier case where
the representation is the direct sum of these two smaller representations.
A representation is called irreducible if it is not reducible (with C present or

[13.40] Show this.
€3 [13.41] Explain this.

[13.42] Show that the representation space of [ { ]-valent tensors is also reducible. Hint: Split
any such tensor into a ‘trace-free’ part and a ‘trace’ part.

€9 [13.43] Confirm this.
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not). A representation is called completely reducible if we never get the
above situation (with non-zero C), so that it is a direct sum of irreducible
representations.

There is an important class of continuous groups, known as semi-simple
groups. This extensively studied class includes the simple groups referred
to in §13.2. Compact semi-simple groups have the pleasing property that
all their representations are completely reducible. (See §12.6, Fig. 12.13 for
the definition of ‘compact’.) It is sufficient to study irreducible representa-
tions of such a group, every representation being just a direct sum of these
irreducible ones. In fact, every irreducible representation of such a group is
finite-dimensional (which is not the case if we allow a semi-simple group to
be non-compact, when representations that are not completely reducible
can also occur).

What is a semi-simple group? Recall the ‘structure constants’ y”, of
§13.6, which specify the Lie brackets and define the local structure of the
group G. There is a quantity of considerable importance known'® as the
‘Killing form’ k that can be constructed from y,%:[13-44]

Kop = Vocgé Vﬁfg = Kgo-

The diagrammatic form of this expression is given in Fig. 13.14.
The condition for G to be semi-simple is that the matrix x,s be non-
singular.

Someremarksareappropriate concerning the condition of compactness of
a semi-simple group. For a given set of structure constants 7,5”, assuming
that we can take them to be real numbers, we could consider either the real or
the complex Lie algebra obtained from them. In the complex case, we do not
get a compact group G, but we might do so in the real case. In fact, compact-
ness occurs in the real case when —«p, is what is called positive definite (the
meaning of which term we shall come toin §13.8). For fixed y,4%, in the case of
a real group G, we can always construct the complexification CG (at least
locally) of G which comes about merely by using the same y,3*, but with
complex coefficients in the Lie algebra. However, different real groups G
might sometimes give rise to the same!'” C@. These different real groups are
called different real forms of the complex group. We shall be seeing important

‘Kfi(l)lrirr:? : ﬁ = Fig. 13.14 The ‘Killing form’ ,; defined from the
structure constants yagé by Kop = Vaii"/ﬁgg.

4 [13.44] Why does K, = K,?
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instances of this in later chapters, especially in §18.2, where the Euclidean
motions in 4 dimensions and the Lorentz/Poincaré symmetries of
special relativity are compared. It is a remarkable property of any complex
semi-simple Lie group that it has exactly one real form G which is com-
pact.

13.8 Orthogonal groups

Now let us return to the orthogonal group. We already saw at the begin-
ning of §13.3 how to represent O(3) or SO(3) faithfully as linear trans-
formations of a 3-dimensional real vector space, with ordinary Cartesian
coordinates (x,y,z), where the sphere

Xy +2=1

is to be left invariant (the upper index 2 meaning the usual ‘squared’).
Let us write this equation in terms of the index notation (§12.7), so that we
can generalize to n dimensions. The equation of our sphere can now
be written

gahxaxb =1,
which stands for (xl)2 4+ 4 (x”)2 = 1, the components g,, being given
by
|1 ifa=hb,
8ab =30 if ab.
In the diagrammatic notation, I recommend simply using a ‘hoop’ for g,
as indicated in Fig. 13.15a. I shall also use the notation g (with the same

explicit components as g,5) for the inverse quantity (‘inverted hoop’ in Fig.
13.15a):

8ab gbc = 62 = nggba-

o8, U U

Fig. 13.15 (a) The metric g, and its inverse g in the ‘hoop’ diagrammatic
notation. (b) The relations g, = gy, (i-e. g7 = g), gu» = £, and gug’ = & in
diagrammatic notation.
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The puzzled reader might very reasonably ask why I have introduced
two new notations, namely g, and g“ for precisely the same
matrix components that I denoted by &; in §13.3! The reason has to do
with the consistency of the notation and with what happens when a linear
transformation is applied to the coordinates, according to some replace-
ment

X4 9xP,
*;, being non-singular, so that it has an inverse s%:
b a b
187 = 5C =51,

This is formally the same as the type of linear transformation that we
considered in §§13.3,7, but we are now thinking of it in a quite different
way. In those sections, our linear transformation was thought of as active,
so that the vector space V was viewed as being actually moved (over
itself). Here we are thinking of the transformation as passive in that
the objects under consideration—and, indeed, the vector space V itself—
remain pointwise fixed, but the representations in terms of coordinates are
changed. Another way of putting this is that the basis (e; , ..., e,) that we
had previously been using (for the representation of vector/tensor quantities
in terms of components'®) is to be replaced by some other basis. See
Fig. 13.16.

In direct correspondence with what we saw in §13.7 for the active
transformation of a tensor, we find that the corresponding passive change
in the components Q¢ of a tensor @ is given byl!?+]

Fig. 13.16 A passive transformation in a vector space V leaves V pointwise fixed,
but changes its coordinate description, i.e. the basis ey, e, ..., e, is replaced by
some other basis (case n = 3 illustrated).

[13.45] Use Note 13.18 to establish this.
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o ety O
Applying this to J;, we find that its components are completely
unaltered,['3461 whereas this is not the case for g,,. Moreover, after a
general such coordinate change, the components g will be quite different
from g, (inverse matrices). Thus, the reason for the additional
symbols g and g, is simply that they can only represent the same
matrix of components as does &, in special types of coordinate system
(‘Cartesian’ ones) and, in general, the components are just different.
This has a particular importance for general relativity, where the co-
ordinate system cannot normally be arranged to have this special
(Cartesian) form.

A general coordinate change can make the matrix of components g, a
more complicated although not completely general matrix. It retains the
property of symmetry between a and b giving a symmetric matrix. The
term ‘symmetric’ tells us that the square array of components is symmet-
rical about its main diagonal, i.e. g' = g (using the ‘transpose’ notation of
§13.3). In index-notation terms, this symmetry is expressed as either of the
two equivalent!!347] forms

Lab = Zha» €7 = &,

and see Fig. 13.15b for the diagrammatic form of these relations.

What about going in the opposite direction? Can any non-singular n x n
real symmetric matrix be reduced to the component form of a Kronecker
delta? Not quite—not by a real linear transformation of coordinates.
What it can be reduced to by such means is this same form except that
there are some terms 1 and some terms —1 along the main diagonal. The
number, p, of these 1 terms and the number, ¢, of —1 terms is an invariant,
which is to say we cannot get a different number by trying some other real
linear transformation. This invariant (p, ¢) is called the signature of g.
(Sometimes it is p — ¢ that is called the signature; sometimes one just
writes + ...+ — ... — with the appropriate number of each sign.) In fact,
this works also for a singular g, but then we need some 0s along the main
diagonal also and the number of Os becomes part of the signature as well
as the number of 1s and the number of —1s. If we only have 1s, so that g is
non-singular and also ¢ = 0, then we say that g is positive-definite. A non-
singular g for which p=1 and ¢ #0 (or ¢g=1 and p # 0) is called
Lorentzian, in honour of the Dutch physicist H.A. Lorentz (1853-1928),
whose important work in this connection provided one of the foundation
stones of relativity theory; see §§17.6-9 and §§18.1-3.

(€ [13.46] Why?
A3 [13.47] Why equivalent?
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An alternative characterization of a positive-definite matrix A, of con-
siderable importance in certain other contexts (see §20.3, §24.3, §29.3) is
that the real symmetric matrix A satisfy

xTAx > 0

for all x # 0. In index notation, this is: ‘4,x“x” > 0 unless the vector x¢
vanishes’.[1348] We say that A is non-negative-definite (or positive-semi-
definite) if this holds but with = in place of > (so we now allow
x"Ax = 0 for some non-zero x).

Under appropriate circumstances, a symmetric non-singular [g]-tensor
gap, 18 called a metric—or sometimes a pseudometric when g is not
positive definite. This terminology applies if we are to use the quantity
ds, defined by its square ds> = g,dx“dx?, as providing us with some
notion of ‘distance’ along curves. We shall be seeing in §14.7 how
this notion applies to curved manifolds (see §10.2, §§12.1,2), and in §17.8
how, in the Lorentzian case, it provides us with a ‘distance’ measure
which is actually the time of relativity theory. We sometimes refer to the
quantity

1
|v] = (gapv™):

as the length of the vector v, with index form v“.

Let us return to the definition of the orthogonal group O(n).
This is simply the group of linear transformations in n dimensions—
called orthogonal transformations—that preserve a given positive-definite
g. ‘Preserving’ g means that an orthogonal transformation 7T has to
satisfy

8ab Tac de = 8cd-

This is an example of the (active) tensor transformation rule described in
§13.7, as applied to g, (and see Fig. 13.17 for the diagrammatic form of
this equation). Another way of saying this is that the metric form ds? of the
previous paragraph is unchanged by orthogonal transformations. We can,
if we please, insist that the components g, be actually the Kronecker
delta—this, in effect, providing the definition of O(3) given in §§13.1,3—
but the group comes out the same!® whatever positive-definite n x n array
of g, we choose.[13:49]

#orthogonaj it ﬁ - ﬂ Fig. 13.17 T is an orthogonal transformation if
8ab Tac'de = &ed-

£3 [13.48] Can you confirm this characterization?
£5[13.49] Explain why.
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With the particular component realization of g, as the Kronecker delta,
the matrices describing our orthogonal transformations are those satisfy-
- ol13.50]
ing

T'=1T,

called orthogonal matrices. The real orthogonal n x n matrices provide
a concrete realization of the group O(n). To specialize to the non-reflective
group SO(n), we require that the determinant be equal to unity:!13->1]

det T =1.

We can also consider the corresponding pseudo-orthogonal groups
O(p, q) and SO(p, ¢) that are obtained when g, though non-singular, is
not necessarily positive definite, having the more general signature
(», q). The case when p =1 and ¢ = 3 (or equivalently p =3 and ¢ = 1),
called the Lorentz group, plays a fundamental role in relativity theory, as
indicated above. We shall also be finding (if we ignore time-reflections)
that the Lorentz group is the same as the group of symmetries of
the hyperbolic 3-space that was described in §2.7, and also (if we ignore
space reflections) of the group of symmetries of the Riemann sphere, as
achieved by the bilinear (M6bius) transformations as studied in §8.2. It
will be better to delay the explanations of these remarkable facts until our
investigation of the Minkowski spacetime geometry of special relativity
theory (§§18.4,5). We shall also be seeing in §33.2 that these facts have a
seminal significance for twistor theory.

How ‘different’ are the various groups O(p, ¢), for p + ¢ = n, for fixed n?
(The positive-definite and Lorentzian cases are contrasted, for » = 2 and
n = 3, in Fig. 13.18.) They are closely related, all having the same dimen-
sion %n(n — 1); they are what are called real forms of one and the same
complex group O(n, C), the complexification of O(n). This complex group
is defined in the same way as O(n) (= O(n, IR)), but where the linear
transformations are allowed to be complex. Indeed, although I have
phrased my considerations in this chapter in terms of real linear trans-
formations, there is a parallel discussion where ‘complex’ replaces ‘real’
throughout. (Thus the coordinates x* become complex and so do the
components of our matrices.) The only essential difference, in what has
been said above, arises with the concept of signature. There are complex
linear coordinate transformations that can convert a —1 in a diagonal
realization of g, into a +1 and vice versa,'3->21 so we do not now have a

[13.50] Explain this. Whatis T ~linthe pseudo-orthogonal cases (defined in the next paragraph)?

#5 [13.51] Explain why this is equivalent to preserving the volume form &, ., i.e. & Ty ... Ty =
&p../? Moreover, why is the preservation of its sign sufficient?

£ [13.52] Why?

279



§13.8 CHAPTER 13

Fig. 13.18 (a) O(2,0) and O(1,1) are contrasted. (b) O(3,0) and O(1,2) are
similarly contrasted, the ‘unit sphere’ being illustrated in each case. For O(1,2)
(see §§2.4,5, §18.4), this ‘sphere’ is a hyperbolic plane (or two copies of such).

PG N

meaningful notion of signature. The only invariant®® of g, in the complex
case, 1s what is called its rank, which is the number of non-zero terms in its
diagonal realization. For a non-singular g, the rank has to be maximal, i.e. n.

When is the difference between these various real forms important and
when is it not? This can be a delicate question, but physicists are often
rather cavalier about the distinctions, even though these can be important.
The positive-definite case has the virtue that the group is compact, and
much of the mathematics is easier for such situations (see §13.7). Some-
times people blithely carry over results from the compact case to the non-
compact cases (p # 0 # ¢), but this is often not justified. (For example, in
the compact case, one need only be concerned with representations that
are finite-dimensional, but in the non-compact case additional infinite-
dimensional representations arise.) On the other hand, there are other
situations in which considerable insights can be obtained by ignoring the
distinctions. (We may compare this with Lambert’s discovery of the
formula, in terms of angles, of the area of a hyperbolic triangle, given in
§2.4. He obtained his formula by allowing his sphere to have an imaginary
radius. This is similar to a signature change, which amounts to allowing
some coordinates to have imaginary values. In §18.4, Fig. 18.9, I shall try
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to make the case that Lambert’s approach to non-Euclidean geometry is
perfectly justifiable.)

The different possible real forms of O(n, ) are distinguished by certain
set of inequalities on the matrix elements (such as det 7 > 0). A feature of
quantum theory is that such inequalities are often violated in physical
processes. For example, imaginary quantities can, in a sense, have a
physically real significance in quantum mechanics, so the distinction be-
tween different signatures can become blurred. On the other hand, it is my
impression that physicists are often somewhat less careful about these
matters than they should be. Indeed, this question will have considerable
relevance for us in our examination of a number of modern theories (§28.9,
§31.11, §32.3). But more of this later. This is the ‘can of worms’ that I
hinted at in §11.2!

13.9 Unitary groups

The group O(n, C) provides us with one way in which the notion of a
‘rotation group’ can be generalized from the real numbers to the complex.
But there is another way which, in certain contexts, has an even greater
significance. This is the notion of a unitary group.

What does ‘unitary’ mean? The orthogonal group is concerned with the
preservation of a quadratic form, which we can write equivalently as
g2apXx°x" or x"gx. For a unitary group, we use complex linear transform-
ations which preserve instead what is called a Hermitian form (after the
important 19th century French mathematician Charles Hermite
1822-1901).

What is a Hermitian form? Let us first return to the orthogonal case.
Rather than a quadratic form (in x), we could equally have used the
symmetric bilinear form (in x and y)

g(x, ) = gaxy" = x'gy.

This arises as a particular instance of the ‘multilinear function’ definition
of a tensor given in §12.8, as applied to the [3] tensor g (and putting y = x,
we retrieve the quadratic form above). The symmetry of g would then be
expressed as

g(x, ) =gy, x),
and linearity in the second variable y as
gx, y+w)=g(x, ) +g(x, w), gx, 2y)=ig(x, y).

For bilinearity, we also require linearity in the first variable x, but this now
follows from the symmetry.
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A Hermitian form h(x, y) satisfies, instead, Hermitian symmetry

h(x, y) = h(y, x),
together with linearity in the second variable y:
h(xa y + W) = h(xa y) + h(xz W), h(xa ;“y) = ih(xn y)

The Hermitian symmetry now implies what is called antilinearity in the
first variable:

h(x+w, y) = h(x, y)+ h(w, y), h(Jx, y) = Jh(x, p).

Whereas an orthogonal group preserves a (non-singular) symmetric
bilinear form, the complex linear transformations preserving a non-singu-
lar Hermitian form give us a unitary group.

What do such forms do for us? A (not necessarily symmetric) non-
singular bilinear form g provides us with a means of identifying the
vector space V, to which x and y belong, with the dual space V*. Thus, if
v belongs to V, then g(v, ) provides us with a linear map on V, mapping
the element x of V to the number g(v, x). In other words, g(v, ) is
an element of V* (see §12.3). In index form, this element of V* is the
covector v“g,,, which is customarily written with the same kernel letter
v, but with the index lowered (see also §14.7) by g.», according to

vp = 1"gup-

The inverse of this operation is achieved by the raising of the index of v, by
use of the inverse metric [g]-tensor g:

v = g®uy.

We shall need the analogue of this in the Hermitian case. As before,
each choice of element v from the vector space V provides us with an element
h(v, ) of the dual space V*. However, the difference is that now h(v, )
depends antilinearly on v rather than linearly; thus h(Av, ) = Ah(v, ).

An equivalent way of saying this is that h(v, ) is linear in v, this vector
quantity v being the ‘complex conjugate’ of v. We consider these complex-
conjugate vectors to constitute a separate vector space v. This viewpoint is
particularly useful for the (abstract) index notation, where a separate
‘alphabet’ of indices is used, say «’, &', ¢, ..., for these complex-conjugate
elements, where contractions (summations) are not permitted between
primed and unprimed indices. The operation of complex conjugation
interchanges the primed with the unprimed indices. In the index notation,
our Hermitian form is represented as an array of quantities /., with one
(lower) index of each type, so
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h(x, y) = hapx“y’

(with ¢ being the complex conjugate of the element x*), where ‘Hermiti-
city’ is expressed as o
ha’b = hb’a

The array of quantities /1,5 allows us to lower or raise an index, but it
now changes primed indices to unprimed ones, and vice versa, so it refers
us to the dual of the complex-conjugate space:

_ —a
Vg = oM ha’ba Vg = ha’bvb-

For the inverses of these operations—where the Hermitian form is as-
. . . /. .

sumed non-singular (i.e. the matrix of components 4%’ is non-singular)—
. /

we need the inverse 4" of hy,

/ J J
W hye = 8% haph® =85,

whencel!3-53]

= T)bhba/, v = habl’ub/.

Note that all primed indices can be eliminated using /., (and the corres-
ponding inverse 2%’ by virtue of the above relations, which can be applied
index-by-index to any tensor quantity. The complex-conjugate space is
thereby ‘identified” with the dual space, instead of having to be a quite
separate space.

The operation of ‘complex conjugation’—usually called Hermitian con-
jugation—which incorporates this identification with the dual into the
notion of complex conjugation (though not commonly written in the
index notation) is of central importance to quantum mechanics, as well
as to many other areas of mathematics and physics (such as twistor theory,
see §33.5). In the quantum-mechanical literature this is often denoted by a
dagger ‘1’, but sometimes by an asterisk ‘x’.

I prefer the asterisk, which is more usual in the mathematical literature, so
I shall use this here—in bold type. The asterisk is appropriate here because it
interchanges the roles of the vector space V and its dual V*. A complex
tensor of valence [Z ] (all primed indices having been eliminated, as above) is
mapped by * to a tensor of valence [Z]. Thus, upper indices become lower
and lower indices become upper under the action of . As applied to scalars,
x 18 simply the ordinary operation of complex conjugation. The operation x*
is an equivalent notion to the Hermitian form 4 itself.

The most familiar Hermitian conjugation operation (which occurs
when the components /., are taken to be the Kronecker delta) simply

£9 [13.53] Verify these relations, explaining the notational consistency of 44,
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takes the complex conjugate of each component, reorganizing the
components so as to read upper indices as lower ones and lower indices as
upper ones. Accordingly, the matrix of components of a linear transform-
ation is taken to the transpose of its complex conjugate (sometimes called
the conjugate transpose of the matrix), so in the 2 x 2 case we have

(20 3)

A Hermitian matrix is a matrix that is equal to its Hermitian conjugate in
this sense. This concept, and the more general abstract Hermitian operator,
are of great importance in quantum theory.

We note that = is antilinear in the sense

(T+U) =T +U",
T) =zT",
applied to tensors T and U, both of the same valence, and for any complex
number z. The action of * must also preserve products of tensors but,
because of the reversal of the index positions, it reverses the order of
contractions; in particular, when =* is applied to linear transformations
(regarded as tensors with one upper and one lower index), the order of
multiplication is reversed:
(LM) =M'L".

It is very handy, in the diagrammatic notation, to depict such a conjuga-
tion operation as reflection in a horizontal plane. This interchanges upper
and lower indices, as required; see Fig. 13.19.

W¢, M%’ Y T4
N .

(ST)*
S* ~n> T* ~> =T*S* ~rdP

Fig. 13.19 The operation of Hermitian conjugation (*) conveniently depicted as
reflection in a horizontal plane. This interchanges ‘arms’ with ‘legs’ and reverses
the order of multiplication: (ST)" = T*S*. The diagrammatic expression for the
Hermitian scalar product (v|w) = v*w is given (so that taking its complex conju-
gate would reflect the diagram on the far right upside-down).

Hermitian conjugate
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The operation * enables us to define a Hermitian scalar product between
two elements v and w, of V, namely the scalar product of the covector v
with the vector w (the different notations being useful in different con-
texts):

(v|w)=vew=hv,w)

(and see Fig. 13.19), and we have
(vw)=(w]v).
In the particular case w = v, we get the norm of v, with respect to =:
[v = (v|wv).

We can choose a basis (eq, e> , ..., e,) for V, and then the components /.,
in this basis are simply the 7> complex numbers

hay = h(e,, ep) = <ea | eb>a

constituting the elements of a Hermitian matrix. The basis (e ,..., e,) is
called pseudo-orthonormal, with respect to =, if

1 ifi=j
<“|@>_{o ifi)

in the case when all the + signs are +, i.e. when each + 1 is just 1, the
basis is orthonormal.

A pseudo-orthonormal basis can always be found, but there are
many choices. With respect to any such basis, the matrix Ay, is
diagonal, with just 1s and —1s down the diagonal. The total number of
Is, p, always comes out the same, for a given %, independently of any
particular choice of basis, and so also does the total number of —1s, ¢.
This enables us to define the invariant notion of signature (p, ¢q) for the
operation .

If ¢ = 0, we say that = is positive-definite. In this case,?! the norm of any
non-zero vector is always positive:[13-54

v#0 implies | v|>0.

Note that this notion of ‘positive-definite’ generalizes that of §13.8 to the
complex case.
A linear transformation 7 whose inverse is T , so that

T '=Tie.TT =1=T'T,

[13.54] Show this.
285



§13.10 CHAPTER 13

is called unitary in the case when = is positive-definite, and pseudo-unitary
in the other cases.['3-3%] The term ‘unitary matrix’ refers to a matrix T
satisfying the above relation when * stands for the usual conjugate trans-
pose operation, so that T =T

The group of unitary transformations in n dimensions, or of (n x n)
unitary matrices, is called the unitary group U(n). More generally, we get
the pseudo-unitary group U(p, ¢) when = has signature (p, ¢).?*> If the
transformations have unit determinant, then we correspondingly obtain
SU(n) and SU(p, ¢). Unitary transformations play an essential role
in quantum mechanics (and they have great value also in many pure-
mathematical contexts).

13.10 Symplectic groups

In the previous two sections, we encountered the orthogonal and unitary
groups. These are examples of what are called classical groups, namely the
simple Lie groups other than the exceptional ones; see §13.2. The list of
classical groups is completed by the family of symplectic groups. Symplec-
tic groups have great importance in classical physics, as we shall be seeing
particularly in §20.4—and also in quantum physics, particularly in the
infinite-dimensional case (§26.3).

What is a symplectic group? Let us return again to the notion of a bilinear
form, but where instead of the symmetry (g(x, y) = g(», x)) required for
defining the orthogonal group, we impose antisymmetry

s(x, y) = _s(ya x)>
together with linearity
s(x, y +w) = s(x, y) + s(x, w), s(x, 2y) = is(x, y),

where linearity in the first variable x now follows from the antisymmetry.
We can write our antisymmetric form variously as

b T
s(x, y) = x“s)” = x' Sy,
Just as in the symmetric case, but where s, is antisymmetric:
Sba = —Sab 1.€. ST = —S,

S being the matrix of components of s,,. We require S to be non-singular.
Then s, has an inverse s*°, satisfying??

£9 [13.55] Show that these transformations are precisely those which preserve the Hermitian
correspondence between vectors v and covectors v*, and that they are those which preserve /.
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Saps™¢ = o = S Spas

where s = —gba,

We note that, by analogy with a symmetric matrix, an antisymmetric
matrix S equals minus its transpose. It is important to observe that an
n X n antisymmetric matrix S can be non-singular only if 7 is even.[13-50]
Here n is the dimension of the space V to which x and y belong, and we
indeed take n to be even.

The elements T of GL(n) that preserve such a non-singular antisym-
metric s, (or, equivalently, the bilinear form s), in the sense that

sy TTS = 500, ie. T'ST =S,

are called symplectic, and the group of these elements is called a symplectic
group (a group of very considerable importance in classical mechanics, as
we shall be seeing in §20.4). However, there is some confusion in the
literature concerning this terminology. It is mathematically more accurate
to define a (real) symplectic group as a real form of the complex symplectic
group Sp(%n, ©), which is the group of complex T“, (or T) satisfying the
above relation. The particular real form just defined is non-compact; but
in accordance with the remarks at the end of §13.7—Sp( % n, C) being semi-
simple—there is another real form of this complex group which is com-
pact, and it is this that is normally referred to as the (real) symplectic
group Sp(%n).

How do we find these different real forms? In fact, as with the orthog-
onal groups, there is a notion of signature which is not so well known as in
the cases of the orthogonal and unitary groups. The symplectic group of
real transformations preserving s,, would be the ‘split-signature’ case of
signature (%n, %n). In the compact case, the symplectic group has signa-
ture (n, 0) or (0, n).

How is this signature defined? For each pair of natural numbers p and ¢
such that p+ ¢ =n, we can define a corresponding ‘real form’ of the
complex group Sp(3n, C) by taking only those elements which are also
pseudo-unitary for signature (p, g)—i.e. which belong to U(p, ¢q) (see
§13.9). This gives®* us the (pseudo-)symplectic group Sp(p, ¢). (Another
way of saying this is to say that Sp(p, ¢) is the intersection of Sp(%n, ©)
with U(p, ¢).) In terms of the index notation, we can define Sp(p, ¢) to be
the group of complex linear transformations 7} that preserve both the
antisymmetric s,5, as above, and also a Hermitian matrix H of compon-
ents /,p, in the sense that

—
g/ T}?ha’a = hb’b:

[13.56] Prove this.
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where H has signature (p, ¢) (so we can find a pseudo-orthonormal
basis for which H is diagonal with p entries 1 and ¢ entries —1; see
§13.9).2° The compact classical symplectic group Sp(}n) is my Sp(n, 0)
(or Sp(0, n)), but the form of most importance in classical physics is
Sp(%l’l, %}’l).[13‘57]

As with the orthogonal and unitary groups, we can find choices of basis
for which the components s, have a particularly simple form. We cannot
now take this form to be diagonal, however, because the only antisym-
metric diagonal matrix is zero! Instead, we can take the matrix of s, to
consist of 2 x 2 blocks down the main diagonal, of the form

(40)

In the familiar split-signature case Sp(4n, 1n), we can take the real linear
transformations preserving this form. The general case Sp(p, ¢) is exhibited
by taking, rather than real transformations, pseudo-unitary ones of signa-
ture (p, g).113-58]

For various (small) values of p and ¢, some of the orthogonal, unitary,
and symplectic groups are the same (‘isomorphic’) or at least locally the
same (‘locally isomorphic’), in the sense of having the same Lie algebras (cf.
§13.6).2° The most elementary example is the group SO(2), which describes
the group of non-reflective symmetries of a circle, being the same as the
unitary group U(1), the multiplicative group of unit-modulus complex
numbers e’ (0 real).['3-5%1 Of a particular importance for physics is the fact
that SU(2) and Sp(1) are the same, and are locally the same as SO(3) (being
the twofold cover of this last group, in accordance with the twofold nature
of the quaternionic representation of rotations in 3-space, as described in
§11.3). This has great importance for the quantum physics of spin (§22.8). Of
significance in relativity theory is the fact that SL(2, ), being the same as
Sp(1, ©), is locally the same as the non-reflective part of the Lorentz group
O(1, 3) (again a twofold cover of it). We also find that SU(1, 1), Sp(1, 1), and
SO(2, 1) are the same, and there are several other examples. Particularly
noteworthy for twistor theory is the local identity between SU(2, 2) and the
non-reflective part of the group O(2, 4) (see §33.3).

The Lie algebra of a symplectic group is obtained by looking for
solutions X of the matrix equation

X'S+SX=0, ie.SX=(SX),

#%5 [13.57] Find explicit descriptions of Sp(1) and Sp(1, 1) using this prescription. Can you see why
the groups Sp(n, 0) are compact?

#5 [13.58] Show why these two different descriptions for the case p = ¢ = 17 are equivalent.
&3 [13.59] Why are they the same?
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so the infinitesimal transformation (Lie algebra element) X is simply S~
times a symmetric n x n matrix. This enables the dimensionality %n(n +1)
of the symplectic group to be directly seen. Note that X has to be trace-free
(i.e. trace X = 0—see §13.4).113601 The Lie algebras for orthogonal and
unitary groups are also readily obtained, in terms, respectively, of anti-
symmetric matrices and pure-imaginary multiples of Hermitian matrices,
the respective dimensions being n(n — 1)/2 and »?.[13-61]

We note from §13.4 that, for the transformations to have unit determin-
ant, the trace of the infinitesimal element X must vanish. This is automatic
in the symplectic case (noted above), and in the orthogonal case the
infinitesimal elements all have unit determinant.l'3-¢21 In the unitary case,
restriction to SU(n) is one further condition (trace X = 0), so the dimen-
sion of the group is reduced to n> — 1.

The classical groups referred to in §13.2, sometimes labelled
A, Bu, Cp, Dy (for m=1, 2, 3, ...), are simply the respective groups
SU(m + 1), SO2m + 1), Sp(m), and SO(2m), that we have been examining
in §§13.8-10, and we see from the above that they indeed have respective
dimensionalities m(m +2), 2m + 1), m2m + 1), and mQ2m —1), as
asserted in §13.2. Thus, the reader has now had the opportunity to catch
a significant glimpse of all the classical simple groups. As we have seen,
such groups, and some of the various other ‘real forms’ (of their complex-
ifications) play important roles in physics. We shall be gaining a little
acquaintance with this in the next chapter. As mentioned at the beginning
of this chapter, according to modern physics, all physical interactions are
governed by ‘gauge connections’ which, technically, depend crucially on
spaces having exact symmetries. However, we still need to know what a
‘gauge theory’ actually is. This will be revealed in Chapter 15.

Notes

Section 13.1

13.1. Abel was born in 1802 and died of consumption (tuberculosis) in 1829, aged 26.
The more general non-Abelian (ab # ba) group theory was introduced by the
even more tragically short-lived French mathematician Evariste Galois
(1811-1832), who was killed in a duel before he reached 21, having been up the
entire previous night feverishly writing down his revolutionary ideas involving
the use of these groups to investigate the solubility of algebraic equations, now
called Galois theory.

[13.60] Explain where the equation X'.S + SX = 0 comes from and why SX = (SX ). Why
does trace X vanish? Give the Lie algebra explicitly. Why is it of this dimension?

#5 [13.61] Describe these Lie algebras and obtain these dimensions.
£9 [13.62] Why, and what does this mean geometrically?
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13.2. We should also take note that ‘~C’ means ‘take the complex conjugate, then
multiply by -1, i.e. —C = (—1)C.

13.3. The S stands for ‘special’ (meaning ‘of unit determinant’) which, in the present
context just tells us that orientation-reversing motions are excluded. The O
stands for ‘orthogonal’ which has to do with the fact that the motions that it
represents preserves the ‘orthogonality’ (i.e. the right-angled nature) of coordin-
ate axes. The 3 stands for the fact that we are considering rotations in three
dimensions.

13.4. There is a remarkable theorem that tells us that not only is every continuous
group also smooth (i.e. C* implies C', in the notation of §§6.3,6, and even C°
implies C*), but it is also analytic (i.e. C° implies C®). This famous result, which
represented the solution of what had become known as ‘Hilbert’s 5th problem’,
was obtained by Andrew Mattei Gleason, Deane Montgomery, Leo Zippin, and
Hidehiko Yamabe in 1953; see Montgomery and Zippin (1955). This justifies the
use of power series in §13.6.

Section 13.2
13.5. See van der Waerden (1985), pp. 166-74.
13.6. See Devlin (1988).
13.7. See Conway and Norton (1972); Dolan (1996).

Section 13.3
13.8. We shall be seeing in §14.1 that a Euclidean space is an example of an affine
space. If we select a particular point (origin) O, it becomes a vector space.
13.9. In many places in this book it will be convenient—and sometimes essential—to
stagger the indices on a tensor-type symbol. In the case of a linear transform-
ation, we need this to express the order of matrix multiplication.

13.10. Thisregion is a vector space of dimension » (wWhere r < n). We call r the rank of the
matrix or linear transformation 7. A non-singular n x n matrix has rank n. (The
concept of ‘rank’ applies also to rectangular matrices.) Compare Note 12.18.

13.11. For a history of the theory of matrices, see MacDuffee (1933).

Section 13.5

13.12. In those degenerate situations where the eigenvectors do not span the whole
space (i.e., some d is less than the corresponding r), we can still find a canonical
form, but we now allow 1s to appear just above the main diagonal, these
residing just within square blocks whose diagonal terms are equal eigenvalues
(Jordan normal form); see Anton and Busby (2003). Apparently Weierstrauss
had (effectively) found this normal form in 1868, two years before Jordan; See
Hawkins (1977).

Section 13.6

13.13. To illustrate this point, consider SL(, IR) (i.e. the unit-determinant elements of
GL(n, IR) itself). This group has a ‘double cover’ SL(n, IR) (provided thatn > 3)
which is obtained from SL(#, IR) in basically the same way whereby we effectively
found the double cover SO(3) of SO(3) when we considered the rotations
of a book, with belt attachment, in §11.3. Thus, S~O(3) is the group of (non-
reflective) rotations of a spinorial object in ordinary 3-space. In the same way,
we can consider ‘spinorial objects’ that are subject to the more general linear
transformations that allow ‘squashing’ or ‘stretching’, as discussed in §13.3. In
this way, we arrive at the group §L(n, IR), which is locally the same as SL(n, R),
but which cannot, in fact, be faithfully represented in any GL(m). See Note 15.9.
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13.14. This notion is well defined; cf. Note 13.4.

Section 13.7

13.15. See Thirring (1983).

13.16. Here, again, we have an instance of the capriciousness of the naming of
mathematical concepts. Whereas many notions of great importance in this
subject, to which Cartan’s name is conventionally attached (e.g. ‘Cartan sub-
algebra, Cartan integer’) were originally due to Killing (see §13.2), what we refer
to as the ‘Killing form’ is actually due to Cartan (and Hermann Weyl); see
Hawkins (2000), §6.2. However, the ‘Killing vector’ that we shall encounter in
§30.6 is actually due to Killing (Hawkins 2000, note 20 on p. 128).

13.17. T am (deliberately) being mathematically a little sloppy in my use of the phrase
‘the same’ in this kind of context. The strict mathematical term is ‘isomorphic’.

Section 13.8

13.18. T have not been very explicit about this procedure up to this point. A basis
e=(e,...,e,) for V is associated with a dual basis—which is a basis
e =(e',..., " for V'—with the property that e's e = 6; The components of
a [;]—valent tensor Q are obtained by applying the multilinear function of §12.8 to
the various collections of p dual basis elements and ¢ basis elements:
Ofh=0Q/,....e" e, ,...,e).

13.19. See Note 13.3.

13.20. See Note 13.10. The reader may be puzzled about why the 7%, of §13.5 can have
lots of invariants, namely all its eigenvalues Ay, 23, 23 ..., Ay, whereas g, does
not. The answer lies simply in the difference in transformation behaviour
implicit in the different index positioning.

Section 13.9

13.21. Note that, in the positive-definite case, (eT, e; ety e:) is a dual basis to
(e1, e2,..., e,), in the sense of Note 13.18.

13.22. The groups U(p, g), for fixed p + ¢ = n, as well as GL(n, IR), all have the same
complexification, namely GL(n, C), and these can all be regarded as different
real forms of this complex group.

Section 13.10

13.23. We can then use s, and s* to raise and lower indices of tensors, just as with g,
and g, so v, = spv" v* = s®v;, (see §13.8); but, because of the antisymmetry,
we must be a little careful to make the ordering of the indices consistent. Those
readers who are familiar with the 2-spinor calculus (see Penrose and Rindler
1984, vol.1) may notice a slight notational discrepancy between our s, and the
¢4p of that calculus.

13.24. T am not aware of a standard terminology or notation for these various real
forms, so the notation Sp(p, ¢) has been concocted for the present purposes.

13.25. In fact, every element of Sp(%n, ©) has unit determinant, so we do not need an
‘SSp(%n)’ by analogy with SO(n) and SU(n). The reason is that there is an
expression (the ‘Pfaffian’) for Levi-Civita’s ¢. . .in terms of the s,5, which must
be preserved whenever the s, are.

13.26. See Note 13.17.
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Calculus on manifolds

14.1 Differentiation on a manifold?

IN the previous chapter (in §§13.3,6-10), we saw how symmetry groups can
act on vector spaces, represented by linear transformations of these spaces.
For a specific group, we can think of the vector space as possessing some
particular structure which is preserved by the transformations. This notion
of ‘structure’ is an important one. For example, it could be a metric
structure, in the case of the orthogonal group (§13.8), or a Hermitian
structure, as is preserved by a unitary group (§13.9). As noted earlier, the
representation theory of groups as actions on vector spaces has, in a
general way, great importance in many areas of mathematics and physics,
especially in quantum theory, where, as we shall see later (particularly in
§22.2), vector spaces with a Hermitian (scalar-product) structure form the
essential background for that theory.

However, a vector space is itself a very special type of space, and
something much more general is needed for the mathematics of much of
modern physics. Even Euclid’s ancient geometry is not a vector space,
because a vector space has to have a particular distinguished point, namely
the origin (given by the zero vector), whereas in Euclidean geometry every
point is on an equal footing. In fact, Euclidean space is an example of what
is called an affine space. An affine space is like a vector space but we
‘forget’ the origin; in effect, it is a space in which there is a consistent
notion of parallelogram.'*1M1421 Ag soon as we specify a particular point
as origin this allows us to define vector addition by the ‘parallelogram law’
(see §13.3, Fig.13.4).

E3[14.1] Let [a, b; ¢, d] stand for the statement ‘abdc forms a parallelogram’ (where a, b, d, and ¢
are taken cyclicly, as in §5.1). Take as axioms (i) for any a, b, and ¢, there exists d such that
la, b; ¢, d]; (i) if [a, b; ¢, d], then [b, a; d, ¢] and [a, ¢; b, d]; (iii) if [, b; ¢, d] and [a, b; e, f], then
[e, d; e, f]. Show that, when any chosen point is singled out and labelled as the origin, this algebraic
structure reduces to that of a ‘vector space’, but without the ‘scalar multiplication’ operation, as
given in §11.1—that is to say, we get the rules of an additive Abelian group; see Exercise [13.2].

15 [14.2] Can you see how to generalize this to the non-Abelian case?
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The curved spacetime of Einstein’s remarkable theory of general rela-
tivity is certainly more general than a vector space; it is a 4-manifold. Yet
his notion of spacetime geometry does require some (local) structure—
over and above just that of a smooth manifold (as studied in Chapter 12).
Similarly, the configuration spaces or the phase spaces of physical systems
(considered briefly in §12.1) also tend to possess local structures. How do
we assign this needed structure? Such a local structure could provide a
measure of ‘distance’ between points (in the case of a metric structure), or
‘area’ of a surface (as is specified in the case of a symplectic structure, cf.
§13.10), or of ‘angle’ between curves (as with the conformal structure of a
Riemann surface; see §8.2), etc. In all the examples just referred to, vector-
space notions are what are needed to tell us what this local geometry is, the
vector space in question being the n-dimensional tangent space T, of a
typical point p of the manifold M (where we may think of 7, as the
immediate vicinity of p in M ‘infinitely stretched out’; see Fig. 12.6).

Accordingly, the various group structures and tensor entities that we
encountered in Chapter 13 can have a local relevance at the individual
points of a manifold. We shall find that Einstein’s curved spacetime indeed
has a local structure that is given by a Lorentzian (pseudo)metric (§13.8) in
each tangent space, whereas the phase spaces (cf. §12.1) of classical mech-
anics have local symplectic structures (§13.10). Both of these examples of
manifolds with structure play vital roles in modern physical theory. But
what form of calculus can be applied within such spaces?

As just remarked, the n-dimensional manifolds that we studied in Chap-
ter 12 need only to be smooth, with no further local structure specified.
In such an unstructured smooth manifold M, there are relatively few
meaningful calculus-based operations. Most importantly, we do not even
have a general notion of differentiation that can be applied generally
within M.

I should clarify this point. In any particular coordinate patch, we could
certainly simply differentiate the various quantities of interest with respect
to each of the coordinates x!, x*>,..., x" in that patch, by use of the
(partial) derivative operators d/0x', 9/0x?,..., 9/0x" (see §10.2). But in
most cases, the answers would be geometrically meaningless, because they
depend on the specific (arbitrary) choice of coordinates that has been
made, and the answers would not generally match as we pass from one
patch to another (cf. Fig. 10.7).

We did, however, take note of one important notion of differentiation,
in §12.6, that actually does apply in a general smooth (unstructured)
n-manifold—agreeing from one patch to the next—namely the exterior
derivative of a differential form. Yet this operation is somewhat limited in
its scope, as it applies only to p-forms and, moreover, does not give much
information about how such a p-form is varying. Can we give a more

293



§14.2 CHAPTER 14

complete notion of ‘derivative’ of some quantity on a general smooth
manifold, say of a vector or tensor field? Such a notion would have to be
defined independently of any particular coordinates that might happen to
have been chosen to label points in some coordinate patch. It would,
indeed, be good to have some kind of coordinate-independent calculus
that can be applied to structures on manifolds, and which would enable us
to express how a vector or tensor field varies as we move from place to
place. But how can this be achieved?

14.2 Parallel transport

Recall from §10.3 and §12.3 that in the case of a scalar field @ on a general
smooth n-manifold M, we were indeed able to provide an appropriate
measure of its ‘rate of change’, namely the 1-form d&, where d® = 0 is the
condition that @ be constant (throughout connected regions of M). How-
ever, this idea will not work for a general tensor quantity. It will not even
work for a vector field £&. Why is this? One trouble is that in a general
manifold we have no appropriate notion of & being constant (as we shall
see in a moment), whereas any self-respecting differentiation (‘gradient’)
operation that applies to & ought to have the property that its vanishing
signals the constancy of & (as, indeed, d® = 0 signals the constancy of a
scalar field @). More generally, we would expect that for a ‘non-constant’
&, such a derivative operation ought to be measuring &’s deviation from
constancy.

Why is there a problem with this notion of vector ‘constancy’, on a
general n-manifold M? A constant vector field £, in ordinary Euclidean
space, should have the property that all the ‘arrows’ of its geometrical
description are parallel to each other. Thus, some kind of notion of
‘parallelism’ would have to be part of M’s structure. One might worry
about this, bearing in mind the issue of Euclid’s fifth postulate—the
parallel postulate—that was central to the discussion of Chapter 2. Hyper-
bolic geometry, for example, does not admit vector fields that could
unambiguously considered to be everywhere ‘parallel’. In any case, a
notion of ‘parallelism’ is not something that M would possess merely by
virtue of its being a smooth manifold. In Fig. 14.1, the difficulty is
illustrated in the case of a 2-manifold pieced together from two patches
of Euclidean plane. The normal Euclidean notion of ‘parallel’ is not
consistent from one patch to the next.

In order to gain some insights as to what kind of notion of parallelism is
appropriate, it will be helpful for us first to examine the intrinsic geometry of
an ordinary 2-dimensional sphere S%. Let us choose a particular point p on
S? (say, at the north pole, for definiteness) and a particular tangent vector v
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Fig. 14.1 The Euclidean
notion of ‘parallel’ is likely to
be inconsistent on the overlap
between coordinate patches.

'Greenwich
meridian’

(@ (b)

Fig. 14.2 Parallelism on the sphere S’>. Choose p at the north pole, with
tangent vector v pointing along the Greenwich meridian. Which tangent
vectors, at other points of S?, are we to regard to being ‘parallel’ to v? (a)
The direct Euclidean notion of ‘parallel’, from the embedding of S? in E?,
does not work because (except along the meridian perpendicular to the
Greenwich meridian) the parallel ws do not remain tangent to S*. (b)
Remedy this, moving v parallel along a given curve 7, by continually projecting
back to tangency with the sphere. (Think of y as made up of large number of
tiny segments pg p1, pi1p2, P2P3 »-- -, projecting back at each stage. Then take
the limit as the segments are made smaller and smaller.) This notion of
parallel transport is indicated for the Greenwich meridian, but also for a general
curve y.

at p (say pointing along the Greenwich meridian; see Fig. 14.2a). Which
other tangent vectors, at other points of S?, are we to regard to being
‘parallel’ to v? If we simply use the Euclidean notion of ‘parallel’ that is
inherited from the standard embedding of S? in Euclidean 3-space,
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then we find that at most points ¢ of S* there are no tangent vectors
to S* at all that are ‘parallel’ to v in this sense, since the tangent
plane at ¢ does not usually contain the direction of wv. (Only the
great circle through p that is perpendicular to the Greenwich meridian
at p contains points at which there are tangent vectors to S? that would
be ‘parallel’ to v in this sense.) The appropriate notion of parallelism,
on S%, should refer only to tangent vectors, so we must do the best we
can to pull the direction of v back into the tangent plane of ¢, as we
gradually move ¢ away from p. In fact, this idea works, and it works
beautifully, but there is now a new feature in that the notion of
parallelism that we get is dependent on the path along which we move
g away from p.! This path-dependence in the concept of ‘parallelism’ is
the essential new ingredient, and versions of it underlie all the success-
ful modern theories of particle interactions, in addition to Einstein’s
general relativity.

Let us try to understand this a little better. Let us consider a path y
on S?, starting from the point p and ending at some other point ¢ on
S?. We shall imagine that y is made up of a large number, N, of
tiny segments popi, pip2, P2Ps3 »---» PN—1PN, Where the starting point
is po = p and the final segment ends at py = g. We envisage moving v
along 7, where along each one of these segments p,_|p, we move v
parallel to itself—in our earlier sense of using the ambient Euclidean
3-space—and then project v into the tangent space at p,. See Fig. 14.2b.
By this procedure we end up with a tangent vector at ¢ which we can think of
as having been, in a rough sense, slid parallel to itself along y from p to ¢, as
nearly as is possible to do totally within the surface. In fact this procedure
will depend slightly on how y is approximated by the succession of segments,
but it can be shown that in the limit, as the segments get smaller and smaller,
we get a well-defined answer that does not depend upon the precise detailed
way in which we break y up into segments. This procedure is referred to as
parallel transport of v along y. In Fig. 14.3, I have indicated what this
parallel transport would look like along five different paths (all great circles)
starting at p.

What, then, is this path-dependence, referred to above? In Fig. 14.4,
I have marked points p and ¢ on S*> and two paths from p to ¢, one
of which is the direct great-circle route and the other of which
consists of a pair of great-circle arcs jointed at the intermediate point 7.
From the geometry of Fig. 14.3, we see that parallel transport
along these two paths (one having a corner on it, but this is not important)
gives two quite different final results, differing from each other,
in this case, by a right-angle rotation. Note that the discrepancy is
just a rotation of the direction of the vector. There are general reasons
that a notion of parallel transport defined in this particular way
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Fig. 14.3 Parallel transport of v along
five different paths (all great circles).

Fig. 14.4 Path dependence of
parallel transport. This is illus-
trated using two distinct paths
from p to ¢, one of which is a
direct great-circle route, the other
consisting of a pair of great-circle
arcs jointed at an intermediate
point r. Parallel transport along
these two paths gives results at g
Final result differing by a right-angle rota-
depends on path tion.

will always preserve the length of the vector. (However, there are other
types of ‘parallel transport’ for which this is not the case. These issues will
have importance for us in later sections (§14.8, §§15.7,8, §19.4.) We can see
this angular discrepancy in an extreme form when our path y is a closed
loop (so that p = ¢), in which case there is likely to be a discrepancy
between the initial and the final directions of the parallel-transported
tangent vector. In fact, for an exact geometrical sphere of unit radius,
this discrepancy is an angle of rotation which, when measured in radians,
is precisely equal to the total area of the loop (with regions surrounded in
the negative sense counting negatively).[14-3]

[14.3] See if you can confirm this assertion in the case of a spherical triangle (triangle on S
made up of great-circle arcs) where you may assume the Hariot’s 1603 formula for the area of a
spherical triangle given in §2.6.
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14.3 Covariant derivative

How can we use a concept of ‘parallel transport’ such as this to define an
appropriate notion of differentiation of vector fields (and hence of tensors
generally)? The essential idea is that we can compare the way in which a
vector (or tensor) field actually behaves in some direction away from a
point p with the parallel transport of the same vector taken in that same
direction from p, subtracting the latter from the former. We could apply
this to a finite displacement along some curve y, but for defining a (first)
derivative of a vector field, we require only an infinitesimal displacement
away from p, and this depends only on the way in which the curve ‘starts
out’ from p; i.e. it depends only upon the tangent vector w of y at p
(Fig. 14.5). It is usual to use a symbol V to denote the notion of differ-
entiation, arising in this kind of way, referred to as a covariant derivative
operator or simply a connection.

A fundamental requirement of such an operator (and which turns out to
be true for the notion defined in outline above for S?), it depends linearly
on the vector w. Thus, writing V for the covariant derivative defined by the
displacement (direction) of w, for two such displacement vectors w and u,
this must satisfy

V=V+V,

w-tu w

and for a scalar multiplier A:

Fig. 14.5 The notion of cov-
ariant derivative can be under-
stood in relation to parallel
transport. The way in which a
vector field & on M varies
from point to point (black-
headed arrows) is measured by
its departure from that stand-
ard provided by parallel trans-
port (white-headed arrows).
This comparison can be made
all along a curve y, (starting at
p), but for the covariant first
derivative  at p we need to
know only the tangent vector
w to y at p, which determines
the covariant derivative V£ of
& at p in the direction w.
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Y=
It may seem that placing the vector symbol beneath the V looks notation-
ally awkward—as indeed it is! However, there is a genuine confusion
between the mathematician’s and the physicist’s notation in the use of an
expression such as ‘V,’. To our mathematician, this would be likely to
denote the operation that I am using ‘Y’ for here, whereas our physicist
would be likely to interpret the w as an index and not as a vector field. In
the physicist’s notation, we would express the operator V as

Y =w'V,,
and the above linearity simply reflects a consistency in the notation:
W' 4+ u")V, =w'V, +u'V, and (An)V, = A(W'V,).

The placing of a lower index on V is consistent with its being a dual entity
to a vector field (as is reflected in the above linearity; see §12.3), i.e. Vis a
covector operator (meaning an operator of valence [?]). Thus, when V acts
on a vector field & (valence [(1)]), the resulting quantity V& is a [{]-Valent
tensor. This is made manifest in the index notation by the use of the notation
V& for the component (or abstract—index) expression for the tensor V£. In
fact, there is a natural way to extend the scope of the operator V from vectors
to tensors of general valence, the action of Vona[?]-valent tensor T'yielding
al qﬁl ]-valent tensor VT. The rules for achieving this can be conveniently
expressed in the index notation, but there is an awkwardness in the math-
ematician’s notation that we shall come to in a moment.

In its action on vector fields, V satisfies the kind of rules that the
differential operator d of §12.6 satisfies:

V(E+m) =VE+Vy

and the Leibniz law
V(A&) = AVE + &V,

where & and m are vector fields and / is a scalar field. As part of the normal
reqirements of a connection, the action of V on a scalar is to be identical
with the action of the gradient (exterior derivative) d on that scalar:

Vo =do.

The extension of V to a general tensor field is uniquely determined('4# by
the following two natural requirements. The first is additivity (for tensors
T and U of the same valence)

£9 [14.4] Explain why unique. Hint: Consider the action of V on e+ &, etc.
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V(T +U)=VT+VU

and the second is that the appropriate form of Leibniz law holds. This
Leibniz law is a little awkward to state, particularly in the mathematician’s
notation, which eschews indices. The rough form of this law (for tensors T
and U of arbitrary valence) is

V(TeU) = (VT)eU + TeVU,

but this needs explanation. The dot e is to indicate some form of contracted
product, where a set of upper and lower indices of T is contracted with a set
of lower and upper indices of U (allowing that the sets could be vacuous, so
that the product becomes an outer product, with no contractions at all). In
the above formula, the contractions in both terms on the right-hand side are
to mirror those on the left-hand side exactly, and the index letter on the V is
to be the same throughout the expression.

There is an especial awkwardness with the mathematician’s notation—
where indices are not referred to—in writing down the formula that
expresses just what we mean by the tensor Leibniz law. This is slighly
alleviated if we use V instead of V since the w keeps track of the index
on the V, and we can do something similar with the other indices if
we wish, contracting each one with a vector or covector field (not acted
on by V). In my own opinion, things are clearer with indices, but much
more so in the diagramatic notation where differentiation is denoted by
drawing a ring around the quantity that is being differentiated. In
Fig. 14.6, I have illustrated this with a representative example of the tensor
Leibniz law.

All these properties would also be true of the ‘coordinate derivative’
operator 0/0x” in place of V,. In fact, in any one coordinate patch, we can
use 0/0x“ to define a particular connection in that patch, which I shall call
the coordinate connection. It is not a very interesting connection, since the
coordinates are arbitrary. (It provides a notion of ‘parallelism’ in which all

12v{{§bﬂ;c{d D{d)?i i @ : @ + % + %

Fig. 14.6 In the diagrammatic notation, covariant differentiation is conveniently
denoted by drawing a ring around the quantity being differentiated. This is
illustrated here with example of the tensor Leibniz law applied to
V(e iﬁ)‘;,[(,Dg,z]c 1 (see Fig. 12.17). (The antisymmetry factor gives the ‘12’.)

300



Calculus on manifolds §14.4

the coordinate lines count as ‘parallel’.) On the overlap between two
coordinate patches, the connection defined by the coordinates on
one patch would usually not agree with that defined on the other (see
Fig. 14.1). Although the coordinate connection is not ‘interesting’ (cer-
tainly not physically interesting), it is quite often useful in explicit expres-
sions. The reason has to do with the fact that, if we take the difference
between two connections, the action of this difference on some tensor
quantity 7 can always be expressed entirely algebraically (i.e. without
any differentiation) in terms of 7 and a certain tensor quantity I" of
valence [,].l45) This enables us to express the action of V on
any tensor T explicitly in terms of the coordinate derivatives® of the
components 79 together with some additional terms involving the com-
ponents [}, .[14-6

14.4 Curvature and torsion

A coordinate connection is a rather special kind of connection in that, unlike
the general case, it defines a parallelism that is independent of the path. This
has to do with the fact (already noted in §10.2, in the
form d*f /Ox0y = o*f /0y0x) that coordinate derivative operators commute:

02 02
Ox9dxt  dxboxa’

Another way of saying this is that the quantity 0 /0x“0x” is symmetric (in its
indices ab). We shall be seeing what this has to do with the path independence
of parallelism shortly. For a general connection V, this symmetry property
does not hold for V,V,, its antisymmetric part V[,V giving rise to two
special tensors, one of valence [;] called the rorsion tensor 7 and the other of
valence [ ; ] called the curvature tensor R. Torsion is present when the action
of V[, V;) on a scalar quantity fails to vanish. In most physical theories, V is

#5 [14.5] See if you can show this, finding the expression explicitly. Hints: First look at the action
of the difference between two connections on a vector field &, giving the answer in the index form
&I, second, show that this difference of connections acting on a covector a has the index form
—o,.I',; third, using the definition of a [{; ]-valent tensor T as a multilinear function of ¢ vectors on
p covectors (cf. §12.8), find the general index expression for the difference between the connections

acting on T.

#5 [14.6] As an application of this, take the two connections to be V and the coordinate
connection. Find a coordinate expression for the action of V on any tensor, showing how to
obtain the components I'j, explicitly from I'}; = V8] ,..., I'j, = V,d;, i.e. in terms of the action
of V on each of the coordinate vectors 87 ,. .., ;. (Here a is a vector index, which may be thought
of as an ‘abstract index” in accordance with §12.8, so that ‘3{” etc. indeed denote vectors and not
simply sets of components, but  just denotes the dimension of the space. Note that the coordinate

connection annihilates each of these coordinate vectors.)
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taken to be torsion-free, i.e. #=0, and this certainly makes life
easier. But there are some theories, such as supergravity and the Einstein—
Cartan—Sciama—Kibble spin/torsion theories which employ a non-zero tor-
sion that playsa significant physical role; see Note 19.10,§31.3. When torsion
is present, its index expression 1., antisymmetric in ab, is defined byl!47]

VoV = VpV)P = 1,4V 0.
The curvature tensor R, in the torsion-free case,!'*3] can be defined? byl!4°]

(VaViy — VpV)E = Ry €.

As is common in this subject, we run into daunting expressions with
many little indices, so I recommend the diagrammatic version of these key
expressions, e.g. Fig. 14.7a,b. In any case, I also recommend that indexed
quantities be read, where appropriate, as tensors with abstract indices, as
in §12.8 (Numerous different conventions exist in the literature about
index orderings, signs, etc. I am imposing upon the reader the ones that
I tend to use myself—at least in papers of which I am sole author!) The
fact that R, is antisymmetric in its first pair of indices ab, namely

d d
Rbac = _Rabc P

(see Fig. 14.7¢c) is evident from the corresponding antisymmetry of
ViV = ViV, =2V, Vy. We shall see the significance of this antisymme-
try shortly. In the torsion-free case we have an additional symmetry
relation!+19 (Fig. 14.7d)

R[abc]d = Oa ie. Rabcd + Rbcad + Rcabd =0.

This relation is sometimes called ‘the first Bianchi identity’. I shall call it the
Bianchi symmetry. The term Bianchi identity (Fig. 14.7¢) is normally re-
served for the ‘second’ such identity which, in the absence of torsion, is{!4-11]

#% [14.7] Explain why the right-hand side must have this general form; find the components tj,, in
terms of I'f,. See Exercise [14.6].

15 [14.8] Show what extra term is needed to make this expression consistent, when torsion is
present.

E9 [14.9] What is the corresponding expression for V,V, — V,V, acting on a covector? Derive
the expression for a general tensor of valence [f/ ].

£3 [14.10] First, explain the ‘i.e.’; then derive this from the equation defining R,.%, above, by
expanding out V[(,Vb(g“lvd] ). (Diagrams can help.)

£9 [14.11] Derive this from the equation defining Rapc?, above, by expanding out V[, V,V4£° in
two ways. (Diagrams can again help.)
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@ (b) ©
l 1 L
=0, ie. I /+ ' / + l / =0, =0
(d) (e)

Fig. 14.7 (a) A convenient diagrammatic notation for the curvature tensor R ..
(b) The Ricci identity (V,V, — V;,Va)‘g'd = R €. (c) The antisymmetry
Rpue = —Rupe?. (d) The Bianchi symmetry Rypg? =0, which reduces to
Rape® + Ry + Reap? = 0. (e) The Bianchi identity Vi, Rpqq¢ = 0.

ViaRpga® =0, 1.6.ViRped® + ViReaa® + VeRapd® = 0.

The Bianchi identity is the linchpin of the Einstein field equation, as we
shall be seeing in §19.6.

Curvature is the essential quantity that expresses the path dependence
of the connection (at least on the local scale). If we envisage transporting
a vector around a small loop in the space M, using the notion of
parallel transport defined by V, then we find that it is R that measures
how much that the vector has changed when we return to the starting
point. It is easiest to think of the loop as an ‘infinitesimal parallelogram’
drawn in the space M. (Such parallelograms adequately ‘exist” when V
is torsion-free, as we shall see.) However, various notions here need
clarification first.

14.5 Geodesics, parallelograms, and curvature

First, in order to build ourselves a parallelogram, let us consider the
concept of a geodesic, as defined by the connection V. Geodesics are
important to us for other reasons. They are the analogues of the straight
lines of Euclidean geometry. In our example of the sphere S?, considered
above (Figs. 14.2-14.4), the geodesics are great circles on the sphere. More
generally, for a curved surface in Euclidean space, the curves of minimum
length (as would be taken up by a string stretched taut along the surface)
are geodesics. We shall be seeing later (§17.9) that geodesics have a
fundamental significance for FEinstein’s general relativity, representing
the paths in spacetime that describe freely falling bodies. How does our
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connection V provide us with a notion of geodesic? Basically, a geodesic is
a curve 7y that continues along ‘parallel to itself’, according to the parallel-
ism defined by V. How are we to express this requirement precisely?
Suppose that the vector ¢ (i.e. ) is tangent to 7, all along y. The require-
ment that its direction remains parallel to itself along y can be expressed as*

Vit ie. V"

(where the symbol ‘o’ stands for ‘is proportional to’; see §12.7). When this
condition holds, ¢ can stretch or shrink as we follow it along y, but its
direction ‘keeps pointing the same way’, according to the parallelism
notion defined by V. If we wish to assert that this ‘stretching or shrinking’
does not take place, so that the vector ¢ itself remains constant along y,
then we demand the stronger condition that the tangent vector ¢ be
parallel-transported along v, i.e. that

Vi=0, ie. “V, " =0,

holds all along y, where the vector ¢ (with index form %) is tangent to 7,
along 7.

According to this stronger equation, not just the direction of ¢, but also
the ‘scale’ of ¢ is kept constant along y. What does this mean? The first
thing to note is that any curve (not necessarily a geodesic), parameterized
by an (appropriately smooth) coordinate u, is associated with a particular
choice of scaling for its tangent vectors ¢ along the curve. This is such that ¢
stands for differentiation (d/du) with respect to u along the curve. We can
write this condition, alternatively, as

1) = 1

or as

~<q
<
I

1, ie “Vau=1

along the curve.l4-12]

In the case of a geodesic y, the stronger choice of #-scaling for which
V=0 is associated with a particular type of parameter v, known as an
affine parameter!!4 131 along y. See Fig. 14.8. When we have an appropriate
notion of ‘distance’ along curves, we can usually choose our affine param-

£9[14.12] Demonstrate the equivalence of all these conditions.

£5[14.13] Show that if u and v are two affine parameters on y, with respect to two different choices
of t, then v = Au + B, where 4 and B are constant along .
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eter to be this measure of distance. But affine parameters are more general.
For example, in relativity theory, it turns out that we need such parameters
for light rays, the appropriate ‘distance measure’ being useless here, be-
cause it is zero! (See §17.8 and §18.1.)

Let us now try to construct a parallelogram out of geodesics. Start at
some point p in M, and draw two geodesics 4 and ¢ in M out from p,
with respective tangent vectors L and M at p and respective affine
parameters ¢ and m. Choose some positive number ¢ and measure out
an affine distance ¢ = ¢ along A from p to reach the point ¢ and also an
affine distance m = ¢ along u from p to reach r; see Fig. 14.9a. (Intui-
tively, we may think of the geodesic segments pg and pr having the
‘arrow lengths’ of eL and eM respectively, for some small €.) To com-
plete the parallelogram, we need to move off from ¢ along a new geodesic
W, in a direction which is ‘parallel’ to M. To achieve this ‘parallel’
condition, we move M from p to ¢ along / by parallel transport (which
means we require M to satisfy V; M = 0 along /). Now, we try to locate
the final vertex of the parallelogram at the point s which is measured out
from ¢ by an affine distance m = 1 along p'. However, we could alterna-
tively try to position this final vertex by proceeding the other way
around: move out from r an affine distance ¢ = ¢ along A’ to a final
point s where the geodesic A’ starts off from r in the direction of M
which has been carried from p to r along u by parallel transport. For a
thoroughly convincing parallelogram, we should require these alternative
final vertices s and s’ to be the same point (s = 5')!

However, except in very special cases (such as Euclidean geometry),
these two points will be different. (Recall our attempts to construct a
square in §2.1!) These points will not be ‘very’ different, in a certain sense,

Geodesics, -
tangent » Fig. 14.8 For any (suitably
smooth) parameter u defined
along a curve 7, a field of
tangent vectors ¢ to y is naturally
associated with u so that, along
y, t stands for d/du (equivalently
twy=1l,or t*Vou=1).1fyisa
geodesic, u is called an affine
parameter if ¢ is parallel-trans-
ported along 7, so Yt = 0 rather
than just Yt o t. An affine
parameter is ‘evenly spaced’
along y, according to V.

Equal u-intervals
g narked off, 1)=1

. LR
PSRRI
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O€) ~OE)

O(e) O(g)
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O(e)

" (a) (b) ©

Fig. 14.9 (a) Try to make parallelogram out of geodesics. Take two geodesics
A, u, through p, in M, with respective tangent vectors L, M at p and correspond-
ing affine parameters /, m. Take ¢ an affine distance / = ¢ along 4 from p, and r an
affine distance m = ¢ along u from p (with € > 0 a fixed small number). The
geodesic segments pg and pr have respective ‘arrow-lengths’ eL, eM. To make
the parallelogram, move M from p to ¢ along A by parallel transport (VM =0
along A) giving us a neighbouring geodesic y’ to u, extending from ¢ to s along u/’
by an affine distance ¢ along the new ‘parallel’ arrow eM’. Similarly, move L from
p to r by parallel transport along p, and extend from r to s’ by a parallel arrow gL’
measured out from ¢ an affine distance m = ¢ along A'. (b) Generally s # s’ and the
parallelogram fails to close exactly, but this gap is only O(&?) if the torsion 7
vanishes. (c) If there is a non-zero torsion 7, this will show up as an O(g?) term.

if the vectors ¢L and eM are taken to be appropriately ‘small’. But exactly
how different they are has to do with the torsion 7. In order to understand
this properly we need rather more in the way of calculus notions than I
have provided up until now. The essential point is that we can think of the
relevant deviations from Euclidean geometry as showing up at some scale
that is dependent on the choice of our small quantity . We are not so
concerned with the actual size of these measures of deviation from flatness,
but with the rate at which they tend to zero as € gets smaller and smaller.
Thus, we are not particularly interested in the precise values of these
quantities but we want to know whether such a quantity Q perhaps
approaches zero as fast as ¢, or &2, or &°, or perhaps some other specified
function of ¢. (We have already seen something of this kind of thing in
§13.6.) Here ‘as fast as’ means that, when expressed in some coordinate
system, the absolute values of the components of Q are smaller than a
positive constant times &, or times &2, or times &*, or times some other
specified function of &, as the case may be. (Hence ‘as fast as’ includes
‘faster than’!) In these cases, we would say, respectively, that Q is of order
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g, or £2, or &, etc., and we would write this O(g), or O(?), or O(¢%), etc.
This is independent of the particular choice of coordinates, which is
one reason that this notion of ‘order of smallness’ is a sensible and
powerful notion. My description here has been very brief, and I refer the
uninitiated interested reader to the literature concerning this remarkable
and ubiquitous topic.® Intuitively, we just need to bear in mind that O(¢®)
means very much smaller than O(¢?), which is itself much smaller than
O(e), etc.

Let us return to our attempted parallelogram. The original vectors
el and €M, at p, are both O(¢), so the sides pg and pr are both O(¢), and
so also will be ¢gs and rs. How big do we expect the ‘gap’ ss' to be?
The answer is that, if the connection is torsion-free, then ss’ is always
O(&?). See Fig. 14.9b. In fact, this property characterizes the torsion-free
condition completely. If a non-zero torsion 7 is present, then this will
show up in (some) parallelograms, as an O(¢?) term. See Fig. 14.9¢.[14-14]
Sometimes we say (rather loosely) that the vanishing of torsion is
the condition that parallelograms close (by which we mean ‘close to
order &%’).

Suppose, now, that the torsion vanishes. Can we use our parallelogram
to interpret curvature? Indeed we can. Let us suppose that we have a
third vector N at p, and we carry this by parallel transport around our
parallelogram from p to s, via ¢, and we compare this with transporting it
from p to s, via r. (This comparison makes sense at order &>, when
the torsion vanishes, because then the gap between s and s is O(¢?)
and can be ignored. When the torsion does not vanish, we have to worry
about the additional torsion term; see Exercise [14.7].) We find the answer
for the difference between the result of the pgs transport and the prs’
transport to be

ELMPNCR ..

This provides us with a very direct geometrical interpretation of the
curvature tensor R; see Fig. 14.10. (An equivalent version of this interpret-
ation is obtained if we think of transporting /N all the way around the
parallelogram, starting and ending at the same point p, where we
ignore O(&?) discrepancies in the vertices of the parallelogram. The differ-
ence between the starting and finishing values of N is again the above
quantity 2 LM NCR.7.)

Recall the antisymmetry of R,/ in ab. This means that the above
expression is sensitive only to the antisymmetric part, LI*M?"), of L‘M?,
1.e. of the wedge product L A M; see §11.6. Thus, it is the 2-plane element
spanned by L and M at p that is of relevance. In the case when M is itself a

#5 [14.14] Find this term.
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Difference in

N-vectors is

measure of Fig. 14.10 Use the parallelo-
curvature : gram to interpret curvature,
€2Rabed L*MPN¢ when 7 = 0. Carry a third

vector NV, by parallel transport
from p to s via ¢, comparing
this with transporting it from p
to s’ via r. The O(g?) term
measuring the difference is
2L MPN Ry, ie. €2 R (L,
M, N), providing a direct geo-
metrical interpretation of the
curvature tensor R.

2-surface, there is just one independent curvature component (since
the 2-plane element has to be tangent to M at p). This component
provides us with the Gaussian curvature of a 2-surface that I alluded to
in §2.6, and which serves to distinguish the local geometries of
sphere, Euclidean plane, and hyperbolic space. In higher dimensions,
things are more complicated, as there are more components of
curvature arising from the different possible choices of 2-plane element
LAM.

There is a particular version of this geometrical interpretation of
curvature that has especial significance. This occurs if the vector N
is chosen to be the same as L. Then we can think of the sides pg and rs’
of our parallelogram as being segments of two nearby geodesics y and 7/,
respectively, and the vector L is tangent to these geodesics. The vector
eM at p measures the displacement of y away from 7y’ at the point p.
M is sometimes called a connecting vector. The geodesics y and 7'
start out parallel to each other (as compared at the two ‘ends’ of this
connecting vector, i.e. along pr). Carrying the vector L (=N) to s’ by
parallel transport along the second route prs' leaves it tangent to the
geodesic ¢’ at the point s'. But if we take L to s by parallel transport
along the first route pgs, then we arrive at the starting vector for
another geodesic 7" nearby to y, where y” is starting out parallel to y at
the slightly ‘later’ point g. The O(e?) difference between these two versions
of L (one at s’ and the other at s), namely &?L*M’L‘R,.?, measures
the ‘relative acceleration’ or ‘geodesic deviation’ of y’ away from y. See
Fig. 14.11. (This geodesic deviation is mathematically described by what
is known as the Jacobi equation.) In Fig. 14.12, 1 have illustrated this
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Fig. 14.11 Geodesic deviation: choose N = L in
the parallelogram of Fig. 14.10. The sides pq and rs’'
are segments of two neighbouring geodesics y and y’
(y being 4 and y’ being /') starting from p and r,
respectively, with parallel-propagated tangent
vectors L and L’, the connecting vector at p being
M. The geodesic deviation between 7y and y’ is
measured by the difference between the results of
parallel displacement of L along the routes prs’ and
' pgs, which is basically e2L*MP L R,p.“.

@ (b)

Fig. 14.12 Geodesic deviation when M is a 2-surface (a) of positive (Gaussian)
curvature, when the geodesics y, 7' bend towards each other, and (b) of negative
curvature, when they bend apart.

geodesic deviation when M is a 2-surface of positive and negative (Gauss-
ian) curvature, respectively. When the curvature is positive, the neighbour-
ing geodesics, starting parallel, bend towards each other; when it is
negative, they bend apart. We shall see the profound importance of this
for Einstein’s general relativity in §17.5 and §19.6.

14.6 Lie derivative

In the above discussion of the path dependence of parallelism, for a
connection V, I have been expressing things using the physicist’s index
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notation. In the mathematician’s notation, the direct analogues of
these particular expressions are not so easily written down. Instead, it
becomes natural to follow a slightly different route. (It is remarkable
how differences in notation can sometimes drive a topic in conceptually
different directions!) This route involves another operation of differentia-
tion, known as Lie bracket—which is a more general form of the operation
of the same name introduced in §13.6. This, in turn, is a particular
instance of an important concept known as Lie derivative. These notions
are actually independent of any particular choice of connection (and
therefore apply in a general unstructured smooth manifold), and it
will be pertinent to discuss the Lie derivative and Lie bracket generally,
before returning to their relevance to curvature and torsion at the end of
this section.

For a Lie derivative to be defined on a manifold M, however, we
do require a vector field & to be pre-assigned on M. The Lie derivative,
written £, is then an operation which is taken with respect to the
vector field £. The deriative £Q measures how some quantity Q changes,
as compared with what would happen were it simply ‘dragged along’, by
the vector field £. See Fig. 14.13. It applies to tensors generally (and even to
some entities different from tensors, such as connections). To begin with, we
just consider the Lie derivative of a vector field n (= Q) with respect to
another vector field £&. We indeed find that this is the same operation that
we referred to as ‘Lie bracket’ in §13.6, but in a more general context. We
shall see how to generalize this to a tensor field Q afterwards.

ST
\l ec&O‘ ‘\e\

\ \ f f/ - / / o

/V‘/D A{;/l/ Dragged

vector 7 /

/ leference

meas“red Fig. 14.13 Lie derivative £
defined on a general mani-
fold M, is taken with
respect to a given smooth
vector field & on M. Then
£0 measures how a
quantity Q (e.g. a vector
field n or tensor field Q)
actually changes, as com-
pared with the quantity
‘dragged’ by &.

Tensor &
field 0 - .37
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Recall from §12.3 that a vector field can itself be interpreted as a
differential operator acting on scalar fields @, ¥, ... satisfying the three
laws (1) &(@ + V) = &(D) + €(VP), (1) &(PYP) = PE(P) + PE(YP), and (iii)
&(k) =0 if k is a constant. It is a direct matter to showl!*13] that the
operator w, defined by

o(P) = () — N(&(P))

satisfies these same three laws, provided that & and both 7 do, so ®
must also be a vector field. The above commutator of the two opera-
tions & and 7 is frequently written (as in §13.6) in the Lie bracket nota-
tion

w=§&n—nl=I[§ n

The geometric meaning of the commutator between two vector fields & and
7 is illustrated in Fig. 14.14. We try to form a quadrilateral of ‘arrows’
made alternately from & and n (each taken to be O(¢)) and find that w
measures the ‘gap’ (at order O(¢?) ). We can verify!!416l that commutation
satisfies the following relations

(€. ml=—[n.&. [E+n =L+ L]
[£. [n. TJ1+ [, [C E]]+ (L £, m]] =0,

just as did the commutator of two infinitesimal elements of a Lie group, as
we saw in §13.6.

How does our commutation operation, as defined above, relate to the
algebra (§13.6) of infinitesimal elements of a Lie group? Let me digress
briefly to explain this. We think of the group as a manifold G (called a

en ”\82[6,71]

e& Fig. 14.14 The Lie bracket [£,9] (= £1)) between two
% vector fields &, 1 measures the O(&?) gdp in an
incomplete quadrilateral of O(g) ‘arrows’ made
en alternately from &£ and en.

46 [14.15] Show it.
46 [14.16] Do it.
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group manifold), whose points are the elements of our Lie group. More
generally, we could think of any manifold H on which the elements act
as smooth transformations (such as the sphere S°. In the case of the
rotation group G = SO(3), see Fig. 13.2) But, for now, we are primarily
concerned with the group manifold G, rather than the more general
situation of H, since we are interested in how the entire group G relates
to the structure of its Lie algebra. The infinitesimal group elements are to
be pictured as particular vector fields on G (or, indeed, ). That is,
we think of ‘moving ¢ infinitesimally along the relevant vector field
&€ on G, in order to express the transformation that corresponds to
pre-multiplying each element of the group by the infinitesimal element
represented by &£. See Fig. 14.15a.

@

©

Fig. 14.15 Lie algebra operations, interpreted geometrically in the continuous
group manifold G. (a) Pre-multiplication of each element of G by an infinitesimal
group element & (Lie algebra element) gives an infinitesimal shift of G, i.e. a vector
field £ on G. (b) To first order, the product of two such infinitesimal motions & and
7 just gives & + 7, reflecting merely the structure of the tangent space (at I). (c)
The local group structure appears at second order, 2[£, ], providing the O(g?)
gap in the ‘parallelogram’ with alternate sides €€ and en at .
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Choosing a small positive quantity &, we can think of &£ as being an
O(¢) motion of G along the vector field &, the identity group
element I corresponding to zero motion. The product of two such
small group actions €€ and en is given, to O(g), by the sum &€& + en of
the two, so the ‘arrows’ representing €€ and en just add according
to the parallelogram law (Fig. 14.15b). But this gives us little informa-
tion about the structure of the group (only its dimension, in fact, as
we are just revealing the additive structure of the tangent space at
the identity element I/ of the group). To obtain the group structure,
we need to go to O(g?), and this is done, as in §13.6, by looking
at the commutator &n—nmé =[€ém]. Now &’[£,m] corresponds to an
O(g?) gap in the ‘parallelogram’ whose initial sides are €& and en at
the origin /1. The relevant notion of ‘parallelism’ comes from the group
action, supplying the needed notion of ‘parallel transport’, which
actually gives a connection with torsion but no curvature.['417]
See Fig. 14.15c.

As was noted in §13.6, the Lie algebra of these vector fields provides the
entire (local) structure of the group. The procedure whereby one obtains
an ordinary finite (i.e. non-infinitesimal) group element x from a Lie
algebra element £ may be noted here. This is called exponentiation (cf.
§5.3, §13.4):

1, 1
x:e§:I+§+§§2+6§3—l—--~.

Here £* means ‘the second derivative operator of applying & twice’, etc.
(and I is the identity operator). This is basically a form of Taylor’s
theorem, as described in §6.4.1'4181 The product of two finite group elem-
ents x and y is then obtained from the expression efe”. This differs from
ef*" (compare §5.3) by an expression that is constructed entirely from Lie
algebra expression® in &€ and 7.

It may be noted that a version of this exponentiation operation ef also
applies to a vector field & in a general manifold M (where M and &
are assumed analytic—i.e. C®-smooth, see §6.4). Recall from §12.3 (and
Fig. 10.6) that, with € chosen small, eé£(®) measures the O(g) increase of a
scalar function @ from the tail to the head of the ‘arrow’ that represents &&.
More exactly, the quantity e’¥(®) measures the total value & that is
reached as we follow along the ‘£-arrows’ from a starting point O, to a

5 [14.17] Try to explain why there is torsion but no curvature.
[14.18] Explain (at a formal level) why e“V/%f(y) = f(y 4+ a) when «a is a constant.
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final point given by the parameter value u = ¢, where the parameter u is
scaled so that &(u) =1 (cf. §14.5 and Fig. 14.8). All the derivatives (i.c.
the " derivative, in the case of £ (®)) in the power series expression for
e’é(®) are to be evaluated at O (convergence being assumed). ‘Following
along the arrows’ would mean following along what is called an ‘integral
curve’ of &, that is, a curve whose tangent vectors are &-vectors.
See Fig. 14.16.7

What, then, is the definition of Lie derivative? First, we simply rewrite
the Lie bracket as an operation £ (depending on &) which acts upon the
vector field #:

£n =& 1.

This is to be the definition of the Lie derivative £ (with respect to &) of a [ IE
tensor 1. We wish to write this in terms of some given torsion- free
connection V. The required expression (see Fig. 14.17a, for the diagram-
matic form)

Integral
curve y

Value of @ at p
is e’é®, evaluated

Fig. 14.16 An integral curve of a vector field £ in M is a curve y that ‘follows the
&-arrows’, i.e. whose tangent vectors are &€-vectors, with associated parameter u, in
the sense &(u) = 1 (cf. §14.5 and Fig. 14.8). Assume that M and & are analytic (i.e.
C®), as is the scalar field @, and that y stretches from some base point O (u = 0) to
another point p (u = ¢). Then (assuming convergence) the value of @ at p is given
by the quantity e(®) evaluated at O, where e’ = 1 + t£ + 1 2& + 1€ + ... and
where £ stands for the r! derivative d"/du" at O along y.
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_ o : a _ za b ,a b
?n—gn V&, l-e.(§n) SV = n'Val,

can be directly obtained using &(®) = £V, @, etc.l!4 1914201 Tg obtain the
Lie derivative of a general tensor, we employ the rule that (except for the
absence of linearity in §) ¢ satisfies rules similar to that of a connection g
These are: §<D &(@) for a scalar D, (T + U) £T + £U for tensors
T and U of the same valence; f(T- U)= (§ T)e U + T-§U with the
arrangement of contractions being the same in each term. From these,
and £ £n = [£, ), the action of % on any tensor follows uniquely.® In parti-
cular, for a covector « (valence [ 1,

fo=Yotae(Vé), ie (En),=Vina+ 0V

(V being torsion-free); see Fig. 14.17b. For a tensor Q of valence [ ], say,
we then have (Fig. 14.17¢)[14-21]

YOu = E"Vuliy + QupVal" + 04, Vil" — OapVul".

We note that the Lie derivative, considered as a function both of € and of
the quantity Q (tensor field) upon which it acts is independent
of the connection, i.e. it is the same whichever torsion-free operator V,
we choose. (This follows because % is uniquely defined from the
gradient ‘d’ operator.) In particular, we could use the coordinate derivative

S at g e

@

Fig. 14.17 Diagrams for Lie derivative (a) of a vector n:(£n)’ = &V’
—1°V4E%; (b) of a covector a: (£a) = Vo, + 0y V4 &P and (c) of a ([;]-Valent)
tensor Q: ?Qﬁ}h ='Vu0g, + Q V" + 04, V" — 0 V-

[14.19] Derive this formula for £7.
% [14.20] How does torsion modify the formula of Exercise [14.18]?

[14.21] Establish uniqueness, verifying above covector formula, and give explicitly the Lie
derivative of a general tensor.
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operator 0/0x” (in any local coordinate system we choose) in place of
V., and the answer comes out the same. Even if we have a connec-
tion with torsion, we could still use it, by expressing it in terms
of a second connection, uniquely defined by the given one, which is
torsion-free, obtained by ‘subtracting off’ the given connection’s tor-
sion.[14-22]

The Lie derivative shares with the exterior derivative (see §12.6) this
connection-independent property, whereby for any p-form «, with index
expression oy, 4,

(d@) . 4 = Viatip. .

where V is any torsion-free connection; see Fig. 14.18. This is the
same expression as in §12.6, except that there the coordinate connection
0/0x“ was explicitly used. It is readily seen that the above expression is
actually independent of the choice of torsion-free connection.!'423 More-
over, the key property d’o =0 follows immediately from this expres-
sion.['424] There are also certain other special expressions that are
connection-independent in this sense.’

Returning, finally, to the question of curvature, on our manifold M,
with connection V, we find that we need the Lie bracket for the definition
of the curvature tensor in the mathematician’s notation:

(VV—VV— \% )N:R(L,M,N),
LM ML [L, M

where R(L, M, N) means the vector L*M?N¢R . .1'425] Whereas the inclu-
sion of an extra commutator term may be regarded as a disadvantage of
this notation, there is a compensating advantage that now torsion is

/\/ p-form
_ 1
A o
NU Fig. 14.18 Diagram for exterior deriva-
p

tive of a p-form: (de), 4 = V...
p+1

15 [14.22] Show how to find this second connection, taking the ‘I"” for the difference between the
connections to be antisymmetric in its lower two indices. (See Exercise [14.5].)

5 [14.23] Establish this and show how the presence of a torsion tensor = modifies the expression.
(€ [14.24] Show this.

_£9[14.25] Demonstrate equivalence (if torsion vanishes) to the previous physicist’s expression.
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Vector
difference:
€2 R(L,M,N)

gap: O(ed)

eM

Fig. 14.19 Curvature, in the ‘mathematician’s notation’ (YM — AV4L — [MVL])N =

R(L,M N), from the O(g?) discrepancy in parallel transport of a vector IV around
the (incomplete) ‘quadrilateral’ with sides €L, eM, eL’, eM’. The Lie bracket
contribution €2[L,M] fills an O(g?) gap, to order O(c®). (The index form of the
vector R(L,M,N) is L*MPN¢R5.“.)

automatically allowed for (in contrast with torsion needing an extra term
in the physicist’s notation). Recall the geometrical significance of the
commutator term (Fig. 14.14). It allows for an O(¢?) ‘gap’ in the O(e)
quadrilateral built from the vector fields L and M. In fact, there is now
the additional advantage that the loop around which we carry our vector
N need not be thought of as a ‘parallelogram’ (to the order previously
required), but just as a (curvilinear) quadrilateral. See Fig. 14.19.
If [L, M] = 0, then this quadrilateral closes (to order O(g?)).

14.7 What a metric can do for you

Up to this point, we have been considering that the connection V has
simply been assigned to our manifold M. This provides M with a certain
type of structure. It is quite usual, however, to think of a connection more
as a secondary structure arising from a metric defined on M. Recall from
§13.8 that a metric (or pseudometric) is a non-singular symmetric
[2]-Valent tensor g. We require that g be a smooth tensor field, so that g
applies to the tangent spaces at the various points of M. A manifold with
a metric assigned to it in this way is called Riemannian, or perhaps pseudo-
Riemannian.'® (We have already encountered the great mathematician
Bernhardt Riemann in Chapters 7 and 8. He originated this concept of
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an n-dimensional manifold with a metric, following Gauss’s earlier study
of ‘Riemannian’ 2-manifolds.) Normally, the term ‘Riemannian’ is re-
served for the case when g is positive-definite (see §13.8). In this case
there is a (positive) measure of distance along any smooth curve, defined
by the integral of ds along it (Fig. 14.20), where

ds? = gap dx* dx’.

This is an appropriate thing to integrate along a curve to define a length for
the curve—which is a ‘length’ in a familiar sense of the word when g is
positive definite. Although ds is not a 1-form, it shares enough of the
properties of a 1-form for it to be a legitimate quantity for integration
along a curve. The length ¢ of a curve connecting a point 4, to a point B is
thus expressed as'!

B
(= J ds,  where ds = (gudx?dx’).

A

It may be noted that, in the case of Euclidean space, this is precisely the
ordinary definition of length of a curve, seen most easily in a Cartesian
coordinate system, where the components g,, take the standard ‘Kro-
necker delta’ form of §13.3 (i.e. 1 if @ = b, and 0 if @ # b). The expression
for ds is basically a reflection of the Pythagorean theorem (§2.1) as noted
in §13.3 (see Exercise [13.11]), but operating at the infinitesimal level. In a
general Riemannian manifold, however, the measure of length of
a curve, according to the above formula, provides us with a geometry
which differs from that of Euclid. This reflects the failure of the Pythagor-
ean theorem for finite (as opposed to infinitesimal) intervals. It is never-
theless remarkable how this ancient theorem still plays its fundamental
part—now at the infinitesimal level. (Recall the final paragraph of
§2.7.)

" Length ZE ds

o
ds

=/g »dxadxb

Fig. 14.20 The length of a smooth
curve is [ds, where ds? = g dx?dx’.
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We shall be seeing in §17.7 that the case of signature + — — — has
particular importance in relativity, where the (pseudo)metric now directly
measures time as registered by an ideal clock. Also, any vector v has a
length |v|, defined by

‘v|2 = gabvavba

which, for a positive-definite g, is positive whenever v does not vanish. In
relativity theory, however, we need a Lorentzian metric instead (see §13.8),
and \v|2 can be of either sign. We shall see the significance of this later on
(§17.9, §18.3).

How does a non-singular (pseudo)metric g uniquely determine a
torsion-free connection V? One way of expressing the requirement on
V is simply to say that the parallel transport of a vector must always
preserve its length (a property that I asserted, in §14.2, for parallel
transport on the sphere S?). Equivalently, we can express this require-
ment as

Vg =0.

This condition (together with the vanishing of torsion) suffices to fix V
completely.['420] This connection V is variously termed the Riemannian,
Christoffel, or Levi-Civita connection (after Bernhardt Riemann (1826-66),
Elwin Christoffel (1829-1900), and Tullio Levi-Civita (1873-1941), all of
whom contributed important ideas in relation to this notion).[14-27]

There is another way of understanding the fact that a (let us say
positive-definite) metric g determines a connection. The notion of a geo-
desic can be obtained directly from the metric. A curve on M that
minimizes its length [ds (the quantity illustrated in Fig. 14.20) between
two fixed points is actually a geodesic for the metric g. Knowing the
geodesic loci is most of what is needed for knowing the connection V.
The remaining information needed to fix V completely is a knowledge
of the affine parameters along the geodesics. These turn out to be the
parameters that measure arc length along the curves, and the constant
multiples of such parameters, and this is again fixed by g.['4281 When g is
not positive definite, the argument is basically the same, but now the

#53[14.26] Derive the explicit component expression Iy, = § 21 (0gpq /Ox + 0geq/OxP — g,y /0x) for
the connection quantities ', (Christoffel symbols). (See Exercise [14.6]).

#5 [14.27) Derive the classical expression R.? = I'%, /ox* — oI, /ox? + r*,r¢ — v r, for the
curvature tensor in terms of Christoffel symbols. Hint: Use the definition in §14.4 of the curvature
tensor, where ¢ is each of the coordinate vectors 87 ,..., 8y, in turn. (As in Exercise [14.6], the

quantities 87, 85, etc. are to be thought of as actual individual vectors, where the upper index a
may be viewed as an abstract index, in accordance with §12.8).

#5 [14.28] Supply details for this entire argument.
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geodesics do not minimize [ds, the integral being what is called ‘station-
ary’ for a geodesic. (This issue will be addressed again later; see. §17.9
and §20.1.)

In (pseudo)Riemannian geometry, the metric g, and its inverse g%
(defined by g*g;. = 8) can be used to raise or lower the indices of a
tensor. In particular, vectors can be converted to covectors and covectors
to vectors (and back again), as in §13.9:

Vg = Lab o" and o = g””ocb.

It is usual to stick to the same kernel symbol (here v and «) and
to use the index positioning to distinguish the geometrical character
of the quantity. Applying this procedure to lower the upper index of
the curvature tensor, we define the Riemann or Riemann—Christoffel
tensor

Rabcd = Rabce 8ed

which has valence [2]. It possesses some remarkable symmetries in
addition to the two relations (antisymmetry in ab and Bianchi symmetry,
1.e. vanishing of antisymmetric part in abc) that we had before. We also
havel'42] antisymmetry in c¢d and symmetry under interchange of ab

with cd:
Rabcd = _Rabdc = Rcdab-

See Fig. 14.21 for the diagrammatic representation of these things. A
general [g]—valent tensor in an n-manifold has n* components; but for a
Riemann tensor, because of these symmetries, only £5n%(n* — 1) of these
components are independent.[!4-30]

At this point, it is appropriate to bring to the attention of the reader the
notion of a Killing vector on a (pseudo-)Riemannian manifold M. This is a
vector field « which has the property that Lie differentiation with respect
to it annihilates the metric:

fg:O.

This equation can be rewritten in the index notation (with parentheses
denoting symmetrization, as in §12.7; see also Fig. 14.21) as

Vukp + Vi, =0, 1.€. V(aKb) =0,

£3[14.29] Establish these relations, first deriving the antisymmetry in cd from V[,V g.s = 0 and
then using the two antisymmetries and Bianchi symmetry to obtain the interchange symmetry.

£9[14.30] Verify that the symmetries allow only 20 independent components when n = 4.
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g e (58] b5 R)

Fig. 14.21 Raising and lowering indices in the ‘hoop’ notation: v, = gu”
= Ubgbaa Ua:gabvb = Ubgbas Rabcd = Rabc()g()ds Rabcd = RabcegEds Rabcd = _Rabdc
= Reaw; k* 1s a Killing vector if Vi) = 0.

where V is the standard Levi-Civita connection.!'4311 A Killing vector on a
(pseudo-)Riemannian manifold M is the generator of a continuous sym-
metry of M (which may only be a local'> symmetry, if M is non-compact).
If M contains more than one independent Killing vector, then the com-
mutator of the two is a further Killing vector.l'4321 Killing vectors have
particular importance in relativity theory, as we shall be seeing in §19.5
and §§30.4,6,7.

14.8 Symplectic manifolds

It should be remarked that there are not many local tensor structures that
define a unique connection, so we are fortunate that metrics (or pseudo-
metrics) are often things that are given to us physically. An important
family of examples for which this uniqueness is not the case, however, is
obtained when we have a structure given by a (non-singular) antisym-
metric tensor field S, given by its components S,,. Such a structure is
present in the phase spaces of classical mechanics (§20.1). I shall have more
to say about these remarkable spaces later, in §§20.2,4, §27.3. They are
examples of what are known as symplectic manifolds. Apart from being
antisymmetric and non-singular, the symplectic structure S must sat-
isfyl14.33]

£9 [14.31] Derive this equation.

£3 [14.32] Verify this ‘geometrically obvious’ fact by direct calculation—and why is it ‘obvious’?
@€ [14.33] Explain why this can be written V,Sp. + VpSca + VSap = 0, using any torsion-free
connection V.
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dS =0.

(This would be the standard case of a real symplectic form on a 2m-
dimensional real manifold, where the local symmetry would be given by
the usual ‘split-signature’ symplectic group Sp(m, m); see §13.10. I am not
aware of ‘symplectic manifolds’ of other signatures having been exten-
sively studied.)

The inverse S?, of S, (defined by S, = 0%), defines what is known
as the ‘Poisson bracket’ (named after the very distinguished French math-
ematician Siméon Denis Poisson, who lived from 1781 to 1840). This
combines two scalar fields @ and ¥ on a phase space to provide a third:

(D, ¥} = 1SV, 0V, P

(where the factor — %is inserted merely for consistency with the conventional
coordinate expressions). This is an important quantity in classical mechan-
ics. We shall be seeing later (in §20.4) how it encodes Hamilton's equations,
these equations providing a fundamental general procedure that encom-
passes the dynamics of classical physics and supplies the link to quantum
mechanics. The antisymmetry of S and the condition dS = 0 provide us
with the elegant relationst!4-34

{D, ¥} = —{¥, D}, {0O,{D, V}}+{D,{V, O}}+{Y, {0, }} =0.

This may be compared with the corresponding commutator (Lie bracket)
identities of §14.6. (Recall the Jacobi identity.) We shall return to the
remarkably rich geometry of symplectic manifolds when we consider the
geometrical description of classical mechanics in §20.4.

The local structure of a symplectic manifold is an example of what
might be called a ‘floppy’ structure. There is, for example, no notion of
curvature for a symplectic manifold, which might serve to distinguish one
symplectic manifold from another, locally. If we have two real symplectic
manifolds of the same dimension (and the same ‘signature’, cf. §13.10),
then they are locally completely identical (in the sense that for any point p
in one manifold and any point ¢ in the other, there are open sets of p and ¢
that are identical'?). This is in stark contrast with the case of (pseudo-)
Riemannian manifolds, or manifolds in which merely a connection is
specified. In those cases, the curvature tensor (and, for example, its various
covariant derivatives) defines some distinguishing local structure which is
likely to be different for different such manifolds.

There are other examples of such “floppy’ structures, among them being
the complex structure defined in §12.9 which enables a 2m-dimensional
real manifold to be re-interpreted as an m-dimensional complex manifold.

15 [14.34] Demonstrate these relations, first establishing that S?°V,S = 0.
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In this case the floppiness is evident, because there is clearly no feature,
apart from the complex dimension m, which locally distinguishes one
complex manifold from another (or from C™). It would still remain
floppy if a complex (holomorphic) symplectic structure were assigned to
itl'4-33] (and now we do not even have to worry about a notion of ‘signa-
ture’ for the complex S,;; see §13.10).

Many other examples of floppy structures can be specified. One such
would be a real manifold with a nowhere vanishing vector field on it. On
the other hand, a real manifold with rwo general vector fields on it would
not be floppy.['43¢ The issue of floppiness has some importance for twistor
theory, as we shall be seeing in §33.11.

Notes

Section 14.2

14.1. In fact there is a topological reason that there can be no way whatever
of assigning a ‘parallel’ to v at all points of S* in a continuous way (the
problem of ‘combing the hair of a spherical dog’!). The analogous statement
for S® is not true, however, as the construction of Clifford parallels (given in
§15.4) shows.

Section 14.3
14.2. In much of the physics literature and older mathematics literature, the coordinate
derivative 0/0x” is indicated by appending a lower index a, preceded by a comma,
to the right-hand end of the list of indices attached to the quantity being differ-
entiated. In the case of V,, a semicolon is frequently used in place of the comma.
The ‘V,” notation works well with the abstract-index notation (§12.8) and the
the subsequent equations in the main text of this book can (should) be read in
this way. Coordinate expressions can also be powerfully treated in this notation,
but two distinguishable types of index are needed, component and abstract (see
Penrose 1968; Penrose and Rindler 1984).

Section 14.4

14.3. The index staggering is needed for when a metric is introduced (§14.7) since
spaces are needed for the raising and lowering of indices.

Section 14.5

14.4. Strictly, V acts on fields defined on M, not just along curves lying within M. But
this equation makes sense because the operator differentiates only in the direc-
tion along the curve. If we like, we may think of the region of definition of ¢ as
being extended smoothly outwards away from 7y into M in some arbitrary way.
The precise way in which this is done is irrelevant, since it is only along y that we
are asking for the equation on ¢ to hold.

14.5. See, for example, Nayfeh (1993); Simmonds and Mann (1998).

[14.35] Explain why.

#%5 [14.36] Explain why, in each case. Hint: Construct a coordinate system with & = a/dx'; then
take repeated Lie derivatives to construct a frame, etc.
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Section 14.6

14.6.

14.7.

14.8.

14.9.

We see the explicit role of the Lie algebra of commutators in the
Baker—Campbell-Hausdorff formula, the first few terms of which are given
explicitly in efe? = ef T rlEMREEMIHEM D+ where the continuation
dots stand for a further expression in multiple commutators of & and 7, i.e.
an element of the Lie algebra generated by & and 7.

Somewhat more precisely, we can choose coordinates x?, x* ,..., x" constant
along this curve, with x! =#; then & = 0/0t, along the curve. It is simply
Taylor’s theorem (§6.4) that tells us that the above prescription gives e (®).
Analogous to the exponentiation e® of &, which obtains the value of a scalar
quantity @ a finite distance away, there is a corresponding expression with § in
place of £, to obtain a tensor Q a finite distance away, as measured against a
‘dragged’ reference frame.

See Schouten (1954); Penrose and Rindler (1984), p. 202.

3

Section 14.7

14.10.

14.11.

14.12.

In some mathematical books the term ‘semi-Riemannian’ has been used for the
indefinite case (see O’Neill 1983), but it seems to me that ‘pseudo-Riemannian’
is a more appropriate terminology.

A common way to give meaning to this expression is to introduce a parameter,
say u, along the curve and to write ds = (ds/du)du. The quantity ds/du is an
ordinary function of u, expressed in terms of dx*/du.

This ‘locality’ can be understood in the following sense. For each point p of M,
there is an exponentiation (§14.6) of some small constant non-zero multiple of x
that takes some open set containing p into some other open set in M with an
identical metric structure.

Section 14.8

14.13.
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way that the symplectic structures correspond.



15
Fibre bundles and gauge connections

15.1 Some physical motivations for fibre bundles

THE machinery introduced in Chapters 14 and 15 is sufficient for the
treatment of Einstein’s general relativity and for the phase spaces of
classical mechanics. However, a good deal of the modern theory of particle
interactions depends upon a generalization of the specific notion of ‘con-
nection’ (or covariant derivative) that was introduced in §14.3, this gener-
alization being referred to as a gauge connection. Basically, our original
notion of covariant derivative was based upon what we mean by the
parallel transport of a vector along some curve in our manifold M
(§14.2). Knowing parallel transport for vectors, we can uniquely extend
this to the transport of any tensor quantity (§14.3). Now, vectors and
tensors are quantities that refer to the tangent spaces at points of M (see
§12.3, §14.1, and Fig. 12.6). But a gauge connection refers to ‘parallel
transport’ of certain quantities of particular physical interest that are
best thought of as referring to some kind of ‘space’ other than the tangent
space at a point p in M, but still to be thought of as being, in a sense,
‘located at the point p’.

To clarify, a little, what is needed here, we recall from §§12.3,8 that once
we have a vector space—here the space of tangent vectors at a point—we
can construct its dual (space of covectors) and all the various spaces of [Z IE
valent tensors. Thus, in a clear sense, the spaces of [’; ]-tensors (including
the cotangent spaces, covectors being [?]—tensors) are ‘not anything new’,
once we have the tangent spaces 7', at points p. (An almost similar remark
would apply—at least according to my own way of viewing things—to the
spaces of spinors at p; see §11.3. Some others might try to take a different
attitude to spinors; but these alternative perspectives on the matter will not
be of concern for us here.) The spaces that we need for the gauge theories
of particle interactions (other than gravity), are different from these (and
so they are something new), and it is best to think of them as referring to a
kind of ‘spatial’ dimension that is additional to those of ordinary space
and time. These extra ‘spatial’ dimensions are frequently referred to as
internal dimensions, so that moving along in such an ‘internal direction’
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does not actually carry us away from the spacetime point at which we are
situated.

To make geometrical sense of this idea, we need the notion of a bundle.
This is a perfectly precise mathematical notion, and we shall be coming to
it properly in §15.2. It had been found to be useful in pure mathematics!
long before physicists realized that some of the important notions that
they had been previously using were actually to be understood in bundle
terms. In subsequent years, theoretical physicists have become very famil-
iar with the required mathematical concepts and have incorporated them
into their theories. However, in some modern theories, these notions are
presented in a modified form, in relation to which spacetime itself is
thought of as acquiring extra dimensions.

Indeed, in many (or most?) of the current attempts at finding a deeper
framework for fundamental physics (e.g. supergravity or string theory),
the very notion of ‘spacetime’ is extended to higher dimensionality. The
‘internal dimensions’ then come about through the agency of these extra
spatial dimensions, where these extra spatial dimensions are put on an
essentially equal footing with those of ordinary space and time. The
resulting ‘spacetime’ thus acquires more dimensions than the standard
four. Ideas of this nature go back to about 1919, when Theodor Kaluza
and Oskar Klein provided an extension of Einstein’s general relativity in
which the number of spacetime dimensions is increased from 4 to 5. The
extra dimension, enables Maxwell’s superb theory of electromagnetism
(see §§19.2,4) to be incorporated, in a certain sense, into a ‘spacetime
geometrical description’. However, this ‘5th dimension’ has to be thought
of as being ‘curled up into a tiny loop’ so that we are not directly aware of
it as an ordinary spatial dimension.

The analogy is often presented of a hosepipe (see Fig. 15.1), which is to
represent a Kaluza—Klein-type modification of a 1-dimensional universe.
When looked at on a large scale, the hosepipe indeed looks 1-dimensional:
the dimension of its length. But when examined more closely, we find that
the hosepipe surface is actually 2-dimensional, with the extra dimension
looping tightly around on a much smaller scale than the length of the
hosepipe. This is to be taken as the direct analogy of how we would
perceive only a 4-dimensional physical spacetime in a 5-dimensional
Kaluza—Klein total ‘spacetime’. The Kaluza—Klein 5-space is to be the
direct analogue of the hosepipe 2-surface, where the 4-spacetime that we
actually perceive is the direct analogue of the basically 1-dimensional
appearance of the hosepipe.

In many ways, this is an appealing idea, and it is certainly an ingenious
one. The proponents of the modern speculative physical theories (such as
supergravity and string theory that we shall encounter in Chapter 31)
actually find themselves driven to consider yet higher-dimensional versions
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Fig. 15.1 The analogy of a hosepipe. Viewed on a large scale, it appears
1-dimensional, but when examined more minutely it is seen to be a 2-dimensional
surface. Likewise, according to the Kaluza—Klein idea, there could be ‘small’ extra
spatial dimensions unobserved on an ordinary scale.

of the Kaluza—Klein idea (a total dimensionality of 26, 11, and 10 having
been among the most popular). In such theories, it is perceived that
interactions other than electromagnetism can be included by use of the
gauge-connection idea that we shall be coming to shortly.

However, it must be emphasized that the Kaluza—Klein idea is still a
speculative one. The ‘internal dimensions’ that the conventional current
gauge theories of particle interactions depend upon are not to be thought
of as being on a par with ordinary spacetime dimensions, and therefore do
not arise from a Kaluza-Klein-type scheme. It is a matter of interesting
speculation whether it is sensible to regard the internal dimensions
of current gauge theories as ultimately arising from this kind of
(Kaluza—Klein-type) ‘extended spacetime’, in any significant sense.> 1
shall return to this matter later (§31.4).

Instead of regarding these internal dimensions as being part of a higher-
dimensional spacetime, it will be more appropriate to think of them as
providing us with what is called a fibre bundle (or simply a bundle) over
spacetime. This is an important notion that is central to the modern gauge
theories of particle interactions. We imagine that ‘above’ each point of
spacetime is another space, called a fibre. The fibre consists of all the
internal dimensions, according to the physical picture referred to above.
But the bundle concept has much broader applications than this, so it will
be best if we do not necessarily tie ourselves to this kind of physical
interpretation, at least for the time being.
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15.2 The mathematical idea of a bundle

A bundle (or fibre bundle) B is a manifold with some structure, which is
defined in terms of two other manifolds M and V, where M is called the
base space (which is spacetime itself, in most physical applications), and
where V is called the fibre (the internal space, in most physical applica-
tions). The bundle B itself may be thought of as being completely made up
of a whole family of fibres V; in fact it is constituted as an ‘M’s worth of
Vs’—see Fig. 15.2. The simplest kind of bundle is what is called a product
space. This would be a trivial or ‘untwisted’ bundle, but more interesting
are the twisted bundles. I shall be giving some examples of both of these in
a moment. It is important that the space )V also have some symmetries. For
it is the presence of these symmetries that gives freedom for the twisting
that makes the bundle concept interesting. The group G of symmetries of V
that we are interested in is called the group of the bundle 5. We often say
that B is a G bundle over M. In many situations, V is taken to be a vector
space, in which case we call the bundle a vector bundle. Then the group G is
the general linear group of the relevant dimension, or a subgroup of it (see
§§13.3,6-10).

We are not to think of M as being a part of B (i.e. M is not inside B);
instead, 5 is to be viewed as a separate space from M, which we tend to
regard as standing, in some sense, above the base space M. There are many
copies of the fibre V in the bundle 5, one entire copy of V standing above
each point of M. The copies of the fibres are all disjoint (i.e. no two
intersect), and together they make up the entire bundle 5. The way to
think of M in relation to B is as a factor space of the bundle B by the
family of fibres V. That is to say, each point of M corresponds precisely to
a separate individual copy of V. There is a continuous map from B down

Fig. 15.2 A bundle B, with base space
M and fibre ¥V may be thought of as
constituted as an ‘M’s worth of Vs’.
The canonical projection from B down
to M may be viewed as the collapsing
of each fibre V down to a single point.
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to M, called the canonical projection from B to M, which collapses each
entire fibre V down to that particular point of M which it stands above.
(See Fig. 15.2)

The product space of M with V (trivial bundle of V over M) is written
MxV. The points of M xV are the pairs of elements (a, b), where a
belongs to M and b belongs to V; see Fig. 15.3a. (We already saw the
same idea applied to groups in §13.2.)> A more general ‘twisted’ bundle B,
over M, resembles M xV locally, in the sense that the part of B that lies
over any sufficiently small open region of M, is identical in structure with
that part of M xV lying over that same open region of M. See Fig. 15.3b.
But, as we move around in M, the fibres above may twist around so that,
as a whole, B is different (often topologically different) from M x V. The
dimension of B is always the sum of the dimensions of M and V, irrespect-
ive of the twisting.[!>-1]

All this may well be confusing, so get a better feeling for what a bundle
is like, let me give an example. First, take our space M to be a circle S,
and the fibre V to be a 1-dimensional vector space (which we can picture
topologically as a copy of the real line IR, with the origin 0 marked). Such
bundle is called a (real) line bundle over S'. Now M x V is a 2-dimensional
cylinder; see Fig. 15.4a. How can we construct a twisted bundle B, over M,

MxY

(@) (b)

Fig. 15.3 (a) The particular case of a ‘trivial’ bundle, which is the product
space M xV of M with V. The points of M xV can be interpreted as pairs
of elements (a,b), with @ in M and b in V. (b) The general ‘twisted’ bundle B,
over M, with fibre V, resembles M xV locally—i.e. the part of B over any
sufficiently small open region of M is identical to that part of Mx)V over
same region of M. But the fibres twist around, so that B is globally not the
same as M x V.

#€9 [15.1] Explain why the dimension of M xV is the sum of the dimensions of M and of V.
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(@ (b)

Fig. 15.4 To understand how this twisting can occur, consider the case when M is
a circle S' and the fibre V is a 1-dimensional vector space (i.e. a space modelled on
IR, but where only the origin 0 is marked, but no other value (such as the identity
element 1). (a) The trivial case M xV), which is here an ordinary 2-dimensional
cylinder. (b) In the twisted case, we get a Mobius strip (as in Fig. 12.15).

with fibre V? We can take a Mdbius strip; see Fig. 15.4b (and Fig. 12.15).
Let us see why this is a bundle—‘locally’ the same as the cylinder. We can
produce an adequately ‘local’ region of the base space S! by removing a
point p from S'. This breaks the base circle into a simply-connected?
segment® S! — p, and the part of B lying above such a segment is just the
same as the part of the cylinder standing above S! — p. The difference
between the M&bius bundle B and the cylinder emerges only when we look
at what lies above the entire S'. We can imagine S' to be pieced together
out of two such patches, namely S' — p and S' — ¢, where p and ¢ are two
distinct points of S!; then we can piece the whole of B together out of
two corresponding patches, each of which is a trivial bundle over one of
the individual patches of S!. It is in the ‘gluing’ together of these two trivial
bundle patches that the ‘twist’ in the Mobius bundle arises (Fig. 15.5).
Indeed, it becomes particularly clear that it is a Mobius strip that arises,
with just a simple twist, if we reduce the size of our patches of S', as
indicated in Fig. 15.5b, this reduction making no difference to the struc-
ture of B.

It is important to realize that the possibility of this twist results from a
particular symmetry that the fibre V possess, namely the one which re-
verses the sign of the elements of the 1-dimensional vector space V. (This is
v — —w, for each v in V.) This operation preserves the structure of V) as a
vector space. We should note that this operation is not actually a
symmetry of the real-number system IR. In fact, IR itself possesses
no symmetries at all. (The number 1 is certainly different from —1, for
example, and x — —x is not a symmetry of IR, not preserving the
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Olige)

(G (b)

Fig. 15.5 (a) We can produce an adequately ‘local’ (simply-connected) region of
the base S' by removing a point p from it, the part of the bundle above S! — p
being just a product. The same applies to the part of B above S' — ¢ where ¢ is a
different point of S'. We get a cylinder if we can match the two parts of B directly,
but we get the Mobius bundle, as illustrated above, if we apply an up/down
reflection (a symmetry of V) to one of the two matched portions. (b) The resulting
Mobius strip is little more obvious if we reduce the size of the two parts of S! so
that there are only small regions of overlap.

multiplicative structure of IR.[152)) Tt is for this reason that V is taken
as a 1-dimensional real vector space rather than just as the real line IR itself.
We sometimes say that V is modelled on the real line. We shall be seeing
shortly how other fibre symmetries provide opportunities for other kinds of
twist.

15.3 Cross-sections of bundles

One way that we can characterize the difference between the cylinder and
the Mobius bundle is in terms of what are called cross-sections (or simply

€3 [15.2] Explain this.
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sections) of a bundle. Geometrically, we think of a cross-section of a
bundle B over M as a continuous image of M in B which meets each
individual fibre in a single point (see Fig. 15.6a). We call this a ‘lift’ of the
base space M into the bundle. Note that, if we apply the map that lifts M
to a cross-section of 3, and then follow this with the canonical projection,
we just get the identity map from M to itself (that is to say, each point of
M is just mapped back to itself).

For a trivial bundle M xV, the cross-sections can be interpreted simply
as the continuous functions on the base space M which take values in the
space V (i.e. they are continuous maps from M to V). Thus, a cross-section
of M xV assigns,’ in a continuous way, a point of V' to each point of M.
This is like the ordinary idea of the graph of a function illustrated in
Fig. 15.6b. More generally, for a twisted bundle B, any cross-section of
B defines a notion of ‘twisted function’ that is more general than the
ordinary idea of a function.

Let us return to our particular example in §15.2 above. In the case of the
cylinder (product bundle M xV), our cross-sections can be represented
simply as curves that loop once around the cylinder, intersecting each fibre
just once (Fig. 15.7a). Since the bundle is just a product space, we can
consistently think of each fibre as being just a copy of the real line, and we
can thus consistently assign real-number coordinates to the fibres. The
coordinate value 0, on each fibre, traces out the zero section of ‘marked
points’ that represent the zeros of the vector spaces V. A general cross-
section provides a continuous real-valued function on the circle (the
‘height’ above the zero section being the value of the function at eachpoint
of the circle). Clearly there are many cross-sections that do not

@) (b)

Fig. 15.6 (a) A cross-section (or section) of a bundle B is a continuous image of
M in B which meets each individual fibre in single point. (b) This generalizes the
ordinary idea of the graph of a function.
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(a) (b)

Fig. 15.7 A (cross-)section of a line bundle over S! is a loop that goes once
around, intersecting each fibre just once. (a) Cylinder: there are sections that
nowhere intersect the zero section. (b) Mdbius bundle: every section intersects
the zero section.

intersect the zero section (non-vanishing functions on S'). For example, we
can choose a section of the cylinder that is parallel to the zero section but
not coincident with it. This represents a constant non-zero function on the
circle.

However, when we consider the Mdbius bundle B, we find that things
are very different. The reader should not find it hard to accept that now
every cross-section of 3 must intersect the zero section (Fig. 15.7b). (The
notion of zero section still applies, since V is a vector space, with its
zero ‘marked’.) This qualitative difference from the previous case makes
it clear that B must be topologically distinct from M x V. To be a bit more
specific, we can begin to assign real-number coordinates to the various
fibres V, just as before, but we need to adopt a convention that, at some
point of the circle, the sign has to be ‘flipped’ (x — —x), so that a cross-
section of B corresponds to a real-valued function on the circle that would
be continuous except that it changes sign when the circle is circumnavi-
gated. Any such cross-section must take the value zero somewhere.[13-3]

In this example, the nature of the family of cross-sections is sufficient to
distinguish the M&bius bundle from the cylinder. An examination of the
family of cross-sections often leads to a useful way of distinguishing
various different bundles over the same base space M. The distinction
between the Mobius bundle and the product space (cylinder) is a little less
extreme than in the case of certain other examples of bundles, however.
Sometimes a bundle has no cross-sections at all! Let us consider a particu-
larly important and famous such example next.

£3 [15.3] Spell this argument out, using the construction of B from two patches, as indicated
above.
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15.4 The Clifford bundle

In this example, we get a bit serious! The base space M is to be
a 2-dimensional sphere S* and the bundle manifold B turns out to be a
3-sphere S°. The fibres V are circles S! (‘I-spheres’). This is commonly
referred to as the Hopf fibration of S°, a topological construction pointed
out by Heinz Hopf (1931). But Hopf’s procedure was explicitly based
(with due reference) on an earlier geometrical construction of ‘Clifford
parallels’, due to our friend (from Chapter 11) William Clifford (1873). I
shall call S* geometrically fibred in this way the Clifford bundle.

The most revealing way to obtain the Clifford bundle is first to consider
the space 2 of pairs of complex numbers (w, z). (The relevant structure
of €2, here, is simply that it is a 2-dimensional complex vector space;
see §12.9.) Our bundle space B (= S°) is to be thought of as the unit
3-sphere S* sitting in €2, as defined by the equation (see the end of
§10.1)

w)* + |2)* = 1.

This stands for the real equation u> + v> + x> + »* = 1, the equation of a
3-sphere, where w = u 4 iv and z = x + iy are the respective expressions of
w and z in terms of their real and imaginary parts. (This is in direct
analogy with the equation of an ordinary 2-sphere x> +)*> +z> =1 in
Euclidean 3-space with real Cartesian coordinates x, y, z.)

To obtain the fibration, we are going to consider the family of complex
straight lines through the origin (i.e. complex 1-dimensional vector sub-
spaces of ©?). Each such line is given by an equation of the form

Aw+ Bz =0,

where 4 and B are complex numbers (not both zero). Being a 1-complex-
dimensional vector space, this line is a copy of the complex plane, and it
meets S3 in a circle S!, which we can think of as the unit circle in that plane
(Fig. 15.8). These circles are to be our fibres V = S'. The different lines
can meet only at the origin, so no two distinct S's can have a point in
common. Thus, this family of S's indeed constitute fibres giving S* a
bundle structure.

What is the base space M? Clearly, we get the same line Aw+ Bz=0 if
we multiply both 4 and B by the same non-zero complex number, so it
is really the ratio 4 : B that distinguishes the lines from one another. Either
of A or B can be zero, but not both. The space of such ratios is the
Riemann sphere as described at some length in §8.3. We are thus to identify
the base space M of our bundle as this Riemann sphere S?. Thus we can
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Aw+Bz=0

Riemann sphere
of ratios A:B

Fig. 15.8 The Clifford bundle. Take 2 with coordinates (w,z), containing the
3-sphere B = S* given by \w|2 + |z|2 = 1. Each fibre V = S' is the unit circle in a
complex straight line through the origin Aw+Bz=0 (complex 1-dimensional
vector subspace of %), and is determined by the ratio 4:B. The Riemann sphere
S? of such ratios is the base space B.

see that S® may be regarded as an S' bundle over S2. (We must not expect
such a relation as this for other dimensions, if we require bundle, base
space, and fibre all to be spheres. However, it actually turns out that S7
may be viewed as an S® bundle over S%, as can be obtained (with care) by
replacing the complex numbers w and z in the above argument by quater-
nions;!'># also, S!° can be regarded as an S” bundle over S, where w and z
are now replaced by octonions (see §11.2 and §16.2); but this does not
work for any other higher-dimensional sphere.”

This family of circles in S3, called Clifford parallels, is a particularly
interesting one. The circles, which are great circles, twist around each
other, remaining the same distance apart all along (which is why they
are referred to as ‘parallels’). Any two of the circles are linked, so they are
skew (not co-spherical). In Euclidean 3-space, straight lines that are skew
(not coplanar) have the property that they get farther apart from one
another as they move out towards infinity. The 3-sphere, however,
has positive curvature, so that the Clifford circles, which are geodesics in
S3, have a compensating tendency to bend towards each other in accord-
ance with the geodesic deviation effect considered in §14.5 (see Fig. 14.12).
These two effects exactly compensate one another in the case of Clifford

#5 [15.4] Carry out this argument. Can you see how to do the S'° case?
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parallels; see Fig. 15.9. To get a picture of the family of Clifford
parallels, we can project S3 stereographically from its ‘south pole’ to an
equatorial Euclidean 3-space, in exact analogy with the corresponding
stereographic projection of S? to the Euclidean plane that we adopted
in our study of the Riemann sphere in §8.3 (see Fig. 8.7). As with the
stereographic projection of S?, circles on S* map to circles in Euclidean
3-space under this projection. See Fig. 33.15 for a picture of the family
of projected Clifford circles. This configuration had some seminal
significance for twistor theory,® and the relevant geometry will be de-
scribed in §33.6.

I asserted above that this particular (Clifford) bundle would be one which
possesses no cross-sections at all. How are we to understand this? It should
first be pointed out that the ‘twist’ in the Clifford bundle owes its existence
to the fact that the circle-fibres possess an exact symmetry given by the
rotations of the circle (the group O(2) or, equivalently, U(1) see Exercise
[13.59]). We cannot identify each of these fibres with some specifically given
circle, such as the unit circle in the complex plane C. If we could, then
we could consistently choose some specific point on the circle (e.g. the
point 1 on the unit circle in €) and thereby obtain a cross-section
of the Clifford bundle. The non-existence of cross-sections can occur be-
cause the Clifford circles are only modelled on the unit circle in C, not
identified with it.

Of course, this in itself does not tell us why the Clifford bundle has no
continuous cross-sections. To understand this it will be helpful to look at
the Clifford bundle in another way. In fact, it turns out that each point of
our sphere S3 can be interpreted as a unit-length ‘spinorial’ tangent vector
to S? at one of its points.['>3] Recall from §11.3 that a spinorial object is a

/\/N

Fig. 15.9 (a) In Euclidean 3-space, skew straight lines get increasingly distant
from each other as they go off. (b) In S°, the positive curvature provides a com-
pensating tendency to bend geodesics (great circles) towards each other (by
geodesic deviation; see Fig. 14.12). For Clifford parallels the compensation is
exact.

B [15.5] Show this. Hint: Take the tangent vector to be u0/0v — v0/0u + x0/0y — y0/0x.
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quantity which, when completely rotated through 2n, becomes the nega-
tive of what it was originally. According to the above statement, a cross-
section of our bundle B (= S*) would represent a continuous field of such
spinorial unit vectors on M (= S?). Now, it is a well-known topological
fact that there is no global continuous field of ordinary unit tangent
vectors on S2. (This is the problem of combing the hair of a ‘spherical
dog’! It is impossible for the hairs to lie flat in a continuous way, all over
the sphere.) Making these directions ‘spinorial’ clearly does not help, so no
global continuous field of unit spinorial tangent vectors can exist either.
Hence our bundle B (= S*) has no cross-sections.

This deserves some further discussion, for there is a good deal more to
be gained from this example. In the first place, we can obtain the actual
bundle B’ of unit tangent vectors to S? by slightly modifying the Clifford
bundle described above. Since any ordinary unit tangent vector has just
two manifestations as a spinorial object (one being the ‘negative’ of the
other), we must identify these two if we wish to pass from the spinorial
vector to the ordinary vector. What this means, in terms of the Clifford
bundle B (= S?), is that two points of S3> must be identified in order to give
a single point® of the bundle B’ of unit vectors to S%. The pairs of points of
S3 that must be identified are the antipodal points on this 3-sphere. See
Fig. 15.10. The fibres of B’ are still circles. It is just that each circle-fibre of
B (= S%) ‘wraps around twice’ each circle-fibre of B'. Each point of B’ now
represents a point of S? with a unit tangent vector at that point. In fact, the
space B’ is topologically identical with the space R that we encountered in
§12.1, and which represents the different spatial orientations of an

Fig. 15.10 The bundle B’ of unit tangent vectors to S? is a slight modification of
the Clifford bundle, where antipodal points of S are identified. Without this
identification, we obtain S* as the (Clifford) bundle B of spinorial tangent vectors
to S. The fibres of B’ are still circles, but each circle-fibre of B wraps twice around
each circle-fibre of B'.
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object (such as the book, considered in §11.3) in Euclidean 3-space. This is
made evident if we think of our ‘object’ to be the sphere S? with an arrow
(unit tangent vector) marked on it at one of its points. This marked arrow
will completely fix the spatial orientation of the sphere.

15.5 Complex vector bundles, (co)tangent bundles

A slight extension of the idea behind the Clifford bundle (and also of
B') gives us a good example of a complex vector bundle, in this case, a
bundle that I shall call BC (or correspondingly B'C). Each of the lines
Aw+ Bz=0 is itself a 1-dimensional complex vector space. (The entire line
consists of the family of multiples of a single vector (w, z) by complex
numbers A, where (w, z) multiplies to (Aw, 4z).) We now think of this
complex vector I-space as our fibre V. The Riemann sphere S? is our
base space M, just as before.

There is one further thing that we need to do in order to get the correct
complex vector bundle BC, however. In €2, the different fibres are not
disjoint, all having the origin (0, 0) in common. Thus, to get B, we must
modify € by replacing the origin by a copy of the entire Riemann sphere
(CIP!; see §15.6), so that instead of having just one zero, we have a whole
Riemann sphere’s worth of zeros, one for each fibre, giving the zero section
of the bundle (see Fig. 15.11). This procedure is known as blowing up the
origin of C? (an important idea for algebraic geometry, complex-manifold
theory, string theory, twistor theory, and many other areas). Since we are
now allowed zero on the fibres, there do exist continuous cross-sections of
B. It turns out that these cross-sections represent the spinor fields on S*. A
‘spinor’ at a point of S? is to be pictured not just as a ‘spinorial unit
tangent vector’ at a point of S?, but the vector can now be ‘scaled up
and down’ by a positive real number, or allowed to become zero. It can
be shown that the possible such ‘spinors’ at a point of S? provide us with a
2-complex-dimensional vector space.!%-[15-¢]

The entire bundle BC is a complex (i.e. holomorphic) structure—in
fact, it is called a complex /ine bundle, because the fibres are 1-complex-
dimensional lines. It is a holomorphic object because its construction is
given entirely in terms of holomorphic notions.!'>71 In particular, the base
space is a complex curve—the Riemann sphere (see §8.3)—and the fibres
are 1-dimensional complex vector spaces. Accordingly, there is also an-
other notion of cross-section that has relevance here, namely that of a
holomorphic cross-section. A holomorphic cross-section is a cross-section
of a complex bundle that is itself a complex submanifold of the bundle

46 [15.6] Why does every such spinor field take the value zero at at least one point of $%?
E3 [15.7] Explain this in detail.
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Fig. 15.11 By taking the entire line Aw + Bz = 0 (a complex plane), rather than
just its unit circle, we get an example of a complex line bundle B, the fibre V being
now a complex 1-dimensional vector space. The Riemann sphere S*> = CIP! (also
a complex manifold, see §8.3, §15.6) is still the base space M. But to make the
different fibres disjoint, we must ‘blow up’ the origin (0,0), replacing it with an
entire Riemann sphere, giving us a Riemann sphere’s worth of zeros.

(which just means that it is given locally by holomorphic equations).
Sometimes, in the case of a complex line bundle, such a cross-section is
referred to as a twisted holomorphic function on the base space.
Such things have considerable importance in many areas of pure math-
ematics and mathematical physics.!! They also play a particular role in
twistor theory (see §33.8). Holomorphic sections constitute a tightly con-
trolled but important family. In the case of B, it turns out that there are
no (global) holomorphic sections other than the zero section (i.e. zero
everywhere).

In a minor modification of this construction (corresponding to the
passage from B to B') we obtain vector fields, rather than spinor fields,
on S2. The appopriate bundle B'C can again be interpreted as a complex
vector bundle—in fact it is what is called the square of the vector bundle
B, It is constructed in just the same way as B, except that we now
identify each point (w, z) with its ‘antipodal’ point (—w, —z), multipli-
cation of (w, z) by the complex number 4 now being given by (1'/?w, 1/%z)
(rather than by (Aw, 4z2)).
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Fig. 15.12 (a) For a general manifold M, each point of its tangent bundle 7'(M)
represents a point of M together with a tangent vector to M there. A cross-section
of T(M) represents a vector field on M. (b) The cotangent bundle 7%(M) is
similar, but with covectors instead of vectors. Cotangent bundles are always
symplectic manifolds.

To end this section, I should point out that the bundle B'C can be loosely
re-interpreted, in real terms, as what is called the tangent bundle T(S?) of S.
The tangent bundle 7(M) of a general manifold M is that space each of
whose points represents a point of M together with a tangent vector to M at
that point. See Fig. 15.12a.'>81 A cross-section of T(M) represents a vector
field on M. A notion of perhaps even greater physical importance is that of
the cotangent bundle T*(M) of a manifold M, each of whose points repre-
sents a point of M, together with a covector at that point (Fig. 15.12b). In

#25 [15.8] Show that B'C, interpreted as a real bundle over S? is indeed the same as T(S?). Hint: Re-
examine Exercise [15.5].
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Chapter 20, we shall be glimpsing something of the importance of these
ideas. Cross-sections of T"(M) represent covector fields on M. It turns out
that the cotangent bundles are always symplectic manifolds (see §14.9,
§§20.2,4), a fact of considerable importance for classical mechanics. We
can also correspondingly define various kinds of tensor bundles. A tensor
field may be interpreted as a cross-section of such a bundle.

15.6 Projective spaces

Another important notion, associated with a general vector space, is
that of a projective space. The vector space itself is ‘almost’ a bundle
over the projective space. If we remove the origin of the vector space,
then we do get a bundle over the projective space, the fibre being a line
with the origin removed; alternatively, as with the particular example of
BC given above, in §15.5, we can ‘blow up’ the origin of the vector space.
(I shall come back to this in a moment.) Projective spaces have a consider-
able importance in mathematics and have a particular role to play in
the geometry of quantum mechanics (see §21.9 and §22.9)—and also in
twistor theory (§33.5). It is appropriate, therefore, that I comment on these
spaces briefly here.

The idea of a projective space appears to have come originally from the
study of perspective in drawing and painting, this being taken within the
context of Euclidean geometry. Recall that, in the Euclidean plane, two
distinct lines always intersect unless they are parallel. However, if we draw
a picture, on a vertical piece of paper, of a pair of parallel lines receding
into the distance on a horizontal plane (say of the boundaries of a straight
road), then we find that in the drawing, the lines appear to intersect at a
‘vanishing point’ on the horizon (see Fig. 15.13). Projective geometry takes
these vanishing points seriously, by adjoining ‘points at infinity’ to the
Euclidean plane which enable parallel lines to intersect at these additional
points.

There are many theorems about lines in ordinary Euclidean 3-space
which are awkward to state because of exceptions having to be made for
parallel lines. In Fig. 15.14, I depict two remarkable examples, namely the
theorems of Pappos!? (found in the late 3rd century AD) and of Desargues
(found in 1636). In each case, the theorem (which I am stating in ‘converse’
form) asserts that if all the straight lines indicated in the diagram (9 lines
for Pappos and 10 for Desargues) intersect in triples at all but one of the
points marked with black spots (there being 9 black spots in all for Pappos
and 10 in all for Desargues), then the triple of lines indicated as intersect-
ing at the remaining black spot do in fact have a point in common.
However, stated in this way, these theorems are true only if we consider
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Fig. 15.13 Projective geometry adjoins ‘points at infinity’ to the Euclidean plane
enabling parallel lines to intersect there. In the artist’s picture, painted on a
vertical canvas, a pair of horizontal parallel lines receding into the distance—the
boundaries of a straight horizontal road—appear to intersect at a ‘vanishing
point’ on the horizon.

@) (b)

Fig. 15.14 Configurations of two famous theorems of plane projective geometry:
(a) that of Pappos, with 9 lines and 9 marked points, and (b) of Desargues, with 10
lines and 10 marked points. In each case, the assertion is that if each but one of the
marked points is the intersection of a triple of the lines, then the remaining marked
point occurs in this way also.

that a triple of mutually parallel lines are counted as having a point in
common, namely a ‘point at infinity’. With this interpretation, the the-
orems remain true when the lines are parallel. They also remain true even
if one of the lines lies entirely at infinity. Thus, the theorems of Pappos and
Desargues are more properly theorems in projective geometry than in
Euclidean geometry.
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How do we construct an n-dimensional projective space 1P"? The most
immediate way is to take an (n 4+ 1)-dimensional vector space V'™, and
regard our space IP" as the space of the 1-dimensional vector subspaces of
V'*! (These 1-dimensional vector subspaces are the lines through the
origin of V") A straight line in IP" (which is itself an example of a
IP) is given by a 2-dimensional subspace of V"*! (a plane through the
origin), the collinear points of IP” arising as lines lying in such a plane
(Fig. 15.15). There are also higher-dimensional flat subspaces of IP", these
being projective spaces IP" contained in IP”" (r < n). Each IP" corresponds
to an (r + 1)-dimensional vector subspace of V"',

This construction (in the case n=2) formalizes the procedures of
perspective in pictorial representation; for we can consider the artist’s eye
to be situated at the origin O of the vector space V°, this space representing
the artist’s ambient Euclidean 3-space. A light ray through O (artist’s eye) is
viewed by the artist as a single point. Thus, the artist’s ‘field of vision’, taken
as the totality of such light rays, can be thought of as a projective plane P2
(See Fig. 15.15 again.) Any straight line in space (not through O), that the
artist perceives, corresponds to the plane joining that line to O, in accord-
ance with the definition of a ‘straight line’ in 1?2, as given above.

'Artist's
eye'
(0]

Vr+l — picture P — picture

Fig. 15.15 To construct n-dimensional projective space P", take an (n+ 1)-
dimensional vector space V"', and regard IP" as the space of the 1-dimensional
vector subspaces of V"*! (lines through the origin of V"*!). A straight line in IP" is
given by a 2-dimensional subspace of V"*! (plane through origin), collinear points
of IP" arising as lines through O in such a plane. This applies both to the real case
(IRIP") and the complex case (CIP"). The geometry of IRIP? formalizes the
procedures of perspective in pictorial representation: consider the artist’s eye to
be at the origin O of V°, taking V° as the artist’s ambient Euclidean 3-space. A
light ray through O is viewed by the artist as single point. What the artist depicts
as a ‘straight line’ (IRIP! in IRIP?) (on any particular choice of artist’s canvas)
indeed corresponds to the plane (V?) joining that line to O. Pairs of planes through
O always intersect, even when joining parallel lines in V* to O. (For example, the
two bottom boundary lines in the left-hand picture play the role of the road
boundaries of Fig. 15.13.)
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Imagine that the artist paints an accurate picture of the perceived scene
on some canvas that coincides with some particular flat plane (not through
0). Any such plane will capture only part of the entire 2. Tt will certainly
not intersect those light rays that are parallel to it. But several such planes
will provide an adequate “patchwork’ covering the whole of 1P (three will
suffice!3113-9]), Parallel lines in one such plane, will be depicted as lines with
a common vanishing point in another.

We can consider either real projective spaces, IP" = IRIP", or complex
ones, IP" = CIP". We have already considered one example of a complex
projective space, namely the Riemann sphere, which is CIP!. Recall that
the Riemann sphere arises as the space of ratios of pairs of complex
numbers (w, z), not both zero, which is the space of complex lines through
the origin in €2, (See Fig. 15.8.) More generally, any projective space can
be assigned what are called homogeneous coordinates. These are the co-
ordinates z°, z', 22 , ..., z" for the (n + 1)-dimensional vector space v
from which IP" arises, but the ‘homogeneous coordinates’ for IP" are the n
independent ratios

(where the zs are not all zero), rather than the values of the individul zs
themselves.[!3>-191 If the z are all real, then these coordinates describe
IRIP", and the space V"' can be identified with IR"*! (space of n+1 real
numbers; see §12.2). If they are all complex, then they describe CIP”, and
the space V'™ can be identified with ©"*! (space of n+ 1 complex
numbers; see §12.9).

Since we exclude the point O = (0, 0, ..., 0) from the allowable homo-
geneous coordinates, the origin of R™ or ©"*! is omitted!* (to give
IR — O or €""! — 0) when we think of it as a bundle over, respectively,
IRIP" or CIP™. The fibre, therefore, must also have its origin removed. In
the real case, this splits the fibre into two pieces (but this does not mean
that the bundle splits into two pieces; in fact, IR"*! — O is connected, when
n > 0).15111 In the complex case, the fibre is C — O (often written C”),
which is connected. In either case, we may prefer to reinstate the origin in
the fibre, so that we get a vector bundle. But if we do this, then this
amounts to more than simply putting the origin back into IR"*! or
©"*'. As with the particular case of €2, considered above, we must put

4 [15.9] Explain how to do this. Hint: Think of Cartesian coordinates (x, y,z). Take two at a
time, with the canvas given by the third set to unity.

3 [15.10] Explain why there are n independent ratios. Find n + 1 sets of n ordinary coordinates
(constructed from the zs), for n + 1 different coordinate patches, which together cover 1P".

#% [15.11] Explain this geometry, showing that the bundle IR"*! — O over IRIP" can be under-
stood as the composition of the bundle TR"*! — O over S” (the fibre, IR*, being the positive reals)
and of S” as a twofold cover of IRTP".
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back the origin in each fibre separately, so that the origin is ‘blown up’.
The bundle space becomes IR"*! with an IRIP” inserted in place of O, or
©"*! with a ©IP" in place of O.

In the complex case, we can also consider the unit (2z + 1)-sphere
in ©"*!, just as we did in the particular case n = 1 when constructing the
Clifford bundle. Each fibre intersects S**! in a circle S!, so now we obtain
S?"*! as an S! bundle over CIP". This structure underlies the geometry of
quantum mechanics—although this beautiful geometrical fact impinges
only infrequently on the thinking of quantum physicists—where we shall
find that the space of physically distinct quantum states, for an (n+1)-state
system, is a CTP". In addition, there is a quantity known as the phase,
which is normally thought of as being a complex number of unit modulus
(e, with 0 real; see §5.3), whereas it is really a twisted unit-modulus
complex number.!> These matters will be returned to at the end of this
chapter, and when we consider quantum mechanics in earnest in Chapters
21 and 22 (see §21.9, §22.9).

SZ}’kH

15.7 Non-triviality in a bundle connection

I have just taken the reader on a whirlwind tour of some important fibre-
bundle and bundle-related concepts! Some of the geometry and topology
involved is rather intricate, so the reader should not be disconcerted if it all
seems a little bewildering. Let us now return to something much simpler—
in the sense that we do not need so many dimensions (at first, at least!)
in order to get the idea across. Although my next example of a bundle
is indeed a very simple one, it expresses an important subtlety involved
in the bundle notion that we have not encountered before. In all
the bundles considered above, the non-triviality of the bundle was
revealed in some topological feature of the geometry, the ‘twist’
being of a topological character. However, it is perfectly possible for
a bundle to be non-trivial in an important sense, despite being topologic-
ally trivial.

Let us return to our original example, where the base space M is an
ordinary circle S! and the fibre V is a 1-dimensional real vector space. We
shall now construct our bundle B in a somewhat different way from the
simple “flipping over’ of the fibre V), when we circumnavigate M, that gave
us the M&bius bundle. Instead, let us give it a stretch by a factor of 2. This
is depicted in Fig. 15.16. This exploits a different symmetry of a 1-dimen-
sional real vector space from the ‘flip’ symmetry v +— —v used in
the Mobius bundle. The ‘stretch’ transformation v — 2wv preserves the
vector-space structure of V just as well. Now, the topology of the bundle
is not the issue. Topologically, we simply have a cylinder S' x IR, just as
in our first example of Fig. 15.4a, but now there is a different kind of
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Fig. 15.16 A ‘strained’ line bundle B over M =S', using a different symmetry of
the fibre V from that of Figs. 15.4, 15.5, and 15.7 (where V is still a 1-dimensional
real vector space V'), namely a stretch by a positive factor (here 2). The topology is
just that of the cylinder S'xIR, but there is a ‘strain’ that can be recognized in
terms of a connection on B. This connection defines a local notion of ‘horizontal’,
for curves in B. But consider two paths from « to b in the base, the direct path
(black arrow) and the indirect one (white arrow). When we arrive at b we find a
discrepancy (by a factor of 2), indicating that the notion of ‘horizontal’ here is
path dependent.

‘strain’ in the bundle, which we can recognize is terms of an appropriate
kind of connection on it.

Our previous type of connection, as discussed in Chapter 14, was
concerned with a notion of ‘parallelism’ for tangent vectors carried
along curves in the manifold M. The way to view this, in the present
context, is to think in terms of the tangent bundle 7(M) of M. Since a
point of T(M) represents a tangent vector v to M at a point a of M,
the transport of v along some curve y in M will be represented just by a
curve 7, in T(M). See Fig. 15.17a. Having a notion of what ‘parallel’
means for the transport of v is equivalent to having a notion of ‘horizon-
tal’ for the curve y, in the bundle (since keeping y, ‘horizontal’ in the
bundle amounts to keeping v ‘constant’ along y in the base). The idea
here is to generalize this notion so that it applies to bundles other than
the tangent bundle; see Fig. 15.17b. We have already seen, in Chapter
14, the beginnings of such a generalization, because we extended the
notion of connection so that it applies to entities other than tangent
vectors, namely to covectors and to [Z]—tensors generally. However, as
noted in §15.1, this is a very limited kind of generalization, because the
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Fig. 15.17 Types of connection on a general manifold M compared. (a) The
original notion (§14.3), defining a notion of ‘parallel’ for tangent vectors
transported along curves in M, is described in terms of the tangent bundle
T(M) of M (Fig. 15.12a). A particular tangent vector v at a point a of M
is represented in 7(M) by a particular point of the fibre above a. A ‘horizontal’
curve 7y, in T(M) from this point represents the parallel transport of v
along a curve y in M. (b) The same idea applies to a bundle B over M, other
than T(M), where ‘constant transport’ in M is defined from a notion of ‘horizon-
tal’ in B.

extension of the connection from vectors to these different kinds of
entity is uniquely prescribed, with no additional freedom left (essentially
because cotangent bundle and the tensor bundles are completely deter-
mined by the tangent bundle). For a general bundle over M, there need
be no association with the tangent bundle, so that the way that the
connection acts on such a bundle can be specified independently of the
way that it acts on tangent vectors. For a bundle over M which is
unassociated with 7(M), it is not so appropriate to speak in terms of a
‘parallelism’, because the (local) notion of ‘parallel’ is something that
refers to directions, which basically means directions of tangent vectors.
Accordingly, it is more usual to refer to a local ‘constancy’ for the quantity
that is described by the bundle, rather than to the ‘parallelism’ that refers
to the tangent vectors described by 7(M). Such a local notion of ‘con-
stancy’—i.e. of ‘horizontality’ in the bundle—provides the structure
known as a bundle connection.
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Now, let us come back to our ‘strained’ bundle B, over the circle S!, as
is pictured in Fig. 15.16. Consider a part of B that is ‘trivial’ in the
sense that it stands above some ‘topologically trivial’ region of S'; let
us take this to be the part B,, standing above the simply connected
segment S' — p (as in Fig. 15.5), where p is some point of S'. We shall
regard B, as the product space (S! — p) x IR, and our bundle connection
is to provide the the notion of constancy of a cross-section that can be
taken as constancy in the ordinary sense of a real-valued function on
S! — p. Thus, in Fig. 15.18, we find the constant sections represented
as actual horizontal lines in B,. The same applies to a second patch B,,
with ¢ # p, where the entire bundle is glued together from these two
patches. In the gluing, however, there is a relative stretching by a factor
of 2 between the right-hand patching region and the left-hand one (where
the right-hand region is depicted as involving a stretch by a factor 2).
Thus, a (non-zero) section that remains locally horizontal will be discrep-
ant by a factor 2 when the base space S' is circumnavigated (Fig. 15.5).
Accordingly, the bundle B has no cross-sections (apart from the zero
section) that are locally horizontal according to our specified bundle
connection.

We can look at this situation slightly differently. We imagine a curve in
the base space S! which starts at a point @ and ends at b, and we envisage
the ‘constant transport’, of a fibre-valued function on S!, from a to 5. That
is to say, we look for a curve on B that is locally a horizontal cross-section
above this curve. See Fig. 15.16. Now, there is more than one curve from a
to b on the base space; if we go one way around, then we get a different

Fig. 15.18 Consider a part B, of B (of Fig. 15.16) that stands above a ‘trivial’
region S' — p of S', and similarly for By, just as in Fig. 15.5a. Take ‘horizontal’ in
each patch to mean horizontal in the ordinary sense. In the gluing, however, there
is a relative stretching by a factor of 2 between one region of gluing and the other
(illustrated in the right-hand patching). This provides the connection illustrated in
Fig. 15.16.
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answer for the final value at » from the answer that we obtain when we go
the other way around. The notion of constant transport that we have
defined is path-dependent.

This is not quite the same as the path dependence that we encountered
for our tangent-bundle connection V, which we studied in Chapter 13.
For, in that case, there was a local path dependence that occurred even for
infinitesimal loops, and was manifested in the curvature of the connection.
In the case of our ‘strained’ bundle B, the path dependence is of a
global character instead. Of course, there is no possibility of a local path
dependence in this example, since the base space is 1-dimensional. But this
example incidentally shows that it is possible to have path dependence
globally even when none is present locally.

15.8 Bundle curvature

We can, however, modify our example so as to obtain a bundle over a
2-dimensional space, within which we choose a particular circle to represent
our original S'. For convenience, let us take our S! to be the unit circle in the
complex plane, so we shall take the base space M of our new bundle B, to
be given by M = . See Fig. 15.19. The fibres are to remain copies of the
realline IR. Let us see how we can extend our bundle connection to this space.

If there were to be no ‘strain’ in our new bundle B, then we could take
this connection to be given by straightforward differentiation with respect
to the standard coordinates (z, z) for the complex plane M. Then
‘constancy’ of a cross-section @ (a real-valued function of z and z) could
be thought of simply as constancy in the ordinary sense, namely
0®/0z = 0 (whence also 0¢/0z = 0, since @ is real). When we introduce
‘strain’ into the bundle connection, we can do this by modifying the
operator 0/0z to become a new operator V where

0

:5—

\Y A,
the quantity 4 being a complex (not necessarily holomorphic) smooth
function of z, which ‘operates’ simply by (scalar) multiplication. The
operator V acts on quantities like @. Topologically, our bundle B is to
be just the trivial bundle € x IR, so we can use global coordinates (z, @)
for BC, with z complex and & real.

A cross-section of B is determined by @ being given as a function of z:

P = d(z,2),
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Fig. 15.19 To obtain a local path dependence (with curvature), in our bundle
(now BY), we need at least 2 dimensions in the base M*, now taken as the
complex plane ©, where the S! of Fig. 15.16 is its unit circle. The fibres are to
remain V! (i.e. modelled on the real line IR). Using z as a complex coordinate for
€ = MC, we use the explicit connection V = 9/9dz — 4, where A4 is a complex
smooth function of z. When A4 is holomorphic the bundle curvature vanishes, but
if A = ikz (with suitable k), we get the strained bundle of Fig. 15.16 for the part
over the unit circle. The bundle curvature is manifested in the failure to close of a
horizontal polygon above a small parallelogram in M.

(the appearance of z indicating lack of holomorphicity; see §10.5). For the
cross-section to be constant (i.e. horizontal), we require V& = 0 (whence
V& = 0 also, because @ is real), i.e.

0P
3. = AP.
If A4 is holomorphic, then there is no problem about solving this equa-
tion, because an expression of the form @ = eB+B) will fit the bill, where
B = [ Adz.['>12] However, in the general case, with a non-holomorphic
A, we do not tend to get non-zero solutions, because of the commutator
relation

%9 [15.12] Check this.
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= = 04 04
VW-ovv= 0z 0z

acting on @.'>-131 (The right-hand side gives a number multiplying @ that
does not generally vanish, although the left-hand side annihilates any real
solution of the equation 0¢/0z = A®.) This commutator serves to define a
curvature for V, given by the imaginary part of 04/0z, this curvature
measuring the local degree of ‘strain’ in the bundle.

By making a specific choice of A4, for which this commutator takes
a constant non-zero value, such as A =1kz for a suitable real
constant k, we can get a ‘stretching factor’, when we travel around a
closed loop in MC, that is simply proportional to the area of the
loop. This applies, in particular, to the unit circle S', so that we can
reproduce our original ‘strained’ bundle B over S! by taking just that
part of the bundle that lies above this S!. We get the required ‘stretching
by a factor of 2’ over the unit circle by taking an appropriate value
of k15141

This commutator is the direct analogue of the commutator of operators
V, that we considered in §14.4, and which give rise to torsion and curva-
ture. We may as well assume that the torsion is zero. (Torsion has to do
with the action of the connection on tangent vectors, and is not of any
concern for us in relation to bundles, like the one under consideration
here, that are not associated with the tangent bundle.) For an n-dimen-
sional base space M, we have quantities just like the V, and Y of Chapter
14, except that they now act on bundle quantities.!® When we form their
commutators appropriately, we extract the curvature of the bundle con-
nection. When this curvature vanishes, then we have many locally constant
sections of the bundle; otherwise, we run into obstructions to finding such
sections, i.e. we find a local path dependence of the connection. The
curvature describes this path dependence at the infinitesimal level. This is
illustrated in Fig. 15.19.

In terms of indices, the connection is usually expressed, in some coord-
inate system, as an operator of the general form

0
va = @ - Alh
where the quantity 4, may be considered to have some suppressed ‘bundle
indices’. We can use Greek letters for these!” (assuming that we are concerned

[15.13] Verify this formula.

H#5 [15.14] Confirm the assertions in this paragraph, finding the explicit value of k that gives this
required factor 2.
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C

Fig. 15.20 We can also make the fibre into a complex 1-dimensional vector space,
the ‘stretch’ corresponding to multiplication by a real number.

with a vector bundle, so that tensor ideas will apply), and then the quantity
A, looks like A,*,. (For the full index expression, there would be a
8% multiplying the other two terms.) The bundle curvature would be
a quantity

Fab‘ui:

where the antisymmetric pair of indices ab refers to tangent 2-plane direc-
tions in M, in just the same way as for the curvature tensor that we had
before, but now the indices 2 and p refer to the directions in the fibre (and are
normally suppressed in most treatments). There is also a direct analogue of
the (second) Bianchi identity (see §14.4). (The use of complex coordinates in
the specific example of BY was a convenience only, and an index notation
could have been used, just as in the n-dimensional case.)

It should be pointed out that, in many cases of fibre bundles, the
relevant symmetry involved in the bundle’s construction need not com-
pletely coincide with the symmetry of the fibre. For example, in the
example of the ‘strained’ bundle B over S!, or B over C, we could
think of the 1-dimensional fibre as being broadened out into a 2-dimen-
sional real vector space, where the ‘stretch’ of the fibre is represented as a
uniform expansion of the vector 2-space. We could also provide this real
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Cc

Fig. 15.21 Alternatively, we can impose a ‘complex stretch’ instead, such as
multiplication by a complex phase (e?/, with 0 real), so the group of the bundle
is now U(1), the multiplicative group of these complex numbers.

vector 2-space with the additional structure that makes it a 1-dimensional
complex vector space, the ‘stretch’ corresponding to multiplication by a
real number (Fig. 15.20). This leads us to consider what happens when we
impose a ‘complex stretch’ instead. A particular case of this would
be multiplication by a complex number of unit modulus (xe'’, with 0
real), which would provide a rotation, rather than an actual stretch
(Fig. 15.21) (which is the sort of thing that is involved in the Clifford
bundle, considered above). In this case, the group involved is U(1),
the multiplicative group of unimodular complex numbers (see §13.9).
Bundle connections with this U(1) symmetry group are of particular
importance in physics, because they describe electromagnetic interactions,
as we shall be seeing in §19.4. The essence of such a bundle is captured if
the fibre is taken to be modelled on just the unit circle S!, rather than on
the whole complex plane €. This is in a certain sense, more ‘economical’
since the rest of the plane is simply ‘carried along’ with the circle, and it
provides no extra information. Nevertheless some advantage could be
obtained from using the complex plane as fibre, because the bundle then
becomes a (complex) vector bundle.'®
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In later chapters, we shall be seeing the power of these ideas in
relation to the modern theories of physical forces. In their guise as
‘gauge connections’, bundle connections are indeed a key ingredient, and
certain physical fields emerge as the curvatures of these connections
(Maxwell’s electromagnetism being the archetypical example). We have
seen how essential it is for this idea that we have fibres possessing an
exact symmetry. This raises fundamental questions as to the origin
of such symmetries, and what these symmetries actually are. I shall return
to this important question later, most particularly in Chapters 28, 31
and 34.

Notes

Section 15.1

15.1. See, for example, Steenrod (1951). One of the first physicists to appreciate, in
around 1967, that the physicists’ notion of a ‘gauge theory’ is really concerned
with a connection on a bundle seems to have been Andrzej Trautman; see Traut-
man (1970) (also Penrose et al. 1997, p.A4).

15.2. In fact, the extra spacetime dimensions (Calabi-Yau spaces; see §31.14)
of string theory are not to be thought of directly as the ‘fibres’ of a fibre
bundle. Those fibres would be spaces of certain spinor fields in the Calabi-Yau
spaces.

Section 15.2

15.3. Further information is required for a complete definition of product space, so
that the notions of topology and smoothness are correctly defined for M x V.
When a volume measure can be assigned to each of M and V, then the volume of
M xVis the product of the volumes of M and V. It would be distracting for me to
go into these matters properly here, even though, technically speaking, they are
necessary. For an appropriate reference, see Kelley (1965); Lefshetz (1949); or
Munkres (1954).

15.4. See §12.1 for the general meaning of ‘simply-connected’.

15.5. For notational simplicity, I am adopting a (mild) abuse of notation by writing
‘S!—p’ for the space which consists of S! but with the point p removed. Purists
would write ‘S'—{p}’, or more probably ‘S'\{ p}’ (see Note 9.13). The ‘differ-
ence’ expressed in these notations is between two sets, and ‘{ p}’ denotes the set
whose only element is the point p.

Section 15.3
15.6. Normally pure mathematicians are relatively respectful of grammar, but many
of them have adopted the habit of using the dreadful phrase ‘associated
to’ when they seem to feel that ‘associated with’ has not a sufficiently specific
flavour. I am at a loss to understand why they do not use the perfectly
grammatical ‘assigned to’ instead. In my view, ‘associated to’ is rather
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worse than another common mathematician’s abuse of language namely
‘according as’ (which I must confess to having used myself on various occa-
sions) since the phrase ‘according to whether’, which it stands in for, is a bit of a
mouthful.

Section 15.4
15.7. See Adams and Atiyah (1966).
15.8. See Penrose (1987); Penrose and Rindler (1986).
15.9. We say that B is a covering space of B'. In fact B is what is called the
universal covering space of B'. Being simply connected, it cannot be covered
further.

Section 15.5

15.10. This geometrical description of 2-spinors is discussed in some detail in Penrose
and Rindler (1984), Chap. 1.

15.11. For example, in §9.5, the splitting of functions (of a real variable) into positive-
and negative-frequency parts (crucial for quantum field theory) was analysed in
terms of extensions to holomorphic functions; but the reader may recall a
certain awkwardness in relation to the constant functions. This issue is greatly
clarified when we allow these to be twisted holomorphic functions and has
relevance to twistor theory in §§33.8,10.

Section 15.6

15.12. T use the Greek spelling here, although the Latinized version ‘Pappus’ is
somewhat more usual.

15.13. It would not be unreasonable to take the position that the artist’s field of
vision is more properly thought of as a sphere S% rather than 1?2, where
we take the directed light rays through O as the artist’s field of vision,
rather that the undirected ones that I have been (implicitly) using in the text.
The sphere is just a twofold cover of the projective plane, and the only
trouble with it as providing a ‘geometry’, in this context, is that pairs of
‘lines’ (namely great circles) intersect in pairs of points rather than single
points. The artist would need four canvases, rather than three, to cover the
sphere S2.

15.14. See Note 15.5.

15.15. This fact has relevance to an intriguing and important quantum-mechanical
notion known as the ‘Berry phase’ (see Berry 1984, 1985; Simon 1983; Ahar-
onov and Anandan 1987; also Woodhouse 1991, pp. 225-49), which takes
account of the fact that we do not know where ‘1’ is on the unit circle—i.e. such
a ‘number’ is an element of an S!-fibre for an S!'-bundle, in
this case, S**! over CIP".

Section 15.8
15.16. In the case of V,, we also need it to act on (co)tangent vectors so that V, can
operate on quantities with spacetime indices, in order that the commutator

V.V can be given meaning. In the case of V, we can use the commutator
ionVV -VV_— V i require thi
expression y ¥/ MY wmy which does not require this.
15.17. This type of index notation for bundle indices is developed explicitly in Penrose
and Rindler (1984), Chap. 5.
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15.18.
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On the other hand, when the fibre is the unit circle, the bundle becomes an
example of a principal bundle which has advantages in other contexts. A
principal bundle is one in which the fibre V is actually modelled on the group
G of its own symmetries. Roughly speaking, G and V are the ‘same’ for a
principal bundle, but where, more correctly, V is G but where one ‘forgets’
which is G’s identity element; accordingly V is a (not necessarily Abelian) affine
space, in accordance with §14.1 and Exercises [14.1], [14.2].



16
The ladder of infinity

16.1 Finite fields

IT appears to be a universal feature of the mathematics normally believed
to underlie the workings of our physical universe that it has a fundamental
dependence on the infinite. In the times of the ancient Greeks, even before
they found themselves to be forced into considerations of the real-number
system, they had already become accustomed, in effect, to the use of
rational numbers (see §3.1). Not only is the system of rationals infinite in
that it has the potential to allow quantities to be indefinitely large (a
property shared with the natural numbers themselves), but it also allows
for an unending degree of refinement on an indefinitely small scale. There
are some who are troubled with both of these aspects of the infinite. They
might prefer a universe that is, on the one hand, finite in extent and, on the
other, only finitely divisible, so that a fundamental discreteness might
begin to emerge at the tiniest levels.

Although such a standpoint must be regarded as distinctly unconven-
tional, it is not inherently inconsistent. Indeed, there has been a school of
thought that the apparently basic physical role for the real-number
system IR is some kind of approximation to a ‘true’ physical number sys-
tem which has only a finite number of elements. (This kind of approach
has been pursued, particularly, by Y. Ahmavaara (1965) and some co-
workers; see §33.1.) How can we make sense of such a finite number
system? The simplest examples are those constructed from the integers,
by ‘reducing them modulo p’, where p is some prime number.
(Recall that the prime numbers are the natural numbers 2, 3, 5, 7, 11,
13, 17, ...which have no factors other than themselves and 1, and where
1 is itself not regarded as a prime.) To reduce the integers modulo p, we
regard two integers as equivalent if their difference is a multiple of p; that is
to say,

a=b (mod p)

if and only if
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a—b=kp (for some integer k).

The integers fall into exactly p ‘equivalence classes’ (see the Preface,
for the notion of equivalence class), according to this prescription
(so a and b belong to the same class whenever a = b). These classes
are regarded as the elements of the finite field IF', and there are exactly p
such elements. (Here, I am adopting the algebraists’ use of the term ‘field’.
This should not be confused with the ‘fields’ on a manifold, such as vector
or tensor fields, nor a physical field such as electromagnetism. An algebra-
ist’s field is just a commutative division ring; see §11.1.) Ordinary rules of
addition, subtraction, (commutative) multiplication and division hold
for the elements of IF,.'611 However, we have the additional
curious property that if we add p identical elements together, we
always get zero (and, of course, the prime number p itself has to count
as ‘zero’).

Note that, as IF', has been just described, its elements are themselves
defined as ‘infinite sets of integers’—since the ‘equivalence classes’
are themselves infinite sets, such as the particular equivalence
class {..., =7, —2,3,8,13, ...} which defines the element of IF
(p = 5) that we would denote by ‘3’. Thus, we have appealed to the
infinite in order to define the quantities that constitute our finite
number system! This is an example of the way in which mathemati-
cians often provide a rigorous prescription for a mathematical entity
by defining it in terms of infinite sets. It is the same ‘equivalence
class’ procedure that is involved in the definition of fractions, as
referred to in the Preface, in relation to the ‘cancelling’ that my mother’s
friend found so confusing! I imagine that to someone convinced that
the number system I, (for some suitable p), is ‘really’ directly rooted
in nature, the ‘equivalence class’ procedure would be merely a mathe-
matician’s convenience, aimed at providing some kind of a rigorous
prescription in terms of the more (historically) familiar infinite procedures.
In fact we do not need to appeal to infinite sets of integers here; it is
just that this is the most systematic procedure. In any given case, we
could, alternatively, simply list all the operations, since these are finite in
number.

Let us look at the case p = 5 in more detail, just as an example. We can
label the elements of IF'5 by the standard symbols 0, 1, 2, 3, 4, and we have
the addition and multiplication tables

%3 [16.1] Show how these rules work, explaining why p has to be prime.
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+/0 1 2 3 4 x| 0 1 2 3 4

01 2 3 4 00 0 0 0 O
1|1 2 3 40 10 1 2 3 4
212 3 4 01 210 2 4 1 3
313 4 01 2 3/0 3 1 4 2
414 0 1 2 3 410 4 3 2 1

in the sense that 2x3=1 (mod 5), etc. (From here on, I use ‘=" rather than
‘=", when working with the elements of a particular finite number system.)

There are also other finite fields I, constructed in a somewhat more ela-
borate way, where the total number of elements is some power of a prime:
g=p". Letmejust give the simplest example, namely the case g =4 =2>. Here
we can label the different elements as 0, 1, ®, ®*, where ®> =1 and where
each element x is subject to x+x=0. This slightly extends the multiplicative
group of complex numbers 1, o, ®> that are cube roots of unity (described in
§5.4and mentioned in §5.5 as describing the ‘quarkiness’ of strongly interact-
ing particles). To get 14, we just adjoin a zero ‘0’ and supply an ‘addition’
operation for which x+x=0.1'-2 [n the general case IF,», we would have
Xx—+x+---+x=0, where the number of xs in the sum is p.

16.2 A finite or infinite geometry for physics?

It is unclear whether such things really have a significant role to play in
physics, although the idea has been revived from time to time. If I, were to
take the place of the real-number system, in any significant sense, then p
would have to be very large indeed (so that the ‘x+x+- - -+x=0" would not
show up as a serious discrepancy in observed behaviour). To my mind, a
physical theory which depends fundamentally upon some absurdly enor-
mous prime number would be a far more complicated (and improbable)
theory than one that is able to depend upon a simple notion of infinity.
Nevertheless, itis of some interest to pursue these matters. Much of geometry
survives, in fact, when coordinates are given as elements of some IF,. The
ideas of calculus need more care; nevertheless, many of these also survive.

€9 [16.2] Make complete addition and multiplication tables for IF4 and check that the laws of
algebra work (where we assume that 1 + o + o> = 0).

359



§16.2 CHAPTER 16

It is instructive (and entertaining) to see how projective geometry with a
finite total number of points works, and we can, accordingly, explore the
projective n-spaces IP"(IF,) over the field I,. We find that IP"(IF,) has
exactly 1 + ¢+ ¢* + -+ + ¢" = (¢"*' — 1)/(g — 1) different points.l'®3] The
projective planes Pz(]Fq) are particularly fascinating because a very elegant
construction for them can be given. This can be described as follows. Take a
circular disc made from some suitable material such as cardboard, and place
a drawing pin through its centre, pinning it to a fixed piece of background
card so that it can rotate freely. Mark 1 + g + ¢*> points equally spaced
around the circumference on the background card, labelling them, in an
anticlockwise direction, by the numbers 0, 1, 2, ..., g(1 + g). On the rotat-
ing disc, mark 1+ ¢ special points in certain carefully chosen positions.
These positions are to be such that, for any selection of two of the marked
points on the background, there is exactly one position of the disc for which
the two selected points coincide with two of these special points on the disc.
Another way of saying this is as follows: if ag, a1 , ..., a, are the successive
distances around the circumference between these special points, taken
cyclically (where the distance around the circumference between successive
marked points on the background circle is taken as the unit distance) then
every distance 1, 2, 3,..., g can be uniquely represented as a sum of a
cyclically successive collection of the as. I call such a disc a magic disc. In
Fig. 16.1, I have depicted magic discs for ¢ =2, 3, 4, and 5, for which
a,...,a?canbe takenas 1,2,4;1,2,6,4;1,3,10,2,5;1,2,7, 4,12, 5,
respectively.[164 In the cases ¢ = 7, 8,9, 11, 13, and 16, we can make magic
discsdefined by 1,2,10,19,4,7,9,5;1,2,4,8,16,5,18,9,10;1,2,6,18,22,7, 5,
16,4,10;1,2,13,7,5,14,34,6,4,33,18,17,21,8;1,2,4,8,16,32,27,26, 11,9,
45,13,10,29, 5,17, 18, respectively. It is a mathematical theorem that magic
discs exist forevery Pz(IF'q) (with ga power of a prime).! The reader may find
it amusing to check various instances of the theorems of Pappos and Desar-
gues (see §15.6, Fig. 15.14).2 (Take ¢ > 2, so as to have enough points for a
non-degenerate configuration!) Two examples (Desargues for ¢ = 3, and
Pappos for ¢ = 5, using the discs of Fig. 16.1) are illustrated in Fig. 16.2.

The simplest case ¢ =2 has particular interest from other direc-
tions.['®3] This plane, with 7 points, is called the Fano plane, and it is
depicted in Fig. 16.3, the circle being counted as a ‘straight line’. Although

£ [16.3] Show this.

5 [16.4] Show how to construct new magic discs, in the cases ¢ = 3, 5 by starting at a particular
marked point on one of the discs that I have given and then multiplying each of the angular
distances from the other marked points by some fixed integer. Why does this work?

#% [16.5] The finite field IF's has elements 0, 1, ¢, &2, &3, &*, &, &%, where ¢’ =1 and 141 =0.
show that either (1) there is an identity of the form &* + & + ¢ = 0 whenever a, b, and ¢ are
numbers on the background circle of Fig. 16.1a which can line up with the three spots on the disc,
or else (2) the same holds, but with & in place of ¢ (i.e. £ + &3 + &% = 0).
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22 23 24 (d)

Fig. 16.1 ‘Magic discs’ for finite projective planes IP*(IF,) (¢ being a power of a
prime). The 14¢g+¢*> points are represented as successive numerals 0, 1, 2,

.., q(1+¢) placed equidistantly around a background circle. A freely rotating
circular disc is attached, with arrows labelling 1+ ¢ particular places: the points of
a line in 1P(IF,). These are such that for each pair of distinct numerals, there is
exactly one disc setting so that arrows point at them. Magic discs are shown for (a)
q=2; (b) ¢=3; (c) g=4=2% and (d) ¢=5.

Fig. 16.2 Finite-geometry versions of the theorems of Fig. 5.14. (a) Pappos (with
g=>5) and (b) Desargues (with ¢g=3), illustrated by respective use of the discs
shown in Fig. 16.1d and 16.1b.
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Fig. 16.3 The Fano plane 1P>(IF,), with 7 points and 7 lines (the circle counting as
a ‘straight line’) numbered according to Fig. 16.1a. This provides the multipli-
cation table for the basis elements iy, iy, i, . . . ,ig of the octonion division algebra,
where the arrows provide the cyclic ordering that gives a ‘+ sign.

its scope as a geometry is rather limited, it plays an important role of a
different kind, in providing the multiplication law for octonions (see §11.2,
§15.4). The Fano plane has 7 points in it, and each point is to be associated
with one of the generating elements iy, iy, iy , ..., ig of the octonion alge-
bra. Each of these is to satisfy if = —1. To find the product of two distinct
generating elements, we just find the line in the Fano plane which joins the
points representing them, and then the remaining point on the line is the
point representing the product (up to a sign) of these other two. For this,
the simple picture of the Fano plane is not quite enough, because the sign
of the product needs to be determined also. We can find this sign by
reverting to the description given by the disc, depicted in Fig. 16.1a, or
by using the (equivalent) arrow arrangements (intrepreted cyclicly) of
Fig. 16.3. Let us assign a cyclic ordering to the marked points on the
disc—say anticlockwise. Then we have i\i, = i. if the cyclic ordering of

iy, iy, i, agrees with that assigned by the disc, and ii, = —i. otherwise.
In particular, we have ioil = i3 = —ilio, i0i2 = i6, i1i6 = —i5, i4i2 = —il,
etc.[16-]

Although there is a considerable elegance to these geometric and alge-
braic structures, there seems to be little obvious contact with the workings
of the physical world. Perhaps this should not surprise us, if we adopt the
point of view expressed in Fig. 1.3, in §1.4. For the mathematics that has
any direct relevance to the physical laws that govern our universe is but a
tiny part of the Platonic mathematical world as a whole—or so it would
seem, as far as our present understanding has taken us. It is possible that,

15 [16.6] Show that the ‘associator’ a(bc) — (ab)c is antisymmetrical in a, b, ¢ when these are
generating elements, and deduce that this (whence also a(ab) = a*b) holds for all elements. Hint:
Make use of Fig. 16.3 and the full symmetry of the Fano plane.
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as our knowledge deepens in the future, important roles will be found for
such elegant structures as finite geometries or for the algebra of octonions.
But as things stand, the case has yet to be convincingly made, in my
opinion.? It seems that mathematical elegance alone is far from enough
(see also §34.9). This should teach us caution in our search for the under-
lying principles of the laws of the universe!

Let us drag ourselves back from such flirtations with these appealing
finite structures and return to the awesome mathematical richness that is
inherent in the infinite. As a preliminary, it should be pointed out that
infinite structures (such as the totality of natural numbers IY) might be
part of some mathematical formalism aimed at a description of reality,
whereas it is not intended that these infinite structures have direct physical
interpretation as infinite (or infinitesimal) physical entities. For example,
some attempts have been made to develop a scheme in which discreteness
(and indeed finiteness) appears at the smallest level, while there is still the
potential for describing indefinitely (or even infinitely) large structures.
This applies, in particular, to some old ideas of my own for building up
space in a finite way, using the theory of spin networks which I shall
describe briefly in §32.6, and which depends upon the fact that, according
to standard quantum mechanics, the measure of spin of an object is given
by a natural number multiple of a certain fixed quantity (% 7). Indeed, as
I mentioned in §3.3, in the early days of quantum mechanics, there was a
great hope, not realized by future developments, that quantum theory was
leading physics to a picture of the world in which there is actually discrete-
ness at the tiniest levels. In the successful theories of our present day, as
things have turned out, we take spacetime as a continuum even when
quantum concepts are involved, and ideas that involve small-scale space-
time discreteness must be regarded as ‘unconventional’ (§33.1). The con-
tinuum still features in an essential way even in those theories which
attempt to apply the ideas of quantum mechanics to the very structure
of space and time. This applies, in particular, to the Ashtekar—Rovelli—
Smolin—Jacobson theory of loop variables, in which discrete (combinator-
ial) ideas, such as those of knot and link theory, actually play key
roles, and where spin networks also enter into the basic structure. (We
shall be seeing something of this remarkable scheme in Chapter 32 and, in
§33.1, we shall briefly encounter some other ideas relating to ‘discrete
spacetime’.)

Thus it appears, for the time being at least, that we need to take the use
of the infinite seriously, particularly in its role in the mathematical descrip-
tion of the physical continuum. But what kind of infinity is it that we are
requiring here? In §3.2 I briefly described the ‘Dedekind cut’ method of
constructing the real-number system in terms of infinite sets of rational
numbers. In fact, this is an enormous step, involving a notion of infinity
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that greatly surpasses that which is involved with the rational numbers
themselves. It will have some significance for us to address this issue here.
In fact, as the great Danish/Russian/German mathematician Georg
Cantor showed, in 1874, as part of a theory that he continued to develop
until 1895, there are different sizes of infinity! The infinitude of natural
numbers is actually the smallest of these, and different infinities continue
unendingly to larger and larger scales. Let us try to catch a glimpse of
Cantor’s ground-breaking and fundamental ideas.

16.3 Different sizes of infinity

The first key ingredient in Cantor’s revolution is the idea of a one-to-one
1-1 correspondence.* We say that two sets have the same cardinality (which
means, in ordinary language, that they have the ‘same number of elements’)
if it is possible to set up a correspondence between the elements of one set
and the elements of the other set, one to one, so that there are no elements
of either set that fail to take part in the correspondence. It is clear that this
procedure gives the right answer (‘same number of elements’) for finite sets
(i.e. sets with a finite number 1, 2, 3, 4, ... of members, or even 0 elements,
where in that case we require the correspondence to be vacuous). But in
the case of infinite sets, there is a novel feature (already noticed, by 1638,
by the great physicist and astronomer Galileo Galilei)® that an infinite set
has the same cardinality as some of its proper subsets (where ‘proper’
means other than the whole set).
Let us see this in the case of the set IN of natural numbers:

N=1{0,1,2,34,5, ...}

If we remove 0 from this set,’ we find a new set IN — 0 which clearly has
the same cardinality as IN, because we can set up the 1-1 correspondence
in which the element r in IN is made to correspond with the element r + 1
in IN — 0. Alternatively, we can take Galileo’s example, and see that the
set of square numbers {0, 1, 4, 9, 16, 25, ...} must also have the same
cardinality as IV, despite the fact that, in a well-defined sense, the square
numbers constitute a vanishingly small proportion of the natural numbers
as a whole. We can also see that the cardinality of the set 7Z of all the
integers is again of this same cardinality. This can be seen if we consider
the ordering of 7Z given by

{0,1,-1,2,-2,3,-3,4,—4, ...},

which we can simply pair off with the elements {0, 1, 2, 3,4, 5,6, 7,8, ...}
of the set IN. More striking is the fact that the cardinality of the rational
numbers is again the same as the cardinality of IN. There are many ways of

364



The ladder of infinity §16.3

seeing this directly,['67-16-8] byt rather than demonstrating this in detail
here, let us see how this particular example falls into the general framework
of Cantor’s wonderful theory of infinite cardinal numbers.

First, what is a cardinal number? Basically, it is the ‘number’ of elements
in some set, where we regard two sets as having the ‘same number of
elements’ if and only if they can be put into 1-1 correspondence with each
other. We could try to be more precise by using the ‘equivalence class’ idea
(employed in §16.1 above to define I, for a prime p; see also the Preface)
and say that the cardinal number o of some set A is the equivalence class of
all sets with the same cardinality as 4. In fact the logician Gottlob Frege
tried to do just this in 1884, but it turns out that there are fundamental
difficulties with open-ended concepts like ‘all sets’, since serious contradic-
tions can arise with them (as we shall be seeing in §16.5). In order to avoid
such contradictions, it seems to be necessary to put some restriction on the
size of the ‘universe of possible sets’. I shall have some remarks to make
about this disturbing issue shortly. For the moment, let us evade it by
taking refuge in a position that I have been taking before (as referred to in
the Preface, in relation to the ‘equivalence class’ definition of the rational
numbers). We take the cardinals as simply being mathematical entities
(inhabitants of Plato’s world!) which can be abstracted from the notion
of 1-1 equivalence between sets. We allow ourselves to say that the set 4
‘has cardinality o’, or that it ‘has o elements’, provided that we
are consistent and say that the set B also ‘has cardinality o’, or that it
‘has o elements’, if and only if 4 and B can be put into 1-1 correspondence.
Notice that the natural numbers can all be thought of as cardinal num-
bers in this sense—and this is a good deal closer to the intuitive

3

notion of what a natural number ‘is’ than the ‘ordinal’ definition
0=1{},1={0},2=1{0, {0}},3=1{0, {0}, {0, {0}}}, ...) given in §3.4!
The natural numbers are in fact the finite cardinals (in the sense that the
infinite cardinals are the cardinalities of those sets, like IN above, which
contain proper subsets of the same cardinality as themselves).

Next, we can set up relationships between cardinal numbers. We say
that the cardinal « is less than or equal to the cardinal f§, and write

a<p

(or equivalently f# > «), if the elements of a set 4 with cardinality « can be
put into 1-1 correspondence with the elements of some subset (not neces-
sarily a proper subset) of the elements of some set B, with cardinality f. It

#5[16.7] See if you can provide such an explicit procedure, by finding some sort of systematic way
of ordering all the fractions. You may find the result of Exercise [16.8] helpful.

£35 [16.8] Show that the function %((a + b)? + 3a + b) explicitly provides a 1-1 correspondence
between the natural numbers and the pairs (a, b) of natural numbers.
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should be clear that, if « < and B <y, then o < y.l'% One of the
beautiful results of the theory of cardinal numbers is that, if

v < fand ff <o,
then

%= p,

meaning that there is a 1-1 correspondence between 4 and B.[¢-10]
We may ask whether there are pairs of cardinals « and f§ for which neither
of the relations o = f§ and f =< o holds. Such cardinals would be non-
comparable. In fact, it follows from the assumption known as the axiom
of choice (referred to briefly in §1.3) that non-comparable cardinals do not
exist.

The axiom of choice asserts that if we have a set A4, all of whose
members are non-empty sets, then there exists a set B which contains
exactly one element from each of the sets belonging to 4. It would appear,
at first, that the axiom of choice is merely asserting something absolutely
obvious! (See Fig. 16.4.) However, it is not altogether uncontroversial that
the axiom of choice should be accepted as something that is universally
valid. My own position is to be cautious about it. The trouble with this
axiom is that it is a pure ‘existence’ assertion, without any hint of a rule
whereby the set B might be specified. In fact, it has a number of alarming
consequences. One of these is the Banach-Tarski theorem,’ one version of
which says that the ordinary unit sphere in Euclidean 3-space can be cut
into five pieces with the property that, simply by Euclidean motions

Fig. 16.4 The axiom of
choice asserts that for any
set A, all of whose
members are non-empty
sets, there exists a set B
which contains exactly one
element from each of the
sets belonging to A.

3 [16.9] Spell this out in detail.

153 [16.10] Prove this. Outline: there is a 1-1 map b taking 4 to some subset b4 (= b(A)) of B,
and a 1-1 map « taking B to some subset aB of A; consider the map of A to B which uses b
to map A—aB to bA—baB and abA—abaB to babA—babaB, etc. and which uses a~! to map
aB—abA to B—bA and abaB—ababA to baB—bab A, etc., and sort out what to do with the rest of 4
and B.
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(i.e. translations and rotations), these pieces can be reassembled to make
two complete unit spheres! The ‘pieces’, of course, are not solid bodies, but
intricate assemblages of points, and are defined in a very non-constructive
way, being asserted to ‘exist’ only by use of the axiom of choice.

Let me now list, without proof, a few very basic properties of cardinal
numbers. First, the symbol = gives the normal meaning (see Note 3.1)
when applied to the natural numbers (the finite cardinals). Moreover, any
natural number is less than or equal to (=) any infinite cardinal number—
and, of course, it is strictly smaller, i.e. less than (<) and not equal to it.
Now suppose that § =< «, with o infinite, then (in stark contrast with what
we are familiar with for finite numbers) the cardinality of the union A U B
is simply the greater of the two, namely o, and the cardinality of the
product Ax B is also a. (We have seen examples of the product before,
e.g.§13.2,§15.2. The set A x Bis consists of all pairs (a, b), where a is taken
from 4 and b from B. For finite sets, the cardinality of their product, as
sets, is the ordinary numerical product of their cardinalities, which for
finite sets with more than one member is always larger than the cardinality
of either individually.) This does not seem to get us very far if we want to
find infinities that are bigger than the ones that we have already. We seem
to have got ‘stuck’ at a.

We shall be seeing how to get ‘unstuck’ in the next section. For the
moment, however, we can see that what we have done above is at least
enough to show us that the number of rational numbers is the same as the
number of natural numbers. Following Cantor, let us use the symbol N,
(‘aleph nought’ or, in the US, ‘aleph null’) for the cardinality of the natural
numbers IN which, as we have seen above, is the same as the cardinality of
the integers 7. In fact, the infinite number X is the smallest of the infinite
cardinals. Now, what is the cardinality p of the rationals? Any rational
number can be written (in many ways) in the form a/b, where a and b are
integers. Choosing one of these ways (say, ‘lowest terms’) for each ra-
tional, we have found a 1-1 correspondence between the set of rationals
with a subset of the set IN x IN. Therefore p is less than or equal to the
cardinality of INxIN. But by the above (or, by direct application of
Exercise [16.8], the cardinality of IN x IN is equal to the cardinality of
IN, namely Ny. Thus, p=%¥,. But the integers are contained in the
rationals, so Ny = p. Hence, p = Ny.

16.4 Cantor’s diagonal slash

Now we come to Cantor’s astounding early achievement, namely his
demonstration that there are indeed infinities strictly greater than N,
and that the cardinality of the set IR of real numbers is such an infinity.
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I shall give this result here as a particular instance of Cantor’s more
general
o < 2%,

where o < ff means = f§ and o # f (and, of course, we can also write
o < f as f > o). Cantor’s remarkable proof of this result (and the result
itself) constitutes one of the most original and influential achievements in
the whole of mathematics. Yet it is simple enough that I can give it in its
entirety here.

First I should explain the notation. If we have two sets 4 and B, then
the set B4 is the set of all mappings from A to B. What is the rationale for
this use of notation? We think of the set 4 spread out before us, each
element of A4 being represented as a ‘point’. Then, to picture an element of
B4, we place one of the elements of B at each of these points. This is a
mapping from A to B because it provides an assignment of an element of
B to each element of 4 (see Fig. 16.5). The reason for the ‘exponential
notation” B4 is that when we apply this procedure to finite sets, say to a
set A, with a elements, and a set B, with b elements, then the total number
of ways of assigning an element of B to each element of A4 is indeed b“.
(There are b ways for the first member of A4; there are b ways for the
second; there are b ways for the third; and so on, for each of the «
members of 4. The total number in all is therefore b x b x b x ... x b,
the number of bs in the product being a, so this is just %) Cantor’s
notation is

ﬁo{

for the cardinality of B4, where 8 and « are the respective cardinalities of B
and 4.

Fig. 16.5 For general
X sets A4, B, the set of all
mappings from A4 to B is
denoted B4 (see also
B x ¥ B x 4 Fig. 6.1). Each element of
A is assigned a particular
element of B. This
provides a cross-section
of B x A, regarded as a
bundle over 4 (as in Fig.
I SR S S N AN N U v 15.6a), except that there is
no notion of continuity
‘A involved.
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This takes on a particular significance when § = 2. Here we can take B
to be a set with two elements that we shall think of being the labels ‘in” and
‘out’. Each element of B4 is thus an assignment of either ‘in’ or ‘out’ to
every element of 4. Such an assignment amounts simply to choosing a
subset of 4 (namely the subset of ‘in’ elements). Thus, B4 is, in this case,
just the set of subsets of 4 (and we frequently denote this set of subsets of
A by 24). Accordingly:

2% is the total number of subsets of any set with a elements.

Now for Cantor’s astonishing proof. This proceeds in accordance with
the classic ancient Greek tradition of ‘proof by contradiction’ (§2.6, §3.1).
First, let us try to suppose that o« = 2%, so that there is some 1-1 corres-
pondence between some set 4 and its set of subsets 24. Then each element
a of A will be associated with a particular subset S(a) of A4, under this
correspondence. We may expect that sometimes the set S(a) will contain a
itself as a member and sometimes it will not. Let us consider the collection
of all the elements a for which S(a) does not contain a. This collection will
be some particular subset Q of 4 (which we allow to be either the empty set
or the whole of A4, if need be). Under the supposed 1-1 correspondence, we
must have Q = S(g), for some ¢ in S. We now ask the question: ‘Is ¢ in Q
or is it not? First suppose that it is not. Then ¢ must belong to the
collection of elements of A that we have just singled out as the subset Q,
so ¢ must belong to Q after all: a contradiction. This leaves us with the
alternative supposition, namely that g is in Q. But then ¢ cannot belong to
the collection that we have called O, so ¢ does not belong to Q after all:
again a contradiction. We therefore conclude that our supposed 1-1 cor-
respondence between 4 and 24 cannot exist.

Finally, we need to show that o =< 2%, i.e. that there is a 1-1 correspond-
ence between 4 and some subset of 24. This is achieved by simply using the
1-1 correspondence which assigns each element a of A to the particular
subset of A that contains just the element a and no other. Thus, we have
established o < 2%, as required, having shown o < 2* but a # 2*.

Though this argument may be a little confusing (and any confused
reader may care to study it all over again), it is extremely ‘elementary’ in
the sense that it does not appeal to mathematical ideas requiring any
expert knowledge. In view of this, it is very remarkable that its implica-
tions are extraordinarily far-reaching. Not only does it enable us to see
that there are fundamentally more real numbers than there are natural
numbers, but it also shows that there is no end to the hugeness of the
possible infinite numbers. Moreover, in a slightly modified form, the
argument shows that there is no computational way of deciding whether
a general computation will ever come to an end (Turing), and a related
consequence is Godel’s famous incompleteness theorem which shows that
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no set of pre-assigned trustworthy mathematical rules can encapsulate all
the procedures whereby mathematical truths are ascertained. I shall try to
give the flavour of how such results are obtained in the next section.

To end this section, however, let us see why the above result actually
establishes Cantor’s first remarkable breakthrough concerning the infinite,
namely that there are actually far more real numbers than there are
natural numbers—despite the fact that there are exactly as many fractions
as natural numbers. (This breakthrough established that there is, indeed, a
non-trivial theory of the infinite!) This will follow if we can see that the
cardinality of the reals, usually denoted by C, is actually equal to 2™:

C =2,

Then, by the above argument, C > X, as required.

There are many ways to see that C = 2%, To show that 2% =< C (which
is actually all that we now need for C > ), it is sufficient to establish that
there is a 1-1 correspondence between 2™ and some subset of IR. We can
think of each element of 2™ as an assignment of either 0 or 1 (‘out’ or ‘in’)
to each natural number, i.e. such an element can be thought of as an
infinite sequence, such as

100110001011101....

(This particular element of 2™ assigns 1 to natural number 0, it assigns 0
to the natural number 1, it assigns 0 to the natural number 2, it assigns
1 to the natural number 3, it assigns 1 to the natural number 4, etc., so our
subset is {0,3,4,8, ... }.) Now, we could try to read off this entire sequence
of digits as the binary expansion of a some real number, where we think
of a decimal point situated at the far left. Unfortunately, this does not
quite work, because of the irritating fact that there is an ambiguity in
certain such representations, namely with those that end in an infinite
sequence consisting entirely of 0s or else consisting entirely of 1s.[16-11]
We can get around this awkwardness by any number of stupid devices. One
of these would be to interleave the binary digits with, say, the digit 3, to
obtain

.313030313130303031303131313031 ... .,

and then read this number off as the ordinary decimal expression of some
real number. Accordingly, we have indeed set up a 1-1 correspondence
between 2% and a certain subset of IR (namely the subset whose decimal
expansions have this odd-looking interleaved form). Hence 2% = C (and
we now obtain Cantor’s C > Ny), as required.

43 [16.11] Explain this.
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To deduce that C = 2% we have to be able to show that C < 2%, Now,
every real number strictly between 0 and 1 has a binary expansion (as
considered above), albeit sometimes redundantly; thus that particular set
of reals certainly has cardinality =2 . There are many simple functions
that take this interval to the whole of IR,[1012] establishing that C =2,
and hence C = 2™, as required.

Cantor’s original version of the argument was given somewhat differ-
ently from the one presented above, although the essentials are the same.
His original version was also a proof by contradiction, but more direct. A
hypothetical 1-1 correspondence between IN and the real numbers strictly
between 0 and 1 was envisaged, and presented as a vertical listing of all
real numbers, each written out in decimal expansion. A contradiction with
the assumption that the list is complete was obtained by a ‘diagonal
argument’ whereby a new real number, not in the list, is constructed by
going down the main diagonal of the array, starting at the top left corner
and differing in the nth place from the nth real number in the list. (There
are many popular accounts of this; see, for example, the version of it
given in Chapter 3 of my book The Emperor’s New Mind).'®13] This
general type of argument (including that which we used at the beginning
of this section to demonstrate o« < 2%), is sometimes referred to as Cantor’s
‘diagonal slash’.

16.5 Puzzles in the foundations of mathematics

As remarked above, the cardinality, 2%, of the continuum (i.e. of IR) is
often denoted by the letter C. Cantor would have preferred to be able to
label it ‘X;’, by which he meant the ‘next smallest’ cardinal after Ny. He
tried, but failed, to prove 2% = §;; in fact the contention 2% = N’
known as the continuum hypothesis, became a famous unresolved
issue for many years after Cantor proposed it. It is still unresolved, in
an ‘absolute’ sense. Kurt Goédel and Paul Cohen were able to show that
the continuum hypothesis (and also the axiom of choice) is not
decidable by the means of standard set theory. However, because of
Godel’s incompleteness theorem, which I shall be coming to in a moment,
and various related matters, this does not in itself resolve the issue of the
truth of the continuum hypothesis. It is still possible that more powerful
methods of proof than those of standard set theory might be able to decide
the truth or otherwise of the continuum hypothesis; on the other hand, it
could be the case that its truth or falsehood is a subjective issue depending

@63 [16.12] Exhibit one. Hint: Look at Fig. 9.8, for example.

£3[16.13] Explain why this is essentially the same argument as the one I have given here, in the
case o = Ny for showing o < 2%,
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upon what mathematical standpoint one adheres to.® This issue was
referred to in §1.3, but in relation to the axiom of choice, rather than the
continuum hypothesis.

We see that the relation o < 2* tells us that there cannot be any greatest
infinity; for if some cardinal number Q were proposed as being the
greatest, then the cardinal number 29 is seen to be even greater. This
fact (and Cantor’s argument establishing this fact) has had momentous
implications for the foundations of mathematics. In particular, the phil-
osopher Bertrand Russell, being previously of the opinion that there must
be a largest cardinal number (namely that of the class of all classes) had
been suspicious of Cantor’s conclusion, but changed his mind, by around
1902, after studying it in detail. In effect, he appplied Cantor’s argument to
the ‘set of all sets’, leading him at once to the now famous ‘Russell
paradox’!

This paradox proceeds as follows. Consider the set R, consisting of ‘all
sets that are not members of themselves’. (For the moment, it does not
matter whether you are prepared to believe that a set can be a member of
itself. If no set belongs to itself, then R is the set of all sets.) We ask the
question, what about R itself? Is R a member of itself? Suppose that it is.
Then, since it then belongs to the set R of sets which are not members
of themselves, it does not belong to itself after all—a contradiction!
The alternative supposition is that it does not belong to itself. But
then it must be a member of the entire family of sets that are not members
of themselves, namely the set R. Thus, R belongs to R, which con-
tradicts the assumption that it does not belong to itself. This is a clear
contradiction!

It may be noticed that this is simply what happens to the Cantor proof
o < 2% if it is applied in the case when o is taken to be the ‘set of all
sets’.[16-14] Indeed this is how Russell came across his paradox.® What this
argument is actually showing is that there is no such thing as the ‘set of all
sets’. (In fact Cantor was already aware of this, and knew about the
‘Russell paradox’ some years before Russell himself.'° It might seem odd
that something so straightforward as the ‘set of all sets’ is a forbidden
concept. One might imagine that any proposal for a set ought to be
perfectly acceptable if there is a well-defined rule for telling us when
something belongs to it and when something does not. Here is seems
that there certainly is such a rule, namely that every set is in it! The
catch seems to be that we are allowing the same status to this stupendous
collection as we are to each of its members, namely calling both kinds
of collection simply a ‘set’. The whole argument depends upon our having
a clear idea about what a ser actually is. And once we have such an idea,

15 [16.14] Show that this is what happens.
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the question arises: is the collection of all these things itself actually to
count as a set? What Cantor and Russell have told us is that the answer to
this question has to be no!

In fact, the way that mathematicians have come to terms with this
apparently paradoxical situation is to imagine that some kind of distinc-
tion has been made between ‘sets’ and ‘classes’. (Think of the classes as
sometimes being large unruly things that are not supposed to join clubs,
whereas sets are always regarded as respectable enough to do so.) Roughly
speaking, any collection of sets whatever could be allowed to be con-
sidered as a whole, and such a collection would be called a class. Some
classes are respectable enough to be considered as sets themselves, but
other classes would be considered to be ‘too big’ or ‘too untidy’ to be
counted as sets. We are not necessarily allowed to collect classes together,
on the other hand, to form larger entities. Thus, the ‘set of all sets’ is not
allowed (nor is the ‘class of all classes’ allowed), but the ‘class of all sets’ is
considered to be legitimate. Cantor denoted this ‘supreme’ class by 2, and
he attributed an almost deistic significance to it. We are not allowed to
form bigger classes than Q. The trouble with 29° would be that it involves
‘collecting together’ all the different ‘subclasses’ of 2, most of which are
not themselves sets, so this is disallowed.

There is something that appears rather unsatisfactory about all this. I
have to confess to being decidedly dissatisfied with it myself. This proced-
ure might be reasonable if there were a clear-cut criterion telling us when a
class actually qualifies as being a set. However, the ‘distinction’ appears
often to be made in a very circular way. A class is deemed to be a set if and
only if it can itself be a member of some other class—which, to me, seems
like begging the question! The trouble is that there is no obvious place to
draw the line. Once a line has been drawn, it begins to appear, after a
while, that the line has actually been drawn too narrowly. There seems to
be no reason not to include some larger (or more unruly) classes into our
club of sets. Of course, one must avoid an out-and-out contradiction. But
it turns out that the more liberal are the rules for membership of the club
of sets, the more powerful are the methods of mathematical proof that the
set concept now provides. But open the door to this club just a crack too
wide and disaster strikes—CONTRADICTION!—and the whole edifice
falls to the ground! The drawing of such a line is one of the most delicate
and difficult procedures in mathematics.!!

Many mathematicians might prefer to pull back from such extreme
liberalism, even taking a rigidly conservative ‘constructivist’ approach,
according to which a set is permitted only if there is a direct construction
for enabling us to tell when an element belongs to the set and when it does
not. Certainly ‘sets’ that are defined solely by use of the axiom of choice
would be a disallowed membership criterion under such strict rules! But it
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turns out that these extreme conservatives are no more immune from
Cantor’s diagonal slash than are the extreme liberals. Let us try to see,
in the next section, what the trouble is.

16.6 Turing machines and Godel’s theorem

First, we need a notion of what it means to ‘construct’ something in
mathematics. It is best that we restrict attention to subsets of the set IY
of natural numbers, at least for our primitive considerations here. We may
ask which such subsets are defined ‘constructively’? It is fortunate that we
have at our disposal a wonderful notion, introduced by various logicians!?
of the first third of the 20th century and put on a clear footing by Alan
Turing in 1936. This is the notion of computability; and since electronic
computers have become so familiar to us now, it will probably suffice for
me to refer to the actions of these physical devices rather than give the
relevant ideas in terms of some precise mathematical formulation.
Roughly speaking, a computation (or algorithm) is what an idealized
computer would perform, where ‘idealized’ means that it can go on for
an indefinite length of time without ‘wearing out’, that it never makes
mistakes, and that it has an unlimited storage space. Mathematically, such
an entity is effectively what is called a Turing machine.'

Any particular Turing machine T corresponds to some specific compu-
tation that can be performed on natural numbers. The action of T on the
particular natural number n is written 7(n), and we normally take this
action to yield some (other) natural number m:

T(n) = m.

Now, a Turing machine might have the property that it gets ‘stuck’ (or
‘goes into a loop’) because the computation that it is performing never
terminates. I shall say that a Turing machine is faulty if it fails to terminate
when applied to some natural number 7. I call it effective if, on the other
hand, it always does terminate, whatever number it is presented with.

An example of a non-terminating (faulty) Turing machine T would be
the one that, when presented with #, tries to find the smallest natural
number that is not the sum of n square numbers (0> = 0 included). We
find T(0)=1, T(1) =2, T(2) =3, T(3) = 7 (the meaning of these equa-
tions being exemplified by the last one: ‘7 is the smallest number that is not
the sum of 3 squares’),l'®!3] but when T is applied to 4, it goes on
computing forever, trying to find a number that is not the sum of four
squares. The cause of this particular machine’s hang-up is a famous

£9[16.15] Give a rough description of how our algorithm might be performed and explain these
particular values.
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theorem due to the great 18th century French—Italian mathematician
Joseph C. Lagrange, who was able to prove that in fact every natural
number is the sum of four square numbers. (Lagrange will have a very
considerable importance for us in a different context later, most particu-
larly in Chapters 20 and 26, as we shall see!)

Each separate Turing machine (whether faulty or effective) has a certain
‘table of instructions’ that characterizes the particular algorithm that this
particular Turing machine performs. Such a table of instructions can be
completely specified by some ‘code’, which we can write out as a sequence
of digits. We can then re-interpret this sequence as a natural number ¢;
thus ¢ codifies the ‘program’ that enables the machine to carry out its
particular algorithm. The Turing machine that is thereby encoded by the
natural number ¢ will be denoted by T,. The coding may not work for
all natural numbers ¢, but if it does not, for some reason, then we can
refer to T, as being ‘faulty’, in addition to those cases just considered
where the machine fails to stop when applied to some n. The only effective
Turing machines T, are those which provide an answer, after a finite time,
when applied to any individual #.

One of Turing’s fundamental achievements was to realize that it is
possible to specify a single Turing machine, called a universal Turing
machine U, which can imitate the action of any Turing machine whatever.
All that is needed is for U to act first on the natural number ¢, specifying
the particular Turing machine T, that is to be mimicked, after which U
acts upon the number #, so that it can proceed to evaluate T,(n). (Modern
general-purpose computers are, in essence, just universal Turing
machines.) I shall write this combined action U(t, n), so that

U(t, n) = T.n).

We should bear in mind, however, that Turing machines, as defined
here, are supposed to act only on a single natural number, rather than
a pair, such as (¢, n). But it is not hard to encode a pair of natural
numbers as a single natural number, as we have seen earlier (e.g. in
Exercise [16.8]). The machine U will itself be defined by some natural
number, say u, so we have

U=T,.

How can we tell whether a Turing machine is effective or faulty? Can we
find some algorithm for making this decision? It was one of Turing’s
important achievements to show that the answer to this question is in
fact ‘no’! The proof is an application of Cantor’s diagonal slash. We shall
consider the set IV, as before, but now instead of considering all subsets of
IV, we consider just those subsets for which it is a computational matter to
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decide whether or not an element is in the set. (These cannot be all the
subsets of IN because the number of different computations is only Ny,
whereas the number of all subsets of IN is C.) Such computationally
defined sets are called recursive. In fact any recursive subset of IN is
defined by the output of an effective Turing machine 7, of the particular
kind that it only outputs 0 or 1. If T(n) = 1, then n is a member of the
recursive set defined by T (‘in’), whereas if T(n) =0, then n is not a
member (‘out’). We now apply the Cantor argument just as before, but
now just to recursive subsets of IN. The argument immediately tells us that
the set of natural numbers ¢ for which T; is effective cannot be recursive.
There is no algorithm, applicable to any given Turing machine 7, for
telling us whether or not T is faulty!

It is worth while looking at this reasoning a little more closely. What
the Turing/Cantor argument really shows is that the set of ¢ for which
T, is effective is not even recursively enumerable. What is a recursively
enumerable subset of IN? It is a set of natural numbers for which there is
an effective Turing machine 7 which eventually generates each member
(possibly more than once) of this set when applied to 0, 1, 2, 3, 4, ...
successively. (That is, m is a member of the set if and only if m = T(n) for
some natural number n.) A subset S of IN is recursive if and only if it is
recursively enumerable and its complement IN — S is also recursively enu-
merable.l'%161 The supposed 1-1 correspondence with which the Turing/
Cantor argument derives a contradiction is a recursive enumeration of the
effective Turing machines. A little consideration tells us that what we have
learnt is that there is no general algorithm for telling us when a Turing
machine action T,(n) will fail to stop.

What this ultimately tells us is that despite the hopes that one might
have had for a position of ‘extreme conservatism’, in which the only
acceptable sets would be ones—the recursive sets—whose membership is
determined by clear-cut computational rules, this viewpoint immediately
drives us into having to consider sets that are non-recursive. The viewpoint
even encounters the fundamental difficulty that there is no computational
way of generally deciding whether or not two recursive sets are the same or
different sets, if they are defined by two different effective Turing machines
T; and T!['%17] Moreover, this kind of problem is encountered again and
again at different levels, when we try to restrict our notion of ‘set’ by too
conservative a point of view. We are always driven to consider classes that
do not belong to our previously allowed family of sets.

1% [16.16] Show this.
5 [16.17] Can you see why this is so? Hint: For an arbitrary Turing machine action of T applied
to n, we can consider an effective Turing machine Q which has the property that Q(r) =0 if T

applied to n has not stopped after » computational steps, and Q(r) = 1 if it has. Take the modulo 2
sum of Q(n) with T,(n) to get T(n).
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These issues are closely related to the famous theorem of Kurt Gédel.
He was concerned with the question of the methods of proof that are
available to mathematicians. At around the turn of the 20th century, and
for a good many years afterwards, mathematicians had attempted to avoid
the paradoxes (such as the Russell paradox) that arose from an excessively
liberal use of the theory of sets, by introducing the idea of a mathematical
formal system, according to which there was to be laid down a collection of
absolutely clear-cut rules as to what lines of reasoning are to count as a
mathematical proof. What Godel showed was that this programme will
not work. In effect, he demonstrated that, if we are prepared to accept that
the rules of some such formal system F are to be trusted as giving us only
mathematically correct conclusions, then we must also accept, as correct, a
certain clear-cut mathematical statement G(F), while concluding that G(F)
is not provable by the methods of F alone. Thus, Gddel shows us how to
transcend any F that we are prepared to trust.

There is a common misconception that Godel’s theorem tells us that
there are “‘unprovable mathematical propositions’, and that this implies
that there are regions of the ‘Platonic world’ of mathematical truths (see
§1.4) that are in principle inaccessible to us. This is very far from the
conclusion that we should be drawing from Godel’s theorem. What
Godel actually tells us is that whatever rules of proof we have laid down
beforehand, if we already accept that those rules are trustworthy (i.e. that
they do not allow us to derive falsehoods), then we are provided with a
new means of access to certain mathematical truths that those particular
rules are not powerful enough to derive.

Godel’s result follows directly from Turing’s (although historically
things were the other way around). How does this work? The point
about a formal system is that no further mathematical judgements are
needed in order to check whether the rules of F have been correctly
applied. It has to be an entirely computational matter to decide the
correctness of a mathematical proof according to F. We find that, for
any F, the set of mathematical theorems that can be proved using its rules
is necessarily recursively enumerable.

Now, some well-known mathematical statements can be phrased in the
form ‘such-and-such Turing machine action does not terminate’. We have
already seen one example, namely Lagrange’s theorem that every natural
number is the sum of four squares. Another even more famous example is
‘Fermat’s last theorem’, proved at the end of the 20th century by Andrew
Wiles (§1.3).'* Yet another (but unresolved) is the well-known ‘Goldbach
conjecture’ that every even number greater than 2 is the sum of two
primes. Statements of this nature are known to mathematical logicians
as II;-sentences. Now it follows immediately from Turing’s argument
above that the family of true IT,-sentences constitutes a non-recursively
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enumerable set (i.e. one that is not recursively enumerable). Hence there
are true IT;-sentences that cannot be obtained from the rules of F (where
we assume that F is trustworthy) This is the basic form of Godel’s the-
orem. In fact, by examining the details of this a little more closely, we can
refine the argument so as to obtain the version of it stated above, and
obtain a specific I1;-sentence G(F) which, if we believe F to yield only true
I1;-sentences, must escape the net cast by F despite the remarkable fact
that we must conclude that G(F) is also a true IT;-sentence!l!¢-18]

16.7 Sizes of infinity in physics

Finally, let us see how these issues of infinity and constructibility lie, in
relation to the mathematics of our previous chapters and to our current
understanding of physics. It is perhaps remarkable, in view of the close
relationship between mathematics and physics, that issues of such basic
importance in mathematics as transfinite set theory and computability
have as yet had a very limited impact on our description of the physical
world. It is my own personal opinion that we shall find that computability
issues will eventually be found to have a deep relevance to future physical
theory,!> but only very little use of these ideas has so far been made in
mathematical physics.!'®

With regard to the size of the infinities that have found value, it is rather
striking that almost none of physical theory seems to need our going
beyond C(=2), the cardinality of the real-number system IR. The car-
dinality of the complex field € is the same as that of IR (namely C), since
C is just IR x IR (pairs of real numbers) with certain addition and multipli-
cation laws defined on it. Likewise, the vector spaces and manifolds that
we have been considering are built from families of points that can be
assigned coordinates from some IRXIRx...xIR (or CxCx...xC) or
from finite (or countably many, i.e. Ny’s worth of) such coordinate
patches, and again the cardinality is C.

What about the families of functions on such spaces? If we consider, say,
the family of all real-number-valued functions on some space with C
points, then we find, from the above considerations, that the family has
C® members (being mappings from a C-element space to a C-element
space). This is certainly larger than C. In fact CC =2°. (This follows
because each element of IR™ can be re-interpreted as a particular element
of 2R >R "namely as a (usually far from continuous) cross-section of
the bundle R xIR, and the cardinality of R xIR is C.) However, the
continuous real (or complex) functions (or tensor fields, or connections)
on a manifold are only C in number, because a continuous function is

15 [16.18] See if you can establish this.
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determined once its values on the set of points with rational coordi-
nates are known. The number of these is just C™, since the number of
points with rational coordinates is just Ny. But CY0= (2%)™ —
2N0x®o — 2N — G [16.19] Ty §§6.4,6, we considered certain generalizations of
continuous functions, leading to the very great generalization known as
hyperfunctions (§9.7). However the number of these is again no greater
than C, as they are defined by pairs of holomorphic functions (each C in
number).

In §22.3, we shall be seeing that quantum theory requires the use of certain
spaces, known as Hilbert spaces, that may have infinitely many dimensions.
However, although these particular infinite-dimensional spaces differ sign-
ificantly from finite-dimensional spaces, there are not more continuous
functions on them than in the finite-dimensional case, and again we get C
as the total number. The best bet for going higher than this is in relation to
the path-integral formulation of quantum field theory (as will be discussed
in §26.6), when a space of wild-looking curves (or of wild-looking physical
field configurations) in spacetime are considered. However, we still seem just
to get C for the total number, because despite their wildness, there is a
sufficient remnant of continuity in these structures.

The notion of cardinality does not seem to be sufficiently refined to
capture the appropriate concept of size for the spaces that are encountered
in physics. Almost all the spaces of significance simply have C points in
them. However, there is a vast difference in the ‘sizes’ of these spaces, where
in the first instance we think of this ‘size’ simply as the dimension of the
vector space or manifold M under consideration. This dimension of M may
be a natural number (e.g. 4, in the case of ordinary spacetime, or 6 x 10!, in
the case of the phase space considered in §12.1), or it could be infinity, such
as with (most of) the Hilbert state-spaces that arise in quantum mechanics.
Mathematically, the simplest infinite-dimensional Hilbert space is the space
of sequences (z;, 22, z3 , ... ) of complex numbers for which the infinite sum
|z1]*+|z2[*+|z3)* + . .. converges. In the case of an infinite-dimensional
Hilbert space, it is most appropriate to think of this dimensionality as
being Ny. (There are various subtleties about this, but it is best not to get
involved with these here.) For an n-real-dimensional space, I shall say that it
has ‘oo™ points (which expresses that this continuum of points is organized
in an n-dimensional array). In the infinite-dimensional case, I shall refer to
this as ‘c0®’ points.

We are also interested in the spaces of various kinds of field defined on
M. These are normally taken to be smooth, but sometimes they are more
general (e.g. distributions), coming within the compass of hyperfunction
theory (see §9.7). They may be subject to (partial) differential equations,

4 [16.19] Explain why (4%) may be identified with 4%, for sets 4, B, C.
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which restrict their freedom. If they are not so restricted, then they
count as ‘functions of n variables’, for an n-dimensional M (where n=4
for standard spacetime). At each point, the field may have k£ independent
components. Then I shall say that the freedom in the field is oco®™".
The explanation for this notation!” is that the fields may be thought
(crudely and locally) to be maps from a space with oo” points to a
space with oo points, and we take advantage of the (formal) notational
relation

(Ook)oo" — ookoo”.

When the fields are restricted by appropriate partial differential
equations, then it may be that they will be completely determined by
the initial data for the fields (see §27.1 particularly), that is, by some
subsidiary field data specified on some lower-dimensional space S of,
say, g dimensions. If the data can be expressed freely on S (which
means, basically, not subject to constraints, these being differential
or algebraic equations that the data would have to satisfy on §),
and if these data consist of r independent components at each point
of S, then I shall say that the freedom in the field is 00™’. In many
cases, it is not an altogether easy matter to find r and ¢, but the important
thing is that they are invariant quantities, independent of how the fields
may be re-expressed in terms of other equivalent quantities.!® These
matters will have considerable importance for us later (see §23.2,
§§31.10-12, 15-17).

Notes

Section 16.2

16.1. See Stephenson (1972), §7; Howie (1989), pp. 269-71; Hirschfeld (1998), p. 098;
magic discs are equivalent to what are called perfect difference sets.

16.2. It is apparently unknown whether magic discs exist (necessarily not arising from
a PZ(JF,])) for which the theorem of Desargues (or, equivalently, of Pappos)
ever fails—or, indeed, whether non-Desarguian (equivalently non-Pappian)
finite projective planes exist at all.

16.3. A physical role for octonions has nevertheless been argued for, from time to
time (see, for example, Giirsey and Tze 1996; Dixon 1994; Manogue and Dray
1999; Dray and Manogue 1999); but there are fundamental difficulties for the
construction of a general ‘octonionic quantum mechanics’ (Adler 1995), the
situation with regard to a ‘quaternionic quantum mechanics’ being just a little
more positive. Another number system, suggested on occasion as a candidate
for a significant physical role, is that of ‘p-adic numbers’. These constitute
number systems to which the rules of calculus apply, and they can be expressed
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like ordinary decimally expanded real numbers, except that the digits represent
0,1,2,3, ..., p— 1 (where p is the chosen prime number) and they are allowed
to be infinite the opposite way around from what is the case with ordinary
decimals (and we do not need minus signs). For example,

...... 24033200411.3104

represents a particular 5-adic number. The rules for adding and multiplying are
just the same as they would be for ‘ordinary’ p-ary arithmetic (in which the
symbol ‘10’ stands for the prime p, etc.). See Mahler (1981); Gouvea (1993);
Brekke and Frend (1993); Vladimirov and Volovich (1989); Pitkdenen (1995) and
applications of p-adic to physics stuff.

Section 16.3

16.4.

16.5.
16.6.

16.7.

The modern mathematical terminology is to call this a set isomorphism.
There are other words such as ‘endomorphism’, ‘epimorphism’, and ‘mono-
morphism’ (or just ‘morphism’) that mathematicians tend to use in a general
context for characterizing mappings between one set or structure to another. I
prefer to avoid this kind of terminology in this particular book, as I think it
takes rather more effort to get accustomed to it than is worthwhile for our
needs.

For some even earlier deliberations of this nature, see Moore (1990), Chap. 3.
Recall from Note 15.5 that I have been prepared to adopt an abuse of notation
whereby IN — 0 indeed stands for the set of non-zero natural numbers. There is
the irony here that if one were to adopt the seemingly ‘more correct’ IN — {0},
while also adopting the procedures of §3.4 whereby {0} =1, we should be
landed with the even more confusing ‘IN — 1’ for the set under consideration!

See Wagon (1985); see Runde (2002) for a popular account.

Section 16.5

16.8.

16.9.
16.10.
16.11.

Similar remarks apply to Cantor’s generalized continuum hypothesis:
2% =N, (where o is now an ‘ordinal number’, whose definition I have not
discussed here), and these remarks also apply to the axiom of choice.

See Russell (1903), p. 362, second footnote [in 1937 edn].

See Van Heijenoort (1967), p. 114.

See Woodin (2001) for a novel approach to these matters. For general refer-
ences on the foundations of mathematics, see Abian (1965) and Wilder (1965).

Section 16.6

16.12.

16.13.

16.14.

These precursors of Turing were, in the main, Alonzo Church, Haskell B.
Curry, Stephen Kleene, Kurt Gddel, and Emil Post; see Gandy (1988).

For a detailed description of a Turing machine, see Penrose (1989), Chap. 2; for
example, Davis (1978), or the original reference: Turing (1937).

See Singh (1997); Wiles (1995).

Section 16.7

16.15.
16.16.
16.17.
16.18.

See Penrose (1989, 1994d, 1997c).

See Komar (1964); Geroch and Hartle (1986), §34.7.

I owe this useful notation to John A. Wheeler, see Wheeler (1960), p. 67.

See Cartan (1945) especially §§68,69 on pp. 75, 76 (original edition). Some care
needs to be taken in order to ensure that the quantity r in 00"’ is correctly
counted. Two systems may be equivalent, but having r values that nevertheless
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appear at first sight to differ. However, there can be no ambiguity in the
determination of the value of ¢. The rigorous modern treatment of these issues
makes things clearer; it is given in terms of the theory of jet bundles (see Bryant
et al. 1991). It may be mentioned that there is a refinement of Wheeler’s
notation (see Penrose 2003) where, for example, 00> *+3<'+5 stands for ‘the
fields depend on 2 functions of 2 variables, 3 functions of 1 variable, and 5
constants’. We are thus led to consider expressions like oo™, where p denotes a
polynomial with non-negative integer coefficients.



17
Spacetime

17.1  The spacetime of Aristotelian physics

FroM now on, in this book, our attention will be turned from the largely
mathematical considerations that have occupied us in earlier chapters, to
the actual pictures of the physical world that theory and observation have
led us into. Let us begin by trying to understand that arena within which
all the phenomena of the physical universe appear to take place: spacetime.
We shall find that this notion plays a vital role in most of the rest of this
book!

We must first ask why ‘spacetime’?! What is wrong with thinking of
space and time separately, rather than attempting to unify these two
seemingly very different notions together into one? Despite what appears
to be the common perception on this matter, and despite Einstein’s quite
superb use of this idea in his framing of the general theory of relativity,
spacetime was not Einstein’s original idea nor, it appears, was he particu-
larly enthusiastic about it when he first heard of it. Moreover, if we look
back with hindsight to the magnificent older relativistic insights of Galileo
and Newton, we find that they, too, could in principle have gained great
benefit from the spacetime perspective.

In order to understand this, let us go much farther back in history and
try to see what kind of spacetime structure would have been appropriate
for the dynamical framework of Aristotle and his contemporaries. In
Aristotelian physics, there is a notion of Euclidean 3-space IE* to represent
physical space, and the points of this space retain their identity from one
moment to the next. This is because the state of rest is dynamically
preferred, in the Aristotelian scheme, from all other states of motion.
We take the attitude that a particular spatial point, at one moment of
time, is the same spatial point, at a later moment of time, if a particle
situated at that point remains at rest from one moment to the next. Our
picture of reality is like the screen in a cinema theatre, where a particular
point on the screen retains its identity no matter what kinds of vigorous
movement might be projected upon it. See Fig. 17.1.

383



§17.1 CHAPTER 17

Fig. 17.1 Is physical
motion like that perceived
on a cinema screen? A
particular point on the
screen (here marked “x”)
retains its identity no
matter what movement is
projected upon it.

Time, also, is represented as a Euclidean space, but as a rather trivial
one, namely the 1-dimensional space IE'. Thus, we think of time, as well as
physical space, as being a ‘Euclidean geometry’, rather than as being just a
copy of the real line IR. This is because IR has a preferred element 0, which
would represent the ‘zero’ of time, whereas in our ‘Aristotelian’ dynamical
view, there is to be no preferred origin. (In this, I am taking an idealized
view of what might be called ‘Aristotelian dynamics’, or ‘Aristotelian
physics’, and I take no viewpoint with regard to what the actual Aristotle
might have thought!)> Had there been a preferred ‘origin of time’, the
dynamical laws could be envisaged as changing when time proceeds away
from that preferred origin. With no preferred origin, the laws must remain
the same for all time, because there is no preferred time parameter which
these laws can depend upon.

Likewise, I am taking the view that there is to be no preferred
spatial origin, and that space continues indefinitely in all directions, with
complete uniformity in the dynamical laws (again, irrespective of what
the actual Aristotle might have believed!). In Euclidean geometry, whether
1-dimensional or 3-dimensional, there is a notion of distance. In the
3-dimensional spatial case, this is to be ordinary Euclidean distance (meas-
ured in metres, or feet, say); in the 1-dimensional case, this distance is the
ordinary time interval (measured, say, in seconds).

In Aristotelian physics—and, indeed, in the later dynamical scheme(s)
of Galileo and Newton—there is an absolute notion of temporal simultan-
eity. Thus, it has absolute meaning to say, according to such dynamical
schemes, that the time here, at this very moment, as I sit typing this in my
office at home in Oxford, is ‘the same time’ as some event taking place on
the Andromeda galaxy (say the explosion of some supernova star). To
return to our analogy of the cinema screen, we can ask whether two
projected images, occurring at two widely separated places on the screen,
are taking place simultaneously or not. The answer here is clear. The
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events are to be taken as simultaneous if and only if they occur in the same
projected frame. Thus, not only do we have a clear notion of whether or
not two (temporally separated) events occur at the same spatial location
on the screen, but we also have a clear notion of whether or not two
(spatially separated) events occur at the same time. Moreover, if the spatial
locations of the two events are different, we have a clear notion of the
distance between them, whether or not they occur at the same time (i.e.
the distance measured along the screen); also, if the times of the two events
are different, we have a clear notion of the time interval between them,
whether or not they occur at the same place.

What this tells us is that, in our Aristotelian scheme, it is appropriate to
think of spacetime as simply the product

A=TE'x 3,

which I shall call Aristotelian spacetime. This is simply the space of pairs
(¢, x), where ¢ is an element of IE!, a ‘time’, and x is an element of &3, a
‘point in space’. (See Fig. 17.2.) For two different points of IE! x If3, say
(¢, x) and (7, x')—i.e. two different events—we have a well-defined notion
of their spatial separation, namely the distance between the points x and x’
of IE?, and we also have a well-defined notion of their time difference,
namely the separation between ¢ and ¢ as measured in IE!. In particular,
we know whether or not two events occur at the same place (vanishing of
spatial displacement) and whether or not they take place at the same time
(vanishing of time difference).

17.2 Spacetime for Galilean relativity

Now let us see what notion of spacetime is appropriate for the dynamical
scheme introduced by Galileo in 1638. We wish to incorporate the
principle of Galilean relativity into our spacetime picture. Let us try to

Fig. 17.2 Aristotelian spacetime
A= E'xIE? is the space of pairs
(¢, x), where ¢ (‘time’) ranges over
a Euclidean 1-space &', and x
(‘point in space’) ranges over a
Euclidean 3-space IE3.

Time Space
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recall what this principle asserts. It is hard to do better than quote Galileo
himself (in a translation due to Stillman Drake® which I give here in
abbreviated form only; and I strongly recommend an examination of the
quote as a whole, for those who have access to it):

Shut yourself up with some friend in the main cabin below decks on some
large ship, and have with you some flies, butterflies, and other small flying
animals ...hang up a bottle that empties drop by drop into a wide vessel
beneath it...have the ship proceed with any speed you like, so long as the
motion is uniform and not fluctuating this way and that. ... The droplets will
fall...into the vessel beneath without dropping toward the stern, although
while the drops are in the air the ship runs many spans. . . the butterflies and
flies will continue their flights indifferently toward every side, nor will it ever
happen that they are concentrated toward the stern, as if tired out from
keeping up with the course of the ship....

What Galileo teaches us is that the dynamical laws are precisely the
same when referred to any uniformly moving frame. (This was an essential
ingredient of his wholehearted acceptance of the Copernican scheme,
whereby the Earth is allowed to be in motion without our directly noticing
this motion, as opposed to its necessarily stationary status according to the
earlier Aristotelian framework.) There is nothing to distinguish the physics
of the state of rest from that of uniform motion. In terms of what has been
said above, what this tells us is that there is no dynamical meaning to
saying that a particular point in space is, or is not, the same point as some
chosen point in space at a later time. In other words, our cinema-screen
analogy is inappropriate! There is no background space—a ‘screen’—
which remains fixed as time evolves. We cannot meaningfully say that a
particular point p in space (say, the point of the exclamation mark on the
keyboard of my laptop) is, or is not, the same point in space as it was
a minute ago. To address this issue more forcefully, consider the rotation
of the Earth. According to this motion, a point fixed to the Earth’s
surface (at the latitude of Oxford, say) will have moved by some
10 miles in the minute under consideration. Accordingly, the point p
that I had just selected will now be situated somewhere in the vicinity of
the neighbouring town of Witney, or beyond. But wait! I have not
taken the Earth’s motion about the sun into consideration. If I do
that, then I find that p will now be about one hundred times farther off,
but in the opposite direction (because it is a little after mid-day, and the
Earth’s surface, here, now moves oppositely to its motion about the Sun),
and the Earth will have moved away from p to such an extent that p is now
beyond the reach of the Earth’s atmosphere! But should I not have taken
into account the sun’s motion about the centre of our Milky Way galaxy?
Or what about the ‘proper motion’ of the galaxy itself within the local
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group? Or the motion of the local group about the centre of the Virgo
cluster of which it is a tiny part, or of the Virgo cluster in relation to the
vast Coma supercluster, or perhaps the Coma cluster towards ‘the Great
Attractor™?

Clearly we should take Galileo seriously. There is no meaning to be
attached to the notion that any particular point in space a minute from
now is to be judged as the same point in space as the one that I have
chosen. In Galilean dynamics, we do not have just one Euclidean 3-space
IE3, as an arena for the actions of the physical world evolving with time,
we have a different I for each moment in time, with no natural identifi-
cation between these various IEs.

It may seem alarming that our very notion of physical space seems to be
of something that evaporates completely as one moment passes, and
reappears as a completely different space as the next moment arrives!
But here the mathematics of Chapter 15 comes to our rescue, for this
situation is just the kind of thing that we studied there. Galilean spacetime
G is not a product space IE:' x IE?, it is a fibre bundle* with base space IE!
and fibre IE*! In a fibre bundle, there is no pointwise identification between
one fibre and the next; nevertheless the fibres fit together to form a
connected whole. Each spacetime event is naturally assigned a time, as a
particular element of one specific ‘clock space’ I£!, but there is no natural
assignment of a spatial location in one specific ‘location space’ IE:*. In
the bundle language of §15.2, this natural assignment of a time is achieved
by the canonical projection from G to IE!. (See Fig. 17.3; compare also
Fig. 15.2.)

4

]El
Time

Fig. 17.3 Galilean spacetime G is fibre bundle with base space IE:' and fibre IE3, so
there is no given pointwise identification between different I&> fibres (no absolute
space), whereas each spacetime event is assigned a time via the canonical projec-
tion (absolute time). (Compare Fig. 15.2, but the canonical projection to the base
is here depicted horizontally.) Particle histories (world lines) are cross-sections of
the bundle (compare Fig. 15.6a), the inertial particle motions being depicted here
as what G’s structure specifies, that is: ‘straight’ world lines.

387



§17.3 CHAPTER 17

17.3 Newtonian dynamics in spacetime terms

This ‘bundle’ picture of spacetime is all very well, but how are we to
express the dynamics of Galileo-Newton in terms of it? It is not surprising
that Newton, when he came to formulate his laws of dynamics, found
himself driven to a description in which he appeared to favour a notion of
‘absolute space’. In fact, Newton was, at least initially, as much of a
Galilean relativist as was Galileo himself. This is made clear from the
fact that in his original formulation of his laws of motion, he explicitly
stated the Galilean principle of relativity as a fundamental law (this being
the principle that physical action should be blind to a change from one
uniformly moving reference frame to another, the notion of time being
absolute, as is manifested in the picture above of Galilean spacetime G).

He had originally proposed five (or six) laws, law 4 of which was indeed
the Galilean principle,® but later he simplified them, in his published
Principia, to the three ‘Newton’s laws’ that we are now familiar with.
For he had realized that these were sufficient for deriving all the others.
In order to make the framework for his laws precise, he needed to adopt an
‘absolute space’ with respect to which his motions were to be described.
Had the notion of a “fibre bundle’ been available at the time (admittedly
a far-fetched possibility), then it would have been conceivable for Newton
to formulate his laws in a way that is completely ‘Galilean-invariant’.
But without such a notion, it is hard to see how Newton could have
proceeded without introducing some concept of ‘absolute space’, which
indeed he did.

What kind of structure must we assign to our ‘Galilean spacetime’ G? It
would certainly be far too strong to endow our fibre bundle G with a
bundle connection (§15.7).['7-11 What we must do, instead, is to provide it
with something that is in accordance with Newton’s first law. This law
states that the motion of a particle, upon which no forces act, must be
uniform and in a straight line. This is called an inertial motion. In space-
time terms, the motion (i.e. ‘history’) of any particle, whether in inertial
motion or not, is represented by a curve, called the world line of the
particle. In fact, in our Galilean spacetime, world lines must always
be cross-sections of the Galilean bundle; see §15.3.1172 and Fig. 17.3.)
The notion of ‘uniform and in a straight line’, in ordinary spatial terms
(an inertial motion), is interpreted simply as ‘straight’, in spacetime terms.
Thus, the Galilean bundle G must have a structure that encodes the notion
of ‘straightness’ of world lines. One way of saying this is to assert that G is
an affine space (§14.1) in which the affine structure, when restricted to
individual &3 fibres, agrees with the Euclidean affine structure of each IE3.

£3[17.1] Why?
@ [17.2] Explain the reason for this.
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Another way is simply to specify the oc® family of straight lines that
naturally resides in I&' xI&3 (the ‘Aristotelian’ uniform motions) and to
take these over to provide the ‘straight-line’ structure of the Galilean
bundle, while ‘forgetting’ the actual product structure of the Aristotelian
spacetime A. (Recall that co® means a 6-dimensional family; see §16.7.)
Yet another way is to assert that the Galilean spacetime, considered as a
manifold, possesses a connection which has both vanishing curvature and
vanishing torsion (which is quite different from it possessing a bundle
connection, when considered as a bundle over I&!).[17-3]

In fact, this third point of view is the most satisfactory, as it allows for
the generalizations that we shall be needing in §§17.5,9 in order to describe
gravitation in accordance with Einstein’s ideas. Having a connection
defined on G, we are provided with a notion of geodesic (§14.5), and
these geodesics (apart from those which are simply straight lines in indi-
vidual IE3s) define Newton’s inertial motions. We can also consider world
lines that are not geodesics. In ordinary spatial terms, these represent
particle motions that accelerate. The actual magnitude of this acceleration
is measured, in spacetime terms, as a curvature of the world-line.['7-4]
According to Newton's second law, this acceleration is equal to the total
force on the particle, divided by its mass. (This is Newton’s f = ma, in the
form a = f+ m, where a is the particle’s acceleration, m is its mass, and f'is
the total force acting upon it.) Thus, the curvature of a world line, for a
particle of given mass, provides a direct measure of the total force acting
on that particle.

In standard Newtonian mechanics, the total force on a particle is the
(vector) sum of contributions from all the other particles (Fig. 17.4a). In
any particular I2* (that is, at any one time), the contribution to the force on
one particle, from some other particle, acts in the line joining the two that
lies in that particular IE3. That is to say, it acts simultaneously between the
two particles. (See Fig. 17.4b.) Newton’s third law asserts that the force on
one of these particles, as exerted by the other, is always equal in magnitude
and opposite in direction to the force on the other as exerted by the one. In
addition, for each different variety of force, there is a force law, informing
us what function of the spatial distance between the particles the magni-
tude of that force should be, and what parameters should be used for each
type of particle, describing the overall scale for that force. In the particular
case of gravity, this function is taken to be the inverse square of the
distance, and the overall scale is a certain constant, called Newton’s
gravitational constant G, multiplied by the product of the two masses

[17.3] Explain these three ways more thoroughly, showing why they all give the same structure.

#5 [17.4] Try to write down an expression for this curvature, in terms of the connection V. What
normalization condition on the tangent vectors is needed (if any)?
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Total force

(b)

Fig. 17.4 (a) Newtonian force: at any one time, the total force on a particle
(double shafted arrow) is the vector sum of contributions (attractive or repulsive)
from all other particles. (b) Two particle world lines and the force between them,
acting ‘instantaneously’, in a line joining the two particles, at any one moment,
within the particular IE* that the moment defines. Newton’s Third Law asserts
that force on one, as exerted by the other, is equal in magnitude and opposite in
direction to the force on the other as exerted by the one.

involved. In terms of symbols, we get Newton’s well-known formula for
the attractive force on a particle of mass m, as exerted by another particle
of mass M, a distance r away from it, namely
GmM
2

It is remarkable that, from just these simple ingredients, a theory of
extraordinary power and versatility arises, which can be used with great
accuracy to describe the behaviour of macroscopic bodies (and, for most
basic considerations, submicroscopic particles also), so long as their
speeds are significantly less than that of light. In the case of gravity, the
accordance between theory and observation is especially clear, because of
the very detailed observations of the planetary motions in our solar
system. Newton’s theory is now found to be accurate to something like
one part in 107, which is an extremely impressive achievement, particularly
since the accuracy of data that Newton had to go on was only about one
ten-thousandth of this (a part in 103).

17.4 The principle of equivalence

Despite this extraordinary precision, and despite the fact that Newton’s
great theory remained virtually unchallenged for nearly two and one half
centuries, we now know that this theory is not absolutely precise; more-
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over, in order to improve upon Newton’s scheme, Einstein’s deeper and
very revolutionary perspective with regard to the nature of gravitation was
required. Yet, this particular perspective does not, in itself, change
Newton’s theory at all, with regard to any observational consequences.
The changes come about only when Einstein’s perspective is combined
with other considerations that relate to the finiteness of the speed of light
and the ideas of special relativity, which will be described in §§17.6-8. The
full combination, yielding Einstein’s general relativity, will be given in
qualitative terms in §17.9 and in fuller detail in §§19.6-8.

What, then, is Einstein’s deeper perspective? It is the realization of
the fundamental importance of the principle of equivalence. What is the
principle of equivalence? The essential idea goes back (again!) to the great
Galileo himself (at the end of the 16th century—although there were pre-
cursors even before him, namely Simon Stevin in 1586, and others even
earlier, such as Ioannes Philiponos in the 5th or 6th century). Recall Gali-
leo’s (alleged) experiment, which consisted of dropping two rocks, one large
and one small, from the top of the Leaning Tower of Pisa (Fig. 17.5a).
Galileo’s great insight was that each of the two would fall at the same rate,
assuming that the effects of air resistance can be neglected. Whether or not
he actually dropped rocks from the Leaning Tower, he certainly performed
other experiments which convinced him of this conclusion.

Fig. 17.5 (a) Galileo’s (alleged) experiment. Two rocks, one large and one small,
are dropped from the top of Leaning Tower of Pisa. Galileo’s insight was that if
the effects of air resistance can be ignored, each would fall at the same rate. (b)
Oppositely charged pith balls (of equal small mass), in an electric field, directed
towards the ground. One charge would ‘fall’ downwards, but the other would rise
upwards.
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Now the first point to make here is that this is a particular property of
the gravitational field, and it is not to be expected for any other force
acting on bodies. The property of gravity that Galileo’s insight depends
upon is the fact that the strength of the gravitational force on a body,
exerted by some given gravitational field, is proportional to the mass of
that body, whereas the resistance to motion (the quantity m appearing in
Newton’s second law) is also the mass. It is useful to distinguish these two
mass notions and call the first the gravitational mass and the second, the
inertial mass. (One might also choose to distinguish the passive from the
active gravitational mass. The passive mass is the contribution m in
Newton’s inverse square formula GmM/r?>, when we consider the gravita-
tional force on the m particle due to the M particle. When we consider the
force on the M particle due to the m particle, then the mass m appears in its
active role. But Newton’s third law decrees that passive and active masses
be equal, so I am not going to distinguish between these two here.®) Thus,
Galileo’s insight depends upon the equality (or, more correctly, the pro-
portionality) of the gravitational and inertial mass.

From the perspective of Newton’s overall dynamical scheme, it would
appear to be a fluke of Nature that the inertial and gravitational masses
are the same. If the field were not gravitational but, say, an electric field,
then the result would be completely different. The electric analogue of
passive gravitational mass is electric charge, while the role of inertial mass
(i.e. resistance to acceleration) is precisely the same as in the gravitational
case (i.e. still the m of Newton’s second law f = ma). The difference is
made particularly obvious if the analogue of Galileo’s pair of rocks is
taken to be a pair of pith balls of equal small mass but of opposite charge.
In a background electric field directed towards the ground, one charge
would ‘fall’ downwards, but the other would rise upwards—an acceler-
ation in completely the opposite direction! (See Fig. 17.5b.) This can occur
because the electric charge on a body has no relation to its inertial mass,
even to the extent that its sign can be different. Galileo’s insight does not
apply to electric forces; it is a particular feature of gravity alone.

Why is this feature of gravity called ‘the principle of equivalence’? The
‘equivalence’ refers to the fact that a uniform gravitational field is equiva-
lent to an acceleration. The effect is a very familiar one in air travel, where
it is possible to get a completely wrong idea of where ‘down’ is from inside
an aeroplane that is performing an accelerated motion (which might just
be a change of its direction). The effects of acceleration and of the Earth’s
gravitational field cannot be distinguished simply by how it ‘feels’ inside
the plane, and the two effects can add up in two different directions to
provide you with some feeling of where down ‘ought to be’ which (perhaps
to your surprise upon looking out of the window) may be distinctly
different from the actual downward direction.
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To see why this equivalence between acceleration and the effects of
gravity is really just Galileo’s insight described above, consider again his
falling rocks, as they descend together from the top of the Leaning Tower.
Imagine an insect clinging to one of the rocks and looking at the other. To
the insect, the other rock appears simply to hover without motion, as
though there were no gravitational field at all. (See Fig. 17.6a.) The
acceleration that the insect partakes of, when falling with the rocks,
cancels out the gravitational field, and it is as though gravity were com-
pletely absent—until rocks and insect all hit the ground, and the ‘gravity-
free’ experience’ comes abruptly to an end.

We are familiar with astronauts also having ‘gravity-free’ experiences—
but they avoid our insect’s awkward abrupt end to these experiences by
being in orbit around the Earth (Fig. 17.6b) (or in an acroplane that comes
out of its dive in the nick of time!). Again they are just falling freely, like
the insect, but with a more judiciously chosen path. The fact that gravity
can be cancelled by acceleration in this way (by use of the principle of
equivalence) is a direct consequence of the fact that (passive) gravitational
mass is the same as (or is proportional to) inertial mass, the very fact
underlying Galileo’s great insight.

If we are to take seriously this equivalence principle, then we must take a
different view from the one that we adopted in §17.3, with regard to what
should count as an ‘inertial motion’. Previously, an inertial motion was
distinguished as the kind of motion that occurs when a particle is subject
to a zero total external force. But with gravity we have a difficulty. Because
of the principle of equivalence, there is no local way of telling whether a

s it
(a) /- L7 (b)

Fig. 17.6 (a) To an insect clinging to one rock of Fig. 17.5a, the other rock
appears simply to hover without motion, as though gravitational field is absent.
(b) Similarly, a freely orbiting astronaut has gravity-free experience, and the space
station appears to hover without motion, despite the obvious presence of the
Earth.
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gravitational force is acting or whether what ‘feels’ like a gravitational
force may just be the effect of an acceleration. Moreover, as with our insect
on Galileo’s rock or our astronaut in orbit, the gravitational force can be
eliminated by simply falling freely with it. And since we can eliminate
the gravitational force this way, we must take a different attitude to it.
This was Einstein’s profoundly novel view: regard the inertial motions as
being those motions that particles take when the total of non-gravitational
forces acting upon them is zero, so they must be falling freely with the
gravitational field (so the effective gravitational force is also reduced to
zero). Thus, our insect’s falling trajectory and our astronauts’ motion in
orbit about the Earth must both count as inertial motions. On the other
hand, someone just standing on the ground is not executing an inertial
motion, in the Einsteinian scheme, because standing still in a gravitational
field is not a free-fall motion. To Newton, that would have counted as
inertial, because ‘the state of rest’ must always count as ‘inertial’ in the
Newtonian scheme. The gravitational force acting on the person is com-
pensated by the upward force exerted by the ground, but they are not
separately zero as Einstein requires. On the other hand, the Einstein-
inertial motions of the insect or astronaut are not inertial, according to
Newton.

17.5 Cartan’s ‘Newtonian spacetime’

How do we incorporate Einstein’s notion of an ‘inertial’ motion into the
structure of spacetime? As a step in the direction of the full Einstein
theory, it will be helpful to consider a reformulation of Newton’s gravita-
tional theory according to Einstein’s perspective. As mentioned at the
beginning of §17.4, this does not actually represent a change in Newton’s
theory, but merely provides a different description of it. In doing this,
I am taking another liberty with history, as this reformulation was put
forward by the outstanding geometer and algebraist Elie Cartan—whose
important influence on the theory of continuous groups was taken note of
in Chapter 13 (and recall also §12.5)—some six years after Einstein had set
out his revolutionary viewpoint.

Roughly speaking, in Cartan’s scheme, it is the inertial motions in this
Einsteinian, rather than the Newtonian sense, that provide the ‘straight’
world lines of spacetime. Otherwise, the geometry is like the Galilean one of
§17.2. I am going to call this the Newronian spacetime N, the Newtonian
gravitational field being completely encoded into its structure. (Perhaps I
should have called it ‘Cartannian’, but that is an awkward word. In any case,
Aristotle didn’t know about product spaces, nor Galileo about fibre
bundles!)
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The spacetime Nis to be a bundle with base space IE! and fibre IE&?, just
as was the case for our previous Galilean spacetime G. But now there is to
be some kind of structure on N different from that of G, because the
family of ‘straight” world lines that represents inertial motions is different;
see Fig. 17.7a. At least it is essentially different in all cases except those in
which the gravitational field can be eliminated completely by some choice
of freely falling global reference frame. One such exception would be a
Newtonian gravitational field that is completely constant (both in magni-
tude and in direction) over the whole of space, but perhaps varying in time.
To an observer who falls freely in such a field, it would appear that there is

T

(b)

Fig. 17.7 (a) Newton—Cartan spacetime A/, like the particular Galilean case G, is
a bundle with base-space &' and fibre I3, Its structure is provided by the family
of motions, ‘inertial’ in Einstein’s sense, of free fall under gravity. (b) The special
case of a Newtonian gravitational field constant over all space. (c) Its structure is
completely equivalent to that of G, as can be seen by ‘sliding’ the I&* fibres
horizontally until the world lines of free fall are all straight.
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no field at all!'7-3] In such a case, the structure of A" would be the same as
that of G (Fig. 17.7b,c). But most gravitational fields count as ‘essentially
different’ from the absence of a gravitational field. Can we see why? Can
we recognize when the structure of N'is different from that of G? We shall
come to this in a moment.

The idea is that the manifold AV is to possess a connection, just as was
the case for the particular case G. The geodesics of this connection, V (see
§14.5), are to be the ‘straight’ world lines that represent inertial motions in
the Einsteinian sense. This connection will be torsion-free (§14.4), but
it will generally possess curvature (§14.4). It is the presence of this curva-
ture that makes some gravitational fields ‘essentially different’ from the
absence of gravitational field, in contrast with the spatially constant field
just considered. Let us try to understand the physical meaning of this
curvature.

Imagine an astronaut Albert, whom we shall refer to as ‘A’, falling freely
in space, a little away above the Earth’s atmosphere. It is helpful to think
of A as being just at the moment of dropping towards the Earth’s surface,
but it does not really matter what Albert’s velocity is; it is his acceleration,
and the acceleration of neighbouring particles, that we are concerned with.
A could be safely in orbit, and need not be falling towards the ground.
Imagine that there is a sphere of particles surrounding A, and initially at
rest with respect to A. Now, in ordinary Newtonian terms, the various
particles in this sphere will be accelerating towards the centre E of the
Earth in various slightly different directions (because the direction to E
will differ, slightly, for the different particles) and the magnitude of this
acceleration will also vary (because the distance to E will vary). We shall
be concerned with the relative accelerations, as compared with the acceler-
ation of the astronaut A, since we are interested in what an inertial
observer (in the Einsteinian sense)—in this case A—will observe to be
happening to nearby inertial particles. The situation is illustrated in Fig.
17.8a. Those particles that are displaced horizontally from A will acceler-
ate towards E in directions that are slightly inward relative to A’s acceler-
ation, because of the finite distance to the Earth’s centre, whereas those
particles that are displaced vertically from A will accelerate slightly out-
ward relative to A because the gravitational force falls off with increasing
distance from E. Accordingly, the sphere of particles will become dis-
torted. In fact, this distortion, for nearby particles, will take the sphere
into an ellipsoid of revolution, a (prolate) ellipsoid, having its major axis
(the symmetry axis) in the direction of the line AE. Moreover, the initial
distortion of the sphere will be into an ellipsoid whose volume is equal to

£3 [17.5] Find an explicit transformation of x, as a function of ¢, that does this, for a given
Newtonian gravitational field F(7) that is spatially constant at any one time, but temporally
varying both in magnitude and direction.
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Fig. 17.8 (a) Tidal effect. The astronaut A (Albert) surrounded by a sphere of
nearby particles initially at rest with respect to A. In Newtonian terms, they have an
acceleration towards the Earth’s centre E, varying slightly in direction and magni-
tude (single-shafted arrows). By subtracting A’s acceleration from each, we obtain
the accelerations relative to A (double-shafted arrows); this relative acceleration is
slightly inward for those particles displaced horizontally from A, but slightly
outward for those displaced vertically from A. Accordingly, the sphere becomes
distorted into a (prolate) ellipsoid of revolution, with symmetry axis in the direction
AE. The initial distortion preserves volume. (b) Now move A to the Earth’s centre E
and the sphere of particles to surround E just above the atmosphere. The acceler-
ation (relative to A = E) is inward all around the sphere, with an initial volume
reduction acceleration 4nGM, where M is the total mass surrounded.

that of the sphere.l'7-¢I This last property is a characteristic property of the
inverse square law of Newtonian gravity, a remarkable fact that will have
significance for us when we come to Einstein’s general relativity proper. It
should be noted that this volume-preserving effect only applies initially,
when the particles start at rest relative to A; nevertheless, with this proviso,
it is a general feature of Newtonian gravitational fields, when A is in a
vacuum region. (The rotational symmetry of the ellipsoid, on the other
hand, is an accident of the symmetry of the particular geometry considered
here.)

Now, how are we to think of all this in terms of our spacetime
picture N? In Fig. 17.9a, I have tried to indicate how this situation
would look for the world lines of A and the surrounding particles. (Of

#5 [17.6] Derive these various properties, making clear by use of the O( ) notation, at what order
these statements are intended to hold.
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@) (b)

Fig. 17.9 Spacetime versions of Fig. 17.8 (in the Newton—Cartan picture N of
Fig. 17.7), in terms of the relative distortion of neighbouring geodesics. (a)
Geodesic deviation in empty space (basically Weyl curvature of §19.7) as seen in
the world lines of A and surrounding particles (one spatial dimension suppressed),
as might be induced from the gravitational field of a nearby body E. (b) The
corresponding inward acceleration (basically Ricci curvature) due to the mass
density within the bundle of geodesics.

course, I have had to discard a spatial dimension, because it is hard
to depict a genuinely 4-dimensional geometry! Fortunately, two space
dimensions are adequate here for conveying the essential idea.) Note
that the distortion of the sphere of particles (depicted here as a circle of
particles) arises because of the geodesic deviation of the geodesics that
are neighbouring to the geodesic world line of A. In §14.5, I indicated
why this geodesic deviation is in fact a measure of the curvature R of the
connection V.

In Newtonian physical terms, the distortion effect that I have just
described is what is called the tidal effect of gravity. The reason for this
terminology is made evident if we let E swap roles with A, so we now think
of A as being the Earth’s centre, but with the Moon (or perhaps the Sun)
located at E. Think of the sphere of particles as being the surface of the
Earth’s oceans, so we see that there is a distortion effect due to the Moon’s
(or Sun’s) non-uniform gravitational field.['”-71 This distortion is the cause

#£3[17.7] Show that this tidal distortion is proportional to mr~> where m is the mass of the
gravitating body (regarded as a point) and r is its distance. The Sun and Moon display discs, at the
Earth, of closely equal angular size, yet the Moon’s tidal distortion on the Earth’s oceans is about
five times that due to the Sun. What does that tell us about their relative densities?
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of the ocean tides, so the terminology ‘tidal effect’, for this direct physical
manifestation of spacetime curvature, is indeed apposite.

In fact, in the situation just considered, the effect of the Moon (or Sun) on
the relative accelerations of particles at the Earth’s surface is only a small
correction to the major gravitational effect on those particles, namely the
gravitational pull of the Earth itself. Of course, this is inwards, namely in the
direction of the Earth’s centre (now the point A, in our spatial description;
see Fig. 17.8b) as measured from each particle’s individual location. If the
sphere of particles is now taken to surround the Earth, just above the
Earth’s atmosphere (so that we can ignore air resistance), then there will
be free fall (Einsteinian inertial motion) inwards all around the sphere.
Rather than distortion of the spherical shape into that of an ellipse of
initially equal volume, we now have a volume reduction. In general, there
could be both effects present. In empty space, there is only distortion and no
initial volume reduction; when the sphere surrounds matter, there is an
initial volume reduction that is proportional to the total mass surrounded.
If this mass is M, then the initial ‘rate’ (as a measure of inward acceleration)
of volume reduction is in fact

dnGM

where G is Newton’s gravitational constant.[17-8:117-9]

In fact, as Cartan showed, it is possible to reformulate Newton’s gravi-
tational theory completely in terms of mathematical conditions on the
connection V, these being basically equations on the curvature R which
provide a precise mathematical expression of the requirements outlined
above, and which relate the matter density p (mass per unit spatial volume)
to the ‘volume-reducing’ part of R. I shall not give Cartan’s description for
this in detail here, because it is not necessary for our later considerations,
the full Einstein theory being, in a sense, simpler. However, the idea itself
is an important one for us here, not only for leading us gently into
Einstein’s theory, but also because it has a role to play in our later
considerations of Chapter 30 (§30.11), concerning the profound puzzles
that the quantum theory presents us with, and their possible resolution.

17.6 The fixed finite speed of light

In our discussions above, we have been considering two fundamental
aspects of Einstein’s general relativity, namely the principle of relativity,

[17.8] Establish this result, assuming that all the mass is concentrated at the centre of
the sphere.

#5 [17.9] Show that this result is still true quite generally, no matter how large or what shape the
surrounding shell of stationary particles is, and whatever the distribution of mass.
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which tells us that the laws of physics are blind to the distinction between
stationarity and uniform motion, and the principle of equivalence which
tells us how these ideas must be subtly modified in order to encompass the
gravitational field. We must now turn to the third fundamental ingredient
of Einstein’s theory, which has to do with the finiteness of the speed of
light. It is a remarkable fact that all three of these basic ingredients can be
traced back to Galileo; for Galileo also seems to have been the first person
to have such a clear expectation that light ought to travel with finite speed
that he actually took steps to measure that speed. The method he used,
involving the synchronizing of lantern flashes between distant hills, was, as
we now know, far too crude. But in 1667, he had no way to anticipate the
extraordinary swiftness with which light actually travels.

It appears that both Galileo and Newton® seem to have had powerful
suspicions concerning a possibly deep role connecting the nature of light
with the forces that bind matter together. But the proper realization of
these insights had to wait until the twentieth century, when the true nature
of chemical forces and of the forces that hold individual atoms together
were revealed. We now know that these forces are fundamentally electro-
magnetic in origin (concerning the involvement of electromagnetic field
with charged particles) and that the theory of electromagnetism is also the
theory of light. To understand atoms and chemistry, further ingredients
from the quantum theory are needed, but the basic equations that describe
both electromagnetism and light were those put forward in 1865 by the
great Scottish physicist James Clark Maxwell, who had been inspired by
the magnificent experimental findings of Michael Faraday, over 30 years
earlier. We shall be coming to Maxwell’s theory later (§19.2), but its
immediate importance for us now is that it requires that the speed of
light has a definite fixed value, which is usually referred to as ¢, and
which in ordinary units is about 3 x 10® metres per second.

This, however, provides us with a conundrum, if we wish to preserve the
relativity principle. Common sense would seem to tell us that if the speed
of light is measured to take the particular value ¢ in one observer’s rest
frame, then a second observer, who moves with a very high speed with
respect to the first one, will measure light to travel at a different speed,
reduced or increased, according to the second observer’s motion. But the
relativity principle would demand that the second observer’s physical
laws—these defining, in particular, the speed of light that the second
observer perceives—should be identical with those of the first observer.
This apparent contradiction between the constancy of the speed of light
and the relativity principle led Einstein—as it had, in effect, previously led
the Dutch physicst Hendrick Antoon Lorentz and, more completely, the
French mathematician Henri Poincaré—to a remarkable viewpoint
whereby the contradiction is completely removed.
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How does this work? It would be natural for us to believe that there is
an irresolvable conflict between the requirements of (i) a theory, such as
that of Maxwell, in which there is an absolute speed of light, and (ii) a
relativity principle, according to which physical laws appear the same no
matter what speed of reference frame is used for their description. For
could not the reference frame be made to move with a speed approaching,
or even exceeding that of light? And according to such a frame, surely the
apparent light speed could not possibly remain what it had been before?
This undoubted conundrum does not arise with a theory, such as that
originally favoured by Newton (and, I would guess, by Galileo also), in
which light behaves like particles whose velocity is thereby dependent
upon the velocity of the source. Accordingly Galileo and Newton could
still live happily with a relativity principle. But such a picture of the nature
of light had encountered increasing conflict with observation over the
years, such as with observations of distant double stars which showed
light’s speed to be independent of that of its source.® On the other hand,
Maxwell’s theory had gained in strength, not only because of the powerful
support it obtained from observation (most notably the 1888 experiments
of Heinrich Hertz), but also because of the compelling and unifying nature
of the theory itself, whereby the laws governing electric fields, magnetic
fields, and light are all subsumed into a mathematical scheme of remark-
able elegance and essential simplicity. In Maxwell’s theory, light takes the
form of waves, not particles; and we must face up to the fact that, in this
theory, there is indeed a fixed speed according to which the waves of light
must travel.

17.7 Light cones

The spacetime-geometric viewpoint provides us with a particularly clear
route to the solution of the conundrum presented by the conflict between
Maxwell’s theory and the principle of relativity. As I remarked earlier, this
spacetime viewpoint was not the one that Einstein originally adopted (nor
was it Lorentz’s viewpoint nor, apparently, even Poincaré’s). But with
hindsight, we can see the power of this approach. For the moment, let us
ignore gravity, and the attendant subtleties and complications provided by
the principle of equivalence. We shall start with a blank slate—or, rather,
with a featureless real 4-manifold. We wish to see what it might mean to say
that there is a fundamental speed, which is to be the speed of light. At any
point (i.e. ‘event’) p in spacetime, we can envisage the family of all different
rays of light that pass through p, in all the different spatial directions. The
spacetime description is a family of world lines through p. See Fig. 17.10a,b.

It will be convenient to refer to these world lines as ‘photon histories’
through p, although Maxwell’s theory takes light to be a wave effect. This

401



§17.7 CHAPTER 17

v A"'/// R AR
: (b)

Fig. 17.10 The light cone specifies the fundamental speed of light. Photon
histories through a spacetime point (event) p. (a) In purely spatial terms, the
(future) light cone is a sphere expanding outwards from p (wavefronts). (b) In
spacetime, the photon histories encountering p sweep out the light cone at p. (c)
Since we shall later be considering curved spacetimes, it is better to think of the
cone—frequently called the null cone at p—as a local structure in spacetime, i.e. in
the tangent space 7, at p.

is not really an important conflict, for various reasons. One can consider a
‘photon’, in Maxwell’s theory, as a tiny bundle of electromagnetic disturb-
ance of very high frequency, and this will behave, quite adequately for our
purposes, as a little particle travelling with the speed of light. (Alterna-
tively, we might think in terms of ‘wave fronts’ or of what the mathemat-
icians call ‘bi-characteristics’, or we may prefer to appeal to the quantum
theory, according to which light can also be considered to consist of
‘particles’, which are, indeed, referred to as ‘photons’.)

In the neighbourhood of p, the family of photon histories through p, as
depicted in Fig. 17.10b, describes a cone in spacetime, referred to as the
light cone at p. To take the light speed as fundamental is, in spacetime
terms, to take the light cones as fundamental. In fact, from the point of
view that is appropriate for the geometry of manifolds (see Chapters 12,
14), it is often better to think of the ‘light cone’ as a structure in the tangent
space T, at p (see Fig. 17.10c). (We are, after all, concerned with velocities
at p, and a velocity is something that is defined in the tangent space.)
Frequently, the term null cone is used for this tangent-space structure—
and this is actually my own preference—the term ‘light cone’ being re-
served for the actual locus in spacetime that is swept out by the light rays
passing through a point p. Notice that the light cone (or null cone) has two
parts to it, the past cone and the future cone. We can think of the past cone
as representing the history of a flash of light that is imploding on p, so that
all the light converges simultaneously at the one event p; correspondingly,
the future cone represents the history of a flash of light of an explosion
taking place at the event p; see Fig. 17.11.
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Future cone

Particle
world line

Ttime like Fig. 17.11 The past cone and the future
angent

vector y cone. The past null cone (of past-null
’ vectors) refers to light imploding on p in
the same way that the future cone (of
future null vectors) refers to light origin-
ating at p. The world line of any massive
particle at p has a tangent vector that is
(future-)timelike, and so lies within the
(future) null cone at p.

How are we to provide a mathematical description of the null cone at p?
Chapters 13 and 14 have given us the background. We require the speed of
light to be the same in all directions at p, so that an instant after a light
flash the spatial configuration surrounding the point appears as a sphere
rather than some other ovoid shape.!? By referring to ‘an instant’, I really
mean that these considerations are to apply to the infinitesimal temporal
(as well as spatial) neighbourhood of p, so it is legitimate to think of this as
indeed referring to structures in the tangent space at p. To say that the null
cone appears ‘spherical’ is really only to say that the cone is given by an
equation in the tangent space that is quadratic. This means that this
equation takes the form
g™ =0,

where g, 1s the index form of some non-singular symmetric [g]—tensor gof
Lorentzian signature (§13.8).[17-19 The term ‘null’ in ‘null cone’ refers to
the fact that the vector v has a zero length (Jv|* = 0) with respect to the
(pseudo)metric g.

At this stage, we are concerned with g only in its role in defining the null
cones, according to the above equation. If we multiply g by any non-zero
real number, we get precisely the same null cone as we did before (see also
§27.12 and §33.3). Shortly, we shall require g to play the further physical
role of providing the spacetime metric, and for this we shall require the
appropriate scaling factor; but for the moment, it is just the family of null

[17.10] Explain why.
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Fig. 17.12 Minkowski space M is
flat, and its null cones are uniformly
arranged, depicted here as all being
parallel.

cones, one at each spacetime point, that will concern us. To be able to
assert that the speed of light is constant, we take the position that it makes
sense to regard the null cones at different events as all being parallel to one
another, since ‘speed’ in spatial terms, refers to ‘slope’ in spacetime terms.
This leads us to the picture of spacetime depicted in Fig. 17.12.

17.8 The abandonment of absolute time

We may now ask whether the bundle structure of Galilean spacetime G
would be appropriate to impose in addition. In other words, can we
include a notion of absolute time into our picture? This would lead us to
a picture like that of Fig. 17.13. The IE? slices through the spacetime
would give us a 3-plane element in each tangent space 7, in addition to
the null cone, as depicted in Fig. 17.13. But, as I shall explain more fully in
the next chapter, g determines a notion of orthogonality which means that
there is now a preferred direction at each event p (the orthogonal comple-
ment, with respect to g, of this 3-plane element), and this preferred direc-
tion gives us a preferred state of rest at each event. We have lost the
relativity principle!

Fig. 17.13 A notion of absolute
time introduced into M would
specify a family of JE3-slices cutting

‘absolute through ™I and hence a local
time' 3-plane-element at each event. But
slices

each null cone defines a (pseudo)
metric g, up to proportionality,
whose notion of orthogonality
thereby determines a state of rest.
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In more prosaic terms, this argument is simply expressing the ‘common-
sense’ notion that if there is an absolute light speed, then there is a
preferred ‘state of rest” with respect to which this speed appears to be the
same in all directions. What is less obvious is that this conflict arises only
if we try to retain the notion of an absolute time (or, at least, a preferred
3-space in each 7),). It should now be clear how we must proceed. The
notion of an absolute time (and therefore of the bundle structure of G and
N) must be abandoned. At the stage of sophistication that we have arrived
at by now, this should not shock us particularly. We have already seen that
absolute space has to be abandoned as soon as even a Galilean relativity
principle is seriously adopted (although this perception is not recognized
nearly as widely as it should be). So, by now, the acceptance of the fact
that time is not an absolute concept, as well as space not being an absolute
concept, should not seem to be such a revolution as we might have
thought.

Thus we must indeed bid farewell to the T3 slices through spacetime,
and accept that the only reason for having an absolute time so firmly
ingrained in our thinking is that the speed of light is so extraordinarily
large by the standards of the speeds familiar to us. In Fig. 17.14, I have
redrawn part of Fig. 17.13., with a horizontal/vertical scale ratio that is a
little closer to that which would be appropriate for the normal units that
we tend to use in every-day life. But it is only a very little closer, since we
must bear in mind that in ordinary units, say seconds for time and metres
for distance, we find that the speed of light ¢ is given by

¢ =299 792458 metres/second

where this value is actually exact!'! Since our spacetime diagrams (and our
formulae) look so awkward in conventional units, it is a common practice,
in relativity theory work, to use units for which ¢ = 1. All that this
means is that if we choose a second as our unit of time, then we must use
a light-second (i.e. 299792458 metres) for our unit of distance; if we use the
year as our unit of time, then we use the light-year (about 9.46 x 10'3
metres) as the unit of distance; if we wish to use a metre as our distance
measure, then we must use for our time measure something like 3%
nanoseconds, etc.

Fig. 17.14 The null
cone redrawn so that the
space and time scales are
just slightly closer

to those of normal
experience.
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The spacetime picture of Fig. 17.12. was first introduced by Hermann
Minkowski (1864-1909), who was an extremely fine and original mathe-
matician. Coincidentally, he was also one of Einstein’s teachers at ETH,
The Federal Institute of Technology in Zurich, in the late 1890s. In fact,
the very idea of spacetime itself came from Minkowski who wrote, in
1908,!2 ‘Henceforth space by itself, and time by itself, are doomed to
fade away into mere shadows, and only a kind of union of the two will
preserve an independent reality.” In my opinion, the theory of special
relativity was not yet complete, despite the wonderful physical insights
of Einstein and the profound contributions of Lorentz and Poincaré,
until Minkowski provided his fundamental and revolutionary viewpoint:
spacetime.

To complete Minkowski’s viewpoint with regard to the geometry under-
lying special relativity, and thereby define Minkowskian spacetime ML,
we must fix the scaling of g, so that it provides a measure of ‘length’ along
world lines. This applies to curves in M that we refer to as
timelike which means that their tangents always lie within the null cones
(Fig. 17.15a and see also Fig. 17.11) and, according to the theory, are

Fig. 17.15 (a) The world line of a massive particle is a timelike curve, so its
tangents are always within the local null cones, giving ds> = g, dx?dx” positive.
The quantity ds = (gabdx“dx”)l/ ® measures the infinitesimal time-interval along
the curve, so the ‘length’ t = [ ds, is the time measured by an ideal clock carried by
the particle between two events on the curve. (b) In the case of a massless particle
(e.g. a photon) the world lines have tangents on the null cones (null world line), so
the time-interval 7 = [ ds always vanishes.
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possible world lines for ordinary massive particles. This ‘length’ is actually
a time and it measures the actual time t that an (ideal) clock would
register, between two points 4 and B on the curve, according to the
formula (see §14.7, §13.8)

B
T= / ds, where ds = (gabdx“dxb)%.
A

For this, we require the choice of spacetime metric g to have signature
+ — — — (which is my own preferred choice, rather than + + + —,
which some other people prefer, for different reasons). Photons
have world lines that are called null (or lightlike), having tangents
that are on the null cones (Fig. 17.15b). Accordingly the ‘time’ that a
photon experiences (if a photon could actually have experiences) has to
be zero!

In my discussion above, I have chosen to emphasize the null-cone
structure of spacetime, even more than its metric. In certain respects,
the null cones are indeed more fundamental than the metric. In
particular, they determine the causality properties of the spacetime. As
we have just seen, material particles are to have their world lines con-
strained to lie within the cones, and light rays have world lines along
the cones. No physical particle is permitted to have a spacelike world
line, i.e. one outside its associated light cones.!? If we think of actual
signals as being transmitted by material particles or photons, then we
find that no such signal can pass outside the constriants imposed by the
null cones. If we consider some point p in M, then we find that the
region that lies on or within its future light cone consists of all the events
that can, in principle, receive a signal from p. Likewise, the points of IMI
lying on or within p’s past light cone are precisely those events that can,
in principle send a signal fo the point p; see Fig. 17.16. The situation
is similar when we consider propagating fields and even quantum-
mechanical effects (although some strangely puzzling situations can arise
with what is called quantum entanglement—or ‘quanglement’—as we
shall be seeing in §23.10). The null cones indeed define the causality
structure of M: no material body or signal is permitted to travel faster
than light; it is necessarily constrained to be within (or on) the light cones.

What about the relativity principle? We shall be seeing in §18.2 that
Minkowski’s remarkable geometry has just as big a symmetry group as
has the spacetime G of Galilean physics. Not only is every point of M
on an equal footing, but all possible velocities (timelike future-pointing
directions) are also on an equal footing with each other. This will all
be explained more fully in §18.2. The relativity principle holds just as
well for M as it does for G!
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Fig. 17.16 The future of p is the region
that can be reached by future-timelike
curves from p. A curved-spacetime case is
indicated (see Fig. 17.17). The boundary of
this region (wherever smooth) is tangential
to the light cones. Signals, whether carried
by massive particles or massless photons,
reach points within this region or on its
boundary. The past of p is defined similarly.

17.9 The spacetime of Einstein’s general relativity

Finally, we come to the Einsteinian spacetime & of general relativity. Basic-
ally, we apply the same generalization to Minkowski’s I, as we pre-
viously did to Galileo’s G, when we obtained the Newton(—Cartan)
spacetime N. Rather than having the uniform arrangement of null cones
depicted in Fig. 17.12, we now have a more irregular-looking arrangement
like that of Fig. 17.17. Again, we have a Lorentzian (+ — — —) metric g
whose physical interpretation is to define the time measured by an ideal
clock, according to precisely the same formula as for MI, although
now g is a more general metric without the unifomity that is the characteris-
tic of the metric of M.

The null-cone structure defined by this g specifies £’s causality structure,
just as was the case for Minkowski space MI. Locally, the differences
are slight, but things can get decidedly more elaborate when we examine
the global causality structure of a complicated Einsteinian spacetime £. An

Fig. 17.17 Einsteinian
spacetime £ of general
relativity. This generaliza-
tion of Minkowski’s IMI is
similar to the passage from
G to NV (Figs. 17.12, 17.3,
17.7a, respectively). As
with MI, the Lorentzian
(+ — ——) pseudo-metric g
defines the physical meas-
ure of time.
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Fig. 17.18 The causality
structure of £ is determined
by g (as with VI, see Fig.
17.16), so extreme unphy-
sical situations with ‘closed
timelike curves’ might
hypothetically arise,
allowing future-directed
signals to return from the
past.

extreme situation arises when we have what is referred to as causality
violation in which ‘closed timelike curves’ can occur, and it becomes
possible for a signal to be sent from some event into the past of that
same event! See Fig. 17.18. Such situations are normally ruled out as
‘unphysical’, and my own position would certainly be to rule them out,
for a classically acceptable spacetime. Yet some physicists take a consider-
ably more relaxed view of the matter'# being prepared to admit the
possibility of the time travel that such closed timelike curves would
allow. (See §30.6 for a discussion of these issues.) On the other hand, less
extreme—though certainly somewhat exotic—causality structures can
arise in some interesting spacetimes of great relevance to modern astro-
physics, namely those which represent black holes. These will be con-
sidered in §27.8.

In §14.7, we encountered the fact that a (pseudo)metric g determines
a unique torsion-free connection V for which Vg = 0, so this will apply
here. This is a remarkable fact. It tells us that Einstein’s concept of inertial
motion is completely determined by the spacetime metric. This is quite
different from the situation with Cartan’s Newtonian spacetime, where the
‘V’ had to be specified in addition to the metric notions. The advantage
here is that the metric g is now non-degenerate, so that V is completely
determined by it. In fact, the timelike geodesics of V (inertial motions) are
fixed by the property that they are (locally) the curves that maximize what
is called the proper time. This proper time is simply the length, as measured
along the world line, and it is what is measured by an ideal clock having
that world line. (This is a curious ‘opposite’ to the ‘stretched-string’ notion
of a geodesic on an ordinary Riemannian surface with a positive-definite
metric; see §14.7. We shall see, in §18.3, that this maximization of proper
time for the unaccelerated world line is basically an expression of the
‘clock paradox’ of relativity theory.)

The connection V has a curvature tensor R, whose physical interpreta-
tion is basically just the same as has been given above in the case of V.
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What locally distinguishes Minkowski’s I, of special relativity, from
Einstein’s £ of general relativity is that R = 0 for IMI. In the next chapter
we shall explore this Lorentzian geometry more fully and, in the following
one, see how Einstein’s field equations are the natural encoding, into &’s
structure, of the ‘volume-reducing rate’ 4tGM referred to towards the end
of §17.5. We shall also begin to witness the extraordinary power, beauty,
and accuracy of Einstein’s revolutionary theory.

Notes

Section 17.1
17.1. Although in the past I have been a proponent of the hyphenated ‘space-time’, |
have found that there are places in this book where that would cause compli-
cations in phraseology. Accordingly I am adopting ‘spacetime’ consistently

here.

17.2. It appears that Aristotle may well have had difficulties with the notion of an
infinite physical space, as is required if Euclidean geometry IE? is to provide an
accurate description of spatial geometry, but his views with regard to time may
have been more in accord with the ‘IE!” of the IE! x &3 picture. See Moore
(1990), Chap. 2.

Section 17.2
17.3. See Drake (1953), pp. 186-87.
17.4. See Arnol’d (1978); Penrose (1968).

Section 17.3
17.5. Thiswasin his manuscript fragment De motu corporum in mediis regulariter ceden-
tibus—a precursor of Principia, written in 1684. See also Penrose (1987d), p. 49.

Section 17.4
17.6. But see Bondi (1957).
17.7. Now there are ‘tourist opportunities’, in Russia, for such experiences for
humans, in aeroplanes and in parabolic flights!
Section 17.6
17.8. See Drake (1957), p. 278, concerning a remark Galileo made in the Assayer; see
also Newton (1730), Query 30; Penrose (1987d), p. 23.
17.9. See de Sitter (1913).

Section 17.7

17.10. There is a knotty issue of how one actually tells a ‘sphere’ from an ‘ellipsoid’,
because distances can be recalibrated in different directions, so as to make any
ellipsoid appear ‘spherical’. However, what recalibrations cannot do is to make
a non-ellipsoidal ovoid look spherical, at least with ‘smooth’ recalibrations.
Such ovoids would give rise to a Finsler space, which does not have the pleasant
local symmetry of the (pseudo-)Riemannian structures of relativity theory.

Section 17.8

17.11. The reader might well be puzzled that the speed of light comes out as an exact
integer when measured in metres per second. This is no accident, but merely a
reflection of the fact that very accurate distance measurements are now much
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17.12.

17.13.

harder to ascertain than very accurate time measurements. Accordingly, the
most accurate standard for the metre is conveniently defined so that there are
exactly 299792458 of them to the distance travelled by light in a standard
second, giving a value for the metre that very accurately matches the now
inadequately precise standard metre rule in Paris.

See Minkowski (1952). This is a translation of the Address Minkowski de-
livered at the 80th Assembly of German Natural Scientists and Physicians,
Cologne, 21 September, 1908.

Some physicists have toyed with the idea of hypothetical ‘particles’ known
as tachyons that would have spacelike world lines (so they travel faster than
light). See Bilaniuk and Sudarshan (1969); for a more technical reference, see
Sudarshan and Dhar (1968). It is difficult to develop anything like a consistent
theory in which tachyons are present, and it is normally considered that such
entities do not exist.

Section 17.9

17.14.

See, for example, Novikov (2001); Davies (2003).
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Minkowskian geometry

18.1 Euclidean and Minkowskian 4-space

THE geometries of Euclidean 2-space and 3-space are very familiar to us.
Moreover, the generalization to a 4-dimensional Euclidean geometry &4 is
not difficult to make in principle, although it is not something for which
‘visual intuition’ can be readily appealed to. It is clear, however, that there
are many beautiful 4-dimensional configurations—or they surely would be
beautiful, if only we could actually see them! One of the simpler (!) such
configurations is the pattern of Clifford parallels on the 3-sphere, where we
think of this sphere as sitting in IE4. (Of course we can do a little better
here, with regard to visualization, because S3 is only 3-dimensional, and its
stereographic projection, as presented in Fig. 33.15, gives us some idea of
the actual Clifford configuration. (If we could really ‘see’ this configura-
tion as part of IE4, we ought to be able to gain some feeling for what the
complex vector 2-space structure of €2 actually ‘looks like’;! see §15.4,
Fig. 15.8.) Minkowski space IMI is in many respects very similar to J&4, but
there are some important differences that we shall be coming to.

Algebraically, the treatment of IE* is very close to the coordinate
treatment of ‘ordinary’ 3-space IE3. All that is needed is one more
Cartesian coordinate w, in addition to the standard x, y, and z. The IE*
distance s between the points (w, x, y, z) and (W, X/, y/, Z’) is given by the
Pythagorean relation

S=w—-w)P+x-xX)P+0-yV)P’+(E-2>~

If we think of (w, x, y, z) and (W, X/, )/, Z/) as only ‘infinitesimally’
displaced from one another, and formally write (dw, dx, dy, dz) for the
difference (W, X/, ', ') — (W, x, y, 2), i.e.?

w=w+dw X =x+dx,y =y+dy, 7 =z +dz,
then we find
ds? = dw? + dx? + dy? + d2%.
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The length of a curve in &4 is given by the same formula as in IE3, namely
Jds (taking the positive sign for ds).

Now the geometry of Minkowski spacetime M is very close to this, the
only difference being signs. Many workers in the field prefer to concentrate
on the ( + + + —)-signature pseudometric

d? = —d* + dx® + dy? + d2,

since this is convenient when considering spatial geometry, the
quantity represented above by ‘d¢*>’ being positive for spacelike displace-
ments (i.e. displacements that are neither on nor within the future or
past null cones; see Fig. 18.1). But the quantity ‘ds® defined by the
(+ — — —)-signature quantity

ds? =dP —dx? —dy? —dZ?

is more directly physical, because it is positive along the timelike curves
that are the allowable worldlines of massive particles, the integral [ds
(with ds > 0) being directly interpretable as the actual physical time
measured by an ideal clock with this as its world line. I shall use this
signature (+ — — —) for my choice of (pseudo)metric tensor g, with index
form g,,, so that the above expression can be written in index form
(see §13.8)

ds? = gpdx? dx?.

Timelike: Null: ds2. de2 Fig. 18.1 In MlznkOWS.kl
ds2 positive both zero space M, the d/* metric
provides a measure of
spatial (distance)’ for
spacelike displacements
(neither on nor within
future or past null
cones). For timelike dis-
placements (within the
null cone), ds? provides a
measure temporal
(interval), where [ds is
physical time as meas-
ured by an ideal clock.
For a null displacement
(along the null cone)
both d¢? and ds? give
zero.

Spacelike:
d#2 positive
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We should, however, recall from §17.8 that, unlike the case for a massive
particle, [dsis zero for a world line of a photon (so non-coincident points on
the world-line can be ‘zero distance’ apart). This would also be true for any
other particle that travels with the speed of light. The time ‘experienced’ by
such a particle would always be zero, no matter how far it travels! This is
allowed because of the non-positive-definite (Lorentzian) nature of g;.

In the early days of relativity theory, there was a tendency to emphasize
the closeness of IMI’s geometry to that of JE* by simply taking the time
coordinate ¢ to be purely imaginary:

t=1w,

which makes the ‘d¢*’ form of the Minkowskian metric look just the same as
the ds? of IE*. Of course, appearances are somewhat illusory, because of the
unnatural-looking hidden ‘reality’ condition that time is measured in purely
imaginary units whereas the space coordinates use ordinary real units.
Moreover, in a moving frame, the reality conditions get complicated because
the real and imaginary coordinates are thoroughly mixed up. In fact, there is
amodern tendency to do something very similar to this, in various different
guises, in the name of what is called ‘Euclidean quantum field theory’. Later,
in §28.9, I shall come to my reasons for being considerably less than happy
with this type of procedure (at least if it is regarded as a key ingredient in an
approachto a new fundamental physical theory, as it sometimes is; the device
is also used as a ‘trick’ for obtaining solutions to questions in quantum field
theory, and for this it can indeed play an honest and valuable role).

Rather than adopting such a procedure that (to me, at least) looks as
unnatural as this, let us try to ‘go the whole hog’ and allow all our coordin-
ates to be complex (see Fig. 18.2). Then there is no distinction between the
different signatures, our complex coordinates w, &, n, { now referring to the
complex space C*, which we may regard as the complexification CIE* of
IE*. As a complex affine space—see §14.1—this is the same as the complex-
ification ©IMI of IMI. Moreover, each complex 4-space CIE* and CIM has a
completely equivalent flat (vanishing curvature) complex metric Cg. This
metric can be taken to be ds? = dw? 4+ d&* 4+ dn? + d¢?, where IE* is the
real subspace of CMI for which all of w, &, n, { are real and MI is that for
which o is real, but where &, n, { are all pure imaginary. The alternative
Minkowskian real subspace IMI, given when w is pure imaginary but &, 7, {
are all real, has its ‘ds®’ giving the above ‘d¢?’ version of the Minkowski
metric. The three subspaces I&:*, M, and M are called (alternative) real
slices of CIE*. We can single out just one of these if we endow CIE* with
an operation of complex conjugation C, which is involutory (i.e. C* = 1),
and which leaves only the chosen real slice pointwise invariant.!'8-1]

@ [18.1]Find Cexplicitly for each of the three cases I&:*, IMI, and M. Hint: Think of how Cistoact on
, &, n,and {. Itisnot quite the standard operation of complex conjugation in the cases IMI and M.
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| cE?
N

Fig. 18.2 Complex Euclidean space CIE* has a complex (holomorphic) metric
ds?® = dw? 4+ d&* + dn? + d¢? in complex Cartesian coordinates (w, &, 7, {). Eu-
clidean 4-space &4 is the ‘real section’ for which w, &, 7, ( are all real. Minkowski
spacetime M, with the + — — — ds® metric, is a different real section, w being real
and ¢, n, { pure imaginary. We get another Lorentzian real section Wl by taking o
to be pure imaginary and &, n, { real, where the induced ds® now gives the + + +—
‘d¢?’ version of the Minkowski metric.

18.2 The symmetry groups of Minkowski space

The group of symmetries of &4 (i.e. its group of Euclidean motions) is
10-dimensional, since (i) the symmetry group for which the origin is fixed is
the 6-dimensional rotation group O(4) (because n(n — 1)/2 = 6 whenn = 4;
see §13.8), and (ii) there is a 4-dimensional symmetry group of translations of
the origin see Fig. 18.3a. When we complexify &4 to CIE*, we get a 10-com-
plex-dimensional group (clearly, because if we write out any of the real
Euclidean motions of IE* as an algebraic formula in terms of the
coordinates, all we have to do is allow all the quantities appearing in the
formula (coordinates and coefficients) to become complex rather than
real, and we get a corresponding complex motion of CIE*. Since the first
preserves the metric, so will the second. Moreover, all continous motions
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Fig. 18.3 (a) The group of Euclidean motions of IE* is 10-dimensional, the
symmetry group with fixed origin being the 6-dimensional rotation group O(4)
and the group of translations of the origin, 4-dimensional. (b) For the symmetries
of MI, we get the 6-dimensional Lorentz group O(1,3) (or (O(3,1)) for fixed origin
and 4-dimensions of translations, giving the 10-dimensional Poincaré symmetry

group.

of CIE* to itself which preserve the complexified metric Cg are of this
nature.[18-21

Now it is very plausible, but not completely obvious at this stage, that the
group would have the same dimension, namely 10 (but now real/ dimen-
sional), if we specialize to a different ‘real section’ of CIE*, such as the one
for which the coordinates (o, &, n, {) have the reality condition that mis pure
imaginary and &, 7, { are real (signature +-++—) or else for which o is real
and &, n, {are pureimaginary (signature +— ——); see Fig. 18.2. The transla-
tional part is obviously still 4-dimensional. In fact, this part tells us that the
group is transitive on I, which means that any specified point of IM[ can be
sent to any other specified point of IMI by some element of the group, just as
was the case for I&2*. But what about the Lorentz group (O(3, 1) or O(1, 3))?
How can we see that this is ‘just as 6-dimensional’ as is O(4)? In fact the
Lorentz group is 6-dimensional (see Fig. 18.3b). The most general way of
seeing such a thing is to examine the Lie algebra—see §14.6—and check that
this still works with the required minor sign changes.['8-3'We shall be seeing a
rather remarkable alternative way of looking at O(1,3) shortly (§18.5), and
checking its 6-dimensionality, by relating it to the symmetry group of the
Riemann sphere.

15 [18.2] Can you see why?
[18.3] Confirm it in this case examining the 4 x 4 Lie algebra matrices explicitly.
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The full 10-dimensional symmetry group of Minkowski space M is called
the Poincaré group, in recognition of the achievement of the outstanding
French mathematician Henri Poincaré (1854-1912), in building up the
essential mathematical structure of special relativity in the years between
1898 and 1905, independently of Einstein’s fundamental input of 1905.3 The
Poincaré group is important in relativistic physics, particularly in particle
physics and quantum field theory (Chapters 25 and 26). It turns out that,
according to the rules of quantum mechanics, individual particles corres-
pond to representations (§§13.6,7) of the Poincaré group, where the values
for their mass and spin determine the particular representations (§22.12).

It is, in essence, the extensiveness of this group that allows us to assert
that the relativity principle still holds for MI, even though we have a fixed
speed of light (§§17.6,8). In the first place, we see that every point of the
spacetime MI is on an equal footing with every other, because of the
transitive nature of the translation subgroup. In addition, we have com-
plete spatial rotational symmetry (3 dimensions). This leaves 3 more
dimensions to express the fact that there is complete freedom to move
from one velocity (< c¢) to any another, and the whole structure remains
the same—which is basically M[’s relativity principle! A little more for-
mally, what the relativity principle asserts is that the Poincaré group acts
transitively on the bundle of future-timelike directions of IVI.* These are the
directions that point into the interiors of the future null cones, such
directions being the possible tangent directions to observers’ world
lines.['84] 1t may be noted, however, that this only works because we
have given up the family of ‘simultaneity slices’ through the the Galilean
or Newtonian spacetime. Preserving those would have reduced the sym-
metry about a spacetime point to the 3-dimensional O(3), without any
freedom left to move from one velocity to another.

18.3 Lorentzian orthogonality; the ‘clock paradox’

This point of view regards ™I as just a ‘real section’ or ‘slice’ of the
complex space CIE* (or ©*), but a section with a different character
from IE* itself. This is very convenient viewpoint, so long as we can
adopt the correct attitude of mind. For example, in the Euclidean IE*,
we have a notion of ‘orthogonal’ (which means ‘at right angles’). This
carries over directly to CIE* by the process of ‘complexification’.> How-
ever, there are certain types of property that we must expect to be a little
different after we apply this procedure. For example, we find that, in CIE*,
a direction can now be orthogonal to itself, which is something that
certainly cannot happen in JE*. This feature persists, however, when we

@9 [18.4] Explain this action of the Poincaré group a little more fully.
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pass back to our new real slice, the Lorentzian MI[. Thus, we retain a
notion of orthogonality in ™M[—but we find that now there are real
directions that are orthogonal to themselves, these being the nu// directions
that point along photon world-lines (see below).

We can carry this orthogonality notion further and consider the orthog-
onal complement p* of an r-plane element % at a point p. This is the
(4 — r)-plane element n* of all directions at p that are orthogonal to all
the directions in i at p. Thus the orthogonal complement of a line element is
a 3-plane element, the orthogonal complement of a 2-plane element
is another 2-plane element, and the orthogonal complement of a 3-plane
element is a line element. In each case, taking the orthogonal complement
again would return to us the element that we started with; in other words
(mH)* = 7. Recall that in §13.9 and §14.7 we considered the operations of
lowering and raising indices, on a vector or tensor quantity, with g, or g?.
When applied to the simple r-vector or simple (4 — r)-form that represents
an r-surface element, in accordance §§12.4,7 (e.g. n,,— n* = n,8“g";
n—mn,, = 1°g..gpa), this raising/lowering operation corresponds to pass-
ing to the orthogonal complement; see also §19.2.

In I}, the orthogonal complement of a 3-plane element 7, for example,
is a line element " (normal to %) which is never contained in m;
see Fig. 18.4. But as in Fig. 18.2, we can pass to the complexification
CE* and thence to the different real section M. In effect, we were

Fig. 18.4 1In IE*, an r-plane element n at a point p has an orthogonal complement
n* which is a (4-r)-plane element, where B and ®* never have a direction in
common. (a) In particular, if 1 is a 3-plane element, then %' is the normal
direction to it. (b) If 5 is a 2-plane element, then i is another 2-plane element.
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appealing to this procedure in the previous chapter (§17.8) when we asked
for the orthogonal complement of a time slice (spacelike 3-plane element) at
a point p to find a timelike direction (‘state of rest’), which showed us that
a relativity principle cannot be maintained if we wish to have both a finite
speed of light and an absolute time (see Fig. 17.15).118-3] However, now let
us read this in the opposite direction. Consider an inertial observer at a
particular event p in M. Suppose that the observer’s world line has some
(timelike) direction 7 at p. Then the 3-space 7+ represents the family of
‘purely spatial’ directions at p for that observer, i.e. those neighbouring
events that are deemed by the observer to be simultaneous with p.

It is not my purpose here to develop the details of the special theory of
relativity not to see why, in particular, this is a reasonable notion
of ‘simultaneous’. For this kind of thing, the reader may be referred
to several excellent texts.® The point should be made, however, that
this notion of simultaneity actually depends upon the observer’s velocity.
In Euclidean geometry, the orthogonal complement of a direction in
space will change when that direction changes (Fig. 18.5a). Correspond-
ingly, in Lorentzian geometry, the orthogonal complement will also change
when the direction (i.e. observer’s velocity) changes. The only distinction is
that the change tilts the orthogonal complement the opposite way from
what happens in the Euclidean case (see Fig. 18.5b) and, accordingly, it is
possible for the orthogonal complement of a direction to contain that
direction (see Fig. 18.5¢), as remarked upon above, this being what happens
for a null direction (i.e. along the light cone).

@

©

Fig. 18.5 (a) In Euclidean 4-geometry, if a direction rotates, so also does its
orthogonal complement 3-plane element. (b) This is true also in Lorentzian
4-geometry, but for a timelike direction the slope of the orthogonal complement
3-plane (spatial directions of ‘simultaneity’) moves in the reverse sense; (c) accord-
ingly, if the direction becomes null, the orthogonal complement actually contains
that direction.

£3[18.5] (i) Under what circumstances is it possible for a 3-plane element 7 to contain its normal 5=,
in IMI? (ii) Show that there are two distinct families of 2-planes that are the orthogonal complements
of themselves in CE*, but neither of these families survives in M. (These so-called ‘self-dual’ and
‘anti-self-dual’ complex 2-planes will have considerable importance later; see §32.2 and §33.11.)
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In passing from IE* to IMI, there are also changes that relate to inequal-
ities. The most dramatic of these contains the essence of the so-called
‘clock paradox’ (or ‘twin paradox’) of special relativity. Some readers
may be familiar with this ‘paradox’; it refers to a space traveller who
takes a rocket ship to a distant planet, travelling at close to the speed of
light, and then returns to find that time on the Earth had moved forward
many centuries, while the traveller might be only a few years older. As
Bondi (1964, 1967) has emphasized, if we accept that the passage of time,
as registered by a moving clock, is really a kind of ‘arc length’ measured
along a world line, then the phenomenon is not more puzzling than the
fact that the distance between two points in Euclidean space depens upon
the path along which this distance is measured. Both are measured by the
same formula, namely [ds, but in the Euclidean case, the straight path
represents the minimizing of the measured distance between two fixed end-
points, whereas in the Minkowski case, it turns out that the straight, i.e.
inertial, path represents the maximizing of the measured time between two
fixed end events (see also §17.9).

The basic inequality, from which all this springs, is what is called the
triangle inequality of ordinary Euclidean geometry. If ABC is any Euclidean
triangle, then the side lengths satisfy

AB+BC=AC,

with equality holding only in the degenerate case when A, B, and C are
all collinear (see Fig. 18.6a). Of course, things are symmetrical, and it
does not matter which we choose for the side AC. In Lorentzian geometry,
we only get a consistent triangle inequality when the sides are all timelike,
and now we must be careful to order things appropriately so that AB, BC,
and AC are all directed into the future (see Fig. 18.6b). Our inequality is now
reversed:

AB+BC=AC,

again with equality holding only when A, B, and C are all collinear, i.e.
on the world line of an inertial particle. The interpretation of this is
precisely the so-called ‘clock paradox’. The space traveller’s world line
is the broken path ABC, whereas the inhabitants of Earth have the
world line AC. We see that, according to the inequality, the space travel-
ler’s clock indeed registers a shorter total elapsed time than those on
Earth.

Some people worry that the acceleration of the rocket ship is not
properly accounted for in this description, and indeed I have idealized
things so that the astronaut appears to be subjected to an impulsive (i.e.
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infinite) acceleration at the event B (which ought to be fatal!). However,
this issue is easily dealt with by simply smoothing over the corners of the
triangle, as is indicated in Fig. 18.6d. The time difference is not greatly
affected, as is obvious in the corresponding situation for the Euclidean

Fig. 18.6 (a) The
Euclidean triangle
inequality AB + BC = AC,
with equality holding only
in the degenerate case when
A, B, C are collinear. (b) In
Lorentzian geometry, with
AB, BC, AC all future-
timelike, the inequality is
reversed: AB + BC=AC,
with equality holding only
when A, B, C are all on the
world-line of an inertial
particle. This illustrates the
‘clock paradox’ of special
relativity whereby a space
traveller with world-line
ABC experiences a shorter
time interval than the
Earth’s inhabitants AC.

(c) ‘Smoothing’ the corners
of a Euclidean triangle
makes little difference to
the edge lengths, and the
straight path is still the
shortest. (d) Similarly,
making accelerations finite
(by ‘smoothing’ corners)
makes little difference to
the times, and the straight
(inertial) path is still the
longest.

@

>

©
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‘smoothed-off” triangle depicted in Fig. 18.6¢. It used to be frequently
argued that it would be necessary to pass to Einstein’s general relativity
in order to handle acceleration, but this is completely wrong. The answer
for the clock times is obtained using the formula [ds (with ds>0) in
both theories. The astronaut is allowed to accelerate in special relativity,
just as in general relativity. The distinction simply lies in what actual
metric is being used in order to evaluate the quantity ds; i.e. it depends
on the actual g;. We are working in special relativity provided that this
metric is the flat metric of Minkowski geometry MMI. Physically, this means
that the gravitational fields can be neglected. When we need to take the
gravitational fields into account, we must introduce the curved metric of
Einstein’s general relativity. This will be discussed more fully in the next
chapter.

18.4 Hyperbolic geometry in Minkowski space

Let us look at some further aspects of Minkowski’s geometry and its
relation to that of Euclid. In Euclidean geometry, the locus of points
that are a fixed distance a from a fixed point O is a sphere. In IE*, of
course, this is a 3-sphere S°. What happens in IM[? There are now two
situations to consider, depending upon whether we take a to be a (say
positive) real number or (in effect) purely imaginary (where I am adopting
my preferred + — — — signature; otherwise the roles would be reversed);
see Fig. 18.7, which illustrates both cases.

The case of imaginary a will not concern us particularly here. Let us
therefore assume a > 0 (the case ¢ < 0 being equivalent). Now our ‘sphere’
consists of two pieces, one of which is ‘bowl-shaped’, H *, lying within the
future light cone, and the other, H —, ‘hill-shaped’, lying within the past light
cone. We shall concentrate on H * (the space ‘H ~ being similar). What is
the intrinsic metric on ‘H *? It certainly inherits a metric, induced on it from
its embedding in M. (The lengths of a curve in ‘H *, for example, is defined
simply by considering it as a curve in IML.) In fact, for this case, the d/* (with
signature 4+ + -+—) is the better measure, since the directions along H " are
spacelike. We can make a good guess as to H "’s metric, because it is
essentially just a ‘sphere’ of some sort, but with a ‘sign flip’. What can that
be? Recall Johann Lambert’s considerations, in 1786, on the possibility of
constructing a geometry in which Euclid’s 5th postulate would be violated.
He considered that a ‘sphere’ of imaginary radius would provide such a
geometry, provided that such a thing actually makes consistent sense. In
fact, our construction of H , as just given, provides just such a space—a
model of hyperbolic geometry—but now it is 3-dimensional. To get
Lambert’s non-Euclidean plane (the hyperbolic plane), all we need to do is
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Fig.18.7 ‘Spheres’in M,
as the loci of points a fixed
Minkowski distance ¢
from a fixed point O.

If a >0 (with the

+——— ds? signature)

we get two ‘hyperbolic’
pieces, the ‘bowl-shaped’
H* (within the future light
cone) and the ‘hill-shaped’
‘H~, (within the past light
cone). For imaginary a
(or with real @ and the
++4+4— dé? signature)

we get a one-sheeted
hyperboloid, spacelike-
separated from O.

dispense with one of the spatial dimensions in what has been described
above. In each case the ‘hyperbolic straight lines’ (geodesics) are simply
intersections of H * with 2-planes through O (Fig. 18.8).

Of course, it is somewhat fanciful to imagine that Lambert might have
had something like this construction hidden at the back of his mind.
Nevertheless, it illustrates something of the inner consistency of ideas of
this general kind, in which signatures can be ‘flipped’ and real quantities
made imaginary and imaginary quantities made real. This is something
about which Lambert could easily have had very creditable instincts. It
is perhaps instructive to examine Fig. 18.9. Here I have drawn a light
cone 1> —x?>—y*>—z>=0 (y suppressed), for Minkowski 4-space M, with
coordinates (¢, x, y, z), and I have taken a family of sections of the cone by
the planes

z+t+AMt—2)=2,

for various values of 4, all taken through a particular plane t=1=z. This
intersection is 2-dimensional (the cone itself being 3-dimensional), and it
turns out that, for each positive value of A, the metric of this 2-surface
is exactly that of a sphere, of radius 2~/ =1 /v/Z (with respect to the
d/*> metric). When 4 =0, we get the metric of an ordinary Euclidean
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‘Straight line’ of
hyperbolic geometry
of H+

Fig. 18.8 A ‘hyperbolic
straight line’ (geodesic)
in K™ is the intersection
with H* of a 2-plane
through O. (The 2-
dimensional case is
illustrated, but it is
similar for a
3-dimensional H™".)

Fig. 18.9 Sections of the light cone > — x*> — y? —z2 = 0, by 3-planes (z + 1)+
Mt — z) = 2, through the 2-plane ¢t = 1 = z. The coordinate y is suppressed, so
dimensions appear reduced by 1. When A > 0 the section S has a 2-sphere d¢?
metric, illustrated by the horizontal case A = 1. When A = 0 we get the flat Euclid-
ean d¢? metric of the paraboloidal section E. When A < 0 we get a hyperbolic d¢?
metric, illustrated by the vertical hyperbolic section H, in the case A = —1.

plane. (This intersection does not look ‘flat’, but ‘paraboloidal’ instead;
nevertheless its intrinsic metric is indeed flat.)['8-° When A becomes nega-

£9 [18.6] Show all this. Hint: It is handy to make use of coordinates x, y, and w, where
w=@t—z=1/)i=0—-t—2)/V
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tive, the intersection is Lambert’s sphere of imaginary radius ( = 1/+v/2). It
indeed has an intrinsic metric (from d¢?) of hyperbolic geometry. In this
way, we see that Lambert’s tentative insight that imaginary-radius
spheres might make sense was perfectly justified, albeit centuries ahead
of its time.

The construction for hyperbolic geometry as the ‘pseudosphere’ H ™
can be directly related to Beltrami’s conformal and projective representa-
tions that were described (in the 2-dimensional case) in §§2.4,5. In Fig.
18.10, I have illustrated the way that both of these can be obtained directly
from ‘H T, explicitly depicting the 2-dimensional case of pseudospheres in
Minkowski 3-space IMI* (with coordinates 7, x, y). Taking H * to have
equation > — x> — y*> = 1, we obtain Beltrami’s ‘Klein’ (i.e. projective)
representation by projecting it from the origin (0, 0, 0) to the plane
t =1, and we obtain Beltrami’s ‘Poincaré’ (i.e. conformal) representation
by projecting from the ‘south pole’ (—1, 0, 0) to the ‘equatorial plane’
t = 0 (i.e. ‘stereographic projection’; see §8.3, Fig. 8.7).1187]

o 4 \, Projective

Conformal

Fig. 18.10 In Minkowski 3-space IMI?, the hyperbolic 2-geometry of H* (given by
> — x* — y* = 1) directly relates to Beltrami’s conformal and projective representa-
tions (illustrated in Figs. 2.11 and 2.16 respectively—M.C.Escher’s print and in its
distorted version). Beltrami’s projective (‘Klein’) model is obtained by projecting
H* from the origin (0,0,0) to the interior of the unit circle in the plane ¢ = 1.
Beltrami’s conformal (Poincaré) model is obtained by projecting H* from
(—1,0,0) to the interior of the unit circle in 7 = 0. (See also Beltrami’s geometry of
Fig. 2.17.) The analogous construction works also for hyperbolic 3-geometry in IVIL.

[18.7] Show why the hyperbolic straight lines are represented as straight in the ‘Klein’ case and
by circles meeting the boundary orthogonally in the ‘Poincaré’ case, indicating, by use of a
‘signature flip’, why this second case is indeed conformal.
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Notice that the future-timelike directions are represented by the points
of H ™ (where, for definiteness, I take a = 1). These are simply the
possible velocities of a massive particle. Thus, H * can be thought of as
velocity space in relativity theory. (Recall that this issue was raised at the
end of §2.7.) It is one of the aspects of relativity that people often find most
disturbing that one cannot simply add up velocities in the normal way.
Thus, in particular, if a rocket ship were to travel in some direction at %c,
relative to the Earth, and it were to eject a missile in the same spatial
direction at %c, relative to the ship, then the missile travels at only %c,
relative to the Earth, not the superluminal (3 + 3)c =3 ¢. (Here ¢ is light
speed, re-introduced for clarity only; units are chosen so that ¢ = 1.) This
is understood here as an effect of adding lengths in the hyperbolic geom-
etry (see Fig. 18.11).[13:8]

To appreciate this, we need to understand the physical interpretation of
this hyperbolic ‘length’. In fact, it is a quantity, known as the rapidity, for
which I shall use the Greek letter p, defined in terms of the speed v by the
formulae (graphed in Fig. 18.12)

14+v . ef —e’
.. v=——,
er +e P

= 110
P % Ty
(the right-hand expression being what is called the ‘hyperbolic tangent’ of p,
written ‘tanhp’). The rapidity is simply the measure of ‘distance’ in the
hyperbolic space H * (chosen to have unit pseudoradius—see §§2.4,6—

Fig. 18.11 Velocity
space in relativity
theory is the (unit)
hyperbolic space H*,
where the rapidity

p (= tanh™'v) meas-
ures hyperbolic distance
along H* (the speed of
light ¢ = 1 correspond-
ing to infinite p). This is
analogous (by ‘signa-
ture flip’) to distance
along a unit circle being
the angle 0 subtended at
its centre.

15 [18.8] Use a ‘signature-flip’ argument, to see why adding lengths in hyperbolic geometry should
give rise to the addition formula being used here, namely (u + v)c/(1 + uv), for ‘adding’ the velocities
uc and vc in the same spatial direction. Consider adding arc lenghts around a circle or sphere, the
‘velocity’ corresponding to each arc length being the tangent of the angle it subtends at the centre.

426



Minkowskian geometry §18.4

Fig. 18.12 The
graph of velocity v
(with ¢ = 1) in

terms of rapidity

p defined by p =
Llog {(1 +v)/(1 — v)},
Le.v=(e"—e")/

(e +e7?) = tanh p.

since @ = 1). For speeds v that are small compared with that of light, the
rapidity is the same as v.[18°1 Note that the boundary, in the Escher picture
shown in Fig. 2.11, which describes infinity for hyperbolic geometry
(p = 00), represents the unattainable limiting velocity ¢ (= 1).

Composing velocities in the same direction is described simply by
adding their rapidities (i.e. adding hyperbolic lengths); see Fig. 18.13a.
We can compose velocities in different directions simply by using the
procedure given for ordinary rotations in §11.4, as illustrated in Fig. 11.4
(appropriately ‘signature-flipped’). Here we use a hyperbolic triangle law,
applied to the two velocities to be composed, where each is represented by
a hyperbolic segment whose hyperbolic length is exactly one half of the
rapidity that it represents (corresponding to the fact that the arc lengths in
Fig. 11.4 are exactly one-half of the angle that is being rotated through);
see Fig. 18.13b.

(@ (b)

Fig. 18.13 Composing relativistic velocities in hyperbolic velocity space H*. (a)
For velocities in the same direction, we simply add the rapidities. (b) For velocities
in different directions, we use a triangle law to compose them, where the hyper-
bolic side-lengths are one-half of their respective rapidities. (Compare Fig.
11.4b, describing the composition of ordinary rotations in 3-space, the proof
being the same.)

[18.9] Justify this assertion; prove the equivalence of the above two displayed formulae.
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18.5 The celestial sphere as a Riemann sphere

Let us next have a look at the internal geometry of the ‘boundary at infinity’
for hyperbolic geometry H T, where it must now be made clear that it is the
full 4-dimensional Minkowski spacetime that we are concerned with, so that
this boundary is now a sphere S, rather than a circle (S'!) that we find as the
boundary of the Escher picture of Fig. 2.11. Each point of this sphere
represents a direction along the null cone itself, representing the limiting
light speed that is unattainable by massive particles. These limiting veloci-
ties are attainable for massless particles however; in fact, these are the only
velocities available to massless particles in free flight. Fortunately, photons
are such massless particles, and you can see photons. If you look up at the
sky on a clear cloudless night, you appear to see a hemispherical dome above
you, punctuated by myriads of stars. In fact, you are realistically picturing
the family of light rays that constitute the light cone centred at the event O
that is occupied by your eye at the moment that you perceive the celestial
scene. Actually, you are only percieving about half of the rays of the light
cone, but if you imagine that you are out in space, with a full view of the
celestial sphere surrounding you, then you will have a better picture of the
sphere of rays that make up the entire light cone of O. Perhaps it is easier to
picture this sphere as representing O’s past cone, because our concern is with
the light coming into your eye, not coming out of it. But light rays, in the
sense of null straight lines extend both ways, from past to future, so the
celestial sphere may also be thought of as simply representing this family S

of entire light rays through O. (See also §33.2.)

This space S is certainly topologically a 2-sphere, but does it have
some particular structure of note? We could imagine providing it with a
metric, and think of it as a 2-dimensional Riemannian space. The most
obvious way would be to take a slice through the light cone, say by the
spatial 3-plane = —1, to get the unit-radius metric sphere
x? + 3% + 22 = 1 (from the equation of the cone > — x> — > — 22 = 0) to
represent S. Alternatively, we could slice the cone with # = 1, and again
get a unit-radius sphere, the relation between one and the other being
through the antipodal map (which preserves this metric). But there is
nothing special about these particular ways of slicing the cone, unless we
single out some particular observer’s world-line through O and use that
observer’s ‘t coordinate’. For another observer who encounters the same
event O, but who might be travelling at some high speed with respect the
first, there may be some distortion between the map of the celestial sphere
that one observer makes and the map that the other makes.

Indeed, there is some kind of distortion, because of the effect known
as stellar abberation, which was observed by James Bradley in 1725.
According to this effect, the apparent position of a star on the celestial sphere
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is seasonally slightly displaced, owing to the fact that the velocity of the Earth
changes when it is at different places in its orbit about the Sun. This effect is
akin to that commonly observed by motorists when travelling at speed in the
rain. To those who are in the car, it appears that the rain is coming almost
directly from the front, whereas from the perspective of an observer standing
on the ground, the rain may be falling essentially vertically downwards.
This effect comes about from the fact that the finite velocity of the rain
must be composed, appropriately, with the velocity of the car in order that
the observed relative effect can be ascertained. In fact, in this situation, the
car’s speed is being taken to be much greater than that of the rain, so that the
main apparent effect comes from the car’s motion. In the case of the star, on
the other hand, the variation in the Earth’s orbital velocity is much smaller
than the speed that of star’s light, as it travels towards us. Accordingly, the
seasonal variation in the star’s apparent position on the celestial sphere is
very small (about half a second of arc, in fact (for nearby stars)). Neverthe-
less, the effect is present, and it represents a velocity-dependent distortion
of the celestial sphere, telling us that we cannot regard this sphere as having a
natural metric structure, independent of the velocity of the observer.

The question that I am posing here is whether there is some nice
mathematical structure on S, weaker than a metric structure, which is
preserved when we pass from the celestial map that one observer makes to
the map that another makes, when both pass by each other at the event O,
at high relative speed. In fact there is such a structure; and, remarkably, it
is just that structure that we studied earlier in §§8.2,3, when we considered
the Riemann sphere. Recall that the Riemann sphere possesses a con-
formal structure: thus, although it does not have a particular metric
assigned to it, so that there is no notion of distance defined between nearby
points, or lengths assigned to curves, there is an absolute notion of angle
defined between curves on the sphere. Any allowable, i.e. conformal,
transformation of the Riemann sphere to itself must preserve this notion
of angle. Consequently, (infinitesimally) small shapes are preserved under
such transformations, although their sizes may change. Moreover, circles
of any size on the sphere are transformed again to circles. This is indeed
the very structure that is possessed by the celestial sphere S. Accordingly,
any circular pattern of stars, as perceived by one observer, must also be
perceived as circular by any other.'8101 This suggests that a convenient

#5[18.10] Try to fill in the details of an ingenious argument for this, due to the highly original and
influential Irish relativity theorist John L. Synge, which requires no calculation! The argument
proceeds roughly as follows. Consider the geometrical configuration consisting of the past light
cone C of an event O and a (timelike) 3-plane P through O. Let X be the intersection of C and P.
Describe the ‘history’, as time progresses, of the respective spatial descriptions of C, P, and X,
according to some particular Minkowskian reference frame. Explain why any observer at O sees 2
as a circle and, moreover, that this geometrical construction characterizes, in a frame-independent
way, those bundles of rays that appear to an observer as a circle.
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Fig. 18.14 FitzGerald-Lorentz ‘flattening effect’. A spherical planet moves to the
right at a speed v (close to that of light) with respect to a fixed reference system. In
that system it would be described as being flattened by a factor (1 — v?/ cz)l/ Zinits
direction of motion.

labelling of the stars in the sky might be to assign a complex number
to each (allowing also oco)! I am not aware that such a proposal has
been taken up in astronomy, but the use of such a complex parameter,
called a ‘stereographic coordinate’, related to standard spherical polar
angles by the formula { = e*cot16,['%11 is common in general relativity
theory.”

This property may seem surprising, especially to those familiar with the
FitzGerald-Lorentz contraction, whereby a sphere, moving rapidly with
speed v, is regarded as being flattened in its direction of motion, by a factor
7 =+/(1 —v?/c?), see Fig. 18.14. (I have not explicitly discussed this
flattening effect here. It arises when we consider the spatial description
of a moving object, and it can be found in most standard accounts of
relativity theory).®[18-12] Imagine that the sphere passes horizontally over-
head at a speed approaching that of light. It is easy to imagine that this
flattening ought surely to be perceivable to an observer standing at rest on
the ground. By the relativity principle, the effect should be identical with
what the observer perceives if it is the observer who moves with speed v in
the opposite direction and the sphere remains at rest. But to an observer at
rest viewing a sphere at rest, the sphere is certainly perceived as something
with a circular outline. This would seem to contradict the ‘perceived circles
go to perceived circles’ assertion of the preceding paragraph. In fact,
there is no contradiction, because this FitzGerald-Lorentz ‘flattening
effect’ is, in fact, not directly observable. This follows by detailed consider-
ation of the path lengths of the light that appears to be coming to an
observer, with respect to whom the sphere is in motion. See Fig. 18.15. The

[18.11] Derive this formula.

15 [18.12] Try to derive this formula using the spacetime geometry ideas above.
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Fig. 18.15 The FitzGerald—Lorentz flat-
tening is not directly visible because what
appears to an observer to be the rear of
the sphere involves a longer path length
than what appears to be the front of the
sphere (the rear part moving out of the way
of the light and the front part moving into
it). Accordingly, the apparent rear edge
refers to an earlier position of the sphere
than does the front edge, whereby the
image is compensatingly stretched in the
direction of motion.

light which appears to come from the rear of the sphere reaches the
observer from a more distant point than that which appears to be coming
from the sphere’s front.%[18:13]

18.6 Newtonian energy and (angular) momentum

There is one final aspect of Minkowskian geometry that I wish to discuss
in this chapter. This concerns the important issues of energy, momentum,
and angular momentum in relativity theory. We shall come to this shortly
in §18.7, but I should first make some remarks about these essential
concepts in Newtonian theory, as I have not introduced them before
in this book. The vital importance of these quantities is that they are
things with a well-defined meaning in Newtonian theory which are con-
served—for a system not acted upon by external forces—in the sense
that the total energy, momentum, and angular momentum are constant
in time.

The energy of a system may be considered to be composed of two
parts, namely the kinetic energy (i.e. energy of motion) and the potential
energy (the energy stored in the forces between particles). The kinetic

15 [18.13] Develop this argument in detail, to show why the FitzGerald—Lorentz flattening exactly
compensates for the effect arising from the path-length difference. Show that for small angular
diameter, the apparent effect is a rotation of the sphere, rather than a flattening.
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energy of a (structureless) particle, in Newtonian theory, is given by the
expression

T2,

where m is the mass of the particle and v is its speed. To obtain the
entire kinetic energy, we simply add the kinetic energies of all the individ-
ual particles (although, when there are a great many constiuent particle
components moving around randomly, we may refer to their energy as
heat energy; see §27.3). To obtain the total potential energy, we need
to know something of the detailed nature of all the forces involved.
Neither the total kinetic energy nor the total potential energy need
be individually conserved, but the total is. (The first intimation of
this can be traced back to Galileo’s study of the motion of bodies
under gravity. As the bob of a pendulum swings, starting from a raised
position, its gravitational potential energy, as measured by its height
above the ground, is converted into kinetic energy, which is then con-
verted back into potential energy, and then back into kinetic energy, etc.,
etc.)

The momentum p mass of our particle is a vector quantity, given by the
expression

p = mv
where v is the vector describing its velocity. To get the entire momentum,
we take the vector sum of all the individual momenta. This total quantity
is also conserved in time.l'8-14]

Now, we recall from §17.3 that a relativity principle holds for Newtonian
theory (Galilean relativity). How do our conservation laws manage to
survive when neither the energy nor the momentum is left unchanged as
we move from one inertial frame to another? If the second frame moves
uniformly, with respect to the first, with a velocity given by the vector u,
then a particle whose velocity is v, in the first frame, has its velocity
described as v — u in the second. It turns out that conservation of energy
and momentum in the first frame goes over to conservation of energy and
momentum in the second frame provided we take into account that mass is
also conserved (and we must also make use of Newton’s third law; see Fig.
17.4b, §17.3).118:13]

It should be mentioned that in Newtonian mechanics there are also
other conserved quantities, the most important of which is angular

£3 [18.14] Use conservation of energy and momentum to show that if a stationary billiard ball is
hit by another of the same mass, then they emerge at right angles (assuming an elastic collision, so
there is no conversion of kinetic energy to heat).

#25 [18.15] Show all this.
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momentum (or moment of momentum), taken about some origin point O.
Suppose that the position vector relative to O of some particle is

1 2 .3
X - (x b x b x )’
x!, x2, x* being its Cartesian coordinates and p is its momentum; then the

angular momentum is given by the quantity
M=2xAp

(see §11.6, for the meaning of A).!? To, get the angular momentum of the
entire system, we simply add the quantities M for all the individual
particles.[18-16]

There is also another quantity that is conserved in time in the absence of
external forces, in Newtonian theory, which is less often discussed than
angular momentum. For a single particle, this is

N = tp — mx,

where ¢ is the time, and we get the total value of N by adding the individual
values for each particle. This total has the same form as N given above, but
where x is now the position vector of the mass centre and p the total
momentum. The constancy of this total N expresses the fact that the mass
centre moves uniformly in a straight line; see Fig. 18.16.[1817]

We shall need to ask the question: how is all this affected by the
upheavals of special relativity? Do we still have concepts of conserved
energy, momentum, angular momentum, and mass-centre motion? What
about conservation of mass? The answer to the first four questions is ‘yes’,
although we have to be careful to define these quantities correctly. As
regards mass conservation, something very curious happens. The two
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Fig. 18.16 Uniform motion of mass centre. The quantity N = ¢p — mx, where ¢ is
the time and x is the position vector of mass centre, is conserved. This expresses
fact that mass centre moves uniformly in a straight line, with velocity p/m.

@63 [18.16] Why do spinning skaters pull in their arms to increase their rate of rotation?

#5 [18.17] Show this. (N.B. The position vector of the mass centre is the sum of the quantities mx
divided by the sum of the masses m.)
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separate Newtonian conservation laws for energy and mass become sub-
sumed into one. In a clear sense, mass and energy become completely
equivalent to one another, according to Einstein’s most famous equation

E = M¢,

where E is the total energy of the system and M is its total mass, ¢ being the
speed of light, as before. In the final section of this chapter, we shall see
how this all works.

18.7 Relativistic energy and (angular) momentum

Recall the way that space and time become united in relativity theory to
become the single entity ‘spacetime’, the time coordinate ¢ being adjoined
to the 3-space position vector x = (x!, x, x%) to give the 4-vector

0 1 2 3
(7, x', X%, x7) = (1, X).

We shall find that momentum and energy become similarly united.
Any finite system in special relativity will have a total energy E and
a total momentum 3-vector p. These unite into what is called the
energy—momentum 4-vector, whose spatial components are

@', p% )=,
and whose time-component p® measures not only the total energy but also,
equivalently, the total mass m of the system according to

po = E =mc,

which incorporates Einstein’s famous mass—energy relation.

With more natural units with ¢ = 1, energy and mass are simply equal.
However, I have explicitly exhibited the speed of light ¢ (i.e. by not
choosing space/time units so that ¢ = 1) to facilitate the translation to
non-relativistic descriptions. The conventions that I am using are to take
the metric components g, to be the matrix whose non-zero components
are (1, —c2, —¢72, —c?) down the main diagonal; its inverse, with com-
ponents g*°, has (1, —c?, —c?, —c?) down the main diagonal.

Although, initially, one may think of energy-momentum as a spacetime
vector in this way, it turns out that it is more appropriate (see §20.2 and
§21.2) to regard it as a covector, described by the index-lowered quantity p,
with components

(poa D1, P2, P3) = (Ea _P)

This has an irritating minus sign (although the ¢ has now gone). Which-
ever version is used (p, or p?), the 4-momentum satisfies a conservation law.
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Thus, in an encounter between two or more particles (or systems), or in the
decay of a single particle (or system) into two or more, or the capture of a
particle by another, the sum of all the 4-momenta before the encounter is
equal to the sum of all the 4-momenta afterwards. Thus, the law of energy
conservation, of momentum conservation, and also of mass conservation,
are all subsumed into this one law. The reason for collecting them together
in this way is that, under change of reference frame, these quantities get
transformed among themselves in the correct way for relativity theory, as
demanded by the index notation (see §12.8).

We note that the total mass of a system is not a scalar quantity
in relativity theory, so that its value depends on the reference frame
with respect to which it is measured. For example, a particle whose
mass is m, as measured in its own rest frame, appears to have a larger
mass when measured in a second frame with respect to which it is
moving. For this to be a significant effect, however, the relative velocity
between the two frames would need to be comparable with the velocity of
light.[18-18]

However, these comments apply only to the kind of mass which is
conserved in the additive sense just described (for a system not acted
upon by external forces). There is another concept of mass in relativity,
namely the rest mass u (=0), which does not depend on the reference
frame. It is equal to the mass measured in the system’s own rest frame—i.e.
in the frame for which the momentum is zero. The rest mass u is ¢~> times
the rest energy (pap®)'/?, so that

()’ = pap* = E* — *p%;

and we have yu = ¢ 2(E? — ¢2p?)"/%. Here, I am adopting the 3-space vector
notation whereby, for an arbitrary 3-vector a, we define
a’=aea=al + a3 +d} The ‘dot’ defines ‘scalar product’ (similarly to
the notation of §12.3):

aeb = aib) + arby + azbs,

with a = (a;, a», a3) and b = (by, by, b3). (This notation will be handy
later.)

For a single particle which is massive in the sense that 4 > 0, we can take
the 4-momentum to be the 4-velocity scaled up by the rest mass u. The
4-velocity v“ is the (future-)timelike vector tangent to the particle’s world-
line, having a (Minkowskian) length of ¢ (i.e. a unit vector if ¢ = 1):

p¢ = wv®, where v, = ¢%;

£35[18.18] Show that the formula for the increased mass is m(1 — vz/cz)’l/z, where v is the velocity
of the particle in the second frame; see below.
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4-momentum

Fig. 18.17 For a massive particle, the 4-momentum p“ is the 4-velocity v* scaled
up by the rest mass u (> 0), where v” is a (future-timelike) unit 4-vector tangent to
the particle’s world-line (taking ¢ = 1).

see Fig. 18.17. As remarked above, the rest mass of a massive particle is the
mass (mass—energy) of that particle as measured in its own rest frame.
Taking the particle’s ordinary 3-velocity to be v, so that
v = (dx!/dt, dx?/dt, dx?/dr), where t = x0, we getl!8-19118.20]

p=mv, m=yu, v =y V),

where
==/

Particles can also be massless (i.e. with zero rest mass, u = 0), the photon
being the prime example. Then the 4-momentum is a null vector. Since rest
mass is not conserved, there is nothing against a massive particle decaying
into massless ones, or massless particles coming together to produce
massive ones. In fact, a massive particle known as the ‘neutral pion’
(denoted by n°) will normally decay into two photons in about 107!6
seconds.

£3[18.19] Why?

[18.20] Use the Taylor series of §6.4, to derive (1 +x)'/? =1 +1x —1x? + kx* — ... . Hence,
obtain a power series expansion for the energy E = [(c2u)* + ¢2p?]'/2 of a particle of rest-mass u
and 3-momentum p. Show that the leading term is just Einstein’s E = mc? applied to the rest
energy p, and that the next term is the Newtonian expression for kinetic energy. Write down the
next two terms, so as to give better approximations to the full relativistic energy.
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Fig. 18.18 The decay of a massive ‘neutral pion’
n° to 2 massless photons. The mass/energy 4-vector
is additively conserved (although rest-mass is not).

In any particular frame, the total mass—energy (not the rest mass) is
additively conserved, the mass—energy of each individual photon
being non-zero. The way that the 4-momenta add up is illustrated in
Fig. 18.18.

Finally, let us see how angular momentum needs to be treated in special
relativity. It is described by a tensor quantity M®, antisymmetrical in its
two indices:

Mab — _Mba'

(See §22.12 for the relevance of M to quantum mechanics.) For a single
structureless point particle, we have!!

Mab _ xapb _ xbpa,
where x? is the position 4-vector (in index form) of the point on the particle’s
world line at the time that its angular momentum is being considered. If
the particle is in inertial motion, then M% is the same for all points
on its world line.'8211 To obtain the total relativistic angular momen-
tum, we simply add the angular momentum tensors for each particle separ-
ately. For an individual (non-spinning) particle, the three independent

purely spatial components M2}, M3', M'> are the components (x ¢?) of
ordinary angular momentum M = 2x A p considered in §18.6 above, and

4 [18.21] Why?
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the remaining independent components M°!, M%2 M% constitute the
quantity N = tp — mx (x ¢?). (The conservation of the total N expresses
the uniform motion of the mass centre; see Fig.18.16.)l18-22]

Recall from §18.2 that the 10-dimensional Poincaré group of symmetries
of Minkowski space has 4 dimensions referring to spacetime translations
and the remaining 6 to (Lorentz) rotations. We shall be seeing in §20.6 how
an important principle of classical mechanics known as Nother’s theorem
relates symmetries to conservation laws, and in §§21.1-5 and §22.8 how the
same kind of thing occurs in quantum theory. This provides a deep reason
for the conservation laws for 4-momentum p, and 6-angular momentum
M since these arise, respectively, from the 4 translational symmetries
and the 6 (Lorentz) rotational symmetries of Minkowski space. The
conservation of p, and M has important relevance to Chapter 21 and
§§22.8,12,13.

Notes

Section 18.1

18.1. Tom Banchoff, of Brown University, has for many years been developing inter-
active computer systems aimed at developing 4-dimensional intuition, and in
particular complex function visualization in terms of Riemann surfaces in €2,
See Banchoff (1990, 1996).

18.2. The quantities ‘ds’, in this expression should simply be read as ‘infinitesimal
quantities’ (like the € of §13.6). Compare Note 12.8.

Section 18.2

18.3. For a particular detailed discussion of the roles of Lorentz, Poincaré, and
Einstein in the development of special relativity, see Stachel (1995), pp.
249-356. In my own view, even Einstein did not completely have special relativ-
ity in 1905, and it took Minkowski’s 4-dimensional perspective of 1908 to
complete the picture; see §17.8.

18.4. There are also time-reversing elements of the Poincaré group, which send future-
timelike directions into past-timelike directions.

Section 18.3

18.5. I should emphasize, particularly to those readers already familiar with quantum
mechanics, that the complex notion of ‘orthogonality’ that I am using here is
necessarily the holomorphic one (this being what ‘complexification’ is all about),
and not the Hermitian notion of §13.9 that brings in complex conjugation, and
which is used in many other areas of mathematics and physics.

18.6. See, for example, Rindler (1982, 2001); Synge (1956); Taylor and Wheeler (1963);
Hartle (2002).

Section 18.5
18.7. See, in particular, Newman and Penrose (1966); Penrose and Rindler (1984, §§
1.2-4, §4.15; 1986, §9.8).

£5 [18.22] Explain, in detail, in the relativistic case.
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18.8. See, for example, Rindler (1982, 2001).
18.9. See, for example, Terrell (1959); Penrose (1959).

Section 18.6

18.10. Some readers may be confused by the presence of a 2’ in this expression, but
they should re-examine the definition of ‘A’ that I have given in §11.6. The
components of x Ap are xlp? =1(x'p/ — x/p’). Hence, M has components
x'p/ — Xp'.

Section 18.7

18.11. We shall be seeing in §22.8 that most (quantum) particles also possess an

intrinsic spin which provides a (constant) ‘spin’ contribution to M% (see
§22.12) added to the ‘orbital M’ that is given here.
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The classical fields of Maxwell and Einstein

19.1 Evolution away from Newtonian dynamics

IN the period between the introduction of Newton’s superb dynamical
scheme, which we can best date as the publication of his Principia in 1687,
and the appearance of special relativity theory, which could reasonably be
dated at Einstein’s first publication on the subject, in 1905, many import-
ant developments in our pictures of fundamental physics took place. The
biggest shift that occurred in this period was the realization, mainly
through the 19th century work of Faraday and Maxwell, that some notion
of physical field, permeating space, must coexist with the previously held
‘Newtonian reality’ of individual particles interacting via instantaneous
forces.! Later, this ‘field’ notion also became a crucial ingrediant of
Einstein’s 1915 curved-spacetime theory of gravity. What are now called
the classical fields are, indeed, the electromagnetic field of Maxwell and the
gravitational field of Einstein.

But we now know that there is much more to the nature of the physical
world than just classical physics. Already in 1900, Max Planck had
revealed the first hints of the need for a ‘quantum theory’, although
more than another quarter century was required before a well formulated
and comprehensive theory could be provided. It should also be made clear
that, in addition to all these profound changes to the ‘Newtonian’ foun-
dations of physics that have taken place, there had been other important
developments, both prior to these changes and coexistent with some of
them in the form of powerful mathematical advances, within Newtonian
theory itself. These mathematical advances will be the subject of Chapter
20. They have important interrelations with the theory of classical fields
and, even more significantly, they form an essential prerequisite to the
proper understanding of quantum mechanics, as will be described in
subsequent chapters. As a further important area of advance, the subject
of thermodynamics (and its refinement, referred to as statistical mechanics)
should certainly be considered. This concerns the behaviour of systems of
large numbers of bodies, where the details of the motions are not regarded
as important, the behaviour of the system being described in terms of
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averages of appropriate quantities. This was an achievement initiated in
the mid-19th to early 20th centuries, and the names of Carnot, Clausius,
Maxwell, Boltzmann, Gibbs, and Einstein feature most strongly. 1 shall
address some of the most fundamental and puzzling issues raised by
thermodynamics later, in Chapter 27.

In this chapter, I shall describe the physical field theories of
Maxwell and Einstein: the ‘classical physics’ of electromagnetism and
gravitation. The theory of electromagnetism also plays an important
part in quantum theory, providing the archetypical ‘field’ for the further
development of quantum field theory, which we shall encounter in Chapter
26. On the other hand, the appropriate quantum approach to the gravita-
tional field remains enigmatic and controversial. Addressing these quan-
tum/gravitational issues will be an important part of the later chapters in
this book (Chapter 28 onwards). For the physics that we shall be examin-
ing next, however, we shall confine our investigation to physical fields in
their classical guise.

I referred, at the beginning of this chapter, to the fact that a profound
shift in Newtonian foundations had already begun in the 19th century,
before the revolutions of relativity and quantum theory in the 20th. The
first hint that such a change might be needed came from the wonderful
experimental findings of Michael Faraday in about 1833, and from the
pictures of reality that he found himself needing in order to accommodate
these. Basically, the fundamental change was to consider that the ‘New-
tonian particles’ and the ‘forces’ that act between them are not the only
inhabitants of our universe. Instead, the idea of a ‘field’, with a disembod-
ied existence of its own was now having to be taken seriously. It was the
great Scottish physicist James Clark Maxwell who, in 1864, formulated the
equations that this ‘disembodied field’ must satisfy, and he showed that
these fields can carry energy from one place to another. These equations
unified the behaviour of electric fields, magnetic fields, and even light, and
they are now known simply as Maxwell’s equations, the first of the relativ-
istic field equations.

From the vantage point of the 20th century, when profound advances
in mathematical technique have been made (and here I refer particularly
to the calculus on manifolds that we have seen in Chapters 12-15),
Maxwell’s equations seem to have a compelling naturalness and simplicity
that almost make us wonder how the electric/magnetic fields could
ever have been considered to obey any other laws. But such a perspective
on things ignores the fact that it was the Maxwell equations themselves
that led to a very great many of these mathematical developments.
It was the form of these equations that led Lorentz, Poincaré, and
Einstein to the spacetime transformations of special relativity which, in
turn, led to Minkowski’s conception of spacetime. In the spacetime
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framework, these equations found a form that developed naturally
into Cartan’s theory of differential forms (§12.6); and the charge
and magnetic flux conservation laws of Maxwell’s theory led to the body
of integral expressions that are now encapsulated so beautifully by that
marvellous formula referred to, in §§12.5,6, as the fundamental theorem of
exterior calculus.

Perhaps, in seeming to attribute all these advances to the influence
of Maxwell’s equations, I have taken a somewhat too extreme
position with these comments. Indeed, while Maxwell’s equations un-
doubtedly had a key significance in this regard, many of the precursors
of these equation, such as those of Laplace, D’Alembert, Gauss,
Green, Ostrogradski, Coulomb, Ampere, and others have also had im-
portant influences. Yet it was still the need to understand electric and
magnetic fields that largely supplied the driving force behind these devel-
opments—these, and the gravitational field also. The remainder of this
chapter is devoted to understanding the electromagnetic and the
gravitational fields and how they fit in with the modern mathematical
framework.

19.2 Maxwell’s electromagnetic theory

What, then, are the Maxwell equations? They are partial differential
equations (see §10.2) which describe the time-evolutions of the three
components E;, E,, E5 of the electric field and of the three components
By, B, B; of the magnetic field, where the electric charge density p and the
three components of the electric current density ji, j», j3 are considered as
given quantities. Certain other field quantities having to do with an
ambient material within which the fields may be considered to be propa-
gating can also be incorporated. In discussions of fundamental physics, as
is our concern here, it is usual to ignore those aspects of Maxwell’s
equations that relate to such an ambient medium, since the medium itself
would, in reality, consist of many tiny constituents, each of which could in
principle be treated at the more fundamental level. It will be convenient,
also, to choose what are called ‘Gaussian’ units, and use standard
Minkowski coordinates (of §18.1), namely xo =1¢, x; =x, X2 =y, X3 =12
(+——— signature) with spacetime units so that the velocity of light ¢ is
taken to be unity (¢ = 1).

The electromagnetic field and the charge-current density are, respect-
ively, collected together (according to a prescription originally due, in
effect, to Minkowski) into a spacetime 2-form F, called the Maxwell field
tensor, and a spacetime vector J, called the charge-current vector, with
components displayed in matrix form as
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Foo For Foo Fos 0 E E E
Fo Fu Fo Fs| |-E 0 —-By B
Fy Fy Fn Fn| |-E B 0 -B |
Fy Fs Fyn Fi —E3 —-B, B 0
JO p
JUL |
VA
J? J3
Note that the antisymmetry Fp, = —F,; holds, as is required for a 2-form.

I shall also make use of what are referred to as the Hodge duals of F and J,
these being, respectively, the 2-form “F and the 3-form “J, defined by

Foo Fo Foo Fos 0 —B —-B, —B;
Fio Fu Fio Fis | B 0 —-E E
Fo Fa Fn Fu | | B E 0 —E
Fo Fyu Fn Fs By —-E, E 0

V123 —p

Jos | | A

Tos || 2

Joi2 J3

Where the required antisymmetry properties F, = *F[ab] and 7 = f][abc]
hold. In terms of the Levi-Civita tensor € (§12.7), with totally antisym-
metric components &upcq( = €ureq)) and normalized so that g3 = 1, the
duals can be written as

* 1 d * d
Fup = jgabchL and Jope = Eapeat”,

where the raised version F* of F, is simply g“g*“F,,, in accordance with
§14.7. Note that the ‘raised’ version & = g¥ghigrg®e,  satisfies
%123 = —1, whence the € of §12.7 is given byl!9-1] ¢#bed — _gabed  GQee Fig,
19.1 for the diagrammatic form of these ‘dualizing’ operations (and also of
the Maxwell equations themselves). We shall find that the notion of a
‘dual’ in this sense (and other related senses) will have importance for us
later, in various different contexts.

A remark should be made about the geometrical significance of the
Hodge dual. We recall from §12.7 that the operation of passing from
a bivector H, as described by the antisymmetric quantity H, to its
‘dual’ 2-form H™, as given by %sabcdH “d_does not make much difference to

A [19.1] Check both these statements.
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Fig. 19.1 Diagrams for Hodge duals and Maxwell equations. The quantities
Cabed (= Eapear) and €4 (= bedl) ' normalized so that co123 = ¢ = 1 in a stand-
ard Minkowski frame, are related to their raised/lowered versions (via g% and g.s)
bY €uped = —€abea and €?°? = —ged In the diagrams (left middle, lower two lines)
this sign change is absorbed by an effective index reversal. Boxed off at the top
right are the Maxwell equations, first using the field tensor F (with its raised form
Fb = gucghd - of. Fig. 14.21) so the equations are V,F® = 4nJ?, V[L,F;,(] =0,
and beneath that, correspondingly usmg the dual “F (where 'F,, = subch
Tove = Eapead® ) so the equations are V[anC] = " T abes Vv, "Fab = .

its geometrical interpretation. If H were a simple bivector, for example,
so that the 2-form H* would also be simple (see the end of §12.7), then the
2-plane element determined by H? would be precisely the same as
the 2-plane element determined by H (the only difference being that,
strictly, H” has the quality of a density, as pointed out in §12.7). On
the other hand, the index-raising that takes us from a 2-form H, to a
bivector H* (= H.4g“g™), has a more significant geometrical effect. In
the case of a simple bivector, the 2-plane element determined by H, is
the orthogonal complement of the 2-plane element determined by H* (see
§18.3). The Hodge dual, as applied to the 2-form H,, taking us to
%g(,bcdH “ (i.e.to H #), employs the index raising H,, — H® and therefore
involves passing to the orthogonal complement. See Fig. 19.2. Accordingly,
the Hodge dual taking us from F to “F also involves an orthogonal
complement.
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g Hab or eabed Hcd

?Hub oF &4 Hed

Fig. 19.2 In 4-space, a simple bivector H (H®) represents the same 2-plane
element as its ‘dual’ 2-form H* (Le,0H). But the index-lowered version of H,
the simple 2-form H,;, which is equivalent to its ‘dual’ bivector 1¢**“/H, 4, repre-
sents the orthogonal complement 2-plane element (see Fig. 18.4). Hence it is the
index raising/lowering in the Hodge dual that leads to the passage to the orthog-
onal complement.

Having set up this notation, we can now write Maxwell’s equations very
simply as(!-2]
dF =0, dF=4nJ.

We can also write the Maxwell equations entirely in index form as(!®-3!

V[anc] = 0, VaF“” = 4TEJb.

Note that, if we apply the exterior derivative operator d to both sides of
the second Maxwell equation d'F = 417, and use the fact that d> =0
(§12.6), we deduce that the charge-current vector J, satisfies the ‘vanishing
divergence’ equation!!®-4l

dJ =0 or equivalently V. J¢=0.

At this point, as a slight digression which will have considerable import-
ance for us later (§32.2 and §§33.6,8,11—see §18.3), it is worth while to
point out the self-dual and anti-self-dual parts of the Maxwell tensor, given
respectively by

[19.2] Write these out fully, in terms of the electric and magnetic field components, showing
how these equations provide a time-evolution of the electric and magnetic fields, in terms of the
operator 0/0t.

29 [19.3] Show the equivalence to the previous pair of equations.

[19.4] Show that the two versions of this vanishing divergence are equivalent.
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“F=YF—-iF) and ~F=L(F+iF)

(which are complex conjugates of one another). It turns out that, in the
quantum theory, these complex quantities describe respectively the right-
spinning and /eft-spinning photons (quanta of the electromagnetic field);
see §§22.7,12, Fig. 22.7. The self-dual/anti-self-dual properties are ex-
pressed inl!9-3]

“(*F) = £ i*F.

Bearing in mind that “J is real, we can combine the two Maxwell equations
(as imaginary and real parts respectively) as

d*F=-2riJ.

Photons provide the particle description of /ight, and we shall be seeing
in Chapter 21 how quantum theory allows a particle and wave descrip-
tion of light to coexist. It was one of Maxwell’s supreme achievements
to show, by means of his equations, that there are electromagnetic
waves which travel with the speed of light, and have all the known
polarization properties that light has (and which we shall be examin-
ing in §22.7). In accordance with these remarkable facts, Maxwell pro-
posed that light is indeed an electromagnetic phenomenon. In 1888,
almost a quarter century after Maxwell published his equations, Hein-
rich Hertz experimentally confirmed Maxwell’s marvellous theoretical
prediction.

In the explicit descriptions above, I have assumed that the
background spacetime is flat Minkowski space MI, and the discussions
to follow, in §§19.3,4, and the first part of §19.5 can all be taken
on this basis, also. However, this is not really necessary, and all the
conclusions still apply if spacetime curvature is present. For this,
the components given above must be regarded as being taken with
respect to some local Minkowskian frame, and the index notation will
take care of the rest.[1:6]

19.3 Conservation and flux laws in Maxwell theory

The vanishing divergence of the charge-current vector provides us with
the equation of conservation of electric charge. The reason that it is

£3 [19.5] Show this, first demonstrating that dualizing twice yields minus the original quantity.
Does this sign relate to the Lorentzian signature of spacetime? Explain.

#5 [19.6] Can you spell this out? What happens to the components of F and F in a general
curvilinear coordinate system? Why are the Maxwell equations unaffected if expressed correctly?
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referred to as a ‘conservation equation’ comes from the fact that, by the
fundamental theorem of exterior calculus (see §12.6), we have

Jrd T = Jar *J, so that
J J=0,
Q

integrated over any closed 3-surface Q in Minkowski space M. (Any
closed 3-surface in M is the boundary OR of some compact 4-dimensional
region R in IML.) See Fig. 19.3. The quantity J can be interpreted as the
“flux of charge’ (or ‘flow’ of charge) across @ = OR. Thus, what the above
equation tells us is that the net flux of electric charge across this

Fig. 19.3 Conservation of electric charge in spacetime. The closed 3-surface Q is
the boundary Q = R of a compact 4-volume R, in Minkowski spacetlme M, so
the fundamental theorem of exterior calculus tells us jQJ JRdJ 0, since
dJ = 0. The quantity 7 describes the “flux’ (or ‘flow’) of charge across Q, so the
total charge flowing in across Q is equal to that flowing out, expressing charge
conservation.
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boundary has to be zero; i.e. the total coming into R has to be exactly
equal to the total going out of R: electric charge is conserved.[°7]

We can also use the second Maxwell equation d F = 4n "J to derive
what is called a ‘Gauss law’. This particular law applies at one given
time t = tp, so we are now using the three-dimensional version of the
fundamental theorem of exterior calculus. This tells us the value of
the total charge lying within some closed 2-surface S at time 7y (see Fig.
19.4), by expressing this charge as an integral over S of the dual of the
Maxwell tensor “F—which amounts to saying that we can obtain the
total charge surrounded by S if we integrate the total flux of electric field
E across S.[1°8]

More generally, this applies even if S does not lie in some fixed time
t = tp. Suppose that S is the spacelike 2-boundary of some compact
3-spatial region A. Then the total charge y in the region A, surrounded
by S (or, in spacetime terms, ‘threaded through’ S—see Fig. 19.4), is
given by

Fig. 19.4 Within the
3-surface of constant
time ¢ = ty, Maxwell’s
d'F = 4n'J gives us the
Gauss law, whereby the
integral of electric flux
(integral of “F) over a
closed spatial 2-surface
measures the total
charge surrounded (by
the fundamental theorem
of exterior calculus). In
fact, this is not restricted
to 2-surfaces at constant
time, and the Gauss law
is thereby generalized.

5 [19.7] Although correct, this argument has been given somewhat glibly. Spell out the details
more fully, in the case when R is a spacetime ‘cylinder’ consisting of some bounded spatial region
that is constant in time, for a fixed finite interval of the time coordinate 7. Explain the different
notions of ‘flux of charge’ involved, contrasting this for the spacelike ‘base’ and ‘top” of the
cylinder with that for the timelike ‘sides’.

£9[19.8] Spell out why this is just the electric flux.
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J °F = 4ny, where ¥ :J .
S A

We can also obtain a related kind of conservation law from the
first Maxwell equation dF = 0. This has just the same form as the
second Maxwell equation, except that F replaces “F and the source
corresponding to “J is now zero. Thus, for any closed 2-surface in Min-
kowski space,? we always have the flux law

J F =0.
S

Note that in passing from *F to F (or from F to "F) we simply
interchange the electric and magnetic field vectors (with a change of
sign for one of them). The absence of a source for F is an expression of
the fact that (as far as is known) there are no magnetic monopoles in
Nature. A magnetic monopole would be a magnetic north pole or a
magnetic south pole on its own—rather than north and south poles
always appearing in pairs, which is what happens in an ordinary magnet.
(These poles are not independent physical entities, but arise from the
circulation of electric charges.) It appears that in Nature there is never a
net ‘magnetic charge’ (non-zero ‘pole strength’) on a physical object.
From the point of view of the Maxwell equations alone, there does not
seem to be any good reason for the absence of magnetic monopoles, since
we could simply supply a right-hand side to the first Maxwell equation
dF = 0 without any loss of consistency. In fact, from time to time,
physicists have contemplated the possibility that magnetic monopoles
might actually exist and have tried to look for them. Their existence
would have important implications for particle physics (see §28.2) but
there is no indication, as of now, that there are any such monopoles in
the actual universe.

19.4 The Maxwell field as gauge curvature

The first Maxwell equation dF = 0 also has the implication that
F =2d4,

for some 1-form A. (This is taking advantage of the ‘Poincaré lemma’,
which states that, if the r-form a satisfies da = 0, then locally there is
always an (r — 1)-form B for which e = d; see §12.6.) Moreover, in a
region with Euclidean topology, this local result extends to a global
one.? The quantity A4 is called the electromagnetic potential. 1t is not
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uniquely determined by the field F, but is fixed to within the addition of a
quantity d@,['%°1 where @ is some real scalar field:

A— A+do.
In index form, these relations are

Fab = vuAb - vbAa
with freedom
A, — A, +V,0.

This ‘gauge freedom’ in the electromagnetic potential tells us that 4 is not
a locally measurable quantity. There can be no experiment to measure ‘the
value of A’ at some point because 4 + d@ serves exactly the same physical
purpose as does 4. However, the potential provides the mathematical key to
the procedure whereby the Maxwell field interacts with some other physical
entity V. How does this work? The specific role of A4, is that it provides us
with a gauge connection (or bundle connection; see §15.8)

V, = 0/0x" — ied,,

where e is a particular real number that quantifies the electric charge of the
entity described by Y. In fact, this ‘entity’ will generally be some charged
quantum particle, such as an electron or proton, and ¥ would then be its
quantum-mechanical wavefunction. The full meaning of these terms will
have to await the discussion in Chapter 21, when the notion of a wavefunc-
tion will be explained. All that we shall need to know about it now is that ¥ is
to be thought of as a cross-section of a bundle (§15.3), a bundle describing
charged fields, and it is this bundle on which V acts as a connection.

The electromagnetic field quantities F and A4 are uncharged (e =0
for them), so that all our Maxwell equations, etc., are undisturbed
by having this new definition for V,; i.e. we still have V, = 8/0x“ in those
equations, in flat Minkowski coordinates—or the appropriate generaliza-
tion (see §14.3) if we are considering curved spacetime. What is the geomet-
rical nature of the bundle that this connection acts upon? One possible
viewpoint is to think of this bundle as having fibres that are circles (S's),
over the spacetime M, where this circle describes a phase multiplier e for
Y. (This is the kind of thing that happens in the ‘Kaluza-Klein’ picture
referred to in §15.1 but where in that case the entire bundle is thought of as
‘spacetime’.) More appropriate is to think of the bundle as the vector bundle
of the possible ¥ values at each point, where the freedom of phase multipli-
cations make the bundle a U(1) bundle over the spacetime M. (This kind of
issue was considered at the end of §15.8.) For this to make sense, ¥ must be a

€3 [19.9] Why can we add such a quantity?
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complex field whose physical interpretation is, in some appropriate sense,
insensitive to the replacement ¥ — ' ¥ (where 0 is some real-valued field on
the manifold M). This replacement is referred to as an electromagnetic gauge
transformation, and the fact the physical interpretation is insensitive to this
replacement is called gauge invariance. The curvature of our bundle connec-
tion then turns out to be the Maxwell field tensor F,.[19-10]

Before exploring with these ideas further, it is appropriate to make some
brief historical comments. Shortly after Einstein introduced his general
theory of relativity in 1915, Weyl suggested, in 1918, a generalization in
which the very notion of length becomes path-dependent. (Hermann Weyl,
1885-1955, was an important 20th-century mathematical figure. Indeed,
among the work of those mathematicians who wrote entirely in the 20th
century, his was, to my mind, the most influential—and he was important
not only as a pure mathematician but also as a physicist.) In Weyl’s theory,
the null cones retain the fundamental role that they have in Einstein’s
theory (e.g. to define the limiting velocities for massive particles and to
provide us with the local ‘Lorentz group’ that is to act in the neighbour-
hood of each point), so a Lorentzian (say +———) metric g still is locally
required for the purpose of defining these cones. However, there is no
absolute scaling for time or space measures, in Weyl’s scheme, so the
metric is given only up to proportionality. Thus, transformations of
the form

g ;"ga

for some (say positive) scalar function A on the spacetime M, are allowed,
these not affecting the null cones of M. (Such transformations are referred
to as conformal rescalings of the metric g; in Weyl’s theory, each choice of
g provides us with a possible gauge in terms of which distances and times
can be measured.) Although Weyl may have had spatial separations more
in mind, it will be appropriate for us to think in terms of time measure-
ments (in accordance with the viewpoint of Chapter 17). Thus, in Weyl’s
geometry, there are no absolute ‘ideal clocks’. The rate at which any clock
measures time would depend upon its history.

The situation is ‘worse’ than in the standard ‘clock paradox’ that I
described in §18.3 (Fig. 18.6d). In Weyl’s geometry, we can envisage a
space traveller who journeys to a distant star and then returns to Earth to
find not just that those on the Earth had aged much more, but also that the
clocks on Earth are now found to run at a different rate from those on the
rocket ship! See Fig. 19.5a. Using this very striking idea, Weyl was able to
incorporate the equations of Maxwell’s electromagnetic theory into the
spacetime geometry.

[19.10] Show this. Hint: Have a look at §15.8.
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Fig. 19.5 In Weyl’s original
gauge theory of electromagnet-
ism, the notion of time interval
(or space interval) is not
absolute but depends on the
path taken. (a) A comparison
/ with the ‘clock paradox’ illus-
/ trated in Fig. 18.6: in Weyl’s
theory we find that the space
traveller arrives home (world-line
P ABC) to find not only differing
clock readings between those on
Earth (direct route AB) and
those on the rocket ship, but
p also differing clock rates! (b)
/ Weyl’s gauge curvature (giving
| the Maxwell field F) comes
about from this (conformal)
time scale change as we go
around an infinitesimal loop
®) (difference between two
routes from p to neighbouring

point p’).

The essential way that he did this was to encode the electromagnetic
potential into a bundle connection, just as I have done above, but
without the imaginary unit ‘I’ in the expression for V,. We can think
of the relevant bundle over M as being given by the Lorentzian metrics
g that share the same null cones. Thus, the fibre above some point x in
M consists of a family of proportional metrics (where we can, if desired,
choose the proportionality factors to be positive). These factors are
the possible ‘As” in g — Ag above. For any particular choice of metric,
we have a gauge whereby distances or times along curves are defined.
But there is to be no absolute choice of gauge, and so no preferred
choice of metric g from the equivalence class of proportional ones. There is
some structure additional to that of the null cones (i.e. to the conformal
structure), however, namely a bundle connection—or gauge connection—
which Weyl introduced, in order to have Maxwell’s F (i.e. F,) as its
curvature. This curvature measures the discrepancy in the clock rates
as illustrated in Fig. 19.5a when the world-lines differ only by an infinitesi-
mal part; see Fig. 19.5b. (This may be compared with the ‘strained bundle’
B, over ©, considered in §15.8, Figs. 15.16 and 15.21; the basic bundle
concept is very similar.)
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When Einstein heard about this theory, he informed Weyl that he
had a fundamental physical objection to it, despite the mathematical
elegance of Weyl’s ideas. Spectral frequencies, for example, appear to
be completely unaffected by an atom’s history, whereas Weyl’s theory
would predict otherwise. More fundamentally, although not all the rele-
vant quantum-mechanical rules had been fully formulated at the time (and
we shall be coming to these later, in §21.4, §§23.7,8) Weyl’s theory is in
conflict with the necessarily exact identity between different particles of
the same type (see §21.4). In particular, there is a direct relation between
clock rates and particle masses. As we shall see later, a particle of rest-mass
m has a natural frequency mc2h~!, where h is Planck’s constant and ¢ the
speed of light. Thus, in Weyl’s geometry, not just clock rates but also a
particle’s mass will depend upon its history. Accordingly, two protons, if
they had different histories, would almost certainly have different masses,
according to Weyl’s theory, thereby violating the quantum-mechanical
principle that particles of the same kind have to be exactly identical
(see §§23.7.8).

Although this was a damning observation, with regard to the original
version of Weyl’s theory, it was later realized* that the same idea
would work if his ‘gauge’ referred not to the real scaling (by 1), but to a
scaling by a complex number of unit modulus (¢'%). This may seem like
a strange idea, but as we shall see in Chapter 21 and onwards (see
§§21.6,9 most particularly), the rules of quantum mechanics force upon us
the use of complex numbers in the description of the state of a system.
There is, in particular, a unit-modulus complex number ¢ which can
multiply this ‘quantum state’—the state often being referred to as ¥—
without observable consequences, locally. This ‘non-observable’ replace-
ment ¥ — e is still referred to today as a ‘gauge transformation’ even
though there is now no change in length scale involved, the change being
a rotation in the complex plane (a complex plane with no direct connection
with either space or time dimensions). In this strangely twisted form,
Weyl’s idea provided the appropriate physical setting for a U(1) connec-
tion, of the kind that I illustrated at the end of Chapter 15, and it
now forms the basis of the modern picture of how the electromagnetic
field actually interacts. The operator V that is defined above from the
electromagnetic potential (i.e. V, = 0/0x* — ieAd,) provides a U(1)-bundle
connection on the bundle of charged quantum wavefunctions
(See §21.9).

It is interesting that the path dependence of the connection (which we
may compare with the path dependence illustrated in Fig. 19.5) shows up
in a striking way in certain types of experimental situation, illustrating
what is known as the Aharonov—Bohm effect.’> Since our connection V
operates only at the level of quantum phenomena, we do not see this
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path dependence in classical experiments; instead, the Aharonov—Bohm
effect depends upon quantum interference (see §21.4 and Fig. 21.4). In the
best-known version, electrons are aimed so as to pass through two regions
that are free of electromagnetic field (F = 0), but which are separated from
each other by a long cylindrical solenoid (which contains magnetic lines of
force), arriving at a detector screen behind (see Fig. 19.6a). At no stage do
the electrons encounter any non-zero field F. However, the relevant field-
free region R (starting at the source, bifurcating so that they pass on either
side of the solenoid, and reuniting at the screen) is not simply-connected,
and the field F outside R is such that there is no gauge choice for which the
potential A vanishes everywhere within R. The presence of this non-zero
potential in the non-simply-connected R—or more correctly, the path
dependence of V in R—Ieads to a displacement in the interference fringes
at the screen.

In fact, the fringe-shifting effect does not depend upon any particular
local values that 4 might have (which it cannot, because A4 is not locally
observable, as mentioned above) but upon a certain non-local integral
of A. This is the quantity §4, taken around a topologically non-trivial
loop within R. See Fig. 19.6b. Since d4 vanishes within R (because
F =0 in R), the integral §A is unaffected if we continuously move our
closed loop around within R.['!!] From this it is clear that the non-
vanishing of §4, within a field-free region, and thence the Aharonov—
Bohm effect itself, depends upon this field-free region being topologically
non-trivial.

Electron Beam Solenoi
gun splitter £

@ (b)

Fig. 19.6 Aharonov-Bohm effect. (a) A beam of electrons is split into two
paths that go to either side of a collection of lines of magnetic flux (achieved by
means of a long solenoid). The beams are brought together at a screen, and the
resulting quantum interference pattern (compare Fig. 21.4) depends upon the mag-
netic flux strength—despite the fact that the electrons only encounter a zero field
strength (F = 0). (b) The effect depends on the value of $4, which can be non-zero
over the relevant topologically non-trivial closed path despite F vanishing over this
path. The quantity $4 is unchanged for continuous deformations of the path within
the field-free region.

[19.11] Explain this.
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Because of its historical origins in Weyl’s remarkable idea (which origin-
ally did play a role