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Preface

The purpose of this book is to convey to the reader some feeling for

what is surely one of the most important and exciting voyages of discovery

that humanity has embarked upon. This is the search for the underlying

principles that govern the behaviour of our universe. It is a voyage that

has lasted for more than two-and-a-half millennia, so it should not sur-

prise us that substantial progress has at last been made. But this journey

has proved to be a profoundly diYcult one, and real understanding has,

for the most part, come but slowly. This inherent diYculty has led us

in many false directions; hence we should learn caution. Yet the 20th

century has delivered us extraordinary new insights—some so impressive

that many scientists of today have voiced the opinion that we may be

close to a basic understanding of all the underlying principles of physics.

In my descriptions of the current fundamental theories, the 20th century

having now drawn to its close, I shall try to take a more sober view.

Not all my opinions may be welcomed by these ‘optimists’, but I expect

further changes of direction greater even than those of the last cen-

tury.

The reader will Wnd that in this book I have not shied away from

presenting mathematical formulae, despite dire warnings of the severe

reduction in readership that this will entail. I have thought seriously

about this question, and have come to the conclusion that what I have

to say cannot reasonably be conveyed without a certain amount of

mathematical notation and the exploration of genuine mathematical

concepts. The understanding that we have of the principles that actually

underlie the behaviour of our physical world indeed depends upon some

appreciation of its mathematics. Some people might take this as a cause

for despair, as they will have formed the belief that they have no

capacity for mathematics, no matter at how elementary a level. How

could it be possible, they might well argue, for them to comprehend the

research going on at the cutting edge of physical theory if they cannot

even master the manipulation of fractions? Well, I certainly see the

diYculty.
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Yet I am an optimist in matters of conveying understanding. Perhaps I

am an incurable optimist. I wonder whether those readers who cannot

manipulate fractions—or those who claim that they cannot manipulate

fractions—are not deluding themselves at least a little, and that a good

proportion of them actually have a potential in this direction that they are

not aware of. No doubt there are some who, when confronted with a line

of mathematical symbols, however simply presented, can see only the stern

face of a parent or teacher who tried to force into them a non-compre-

hending parrot-like apparent competence—a duty, and a duty alone—and

no hint of the magic or beauty of the subject might be allowed to come

through. Perhaps for some it is too late; but, as I say, I am an optimist and

I believe that there are many out there, even among those who could never

master the manipulation of fractions, who have the capacity to catch some

glimpse of a wonderful world that I believe must be, to a signiWcant degree,

genuinely accessible to them.

One of my mother’s closest friends, when she was a young girl, was

among those who could not grasp fractions. This lady once told me so

herself after she had retired from a successful career as a ballet dancer. I

was still young, not yet fully launched in my activities as a mathematician,

but was recognized as someone who enjoyed working in that subject. ‘It’s

all that cancelling’, she said to me, ‘I could just never get the hang of

cancelling.’ She was an elegant and highly intelligent woman, and there is

no doubt in my mind that the mental qualities that are required in

comprehending the sophisticated choreography that is central to ballet

are in no way inferior to those which must be brought to bear on a

mathematical problem. So, grossly overestimating my expositional abil-

ities, I attempted, as others had done before, to explain to her the simpli-

city and logical nature of the procedure of ‘cancelling’.

I believe that my eVorts were as unsuccessful as were those of others.

(Incidentally, her father had been a prominent scientist, and a Fellow of

the Royal Society, so she must have had a background adequate for the

comprehension of scientiWc matters. Perhaps the ‘stern face’ could have

been a factor here, I do not know.) But on reXection, I now wonder

whether she, and many others like her, did not have a more rational

hang-up—one that with all my mathematical glibness I had not noticed.

There is, indeed, a profound issue that one comes up against again and

again in mathematics and in mathematical physics, which one Wrst en-

counters in the seemingly innocent operation of cancelling a common

factor from the numerator and denominator of an ordinary numerical

fraction.

Those for whom the action of cancelling has become second nature,

because of repeated familiarity with such operations, may Wnd themselves

insensitive to a diYculty that actually lurks behind this seemingly simple
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procedure. Perhaps many of those who Wnd cancelling mysterious are

seeing a certain profound issue more deeply than those of us who press

onwards in a cavalier way, seeming to ignore it. What issue is this? It

concerns the very way in which mathematicians can provide an existence

to their mathematical entities and how such entities may relate to physical

reality.

I recall that when at school, at the age of about 11, I was somewhat

taken aback when the teacher asked the class what a fraction (such as 3
8
)

actually is! Various suggestions came forth concerning the dividing up of

pieces of pie and the like, but these were rejected by the teacher on the

(valid) grounds that they merely referred to imprecise physical situations

to which the precise mathematical notion of a fraction was to be applied;

they did not tell us what that clear-cut mathematical notion actually is.

Other suggestions came forward, such as 3
8
is ‘something with a 3 at the top

and an 8 at the bottom with a horizontal line in between’ and I was

distinctly surprised to Wnd that the teacher seemed to be taking these

suggestions seriously! I do not clearly recall how the matter was Wnally

resolved, but with the hindsight gained from my much later experiences as

a mathematics undergraduate, I guess my schoolteacher was making a

brave attempt at telling us the deWnition of a fraction in terms of the

ubiquitous mathematical notion of an equivalence class.

What is this notion? How can it be applied in the case of a fraction and

tell us what a fraction actually is? Let us start with my classmate’s ‘some-

thing with a 3 at the top and an 8 on the bottom’. Basically, this is

suggesting to us that a fraction is speciWed by an ordered pair of whole

numbers, in this case the numbers 3 and 8. But we clearly cannot regard the

fraction as being such an ordered pair because, for example, the fraction 6
16

is the same number as the fraction 3
8
, whereas the pair (6, 16) is certainly not

the same as the pair (3, 8). This is only an issue of cancelling; for we can

write 6
16

as 3�2
8�2

and then cancel the 2 from the top and the bottom to get 3
8
.

Why are we allowed to do this and thereby, in some sense, ‘equate’ the pair

(6, 16) with the pair (3, 8)? The mathematician’s answer—which may well

sound like a cop-out—has the cancelling rule just built in to the deWnition of

a fraction: a pair of whole numbers (a� n, b� n) is deemed to represent the

same fraction as the pair (a, b) whenever n is any non-zero whole number

(and where we should not allow b to be zero either).

But even this does not tell us what a fraction is; it merely tells us

something about the way in which we represent fractions. What is a

fraction, then? According to the mathematician’s ‘‘equivalence class’’

notion, the fraction 3
8
, for example, simply is the inWnite collection of all

pairs

(3, 8), (� 3,� 8), (6, 16), (� 6,� 16), (9, 24), (� 9,� 24), (12, 32), . . . ,
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where each pair can be obtained from each of the other pairs in the list by

repeated application of the above cancellation rule.* We also need deWni-

tions telling us how to add, subtract, and multiply such inWnite collections

of pairs of whole numbers, where the normal rules of algebra hold, and

how to identify the whole numbers themselves as particular types of

fraction.

This deWnition covers all that we mathematically need of fractions (such

as 1
2
being a number that, when added to itself, gives the number 1, etc.), and

the operation of cancelling is, aswe have seen, built into the deWnition. Yet it

seems all very formal and we may indeed wonder whether it really captures

the intuitive notion of what a fraction is. Although this ubiquitous equiva-

lence class procedure, of which the above illustration is just a particular

instance, is very powerful as a pure-mathematical tool for establishing

consistency and mathematical existence, it can provide us with very top-

heavy-looking entities. It hardly conveys to us the intuitive notion of what 3
8

is, for example! No wonder my mother’s friend was confused.

In my descriptions of mathematical notions, I shall try to avoid, as far

as I can, the kind of mathematical pedantry that leads us to deWne a

fraction in terms of an ‘inWnite class of pairs’ even though it certainly

has its value in mathematical rigour and precision. In my descriptions here

I shall be more concerned with conveying the idea—and the beauty and

the magic—inherent in many important mathematical notions. The idea of

a fraction such as 3
8
is simply that it is some kind of an entity which has the

property that, when added to itself 8 times in all, gives 3. The magic is that

the idea of a fraction actually works despite the fact that we do not really

directly experience things in the physical world that are exactly quantiWed

by fractions—pieces of pie leading only to approximations. (This is quite

unlike the case of natural numbers, such as 1, 2, 3, which do precisely

quantify numerous entities of our direct experience.) One way to see that

fractions do make consistent sense is, indeed, to use the ‘deWnition’ in

terms of inWnite collections of pairs of integers (whole numbers), as

indicated above. But that does not mean that 3
8
actually is such a collection.

It is better to think of 3
8

as being an entity with some kind of (Platonic)

existence of its own, and that the inWnite collection of pairs is merely one

way of our coming to terms with the consistency of this type of entity.

With familiarity, we begin to believe that we can easily grasp a notion like 3
8

as something that has its own kind of existence, and the idea of an ‘inWnite

collection of pairs’ is merely a pedantic device—a device that quickly

recedes from our imaginations once we have grasped it. Much of math-

ematics is like that.

* This is called an ‘equivalence class’ because it actually is a class of entities (the entities, in this

particular case, being pairs of whole numbers), each member of which is deemed to be equivalent,

in a speciWed sense, to each of the other members.
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To mathematicians (at least to most of them, as far as I can make out),

mathematics is not just a cultural activity that we have ourselves created,

but it has a life of its own, and much of it Wnds an amazing harmony with

the physical universe. We cannot get any deep understanding of the laws

that govern the physical world without entering the world of mathematics.

In particular, the above notion of an equivalence class is relevant not only

to a great deal of important (but confusing) mathematics, but a great deal

of important (and confusing) physics as well, such as Einstein’s general

theory of relativity and the ‘gauge theory’ principles that describe the

forces of Nature according to modern particle physics. In modern physics,

one cannot avoid facing up to the subtleties of much sophisticated math-

ematics. It is for this reason that I have spent the Wrst 16 chapters of this

work directly on the description of mathematical ideas.

What words of advice can I give to the reader for coping with this?

There are four diVerent levels at which this book can be read. Perhaps you

are a reader, at one end of the scale, who simply turns oV whenever a

mathematical formula presents itself (and some such readers may have

diYculty with coming to terms with fractions). If so, I believe that there is

still a good deal that you can gain from this book by simply skipping all

the formulae and just reading the words. I guess this would be much like

the way I sometimes used to browse through the chess magazines lying

scattered in our home when I was growing up. Chess was a big part of the

lives of my brothers and parents, but I took very little interest, except that

I enjoyed reading about the exploits of those exceptional and often strange

characters who devoted themselves to this game. I gained something from

reading about the brilliance of moves that they frequently made, even

though I did not understand them, and I made no attempt to follow

through the notations for the various positions. Yet I found this to be

an enjoyable and illuminating activity that could hold my attention.

Likewise, I hope that the mathematical accounts I give here may convey

something of interest even to some profoundly non-mathematical readers

if they, through bravery or curiosity, choose to join me in my journey of

investigation of the mathematical and physical ideas that appear to under-

lie our physical universe. Do not be afraid to skip equations (I do this

frequently myself) and, if you wish, whole chapters or parts of chapters,

when they begin to get a mite too turgid! There is a great variety in the

diYculty and technicality of the material, and something elsewhere may be

more to your liking. You may choose merely to dip in and browse. My

hope is that the extensive cross-referencing may suYciently illuminate

unfamiliar notions, so it should be possible to track down needed concepts

and notation by turning back to earlier unread sections for clariWcation.

At a second level, you may be a reader who is prepared to peruse

mathematical formulae, whenever such is presented, but you may not
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have the inclination (or the time) to verify for yourself the assertions that

I shall be making. The conWrmations of many of these assertions consti-

tute the solutions of the exercises that I have scattered about the mathemat-

ical portions of the book. I have indicated three levels of difficulty by the

icons –

very straight forward

needs a bit of thought

not to be undertaken lightly.

It is perfectly reasonable to take these on trust, if you wish, and there is no

loss of continuity if you choose to take this position.

If, on the other hand, you are a reader who does wish to gain a facility

with these various (important) mathematical notions, but for whom the

ideas that I am describing are not all familiar, I hope that working through

these exercises will provide a signiWcant aid towards accumulating such

skills. It is always the case, with mathematics, that a little direct experience

of thinking over things on your own can provide a much deeper under-

standing than merely reading about them. (If you need the solutions, see

the website www.roadsolutions.ox.ac.uk.)

Finally, perhaps you are already an expert, in which case you should

have no diYculty with the mathematics (most of which will be very

familiar to you) and you may have no wish to waste time with the

exercises. Yet you may Wnd that there is something to be gained from

my own perspective on a number of topics, which are likely to be some-

what diVerent (sometimes very diVerent) from the usual ones. You may

have some curiosity as to my opinions relating to a number of modern

theories (e.g. supersymmetry, inXationary cosmology, the nature of the Big

Bang, black holes, string theory or M-theory, loop variables in quantum

gravity, twistor theory, and even the very foundations of quantum theory).

No doubt you will Wnd much to disagree with me on many of these topics.

But controversy is an important part of the development of science, so I

have no regrets about presenting views that may be taken to be partly

at odds with some of the mainstream activities of modern theoretical

physics.

It may be said that this book is really about the relation between

mathematics and physics, and how the interplay between the two strongly

inXuences those drives that underlie our searches for a better theory of the

universe. In many modern developments, an essential ingredient of these

drives comes from the judgement of mathematical beauty, depth, and

sophistication. It is clear that such mathematical inXuences can be vitally

important, as with some of the most impressively successful achievements
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of 20th-century physics: Dirac’s equation for the electron, the general

framework of quantum mechanics, and Einstein’s general relativity. But

in all these cases, physical considerations—ultimately observational

ones—have provided the overriding criteria for acceptance. In many of

the modern ideas for fundamentally advancing our understanding of the

laws of the universe, adequate physical criteria—i.e. experimental data, or

even the possibility of experimental investigation—are not available. Thus

we may question whether the accessible mathematical desiderata are suY-

cient to enable us to estimate the chances of success of these ideas. The

question is a delicate one, and I shall try to raise issues here that I do not

believe have been suYciently discussed elsewhere.

Although, in places, I shall present opinions that may be regarded as

contentious, I have taken pains to make it clear to the reader when I am

actually taking such liberties. Accordingly, this book may indeed be used

as a genuine guide to the central ideas (and wonders) of modern physics. It

is appropriate to use it in educational classes as an honest introduction to

modern physics—as that subject is understood, as we move forward into

the early years of the third millennium.
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Notation

(Not to be read until you are familiar with the concepts, but perhaps Wnd

the fonts confusing!)

I have tried to be reasonably consistent in the use of particular fonts in

this book, but as not all of this is standard, it may be helpful to the reader

to have the major usage that I have adopted made explicit.

Italic lightface (Greek or Latin) letters, such as in w2, pn, log z,

cos y, eiy, or ex are used in the conventional way for mathematical vari-

ables which are numerical or scalar quantities; but established numerical

constants, such as e, i, or p or established functions such as sin, cos, or log

are denoted by upright letters. Standard physical constants such as c, G, h,

�h, g, or k are italic, however.

A vector or tensor quantity, when being thought of in its (abstract)

entirety, is denoted by a boldface italic letter, such as R for the Riemann

curvature tensor, while its set of components might be written with italic

letters (both for the kernel symbol its indices) as Rabcd . In accordance with

the abstract-index notation, introduced here in §12.8, the quantity Rabcd

may alternatively stand for the entire tensor R, if this interpretation is

appropriate, and this should be made clear in the text. Abstract linear

transformations are kinds of tensors, and boldface italic letters such as T

are used for such entities also. The abstract-index form Ta
b is also used

here for an abstract linear transformation, where appropriate, the stagger-

ing of the indices making clear the precise connection with the ordering of

matrix multiplication. Thus, the (abstract-)index expression Sa
bT

b
c stands

for the product ST of linear transformations. As with general tensors, the

symbols Sa
b and Tb

c could alternatively (according to context or explicit

speciWcation in the text) stand for the corresoponding arrays of compon-

ents—these being matrices—for which the corresponding bold upright

letters S and T can also be used. In that case, ST denotes the correspond-

ing matrix product. This ‘ambivalent’ interpretation of symbols such as

Rabcd or Sa
b (either standing for the array of components or for the

abstract tensor itself) should not cause confusion, as the algebraic (or

diVerential) relations that these symbols are subject to are identical for
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both interpretations. A third notation for such quantities—the diagram-

matic notation—is also sometimes used here, and is described in Figs.

12.17, 12.18, 14.6, 14.7, 14.21, 19.1 and elsewhere in the book.

There are places in this book where I need to distinguish the 4-dimen-

sional spacetime entities of relativity theory from the corresponding ordin-

ary 3-dimensional purely spatial entities. Thus, while a boldface italic

notation might be used, as above, such as p or x, for the 4-momentum or

4-position, respectively, the corresponding 3-dimensional purely spatial

entities would be denoted by the corresponding upright bold letters p or x.

By analogy with the notation T for a matrix, above, as opposed to T for an

abstract linear transformation, the quantities p and x would tend to be

thought of as ‘standing for’ the three spatial components, in each case,

whereas p and x might be viewed as having a more abstract component-

free interpretation (although I shall not be particularly strict about this).

The Euclidean ‘length’ of a 3-vector quantity a ¼ (a1,a2,a3) may be written

a, where a2 ¼ a2
1 þ a2

2 þ a2
3, and the scalar product of a with b ¼ (b1,b2,b3),

written a . b ¼ a1b1 þ a2b2 þ a3b3. This ‘dot’ notation for scalar products

applies also in the general n-dimensional context, for the scalar (or inner)

product a . j of an abstract covector a with a vector j.
A notational complication arises with quantum mechanics, however,

since physical quantities, in that subject, tend to be represented as linear

operators. I do not adopt what is a quite standard procedure in this

context, of putting ‘hats’ (circumXexes) on the letters representing the

quantum-operator versions of the familiar classical quantities, as I believe

that this leads to an unnecessary cluttering of symbols. (Instead, I shall

tend to adopt a philosophical standpoint that the classical and quantum

entities are really the ‘same’—and so it is fair to use the same symbols for

each—except that in the classical case one is justiWed in ignoring quantities

of the order of �h, so that the classical commutation properties ab ¼ ba can

hold, whereas in quantum mechanics, ab might diVer from ba by some-

thing of order �h.) For consistency with the above, such linear operators

would seem to have to be denoted by italic bold letters (like T), but that

would nullify the philosophy and the distinctions called for in the preced-

ing paragraph. Accordingly, with regard to speciWc quantities, such as the

momentum p or p, or the position x or x, I shall tend to use the same

notation as in the classical case, in line with what has been said earlier in

this paragraph. But for less speciWc quantum operators, bold italic letters

such as Q will tend to be used.

The shell letters N, Z, R, C, and Fq, respectively, for the system of

natural numbers (i.e. non-negative integers), integers, real numbers, com-

plex numbers, and the Wnite Weld with q elements (q being some power of a

prime number, see §16.1), are now standard in mathematics, as are the

corresponding N
n, Z

n, R
n, C

n, F
n
q, for the systems of ordered n-tuples
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of such numbers. These are canonical mathematical entities in standard

use. In this book (as is not all that uncommon), this notation is extended

to some other standard mathematical structures such as Euclidean 3-space

E
3 or, more generally, Euclidean n-space E

n. In frequent use in this book

is the standard Xat 4-dimensional Minkowski spacetime, which is itself a

kind of ‘pseudo-’ Euclidean space, so I use the shell letter M for this space

(with M
n to denote the n-dimensional version—a ‘Lorentzian’ spacetime

with 1 time and (n� 1) space dimensions). Sometimes I use C as an

adjective, to denote ‘complexiWed’, so that we might consider the complex

Euclidean 4-space, for example, denoted by CE
n. The shell letter P can

also be used as an adjective, to denote ‘projective’ (see §15.6), or as a noun,

with P
n denoting projective n-space (or I use RP

n or CP
n if it is to be

made clear that we are concerned with real or complex projective n-space,

respectively). In twistor theory (Chapter 33), there is the complex 4-space

T, which is related to M (or its complexiWcation CM) in a canonical

way, and there is also the projective version PT. In this theory, there is

also a space N of null twistors (the double duty that this letter serves

causing no conXict here), and its projective version PN.

The adjectival role of the shell letter C should not be confused with that

of the lightface sans serif C, which here stands for ‘complex conjugate of’

(as used in §13.1,2). This is basically similar to another use of C in particle

physics, namely charge conjugation, which is the operation which inter-

changes each particle with its antiparticle (see Chapters 24, 25). This

operation is usually considered in conjunction with two other basic par-

ticle-physics operations, namely P for parity which refers to the operation

of reXection in a mirror, and T, which refers to time-reveral. Sans serif

letters which are bold serve a diVerent purpose here, labelling vector

spaces, the letters V, W, and H, being most frequently used for this

purpose. The use of H, is speciWc to the Hilbert spaces of quantum

mechanics, and Hn would stand for a Hilbert space of n complex dimen-

sions. Vector spaces are, in a clear sense, Xat. Spaces which are (or could

be) curved are denoted by script letters, such asM, S, or T , where there is

a special use for the particular script font I to denote null inWnity. In

addition, I follow a fairly common convention to use script letters for

Lagrangians (L) and Hamiltonians (H), in view of their very special status

in physical theory.
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Prologue

Am-tep was the King’s chief craftsman, an artist of consummate skills. It

was night, and he lay sleeping on his workshop couch, tired after a

handsomely productive evening’s work. But his sleep was restless—per-

haps from an intangible tension that had seemed to be in the air. Indeed,

he was not certain that he was asleep at all when it happened. Daytime had

come—quite suddenly—when his bones told him that surely it must still be

night.

He stood up abruptly. Something was odd. The dawn’s light could not

be in the north; yet the red light shone alarmingly through his broad

window that looked out northwards over the sea. He moved to the

window and stared out, incredulous in amazement. The Sun had never

before risen in the north! In his dazed state, it took him a few moments to

realize that this could not possibly be the Sun. It was a distant shaft of a

deep Wery red light that beamed vertically upwards from the water into the

heavens.

As he stood there, a dark cloud became apparent at the head of the

beam, giving the whole structure the appearance of a distant giant parasol,

glowing evilly, with a smoky Xaming staV. The parasol’s hood began to

spread and darken—a daemon from the underworld. The night had been

clear, but now the stars disappeared one by one, swallowed up behind this

advancing monstrous creature from Hell.

Though terror must have been his natural reaction, he did not move,

transWxed for several minutes by the scene’s perfect symmetry and awe-

some beauty. But then the terrible cloud began to bend slightly to the east,

caught up by the prevailing winds. Perhaps he gained some comfort from

this and the spell was momentarily broken. But apprehension at once

returned to him as he seemed to sense a strange disturbance in the ground

beneath, accompanied by ominous-sounding rumblings of a nature quite

unfamiliar to him. He began to wonder what it was that could have

caused this fury. Never before had he witnessed a God’s anger of such

magnitude.
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His Wrst reaction was to blame himself for the design on the sacriWcial

cup that he had just completed—he had worried about it at the time. Had

his depiction of the Bull-God not been suYciently fearsome? Had that god

been oVended? But the absurdity of this thought soon struck him. The fury

he had just witnessed could not have been the result of such a trivial

action, and was surely not aimed at him speciWcally. But he knew that

there would be trouble at the Great Palace. The Priest-King would waste

no time in attempting to appease this Daemon-God. There would be

sacriWces. The traditional oVerings of fruits or even animals would not

suYce to pacify an anger of this magnitude. The sacriWces would have to

be human.

Quite suddenly, and to his utter surprise, he was blown backwards

across the room by an impulsive blast of air followed by a violent wind.

The noise was so extreme that he was momentarily deafened. Many of his

beautifully adorned pots were whisked from their shelves and smashed

to pieces against the wall behind. As he lay on the Xoor in a far corner of

the room where he had been swept away by the blast, he began to recover

his senses, and saw that the room was in turmoil. He was horriWed to see

one of his favourite great urns shattered to small pieces, and the wonder-

fully detailed designs, which he had so carefully crafted, reduced to

nothing.

Am-tep arose unsteadily from the Xoor and after a while again ap-

proached the window, this time with considerable trepidation, to re-exam-

ine that terrible scene across the sea. Now he thought he saw a

disturbance, illuminated by that far-oV furnace, coming towards him.

This appeared to be a vast trough in the water, moving rapidly towards

the shore, followed by a cliVlike wall of wave. He again became transWxed,

watching the approaching wave begin to acquire gigantic proportions.

Eventually the disturbance reached the shore and the sea immediately

before him drained away, leaving many ships stranded on the newly

formed beach. Then the cliV-wave entered the vacated region and struck

with a terrible violence. Without exception the ships were shattered, and

many nearby houses instantly destroyed. Though the water rose to great

heights in the air before him, his own house was spared, for it sat on high

ground a good way from the sea.

The Great Palace too was spared. But Am-tep feared that worse might

come, and he was right—though he knew not how right he was. He did

know, however, that no ordinary human sacriWce of a slave could now be

suYcient. Something more would be needed to pacify the tempestuous

anger of this terrible God. His thoughts turned to his sons and daughters,

and to his newly born grandson. Even they might not be safe.

Am-tep had been right to fear new human sacriWces. A young girl and a

youth of good birth had been soon apprehended and taken to a nearby

Prologue
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temple, high on the slopes of a mountain. The ensuing ritual was well

under way when yet another catastrophe struck. The ground shook with

devastating violence, whence the temple roof fell in, instantly killing all the

priests and their intended sacriWcial victims. As it happened, they would lie

there in mid-ritual—entombed for over three-and-a-half millennia!

The devastation was frightful, but not Wnal. Many on the island where

Am-tep and his people lived survived the terrible earthquake, though the

Great Palace was itself almost totally destroyed. Much would be rebuilt

over the years. Even the Palace would recover much of its original splen-

dour, constructed on the ruins of the old. Yet Am-tep had vowed to leave

the island. His world had now changed irreparably.

In the world he knew, there had been a thousand years of peace,

prosperity, and culture where the Earth-Goddess had reigned. Wonderful

art had been allowed to Xourish. There was much trade with neighbouring

lands. The magniWcent Great Palace was a huge luxurious labyrinth, a

virtual city in itself, adorned by superb frescoes of animals and Xowers.

There was running water, excellent drainage, and Xushed sewers. War was

almost unknown and defences unnecessary. Now, Am-tep perceived the

Earth-Goddess overthrown by a Being with entirely diVerent values.

It was some years before Am-tep actually left the island, accompanied

by his surviving family, on a ship rebuilt by his youngest son, who was a

skilled carpenter and seaman. Am-tep’s grandson had developed into an

alert child, with an interest in everything in the world around. The voyage

took some days, but the weather had been supremely calm. One clear

night, Am-tep was explaining to his grandson about the patterns in the

stars, when an odd thought overtook him: The patterns of stars had been

disturbed not one iota from what they were before the Catastrophe of the

emergence of the terrible daemon.

Am-tep knew these patterns well, for he had a keen artist’s eye. Surely,

he thought, those tiny candles of light in the sky should have been blown

at least a little from their positions by the violence of that night, just as his

pots had been smashed and his great urn shattered. The Moon also had

kept her face, just as before, and her route across the star-Wlled heavens

had changed not one whit, as far as Am-tep could tell. For many moons

after the Catastrophe, the skies had appeared diVerent. There had been

darkness and strange clouds, and the Moon and Sun had sometimes worn

unusual colours. But this had now passed, and their motions seemed

utterly undisturbed. The tiny stars, likewise, had been quite unmoved.

If the heavens had shown such little concern for the Catastrophe, having

a stature far greater even than that terrible Daemon, Am-tep reasoned,

why should the forces controlling the Daemon itself show concern for

what the little people on the island had been doing, with their foolish

rituals and human sacriWce? He felt embarrassed by his own foolish
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thoughts at the time, that the daemon might be concerned by the mere

patterns on his pots.

Yet Am-tep was still troubled by the question ‘why?’ What deep forces

control the behaviour of the world, and why do they sometimes burst forth

in violent and seemingly incomprehensible ways? He shared his questions

with his grandson, but there were no answers.

. . .

A century passed by, and then a millennium, and still there were no

answers.

. . .

Amphos the craftsman had lived all his life in the same small town as his

father and his father before him, and his father’s father before that. He

made his living constructing beautifully decorated gold bracelets, earrings,

ceremonial cups, and other Wne products of his artistic skills. Such work

had been the family trade for some forty generations—a line unbroken

since Am-tep had settled there eleven hundred years before.

But it was not just artistic skills that had been passed down from

generation to generation. Am-tep’s questions troubled Amphos just as

they had troubled Am-tep earlier. The great story of the Catastrophe

that destroyed an ancient peaceful civilization had been handed down

from father to son. Am-tep’s perception of the Catastrophe had also

survived with his descendants. Amphos, too, understood that the heavens

had a magnitude and stature so great as to be quite unconcerned by that

terrible event. Nevertheless, the event had had a catastrophic eVect on the

little people with their cities and their human sacriWces and insigniWcant

religious rituals. Thus, by comparison, the event itself must have been the

result of enormous forces quite unconcerned by those trivial actions of

human beings. Yet the nature of those forces was as unknown in

Amphos’s day as it was to Am-tep.

Amphos had studied the structure of plants, insects and other small

animals, and crystalline rocks. His keen eye for observation had served

him well in his decorative designs. He took an interest in agriculture and

was fascinated by the growth of wheat and other plants from grain. But

none of this told him ‘why?’, and he felt unsatisWed. He believed that there

was indeed reason underlying Nature’s patterns, but he was in no way

equipped to unravel those reasons.

One clear night, Amphos looked up at the heavens, and tried to make

out from the patterns of stars the shapes of those heroes and heroines who

formed constellations in the sky. To his humble artist’s eye, those shapes

made poor resemblances. He could himself have arranged the stars far

more convincingly. He puzzled over why the gods had not organized the
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stars in a more appropriate way? As they were, the arrangements seemed

more like scattered grains randomly sowed by a farmer, rather than the

deliberate design of a god. Then an odd thought overtook him: Do not seek

for reasons in the speciWc patterns of stars, or of other scattered arrange-

ments of objects; look, instead, for a deeper universal order in the way that

things behave.

Amphos reasoned that we Wnd order, after all, not in the patterns that

scattered seeds form when they fall to the ground, but in the miraculous

way that each of those seeds develops into a living plant having a superb

structure, similar in great detail to one another. We would not try to seek

the meaning in the precise arrangement of seeds sprinkled on the soil; yet,

there must be meaning in the hidden mystery of the inner forces control-

ling the growth of each seed individually, so that each one follows essen-

tially the same wonderful course. Nature’s laws must indeed have a

superbly organized precision for this to be possible.

Amphos became convinced that without precision in the underlying

laws, there could be no order in the world, whereas much order is indeed

perceived in the way that things behave. Moreover, there must be precision

in our ways of thinking about these matters if we are not to be led seriously

astray.

It so happened that word had reached Amphos of a sage who lived in

another part of the land, and whose beliefs appeared to be in sympathy

with those of Amphos. According to this sage, one could not rely on the

teachings and traditions of the past. To be certain of one’s beliefs, it was

necessary to form precise conclusions by the use of unchallengeable

reason. The nature of this precision had to be mathematical—ultimately

dependent on the notion of number and its application to geometric forms.

Accordingly, it must be number and geometry, not myth and superstition,

that governed the behaviour of the world.

As Am-tep had done a century and a millennium before, Amphos took

to the sea. He found his way to the city of Croton, where the sage and his

brotherhood of 571 wise men and 28 wise women were in search of truth.

After some time, Amphos was accepted into the brotherhood. The name

of the sage was Pythagoras.

Prologue
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1
The roots of science

1.1 The quest for the forces that shape the world

What laws govern our universe? How shall we know them? How

may this knowledge help us to comprehend the world and hence guide

its actions to our advantage?

Since the dawn of humanity, people have been deeply concerned by

questions like these. At Wrst, they had tried to make sense of those

inXuences that do control the world by referring to the kind of understand-

ing that was available from their own lives. They had imagined that

whatever or whoever it was that controlled their surroundings would do

so as they would themselves strive to control things: originally they had

considered their destiny to be under the inXuence of beings acting very

much in accordance with their own various familiar human drives. Such

driving forces might be pride, love, ambition, anger, fear, revenge, passion,

retribution, loyalty, or artistry. Accordingly, the course of natural

events—such as sunshine, rain, storms, famine, illness, or pestilence—

was to be understood in terms of the whims of gods or goddesses motiv-

ated by such human urges. And the only action perceived as inXuencing

these events would be appeasement of the god-Wgures.

But gradually patterns of a diVerent kind began to establish their reli-

ability. The precision of the Sun’s motion through the sky and its clear

relation to the alternation of day with night provided the most obvious

example; but also the Sun’s positioning in relation to the heavenly orb of

stars was seen to be closely associated with the change and relentless

regularity of the seasons, and with the attendant clear-cut inXuence on

the weather, and consequently on vegetation and animal behaviour. The

motion of the Moon, also, appeared to be tightly controlled, and its phases

determined by its geometrical relation to the Sun. At those locations on

Earth where open oceans meet land, the tides were noticed to have a

regularity closely governed by the position (and phase) of the Moon.

Eventually, even the much more complicated apparent motions of the

planets began to yield up their secrets, revealing an immense underlying

precision and regularity. If the heavens were indeed controlled by the

7



whims of gods, then these gods themselves seemed under the spell of exact

mathematical laws.

Likewise, the laws controlling earthly phenomena—such as the daily

and yearly changes in temperature, the ebb and Xow of the oceans, and the

growth of plants—being seen to be inXuenced by the heavens in this

respect at least, shared the mathematical regularity that appeared to

guide the gods. But this kind of relationship between heavenly bodies

and earthly behaviour would sometimes be exaggerated or misunderstood

and would assume an inappropriate importance, leading to the occult and

mystical connotations of astrology. It took many centuries before the

rigour of scientiWc understanding enabled the true inXuences of the

heavens to be disentangled from purely suppositional and mystical ones.

Yet it had been clear from the earliest times that such inXuences did indeed

exist and that, accordingly, the mathematical laws of the heavens must

have relevance also here on Earth.

Seemingly independently of this, there were perceived to be other regu-

larities in the behaviour of earthly objects. One of these was the tendency

for all things in one vicinity to move in the same downward direction,

according to the inXuence that we now call gravity. Matter was observed

to transform, sometimes, from one form into another, such as with the

melting of ice or the dissolving of salt, but the total quantity of that matter

appeared never to change, which reXects the law that we now refer to as

conservation of mass. In addition, it was noticed that there are many

material bodies with the important property that they retain their shapes,

whence the idea of rigid spatial motion arose; and it became possible to

understand spatial relationships in terms of a precise, well-deWned geom-

etry—the 3-dimensional geometry that we now call Euclidean. Moreover,

the notion of a ‘straight line’ in this geometry turned out to be the same as

that provided by rays of light (or lines of sight). There was a remarkable

precision and beauty to these ideas, which held a considerable fascination

for the ancients, just as it does for us today.

Yet, with regard to our everyday lives, the implications of this math-

ematical precision for the actions of the world often appeared unexciting

and limited, despite the fact that the mathematics itself seemed to repre-

sent a deep truth. Accordingly, many people in ancient times would allow

their imaginations to be carried away by their fascination with the subject

and to take them far beyond the scope of what was appropriate. In

astrology, for example, geometrical Wgures also often engendered mystical

and occult connotations, such as with the supposed magical powers of

pentagrams and heptagrams. And there was an entirely suppositional

attempted association between Platonic solids and the basic elementary

states of matter (see Fig. 1.1). It would not be for many centuries that the

deeper understanding that we presently have, concerning the actual

§1.1 CHAPTER 1
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Fig. 1.1 A fanciful association, made by the ancient Greeks, between the Wve

Platonic solids and the four ‘elements’ (Wre, air, water, and earth), together with

the heavenly Wrmament represented by the dodecahedron.

relationships between mass, gravity, geometry, planetary motion, and the

behaviour of light, could come about.

1.2 Mathematical truth

The Wrst steps towards an understanding of the real inXuences controll-

ing Nature required a disentangling of the true from the purely suppos-

itional. But the ancients needed to achieve something else Wrst, before

they would be in any position to do this reliably for their understanding of

Nature. What they had to do Wrst was to discover how to disentangle the

true from the suppositional in mathematics. A procedure was required for

telling whether a given mathematical assertion is or is not to be trusted as

true. Until that preliminary issue could be settled in a reasonable way, there

would be little hope of seriously addressing those more diYcult problems

concerning forces that control the behaviour of the world and whatever

their relations might be to mathematical truth. This realization that the key

to the understanding of Nature lay within an unassailable mathematics was

perhaps the Wrst major breakthrough in science.

Although mathematical truths of various kinds had been surmised

since ancient Egyptian and Babylonian times, it was not until the

great Greek philosophers Thales of Miletus (c.625–547 bc) and

The roots of science §1.2
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Pythagoras1* of Samos (c.572–497 bc) began to introduce the notion of

mathematical proof that the Wrst Wrm foundation stone of mathematical

understanding—and therefore of science itself—was laid. Thales may have

been the Wrst to introduce this notion of proof, but it seems to have been the

Pythagoreans who Wrst made important use of it to establish things that

were not otherwise obvious. Pythagoras also appeared to have a strong

vision of the importance of number, and of arithmetical concepts, in

governing the actions of the physical world. It is said that a big factor in

this realization was his noticing that the most beautiful harmonies produced

by lyres or Xutes corresponded to the simplest fractional ratios between

the lengths of vibrating strings or pipes. He is said to have introduced the

‘Pythagorean scale’, the numerical ratios of what we now know to be

frequencies determining the principal intervals on which Western music is

essentially based.2 The famous Pythagorean theorem, asserting that the

square on the hypotenuse of a right-angled triangle is equal to the sum of

the squares on the other two sides, perhaps more than anything else, showed

that indeed there is a precise relationship between the arithmetic of numbers

and the geometry of physical space (see Chapter 2).

He had a considerable band of followers—the Pythagoreans—situated

in the city of Croton, in what is now southern Italy, but their inXuence on

the outside world was hindered by the fact that the members of the

Pythagorean brotherhood were all sworn to secrecy. Accordingly, almost

all of their detailed conclusions have been lost. Nonetheless, some of these

conclusions were leaked out, with unfortunate consequences for the

‘moles’—on at least one occasion, death by drowning!

In the long run, the inXuence of the Pythagoreans on the progress of

human thought has been enormous. For the Wrst time, with mathematical

proof, it was possible to make signiWcant assertions of an unassailable

nature, so that they would hold just as true even today as at the time that

they were made, no matter how our knowledge of the world has pro-

gressed since then. The truly timeless nature of mathematics was beginning

to be revealed.

But what is a mathematical proof? A proof, in mathematics, is an

impeccable argument, using only the methods of pure logical reasoning,

which enables one to infer the validity of a given mathematical assertion

from the pre-established validity of other mathematical assertions, or from

some particular primitive assertions—the axioms—whose validity is taken

to be self-evident. Once such a mathematical assertion has been estab-

lished in this way, it is referred to as a theorem.

Many of the theorems that the Pythagoreans were concerned with were

geometrical in nature; others were assertions simply about numbers. Those

*Notes, indicated in the text by superscript numbers, are gathered at the ends of the chapter

(in this case on p. 23).

§1.2 CHAPTER 1

10



that were concerned merely with numbers have a perfectly unambiguous

validity today, just as they did in the time of Pythagoras. What about the

geometrical theorems that the Pythagoreans had obtained using their

procedures of mathematical proof? They too have a clear validity today,

but now there is a complicating issue. It is an issue whose nature is more

obvious to us from our modern vantage point than it was at that time of

Pythagoras. The ancients knew of only one kind of geometry, namely that

which we now refer to as Euclidean geometry, but now we know of many

other types. Thus, in considering the geometrical theorems of ancient

Greek times, it becomes important to specify that the notion of geometry

being referred to is indeed Euclid’s geometry. (I shall be more explicit

about these issues in §2.4, where an important example of non-Euclidean

geometry will be given.)

Euclidean geometry is a speciWc mathematical structure, with its own

speciWc axioms (including some less assured assertions referred to as postu-

lates), which provided an excellent approximation to a particular aspect of

the physicalworld. Thatwas the aspect of reality, well familiar to the ancient

Greeks, which referred to the laws governing the geometry of rigid objects

and their relations to other rigid objects, as they are moved around in 3-

dimensional space. Certain of these properties were so familiar and self-

consistent that they tended to become regarded as ‘self-evident’ mathemat-

ical truths and were taken as axioms (or postulates). As we shall be seeing in

Chapters 17–19 and §§27.8,11, Einstein’s general relativity—and even the

Minkowskian spacetime of special relativity—provides geometries for the

physical universe that are diVerent from, and yet more accurate than, the

geometry of Euclid, despite the fact that the Euclidean geometry of the

ancients was already extraordinarily accurate. Thus, we must be careful,

when considering geometrical assertions, whether to trust the ‘axioms’ as

being, in any sense, actually true.

But what does ‘true’ mean, in this context? The diYculty was well

appreciated by the great ancient Greek philosopher Plato, who lived in

Athens from c.429 to 347 bc, about a century after Pythagoras. Plato

made it clear that the mathematical propositions—the things that could be

regarded as unassailably true—referred not to actual physical objects (like

the approximate squares, triangles, circles, spheres, and cubes that might

be constructed from marks in the sand, or from wood or stone) but to

certain idealized entities. He envisaged that these ideal entities inhabited a

diVerent world, distinct from the physical world. Today, we might refer to

this world as the Platonic world of mathematical forms. Physical structures,

such as squares, circles, or triangles cut from papyrus, or marked on a Xat

surface, or perhaps cubes, tetrahedra, or spheres carved from marble,

might conform to these ideals very closely, but only approximately. The

actual mathematical squares, cubes, circles, spheres, triangles, etc., would

The roots of science §1.2
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not be part of the physical world, but would be inhabitants of Plato’s

idealized mathematical world of forms.

1.3 Is Plato’s mathematical world ‘real’?

This was an extraordinary idea for its time, and it has turned out to be a

very powerful one. But does the Platonic mathematical world actually

exist, in any meaningful sense? Many people, including philosophers,

might regard such a ‘world’ as a complete Wction—a product merely of

our unrestrained imaginations. Yet the Platonic viewpoint is indeed an

immensely valuable one. It tells us to be careful to distinguish the precise

mathematical entities from the approximations that we see around us in

the world of physical things. Moreover, it provides us with the blueprint

according to which modern science has proceeded ever since. Scientists will

put forward models of the world—or, rather, of certain aspects of the

world—and these models may be tested against previous observation and

against the results of carefully designed experiment. The models are

deemed to be appropriate if they survive such rigorous examination and

if, in addition, they are internally consistent structures. The important

point about these models, for our present discussion, is that they are

basically purely abstract mathematical models. The very question of the

internal consistency of a scientiWc model, in particular, is one that requires

that the model be precisely speciWed. The required precision demands that

the model be a mathematical one, for otherwise one cannot be sure that

these questions have well-deWned answers.

If the model itself is to be assigned any kind of ‘existence’, then this

existence is located within the Platonic world of mathematical forms. Of

course, one might take a contrary viewpoint: namely that the model is

itself to have existence only within our various minds, rather than to take

Plato’s world to be in any sense absolute and ‘real’. Yet, there is something

important to be gained in regarding mathematical structures as having a

reality of their own. For our individual minds are notoriously imprecise,

unreliable, and inconsistent in their judgements. The precision, reliability,

and consistency that are required by our scientiWc theories demand some-

thing beyond any one of our individual (untrustworthy) minds. In math-

ematics, we Wnd a far greater robustness than can be located in any

particular mind. Does this not point to something outside ourselves,

with a reality that lies beyond what each individual can achieve?

Nevertheless, one might still take the alternative view that the math-

ematical world has no independent existence, and consists merely of

certain ideas which have been distilled from our various minds and

which have been found to be totally trustworthy and are agreed by all.

§1.3 CHAPTER 1
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Yet even this viewpoint seems to leave us far short of what is required. Do

we mean ‘agreed by all’, for example, or ‘agreed by those who are in their

right minds’, or ‘agreed by all those who have a Ph.D. in mathematics’

(not much use in Plato’s day) and who have a right to venture an ‘authori-

tative’ opinion? There seems to be a danger of circularity here; for to judge

whether or not someone is ‘in his or her right mind’ requires some external

standard. So also does the meaning of ‘authoritative’, unless some stand-

ard of an unscientiWc nature such as ‘majority opinion’ were to be adopted

(and it should be made clear that majority opinion, no matter how

important it may be for democratic government, should in no way be

used as the criterion for scientiWc acceptability). Mathematics itself indeed

seems to have a robustness that goes far beyond what any individual

mathematician is capable of perceiving. Those who work in this subject,

whether they are actively engaged in mathematical research or just using

results that have been obtained by others, usually feel that they are merely

explorers in a world that lies far beyond themselves—a world which

possesses an objectivity that transcends mere opinion, be that opinion

their own or the surmise of others, no matter how expert those others

might be.

It may be helpful if I put the case for the actual existence of the Platonic

world in a diVerent form. What I mean by this ‘existence’ is really just the

objectivity of mathematical truth. Platonic existence, as I see it, refers to

the existence of an objective external standard that is not dependent upon

our individual opinions nor upon our particular culture. Such ‘existence’

could also refer to things other than mathematics, such as to morality or

aesthetics (cf. §1.5), but I am here concerned just with mathematical

objectivity, which seems to be a much clearer issue.

Let me illustrate this issue by considering one famous example of a

mathematical truth, and relate it to the question of ‘objectivity’. In 1637,

Pierre de Fermat made his famous assertion now known as ‘Fermat’s Last

Theorem’ (that no positive nth power3 of an integer, i.e. of a whole

number, can be the sum of two other positive nth powers if n is an integer

greater than 2), which he wrote down in the margin of his copy of the

Arithmetica, a book written by the 3rd-century Greek mathematician

Diophantos. In this margin, Fermat also noted: ‘I have discovered a

truly marvellous proof of this, which this margin is too narrow to contain.’

Fermat’s mathematical assertion remained unconWrmed for over 350

years, despite concerted eVorts by numerous outstanding mathematicians.

A proof was Wnally published in 1995 by Andrew Wiles (depending on the

earlier work of various other mathematicians), and this proof has now

been accepted as a valid argument by the mathematical community.

Now, do we take the view that Fermat’s assertion was always true, long

before Fermat actually made it, or is its validity a purely cultural matter,

The roots of science §1.3

13



dependent upon whatever might be the subjective standards of the com-

munity of human mathematicians? Let us try to suppose that the validity

of the Fermat assertion is in fact a subjective matter. Then it would not be

an absurdity for some other mathematician X to have come up with an

actual and speciWc counter-example to the Fermat assertion, so long as X

had done this before the date of 1995.4 In such a circumstance, the

mathematical community would have to accept the correctness of X’s

counter-example. From then on, any eVort on the part of Wiles to prove

the Fermat assertion would have to be fruitless, for the reason that X had

got his argument in Wrst and, as a result, the Fermat assertion would now

be false! Moreover, we could ask the further question as to whether,

consequent upon the correctness of X’s forthcoming counter-example,

Fermat himself would necessarily have been mistaken in believing in the

soundness of his ‘truly marvellous proof’, at the time that he wrote his

marginal note. On the subjective view of mathematical truth, it could

possibly have been the case that Fermat had a valid proof (which would

have been accepted as such by his peers at the time, had he revealed it) and

that it was Fermat’s secretiveness that allowed the possibility of X later

obtaining a counter-example! I think that virtually all mathematicians,

irrespective of their professed attitudes to ‘Platonism’, would regard such

possibilities as patently absurd.

Of course, it might still be the case that Wiles’s argument in fact

contains an error and that the Fermat assertion is indeed false. Or there

could be a fundamental error in Wiles’s argument but the Fermat assertion

is true nevertheless. Or it might be that Wiles’s argument is correct in its

essentials while containing ‘non-rigorous steps’ that would not be up to the

standard of some future rules of mathematical acceptability. But these

issues do not address the point that I am getting at here. The issue is the

objectivity of the Fermat assertion itself, not whether anyone’s particular

demonstration of it (or of its negation) might happen to be convincing to

the mathematical community of any particular time.

It should perhaps be mentioned that, from the point of view of math-

ematical logic, the Fermat assertion is actually a mathematical statement

of a particularly simple kind,5 whose objectivity is especially apparent.

Only a tiny minority6 of mathematicians would regard the truth of such

assertions as being in any way ‘subjective’—although there might be some

subjectivity about the types of argument that would be regarded as being

convincing. However, there are other kinds of mathematical assertion

whose truth could plausibly be regarded as being a ‘matter of opinion’.

Perhaps the best known of such assertions is the axiom of choice. It is not

important for us, now, to know what the axiom of choice is. (I shall

describe it in §16.3.) It is cited here only as an example. Most mathemat-

icians would probably regard the axiom of choice as ‘obviously true’, while
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others may regard it as a somewhat questionable assertion which might

even be false (and I am myself inclined, to some extent, towards this

second viewpoint). Still others would take it as an assertion whose

‘truth’ is a mere matter of opinion or, rather, as something which can be

taken one way or the other, depending upon which system of axioms and

rules of procedure (a ‘formal system’; see §16.6) one chooses to adhere to.

Mathematicians who support this Wnal viewpoint (but who accept the

objectivity of the truth of particularly clear-cut mathematical statements,

like the Fermat assertion discussed above) would be relatively weak Pla-

tonists. Those who adhere to objectivity with regard to the truth of the

axiom of choice would be stronger Platonists.

I shall come back to the axiom of choice in §16.3, since it has some

relevance to the mathematics underlying the behaviour of the physical

world, despite the fact that it is not addressed much in physical theory. For

the moment, it will be appropriate not to worry overly about this issue. If

the axiom of choice can be settled one way or the other by some appropri-

ate form of unassailable mathematical reasoning,7 then its truth is indeed

an entirely objective matter, and either it belongs to the Platonic world or

its negation does, in the sense that I am interpreting this term ‘Platonic

world’. If the axiom of choice is, on the other hand, a mere matter of

opinion or of arbitrary decision, then the Platonic world of absolute

mathematical forms contains neither the axiom of choice nor its negation

(although it could contain assertions of the form ‘such-and-such follows

from the axiom of choice’ or ‘the axiom of choice is a theorem according

to the rules of such-and-such mathematical system’).

The mathematical assertions that can belong to Plato’s world are pre-

cisely those that are objectively true. Indeed, I would regard mathematical

objectivity as really what mathematical Platonism is all about. To say that

some mathematical assertion has a Platonic existence is merely to say that

it is true in an objective sense. A similar comment applies to mathematical

notions—such as the concept of the number 7, for example, or the rule of

multiplication of integers, or the idea that some set contains inWnitely

many elements—all of which have a Platonic existence because they are

objective notions. To my way of thinking, Platonic existence is simply a

matter of objectivity and, accordingly, should certainly not be viewed as

something ‘mystical’ or ‘unscientiWc’, despite the fact that some people

regard it that way.

As with the axiom of choice, however, questions as to whether some

particular proposal for a mathematical entity is or is not to be regarded as

having objective existence can be delicate and sometimes technical. Des-

pite this, we certainly need not be mathematicians to appreciate the

general robustness of many mathematical concepts. In Fig. 1.2, I have

depicted various small portions of that famous mathematical entity known

The roots of science §1.3
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Fig. 1.2 (a) The Mandelbrot set. (b), (c), and (d) Some details, illustrating blow-

ups of those regions correspondingly marked in Fig. 1.2a, magniWed by respective

linear factors 11.6, 168.9, and 1042.

as the Mandelbrot set. The set has an extraordinarily elaborate structure,

but it is not of any human design. Remarkably, this structure is deWned by

a mathematical rule of particular simplicity. We shall come to this expli-

citly in §4.5, but it would distract us from our present purposes if I were to

try to provide this rule in detail now.

The point that I wish to make is that no one, not even Benoit Mandel-

brot himself when he Wrst caught sight of the incredible complications in

the Wne details of the set, had any real preconception of the set’s extraor-

dinary richness. The Mandelbrot set was certainly no invention of any

human mind. The set is just objectively there in the mathematics itself. If it

has meaning to assign an actual existence to the Mandelbrot set, then that

existence is not within our minds, for no one can fully comprehend the set’s
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endless variety and unlimited complication. Nor can its existence lie within

the multitude of computer printouts that begin to capture some of its

incredible sophistication and detail, for at best those printouts capture

but a shadow of an approximation to the set itself. Yet it has a robustness

that is beyond any doubt; for the same structure is revealed—in all its

perceivable details, to greater and greater Wneness the more closely it is

examined—independently of the mathematician or computer that examines

it. Its existence can only be within the Platonic world of mathematical

forms.

I am aware that there will still be many readers who Wnd diYculty with

assigning any kind of actual existence to mathematical structures. Let me

make the request of such readers that they merely broaden their notion of

what the term ‘existence’ can mean to them. The mathematical forms of

Plato’s world clearly do not have the same kind of existence as do ordinary

physical objects such as tables and chairs. They do not have spatial

locations; nor do they exist in time. Objective mathematical notions

must be thought of as timeless entities and are not to be regarded as

being conjured into existence at the moment that they are Wrst humanly

perceived. The particular swirls of the Mandelbrot set that are depicted

in Fig. 1.2c or 1.2d did not attain their existence at the moment that they

were Wrst seen on a computer screen or printout. Nor did they come about

when the general idea behind the Mandelbrot set was Wrst humanly put

forth—not actually Wrst by Mandelbrot, as it happened, but by R. Brooks

and J. P. Matelski, in 1981, or perhaps earlier. For certainly neither

Brooks nor Matelski, nor initially even Mandelbrot himself, had any

real conception of the elaborate detailed designs that we see in Fig. 1.2c

and 1.2d. Those designs were already ‘in existence’ since the beginning of

time, in the potential timeless sense that they would necessarily be revealed

precisely in the form that we perceive them today, no matter at what time

or in what location some perceiving being might have chosen to examine

them.

1.4 Three worlds and three deep mysteries

Thus, mathematical existence is diVerent not only from physical existence

but also from an existence that is assigned by our mental perceptions. Yet

there is a deep and mysterious connection with each of those other two

forms of existence: the physical and the mental. In Fig. 1.3, I have

schematically indicated all of these three forms of existence—the physical,

the mental, and the Platonic mathematical—as entities belonging to three

separate ‘worlds’, drawn schematically as spheres. The mysterious connec-

tions between the worlds are also indicated, where in drawing the diagram
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I have imposed upon the reader some of my beliefs, or prejudices, con-

cerning these mysteries.

It may be noted, with regard to the Wrst of these mysteries—relating the

Platonic mathematical world to the physical world—that I am allowing

that only a small part of the world of mathematics need have relevance to

the workings of the physical world. It is certainly the case that the vast

preponderance of the activities of pure mathematicians today has no

obvious connection with physics, nor with any other science (cf. §34.9),

although we may be frequently surprised by unexpected important appli-

cations. Likewise, in relation to the second mystery, whereby mentality

comes about in association with certain physical structures (most speciW-

cally, healthy, wakeful human brains), I am not insisting that the majority

of physical structures need induce mentality. While the brain of a cat may

indeed evoke mental qualities, I am not requiring the same for a rock.

Finally, for the third mystery, I regard it as self-evident that only a small

fraction of our mental activity need be concerned with absolute mathemat-

ical truth! (More likely we are concerned with the multifarious irritations,

pleasures, worries, excitements, and the like, that Wll our daily lives.) These

three facts are represented in the smallness of the base of the connection of

each world with the next, the worlds being taken in a clockwise sense in the

diagram. However, it is in the encompassing of each entire world within

the scope of its connection with the world preceding it that I am revealing

my prejudices.

Thus, according to Fig. 1.3, the entire physical world is depicted as

being governed according to mathematical laws. We shall be seeing in later

chapters that there is powerful (but incomplete) evidence in support of this

contention. On this view, everything in the physical universe is indeed

Fig. 1.3 Three ‘worlds’—

the Platonic mathematical,

the physical, and the

mental—and the three

profound mysteries in the

connections between them.
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governed in completely precise detail by mathematical principles—

perhaps by equations, such as those we shall be learning about in chapters

to follow, or perhaps by some future mathematical notions fundamen-

tally diVerent from those which we would today label by the term ‘equa-

tions’. If this is right, then even our own physical actions would be entirely

subject to such ultimate mathematical control, where ‘control’ might still

allow for some random behaviour governed by strict probabilistic

principles.

Many people feel uncomfortable with contentions of this kind, and I

must confess to having some unease with it myself. Nonetheless, my

personal prejudices are indeed to favour a viewpoint of this general nature,

since it is hard to see how any line can be drawn to separate physical

actions under mathematical control from those which might lie beyond it.

In my own view, the unease that many readers may share with me on this

issue partly arises from a very limited notion of what ‘mathematical

control’ might entail. Part of the purpose of this book is to touch upon,

and to reveal to the reader, some of the extraordinary richness, power, and

beauty that can spring forth once the right mathematical notions are hit

upon.

In the Mandelbrot set alone, as illustrated in Fig. 1.2, we can begin to

catch a glimpse of the scope and beauty inherent in such things. But even

these structures inhabit a very limited corner of mathematics as a whole,

where behaviour is governed by strict computational control. Beyond this

corner is an incredible potential richness. How do I really feel about the

possibility that all my actions, and those of my friends, are ultimately

governed by mathematical principles of this kind? I can live with that. I

would, indeed, prefer to have these actions controlled by something resid-

ing in some such aspect of Plato’s fabulous mathematical world than to

have them be subject to the kind of simplistic base motives, such as

pleasure-seeking, personal greed, or aggressive violence, that many

would argue to be the implications of a strictly scientiWc standpoint.

Yet, I can well imagine that a good many readers will still have diYculty

in accepting that all actions in the universe could be entirely subject to

mathematical laws. Likewise, many might object to two other prejudices

of mine that are implicit in Fig. 1.3. They might feel, for example, that I

am taking too hard-boiled a scientiWc attitude by drawing my diagram in a

way that implies that all of mentality has its roots in physicality. This is

indeed a prejudice, for while it is true that we have no reasonable scientiWc

evidence for the existence of ‘minds’ that do not have a physical basis, we

cannot be completely sure. Moreover, many of a religious persuasion

would argue strongly for the possibility of physically independent minds

and might appeal to what they regard as powerful evidence of a diVerent

kind from that which is revealed by ordinary science.
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A further prejudice of mine is reXected in the fact that in Fig. 1.3 I have

represented the entire Platonic world to be within the compass of mental-

ity. This is intended to indicate that—at least in principle—there are no

mathematical truths that are beyond the scope of reason. Of course, there

are mathematical statements (even straightforward arithmetical addition

sums) that are so vastly complicated that no one could have the mental

fortitude to carry out the necessary reasoning. However, such things

would be potentially within the scope of (human) mentality and would

be consistent with the meaning of Fig. 1.3 as I have intended to represent

it. One must, nevertheless, consider that there might be other mathemat-

ical statements that lie outside even the potential compass of reason, and

these would violate the intention behind Fig. 1.3. (This matter will be

considered at greater length in §16.6, where its relation to Gödel’s famous

incompleteness theorem will be discussed.)8

In Fig. 1.4, as a concession to those who do not share all my personal

prejudices on these matters, I have redrawn the connections between the

three worlds in order to allow for all three of these possible violations of

my prejudices. Accordingly, the possibility of physical action beyond the

scope of mathematical control is now taken into account. The diagram

also allows for the belief that there might be mentality that is not rooted in

physical structures. Finally, it permits the existence of true mathematical

assertions whose truth is in principle inaccessible to reason and insight.

This extended picture presents further potential mysteries that lie even

beyond those which I have allowed for in my own preferred picture of the

world, as depicted in Fig. 1.3. In my opinion, the more tightly organized

scientiWc viewpoint of Fig. 1.3 has mysteries enough. These mysteries are

not removed by passing to the more relaxed scheme of Fig. 1.4. For it

Platonic
mathematical

world

Physical
worldMental

world

Fig. 1.4 A redrawing of

Fig. 1.3 in which violations

of three of the prejudices of

the author are allowed for.

§1.4 CHAPTER 1

20



remains a deep puzzle why mathematical laws should apply to the world

with such phenomenal precision. (We shall be glimpsing something of the

extraordinary accuracy of the basic physical theories in §19.8, §26.7,

and §27.13.) Moreover, it is not just the precision but also the subtle

sophistication and mathematical beauty of these successful theories that

is profoundly mysterious. There is also an undoubted deep mystery in how

it can come to pass that appropriately organized physical material—and

here I refer speciWcally to living human (or animal) brains—can somehow

conjure up the mental quality of conscious awareness. Finally, there is also

a mystery about how it is that we perceive mathematical truth. It is not just

that our brains are programmed to ‘calculate’ in reliable ways. There is

something much more profound than that in the insights that even the

humblest among us possess when we appreciate, for example, the actual

meanings of the terms ‘zero’, ‘one’, ‘two’, ‘three’, ‘four’, etc.9

Some of the issues that arise in connection with this third mystery will be

our concern in the next chapter (and more explicitly in §§16.5,6) in relation

to the notion of mathematical proof. But the main thrust of this book has

to do with the Wrst of these mysteries: the remarkable relationship between

mathematics and the actual behaviour of the physical world. No proper

appreciation of the extraordinary power of modern science can be

achieved without at least some acquaintance with these mathematical

ideas. No doubt, many readers may Wnd themselves daunted by the

prospect of having to come to terms with such mathematics in order to

arrive at this appreciation. Yet, I have the optimistic belief that they may

not Wnd all these things to be so bad as they fear. Moreover, I hope that I

may persuade many reader that, despite what she or he may have previ-

ously perceived, mathematics can be fun!

I shall not be especially concerned here with the second of the mysteries

depicted in Figs. 1.3 and 1.4, namely the issue of how it is that mentality—

most particularly conscious awareness—can come about in associationwith

appropriate physical structures (although I shall touch upon this deep

question in §34.7). There will be enough to keep us busy in exploring the

physical universe and its associated mathematical laws. In addition, the

issues concerning mentality are profoundly contentious, and it would dis-

tract from the purpose of this book if we were to get embroiled in them.

Perhaps one comment will not be amiss here, however. This is that, in my

own opinion, there is little chance that any deep understanding of the nature

of the mind can come about without our Wrst learning much more about the

very basis of physical reality. As will become clear from the discussions that

will be presented in later chapters, I believe that major revolutions are

required in our physical understanding. Until these revolutions have come

to pass, it is, in my view, greatly optimistic to expect that much real progress

can be made in understanding the actual nature of mental processes.10
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1.5 The Good, the True, and the Beautiful

In relation to this, there is a further set of issues raised by Figs. 1.3 and 1.4.

I have taken Plato’s notion of a ‘world of ideal forms’ only in the limited

sense of mathematical forms. Mathematics is crucially concerned with the

particular ideal of Truth. Plato himself would have insisted that there are

two other fundamental absolute ideals, namely that of the Beautiful and of

the Good. I am not at all averse to admitting to the existence of such ideals,

and to allowing the Platonic world to be extended so as to contain

absolutes of this nature.

Indeed, we shall later be encountering some of the remarkable interrela-

tions between truth and beauty that both illuminate and confuse the issues

of the discovery and acceptance of physical theories (see §§34.2,3,9 par-

ticularly; see also Fig. 34.1). Moreover, quite apart from the undoubted

(though often ambiguous) role of beauty for the mathematics underlying

the workings of the physical world, aesthetic criteria are fundamental to

the development of mathematical ideas for their own sake, providing both

the drive towards discovery and a powerful guide to truth. I would even

surmise that an important element in the mathematician’s common con-

viction that an external Platonic world actually has an existence independ-

ent of ourselves comes from the extraordinary unexpected hidden beauty

that the ideas themselves so frequently reveal.

Of less obvious relevance here—but of clear importance in the broader

context—is the question of an absolute ideal of morality: what is good and

what is bad, and how do our minds perceive these values? Morality has a

profound connection with the mental world, since it is so intimately related

to the values assigned by conscious beings and, more importantly, to the

very presence of consciousness itself. It is hard to see what morality might

mean in the absence of sentient beings. As science and technology progress,

an understanding of the physical circumstances under which mentality is

manifested becomes more and more relevant. I believe that it is more

important than ever, in today’s technological culture, that scientiWc ques-

tions should not be divorced from their moral implications. But these issues

would take us too far aWeld from the immediate scope of this book. We need

to address the question of separating true from false before we can ad-

equately attempt to apply such understanding to separate good from bad.

There is, Wnally, a further mystery concerning Fig. 1.3, which I have left

to the last. I have deliberately drawn the Wgure so as to illustrate a

paradox. How can it be that, in accordance with my own prejudices,

each world appears to encompass the next one in its entirety? I do not

regard this issue as a reason for abandoning my prejudices, but merely for

demonstrating the presence of an even deeper mystery that transcends

those which I have been pointing to above. There may be a sense in
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which the three worlds are not separate at all, but merely reXect, individu-

ally, aspects of a deeper truth about the world as a whole of which we have

little conception at the present time. We have a long way to go before such

matters can be properly illuminated.

I have allowed myself to stray too much from the issues that will

concern us here. The main purpose of this chapter has been to emphasize

the central importance that mathematics has in science, both ancient and

modern. Let us now take a glimpse into Plato’s world—at least into a

relatively small but important part of that world, of particular relevance to

the nature of physical reality.

Notes

Section 1.2

1.1. Unfortunately, almost nothing reliable is known about Pythagoras, his life, his

followers, or of their work, apart from their very existence and the recognition by

Pythagoras of the role of simple ratios in musical harmony. See Burkert (1972).

Yet much of great importance is commonly attributed to the Pythagoreans.

Accordingly, I shall use the term ‘Pythagorean’ simply as a label, with no impli-

cation intended as to historical accuracy.

1.2. This is the pure ‘diatonic scale’ in which the frequencies (in inverse proportion to

the lengths of the vibrating elements) are in the ratios 24 : 27 : 30 : 36 : 40 : 45 : 48,

giving many instances of simple ratios, which underlie harmonies that are pleasing

to the ear. The ‘white notes’ of a modern piano are tuned (according to a

compromise between Pythagorean purity of harmony and the facility of key

changes) as approximations to these Pythagorean ratios, according to the equal

temperament scale, with relative frequencies 1:a2: a4: a5: a7: a9: a11: a12, where

a ¼
ffiffiffi

212
p
¼ 1:05946 . . . : (Note: a5 means the Wfth power of a, i.e.

a� a� a� a� a. The quantity
ffiffiffi

2
12
p

is the twelfth root of 2, which is the number

whose twelfth power is 2, i.e. 21=12, so that a12 ¼ 2. See Note 1.3 and §5.2.)

Section 1.3

1.3. Recall from Note 1.2 that the nth power of a number is that number multiplied by

itself n times. Thus, the third power of 5 is 125, written 53 ¼ 125; the fourth power

of 3 is 81, written 34 ¼ 81; etc.

1.4. In fact, while Wiles was trying to Wx a ‘gap’ in his proof of Fermat’s Last Theorem

which had become apparent after his initial presentation at Cambridge in June

1993, a rumour spread through the mathematical community that the mathemat-

ician Noam Elkies had found a counter-example to Fermat’s assertion. Earlier, in

1988, Elkies had found a counter-example to Euler’s conjecture—that there are no

positive solutions to the equation x4 þ y4 þ z4 ¼ w4—thereby proving it false. It

was not implausible, therefore, that he had proved that Fermat’s assertion also

was false. However, the e-mail that started the rumour was dated 1 April and was

revealed to be a spoof perpetrated by Henri Darmon; see Singh (1997), p. 293.

1.5. Technically it is a P1-sentence; see §16.6.

1.6. I realize that, in a sense, I am falling into my own trap by making such an

assertion. The issue is not really whether the mathematicians taking such an
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extreme subjective view happen to constitute a tiny minority or not (and I have

certainly not conducted a trustworthy survey among mathematicians on this

point); the issue is whether such an extreme position is actually to be taken

seriously. I leave it to the reader to judge.

1.7. Some readers may be aware of the results of Gödel and Cohen that the axiom of

choice is independent of the more basic standard axioms of set theory (the

Zermelo–Frankel axiom system). It should be made clear that the Gödel–

Cohen argument does not in itself establish that the axiom of choice will never

be settled one way or the other. This kind of point is stressed, for example, in the

Wnal section of Paul Cohen’s book (Cohen 1966, Chap. 14, §13), except that,

there, Cohen is more explicitly concerned with the continuum hypothesis than the

axiom of choice; see §16.5.

Section 1.4

1.8. There is perhaps an irony here that a fully Xedged anti-Platonist, who believes

that mathematics is ‘all in the mind’ must also believe—so it seems—that there

are no true mathematical statements that are in principle beyond reason. For

example, if Fermat’s Last Theorem had been inaccessible (in principle) to reason,

then this anti-Platonist view would allow no validity either to its truth or to its

falsity, such validity coming only through the mental act of perceiving some

proof or disproof.

1.9. See e.g. Penrose (1997b).

1.10. My own views on the kind of change in our physical world-view that will be

needed in order that conscious mentality may be accommodated are expressed in

Penrose (1989, 1994, 1996,1997).
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2
An ancient theorem and a modern question

2.1 The Pythagorean theorem

Let us consider the issue of geometry. What, indeed, are the diVerent

‘kinds of geometry’ that were alluded to in the last chapter? To lead up to

this issue, we shall return to our encounter with Pythagoras and consider

that famous theorem that bears his name:1 for any right-angled triangle,

the square of the length of the hypotenuse (the side opposite the right

angle) is equal to the sum of the squares of the lengths of the other two

sides (Fig. 2.1). What reasons do we have for believing that this assertion is

true? How, indeed, do we ‘prove’ the Pythagorean theorem? Many argu-

ments are known. I wish to consider two such, chosen for their particular

transparency, each of which has a diVerent emphasis.

For the Wrst, consider the pattern illustrated in Fig. 2.2. It is composed

entirely of squares of two diVerent sizes. It may be regarded as ‘obvious’

that this pattern can be continued indeWnitely and that the entire plane is

thereby covered in this regular repeating way, without gaps or overlaps, by

squares of these two sizes. The repeating nature of this pattern is made

manifest by the fact that if we mark the centres of the larger squares, they

form the vertices of another system of squares, of a somewhat greater size

than either, but tilted at an angle to the original ones (Fig. 2.3) and which

alone will cover the entire plane. Each of these tilted squares is marked in

exactly the same way, so that the markings on these squares Wt together to

c

b

a

a2 + b2 = c2

Fig. 2.1 The Pythagorean

theorem: for any right-angled

triangle, the squared length of the

hypotenuse c is the sum of the

squared lengths of the other two

sides a and b.
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form the original two-square pattern. The same would apply if, instead of

taking the centres of the larger of the two squares of the original pattern,

we chose any other point, together with its set of corresponding points

throughout the pattern. The new pattern of tilted squares is just the same

as before but moved along without rotation—i.e. by means of a motion

referred to as a translation. For simplicity, we can now choose our starting

point to be one of the corners in the original pattern (see Fig. 2.4).

It should be clear that the area of the tilted square must be equal to the

sum of the areas of the two smaller squares—indeed the pieces into which

the markings would subdivide this larger square can, for any starting point

for the tilted squares, be moved around, without rotation, until they Wt

together to make the two smaller squares (e.g. Fig. 2.5). Moreover, it is

evident from Fig. 2.4 that the edge-length of the large tilted square is the

hypotenuse of a right-angled triangle whose two other sides have lengths

equal to those of the two smaller squares. We have thus established the

Pythagorean theorem: the square on the hypotenuse is equal to the sum of

the squares on the other two sides.

The above argument does indeed provide the essentials of a simple proof

of this theorem, and, moreover, it gives us some ‘reason’ for believing that

the theorem has to be true, which might not be so obviously the case with

some more formal argument given by a succession of logical steps without

clear motivation. It should be pointed out, however, that there are several

implicit assumptions that have gone into this argument. Not the least of

these is the assumption that the seemingly obvious pattern of repeating

squares shown in Fig. 2.2 or even in Fig. 2.6 is actually geometrically

possible—or even, more critically, that a square is something geometrically

possible! What do we mean by a ‘square’ after all? We normally think of a

square as a plane Wgure, all of whose sides are equal and all of whose

angles are right angles. What is a right angle? Well, we can imagine two

Fig. 2.2 A tessellation of the plane by

squares of two diVerent sizes.

Fig. 2.3 The centres of the (say) larger

squares form the vertices of a lattice of

still larger squares, tilted at an angle.
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Fig. 2.6 The familiar lattice of equal

squares. How do we know it exists?

straight lines crossing each other at some point, making four angles that

are all equal. Each of these equal angles is then a right angle.

Let us now try to construct a square. Take three equal line segments AB,

BC, and CD, where ABC and BCD are right angles, D and A being on the

same side of the line BC, as in Fig. 2.7. The question arises: is AD the same

length as the other three segments? Moreover, are the angles DAB and

CDA also right angles? These angles should be equal to one another by a

left–right symmetry in the Wgure, but are they actually right angles? This

only seems obvious because of our familiarity with squares, or perhaps

because we can recall from our schooldays some statement of Euclid that

can be used to tell us that the sides BA and CD would have to be ‘parallel’

to each other, and some statement that any ‘transversal’ to a pair of

parallels has to have corresponding angles equal, where it meets the two

Fig. 2.4 The lattice of tilted squares

can be shifted by a translation, here so

that the vertices of the tilted lattice lie

on vertices of the original two-square

lattice, showing that the side-length of

a tilted square is the hypotenuse of a

right-angled triangle (shown shaded)

whose other two side-lengths are those

of the original two squares.

Fig. 2.5 For any particular starting

point for the tilted square, such as that

depicted, the tilted square is divided

into pieces that Wt together to make the

two smaller squares.
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A

B C

D
E

Fig. 2.7 Try to construct a square. Take

ABC and BCD as right angles, with

AB ¼ BC ¼ CD. Does it follow that DA is also

equal to these lengths and that DAB and CDA are

also right angles?

parallels. From this, it follows that the angle DAB would have to be

equal to the angle complementary to ADC (i.e. to the angle EDC, in

Fig. 2.7, ADE being straight) as well as being, as noted above, equal to

the angle ADC. An angle (ADC) can only be equal to its complementary

angle (EDC) if it is a right angle. We must also prove that the side AD

has the same length as BC, but this now also follows, for example, from

properties of transversals to the parallels BA and CD. So, it is indeed

true that we can prove from this kind of Euclidean argument that

squares, made up of right angles, actually do exist. But there is a deep

issue hiding here.

2.2 Euclid’s postulates

In building up his notion of geometry, Euclid took considerable care to see

what assumptions his demonstrations depended upon.2 In particular, he

was careful to distinguish certain assertions called axioms—which were

taken as self-evidently true, these being basically deWnitions of what he

meant by points, lines, etc.—from the Wve postulates, which were assump-

tions whose validity seemed less certain, yet which appeared to be true of

the geometry of our world. The Wnal one of these assumptions, referred to

as Euclid’s Wfth postulate, was considered to be less obvious than the

others, and it was felt, for many centuries, that it ought to be possible to

Wnd a way of proving it from the other more evident postulates. Euclid’s

Wfth postulate is commonly referred to as the parallel postulate and I shall

follow this practice here.

Before discussing the parallel postulate, it is worth pointing out the

nature of the other four of Euclid’s postulates. The postulates are con-

cerned with the geometry of the (Euclidean) plane, though Euclid also

considered three-dimensional space later in his works. The basic elements

of his plane geometry are points, straight lines, and circles. Here, I shall

consider a ‘straight line’ (or simply a ‘line’) to be indeWnitely extended in

both directions; otherwise I refer to a ‘line segment’. Euclid’s Wrst postu-

late eVectively asserts that there is a (unique) straight line segment
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connecting any two points. His second postulate asserts the unlimited

(continuous) extendibility of any straight line segment. His third

postulate asserts the existence of a circle with any centre and with any

value for its radius. Finally, his fourth postulate asserts the equality of all

right angles.3

From a modern perspective, some of these postulates appear a little

strange, particularly the fourth, but we must bear in mind the origin of the

ideas underlying Euclid’s geometry. Basically, he was concerned with the

movement of idealized rigid bodies and the notion of congruence which

was signalled when one such idealized rigid body was moved into coinci-

dence with another. The equality of a right angle on one body with that on

another had to do with the possibility of moving the one so that the lines

forming its right angle would lie along the lines forming the right angle of

the other. In eVect, the fourth postulate is asserting the isotropy and

homogeneity of space, so that a Wgure in one place could have the ‘same’

(i.e. congruent) geometrical shape as a Wgure in some other place. The

second and third postulates express the idea that space is indeWnitely

extendible and without ‘gaps’ in it, whereas the Wrst expresses the basic

nature of a straight line segment. Although Euclid’s way of looking at

geometry was rather diVerent from the way that we look at it today, his

Wrst four postulates basically encapsulated our present-day notion of a

(two-dimensional) metric space with complete homogeneity and isotropy,

and inWnite in extent. In fact, such a picture seems to be in close accord-

ance with the very large-scale spatial nature of the actual universe,

according to modern cosmology, as we shall be coming to in §27.11 and

§28.10.

What, then, is the nature of Euclid’s Wfth postulate, the parallel postu-

late? As Euclid essentially formulated this postulate, it asserts that if two

straight line segments a and b in a plane both intersect another straight line

c (so that c is what is called a transversal of a and b) such that the sum of

the interior angles on the same side of c is less than two right angles, then a

and b, when extended far enough on that side of c, will intersect some-

where (see Fig. 2.8a). An equivalent form of this postulate (sometimes

referred to as Playfair’s axiom) asserts that, for any straight line and for

any point not on the line, there is a unique straight line through the point

which is parallel to the line (see Fig. 2.8b). Here, ‘parallel’ lines would be

two straight lines in the same plane that do not intersect each other (and

recall that my ‘lines’ are fully extended entities, rather than Euclid’s

‘segments of lines’).[2.1]

[2.1] Show that if Euclid’s form of the parallel postulate holds, then Playfair’s conclusion of the

uniqueness of parallels must follow.
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If sum of these 
angles is less 
than 2 right angles 
then a and b meet

Unique parallel
to a through P

(b)

(a)

P

a

a

c

b

Fig. 2.8 (a) Euclid’s parallel postulate. Lines a and b are transversals to a third

line c, such that the interior angles where a and b meet c add to less than two right

angles. Then a and b (assumed extended far enough) will ultimately intersect each

other. (b) Playfair’s (equivalent) axiom: if a is a line in a plane and P a point of the

plane not on a, then there is just one line parallel to a through P, in the plane.

Once we have the parallel postulate, we can proceed to establish the

property needed for the existence of a square. If a transversal to a pair of

straight lines meets them so that the sum of the interior angles on one

side of the transversal is two right angles, then one can show that the

lines of the pair are indeed parallel. Moreover, it immediately follows

that any other transversal of the pair has just the same angle property.

This is basically just what we needed for the argument given above

for the construction of our square. We see, indeed, that it is just the

parallel postulate that we must use to show that our construction

actually yields a square, with all its angles right angles and all its sides

the same. Without the parallel postulate, we cannot establish that

squares (in the normal sense where all their angles are right angles) actu-

ally exist.

It may seem to be merely a matter of mathematical pedantry to worry

about precisely which assumptions are needed in order to provide a

‘rigorous proof’ of the existence of such an obvious thing as a square.

Why should we really be concerned with such pedantic issues, when a

‘square’ is just that familiar Wgure that we all know about? Well, we shall

be seeing shortly that Euclid actually showed some extraordinary perspi-

cacity in worrying about such matters. Euclid’s pedantry is related to a

deep issue that has a great deal to say about the actual geometry of the

universe, and in more than one way. In particular, it is not at all an

obvious matter whether physical ‘squares’ exist on a cosmological scale
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in the actual universe. This is a matter for observation, and the evidence at

the moment appears to be conXicting (see §2.7 and §28.10).

2.3 Similar-areas proof of the Pythagorean theorem

I shall return to the mathematical signiWcance of not assuming the parallel

postulate in the next section. The relevant physical issues will be re-

examined in §18.4, §27.11, §28.10, and §34.4. But, before discussing such

matters, it will be instructive to turn to the other proof of the Pythagorean

theorem that I had promised above.

One of the simplest ways to see that the Pythagorean assertion is indeed

true in Euclidean geometry is to consider the conWguration consisting of

the given right-angled triangle subdivided into two smaller triangles by

dropping a perpendicular from the right angle to the hypotenuse (Fig. 2.9).

There are now three triangles depicted: the original one and the two into

which it has now been subdivided. Clearly the area of the original triangle

is the sum of the areas of the two smaller ones.

Now, it is a simple matter to see that these three triangles are all similar

to one another. This means that they are all the same shape (though of

diVerent sizes), i.e. obtained from one another by a uniform expansion or

contraction, together with a rigid motion. This follows because each of the

three triangles possesses exactly the same angles, in some order. Each of

the two smaller triangles has an angle in common with the largest one and

one of the angles of each triangle is a right angle. The third angle must also

agree because the sum of the angles in any triangle is always the same.

Now, it is a general property of similar plane Wgures that their areas are in

proportion to the squares of their corresponding linear dimensions. For

each triangle, we can take this linear dimension to be its longest side, i.e. its

hypotenuse. We note that the hypotenuse of each of the smaller triangles is

Fig. 2.9 Proof of the Pythagorean

theorem using similar triangles.

Take a right-angled triangle and

drop a perpendicular from its right

angle to its hypotenuse. The two

triangles into which the original

triangle is now divided have areas

which sum to that of the original

triangle. All three triangles are

similar, so their areas are in

proportion to the squares of their

respective hypotenuses. The Py-

thagorean theorem follows.
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the same as one of the (non-hypotenuse) sides of the original triangle.

Thus, it follows at once (from the fact that the area of the original triangle

is the sum of the areas of the other two) that the square on the hypotenuse

on the original triangle is indeed the sum of the squares on the other two

sides: the Pythagorean theorem!

There are, again, some particular assumptions in this argument that we

shall need to examine. One important ingredient of the argument is the fact

that the angles of a triangle always add up to the same value. (This value of

this sum is of course 1808, but Euclid would have referred to it as ‘two right

angles’. The more modern ‘natural’ mathematical description is to say that

the angles of a triangle, in Euclid’s geometry, add up to p. This is to use

radians for the absolute measure of angle, where the degree sign ‘8’ counts as

p=180, so we can write 180� ¼ p.) The usual proof is depicted in Fig. 2.10.

We extend CA to E and draw a line AD, through A, which is parallel to

CB. Then (as follows from the parallel postulate) the angles EAD and

ACB are equal, and also DAB and CBA are equal. Since the angles EAD,

DAB, and BAC add up to p (or to 1808, or to two right angles), so also

must the three angles ACB, CBA, and BAC of the triangle—as was

required to prove. But notice that the parallel postulate was used here.

This proof of the Pythagorean theorem also makes use of the fact that

the areas of similar Wgures are in proportion to the squares of any linear

measure of their sizes. (Here we chose the hypotenuse of each triangle to

represent this linear measure.) This fact not only depends on the very

existence of similar Wgures of diVerent sizes—which for the triangles of

Fig. 2.9 we established using the parallel postulate—but also on some

more sophisticated issues that relate to how we actually deWne ‘area’ for

non-rectangular shapes. These general matters are addressed in terms of

the carrying out of limiting procedures, and I do not want to enter into

C

B

A E

D

��

Fig. 2.10 Proof that the sum

of the angles of a triangle

ABC sums to p (¼ 1808 ¼ two

right angles). Extend CA to E;

draw AD parallel to CB. It

follows from the parallel

postulate that the angles EAD

and ACB are equal and the

angles DAB and CBA are

equal. Since the angles EAD,

DAB, and BAC sum to p, so

also do the angles ACB, CBA,

and BAC.
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this kind of discussion just for the moment. It will take us into some deeper

issues related to the kind of numbers that are used in geometry. The

question will be returned to in §§3.1–3.

An important message of the discussion in the preceding sections is that

the Pythagorean theorem seems to depend on the parallel postulate. Is this

really so? Suppose the parallel postulate were false? Does that mean that

the Pythagorean theorem might itself actually be false? Does such a

possibility make any sense? Let us try to address the question of what

would happen if the parallel postulate is indeed allowed to be taken to be

false. We shall seem to be entering a mysterious make-belief world, where

the geometry that we learned at school is turned all topsy-turvy. Indeed,

but we shall Wnd that there is also a deeper purpose here.

2.4 Hyperbolic geometry: conformal picture

Have a look at the picture in Fig. 2.11. It is a reproduction of one of M. C.

Escher’s woodcuts, called Circle Limit I. It actually provides us with a very

accurate representation of a kind of geometry—called hyperbolic (or

sometimes Lobachevskian) geometry—in which the parallel postulate is

false, the Pythagorean theorem fails to hold, and the angles of a triangle

do not add to p. Moreover, for a shape of a given size, there does not, in

general, exist a similar shape of a larger size.

In Fig. 2.11, Escher has used a particular representation of hyperbolic

geometry in which the entire ‘universe’ of the hyperbolic plane is

‘squashed’ into the interior of a circle in an ordinary Euclidean plane.

The bounding circle represents ‘inWnity’ for this hyperbolic universe. We

can see that, in Escher’s picture, the Wsh appear to get very crowded as they

get close to this bounding circle. But we must think of this as an illusion.

Imagine that you happened to be one of the Wsh. Then whether you are

situated close to the rim of Escher’s picture or close to its centre, the entire

(hyperbolic) universe will look the same to you. The notion of ‘distance’ in

this geometry does not agree with that of the Euclidean plane in terms of

which it has been represented. As we look down upon Escher’s picture

from our Euclidean perspective, the Wsh near the bounding circle appear to

us to be getting very tiny. But from the ‘hyperbolic’ perspective of the white

or the black Wsh themselves, they think that they are exactly the same size

and shape as those near the centre. Moreover, although from our outside

Euclidean perspective they appear to get closer and closer to the bounding

circle itself, from their own hyperbolic perspective that boundary always

remains inWnitely far away. Neither the bounding circle nor any of the

‘Euclidean’ space outside it has any existence for them. Their entire uni-

verse consists of what to us seems to lie strictly within the circle.
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Fig. 2.11 M. C. Escher’s woodcut Circle Limit I, illustrating the conformal repre-

sentation of the hyperbolic plane.

In more mathematical terms, how is this picture of hyperbolic geometry

constructed? Think of any circle in a Euclidean plane. The set of points

lying in the interior of this circle is to represent the set of points in the

entire hyperbolic plane. Straight lines, according to the hyperbolic geom-

etry are to be represented as segments of Euclidean circles which meet the

bounding circle orthogonally—which means at right angles. Now, it turns

out that the hyperbolic notion of an angle between any two curves, at their

point of intersection, is precisely the same as the Euclidean measure of

angle between the two curves at the intersection point. A representation of

this nature is called conformal. For this reason, the particular representa-

tion of hyperbolic geometry that Escher used is sometimes referred to as

the conformal model of the hyperbolic plane. (It is also frequently referred

to as the Poincaré disc. The dubious historical justiWcation of this termin-

ology will be discussed in §2.6.)

We are now in a position to see whether the angles of a triangle in

hyperbolic geometry add up to p or not. A quick glance at Fig. 2.12 leads

us to suspect that they do not and that they add up to something less. In

fact, the sum of the angles of a triangle in hyperbolic geometry always falls

short of p. We might regard that as a somewhat unpleasant feature of

hyperbolic geometry, since we do not appear to get a ‘neat’ answer for the
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P

c

b

a

a

Fig. 2.12 The same Escher picture as Fig. 2.11, but with hyperbolic straight lines

(Euclidean circles or lines meeting the bounding circle orthogonally) and a hyper-

bolic triangle, is illustrated. Hyperbolic angles agree with the Euclidean ones. The

parallel postulate is evidently violated (lettering as in Fig. 2.8b) and the angles of a

triangle sum to less than p.

sum of the angles of a triangle. However, there is actually something

particularly elegant and remarkable about what does happen when we

add up the angles of a hyperbolic triangle: the shortfall is always propor-

tional to the area of the triangle. More explicitly, if the three angles of the

triangle are a, b, and g, then we have the formula (found by Johann

Heinrich Lambert 1728–1777)

p� (aþ bþ g) ¼ CD,

where D is the area of the triangle and C is some constant. This constant

depends on the ‘units’ that are chosen in which lengths and areas are to be

measured. We can always scale things so that C ¼ 1. It is, indeed, a

remarkable fact that the area of a triangle can be so simply expressed in

hyperbolic geometry. In Euclidean geometry, there is no way to express

the area of a triangle simply in terms of its angles, and the expression

for the area of a triangle in terms of its side-lengths is considerably more

complicated.
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In fact, I have not quite Wnished my description of hyperbolic geometry

in terms of this conformal representation, since I have not yet described

how the hyperbolic distance between two points is to be deWned (and it

would be appropriate to know what ‘distance’ is before we can really talk

about areas). Let me give you an expression for the hyperbolic distance

between two points A and B inside the circle. This is

log
QA � PB

QB � PA
,

where P and Q are the points where the Euclidean circle (i.e. hyperbolic

straight line) through A and B orthogonal to the bounding circle meets this

bounding circle and where ‘QA’, etc., refer to Euclidean distances (see

Fig. 2.13). If you want to include the C of Lambert’s area formula (with

C 6¼ 1), just multiply the above distance expression by C�1=2 (the recipro-

cal of the square root of C)4.[2.2] For reasons that I hope may become

clearer later, I shall refer to the quantity C�1=2 as the pseudo-radius of the

geometry.

If mathematical expressions like the above ‘log’ formula seem daunting,

please do not worry. I am only providing it for those who like to see things

explicitly. In any case, I am not going to explain why the expression works

(e.g. why the shortest hyperbolic distance between two points, deWned in

this way, is actually measured along a hyperbolic straight line, or why the

distances along a hyperbolic straight line ‘add up’ appropriately).[2.3] Also,

I apologize for the ‘log’ (logarithm), but that is the way things are. In fact,

P

Q

A

B

Fig. 2.13 In the conformal

representation, the hyperbolic distance

between A and B is log {QA.PB/QB.PA}

where QA, etc. are Euclidean distances, P

and Q being where the Euclidean circle

through A and B, orthogonal to the

bounding circle (hyperbolic line), meets

this circle.

[2.2] Can you see a simple reason why ?

[2.3] See if you canprove that, according to this formula, ifA, B, andCare three successive points

onahyperbolicstraight line, thenthehyperbolicdistances ‘AB’,etc. satisfy ‘AB’þ ‘BC’ ¼ ‘AC’.You

may assume the general property of logarithms, log (ab) ¼ log aþ log b as described in §§5.2, 3.
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this is a natural logarithm (‘log to the base e’) and I shall be having a good

deal to say about it in §§5.2,3. We shall Wnd that logarithms are really very

beautiful and mysterious entities (as is the number e), as well as being

important in many diVerent contexts.

Hyperbolic geometry,with this deWnition of distance, turns out to have all

the properties of Euclidean geometry apart from those which need the

parallel postulate. We can construct triangles and other plane Wgures of

diVerent shapes and sizes, and we can move them around ‘rigidly’ (keeping

their hyperbolic shapes and sizes from changing) with as much freedom as

we can in Euclidean geometry, so that a natural notion of when two

shapes are ‘congruent’ arises, just as in Euclidean geometry, where ‘congru-

ent’ means ‘can be moved around rigidly until they come into coincidence’.

All the white Wsh in Escher’s woodcut are indeed congruent to each other,

according to this hyperbolic geometry, and so also are all the black Wsh.

2.5 Other representations of hyperbolic geometry

Of course, the white Wsh do not all look the same shape and size, but that is

because we are viewing them from a Euclidean rather than a hyperbolic

perspective. Escher’s picture merely makes use of one particular Euclidean

representation of hyperbolic geometry. Hyperbolic geometry itself is a

more abstract thing which does not depend upon any particular Euclidean

representation. However, such representations are indeed very helpful to

us in that they provide a way of visualizing hyperbolic geometry by

referring it to something that is more familiar and seemingly more ‘con-

crete’ to us, namely Euclidean geometry. Moreover, such representations

make it clear that hyperbolic geometry is a consistent structure and that,

consequently, the parallel postulate cannot be proved from the other laws

of Euclidean geometry.

There are indeed other representations of hyperbolic geometry in terms

of Euclidean geometry, which are distinct from the conformal one that

Escher employed. One of these is that known as the projective model.

Here, the entire hyperbolic plane is again depicted as the interior of a

circle in a Euclidean plane, but the hyperbolic straight lines are now

represented as straight Euclidean lines (rather than as circular arcs).

There is, however, a price to pay for this apparent simpliWcation, because

the hyperbolic angles are now not the same as the Euclidean angles, and

many people would regard this price as too high. For those readers who

are interested, the hyperbolic distance between two points A and B in this

representation is given by the expression (see Fig. 2.14)

1

2
log

RA � SB

RB � SA
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S

R

A

B
Fig. 2.14 In the projective representation,

the formula for hyperbolic distance is now
1
2
log {RA.SB/RB.SA}, where R and S are

the intersections of the Euclidean (i.e.

hyperbolic) straight line AB with the

bounding circle.

(taking C ¼ 1, this being almost the same as the expression we had before,

for the conformal representation), where R and S are the intersections of the

extended straight line AB with the bounding circle. This representation of

hyperbolic geometry, can be obtained from the conformal one by means of

an expansion radially out from the centre by an amount given by

2R2

R2 þ r2
c

,

where R is the radius of the bounding circle and rc is the Euclidean distance

out from the centre of the bounding circle of a point in the conformal

representation (see Fig. 2.15).[2.4] In Fig. 2.16, Escher’s picture of Fig. 2.11

has been transformed from the conformal to the projective model using this

formula. (Despite lost detail, Eseher’s precise artistry is still evident.)

Though less appealing this way, it presents a novel viewpoint!

There is a more directly geometrical way of relating the conformal and

projective representations, via yet another clever representation of this

same geometry. All three of these representations are due to the ingenious

Fig. 2.15 To get from the conformal to

the projective representation, expand out

from the centre by a factor 2R2= R2 þ r2
c

� �

,

where R is the radius of the bounding

circle and rc is the Euclidean distance out

of the point in the conformal

representation.

[2.4] Show this. (Hint: You can use Beltrami’s geometry, as illustrated in Fig. 2.17, if you wish.)
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Fig. 2.16 Escher’s picture of Fig. 2.11 transformed from the conformal to the

projective representation.

Italian geometer Eugenio Beltrami (1835–1900). Consider a sphere S,

whose equator coincides with the bounding circle of the projective repre-

sentation of hyperbolic geometry given above. We are now going to Wnd a

representation of hyperbolic geometry on the northern hemisphere Sþ of S,

which I shall call the hemispheric representation. See Fig. 2.17. To pass

from the projective representation in the plane (considered as horizontal)

to the new one on the sphere, we simply project vertically upwards (Fig.

2.17a). The straight lines in the plane, representing hyperbolic straight

lines, are represented on Sþ by semicircles meeting the equator orthogon-

ally. Now, to get from the representation on Sþ to the conformal repre-

sentation on the plane, we project from the south pole (Fig. 2.17b). This is

what is called stereographic projection, and it will play important roles later

on in this book (see §8.3, §18.4, §22.9, §33.6). Two important properties of

stereographic projection that we shall come to in §8.3 are that it is con-

formal, so that it preserves angles, and that it sends circles on the sphere to

circles (or, exceptionally, to straight lines) on the plane.[2.5], [2.6]

[2.5] Assuming these two stated properties of stereographic projection, the conformal repre-

sentation of hyperbolic geometry being as stated in §2.4, show that Beltami’s hemispheric

representation is conformal, with hyperbolic ‘straight lines’ as vertical semicircles.

[2.6] Can you see how to prove these two properties? (Hint: Show, in the case of circles, that the

cone of projection is intersected by two planes of exactly opposite tilt.)
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S+

(a)

(b)

S+

Fig. 2.17 Beltrami’s geometry, relating three of his representations of hyperbolic

geometry. (a) The hemispheric representation (conformal on the northern hemi-

sphere Sþ) projects vertically to the projective representation on the equatorial

disc. (b) The hemispheric representation projects stereographically, from the south

pole to the conformal representation on the equatorial disc.

The existence of various diVerent models of hyperbolic geometry, ex-

pressed in terms of Euclidean space, serves to emphasize the fact that these

are, indeed, merely ‘Euclidean models’ of hyperbolic geometry and are not

to be taken as telling us what hyperbolic geometry actually is. Hyperbolic

geometry has its own ‘Platonic existence’, just as does Euclidean geometry

(see §1.3 and the Preface). No one of the models is to be taken as the

‘correct’ picturing of hyperbolic geometry at the expense of the others. The

representations of it that we have been considering are very valuable as

aids to our understanding, but only because the Euclidean framework is

the one which we are more used to. For a sentient creature brought up

with a direct experience of hyperbolic (rather than Euclidean) geometry, a
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model of Euclidean geometry in hyperbolic terms might seem the more

natural way around. In §18.4, we shall encounter yet another model of

hyperbolic geometry, this time in terms of the Minkowskian geometry of

special relativity.

To end this section, let us return to the question of the existence of

squares in hyperbolic geometry. Although squares whose angles are right

angles do not exist in hyperbolic geometry, there are ‘squares’ of a more

general type, whose angles are less than right angles. The easiest way to

construct a square of this kind is to draw two straight lines intersecting at

right angles at a point O. Our ‘square’ is now the quadrilateral whose four

vertices are the intersections A, B, C, D (taken cyclicly) of these two lines

with some circle with centre O. See Fig. 2.18. Because of the symmetry of

the Wgure, the four sides of the resulting quadrilateral ABCD are all equal

and all of its four angles must also be equal. But are these angles

right angles? Not in hyperbolic geometry. In fact they can be any (positive)

angle we like which is less than a right angle, but not equal to a right

angle. The bigger the (hyperbolic) square (i.e. the larger the circle, in

the above construction), the smaller will be its angles. In Fig. 2.19a,

I have depicted a lattice of hyperbolic squares, using the conformal

model, where there are Wve squares at each vertex point (instead of the

Euclidean four), so the angle is 2
5
p, or 728. In Fig. 2.19b, I have depicted

the same lattice using the projective model. It will be seen that this does

not allow the modiWcations that would be needed for the two-square

lattice of Fig. 2.2.[2.7]

D

O

B

C A

Fig. 2.18 A hyperbolic

‘square’ is a hyperbolic

quadrilateral, whose vertices

are the intersections A, B, C,

D (taken cyclically) of two

perpendicular hyperbolic

straight lines through some

point O with some circle

centred at O. Because of

symmetry, the four sides of

ABCD as well as all the four

angles are equal. These

angles are not right angles,

but can be equal to any given

positive angle less than 1
2
p.

[2.7] See if you can do something similar, but with hyperbolic regular pentagons and squares.
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(a) (b)

Fig. 2.19 A lattice of squares, in hyperbolic space, in which Wve squares meet at

each vertex, so the angles of the square are 2p
5
, or 728. (a) Conformal representa-

tion. (b) Projective representation.

2.6 Historical aspects of hyperbolic geometry

A few historical comments concerning the discovery of hyperbolic geom-

etry are appropriate here. For centuries following the publication of

Euclid’s elements, in about 300 bc, various mathematicians attempted to

prove the Wfth postulate from the other axioms and postulates. These

eVorts reached their greatest heights with the heroic work by the Jesuit

Girolamo Saccheri in 1733. It would seem that Saccheri himself must

ultimately have thought his life’s work a failure, constituting merely an

unfulWlled attempt to prove the parallel postulate by showing that the

hypothesis that the angle sum of every triangle is less than two right angles

led to a contradiction. Unable to do this logically after momentous

struggles, he concluded, rather weakly:

The hypothesis of acute angle is absolutely false; because repugnant to the

nature of the straight line.5

The hypothesis of ‘acute angle’ asserts that the lines a and b of Fig. 2.8.

sometimes do not meet. It is, in fact, viable and actually yields hyperbolic

geometry!

How did it come about that Saccheri eVectively discovered something

that he was trying to show was impossible? Saccheri’s proposal for proving

Euclid’s Wfth postulate was to make the assumption that the Wfth postulate

was false and then derive a contradiction from this assumption. In this

way he proposed to make use of one of the most time-honoured and

fruitful principles ever to be put forward in mathematics—very possibly

Wrst introduced by the Pythagoreans—called proof by contradiction (or

42
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reductio ad absurdum, to give it its Latin name). According to this proced-

ure, in order to prove that some assertion is true, one Wrst makes the

supposition that the assertion in question is false, and one then argues

from this that some contradiction ensues. Having found such a contradic-

tion, one deduces that the assertion must be true after all.6 Proof by

contradiction provides a very powerful method of reasoning in mathemat-

ics, frequently applied today. A quotation from the distinguished math-

ematician G. H. Hardy is apposite here:

Reductio ad absurdum, which Euclid loved so much, is one of a mathemat-

ician’s Wnest weapons. It is a far Wner gambit than any chess gambit: a chess

player may oVer the sacriWce of a pawn or even a piece, but a mathematician

oVers the game.7

We shall be seeing other uses of this important principle later (see §3.1 and

§§16.4,6).

However, Saccheri failed in his attempt to Wnd a contradiction. He was

therefore not able to obtain a proof of the Wfth postulate. But in striving

for it he, in eVect, found something far greater: a new geometry, diVerent

from that of Euclid—the geometry, discussed in §§2.4,5, that we now call

hyperbolic geometry. From the assumption that Euclid’s Wfth postulate

was false, he derived, instead of an actual contradiction, a host of strange-

looking, barely believable, but interesting theorems. However, strange as

these results appeared to be, none of them was actually a contradiction. As

we now know, there was no chance that Saccheri would Wnd a genuine

contradiction in this way, for the reason that hyperbolic geometry does

actually exist, in the mathematical sense that there is such a consistent

structure. In the terminology of §1.3, hyperbolic geometry inhabits Plato’s

world of mathematical forms. (The issue of hyperbolic geometry’s physical

reality will be touched upon in §2.7 and §28.10.)

A little after Saccheri, the highly insightful mathematician Johann

Heinrich Lambert (1728–1777) also derived a host of fascinating geomet-

rical results from the assumption that Euclid’s Wfth postulate is false,

including the beautiful result mentioned in §2.4 that gives the area of a

hyperbolic triangle in terms of the sum of its angles. It appears that

Lambert may well have formed the opinion, at least at some stage of his

life, that a consistent geometry perhaps could be obtained from the denial

of Euclid’s Wfth postulate. Lambert’s tentative reason seems to have been

that he could contemplate the theoretical possibility of the geometry on a

‘sphere of imaginary radius’, i.e. one for which the ‘squared radius’ is

negative. Lambert’s formula p� (aþ bþ g) ¼ CD gives the area, D, of a

hyperbolic triangle, where a, b, and g are the angles of the triangle and

where C is a constant (�C being what we would now call the ‘Gaussian

curvature’ of the hyperbolic plane). This formula looks basically the same
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as a previously known one due to Thomas Hariot (1560–1621),

D ¼ R2(aþ bþ g� p), for the area D of a spherical triangle, drawn with

great circle arcs8 on a sphere of radius R (see Fig. 2.20).[2.8] To retrieve

Lambert’s formula, we have to put

C ¼ � 1

R2
:

But, in order to give the positive value of C, as would be needed for

hyperbolic geometry, we require the sphere’s radius to be ‘imaginary’

(i.e. to be the square root of a negative number). Note that the radius R

is given by the imaginary quantity (� C)�1=2. This explains the term

‘pseudo-radius’, introduced in §2.4, for the real quantity C�1=2. In fact

Lambert’s procedure is perfectly justiWed from our more modern perspec-

tives (see Chapter 4 and §18.4), and it indicates great insight on his part to

have foreseen this.

It is, however, the conventional standpoint (somewhat unfair, in my

opinion) to deny Lambert the honour of having Wrst constructed non-

Euclidean geometry, and to consider that (about half a century later) the

Wrst person to have come to a clear acceptance of a fully consistent

geometry, distinct from that of Euclid, in which the parallel postulate is

false, was the great mathematician Carl Friedrich Gauss. Being an excep-

tionally cautious man, and being fearful of the controversy that such a

revelation might cause, Gauss did not publish his Wndings, and kept them to

himself.9 Some 30 years after Gauss had begun working on it, hyperbolic

b

c

a

Fig. 2.20 Hariot’s formula for the

area of a spherical triangle, with angles

a, b, g, is D ¼ R2(aþ bþ g� p).

Lambert’s formula, for a hyperbolic

triangle, has C ¼ �1=R2.

[2.8] Try to prove this spherical triangle formula, basically using only symmetry arguments

and the fact that the total area of the sphere is 4pR2. Hint: Start with Wnding the area of a segment

of a sphere bounded by two great circle arcs connecting a pair of antipodal points on the sphere;

then cut and paste and use symmetry arguments. Keep Fig. 2.20 in mind.
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geometry was independently rediscovered by various others, including the

Hungarian János Bolyai (by 1829) and, most particularly, the Russian

artillery man Nicolai Ivanovich Lobachevsky in about 1826 (whence

hyperbolic geometry is frequently called Lobachevskian geometry).

The speciWc projective and conformal realizations of hyperbolic geom-

etry that I have described above were both found by Eugenio Beltrami,

and published in 1868, together with some other elegant representations

including the hemispherical one mentioned in §2.5. The conformal

representation is, however, commonly referred to as the ‘Poincaré

model’, because Poincaré’s rediscovery of this representation in 1882 is

better known than the original work of Beltrami (largely because of the

important use that Poincaré made of this model).10 Likewise, poor old

Beltrami’s projective representation is sometimes called the ‘Klein repre-

sentation’. It is not uncommon in mathematics that the name normally

attached to a mathematical concept is not that of the original discov-

erer. At least, in this case, Poincaré did rediscover the conformal repre-

sentation (as did Klein the projective one in 1871). There are other

instances in mathematics where the mathematician(s) whose name(s)

are attached to a result did not even know of the result in question!11

The representation of hyperbolic geometry that Beltrami is best

known for is yet another one, which he found also in 1868. This

represents the geometry on a certain surface known as a pseudo-sphere

(see Fig. 2.21). This surface is obtained by rotating a tractrix, a curve

Wrst investigated by Isaac Newton in 1676, about its ‘asymptote’. The

asymptote is a straight line which the curve approaches, becoming

asymptotically tangent to it as the curve recedes to inWnity. Here, we

are to imagine the asymptote to be drawn on a horizontal plane of

rough texture. We are to think of a light, straight, stiV rod, at one end

P of which is attached a heavy point-like weight, and the other end R

moves along the asymptote. The point P then traces out a tractrix.

Ferdinand Minding found, in 1839, that the pseudo-sphere has a constant

AsymptoteR

P

(a) (b)

Fig. 2.21 (a) A pseudo-sphere. This is obtained by rotating, about its asymptote

(b) a tractrix. To construct a tractrix, imagine its plane tobehorizontal, overwhich is

draggeda light, frictionless straight, stiV rod.Oneendof the rod is apoint-likeweight

P with friction, and the other end R moves along the (straight) asymptote.
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negative intrinsic geometry, and Beltrami used this fact to construct the Wrst

model of hyperbolic geometry. Beltrami’s pseudo-sphere model seems to be

the one that persuaded mathematicians of the consistency of plane hyper-

bolic geometry, since the measure of hyperbolic distance agrees with

the Euclidean distance along the surface. However, it is a somewhat awk-

ward model, because it represents hyperbolic geometry only locally, rather

than presenting the entire geometry all at once, as do Beltrami’s other

models.

2.7 Relation to physical space

Hyperbolic geometry also works perfectly well in higher dimensions. More-

over, there are higher-dimensional versions of both the conformal and

projective models. For three-dimensional hyperbolic geometry, instead of

a bounding circle, we have a bounding sphere. The entire inWnite three-

dimensional hyperbolic geometry is represented by the interior of this

Wnite Euclidean sphere. The rest is basically just as we had it before. In the

conformal model, straight lines in this three-dimensional hyperbolic geom-

etry are represented as Euclidean circles which meet the bounding sphere

orthogonally; angles are given by the Euclidean measures, and distances are

given by the same formula as in the two-dimensional case. In the projective

model, the hyperbolic straight lines are Euclidean straight lines, and dis-

tances are again given by the same formula as in the two-dimensional case.

What aboutour actualuniverse oncosmological scales?Doweexpect that

its spatial geometry is Euclidean, or might it accord more closely with some

other geometry, such as the remarkable hyperbolic geometry (but in three

dimensions) that we have been examining in §§2.4–6. This is indeed a serious

question.WeknowfromEinstein’s general relativity (whichweshall come to

in §17.9 and §19.6) that Euclid’s geometry is only an (extraordinarily accur-

ate) approximation to the actual geometry of physical space. This physical

geometry is not even exactly uniform, having small ripples of irregularity

owing to the presenceofmatter density.Yet, strikingly, according to the best

observational evidence available to cosmologists today, these ripples appear

to average out, on cosmological scales, to a remarkably exact degree (see

§27.13 and §§28.4–10), and the spatial geometry of the actual universe seems

to accord with a uniform (homogeneous and isotropic—see §27.11) geom-

etry extraordinarily closely. Euclid’s Wrst four postulates, at least, would

seem to have stood the test of time impressively well.

A remark of clariWcation is needed here. Basically, there are three

types of geometry that would satisfy the conditions of homogeneity

(every point the same) and isotropy (every direction the same), referred

to as Euclidean, hyperbolic, and elliptic. Euclidean geometry is familiar

to us (and has been for some 23 centuries). Hyperbolic geometry
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has been our main concern in this chapter. But what is elliptic

geometry? Essentially, elliptic plane geometry is that satisWed by Wgures

drawn on the surface of a sphere. It Wgured in the discussion of

Lambert’s approach to hyperbolic geometry in §2.6. See Fig. 2.22a,b,c,

(b)

(c)

(a)

Fig. 2.22 The three basic kinds of uniform plane geometry, as illustrated by Escher

using tessellationsofangelsanddevils. (a)Elliptic case (positive curvature), (b)Eucli-

dean case (zero curvature), and (c) Hyperbolic case (negative curvature)—in the

conformal representation (Escher’s Circle Limit IV, to be compared with Fig. 2.17).

47

An ancient theorem and a modern question §2.7



for Escher’s rendering of the elliptic, Euclidean, and hyperbolic cases,

respectively, using a similar tessellation of angels and devils in all three

cases, the third one providing an interesting alternative to Fig. 2.11. (There

is also a three-dimensional version of elliptic geometry, and there are

versions in which diametrically opposite points of the sphere are con-

sidered to represent the same point. These issues will be discussed a little

more fully in §27.11.) However, the elliptic case could be said to violate

Euclid’s second and third postulates (as well as the Wrst). For it is a

geometry that is Wnite in extent (and for which more than one line segment

joins a pair of points).

What, then, is the observational status of the large-scale spatial geom-

etry of the universe? It is only fair to say that we do not yet know, although

there have been recent widely publicized claims that Euclid was right all

along, and his Wfth postulate holds true also, so the averaged spatial

geometry is indeed what we call ‘Euclidean’.12 On the other hand, there

is also evidence (some of it coming from the same experiments) that seems

to point fairly Wrmly to a hyperbolic overall geometry for the spatial

universe.13 Moreover, some theoreticians have long argued for the elliptic

case, and this is certainly not ruled out by that same evidence that is

argued to support the Euclidean case (see the later parts of §34.4). As

the reader will perceive, the issue is still fraught with controversy and, as

might be expected, often heated argument. In later chapters in this book, I

shall try to present a good many of the considerations that have been put

forward in this connection (and I do not attempt to hide my own opinion

in favour of the hyperbolic case, while trying to be as fair to the others as I

can).

Fortunately for those, such as myself, who are attracted to the beauties

of hyperbolic geometry, and also to the magniWcence of modern physics,

there is another role for this superb geometry that is undisputedly funda-

mental to our modern understanding of the physical universe. For the

space of velocities, according to modern relativity theory, is certainly a

three-dimensional hyperbolic geometry (see §18.4), rather than the Euclid-

ean one that would hold in the older Newtonian theory. This helps us to

understand some of the puzzles of relativity. For example, imagine a

projectile hurled forward, with near light speed, from a vehicle that also

moves forwards with comparable speed past a building. Yet, relative to

that building, the projectile can never exceed light speed. Though this

seems impossible, we shall see in §18.4 that it Wnds a direct explanation

in terms of hyperbolic geometry. But these fascinating matters must wait

until later chapters.

What about the Pythagorean theorem, which we have seen to fail in

hyperbolic geometry? Must we abandon this greatest of the speciWc

Pythagorean gifts to posterity? Not at all, for hyperbolic geometry—and,
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indeed, all the ‘Riemannian’ geometries that generalize hyperbolic geom-

etry in an irregularly curved way (forming the essential framework for

Einstein’s general theory of relativity; see §13.8, §14.7, §18.1, and §19.6)—

depends vitally upon the Pythagorean theorem holding in the limit of

small distances. Moreover, its enormous inXuence permeates other vast

areas of mathematics and physics (e.g. the ‘unitary’ metric structure of

quantum mechanics, see §22.3). Despite the fact that this theorem is, in a

sense, superseded for ‘large’ distances, it remains central to the small-scale

structure of geometry, Wnding a range of application that enormously

exceeds that for which it was originally put forward.

Notes

Section 2.1

2.1. It is historically very unclear who actually Wrst proved what we now refer to as the

‘Pythagorean theorem’, see Note 1.1. The ancient Egyptians and Babylonians

seem to have known at least many instances of this theorem. The true role played

by Pythagoras or his followers is largely surmise.

Section 2.2

2.2. Even with this amount of care, however, various hidden assumptions remained in

Euclid’s work, mainly to do with what we would now call ‘topological’ issues that

would have seemed to be ‘intuitively obvious’ to Euclid and his contemporaries.

These unmentioned assumptions were pointed out only centuries later, particu-

larly by Hilbert at the end of the 19th century. I shall ignore these in what follows.

2.3. See e.g. Thomas (1939).

Section 2.4

2.4. The ‘exponent’ notation, such as C�1=2, is frequently used in this book. As already

referred to in Note 1.1, a5 means a� a� a� a� a; correspondingly, for a positive

integer n, the product of a with itself a total of n times is written an. This notation

extends to negative exponents, so that a�1 is the reciprocal 1/a of a, and a�n is the

reciprocal 1=an of an, or equivalently a�1
� �n

. In accordance with the more general

discussion of §5.2, a1=n, for a positive number a, is the ‘nth root of a’, which is the

(positive) number satisfying a1=n
� �n¼ a (see Note 1.1). Moreover, am=n is the mth

power of a1=n.

Section 2.6

2.5. Saccheri (1733), Prop. XXXIII.

2.6. There is a standpoint known as intuitionism, which is held to by a (rather small)

minority of mathematicians, in which the principle of ‘proof by contradiction’ is

not accepted. The objection is that this principle can be non-constructive in that it

sometimes leads to an assertion of the existence of some mathematical entity,

without any actual construction for it having been provided. This has some

relevance to the issues discussed in §16.6. See Heyting (1956).

2.7. Hardy (1940), p. 34.

2.8. Great circle arcs are the ‘shortest’ curves (geodesics) on the surface of a sphere;

they lie on planes through the sphere’s centre.
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2.9. It is a matter of some dispute whether Gauss, who was professionally concerned

with matters of geodesy, might actually have tried to ascertain whether there are

measurable deviations from Euclidean geometry in physical space. Owing to his

well-known reticence in matters of non-Euclidean geometry, it is unlikely that

he would let it be known if he were in fact trying to do this, particularly since (as

we now know) he would be bound to fail, owing to the smallness of the eVect,

according to modern theory. The present consensus seems to be that he was ‘just

doing geodesy’, being concerned with the curvature of the Earth, and not

of space. But I Wnd it a little hard to believe that he would not also have been

on the lookout for any signiWcant discrepancy with Euclidean geometry; see

Fauvel and Gray (1987).

2.10. The so-called ‘Poincaré half-plane’ representation is also originally due to Bel-

trami; see Beltrami (1868).

2.11. This appears to have applied even to the great Gauss himself (who had, on the

other hand, very frequently anticipated other mathematicians’ work). There is an

important topological mathematical theorem now referred to as the ‘Gauss–

Bonnet theorem’, which can be elegantly proved by use of the so-called ‘Gauss

map’, but the theorem itself appears actually to be due to Blaschke and the

elegant proof procedure just referred to was found by Olinde Rodrigues. It

appears that neither the result nor the proof procedure were even known to

Gauss or to Bonnet. There is a more elemental ‘Gauss–Bonnet’ theorem, cor-

rectly cited in several texts, see Willmore (1959), also Rindler (2001).

Section 2.7

2.12. The main evidence for the overall structure of the universe, as a whole comes

from a detailed analysis of the cosmic microwave background radiation (CMB)

that will be discussed in §§27.7,10,11,13, §§28.5,10, and §30.14. A basic reference

is de Bernardis et al. (2000); for more accurate, more recent data, see NetterWeld

et al. (2001) (concerning BOOMERanG). See also Hanany et al. (2000) (con-

cerning MAXIMA) and Halverson et al. (2001) (concerning DASI).

2.13. See Gurzadyan and Torres (1997) and Gurzadyan and Kocharyan (1994) for the

theoretical underpinnings, and Gurzadyan and Kocharyan (1992) (for COBE

data) and Gurzadyan et al. (2002, 2003) (for BOOMERanG data and (2004) for

WMAP data) for the corresponding analysis of the actual CMB data.
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3
Kinds of number in the physical world

3.1 A Pythagorean catastrophe?

Let us now return to the issue of proof by contradiction, the very principle

that Saccheri tried hard to use in his attempted proof of Euclid’s Wfth

postulate. There are many instances in classical mathematics where the

principle has been successfully applied. One of the most famous of these

dates back to the Pythagoreans, and it settled a mathematical issue in a

way which greatly troubled them. This was the following. Can one Wnd a

rational number (i.e. a fraction) whose square is precisely the number 2?

The answer turns out to be no, and the mathematical assertion that I shall

demonstrate shortly is, indeed, that there is no such rational number.

Why were the Pythagoreans so troubled by this discovery? Recall that a

fraction—that is, a rational number—is something that can be expressed

as the ratio a/b of two integers (or whole numbers) a and b, with b non-

zero. (See the Preface for a discussion of the deWnition of a fraction.) The

Pythagoreans had originally hoped that all their geometry could be ex-

pressed in terms of lengths that could be measured in terms of rational

numbers. Rational numbers are rather simple quantities, being describable

and understood in simple Wnite terms; yet they can be used to specify

distances that are as small as we please or as large as we please. If all

geometry could be done with rationals, then this would make things

relatively simple and easily comprehensible. The notion of an ‘irrational’

number, on the other hand, requires inWnite processes, and this had

presented considerable diYculties for the ancients (and with good reason).

Why is there a diYculty in the fact that there is no rational number that

squares to 2? This comes from the Pythagorean theorem itself. If, in

Euclidean geometry, we have a square whose side length is unity, then

its diagonal length is a number whose square is 12 þ 12 ¼ 2 (see Fig. 3.1).

It would indeed be catastrophic for geometry if there were no actual

number that could describe the length of the diagonal of a square. The

Pythagoreans tried, at Wrst, to make do with a notion of ‘actual number’

that could be described simply in terms of ratios of whole numbers. Let us

see why this will not work.
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1
2

The issue is to see why the equation

a

b

� �2

¼ 2

has no solution for integers a and b, where we take these integers to be

positive. We shall use proof by contradiction to prove that no such a and b

can exist. We therefore try to suppose, on the contrary, that such an a and

b do exist. Multiplying the above equation by b2 on both sides, we Wnd that

it becomes

a2 ¼ 2b2

and we clearly conclude1 that a2 > b2 > 0. Now the right-hand side, 2b2, of

the above equation is even, whence a must be even (not odd, since the square

of any odd number is odd). Hence a ¼ 2c, for some positive integer c.

Substituting 2c for a in the above equation, and squaring it out, we obtain

4c2 ¼ 2b2,

that is, dividing both sides by 2,

b2 ¼ 2c2,

and we conclude b2 > c2 > 0. Now, this is precisely the same equation that

we had displayed before, except that b now replaces a, and c replaces b.

Note that the corresponding integers are now smaller than they were

before. We can now repeat the argument again and again, obtaining an

unending sequence of equations

a2 ¼ 2b2, b2 ¼ 2c2, c2 ¼ 2d2, d2 ¼ 2e2, � � � ,

where

a2 > b2 > c2 > d2 > e2 > . . . ,

Fig. 3.1 A square of unit side-length has

diagonal
ffiffiffi

2
p

, by the Pythagorean theorem.
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all of these integers being positive. But any decreasing sequence of

positive integers must come to an end, contradicting the fact that this

sequence is unending. This provides us with a contradiction to what

has been supposed, namely that there is a rational number which squares

to 2. It follows that there is no such rational number—as was required to

prove.2

Certain points should be remarked upon in the above argument. In

the Wrst place, in accordance with the normal procedures of math-

ematical proof, certain properties of numbers have been appealed to

in the argument that were taken as either ‘obvious’ or having been

previously established. For example, we made use of the fact that the

square of an odd number is always odd and, moreover, that if an

integer is not odd then it is even. We also used the fundamental fact

that every strictly decreasing sequence of positive integers must come

to an end.

One reason that it can be important to identify the precise assumptions

that go into a proof—even though some of these assumptions could be

perfectly ‘obvious’ things—is that mathematicians are frequently inter-

ested in other kinds of entity than those with which the proof might be

originally concerned. If these other entities satisfy the same assumptions,

then the proof will still go through and the assertion that had been proved

will be seen to have a greater generality than originally perceived, since it

will apply to these other entities also. On the other hand, if some of the

needed assumptions fail to hold for these alternative entities, then the

assertion that may turn out to be false for these entities. (For example, it

is important to realize that the parallel postulate was used in the proofs of

the Pythagorean theorem given in §2.2, for the theorem is actually false for

hyperbolic geometry.)

In the above argument, the original entities are integers and we

are concerned with those numbers—the rational numbers—that are

constructed as quotients of integers. With such numbers it is indeed

the case that none of them squares to 2. But there are other kinds

of number than merely integers and rationals. Indeed, the need for

a square root of 2 forced the ancient Greeks, very much against

their wills at the time, to proceed outside the conWnes of integers

and rational numbers—the only kinds of number that they had previ-

ously been prepared to accept. The kind of number that they found

themselves driven to was what we now call a ‘real number’: a number

that we now express in terms of an unending decimal expansion (although

such a representation was not available to the ancient Greeks). In fact, 2

does indeed have a real-number square root, namely (as we would now

write it)

Kinds of number in the physical world §3.1
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ffiffiffi

2
p
¼ 1:414 213 562 373 095 048 801 688 72 . . . :

We shall consider the physical status of such ‘real’ numbers more closely in

the next section.

As a curiosity, we may ask why the above proof of the non-existence of

a square root of 2 fails for real numbers (or for real-number ratios, which

amounts to the same thing). What happens if we replace ‘integer’ by ‘real

number’ throughout the argument? The basic diVerence is that it is not

true that any strictly decreasing sequence of positive reals (or even of

fractions) must come to an end, and the argument breaks down at that

point.3 (Consider the unending sequence 1, 1
2
, 1

4
, 1

8
, 1

16
, 1

32
, . . . , for

example.) One might worry what an ‘odd’ and ‘even’ real number would

be in this context. In fact the argument encounters no diYculty at that

stage because all real numbers would have to count as ‘even’, since for any

real a there is always a real c such that a ¼ 2c, division by 2 being always

possible for reals.

3.2 The real-number system

Thus it was that the Greeks were forced into the realization that rational

numbers are not enough, if the ideas of (Euclid’s) geometry are to be

properly developed. Nowadays, we do not worry unduly if a certain

geometrical quantity cannot be measured simply in terms of rational

numbers alone. This is because the notion of a ‘real number’ is very

familiar to us. Although our pocket calculators express numbers in

terms of only a Wnite number of digits, we readily accept that this is an

approximation forced upon us by the fact that the calculator is a Wnite

object. We are prepared to allow that the ideal (Platonic) mathematical

number could certainly require that the decimal expansion continues

indeWnitely. This applies, of course, even to the decimal representation of

most fractions, such as

1
3
¼ 0:333 333 333 . . . ,

29
12
¼ 2:416 666 666 . . . ,

9
7
¼ 1:285 714 285 714 285,

237
148
¼ 1:601 351 351 35 . . . :

For a fraction, the decimal expanson is always ultimately periodic, which is

to say that after a certain point the inWnite sequence of digits consists of

some Wnite sequence repeated indeWnitely. In the above examples the

repeated sequences are, respectively, 3, 6, 285714, and 135.
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Decimal expansions were not available to the ancient Greeks, but they

had their own ways of coming to terms with irrational numbers. In eVect,

what they adopted was a system of representing numbers in terms of what

are now called continued fractions. There is no need to go into this in full

detail here, but some brief comments are appropriate. A continued frac-

tion4 is a Wnite or inWnite expression aþ (bþ (cþ (dþ � � � )�1)�1)�1, where

a, b, c, d, . . . are positive integers:

aþ 1

bþ 1

cþ 1

d þ � � �

Any rational number larger than 1 can be written as a terminating such

expression (where to avoid ambiguity we normally require the Wnal integer

to be greater than 1), e.g. 52=9 ¼ 5þ (1þ (3þ (2)�1)�1)�1:

52

9
¼ 5þ 1

1þ 1

3þ 1

2

and, to represent a positive rational less than 1, we just allow the Wrst

integer in the expression to be zero. To express a real number, which is not

rational, we simply[3.1] allow the continued-fraction expression to run on

forever, some examples being5

ffiffiffi

2
p
¼ 1þ (2þ (2þ (2þ (2þ � � � )�1)�1)�1)�1,

7�
ffiffiffi

3
p
¼ 5þ (3þ (1þ (2þ (1þ (2þ (1þ (2þ � � � )�1)�1)�1)�1)�1)�1)�1,

p ¼ 3þ (7þ (15þ (1þ (292þ (1þ (1þ (1þ (2þ � � � )�1)�1)�1)�1)�1)�1)�1)�1:

In the Wrst two of these inWnite examples, the sequences of natural

numbers that appear—namely 1, 2, 2, 2, 2, . . . in the Wrst case and 5, 3,

1, 2, 1, 2, 1, 2, . . . in the second—have the property that they are

ultimately periodic (the 2 repeating indeWnitely in the Wrst case and the

sequence 1, 2 repeating indeWnitely in the second).[3.2] Recall that, as

[3.1] Experiment with your pocket calculator (assuming you have ‘
ffip
’ and ‘x�1’ keys) to obtain

these expansions to the accuracy available. Take p ¼ 3:141 592 653 589 793 . . . (Hint: Keep taking

note of the integer part of each number, subtracting it oV, and then forming the reciprocal of the

remainder.)

[3.2] Assuming this eventual periodicity of these two continued-fraction expressions, show that

the numbers they represent must be the quantities on the left. (Hint: Find a quadratic equation

that must be satisWed by this quantity, and refer to Note 3.6.)
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already noted above, in the familiar decimal notation, it is the rational

numbers that have (Wnite or) ultimately periodic expressions. We may

regard it as a strength of the Greek ‘continued-fraction’ representation,

on the other hand, that the rational numbers now always have a Wnite

description. A natural question to ask, in this context, is: which numbers

have an ultimately periodic continued-fraction representation? It is a re-

markable theorem, Wrst proved, to our knowledge, by the great 18th-

century mathematician Joseph C. Lagrange (whose most important

other ideas we shall encounter later, particularly in Chapter 20) that the

numbers whose representation in terms of continued fractions are ultim-

ately periodic are what are called quadratic irrationals.6

What is a quadratic irrational and what is its importance for Greek

geometry? It is a number that can be written in the form

aþ
ffiffiffi

b
p

,

where a and b are fractions, and where b is not a perfect square. Such

numbers are important in Euclidean geometry because they are the

most immediate irrational numbers that are encountered in ruler-and-

compass constructions. (Recall the Pythagorean theorem, which in §3.1

Wrst led us to consider the problem of
ffiffiffi

2
p

, and other simple constructions

of Euclidean lengths directly lead us to other numbers of the above

form.)

Particular examples of quadratic irrationals are those cases where a ¼ 0

and b is a (non-square) natural number (or rational greater than 1):

ffiffiffi

2
p

,
ffiffiffi

3
p

,
ffiffiffi

5
p

,
ffiffiffi

6
p

,
ffiffiffi

7
p

,
ffiffiffi

8
p

,
ffiffiffiffiffi

10
p

,
ffiffiffiffiffi

11
p

, . . . :

The continued-fraction representation of such a number is particularly

striking. The sequence of natural numbers that deWnes it as a continued

fraction has a curious characteristic property. It starts with some number

A, then it is immediately followed by a ‘palindromic’ sequence (i.e.

one which reads the same backwards), B, C, D, . . . , D, C, B, followed

by 2A, after which the sequence B, C, D, . . . , D, C, B, 2A repeats

itself indeWnitely. The number
ffiffiffiffiffi

14
p

is a good example, for which the

sequence is

3, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, . . . :

Here A ¼ 3 and the palindromic sequence B, C, D, . . . , D, C, B is just

the three-term sequence 1, 2, 1.

How much of this was known to the ancient Greeks? It seems very likely

that they knew quite a lot—very possibly all the things that I have

described above (including Lagrange’s theorem), although they may well

have lacked rigorous proofs for everything. Plato’s contemporary Theae-
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tetos seems to have established much of this. There appears even to be

some evidence of this knowledge (including the repeating palindromic

sequences referred to above) revealed in Plato’s dialectics.7

Although incorporating the quadratic irrationals gets us some way

towards numbers adequate for Euclidean geometry, it does not do all

that is needed. In the tenth (and most diYcult) book of Euclid, numbers

like
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ
ffiffiffi

b
pp

are considered (with a and b positive rationals). These

are not generally quadratic irrationals, but they occur, nevertheless, in

ruler-and-compass constructions. Numbers suYcient for such geometric

constructions would be those that can be built up from natural numbers

by repeated use of the operations of addition, subtraction, multiplication,

division, and the taking of square roots. But operating exclusively with

such numbers gets extremely complicated, and these numbers are still

too limited for considerations of Euclidean geometry that go beyond

ruler-and-compass constructions. It is much more satisfactory to take

the bold step—and how bold a step this actually is will be indicated in

§§16.3–5—of allowing inWnite continued-fraction expressions that are

completely general. This provided the Greeks with a way of describing

numbers that does turn out to be adequate for Euclidean geometry.

These numbers are indeed, in modern terminology, the so-called ‘real

numbers’. Although a fully satisfactory deWnition of such numbers is not

regarded as having been found until the 19th century (with the work of

Dedekind, Cantor, and others), the great ancient Greek mathematician

and astronomer Eudoxos, who had been one of Plato’s students, had

obtained the essential ideas already in the 4th century bc. A few words

about Eudoxos’s ideas are appropriate here.

First, we note that the numbers in Euclidean geometry can be expressed

in terms of ratios of lengths, rather than directly in terms of lengths. In this

way, no speciWc unit of length (such as ‘inch’ or Greek ‘dactylos’ was

needed. Moreover, with ratios of lengths, there would be no restriction as

to how many such ratios might be multiplied together (obviating the

apparent need for higher-dimensional ‘hypervolumes’ when more than

three lengths are multiplied together). The Wrst step in the Eudoxan theory

was to supply a criterion as to when a length ratio a : b would be greater

than another such ratio c : d. This criterion is that some positive integers M

and N exist such that the length a added to itself M times exceeds b added

to itself N times, while also d added to itself N times exceeds c added to

itself M times.[3.3] A corresponding criterion holds expressing the condi-

tion that the ratio a : b be less than the ratio c : d. The condition for

equality of these ratios would be that neither of these criteria hold. With

this ingenious notion of ‘equality’ of such ratios, Eudoxos had, in eVect, an

[3.3] Can you see why this works?
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abstract concept of a ‘real number’ in terms of length ratios. He also

provided rules for the sum and product of such real numbers.[3.4]

There was a basic diVerence in viewpoint, however, between the Greek

notion of a real number and the modern one, because the Greeks regarded

the number system as basically ‘given’ to us, in terms of the notion of

distance in physical space, so the problem was to try to ascertain how these

‘distance’ measures actually behaved. For ‘space’ may well have had the

appearance of being itself a Platonic absolute even though actual physical

objects existing in this space would inevitably fall short of the Platonic

ideal.8 (However, we shall be seeing in §17.9 and §§19.6,8 how Einstein’s

general theory of relativity has now changed this perspective on space and

matter in a fundamental way.)

A physical object such as a square drawn in the sand or a cube hewn

from marble might have been regarded by the ancient Greeks as a reason-

able or sometimes an excellent approximation to the Platonic geometrical

ideal. Yet any such object would nevertheless provide a mere approxima-

tion. Lying behind such approximations to the Platonic forms—so it

would have appeared—would be space itself: an entity of such abstract

or notional existence that it could well have been regarded as a direct

realization of a Platonic reality. The measure of distance in this ideal

geometry would be something to ascertain; accordingly, it would be ap-

propriate to try to extract this ideal notion of real number from a geom-

etry of a Euclidean space that was assumed to be given. In eVect, this is

what Eudoxos succeeded in doing.

By the 19th and 20th centuries, however, the view had emerged that the

mathematical notion of number should stand separately from the nature of

physical space. Since mathematically consistent geometries other than that

of Euclid had been shown to exist, this rendered it inappropriate to insist

that the mathematical notion of ‘geometry’ should be necessarily extracted

from the supposed nature of ‘actual’ physical space. Moreover, it could be

very diYcult, if not impossible, to ascertain the detailed nature of this

supposed underlying ‘Platonic physical geometry’ in terms of the behaviour

of imperfect physical objects. In order to know the nature of the numbers

according to which ‘geometrical distance’ is to be deWned, for example, it

would be necessary to know what happens both at indeWnitely tiny and

indeWnitely large distances. Even today, these questions are without clear-

cut resolution (and I shall be addressing them again in later chapters). Thus,

it was far more appropriate to develop the nature of number in a way that

does not directly refer to physical measures. Accordingly, Richard Dede-

kind and Georg Cantor developed their ideas of what real numbers ‘are’ by

use of notions that do not directly refer to geometry.

[3.4] Can you see how to formulate these?
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Dedekind’s deWnition of a real number is in terms of inWnite sets of

rational numbers. Basically, we think of the rational numbers, both posi-

tive and negative (and zero), to be arranged in order of size. We can

imagine that this ordering takes place from left to right, where we think

of the negative rationals as being displayed going oV indeWnitely to the left,

with 0 in the middle, and the positive rationals displayed going oV indeW-

nitely to the right. (This is just for visualization purposes; in fact Dede-

kind’s procedure is entirely abstract.) Dedekind imagines a ‘cut’ which

divides this display neatly in two, with those to the left of the cut being all

smaller than those to the right. When the ‘knife-edge’ of the cut does not

‘hit’ an actual rational number but falls between them, we say that it

deWnes an irrational real number. More correctly, this occurs when those

to the left have no actual largest member and those to the right, no actual

smallest one. When the system of ‘irrationals’, as deWned in terms of such

cuts, is adjoined to the system of rational numbers that we already have,

then the complete family of real numbers is obtained.

Dedekind’s procedure leads, by means of simple deWnitions, directly to

the laws of addition, subtraction, multiplication, and division for real

numbers. Moreover, it enables one to go further and deWne limits, whereby

such things as the inWnite continued fraction that we saw before

1þ (2þ (2þ (2þ (2þ � � � )�1)�1)�1)�1

or the inWnite sum

1� 1

3
þ 1

5
� 1

7
þ 1

9
� . . .

may be assigned real-number meanings. In fact, the Wrst gives us the

irrational number
ffiffiffi

2
p

, and the second, 1
4
p. The ability to take limits is

fundamental for many mathematical notions, and it is this that gives the

real numbers their particular strengths.9 (The reader may recall that the

need for ‘limiting procedures’ was a requirement for the general deWnition

of areas, as was indicated in §2.3.)

3.3 Real numbers in the physical world

There is a profound issue that is being touched upon here. In the develop-

ment of mathematical ideas, one important initial driving force has always

been to Wnd mathematical structures that accurately mirror the behaviour

of the physical world. But it is normally not possible to examine the

physical world itself in such precise detail that appropriately clear-cut

mathematical notions can be abstracted directly from it. Instead, progress

is made because mathematical notions tend to have a ‘momentum’ of their
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own that appears to spring almost entirely from within the subject itself.

Mathematical ideas develop, and various kinds of problem seem to arise

naturally. Some of these (as was the case with the problem of Wnding the

length of the diagonal of a square) can lead to an essential extension of the

original mathematical concepts in terms of which the problem had been

formulated. Such extensions may seem to be forced upon us, or they may

arise in ways that appear to be matters of convenience, consistency, or

mathematical elegance. Accordingly, the development of mathematics

may seem to diverge from what it had been set up to achieve, namely

simply to reXect physical behaviour. Yet, in many instances, this drive for

mathematical consistency and elegance takes us to mathematical struc-

tures and concepts which turn out to mirror the physical world in a much

deeper and more broad-ranging way than those that we started with. It is

as though Nature herself is guided by the same kind of criteria of consist-

ency and elegance as those that guide human mathematical thought.

An example of this is the real-number system itself. We have no direct

evidence from Nature that there is a physical notion of ‘distance’ that

extends to arbitrarily large scales; still less is there evidence that such a

notion can be applied on the indeWnitely tiny level. Indeed, there is no

evidence that ‘points in space’ actually exist in accordance with a geometry

that precisely makes use of real-number distances. In Euclid’s day, there

was scant evidence to support even the contention that such Euclidean

‘distances’ extended outwards beyond, say, about 1012 metres,10 or in-

wards to as little as 10�5 metres. Yet, having been driven mathematically

by the consistency and elegance of the real-number system, all of our

broad-ranging and successful physical theories to date have, without

exception, still clung to this ancient notion of ‘real number’. Although

there might appear to have been little justiWcation for doing this from the

evidence that was available in Euclid’s day, our faith in the real-number

system appears to have been rewarded. For our successful modern theories

of cosmology now allow us to extend the range of our real-number

distances out to about 1026 metres or more, while the accuracy of our

theories of particle physics extends this range inwards to 10�17 metres or

less. (The only scale at which it has been seriously proposed that a change

might come about is some 18 orders of magnitude smaller even than that,

namely 10�35 metres, which is the ‘Planck scale’ of quantum gravity that

will feature strongly in some of our later discussions; see §§31.1,6–12,14

and §32.7.) It may be regarded as a remarkable justiWcation of our use of

mathematical idealizations that the range of validity of the real-number

system has extended from the total of about 1017, from the smallest to the

largest, that seemed appropriate in Euclid’s day to at least the 1043 that our

theories directly employ today, this representing a stupendous increase by

a factor of some 1026.
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There is a good deal more to the physical validity of the real-number

system than this. In the Wrst place, we must consider that areas and

volumes are also quantities for which real-number measures are accurately

appropriate. A volume measure is the cube of a distance measure (and an

area is the square of a distance). Accordingly, in the case of volumes, we

may consider that it is the cube of the above range that is relevant. For

Euclid’s time, this would give us a range of about 1017
� �3¼ 1051; for

today’s theories, at least 1043
� �3¼ 10129. Moreover, there are other phys-

ical measures that require real-number descriptions, according to our

presently successful theories. The most noteworthy of these is time.

According to relativity theory, this needs to be adjoined to space to

provide us with spacetime (which is the subject of our deliberations

in Chapter 17). Spacetime volumes are four-dimensional, and it might

well be considered that the temporal range (of again about 1043 or more

in total range, in our well-tested theories) should also be incorporated

into our considerations, giving a total of something like at least 10172.

We shall see some far larger real numbers even than this coming into our

later considerations (see §27.13 and §28.7), although it is not really clear in

some cases that the use of real numbers (rather than, say, integers) is

essential.

More importantly for physical theory, from Archimedes, through Gali-

leo and Newton, to Maxwell, Einstein, Schrödinger, Dirac, and the rest, a

crucial role for the real-number system has been that it provides a neces-

sary framework for the standard formulation of the calculus (see Chapter

6). All successful dynamical theories have required notions of the calculus

for their formulations. Now, the conventional approach to calculus re-

quires the inWnitesimal nature of the reals to be what it is. That is to say, on

the small end of the scale, it is the entire range of the real numbers that is

in principle being made use of. The ideas of calculus underlie other

physical notions, such as velocity, momentum, and energy. Consequently,

the real-number system enters our successful physical theories in a funda-

mental way for our description of all these quantities also. Here, as

mentioned earlier in connection with areas, in §2.3 and §3.2, the inWnite-

simal limit of small-scale structure of the real-number system is being

called upon.

Yet we may still ask whether the real-number system is really ‘correct’

for the description of physical reality at its deepest levels. When quantum-

mechanical ideas were beginning to be introduced early in the 20th cen-

tury, there was the feeling that perhaps we were now beginning to witness

a discrete or granular nature to the physical world at its smallest scales.11

Energy could apparently exist only in discrete bundles—or ‘quanta’—and

the physical quantities of ‘action’ and ‘spin’ seemed to occur only in

discrete multiples of a fundamental unit (see §§20.1,5 for the classical
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concept of action and §26.6 for its quantum counterpart; see §§22.8–12 for

spin). Accordingly, various physicists attempted to build up an alternative

picture of the world in which discrete processes governed all actions at the

tiniest levels.

However, as we now understand quantum mechanics, that theory does

not force us (nor even lead us) to the view that there is a discrete or

granular nature to space, time, or energy at its tiniest levels (see Chapters

21 and 22, particularly the last sentence of §22.13). Nevertheless, the idea

has remained with us that there may indeed be, at root, such a fundamen-

tal discreteness to Nature, despite the fact that quantum mechanics, in its

standard formulation, certainly does not imply this. For example, the

great quantum physicist Erwin Schrödinger was among the Wrst to pro-

pose that a change to some form of fundamental spatial discreteness might

actually be necessary:12

The idea of a continuous range, so familiar to mathematicians in our days, is

something quite exorbitant, an enormous extrapolation of what is accessible

to us.

He related this proposal to some early Greek thinking concerning the

discreteness of Nature. Einstein, also, suggested, in his last published

words, that a discretely based (‘algebraic’) theory might be the way for-

ward for the future physics:13

One can give good reasons why reality cannot be represented as a continu-

ous Weld. . . . Quantum phenomena . . . must lead to an attempt to Wnd a

purely algebraic theory for the description of reality. But nobody knows

how to obtain the basis of such a theory.14

Others15 also have pursued ideas of this kind; see §33.1. In the late 1950s, I

myself tried this sort of thing, coming up with a scheme that I referred to

as the theory of ‘spin networks’, in which the discrete nature of quantum-

mechanical spin is taken as the fundamental building block for a combina-

torial (i.e. discrete rather than real-number-based) approach to physics.

(This scheme will be brieXy described in §32.6.) Although my own ideas

along this particular direction did not develop to a comprehensive theory

(but, to some extent, became later transmogriWed into ‘twistor theory’;

see §33.2), the theory of spin networks has now been imported, by

others, into one of the major programmes for attacking the fundamental

problem of quantum gravity.16 I shall give brief descriptions of these

various ideas in Chapter 32. Nevertheless, as tried and tested physical

theory stands today—as it has for the past 24 centuries—real numbers

still form a fundamental ingredient of our understanding of the physical

world.
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3.4 Do natural numbers need the physical world?

In the above description, in §3.2, of the Dedekind approach to the real-

number system, I have presupposed that the rational numbers are already

taken as ‘understood’. In fact, it is not a diYcult step from the integers to

the rationals; rationals are just ratios of integers (see the Preface). What

about the integers themselves, then? Are these rooted in physical ideas?

The discrete approaches to physics that were referred to in the previous

two paragraphs certainly depend upon our notion of natural number (i.e.

‘counting number’) and its extension, by the inclusion of the negative

numbers, to the integers. Negative numbers were not considered, by the

Greeks, to be actual ‘numbers’, so let us continue our considerations by

Wrst asking about the physical status of the natural numbers themselves.

The natural numbers are the quantities that we now denote by 0, 1, 2, 3,

4, etc., i.e. they are the non-negative whole numbers. (The modern pro-

cedure is to include 0 in this list, which is an appropriate thing to do from

the mathematical point of view, although the ancient Greeks appear not to

have recognized ‘zero’ as an actual number. This had to wait for the Hindu

mathematicians of India, starting with Brahmagupta in 7th century and

followed up by Mahavira and Bhaskara in the 9th and 12th century,

respectively.) The role of the natural numbers is clear and unambiguous.

They are indeed the most elementary ‘counting numbers’, which have a

basic role whatever the laws of geometry or physics might be. Natural

numbers are subject to certain familiar operations, most particularly the

operations of addition (such as 37þ 79 ¼ 116) and multiplication (e.g.

37� 79 ¼ 2923), which enable pairs of natural numbers to be combined

together to produce new natural numbers. These operations are independ-

ent of the nature of the geometry of the world.

We can, however, raise the question of whether the natural numbers

themselves have a meaning or indeed existence independent of the actual

nature of the physical world. Perhaps our notion of natural numbers

depends upon there being, in our universe, reasonably well-deWned dis-

crete objects that persist in time. Natural numbers initially arise when we

wish to count things, after all. But this seems to depend upon there

actually being persistent distinguishable ‘things’ in the universe which

are available to be ‘counted’. Suppose, on the other hand, our universe

were such that numbers of objects had a tendency to keep changing.

Would natural numbers actually be ‘natural’ concepts in such a universe?

Moreover, perhaps the universe actually contains only a Wnite number of

‘things’, in which case the ‘natural’ numbers might themselves come to an

end at some point! We can even envisage a universe which consists only of

an amorphous featureless substance, for which the very notion of numer-

ical quantiWcation might seem intrinsically inappropriate. Would the
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notion of ‘natural number’ be at all relevant for the description of uni-

verses of this kind?

Even though it might well be the case that inhabitants of such a universe

would Wnd our present mathematical concept of a ‘natural number’ diY-

cult to come upon, it is hard to imagine that there would not still be an

important role for such fundamental entities. There are various ways in

which natural numbers can be introduced in pure mathematics, and these

do not seem to depend upon the actual nature of the physical universe at

all. Basically, it is the notion of a ‘set’ which needs to be brought into play,

this being an abstraction that does not appear to be concerned, in any

essential way, with the speciWc structure of the physical universe. In fact,

there are certain deWnite subtleties concerning this question, and I shall

return to that issue later (in §16.5). For the moment, it will be convenient

to ignore such subtleties.

Let us consider one way (anticipated by Cantor and promoted by the

distinguished mathematician John von Neumann) in which natural

numbers can be introduced merely using the abstract notion of set. This

procedure enables one to deWne what are called ‘ordinal numbers’. The

simplest set of all is referred to as the ‘null set’ or the ‘empty set’, and it is

characterized by the fact that it contains no members whatever! The empty

set is usually denoted by the symbol [, and we can write this deWnition

[ ¼ { },

where the curly brackets delineate a set, the speciWc set under consider-

ation having, as its members, the quantities indicated within the brackets.

In this case, there is nothing within the brackets, so the set being described

is indeed the empty set. Let us associate [ with the natural number 0. We

can now proceed further and deWne the set whose only member is [; i.e.

the set {[}. It is important to realize that {[} is not the same set as the

empty set [. The set {[} has one member (namely [), whereas [ itself has

none at all. Let us associate {[} with the natural number 1. We next deWne

the set whose two members are the two sets that we just encountered,

namely [ and {[}, so this new set is {[, {[} }, which is to be associated

with the natural number 2. Then we associate with 3 the collection of all

the three entities that we have encountered up to this point, namely the set

{[, {[}, {[, {[} } }, and with 4 the set {[, {[}, {[, {[} }, {[, {[},

{[, {[} } } }, whose members are again the sets that we have encountered

previously, and so on. This may not be how we usually think of natural

numbers, as a matter of deWnition, but it is one of the ways that mathem-

aticians can come to the concept. (Compare this with the discussion in the

Preface.) Moreover, it shows us, at least, that things like the natural

numbers17 can be conjured literally out of nothing, merely by employing

the abstract notion of ‘set’. We get an inWnite sequence of abstract
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(Platonic) mathematical entities—sets containing, respectively, zero, one,

two, three, etc., elements, one set for each of the natural numbers, quite

independently of the actual physical nature of the universe. In Fig.1.3 we

envisaged a kind of independent ‘existence’ for Platonic mathematical

notions—in this case, the natural numbers themselves—yet this ‘existence’

can seemingly be conjured up by, and certainly accessed by, the mere

exercise of our mental imaginations, without any reference to the details

of the nature of the physical universe. Dedekind’s construction, moreover,

shows how this ‘purely mental’ kind of procedure can be carried further,

enabling us to ‘construct’ the entire system of real numbers,18 still without

any reference to the actual physical nature of the world. Yet, as indicated

above, ‘real numbers’ indeed seem to have a direct relevance to the real

structure of the world—illustrating the very mysterious nature of the ‘Wrst

mystery’ depicted in Fig.1.3.

3.5 Discrete numbers in the physical world

But I am getting slightly ahead of myself. We may recall that Dedekind’s

construction really made use of sets of rational numbers, not of natural

numbers directly. As indicated above, it is not hard to ‘deWne’ what we

mean by a rational number once we have the notion of natural number.

But, as an intermediate step, it is appropriate to deWne the notion of an

integer, which is a natural number or the negative of a natural number (the

number zero being its own negative). In a formal sense, there is no

diYculty in giving a mathematical deWnition of ‘negative’: roughly speak-

ing we just attach a ‘sign’, written as ‘–’, to each natural number (except 0)

and deWne all the arithmetical rules of addition, subtraction, multiplica-

tion, and division (except by 0) consistently. This does not address the

question of the ‘physical meaning’ of a negative number, however. What

might it mean to say that there are minus three cows in a Weld, for

example?

I think that it is clear that, unlike the natural numbers themselves, there

is no evident physical content to the notion of a negative number of

physical objects. Negative integers certainly have an extremely valuable

organizational role, such as with bank balances and other Wnancial trans-

actions. But do they have direct relevance to the physical world? When I

say ‘direct relevance’ here, I am not referring to circumstances where it

would appear that it is negative real numbers that are the relevant meas-

ures, such as when a distance measured in one direction counts as positive

while that measured in the opposite direction would count as negative (or

the same thing with regard to time, in which times extending into the past

might count as negative). I am referring, instead, to numbers that are

scalar quantities, in the sense that there is no directional (or temporal)
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aspect to the quantity in question. In these circumstances it appears to be

the case that it is the system of integers, both positive and negative, that

has direct physical relevance.

It is a remarkable fact that only in about the last hundred years has it

become apparent that the system of integers does indeed seem to have such

direct physical relevance. The Wrst example of a physical quantity which

seems to be appropriately quantiWed by integers is electric charge.19 As far

as is known (although there is as yet no complete theoretical justiWcation

of this fact), the electric charge of any discrete isolated body is indeed

quantiWed in terms of integral multiples, positive, negative, or zero, of one

particular value, namely the charge on the proton (or on the electron,

which is the negative of that of the proton).20 It is now believed that

protons are composite objects built up, in a sense, from smaller entities

referred to as ‘quarks’ (and additional chargeless entities called ‘gluons’).

There are three quarks to each proton, the quarks having electric charges

with respective values 2
3
, 2

3
,� 1

3
. These constituent charges add up to give

the total value 1 for the proton. If quarks are fundamental entities, then

the basic charge unit is one third of that which we seemed to have before.

Nevertheless, it is still true that electric charge is measured in terms of

integers, but now it is integer multiples of one third of a proton charge.

(The role of quarks and gluons in modern particle physics will be discussed

in §§25.3–7.)

Electric charge is just one instance of what is called an additive quantum

number. Quantum numbers are quantities that serve to characterize

the particles of Nature. Such a quantum number, which I shall here

take to be a real number of some kind, is ‘additive’ if, in order to derive

its value for a composite entity, we simply add up the individual values for

the constituent particles—taking due account of the signs, of course, as

with the above-mentioned case of the proton and its constituent quarks. It

is a very striking fact, according to the state of our present physical

knowledge, that all known additive quantum numbers21 are indeed

quantiWed in terms of the system of integers, not general real numbers,

and not simply natural numbers—so that the negative values actually do

occur.

In fact, according to 20th-century physics, there is now a certain sense in

which it is meaningful to refer to a negative number of physical entities.

The great physicist Paul Dirac put forward, in 1929–31, his theory of

antiparticles, according to which (as it was later understood), for each

type of particle, there is also a corresponding antiparticle for which each

additive quantum number has precisely the negative of the value that it has

for the original particle; see §§24.2,8. Thus, the system of integers (with

negatives included) does indeed appear to have a clear relevance to the

physical universe—a physical relevance that has become apparent only in
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the 20th century, despite those many centuries for which integers have

found great value in mathematics, commerce, and many other human

activities.

One important qualiWcation should be made at this juncture, however.

Although it is true that, in a sense, an antiproton is a negative proton, it is

not really ‘minus one proton’. The reason is that the sign reversal refers

only to additive quantum numbers, whereas the notion of mass is not

additive in modern physical theory. This issue will be explained in a bit

more detail in §18.7. ‘Minus one proton’ would have to be an antiproton

whose mass is the negative of the mass value of an ordinary proton. But

the mass of an actual physical particle is not allowed to be negative. An

antiproton has the same mass as an ordinary proton, which is a positive

mass. We shall be seeing later that, according to the ideas of quantum Weld

theory, there are things called ‘virtual’ particles for which the mass (or,

more correctly, energy) can be negative. ‘Minus one proton’ would really

be a virtual antiproton. But a virtual particle does not have an independ-

ent existence as an ‘actual particle’.

Let us now ask the corresponding question about the rational numbers.

Has this system of numbers found any direct relevance to the physical

universe? As far as is known, this does not appear to be the case, at least as

far as conventional theory is concerned. There are some physical curios-

ities22 in which the family of rational numbers does play its part, but it

would be hard to maintain that these reveal any fundamental physical role

for rational numbers. On the other hand, it may be that there is a

particular role for the rationals in fundamental quantum-mechanical

probabilities (a rational probability possibly representing a choice between

alternatives, each of which involves just a Wnite number of possibilities).

This kind of thing plays a role in the theory of spin networks, as will be

brieXy described in §32.6. As of now, the proper status of these ideas is

unclear.

Yet, there are other kinds of number which, according to accepted

theory, do appear to play a fundamental role in the workings of the

universe. The most important and striking of these are the complex

numbers, in which the seemingly mystical quantity
ffiffiffiffiffiffiffi

�1
p

, usually denoted

by ‘i’, is introduced and adjoined to the real-number system. First encoun-

tered in the 16th century, but treated for hundreds of years with distrust,

the mathematical utility of complex numbers gradually impressed the

mathematical community to a greater and greater degree, until complex

numbers became an indispensable, even magical, ingredient of our math-

ematical thinking. Yet we now Wnd that they are fundamental not just to

mathematics: these strange numbers also play an extraordinary and very

basic role in the operation of the physical universe at its tiniest scales. This

is a cause for wonder, and it is an even more striking instance of the
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convergence between mathematical ideas and the deeper workings of the

physical universe than is the system of real numbers that we have been

considering in this section. Let us come to these remarkable numbers

next.

Notes

Section 3.1

3.1. The notations > , < , >, <, frequently used in this book, respectively stand for ‘is

greater than’, ‘is less than’, ‘is greater than or equal to’, and ‘is less than or equal

to’ (made appropriately grammatical).

3.2. Some readers might be aware of an apparently shorter argument which starts by

demanding that a=b be ‘in its lowest terms’ (i.e. that a and b have no common

factor). However, this assumes that such a lowest-terms expression always exists,

which, though perfectly true, needs to be shown. Finding a lowest-term expression

for a given fraction A=B (implicitly or explicitly—say using the procedure known

as Euclid’s algorithm; see, for example, Hardy and Wright 1945, p. 134;

Davenport 1952, p. 26; Littlewood 1949, Chap. 4; and Penrose 1989, Chap. 2)

involves reasoning similar to that given in the text, but more complicated.

3.3. One might well object that it is somewhat curious to use real numbers in the above

proof, since the ‘real rationals’ (i.e. quotients of reals) would simply be real

numbers all over again. This does not invalidate what has just been said, however.

It may be remarked that it is as well that a and b were taken to be integers, in the

original argument, and not themselves taken to be rationals. For, if a and b were

merely rational, then the argument would fail at the ‘decreasing sequence’ part,

even though the result itself would still be true.

Section 3.2

3.4. At a casual glance, expressions like aþ (bþ (cþ (dþ � � � )�1)�1)�1 may look

rather odd. However, they are very natural in the context of ancient Greek

thinking (although the Greeks did not use this particular notation). The procedure

of Euclid’s algorithm was referred to in Note 3.2 in the context of Wnding the

lowest-term form of a fraction. Euclid’s algorithm (when unravelled) leads pre-

cisely to such a continued fraction expression. The Greeks would apply this same

procedure to the ratio of two geometrical lengths. In the most general case, the

result would be an inWnite continued fraction, of the kind considered here.

3.5. For more information (with proofs) concerning continued fractions, see the

elegant account given in Chapter 4 of Davenport (1952). It may be remarked

that in certain respects the continued-fraction representation of real numbers is

deeper and more interesting than the normal one in terms of decimal expansions,

Wnding applications in many diVerent areas of modern mathematics, including the

hyperbolic geometry discussed in §§2.24,25. On the other hand, continued frac-

tions are not at all well suited for (most) practical calculation, the conventional

decimal representation being far easier to use.

3.6. Quadratic irrationals are so called because they arise in the solution of a general

quadratic equation

Ax2 þ Bxþ C ¼ 0,
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with A non-zero, the solutions being

� B

2A
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B

2A

� �2

�C

A

s

and � B

2A
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B

2A

� �2

�C

A

s

where, to keep within the realm of real numbers, we must have B2 greater than

4AC. When A, B, and C are integers or rational numbers, and where there is

no rational solution to the equation, the solutions are indeed quadratic irra-

tionals.

3.7. Professor Stelios Negrepontis informs me that this evidence is to be found in

the Platonic dialogue the Statesman (¼ Politikos), the third in the ‘trilogy’ the

Theaetetos-the Sophist-the Politikos. See Negrepontis (2000).

3.8. See Sorabji (1983, 1988) for an account of ancient Greek thinking on the nature

of space.

3.9. See Hardy (1914); Conway (1976); Burkill (1962).

Section 3.3

3.10. The scientiWc notation ‘1012’ for a ‘million million’ makes use of exponents,

as described in Notes 1.1 and 2.1. In this book, I shall tend to avoid verbal

terms such as ‘million’, and especially ‘billion’, in preference to this much clearer

scientiWc notation. The word ‘billion’ is particularly confusing, as in American

usage—now commonly adopted also in the UK—‘billion’ refers to 109, whereas,

in the older (more logical) UK usage, in agreement with most other European

languages, it refers to 1012. Negative exponents, such as in 10�6 (which refers

to ‘one millionth’), are also used here in accordance with the normal scientiWc

notation.

The distance 1012 metres is about 7 times the Earth–Sun separation.This is

roughly the distance of the planet Jupiter, although that distance was not known

in Euclid’s day and would have been guessed to be rather smaller.

3.11. See, for example, Russell (1927), Chap. 4.

3.12. Schrödinger (1952), pp. 30–1.

3.13. See Stachel (1993).

3.14. Einstein (1955), p. 166.

3.15. See e.g. Snyder (1947); Schild (1949); and Ahmavaara (1965).

3.16. See Ashtekar (1986); Ashtekar and Lewandowski (2004); Smolin (1998, 2001);

Rovelli (1998, 2003).

Section 3.4

3.17. The notion of ‘ordinal number’, provided here in the Wnite case, extends also to

inWnite ordinal numbers, the smallest being Cantor’s ‘o’, which is the ordered

collection of all Wnite ordinals.

3.18. This notion of ‘construct’ should not be taken in too strong a sense, however. We

shall be Wnding in §16.6 that there are certain real numbers (in fact most of them)

that are inaccessible by any computational procedure.

Section 3.5

3.19. The Irish physicist George Johnstone Stoney was the Wrst, in 1874, to give a

(crude) estimate of the basic electric charge, and, in 1891, coined the term

‘electron’ for this fundamental unit. In 1909, the American physicist Robert

Andrews Millikan designed his famous ‘oil-drop’ experiment, which precisely

showed that the charge on electrically charged bodies (the oil drops, in his

Kinds of number in the physical world Notes

69



experiment) came in integer multiples of a well-deWned value—the electron

charge.

3.20. In 1959, R. A. Lyttleton and H. Bondi proposed that a slight diVerence in the

proton and (minus) the electron charges, of the order of one part in 1018

might account for the expansion of the universe, (for which, see §§27.11,13,

and Chapter 28). See Lyttleton and Bondi (1959). Unfortunately, for

this theory, such a discrepancy was soon disproved in several experiments.

Nevertheless, this idea provided an excellent example of creative thinking.

3.21. I am here distinguishing the ‘additive’ quantum numbers from the numbers that

physicists call ‘multiplicative’, which we shall come to in §5.5.

3.22. For example, in the ‘fractional quantum Hall eVect’, one Wnds rational numbers

playing a key role; see, for example, Fröhlich and Pedrini (2000).
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4
Magical complex numbers

4.1 The magic number ‘i’

How is it that �1 can have a square root? The square of a positive number

is always positive, and the square of a negative number is again positive

(and the square of 0 is just 0 again, so that is hardly of use to us here). It

seems impossible that we can Wnd a number whose square is actually

negative. Yet, this is the kind of situation that we have seen before,

when we ascertained that 2 has no square root within the system of

rational numbers. In that case we resolved the situation by extending

our system of numbers from the rationals to a larger system, and we

settled on the system of reals. Perhaps the same trick will work again.

Indeed it will. In fact what we have to do is something much easier and

far less drastic than the passage from the rationals to the reals. (Raphael

Bombelli introduced the procedure in 1572 in his work L’Algebra,

following Gerolamo Cardano’s original encounters with complex numbers

in his Ars Magna of 1545.) All we need do is introduce a single quantity,

called ‘i’, which is to square to �1, and adjoin it to the system of reals,

allowing combinations of i with real numbers to form expressions such as

aþ ib,

where a and b are arbitrary real numbers. Any such combination is called a

complex number. It is easy to see how to add complex numbers:

(aþ ib)þ (cþ id) ¼ (aþ c)þ i(bþ d)

which is of the same form as before (with the real numbers aþ c and bþ d

taking the place of the a and b that we had in our original expression).

What about multiplication? This is almost as easy. Let us Wnd the product

of aþ ib with cþ id. We Wrst simply multiply these factors, expanding the

expression using the ordinary rules of algebra:1

(aþ ib)(cþ id) ¼ acþ ibcþ aidþ ibid

¼ acþ i(bcþ ad)þ i2bd:
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But i2 ¼ �1, so we can rewrite this as

(aþ ib)(cþ id) ¼ (ac� bd)þ i(bcþ ad),

which is again of the same form as our original aþ ib, but with ac� bd

taking the place of a and bcþ ad taking the place of b.

It is easy enough to subtract two complex numbers, but what about

division? Recall that in the ordinary arithmetic we are allowed to divide by

any real number that is not zero. Now let us try to divide the complex

number aþ ib by the complex number cþ id. We must take the latter to

be non-zero, which means that the real numbers c and d cannot both be

zero. Hence c2 þ d2 > 0, and therefore c2 þ d2 6¼ 0, so we are allowed to

divide by c2 þ d2. It is a direct exercise[4.1] to check (multiplying both sides

of the expression below by cþ id) that

(aþ ib)

(cþ id)
¼ acþ bd

c2 þ d2
þ i

bc� ad

c2 þ d2
:

This is of the same general form as before, so it is again a complex

number.

When we get used to playing with these complex numbers, we cease to

think of aþ ib as a pair of things, namely the two real numbers a and b,

but we think of aþ ib as an entire thing on its own, and we could use a

single letter, say z, to denote the whole complex number z ¼ aþ ib. It may

be checked that all the normal rules of algebra are satisWed by complex

numbers.[4.2] In fact, all this is a good deal more straightforward than

checking everything for real numbers. (For that check, we imagine that we

had previously convinced ourselves that the rules of algebra are satisWed

for fractions, and then we have to use Dedekind’s ‘cuts’ to show that the

rules still work for real numbers.) From this point of view, it seems rather

extraordinary that complex numbers were viewed with suspicion for so

long, whereas the much more complicated extension from the rationals to

the reals had, after ancient Greek times, been generally accepted without

question.

Presumably this suspicion arose because people could not ‘see’ the

complex numbers as being presented to them in any obvious way by the

physical world. In the case of the real numbers, it had seemed that

distances, times, and other physical quantities were providing the reality

that such numbers required; yet the complex numbers had appeared to be

merely invented entities, called forth from the imaginations of mathemat-

[4.1] Do this.

[4.2] Check this, the relevant rules being wþ z ¼ zþ w, wþ (uþ z) ¼ (wþ u)þ z, wz ¼ zw,

w(uz) ¼ (wu)z, w(uþ z) ¼ wuþ wz, wþ 0 ¼ w, w1 ¼ w:

§4.1 CHAPTER 4
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icians who desired numbers with a greater scope than the ones that they

had known before. But we should recall from §3.3 that the connection the

mathematical real numbers have with those physical concepts of length or

time is not as clear as we had imagined it to be. We cannot directly see the

minute details of a Dedekind cut, nor is it clear that arbitrarily great or

arbitrarily tiny times or lengths actually exist in nature. One could say that

the so-called ‘real numbers’ are as much a product of mathematicians’

imaginations as are the complex numbers. Yet we shall Wnd that complex

numbers, as much as reals, and perhaps even more, Wnd a unity with

nature that is truly remarkable. It is as though Nature herself is as

impressed by the scope and consistency of the complex-number system

as we are ourselves, and has entrusted to these numbers the precise

operations of her world at its minutest scales. In Chapters 21–23, we

shall be seeing, in detail, how this works.

Moreover, to refer just to the scope and to the consistency of complex

numbers does not do justice to this system. There is something more

which, in my view, can only be referred to as ‘magic’. In the remainder

of this chapter, and in the next two, I shall endeavour to convey to the

reader something of the Xavour of this magic. Then, in Chapters 7–9, we

shall again witness this complex-number magic in some of its most striking

and unexpected manifestations.

Over the four centuries that complex numbers have been known, a great

many magical qualities have been gradually revealed. Yet this is a magic

that had been perceived to lie within mathematics, and it indeed provided

a utility and a depth of mathematical insight that could not be achieved by

use of the reals alone. There had not been any reason to expect that the

physical world should be concerned with it. And for some 350 years from

the time that these numbers were introduced through the works of Car-

dano and Bombelli, it was purely through their mathematical role that the

magic of the complex-number system was perceived. It would, no doubt,

have come as a great surprise to all those who had voiced their suspicion of

complex numbers to Wnd that, according to the physics of the latter three-

quarters of the 20th century, the laws governing the behaviour of the

world, at its tiniest scales, is fundamentally governed by the complex-

number system.

These matters will be central to some of the later parts of this book

(particularly in Chapters 21–23). For the moment, let us concentrate on

some of the mathematical magic of complex numbers, leaving their phys-

ical magic until later. Recall that all we have done is to demand that �1

have a square root, together with demanding that the normal laws of

arithmetic be retained, and we have ascertained that these demands can

be satisWed consistently. This seems like a fairly simple thing to have done.

But now for the magic!

Magical complex numbers §4.1
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4.2 Solving equations with complex numbers

In what follows, I shall Wnd it necessary to introduce somewhat more

mathematical notation than previously. I apologize for this. However, it

is hardly possible to convey serious mathematical ideas without the use of

a certain amount of notation. I appreciate that there will be many readers

who are uncomfortable with these things. My advice to such readers is

basically just to read the words and not to bother too much about trying to

understand the equations. At least, just skim over the various formulae

and press on. There will, indeed, be quite a number of serious mathemat-

ical expressions scattered about this book, particularly in some of the later

chapters. My guess is that certain aspects of understanding will eventually

begin to come through even if you make little attempt to understand what

all the expressions actually mean in detail. I hope so, because the magic of

complex numbers, in particular, is a miracle well worth appreciating. If

you can cope with the mathematical notation, then so much the better.

First of all, we may ask whether other numbers have square roots. What

about �2, for example? That’s easy. The complex number i
ffiffiffi

2
p

certainly

squares to �2, and so also does �i
ffiffiffi

2
p

. Moreover, for any positive real

number a, the complex number i
ffiffiffi

a
p

squares to �a, and �i
ffiffiffi

a
p

does also.

There is no real magic here. But what about the general complex number

aþ ib (where a and b are real)? We Wnd that the complex number

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

� �

r

þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

� �

r

squares to aþ ib (and so does its negative).[4.3] Thus, we see that, even

though we only adjoined a square root for a single quantity (namely �1),

we Wnd that every number in the resulting system now automatically has a

square root! This is quite diVerent from what happened in the passage

from the rationals to the reals. In that case, the mere introduction of the

quantity
ffiffiffi

2
p

into the system of rationals would have got us almost no-

where.

But this is just the very beginning. We can ask about cube roots, Wfth

roots, 999th roots, pth roots—or even i-th roots. We Wnd, miraculously,

that whatever complex root we choose and whatever complex number we

apply it to (excluding 0), there is always a complex-number solution to this

problem. (In fact, there will normally be a number of diVerent solutions to

the problem, as we shall be seeing shortly. We noted above that for square

roots we get two solutions, the negative of the square root of a complex

number z being also a square root of z. For higher roots there are more

solutions; see §5.4.)

[4.3] Check this.

§4.2 CHAPTER 4
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Weare still barely scratching the surface of complex-numbermagic.What

I have just asserted above is really quite simple to establish (oncewe have the

notionof a logarithmof a complexnumber, aswe shall shortly, inChapter 5).

Somewhat more remarkable is the so-called ‘fundamental theorem of alge-

bra’ which, in eVect, asserts that any polynomial equation, such as

1� zþ z4 ¼ 0

or

pþ iz�
ffiffiffiffiffiffiffiffi

417
p

z3 þ z999 ¼ 0,

must have complex-number solutions. More explicitly, there will always be

a solution (normally several diVerent ones) to any equation of the form

a0 þ a1zþ a2z
2 þ a3z

3 þ � � � þ anz
n ¼ 0,

where a0, a1, a2, a3 , . . . , an are given complex numbers with the an taken as

non-zero.2 (Here n can be any positive integer that we care to choose, as big

as we like.) For comparison, we may recall that i was introduced, in eVect,

simply to provide a solution to the one particular equation

1þ z2 ¼ 0:

We get all the rest free!

Before proceeding further, it is worth mentioning the problem that Car-

danohadbeen concernedwith, fromaround1539,whenheWrst encountered

complex numbers and caught a hint of another aspect of their attendant

magical properties. This problem was, in eVect, to Wnd an expression for the

general solution of a (real) cubic equation (i.e. n ¼ 3 in the above). Cardano

found that the general cubic could be reduced to the form

x3 ¼ 3pxþ 2q

by a simple transformation. Here p and q are to be real numbers, and I

have reverted to the use of x in the equation, rather than z, to indicate that

we are now concerned with real-number solutions rather than complex

ones. Cardano’s complete solution (as published in his 1545 book Ars

Magna) seems to have been developed from an earlier partial solution that

he had learnt in 1539 from Niccolò Fontana (‘Tartaglia’), although this

partial solution (and perhaps even the complete solution) had been found

earlier (before 1526) by Scipione del Ferro.3 The (del Ferro–)Cardano

solution was essentially the following (written in modern notation):

x ¼ (qþ w)
1
3 þ (q� w)

1
3,

where

Magical complex numbers §4.2
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w ¼ (q2 � p3)
1
2:

Now this equation presents no fundamental problem within the system of

real numbers if

q2 > p3:

In this case there is just one real solution x to the equation, and it is indeed

correctly given by the (del Ferro–)Cardano formula, as given above. But if

q2 < p3,

the so-called irreducible case, then, although there are now three real solu-

tions, the formula involves the square root of the negative number q2 � p3

and so it cannot be used without bringing in complex numbers. In fact, as

Bombelli later showed (in Chapter 2 of hisL’Algebra of 1572), if we do allow

ourselves to admit complex numbers, then all three real solutions are indeed

correctly expressed by the formula.4 (This makes sense because the expres-

sion provides us with two complex numbers added together, where the parts

involving i cancel out in the sum, giving a real-number answer.5) What is

mysterious about this is that even though it would seem that the problem

has nothing to do with complex numbers—the equation having real coeY-

cients and all its solutions being real (in this ‘irreducible’ case)—we need to

journey through this seemingly alien territory of the complex-number world

in order that the formula may allow us to return with our purely real-

number solutions. Had we restricted ourselves to the straight and narrow

‘real’ path, we should have returned empty-handed. (Ironically, complex

solutions to the original equation can only come about in those cases when

the formula does not necessarily involve this complex journey.)

4.3 Convergence of power series

Despite these remarkable facts, we have still not got very far into complex-

number magic. There is much more to come! For example, one area where

complex numbers are invaluable is in providing an understanding of the

behaviour of what are called power series. A power series is an inWnite sum

of the form

a0 þ a1xþ a2x
2 þ a3x

3 þ � � � :

Because this sum involves an inWnite number of terms, it may be the case

that the series diverges, which is to say that it does not settle down to a

particular Wnite value as we add up more and more of its terms. For an

example, consider the series

1þ x2 þ x4 þ x6 þ x8 þ � � �

§4.3 CHAPTER 4
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(where I have taken a0 ¼ 1, a1 ¼ 0, a2 ¼ 1, a3 ¼ 0, a4 ¼ 1, a5 ¼ 0,

a6 ¼ 1, . . .). If we put x ¼ 1, then, adding the terms successively, we get

1, 1þ 1 ¼ 2, 1þ 1þ 1 ¼ 3,

1þ 1þ 1þ 1 ¼ 4, 1þ 1þ 1þ 1þ 1 ¼ 5, etc:,

and we see that the series has no chance of settling down to a particular

Wnite value, that is, it is divergent. Things are even worse if we try x ¼ 2,

for example, since now the individual terms are getting bigger, and adding

terms successively we get

1, 1þ 4 ¼ 5, 1þ 4þ 16 ¼ 21, 1þ 4þ 16þ 64 ¼ 85, etc:,

which clearly diverges. On the other hand, if we put x ¼ 1
2
, then we get

1, 1þ 1
4
¼ 5

4
, 1þ 1

4
þ 1

16
¼ 21

16
, 1þ 1

4
þ 1

16
þ 1

64
¼ 85

64
, etc:,

and it turns out that these numbers become closer and closer to the

limiting value 4
3
, so the series is now convergent.

With this series, it is not hard to appreciate, in a sense, an underlying

reason why the series cannot help but diverge for x ¼ 1 and x ¼ 2, while

converging for x ¼ 1
2
to give the answer 4

3
. For we can explicitly write down

the answer to the sum of the entire series, Wnding[4.4]

1þ x2 þ x4 þ x6 þ x8 þ � � � ¼ (1� x2)�1:

When we substitute x ¼ 1, we Wnd that this answer is (1� 12)�1 ¼ 0�1,

which is ‘inWnity’,6 and this provides us with an understanding of why the

series has to diverge for that value of x. When we substitute x ¼ 1
2
, the

answer is (1� 1
4
)�1 ¼ 4

3
, and the series actually converges to this particular

value, as stated above.

This all seems very sensible. But what about x ¼ 2? Now there is an

‘answer’ given by the explicit formula, namely (1� 4)�1 ¼ � 1
3
, although we

do not seem to get this value simply by adding up the terms of the series.

We could hardly get this answer because we are just adding together

positive quantities, whereas � 1
3

is negative. The reason that the series

diverges is that, when x ¼ 2, each term is actually bigger than the

corresponding term was when x ¼ 1, so that divergence for x ¼ 2 follows,

logically, from the divergence for x ¼ 1. In the case of x ¼ 2, it is not

that the ‘answer’ is really inWnite, but that we cannot reach this answer

by attempting to sum the series directly. In Fig. 4.1, I have plotted

the partial sums of the series (i.e. the sums up to some Wnite number of

terms), successively up to terms, together with the ‘answer’ (1� x2)�1

[4.4] Can you see how to check this expression?

Magical complex numbers §4.3
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x

y

Not accessed
by series

Fig. 4.1 The respective partial sums, 1, 1þ x2, 1þ x2 þ x4, 1þ x2 þ x4 þ x6 of

the series for (1� x2)�1 are plotted, illustrating the convergence of the series to

(1� x2)�1 for jxj < 1 and divergence for jxj > 1.

and we can see that, provided x lies strictly7 between the values�1 andþ1,

the curves depicting these partial sums do indeed converge on this answer,

namely (1� x2)�1, as we expect. But outside this range, the series simply

diverges and does not actually reach any Wnite value at all.

As a slight digression, it will be helpful to address a certain issue here

that will be of importance to us later. Let us ask the following question:

does the equation that we obtain by putting x ¼ 2 in the above expression,

namely

1þ 22 þ 24 þ 26 þ 28 þ � � � ¼ (1� 22)�1 ¼ � 1

3
,

actually make any sense? The great 18th-century mathematician Leonhard

Euler often wrote down equations like this, and it has become fashionable

to poke gentle fun at him for holding to such absurdities, while one might

excuse him on the grounds that in those early days nothing was properly

understood about matters of ‘convergence’ of series and the like. Indeed, it

is true that the rigorous mathematical treatment of series did not come

about until the late 18th and early 19th century, through the work of

Augustin Cauchy and others. Moreover, according to this rigorous treat-

ment, the above equation would be oYcially classiWed as ‘nonsense’. Yet, I

think that it is important to appreciate that, in the appropriate sense, Euler

really knew what he was doing when he wrote down apparent absurdities

of this nature, and that there are senses according to which the above

equation must be regarded as ‘correct’.

§4.3 CHAPTER 4
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In mathematics, it is indeed imperative to be absolutely clear that one’s

equations make strict and accurate sense. However, it is equally important

not to be insensitive to ‘things going on behind the scenes’ which may

ultimately lead to deeper insights. It is easy to lose sight of such things by

adhering too rigidly to what appears to be strictly logical, such as the fact

that the sum of the positive terms 1þ 4þ 16þ 64þ 256þ � � � cannot

possibly be � 1
3
. For a pertinent example, let us recall the logical absurdity

of Wnding a real solution to the equation x2 þ 1 ¼ 0. There is no solution;

yet, if we leave it at that, we miss all the profound insights provided by the

introduction of complex numbers. A similar remark applies to the absurd-

ity of a rational solution to x2 ¼ 2. In fact, it is perfectly possible to give a

mathematical sense to the answer ‘� 1
3
’ to the above inWnite series, but one

must be careful about the rules telling us what is allowed and what is not

allowed. It is not my purpose to discuss such matters in detail here,8 but it

may be pointed out that in modern physics, particularly in the area of

quantum Weld theory, divergent series of this nature are frequently en-

countered (see particularly §§26.7,9 and §§31.2,13). It is a very delicate

matter to decide whether the ‘answers’ that are obtained in this way are

actually meaningful and, moreover, actually correct. Sometimes extremely

accurate answers are indeed obtained by manipulating such divergent

expressions and are occasionally strikingly conWrmed by comparison

with actual physical experiment. On the other hand, one is often not so

lucky. These delicate issues have important roles to play in current phys-

ical theories and are very relevant for our attempts to assess them. The

point of immediate relevance to us here is that the ‘sense’ that one may be

able to attribute to such apparently meaningless expressions frequently

depends, in an essential way, upon the properties of complex numbers.

Let us now return to the issue of the convergence of series, and try to see

how complex numbers Wt into the picture. For this, let us consider a

function just slightly diVerent from (1� x2)�1, namely (1þ x2)�1, and

try to see whether it has a sensible power series expansion. There would

seem to be a better chance of complete convergence now, because

(1þ x2)�1 remains smooth and Wnite over the entire range of real numbers.

There is, indeed, a simple-looking power series for (1þ x2)�1, only slightly

diVerent from the one that we had before, namely

1� x2 þ x4 � x6 þ x8 � � � � ¼ (1þ x2)�1,

the diVerence being merely a change of sign in alternate terms.[4.5] In

Fig. 4.2, I have plotted the partial sums of the series, successively up to

Wve terms, just as before, together with this answer (1þ x2)�1. What seems

surprising is that the partial sums still only converge on the answer

[4.5] Can you see an elementary reason for this simple relationship between the two series?
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Fig. 4.2 The partial sums, 1, 1� x2, 1� x2 þ x4, 1� x2 þ x4 � x6, 1� x2 þ x4�
x6 þ x8, of the series for (1þ x2)�1 are likewise plotted, and again there is conver-

gence for jxj < 1 and divergence for jxj > 1, despite the fact that the function is

perfectly well behaved at x ¼ � 1.

in the range strictly between values �1 and þ1. We appear to be getting a

divergence outside this range, even though the answer does not go to

inWnity at all, unlike in our previous case. We can test this explicitly

using the same three values x ¼ 1, x ¼ 2, x ¼ 1
2

that we used before,

Wnding that, as before, convergence occurs only in the case x ¼ 1
2
, where

the answer comes out correctly with the limiting value 4
5
for the sum of the

entire series:

x ¼ 1: 1, 0, 1, 0, 1, 0, 1, etc:,

x ¼ 2: 1, �3, 13, �51, 205, �819, etc:,

x ¼ 1
2
: 1, 3

4
, 13

16
, 51

64
, 205

256
, 819

1024
, etc:

We note that the ‘divergence’ in the Wrst case is simply a failure of the

partial sums of the series ever to settle down, although they do not actually

diverge to inWnity.

Thus, in terms of real numbers alone, there is a puzzling discrepancy

between actually summing the series and passing directly to the ‘answer’

that the sum to inWnity of the series is supposed to represent. The

partial sums simply ‘take oV’ (or, rather, Xap wildly up and down)

just at the same places (namely x ¼ �1) as where trouble arose

in the previous case, although now the supposed answer to the inWnite

sum, namely (1þ x2)�1, does not exhibit any noticeable feature at these

places at all. The resolution of the mystery is to be found if we examine

complex values of this function rather than restricting our attention to

real ones.
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4.4 Caspar Wessel’s complex plane

In order to see what is going on here, it will be important to use the now-

standard geometrical representation of complex numbers in the Euclidean

plane. Caspar Wessel in 1797, Jean Robert Argand in 1806, John Warren

in 1828, and Carl Friedrich Gauss well before 1831, all independently,

came up with the idea of the complex plane (see Fig. 4.3), in which they

gave clear geometrical interpretations of the operations of addition and

multiplication of complex numbers. In Fig. 4.3, I have used standard

Cartesian axes, with the x-axis going oV to the right horizontally and the

y-axis going vertically upwards. The complex number

z ¼ xþ iy

is represented as the point with Cartesian coordinates (x, y) in the

plane.

We are now to think of a real number x as a particular case of the

complex number z ¼ xþ iy where y ¼ 0. Thus we are thinking of the

x-axis in our diagram as representing the real line (i.e. the totality of real

numbers, linearly ordered along a straight line). The complex plane,

therefore, gives us a direct pictorial representation of how the system of

real numbers extends outwards to become the entire system of complex

numbers. This real line is frequently referred to as the ‘real axis’ in the

complex plane. The y-axis is, correspondingly, referred to as the ‘imagin-

ary axis’. It consists of all real multiples of i.

Let us now return to our two functions that we have been trying to

represent in terms of power series. We took these as functions of the real

variable x, namely (1� x2)�1 and (1þ x2)�1, but now we are going to

extend these functions so that they apply to a complex variable z. There

Imaginary axis

3i

2i
y

i

0

−i

1+2i

2+i 3+i

21

2−i 3−i

3

1+i

1−i

−1+2i

−1+i

−1−2

−1−i

z =x+iy

x Real axis

Fig. 4.3 The complex plane

of z ¼ xþ iy. In Cartesian

coordinates (x, y), the x-axis

horizontally to the right is the

real axis; the y-axis vertically

upwards is the imaginary axis.
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is no problem about doing this, and we simply write these extended

functions as (1� z2)�1 and (1þ z2)�1, respectively. In the case of the Wrst

real function (1� x2)�1, we were able to recognize where the ‘divergence’

trouble starts, because the function is singular (in the sense of becoming

inWnite) at the two places x ¼ �1 and x ¼ þ1; but, with (1þ x2)�1, we saw

no singularity at these places and, indeed, no real singularities at all.

However, in terms of the complex variable z, we see that these two

functions are much more on a par with one another. We have noted the

singularities of (1� z2)�1 at two points z ¼ �1, of unit distance from

the origin along the real axis; but now we see that (1þ z2)�1 also has

singularities, namely at the two places z ¼ �i (since then 1þ z2 ¼ 0),

these being the two points of unit distance from the origin on the imagin-

ary axis.

But what do these complex singularities have to do with the question of

convergence or divergence of the corresponding power series? There is a

striking answer to this question. We are now thinking of our power series

as functions of the complex variable z, rather than the real variable x, and

we can ask for those locations of z in the complex plane for which the

series converges and those for which it diverges. The remarkable general

answer,9 for any power series whatever

a0 þ a1zþ a2z
2 þ a3z

3 þ � � � ,

is that there is some circle in the complex plane, centred at 0, called the

circle of convergence, with the property that if the complex number z lies

strictly inside the circle then the series converges for that value of z,

whereas if z lies strictly outside the circle then the series diverges for that

value of z. (Whether or not the series converges when z lies actually on the

circle is a somewhat delicate issue that will not concern us here, although it

has relevance to the issues that we shall come to in §§9.6,7.) In this

statement, I am including the two limiting situations for which the series

diverges for all non-zero values of z, when the circle of convergence has

shrunk down to zero radius, and when it converges for all z, in which case

the circle has expanded to inWnite radius. To Wnd where the circle of

convergence actually is for some particular given function, we look to

see where the singularities of the function are located in the complex plane,

and we draw the largest circle, centred about the origin z ¼ 0, which

contains no singularity in its interior (i.e. we draw it through the closest

singularity to the origin).

In the particular cases (1� z2)�1 and (1þ z2)�1 that we have just been

considering, the singularities are of a simple type called poles (arising

where some polynomial, appearing in reciprocal form, vanishes). Here

these poles all lie at unit distance from the origin, and we see that the
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Poles for
(1−z2)−1

Poles 
for

(1+z2)−1
Converges

0−1 1

i

−i

Fig. 4.4 In the complex

plane, the functions

(1� z2)�1 and (1þ z2)�1

have the same circle of con-

vergence, there being poles

for the former at z ¼ � 1

and poles for the latter at

z ¼ � i, all having the same

(unit) distance from the

origin.

circle of convergence is, in both cases, just the unit circle about the origin.

The places where this circle meets the real axis are the same in each case,

namely the two points z ¼ �1 (see Fig. 4.4). This explains why the two

functions converge and diverge in the same regions—a fact that is not

manifest from their properties simply as functions of real variables. Thus,

complex numbers supply us with deep insights into the behaviour of power

series that are simply not available from the consideration of their real-

variable structure.

4.5 How to construct the Mandelbrot set

To end this chapter, let us look at another type of convergence/divergence

issue. It is the one that underlies the construction of that extraordinary

conWguration, referred to in §1.3 and depicted in Fig. 1.2, known as the

Mandelbrot set. In fact, this is just a subset of Wessel’s complex plane

which can be deWned in a surprisingly simple way, considering the extreme

complication of this set. All we need to do is examine repeated applica-

tions of the replacement

z 7! z2 þ c,

where c is some chosen complex number. We think of c as a point in the

complex plane and start with z ¼ 0. Then we iterate this transformation

(i.e. repeatedly apply it again and again) and see how the point z in the

plane behaves. If it wanders oV to inWnity, then the point c is to be

coloured white. If z wanders around in some restricted region without

Magical complex numbers §4.5
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ever receding to inWnity, then c is to be coloured black. The black region

gives us the Mandelbrot set.

Let us describe this procedure in a little more detail. How does the

iteration proceed? First, we Wx c. Then we take some point z and apply the

transformation, so that z becomes z2 þ c. Then apply it again, so we now

replace the ‘z’ in z2 þ c by z2 þ c, and we get (z2 þ c)2 þ c. We next replace

the ‘z’ in z2 þ c by (z2 þ c)2 þ c, so our expression becomes

((z2 þ c)2 þ c)2 þ c. We then follow this by replacing the ‘z’ in z2 þ c by

((z2 þ c)2 þ c)2 þ c, and we obtain (((z2 þ c)2 þ c)2 þ c)2 þ c, and so on.

Let us now see what happens if we start at z ¼ 0 and then iterate in this

way. (We can just put z ¼ 0 in the above expressions.) We now get the

sequence

0, c, c2 þ c, (c2 þ c)2 þ c, ((c2 þ c)2 þ c)2 þ c, . . . :

This gives us a succession of points on the complex plane. (On a computer,

one would just work these things out purely numerically, for each individ-

ual choice of the complex number c, rather than using the above algebraic

expressions. It is computationally much ‘cheaper’ just to do the arithmetic

afresh each time.) Now, for any given value of c, one of two things can

happen: (i) points of the sequence eventually recede to greater and greater

distances from the origin, that is, the sequence is unbounded, or (ii) every

one of the points lies within some Wxed distance from the origin (i.e. within

some circle about the origin) in the complex plane, that is, the sequence is

bounded. The white regions of Fig. 1.2a are the locations of c that give an

unbounded sequence (i), whereas the black regions are the locations of c

where it is the bounded case (ii) that holds, the Mandelbrot set itself being

the entire black region.

The complication of the Mandelbrot set arises from the fact that there

are many diVerent and often highly involved ways in which the iterated

sequence can remain bounded. There can be elaborate combinations of

cycles and ‘almost’ cycles of various kinds, dotting around the plane in

various intricate ways—but it would take us too far aWeld to try to

understand in any detail how the extraordinary complication of this set

comes about, and where subtle issues of complex analysis and number

theory are involved. The interested reader may care to consult Peitgen and

Reichter (1986) and Peitgen and Saupe (1988) for further information and

pictures (see also Douady and Hubbard 1985).

Notes

Section 4.1

4.1. See Exercise [4.2] for these rules.
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Section 4.2

4.2. It is a direct consequence[4.6] that any complex polynomial in the single variable z

factorizes into linear factors,

a0 þ a1zþ a2z
2 þ � � � þ anz

n ¼ an(z� b1)(z� b2) � � � (z� bn),

and it is this statement that is normally termed ‘the fundamental theorem of

algebra’.

4.3. As the story goes, Tartaglia had revealed his partial solution to Cardano only

after Cardano had been sworn to secrecy. Accordingly, Cardano could not

publish his more general solution without breaking this oath. However, on a

subsequent trip to Bologna, in 1543, Cardano examined del Ferro’s posthumous

papers and satisWed himself of del Ferro’s actual priority. He considered that this

freed him to publish all these results (with due acknowledgement both to Tartaglia

and del Ferro) in Ars Magna in 1545. Tartaglia disagreed, and the dispute had

very bitter consequences (see Wykes 1969).

4.4. For more information, see van der Waerden (1985).

4.5. The reason for this is that we are adding together two numbers which are complex

conjugates of each other (see §10.1) and such a sum is always a real number.

Section 4.3

4.6. Recall from Note 2.4 that 0�1 should mean 1
0
, i.e. ‘one divided by zero’. It is a

convenient ‘shorthand to express the ‘result’ of this illegal operation ‘0�1 ¼ 1’.

4.7. ‘Strictly’ means that the end-values are not included in the range.

4.8. For further information, see, for example, Hardy (1940).

Section 4.4

4.9. See e.g. Priestly (2003), p.71—referred to as ‘radius of convergence’—and Need-

ham (2002), pp. 67,264.

Magical complex numbers Notes

[4.6] Show this. (Hint: Show that no remainder survives if this polynomial is ‘divided’ by z� b

whenever z ¼ b solves the given equation.)
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5
Geometry of logarithms, powers, and roots

5.1 Geometry of complex algebra

The aspects of complex-number magic discussed at the end of the previous

chapter involve many subtleties, so let us pull back a little and look at

some more elementary, though equally enigmatic and important, pieces of

magic. First, let us see how the rules for addition and multiplication that

we encountered in §4.1 are geometrically represented in the complex plane.

We can exhibit these as the parallelogram law and the similar-triangle law,

respectively, depicted in Fig. 5.1a,b. SpeciWcally, for two general complex

numbers w and z, the points representing wþ z and wz are determined by

the respective assertions:

the points 0, w, wþ z, z are the vertices of a parallelogram

and

the triangles with vertices 0, 1, w and 0, z, wz are similar.

z
z

w+z
wz

w

w

0 1 0 1

(a) (b)

Fig. 5.1 Geometrical description of the basic laws of complex-number algebra.

(a) Parallelogram law of addition: 0, w, wþ z, z give the vertices of a parallelo-

gram. (b) Similar-triangle law of multiplication: the triangles with vertices

0, 1, w and 0, z, wz are similar.
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(Normal conventions about orderings and orientations are being

adopted here. By this, I mean that we go around the parallelogram

cyclicly, so the line segment from w to wþ z is parallel to that from

0 to z, etc.; moreover, there is to be no ‘reXection’ involved in the similar-

ity relation between the two triangles. Also, there are special cases

where the triangles or parallelogram degenerate in various ways.[5.1])

The interested reader may care to check these rules by trigonometry

and direct computation.[5.2] However, there is another way of looking

at these things which avoids detailed computation and yields greater

insights.

Let us consider addition and multiplication in terms of diVerent maps

(or ‘transformations’) that send the entire complex plane to itself. Any

given complex number w deWnes an ‘addition map’ and a ‘multiplication

map’, these being the operations which, when applied to an arbitrary

complex number z, will add w to z and take the product of w with z,

respectively, that is,

z 7! wþ z and z 7! wz:

It is easy to see that the addition map simply slides the complex plane along

without rotation or change of size or shape—an example of a translation

(see §2.1)—displacing the origin 0 to the point w; see Fig. 5.2a. The paral-

lelogram law is basically a restatement of this. But what about the multipli-

cation map? This provides a transformation which leaves the origin

Wxed and preserves shapes—sending 1 to the point w. In the general case-

it combines a (non-reXective) rotation with a uniform expansion (or

z
w+z

w

1

wz

1

w

z

(a) (b)

Fig. 5.2 (a) The addition map ‘þw’ provides a translation of the complex plane,

sending 0 to w. (b) The multiplication map ‘�w’ provides a rotation and expansion

(or contraction) of the complex plane about 0, sending 1 to w.

[5.1] Examine the various possibilities.

[5.2] Do this.
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i

−i

−1 1

contraction); see Fig. 5.2b.[5.3] The similar-triangle law eVectively exhibits

this. This map will have particular signiWcance for us in §8.2.

In the particular case w ¼ i, the multiplication map is simply a right-

handed (i.e. anticlockwise) rotation through a right angle (1
2
p). If we apply

this operation twice, we get a rotation through p, which is simply a

reXection in the origin; in other words, this is the multiplication map

that sends each complex number z to its negative. This provides us with

a graphic realization of the ‘mysterious’ equation i2 ¼ �1 (Fig. 5.3). The

operation ‘multiply by i’ is realized as the geometrical transformation

‘rotate through a right angle’. When viewed in this way, it does not

seem so mysterious that the ‘square’ of this operation (i.e. doing it twice)

should give the same eVect as the operation of ‘taking the negative’. Of

course, this does not remove the magic and the mystery of why complex

algebra works so well. Nor does it tell us a clear physical role for these

numbers. One may ask, for example: why only rotate in one plane;

what about three dimensions? I shall address diVerent aspects of these

questions later, particularly in §§11.2,3, §18.5, §§21.6,9, §§22.2,3,8–10,

§33.2, and §34.8.

In our description of a complex number in the plane, we used the standard

Cartesian coordinates (x, y) for a point in the plane, but we could alterna-

tively use polar coordinates [r, y]. Here, the positive real number r measures

the distance from the origin and the angle y measures the angle that the

line from the origin to the point z makes with the real axis, measured in an

[5.3] Try to show this without detailed calculation, and without trigonometry. (Hint: This is a

consequence of the ‘distributive law’ w(z1 þ z2) ¼ wz1 þ wz2, which shows that the ‘linear’ struc-

ture of the complex plane is preserved, and w(iz) ¼ i(wz), which shows that rotation through a

right angle is preserved; i.e. right angles are preserved.)

Fig. 5.3 The particular operation ‘multi-

ply by i’ is realized, in the complex plane,

as the geometrical transformation ‘rotate

through right angle’. The ‘mysterious’

equation i2 ¼ �1 is rendered visual.
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0

(a) (b)

q q1

z z

r

0 1

q+2π

Fig. 5.4 (a) Passing from Cartesian (x, y) to polar [r, y], we have z¼xþ iy¼reiy,

where the modulus r ¼ jzj is the distance from the origin and the argument y is the

angle that the line from the origin to z makes with real axis, measured anticlock-

wise. (b) If we do not insist �p > y # p, we can allow z to wind around origin

many times, adding any integer multiple of 2p to y.

anticlockwise direction; see Fig. 5.4a. The quantity r is referred to as the

modulus of the complex number z, which we sometimes write as

r ¼ jzj,

and y as its argument (or, in quantum theory, sometimes as its phase). For

z ¼ 0, we do not need to bother with y, but we can still deWne r to be the

distance from the origin, which in this case simply gives r ¼ 0.

We could, for deWniteness, insist that y lie in a particular range, such as

�p < y# p (which is a standard convention). Alternatively, we may just

think of the argument as something with the ambiguity that we are

allowed to add integer multiples of 2p to it without aVecting anything.

This is just a matter of allowing us to wind around the origin as many

times as we like, in either direction, when measuring the angle (see Fig.

5.4b). (This second point of view is actually the more profound one, and it

will have implications for us shortly.) We see from Fig. 5.5 and basic

trigonometry that

x ¼ r cos y and y ¼ r sin y,

and, inversely, that

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

and y ¼ tan�1 y

x
,

where y ¼ tan�1 (y=x) means some speciWc value of the many-valued

function tan�1. (For those readers who have forgotten all their trigonom-

etry, the Wrst two formulae just re-express the deWnitions of the sine and
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y = r sin q

q

r

z

x = r cos q

y

cosine of an angle in terms of a right-angled triangle: ‘cos of angle equals

adjacent over hypotenuse’ and ‘sin of angle equals opposite over hypoten-

use’, r being the hypotenuse; the second two express the Pythagorean

theorem and, in inverse form, ‘tan of angle equals opposite over hypoten-

use’. One should also note that tan�1 is the inverse function of tan, not the

reciprocal, so the above equation y ¼ tan�1 (y=x) stands for tan y ¼ y=x.

Finally, there is the ambiguity in tan�1 that any integer multiple of 2p can

be added to y and the relation will still hold.)1

5.2 The idea of the complex logarithm

Now, the ‘similar-triangle law’ of multiplication of two complex numbers,

as illustrated in Fig. 5.1b, can be re-expressed in terms of the fact that

when we multiply two complex numbers we add their arguments and

multiply their moduli.[5.4] Note the remarkable fact here that, as far as

the rule for the arguments is concerned, we have converted multiplication

into addition. This fact is the basis of the use of logarithms (the logarithm

of the product of two numbers is equal to the sum of their logarithms:

log ab ¼ log aþ log b), as is exhibited by the slide-rule (Fig. 5.6), and this

property had fundamental importance to computational practice in earlier

times.2 Now we use electronic calculators to do our multiplication for us.

Although this is far faster and more accurate than the use of a slide-rule or

log tables, we lose something very signiWcant for our understanding if we

gain no direct experience of the beautiful and deeply important logarith-

mic operation. We shall see that logarithms have a profound role to play in

relation to complex numbers. Indeed, the argument of a complex number

really is a logarithm, in a certain clear sense. We shall try to understand

how this comes about.

Also, recall the assertion in §4.2 that the taking of roots for complex

numbers is basically a matter of understanding complex logarithms. We

[5.4] Spell this out.

Fig. 5.5 Relation between the Cartesian

and the polar forms of a complex

number: x ¼ r cos y and y ¼ r sin y,
where inversely r ¼ (

p
x2 þ y2) and

y ¼ tan�1 (y=x).
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1

1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

Fig. 5.6 Slide rules display numbers on a logarithmic scale, thereby enabling

multiplication to be expressed by the adding of distances, in accordance with the

formula logb (p� q) ¼ logb pþ logb q. (Multiplication by 2 is illustrated.)

shall Wnd that there are some striking relations between complex loga-

rithms and trigonometry. Let us try to see how all these things come

together.

First, recall something about ordinary logarithms. A logarithm is the

reverse of ‘raising a number to a power’, or of exponentiation. ‘Raising to a

power’ is an operation that converts addition into multiplication. Why is

this? Take any (non-zero) number b. Then note the formula (converting

addition into multiplication)

bmþn ¼ bm � bn,

which is obvious if m and n are positive integers, because each side

just represents mþ n instances of the number b, all multiplied together.

What we have to do is to Wnd a way of generalizing this so that m and n

do not have to be positive integers, but can be any complex numbers

whatever. For this, we need to Wnd the right deWnition of ‘b raised to

the power z’, for complex z, and we want the same formula as the

above, namely bwþz ¼ bw � bz, to hold when the exponents w and z are

complex.

In fact, the procedure for doing this mirrors, to some extent, the very

history of generalizing, step by step, from the positive integers to the

complex numbers, as was done, starting from Pythagoras, via the work

of Eudoxos, through Brahmagupta, until the time of Cardano and Bom-

belli (and later), as was indicated in §4.1. First, the notion of ‘bz’ is initially

understood, when z is a positive integer, as simply b� b� � � � � b, with z

b’s multiplied together; in particular, b1 ¼ b. Then (following the lead of

Brahmagupta) we allow z to be zero, realizing that to preserve

bwþz ¼ bw � bz we need to deWne b0 ¼ 1. Next we allow z to be negative,

and realize, for the same reason, that for the case z ¼ �1 we must deWne

b�1 to be the reciprocal of b (i.e. 1/b), and that b�n, for a natural number n,

must be the nth power of b�1. We then try to generalize to the situations
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when z is a fraction, starting with the case z ¼ 1=n, where n is a positive

integer. Repeated application of bw � bz ¼ bwþz leads us to conclude that

(bz)n ¼ bzn; thus, putting z ¼ 1=n, we derive the fact that b1=n is an nth root

of b.

We can do this within the realm of the real numbers, provided that the

number b has been taken to be positive. Then we can take b1=n to be the

unique positive nth root of b (when n is a positive integer) and we can

continue with deWning bz uniquely for any rational number z ¼ m=n to be

the mth power of the nth root of b and thence (using a limiting process) for

any real number z. However, if b is allowed to be negative, then we hit a

snag at z ¼ 1
2
, since

ffiffiffi

b
p

then requires the introduction of i and we are down

the slippery slope to the complex numbers. At the bottom of that slope we

Wnd our magical complex world, so let us brace ourselves and go all the

way down.

We require a deWnition of bp such that, for all complex numbers p, q,

and b (with b 6¼ 0), we have

b pþq ¼ bp � bq:

We could then hope to deWne the logarithm to the base b (the operation

denoted by ‘logb’) as the inverse of the function deWned by f (z) ¼ bz,

that is,

z ¼ logb w if w ¼ bz:

Then we should expect

logb (p� q) ¼ logb pþ logb q,

so this notion of logarithm would indeed convert multiplication into

addition.

5.3 Multiple valuedness, natural logarithms

Although this is basically correct, there are certain technical diYculties

about doing this (which we shall see how to deal with shortly). In the

Wrst place, bz is ‘many valued’. That is to say, there are many diVerent

answers, in general, to the meaning of ‘bz’. There is also an additional

many-valuedness to logb w. We have seen the many-valuedness of bz

already with fractional values of z. For example, if z ¼ 1
2
, then ‘bz’ ought

to mean ‘some quantity t which squares to b’, since we require

t2 ¼ t� t ¼ b
1
2 � b

1
2 ¼ b

1
2
þ1

2 ¼ b1 ¼ b. If some number t satisWes this prop-

erty, then �t will do so also (since (� t)� (� t) ¼ t2 ¼ b). Assuming that

b 6¼ 0, we have two distinct answers for b1=2 (normally written �
ffiffiffi

b
p

).

More generally, we have n distinct complex answers for b1=n, when n is
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a positive integer: 1, 2, 3, 4, 5, . . . . In fact, we have some Wnite number

of answers whenever n is a (non-zero) rational number. If n is irrational,

then we have an inWnite number of answers, as we shall be seeing

shortly.

Let us try to see how we can cope with these ambiguities. We shall start

by making a particular choice of b, above, namely the fundamental

number ‘e’, referred to as the base of natural logarithms. This will reduce

our ambiguity problem. We have, as a deWnition of e:

e ¼ 1þ 1

1!
þ 1

2!
þ 1

3!
þ 1

4!
þ � � � ¼ 2:718 281 828 5 . . . ,

where the exclamation points denote factorials, i.e.

n! ¼ 1� 2� 3� 4� � � � � n,

so that 1! ¼ 1, 2! ¼ 2, 3! ¼ 6, etc. The function deWned by f (z) ¼ ez is

referred to as the exponential function and sometimes written ‘exp’; it may

be thought of as ‘e raised to the power z’ when acting on z, this ‘power’ being

deWned by the following simple modiWcation of the above series for e:

ez ¼ 1þ z

1!
þ z2

2!
þ z3

3!
þ z4

4!
þ � � � :

This important power series actually converges for all values of z (so it

has an inWnite circle of convergence; see §4.4). The inWnite sum makes a

particular choice for the ambiguity in ‘bz’ when b ¼ e. For example, if

z ¼ 1
2
, then the series gives us the particular positive quantity þ

ffiffiffi

e
p

rather

than �
ffiffiffi

e
p

. The fact that z ¼ 1
2
actually gives a quantity e1=2 that squares to

e follows from the fact that ez, as deWned by this series,[5.5] indeed always

has the required ‘addition-to-multiplication’ property

eaþb ¼ eaeb,

so that e
1
2

� �2

¼ e
1
2 e

1
2 ¼ e

1
2
þ1

2 ¼ e1 ¼ e:
Let us try to use this deWnition of ez to provide us with an unambiguous

logarithm, deWned as the inverse of the exponential function:

z ¼ logw if w ¼ ez:

This is referred to as the natural logarithm (and I shall write the function

simply as ‘log’ without a base symbol).3 From the above addition-to-

multiplication property, we anticipate a ‘multiplication-to-addition’ rule:

[5.5] Check this directly from the series. (Hint: The ‘binomial theorem’ for integer exponents

asserts that the coeYcient of apbq in aþ bð Þn is n!=p!q!.)
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log ab ¼ log aþ log b:

It is not immediately obvious that such an inverse to ez will necessarily

exist. However, it turns out in fact that, for any complex number w, apart

from 0, there always does exist z such that w ¼ ez, so we can deWne

log w ¼ z. But there is a catch here: there is more than one answer.

How do we express these answers? If [r, y] is the polar representation of

w, then we can write its logarithm z in ordinary Cartesian form

(z ¼ xþ iy) as

z ¼ log rþ iy,

where log r is the ordinary natural logarithm of a positive real number—the

inverse of the real exponential. Why? It is intuitively clear from Fig. 5.7 that

such a real logarithm function exists. In Fig. 5.7a we have the graph of

r ¼ ex. We just Xip the axes over to get the graph of the inverse function

x ¼ log r, as in Fig. 5.7b. It is not so surprising that the real part of z ¼ logw

is just an ordinary real logarithm. What is somewhat more remarkable4 is

that the imaginary part of z is just the angle y that is the argument of the

complex number w. This fact makes explicit my earlier comment that the

argument of a complex number is really just a form of logarithm.

Recall that there is an ambiguity in the deWnition of the argument of a

complex number. We can add any integer multiple of 2p to y, and this will

do just as well (recall Fig. 5.4b). Accordingly, there are many diVerent

solutions z for a given choice of w in the relation w ¼ ez. If we take one

such z, then zþ 2pin is another possible solution, where n is any integer

that we care to choose. Thus, the logarithm of w is ambiguous up to the

x

x

(a) (b)

r

r

Fig. 5.7 To obtain the logarithm of a positive real number r, consider the graph

(a) of r ¼ ex. All positive values of r are reached, so Xipping the picture over, we

get the graph (b) of the inverse function x ¼ log r for positve r.
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addition of any integer multiple of 2pi. We must bear this in mind with

expressions such as log ab ¼ log aþ log b, making sure that the appropri-

ately corresponding choices of logarithm are made.

This feature of the complex logarithm seems, at this stage, to be just an

awkward irritation. However, we shall be seeing in §7.2 that it is absolutely

central to some of the most powerful, useful, and magical properties of

complex numbers. Complex analysis depends crucially upon it. For the

moment, let us just try to appreciate the nature of the ambiguity.

Another way of understanding this ambiguity in log w is to note the

striking formula

e2pi ¼ 1,

whence ezþ2pi ¼ ez ¼ w, etc., showing that zþ 2pi is just as good a loga-

rithm of w as z is (and then we can repeat this as many times as we like).

The above formula is closely related to the famous Euler formula

epi þ 1 ¼ 0

(which relates the Wve fundamental numbers 0, 1, i, p, and e in one almost

mystical expression).[5.6]

We can best understand these properties if we take the exponential of

the expression z ¼ log rþ iy to obtain

w ¼ ez ¼ elog rþiy ¼ elog reiy ¼ reiy:

This shows that the polar form of any complex number w, which I had

previously been denoting by [r, y], can more revealingly be written as

w ¼ reiy:

In this form, it is evident that, if we multiply two complex numbers, we

take the product of their moduli and the sum of their arguments

(reiyseif ¼ rsei(yþf), so r and s are multiplied, whereas y and f are

added—bearing in mind that subtracting 2p from yþ f makes no diVer-

ence), as is implicit in the similar-triangle law of Fig. 5.1b. I shall hence-

forth drop the notation [r, y], and use the above displayed expression

instead. Note that if r ¼ 1 and y ¼ p then we get �1 and recover Euler’s

famous epi þ 1 ¼ 0 above, using the geometry of Fig. 5.4a; if r ¼ 1 and

y ¼ 2p, then we get þ1 and recover e2pi ¼ 1.

The circle with r ¼ 1 is called the unit circle in the complex plane (see

Fig. 5.8). This is given by w ¼ eiy for real y, according to the above

expression. Comparing that expression with the earlier ones x ¼ r cos y
and y ¼ r sin y given above, for the real and imaginary parts of what is

[5.6] Show from this that zþ pi is a logarithm of �w.
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z

1−1

−i

i

now the quantity w ¼ xþ iy, we obtain the proliWc ‘(Cotes–) Euler for-

mula’5

eiy ¼ cos yþ i sin y,

which basically encapsulates the essentials of trigonometry in the much

simpler properties of complex exponential functions.

Let us see how this works in elementary cases. In particular, the basic

relation eaþb ¼ eaeb, when expanded out in terms of real and imaginary

parts, immediately yields[5.7] the much more complicated-looking expres-

sions (no doubt depressingly familiar to some readers)

cos (aþ b) ¼ cos a cos b� sin a sin b,

sin (aþ b) ¼ sin a cos bþ cos a sin b:

Likewise, expanding out e3iy ¼ eiy
� �3

, for example, quickly yields6,[5.8]

cos 3y ¼ cos3 y� 3 cos y sin2 y,

sin 3y ¼ 3 sin y cos2 y� sin3 y:

There is indeed a magic about the direct way that such somewhat compli-

cated formulae spring from simple complex-number expressions.

5.4 Complex powers

Let us now return to the question of deWning wz (or bz, as previously

written). We can achieve such a thing by writing

wz ¼ ez logw

[5.7] Check this.

[5.8] Do it.

Fig. 5.8 The unit circle, consisting of

unit-modulus complex numbers. The

Cotes–Euler formula gives these as

eiy ¼ cos yþ i sin y for real y.
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(since we expect ez logw ¼ elog w
� �z

and elogw ¼ w). But we note that, because

of the ambiguity in log w, we can add any integer multiple of 2pi to log w to

obtain another allowable answer. This means that we can multiply or divide

any particular choice of wz by ez�2pi any number of times and we still get an

allowable ‘wz’. It is amusing to see the conWguration of points in the complex

plane that this gives in the general case. This is illustrated in Fig. 5.9. The

points lie at the intersections of two equiangular spirals. (An equiangular—

or logarithmic—spiral is a curve in the plane that makes a constant angle

with the straight lines radiating from a point in the plane.)[5.9]

This ambiguity leads us into all sorts of problems if we are not care-

ful.[5.10] The best way of avoiding these problems appears to be to

adopt the rule that the notation wz is used only when a particular choice

of log w has been speciWed. (In the special case of ez, the tacit convention is

always to take the particular choice log e ¼ 1. Then the standard notation

ez is consistent with our more general wz.) Once this choice of log w is

speciWed, then wz is unambiguously deWned for all values of z.

It may be remarked at this point that we also need a speciWcation of log

b if we are to deWne the ‘logarithm to the base b’ referred to earlier in this

section (the function denoted by ‘logb’), because we need an unambiguous

w ¼ bz to deWne z ¼ logb w. Even so, logb w will of course be many-valued

(as was log w), where we can add to logb w any integer multiple of

2pi= log b.[5.11]

One curiosity that has greatly intrigued some mathematicians in the past

is the quantity ii. This might have seemed to be ‘as imaginary as one could

get’. However, we Wnd the real answer

ii ¼ ei log i ¼ ei�1
2
pi ¼ e�p=2 ¼ 0:207 879 576 . . . ,

[5.9] Show this. How many ways? Also Wnd all special cases.

[5.10] Resolve this ‘paradox’: e ¼ e1þ2pi, so e ¼ (e1þ2pi)1þ2pi ¼ e1þ4pi�4p2 ¼ e1�4p2

.

[5.11] Show this.

Fig. 5.9 The diVerent values of

wz( ¼ ez log w). Any integer multiple

of 2pi can be added to logz, which

multiplies or divides wz by ez2pi an integer

number of times. In the general case,

these are represented in the complex

plane as the intersections of two

equiangular spirals (each making a

constant angle with straight lines through

the origin).
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by specifying log i ¼ 1
2
pi.[5.12] There are also many other answers, given by

the other speciWcations of log i. These are obtained by multiplying the

above quantity by e2pn, where n is any integer (or, equivalently, by raising

the above quantity to any power of the form 4nþ 1, where n is an

integer—positive or negative[5.13]). It is striking that all the values of ii

are in fact real numbers.

Let us see how the notation wz works for z ¼ 1
2
. We expect to be able to

represent the two quantities �
ffiffiffiffi

w
p

as ‘w1=2’ in some sense. In fact we get

these two quantities simply by Wrst specifying one value for log w and

then specifying another one, where we add 2pi to the Wrst one to get the

second one. This results in a change of sign in w1=2 (because of the

Euler formula epi ¼ �1). In a similar way, we can generate all n solutions

zn ¼ w when n is 3, 4, 5, . . . as the quantity w1=n, when successively

diVerent values of the logw are speciWed.[5.14] More generally, we can

return to the question of zth roots of a non-zero complex number w,

where z is any non-zero complex number, that was alluded to in §4.2.

We can express such a zth root as the expression w1=z, and we generally get

an inWnite number of alternative values for this, depending upon which

choice of log w is speciWed. With the right speciWed choice for log w1=z,

namely that given by ( log w)=z, we indeed get w1=z
� �z¼ w. We note, more

generally, that

wað Þb¼ wab,

where once we have made a speciWcation of log w (for the right-

hand side), we must (for the left-hand side) specify logwa to be

a log w.[5.15]

When z ¼ n is a positive integer, things are much simpler, and we get

just n roots. A situation of particular interest occurs, in this case, when

w ¼ 1. Then, specifying some possible values of log 1 successively, namely

0, 2pi, 4pi, 6pi, . . . , we get 1 ¼ e0, e2pi=n, e4pi=n, e6pi=n, . . . for the possible

values of 11=n. We can write these as 1, E, E2, E3, . . . , where E ¼ e2pi=n. In

terms of the complex plane, we get n points equally spaced around the unit

circle, called nth roots of unity. These points constitute the vertices of a

regular n-gon (see Fig. 5.10). (Note that the choices, �2pi,� 4pi,� 6pi,

etc., for log 1 would merely yield the same nth roots, in the reverse order.)

It is of some interest to observe that, for a given n, the nth roots of unity

constitute what is called a Wnite multiplicative group, more speciWcally, the

[5.12] Why is this an allowable speciWcation?

[5.13] Show why this works.

[5.14] Spell this out.

[5.15] Show this.
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2

3

  4

1

cyclic group Zn (see §13.1). We have n quantities with the property that we

can multiply any two of them together and get another one. We can also

divide one by another to get a third. As an example, consider the case

n ¼ 3. Now we get three elements 1, o, and o2, where o ¼ e2pi=3 (so o3 ¼ 1

and o�1 ¼ o2). We have the following simple multiplication and division

tables for these numbers:

In the complex plane, these particular numbers are represented as the

vertices of an equilateral triangle. Multiplication by o rotates the triangle

through 2
3
p (i.e. 1208) in an anticlockwise sense, and multiplication by o2

turns it through 2
3
p in a clockwise sense; for division, the rotation is in the

opposite direction (see Fig. 5.11).

z

z2

1

� 1 o o2 � 1 o o2

1 1 o o2 1 1 o2 o

o o o2 1 o o 1 o2

o2 o2 1 o o2 o2 o 1

Fig. 5.10 The nth roots of unity

e2pri=n(r ¼ 1, 2, . . . , n), equally spaced

around the unit circle, provide the vertices of

a regular n-gon. Here n ¼ 5.

Fig. 5.11 Equilateral triangle of cube

roots 1, o, and o2 of unity. Multiplication

by o rotates through 1208 anticlockwise,

and by o2, clockwise.
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5.5 Some relations to modern particle physics

Numbers such as these have interest in modern particle physics, providing

the possible cases of a multiplicative quantum number. In §3.5, I commented

on the fact that the additive (scalar) quantum numbers of particle physics

are invariably quantiWed, as far as is known, by integers. There are also a

few examples of multiplicative quantum numbers, and these seem to be

quantiWed in terms of nth roots of unity. I only know of a few examples of

such quantities in conventional particle physics, and in most of these the

situation is the comparatively uninteresting case n ¼ 2. There is one clear

case where n ¼ 3 and possibly a case for which n ¼ 4. Unfortunately, in

most cases, the quantum number is not universal, that is, it cannot

consistently be applied to all particles. In such situations, I shall refer to

the quantum number as being only approximate.

The quantity called parity is an (approximate) multiplicative quantum

number with n ¼ 2. (There are also other approximate quantities for which

n ¼ 2, similar in many respects to parity, such as g-parity. I shall not discuss

these here.) The notion of parity for a composite system is built up (multi-

plicatively) from those of its basic constituent particles. For such a constitu-

ent particle, its parity can be even, in which case, the mirror reXection of the

particle is the same as the particle itself (in an appropriate sense); alterna-

tively, its parity can be odd, in which case its mirror reXection is what is

called its antiparticle (see §3.5, §§24.1–3,8 and §26.4). Since the notion of

mirror reXection, or of taking the antiparticle, is something that ‘squares to

unity’, (i.e., doing it twice gets us back to where we started), the quantum

number—let us call it E—has to have the property E2 ¼ 1, so it must be an

‘nth root of unity’, with n ¼ 2 (i.e. E ¼ þ1 or E ¼ �1). This notion is only

approximate, because parity is not a conserved quantity with respect to

what are called ‘weak interactions’ and, indeed, there may not be a well-

deWned parity for certain particles because of this (see §§25.3,4).

Moreover, the notion of parity applies, in normal descriptions, only to

the family of particles known as bosons. The remaining particles belong to

another family and are known as fermions. The distinction between bosons

and fermions is a very important but somewhat sophisticated one, and we

shall come to it later, in §§23.7,8. (In one manifestation, it has to do with

what happens when we continuously rotate the particle’s state completely

by 2p (i.e. through 3608). Only bosons are completely restored to their

original states under such a rotation. For fermions such a rotation would

have to be done twice for this. See §11.3 and §22.8.) There is a sense in

which ‘two fermions make a boson’ and ‘two bosons also make a boson’

whereas ‘a boson and a fermion make a fermion’. Thus, we can assign the

multiplicative quantum number �1 to a fermion and þ1 to a boson to

describe its fermion/boson nature, and we have another multiplicative
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quantum number with n ¼ 2. As far as is known, this quantity is an exact

multiplicative quantum number.

It seems to me that there is also a parity notion that can be applied to

fermions, although this does not seem to be a conventional terminology.

This must be combined with the fermion/boson quantum number to give a

combined multiplicative quantum number with n ¼ 4. For a fermion, the

parity value would have to be þi or �i, and its double mirror reXection

would have the eVect of a 2p rotation. For a boson, the parity value would

be �1, as before.

The multiplicative quantum number with n ¼ 3 that I have referred to is

what I shall call quarkiness. (This is not a standard terminology, nor is it

usual to refer to this concept as a quantum number at all, but it does

encapsulate an important aspect of our present-day understanding of

particle physics.) In §3.5, I referred to the modern viewpoint that the

‘strongly interacting’ particles known as hadrons (protons, neutrons,

p-mesons, etc.) are taken to be composed of quarks (see §25.6). These

quarks have values for their electric charge which are not integer multiples

of the electron’s charge, but which are integer multiples of one-third of this

charge. However, quarks cannot exist as separate individual particles, and

their composites can exist as separate individuals only if their combined

charges add up to an integer, in units of the electron’s charge. Let q be the

value of the electric charge measured in negative units of that of the

electron (so that for the electron itself we have q ¼ �1, the electron’s

charge being counted as negative in the normal conventions). For quarks,

we have q ¼ 2
3
or � 1

3
; for antiquarks, q ¼ 1

3
or � 2

3
. Thus, if we take for the

quarkiness the multiplicative quantum number e�2qpi, we Wnd that it

takes values 1, o, and o2. For a quark the quarkiness is o, and for an

antiquark it is o2. A particle that can exist separately on its own only if its

quarkiness is 1. In accordance with §5.4, the degrees of quarkiness consti-

tute the cyclic group Z3. (In §16.1, we shall see how, with an additional

element ‘0’ and a notion of addition, this group can be extended to the

Wnite Weld F4.)

In this section and in the previous one, I have exhibited some of the

mathematical aspects of the magic of complex numbers and have hinted

at just a very few of their applications. But I have not yet mentioned those

aspects of complex numbers (to be given in Chapter 7) that I myself

found to be the most magical of all when I learned about them as a

mathematics undergraduate. In later years, I have come across yet more

striking aspects of this magic, and one of these (described at the end of

Chapter 9) is strangely complementary to the one which most impressed

me as an undergraduate. These things, however, depend upon certain

basic notions of the calculus, so, in order to convey something of this

magic to the reader, it will be necessary Wrst to say something about
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these basic notions. There is, of course, an additional reason for doing this.

Calculus is absolutely essential for a proper understanding of physics!

Notes

Section 5.1

5.1. The trigonometrical functions cot y ¼ cos y= sin y ¼ ( tan y)�1, sec y ¼ ( cos y)�1,

and cosec y ¼ ( sin y)�1 should also be noted, as should the ‘hyperbolic’ ver-

sions of the trigonometrical functions, sinh t ¼ 1
2
(et � e�t), cosh t ¼ 1

2
(et þ e�t),

tanh t ¼ sinh t= cosh t, etc. Note also that the inverses of these operations are

denoted by cot�1 , sinh�1, etc., as with the ‘tan�1 (y=x)’ of §5.1.

Section 5.2

5.2. Logarithms were introduced in 1614 by John Neper (Napier) and made practical

by Henry Briggs in 1624.

Section 5.3

5.3. The natural logarithm is also commonly written as ‘ln’.

5.4. From what has been established so far here, we cannot infer that ‘iy’ in the

formula z¼log r þ iy should not be a real multiple of iy. This needs calculus.

5.5. Cotes (1714) had the equivalent formula log ( cos yþ i sin y) ¼ iy. Euler’s

eiy ¼ cos yþ i sin y seems to have Wrst appeared 30 years later (see Euler 1748).

5.6. I am using the convenient (but somewhat illogical) notation cos3 y for ( cos y)3,
etc., here. The notational inconsistency with (the more logical) cos�1 y should

be noted, the latter being commonly also denoted as arc cos y. The formula

sin nyþ i cos ny ¼ ( sin yþ i cos y)n is sometimes known as ‘De Moivre’s theorem’.

Abraham De Moivre, a contemporary of Roger Cotes (see above endnote), seems

also to have been a co-discoverer of eiy ¼ sin yþ i cos y.
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6
Real-number calculus

6.1 What makes an honest function?

Calculus—or, according to its more sophisticated name, mathematical

analysis—is built from two basic ingredients: diVerentiation and integra-

tion. DiVerentiation is concerned with velocities, accelerations, the slopes

and curvature of curves and surfaces, and the like. These are rates at which

things change, and they are quantities deWned locally, in terms of structure

or behaviour in the tiniest neighbourhoods of single points. Integration,

on the other hand, is concerned with areas and volumes, with centres of

gravity, and with many other things of that general nature. These are

things which involve measures of totality in one form or another, and

they are not deWned merely by what is going on in the local or inWnitesimal

neighbourhoods of individual points. The remarkable fact, referred to as

the fundamental theorem of calculus, is that each one of these ingredients is

essentially just the inverse of the other. It is largely this fact that enables

these two important domains of mathematical study to combine together

and to provide a powerful body of understanding and of calculational

technique.

This subject of mathematical analysis, as it was originated in the 17th

century by Fermat, Newton, and Leibniz, with ideas that hark back to

Archimedes in about the 3rd century bc, is called ‘calculus’ because it

indeed provides such a body of calculational technique, whereby problems

that would otherwise be conceptually diYcult to tackle can frequently be

solved ‘automatically’, merely by the following of a few relatively simple

rules that can often be applied without the exertion of a great deal of

penetrating thought. Yet there is a striking contrast between the oper-

ations of diVerentiation and integration, in this calculus, with regard to

which is the ‘easy’ one and which is the ‘diYcult’ one. When it is a matter

of applying the operations to explicit formulae involving known functions,

it is diVerentiation which is ‘easy’ and integration ‘diYcult’, and in many

cases the latter may not be possible to carry out at all in an explicit way.

On the other hand, when functions are not given in terms of formulae, but

are provided in the form of tabulated lists of numerical data, then it is
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integration which is ‘easy’ and diVerentiation ‘diYcult’, and the latter may

not, strictly speaking, be possible at all in the ordinary way. Numerical

techniques are generally concerned with approximations, but there is also

a close analogue of this aspect of things in the exact theory, and again it is

integration which can be performed in circumstances where diVerentiation

cannot. Let us try to understand some of this. The issues have to do, in

fact, with what one actually means by a ‘function’.

To Euler, and the other mathematicians of the 17th and 18th centuries, a

‘function’ would have meant something that one could write down expli-

citly, like x2 or sin x or log 3� xþ exð Þ, or perhaps something deWned by

some formula involving an integration or maybe by an explicitly given

power series. Nowadays, one prefers to think in terms of ‘mappings’,

whereby some array A of numbers (or of more general entities) called the

domainof the function is ‘mapped’ to someother arrayB, called the targetof

the function (see Fig. 6.1). The essential point of this is that the function

would assign a member of the target B to each member of the domain A.

(Think of the function as ‘examining’ a number that belongs to A and then,

depending solely upon which number it Wnds, it would produce a deWnite

number belonging to B.) This kind of function can be just a ‘look-up table’.

Therewould be no requirement that there be a reasonable-looking ‘formula’

which expresses the action of the function in a manifestly explicit way.

Let us consider some examples. In Fig. 6.2, I have drawn the graphs of

three simple functions1, namely those given by x2, jxj, and y(x). In each

case, the domain and target spaces are both to be the totality of real

numbers, this totality being normally represented by the symbol R. The

function that I am denoting by ‘x2’ simply takes the square of the real

number that it is examining. The function denoted by ‘jxj’ (called the

absolute value) just yields x if x is non-negative, but gives �x if x is

negative; thus jxj itself is never negative. The function ‘y(x)’ is 0 if x

is negative, and 1 if x is positive; it is usual also to deWne y(0) ¼ 1
2
.

(This function is called the Heaviside step function; see §21.1 for another

important mathematical inXuence of Oliver Heaviside, who is perhaps

better known for Wrst postulating the Earth’s atmospheric ‘Heaviside

layer’, so vital to radio transmission.) Each of these is a perfectly good

Domain Target

Fig. 6.1 A function as a ‘mapping’,

whereby its domain (some array A of

numbers or of other entities) is

‘mapped’ to its target (some other array

B). Every element of A is assigned some

particular value in B, though diVerent

elements of A may attain the same

value and some values of B may not be

reached.
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y = x2

x

y

y = x

x

y

y = q (x)

x

y

(b)(a) (c)

Fig. 6.2 Graphs of (a) jxj, (b) x2, and (c) y(x); the domain and target being the

system of real numbers in each case.

function in this modern sense of the term, but Euler2 would have

had diYculty in accepting jxj or y(x) as a ‘function’ in his sense of the

term.

Why might this be? One possibility is to think that the trouble with jxj
and y(x) is that there is too much of the following sort of thing: ‘if x is

such-and-such then take so-and-so, whereas if x is . . . ’, and there is no

‘nice formula’ for the function. However, this is a bit vague, and in any

case we could wonder what is really wrong with jxj being counted as a

formula. Moreover, once we have accepted jxj, we could write[6.1] a for-

mula for y(x):

y(x) ¼ jxj þ x

2x

(although we might wonder if there is a good sense in which this gets the

right value for y(0), since the formula just gives 0/0).More to the point is that

the trouble with jxj is that it is not ‘smooth’, rather than that its explicit

expression is not ‘nice’. We see this in the ‘angle’ in the middle of Fig. 6.2a.

The presence of this angle is what prevents jxj from having a well-deWned

slope at x ¼ 0. Let us next try to come to terms with this notion.

6.2 Slopes of functions

As remarked above, one of the things with which diVerential calculus is

concerned is, indeed, the Wnding of ‘slopes’. We see clearly from the graph

of jxj, as shown in Fig. 6.2a, that it does not have a unique slope at the

[6.1] Show this (ignoring x ¼ 0).
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origin, where our awkward angle is. Everywhere else, the slope is well

deWned, but not at the origin. It is because of this trouble at the origin that

we say that jxj is not diVerentiable at the origin or, equivalently, not

smooth there. In contrast, the function x2 has a perfectly good uniquely

deWned slope everywhere, as illustrated in Fig. 6.2b. Indeed, the function

x2 is diVerentiable everywhere.

The situation with y(x), as illustrated in Fig. 6.2c, is even worse than

for jxj. Notice that y(x) takes an unpleasant ‘jump’ at the origin (x ¼ 0).

We say that y(x) is discontinuous at the origin. In contrast, both the

functions x2 and jxj are continuous everywhere. The awkwardness of

jxj at the origin is not a failure of continuity but of diVerentiability.

(Although the failure of continuity and of smoothness are diVerent

things, they are actually interconnected concepts, as we shall be seeing

shortly.)

Neither of these failings would have pleased Euler, presumably, and they

seem to provide reasons why jxj and y(x) might not be regarded as ‘proper’

functions. But now consider the two functions illustrated in Fig. 6.3.

The Wrst, x3, would be acceptable by anyone’s criteria; but what about the

second, which can be deWned by the expression xjxj, and which illustrates

the function that is x2 when x is non-negative and �x2 when x is negative?

To the eye, the two graphs look rather similar to each other and certainly

‘smooth’. Indeed, they both have a perfectly good value for the ‘slope’ at

the origin, namely zero (which means that the curves have a horizontal

slope there) and are, indeed, ‘diVerentiable’ everywhere, in the most direct

sense of that word. Yet, xjxj certainly does not seem to be the ‘nice’ sort of

function that would have satisWed Euler.

One thing that is ‘wrong’ with xjxj is that it does not have a well-deWned

curvature at the origin, and the notion of curvature is certainly something

that the diVerential calculus is concerned with. In fact, ‘curvature’ is

something that involves what are called ‘second derivatives’, which

y = x3

x

y

y = x  x

x

y

(a) (b)

Fig. 6.3 Graphs of (a) x3 and of (b) xjxj (i.e. x2 if x $ 0 and �x2 if x < 0).
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means doing the diVerentiation twice. Indeed, we say that the function xjxj
is not twice diVerentiable at the origin. We shall come to second and higher

derivatives in §6.3.

In order to start to understand these things, we shall need to see what

the operation of diVerentiation really does. For this, we need to know how

a slope is measured. This is illustrated in Fig. 6.4. I have depicted a fairly

representative-looking function, which I shall call f (x). The curve in

Fig. 6.4a depicts the relation y ¼ f (x), where the value of the coordinate

y measures the height and the value of x measures horizontal displace-

ment, as is usual in a Cartesian description. I have indicated the slope

of the curve at one particular point p, as the increment in the y coordinate

divided by the increment in the x coordinate, as we proceed along the

tangent line to the curve, touching it at the point p. (The technical deWni-

tion of ‘tangent line’ depends upon the appropriate limiting proced-

ures, but it is not my purpose here to provide these technicalities. I hope

that the reader will Wnd my intuitive descriptions adequate for our

immediate purposes.3) The standard notation for the value of this slope

is dy/dx (and pronounced ‘dy by dx’). We can think of ‘dy’ as a very tiny

increase in the value of y along the curve and of ‘dx’ as the correspond-

ing tiny increase in the value of x. (Here, technical correctness would

require us to go to the ‘limit’, as these tiny increases each get reduced to

zero.)

We can now consider another curve, which plots (against x) this slope

at each point p, for the various possible choices of x-coordinate; see

Fig. 6.4b. Again, I am using a Cartesian description, but now it is dy/dx

that is plotted vertically, rather than y. The horizontal displacement is

still measured by x. The function that is being plotted here is commonly

called f 0(x), and we can write dy=dx ¼ f 0(x). We call dy/dx the derivative

of y with respect to x, and we say that the function f 0(x) is the derivative4 of

f (x).

6.3 Higher derivatives; C1-smooth functions

Now let us see what happens when we take a second derivative. This means

that we are now looking at the slope-function for the new curve of Fig.

6.4b, which plots u ¼ f 0(x), where u now stands for dy/dx. In Fig. 6.4c, I

have plotted this ‘second-order’ slope function, which is the graph of du/dx

against x, in the same kind of way as I did before for dy/dx, so the value of

du/dx now provides us with the slope of the second curve u ¼ f 0(x). This

gives us what is called the second derivative of the original function f (x),

and this is commonly written f 00(x). When we substitute dy/dx for u in the

quantity du/dx, we get the second derivative of y with respect to x, which is
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y = f(x)
x

y

(a)

u = f �(x)

x

u

(b)

w = f ��(x)

x

w

(c)

slope
dy
dx

Fig. 6.4 Cartesian plot of (a) y ¼ f (x), (b) the derivative u ¼ f 0(x) (¼ dy=dx), and

(c) the second derivative f 00(x) ¼ d2y=dx2. (Note that f (x) has horizontal slope just

where f 0(x) meets the x-axis, and it has an inXection point where f 00(x) meets the

x-axis.)
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(slightly illogically) written d2y=dx2 (and pronounced ‘d-two-y by dx-

squared’).

Notice that the values of x where the original function f (x) has a

horizontal slope are just the values of x where f 0(x) meets the x-axis (so

dy/dx vanishes for those x-values). The places where f (x) acquires a (local)

maximum or minimum occur at such locations, which is important when

we are interested in Wnding the (locally) greatest and smallest values of a

function. What about the places where the second derivative f 00(x) meets

the x-axis? These occur where the curvature of f (x) vanishes. In general,

these points are where the direction in which the curve y ¼ f (x) ‘bends’

changes from one side of the curve to the other, at a place called a point of

inXection. (In fact, it would not be correct to say that f 00(x) actually

‘measures’ the curvature of the curve deWned by y ¼ f (x), in general; the

actual curvature is given by a more complicated expression5 than f 00(x),

but it involves f 00(x), and the curvature vanishes whenever f 00(x) vanishes.

Let us next consider our two (superWcially) similar-looking functions x3

and xjxj, considered above. In Fig. 6.5a,b,c, I have plotted x3 and its Wrst

and secondderivatives, as I didwith the function f (x) in Fig. 6.4, and, inFig.

6.5d,e,f, I have done the same with xjxj. In the case of x3, we see that

y = x3

(a)

y = x x

(d)

y = 3x2

(b)

y = 2 x

(e)

y = 6x

(c)

y = 2+4q (x)

(f)

Fig. 6.5 (a), (b), (c) Plots of x3, its Wrst derivative 3x2, and its second derivative 6x,

respectively. (d), (e), (f) Plots of xjxj, its Wrst derivative 2jxj, and the second

derivative � 2þ 4y(x), respectively.
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there are no problems with continuity or smoothness with either the Wrst

or second derivative. In fact the Wrst derivative is 3x2 and the second is 6x,

neither of which would have given Euler a moment of worry. (We shall see

how to obtain these explicit expressions shortly.) However, in the case of

xjxj, we Wnd something very much like the ‘angle’ of Fig. 6.2a for the Wrst

derivative, and a ‘step function’ behaviour for the second derivative, very

similar to Fig. 6.2c. We have failure of smoothness for the Wrst derivative

and failure of continuity for the second. Euler would not have cared for

this at all. This Wrst derivative is actually 2jxj and the second derivative is

�2þ 4y(x). (My more pedantic readers might complain that I should not

so glibly write down a ‘derivative’ for 2jxj, which is not actually diVerenti-

able at the origin. True, but this is just a quibble: full justiWcation of this

can be achieved using the notions that will be introduced at the end of

Chapter 9.)

We can easily imagine that functions can be constructed for which such

failure of smoothness or of continuity does not show up until many

derivatives have been calculated. Indeed, functions of the form xnjxj will

do the trick, where we can take n to be a positive integer which can be as

large as we like. The mathematical terminology for this sort of thing is to

say that the function f (x) is Cn-smooth if it can be diVerentiated n times (at

each point of its domain) and the nth derivative is continuous.6 The

function xnjxj is in fact Cn-smooth, but it is not Cnþ1-smooth at the origin.

How big should n be to satisfy Euler? It seems clear that he would not

have been content to stop at any particular value of n. It should surely be

possible to diVerentiate the kind of self-respecting function that Euler

would have approved of as many times as we like. To cover this situation,

mathematicians refer to a function as being C1-smooth if it counts as Cn-

smooth for every positive integer n. To put this another way, a C1-smooth

function must be diVerentiable as many times as we choose.

Euler’s notion of a function would, we presume, have demanded some-

thing like C1-smoothness. At least, we could imagine that he would have

expected his functions to be C1-smooth at most places in the domain. But

what about the function 1/x? (See Fig. 6.6.) This is certainly not C1-

smooth at the origin. It is not even deWned at the origin in the modern

sense of a function. Yet our Euler would certainly have accepted 1/x as a

decent ‘function’, despite this problem. There is a simple natural-looking

formula for it, after all. One could imagine that Euler would not have been

so much concerned about his functions being C1-smooth at every point on

its domain (assuming that he would have worried about ‘domains’ at all).

Perhaps things going wrong at the odd point or so would not matter. But

jxj and y(x) only went wrong at the same ‘odd point’ as does 1/x. It seems

that, despite all our eVorts, we still have not captured the ‘Eulerian’ notion

of a function that we have been striving for.
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y = 
1

      x

x

y

Fig. 6.6 Plot of 1
x
.

Let us take another example. Consider the function h(x), deWned by the

rules

h(x) ¼ 0 if x < 0,

e�1=x if x > 0.

�

The graph of this function is depicted in Fig. 6.7. This certainly looks like a

smooth function. In fact it is very smooth. It is C1-smooth over the entire

domain of real numbers. (Proving this is the sort of thing that one does in

a mathematics undergraduate course. I remember having to tackle this one

when I was an undergraduate myself.[6.2] Despite its utter smoothness, one

can certainly imagine Euler turning up his nose at a function deWned in this

kind of a way. It is clearly not just ‘one function’, in Euler’s sense. It is ‘two

y = e

x

y

y = 0

1 x−

Fig. 6.7 Plot of y ¼ h(x) ( ¼ 0 if x # 0 and¼ e�1=x if x > 0), which is C1-smooth.

[6.2] Have a go at proving this if you have the background.
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functions stuck together’, no matter how smooth a gluing job has been

done to paste over the ‘glitch’ at the origin. In contrast, to Euler, 1
x

is just

one function, despite the fact that it is separated into two pieces by a very

nasty ‘spike’ at the origin, where it is not even continuous, let alone

smooth (Fig. 6.6). To our Euler, the function h(x) is really no better

than jxj or y(x). In those cases, we clearly had ‘two functions glued

together’, though with much shoddier gluing jobs (and with y(x), the

glued bits seem to have come apart altogether).

6.4 The ‘Eulerian’ notion of a function?

How are we to come to terms with this ‘Eulerian’ notion of having just a

single function as opposed to a patchwork of separate functions? As the

example of h(x) clearly shows, C1-smoothness is not enough. It turns out

that there are actually two completely diVerent-looking approaches to

resolving this issue. One of these uses complex numbers, and it is decep-

tively simple to state, though momentous in its implications. We simply

demand that our function f (x) be extendable to a function f (z) of the

complex variable z so that f (z) is smooth in the sense that it is merely

required to be once diVerentiable with respect to the complex variable z.

(Thus f (z) is, in the complex sense, a kind of C1-function.) It is an

extraordinary display of genuine magic that we do not need more than

this. If f (z) can be diVerentiated once with respect to the complex param-

eter z, then it can be diVerentiated as many times as we like!

I shall return to the matter of complex calculus in the next chapter. But

there is another approach to the solution of this ‘Eulerian notion of

function’ problem using only real numbers, and this involves the concept

of power series, which we encountered in §2.5. (One of the things that

Euler was indeed a master of was manipulating power series.) It will be

useful to consider the question of power series, in this section, before

returning to the issue of complex diVerentiability. The fact that, locally,

complex diVerentiability turns out to be equivalent to the validity of power

series expansions is one of the truly great pieces of complex-number magic.

I shall come to all this in due course, but for the moment let us stick with

real-number functions. Suppose that some function f (x) actually has a

power series representation:

f (x) ¼ a0 þ a1xþ a2x
2 þ a3x

3 þ a4x
4 þ � � � :

Now, there are methods of Wnding out, from f (x), what the coeYcients

a0, a1, a2, a3, a4 , . . . must be. For such an expansion to exist, it is neces-

sary (although not suYcient, as we shall shortly see) that f (x) be C1-

smooth, so we shall have new functions f 0(x), f 00(x), f 000(x), f 0000(x), . . . ,
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etc., which are the Wrst, second, third, fourth, etc., derivatives of f (x),

respectively. In fact, we shall be concerned with the values of these func-

tions only at the origin (x ¼ 0), and we need the C1-smoothness of f (x)

only there. The result (sometimes called Maclaurin’s series7) is that if f (x)

has such a power series expansion, then[6.3]

a0 ¼ f (0), a1 ¼
f 0(0)

1!
, a2 ¼

f 00(0)

2!
, a3 ¼

f 000(0)

3!
, a4 ¼

f 0000(0)

4!
, . . . :

(Recall, from §5.3, that n! ¼ 1� 2� . . .� n.) But what about the

other way around? If the a’s are given in this way, does it follow that

the sum actually gives us f (x) (in some interval encompassing the

origin)?

Let us return to our seemingly seamless h(x). Perhaps we can spot a Xaw

at the joining point (x ¼ 0) using this idea. We try to see whether h(x)

actually has a power series expansion. Taking f (x) ¼ h(x) in the above, we

consider the various coeYcients a0, a1, a2, a3, a4 , . . . , noticing that they

all have to vanish, because the series has to agree with the value h(x) ¼ 0,

whenever x is just to the left of the origin. In fact, we Wnd that they all

vanish also for e�1=x, which is basically the reason why h(x) is C1-smooth

at the origin, with all derivatives coming from the two sides matching each

other. But this also tells us that there is no way that the power series can

work, because all the terms are zero (see Exercise 6.1) and therefore do not

actually sum to e�1=x. Thus there is a Xaw at the join at x ¼ 0: the function

h(x) cannot be expressed as a power series. We say that h(x) is not analytic

at x ¼ 0.

In the above discussion, I have really been referring to what would be

called a power series expansion about the origin. A similar discussion

would apply to any other point of the real-number domain of the function.

But then we have to ‘shift the origin’ to some other particular point,

deWned by the real number p in the domain, which means replacing x by

x� p in the above power series expansion, to obtain

f (x) ¼ a0 þ a1(x� p)þ a2(x� p)2 þ a3(x� p)3 þ � � � ,

where now

a0 ¼ f (p), a1 ¼
f 0(p)

1!
, a2 ¼

f 00(p)

2!
, a3 ¼

f 000(p)

3!
, . . . :

This is called a power series expansion about p. The function f (x) is called

analytic at p if it can be expressed as such a power series expression in some

interval encompassingx ¼ p. If f (x) is analytic at all points of its domain,we

[6.3] Show this, using rules given towards end of section.

Real-number calculus §6.4

113



just call it an analytic function or, equivalently, a Co-smooth function.

Analytic functions are, in a clear sense, even ‘smoother’ than C1-smooth

functions. In addition, they have the property that it is not possible to

get away with gluing two ‘diVerent’ analytic functions together, in the

manner of the examples y(x), jxj, xjxj, xnjxj, or h(x), given above.

Euler would have been pleased with analytic functions. These are ‘honest’

functions indeed!

However, all these power series are awkward things to be carrying

around, even if only in the imagination. The ‘complex’ way of looking at

things turns out to be enormously more economical. Moreover, it gives us

a greater depth of understanding. For example, the function 1
x

is not

analytic at x ¼ 0; yet it is still ‘one function’.[6.4] The ‘power series phil-

osophy’ does not directly tell us this. But from the point of view of

complex numbers, 1
x

is clearly just one function, as we shall be seeing.

6.5 The rules of differentiation

Before discussing these matters, it will be useful to say a little about the

wonderful rules that the diVerential calculus actually provides us with—

rules that enable us to diVerentiate functions almost without really think-

ing at all, but only after months of practice, of course! These rules enable

us to see how to write down the derivative of many functions directly,

particularly when they are represented in terms of power series.

Recall that, as a passing comment, I remarked above that the derivative

of x3 is 3x2. This is a particular case of a simple but important formula: the

derivative of xn is nxn�1, which we can write

d(xn)

dx
¼ nxn�1:

(It would distract us too much, here, for me to explain why this formula

holds. It is not really hard to show, and the interested reader can Wnd all

that is required in any elementary textbook on calculus.8 Incidentally, n

need not be an integer.) We can also express9 this equation (‘multiplying

through by dx’) by the convenient formula

d(xn) ¼ nxn�1dx:

There is not much more that we need to know about diVerentiating power

series. There are basically two other things. First, the derivative of a sum

of functions is the sum of the derivatives of the functions:

d[ f (x)þ g(x)] ¼ d f (x)þ dg(x):

[6.4] Consider the ‘one function’ e�1=x2

. Show that it is C1, but not analytic at the origin.
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This then extends to a sum of any Wnite number of functions.10 Second, the

derivative of a constant times a function is the constant times the deriva-

tive of that function:

d{a f (x)} ¼ a d f (x):

By a ‘constant’ I mean a number that does not vary with x. The coeYcients

a0, a1, a2, a3 , . . . in the power series are constants. With these rules, we

can directly diVerentiate any power series.[6.5]

Another way of expressing the constancy of a is

da ¼ 0:

Bearing this in mind, we Wnd that the rule given immediately above is

really a special case (with g(x) ¼ a) of the ‘Leibniz law’:

d{f (x) g(x)} ¼ f (x) dg(x)þ g(x) d f (x)

(and d(xn)=dx ¼ nxn�1, for any natural number n, can also be derived

from the Leibniz law[6.6]). A useful further law is

d{f (g(x))} ¼ f 0(g(x) )g0(x)dx:

From the last two and the Wrst, putting f (x)[g(x)]�1 into the Leibniz law,

we can deduce[6.7]

d
f (x)

g(x)

� �

¼ g(x) d f (x)� f (x) dg(x)

g(x)2
:

Armed with these few rules (and loads and loads of practice), one

can become an ‘expert at diVerentiation’ without needing to have much

in the way of actual understanding of why the rules work! This is the

power of a good calculus.[6.8] Moreover, with the knowledge of the deriva-

tives of just a few special functions,[6.9] one can become even more of an

expert. Just so that the uninitiated reader can become an ‘instant member’

of the club of expert diVerentiators, let me provide the main

examples:11,[6.10]

[6.5] Using the power series for ex given in §5.3, show that dex ¼ exdx.

[6.6] Establish this.

[6.7] Derive this.

[6.8] Work out dy=dx for y ¼ (1� x2)4, y ¼ (1þ x)=(1� x).

[6.9] With a constant, work out d( loga x), d( logx a), d(xx).

[6.10] For the Wrst, see Exercise [6.5]; derive the second from d(elog x); the third and fourth from

deix, assuming that the complex quantities work like real ones; and derive the rest from the earlier

ones, using d( sin ( sin�1 x)), etc., and noting that cos2xþ sin2x ¼ 1.
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d(ex) ¼ ex dx,

d(log x) ¼ dx

x
,

d(sinx) ¼ cosx dx,

d(cosx) ¼ � sin x dx,

d(tanx) ¼ dx

cos2 x
,

d(sin�1 x) ¼ dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p ,

d(cos�1 x) ¼ �dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p ,

d(tan�1 x) ¼ dx

1þ x2
:

This illustrates the point referred to at the beginning of this section that,

when we are given explicit formulae, the operation of diVerentiation is

‘easy’. Of course, I do not mean by this that this is something that you

could do in your sleep. Indeed, in particular examples, it may turn out that

the expressions get very complicated indeed. When I say ‘easy’, I just mean

that there is an explicit computational procedure for carrying out diVer-

entiation. If we know how to diVerentiate each of the ingredients in an

expression, then the procedures of calculus, as given above, tell us how to

go about diVerentiating the entire expression. ‘Easy’, here, really means

something that could be readily put on a computer. But things are very

diVerent if we try to go in the reverse direction.

6.6 Integration

As stated at the beginning of the chapter, integration is the reverse of diVer-

entiation. What this amounts to is trying to Wnd a function g(x) for which

g0(x) ¼ f (x), i.e. Wnding a solution y ¼ g(x) to the equation dy=dx ¼ f (x).

Anotherwayofputting this is that, insteadofmovingdownthepicture inFig.

6.4 (or Fig. 6.5), we try to work our way upwards. The beauty of the

‘fundamental theorem of calculus’ is that this procedure is telling us how to

work out areas under each successive curve. Have a look at Fig. 6.8. Recall

that the bottom curve u ¼ f (x) can be obtained from the top curve y ¼ g(x)

because it plots the slopesof that curve, f (x) being thederivativeof g(x).This

is justwhatwehadbefore.Butnow letus startwith thebottomcurve.WeWnd

that the top curve simply maps out the areas beneath the bottom curve. A

little more explicitly: if we take two vertical lines in the bottom picture given

by x ¼ a and x ¼ b, respectively, then the area bounded by these two lines,

thex-axis, andthecurve itself,willbe thediVerencebetween theheightsof the

top curve at those two x-values. Of course, in matters such as this, we must
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a b

Area

Area

(b)

f

(a)

g

x

x

Fig. 6.8 Fundamental theorem of calculus: re-interpret Fig. 6.4a,b, proceeding

upwards rather than downwards. Top curve (a) plots areas under bottom curve

(b), where area bounded by two vertical lines x ¼ a and x ¼ b, the x-axis, and the

bottom curve is diVerence, g(b)� g(a), of heights of the top curve at those two x-

values (signs taken into account).

be careful about ‘signs’. In regions where the bottom curve dips below the

x-axis, the areas count negatively. Moreover, in the picture, I have taken

a < b and the ‘diVerence between the heights’ of the top curve in the form

g(b)� g(a). Signs would be reversed if a > b.

In Fig. 6.9, I have tried to make it intuitively believable why there is this

inverse relationship between slopes and areas. We imagine b to be greater
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a b

a b x

x

g

f

g(b)

g(a)
g(b)−g(a)

= area of
shaded strip

Fig. 6.9 Take b > a by a

tiny amount. In the

bottom picture, the area

of a very narrow strip

between neighbouring

lines x ¼ a, x ¼ b is

essentially the product of

the strip’s width b� a with

its height (from x-axis to

curve). This height is the

slope of top curve there,

whence the strip’s area is

this slope� strip’s width,

which is the amount by

which top curve rises from

a to b, i.e. g(b)� g(a).

Adding many narrow

strips, we Wnd that the

area of a broad strip under

the bottom curve is the

corresponding amount by

which the top curve rises.

than a by just a very tiny amount. Then the area to be considered, in the

bottom picture, is that of the very narrow strip bounded by the neighbour-

ing lines x ¼ a and x ¼ b. The measure of this area is essentially the

product of the strip’s tiny width (i.e. b� a) with its height (from the x-

axis to the curve). But the strip’s height is supposed to be measuring the

slope of the top curve at that point. Therefore, the strip’s area is this slope

multiplied by the strip’s width. But the slope of the top curve times the

strip’s width is the amount by which the top curve rises from a to b, that is,

the diVerence g(b)� g(a). Thus, for very narrow strips, the area is indeed

measured by this stated diVerence. Broad strips are taken to be built up

from large numbers of narrow strips, and we get the total area by measur-

ing how much the top curve rises over the entire interval.

There is a signiWcant point that I should bring out here. In the passage

from the bottom curve to the top curve there is a non-uniqueness about how

high the whole top curve is to be placed. We are only concerned with

diVerences between heights on the top curve, so sliding the whole curve up

or downby some constant amountwill not make any diVerence. This is clear

from the ‘slope’ interpretation too, since the slope at diVerent points on the

top curve will be just the same as before if we slide it up or down. What this

amounts to, in our calculus, is that if we add a constant C to g(x), then the

resulting function still diVerentiates to f (x):
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d(g(x)þ C) ¼ dg(x)þ dC ¼ f (x) dxþ 0 ¼ f (x) dx:

Such a function g(x), or equivalently g(x)þ C for some arbitrary constant

C, is called an indeWnite integral of f (x), and we write
Z

f (x) dx ¼ g(x)þ const:

This is just another way of expressing the relation d[g(x)þ const:]
¼ f (x)dx, so we just think of the ‘

R

’ sign as the inverse of the ‘d’ symbol.

If we want the speciWc area between x ¼ a and x ¼ b, then we want what is

called the deWnite integral, and we write

Z b

a

f (x) dx ¼ g(b)� g(a):

If we know the function f (x) and we wish to obtain its integral g(x), we do

not have nearly such straightforward rules for obtaining it as we did for

diVerentiation. A great many tricks are known, a variety of which can be

found in standard textbooks and computer packages, but these do not

suYce to handle all cases. In fact, we frequently Wnd that the family of

explicit standard functions that we had been using previously has to be

broadened, and that new functions have to be ‘invented’ in order to

express the results of the integration. We have, in eVect, seen this already

in the special examples given above. Suppose that we were familiar just

with functions made up of combinations of powers of x. For a general

power xn, we can integrate it to get xnþ1=(nþ 1). (This is just using our

formula above, in §6.5, with nþ 1 for n: d xnþ1
� �

=dx ¼ (nþ 1)xn.) Every-

thing is Wne until we worry about what to do with the case n ¼ �1. Then

the supposed answer xnþ1=(nþ 1) has zero in the denominator, so this

won’t work. How, then, do we integrate x�1? Well, we notice that, by the

greatest of good fortune, there is the formula d( log x) ¼ x�1dx sitting in

our list in §6.5. So the answer is log xþ const:
This time we were lucky! It just happened that we had been studying the

logarithm function before for a diVerent reason, and we knew about some

of its properties. But on other occasions, we might well Wnd that there is no

function that we had previously known about in terms of which we can

express our answer. Indeed, integrals frequently provide the appropriate

means whereby new functions are deWned. It is in this sense that explicit

integration is ‘diYcult’.

On the other hand, if we are not so interested in explicit expressions,

but are concerned with questions of existence of functions that are the

derivatives or integrals of given functions, then the boot is on the other

foot. Integration is now the operation that works smoothly, and diVer-

entiation causes the problems. The same applies when performing these
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operations with numerical data. Basically, the problem with diVerentia-

tion is that it depends very critically on the Wne details of the function

to be diVerentiated. This can present a problem if we do not have an

explicit expression for the function to be diVerentiated. Integration, on

the other hand, is relatively insensitive to such matters, being concerned

with the broad overall nature of the function to be integrated. In fact,

any continuous function (a C0-function) whose domain is a ‘closed’

interval a < x < b can be integrated,12 the result being C1 (i.e. C1-

smooth). This can be integrated again, the result being C2, and then

again, giving a C3-smooth function, and so on. Integration makes the

functions smoother and smoother, and we can keep on going with this

indeWnitely. DiVerentiation, on the other hand just makes things worse,

and it may come to an end at a certain point, where the function

becomes ‘non-diVerentiable’.

Yet, there are approaches to these issues that enable the process of

diVerentiation to be continued indeWnitely also. I have hinted at this

already, when I allowed myself to diVerentiate the function jxj to obtain

y(x), even though jxj is ‘not diVerentiable’. We could attempt to go further

and diVerentiate y(x) also, despite the fact that it has an inWnite slope at

the origin. The ‘answer’ is what is called the Dirac13 delta function—an

entity of considerable importance in the mathematics of quantum mech-

anics. The delta function is not really a function at all, in the ordinary

(modern) sense of ‘function’ which maps domains to target spaces. There

is no ‘value’ for the delta function at the origin (which could only have

been inWnity there). Yet the delta function does Wnds a clear mathematical

deWnition within various broader classes of mathematical entities, the best

known being distributions.

For this, we need to extend our notion of Cn-functions to cases where n

can be a negative integer. The function y(x) is then a C�1-function and the

delta function is C�2. Each time we diVerentiate, we must decrease the

diVerentiability class by unity (i.e. the class becomes more negative by one

unit). It would seem that we are getting farther and farther from Euler’s

notion of a ‘decent function’ with all this and that he would tell us to have

no truck with such things, were it not for the fact that they seem to be

useful. Yet, we shall be Wnding, in due course, that it is here that complex

numbers astound us with an irony—an irony that is expressed in one of

their Wnest magical feats of all! We shall have to wait until the end of

Chapter 9 to witness this feat, for it is not something that I can properly

describe just yet. The reader must bear with me for a while, for the ground

needs Wrst to be made ready, paved with other superbly magical

ingredients.
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Notes

Section 6.1

6.1. I am adopting a slight ‘abuse of notation’ here, as technically x2, for instance,

denotes the value of the function rather than the function. The function itself

maps x to x2 and might be denoted by x 7! x2, or by lx[x2] according to Alonzo

Church’s (1941) lambda calculus; see Chapter 2 of Penrose (1989).

6.2. In this section, I shall frequently refer to what Euler’s beliefs might well have been

with regard to the notion of a function. However, I should make clear here that the

‘Euler’ that I am referring to is really a hypothetical or idealized individual. I have

no direct information about what the real Leonhard Euler’s views were in any

particular case.But the views that I amattributing tomy ‘Euler’ donot appear tobe

out of line with the kind of views that the real Euler might well have expressed. For

more information about Euler, see Boyer (1968); Thiele (1982); Dunham (1999).

Section 6.2

6.3. For details, see Burkill (1962).

6.4. Strictly, it is the function f 0 that is the derivative of the function f; we cannot

obtain the value of f 0 at x simply from the value of f at x. See Note 6.1.

Section 6.3

6.5. Viz., f 00(x)=[1þ f 0(x)2]3=2.

6.6. In fact, this implies that all the derivatives up to and including the nth must be

continuous, because the technical deWnitionofdiVerentiability requires continuity.

Section 6.4

6.7. Traditionally, this power series expansion about the origin is known (with little

historical justiWcation) as Maclaurin’s series; the more general result about the

point p (see later in the section) is attributed to Brook Taylor (1685–1731).

Section 6.5

6.8. See Edwards and Penney (2002).

6.9. For the moment, just treat the following expressions formally, or else mentally

‘divide back through by dx’ if this makes you happier. The notation that I am

using here is consistent with that of diVerential forms, which will be discussed in

§§12.3–6.

6.10. However, there is a technical subtlety about applying this law to the sum of the

inWnite number of terms that we need for a power series. This subtlety can be

ignored for values of x strictly within the circle of convergence; see §2.5. See

Priestly (2003).

6.11. Recall from §5.1 that sin�1 , cos�1, and tan�1 are the inverse functions of

sin , cos, and tan, respectively. Thus sin sin�1 x
� �

¼ x, etc. We must bear in

mind that these inverse functions are ‘many-valued functions’, however, and it

is usual to select the values for which � p
2

< sin�1x< p
2
, 0< cos�1x<p, and

� p
2
< tan�1x < p

2
.

Section 6.6

6.12. The signiWcant requirement on the domain is that it be what is called compact;

see §12.6. Finite intervals of the real line including their end-points are indeed

compact.

6.13. Apparently, Oliver Heaviside had also conceived the ‘delta function’ many years

before Dirac.
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7
Complex-number calculus

7.1 Complex smoothness; holomorphic functions

How are we to understand the notion of diVerentiation when this is

applied to a complex function f (z)? It is certainly not appropriate, in this

book, that I attempt to address this issue in full detail.1 I did not even

properly address such details, in §6.2, for a real function. But at least I can

attempt to convey the gist of what is involved. The following is a very

rapid outline of the essential argument to show what complex diVerentia-

bility achieves. Afterwards I shall be a little more explicit about some of its

surprising ingredients.

Basically, for complex diVerentiation, we require that there be a notion

of ‘slope’ of the complex curve w ¼ f (z) at any point z in the function’s

domain. (The function f (z) and the variable z are now both allowed to

take complex values.) For this notion of ‘slope’ to make consistent sense,

as we move the variable z around slightly in diVerent directions in z’s

complex plane, it is necessary for f (z) to satisfy a certain pair of equations

called the Cauchy–Riemann equations2 (involving the derivatives of the

real and imaginary parts of f (z), taken with respect to the real and

imaginary parts of z; see §10.5). These equations establish for us something

rather remarkable about complex integration—something which then en-

ables a new notion of integration to be deWned, called contour integration.

A beautiful formula can then be given, in terms of this contour integration,

for the nth derivative of f (z). Thus, once we have the Wrst derivative, we get

all higher derivatives free.

We next use this formula to provide us with the coeYcients of a

proposed Taylor series for f (z), which we have to show actually converges

to f (z). Having achieved this, we have a Taylor series expression for f (z)

that works inside any circle in the complex z-plane throughout which f (z)

is deWned and diVerentiable. The magical fact thus arises, that any com-

plex function that is complex-smooth is necessarily analytic!

Accordingly, there is no problem, in complex analysis, in recognizing

the limitations of the ‘gluing jobs’ in certain C1-functions, such as the

‘h(x)’ deWned in the previous chapter. The power of complex smoothness
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would surely have delighted Euler. (Unfortunately for the real Leonhard

Euler, the astounding power of this complex smoothness was appreciated

too late for him, as it was Wrst found by Augustin Cauchy in 1821, some 38

years after Euler’s death.) We see that complex smoothness provides a

much more economical way of expressing what is required for our ‘Euler-

ian’ notion of a function than does the existence of power series expan-

sions. But there is also another advantage in looking at such functions

from the complex point of view. Recall our troublesome ‘1=x’ that seemed

to be ‘just one function’ despite the fact that the real curve y ¼ 1=x
consists of two separate pieces which are not joined ‘analytically’ to each

other through real values of x. From the complex perspective, we see

clearly that 1=z is indeed a single function. The one place where the

function ‘goes wrong’ in the complex plane is the origin z ¼ 0. If we

remove this one point from the complex plane, we still get a connected

region. The part of the real line for which x < 0 is connected to the part for

which x > 0 through the complex plane. Thus, 1=z is indeed one connected

complex function, this being quite diVerent from the real-number situ-

ation.

Functions that are complex-smooth (complex-analytic) in this sense are

called holomorphic. Holomorphic functions will play a vital part in many

of our later deliberations. We shall see their importance in connection with

conformal mappings and Riemann surfaces in Chapter 8, and with Four-

ier series (fundamental to the theory of vibrations) in Chapter 9. They

have important roles to play in quantum theory and in quantum Weld

theory (as we shall see in §24.3 and §26.3). They are also fundamental to

some approaches to the developing of new physical theories (particularly

twistor theory—see Chapter 33—and they also have a signiWcant part to

play in string theory; see §§31.5,11,12).

7.2 Contour integration

Although this is not the place to spell out all the details of the mathematical

arguments indicated in §7.1, it will nevertheless be illuminating to elaborate

upon the above outline. In particular, it will be of beneWt to have an account

of contour integration here, which will provide the reader with some under-

standing of the way in which contour integration can be used to establish

what is needed for the requirements of §7.1. First let us recall the notation

for a deWnite integral that was given, in the previous chapter, for a real

variable x, and now think of it as applying to a complex variable z:

Z b

a

f (z)dz ¼ g(b)� g(a),

Complex-number calculus §7.2
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where g0(z) ¼ f (z). In the real case, the integral is taken from one point a

on the real line to another point b on that line. There is only one way to get

from a to b along the real line. Now think of it as a complex formula. Here

we have a and b as two points on the complex plane instead. Now, we do

not just have one route from a to b, but we could draw lots of diVerent

paths connecting a to b. What the Cauchy–Riemann equations tell us is

that if we do our integration along one such path3 then we get the same

answer as along any other such path that can be obtained from the Wrst by

continuous deformation within the domain of the function. (See Fig. 7.1.

This property is a consequence of a simple case of the ‘fundamental

theorem of exterior calculus’, described in §12.6.) For some functions,

1=z being a case in point, the domain has a ‘hole’ in it (the hole being

z ¼ 0 in the case of 1=z), so there may be several essentially diVerent

ways of getting from a to b. Here ‘essentially diVerent’ refers to the

fact that one of the paths cannot be continuously deformed into another

while remaining in the domain of the function. In such cases, the value

of the integral from a to b may give a diVerent answer for the various

paths.

One point of clariWcation (or, rather, of correction) should be made here.

When I talk about one path being continuously deformed into another, I am

referring to what mathematicians call homologous deformations, not homo-

topic ones. With a homologous deformation, it is legitimate for parts of

paths to cancel one another out, provided that those portions are being

traversed in opposite directions. See Fig. 7.2 for an example of this sort of

allowable deformation. Two paths that are deformable one into the other in

this way are said to belong to the same homology class. By contrast, homo-

topic deformations do not permit this kind of cancellation. Paths deform-

able one into another, where such cancellation are not permitted, belong to

the same homotopy class. Homotopic curves are always homologous, but

not necessarily the other way around. Both homotopy and homology are to

do with equivalence under continuous motions. Thus they are part of the

a

b

Fig. 7.1 DiVerent paths from a to b.

Integrating a holomorphic function f

along one path yields the same answer

as along any other path obtainable

from it by continuous deformation

within f ’s domain. For some functions,

the domain has a ‘hole’ in it (e.g. z ¼ 0,

for 1=z), obstructing certain

deformations, so diVerent answers may

be obtained.
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Fig. 7.2 With a

homologous deformation,

parts of paths cancel each

other, if traversed in

opposite directions.

Sometimes this gives rise to

separated loops.

subject of topology. We shall be seeing diVerent aspects of topology

playing important roles in other areas later.

The function f (z) ¼ 1=z is in fact one for which diVerent answers are

obtained when the paths are not homologous. We can see why this must be

so from what we already know about logarithms. Towards the end of the

previous chapter, it was noted that log z is an indeWnite integral of 1=z. (In

fact, this was only stated for a real variable x, but the same reasoning that

obtains the real answer will also obtain the corresponding complex

answer. This is a general principle, applying to our other explicit formulae

also.) We therefore have

Z b

a

dz

z
¼ log b� log a:

But recall, from §5.3, that there are diVerent alternative ‘answers’ to a

complex logarithm. More to the point is that we can get continuously from

one answer to another. To illustrate this, let us keep a Wxed and allow b to

vary. In fact, we are going to allow b to circle continuously once around

the origin in a positive (i.e. anticlockwise) sense (see Fig. 7.3a), restoring it

to its original position. Remember, from §5.3, that the imaginary part of

log b is simply its argument (i.e. the angle that b makes with the positive

real axis, measured in the positive sense; see Fig. 5.4b). This argument

increases precisely by 2p in the course of this motion, so we Wnd that log b

has increased by 2pi (see Fig. 7.3b). Thus, the value of our integral is

increased by 2pi when the path over which the integral is performed winds

once more (in the positive sense) about the origin.

We can rephrase this result in terms of closed contours, the existence of

which is a characteristic and powerful feature of complex analysis. Let us

consider the diVerence between the second and the Wrst of our two paths,

that is to say, we traverse the second path Wrst and then we traverse the

Wrst path in the reverse direction (Fig. 7.3c). We consider this diVerence in

the homologous sense, so we can cancel out portions that ‘double back’

and straighten out the rest, in a continuous fashion. The result is a closed

Complex-number calculus §7.2
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a
(a)

b

a(c)

b

(b)

b

a

(d)

b
a

Fig. 7.3 (a) Integrating z�1 dz from a to b gives log b�log a. (b) Keep a Wxed, and

allow b to circle once anticlockwise about the origin, increasing log b in the answer

by 2pi. (c) Then return to a backwards along original route. (d) When the part of

the path is cancelled from a, we are left with an anticlockwise closed contour

integral
H

z�1 dz ¼ 2pi.

path—or contour—that loops just once about the origin (see Fig. 7.3d),

and it is not concerned with the location of either a or b. This gives an

example of a (closed) contour integral, usually written with the symbol
Þ

,

and we Wnd, in this example,[7.1]

þ

dz

z
¼ 2pi:

Of course, when using this symbol, we must be careful to make clear which

actual contour is being used—or, rather, which homology class of contour

is being used. If our contour had wound around twice (in the positive

sense), then we would get the answer 4pi. If it had wound once around the

origin in the opposite direction (i.e. clockwise), then the answer would

have been �2pi.

It is interesting that this property of getting a non-trivial answer with

such a closed contour depends crucially on the multivaluedness of the

complex logarithm, a feature which might have seemed to be just an

awkwardness in the deWnition of a logarithm. We shall see in a moment

that this is not just a curiosity. The power of complex analysis, in eVect,

[7.1] Explain why
Þ

zndz ¼ 0 when n is an integer other than �1.
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depends critically upon it. In the following two paragraphs, I shall outline

some of the implications of this sort of thing. I hope that non-mathemat-

ical readers can get something of value from the discussion. I believe that it

conveys something that is both genuine and surprising in the nature of

mathematical argument.

7.3 Power series from complex smoothness

The above displayed expression is a particular case (for the constant

function f (z) ¼ 2pi) of the famous Cauchy formula which expresses the

value of a holomorphic function at the origin in terms of an integral

around a contour surrounding the origin:4

1

2pi

þ

f (z)

z
dz ¼ f (0):

Here, f (z) is holomorphic at the origin (i.e. complex-smooth throughout

some region encompassing the origin), and the contour is some loop just

surrounding the origin—or it could be any loop homologous to that one,

in the domain of the function with the origin removed. Thus, we have the

remarkable fact that what the function is doing at the origin is completely

Wxed by what it is doing at a set of points surrounding the origin. (Cauchy’s

formula is basically a consequence of the Cauchy–Riemann equations,

together with the above expression
Þ

z�1dz ¼ 2pi, taken in the limit of

small loops; but it would not be appropriate for me to go into the details of

all this here.)

If, instead of using 1=z in Cauchy’s formula, we use 1=znþ1, where n is

somepositive integer,we get a ‘higher-order’ version of theCauchy formula,

yielding what turns out to be the nth derivative f (n)(z) of f (z) at the origin:

n!

2pi

þ

f (z)

znþ1
dz ¼ f (n)(0):

(Recall n! from §5.3.) We can see that this formula ‘has to be the right

answer’ by examining the power series for f (z),[7.2] but it would be begging

the question to use this fact, because we do not yet know that the power

series expansion exists, or even that the nth derivative of f exists. All that

we know at this stage is that f (z) is complex-smooth, without knowing

that it can be diVerentiated more than once. However, we simply use this

formula as providing the deWnition of the nth derivative at the origin. We

can then incorporate this ‘deWnition’ into the Maclaurin formula

an ¼ f (n)(0)=n! for the coeYcients in the power series (see §6.4)

[7.2] Show this simply by substituting the Maclaurin series for f (z) into the integral.
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a0 þ a1zþ a2z
2 þ a3z

3 þ a4z
4 þ � � � ,

and with a bit of work we can prove that this series actually does sum to

f (z) in some region encompassing the origin. Consequently, the function

has an actual nth derivative at the origin as given by the formula.[7.3] This

contains the essence of the argument showing that complex smoothness in

a region surrounding the origin indeed implies that the function is actually

(complex-) analytic at the origin (i.e. holomorphic).

Of course, there is nothing special about the origin in all this. We can

equally well talk about power series about any other point p in the

complex plane and use Taylor’s series, as we did in §6.4. For this, we

simply displace the origin to the point p to obtain Cauchy’s formula in the

‘origin-shifted’ form

1

2pi

þ

f (z)

(z� p)
dz ¼ f (p),

and also the nth-derivative expression

n!

2pi

þ

f (z)

(z� p)nþ1
dz ¼ f (n)(p),

where now the contour surrounds the point p in the complex plane. Thus,

complex smoothness implies analyticity (holomorphicity) at every point of

the domain.

I have chosen to demonstrate the basics of the argument that, locally,

complex smoothness implies analyticity, rather than simply request that

the reader take the result on trust, because it is a wonderful example of the

way that mathematicians can often obtain their results. Neither the prem-

ise (f (z) is complex-smooth) nor the conclusion (f (z) is analytic) contains a

hint of the notion of contour integration or of the multivaluedness of a

complex logarithm. Yet, these ingredients provide the essential clues to the

true route to Wnding the answer. It is diYcult to see how any ‘direct’

argument (whatever that might be) could have achieved this. The key is

mathematical playfulness. The enticing nature of the complex logarithm

itself is what beguiles us into studying its properties. This intrinsic appeal

is apparently independent of any applications that the logarithm might

have in other areas. The same, to an even greater degree, can be said for

contour integration. There is an extraordinary elegance in the basic con-

ception, where topological freedom combines with explicit expressions

[7.3] Show all this at least at the level of formal expressions; don’t worry about the rigorous

justiWcation.
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with exquisite precision.[7.4] But it is not merely elegance: contour integra-

tion also provides a very powerful and useful mathematical technique in

many diVerent areas, containing much complex-number magic. In particu-

lar, it leads to surprising ways of evaluating deWnite integrals and explicitly

summing various inWnite series.[7.5],[7.6] It also Wnds many other applica-

tions in physics and engineering, as well as in other areas of mathematics.

Euler would have revelled in it all!

7.4 Analytic continuation

We now have the remarkable result that complex smoothness throughout

some region is equivalent to the existence of a power series expansion

about any point in the region. However, I should make it a little clearer

what a ‘region’ is to mean in this context. Technically, I mean what

mathematicians call an open region. We can express this by saying that if

a point a is in the region then there is a circle centred at a whose interior is

also contained in the region. This may not be very intuitive, so let me give

some examples. A single point is not an open region, nor is an ordinary

curve. But the interior of the unit circle in the complex plane, that is, the set

of points whose distance from the origin is strictly less than unity, is an

open region. This is because any point strictly inside the circle, no matter

how close it is to the circumference, can be surrounded by a much smaller

circle whose interior still lies strictly within the unit circle (see Fig. 7.4). On

the other hand, the closed disc, consisting of points whose distance from

the origin is either less than or equal to unity, is not an open region,

because the circumference is now included, and a point on the circumfer-

ence does not have the property that there is a circle centred at that point

whose interior is contained within the region.

[7.4] The function f (z) is holomorphic everywhere on a closed contour G, and also within G
except at a Wnite set of points where f has poles. Recall from §4.4 that a pole of order n at z ¼ a
occurs where f (z) is of the form h(z)=(z� a)n, where h(z) is regular at a. Show that
Þ

r
f (z)dz ¼ 2pi� {sum of the residues at these poles}, where the residue at the pole a is

h(n�1)(a)=(n� 1)!

[7.5] Show that
R1

0
x�1 sin x dx ¼ p

2
by integrating zeiz around a closed contour G consisting of

two portions of the real axis, from �R to �E and from E to R (with R > E > 0) and two connecting

semi-circular arcs in the upper half-plane, of respective radii E and R. Then let E! 0 and R!1.

[7.6] Show that 1þ 1
22 þ 1

32 þ 1
42 þ � � � ¼ p

6
by integrating f (z) ¼ z�2 cot p z (see Note 5.1)

around a large contour, say a square of side-length 2Nþ 1 centred at the origin (N being a

large integer), and then letting N!1. (Hint: Use Exercise [7.5], Wnding the poles of f (z) and their

residues. Try to show why the integral of f (z) around G approaches the limiting value 0 as

N!1.)
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Fig. 7.4 The open unit disc jxj<1. Any

point strictly inside, no matter how close to

the circumference, is surrounded by much

smaller circle whose interior still lies strictly

within unit circle. On the other hand, for

the closed disc jxj# 1, this fails for points

on the boundary.

Let us now consider the domain5D of some holomorphic function f (z),

where we take D to be an open region. At every point of D, the function

f (z) is to be complex-smooth. Thus, in accordance with the above, if we

select any point p in D, then we have a convergent power series about p

that represents f (z) in a suitable region containing p. How big is this

‘suitable region’? It will tend to be the case that, for a particular p, the

power series will not work for the whole of D. Recall the circle of conver-

gence described in §4.4. This would be some circle centred at p (inWnite

radius permitted) such that for points strictly within this circle the power

series will converge, but for points z strictly outside the circle it will not.

Suppose that f (z) has a singularity at some point q, namely a point that the

function f (z) cannot be extended to while remaining complex-smooth.

(For example, the origin q ¼ 0 is a singularity of the function f (z) ¼ 1=z;
see §7.1. A singularity is sometimes referred to as a ‘singular point’ of the

function. A regular point is just a place where the function is non-singular,

and hence holomorphic.) Then the circle of convergence cannot be so large

that it contains q in its interior. We therefore have a patchwork of circles

of convergence (usually inWnite in number) which together cover the whole

of D, while generally no single circle will cover it. The case f (z) ¼ 1=z
illustrates the issue (see Fig. 7.5). Here the domain D is the complex plane

with the origin removed. If we select a point p in D, we Wnd that the circle

of convergence is the circle centred at p passing through the origin.[7.7] We

need an inWnite number of such circles to cover the entire region D.

This leads us to the important issue of analytic continuation. Suppose

that we are given some function f (z) , holomorphic in some domain D, and

we consider the question: can we extend D to a larger region D0 so that f (z)

also extends holomorphically to D0? For example, f (z) might have been

given to us in the form of a power series, convergent within its particular

circle of convergence, and we might wish to extend f (z) outside that circle.

[7.7] What is the power series, taken about the point p, for f (z) ¼ 1=z?
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p
Fig. 7.5 For f (z) ¼ 1=z, the

domain D is complex plane with the

origin removed. The circle of

convergence about any point p in D

is centred at p and passes through

the origin. To cover the whole of D

we need a patchwork (inWnite) of

such circles.

Frequently this is possible. In §4.4, we considered the series

1� z2 þ z4 � z6 þ � � � , which has the unit circle as its circle of convergence;

yet it has the natural extension to the function (1þ z2)�1, which is holo-

morphic over the entire complex plane with only the two points þi and �i

removed. Thus, in this case, the function can indeed be analytically

extended far beyond the domain over which it was initially given.

Here, we were able to write down an explicit formula for the function, but

in other cases this may not be so easy. Nevertheless, there is a general

procedure according to which analytic continuation may frequently be

carried out. We can imagine starting in some small region where a locally

valid power series expression for the holomorphic function f (z) is known.

Wemight then gowanderingoV along somepath, continuing the function as

we go by the repeated use of power series based at diVerent points. For this,

we would use a sequence of points along the path and take a succession of

power series expressions successively about each of these points in turn. This

will work provided that the interiors of the successive circles of convergence

can be made to overlap (see Fig. 7.6). When this procedure can be carried

out, the resulting function is uniquely determined by the values of the

function in the initial region and on the path along which it is being con-

tinued.

Singularity

Fig. 7.6 A holomorphic function

can be analytically continued, using

a succession of power series

expressions about a sequence of

points. This proceeds uniquely

along the connecting path,

assuming successive circles of

convergence overlap.

Complex-number calculus §7.4

131



There is thus a remarkable ‘rigidity’ about holomorphic functions, as

manifested in this process of analytic continuation. In the case of real C1-

functions, on the other hand, it was possible ‘to keep changing one’s mind’

about what the function is to be doing (as with the smoothly patched h(x)

of §6.3, which suddenly ‘takes oV ’ after having been zero for all negative

values of x). This cannot happen for holomorphic functions. Once the

function is Wxed in its original region, and the path is Wxed, there is no

choice about how the function is to be extended. In fact, the same is true

for real-analytic functions of a real variable. They also have a similar

‘rigidity’, but now there is not much choice about the path either. It can

only be in one direction or the other along the real line. With complex

functions, analytic continuation can be more interesting because of this

freedom of the path within a two-dimensional plane.

To illustrate, consider our old friend log z. It certainly has no power

series expansion about the origin, as it has a singularity there. But if we

like, we can expand it about the point p ¼ 1, say, to obtain the series[7.8]

log z ¼ (z� 1)� 1

2
(z� 1)2 þ 1

3
(z� 1)3 � 1

4
(z� 1)4 þ � � � :

The circle of convergence is the circle of unit radius centred at z ¼ 1. Let us

imagine performing an analytic continuation along a path that circles the

origin in an anticlockwise direction. We could, if we choose, use power

series taken about the successive points 1, o, o2, and back to 1, thus

returning to our starting point having encircled the origin once (Fig. 7.7).

Here I have used the three cube roots of unity, regularly placed around the

unit circle, namely 1, o ¼ e2pi=3, and o2 ¼ e4pi=3, as discussed at the end of

§5.4, and the route around the origin can be taken as an equilateral

z

z2

1

Fig. 7.7 Start at z ¼ 1,

analytically continuing f (z) ¼ log z

along a path circling the origin

anticlockwise (expanding about

successive points 1, o, o2, 1;

o ¼ e2pi=3). We Wnd 2pi gets added

to f.

[7.8] Derive this series.
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triangle. Alternatively, I could have used 1, i, �1, �i, 1, which is slightly

less economical. In any case, there is no need to work out the power series,

since we already know the explicit answer for the function itself, namely

log z. The problem, of course, is that when we have gone once around the

origin, uniquely following the function as it goes, we Wnd that we have

uniquely extended it to a value diVerent from the one that we started with.

Somehow, 2pi has got added to the function as we went around. Had we

chosen to proceed around the origin in the opposite direction, then we

should have found that 2pi would have been subtracted from the function

that we started from. Thus, the uniqueness of analytic continuation can be

quite a subtle thing, and it can deWnitely depend upon the path taken. For

‘many-valued’ functions more complicated than log z, we can get some-

thing much more elaborate than just adding a constant (like 2pi) to the

function.

As an aside, it is worth pointing out that the notion of analytic continu-

ation need not refer particularly to power series, despite the fact that I

have found it useful to employ them in some of my descriptions. For

example, there is another class of series that has great signiWcance in

number theory, namely those called Dirichlet series. The most important

of these is the (Euler–)Riemann zeta function,6 deWned by the inWnite sum7

z(z) ¼ 1�z þ 2�z þ 3�z þ 4�z þ 5�z þ � � � ,

which converges to the holomorphic function denoted by z(z) when the

real part of z is greater than 1. Analytic continuation of this function

deWnes it uniquely (and ‘single-valuedly’) on the whole of the complex

plane but with the point z ¼ 1 removed. Perhaps the most important

unsolved mathematical problem today is the Riemann hypothesis, which

is concerned with the zeros of this analytically extended zeta function, that

is, with the solutions of z(z) ¼ 0. It is relatively easy to show that z(z)
becomes zero for z ¼ �2, �4, �6, . . . ; these are the real zeros. The

Riemann hypothesis asserts that all the remaining zeros lie on the line

Re(z) ¼ 1
2
, that is, z(z) becomes zero (unless z is a negative even integer)

only when the real part of z is equal to 1
2
. All numerical evidence to date

supports this hypothesis, but its actual truth is unknown. It has funda-

mental implications for the theory of prime numbers.8

Notes

Section 7.1

7.1. To those readers wishing to explore these fascinating matters in greater geometric

detail, I strongly recommend Needham (1997).
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7.2. I shall give them in §10.5, after the notion of partial derivative has been intro-

duced.

Section 7.2

7.3. More explicitly, integration of f ‘along’ a path given by z ¼ p(t) (where p is a

smooth complex-valued function p of a real parameter t) can be expressed as the

deWnite integral
R v

u
f (p(t) )p0(t)dt ¼

R b

a
f (z)dz), where p(u) is the initial point a of the

path and p(v) is its Wnal point b.

Section 7.3

7.4. A ‘reason’ that Cauchy’s formula must be true is that for a small loop around the

origin, f (z) may actually be treated as the constant value f (0) and then the

situation reduces to that studied in §7.2.

7.5. It is one of the irritations of the terminology of this subject that the term ‘domain’

has two distinct meanings. The one that is not intended here is a ‘connected open

region in the complex plane’. Here, as before (see §6.1), I mean the region in the

complex plane where the function f is deWned, which is not necessarily open or

connected.

7.6. The zeta function was Wrst considered by Euler, but it is normally named after

Riemann, in view of his fundamental work involving the extension of this function

to the complex plane.

7.7. Note the curious ‘upside-down’ relation between this series and an ordinary

power series, namely for (� z)þ (� z)2 þ (� z)3 þ � � � ¼ �z(1þ z)�1.

7.8. For further information on the z-function and Riemann hypothesis, see Apostol

(1976); Priestley (2003). For popular accounts, see Derbyshire (2003); du Sautoy

(2003); Sabbagh (2002); Devlin (1988, 2002).
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8
Riemann surfaces and complex mappings

8.1 The idea of a Riemann surface

There is a way of understanding what is going on with this analytic

continuation of the logarithm function—or of any other ‘many-valued

function’—in terms of what are called Riemann surfaces. Riemann’s idea

was to think of such functions as being deWned on a domain which is not

simply a subset of the complex plane, but as a many-sheeted region. In the

case of log z, we can picture this as a kind of spiral ramp Xattened down

vertically to the complex plane. I have tried to indicate this in Fig. 8.1. The

logarithm function is single-valued on this winding many-sheeted version

of the complex plane because each time we go around the origin, and 2pi

has to be added to the logarithm, we Wnd ourselves on another sheet of the

domain. There is no conXict between the diVerent values of the logarithm

now, because its domain is this more extended winding space—an example

of a Riemann surface—a space subtly diVerent from the complex plane

itself.

Bernhardt Riemann, who introduced this idea, was one of the very

greatest of mathematicians, and in his short life (1826–66) he put forward

a multitude of mathematical ideas that have profoundly altered the course

of mathematical thought on this planet. We shall encounter some of his

Fig. 8.1 The Riemann surface for log z,

pictured as a spiral ramp Xattened down

vertically.
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other contributions later in this book, such as that which underlies Ein-

stein’s general theory of relativity (and one very important contribution of

Riemann’s, of a diVerent kind, was referred to at the end of Chapter 7).

Before Riemann introduced the notion of what is now called a ‘Riemann

surface’, mathematicians had been at odds about how to treat these so-

called ‘many-valued functions’, of which the logarithm is one of the

simplest examples. In order to be rigorous, many had felt the need to

regard these functions in a way that I would personally consider distaste-

ful. (Incidentally, this was still the way that I was taught to regard them

myself while at university, despite this being nearly a century after Rie-

mann’s epoch-making paper on the subject.) In particular, the domain of

the logarithm function would be ‘cut’ in some arbitrary way, by a line out

from the origin to inWnity. To my way of thinking, this was a brutal

mutilation of a sublime mathematical structure. Riemann taught us we

must think of things diVerently. Holomorphic functions rest uncomfort-

ably with the now usual notion of a ‘function’, which maps from a Wxed

domain to a deWnite target space. As we have seen, with analytic continu-

ation, a holomorphic function ‘has a mind of its own’ and decides itself

what its domain should be, irrespective of the region of the complex plane

which we ourselves may have initially allotted to it. While we may regard

the function’s domain to be represented by the Riemann surface associated

with the function, the domain is not given ahead of time; it is the explicit

form of the function itself that tells us which Riemann surface the domain

actually is.

We shall be encountering various other kinds of Riemann surface

shortly. This beautiful concept plays an important role in some of the

modern attempts to Wnd a new basis for mathematical physics—most

notably in string theory (§§31.5,13) but also in twistor theory (§§33.2,10).

In fact, the Riemann surface for log z is one of the simplest of such

surfaces. It gives us merely a hint of what is in store for us. The function

za perhaps is marginally more interesting than log z with regard to its

Riemann surface, but only when the complex number a is a rational

number. When a is irrational, the Riemann surface for za has just the

same structure as that for log z, but for a rational a, whose lowest-terms

expression is a ¼ m=n, the spiralling sheets join back together again after n

turns.[8.1] The origin z ¼ 0 in all these examples is called a branch point. If

the sheets join back together after a Wnite number n of turns (as in the case

zm=n, m and n having no common factor), we shall say that the branch

point has Wnite order, or that it is of order n. When they do not join after

any number of turns (as in the case log z), we shall say that the branch

point has inWnite order.

[8.1] Explain why.
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Expressions like 1� z3
� �1=2

give us more food for thought. Here the

function has three branch points, at z ¼ 1, z ¼ o, and z ¼ o2 (where

o ¼ e2pi=3; see §5.4, §7.4), so 1� z3 ¼ 0, and there is another ‘branch

point at inWnity’. As we circle by one complete turn, around each individ-

ual branch point, staying in its immediate neighbourhood (and for ‘inW-

nity’ this just means going around a very large circle), we Wnd that the

function changes sign, and, circling it again, the function goes back to its

original value. Thus, we see that the branch points all have order 2. We

have two sheets to the Riemann surface, patched together in the way that I

have tried to indicate in Fig. 8.2a. In Fig. 8.2b, I have attempted to show,

using some topological contortions, that the Riemann surface actually has

the topology of a torus, which is topologically the surface of a bagel (or of

an American donut), but with four tiny holes in it corresponding to the

branch points themselves. In fact, the holes can be Wlled in unambiguously

z

z2

1

(a)

Open

Open

(c)

z2

z2
z2

z

z2

z

z

z2

z
z 1

1

1

�

�

�

�

1

1

(b)

�

Fig. 8.2 (a) Constructing the Riemann surface for (1� z3)1=2 from two sheets, with

branch points of order 2 at 1, o, o2 (and also 1). (b) To see that the Riemann

surface for (1� z3)1=2 is topologically a torus, imagine the planes of (a) as two

Riemann spheres with slits cut from o to o2 and from 1 to 1, identiWed along

matching arrows. These are topological cylinders glued correspondingly, giving a

torus. (c) To construct a Riemann surface (or a manifold generally) we can glue

together patches of coordinate space—here open portions of the complex plane.

There must be (open-set) overlaps between patches (and when joined there must be

no ‘non-HausdorV branching’, as in the Wnal case above; see Fig. 12.5b, §12.2).
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(with four single points), and the resulting Riemann surface then has

exactly the topology of a torus.[8.2]

Riemann’s surfaces provided the Wrst instances of the general notion of a

manifold, which is a space that can be thought of as ‘curved’ in various ways,

butwhere, locally (i.e. in a small enoughneighbourhoodof anyof its points),

it looks like a piece of ordinary Euclidean space. We shall be encountering

manifolds more seriously in Chapters 10 and 12. The notion of a manifold is

crucial in many diVerent areas of modern physics. Most strikingly, it forms

an essential part of Einstein’s general relativity. Manifolds may be thought

of as being glued together from a number of diVerent patches, where the

gluing job really is seamless, unlike the situationwith the function h(x) at the

end of §6.3. The seamless nature of the patching is achieved by making sure

that there is alwaysanappropriate (open-set) overlapbetweenonepatchand

the next (see Fig. 8.2c and also §12.2, Fig. 12.5).

In the case of Riemann surfaces, the manifold (i.e. the Riemann surface

itself) is glued together from various patches of the complex plane corres-

ponding to the diVerent ‘sheets’ that go to make up the entire surface. As

above, we may end up with a few ‘holes’ in the form of some individual

points missing, coming from the branch points of Wnite order, but these

missing points can always be unabiguously replaced, as above. For branch

points of inWnite order, on the other hand, things can be more compli-

cated, and no such simple general statement can be made.

As an example, let us consider the ‘spiral ramp’ Riemann surface of the

logarithm function. One way to piece this together, in the way of a paper

model, would be to take, successively, alternate patches that are copies of (a)

the complex plane with the non-negative real numbers removed, and (b) the

complex plane with the non-positive real numbers removed. The top half of

each (a)-patch would be glued to the top half of the next (b)-patch, and the

bottom half of each (b)-patch would be glued to the bottom half of the next

(a)-patch; see Fig. 8.3. There is an inWnite-order branch point at the origin

and also at inWnity—but, curiously, we Wnd that the entire spiral ramp is

equivalent just to a sphere with a single missing point, and this point can be

unambiguously replaced so as to yield simply a sphere.[8.3]

8.2 Conformal mappings

When piecing together a manifold, we have to consider what local struc-

ture has to be preserved from one patch to the next. Normally, one deals

with real manifolds, and the diVerent patches are pieces of Euclidean space

[8.2] Now try 1� z4
� �1=2

.

[8.3] Can you see how this comes about? (Hint: Think of the Riemann sphere of the variable

w( ¼ log z); see §8.3.)
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(a) (b)

(of some Wxed dimension) that are glued together along various (open)

overlap regions. The local structure to be matched from one patch to

the next is normally just a matter of preserving continuity or smoothness.

This issue will be discussed in §10.2. In the case of Riemann surfaces,

however, we are concerned with complex smoothness, and we recall, from

§7.1, that this is a more sophisticated matter, invoving what are called

the Cauchy–Riemann equations. Although we have not seen them expli-

citly yet (we shall be coming to them in §10.5), it will be appropriate now

to understand the geometrical meaning of the structure that is encoded

in these equations. It is a structure of remarkable elegance, Xexibility,

and power, leading to mathematical concepts with a great range of appli-

cation.

The notion is that of conformal geometry. Roughly speaking, in con-

formal geometry, we are interested in shape but not size, this referring to

shape on the inWnitesimal scale. In a conformal map from one (open)

region of the plane to another, shapes of Wnite size are generally distorted,

but inWnitesimal shapes are preserved. We can think of this applying to

small (inWnitesimal) circles drawn on the plane. In a conformal map, these

little circles can be expanded or contracted, but they are not distorted into

little ellipses. See Fig. 8.4.

To get some understanding of what a conformal transformation can be

like, look at M. C. Escher’s picture, given in Fig. 2.11, which provides a

conformal representation of the hyperbolic plane in the Euclidean plane,

as described in §2.4 (Beltrami’s ‘Poincaré disc’). The hyperbolic plane is

very symmetrical. In particular, there are transformations which take the

Wgures in the central region of Escher’s picture to corresponding very tiny

Wgures that lie just inside the bounding circle. We can represent such a

transformation as a conformal motion of the Euclidean plane that takes

Fig. 8.3 We can construct the

Riemann surface for log z by

taking alternate patches of

(a) the complex plane with the

non-negative real axis removed,

and (b) the complex plane with

the non-positive real axis

removed. The top half each

(a)-patch is glued to the top half

of the next (b)-patch, and the

bottom half of each (b)-patch

glued to the bottom half of the

next (a)-patch.
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Conformal

Non-conformal

the interior of the bounding circle to itself. Clearly such a transformation

would not generally preserve the sizes of the individual Wgures (since the

ones in the middle are much larger than those towards the edge), but the

shapes are roughly preserved. This preservation of shape gets more and

more accurate, the smaller the detail of each Wgure that is being is exam-

ined, so inWnitesimal shapes would indeed be completely unaltered. Per-

haps the reader would Wnd a slightly diVerent characterization more

helpful: angles between curves are unaltered by conformal transformation.

This characterizes the conformal nature of a transformation.

What does this conformal property have to do with the complex

smoothness (holomorphicity) of some function f (z)? We shall try to obtain

an intuitive idea of the geometric content of complex smoothness. Let us

return to the ‘mapping’ viewpoint of a function f and think of the relation

w ¼ f (z) as providing a mapping of a certain region in z’s complex plane

(the domain of the function f ) into w’s complex plane (the target); see Fig.

8.5. We ask the question: what local geometrical property characterizes

this mapping as being holomorphic? There is a striking answer. Holomor-

phicity of f is indeed equivalent to the map being conformal and non-

reXective (non-reXective—or orientation-preserving—meaning that the

small shapes preserved in the transformation are not reXected, i.e. not

‘turned over’; see end of §12.6).

The notion of ‘smoothness’ in our transformation w ¼ f (z) refers to

how the transformation acts in the inWnitesimal limit. Think of the real

case Wrst, and let us re-examine our real function f (x) of §6.2, where the

graph of y ¼ f (x) is illustrated in Fig. 6.4. The function f is smooth at

z-plane w-plane

f

Fig. 8.4 For a conformal map,

little (inWnitesimal) circles can

be expanded or contracted, but

not distorted into little ellipses.

Fig. 8.5 The map w ¼ f (z)

has domain an open

region in the complex

z-plane and target an open

region in the complex

w-plane. Holomorphicity

of f is equivalent to this

being conformal and

non-reXective.
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some point if the graph has a well-deWned tangent at that point. We can

picture the tangent by imagining that a larger and larger magniWcation is

applied to the curve at that point, and, so long as it is smooth, the curve

looks more and more like a straight line through that point as the mag-

niWcation increases, becoming identical with the tangent line in the limit of

inWnite magniWcation. The situation with complex smoothness is similar,

but now we apply the idea to the map from the z-plane to the w-plane. To

examine the inWnitesimal nature of this map, let us try to picture the

immediate neighbourhood of a point z, in one plane, mapping this to the

immediate neighbourhood of w in the other plane. To examine the imme-

diate neighbourhood of the point, we imagine magnifying the neighbour-

hood of z by a huge factor and the corresponding neighbourhood of w by

the same huge factor. In the limit, the map from the expanded neighbour-

hood of z to the expanded neighbourhood of w will be simply a linear

transformation of the plane, but, if it is to be holomorphic, this must

basically be one of the transformations studied in §5.1. From this it follows

(by a little consideration) that, in the general case, the transformation from

z’s neighbourhood to w’s neighbourhood simply combines a rotation with

a uniform expansion (or contraction); see Fig. 5.2b. That is to say, small

shapes (or angles) are preserved, without reXection, showing that the map

is indeed conformal and non-reXective.

Let us look at a few simple examples. The very particular situations of

the maps provided by the adding of a constant b to z or of multiplying z by

a constant a, as considered already in §5.1 (see Fig. 5.2), are obviously

holomorphic (zþ b and az being clearly diVerentiable) and are also obvi-

ously conformal. These are particular instances of the general case of the

combined (inhomogeneous-linear) transformation

w ¼ azþ b:

Such transformations provide the Euclidean motions of the plane (without

reXection), combined with uniform expansions (or contractions). In fact,

they are the only (non-reXective) conformal maps of the entire complex

z-plane to the entire complex w-plane. Moreover, they have the very special

property that actual circles—not just inWnitesimal circles—are mapped to

actual circles, and also straight lines are mapped to straight lines.

Another simple holomorphic function is the reciprocal function,

w ¼ z�1,

which maps the complex plane with the origin removed to the complex

plane with the origin removed. Strikingly, this transformation also maps

actual circles to actual circles[8.4] (where we think of straight lines as being

[8.4] Show this.
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particular cases of circles—of inWnite radius). This transformation, to-

gether with a reXection in the real axis, is what is called an inversion.

Combining this with the inhomogeneous linear maps just considered, we

get the more general transformation[8.5]

w ¼ azþ b

czþ d
,

called a bilinear or Möbius transformation. From what has been said

above, these transformations must also map circles to circles (straight

lines again being regarded as special circles). This Möbius transformation

actually maps the entire complex plane with the point �d=c removed to

the entire complex plane with a/c removed—where, for the transformation

to give a non-trivial mapping at all, we must have ad 6¼ bc (so that the

numerator is not a Wxed multiple of the denominator).

Note that the point removed from the z-plane is that value (z ¼ �d=c)
which would give ‘w ¼ 1’; correspondingly, the point removed from the

w-plane is that value (w ¼ a=c) which would be achieved by ‘z ¼ 1’. In

fact, the whole transformation would make more global sense if we were to

incorporate a quantity ‘1’ into both the domain and target. This is one

way of thinking about the simplest (compact) Riemann surface of all: the

Riemann sphere, which we come to next.

8.3 The Riemann sphere

Simply adjoining an extra point called ‘1’ to the complex plane does not

make it completely clear that the required seamless structure holds in the

neighbourhood of 1, the same as everywhere else. The way that we can

address this issue is to regard the sphere to be constructed from two

‘coordinate patches’, one of which is the z-plane and the other the

w-plane. All but two points of the sphere are assigned both a z-coordinate

and a w-coordinate (related by the Möbius transformation above). But

one point has only a z-coordinate (where w would be ‘inWnity’) and

another has only a w-coordinate (where z would be ‘inWnity’). We use

either z or w or both in order to deWne the needed conformal structure

and, where we use both, we get the same conformal structure using

either, because the relation between the two coordinates is holo-

morphic.

In fact, for this, we do not need such a complicated transformation

between z and w as the general Möbius transformation. It suYces to

consider the particularly simple Möbius transformation given by

[8.5] Verify that the sequence of transformations z 7! Azþ B, z 7! z�1, z 7! CzþD indeed

leads to a bilinear map.
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i

0−1 1

−i

i

−1
1

−iw = 1
      z

z-plane w-plane

Fig. 8.6 Patching the Riemann sphere from the complex z- and w-planes, via

w ¼ 1=z, z ¼ 1=w. (Here, the z grid lines are shown also in the w-plane.) The

overlap regions exclude only the origins, z ¼ 0 and w ¼ 0 each giving ‘1’ in the

opposite patch.

w ¼ 1

z
, z ¼ 1

w
,

where z ¼ 0 and w ¼ 0, would each give 1 in the opposite patch. I have

indicated in Fig. 8.6 how this transformation maps the real and imaginary

coordinate lines of z.

All this deWnes the Riemann sphere in a rather abstract way. We can see

more clearly the reason that the Riemann sphere is called a ‘sphere’ by

employing the geometry illustrated in Fig. 8.7a. I have taken the z-plane to

represent the equatorial plane of this geometrical sphere. The points of the

sphere are mapped to the points of the plane by what is called stereo-

graphic projection from the south pole. This just means that I draw a

straight line in the Euclidean 3-space (within which we imagine everything

to be taking place) from the south pole through the point z in the plane.

Where this line meets the sphere again is the point on the sphere that the

complex number z represents. There is one additional point on the sphere,

namely the south pole itself, and this represents z ¼ 1. To see how w Wts

into this picture, we imagine its complex plane to be inserted upside down

(with w ¼ 1, i, �1,�i matching z ¼ 1,�i,�1, i, respectively), and we

now project stereographically from the north pole (Fig. 8.7b).[8.6] An

important and beautiful property of stereographic projection is that it

maps circles on the sphere to circles (or straight lines) on the plane.1

[8.6] Check that these two stereographic projections are related by w ¼ z�1.
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Riemann sphere of z = Riemann sphere of w = The real circle
1
z

(a) (b) (c)

0

�

-1 0

z-plane w-plane
(upside-down)

01

i

i

�

0

-i

Fig. 8.7 (a) Riemann sphere as unit sphere whose equator coincides with the

unit circle in z’s (horizontal) complex plane. The sphere is projected (stereogra-

phically) to the z-plane along straight lines through its south pole, which itself

gives z ¼ 1. (b) Re-interpreting the equatorial plane as the w-plane, depicted

upside down but with the same real axis, the stereographic projection is now

from the north pole (w ¼ 1), where w ¼ 1=z. (c) The real axis is a great circle

on this Riemann sphere, like the unit circle but drawn vertically rather than

horizontally.

Hence, bilinear (Möbius) transformations send circles to circles on the

Riemann sphere. This remarkable fact has a signiWcance for relativity

theory that we shall come to in §18.5 (and it has deep relevance to spinor

and twistor theory; see §22.8, §24.7, §§33.2,4).

We notice that, from the point of view of the Riemann sphere, the real

axis is ‘just another circle’, not essentially diVerent from the unit circle, but

drawn vertically rather than horizontally (Fig. 8.7c). One is obtained from

the other by a rotation. A rotation is certainly conformal, so it is given by

a holomorphic map of the sphere to itself. In fact every (non-reXective)

conformal map which takes the entire Riemann sphere to itself is achieved

by a bilinear (i.e. Möbius) transformation. The particular rotation that we

are concerned with can be exhibited explicitly as a relation between the

Riemann spheres of the complex parameters z and t given by the bilinear

correspondence[8.7]

t ¼ z� 1

izþ i
, z ¼ �tþ i

tþ i
:

In Fig. 8.8, I have plotted this correspondence in terms of the complex

planes of t and z, where I have speciWcally marked how the upper half-

plane of t, bounded by its real axis, is mapped to the unit disc of z,

bounded by its unit circle. This particular transformation will have im-

portance for us in the next chapter.

[8.7] Show this.
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t-plane z-plane

z = i−t
i+t

Fig. 8.8 The correspondence t ¼ (z� 1)=(izþ i), z ¼ (� tþ i)=(tþ i) in terms of

the complex planes of t and z. The upper half-plane of t, bounded by its real axis,

is mapped to the unit disc of z, bounded by its unit circle.

The Riemann sphere is the simplest of the compact—or ‘closed ’—Rie-

mann surfaces.2 See §12.6 for the notion of ‘compact’. By contrast, the

‘spiral ramp’ Riemann surface of the logarithm function, as I have de-

scribed it, is non-compact. In the case of the Riemann surface of (1� z3)1=2,

we need to Wll the four holes arising from the branch points to make it

compact (and it is non-compact if we do not do this), but this ‘compac-

tiWcation’ is the usual thing to do. As remarked earlier, this ‘hole-Wlling’ is

always possible with a branch point of Wnite order. As we saw at the end of

§8.1, for the logarithm we can actually Wll the branch points at the origin

and at inWnity, both together, with a single point, to obtain the Riemann

sphere as the compactiWcation. In fact, there is a complete classiWcation of

compact Riemann sufaces (achieved by Riemann himself), which is im-

portant in many areas (including string theory). I shall brieXy outline this

classiWcation next.

8.4 The genus of a compact Riemann surface

The Wrst stage is to classify the surfaces according to their topology, that is

to say, according to that aspect of things preserved by continuous trans-

formations. The topological classiWcation of compact 2-dimensional orien-

table (see end of §12.6) surfaces is really very simple. It is given by a single

natural number called the genus of the surface. Roughly speaking, all we

have to do is count the number of ‘handles’ that the surface has. In the

case of the sphere the genus is 0, whereas for the torus it is 1. The surface of

an ordinary teacup also has genus 1 (one handle!), so it is topologically the
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g =0:

g =1:

g =2: g =3:

,

,

;

same as a torus. The surface of a normal pretzel has genus 3. See Fig. 8.9

for several examples.

The genus does not in itself Wx the Riemann surface, however, except for

genus 0. We also need to know certain complex parameters known as

moduli. Let me illustrate this issue in the case of the torus (genus 1). An

easy way to construct a Riemann surface of genus 1 is to take a region of

the complex plane bounded by a parallelogram, say with vertices

0, 1, 1þ p, p (described cyclicly). See Fig. 8.10. Now we must imagine

that opposite edges of the parallelogram are glued together, that is, the

edge from 0 to 1 is glued to that from p to 1þ p, and the edge from 0 to p is

glued to that from 1 to 1þ p. (We could always Wnd other patches to cover

the seams, if we like.) The resulting Riemann surface is indeed topologic-

ally a torus. Now, it turns out that, for diVering values of p, the resulting

surfaces are generally inequivalent to each other; that is to say, it is not

possible to transform one into another by means of a holomorphic map-

ping. (There are certain discrete equivalences, however, such as those

arising when p is replaced by 1þ p, by �p, or by 1=p.[8.8] It can be made

intuitively plausible that not all Riemann surfaces with the same topology

Fig. 8.9 The genus of a

Riemann surface is its

number of ‘handles’. The

genus of the sphere is 0,

that of the torus, or teacup

surface is 1. The surface

of a normal pretzel has

genus 3.

Fig. 8.10 To construct a Riemann surface of genus 1,

take a region of the complex plane bounded by a

parallelogram, vertices 0, 1, 1þ p, p (cyclicly), with

opposite edges identiWed. The quantity p provides a

modulus for the Riemann surface.

[8.8] Show that these replacements give holomorphically equivalent spaces. Find all the special

values of p where these equivalences lead to additional discrete symmetries of the Riemann surface.
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can be equivalent, by considering the two cases illustrated in Fig. 8.11. In

one case I have chosen a very tiny value of p, and we have a very stringy

looking torus, and in the other case I have chosen p close to i, where the

torus is nice and fat. Intuitively, it seems pretty clear that there can be no

conformal equivalence between the two, and indeed there is none.

There is just this one complex modulus p in the case of genus 1, but

for genus 2 we Wnd that there are three. To construct a Riemann surface of

genus 2 by pasting together a shape, in the manner of the parallelogram

that we used for genus 1, we could construct the shape from a piece of the

hyperbolic plane; see Fig. 8.12. The same would hold for any higher genus.

The number m of complex moduli for genus g, where g > 2, is m ¼ 3g� 3.

One might regard it as a little strange that the formula 3g� 3 for the

number of moduli works for all values of the genus g ¼ 2, 3, 4, 5, . . . but it

fails for g ¼ 0 or 1. There is actually a ‘reason’ for this, which has to do

with the number s of complex parameters that are needed to specify the

diVerent continuous (holomorphic) self-transformations of the Riemann

surface. For g>2, there are no such continuous self-transformations (al-

though there can be discrete ones), so s ¼ 0. However, for g ¼ 1, the

complex plane of the parallelogram of Fig. 8.10 can be translated (moved

rigidly without rotation) in any direction in the plane. The amount (and

direction) of this displacement can be speciWed by a single complex param-

eter a, the translation being achieved by z 7! zþ a, so s ¼ 1 when g ¼ 1. In

the case of the sphere (genus 0), the self-transformations are achieved by the

bilinear transformations described above, namely z 7! (azþ b)=(czþ d).

Fig. 8.11 Two inequivalent

torus-topology Riemann

surfaces.

Fig. 8.12 An octagonal region of the

hyperbolic plane, with identiWcations to

yield a genus-2 Riemann surface.
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Here, the freedom is given by the three3 independent ratios a : b : c : d.

Thus, in the case g ¼ 0, we have s ¼ 3. Hence, in all cases, the diVerence

m� s between the number of complex moduli and the number of complex

parameters required to specify a self-transformation satisWes

m� s ¼ 3g� 3:

(This formula is related to some deeper issues that are beyond the scope of

this book.4)

It is clear that there is some considerable freedom, within the family of

conformal (holomorphic) transformations, for altering the apparent

‘shape’ of a Riemann surface, while keeping its structure as a Riemann

surface unaltered. In the case of spherical topology, for example, many

diVerent metrical geometries are possible (as is illustrated in Fig. 8.13); yet

these are all conformally identical to the standard (‘round’) unit sphere.

(I shall be more explicit about the notion of ‘metric’ in §14.7.) Moreover,

for higher genus, the seemingly large amount of freedom in the ‘shape’ of

the surface can all be reduced down to the Wnite number of complex

moduli given by the above formulae. But there is still some overall infor-

mation in the shape of the surface that cannot be eliminated by the use of

this conformal freedom, namely that which is deWned by the moduli

themselves. Exactly how much can be achieved globally by the use of

such freedom is quite a subtle matter.

8.5 The Riemann mapping theorem

Some appreciation of the considerable freedom involved in holomorphic

transformations can, however, be obtained from a famous result known as

the Riemann mapping theorem. This asserts that if we have some closed

region in the complex plane (see Note 8.1), bounded by a non-self-intersect-

ing closed loop, then there exists a holomorphic map matching this

region to the closed unit disc (see Fig. 8.14). (There are some mild restric-

tions on the ‘tameness’ of the loop, but these do not prevent the loop from

having corners or other worse kinds of place where the loop may be not

Fig. 8.13 Every

g ¼ 0 metric

geometry is

conformally

identical to that

of the standard

(‘round’) unit sphere.
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Fig. 8.14 The Riemann mapping theorem asserts that any open region in the

complex plane, bounded by a simple closed (not necessarily smooth) loop, can be

mapped holomorphically to the interior of the unit circle, the boundary being also

mapped accordingly.

diVerentiable, as is illustrated in the particular example of Fig. 8.14.) One

can go further than this and select, in a quite arbitrary way, three distinct

points a, b, c on the loop, and insist that they be taken by the map to three

speciWed points a0, b0, c0 on the unit circle (say a0 ¼ 1, b0 ¼ o, c0 ¼ o2), the

only restriction being that the cyclic ordering of the points a, b, c, around

the loop agrees with that of a0, b0, c0 around the unit circle. Furthermore,

the map is then determined uniquely. Another way of specifying the map

uniquely would be to choose just one point a on the loop and one

additional point j inside it, and then to insist that a maps to a speciWc

point a0 on the unit circle (say a0 ¼ 1) and j maps to a speciWc point j0 inside

the unit circle (say j0 ¼ 0).

Now, let us imagine that we are applying the Riemann mapping theorem

on the Riemann sphere, rather than on the complex plane. From the point of

view of the Riemann sphere, the ‘inside’ of a closed loop is on the same

footing as the ‘outside’ of the loop (just look at the sphere from the other

side), so the theoremcanbeapplied equallywell to theoutside as to the inside

of the loop. Thus, there is an ‘inverted’ form of the Riemann mapping

theorem which asserts that the outside of a loop in the complex plane can

be mapped to the outside of the unit circle and uniqueness is now ensured by

the simple requirement that one speciWed point a on the loop maps to one

speciWed point a0 on the unit circle (say a0 ¼ 1), where now1 takes over the

roleof jand j0 in thedescriptionprovidedat the endof theaboveparagraph).5

Often such desired maps can be achieved explicitly, and one of the

reasons that such maps might indeed be desired is that they can provide

solutions to physical problems of interest, for example to the Xow of air past

an aerofoil shape (in the idealized situation where the Xow is what is called

‘non-viscous’, ‘incompressible’, and ‘irrotational’). I remember being very

struck by such things when I was an undergraduate mathematics student,

most particularly by what is known as the Zhoukowski (or Joukowski)
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z-plane

−1 0

w-plane

−1

Fig. 8.15 Zhoukowski’s transformation w ¼ 1
2
(zþ 1=z) takes the exterior of a

circle through z ¼ �1 to an aerofoil cross-section, enabling the airXow pattern

about the latter to be calculated.

aerofoil transformation, illustrated in Fig. 8.15, which can be given expli-

citly by the eVect of the transformation

w ¼ 1=2 zþ 1

z

� �

,

on a suitable circle passing through the point z ¼ �1. This shape indeed

closely resembles a cross-section through the wing of an aeroplane of the

1930s, so that the (idealized) airXow around it can be directly obtained

from that around a ‘wing’ of circular cross-section—which, in turn, is

obtained by another such holomorphic transformation. (I was once told

that the reason that such a shape was so commonly used for aeroplane

wings was merely that then one could study it mathematically by just

employing the Zhoukowski transformation. I hope that this is not true!)

Of course, there are speciWc assumptions and simpliWcations involved in

applications such as these. Not only are the assumptions of zero viscosity

and incompressible, irrotational Xow mere convenient simpliWcations, but

there is also the very drastic simpliWcation that the Xow can be regarded as

the same all along the length of the wing, so that an essentially three-

dimensional problem can be reduced to one entirely in two dimensions. It

is clear that for a completely realistic computation of the Xow around an

aeroplane wing, a far more complicated mathematical treatment would be

needed. There is no reason to expect that, in a more realistic treatment, we

could get away with anything approaching such a direct and elegant use of

holomorphic functions as we have with the Zhoukowski transformation.
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It could, indeed, be argued that there is a strong element of good fortune in

Wnding such an attractive application of complex numbers to a problem

which had a distinctive importance in the real world. Air, of course,

consists of enormous numbers of individual fundamental particles (in

fact, about 1020 of them in a cubic centimetre), so airXow is something

whose macroscopic description involves a considerable amount of aver-

aging and approximation. There is no reason to expect that the mathemat-

ical equations of aerodynamics should reXect a great deal of the

mathematics that is deeply involved in the physical laws that govern

those individual particles.

In §4.1, I referred to the ‘extraordinary and very basic role’ that complex

numbers actually play at the ‘tiniest scales’ of physical action, and there is

indeed a holomorphic equation governing the behaviour of particles (see

§21.2). However, for macroscopic systems, this ‘complex structure’ gener-

ally becomes completely buried, and it would appear that only in excep-

tional circumstances (such as in the airXow problem considered above)

would complex numbers and holomorphic geometry Wnd a natural utility.

Yet there are circumstances where a basic underlying complex structure

shows through even at the macroscopic level. This can sometimes be seen

in Maxwell’s electromagnetic theory and other wave phenomena. There is

also a particularly striking example in relativity theory (see §18.5). In the

following chapter, we shall see something of the remarkable way in which

complex numbers and holomorphic functions can exert their magic from

behind the scenes.

Notes

Section 8.3

8.1. See Exercise [2.5].

8.2. There is scope for terminological confusion in the use of the word ‘closed’ in the

context of surfaces—or of the more general manifolds (n-surfaces) that will be

considered in Chapter 12. For such a manifold, ‘closed’ means ‘compact without

boundary’, rather than merely ‘closed’ in the topological sense, which is the

complementary notion to ‘open’ as discussed in §7.4. (Topologically, a closed set

is one that contains all its limit points. The complement of a closed set is an open

one, and vice versa—where ‘complement’ of a set SS within some ambient

topological space VV is the set of members of VV which are not in SS.) There is

additional confusion in that the term ‘boundary’, above, refers to a notion of

‘manifold-with-boundary’, which I do not discuss in this book. For the ordinary

manifolds referred to in Chapter 12 (i.e. manifolds-without-boundary), the mani-

fold notion of ‘closed’ (as opposed to the topological one) is equivalent to

‘compact’. To avoid confusion, I shall normally just use the term ‘compact’, in

this book, rather than ‘closed’. Exceptions are the use of ‘closed curve’ for a real

1-manifold which is topologically a circle S1 and ‘closed universe’ for a universe
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model which is spatially compact, that is, which contains a compact spacelike

hypersurface; see §27.11.

Section 8.4

8.3. The transformation is unaVected if we multiply (rescale) each of a, b, c, d by the

same non-zero complex number, but it changes if we alter any of them individu-

ally. This overall rescaling freedom reduces by one the number of independent

parameters involved in the transformation, from four to three.

8.4. This may be thought of as the beginning of a long story whose climax is the very

general and powerful Atiyah–Singer (1963) theorem.

Section 8.5

8.5. It should be noted that only for a loop that is an exact circle will the combination

of both versions of the Riemann mapping theorem give us a complete smooth

Riemann sphere.

Notes CHAPTER 8
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9
Fourier decomposition and hyperfunctions

9.1 Fourier series

Let us return to the question, raised in §6.1, of what Euler and his

contemporaries might have regarded as an acceptable notion of ‘honest

function’. In §7.1, we settled on the holomorphic (complex-analytic) func-

tions as best satisfying what Euler might well have had in mind. Yet, most

mathematicians today would regard such a notion of a ‘function’ as being

unreasonably restrictive. Who is right? We shall be coming to a very

remarkable answer to this question at the end of this chapter. But Wrst

let us try to understand what the issues are.

In the application of mathematics to problems of the physical world, it

is a frequent requirement that there be a Xexibility that neither the holo-

morphic functions nor their real counterparts—the analytic (i.e. Co-)

functions—appear to possess. Because of the uniqueness of analytic con-

tinuation, as described in §7.4, the global behaviour of a holomorphic

function deWned throughout some connected open region DD of the com-

plex plane, is completely Wxed, once it is known in some small open

subregion of DD: Similarly, an analytic function of a real variable, deWned

on some connected segment RR of the real line R is also completely Wxed

once the function is known in some small open subregion of RR. Such

rigidity seems inappropriate for the realistic modelling of physical systems.

It would be particularly awkward when the propagation of waves is

under consideration. Wave propagation, which includes the sending of

signals via the electromagnetic vibrations of radio waves or light, gains

much of its utility from the fact that information can be transmitted by

such means. The whole point of signalling, after all, is that there must be

the potential for sending a message that might be unexpected by the

receiver. If the form of the signal has to be given by an analytic function,

then there is not the possibility of ‘changing one’s mind’ in the middle of

the message. Any small part of the signal would completely Wx the signal in

its entirety for all time. Indeed, wave propagation is frequently studied in

terms of the question as to how discontinuities, or other deviations from

analyticity, will actually propagate.
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Let us consider waves and ask how such things are described mathemat-

ically. One of the most eVective ways of studying wave forms is through

the procedure known as Fourier analysis. Joseph Fourier was a French

mathematician who lived from 1768 until 1830. He had been concerned

with the question of decomposing periodic vibrations into their compon-

ent ‘sine-wave’ parts. In music, this is basically what is involved in repre-

senting some musical sound in terms of its constituent ‘pure tones’. The

term ‘periodic’ means that the pattern (say of physical displacements of the

object which is vibrating) exactly repeats itself after some period of time,

or it could refer to periodicity in space, like the repeating patterns in a

crystal or on wallpaper or in waves in the open sea. Mathematically, we

say that a function f (say1 of a real variable w) is periodic if, for all w, it

satisWes

f (wþ l) ¼ f (w),

where l is some Wxed number referred to as the period. Thus, if we ‘slide’

the graph of y ¼ f (w) along the w-axis by an amount l, it looks just the

same as it did before (Fig. 9.1a). (The way in which Fourier handled

functions that need not be periodic—by use of the Fourier transform—

will be described in §9.4.)

The ‘pure tones’ are things like sin w or cos w (Fig. 9.1b). These have

period 2p, since

sin (wþ 2p) ¼ sin w, cos (wþ 2p) ¼ cos w,

these relations being manifestations of the periodicity of the single com-

plex quantity eiw ¼ cos wþ i sin w,

ei(wþ2p) ¼ eiw,

which we encountered in §5.3. If we want periodicity l, rather than 2p, then

we can ‘rescale’ the w as it appears in the function, and take ei2pw=l instead

of eiw. The real and imaginary parts cos (2pw=l) and sin (2pw=l) will corres-

pondingly also have period l. But this is not the only possibility. Rather

than oscillating just once, in the period l, the function could oscillate twice,

three times, or indeed n times, where n is any positive integer (see Fig.

9.1c), so we Wnd that each of

ei�2pnw=l , sin
2pnw

l

� �

, cos
2pnw

l

� �

has period l (in addition to having also a smaller period l/n). In music,

these expressions, for n ¼ 2, 3, 4, . . . , are referred to as higher harmonics.

One problem that Fourier addressed (and solved) was to Wnd out how to

express a general periodic function f (w), of period l, as a sum of pure tones.
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2π

2π

χ

χ

χ

χ

χ
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(a)

(b)

(c)

Fig. 9.1 Periodic functions. (a) f (w) has period l if f (w)¼ f (wþ l) for all w,
meaning that if we slide the graph of y¼ f (w) along the w-axis by l, it looks just

the same as before. (b) The basic ‘pure tones’ sin w or cos w (shown dotted) have

period l¼2p. (c) ‘Higher harmonic’ pure tones oscillate several times in the period

l; they still have period l, while also having a shorter period (sin 3w is illustrated,

having period l¼2p as well as the shorter period 2p=3).

For each n, there will generally be a diVerent magnitude of that pure tone’s

contribution to the total, and this will depend upon the wave form (i.e. upon

the shape of the graph y ¼ f (w)). Some simple examples are illustrated in

Fig. 9.2. Usually, the number of diVerent pure tones that contribute to f (w)
will be inWnite, however. More speciWcally, what Fourier required was the
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x

(a)

(b)

x

x

x

Fig. 9.2 Examples of Fourier decomposition of periodic functions. The wave

form (shape of the graph) is determined by the Fourier coeYcients. The functions

and their individual Fourier components beneath. (a) f (w) ¼ 2
3
þ 2 sin w þ 1

3

cos 2wþ 1
4
sin 2wþ 1

3
sin 3w: ðbÞ f (w) ¼ 1

2
þ sin w� 1

3
cos 2w� 1

4
sin 2w� 1

5
sin 3w:
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collection of coeYcients c, a1, b1, a2, b2, a3, b3, a4, in the decomposition

of f (w) into its constituent pure tones, as given by the expression

f (w) ¼ cþ a1 cosowþ b1 sinowþ a2 cos 2owþ b2 sin 2owþ
a3 cos 3owþ b3 sin 3owþ � � � ,

where, in order to make the expressions look simpler, I have written them

in terms of the angular frequency o (nothing to do with the ‘o’ of §§5.4,5,

§8.1) given by o ¼ 2p=l.
Some readers may well feel that this expression for f (w) still looks

unduly complicated—and such a reader is indeed correct. The formula

actually looks a lot tidier if we incorporate the cos and sin terms together

as complex exponentials eiAw ¼ cosAwþ i sin Aw
� �

, so that

f (w) ¼ � � � þ a�2e
�2iow þ a�1e

�iow þ a0 þ a1e
iow þ a2e

2iow þ a3e
3iow þ � � � ,

where2,[9.1]

an ¼ an þ a�n, bn ¼ ian � ia�n, c ¼ a0

for n ¼ 1, 2, 3, 4, . . . . The expression looks even tidier if we put z ¼ eiow,

and deWne the function F(z) to be just the same quantity as f (w) but now

expressed in terms of the new complex variable z. For then we get

F (z) ¼ � � � þ a�2z
�2 þ a�1z

�1 þ a0z
0 þ a1z

1 þ a2z
2 þ a3z

3 þ � � � ,

where

F (z) ¼ F (eiow) ¼ f (w):

And we can make it look tidier still by using the summation sign
P

, which

here means ‘add together all the terms, for all integer values of r’:

F (z) ¼
X

arz
r:

This looks like a power series (see §4.3), except that there are negative as

well as positive powers. It is called a Laurent series. We shall be seeing the

importance of this expression in the next section.[9.2]

9.2 Functions on a circle

The Laurent series certainly gives us a very economical way of represent-

ing Fourier series. But this expression also suggests an interesting

[9.1] Show this.

[9.2] Show that when F is analytic on the unit circle the coeYcients an, and hence the an, bn,

and c, can be obtained by use of the formula an ¼ (2pi)�1
H

z�n�1F (z) dz.
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Period = l

x

Fig. 9.3 A periodic function of a real variable w may be thought of as deWned on

a circle of circumference l where we ‘wrap up’ the real axis of w into the circle. With

l¼2p, we may take this circle as the unit circle in the complex plane.

alternative perspective on Fourier decomposition. Since a periodic func-

tion simply repeats itself endlessly, we may think of such a function (of a

real variable w) as being deWned on a circle (Fig. 9.3), where the function’s

period l is the length of the circle’s circumference, w measuring distance

around the circle. Rather than simply going oV in a straight line, these

distances now wrap around the circle, so that the periodicity is automatic-

ally taken into account.

For convenience (at least for the time being), I take this circle to be the

unit circle in the complex plane, whose circumference is 2p, and I take the

period l to be 2p. Accordingly,

o ¼ 1, so z ¼ eiw:

(For any other value of the period, all we need to do is to reinstate o by

rescaling the w-variable appropriately.) The diVerent cos and sin terms that

represent the various ‘pure tones’ of the Fourier decomposition are now

simply represented as positive or negative powers of z, namely z�n for the

nth harmonics. On the unit circle, these powers just give us the oscillatory

cos and sin terms that we require; see Fig. 9.4.

We now have this very tidy way of representing the Fourier decom-

position of some periodic function f (w). We think of f (w) ¼ F (z) as

deWned on the unit circle in the z-plane, with z ¼ eiw, and then the

Fourier decomposition is just the Laurent series description of this

function, in terms of a complex variable z. But the advantage is not

just a matter of tidiness. This representation also provides us with deeper

insights into the nature of Fourier series and of the kind of function

that they can represent. More signiWcantly for the eventual purpose of

this book, it has important connections with quantum mechanics and,

therefore, for our deeper understanding of Nature. This comes about

through the magic of complex numbers, for we can also use our Laurent

series expression when z lies away from the unit circle. It turns out that
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this series tells us something important about F(z), for z lying on the

unit circle, in terms of what the series does when z lies oV the unit

circle.

Now, let us recall (from §4.4) the notion of a circle of convergence,

within which a power series converges and outside of which it diverges.

There is a close analogue of this for a Laurent series: the annulus of

convergence. This is the region lying strictly between two circles in

the complex plane, both centred at the origin (see Fig. 9.5a). This is

simple to understand once we have the notion of circle of convergence

for an ordinary power series. The part of the series with positive

powers,3

A
B

z-plane
z = A

Use z

w = B-1

Use

w = 
1
z

(a) (b)

Fig. 9.5 (a) The annulus of convergence for a Laurent series F (z)¼Fþþ a0 þ F�,

where Fþ¼ . . .þ a�2z
�2 þ a�1z

�1, F�¼ a1z
1 þ a2z

2 þ . . . : The radius of conver-

gence for Fþ is A and, in terms of w ¼ z�1, for F� is B�1. (b) The same, on the

Riemann sphere (see Fig. 8.7), where z refers to the extended northern hemisphere

and w (¼ z�1) to the extended southern hemisphere.

Fig. 9.4 On the unit circle,

the real and imaginary parts

of the function zn appear as

nth harmonic cos and sin

waves (the real and imagin-

ary parts of einw, respectively,

where z ¼ eiw). Here, for

n ¼ 5, the real part of z5 is

plotted.
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F� ¼ a1z
1 þ a2z

2 þ a3z
3 þ . . . ,

will have an ordinary circle of convergence, of radius A, say, and that part

of the series converges for all values of z whose modulus is less than A.

With regard to the part of the series with negative powers, that is,

Fþ ¼ � � � þ a�3z
�3 þ a�2z

�2 þ a�1z
�1,

we can understand it as just an ordinary power series in the reciprocal

variable w ¼ 1=z. There will be a circle of convergence in the w-plane, of

radius 1/B, say, and that part of the series will converge for values of w

whose modulus is smaller than 1/B. (We are really talking about the

Riemann sphere here, as described in Chapter 8—see Fig. 8.7, with the

z-coordinate referring to one hemisphere and the w-coordinate referring to

the other. See Fig. 9.5b. We shall explore the Riemann sphere aspect of

this in the next section.) For values of z whose moduli are greater than B,

therefore, the negative-power part of the series will converge. Provided

that B < A, these two convergence regions will overlap, and we get the

annulus of convergence for the entire Laurent series. Note that the whole

Fourier or Laurent series for the function f (w) ¼ F eiw
� �

¼ F (z) is given by

F (z) ¼ Fþ þ a0 þ F�,

where the additional constant term a0 must be included.

In the present situation, we ask for convergence on the unit circle, since

this is where we can have z ¼ eiw for real values of w, and the question of

the convergence of our Fourier series for f (w) is precisely the question

of the convergence of the Laurent series for F(z) when z lies on the unit

circle. Thus, we seem to need B < 1 < A, ensuring that the unit circle

indeed lies within the annulus of convergence. Does this mean that, for

convergence of the Fourier series, we necessarily require the unit circle to

lie within the annulus of convergence?

This would indeed be the case if f (w) is analytic (i.e. Co); for then the

function f (w) can be extended to a function F(z) that is holomorphic

throughout some open region that includes the unit circle.4 But, if f (w) is

not analytic, an interesting question arises. In this case, either the annulus of

convergence shrinks down to become the unit circle itself—which, strictly

speaking, is not allowed for a genuine annulus of convergence, because the

annulus of convergence ought to be an open region, which the unit circle is

not—or else the unit circle becomes the outer or inner boundary of the

annulus of convergence. These questions will be important for us in §§9.6,7.

For the moment, let us not worry about what happens when f (w) in not

analytic, and consider the simpler situation that arises when f (w) is ana-

lytic. Then we have the unit circle in the z-plane strictly contained within a

genuine annulus of convergence for F(z), this being bounded by circles
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(centred at the origin) of radii A and B, with B < 1 < A. The part of

the Laurent series with positive powers, F�, converges for points in the

z-plane whose moduli are smaller than A and the part with negative

powers, Fþ, converges for points in the z-plane whose moduli are greater

thanB, soboth convergewithin the annulus itself (and, in avery trivial sense,

the constant term a0 obviously ‘converges’ for all z). This provides us with a

‘splitting’ of the function F(z) into two parts, one holomorphic inside the

outer circle and the other holomorphic outside the inner circle, these being

deWned, respectively, by the series expressions for F� and Fþ.
There is a (mild) ambiguity about whether the constant term a0 is to be

included with F� or with Fþ in this splitting. In fact, it is better just to live

with this ambiguity. For there is a symmetry between F� and Fþ, which is

made clearer if we adopt the Riemann sphere picture that was alluded to

above (see Fig. 9.5b). This gives us a more complete picture of the

situation, so let us explore this next.

9.3 Frequency splitting on the Riemann sphere

The coordinates z and w (¼ 1=z) give us two patches covering the Riemann

sphere. The unit circle becomes the equator of the sphere and the annulus is

now just a ‘collar’ of the equator. We think of our splitting of F(z) as

expressing it as a sum of two parts, one of which extends holomorphically

into the southern hemisphere—called the positive-frequencypart of F(z)—as

deWned by Fþ(z), together with whatever portion of the constant term we

choose to include, and the other, extending holomorphically into the north-

ern hemisphere—called the negative-frequency part of F(z)—as deWned by

F�(z) and the remaining portion of the constant term. If we ignore the

constant term, this splitting is uniquely determined by this holomorphicity

requirement for the extension into one or other of the two hemispheres.[9.3]

It will be handy, from time to time, to refer to the ‘inside’ and the

‘outside’ of a circle (or other closed loop) drawn on the Riemann sphere by

appealing to an orientation that is to be assigned to the circle. The standard

orientation of the unit circle in the z-plane is given in terms of the direction

of increase of the standard y-coordinate, i.e. anticlockwise. If we reverse

this orientation (e.g. replacing y by �y), then we interchange positive with

negative frequency. Our convention for a general closed loop is to be

consistent with this. The orientation is anticlockwise if the ‘clock face’ is

on the inside of the loop, so to speak, whereas it would be clockwise if the

‘clock face’ were to be placed on the outside of the loop. This serves to

deWne the ‘inside’ and ‘outside’ of an oriented closed loop. Figure 9.6

should clarify the issue.

[9.3] Can you see why?
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Inside

Outside

This splitting of a function into its positive- and negative-frequency

parts is a crucial ingredient of quantum theory, and most particularly of

quantum Weld theory, as we shall be seeing in §24.3 and §§26.2–4. The

particular formulation that I have given here is not quite the most usual

way that this splitting is expressed, but it has some considerable advan-

tages in a number of diVerent contexts (particularly in twistor theory, for

example; see §33.10). The usual formulation is not so concerned with

holomorphic extensions as with the Fourier expansion directly. The posi-

tive-frequency components are those given by multiples of e�inw, where n is

positive, as opposed to those given by multiples of einw, which are negative-

frequency components. A positive-frequency function is one composed

entirely of positive-frequency components.

However, this description does not reveal the full generality of what is

involved in this splitting. There are many holomorphic mappings of the

Riemann sphere to itself which send each hemisphere to itself, but which

do not preserve the north or south poles (i.e. the points z ¼ 0 or

z ¼ 1).[9.4] These preserve the positive/negative-frequency splitting but

do not preserve the individual Fourier components e�inw or einw. Thus,

the issue of the splitting into positive and negative frequencies (crucial to

quantum theory) is a more general notion than the picking out of individ-

ual Fourier components.

In normal discussions of quantum mechanics, the positive/negative-

frequency splitting refers to functions of time t, and we do not usually

think of time as going round in a circle. But we can use a simple trans-

formation to obtain the full range of t, from the ‘past limit’ t ¼ �1 to the

‘future limit’ t ¼ 1, from a w that goes once around the circle—here I take

w to range between the limits w ¼ �p and w ¼ p (so z ¼ eiw ranges round

the unit circle in the complex plane, in an anticlockwise direction, from the

point z ¼ �1 and back to z ¼ �1 again; see Fig. 9.7). Such a transform-

ation is given by

[9.4] Which are these mappings, explicitly?

Fig. 9.6 An orientation assigned to a closed loop

on the Riemann sphere deWnes its ‘inside’ and

‘outside’ as indicated: this orientation is anti-

clockwise for a ‘clock face’ inside the loop (and

clockwise if outside).
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−1 0 t 1 2

t

t = ��

t = 2

t = 1

t

t = 0x

t = −1

Fig. 9.7 In quantum mechanics, positive/negative-frequency splitting refers to

functions of time t, not assumed periodic. The splitting of Fig. 9.5 can still be

applied, for the full range of t (from �1 to¼ þ1) if we use the transformation of

relating t to z(¼ eiw), where we go around unit circle, anticlockwise, from z ¼ �1

and back to z ¼ �1 again, so w goes from �p to p.

t ¼ tan
1

2
w:

The graph of this relationship is given in Fig. 9.8 and a simple geometrical

description is provided in Fig. 9.9.

An advantage of this particular transformation is that it extends holo-

morphically to the entire Riemann sphere, this being a transformation that

we already considered in §8.3 (see Fig. 8.8), which takes the unit circle

(z-plane) into the real line (t-plane):[9.5]

t ¼ z� 1

izþ i
, z ¼ �tþ i

tþ i
:

The interior of the unit circle in the z-plane corresponds to the upper half-

t-plane and the exterior of the z-unit circle corresponds to the lower half-

t-plane. Hence, positive-frequency functions of t are those that extend

holomorphically into the lower half-plane of t and negative-frequency

ones, into the upper half-plane. (There is, however, a signiWcant additional

x = π
x

x = −π

t

[9.5] Show that this gives the same t as above.

Fig. 9.8 Graph of

t ¼ tan w=2.
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t

z = eix

x

1

x1
2

technicality that we have to be careful about how we deal with the point

‘1’ of the t-plane; but this is handled appropriately if we always think in

terms of the Riemann sphere, rather than simply the complex t-plane.)

In standard presentations, however, the notion of ‘positive frequency’ in

terms of a time-coordinate t, is not usually stated in the particular way that

I have just presented it here, but rather in terms of what is called the

Fourier transform of f (w). The answer is actually the same5 as the one that I

have given, but since Fourier transforms are of crucial signiWcance for

quantum mechanics in any case (and also in many other areas), it will be

important to explain here what this transform actually is.

9.4 The Fourier transform

Basically, a Fourier transform is the limiting case of a Fourier series when

the period l of our periodic function f (w) is taken to get larger and larger

until it becomes inWnite. In this inWnite limit, there is no restriction of

periodicity on f (w) at all: it is just an ordinary function.6 This has consider-

able advantages when we are studying wave propagation and the potential

for sending of ‘unexpected’ signals. For then we do not want to insist that

the form of the signal be periodic. The Fourier transform allows us to

consider such ‘one-oV’ signals, while still analysing them in terms of

periodic ‘pure tones’. It achieves this, in eVect, by considering our function

f (w) to have period l!1. As the period l gets larger, the pure-tone

harmonics, having period l/n for some positive integer n, will get closer

and closer to any positive real number we choose. (Recall that any real

number can be approximated arbitrarily closely by rationals, for example.)

What this tells us is that any pure tone of any frequency whatever is now

Fig. 9.9 Geometry of

t ¼ tan w
2
.
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allowed as a Fourier component. Rather than having f (w) expressed as

a discrete sum of Fourier components, we now have f (w) expressed

as a continuous sum over all frequencies, which means that f (w) is now

expressed as an integral (see §6.6) with respect to the frequency.

Let us see, in outline, how this works. First, recall our ‘tidiest’ expres-

sion for the Fourier decomposition of a periodic function f (w), of period l,

as given above:

F (z)¼
X

arz
r, where z¼eiow

(the angular frequencyo being given byo ¼ 2p=l). Let us take the period to

be initially 2p, so o ¼ 1. Now we are going to try to increase the period by

some large integer factor N (whence l ¼ 2pN), so the frequency is reduced

by the same factor (i.e. o ¼ N�1). The oscillatory wave that used to be the

fundamental pure tone now becomes the Nth harmonic with respect to this

new lower frequency. A pure tone that used to be an nth harmonic would

now be an (nN)th harmonic. When we take the limit as N approaches

inWnity, it becomes inappropriate to try to keep track of a particular

oscillatory component by labelling it by its ‘harmonic number’ (i.e. by the

number n), because this number keeps changing. That is to say, it is inappro-

priate to label this oscillatory component by the integer r in the above sum

because a Wxed value of r labels a particular harmonic (r ¼ �n for the nth

harmonic), rather than keeping track of a particular tone frequency. In-

stead, it is r/N that keeps track of this frequency, and we need a new variable

to label this. Bearing in mind the important use that Fourier transforms are

due to be put to in later chapters (see §21.11 particularly), I shall call this

variable ‘p’ which, in the limit when N tends to inWnity, stands for the

momentum7 of some quantum-mechanical particle whose position is meas-

ured by w. In this limit, one may also revert to the conventional use of x in

place of w, if desired, aswe shallWnd that w actually does become the real part

of z in the limit in the following descriptions.

For Wnite N, I write

p ¼ r

N
:

In the limit as N!1, the parameter p becomes a continuous variable

and, since the ‘coeYcients ar’ in our sum will then depend on the continu-

ous real-valued parameter p rather that on the discrete integer-valued

parameter r, it is better to write the dependence of the coeYcients ar on r

by using the standard type of functional notation, say g(p), rather than just

using a suYx (e.g. gp), as in ar. EVectively, we shall make the replacement

ar 7! g(p)
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in our summation
P

arz
r, but we must bear in mind that, as N gets larger,

the number of actual terms lying within some small range of p-values gets

larger (basically in proportion to N, because we are considering fractions

n/N that lie in that range). Accordingly, the quantity g(p) is really a

measure of density, and it must be accompanied by the diVerential quan-

tity dp in the limit as the summation
P

becomes an integral
Ð

. Finally,

consider the term zr in our sum
P

arz
r. We have z ¼ eiow, with o ¼ N�1;

so z ¼ eiw=N . Thus zr ¼ eiw=N ¼ eiwp; so putting these things together, in the

limit as N!1, we get the expression

X

arz
r !

ð1

�1
g(p)eiwpdp

to represent our function f (w). In fact it is usual to include a scaling factor

of (2p)�1=2 with the integral, for then there is the remarkable symmetry that

the inverse relation, expressingg(p) in termsof f (w) has exactly the same form

(apart from a minus sign) as that which expresses f (w) in terms of g(p):

f (w) ¼ (2p)�1=2

ð1

�1
g(p)eiwpdp, g(p) ¼ (2p)�1=2

ð1

�1
f (w)e�iwpdw:

The functions f (w) and g(p) are called Fourier transforms of one another.[9.6]

9.5 Frequency splitting from the Fourier transform

A (complex) function f (w), deWned on the entire real line, is said to be of

positive frequency if itsFourier transformg(p) is zero for allp > 0.Thus, f (w)
is composed only of components of the form eiwp with p < 0. (Euler might

well have worried—see §6.1—about such a g(p), which seems to be a blatant

‘gluing job’ between anon-zero function for p < 0 and simply zero for p > 0.

Yet this seems to be representing a perfectly respectable ‘holomorphic’

property of f (w). Another way of expressing this ‘positive-frequency’ condi-

tion is in terms of the holomorphic extendability of f (w), as we did before for

Fourier series. Now we think of the variable w as labelling the points on the

real axis (so we can take w ¼ x on this axis), where on the Riemann sphere

this ‘real axis’ (including the point ‘w ¼ 1’) is now the real circle (see Fig.

8.9c). This circle divides the sphere into two hemispheres, the ‘outside’ one

being that which is the lower half-plane in the standard picture of the

complex plane. The condition that f (w) be of positive frequency is now

that it extend holomorphically into this outside hemisphere.

There is one issue that requires some care, however, when we compare

these two deWnitions of ‘positive frequency’. This relates to the question of

[9.6] Show (in outline) how to obtain the expression for g(p) in terms of f (w) using a limiting

form of the contour integral expression an ¼ (2pi)�1
H

z�n�1F (z)dz of Exercise [9.2].
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how we treat the point z ¼ 1, since the function f (w) will in general have

some kind of singularity there. In fact, provided that we adopt the ‘hyper-

functional’ point of view that I shall be describing shortly (in §9.7), this

singularity at z ¼ 1 presents us with no essential diYculty. With the

appropriate point of view with regard to ‘f (1)’, it turns out that the two

deWnitions of positive frequency that I gave in the previous paragraph are

in basic agreement with each other.8

For the interested reader, it may be helpful to examine, in terms of the

Riemann sphere, some of the geometry that is involved in our limit of §9.4,

taking us from Fourier series to Fourier transform. Let us return to the

z-plane description that we had been considering earlier, for a function f (w)
of period 2p, where w measures the arc length around a unit-radius circle.

Suppose that we wish to change the period to values larger than 2p, in

successively increasing steps, while retaining the interpretation of w as a

distance around a circle. We can achieve this by considering a sequence of

larger and larger circles, but in order for the limiting procedure to make

geometric sense we shall suppose that the circles are all touching each other

at the starting point w ¼ 0 (see Fig. 9.10a). For simplicity in what follows,

let us choose this point to be the origin z ¼ 0 (rather than z ¼ 1), with

all the circles lying in the lower half-plane. This makes our initial circle,

0

−i

Displaced
unit circle

C = −il
2π

x

(a)

Nega
tiv

e

im
ag

ina
ry

Displaced
unit circle

ax
is

Real
axis

�

−i

0

(b)

Fig. 9.10 Positive-frequency condition, as l!1, where l is the period of f (w).
(a) Start with l ¼ 2p, with f deWned on the unit circle displaced to have its centre

at z ¼ �i. For increasing l, the circle has radius l and centre at C ¼ �il=2p. In

each case wmeasures arc length clockwise. Positive frequency is expressed as f being

holomorphically extendible to the interior of the circle, and in the limit l ¼ 1, to

the lower half-plane. (b) The same, on the Riemann sphere. For Wnite l, the

Fourier series is obtained from a Laurent series about z ¼ �il=2p, but on the

sphere, this point is not the circle’s centre, becoming the point 1 (lying on it) in

the limit l ¼ 1, where the Fourier series becomes the Fourier transform.
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for period l ¼ 2p, the unit circle centred at z ¼ �i, rather than at the

origin. For a period l > 2p, the circle is centred at the point C ¼ �il=2p
in the complex plane, and, in the limit as l!1, we get the real axis

itself (so w ¼ x), the circle’s ‘centre’ having moved oV to inWnity along

the negative imaginary axis. In each case, we now take w to measure

arc length clockwise around the circle (or, in the limiting case, just

positive distance along the real axis), with w ¼ 0 at the origin. Since our

circles now have a non-standard (i.e. clockwise) orientation, their ‘out-

sides’ are their interiors (see §9.3, Fig. 9.6), so our positive frequency

condition refers to this interior. We now have the relation between w and

z expressed as[9.7]

z ¼ il

2p
e�iw � 1
� �

:

For Wnite l, we can express f (w) as a Fourier series by referring to a

Laurent series about the point C ¼ �il=2p. We get the Fourier transform

by taking the limit l!1. For Wnite l, we obtain the condition of positive

frequency as the holomorphic extendability of f (w) into the interior of

the relevant circle; in the limit l!1, this becomes holomorphic extend-

ability into the lower half-plane, in accordance with what has been stated

above.

What happens to the Laurent series in the limit l!1? We shall need

to look at the Riemann sphere to understand what happens in this limit. For

each Wnite value of l, the point C( ¼ il=2p) is the centre of the w-circle, but,

on the Riemann sphere, the point C need be nothing like the centre

of the circle. As l increases, C moves out along the circle on the Riemann

sphere which represents the imaginary axis (see Fig. 9.10b), and the

point C( ¼ �il=2p) looks less and less like the centre of the circle. Finally,

when the limit l ¼ 1 is reached, C becomes the point z ¼ 1 on the Rie-

mann sphere. But when C ¼ 1, we Wnd that it actually lies on the circle

which it is supposed to be the centre of! (This circle is, of course, now the

real axis.) Thus, there is something peculiar (or ‘singular’) about the

taking of a power series about this point—which is to be expected, of

course, because we do not get a sum of individual terms any more, but a

continuous integral.

9.6 What kind of function is appropriate?

Let us now return to the question posed at the beginning of this chapter,

concerning the type of ‘function’ that is appropriate to use. We can raise

[9.7] Derive this expression.
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the following issue: what kind of functions can we represent as Fourier

transforms? It would seem to be inappropriate to restrict attention only to

analytic (i.e to Co�) functions because, as we saw above, the Fourier

transform g(p) of a positive-frequency function f (w)—which can certainly

be analytic—is a distinctly non-analytic ‘gluing job’ of a non-zero function

to the zero function. The relation between a function and its Fourier

transform is symmetrical, so it seems unreasonable to adopt such diVerent

standards for each. As a further point, it was noted above that the behav-

iour of f (w) at the point w ¼ 1 is relevant to the issue of its positive/

negative-frequency splitting, but only in very special circumstances would

f (w) actually be analytic (Co) at 1 (since this would require a precise

matching between the behaviour of f (w) as w! þ1 and as w! �1). In

addition to all this, there is our initial physical motivation, referred to

earlier, for studying Fourier transforms, namely that they allow us to treat

signals which can transmit ‘unexpected’ (non-analytic) messages. Thus, we

must return to the question which confronted us at the beginning of this

chapter: what kind of function should we accept as being an ‘honest’

function?

We recall that, on the one hand, Euler and his contemporaries might

indeed have probably settled for a holomorphic (or analytic) function as

being the kind of thing that they had in mind for a respectable ‘function’;

yet, on the other hand, such functions seem unreasonably restrictive for

many kinds of mathematical and physical problem, including those con-

cerned with wave propagation, so a more general notion is needed. Is

one of these points of view more ‘correct’ than the other? There is prob-

ably a strong prevailing opinion that supporters of the Wrst viewpoint

are ‘old-fashioned’, and that modern concepts lean heavily towards

the second, so that holomorphic or analytic functions are just very special

cases of the general notion of a ‘function’. But is this necessarily the

‘right’ attitude to take? Let us try to put ourselves into an 18th-century

frame of mind.

Enter JosephFourier early in the 19th century.Thosewhobelonged to the

‘analytic’ (‘Eulerian’) school of thought would have received a nasty shock

when Fourier showed that certain periodic functions, such as the square

wave or saw tooth depicted in Fig. 9.11, have perfectly reasonable-looking

Fourier representations! Fourier encountered a great deal of opposition

from the mathematical establishment at the time. Many were reluctant to

accept his conclusions. How could there be a ‘formula’ for the square-wave

function, for example? Yet, as Fourier showed, the series

s(w) ¼ sin wþ 1
3
sin 3wþ 1

5
sin 5wþ 1

7
sin 7wþ � � �

actually sums to a square wave, taking this wave to oscillate between the

constant values 1
4
p and � 1

4
p in the half-period p (see Fig. 9.12).
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x

x

(a)

(b)

Fig. 9.11 Discontinuous periodic functions (with perfectly reasonable-looking

Fourier representations): (a) Square wave (b) Saw tooth.

x

s

Fig. 9.12 Partial sums of the Fourier series s(w) ¼ sin wþ 1
3
sin 3wþ 1

5
sin 5wþ

1
7
sin 7wþ 1

9
sin 9wþ . . . , converging to a square wave (like that of Fig. 9.11a).

Let us consider the Laurent-series description for this, as given above.

We have the rather elegant-looking expression[9.8]

2is(w) ¼ � � � � 1
5
z�5 � 1

3
z�3 � z�1 þ zþ 1

3
z3 þ 1

5
z5 þ � � � ,

where z ¼ eiw. In fact this is an example where the annulus of convergence

shrinks down to the unit circle—with no actual open region left. However,

we can still make sense of things in terms of holomorphic functions if we

split the Laurent series into two halves, one with the positive powers,

giving an ordinary power series in z, and one with the negative powers,

giving a power series in z�1. In fact, these are well-known series, and can

be summed explicitly:[9.9]

[9.8] Show this.

[9.9] Do this, by taking advantage of a power series expansion for log z taken about z ¼ 1,

given towards the end of §7.4.
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S� ¼ zþ 1
3
z3 þ 1

5
z5 þ � � � ¼ 1

2
log

1þ z

1� z

� �

and

Sþ ¼ � � � � 1
5
z�5 � 1

3
z�3 � z�1 ¼ �1

2
log

1þ z�1

1� z�1

� �

,

giving 2is(w) ¼ S� þ Sþ. A little rearrangement of these expressions leads

to the conclusion that S� and �Sþ diVer only by � 1
2
ip, telling us that

s(w) ¼ � 1
4
p.[9.10] But we need to look a little more closely to see why we

actually get a square wave oscillating between these alternative values.

It is a little easier to appreciate what is going on if we apply the

transformation t ¼ (z� 1)=(izþ i), given in §8.3, which takes the interior

of the unit circle in the z-plane to the upper half-t-plane (as illustrated in

Fig. 8.10). In terms of t, the quantity S� now refers to this upper half-

plane and Sþ to the lower half-plane, and we Wnd (with possible 2pi

ambiguities in the logarithms)

S� ¼ �1
2
log tþ 1

2
log i, Sþ ¼ 1

2
log tþ 1

2
log i:

Following the logarithms continuously from the respective starting points

t ¼ i (where S� ¼ 0) and t ¼ �i (where Sþ ¼ 0), we Wnd that along

the positive real t-axis we have S� þ Sþ ¼ þ 1
2
ip, whereas along the nega-

tive real t-axis we have S� þ Sþ ¼ � 1
2
ip.[9.11] From this we deduce that

along the top half of the unit circle in the z-plane we have s(w) ¼ þ 1
4
p,

whereas along the bottom half we have s(w) ¼ � 1
4
p. This shows that the

Fourier series indeed sums to the square wave, just as Fourier had asserted.

What is the moral to be drawn from this example? We have seen that a

particular (periodic) function that is not even continuous, let alone diVer-

entiable (in this case being a C�1-function), can be represented as a

perfectly sensible-looking Fourier series. Equivalently, when we think of

the function as being deWned on the unit circle, it can be represented as a

reasonable-appearing Laurent series, although it is one for which the

annulus of convergence has, in eVect, shrunk down to the unit circle itself.

The positive and the negative half of this Laurent series each sums to a

perfectly good holomorphic function on half of the Riemann sphere. One

is deWned on one side of the unit circle, and the other is deWned on

the other side. We can think of the ‘sum’ of these two functions as

giving the required square wave on the unit circle itself. It is because

of the existence of branch singularities at the two points z ¼ �1 on

[9.10] Show this (assuming that js(w)j < 3p=2).

[9.11] Show this.
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the unit circle that the sum can ‘jump’ from one side to the other, giving the

square wave that arises in this sum. These branch singularities also prevent

the power series on the two sides from converging beyond the unit circle.

9.7 Hyperfunctions

This example is only a very special case, but it illustrates what we must

do in general. Let us ask what is the most general type of function that

can be deWned on the unit circle (on the Riemann sphere) and represented

as a ‘sum’ of some holomorphic function Fþ on the open region lying

to one side of the circle and of another holomorphic function F� on the

open region lying to the other side, just as in the example that we

have been considering. We shall Wnd that the answer to this question

leads us directly to an exotic but important notion referred to as a

‘hyperfunction’.

In fact, it turns out to be more illuminating to think of f as being the

‘diVerence’ between F� and � Fþ. One reason for this is that, in the most

general cases, there may be no analytic extension of either F� or Fþ to the

actual unit circle, so it is not clear what such a ‘sum’ could mean on the

circle itself. However, we can think of the diVerence between

F� and � Fþ as representing the ‘jump’ between these two functions as

their regions of deWnition come together at the unit circle.

This idea of a ‘jump’ between a holomorphic function on one side of a

curve in the complex plane and another holomorphic function on the

other—where neither holomorphic function need extend holomorphically

over the curve itself—actually provides us with a new concept of a ‘func-

tion’ deWned on the curve. This is, in eVect, the deWnition of a hyperfunc-

tion on an (analytic) curve. It is a wonderful notion put forward by the

Japanese mathematician Mikio Sato in 1958,9 although, as we shall shortly

be seeing, Sato’s actual deWnition is considerably more elegant than just

this.10

We do not need to think of a closed curve, like the entire unit circle, for

the deWnition of a hyperfunction, but we can consider some part of a

curve. Indeed, it is more usual to consider hyperfunctions as deWned on

some segment g of the real line. We shall take g to be the segment of the

real line between a and b, where a and b are real numbers with a < b. A

hyperfunction deWned on g is then the jump across g, starting from a

holomorphic function f on an open set RR � (having g as its upper bound-

ary) to a holomorphic function g on an open set RR þ (having g as its lower

boundary) see Fig. 9.13.

Simply to refer to a ‘jump’ in this way does not give us much idea of

what to do with such a thing (and it is not yet very mathematically

precise). Sato’s elegant resolution of these issues is to proceed in a rather
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Complex
plane

c

Fig. 9.13 A hyperfunction on a segment g of the real axis expresses the ‘jump’

from a holomorphic function on one side of g to one on the other.

formally algebraic way, which is actually extrordinarily simple. We merely

represent this jump as the pair ( f, g) of these holomorphic functions, but

where we say that such a pair ( f, g) is equivalent to another such pair

( f0, g0) if the latter is obtained from the former by adding to both f and g

the same holomorphic function h, where h is deWned on the combined

(open) region RR, which consists of RR � and RR þ joined together along

the curve segment g; see Fig. 9.14. We can say

f on R-

g on R+

,
modulo h on Rc

c

Fig. 9.14 A hyperfunction, on a segment g of the real axis, is provided by a pair

of holomorphic functions ( f, g), with f deWned on some open region RR �,

extending downwards from g and g on an open region RR þ, extending upwards

from g. The actual hyperfunction h, on g, is ( f, g) modulo quantities ( fþ h, gþ h),

where h is holomorphic on the union RR of RR �, g, and RR þ.

Fourier decomposition and hyperfunctions §9.7
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( f , g) is equivalent to ( fþ h, gþ h),

where the holomorphic functions f and g are deWned on RR � and RR þ,
respectively, and where h is an arbitrary holomorphic function on the

combined region RR : Either of the above displayed expressions can be

used to represent the same hyperfunction. The hyperfunction itself would

be mathematically referred to as the equivalence class of such pairs, ‘re-

duced modulo’11 the holomorphic functions h deWned on RR. The reader

may recall the notion of ‘equivalence class’ referred to in the Preface, in

connection with the deWnition of a fraction. This is the same general idea—

and no less confusing. The essential point here is that adding h does not

aVect the ‘jump’ between f and g, but h can change f and g in ways that are

irrelevant to this jump. (For example, h can change how these functions

happen to continue away from g into the open regions RR � and RR þ.)
Thus, the jump itself is neatly represented as this equivalence class.

The reader may be genuinely disturbed that this slick deWnition seems to

depend crucially on our arbitrary choices of open regions RR � and RR þ,
restricted merely by their being joined along their common boundary

line g. Remarkably, however, the deWnition of a hyperfunction does not

depend on this choice. According to an astonishing theorem, known as the

excision theorem, this notion of hyperfunction is actually quite independ-

ent of the particular choices of RR � and RR þ; see top three examples of

Fig. 9.15.

(a)

(b)

c

c c
c

cc

Fig. 9.15 The excision theorem tells us that the notion of a hyperfunction is

independent of the choice of open region RR, so long as RR contains the given

curve g. (a) The region RR � �gg may consist of two separate pieces (so we get two

distinct holomorphic functions f and g, as in Fig. 9.14) or (b) the region RR � �gg
may be a single connected piece, in which case f and g are simply two parts of the

same holomorphic function.
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In fact, the excision theorem gives us more than even this. We do not

require that our open region RR be divided into two (namely into

RR � and RR þ) by the removal of g. All we need is that the open region

RR , in the complex plane, must contain the open12 segment g. It may be

that RR � g (i.e. what is left of RR when g is removed from it13) consists

of two separate pieces, just as we have been considering up to this

point, but more generally the removal of g from RR may leave us with

a single connected region, as illustrated in the bottom three examples

of Fig. 9.15. In these cases, we must also remove any internal end-point

a or b, of g, so that we are left with an open set, which I refer to as RR � �gg.
In this more general case, our hyperfunctions are deWned as ‘holo-

morphic functions on RR, reduced modulo holomorphic functions

on RR � �gg’. It is quite remarkable that this very liberal choice

of RR makes no diVerence to the class of ‘hyperfunctions’ that is thereby

deWned.[9.12] The case when a and b both lie within R is useful for integrals

of hyperfunctions, since then a closed contour in R� �gg can be used.

All this applies also to our previous case of a circle on the Riemann

sphere. Here, there is some advantage in taking RR to be the entire Riemann

sphere, because then the functions that we have to ‘mod out by’ are the

holomorphic functions that are global on the entire Riemann sphere, and

there is a theorem which tells us that these functions are just constants.

(These are actually the ‘constants’ a0 that we chose not to worry about

in §9.2.) Thus, modulo constants, a hyperfunction deWned on a circle on

the Riemann sphere is speciWed simply by one holomorphic function on

the entire region on one side of the circle and another function on the

other side. This gives the splitting of an arbitrary hyperfunction on

the circle uniquely (modulo constants) into its positive- and negative-fre-

quency parts.

Let us end by considering some basic properties of hyperfunctions. I

shall use the notation
�

j f , g
�

j to denote the hyperfunction speciWed by the

pair f and g deWned holomorphically on RR � and RR þ, respectively

(where I am reverting to the case where g divides RR into RR � and RR þ.
Thus, if we have two diVerent representations

�

j f , g
�

j and
�

j f0, g0

�

j of the

same hyperfunction, that is,
�

j f , g
�

j ¼
�

j f0, g0

�

j, then f� f0 and g� g0

are both the same holomorphic function h deWned on RR, but restricted

to RR � and RR þ respectively. It is then straightforward to express the sum

of two hyperfunctions, the derivative of a hyperfunction, and the product

of a hyperfunction with an analytic function q deWned on g:

[9.12] Why does ‘holomorphic functions on RR, reduced modulo holomorphic functions on

RR � �gg’ become the deWnition of a hyperfunction that we had previously, when RR � �gg splits into

RR � and RR þ?
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�

j f , g
�

j þ
�

j f1, g1

�

j ¼
�

j fþ f1, gþ g1

�

j,

d
�

j f , g
�

j
dz

¼
�

j df

dz
,

dg

dz
j
�

,

q
�

j f , g
�

j ¼ ¼
�

jqf , qg
�

j:

where, in the last expression, the analytic function q is extended holomor-

phically into a neighbourhood14 of g.[9.13] We can represent q itself as a

hyperfunction by q ¼
�

jq, 0
�

j ¼
�

j0, � q
�

j, but there is no general product

deWned between two hyperfunctions. The lack of a product is not the fault

of the hyperfunction approach to generalized functions. It is there with all

approaches.15 The fact that the Dirac delta function (referred to in §6.6;

also see below) cannot be squared, for example, causes many quantum

Weld theorists no end of trouble.

Some simple examples of hyperfunctional representations, in the case

when g ¼R, and RR � and RR þ are the upper and lower open complex

half-planes, are the Heaviside step funtion y(x) and the Dirac (-Heaviside)

delta function d(x)( ¼ dy(x)=dx) (see §§6.1,6):

y(x) ¼
�

j 1

2pi
log z,

1

2pi
log z� 1j

�

,

d(x) ¼
�

j 1

2piz
,

1

2piz
j
�

,

where we take the branch of the logarithm for which log 1 ¼ 0. The integral

of the hyperfunction
�

j f , g
�

j over the entire real line can be expressed as the

integral of f along a contour just below the real line minus the integral of g

along a contour just above the real line (assuming these converge), both

from left to right.[9.14] Note that the hyperfunction can be non-trivial even

when f and g are analytic continuations of the same function.

How general are hyperfunctions? They certainly include all analytic

functions. They also include discontinuous functions like y(x) and the

square wave (as our discussions above show), or other C�1-functions

obtained by adding such things together. In fact all C�1-functions are

examples of hyperfunctions. Moreover, since we can diVerentiate a hyper-

function to obtain another hyperfunction, and any C�2-function can be

obtained as the derivative of some C�1-function, it follows that all C�2-

functions are also hyperfunctions. We have seen that this includes the

[9.13] There is a small subtlety here. Sort it out. Hint: Think carefully about the domains of

deWnition.

[9.14] Check the standard property of the delta function that
R

q(x)d(x)dx ¼ q(0), in the case

when q(x) is analytic.
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Dirac delta function. We can diVerentiate again, and then again. Indeed,

any C�n-function is a hyperfunction for any integer n whatever. What

about the C�1-functions, referred to as distributions (see §6.6). Yes, these

also are all hyperfunctions.

The normal deWnition of a distribution16 is as an element of what is

called the dual space of the C1-smooth functions. The concept of a ‘dual

space’ will be discussed in §12.3 (and §13.6). In fact, the dual (in an

appropriate sense) of the space of Cn-functions is the space of C�2�n-

functions for any integer n, and this applies also to n ¼ 1, if we write

�2�1 ¼ �1 and �2þ1 ¼ 1. Accordingly, the C�1-functions

are indeed dual to the C1-functions. What about the dual (C�o) of

the Co-functions? Indeed; with the appropriate deWnition of ‘dual’, these

C�o-functions are precisely the hyperfunctions!

We have come full circle. In trying to generalize the notion of ‘function’ as

far aswecanaway fromtheapparently very restrictivenotionofan ‘analytic’

or ‘holomorphic’ function—the type of function that would have made

Euler happy—we have come round to the extremely general and Xexible

notion of a hyperfunction. But hyperfunctions are themselves deWned, in a

basically very simple way, in terms of the these very same ‘Eulerian’ holo-

morphic functions that we thought we had reluctantly abandoned. In my

view, this is oneof the suprememagical achievementsof complexnumbers.16

If only Euler had been alive to appreciate this wondrous fact!

Notes

Section 9.1

9.1. I am using the greek letter w (‘chi’) here, rather than an ordinary x, which might

have seemed more natural, only because we need to distinguish this variable

from the real part x of the complex number z, which will play an important part

in what follows.

9.2. There is no requirement that f (w) be real for real values of w, that is, for the an,bn,

and c to be real numbers. It is perfectly legitimate to have complex functions of

real variables. The condition that f (w) be real is that a�n be the complex

conjugate of an. Complex conjugates will be discussed in §10.1.

Section 9.2

9.3. The odd-looking notational anomaly of using ‘F�’ for the part of the series with

positive powers and ‘Fþ’ for the part with negative powers springs ultimately

from a perhaps unfortunate sign convention that has become almost universal in

the quantum-mechanical literature (see §§21.2,3 and §24.3). I apologize for this,

but there is nothing that I can reasonably do about it!

9.4. It is a general principle that, for any Co-function f, deWned on a real domain RR,

it is possible to ‘complexify’ RR to a slightly extended complex domain CRR,

called a ‘complex thickening’ of RR, containing RR in its interior, such that f

extends uniquely to a holomorphic function deWned on CRR .
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9.5. See e.g. Bailey et al. (1982).

Section 9.4

9.6. On the other hand, it is usual to impose some requirement that f (w) behaves

‘reasonably’ as w tends to positive or negative inWnity. This will not be of

particular concern for us here and, in any case, with the approach that I am

adopting, the normal requirements would be unnecessarily restrictive.

9.7. In quantum mechanics, there is also a constant quantity �h introduced to Wx the

scaling of p appropriately, in relation to x (see §§21.2,11), but for the moment I

am keeping things simple by taking �h ¼ 1. In fact, �h is Dirac’s form of Planck’s

constant (i.e. h=2p, where h is Planck’s original ‘quantum of action’). The choice

�h ¼ 1 can always be made, by deWning our basic units in a suitable way. See

§27.10.

Section 9.5

9.8. See Bailey et al. (1982).

Section 9.7

9.9. See Sato (1958, 1959, 1960).

9.10. See also Bremermann (1965), although the term ‘hyperfunction’ is not used

explicitly in this work.

9.11. Another aspect of the notion ‘modulo’ will be discussed in §16.1 (and compare

Note 3.17).

9.12. Here ‘open segment’ simply refers to the fact that the actual end-points a and b

are not included in g, so that ‘containing’ g does not imply the containing of a

and b within RR.

9.13. This ‘diVerence’ between sets RR,g is also commonly written RR ng.
9.14. The technical deWnition of ‘neighbourhood of’ is ‘open set containing’.

9.15. For the more standard (‘distribution’) approach to the idea of ‘generalized

function’, see Schwartz (1966); Friedlander (1982); Gel’fand and Shilov (1964);

Trèves (1967); for an alternative proposal, useful in ‘nonlinear’ contexts, and

which shifts the ‘product existence problem to a non-uniqueness problem—see

Colombeau (1983, 1985) and Grosser et al. (2001).

9.16. There are also important interconnections between hyperfunctions and the

holomorphic sheaf cohomology that will be discussed in §33.9. Such ideas play

important roles in the theory of hyperfunctions on higher-dimensional surfaces,

see Sato (1959, 1960) and Harvey (1966).

Notes CHAPTER 9

178



10
Surfaces

10.1 Complex dimensions and real dimensions

One of the most impressive achievements in the mathematics of the past

two centuries is the development of various remarkable techniques that

can handle non-Xat spaces of various dimensions. It will be important for

our purposes that I convey something of these ideas to the reader: for

modern physics depends vitally upon them.

Up to this point, we have been considering spaces of only one dimen-

sion. The reader might well be puzzled by this remark, since the complex

plane, the Riemann sphere, and various other Riemann surfaces have

featured strongly in several of the previous chapters. However, in the

context of holomorphic functions, these surfaces are really to be thought

of as being, in essence, of only one dimension, this dimension being a

complex dimension, as was indeed remarked upon in §8.2. The points of

such a space are distinguished from one another (locally) by a single

parameter, albeit a parameter that happens to be a complex number.

Thus, these ‘surfaces’ are really to be thought of as curves, namely complex

curves. Of course, one could split a complex number z into its real and

imaginary parts (x, y), where z ¼ xþ iy, and think of x and y as being two

independent real parameters. But the process of dividing a complex

number up in this way is not something that belongs within the realm of

holomorphic operations. So long as we are concerned only with holo-

morphic structures, as we have been up until now when considering our

complex spaces, we must regard a single complex parameter as providing

just a single dimension. This, at least, is the attitude of mind that I

recommend should be adopted.

On the other hand, one may take an opposing position, namely that

holomorphic operations constitute merely particular examples of more

general operations, whereby x and y can, if desired, be split apart to be

considered as separate independent parameters. The appropriate way of

achieving this is via the notion of complex conjugation, which is a non-

holomorphic operation. The complex conjugate of the complex number
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z = x+iy

z = x−iy

Real axis

z ¼ xþ iy, where x and y are real numbers, is the complex number �zz given

by

�zz ¼ x� iy:

In the complex z-plane, the operation of forming the complex conjugate of

a complex number corresponds to a reXection of the plane in the real line

(see Fig. 10.1). Recall from the discussion of §8.2 that holomorphic oper-

ations always preserve the orientation of the complex plane. If we wish to

consider a conformal mapping of (a part of) the complex plane which

reverses the orientation (such as turning the complex plane over on itself),

then we need to include the operation of complex conjugation. But, when

included with the other standard operations (adding, multiplying, taking a

limit), complex conjugation also allows us to generalize our maps so that

they need not be conformal at all. In fact, any map of a portion of the

complex plane to another portion of the complex plane (let us say by a

continuous transformation) can be achieved by bringing the operation of

complex conjugation in with the other operations.

Let me elaborate on this comment. We may consider that holomorphic

functions are those built up from the operations of addition and multipli-

cation, as applied to complex numbers, together with the procedure of

taking a limit (because these operations are suYcient for building up power

series, an inWnite sum being a limit of successive partial sums).[10.1] If we

also incorporate the operation of complex conjugation, then we can

generate general (say continuous) functions of x and y because we can

express x and y individually by

x ¼ zþ �zz

2
, y ¼ z� �zz

2i
:

(Any continuous function of x and y can be built up from real numbers by

sums, products, and limits.) I shall tend to use the notation F (z, �zz), with �zz
mentioned explicitly, when a non-holomorphic function of z is being

considered. This serves to emphasize the fact that as soon as we move

[10.1] Explain why subtraction and division can be constructed from these.

Fig. 10.1 The complex conjugate of

z ¼ xþ iy (x, y real), is �zz ¼ x� iy,

obtained as a reXection of the z-plane

in the real axis.
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outside the holomorphic realm, we must think of our functions as being

deWned on a 2-real-dimensional space, rather than on a space of a single

complex dimension. Our function F (z, �zz) can be considered, equally well,

to be expressed in terms of the real and imaginary parts, x and y, of z, and

we can write this function as f (x, y), say. Then we have f (x, y) ¼ F (z, �zz),
although, of course, f ’s explicit mathematical expression will in general be

quite diVerent from that of F. For example, if F (z, �zz) ¼ z2 þ �zz2, then

f (x, y) ¼ 2x2 � 2y2. As another example, we might consider F (z, �zz) ¼ z�zz;
then f (x, y) ¼ x2 þ y2, which is the square of the modulus jzj of z, that

is,[10.2]

z�zz ¼ jzj2:

10.2 Smoothness, partial derivatives

Since, by considering functions of more than one variable, we are now

beginning to venture into higher-dimensional spaces, some remarks are

needed here concerning ‘calculus’ on such spaces. As we shall be seeing

explicitly in the chapter following the next one, spaces—referred to as

manifolds—can be of any dimension n, where n is a positive integer. (An

n-dimensional manifold is often referred to simply as an n-manifold.)

Einstein’s general relativity uses a 4-manifold to describe spacetime, and

many modern theories employ manifolds of higher dimension still. We

shall explore general n-manifolds in Chapter 12, but for simplicity, in the

present chapter, we just consider the situation of a real 2-manifold (or

surface) SS. Then local (real) coordinates x and y can be used to label the

diVerent points of SS (in some local region of SS). In fact, the discussion is

very representative of the general n-dimensional case.

A 2-dimensional surface could, for example, be an ordinary plane or an

ordinary sphere. But the surface is not to be thought of as a ‘complex

plane’ or a ‘Riemann sphere’, because we shall not be concerned with

assigning a structure to it as a complex space (i.e. with the attendant

notion of ‘holomorphic function’ deWned on the surface). Its only structure

needs to be that of a smooth manifold. Geometrically, this means that we

do not need to keep track of anything like a local conformal structure, as

we did for our Riemann surfaces in §8.2, but we do need to be able to tell

when a function deWned on the space (i.e. a function whose domain is the

space) is to be considered as ‘smooth’.

For an intuitive notion of what a ‘smooth’ manifold is, think of a sphere

as opposed to a cube (where, of course, in each case I am referring to the

surface and not the interior). For an example of a smooth function

[10.2] Derive both of these.
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h

h

h h

h2h

(a) (b) (c)

Fig. 10.2 Functionsona sphere SS, picturedas sitting inEuclidean3-space,whereh

measures the distance above the equatorial plane. (a) The function h itself is smooth

on SS (negative values indicated by broken lines). (b) The modulus jhj (see Fig. 6.2b)

is not smooth along the equator. (c) The square h2 is smooth all over SS.

on the sphere, we might think of a ‘height function’, say the distance above

the equatorial plane (the sphere being pictured as sitting in ordinary

Euclidean 3-space in the normal way, distances beneath the plane being

counted negatively). See Fig. 10.2a. On the other hand, if our function is

the modulus of this height function (see §6.1 and Fig. 10.2b), so that

distances beneath the equator also count positively, then this function is

not smooth along the equator. Yet, if we consider the square of the height

function, then this function is smooth on the sphere (Fig. 10.2c). It is

instructive to note that, in all these cases, the function is smooth at the

north and south poles, despite the ‘singular’ appearance, at the poles, of

the contour lines of constant height. The only instance of non-smoothness

occurs in our second example, at the equator.

In order to understand what this means a little more precisely, let us

introduce a system of coordinates on our surface SS. These coordinates

need apply only locally, and we can imagine ‘gluing’ SS together out of

local pieces—coordinate patches—in a similar manner to our procedure for

Riemann surfaces in §8.1. (For the sphere, for example, we do need more

than one patch.) Within one patch, smooth coordinates label the diVerent

points; see Fig. 10.3. Our coordinates are to take real-number values, and

let us call them x and y (without any suggestion intended that they ought

to be combined together in the form of a complex number). Suppose, now,

S

y x

Fig. 10.3 Within one local patch,

smooth (real-number) coordinates

(x, y) label the points.
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that we have some smooth function F deWned on SS. In the modern

mathematical terminology, F is a smooth map from SS to the space of

real numbers R (or complex numbers C, in case F is to be a complex-

valued function on SS) because F assigns to each point of SS a real (or

complex) number—i.e. F maps SS to the real (or complex) numbers. Such a

function is sometimes called a scalar Weld on SS. On a particular coordin-

ate patch, the quantity F can be represented as a function of the two

coordinates, let us say

F ¼ f (x, y),

where the smoothness of the quantity F is expressed as the diVerentiability

of the function f(x, y).

I have not yet explained what ‘diVerentiability’ is to mean for a function

of more than one variable. Although intuitively clear, the precise deWnition

is a little too technical for me to go into thoroughly here.1 Some clarifying

comments are nevertheless appropriate.

First of all, for f be diVerentiable, as a function of the pair of variables

(x, y), it is certainly necessary that if we consider f(x, y) in its capacity as a

function of only the one variable x, where y is held to some constant value,

then this function must be smooth (at least C1), as a function of x, in the

sense of functions of a single variable (see §6.3); moreover, if we consider

f(x, y) as a function of just the one variable y, where it is x that is now to be

held constant, then it must be smooth (C1) as a function of y. However,

this is far from suYcient. There are many functions f(x, y) which are

separately smooth in x and in y, but for which would be quite unreason-

able to call smooth in the pair (x, y).[10.3] A suYcient additional require-

ment for smoothness is that the derivatives with respect to x and y

separately are each continuous functions of the pair (x, y). Similar state-

ments (of particular relevance to §4.3) would hold if we consider functions

of more than two variables. We use the ‘partial derivative’ symbol ] to

denote diVerentiation with respect to one variable, holding the other(s)

Wxed. The partial derivatives of f(x, y) with respect to x and with respect

to y, respectively, are written

[10.3] Consider the real function f (x, y) ¼ xy x2 þ y2
� ��N

, in the respective cases N ¼ 2, 1, and
1
2
. Show that in each case the function is diVerentiable Coð Þ with respect to x, for any Wxed y-value

(and that the same holds with the roles of x and y reversed). Nevertheless, f is not smooth as a

function of the pair (x, y). Show this in the case N ¼ 2 by demonstrating that the function is not

even bounded in the neighbourhood of the origin (0, 0) (i.e. it takes arbitrarily large values there),

in the case N ¼ 1 by demonstrating that the function though bounded is not actually continuous

as a function of (x, y), and in the case N ¼ 1
2

by showing that though the function is now

continuous, it is not smooth along the line x ¼ y. (Hint: Examine the values of each function

along straight lines through the origin in the (x, y)-plane.) Some readers may Wnd it illuminating to

use a suitable 3-dimensional graph-plotting computer facility, if this is available—but this is by no

means necessary.
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]f

]x
and

]f

]y
:

(As an example, we note that if f (x, y) ¼ x2 þ xy2 þ y3, then

]f =]x ¼ 2xþ y2 and ]f =]y ¼ 2xyþ 3y2.) If these quantities exist and are

continuous, then we say that F is a (C1-)smooth function on the surface.

We can also consider higher orders of derivative, denoting the second

partial derivative of f with respect to x and y, respectively, by

]2f

]x2
and

]2f

]y2
:

(Now we need C2-smoothness, of course.) There is also a ‘mixed’ second

derivative ]2f =]x ]y, which means ](]f =]y)=]x, namely the partial deriva-

tive, with respect to x, of the partial derivative of f with respect to y. We

can also take this mixed derivative the other way around to get the

quantity ]2f =]y ]x. In fact, it is a consequence of the (second) diVerentia-

bility of f that these two quantities are equal:[10.4]

]2f

]x ]y
¼ ]2f

]y ]x
:

(The full deWnition of C2-smoothness, for a function of two variables,

requires this.)[10.5] For higher derivatives (and higher-order smoothness),

we have corresponding quantities:

]3f

]x3
,

]3f

]x2]y
¼ ]3f

]x ]y ]x
¼ ]3f

]y ]x2
, etc:

An important reason that I have been careful here to distinguish f from

F, by using diVerent letters (and I may be a good deal less ‘careful’ about

this sort of thing later), is that we may want to consider a quantity F,

deWned on the surface, but expressed with respect to various diVerent

coordinate systems. The mathematical expression for the function f(x, y)

may well change from patch to patch, even though the value of the quantity

F at any speciWc point of the surface ‘covered’ by those patches does not

change. Most particularly, this can occur when we consider a region of

overlap between diVerent coordinate patches (see Fig. 10.4). If a second

set of coordinates is denoted by (X,Y), then we have a new expression,

[10.4] Prove that the mixed second derivatives ]2f =]y]x and ]2f =]x]y are always equal if

f (x, y) is a polynomial. (A polynomial in x and y is an expression built up from x, y, and constants

by use of addition and multiplication only.)

[10.5] Show that the mixed second derivatives of the function f ¼ xy x2 � y2
� �

= x2 þ y2
� �

are

unequal at the origin. Establish directly the lack of continuity in its second partial derivatives at

the origin.
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X

x

S

Y

x

η

F ¼ F (X , Y ),

for the values of F on the new coordinate patch. On an overlap region

between the two patches, we shall therefore have

F (X , Y ) ¼ f (x, y),

But, as indicated above, the particular expression that F represents, in

terms of the quantities X and Y, will generally be quite diVerent from the

expression that f represents in terms of x and y. Indeed, X might be some

complicated function of x and y on the overlap region and so might Y, and

these functions would have to be incorporated in the passage from f to

F.[10.6] Such functions, representing the coordinates of one system in terms

of the coordinates of the other,

X ¼ X (x, y) and Y ¼ Y (x, y)

and their inverses

x ¼ x(X , Y ) and y ¼ y(X , Y )

are called the transition functions that express the cordinate change from

one patch to the other. These transition functions are to be smooth—let

us, for simplicity, say C1-smooth—and this has the consequence that the

‘smoothness’ notion for the quantity F is independent of the choice of

coordinates that are used in some patch overlap.

10.3 Vector fields and 1-forms

There is a notion of ‘derivative’ of a function that is independent of the

coordinate choice. A standard notation for this, as applied to the function

F deWned on SS, is dF, where

[10.6] Find the form of F (X ,Y ) explicitly when f (x,y) ¼ x3 � y3, where X ¼ x� y, Y ¼ xy.

Hint: What is x2 þ xyþ y2 in terms of X and Y; what does this have to do with f ?

Fig. 10.4 To cover the whole of SS
we may have to ‘glue’ together several

coordinate patches. A smooth function F
on SS would have a coordinate expression

F ¼ f (x, y) on one patch andF ¼ F (X , Y )

on another (with respective local

coordinates (x, y), (X, Y) ). On an

overlap region f (x, y) ¼ F (X , Y ),

where X and Y are smooth functions

of x and y.
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dF ¼ ]f

]x
dxþ ]f

]y
dy:

Here we begin to run into some of the confusions of the subject, and these

take some while to get accustomed to. In the Wrst place, a quantity such as

‘dF’ or ‘dx’ initially tends to be thought of as an ‘inWnitesimally small’

quantity, arising when we apply the limiting procedure that is involved in

the calculus when the derivative ‘dy=dx’ is formulated (see §6.2). In some

of the expressions in §6.5, I also considered things like d( log x) ¼ dx=x. At

that stage, these expressions were considered as being merely formal,2 this

last expression being thought of as just a convenient way (‘multiplying

through by dx’) of representing the ‘more correct’ expression

d( log x)=dx ¼ 1=x. When I write ‘dF’ in the displayed formula above,

on the other hand, I mean a certain kind of geometrical entity that is called

a 1-form (although this is not the most general type of 1-form; see §10.4

below and §12.6), and this works for things like d( logx) ¼ dx=x, too. A

1-form is not an ‘inWnitesimal’; it has a somewhat diVerent kind of inter-

pretation, a type of interpretation that has grown in importance over the

years, and I shall be coming to this in a moment. Remarkably, however,

despite this signiWcant change of interpretation of ‘d’, the formal math-

ematical expressions (such as those of §6.5)—provided that we do not try

to divide by things like dx—are not changed at all.

There is also another issue of potential confusion in the above displayed

formula, which arises from the fact that I have used F on the left-hand side

and f on the right. I did this mainly because of the warnings about the

distinction betweenF and f that I issued above. The quantityF is a function

whose domain is the manifold SS, whereas the domain of f is some (open)

region in the (x, y)-plane that refers to a particular coordinate patch. If I am

to apply the notion of ‘partial derivative with respect to x’, then I need to

know what it means ‘to hold the remaining variable y constant’. It is for this

reason that f is used on the right, rather than F, because f ‘knows’ what the

coordinates x and y are, whereas F doesn’t. Even so, there is a confusion

in this displayed formula, because the arguments of the functions are

not mentioned. The F on the left is applied to a particular point p of the

2-manifold SS, while f is applied to the particular coordinate values (x, y)

that the coordinate system assigns to the point p. Strictly speaking, this

would have to be made explicit in order that the expression makes sense.

However, it is a nuisance to have to keep saying this kind of thing, and it

would be much more convenient to be able to write this formula as

dF ¼ ]F
]x

dxþ ]F
]y

dy,

or, in ‘disembodied’ operator form,
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d ¼ dx
]

]x
þ dy

]

]y
:

Indeed, I am going to try to make sense of these things. These formulae are

instances of something referred to as the chain rule. As stated, they require

meanings to be assigned to things like ‘]F=]x’ when F is some function

deWned on SS.
How are we to think of an operator, such as ]=]x, as something that can

be applied to a function, like F, that is deWned on the manifold SS, rather

than just to a function of the variables x and y? Let us Wrst try to see what

]=]x means when we refer things to some other coordinate system (X, Y).

The appropriate ‘chain rule’ formula now turns out to be

]

]x
¼ ]X

]x

]

]X
þ ]Y

]x

]

]Y
:

Thus, in terms of the (X, Y) system, we now have the more complicated-

looking expression (]X=]x)]=]Xþ (]Y=]x)]=]Y to represent exactly the

same operation as the simple-looking ]=]x represents in the (x, y) system.

This more complicated expression is a quantity j, of the form

j ¼ A
]

]X
þ B

]

]Y
,

where A and B are (C1-) smooth functions of X and Y. In the particular

case just given, with j representing ]=]x in the (x, y) system, we have

A ¼ ]X=]x and B ¼ ]Y=]x. But we can consider more general such

quantities j for which A and B do not have these particular forms. Such

a quantity j is called a vector Weld on SS (in the (X, Y)-coordinate patch).

We can rewrite j in the original (x, y) system, and Wnd that j has just the

same general form as in the (X, Y) system:

j ¼ a
]

]x
þ b

]

]y

(although the functions a and b are generally quite diVerent from A and

B).[10.7] This enables us to extend the vector Weld from the (X, Y)-patch to

an overlapping (x, y)-patch. In this way, taking as many patches as we

need, we can envisage extending the vector Weld j to the whole of SS.
All this has probably caused the reader great confusion! However, my

purpose is not to confuse, but to Wnd the right analytical form of a very

basic geometrical notion. The diVerential operator j, which we have called

a ‘vector Weld’, with its (consequent) very speciWc way of transforming, as

we pass from patch to patch, has a clear geometrical interpretation, as

[10.7] Find A and B in terms of a and b; by analogy, write down a and b in terms of A and B.
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illustrated in Fig. 10.5. We are to visualize j as describing a ‘Weld of little

arrows’ drawn on SS, although, at some places on SS, an arrow may shrink

to a point, these being the places where j takes the value zero. (To get a

good picture of a vector Weld, think of wind-Xow charts on TV weather

bulletins.) The arrows represent the directions in which the function upon

which j acts is to be diVerentiated. Taking this function to be F, the action

of j on F, namely j(F) ¼ a ]F=]xþ b ]F=]y, measures the rate of in-

crease of F in the direction of the arrows; see Fig. 10.6. Also, the magni-

tude (‘length’) of the arrow has signiWcance in determining the ‘scale’, in

terms of which this increase is to be measured. A longer arrow gives a

correspondinglygreatermeasureof the rateof increase.Moreappropriately,

F(p)

F(p�)

p

p�

x

x

p
F

Scale
up by 

  −1 

Fig. 10.5 The geometrical

interpretation of a vector Weld j as

a ‘Weld of arrows’ drawn on SS.

Fig. 10.6 The action of j on a

scalar Weld F gives its rate of

increase along the j-arrows.

Think of the arrows as

inWnitesimal, each connecting a

point p of SS (‘tail’ of the arrow)

to a ‘neighbouring’ point p0 of SS
(‘head’ of the arrow), pictured by

applying a large magniWcation

(by a factor E�1, where E is small)

to the neighbourhood of p. The

diVerence F(p0)� F(p), divided

by E, is (in the limit E! 0) the

gradient j(F) of F along j.
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we ought to think of all the arrows as being inWnitesimal, each one

connecting a point p of SS (at the ‘tail’ of the arrow) with a ‘neighbouring’

point p0 of SS (at the ‘head’ of the arrow). To make this just a little more

explicit, let us choose some small positive number E as a measure of the

separation, along the direction of j, between two separate points p and p0.
Then the diVerence F(p0)� F(p), divided by E, gives us an approximation

to the quantity j(F). The smaller we choose E to be, the better approxima-

tion we get. Finally, in the limit when p0 approaches p (so E! 0), we

actually obtain j(F), sometimes called the gradient (or slope) of F in the

direction of j.

In the particular case of the vector Weld ]=]x, the arrows all point along

the coordinate lines of constant y. This illustrates an issue that frequently

leads to confusion with the standard mathematical notation ‘]=]x’ for

partial derivative. One might have thought that the expression ‘]=]x’

referred most speciWcally to the quantity x. However, in a clear sense, it

has more to do with the variable(s) that are not explicitly mentioned, here

the variable y, than it has to do with x. The notation is particularly

treacherous when one considers a change of coordinate variables, say

from (x, y) to (X , Y ), in which one of the coordinates remains the same.

Consider, for example the very simple coordinate change

X ¼ x, Y ¼ yþ x:

Then we Wnd[10.8]

]

]X
¼ ]

]x
� ]

]y
,

]

]Y
¼ ]

]y
:

Thus, we see that ]=]X is diVerent from ]=]x, despite the fact that X is

the same as x—whereas, in this case, ]=]Y is the same as ]=]y, even though

Y diVers from y. This is an instance of what my colleague Nick Wood-

house refers to as ‘the second fundamental confusion of calculus’!3 It is

geometrically clear, on the other hand, why ]=]X 6¼ ]=]x, since

the corresponding ‘arrows’ point along diVerent coordinate lines

(Fig. 10.7).

We are now in a position to interpret the quantity dF. This is called

the gradient (or exterior derivative) of F, and it carries the information

of how F is varying in all possible directions along SS. A good geometrical

way to think of dF is in terms of a system of contour lines on SS. See

Fig. 10.8a. We can think of SS as being like an ordinary map (where by

‘map’ here I mean the thing made of stiV paper that you take with you

when you go hiking, not the mathematical notion of ‘map’), which might

[10.8] Derive this explicitly. Hint: You may use ‘chain rule’ expressions for ]=]X and ]=]Y that

are the exact analogies of the expression for ]=]x that was displayed earlier.
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∂
∂y

∂
∂x

∂
∂Y

∂
∂X

y = const.

Y = const.Y = const.Y = const.

y = const.

y = const.

x =
 const.

x =
 const.

x =
 const.

X
 =

 const.

X
 =

 const.

X
 =

 const.

x

y Y

X

Fig. 10.7 Second fundamental confusion of calculus is illustrated: ]=]X 6¼ ]=]x
despite X ¼ x, and ]=]Y ¼ ]=]y despite Y 6¼ y, for the coordinate change

X ¼ x, Y ¼ yþ x. The interpretation of partial diVerential operators as ‘arrows’

pointing along coordinate lines clariWes the geometry (x ¼ const. agree with X ¼
const., but y ¼ const. disagree with Y ¼ const.).

be a spherical globe, if we want to take into account that SS might be a

curved manifold. The function F might represent the height of the ground

above sea level. Then dF represents the slope of the ground as compared

with the horizontal. The contour lines trace out places of equal height. At

any one point p of SS, the direction of the contour line tells us the direction

along which the gradient vanishes (the ‘axis of tilt’ of the slope of the

ground), so this is the direction of the arrow j at p for which j(F) ¼ 0. We

neither climb nor descend, when we follow a contour line. But if we cut

across contour lines, then there will be an increase or decrease in F, and the

rate at which this occurs, namely j(F), will be measured by the crowding of

the contour lines in the direction that we cross them. See Fig. 10.8b.

10.4 Components, scalar products

According to the expression

j ¼ a
]

]x
þ b

]

]y
,

the vector Weld j may be thought of as being composed of two parts, one

being proportional to ]=]x, which points along the lines of constant y, and

the other, proportional to ]=]y, which points along the lines of constant x.
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Graph of 
height of F

Surface
S

dF
gives direction of

contours

F

(a)

Axis of
tilt

 -direction
for which
 (F) = 0

(b)

Surface
S

p

x

x

x

Thus, in the (x, y)-coordinate system, the pair of respective weighting

factors (a, b) may be used to label j. The numbers a and b are referred

to as the components of j in this coordinate system; see Fig. 10.9. (Strictly

speaking, the two ‘components’ of j would actually be the two vector

Welds a ]=]x and b ]=]y themselves, of which the vector Weld j is com-

posed, as displayed in Fig. 10.9—and a similar remark would apply to the

components of dF, below. However, the term ‘component’ has now ac-

quired this meaning of ‘coordinate label’ in much mathematical literature,

particularly in connection with the tensor calculus; see §12.8.)

Similarly, the quantity dF (a ‘1-form’) is composed of the two parts dx

and dy, according to the expression

dF ¼ u dxþ v dy

and so (u, v) may be used to label dF, and the numbers u and v are the

components of dF in this same coordinate system. (In fact, we have

Fig. 10.8 We can

geometrically picture the full

gradient (exterior derivative)

dF of a scalar F in terms of

a system of contour lines

on SS. (a) The value F is

here plotted vertically above

SS, so the contour lines on

SS (constant F) describe

constant height. (b) At any

one point p of SS, the direc-

tion of the contour line tells

us the direction along which

the gradient vanishes (the

‘axis of tilt’ of the slope of

the hill), i.e. the direction of

the arrows j at p for which

j(F) ¼ 0. Cutting across

contour lines gives an in-

crease or decrease in F, j(F)

measuring the crowding

of the lines in the

direction of j.
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x 
=
 c
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st
.

y = const.

x

∂
∂y

b

∂
∂x

a

u ¼ ]F=]x and v ¼ ]F=]y here.) The relation between the components

(u, v) of the 1-form dF and the components (a, b) of the vector Weld j is

obtained through the quantity j(F), which, as we saw above, measures the

rate of increase of F in the direction of j. We Wnd[10.9] that the value of

j(F) is given by

j(F) ¼ auþ bv:

We call auþ bv the scalar (or inner) product between j, as represented by

(a, b), and dF, as represented by (u, v). This scalar product will sometimes

be written dF � j if we want to express it abstractly without reference to

any particular coordinate system, and we have

dF � j ¼ j(F):

The reason for having twodiVerent notations for the same thing, here, is that

the operation expressed in dF � j also applies to more general kinds of

1-form than those that can be expressed as dF (see §12.3). If h is such a

1-form, then it has a scalar product with any vector Weld j, which is written

as h � j.
In fact the deWnition of a 1-form is essentially that it is a quantity that can

be combined with a vector Weld to form a ‘scalar product’ in this way. Thus,

the fact that the quantity dF is something that naturally forms a scalar

product with vector Welds is actually what characterizes it as a 1-form. (A

1-form is sometimes called a covector, depending on the context.) Technic-

ally, 1-forms (covectors) are dual to vector Welds in this sense. This notion of

a ‘dual’ object will be explored more fully in §12.3, where we shall see that

Fig. 10.9 The vector

j ¼ a ]=]xþ b ]=]y may be

thought of as being composed of

two parts, one proportional to

]=]x, pointing along y ¼ const.,

and the other, proportional to

]=]y, pointing along x ¼ const.

The pair of respective weighting

factors (a, b) are called the com-

ponents of j in the (x, y)-coord-

inate system.

[10.9] Show this explicitly, using ‘chain rule’ expressions that we have seen earlier.
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these ideas apply quite generally within a ‘surface’ of higher dimension (i.e.

to an n-manifold). The geometrical meaning of a 1-form will also be Wlled

out more fully in §§12.3–5, in the context of higher dimensions. For the

moment, the family of contour lines itself will do, these lines representing the

directions along which a j-arrow must point if dF � j ¼ 0 (i.e. if j(F) ¼ 0).

10.5 The Cauchy–Riemann equations

But before making this leap to higher dimensions, which we shall be

preparing ourselves for in the next chapter, let us return to the issue that

we started with in this chapter: the property of a 2-dimensional surface

that is needed in order that it can be reinterpreted as a complex 1-mani-

fold. Essentially what is required is that we have a means of characterizing

those complex-valued functions F which are holomorphic. The condition

of holomorphicity is a local one, so that we can recognize it as something

holding in each coordinate patch, and consistently on the overlaps be-

tween patches. On the (x, y)-patch, we require that F be holomorphic in

the complex number z ¼ xþ iy; on an overlapping (X , Y )-patch, holo-

morphic in Z ¼ Xþ iY . The consistency between the two is ensured by the

requirement that Z is a holomorphic function of z on the overlap and vice

versa. (If F is holomorphic in z, and z is holomorphic in Z, then F must be

holomorphic in Z, since a holomorphic function of a holomorphic func-

tion is again a holomorphic function.[10.10])

Now, how do we express the condition that F is holomorphic in z, in

terms of the real and imaginary parts of F and z? These are the famous

Cauchy–Riemann equations referred to in §7.1. But what are these equa-

tions explicitly? We can imagine F to be expressed as a function of z and �zz
(since, as we saw at the beginning of this chapter, the real and imaginary

parts of z, namely x and y, can be re-expressed in terms of z and �zz by using

the expressions x ¼ (zþ �zz)=2 and y ¼ (z� �zz)=2i). We are required to

express the condition that, in eVect, F ‘depends only on z’ (i.e. that it is

‘independent of �zz’).
What does thismean? Imagine that, instead of the complex conjugate pair

of variables z and �zz, we had a pair of independent real variables u and v, say,

and we wished to express the fact that some quantityC that is a function of u

and v is in fact independent of v. This independence can be stated as

]C
]v
¼ 0

[10.10] Explain this from three diVerent points of view: (a) intuitively, from general principles

(how could a �zz appear?), (b) using the geometry of holomorphic maps described in §8.2, and (c)

explicitly, using the chain rule and the Cauchy–Riemann equations that we are about to come to.

193

Surfaces §10.5



(because this equation tells us that, for each value of u, the quantity C is

constant in v; so C is dependent only on u).4 Accordingly, F being ‘inde-

pendent of �zz’ ought to be expressed as

]F
]�zz
¼ 0,

and this does indeed express the holomorphicity of F (although the

‘argument by analogy’ that I have just given should not be taken as a

proof of this fact)5. Using the chain rule, we can re-express this equa-

tion[10.11] in terms of partial derivatives in the (x, y)-system:

]F
]x
þ i

]F
]y
¼ 0:

Writing F in terms of its real and imaginary parts,

F ¼ aþ ib,

with a and b real, we obtain the Cauchy–Riemann equations6,[10.12]

]a
]x
¼ ]b

]y
,

]a
]y
¼ � ]b

]x
:

Since, as remarked earlier, on an overlap between an (x, y)-coordinate

patch and an (X, Y)-coordinate patch we require Z ¼ Xþ iY to be holo-

morphic in z ¼ xþ iy, we also have the Cauchy–Riemann equations hold-

ing between (x, y) and (X, Y):

]X

]x
¼ ]Y

]y
,

]X

]y
¼ � ]Y

]x
:

If this condition holds between any pair of coordinate patches, then we

have assembled a Riemann surface SS. (These are the required analytic

conditions that I skated over in §7.1.) Recall that such a surface can also be

thought of as a complex 1-manifold. But, according to the present ‘Cau-

chy–Riemann’ way of looking at things, we think of SS as being a real

2-manifold with the particular type of structure (namely that determined

by the Cauchy–Riemann equations).

Whereas there is a certain ‘purity’ in trying to stick entirely to holo-

morphic operations (a philosophical perspective that will have importance

for us later, in Chapter 33 and in §34.8) and in thinking of SS as a ‘curve’,

this alternative ‘Cauchy–Riemann’ standpoint is a powerful one in a

[10.11] Do this.

[10.12] Give a more direct derivation of the Cauchy–Riemann equations, from the definition of

a derivative.
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number of other contexts. For example, it allows us to prove results by

appealing to many useful techniques in the existence theory of partial

diVerential equations. Let me try to give a taste of this by appealing to

an (important) example.

If the Cauchy–Riemann equations ]a=]x ¼ ]b=]y and ]a=]y ¼ �]b=]x
hold, then the quantities a and b each individually turn out to satisfy a

particular equation (Laplace’s equation). For we have[10.13]

r2a ¼ 0, r2b ¼ 0,

where the second-order diVerential operatorr2, called the (2-dimensional)

Laplacian, is deWned by

r2 ¼ ]2

]x2
þ ]2

]y2
:

The Laplacian is important in many physical situations (see §21.2, §22.11,

§§24.3–6). For example, if we have a soap Wlm spanning a wire loop which

deviates very slightly up and down from a horizontal plane, then the

height of the Wlm above the horizontal will be a solution of Laplace’s

equation (to a close approximation which gets better and better the smaller

is this vertical deviation).7 See Fig. 10.10. Laplace’s equation (in three

dimensions) also has a fundamental role to play in Newtonian gravita-

tional theory (and in electrostatics; see Chapters 17 and 19) since it is the

equation satisWed by a potential function determining the gravitational (or

static electric) Weld in free space.

Solutions of the Cauchy–Riemann equations can be obtained from solu-

tions of the 2-dimensional Laplace equation in a rather direct way. If we

have any a satisfyingr2a ¼ 0, then we can construct b by b ¼
R

(]a=]x) dy;

[10.13] Show this.

Fig. 10.10 A soap

Wlm spanning a wire

loop which deviates

only very slightly up

and down from a

horizontal plane. The

height of the Wlm

above the horizontal

gives a solution of

Laplace’s equation

(to an approximation

which gets better the

smaller the vertical

deviation).
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we then Wnd that both Cauchy–Riemann equations are consequently

satisWed.[10.14] This fact can be used to demonstrate and illuminate some

of the assertions made at the end of the previous chapter.

In particular, let us consider the remarkable fact, asserted at the end of

§9.7, that any continuous function f deWned on the unit circle in the

complex plane can be represented as a hyperfunction. This assertion

eVectively states that any continuous f is the sum of two parts, one of

which extends holomorphically into the interior of the unit circle and the

other of which extends holomorphically into the exterior, where we now

think of the complex plane completed to the Riemann sphere. This asser-

tion is eVectively equivalent (according to the discussion of §9.2) to the

existence of a Fourier series representation of f, where f is regarded as a

periodic function of a real variable. For simplicity, assume that f is real-

valued. (The complex case follows by splitting f into real and imaginary

parts.) Now, there are theorems that tell us that we can extend f continu-

ously into the interior of the circle, where f satisWes r2f ¼ 0 inside the

circle. (This fact is intuitively very plausible, because of the soap-Wlm

argument given above; see Fig. 10.10. Scaling f down appropriately to a

new function E f , for some Wxed small E, we can imagine that our wire loop

lies at the unit circle in the complex plane, deviating slightly8 up and down

vertically from it by the values of Ef on the unit circle. The height of the

spanning soap Wlm provides Ef and therefore f inside.) By the above

prescription (g ¼
R

(]f =]x)dy), we can supply an imaginary part g to f,

so that fþ ig is holomorphic throughout the interior of the unit circle. This

procedure also supplies an imaginary part g to f on the unit circle (gener-

ally in the form of a hyperfunction, so that fþ ig is of negative frequency.

We now repeat the procedure, applying it to the exterior of the unit circle

(thought of as lying in the Riemann sphere), and Wnd that f� ig extends

there and is of positive frequency. The splitting f ¼ 1
2
(fþ ig)þ 1

2
(f� ig)

achieves what is required.

Notes

Section 10.2

10.1 For a detailed discussion of diVerentiability, for functions of several variables, see

Marsden and Tromba (1996).

Section 10.3

10.2 Although the ‘dx’ notation that Leibniz originally introduced (in the late 17th

century) shows great power and Xexibility, as is illustrated by the fact that

quantities like dx can be treated as algebraic entities in their own right, this

[10.14] Show this.

Notes CHAPTER 10

196



does not extend to his ‘d2x’ notation for second derivatives. Had he used a

modiWcation of this notation in which the second derivative of y with respect to

x were written (d2y� d2x dy=dx)=dx2 instead, then the quantity ‘d2x’ would

indeed behave in a consistent algebraic way (where ‘dx2’ denotes dxdx, etc.). It

is not clear how practical this would have been, owing to the complication of this

expression, however.

10.3 The ‘Wrst fundamental confusion’ has to do with the confusion between the use of

f and F that we encountered in §10.2, particularly in relation to the taking of

partial derivatives. See Woodhouse (1987).

Section 10.5

10.4 We must take this condition in a local sense only. For example, we can have a

smooth function F(u, v) deWned on a kidney-shaped region in the (u, v)-plane,

within which ]F=]v ¼ 0, but for which F is not fully consistent as a function of

u.[10.15]

10.5 Although not the most rigorous route to the Cauchy–Riemann equations, this

argument provides the underlying reason for their form.

10.6 In fact, Jean LeRond D’Alembert found these equations in 1752, long before

Cauchy or Riemann (see Struik 1954, p. 219).

10.7 It turns out that the actual soap-Wlm equation (to which the Laplace equation is

an approximation) has a remarkable general solution, found by Weierstrass

(1866), in terms of free holomorphic functions.

10.8 Since f is continuous on the circle, it must be bounded (i.e. its values lie between a

Wxed lower value and a Wxed upper value). This follows from standard theorems,

the circle being a compact space. (See §12.6 for the notion of ‘compact’ and Kahn

1995; Frankel 2001). We can then rescale f (multiplying it by a small constant E),
so that the upper and lower bounds are both very tiny. The soap Wlm analogy

then provides a reasonable plausibility argument for the existence of E f extended

inside the circle, satisfying the Laplace equation. It is not a proof of course; see

Strauss (1992) or Brown and Churchill (2004) for a more rigorous solution to this

so-called, ‘Dirichlet problem for a disc’.

[10.15] Spell this out in the case F(u, v) ¼ y(v)h(u), where the functions y and h are deWned as

in §§6.1,3. The kidney-shaped region must avoid the non-negative u-axis.
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11
Hypercomplex numbers

11.1 The algebra of quaternions

How do we generalize all this to higher dimensions? I shall describe the

standard (modern) procedure for studying n-manifolds in the next chapter,

but it will be illuminating, for various other reasons, if I Wrst acquaint the

reader with certain earlier ideas aimed at the study of higher dimensions.

These earlier ideas have acquired important direct relevance to some

current activities in theoretical physics.

The beauty and power of complex analysis, such as with the above-

mentioned property whereby solutions of the 2-dimensional Laplace equa-

tion—an equation of considerable physical importance—can be very

simply represented in terms of holomorphic functions, led 19th-century

mathematicians to seek ‘generalized complex numbers’, which could apply

in a natural way to 3-dimensional space. The renowned Irish mathemat-

ician William Rowan Hamilton (1805–1865) was one who puzzled long

and deeply over this matter. Eventually, on the 16 October 1843, while on

a walk with his wife along the Royal Canal in Dublin, the answer came to

him, and he was so excited by this discovery that he immediately carved his

fundamental equations

i2 ¼ j2 ¼ k2 ¼ ijk ¼ �1

on a stone of Dublin’s Brougham Bridge.

Each of the three quantities i, j, and k is an independent ‘square root of

�1’ (like the single i of complex numbers) and the general combination

q ¼ tþ uiþ vjþ wk,

where t, u, v, and w are real numbers, deWnes the general quaternion. These

quantities satisfy all the normal laws of algebra bar one. The exception—

and this was the true novelty1 of Hamilton’s entities—was the violation of

the commutative law of multiplication. For Hamilton found that[11.1]

[11.1] Prove these directly from Hamilton’s ‘Brougham Bridge equations’, assuming only the

associative law a(bc) ¼ (ab)c.
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ij ¼ �ji, jk ¼ �kj, ki ¼ �ik,

which is in gross violation of the standard commutative law: ab ¼ ba.

Quaternions still satisfy the commutative and associative laws of add-

ition, the associative law of multiplication, and the distributive laws of

multiplication over addition,[11.2] namely

aþ b ¼ bþ a,

aþ (bþ c) ¼ (aþ b)þ c,

a(bc) ¼ (ab)c,

a(bþ c) ¼ abþ ac,

(aþ b)c ¼ acþ bc,

together with the existence of additive and multiplicative ‘identity elem-

ents’ 0 and 1, such that

aþ 0 ¼ a, 1a ¼ a1 ¼ a:

These relations, if we exclude the last one, deWne what algebraists call a

ring. (To my mind, the term ‘ring’ is totally non-intuitive—as is much of

the terminology of abstract algebra—and I have no idea of its origins.) If

we do include the last relation, we get what is called a ring with identity.

Quaternions also provide an example of what is called a vector space

over the real numbers. In a vector space, we can add two elements

(vectors2), j and h, to form their sum j þ h, where this sum is subject to

commutativity and associativity

j þ h ¼ hþ j,

(j þ h)þ z ¼ j þ (hþ z),

and we can multiply vectors by ‘scalars’ (here, just the real numbers f and

g), where the following distributive and associative properties, etc., hold:

(fþ g)j ¼ f j þ gj,

f (j þ h) ¼ f j þ fh,

f (gj) ¼ (fg)j,

1j ¼ j:

Quaternions form a 4-dimensional vector space over the reals, because

there are just four independent ‘basis’ quantities 1, i, j, k that span the

entire space of quaternions; that is, any quaternion can be expressed

uniquely as a sum of real multiples of these basis elements. We shall be

seeing many other examples of vector spaces later.

[11.2] Express the sum and product of two general quaternions so that all these indeed hold.
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Quaternions also provide us with an example of what is called an

algebra over the real numbers, because of the existence of a multiplication

law, as described above. But what is remarkable about Hamilton’s quater-

nions is that, in addition, we have an operation of division or, what

amounts to the same thing, a (multiplicative) inverse q�1 for each non-

zero quaternion q. This inverse satisWes

q�1q ¼ qq�1 ¼ 1,

giving the quaternions the structure of what is called a division ring, the

inverse being explicitly

q�1 ¼ �qq(q�qq)�1,

where the (quaternionic) conjugate �qq of q is deWned by

�qq ¼ t� ui� vj� wk,

with q ¼ tþ uiþ vjþ wk, as before. We Wnd that

q�qq ¼ t2 þ u2 þ v2 þ w2,

so that the real number q�qq cannot vanish unless q ¼ 0 (i.e.

t ¼ u ¼ v ¼ w ¼ 0), so (q�qq)�1 exists, whence q�1 is well deWned provided

that q 6¼ 0.[11.3]

11.2 The physical role of quaternions?

This gives us a very beautiful algebraic structure and, apparently, the

potential for a wonderful calculus Wnely tuned to the treatment of the

physics and the geometry of our 3-dimensional physical space. Indeed,

Hamilton himself devoted the remaining 22 years of his life attempting

to develop such a calculus. However, from our present perspective, as we

look back over the 19th and 20th centuries, we must still regard these

heroic eVorts as having resulted in relative failure. This is not to say that

quaternions are mathematically (or even physically) unimportant. They

certainly do have some very signiWcant roles to play, and in a slightly

indirect sense their inXuence has been enormous, through various types of

generalization. But the original ‘pure quaternions’ still have not lived up to

what must undoubtedly have initially seemed to be an extraordinary

promise.

Why have they not? Is there perhaps a lesson for us to learn concerning

modern attempts at Wnding the ‘right’ mathematics for the physical world?

[11.3] Check that this deWnition of q�1 actually works.
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First, there is an obvious point. If we are to think of quaternions to be a

higher-dimensional anologue of the complex numbers, the analogy is that

the dimension has gone up not from 2 to 3 dimensions, but from 2 to 4.

For, in each case, one of the dimensions is the ‘real axis’, which here

corresponds to the ‘t’ component in the above representation of q in

terms of i, j, k. The temptation is strong to take this t to represent the

time,3 so that our quaternions would describe a four-dimensional space-

time, rather than just space. We might think that this should be highly

appropriate, from our 20th-century perspective, since a four-dimensional

spacetime is central to modern relativity theory, as we shall be seeing in

Chapter 17. But it turns out that quaternions are not really appropriate for

the description of spacetime, largely for the reason that the ‘quaternioni-

cally natural’ quadratic form q�qq ¼ t2 þ u2 þ v2 þ w2 has the ‘incorrect

signature’ for relativity theory (a matter that we shall be coming to later;

see §13.8, §18.1). Of course, Hamilton did not know about relativity, since

he lived in the wrong century for that. In any case, there is a ‘can of worms’

here that I do not wish to get involved with just yet. I shall open it slowly

later! (See §13.8, §§18.1–4, end of §22.11, §28.9, §31.13, §32.2.)

There is another reason, perhaps a more fundamental one, that quater-

nions are not really so mathematically ‘nice’ as they seem at Wrst sight.

They are relatively poor ‘magicians’; and, certainly, they are no match for

complex numbers in this regard. The reason appears to be that there is no

satisfactory4 quaternionic analogue of the notion of a holomorphic func-

tion. The basic reason for this is simple. We saw in the previous chapter

that a holomorphic function of a complex variable z is characterized as

being holomorphically ‘independent’ of the complex conjugate �zz. But we

Wnd that, with quaternions, it is possible to express the quaternionic

conjugate �qq of q algebraically in terms of q and the constant quantities i,

j, and k by use of the expression.[11.4]

�qq ¼ � 1

2
(qþ iqiþ jqjþ kqk):

If ‘quaternionic-holomorphic’ is to mean ‘built up from quaternions by

means of addition, multiplication, and the taking of limits’, then �qq has to

count as a quaternionic-holomorphic function of q, which rather spoils the

whole idea.

Is it possible to Wnd modiWcations of quaternions that might have more

direct relevance to the physical world? We shall Wnd that this is certainly

true, but these all sacriWce the key property of quaternions, demonstrated

above, that you can always divide by them (if non-zero). What about

generalizations to higher dimensions? We shall be seeing shortly how

[11.4] Check this.
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CliVord achieved this, and how this kind of generalization does have great

importance for physics. But all these changes lead to the abandonment of

the division-algebra property.

Are there generalizations of quaternions which preserve the division

property? In fact, yes; but the Wrst point to make is that there are theorems

telling us that this is not possible unless we relax the rules of the algebra

even further than our abandoning of the commutative law of multipli-

cation. About two months after receiving a letter from Hamilton announ-

cing the discovery of quaternions, in 1843, John Graves discovered that

there exists a kind of ‘double’ quaternion—entities now referred to as

octonions. These were rediscovered by Arthur Cayley in 1845. For octo-

nians, the associative law a(bc) ¼ (ab)c is abandoned (although a remnant

of this law is maintained in the form of the restricted identities a(ab) ¼ a2b

and (ab)b ¼ ab2). The beauty of this structure is that it is still a division

algebra, although a non-associative one. (For each non-zero a, there is an

a�1 such that a�1(ab) ¼ b ¼ (ba)a�1.) Octonions form an eight-dimen-

sional non-associative division algebra. There are seven analogues of the

i, j, and k of the quaternion algebra, which, together with 1, span the eight

dimensions of the octonion algebra. The individual multiplication laws for

these elements (analogues of ij ¼ k ¼ �ji, etc.) are a little complicated and

it is best that I postpone these until §16.2, where an elegant description will

be given, illustrated in Fig. 16.3. Unhappily, there is no fully satisfactory

generalization of the octonions to even higher dimensions if the division

algebra property is to be retained, as follows from an algebraic result of

Hurwitz (1898), which showed that the quaternionic (and octonionic)

identity ‘q�qq ¼ sum of squares’ does not work for dimensions other than

1, 2, 4, 8. In fact, apart from these speciWc dimensions, there can be no

algebra at all in which division is always possible (except by 0). This

follows from a remarkable topological theorem5 that we shall encounter

in §15.4. The only division algebras are, indeed, the real numbers, the

complex numbers, the quaternions, and the octonions.

If we are prepared to abandon the division property, then there is

an important generalization of the notion of quaternions to higher dimen-

sions, and it is a generalization that indeed has powerful implications

in modern physics. This is the notion of a CliVord algebra, which

was introduced6 in 1878 by the brilliant but short-lived English mathem-

atician William Kingdon CliVord (1845–1879). One may regard CliVord’s

algebra as actually having sprung from two sources, each of which was

geared to the understanding of spaces of dimension higher than the two

described by complex numbers. One of these sources was in fact the

algebra of Hamilton’s quaternions that we have been concerned with

here; the other is an earlier important development, originally put for-

ward7 in 1844 and 1862 by a little-recognized German schoolmaster,
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Hermann Grassmann (1809–1877). Grassmann algebras also have direct

roles to play in modern theoretical physics. (In particular, the modern

notion of supersymmetry—see §31.3—depends crucially upon them, super-

symmetry being close to ubiquitous among modern attempts to develop

the foundations of physics beyond the framework of its standard model.)

It will be important for us to acquaint ourselves with both the Grassmann

and CliVord algebras here, and we shall do so in §11.6 and §11.5, respect-

ively.

CliVord (and Grassmann) algebras involve a new ingredient that comes

from the higher dimensionality of the space under consideration. Before

we can properly appreciate this point, it is best that we consider quater-

nions again, but from a somewhat diVerent perspective—a geometrical

one. This will lead us also into some other considerations that are of

fundamental importance in modern physics.

11.3 Geometry of quaternions

Think of the basic quaternionic quantities i, j, k as referring to three

mutually perpendicular (right-handed) axes in ordinary Euclidean 3-

space (see Fig. 11.1). Now, we recall from §5.1 that the quantity i in

ordinary complex-number theory can be interpreted in terms of the oper-

ation ‘multiply by i’ which, in its action on the complex plane, means

‘rotate through a right angle about the origin, in the positive sense’. We

might imagine that we could interpret the quaternion i in the same kind of

way, but now as a rotation in 3 dimensions, in the positive sense (i.e. right-

handed) about the i-axis (so the (j, k)-plane plays the role of the complex

plane), where we would correspondingly think of j as representing a

rotation (in the positive sense) about the j-axis, and k a rotation about

the k-axis. However, if these rotations are indeed right-angle rotations, as

was the case with complex numbers, then the product relations will not

work, because if we follow the i-rotation by the j-rotation, we do not get

(even a multiple of) the k-rotation.

k

j

i

Fig. 11.1 The basic quaternions i, j, k refer to

3 mutually perpendicular (and right-handed) axes in

ordinary Euclidean 3-space.
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It is quite easy to see this explicitly by taking some ordinary object and

physically rotating it. I suggest using a book. Lay the book Xat on a

horizontal table in front of you in the ordinary way, with the book closed,

as though you were just about to open it to read it. Imagine the k-axis to

be upwards, through the centre of the book, with the i-axis going oV to the

right and the j-axis going oV directly away from you, both also through the

centre. If we rotate the book through a right angle (in the right-handed

sense) about i and then rotate it (in the right-handed sense) about j, we Wnd

that it ends up in a conWguration (with its back spine upwards) that cannot

be restored to its original state by any single rotation about k. (See

Fig. 11.2.)

What we have to do to make things work is to rotate about two right

angles (i.e. through 1808, or p). This seems an odd thing to do, as it is

certainly not a direct analogy of the way that we understood the action of

the complex number i. The main trouble would seem to be that if we apply

this operation twice about the same axis, we get a rotation through 3608
(or 2p), which simply restores the object (say our book) back to its original

state, apparently representing i2 ¼ 1, rather than i2 ¼ �1. But here is

where a wonderful new idea comes in. It is an idea of considerable subtlety

and importance—a mathematical importance that is fundamental to the

quantum physics of basic particles such as electrons, protons, and neu-

trons. As we shall be seeing in §23.7, ordinary solid matter could not exist

without its consequences. The essential mathematical notion is that of a

spinor.8

What is a spinor? Essentially, it is an object which turns into its negative

when it undergoes a complete rotation through 2p. This may seem like an

absurdity, because any classical object of ordinary experience is always

returned to its original state under such a rotation, not to something else.

To understand this curious property of spinors—or of what I shall refer to

as spinorial objects—let us return to our book, lying on the table before us.

We shall need some means of keeping track of how it has been rotated. We

can do this by placing one end of a long belt Wrmly between the pages of

the book and attaching the buckle rigidly to some Wxed structure (say a

k

j

i
Fig. 11.2 We can think of the quaternionic

operators i, j, and k as referring to rotations

(through 1808, i.e. p) of some object, which is

here taken to be a book.
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2π 4π

(a) (b) (c)

Fig. 11.3 A spinorial object, represented by the book of Fig. 11.2. An even

number of 2p rotations is to be equivalent to no rotation, whereas an odd number

of 2p rotations is not. (a) We keep track of the parity of the number of 2p rotations

of the book by loosely attaching it, using a long belt, to some Wxed object (here to

a pile of books). (b) A rotation of our book through 2p twists the belt so that it

cannot be undone without a further rotation. (c) A rotation of the book through

4p gives a twist that can be removed completely by looping the belt over the book.

pile of other books; see Fig. 11.3a). A rotation of the book through 2p
twists the belt in a way that cannot be undone without further rotation of

the book (Fig. 11.3b). But if we rotate the book through an additional

angle of 2p, giving a total rotation through 4p, then we Wnd, rather

surprisingly, that the twist in the belt can be removed completely, simply

by looping it over the book, keeping the book itself in the same position

throughout the manoeuvre (Fig. 11.3c). Thus, the belt keeps track of the

parity of the number of 2p rotations that the book undergoes, rather than

totting up the entire number. That is to say, if we rotate the book through

an even number of 2p rotations then the belt twist can be made to

disappear completely, whereas if we rotate the book through an odd

number of 2p rotations the belt inevitably remains twisted. This applies

whatever rotation axis, or succession of diVerent rotation axes, we choose

to use.

Thus, to picture a spinorial object, we can think of an ordinary object in

space, but where there is an imaginary Xexible attachment to some Wxed

external structure, this imaginary attachment being represented by the belt

that we have been just considering. The attachment may be moved around

in any continuous way, but its ends must be kept Wxed, one on the object

itself and the other on the Wxed external structure. The conWguration of

our ‘spinorial book’, so envisaged, is to be thought of as having such an

imaginary attachment to some such Wxed external structure, and two

conWgurations of it are deemed to be equivalent only if the imaginary
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attachment of one can be continuously deformed into the imaginary

attachment of the other. For every ordinary book conWguration, there

will be precisely two inequivalent spinorial book conWgurations, and we

deem one to be the negative of the other.

Let us now see whether this provides us with the correct multiplication

laws for quaternions. Lay the book on the table in front of you, just as

before, but where now the belt is held Wrmly between its pages. Rotate,

now, through p about i following this by a rotation of p about j. We get a

conWguration that is equivalent to a p rotation about k, just as it should

be, in accordance with Hamilton’s ij ¼ k.

Or does it? There is just one small point of irritation. If we carefully

insist that all these rotations are in the right-handed sense, then, keeping

track of the belt twistings appropriately, we seem to get ij ¼ �k, instead.

This is not an important point, however, and it can be righted in a number

of diVerent ways. Either we can represent our quaternions by left-handed

rotations through 2p instead of right-handed ones (in which case we do

retrieve ‘ij ¼ k’) or we take our i, j, k-axes to have a left-handed orienta-

tion rather than a right-handed one. Or, best, we can adopt a convention

of the ordering of multiplication of operators that is quite usual in math-

ematics, namely that the ‘product pq’ represents q followed by p, rather

than p followed by q.

In fact, there is a good reason for this odd-looking convention. This has

to do with operators—such as things like q=qx—generally being under-

stood to act on things written to the right of them. Thus, the operator P

acting on F would be written P(F), or simply PF. Accordingly, if we apply

Wrst P and then Q to F, we get Q(P(F)) or simply QPF, which is QP acting

on F.

My own way of resolving this awkward sign issue with quaternions will

indeed be to take everything in the standard right-handed sense and to

adopt this ‘usual’ reverse-order mathematical convention for the ordering

of operators. It is now a simple matter for the reader to conWrm that all of

Hamilton’s ‘Brougham Bridge’ equations i2 ¼ j2 ¼ k2 ¼ ijk ¼ �1 are

indeed satisWed by our ‘spinorial book’. We bear in mind, of course, that

ijk now stands for ‘k followed by j followed by i’.9

11.4 How to compose rotations

This curious property of rotation angles being twice what might have

seemed geometrically appropriate can be demonstrated in another way.

It is a particular feature of (proper, i.e. non-reXective) rotations in three

dimensions that if we combine any number of them together then we

always get a rotation about some axis. How can we Wnd this axis in a

simple geometrical way, and also the amount of this rotation? An elegant
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answer was found by Hamilton.10 Let us see how this works. My presenta-

tion here will be a little diVerent from that originally provided by Hamilton.

Recall that when we compose two diVerent displacements that are

simply translations, we can use the standard triangle law (equivalent to

the parallelogram law illustrated in Fig. 5.1a) to get the answer. Thus, we

can represent the Wrst translation by a vector (by which I here mean an

oriented line segment, the direction of the orientation being indicated by

an arrow on the segment) and the second translation by another such

vector, where the tail of the second vector is coincident with the head of

the Wrst. The vector stretching from the tail of the Wrst vector to the head

of the second represents the composition of the two translational motions.

See Fig. 11.4a.

Can we do something similar for rotations? Remarkably, it turns out that

we can. Think now of the ‘vectors’ as being oriented arcs of great circles

drawn on a sphere—again depicted with an arrow to represent the orienta-

tion. (A great circle on a sphere is the intersection of the sphere with a plane

through its centre.) We can imagine that such a ‘vector arc’ can be used to

represent a rotation in the direction of the arrow. This rotation is to be

about an axis, through the centre of the sphere, perpendicular to the plane

of the great circle on which the arrow resides.

Can we think of the composition of two rotations, represented in this

way, as being given by a ‘triangle law’ similar to the situation that we had

for ordinary translations? Indeed we can; but there is a catch. The rotation

that is to be represented by our ‘vector arc’ must be through an angle that

is precisely twice the angle that is represented by the length of the arc. (For

convenience, we can take the sphere to be of unit radius. Then the angle

represented by the arc is simply the distance measured along the arc. For

the ‘triangle law’ to hold, the angle through which the rotation is to

take place must be twice this arc-length.) The reason that this works is

illustrated in Fig. 11.4b. The curvilinear (spherical) triangle at the centre

illustrates the ‘triangle law’ and the three external triangles are the respect-

ive reXections in its three vertices. The two initial rotations take one of

these external triangles into a second one and then the second one into the

third; the rotation that is the composition of the two takes the Wrst into

the third. We note that each of these rotations is through an angle which is

precisely twice the corresponding arc-length of the original curvilinear

triangle.[11.5] We shall be seeing a variant of this construction in relativistic

physics, in §18.4 (Fig.18.13).

[11.5] In Hamilton’s original version of this construction, the ‘dual’ spherical triangle to this

one is used, whose vertices are where the sphere meets the three axes of rotation involved in

the problem. Give a direct demonstration of how this works (perhaps ‘dualizing’ the argument

given in the text), the amounts of the rotations being represented as twice the angles of this dual

triangle.
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−j

−k

(a) (b) (c)

Fig. 11.4 (a) Translations in the Euclidean plane represented by oriented line

segments. The double-arrowed segment represents the composition of the other

two, by the triangle law. (b) For rotations in Euclidean 3-space, the segments are

now great-circle arcs drawn on the unit sphere, each representing a rotation

through twice the angle measured by the arc (about an axis perpendicular to its

plane). To see why this works, reXect the triangle made by the arcs, in each vertex

in turn. The Wrst rotation takes triangle 1 into triangle 2, the second takes triangle

2 into triangle 3, and the composition takes triangle 1 into triangle 3. (c) The

quaternionic relation ij ¼ k (in the form i(� j) ¼ �k), as a special case. The

rotations are each through p, but represented by the half-angle p
2
.

We can examine this in the particular situation that we considered

above, and try to illustrate the quaternionic relation ij ¼ k. The rotations

described by i, j, and k are each through an angle p. Thus, we use arc-

lengths that are just half this angle, namely 1
2
p, in order to depict the

‘triangle law’. This is fully illustrated in Fig. 11.4c (in the form

i(� j) ¼ �k, for clarity). We can also see the relation i2 ¼ �1 as illustrated

by the fact that a great circle arc, of length p, stretching from a point on

the sphere to its antipodal point (depicting ‘�1’) is essentially diVerent

from an arc of zero length or of length 2p, despite the fact that each

represents a rotation of the sphere that restores it to its original position.

The ‘vector arc’ description correctly represents the rotations of a ‘spinor-

ial object’.

11.5 Clifford algebras

To proceed to higher dimensions and to the idea of a CliVord algebra, we

must consider what the analogue of a ‘rotation about an axis’ must be. In n

dimensions, the basic such rotation has an ‘axis’ which is an (n� 2)-

dimensional space, rather than just the 1-dimensional line-axis that we

get for ordinary 3-dimensional rotations. But apart from this, a rotation

about an (n� 2)-dimensional axis is similar to the familiar case of an
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ordinary 3-dimensional rotation about a 1-dimensional axis in that the

rotation is completely determined by the direction of this axis and by the

amount of the angle of the rotation. Again we have spinorial objects with

the property that, if such an object is continuously rotated through the

angle 2p, then it is not restored to its original state but to what we consider

to be the ‘negative’ of that state. A rotation through 4p always does restore

such an object to its original state.

There is, however, a ‘new ingredient’, alluded to above: that in dimen-

sion higher than 3, it is not true that the composition of basic rotations

about (n� 2)-dimensional axes will always again be a rotation about an

(n� 2)-dimensional axis. In these higher dimensions, general (compos-

itions of) rotations cannot be so simply described. Such a (generalized)

rotation may have an ‘axis’ (i.e. a space that is left undisturbed by the

rotational motion) whose dimension can take a variety of diVerent values.

Thus, for a CliVord algebra in n dimensions, we need a hierarchy

of diVerent kinds of entity to represent such diVerent kinds of rotation.

In fact, it turns out to be better to start with something that is even

more elementary than a rotation through p, namely a reXection in an

(n� 1)-dimensional (hyper)plane. A composition of two such reXections

(with respect to two such planes that are perpendicular) provides a

rotation through p, giving these previously basic p-rotations as ‘second-

ary’ entities, the primary entities being the reXections.[11.6]

We label these basic reXections g1, g2, g3, . . . , gn, where gr reverses

the rth coordinate axis, while leaving all the others alone. For the

appropriate type of ‘spinorial object’, reXecting it twice in the same dir-

ection gives the negative of the object, so we have n quaternion-like

relations,

g2
1 ¼ �1, g2

2 ¼ �1, g2
3 ¼ �1, . . . , g2

n ¼ �1,

satisWed by these primary reXections. The secondary entities, representing

our original p-rotations, are products of pairs of distinct g’s, and these

products have anticommutation properties (rather like quaternions):

gpgq ¼ �gqgp (p 6¼ q):

In the particular case of three dimensions (n ¼ 3), we can deWne the three

diVerent ‘second-order’ quantities

i ¼ g2g3, j ¼ g3g1, k ¼ g1g2,

[11.6] Find the geometrical nature of the transformation, in Euclidean 3-space, which is the

composition of two reXections in planes that are not perpendicular.
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and it is readily checked that these three quantities i, j, and k satisfy the

quaternion algebra laws (Hamilton’s ‘Brougham Bridge’ equations).[11.7]

The general element of the CliVord algebra for an n-dimensional space is

a sum of real-number multiples (i.e. a linear combination) of products of

sets of distinct g’s. The Wrst-order (‘primary’) entities are the n diVerent

individual quantities gp. The second-order (‘secondary’) entities are the
1
2
n(n� 1) independent products gpgq (with p < q); there are

1
6
n(n� 1)(n� 2) independent third-order entities gpgqgr (with

p < q < r), 1
24

n(n� 1)(n� 2)(n� 3) independent fourth-order entities,

etc., and Wnally the single nth-order entity g1g2g3 � � �gn. Taking all

these, together with the single zeroth-order entity 1, we get

1þ nþ 1

2
n(n� 1)þ 1

6
n(n� 1)(n� 2)þ � � � þ 1 ¼ 2n

entities in all,[11.8] and the general element of the CliVord algebra is a linear

combination of these. Thus the elements of a CliVord algebra constitute a

2n-dimensional algebra over the reals, in the sense described in §11.1. They

form a ring with identity but, unlike quaternions, they do not form a

division ring.

One reason that CliVord algebras are important is for their role in

deWning spinors. In physics, spinors made their appearance in Dirac’s

famous equation for the electron (Dirac 1928), the electron’s state being

a spinor quantity (see Chapter 24). A spinor may be thought of as an

object upon which the elements of the CliVord algebra act as operators,

such as with the basic reXections and rotations of a ‘spinorial object’ that

we have been considering. The very notion of a ‘spinorial object’ is

somewhat confusing and non-intuitive, and some people prefer to resort

to a purely (CliVord-) algebraic11 approach to their study. This certainly

has its advantages, especially for a general and rigorous n-dimensional

discussion; but I feel that it is important also not to lose sight of the

geometry, and I have tried to emphasize this aspect of things here.

In ndimensions,12 the full spaceof spinors (sometimes called spin-space) is

2n=2-dimensional if n is even, and 2(n�1)=2-dimensional if n is odd. When n is

even, the space of spinors splits into two independent spaces (sometimes

called the spaces of ‘reduced spinors’ or ‘half-spinors’), each of which is

2(n�2)=2-dimensional; that is, each element of the full space is the sum of two

elements—one fromeachof the tworeducedspaces.AreXection in the (even)

n-dimensional spaceconvertsoneof these reducedspin-spaces into theother.

The elements of one reduced spin-space have a certain ‘chirality’ or

‘handedness’; those of the other have the opposite chirality. This appears

[11.7] Show this.

[11.8] Explain all this counting. Hint: Think of (1þ 1)n.
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to have deep importance in physics, where I here refer to the spinors for

ordinary 4-dimensional spacetime. The two reduced spin-spaces are each

2-dimensional, one referring to right-handed entities and the other to left-

handed ones. It seems that Nature assigns a diVerent role to each of these

two reduced spin-spaces, and it is through this fact that physical processes

that are reXection non-invariant can emerge. It was, indeed, one of the

most striking (and some would say ‘shocking’) unprecedented discoveries

of 20th-century physics (theoretically predicted by Chen Ning Yang and

Tsung Dao Lee, and experimentally conWrmed by Chien-Shiung Wu and

her group, in 1957) that there are actually fundamental processes in

Nature which do not occur in their mirror-reXected form. I shall be

returning to these foundational issues later (§§25.3,4, §32.2, §§33.4,7,11,14).

Spinors also have an important technical mathematical value in

various diVerent contexts13 (see §§22.8–11, §§22.4,5, §§24.6,7, §§32.3,4,

§§33.4,6,8,11), and they can be of practical use in certain types of compu-

tation. Because of the ‘exponential’ relation between the dimension of the

spin-space (2n=2, etc.) and the dimension n of the original space, it is not

surprising that spinors are better practical tools when n is reasonably

small. For ordinary 4-dimensional spacetime, for example, each reduced

spin-space has dimension only 2, whereas for modern 11-dimensional

‘M-theory’ (see §31.14), the spin-space has 32 dimensions.

11.6 Grassmann algebras

Finally, let me turn to Grassmann algebra. From the point of view of the

above discussion, we may think of Grassmann algebra as a kind of

degenerate case of CliVord algebra, where we have basic anticommuting

generating elements h1, h2, h3 , . . . , hn, similar to the g1, g2, g3 , . . . , gn

of the CliVord algebra, but where each �s squares to zero, rather than to

the �1 that we have in the CliVord case:

h2
1 ¼ 0, h2

2 ¼ 0, . . . , h2
n ¼ 0:

The anticommutation law

hphq ¼ �hqhp

holds as before, except that the Grassmann algebra is now more ‘system-

atic’ than the CliVord algebra, because we do not have to specify ‘p 6¼ q’ in

this equation. The case hphp ¼ �hphp simply re-expresses h2
p ¼ 0.

Indeed, Grassmann algebras are more primitive and universal than

CliVord algebras, as they depend only upon a minimal amount of

local structure. Basically, the point is that the CliVord algebra needs

to ‘know’ what ‘perpendicular’ means, so that ordinary rotations can be
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built up out of reXections, whereas the notion of a ‘rotation’ is not part of

what is described according to Grassmann algebras. To put this another

way, the ordinary notions of ‘CliVord algebra’ and ‘spinor’ require that

there be a metric on the space, whereas this is not necessary for a Grass-

mann algebra. (Metrics will be discussed in §13.8 and §14.7.)

What the Grassmann algebra is concerned with is the basic idea of

a ‘plane element’ for diVerent numbers of dimensions. Let us think of

each of the basic quantities h1, h2, h3, . . . , hn, as deWning a line element

or ‘vector’ (rather than a hyperplane of reXection) at the origin of co-

ordinates in some n-dimensional space, each h being associated with

one of the n diVerent coordinate axes. (These can be ‘oblique’ axes,

since Grassmann algebra is not concerned with orthogonality; see

Fig. 11.5.) The general vector at the origin will be some combination

a ¼ a1h1 þ a2h2 þ � � � þ anhn,

where a1, a2 , . . . , an are real numbers. (Alternatively the ai could be

complex numbers, in the case of a complex space; but the real and complex

cases are similar in their algebraic treatment.) To describe the 2-dimen-

sional plane element spanned by two such vectors a and b, where

b ¼ b1h1 þ b2h2 þ � � � þ bnhn,

we form the Grassmann product of a with b. In order to avoid confusion

with other forms of product, I shall henceforth adopt the (standard)

notation a ^ b for this product (called the ‘wedge product’) rather than

just using juxtaposition of symbols. Accordingly, what I previously wrote

h1

hn

h3

h2

a

a1h1

a2h2

a3h3

anhn

O

Fig. 11.5 Each basis element

h1, h2, h3 , . . . , hn, of a Grassmann

algebra deWnes a vector in n-dimensional

space, at some origin-point O. These

vectors can be along the diVerent

coordinate axes (which can be ‘oblique’

axes; Grassmann algebra not being

concerned with orthogonality). A general

vector at O is a linear combination

a ¼ a1h1 þ a2h2 þ � � � þ anhn.
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as hphq, I shall now denote by hp ^ hq. The anticommutation law of these

h’s is now to be written

hp ^ hq ¼ �hq ^ hp:

Adopting the distributive law (see §11.1) in deWning the product a ^ b, we

consequently obtain the more general anticommutation property[11.9]

a ^ b ¼ �b ^ a

for arbitrary vectors a and b. The quantity a ^ b provides an algebraic

representation of the plane element spanned by the vectors a and b (Fig.

11.6a). Note that this contains the information not only of an orientation

for the plane element (since the sign of a ^ b has to do with which of a or b

comes Wrst), but also of a ‘magnitude’ assigned to the plane element.

We may ask how a quantity such as a ^ b is to be represented as a set of

components, corresponding to the way that a may be represented as

a1, a2 , . . . , anð Þ and b as b1, b2 , . . . , bnð Þ, these being the coeYcients

occurring when a and b are respectively presented as linear combinations of

h1, h2 , . . . , hn. The quantity a ^ b may, correspondingly, be presented as

a linear combination of h1 ^ h2, h1 ^ h3, etc., and we require the coeY-

cients that arise. There is a certain choice of convention involved here

because, for example, h1 ^ h2 and h2 ^ h1 are not independent (one being

the negative of the other), so we may wish to single out one or the other of

these. It turns out to be more systematic to include both terms and to

divide the relevant coeYcient equally between them. Then we Wnd[11.10] the

coeYcients—that is, the components—of a ^ b to be the various quantities

a[pbq], where square brackets around indices denote antisymmetrization,

deWned by

A[pq] ¼
1

2
Apq � Aqp

� �

,

whence

a[pbq] ¼
1

2
apbq � aqbp

� �

:

What about a 3-dimensional ‘plane element’? Taking a, b, and c to

be three independent vectors spanning this 3-element, we can form

the triple Grassmann product a ^ b ^ c to represent this 3-element

(again with an orientation and magnitude), Wnding the anticommutation

properties

[11.9] Show this.

[11.10] Write out a ^ b fully in the case n ¼ 2, to see how this comes about.
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b

a

a^b

(a) (b)

a^b^c

c
b

a

Fig. 11.6 (a) The quantity a ^ b represents the (oriented and scaled) plane-element

spanned by independent vectors a and b. (b) The triple Grassmann product a ^ b ^ c

represents the 3-element spanned by independent vectors a, b and c.

a ^ b ^ c ¼ b ^ c ^ a ¼ c ^ a ^ b ¼ �b ^ a ^ c ¼ �a ^ c ^ b ¼ �c ^ b ^ a

(see Fig. 11.6b). The components of a ^ b ^ c are taken to be, in accordance

with the above,

a[pbqcr] ¼
1

6
apbqcr þ aqbrcp þ arbpcq � aqbpcr � apbrcq � arbqcp

� �

,

the square brackets again denoting antisymmetrization, as illustrated by

the expression on the right-hand side.

Similar expressions deWne general r-elements, where r ranges up to the

dimension n of the entire space. The components of the rth-order wedge

product are obtained by taking the antisymmetrized product of the com-

ponents of the individual vectors.[11.11], [11.12] Indeed, Grassmann algebra

provides a powerful means of describing the basic geometrical linear

elements of arbitrary (Wnite) dimension.

The Grassmann algebra is a graded algebra in the sense that it contains

rth-order elements (where r is the number of h’s that are ‘wedge-pro-

ducted’ together within the expression). The number r (where

r ¼ 0, 1, 2, 3, . . . , n) is called the grade of the element of the Grassmann

algebra. It should be noted, however, that the general element of the

algebra of grade r need not be a simple wedge product (such as a ^ b ^ c

in the case r ¼ 3), but can be a sum of such expressions. Accordingly, there

are many elements of the Grassmann algebra that do not directly describe

[11.11] Write down this expression explicitly in the case of a wedge product of four vectors.

[11.12] Show that the wedge product remains unaltered if a is replaced by a added to any

multiple of any of the other vectors involved in the wedge product.
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geometrical r-elements. A role for such ‘non-geometrical’ Grassmann

elements will appear later (§12.7).

In general, if P is an element of grade p and Q is an element of grade q,

we deWne their (pþ q)-grade wedge product P ^Q to have components

P[a...cQd...f ], where Pa...c and Qd...f are the components P and Q respect-

ively. Then we Wnd[11.13], [11.14]

P ^Q ¼
þQ ^ P if p, q, or both, are even,

�Q ^ P if p and q are both odd:

(

The sum of elements of a Wxed grade r is again an element of grade r;

we may also add together elements of diVerent grades to obtain a

‘mixed’ quantity that does not have any particular grade. Such elements

of the Grassmann algebra do not have such direct interpretations,

however.

Notes

Section 11.1

11.1. According to Eduard and Klein (1898), Carl Friedrich Gauss had apparently

already noted the multiplication law for quaternions in around 1820, but he had

not published it (Gauss 1900). This, however, was disputed by Tait (1900) and

Knott (1900). For further information, see Crowe (1967).

11.2. The term ‘vector’ has a spectrum of meanings. Here we require no association

with the diVerentiation notion of a ‘vector Weld’, described in §10.3.

Section 11.2

11.3. It is not clear to me how seriously Hamilton himself may have yielded to this

temptation. Prior to his discovery of quaternions, he had been interested in the

algebraic treatment of the ‘passage of time’, and this could have had some

inXuence on his preparedness to accept a fourth dimension in quaternionic

algebra. See Crowe (1967), pp. 23–7.

11.4. Nevertheless, a fair amount of work has been directed at issue of quaternionic

analogues of holomorphic notions and their value in physical theory. See

Gürsey (1983); Adler (1995). One might regard the twistor expressions

(§§33.8,9) for solving the massless free Weld equations as an appropriate 4-

dimensional analogue of the holomorphic-function method of solution of the

Laplace equation. This, however, uses complex analysis, not quaternionic. For

a general reference on quaternions and octonions, see Conway and Smith

(2003).

11.5. See Adams and Atiyah (1966).

11.6. See CliVord (1878). For modern references see Hestenes and Sobczyk (2001);

Lounesto (1999).

[11.13] Show this.

[11.14] Deduce that P^P = 0, if p is odd.
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11.7. See Grassmann (1844, 1862); van der Waerden (1985), pp. 191–2; Crowe (1967),

Chap. 3.

Section 11.3

11.8. We pronounce this as though it were spelt ‘spinnor’, not ‘spynor’.

11.9. Although I do not know who Wrst suggested this way of demonstrating quater-

nion multiplication, J. H. Conway used it in private demonstrations at the

1978 International Congress of Mathematicians in Helsinki—see also Newman

(1942); Penrose and Rindler (1984), pp. 41–6.

Section 11.4

11.10. See Pars (1968).

Section 11.5

11.11. For an approach to many physical problems through CliVord algebra, see

Lasenby et al. (2000) and references contained therein.

11.12. See Cartan (1966); Brauer and Weyl (1935); Penrose and Rindler (1986),

Appendix; Harvey (1990); Budinich and Trautman (1988).

11.13. See Lounesto (1999); Cartan (1966); Crumeyrolle (1990); Chevalley (1954);

Kamberov (2002) for a few examples.
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12
Manifolds of n dimensions

12.1 Why study higher-dimensional manifolds?

Let us now come to the general procedure for building up higher-dimen-

sional manifolds, where the dimension n can be any positive integer

whatever (or even zero, if we allow ourselves to think of a single point as

constituting a 0-manifold). This is an essential notion for almost all

modern theories of basic physics. The reader might wonder why it is of

interest, physically, to consider n-manifolds for which n is larger than 4,

since ordinary spacetime has just four dimensions. In fact many modern

theories, such as string theory, operate within a ‘spacetime’ whose dimen-

sion is much larger than 4. We shall be coming to this kind of thing later

(§15.1, §§31.4,10–12,14–17), where we examine the physical plausibility of

this general idea. But quite irrespective of the question of whether actual

‘spacetime’ might be appropriately described as an n-manifold, there are

other quite diVerent and very compelling reasons for considering n-mani-

folds generally in physics.

For example, the conWguration space of an ordinary rigid body in

Euclidean 3-space—by which I mean a space CC whose diVerent points

represent the diVerent physical locations of the body—is a non-Euclidean

6-manifold (see Fig. 12.1). Why of six dimensions? There are three dimen-

sions (degrees of freedom) in the position of the centre of gravity and three

more in the rotational orientation of the body.[12.1] Why non-Euclidean?

There are many reasons, but a particularly striking one is that even its

topology is diVerent from that of Euclidean 6-space. This ‘topological non-

triviality’ of CC shows up simply in the 3-dimensional aspect of the space

that refers to the rotational orientation of the body. Let us call this 3-space

RR, so each point of RR represents a particular rotational orientation of the

body. Recall our consideration of rotations of a book in the previous

chapter. We shall take our ‘body’ to be that book (which must, of course,

remain unopened, for otherwise the conWguration space would have many

more dimensions corresponding to the movement of the pages).

[12.1] Explain this dimension count more explicitly.
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3

C

Fig. 12.1 ConWguration space CC, each of whose points represents a possible

location of a given rigid body in Euclidean 3-space E
3: CC is a non-Euclidean

6-manifold.

How are we to recognize ‘topological non-triviality’? We may imagine

that this is not an easy matter for a 3- or 6-manifold. However, there are

several mathematical procedures for ascertaining such things. Remember

that in our examination of Riemann surfaces, as given in §8.4 (see Fig. 8.9),

we considered various topologically non-trivial kinds of 2-surface. Apart

from the (Riemann) sphere, the simplest such surface is the torus (surface

of genus 1). How can we distinguish the torus from the sphere? One way is

to consider closed loops on the surface. It is intuitively clear that there are

loops that can be drawn on the torus for which there is no way to deform

them continuously until they shrink away (down to a single point),

whereas, on the sphere, every closed loop can be shrunk away in this

manner (see Fig. 12.2). Loops on the Euclidean plane can also be all

shrunk away. We say that the sphere and plane are simply-connected by

virtue of this ‘shrinkability’ property. The torus (and surfaces of higher

Fig. 12.2 Some loops on the torus cannot be shrunk away continuously (down to

single point) while remaining in the surface, whereas on the plane or sphere, every

closed loop can. Accordingly, the plane and sphere are simply-connected, but the

torus (and surfaces of higher genus) are multiply-connected.
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genus) are, on the other hand, multiply-connected because of the existence

of non-shrinkable loops.1 This provides us with one clear way, from within

the surface itself, of distinguishing the torus (and surfaces of higher genus)

from the sphere and from the plane.

We can apply the same idea to distinguish the topology of the 3-manifold

RR from the ‘trivial’ topology of Euclidean 3-space, or the topology of the

6-manifold CC from that of ‘trivial’ Euclidean 6-space. Let us return to our

‘book’, which, as in §11.3, we picture as being attached to some Wxed

structure by an imaginary belt. Each individual rotational orientation of

the book is to be represented by a corresponding point of RR. If we continu-

ously rotate the book through 2p, so that it returns to its original rotational

orientation, we Wnd that this motion is represented, inRR, by a certain closed

loop (see Fig. 12.3). Can we deform this closed loop in a continuous manner

until it shrinks away (down to a single point)? Such a loop deformation

would correspond to a gradual changing of our book rotation until it is no

motion at all. But remember our imaginary belt attachment (which we can

realize as an actual belt). Our 2p-rotation leaves the belt twisted; but this

cannot be undone by a continuous belt motion while leaving the book

unmoved. Now this 2p-twist must remain (or be transformed into an odd

multiple of a 2p-twist) throughout the gradual deforming of the book rota-

tion, so we conclude that it is impossible that the 2p-rotation can actually be

continuously deformed to no rotation at all. Thus, correspondingly, there is

noway that our chosen closed looponRRcanbe continuously deformeduntil

it shrinks away. Accordingly, the 3-manifold RR (and similarly the 6-mani-

fold CC) must be multiply-connected and therefore topologically diVerent

from the simply-connected Euclidean 3-space (or 6-space).2

It may be noted that the multiple-connectivity of the spaces RRand CC is

of a more interesting nature than that which occurs in the case of the

R or C

4π rotation
shrinks
away

2π rotation
does not
shrink
away

Fig. 12.3 The notion of multiple con-

nectivity, as illustrated in Fig. 12.2, distin-

guishes the topology of the 3-manifold RR
(rotation space), or of the 6-manifold CC
(conWguration space), from the ‘trivial’

topologies of Euclidean 3-space and

6-space. A loop on RR or CC representing a

continuous rotation through 2p cannot be

shrunk to a point, so RR and CC are multi-

ply-connected. Yet, when traversed twice

(representing a 4p-rotation) the loop does

shrink to a point (topological torsion). See

Fig. 11.3. (N.B. The 2-manifold depicted,

being schematic only, does not actually

have this last property.)

Manifolds of n dimensions §12.1
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torus. For our loop that represents a 2p-rotation has the curious property

that if we go around it twice (a 4p-rotation) then we obtain a loop which

can now be deformed continuously to a point.[12.2] (This certainly does not

happen for the torus.) This curious feature of loops in RR and CC is an

instance of what is referred to as topological torsion.

We see from all this that it is of physical interest to study spaces, such as

the 6-manifold CC, that are not only of dimension greater than that of

ordinary spacetime but which also can have non-trivial topology. More-

over, such physically relevant spaces can have dimension enormously larger

than 6. Very large-dimensional spaces can occur as conWguration spaces,

andalso aswhat are called phase spaces, for systems involving large numbers

of individual particles. The conWguration space KK of a gas, where the gas

particles are described as individual points in 3-dimensional space, is of 3N

dimensions, where N is the number of particles in the gas. Each point of KK
represents a gas conWguration in which every particle’s position is individu-

ally determined (Fig. 12.4a). In the case of the phase space PP of the gas, we

must keep track alsoof themomentumof eachparticle (which is the particle’s

velocity times its mass), this being a vector quantity (3 components for each

particle), so that the overall dimension is 6N. Thus, each single point of PP
represents not only the position of all the particles in the gas, but also

of every individual particle’s motion (Fig. 12.4b). For a thimbleful of

ordinary air, there are could be some 1019 molecules,3 so PP has something

like 60 000 000 000 000 000 000 dimensions! Phase spaces are particularly

n particle
positions

3n dimensions
K

n particle
positions

and momenta

6n dimensions
P

Phase spaceConfiguration space

(a) (b)

Fig. 12.4 (a) The conWguration space KK, for a system of n point particles in a

region of 3-space, has 3n dimensions, each single point of KK representing the

positions of all n particles. (b) The phase space PP has 6n dimensions, each point of

PP representing the positions and momenta of all n particles. (N.B. momentum ¼
velocity times mass.)

[12.2] Show how to do this, e.g. by appealing to the representation of RR as given in Exercise

[12.8].
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useful in the study of the behaviour of (classical) physical systems involv-

ing many particles, so spaces of such large dimension can be physically

very relevant.

12.2 Manifolds and coordinate patches

Let us now consider how the structure of an n-manifold may be treated

mathematically. An n-manifold MM can be constructed completely analo-

gously to the way in which, in Chapters 8 and 10 (see §10.2), we con-

structed the surface SS from a number of coordinate patches. However,

now we need more coordinates in each patch than just a pair of numbers

(x, y) or (X, Y). In fact we need n coordinates per patch, where n is a Wxed

number—the dimension ofMM—which can be any positive integer. For this

reason, it is convenient not to use a separate letter for each coordinate, but

to distinguish our diVerent coordinates

x1, x2, x3, . . . , xn

by the use of an (upper) numerical index. Do not be confused here. These

are not supposed to be diVerent powers of a single quantity x, but separate

independent real numbers. The reader might Wnd it strange that I have

apparently courted mystiWcation, deliberately, by using an upper index

rather than a lower one (e.g. x1, x2 , . . . , xn), this leading to the inevitable

confusion between, for instance, the coordinate x3 and the cube of some

quantity x. Confused readers are indeed justiWed in their confusion. I

myself Wnd it not only confusing but also, on occasion, genuinely irritat-

ing. For some historical reason, the standard conventions for classical

tensor analysis (which we shall come to in a more serious way later in

this chapter) have turned out this way around. These conventions involve

tightly-knit rules governing the up/down placing of indices, and the con-

sistent placing for the indices on the coordinates themselves has come out

to be in the upper position. (These rules actually work well in practice, but

it seems a great pity that the conventions had not been chosen the opposite

way around. I am afraid that this is just something that we have to live

with.)

How are we to picture our manifold MM? We think of it as ‘glued

together’ from a number of coordinate patches, where each patch is an

open region of R
n. Here, R

n stands for the ‘coordinate space’ whose

points are simply the n-tuples (x1, x2 , . . . , xn) of real numbers, where we

may recall from §6.1 that R stands for the system of real numbers. In our

gluing procedure, there will be transition functions that express the coord-

inates in one patch in terms of the coordinates in another, wherever in the

manifold MM we Wnd one coordinate patch overlapping with another.

Manifolds of n dimensions §12.2
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Glue down
to get

Need
consistency
on triple
overlap

Non-Hausdorff
Hausdorff
condition

(a) (b) (c)

Fig. 12.5 (a) The transition functions that translate between coordinates in

overlapping patches must satisfy a relation of consistency on every triple overlap.

(b) The (open-set) overlap regions between pairs of patches must be appropriate;

otherwise the ‘branching’ that characterizes a non-HaudorV space can occur. (c) A

HausdorV space is one with the property that any two distinct points possess

neighbourhoods that do not overlap. (In (b), in order that the ‘glued’ part be an

open set, its ‘edge’, where branching occurs, must remain separated, and it is along

here that the HausdorV condition fails.)

These transition functions must satisfy certain conditions among them-

selves to ensure the consistency of the whole procedure. The procedure is

illustrated in Fig. 12.5a. But we must be careful, in order to produce the

standard kind of manifold,4 which is a HausdorV space. (Non-HausdorV

manifolds can ‘branch’, in ways such as that indicated in Fig. 12.5b, see

also Fig. 8.2c.) A HausdorV space has the deWning property that, for any

two distinct points of the space, there are open sets containing each which

do not intersect (Fig. 12.5c).

It is important to realize, however, that a manifoldMM is not to be thought

of as ‘knowing’ where these individual patches are or what the particular

coordinate values at some point might happen to be. A reasonable way to

think ofMM is that it can be built up in some means, by the piecing together

of a number of coordinate patches in this way, but then we choose to ‘forget’

the speciWc way in which these coordinate patches have been introduced.

The manifold stands on its own as a mathematical structure, and the

coordinates are just auxiliaries that can be reintroduced as a convenience

when desired. However, the precise mathematical deWnition of a manifold

(of which there are several alternatives) would be distracting for us here.5

§12.2 CHAPTER 12

222



12.3 Scalars, vectors, and covectors

As in §10.2, we have the notion of a smooth function F, deWned on MM
(sometimes called a scalar Weld on MM) where F is deWned, in any local

coordinate patch, as a smooth function of the n coordinates in that patch.

Here, ‘smooth’ will always be taken in the sense ‘C1-smooth’ (see §6.3), as

this gives the most convenient theory. On each overlap between two

patches, the coordinates on each patch are smooth functions of the coord-

inates on the other, so the smoothness of F in terms of one set of coordin-

ates, on the overlap, implies its smoothness in terms of the other. In this

way, the local (‘patchwise’) deWnition of smoothness of a scalar function F
extends to the whole of MM, and we can speak simply of the smoothness of

F on MM.

Next, we can deWne the notion of a vector Weld j onMM, which should be

something with the geometrical interpretation as a family of ‘arrows’

on MM (Fig. 10.5), where j is something which acts on any (smooth)

scalar Weld F to produce another scalar Weld j(F) in the manner of a diVer-

entiation operator. The interpretation of j(F) is to be the ‘rate of increase’

of F in the direction indicated by the arrows that represent j, just as for the

2-surfaces of §10.3. Being a ‘diVerentiation operator’, j satisWes certain

characteristic algebraic relations (basically things that we have seen before

in §6.5, namely d( fþ g) ¼ dfþ dg, d(fg) ¼ f dgþ g df , da ¼ 0 if a is con-

stant):

j(FþC) ¼ j(F)þ j(C),

j(FC) ¼ Fj(C)þCj(F),

j(k) ¼ 0 if k is a constant:

In fact, there is a theorem that tells us that these algebraic properties are

suYcient to characterize j as a vector Weld.6

We can also use such purely algebraic means to deWne a 1-form or, what

is another name for the same thing, a covector Weld. (We shall be coming to

the geometrical meaning of a covector shortly.) A covector Weld a can be

thought of as a map from vector Welds to scalar Welds, the action of a on j
being written a � j (the scalar product of a with j), where, for any vector

Welds j and h, and scalar Weld F we have linearity:

a � (j þ h) ¼ a � j þ a � h,

a � (Fj) ¼ F(a � j):

These relations deWne covectors as dual objects to vectors (and this is what

the preWx ‘co’ refers to). The relation between vectors and covectors turns

out to be symmetrical, so we have corresponding expressions

Manifolds of n dimensions §12.3
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(aþ b) � j ¼ a � j þ b � j,

(Fa) � j ¼ F(a � j),

leading to the deWnition of the sum of two covectors and the product of a

covector by a scalar. When we take the dual of the space of covectors we

get the original space of vectors, all over again. (In other words, a ‘co-

covector’ would be a vector.)

We can take these relations to be referring to entire Welds or else

merely to entities deWned at a single point of MM. Vectors taken at a

particular Wxed point o constitute a vector space. (As described in

§11.1, in a vector space, we can add elements j and h, to form their sum

j þ h, with j þ h ¼ hþ j and (j þ h)þ z ¼ j þ (hþ z), and we can

multiply them by scalars—here, real numbers f and g—where

(fþ g)j ¼ f j þ gj, f (j þ h) ¼ f j þ fh, f (gj) ¼ ( fg)j, 1j ¼ j.) We may

regard this (Xat) vector space as providing the structure of the manifold

in the immediate neighbourhood of o (see Fig. 12.6). We call this vector

space the tangent space To, toMM at o. To may be intuitively understood as

the limiting space that is arrived at when smaller and smaller neighbour-

hoods of o in MM are examined at correspondingly greater and greater

magniWcation. The immediate vicinity of o, in MM, thus appears to be

inWnitely ‘stretched out’ under this examination. In the limit, any ‘curva-

ture’ of MMwould be ‘ironed out Xat’ to give the Xat structure of To.

The vector space To has the (Wnite) dimension n, because we can Wnd a

set of n basis elements, namely the quantities ]=]x1, . . . , ]=]xn, at the point

o, pointing along coordinate axes, in terms of which any element of To can

be uniquely linearly expressed (see also §13.5).

We can form the dual vector space to To (the space of covectors at o) in

the way described above, and this is called the cotangent space T�o toMM at

o. A particular case of a covector Weld is the gradient (or exterior deriva-

tive) dF of a scalar Weld F. (We have encountered this notation already, in

o

x

x
o

n-manifold

M

Tangent
n-plane To

Fig. 12.6 The tangent

space To, to an n-manifold

MM at a point o may be in-

tuitively understood as the

limiting space, when smaller

and smaller neighbourhoods

of o in MM are examined at

correspondingly greater and

greater magniWcations.

(Compare Fig. 10.6.) The

resulting To is Xat: an

n-dimensional vector space.
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the 2-dimensional case, see §10.3). The covector dF (with components

]F=]x1, . . . ]F=]xn) has the deWning property

dF � j ¼ j(F):

(See also §10.4.)[12.3] Although not all covectors have the form dF, for

some F, they can all be expressed in this way at any single point. We shall

see in a moment why this does not extend to covector Welds.

What is the geometrical diVerence between a covector and a vector? At

each point of MM, a (non-zero) covector a determines an (n� 1)-dimen-

sional plane element. The directions lying within this (n� 1)-plane element

are those determined by vectors j for which a � j ¼ 0; see Fig. 12.7. In the

particular case when a ¼ dF, these (n� 1)-plane elements are tangential

to the family of (n� 1)-dimensional surfaces[12.4] of constant F (which

generalizes the notion of ‘contour lines’, as illustrated in Fig. 10.8a).

However, in general the (n� 1)-plane elements deWned by a covector a
would twist around in a way that prevents them from consistently touch-

ing any such family of (n� 1)-surfaces (see Fig. 12.8).7

In any particular coordinate patch, with coordinates x1, . . . , xn, we can

represent the vector (Weld) j by its set of components (x1, x2, . . . , xn), these

being the set of coeYcients in the explicit representation of j in terms of

partial diVerentiation operators

j ¼ x1 ]

]x1
þ x2 ]

]x2
þ . . .þ xn ]

]xn
,

in the patch (see §10.4). For a vector at a particular point, x1, . . . , xn

will just be n real numbers; for a vector Weld within some coordinate

a.x = 0

x
a

ah
a.h ≠ 0

M
n-manifold

Covector    
defines an

(n−1)-dimensional
plane element

[12.3] Show that ‘dF’, deWned in this way, indeed satisWes the ‘linearity’ requirements of a

covector, as speciWed above.

[12.4] Why?

Fig. 12.7 A (non-zero) covector a at a

point of MM, determines an (n� 1)-

dimensional plane element there. The

vectors j satisfying a � j ¼ 0 deWne the

directions within it.
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patch, they will be n (smooth) functions of the coordinates x1, . . . , xn (and

the reader is reminded that ‘xn’ does not stand for ‘the nth power of x’,
etc.). Recall that each of the operators ‘]=]xr’ stands for ‘take the rate

of change in the direction of the rth coordinate axis’. The above expression

for j simply expresses this vector (which, as an operator, we recall asserts

‘take the rate of change in the j-direction’) as a linear combination of the

vectors pointing along each of the coordinate axes (see Fig. 12.9).

x3

x2

x1

x
∂

∂x3

∂
∂x1

∂
∂x2

x3

x2

x1

a

dx2

dx1

dx3

(a) (b)

Fig. 12.9 Components in a coordinate patch x1, . . . , xn
� �

(with n ¼ 3 here).

(a) For a vector (Weld) j, these are the coeYcients x1, x2, . . . , xn
� �

in

j ¼ x1]=]x1 þ x2]=]x2 þ . . .þ xn]=]xn, where ‘]=]xr’ stands for ‘rate of change

along the rth coordinate axis’ (see also Fig. 10.9). (b) For a covector (Weld) a, these

are the coeYcients a1, a2 , . . . , anð Þ in a ¼ a1dx1 þ a2dx2 þ � � � þ andxn, where dxr

stands for ‘the gradient of xr’, and refers to the (n� 1)-plane element spanned by

the coordinate axes except for the xr-axis.

Fig. 12.8 The (n� 1)-plane

elements deWned by a covector

Weld a would, in general, twist

around in a way that prevents

them from consistently touching a

single family of (n� 1)-surfaces—

although in the particular case

a ¼ dF (for a scalar Weld F),

they would touch the surfaces

F ¼ const. (generalizing the

‘contour lines’ of Fig. 10.8).
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In a similar way, a covector (Weld) a is represented, in the coordinate

patch, by a set of components a1, a2 , . . . , anð Þ in the patch, where now we

write

a ¼ a1dx1 þ a2dx2 þ � � � þ andxn,

expressing a as a linear combination of the basic 1-forms (covectors)8

dx1, dx2, . . . , dxn. Geometrically, each dxr refers to the (n� 1)-plane

element spanned by all the coordinate axes with the exception of the xr-

axis (see Fig. 12.10).[12.5] The scalar product a � j is given by the expres-

sion[12.6]

a � j ¼ a1x
1 þ a2x

2 þ � � � þ anx
n:

12.4 Grassmann products

Let us now consider the representation of plane elements of various other

dimensions, using the idea of a Grassmann product, as deWned in §11.6. A

2-plane element at a point of MM (or a Weld of 2-plane elements over MM)

will be represented by a quantity

j ^ h,

where j and h are two independent vectors (or vector Welds) spanning the

2-plane(s) (see Figs. 11.6a and 12.10a). A quantity j ^ h is sometimes

referred to as a (simple) bivector. Its components, in terms of those of j
and h, are the expressions

x[r�s] ¼ 1

2
xr�s � xs�rð Þ,

as described towards the end of the last chapter. A sum c of simple

bivectors j ^ h is also called a bivector; its components crs have the

characteristic property that they are antisymmetric in r and s, i.e.

crs ¼ �csr.

Similarly, a 3-plane element (or a Weld of such) would be represented by

a simple trivector

[12.5] For example, show that dx2 has components (0, 1, 0, . . . , 0) and represents the tangent

hyperplane elements to x2 ¼ constant.

[12.6] Show, by use of the chain rule (see §10.3), that this expression for a � j is consistent with

dF � j ¼ j(F), in the particular case a ¼ dF.
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M

(a)

(b)

(c)

(d)

Fig. 12.10 (a) A 2-plane element at a point ofMM, being spanned by independent

vectors j, h, is described by the bivector j ^ h. (b) Similarly, a 3-plane element

spanned by j, h, z is described by j ^ h ^ z. (c) Dually, an (n� 2)-plane element,

the intersection of two (n� 1)-plane elements speciWed by 1-forms a, b, is de-

scribed by a ^ b. (d) The (n� 3)-plane element of intersection of the three (n� 1)-

plane elements speciWed by a, b, g, is described by a ^ b ^ g.

j ^ h ^ z,

where the vectors j, h, z span the 3-plane (Figs. 11.6b and 12.10b), its

components being

x[r�szt] ¼ 1

6
xr�szt þ xs�tzr þ xt�rzs � xr�tzs � xt�szr � xs�rztð Þ:

The general trivector t has completely antisymmetric components trst,

and would always be a sum of such simple trivectors. We can go on in a

similar way to deWne 4-plane elements, represented by simple 4-vectors,

and so on. The general n-vector has sets of components that are completely

antisymmetric. It would always be expressible as a sum of simple n-vectors.

There is an issue arising here which may seem puzzling. It appears

that we now have two diVerent ways of representing an (n� 1)-plane elem-

ent, either as a 1-form (covector) or else as an (n� 1)-vector quantity,

obtained by ‘wedging’ together n� 1 independent vectors spanning the

(n� 1)-plane. There is in fact a geometrical distinction between the quan-

tities described in these two diVerent ways, but it is a somewhat

subtle one. The distinction is that the 1-form should be thought of as

a kind of ‘density’, whereas the (n� 1)-vector should not. In order to

make this clearer, it will be helpful Wrst to introduce the notion of a general

p-form.
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Essentially, we shall proceed just as for multivectors above, but starting

with 1-forms rather than vectors. Given a number p of (independent)

1-forms a, b, . . . , d, we can form their wedge product

a ^ b ^ � � � ^ d,

this having components given by

a[rbs . . . du]

in a coordinate patch (using the general square-bracket-around-

indices notation of §11.6). Such a quantity determines an (n� p)-plane

element (or a Weld of such), this element being the intersection of the various

(n� 1)-plane elements determined by a, b, . . . d individually (Fig.

12.10c,d). This quantity is called a simple p-form. As was the case with p-

vectors, the most general p-form is not expressible as a direct wedge product

of covectors, however (except in the particular cases p ¼ 0, 1, n� 1, n), but

is a sum of terms that are so expressible. In components, a general p-form w
is represented (in any coordinate patch) by a set of quantities

’rs...u

(where each of r, s, . . . , u ranges over 1, . . . , n) which is antisymmetrical in

its indices r, s, . . . , u, these being p in number. As before, antisymmetry

means that if we interchange any pair of index labels, we get a quantity

that is precisely the negative of what we had before. In terms of our square-

bracket notation (§11.6), we can express this antisymmetry property in the

equation[12.7]

’[rs...u] ¼ ’rs...u:

It may also be remarked here that the (pþ q)-form w ^ x, which is the

wedge product of the p-form w with a q-form x, has components

’[rs...uwjk...m],

the antisymmetrization being taken right across all the indices (where

wjk...m are the components of x).[12.8] A similar notation applies for the

wedge product of a p-vector with a q-vector.

12.5 Integrals of forms

Now let us return to the ‘density’ aspect of a p-form. Recall that, in

ordinary physics, the density of an object is its mass per unit volume.

[12.7] Explain why this works.

[12.8] Justify the fact that ’^w ¼/^ � � � ^ g^l^ . . .n where ’ ¼ a^ � � � ^ g, w ¼ l^ � � � n.
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This density is a property of the material of which the body is composed.

We use this ‘density’ notion when we wish to evaluate the total mass of the

object when we know its total volume and the nature of its material.

Mathematically, what we would do would be to integrate its density

over the volume that it occupies. Basically, the point about a density is

that it is the appropriate kind of quantity that we can integrate over some

region; it is the kind of quantity that we place after an integral sign. We

should be a little careful here to distinguish integrals over spaces diVerent

dimension, however. (‘Mass per unit area’ is a diVerent kind of quantity

from ‘mass per unit volume’, for example.) We shall Wnd that a p-form is

the appropriate quantity to integrate over a p-dimensional space.

Let us start with a 1-form. This is the simplest case. We are concerned

with the integral of a quantity over a 1-dimensional manifold, that is,

along some curve g. Recall from §6.6 that ordinary (1-dimensional) inte-

grals are things that are written
Z

f (x) dx,

where x is some real-valued quantity that we can take to be a parameter

along the curve g. We are to think of the quantity ‘f (x) dx’ as denoting a

1-form. The notation for 1-forms has, indeed, been carefully tailored to

be consistent with the notation for ordinary integrals. This is a feature of

the 20th-century calculus known as the exterior calculus, introduced by

the outstanding French mathematician Élie Cartan (1869–1951), whom

we shall encounter again in Chapters 13, 14, and 17, and it dovetails

beautifully with the ‘dx’ notation introduced in the 17th century by

Gottfried Wilhelm Leibniz (1646–1716). In Cartan’s scheme we do not

think of ‘dx’ as denoting an ‘inWnitesimal quantity’, however, but as

providing us with the appropriate kind of density (1-form) that one may

integrate over a curve.

One of the beauties of this notation is that it automatically deals with

any changes of variable that we may choose to invoke. If we change the

parameter x to another one X, say, then the 1-form a ¼ f (x)dx is deemed

to remain the same—in the sense that
R

a remains the same—even though

its explicit functional expression in terms of the given variable (x or X) will

change.[12.9] We can also regard the 1-form a as being deWned throughout

some larger-dimensional ambient space within which our curve resides.

The parameter x or X could be taken to be one of the coordinates in a

coordinate patch in this ambient space, where we are happy to change to a

diVerent coordinate when we pass to another coordinate patch. Every-

thing takes care of itself. We can simply write this integral as

[12.9] Show this explicitly, explaining how to treat the limits, for a deWnite integral
R b

a
a.
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Z

a or

Z

RR
a,

where RR stands for some portion of the given curve g, over which the

integral is to be taken.

What about integrals over regions of higher dimension? For a 2-dimen-

sional region, we need a 2-form after the integral sign.9 This could be some

quantity f (x, y)dx ^ dy (or a sum of things like this) and we can write
Z

RR
f (x, y) dx ^ dy ¼

Z

RR
a

(or a sum of such quantities), where RR is now a 2-dimensional region over

which the integral is to be performed, lying within some given 2-surface.

Again, the parameters x and y, locally coordinatizing the surface, can be

replaced by any other such pair, and the notation takes care of itself. This

applies perfectly well if the 2-form inhabits some ambient higher-dimen-

sional space within which the 2-region RR resides. All this works also for

3-forms integrated over 3-dimensional regions or 4-forms integrated over

4-dimensional regions, etc. The wedge product in Cartan’s diVerential-

form notation (together with the exterior derivative of §12.6) takes care of

everything if we choose to change our coordinates. (This eliminates the

explicit mention of awkward quantities known as ‘Jacobians’, which

would otherwise have to be brought in.)[12.10]

Recall, from §6.6, the fundamental theorem of calculus, which asserts, for

1-dimensional integrals, that integration is the inverse of diVerentiation,

or, put another way, that
Z b

a

df (x)

dx
dx ¼ f (b)� f (a):

Is there a higher-dimensional analogue of this? There are, indeed, ana-

logues for diVerent dimensions that go under various names (Ostro-

gradski, Gauss, Green, Kelvin, Stokes, etc.), but the general result,

essentially part of Cartan’s exterior calculus of diVerential forms, will be

called here ‘the fundamental theorem of exterior calculus’.10 This depends

upon Cartan’s general notion of exterior derivative, to which we now turn.

12.6 Exterior derivative

A ‘coordinate-free’ route to deWning this important notion is to build

up the exterior derivative axiomatically as the unique operator ‘d’, taking

[12.10] Let G ¼
R1
�1 e�x2

dx. Explain why G2 ¼
R

R
2 e�(x2þy2)dx^dy and evaluate this by chang-

ing to polar coordinates (r,y). (§5.1). Hence prove G ¼
ffiffiffi

p
p

:
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p-forms to (pþ 1)-forms, for each p ¼ 0, 1, . . . n� 1, which has the

properties

d(aþ b) ¼ daþ db,

d(a ^ g) ¼ da ^ g þ (� 1)pa ^ dg,

d(da) ¼ 0,

a being a p-form, and where dF has the same meaning (‘gradient of F’) for

a 0-form (i.e. for a scalar) that it did in our earlier discussion (deWned from

dF � j ¼ j(F), the ‘d’ in dx also being this same operation). The Wnal

equation in the above list is frequently expressed simply as

d2 ¼ 0,

which is a key property of the exterior derivative operator d. (We can

perceive that the ‘reason’ for the awkward-looking term (�1)p in the second

displayed equation is that the ‘d’ following it is really ‘sitting in the wrong

place’, having to be ‘pushed through’ a, with its p antisymmetrical indices.

This is made more manifest in the index expressions below.)[12.11]

A 1-form a which is a gradient a ¼ dF must satisfy da ¼ 0, by the

above.[12.12] But not all 1-forms satisfy this relation. In fact, if a 1-form a
satisWes da ¼ 0, then it follows that locally (i.e. in a suYciently small open

set containing any given point) it has the form a ¼ dF for some F. This is

an instance of the important Poincaré lemma,11,[12.13] which asserts that if a

p-form b satisWes db ¼ 0, then locally b has the form b ¼ dg, for some

(p� 1)-form g.

Exterior derivative is clariWed, and made explicit, by the use of compon-

ents. Consider a p-form a. In a coordinate patch, with coordinates

x1, . . . , xn, we have an antisymmetrical set of components ar...t (¼ a[r...t],

where r, . . . , t are p in number; see §11.6) to represent a. We can write this

representation

a ¼
X

ar...t dxr ^ � � � ^ dxt,

where the summation (indicated by the symbol
P

) is taken over all sets of p

numbers r, . . . , t, each running over the range 1, . . . , n. (Some people prefer

to avoid a redundancy in this expression which arises because the antisym-

metry in the wedge product leads to each non-zero term being repeated p!

times. However, the notation works much better if we simply live with this

redundancy—which is mymuch preferred choice.) The exterior derivative of

the p-form a is a (pþ 1)-form that is written da, which has components

[12.11] Using the above relations, show that d(Adxþ Bdy) ¼ (]B=]x� ]A=]y)dx^dy.

[12.12] Why?

[12.13] Assuming the result of Exercise [12.10], prove the Poincaré lemma for p ¼ 1.
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∫a
b

f�(x)dx = f(b) - f(a)

g

a

x
b

∂R

R

dj

(a) (b)

∫R     = ∫∂Rj

(da)qr...t ¼
]

]x[q
ar...t],

(The notation looks a bit awkward here. The antisymmetrization—which

is the key feature of the expression—extends across all pþ 1 indices,

including the one on the derivative symbol.)[12.14],[12.15]

We are now in a position to write down the fundamental theorem of

exterior calculus. This is expressed in the following very elegant (and

powerful) formula for a p-form w (see Fig. 12.11):
Z

RR
dw ¼

Z

]RR
w:

Here RR is some compact (pþ 1)-dimensional (oriented) region whose

(oriented) p-dimensional boundary (consequently also compact) is de-

noted by ]RR.

There are various words that I have employed here that I have not

yet explained. For our purposes ‘compact’ means, intuitively, that the

region RR does not ‘go oV to inWnity’ and it does not have ‘holes cut out

of it’ nor ‘bits of its boundary removed’. More precisely, a compact region

RR is, for our purposes here,12 a region with the property that any inWnite

[12.14] Show directly that all the ‘axioms’ for exterior derivative are satisWed by this coordinate

deWnition.

[12.15] Show that this coordinate deWnition gives the same quantity da, whatever choice of

coordinates is made, where the transformation of the components ar...t of a form is deWned by the

requirement that the form a itself be unaltered by coordinate change. Hint: Show that this

transformation is identical with the passive transformation of [ 0
p
]-valent tensor components, as

given in §13.8.

Fig. 12.11 The fundamental

theorem of exterior calculus
Ð

R dw ¼
Ð

]R w. (a) The classical

(17th century) case
Ð b

a
f 0(x)dx ¼

f (b)� f (a), where w ¼ f (x) and RR
is the segment of a curve g from a to

b, parametrized by x, so ]g
consists of g’s end-points x ¼ a

(counting negatively) and x ¼ b

(positively). (b) The general case,

for a p-form w, where RR is a

compact oriented (pþ 1)-

dimensional region with

p-dimensional boundary ]RR.
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R

p1

p2

p3

p4 R
p1 p2

p3

p4

(a) (b)

N

y

sequence of points lying in RR must accumulate at some point within RR
(Fig. 12.12a). Here, an accumulation point y has the property that

every open set in RR (see §7.4) which contains y must also contain

members of the inWnite sequence (so the points of the sequence get

closer and closer to y, without limit). The inWnite Euclidean plane is

not compact, but the surface of a sphere is, and so is the torus. So also is

the set of points lying within or on the unit circle in the complex

plane (closed unit disc); but if we remove the circle itself from the set, or

even just the centre of the circle, then the resulting set is not compact. See

Fig. 12.13.

The term ‘oriented’ refers to the assignment of a consistent ‘handed-

ness’ at every point of RR (Fig. 12.14). For a 0-manifold, or set of

discrete points, the orientation simply assigns a ‘positive’ (þ) or ‘negative

value’ (�) to each point (Fig. 12.14a). For a 1-manifold, or curve, this

orientation provides a ‘direction’ along the curve. This can be represented in

a diagram by the placement of an ‘arrow’ on the curve to indicate

this direction (Fig. 12.14b). For a 2-manifold, the orientation can be

diagrammatically represented by a tiny circle or circular arc with an arrow

on it (Fig. 12.14c); this indicates which rotation of a tangent vector at a

point of the surface is considered to be in the ‘positive’ direction. For a

3-manifold the orientation speciWes which triad of independent vectors at a

point is to be regarded as ‘right-handed’ and which as ‘left-handed’

(recall §11.3 and Fig. 11.1). See Fig. 12.14d. Only for rather unusual spaces

is it not possible to assign an orientation consistently. A (‘non-orientable’)

example for which this cannot be done is the Mobius strip, as illustrated in

Fig. 12.15.

The boundary ]RRof a (compact oriented) (pþ 1)-dimensional region RR
consists of those points of RR that do not lie in its interior. If RR is suitably

Fig. 12.12 Compactness.

(a) A compact space RR has

the property that any

inWnite sequence of points

p1, p2, p3 , . . . in RRmust

eventually accumulate at

some point y in RR—so

every open set NN in RR
containing y must also

contain (inWnitely many)

members of the sequence.

(b) In a non-compact space

this property fails.
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Fig. 12.13 (a) Some non-compact spaces: the inWnite Euclidean plane, the open

unit disc, and the closed disc with the centre removed. (b) Some compact spaces:

the sphere, the torus, and the closed unit disc. (Solid boundary lines are part of the

set; broken boundary lines are not.)

33
3

3

3
2

222

2

1
11

1
1

(a) (b) (c) (d)

Fig. 12.14 Orientation. (a) A (multi-component) 0-manifold is a set of discrete

points; the orientation simply assigns a ‘positive’ (þ ) or ‘negative’ (� ) value

to each. (b) For a 1-manifold, or curve, the orientation provides a ‘direction’

along the curve; represented in a diagram by the placement of an arrow on it.

(c) For a 2-manifold, the orientation can be indicated by a tiny circular arc with

an arrow on it, indicating the ‘positive’ direction of rotation of a tangent vector.

(d) For a 3-manifold the orientation speciWes which triads of independent vectors

at a point are to be regarded as ‘right-handed’ (cf. Fig. 11.1).
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non-pathelogical, then ]RR is a (compact oriented) p-dimensional region,

though possibly empty. Its boundary ]]RR is empty. Thus ]2 ¼ 0, which

complements our earlier relation d2 ¼ 0.

The boundary of the closed unit disc in the complex plane is the unit circle;

the boundary of the unit sphere is empty, the boundary of a Wnite cylinder

(cylindrical 2-surface) consists of the two circles at either end, but the

orientation of each is opposite, the boundary of a Wnite line segment consists

of its two end-points, one counting positively and the other negatively. See

Fig. 12.16.13Theoriginal 1-dimensional versionof the fundamental theorem

(a) (b)

(c) (d)

∂ ∂= =,

∂ ∂ == ,

∅

Fig. 12.16 The boundary ]RR of a well-behaved compact oriented (pþ 1)-dimen-

sional region RR is a (compact oriented) p-dimensional region (possibly empty),

consisting of those points of RR that do not lie in the (pþ 1)-dimensional interior.

(a) The boundary of the closed unit disc (given by jzj # 1 in the complex plane C)

is the unit circle. (b) The boundary of the unit sphere is empty ([ denoting the

empty set, see §3.4). (c) The boundary of a Wnite length of cylindrical surface

consists of the two circles at either end, the orientation of each being opposite.

(d) The boundary of a Wnite curve segment consists of two end-points, one positive

and the other negative.

Fig. 12.15 The Möbius strip: an example of

a non-orientable space.
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of calculus, as exhibited above, comes out as a special case of the funda-

mental theorem of exterior calculus, when RR is taken to be such a line

segment.

12.7 Volume element; summation convention

Let us now return to the distinction between—and the relation between—a

p-form and an (n� p)-vector in an n-manifold MM. To understand this

relationship, it is best to go Wrst to the extreme case where p ¼ n, so we are

examining the relation between an n-form and a scalar Weld on MM . In

the case of an n-form e, the associated n-surface element at a point o of

MM is just the entire tangent n-plane at o. The measure that e provides

is simply an n-density, with no directional properties at all. Such an n-

density (assumednowhere zero) is sometimes referred to as a volume element

for the n-manifold MM. A volume element can be used to convert (n� p)-

vectors to p-forms, and vice versa. (Sometimes there is a volume

element assigned to a manifold, as part of its assigned ‘structure’; in that

case, the essential distinction between a p-form and an (n� p)-vector disap-

pears.)

How can we use a volume element to convert an (n� p)-vector to a

p-form? In terms of components, the n-form e would be represented, in

each coordinate patch, by a quantity with n antisymmetric lower indices:

er...w:

(Some people might prefer to incorporate a factor (n!)�1 into this; for ‘!’

see §5.3.) However, I shall not concern myself with the various awkward

factorials that arise here, as they distract from the main ideas.) We can use

the quantity er...w to convert the family of components cu...w of an (n� p)-

vector c into the family of components ar...t of a p-form a. We do this by

taking advantage of the operations of tensor algebra, which we shall come

to more fully in the next section. This algebra enables us to ‘glue’ the n� p

upper indices of cu...w to n� p of the n lower indices of er...w, leaving us

with the p unattached lower indices that we need for ar...t. The ‘gluing’

operation that comes in here is what is referred to as tensor ‘contraction’

(or ‘transvection’), and it enables each upper index to be paired oV with a

corresponding lower index, the two being ‘summed over’, so that both sets

of indices are removed from the Wnal expression.

The archetypical example of this is the scalar product, which combines

the components br of a covector b with the components xr of a vector j by

multiplying corresponding elements of the two sets of components to-

gether and then ‘summing over’ repeated indices to get

b � j ¼
X

brx
r,

Manifolds of n dimensions §12.7

237



where the summation refers to the repeated index r (one up, one down).

This summation procedure applies also with many-indexed quantities,

and physicists Wnd it exceedingly convenient to adopt a convention

introduced by Einstein, referred to as the summation convention. What

this convention amounts to is the omission of the actual summation

signs, and it is assumed that a summation is taking place between a lower

and an upper index whenever the same index letter appears in both pos-

itions in a term, the summation always being over the index values

1, . . . , n. Accordingly, the scalar product would now be written simply as

b � j ¼ brx
r:

Using this convention, we can write the procedure outlined above for

expressing a p-form in terms of a corresponding (n� p)-vector and a

volume form as

ar...t / er...tu...wc
u...w

with contraction over the n� p indices u, . . . , w. Here, I am introducing

the symbol ‘/’, which stands for ‘is proportional to’, meaning that

each side is a non-zero multiple of the other. This is so that our expressions

do not get confusingly cluttered with complicated-looking factorials. We

sometimes say that the (n� p)-vector c and the p-form a are dual14 to one

another if this relation (up to proportionality) holds, in which case there

will also be a corresponding inverse formula

cu...w / ar...t 2r...tu...w

for some suitable reciprocal volume form (n-vector) e, often ‘normalized’

against « according to

« � e ¼ er...w 2r...w¼ n!

(although matters of normalization are not our main concern here).

These formulae are part of classical tensor algebra (see §12.8). This

provides a powerful manipulative procedure (also extended to tensor

calculus, of which we shall see more in Chapter 14), which gains much

from the use of an index notation combined with Einstein’s summation

convention. The square-bracket notation for antisymmetrization (see

§11.6) also plays a valuable role in this algebra, as does an additional

round-bracket notation for symmetrization,

c(ab) ¼ 1

2
cab þ cba
� �

,

c(abc) ¼ 1

6
cabc þ cacb þ cbca þ cbac þ ccab þ ccba
� �

,

etc.,
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in which all the minus signs deWning the square bracket are replaced with

plus signs.

As a further example of the value of the bracket notation, let us see how

to write down the condition that a p-form a or a q-vector c be simple, that

is, the wedge product of p individual 1-forms or of q ordinary vectors. In

terms of components, this condition turns out to be

a[r...tau]v...w ¼ 0 or c[r...tcu]v...w ¼ 0,

where all indices of the Wrst factor are ‘skewed’ with just one index of the

second.15 If a and c happened to be dual to one another, then we could

write either condition alternatively as

cr...tuauv...w ¼ 0,

where a single index of c is contracted with a single index of a. The

symmetry of this expression shows that the dual of a simple p-form is a

simple (n� p)-vector and conversely.[12.16]

12.8 Tensors: abstract-index and diagrammatic notation

There is an issue that arises here which is sometimes seen as a conXict

between the notations of the mathematician and the physicist. The two

notations are exempliWed by the two sides of the above equation,

b � j ¼ brx
r. The mathematician’s notation is manifestly independent of

coordinates, and we see that the expression b � j (for which a notation

such as (b, j) or hb, ji might be more common in the mathematical

literature) makes no reference to any coordinate system, the scalar product

operation being deWned in entirely geometric/algebraic terms. The physi-

cist’s expression brx
r, on the other hand, refers explicitly to components in

some coordinate system. These components would change when we move

from coordinate patch to coordinate patch; moreover, the notation

depends upon the ‘objectionable’ summation convention (which is in

conXict with much standard mathematical usage). Yet, there is a great

Xexibility in the physicist’s notation, particularly in the facility with

which it can be used to construct new operations that do not come

readily within the scope of the mathematician’s speciWed operations.

Somewhat complicated calculations (such as those that relate the last

couple of displayed formulae above) are often almost unmanageable if

one insists upon sticking to index-free expressions. Pure mathemat-

icians often Wnd themselves resorting to ‘coordinate-patch’ calculations

[12.16] ConWrm the equivalence of all these conditions for simplicity; prove the suYciency of

a[rsau]v ¼ 0 in the case p ¼ 2. (Hint: contract this expression with two vectors.)
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(with some embarrassment!)—when some essential calculational ingredi-

ent is needed in an argument—and they rarely use the summation conven-

tion.

To me, this conXict is a largely artiWcial one, and it can be eVectively

circumvented by a shift in attitude. When a physicist employs a quantity

‘xa’, she or he would normally have in mind the actual vector quantity

that I have been denoting by j, rather than its set of components in

some arbitrarily chosen coordinate system. The same would apply to a

quantity ‘aa’, which would be thought of as an actual 1-form. In fact,

this notion can be made completely rigorous within the framework of

what has been referred to as the abstract-index notation.16 In this

scheme, the indices do not stand for one of 1, 2 , . . . , n, referring to

some coordinate system; instead they are just abstract markers in

terms of which the algebra is formulated. This allows us to retain the

practical advantages of the index notation without the conceptual draw-

back of having to refer, whether explicitly or not, to a coordinate

system. Moreover, the abstract-index notation turns out to have numer-

ous additional practical advantages, particularly in relation to spinor-

based formalisms.17

Yet, the abstract-index notation still suVers from the visual problem

that it can be hard to make out all-important details in a formula because

the indices tend to be small and their precise arrangements awkward to

ascertain. These diYculties can be eased by the introduction of yet another

notation for tensor algebra that I shall next brieXy describe. This is the

diagrammatic notation.

First, we should know what a tensor actually is. In the index notation, a

tensor is denoted by a quantity such as

Qf ...h
a...c ,

which can have p lower and q upper indices for any p, q > 0, and need

have no special symmetries. We call this a tensor of valence18 [ p
q
] (or a [ p

q
]-

valent tensor or just a ½p
q
�-tensor). Algebraically, this would represent a

quantity Q which can be thought of as a function (of a particular kind

known as multilinear19) of p vectors A, . . . , C and q covectors F, . . . , H ,

where

Q(A, . . . , C ; F, . . . , H) ¼ Aa . . . CcQf ...h
a...cFf . . . Hh:

In the diagrammatic notation, the tensor Q would be represented as a

distinctive symbol (say a rectangle or a triangle or an oval, according to

convenience) to which are attached q lines extending downwards (the

‘legs’) and p lines extending upwards (the ‘arms’). In any term of a tensor
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expression, the various elements that are multiplied together are drawn in

some kind of juxtaposition, but not necessarily linearly ordered across the

page. For any two indices that are contracted together, the lines must be

connected, upper to lower. Some examples are illustrated in Figs. 12.17

and 12.18, including examples of various of the formulae that we have just

a b c

f g

Q abc
fg

Q
abc

fg
-2Q

bca

gf

bcd
la

cdD ab
ab[c   fg]

xal(d  De)b

xa

xax[ahb] x[ahbzc] ha za

db
a

Fig. 12.17 Diagrammatic tensor notation. The [ 3
2
]-valent tensor Q is represented

by an oval with 3 arms and 2 legs, where the general [ p
q
]-valent tensor picture

would have p arms and q legs. In an expression such as Qabc
fg � 2Qbca

gf , the diagram-

matic notation uses positioning on the page of the ends of the arms and legs to

keep track of which index is which, instead of employing individual index letters.

Contractions of tensor indices are represented by the joining of an arm and a leg,

as illustrated in the diagram for xal(d
ab[cD

e)b
fg] . This diagram also illustrates the use of

a thick bar across index lines to denote antisymmetrization and a wiggly bar to

represent symmetrization. The factor 1
12

in the diagram results from the fact that

(to facilitate calculations) the normal factorial denominator for symmetrizers and

antisymmetrizers is omitted in the diagrammatic notation (so here we need
1
2!� 1

3! ¼ 1
12

). In the lower half of the diagram, antisymmetrizers and symmetrizers

are written out as ‘disembodied’ expressions (by use of the diagrammatic repre-

sentation of the Kronecker delta da
b that will be introduced in §13.3,

Fig. 13.6c). This is then used to express the (multivector) wedge products j ^ h
and j ^ h ^ z.
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ba na b.x = baxa =,

, ,

,

,

,

; ,

;

Q =

Symmetric part of is 1
4! is 1

3!

1
7!

Antisymmetric part of

ers...w ∈rs...w

n

n

normalization = n!

= (n−p)!

n n

=

n−p p p

p

p

p

3-form a 4-form j

a∧j

Proportionality signs

then ��

Duals:
n−p

If

Antisymmetric

Equivalent conditions for simplicity:

= O, = O, = O

Exterior product:
Antisymmetrical

Fig. 12.18 More diagrammatic tensor notation. The diagram for a covector b
(1-form) has a single leg, which when joined to the single arm of a vector j gives

their scalar product. More generally, the multilinear form deWned by a [ p
q
]-valent

tensorQ is representedby joining theparms to the legsofpvariable covectorsand the

q legs to the arms of q variable vectors (here q ¼ 3 and p ¼ 2). Symmetric and

antisymmetric parts of general tensors can be expressed using the wiggly lines and

thick bars of the operations of Fig. 12.17. Also, the bar notation combines with a

related diagrammatic notation for the volume n-form ers...w (for an n-dimensional

space) and its dual n-vector �rs...w, normalized according to ers...w�rs...w ¼ n! Relations

equivalent to n!da
[rd

b
s . . . d f

w] ¼ �ab...f ers...w (n antisymmetrized indices) and

ea...cu...w �
a...ce...f ¼ p!(n � p)!de

[u . . . d f
w] (see § 13.3 and Fig. 13.6c) are also expressed.

Exterior products of forms, the ‘duality’ between p-forms and (n � p)-vectors,

and the conditions for ‘simplicity’ are then succinctly represented diagrammatically.

(For exterior derivative diagrams, see Fig. 14.18.)

encountered. As part of this notation, a bar is drawn across index lines to

denote antisymmetrization, mirroring the square-bracket notation of the

index notation (although it proves to be convenient to adopt a diVerent

convention with regard to factorial multipliers). A ‘wiggly’ bar corres-
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pondingly mirrors symmetrization. Although the diagrammatic notation

is hard to print, in the ordinary way, it can be enormously convenient in

many handwritten calculations. I have been using it myself for over 50

years!20

12.9 Complex manifolds

Finally, let us return to the issue of complex manifolds, as addressed in

Chapter 10. When we think of a Riemann surface as being 1-dimensional,

we are thinking solely in terms of holomorphic operations being per-

formed on complex numbers. We can adopt precisely the same stance

with higher-dimensional manifolds, considering our coordinates

x1, . . . , xn now to be complex numbers z1, . . . , zn and our functions of

them to be holomorphic functions. We again take our manifold to be

‘glued together’ from a number of coordinate patches, where each patch is

now an open region of the coordinate space C
n—the space whose points

are the n-tuples z1, z2, . . . , zn
� �

of complex numbers (and recall from §10.2

that ‘C’, by itself, stands for the system of complex numbers). The transi-

tion functions that express the coordinate transformations, when we move

from coordinate patch to coordinate patch, are now to be given entirely by

holomorphic functions. We can deWne holomorphic vector Welds, covectors,

p-forms, tensors, etc., in just the same way as we did above, in the case of a

real n-manifold.

But then there is the alternative philosophical standpoint according to

which we could express all our complex coordinates in terms of their real

and imaginary parts zj ¼ xj þ i yj (or, equivalently, include the notion of

complex conjugation into our category of acceptable function, so that

operations need no longer be exclusively holomorphic; see §10.1). Then,

our ‘complex n-manifold’ is no longer viewed as being an n-dimensional

space, but is thought of as being a real 2n-manifold, instead. Of course, it is

a 2n-manifold with a very particular kind of local structure, referred to as

a complex structure.

There are various ways of formulating this notion. Essentially, what

is required is a higher-dimensional version of the Cauchy–Riemann equa-

tions (§10.5), but things are usually phrased somewhat diVerently from

this. Let us think of the relation between complex vector Welds and real

vector Welds on the manifold. We can think of a complex vector Weld z as

being represented in the form

z ¼ j þ ih,

where j and h are ordinary real vector Welds on the 2n-manifold. What

the ‘complex structure’ does for us is to tell us how these real vector

Manifolds of n dimensions §12.9
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Welds have to be related to each other and what diVerential equations they

must satisfy in order that z can qualify as ‘holomorphic’. Now, consider

the new complex vector Weld that arises when the complex Weld z is

multiplied by i. We see that, for consistency, we must have iz ¼ �hþ ij,

so that the real vector Weld j is now replaced by �h and likewise h must be

replaced by j. The operation J which eVects these replacements (i.e.

J(j) ¼ �h and J(h) ¼ j) is what is usually referred to as the ‘complex

structure’.

We note that if J is applied twice, it simply reverses the sign of what it

acts on (since i2 ¼ �1), so we can write

J2 ¼ �1:

This condition alone deWnes what is referred to as an almost complex

structure. To specialize this to an actual complex structure, so that a

consistent notion of ‘holomorphic’ can arise for the manifold, a certain

diVerential equation21 in the quantity J must be satisWed. There is a

remarkable theorem, the Newlander–Nirenberg theorem,22 which tells us

that this is suYcient (in addition to being necessary) for a 2n-dimensional

real manifold, with this J-structure, to be reinterpreted as a complex

n-manifold. This theorem allows us to move freely between the two

philosophical standpoints with regard to complex manifolds.

Notes

Section 12.1

12.1. This ‘shrinkability’ is taken in the sense of homotopy (see §7.2, Fig. 7.2), so that

‘cancellation’ of oppositely oriented loop segments is not permitted; thus mul-

tiple-connectedness is part of homotopy theory. See Huggett and Jordan (2001);

Sutherland (1975).

12.2. Strictly speaking this argument is incomplete, since I have presented no convin-

cing reason that the 2p-twist of the belt cannot be continuously undone if the

ends are held Wxed.[12.17] See Penrose and Rindler (1984), pp. 41–4.

12.3. Here, we treat the molecules as point particles. The dimension of PP would be

considerably larger for molecules with internal or rotational degrees of freedom.

Section 12.2

12.4. The usual notion of ‘manifold’ presupposes that our space MM is, in the Wrst

instance, a topological space. To assign a topology to a space MM is to specify

precisely which of its sets of points are to be called ‘open’ (cf. §7.4). The open sets

Notes CHAPTER 12

[12.17] By representing a rotation in ordinary 3-space as a vector pointing along the rotation

axis of length equal to the angle of rotation, show that the topology of RR can be described as

a solid ball (of radius p) bounded by an ordinary sphere, where each point of the sphere is

identiWed with its antipodal point. Give a direct argument to show why a closed loop representing

a 2p-rotation cannot be continuously deformed to a point.
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are to have the property that the intersection of any two of them is an open set

and the union of any number of them (Wnite or inWnite) is again an open set. In

addition to the HausdorV condition referred to in the text, it is usual to require

that MM’s topology is restricted in certain other ways, most particularly that it

satisWes a requirement called ‘paracompactness’. For the meaning of this and

other related terms, the interested reader is referred to Kelley (1965); Engelking

(1968) or other standard text on general topology. But for our purposes here, it

is suYcient to assume merely that MM is constructed from a locally Wnite

patchwork of open regions of R
n, where ‘locally Wnite’ means that each patch

is intersected by only Wnitely many other patches.

One Wnal requirement that is sometimes made in the deWnition of a manifold

is that it be connected, which means that it consists only of ‘one piece’ (which

here can be taken to mean that it is not a disjoint union of two non-empty open

sets). I shall not insist on this here; if connectness is required, then it will be

stated explicitly (but disconnectedness will in any case be allowed only for a

Wnite number of separate pieces).

12.5. See, for example, Kobayashi and Nomizu (1963); Hicks (1965); Lang (1972);

Hawking and Ellis (1973). One interesting procedure for deWning a manifoldMM
is to reconstruct MM itself simply from the commutative algebra of scalar

Welds deWned on MM; see Chevalley 1946; Nomizu 1956; Penrose and Rindler

(1984). This kind of idea generalizes to non-commutative algebras and leads

to the ‘non-commutative geometry’ notion of Alain Connes (1994) which

provides one of the modern approaches to a ‘quantum spacetime geometry’

(see §33.1).

Section 12.3

12.6. See Helgason (2001); Frankel (2001).

12.7. The general condition for the family of (n� 1)-plane elements deWned by a

1-form a to touch a 1-parameter family of (n� 1)-surfaces (so a ¼ ldF for

some scalar Welds l, F) is the Frobenius condition a ^ da ¼ 0; see Flanders

(1963).

12.8. Confusion easily arises between the ‘classical’ idea that a thing like ‘dxr’ should

stand for an inWnitesimal displacement (vector), whereas we here seem to be

viewing it as a covector. In fact the notation is consistent, but it needs a clear

head to see this! The quantity dxr seems to have a vectorial character because of

its upper index r, and this would indeed be the case if r is treated as an abstract

index, in accordance with §12.8. On the other hand, if r is taken as a numerical

index, say r ¼ 2, then we do get a covector, namely dx2, the gradient of the

scalar quantity y ¼ x2 (‘x-two’, not ‘x squared’). But this depends upon the

interpretation of ‘d’ as standing for the gradient rather than as denoting an

inWnitesimal, as it would have done in the classical tradition. In fact, if we treat

both the r as abstract and the d as gradient, then ‘dxr’ simply stands for the

(abstract) Kronecker delta!

Section 12.5

12.9. This represents a shift in attitude from the ‘inWnitesimal’ viewpoint with regard

to quantities like ‘dx’. Here, the anticommutation properties of ‘dx^dy’ tell us

that we are operating with densities with respect to oriented area measures.

12.10. A name suggested to me by N. M. J. Woodhouse. Sometimes this theorem is

simply called Stokes’s theorem. However, this seems particularly inappropriate
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since the only contribution made by Stokes was set in a (Cambridge) examin-

ation question he apparently got from William Thompson (Lord Kelvin).

Section 12.6

12.11. See Flanders (1963). (In this book, what I have called the ‘Poincaré lemma’ is

referred to as the converse thereof.)

12.12. There is a more widely applicable deWnition of compactness of a topological

space, which, however, is not so intuitive as that given in the text. A space RR is

compact if for every way that it can be expressed as a union of open sets, there is

a Wnite collection of these sets whose union is still RR.

12.13. For more information on these matters, see Willmore (1959).

Section 12.7

12.14. This notion of ‘dual’ is rather diVerent from that which has a covector be ‘dual’

to a vector, as decribed in §12.3. It is, however, closely connected with yet

another concept of ‘duality’—the Hodge dual. This plays a role in electromag-

netism (see §19.2), and versions of it have importance in various approaches to

quantum gravity (see §31.14, §32.2, §§33.11,12) and particle physics (see §25.8).

Unfortunately, this is only one place among many, where the limitations of

mathematical terminology can cause confusion.

12.15. See Penrose and Rindler (1984), pp. 165, 166.

Section 12.8

12.16. See Penrose (1968), pp. 135–41; Penrose and Rindler (1984), pp. 68–103;

Penrose (1971).

12.17. See Penrose (1968); Penrose and Rindler (1984, 1986); Penrose (1971) and

O’Donnell (2003).

12.18. Sometimes the term rank is used for the value of pþ q, but this is confusing

because of a separate meaning for ‘rank’ in connection with matrices; see Note

13.10, §13.8.

12.19. This means separately linear in each of A, . . . , C ; F, . . . , H ; see also §§13.7–10.

12.20. See Penrose and Rindler (1984), Appendix; Penrose (1971); Cvitanovič and

Kennedy (1982).

Section 12.9

12.21. This is the vanishing of an expression called ‘the Nijenhuis tensor constructed

from J ’, which we can express as Jd
[a]J

c
b]=]x

d þ Jc
d]Jd

[a=]x
b] ¼ 0.

12.22. Newlander and Nirenberg (1957).
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13
Symmetry groups

13.1 Groups of transformations

Spaces that are symmetrical have a fundamental importance in modern

physics. Why is this? It might be thought that completely exact symmetry

is something that could arise only exceptionally, or perhaps just as some

convenient approximation. Although a symmetrical object, such as a

square or a sphere, has a precise existence as an idealized (‘Platonic’; see

§1.3) mathematical structure, any physical realization of such a thing

would ordinarily be regarded as merely some kind of approximate repre-

sentation of this Platonic ideal, therefore possessing no actual symmetry

that can be regarded as exact. Yet, remarkably, according to the highly suc-

cessful physical theories of the 20th century, all physical interactions

(including gravity) act in accordance with an idea which, strictly speaking,

depends crucially upon certain physical structures possessing a symmetry

that, at a fundamental level of description, is indeed necessarily exact!

What is this idea? It is a concept that has come to be known as a ‘gauge

connection’. That name, as it stands, conveys little. But the idea is an

important one, enabling us to Wnd a subtle (‘twisted’) notion of diVerentia-

tion that applies to general entities on a manifold (entities that are indeed

more general than just those—the p-forms—which are subject to exterior

diVerentiation, as described in Chapter 12). These matters will be the

subject of the two chapters following this one; but as a prerequisite,

we must Wrst explore the basic notion of a symmetry group. This notion also

has many other important areas of application in physics, chemistry, and

crystallography, and also within many diVerent areas of mathematics itself.

Let us take a simple example. What are the symmetries of a square? The

question has two diVerent answers depending upon whether or not we allow

symmetries which reverse the orientation of the square (i.e. for which

the square is turned over). Let us Wrst consider the case in which these

orientation-reversing symmetries are not allowed. Then the square’s sym-

metries are generated from a single rotation through a right angle in the

square’s plane, repeated various numbers of times. For convenience, we can

represent these motions in terms of complex numbers, as we did in
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Chapter 5. We may, if we choose, think of the vertices of the square as

occupying the points 1, i,�1, � i in the complex plane (Fig. 13.1a), and our

basic rotation represented by multiplication by i (i.e. by ‘i�’). The various

powers of i represent all our rotations, there being four distinct ones in all:

i0 ¼ 1, i1 ¼ i, i2 ¼ �1, i3 ¼ �i

(Fig. 13.1b). The fourth power i4 ¼ 1 gets us back to the beginning, so we

have no more elements. The product of any two of these four elements is

again one of them.

These four elements provide us with a simple example of a group. This

consists of a set of elements and a law of ‘multiplication’ deWned between

pairs of them (denoted by juxtaposition of symbols) for which the associa-

tive multiplication law holds

a(bc) ¼ (ab)c,

where there is an identity element 1 satisfying

1a ¼ a1 ¼ a,

and where each element a has an inverse a�1, such that[13.1]

a�1a ¼ aa�1 ¼ 1:

The symmetry operations which take an object (not necessarily a square)

into itself always satisfy these laws, called the group axioms.

i

−i

1

1 −1i −i

−1

CiCC −C −Ci

(b)

(c)

(a)

Fig. 13.1 Symmetry of a square. (a) We may represent the square’s vertices by

the points 1, i, � 1, � i in the complex plane C. (b) The group of non-reflective

symmetries are represented, in C, as multiplication by 1 ¼ i0, i ¼ i1,

�1 ¼ i2, � i ¼ i3, respectively. (c) The reflective symmetries are given, in C, by

C (complex conjugation), Ci, � C, and � Ci.

[13.1] Show that if we just assume 1a ¼ a and a�1a ¼ 1 for all a, together with associativity

a(bc) ¼ (ab)c, then a1 ¼ a and aa�1 ¼ 1 can be deduced. (Hint: Of course a is not the only element

asserted to have an inverse.) Show why, on the other hand, a1 ¼ a, a�1a ¼ 1, and a(bc) ¼ (ab)c

are insuYcient.
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Recall the conventions recommended in Chapter 11, where we think of b

acting Wrst and a afterwards, in the product ab. We can regard these as

operations as being performed upon some object appearing to the right.

Thus, we could consider the motion, b, expressing a symmetry of an object

F, as F 7! b(F), which we follow up by another such motion a, giving

b(F) 7! a(b(F)). This results in the combined action F 7! a(b(F)), which

we simply write F 7! ab(F), corresponding to the motion ab. The identity

operation leaves the object alone (clearly always a symmetry) and the

inverse is just the reverse operation of a given symmetry, moving the

object back to where it came from.

In our particular example of non-reXective rotations of the square, we

have the additional commutative property

ab ¼ ba:

Groups that are commutative in this sense are called Abelian, after the

tragically short-lived Norwegian mathematician Niels Henrik Abel.1

Clearly any group that can be represented simply by the multiplication

of complex numbers must be Abelian (since the multiplication of individ-

ual complex numbers always commutes). We saw other examples of this at

the end of Chapter 5 when we considered the general case of a Wnite cyclic

group Zn, generated by a single nth root of unity.[13.2]

Now let us allow the orientation-reversing reXections of our square. We

can still use the above representation of the square in terms of complex

numbers, but we shall need a new operation, which I denote by C, namely

complex conjugation. (This Xips the square over, about a horizontal line; see

§10.1, Fig. 10.1.) We now Wnd (see Fig. 13.1c) the ‘multiplication laws’[13.3]

Ci ¼ (� i)C, C(� 1) ¼ (� 1)C, C(� i) ¼ iC, CC ¼ 1

(where2 I shall henceforth write (� i)C as� iC, etc:): In fact, we can obtain

the multiplication laws for the entire group just from the basic relations[13.4]

i4 ¼ 1, C2 ¼ 1, Ci ¼ i3C,

the group being non-Abelian, as is manifested in the last equation. The

total number of of distinct elements in a group is called its order. The order

of this particular group is 8.

Now let us consider another simple example, namely the group of rota-

tional symmetries of an ordinary sphere. As before, we can Wrst consider the

[13.2] Explain why any vector space is an Abelian group—called an additive Abelian group—

where the group ‘multiplication’ operation is the ‘addition’ operation of the vector space.

[13.3] Verify these relations (bearing in mind that Ci stands for ‘the operation i�, followed by the

operationC, etc.). (Hint:Youcancheck the relationsby just confirmingtheir effectson1and i.Why?)

[13.4] Show this.
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O(3)

SO(3)
1

Sphere

Subgroup of
non-reflective
symmetries

Space of
reflective

symmetries

Fig. 13.2 Rotational symmetry of a sphere. The entire symmetry group, O(3), is a

disconnected 3-manifold, consisting of two pieces. The component containing the

identity element 1 is the (normal) subgroup SO(3) of non-reflective symmetries of

the sphere. The remaining component is the 3-manifold of reflective symmetries.

case where reXections are excluded. This time, our symmetry group will

have an inWnite number of elements, because we can rotate through any

angle about any axis direction in 3-space. The symmetry group actually

constitutes a 3-dimensional space, namely the 3-manifold denoted by R in

Chapter 12. Let me now give this group (3-manifold) its oYcial name. It is

called3 SO(3), the non-reXective orthogonal group in 3 dimensions. If we

now include the reXections, then we get a whole new set of symmetries—

another 3-manifold’s worth—which are disconnected from the Wrst,

namely those which involve a reversal of the orientation of the sphere.

The entire family of group elements again constitutes a 3-manifold, but

now it is a disconnected 3-manifold, consisting of two separate connected

pieces (see Fig. 13.2). This entire group space is called O(3).

These two examples illustrate two of the most important categories of

groups, the Wnite groups and the continuous groups (or Lie groups; see

§13.6).4 Although there is a great diVerence between these two types of

group, there are many of the important properties of groups that are

common to both.

13.2 Subgroups and simple groups

Of particular signiWcance is the notion of a subgroup of a group. To exhibit

a subgroup, we select some collection of elements within the group which

themselves form a group, using the same multiplication and inversion

§13.2 CHAPTER 13
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operations as in the whole group. Subgroups are important in many

modern theories of particle physics. It tends to be assumed that there is

some fundamental symmetry of Nature that relates diVerent kinds of

particles to one another and also relates diVerent particle interactions to

one another. Yet one may not see this full group acting as a symmetry in

any manifest way, Wnding, instead, that this symmetry is ‘broken’ down to

some subgroup of the original group where the subgroup plays a manifest

role as a symmetry. Thus, it is important to know what the possible

subgroups of a putative ‘fundamental’ symmetry group actually are, in

order that those symmetries that are indeed manifest in Nature might be

able to be thought about as subgroups of this putative group. I shall be

addressing questions of this kind in §§25.5–8, §26.11, and §28.1.

Let us examine some particular cases of subgroups, for the examples that

we have been considering. The non-reXective symmetries of the square con-

stitute a 4-element subgroup {1, i, �1, �i} of the entire 8-element group of

symmetries of the square. Likewise, the non-reXective rotation group SO(3)

constitutes a subgroup of the entire group O(3). Another subgroup of the

symmetries of the square consists of the four elements {1, �1, C, �C}; yet

another has just the two elements {1, �1}.[13.5] Moreover there is always the

‘trivial’ subgroup consisting of the identity alone {1} (and the whole group

itself is, equally trivially, always a subgroup).

All the various subgroups that I have just described have a special

property of particular importance. They are examples of what are called

normal subgroups. The signiWcance of a normal subgroup is that, in an

appropriate sense, the action of any element of the whole group leaves a

normal subgroup alone or, more technically, we say that each element of

the whole group commutes with the normal subgroup. Let me be more

explicit. Call the whole group GG and the subgroup SS. If I select any

particular element g of the group GG, then I can denote by SSg the set

consisting of all elements of SS each individually multiplied by g on the

right (what is called postmultiplied by g). Thus, in the case of the particular

subgroup SS ¼ {1, �1, C, �C}, of the symmetry group of the square, if

we choose g ¼ i, then we obtain SSi ¼ {i, �i, Ci, �Ci}. Likewise, the

notation gS will denote the set consisting of all elements of SS, each

individually multiplied by g on the left (premultiplied by g). Thus, in our

example, we now have iSS ¼ {i, �i, iC, �iC}. The condition for SS to be a

normal subgroup of GG is that these two sets are the same, i.e.

SSg ¼ gSS, for all g in SS:

In our particular example, we see that this is indeed the case (since

Ci ¼ �iC and �Ci ¼ iC), where we must bear in mind that the collection

[13.5] Verify that all these in this paragraph are subgroups (and bear in mind Note 13.4).
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of things inside the curly brackets is to be taken as an unordered set (so that it

does not matter that the elements�iC and iC appear in reverse order in the

collection of elements, when SSi and iSS are written out explicitly).

We can exhibit a non-normal subgroup of the group of symmetries of

the square, as the subgroup of two elements {1, C}. It is non-normal

because {1, C}i ¼ {i, Ci} whereas i{1, C} ¼ {i, �Ci}. Note that this sub-

group arises as the new (reduced) symmetry group if we mark our square

with a horizontal arrow pointing oV to the right (see Fig. 13.3a). We can

obtain another non-normal subgroup, namely {1, Ci} if we mark it,

instead, with an arrow pointing diagonally down to the right (Fig.

13.3b).[13.6] In the case of O(3), there happens to be only one non-trivial

normal subgroup,[13.7] namely SO(3), but there are many non-normal

subgroups. Non-normal examples are obtained if we select some appro-

priate Wnite set of points on the sphere, and ask for the symmetries of the

sphere with these points marked. If we mark just a single point, then

the subgroup consists of rotations of the sphere about the axis joining

the origin to this point (Fig. 13.3c). Alternatively, we could, for example,

mark points that are the vertices of a regular polyhedron. Then the

subgroup is Wnite, and consists of the symmetry group of that particular

polyhedron (Fig. 13.3d).

One reason that normal subgroups are important is that, if a group GG
possesses a non-trivial normal subgroup, then we can break GG down, in a

sense, into smaller groups. Suppose that SS is a normal subgroup of GG.
Then the distinct sets SSg, where g runs through all the elements of GG, turn

(a) (b) (c) (d)

Fig. 13.3 (a) Marking the square of Fig. 13.1 with an arrow pointing to the right,

reduces its symmetry group to a non-normal subgroup {1,C}. (b) Marking it with

an arrow pointing diagonally down to the right yields a different non-normal

subgroup {1,Ci}. (c) Marking the sphere of Fig. 13.2 with a single point reduces its

symmetry to a (non-normal) O(2) subgroup of O(3): rotations about the axis

joining the origin to this point. (d) If the sphere is marked with the vertices of a

regular polyhedron (here a dodecahedron), its group of symmetries is a finite

(non-normal) subgroup of O(3).

[13.6] Check these assertions, and Wnd two more non-normal subgroups, showing that there

are no further ones.

[13.7] Show this. (Hint: which sets of rotations can be rotation-invariant?)
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out themselves to form a group. Note that for a given set SSg, the choice of

g is generally not unique; we can have SSg1 ¼ SSg2, for diVerent elements

g1, g2 of GG. The sets of the form SSg, for any subgroup SS, are called cosets

of GG; but when GG is normal, the cosets form a group. The reason for this is

that if we have two such cosets SSg and SSh (g and h being elements of GG)
then we can deWne the ‘product’ of SSg with SSh to be

(SSg) (SSh) ¼ SS(gh),

and we Wnd that all the group axioms are satisWed, provided that SS is

normal, essentially because the right-hand side is well deWned, independ-

ently of which g and h were chosen in the representation of the cosets on

the left-hand side of this equation.[13.8] The resulting group deWned in this

way is called the factor group of GG by its normal subgroup SS. The factor

group of GG by SS is written GG/SS. We can still write GG/SS for the factor space

(not a group) of distinct cosets SSg even when S is not normal.[13.9]

Groups that possess no non-trivial normal subgroups at all are called

simple groups. The group SO(3) is an example of a simple group. Simple

groups are, in a clear sense, the basic building blocks of group theory. It is

thus an important achievement of the 19th and 20th centuries in mathe-

matics that all the Wnite simple groups and all the continuous simple groups

are now known. In the continuous case (i.e. for Lie groups), this was a

mathematical landmark, started by the highly inXuential German mathem-

atician Wilhelm Killing (1847–1923), whose basic papers appeared in

1888–1890, and was essentially completed, in 1894, in one of the most

important of mathematical papers ever written,5 by the superb geometer

and algebraist Élie Cartan (whom we have already encountered in

Chapter 12, and whom we shall meet again in Chapter 17). This classiWca-

tion has continued to play a fundamental role in many areas of mathematics

and physics, to the present day. It turns out that there are four

families, known as Am, Bm, Cm, Dm(for m ¼ 1, 2, 3, . . . ), of respective

dimension m(mþ 2), m(2mþ 1), m(2mþ 1), m(2m� 1), called the classical

groups (see end of §13.10) and Wve exceptional groups known as

E6, E7, E8, F4, G2, of respective dimension 78, 133, 248, 52, 14.

The classiWcation of the Wnite simple groups is a more recent (and even

more diYcult) achievement, carried out over a great many years during the

20th century by a considerable number of mathematicians (with the aid of

computers in more recent cases), being completed only in 1982.6 Again

there are some systematic families and a Wnite collection of exceptional

[13.8] Verify this and show that the axioms fail if SS is not normal.

[13.9] Explain why the number of elements in GG/SS, for any Wnite subgroup SS of GG, is the order

of GG divided by the order of SS.
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Wnite simple groups. The largest of these exceptional groups is referred to

as the monster, which is of order

¼ 808017424794512875886459904961710757005754368000000000:

¼ 246�320�59�76�112�133�17�19�23�29�31�41�47�59�71:

Exceptional groups appear to have a particular appeal for many modern

theoretical physicists. The group E8 features importantly in string theory

(§31.12), while various people have expressed a hope that the huge but

Wnite monster may feature in some future theory.7

The classiWcation of the simple groups may be regarded as a major step

towards the classiWcation of groups generally since, as indicated above,

general groups may be regarded as being built up out of simple groups

(together with Abelian ones). In fact, this is not really the whole story

because there is further information in how one simple group can build

upon another. I do not propose to enter into the details of this matter here,

but it isworth justmentioning the simplestway that this canhappen. If GG and

HHare any two groups, then they can be combined together to form what is

called the product group GG �HH , whose elements are simply pairs (g, h), where

g belongs to GG and h belongs toHH, the rule of group multiplication between

elements (g1, h1) and (g2, h2), of GG �HH , being deWned as

(g1, h1) (g2, h2) ¼ (g1g2, h1h2),

and it is very easy to verify that the group axioms are satisWed. Many of

the groups that feature in particle physics are in fact product groups of

simple groups (or elementary modiWcations of such).[13.10]

13.3 Linear transformations and matrices

In the general study of groups, there is a particular class of symmetry

groups that have been found to play a central role. These are the groups

of symmetries of vector spaces. The symmetries of a vector space are

expressedbythe linear transformationspreserving thevector-spacestructure.

Recall from §11.1 and §12.3 that, in a vector space V, we have, deWning

its structure, a notion of addition of vectors and multiplication of vectors

by numbers. We may take note of the fact that the geometrical picture of

addition is obtained by use of the parallelogram law, while multiplication

by a number is visualized as scaling the vector up (or down) by that

number (Fig. 13.4). Here we are picturing it as a real number, but complex

vector spaces are also allowed (and are particularly important in many

[13.10] Verify that GG �HH is a group, for any two groups GG andHH , and that we can identify the

factor group (GG �HH)=GG withHH.
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contexts, because of complex magic!), though hard to portray in a dia-

gram. A linear transformation of V is a transformation that takes V to

itself, preserving its structure, as deWned by these basic vector-space

notions. More generally, we can also consider linear transformations

that take one vector space to another.

A linear transformation can be explicitly described using an array

of numbers called a matrix. Matrices are important in many mathe-

matical contexts. We shall examine these extremely useful entities with

their elegant algebraic rules in this section (and in §§13.4,5). In

fact, §§13.3–7 may be regarded as a rapid tutorial in matrix theory

and its application to the theory of continuous groups. The notions

described here are vital to a proper understanding of quantum

theory, but readers already familiar with this material—or else who

prefer a less detailed comprehension of quantum theory when we

come to that—may prefer to skip these sections, at least for the time

being.

To see what a linear transformation looks like, let us Wrst consider the

case of a 3-dimensional vector space and see its relevance to the rotation

group O(3) (or SO(3)), discussed in §13.1, giving the symmetries of the

sphere. We can think of this sphere as embedded in Euclidean 3-space E
3

(this space being regarded as a vector space with respect to the origin O at

the sphere’s centre8) as the locus

x2 þ y2 þ z2 ¼ 1

in terms of ordinary Cartesian coordinates (x, y, z).[13.11] Rotations of the

sphere are now expressed in terms of linear transformation of E
3, but of a

very particular type known as orthogonal which we shall be coming to in

§§13.1,8 (see also §13.1).

General linear transformations, however, would squash or stretch

the sphere into an ellipsoid, as illustrated in Fig. 13.5. Geometrically,

Fig. 13.4 A linear transformation preserves

the vector-space structure of the space on

which it acts. This structure is defined by the

operations of addition (illustrated by the par-

allelogram law) and multiplication by a scalar

l (which could be a real number or, in the case

of a complex vector space, a complex number).

Such a transformation preserves the ‘straight-

ness’ of lines and the notion of ‘parallel’, keep-

ing the origin O fixed.

[13.11] Show how this equation, giving the points of unit distance from O, follows from the

Pythagorean theorem of §2.1.
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a linear transformation is one that preserves the ‘straightness’ of lines and

the notion of ‘parallel’ lines, keeping the origin O Wxed. But it need not

preserve right angles or other angles, so shapes can be squashed or

stretched, in a uniform but anisotropic way.

Howdowe express linear transformations in termsof the coordinatesx, y,

z? The answer is that each new coordinate is expressed as a (homogeneous)

linear combination of the original ones, i.e. by a separate expression like

ax þ by þ gz, where a, b, and g are constant numbers.[13.12] We have 3

such expressions, one for each of the new coordinates. To write all this in a

compact form, it will be useful to make contact with the index notation of

Chapter 12. For this, we re-label the coordinates as (x1, x2, x3), where

x1 ¼ x, x2 ¼ y, x3 ¼ z

(bearing in mind, again, that these upper indices do not denote

powers see §12.2). A general point in our Euclidean 3-space has co-

ordinates xa, where a ¼ 1, 2, 3. An advantage of using the index

notation is that the discussion applies in any number of dimensions, so

we can consider that a (and all our other index letters) run over

1, 2 , . . . , n, where n is some Wxed positive integer. In the case just con-

sidered, n ¼ 3.

In the index notation, with Einstein’s summation convention (§12.7), the

general linear transformation now takes the form9,[13.13]

xa 7! Ta
b xb:

z

x

y

E
3

E
3

Fig. 13.5 A linear transformation acting on E
3 (expressed in terms of Cartesian

x, y, z coordinates) would generally squash or stretch the unit sphere

x2 þ y2 þ z2 ¼ 1 into an ellipsoid. The orthogonal group O(3) consists of the

linear transformations of E
3 which preserve the unit sphere.

[13.12] Can you explain why? Just do this in the 2-dimensional case, for simplicity.

[13.13] Show this explicitly in the 3-dimensional case.
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Calling this linear transformation T, we see that T is determined by this

set of components Ta
b. Such a set of components is referred to as an n � n

matrix, usually set out as a square—or, in other contexts (see below)

m � n-rectangular—array of numbers. The above displayed equation,

in the 3-dimensional case is then written

x1

x2

x3

0

B

B

@

1

C

C

A

7!

T1
1 T1

2 T1
3

T2
1 T2

2 T2
3

T3
1 T3

2 T3
3

0

B

B

@

1

C

C

A

x1

x2

x3

0

B

B

@

1

C

C

A

,

this standing for three separate relations, starting with x1 7! T1
1x

1

þT1
2x

2 þ T1
3x

3.[13.14]

We can also write this without indices or explicit coordinates,

as x 7! Tx. If we prefer, we can adopt the abstract–index notation

(§12.8) whereby ‘xa 7! Ta
bx

b’ is not a component expression, but actually

represents this abstract transformation x 7! Tx. (When it is important

whether an indexed expression is to be read abstractly or as components,

this will be made clear by the wording.) Alternatively, we can use

the diagrammatic notation, as depicted in Fig. 13.6a. In my descriptions,

the matrix of numbers (Ta
b) or the abstract linear transformation T

will be used interchangeably when I am not concerned with the

technical distinctions between these two concepts (the former depending

upon a speciWc coordinate description of our vector space V, the latter

not).

Let us consider a second linear transformation S, applied following the

application of T. The product R of the two, written R ¼ ST, would have a

component (or abstract–index) description

Ra
c ¼ Sa

b Tb
c

(summation convention for components!).[13.15] The diagrammatic form of

the product ST is given in Fig. 13.6b. Note that, in the diagrammatic

notation, to form a successive product of linear transformations, we string

[13.14] Write this all out in full, explaining how this expresses xa 7! Ta
bx

b.

[13.15] What is this relation between R, S, and T, written out explicitly in terms of the

elements of 3� 3 square arrays of components. You may recognize this, the normal law for

‘multiplication of matrices’, if this is familiar to you.
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xa

Sa
b

Ta
b

δ a
   b

Ua
bxbTa

b

i.e. x Tx

S

T
ST

STUU

I

= =

(a) (b) (c)

Fig. 13.6 (a) The linear transformation xa 7!Ta
bx

b, or written without indices as

x 7!Tx (or read with the indices as abstract, as in §12.8), in diagrammatic form. (b)

Diagrams for linear transformations S, T, U, and their products ST and STU. In a

successive product, we string them in a line downwards. (c) The Kronecker delta da
b,

or identity transformation I, is depicted as a ‘disembodied’ line, so relations

Ta
bd

b
c ¼ Ta

c ¼ da
bT

b
c become automatic in the notation (see also Fig. 12.17).

them in a line downwards. This happens to work out conveniently in the

notation, but one could perfectly well adopt a diVerent convention in

which the connecting ‘index lines’ are drawn horizontally. (Then there

would be a closer correspondence between algebraic and diagrammatic

notations.)

The identity linear transformation I has components that are normally

written da
b (the Kronecker delta—the standard convention being that these

indices are not normally staggered), for which

da
b ¼

1 if a ¼ b,

0 if a 6¼ b,

�

and we have[13.16]

Ta
bd

b
c ¼ Ta

c ¼ da
bT

b
c

giving the algebraic relations TI ¼ T ¼ IT. The square matrix of

components da
b has 1s down what is called the main diagonal,

which extends from the top-left corner to bottom-right. In the case

n ¼ 3, this is
1 0 0

0 1 0

0 0 1

0

@

1

A

In the diagrammatic notation, we simply represent the Kronecker delta by

a ‘disembodied’ line, and the above algebraic relations become automatic

in the notation; see Fig. 13.6c.

[13.16] Verify.
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Those linear transformations which map the entire vector space down to

a region (subspace) of smaller dimension within that space are called

singular.10 An equivalent condition for T to be singular is the existence

of a non-zero vector v such that[13.17]

Ty ¼ 0:

Provided that the transformation is non-singular, then it will have an

inverse,[13.18] where the inverse of T is written T�1, so that

TT�1 ¼ I ¼ T�1T,

as is required of an inverse. We can give the explicit expression for this

inverse conveniently in the diagrammatic notation; see Fig. 13.7, where I

have introduced the useful diagrams for the antisymmetrical (Levi-Civita)

quantities ea...c and 2a...c (with normalization ea���c 2a���c¼ n!) that were

introduced in §12.7 and Fig. 12.18.[13.19]

The algebra of matrices (initiated by the highly proliWc English mathem-

atician and lawyer Arthur Cayley in 1858)11
Wnds a very broad range of

application (e.g. statistics, engineering, crystallography, psychology, com-

puting—not to mention quantum mechanics). This generalizes the algebra

of quaternions and the CliVord and Grassmann algebras studied in

§§11.3,5,6. I use bold-face upright letters (A, B, C, . . . ) for the arrays of

components that constitute actual matrices (rather than abstract linear

transformations, for which bold-face italic letters are being used).

−1

n=

[13.17] Why? Show that this would happen, in particular, if the array of components has an

entire column of 0s or two identical columns. Why does this also hold if there are two identical

rows? Hint: For this last part, consider the determinant condition below.

[13.18] Show why, not using explicit expressions.

[13.19] Prove directly, using the diagrammatic relations given in Fig. 12.18, that this definition

gives TT�1 ¼ I ¼ T�1T.

Fig. 13.7 The inverse T�1 of a

non-singular (n� n) matrix T given

here explicitly in diagrammatic form,

using the diagrammatic form of the

Levi-Civita antisymmetric quantities

ea...c and 2a...c (normalized by

ea...c 2a...c¼ n!) introduced in §12.7

and depicted in Fig. 12.18.
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Restricting attention to n� n matrices for Wxed n, we have a system in

which notions of addition and multiplication are deWned, where the stand-

ard algebraic laws

Aþ B ¼ Bþ A, Aþ (Bþ C) ¼ (Aþ B)þ C, A(BC) ¼ (AB)C,

A(Bþ C) ¼ ABþ AC, (Aþ B)C ¼ ACþ BC

hold. (Each element of Aþ B is simply the sum of the correspond-

ing elements of A and B.) However, we do not usually have the com-

mutative law of multiplication, so that generally AB 6¼ BA. Moreover,

as we have seen above, non-zero n� n matrices do not always have

inverses.

It should be remarked that the algebra also extends to the rectangular

cases of m� n matrices, where m need not be equal to n. However,

addition is deWned between an m� n matrix and a p� q matrix only

when m ¼ p and n ¼ q; multiplication is deWned between them only

when n ¼ p, the result being an m� q matrix. This extended algebra

subsumes products like the Tx considered above, where the ‘column

vector’ x is thought of as being an n� 1 matrix.[13.20]

The general linear group GL(n) is the group of symmetries of an

n-dimensional vector space, and it is realized explicitly as the multiplicative

group of n� n non-singular matrices. If we wish to emphasize that our

vector space is real, and that the numbers appearing in our matrices are

correspondingly real numbers, then we refer to this full linear group as

GL(n,R). We can also consider the complex case, and obtain the com-

plex full linear group GL(n,C). Each of these groups has a normal sub-

group, written respectively SL(n,R) and SL(n,C)—or, more brieXy when

the underlying Weld (see §16.1) R or C is understood, SL(n)—called

the special linear group. These are obtained by restricting the matrices to

have their determinants equal to 1. The notion of a determinant will be

explained next.

13.4 Determinants and traces

What is the determinant of an n� n matrix? It is a single number

calculated from the elements of the matrix, which vanishes if and only if

the matrix is singular. The diagrammatic notation conveniently describes

the determinant explicitly; see Fig. 13.8a. The index-notation form of this is

1

n!
Eab...dTe

aT
f
b . . . Th

deef ...h

[13.20] Explain this, and give the full algebraic rules for rectangular matrices.
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det 1
n!

=

1
n!

= 1
n!

=

(a)

(b)

Fig. 13.8 (a) Diagrammatic notation for det ðTa
bÞ ¼ det T ¼ jTj. (b) Diagram-

matic proof that det (ST) ¼ det S detT. The antisymmetrizing bar can be

inserted in the middle term because there is already antisymmetry in the index

lines that it crosses. See Figs. 12.17, 12.18.

where the quantities Ea...d and ee...h are antisymmetric (Levi-Civita) tensors,

normalized accoring to

Ea...dea...d ¼ n!

for an n-dimensional space (and recall that n! ¼ 1� 2� 3� � � � � n),

where the indices a, . . . , d and e, . . . , h are each n in number.

We can refer to this determinant as det (Ta
b) or det T (or sometimes jTj

or as the array constituting the matrix but with vertical bars replacing the

parentheses). In the particular cases of a 2� 2 and a 3� 3 matrix, the

determinant is given by[13.21]

det
a b

c d

� �

¼ ad� bc,

det

a b c

d e f

g h j

0

@

1

A ¼ aej� afhþ bfg� bdjþ cdh� ceg:

The determinant satisWes the important and rather remarkable relation

detAB ¼ det A detB,

which can be seen to be true quite neatly in the diagrammatic notation (Fig.

13.8b). The key ingredients are the formulae illustrated in Fig. 12.18[13.22]

which, when written in the index notation, look like

[13.21] Derive these from the expression of Fig. 13.8a.

[13.22] Show why these hold.
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Ea...c ef ...h ¼ n! d[a
f � � � d

c]
h

(see §11.6 for the bracket/index notation) and

Eab...cefb...c ¼ (n� 1)! da
f :

We also have the notion of the trace of a matrix (or linear transfor-

mation)

trace T ¼ Ta
a ¼ T1

1 þ T2
2 þ � � � þ Tn

n

(i.e. the sum of the elements along the main diagonal—see §13.3), this

being illustrated diagrammatically in Fig. 13.9. Unlike the case of a deter-

minant, there is no particular relation between the trace of the product AB

of two matrices and the traces of A and B individually. Instead, we have

the relation[13.23]

trace (Aþ B) ¼ trace Aþ traceB:

There is an important connection between the determinant and the trace

which has to do with the determinant of an ‘inWnitesimal’ linear trans-

formation, given by an n� n matrix Iþ eA for which the number e is

considered to be ‘inWnitesimally small’ so that we can ignore its square e2

(and also higher powers e3, e4, etc.). Then we Wnd[13.24]

det (Iþ eA) ¼ 1þ e traceA

(ignoring e2, etc.). In particular, inWnitesimal elements of SL(n), i.e.

elements of SL(n) representing inWnitesimal rotations, being of unit deter-

minant (as opposed to those of GL(n) ), are characterized by the A

in Iþ eA having zero trace. We shall be seeing the signiWcance of

this in §13.10. In fact the above formula can be extended to Wnite

(that is, non-inWnitesimal) linear transformations through the expres-

sion[13.25]

det eA ¼ etrace A,

Trace =

[13.23] Show this.

[13.24] Show this.

[13.25] Establish the expression for this. Hint: Use the ‘canonical form’ for a matrix in terms of

its eigenvalues—as described in §13.5—assuming Wrst that these eigenvalues are unequal (and see

Exercise [13.27]). Then use a general argument to show that the equality of some eigenvalues

cannot invalidate identities of this kind.

Fig. 13.9 Diagrammatic notation for trace T( ¼ Ta
a).
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where ‘eA’ for matrices has just the same deWnition as it has for ordinary

numbers (see §5.3), i.e.

eA ¼ Iþ Aþ 1=2A2 þ 1=6A3 þ 1=24A4 þ � � � :

We shall return to these issues in §13.6 and §14.6.

13.5 Eigenvalues and eigenvectors

Among the most important notions associated with linear transforma-

tions are what are called ‘eigenvalues’ and ‘eigenvectors’. These

are vital to quantum mechanics, as we shall be seeing in §21.5 and

§§22.1,5, and to many other areas of mathematics and applications.

An eigenvector of a linear transformation T is a non-zero complex

vector y which T sends to a multiple of itself. That is to say, there is a

complex number l, the corresponding eigenvalue, for which

Ty ¼ ly, i:e: Ta
bv

b ¼ lva:

We can also write this equation as (T � lI)y ¼ 0, so that, if l is to be an

eigenvalue of T, the quantity T � lI must be singular. Conversely, if

T � lI is singular, then l is an eigenvalue of T. Note that if y is an

eigenvector, then so also is any non-zero complex multiple of y. The

complex 1-dimensional space of these multiples is unchanged by the

transformation T, a property which characterizes v as an eigenvector

(Fig. 13.10).

From the above, we see that this condition for l to be an eigenvalue

of T is
det (T � lI) ¼ 0:

Writing this out, we obtain a polynomial equation[13.26] of degree n in l.
By the ‘fundamental theorem of algebra’, §4.2, we can factorize the

l-polynomial det (T � lI) into linear factors. This reduces the above

equation to
(l1 � l) (l2 � l) (l3 � l) . . . (ln � l) ¼ 0

where the complex numbers l1, l2, l3 , . . . , ln are the various eigen-

values of T. In particular cases, some of these factors may coincide,

in which case we have a multiple eigenvalue. The multiplicity m of an

eigenvalue lr is the number of times that the factor lr � l appears

[13.26] See if you can express the coeYcients of this polynomial in diagrammatic form. Work

them out for n ¼ 1 and n ¼ 2.
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in the above product. The total number of eigenvalues of T, counted

appropriately with multiplicities, is always equal to n, for an n� n

matrix.[13.27]

For a particular eigenvalue l of multiplicity r, the space of correspond-

ing eigenvectors constitutes a linear space, of dimensionality d, where

1 � d � r. For certain types of matrix, including the unitary, Hermitian,

and normal matrices of most interest in quantum mechanics (see §13.9,

§§22.4,6), we always have the maximum dimensionality d ¼ r (despite the

fact that d ¼ 1 is the most ‘general’ case, for given r). This is fortunate,

because the (more general) cases for which d < r are more diYcult to

handle. In quantum mechanics, eigenvalue multiplicities are referred to

as degeneracies (cf. §§22.6,7).

A basis for an n-dimensional vector space V is an ordered set

e ¼ (e1 , . . . , en) of n vectors e1 , . . . , en which are linearly independent,

which means that there is no relation of the form a1e1 þ � � � þ anen ¼ 0

with a1 , . . . , an not all zero. Every element of V is then uniquely a

linear combination of these basis elements.[13.28] In fact, this property

is what characterizes a basis in the more general case when V can

be inWnite-dimensional, when the linear independence by itself is not

suYcient.

Thus, given a basis e ¼ (e1 , . . . , en), any element x of V can be uniquely

written

x ¼ x1e1 þ x2e2 þ � � � þ xnen

¼ xjej ,

[13.27] Show that det T ¼ l1l2 � � � ln, trace T ¼ l1 þ l2 þ � � � þ ln.

[13.28] Show this.

Fig. 13.10 The action of a

linear transformation T. Its

eigenvectors always constitute

linear spaces through the origin

(here three lines). These spaces

are unaltered by T. (In this

example, there are two (unequal)

positive eigenvalues (outward

pointing arrows) and one nega-

tive one (inward arrows).
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(the indices j not being abstract here) where (x1, x2, . . . , xn) is the ordered

set of components of x with respect to e (compare §12.3). A non-singular

linear transformation T always sends a basis to another basis; moreover, if

e and f are any two given bases, then there is a unique T sending each ea to

its corresponding f j:

Tej ¼ f j:

In terms of components taken with respect to e, the components of the

basis elements e1, e2 , . . . , en themselves are, respectively, (1, 0, 0, . . . , 0),

(0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1). In other words, the components of ej are

(d1
j , d

2
j , d

3
j , . . . , dn

j ).
[13.29] When all components are takenwith respect to the

e basis, we Wnd that T is represented as the matrix (Ti
j), where the compon-

ents of f j in the e basis would be[13.30]

(T1
j, T2

j, T3
j , . . . , Tn

j):

It should be recalled that the conceptual diVerence between a linear

transformation and a matrix is that the latter refers to some basis-

dependent presentation, whereas the former is abstract, not depending

upon a basis.

Now,provided that eachmultiple eigenvalueofT (if thereareany) satisWes

d ¼ r, i.e. its eigenspacedimensionality equals itsmultiplicity, it is possible to

Wnd a basis (e1, e2 , . . . , en) for V, each of which is an eigenvector of T.[13.31]

Let the corresponding eigenvalues be l1, l2 , . . . , ln:

Te1 ¼ l1e1, Te2 ¼ l2e2 , . . . , Ten ¼ lnen:

If, as above, T takes the e basis to the f basis, then the f basis elements are

as above, so we have f 1 ¼ l1e1, f 2 ¼ l2e2 , . . . , f n ¼ lnen. It follows that

T, referred to the e basis, takes the diagonal matrix form

l1 0 . . . 0

0 l2 . . . 0

: : . . .. . . :
0 0 . . . ln

0

B

B

@

1

C

C

A

,

that is T1
1 ¼ l1, T2

2 ¼ l2 , . . . , Tn
n ¼ ln, the remaining components being

zero. This canonical form for a linear transformation is very useful both

conceptually and calculationally.12

[13.29] Explain this notation.

[13.30] Why? What are the components of ei in the f basis?

[13.31] See if you can prove this. Hint: For each eigenvalue of multiplicity r, choose r linearly

independent eigenvectors. Show that a linear relation between vectors of this entire collection

leads to a contradiction when this relation is pre-multiplied by T, successively.
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13.6 Representation theory and Lie algebras

There is an important body of ideas (particularly signiWcant for

quantum theory) called the representation theory of groups. We saw

a very simple example of a group representation in the discussion in

§13.1, when we observed that the non-reXective symmetries of a

square can be represented by complex numbers, the group multiplication

being faithfully represented as actual multiplication of the complex

numbers. However, nothing quite so simple can apply to non-Abelian

groups, since the multiplication of complex numbers is commutative.

On the other hand, linear transformations (or matrices) usually do

not commute, so we may regard it as a reasonable prospect to represent

non-Abelian groups in terms of them. Indeed, we already encountered

this kind of thing at the beginning of §13.3, where we represented the

rotation group O(3) in terms of linear transformations in three dimen-

sions.

As we shall be seeing in Chapter 22, quantum mechanics is all to do

with linear transformations. Moreover, various symmetry groups have

crucial importance in modern particle physics, such as the rotation

group O(3), the symmetry groups of relativity theory (Chapter 18), and

the symmetries underlying particle interactions (Chapter 25). It is not

surprising, therefore, that representations of these groups in particular,

in terms of linear transformations, have fundamental roles to play in

quantum theory.

It turns out that, quantum theory (particularly the quantum Weld theory

of Chapter 26) is frequently concerned with linear transformations of

inWnite-dimensional spaces. For simplicity, however, I shall phrase things

here just for representations by linear transformations in the Wnite-dimen-

sional case. Most of the ideas that we shall encounter apply also in the

case of inWnite-dimensional representations, although there are diVerences

that can be important in some circumstances.

What is a group representation? Consider a group GG. Representation

theory is concerned with Wnding a subgroup of GL(n) (i.e. a multiplicative

group of n� n matrices) with the property that, for any element g in GG,
there is a corresponding linear transformation T(g) (belonging to GL(n))

such that the multiplication law in GG is preserved by the operations of

GL(n), i.e. for any two elements g, h of GG, we have

T(g)T(h) ¼ T(gh):

The representation is called faithful if T(g) is diVerent from T(h) whenever

g is diVerent from h. In this case we have an identical copy of the group GG,
as a subgroup of GL(n).
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In fact, every Wnite group has a faithful representation in GL(n, R),

where n is the order of GG,[13.32] and there are frequently many non-faithful

representations. On the other hand, it is not quite true that every (Wnite-

dimensional) continuous group has a faithful representation in some

GL(n). However, if we are not worried about the global aspects of the

group, then a representation is always (locally) possible.13

There is a beautiful theory, due to the profoundly original Norwegian

mathematician Sophus Lie (1842–1899), which leads to a full treatment

of the local theory of continuous groups. (Indeed, continuous groups

are commonly called ‘Lie groups’; see §13.1.) This theory depends

upon a study of inWnitesimal group elements.14 These inWnitesimal elem-

ents deWne a kind of algebra—referred to as a Lie algebra—which provides

us with complete information as to the local structure of the group.

Although the Lie algebra may not provide us with the full global

structure of the group, this is normally considered to be a matter of lesser

importance.

What is a Lie algebra? Suppose that we have a matrix (or linear

transformation) I þ eA to represent an ‘inWnitesimal’ element a of some

continuous group GG, where e is taken as ‘small’ (compare end of §13.4).

When we form the matrix product of I þ eA and I þ eB to represent the

product ab of two such elements a and b, we obtain

(I þ eA) (I þ eB) ¼ I þ e(Aþ B)þ e2AB

¼ I þ e(Aþ B)

if we are allowed to ignore the quantity e2, as being ‘too small to count’. In

accordance with this, the matrix sum Aþ B represents the group product

ab of two inWnitesimal elements a and b.

Indeed, the sum operation is part of the Lie algebra of the quantities

A, B, . . . . But the sum is commutative, whereas the group GG could well be

non-Abelian, so we do not capture much of the structure of the group if we

consider only sums (in fact, only the dimension of GG). The non-Abelian

nature of GG is expressed in the group commutators which are the expres-

sions[13.33]

a b a�1 b�1:

[13.32] Show this. Hint: Label each column of the representing matrix by a separate element of

the Wnite group GG, and also label each row by the corresponding group element. Place a 1 in any

position in the matrix for which a certain relation holds (Wnd it!) between the element of GG
labelling the row, that labelling the column, and the element of GG that this particular matrix is

representing. Place a 0 whenever this relation does not hold.

[13.33] Why is this expression just the identity group element when a and b commute?
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Let us write this out in terms of I þ eA, etc., taking note of the power

series expression (I þ eA)�1 ¼ I � eAþ e2A2 � e3A3 þ � � � (this series

being easily checked by multiplying both sides by I þ eA). Now it

is e3 that we ignore as being ‘too small to count’, but we keep e2,
whence[13.34]

(I þ eA) (I þ eB) (I þ eA)�1 (I þ eB)�1

¼ (I þ eA) (I þ eB) (I � eAþ e2A2) (I � eB þ e2B2)

¼ I þ e2(AB � BA)

This tells us that if we are to keep track of the precise way in which the

group GG is non-Abelian, we must take note of the ‘commutators’, or Lie

brackets
[A, B] ¼ AB � BA:

The Lie algebra is now constructed by means of repeated application of

the operations þ, its inverse �, and the bracket operation [ , ], where it is

customary also to allow the multiplication by ordinary numbers (which

might be real or complex). The ‘additive’ aspect of the algebra has the

usual vector-space structure (as with quaternions, in §11.1). In addition,

Lie bracket satisfies distributivity, etc., namely

[Aþ B, C ] ¼ [A, C ]þ [B, C ], [lA, B] ¼ l[A, B],

the antisymmetry property

[A, B] ¼ �[B, A],

(whence also [A, C þD] ¼ [A, C ]þ [A,D], [A, lB] ¼ l[A, B]), and an ele-

gant relation known as the Jacobi identity[13.35]

[A, [B, C ] ]þ [B,[C ,A] ]þ [C , [A, B] ] ¼ 0

(a more general form of which will be encountered in §14.6).

We can choose a basis (E1, E2 , . . . , EN ) for the vector space of our

matrices A, B, C, . . . (where N is the dimension of the group GG, if the

representation is faithful). Forming their various commutators [Ea, Eb],

we express these in terms of the basis elements, to obtain relations (using

the summation convention)

[Ea, Eb] ¼ gabwEw:

[13.34] Spell out this ‘order e2’ calculation.

[13.35] Show all this.
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The N3 component quantities gabw are called structure constants for GG.
They are not all independent because they satisfy (see §11.6 for bracket

notation)

gabw ¼ �gbaw, g[ab
xgw]xz ¼ 0,

by virtue of the above antisymmetry and Jacobi identity.[13.36] These

relations are given in diagrammatic form in Fig. 13.11.

It is a remarkable fact that the structure of the Lie algebra for a

faithful representation (basically, the knowledge of the structure constants

gabw) is suYcient to determine the precise local nature of the group

GG. Here, ‘local’ means in a (suYciently small) N-dimensional open

region N surrounding the identity element I in the ‘group manifold’
�
GG

whose points represent the diVerent elements of GG (see Fig. 13.12). In

fact, starting from a Lie group element A, we can construct a correspond-

ing actual Wnite (i.e. non-inWnitesimal) group element by means of

the ‘exponentiation’ operation eA deWned at the end of §13.4. (This

will be considered a little more fully in §14.6.) Thus, the theory of

representations of continuous groups by linear transformations (or by

matrices) may be largely transferred to the study of representations of

Lie algebras by such transformations—which, indeed, is the normal prac-

tice in physics.

This is particularly important in quantum mechanics, where

the Lie algebra elements themselves, in a remarkable way, frequently

have direct interpretations as physical quantities (such as angular

momentum, when the group G is the rotation group, as we shall be seeing

later in §22.8).

The Lie algebra matrices tend to be considerably simpler in structure

than the corresponding Lie group matrices, being subject to linear rather

= 0,   i.e. − − = 0

=    −
cabχ(a)

(b)

Fig. 13.11 (a) Structure constants gabw in diagrammatic form, depicting antisym-

metry in a, b and (b) the Jacobi identity.

[13.36] Show this.
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I
N

G

than nonlinear restrictions (see §13.10 for the case of the classical groups).

This procedure is beloved of quantum physicists!

13.7 Tensor representation spaces; reducibility

There are ways of building up more elaborate representations of a group

GG, starting from some particular one. How are we to do that? Suppose that

GG is represented by some family TT of linear transformations, acting on an

n-dimensional vector space V. Such a V is called a representation space

for GG. Any element t of GG is now represented by a corresponding

linear transformation T in TT , where T eVects x 7! Tx for each x

belonging to V. In the (abstract) index notation (§12.7) we write this

xa 7! Ta
bx

b, as in §13.3, or in diagrammatic form, as in Fig. 13.6a. Let

us see how we can Wnd other representation spaces for GG, starting from the

given one V.

As a Wrst example, recall, from §12.3, the deWnition of the dual space V*

of V. The elements of V* are defined as linear maps from V to the

scalars. We can write the action of y (in V*) on an element x in V as

yax
a, in the index notation (§12.7). The notation y � x would have been

used earlier (§12.3) for this (y � x ¼ yax
a), but now we can also use the

matrix notation

yx ¼ yax
a,

where we take y to be a row vector (i.e. a 1 � n matrix) and x a column

vector (an n� 1 matrix). In accordance with our transformation x 7! Tx,

now thought of as a matrix transformation, the dual space V* undergoes

the linear transformation

y 7! yS, i:e: ya 7! ybS
b
a,

where S is the inverse of T:

Fig. 13.12 The Lie algebra for a (faith-

ful) representation of a Lie group G (ba-

sically, knowledge of the structure

constants gabw) determines the local

structure of G, i.e. it fixes the structure of

G within some (sufficiently small) open

region N surrounding the identity elem-

ent I, but it does not tell us about the

global nature of G.
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S ¼ T�1, so Sa
bT

b
c ¼ da

c ,

since, if x 7! Tx, we need y 7! yT�1 to ensure that yx is preserved

by 7!.

The use of a row vector y, in the above, gives us a non-standard

multiplication ordering. It is more usual to write things the other

way around, by employing the notation of the transpose AT of a matrix

A. The elements of the matrix AT are the same as those of A, but with rows

and columns interchanged. If A is square (n� n), then so is AT, its

elements being those of A reXected in its main diagonal (see §13.3). If A

is rectangular (m� n), then AT is n�m, correspondingly reXected.

Thus yT is a standard column vector, and we can write the above

y 7! yS as

yT 7! STyT,

since the transpose operation T reverses the order of multiplication:

(AB)T ¼ BTAT. We thus see that the dual space V*, of any repre-

sentation space V is itself a representation space of GG. Note that the

inverse operation �1 also reverses multiplication order, (AB)�1 ¼ B�1

A�1,[13.37] so the multiplication ordering needed for a representation is

restored.

The same kinds of consideration apply to the various vector spaces

of tensors constructed from V; see §12.8. We recall that a tensor Q

of valence [ p
q
] (over the vector space V) has an index description as a

quantity

Q f ...h
a...c ,

with q lower and p upper indices. We can add tensors to other

tensors of the same valence and we can multiply them by scalars;

tensors of Wxed valence [ p
q
] form a vector space of dimension npþq

(the total number of components).[13.38] Abstractly, we think of Q as

belonging to a vector space that we refer to as the tensor product

V* � V* � . . . � V* � V � V � . . . � V

of q copies of the dual space V* and p copies of V (p, q $ 0). (We shall

come to this notion of ‘tensor product’ a little more fully in §23.3.) Recall

the abstract deWnition of a tensor, given in §12.8, as a multilinear function.

[13.37] Why?

[13.38] Why this number?
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This will suYce for our purposes here (although there are certain subtleties

in the case of an inWnite-dimensional V, of relevance to the applications to

many-particle quantum states, needed in §23.8).15

Whenever a linear transformation xa 7! Ta
bx

b is applied to V, this

induces a corresponding linear transformation on the above tensor prod-

uct space, given explicitly by[13.39]

Q f ...h
a...c 7! Sa0

a . . . Sc0
cT

f
f 0 . . . Th

h0Q
f 0...h0

a0...c0 :

All these indices require good eyesight and careful scrutiny, in order

to make sure of what is summed with what; so I recommend the

diagrammatic notation, which is clearer, as illustrated in Fig. 13.13.

We see that each lower index of Q...
... transforms by the inverse

matrix S ¼ T�1 (or, rather, by ST), as with ya and each upper index by T,

as with xa. Accordingly, the space of [ p
q
]-valent tensors over V is also a

representation space for GG, of dimension npþq.

These representation spaces are, however, likely to be what is called

reducible. To illustrate this situation, consider the case of a [ 2
0
]-valent

tensor Qab. Any such tensor can be split into its symmetric part Q(ab) and

its antisymmetric part Q[ab] (§12.7 and §11.6):

Qab ¼ Q(ab) þQ[ab],

, ,
=

−1

Fig. 13.13 The linear transformation xa 7!Ta
bx

b, applied to x in the vector space

V (with T depicted as a white triangle), extends to the dual space V� by use of the

inverse S ¼ T�1 (depicted as a black triangle) and thence to the spaces

V�
N

. . .
N

V�
N

V
N

. . .
N

V of [ p
q
]-valent tensors Q. The case p ¼ 3, q ¼ 2 is

illustrated, with Q shown as an oval with three arms and two legs undergoing

Qab
cde / Sa0

aS
b0

bT
c

c0T
d

d 0T
e

e0Qa0b0
c0d 0e0 .

[13.39] Show this.
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where

Q(ab) ¼ 1
2
(Qab þQba), Q[ab] ¼ 1

2
(Qab �Qba):

The dimension of the symmetric space Vþ is 1
2
n(nþ 1), and that of the

antisymmetric space V� is 1
2
n(n� 1).[13.40] It is not hard to see that, under

the transformation xa 7! Ta
bx

b, so that Qab 7! Ta
cT

b
dQ

cd , the symmetric

and antisymmetric parts transform to tensors which are again, respect-

ively, symmetric, and antisymmetric.[13.41] Accordingly, the spaces Vþ and

V� are, separately, representation spaces for GG. By choosing a basis for V
where the Wrst 1

2
n(nþ 1) basis elements are in Vþ and the remaining

1
2
n(n� 1) are in V�, we obtain our representation with all matrices being

of the n2 � n2 ‘block-diagonal’ form

A O

O B

� �

,

where A stands for a 1
2
n(nþ 1)� 1

2
n(nþ 1) matrix and B for a

1
2
n(n� 1)� 1

2
n(n� 1) matrix, the two Os standing for the appropriate

rectangular blocks of zeros.

A representation of this form is referred to as the direct sum of the

representation given by the A matrices and that given by the B matrices.

The representation in terms of [ 2
0
]-valent tensors is therefore reducible, in

this sense.[13.42] The notion of ‘direct sum’ also extends to any number

(perhaps inWnite) of smaller representations.

In fact there is a more general meaning for the term ‘reducible repre-

sentation’, namely one for which there is a choice of basis for which all the

matrices of the representation can be put in the somewhat more compli-

cated form

A C

O B

� �

,

where A is p� p, B is q� q, and C is p� q, with p, q $ 1 (for Wxed p and

q). Note that, if the representing matrices all have this form, then the A

matrices and the B matrices each individually constitute a (smaller) repre-

sentationofGG.[13.43] If theCmatrices areall zero,weget the earlier casewhere

the representation is the direct sum of these two smaller representations.

A representation is called irreducible if it is not reducible (with C present or

[13.40] Show this.

[13.41] Explain this.

[13.42] Show that the representation space of [ 1
1
]-valent tensors is also reducible. Hint: Split

any such tensor into a ‘trace-free’ part and a ‘trace’ part.

[13.43] ConWrm this.
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not). A representation is called completely reducible if we never get the

above situation (with non-zero C), so that it is a direct sum of irreducible

representations.

There is an important class of continuous groups, known as semi-simple

groups. This extensively studied class includes the simple groups referred

to in §13.2. Compact semi-simple groups have the pleasing property that

all their representations are completely reducible. (See §12.6, Fig. 12.13 for

the deWnition of ‘compact’.) It is suYcient to study irreducible representa-

tions of such a group, every representation being just a direct sum of these

irreducible ones. In fact, every irreducible representation of such a group is

Wnite-dimensional (which is not the case if we allow a semi-simple group to

be non-compact, when representations that are not completely reducible

can also occur).

What is a semi-simple group? Recall the ‘structure constants’ gwab of

§13.6, which specify the Lie brackets and deWne the local structure of the

group GG. There is a quantity of considerable importance known16 as the

‘Killing form’ k that can be constructed from gabw:[13.44]

kab ¼ gazx gbxz ¼ kba:

The diagrammatic form of this expression is given in Fig. 13.14.

The condition for GG to be semi-simple is that the matrix kab be non-

singular.

Someremarksareappropriateconcerningtheconditionofcompactnessof

a semi-simple group. For a given set of structure constants gabw, assuming

thatwe can take them tobe real numbers,we could consider either the real or

the complex Lie algebra obtained from them. In the complex case, we do not

get a compact group GG, but we might do so in the real case. In fact, compact-

ness occurs in the real case when �kba is what is called positive deWnite (the

meaningofwhich termweshall come to in §13.8).ForWxed gabw, in the caseof

a real group GG, we can always construct the complexiWcation CGG (at least

locally) of GG which comes about merely by using the same gabw, but with

complex coeYcients in the Lie algebra. However, diVerent real groups GG
might sometimes give rise to the same17

CGG. These diVerent real groups are

calleddiVerent real formsof thecomplexgroup.Weshallbe seeing important

‘Killing
form’

: = Fig. 13.14 The ‘Killing form’ kab defined from the

structure constants gazx by kab ¼ gazxgbxz.

[13.44] Why does kab ¼ kba?
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instances of this in later chapters, especially in §18.2, where the Euclidean

motions in 4 dimensions and the Lorentz/Poincaré symmetries of

special relativity are compared. It is a remarkable property of any complex

semi-simple Lie group that it has exactly one real form GG which is com-

pact.

13.8 Orthogonal groups

Now let us return to the orthogonal group. We already saw at the begin-

ning of §13.3 how to represent O(3) or SO(3) faithfully as linear trans-

formations of a 3-dimensional real vector space, with ordinary Cartesian

coordinates (x,y,z), where the sphere

x2 þ y2 þ z2 ¼ 1

is to be left invariant (the upper index 2 meaning the usual ‘squared’).

Let us write this equation in terms of the index notation (§12.7), so that we

can generalize to n dimensions. The equation of our sphere can now

be written

gabx
axb ¼ 1,

which stands for (x1)2 þ � � � þ (xn)2 ¼ 1, the components gab being given

by

gab ¼
1 if a ¼ b,

0 if a 6¼ b:

�

In the diagrammatic notation, I recommend simply using a ‘hoop’ for gab,

as indicated in Fig. 13.15a. I shall also use the notation gab (with the same

explicit components as gab) for the inverse quantity (‘inverted hoop’ in Fig.

13.15a):

gab gbc ¼ dc
a ¼ gcbgba:

=
,

,

= =,

gab gab(a)

(b)

Fig. 13.15 (a) The metric gab and its inverse gab in the ‘hoop’ diagrammatic

notation. (b) The relations gab ¼ gba (i:e: gT ¼ g), gab ¼ gba, and gabg
bc ¼ dc

a in

diagrammatic notation.
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The puzzled reader might very reasonably ask why I have introduced

two new notations, namely gab and gab for precisely the same

matrix components that I denoted by da
b in §13.3! The reason has to do

with the consistency of the notation and with what happens when a linear

transformation is applied to the coordinates, according to some replace-

ment

xa 7! tabx
b,

tab being non-singular, so that it has an inverse sa
b:

tabs
b
c ¼ da

c ¼ sa
bt

b
c:

This is formally the same as the type of linear transformation that we

considered in §§13.3,7, but we are now thinking of it in a quite diVerent

way. In those sections, our linear transformation was thought of as active,

so that the vector space V was viewed as being actually moved (over

itself). Here we are thinking of the transformation as passive in that

the objects under consideration—and, indeed, the vector space V itself—

remain pointwise Wxed, but the representations in terms of coordinates are

changed. Another way of putting this is that the basis (e1 , . . . , en) that we

had previously been using (for the representation of vector/tensor quantities

in terms of components18) is to be replaced by some other basis. See

Fig. 13.16.

In direct correspondence with what we saw in §13.7 for the active

transformation of a tensor, we Wnd that the corresponding passive change

in the components Qa...c
p...r of a tensor Q is given by[13.45]

e3

ê3

ê2

ê1

e2

e1
O

V

O

V

Fig. 13.16 A passive transformation in a vector space V leaves V pointwise fixed,

but changes its coordinate description, i.e. the basis e1, e2, . . . , en is replaced by

some other basis (case n ¼ 3 illustrated).

[13.45] Use Note 13.18 to establish this.
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Qa...c
p...r 7! tad � � � tcf Q

d...f
j...l sj

p . . . sl

r
:

Applying this to da
b, we Wnd that its components are completely

unaltered,[13.46] whereas this is not the case for gab. Moreover, after a

general such coordinate change, the components gab will be quite diVerent

from gab (inverse matrices). Thus, the reason for the additional

symbols gab and gab is simply that they can only represent the same

matrix of components as does da
b in special types of coordinate system

(‘Cartesian’ ones) and, in general, the components are just diVerent.

This has a particular importance for general relativity, where the co-

ordinate system cannot normally be arranged to have this special

(Cartesian) form.

A general coordinate change can make the matrix of components gab a

more complicated although not completely general matrix. It retains the

property of symmetry between a and b giving a symmetric matrix. The

term ‘symmetric’ tells us that the square array of components is symmet-

rical about its main diagonal, i.e. gT ¼ g (using the ‘transpose’ notation of

§13.3). In index-notation terms, this symmetry is expressed as either of the

two equivalent[13.47] forms

gab ¼ gba, gab ¼ gba,

and see Fig. 13.15b for the diagrammatic form of these relations.

What about going in the opposite direction? Can any non-singular n� n

real symmetric matrix be reduced to the component form of a Kronecker

delta? Not quite—not by a real linear transformation of coordinates.

What it can be reduced to by such means is this same form except that

there are some terms 1 and some terms �1 along the main diagonal. The

number, p, of these 1 terms and the number, q, of �1 terms is an invariant,

which is to say we cannot get a diVerent number by trying some other real

linear transformation. This invariant (p, q) is called the signature of g.

(Sometimes it is p� q that is called the signature; sometimes one just

writes þ . . .þ� . . .� with the appropriate number of each sign.) In fact,

this works also for a singular g, but then we need some 0s along the main

diagonal also and the number of 0s becomes part of the signature as well

as the number of 1s and the number of �1s. If we only have 1s, so that g is

non-singular and also q ¼ 0, then we say that g is positive-deWnite. A non-

singular g for which p ¼ 1 and q 6¼ 0 (or q ¼ 1 and p 6¼ 0) is called

Lorentzian, in honour of the Dutch physicist H.A. Lorentz (1853–1928),

whose important work in this connection provided one of the foundation

stones of relativity theory; see §§17.6–9 and §§18.1–3.

[13.46] Why?

[13.47] Why equivalent?
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An alternative characterization of a positive-deWnite matrix A, of con-

siderable importance in certain other contexts (see §20.3, §24.3, §29.3) is

that the real symmetric matrix A satisfy

xTAx > 0

for all x 6¼ 0. In index notation, this is: ‘Aabx
axb > 0 unless the vector xa

vanishes’.[13.48] We say that A is non-negative-deWnite (or positive-semi-

deWnite) if this holds but with $ in place of > (so we now allow

xTAx ¼ 0 for some non-zero x).

Under appropriate circumstances, a symmetric non-singular [ 0
2
]-tensor

gab, is called a metric—or sometimes a pseudometric when g is not

positive deWnite. This terminology applies if we are to use the quantity

ds, deWned by its square ds2 ¼ gabdxadxb, as providing us with some

notion of ‘distance’ along curves. We shall be seeing in §14.7 how

this notion applies to curved manifolds (see §10.2, §§12.1,2), and in §17.8

how, in the Lorentzian case, it provides us with a ‘distance’ measure

which is actually the time of relativity theory. We sometimes refer to the

quantity

jyj ¼ (gabv
avb)

1
2

as the length of the vector y, with index form va.

Let us return to the deWnition of the orthogonal group O(n).

This is simply the group of linear transformations in n dimensions—

called orthogonal transformations—that preserve a given positive-deWnite

g. ‘Preserving’ g means that an orthogonal transformation T has to

satisfy

gabT
a
cT

b
d ¼ gcd :

This is an example of the (active) tensor transformation rule described in

§13.7, as applied to gab (and see Fig. 13.17 for the diagrammatic form of

this equation). Another way of saying this is that the metric form ds2 of the

previous paragraph is unchanged by orthogonal transformations. We can,

if we please, insist that the components gab be actually the Kronecker

delta—this, in eVect, providing the deWnition of O(3) given in §§13.1,3—

but the group comes out the same19 whatever positive-deWnite n� n array

of gab we choose.[13.49]

orthogonal if =

[13.48] Can you conWrm this characterization?

[13.49] Explain why.

Fig. 13.17 T is an orthogonal transformation if

gabT
a
cT

b
d ¼ gcd .
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With the particular component realization of gab as the Kronecker delta,

the matrices describing our orthogonal transformations are those satisfy-

ing[13.50]

T�1 ¼ TT,

called orthogonal matrices. The real orthogonal n� n matrices provide

a concrete realization of the group O(n). To specialize to the non-reXective

group SO(n), we require that the determinant be equal to unity:[13.51]

det T ¼ 1:

We can also consider the corresponding pseudo-orthogonal groups

O(p, q) and SO(p, q) that are obtained when g, though non-singular, is

not necessarily positive deWnite, having the more general signature

(p, q). The case when p ¼ 1 and q ¼ 3 (or equivalently p ¼ 3 and q ¼ 1),

called the Lorentz group, plays a fundamental role in relativity theory, as

indicated above. We shall also be Wnding (if we ignore time-reXections)

that the Lorentz group is the same as the group of symmetries of

the hyperbolic 3-space that was described in §2.7, and also (if we ignore

space reflections) of the group of symmetries of the Riemann sphere, as

achieved by the bilinear (Möbius) transformations as studied in §8.2. It

will be better to delay the explanations of these remarkable facts until our

investigation of the Minkowski spacetime geometry of special relativity

theory (§§18.4,5). We shall also be seeing in §33.2 that these facts have a

seminal signiWcance for twistor theory.

How ‘diVerent’ are the various groups O(p, q), for pþ q ¼ n, for Wxed n?

(The positive-deWnite and Lorentzian cases are contrasted, for n ¼ 2 and

n ¼ 3, in Fig. 13.18.) They are closely related, all having the same dimen-

sion 1
2
n(n� 1); they are what are called real forms of one and the same

complex group O(n, C), the complexiWcation of O(n). This complex group

is deWned in the same way as O(n) (¼ O(n, R)), but where the linear

transformations are allowed to be complex. Indeed, although I have

phrased my considerations in this chapter in terms of real linear trans-

formations, there is a parallel discussion where ‘complex’ replaces ‘real’

throughout. (Thus the coordinates xa become complex and so do the

components of our matrices.) The only essential diVerence, in what has

been said above, arises with the concept of signature. There are complex

linear coordinate transformations that can convert a �1 in a diagonal

realization of gab into a þ1 and vice versa,[13.52] so we do not now have a

[13.50] Explain this.What isT�1 in the pseudo-orthogonal cases (deWned in the next paragraph)?

[13.51] Explain why this is equivalent to preserving the volume form ea...c, i.e. ea...cT
a
p . . . Tc

r ¼
ep...r? Moreover, why is the preservation of its sign suYcient?

[13.52] Why?
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(a) (b)

Fig. 13.18 (a) O(2,0) and O(1,1) are contrasted. (b) O(3,0) and O(1,2) are

similarly contrasted, the ‘unit sphere’ being illustrated in each case. For O(1,2)

(see §§2.4,5, §18.4), this ‘sphere’ is a hyperbolic plane (or two copies of such).

meaningful notion of signature. The only invariant20 of g, in the complex

case, is what is called its rank, which is the number of non-zero terms in its

diagonal realization. For a non-singular g, the rankhas to bemaximal, i.e. n.

When is the diVerence between these various real forms important and

when is it not? This can be a delicate question, but physicists are often

rather cavalier about the distinctions, even though these can be important.

The positive-deWnite case has the virtue that the group is compact, and

much of the mathematics is easier for such situations (see §13.7). Some-

times people blithely carry over results from the compact case to the non-

compact cases (p 6¼ 0 6¼ q), but this is often not justiWed. (For example, in

the compact case, one need only be concerned with representations that

are Wnite-dimensional, but in the non-compact case additional inWnite-

dimensional representations arise.) On the other hand, there are other

situations in which considerable insights can be obtained by ignoring the

distinctions. (We may compare this with Lambert’s discovery of the

formula, in terms of angles, of the area of a hyperbolic triangle, given in

§2.4. He obtained his formula by allowing his sphere to have an imaginary

radius. This is similar to a signature change, which amounts to allowing

some coordinates to have imaginary values. In §18.4, Fig. 18.9, I shall try
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to make the case that Lambert’s approach to non-Euclidean geometry is

perfectly justiWable.)

The diVerent possible real forms of O(n, C) are distinguished by certain

set of inequalities on the matrix elements (such as det T > 0). A feature of

quantum theory is that such inequalities are often violated in physical

processes. For example, imaginary quantities can, in a sense, have a

physically real signiWcance in quantum mechanics, so the distinction be-

tween diVerent signatures can become blurred. On the other hand, it is my

impression that physicists are often somewhat less careful about these

matters than they should be. Indeed, this question will have considerable

relevance for us in our examination of a number of modern theories (§28.9,

§31.11, §32.3). But more of this later. This is the ‘can of worms’ that I

hinted at in §11.2!

13.9 Unitary groups

The group O(n, C) provides us with one way in which the notion of a

‘rotation group’ can be generalized from the real numbers to the complex.

But there is another way which, in certain contexts, has an even greater

signiWcance. This is the notion of a unitary group.

What does ‘unitary’ mean? The orthogonal group is concerned with the

preservation of a quadratic form, which we can write equivalently as

gabx
axb or xTgx. For a unitary group, we use complex linear transform-

ations which preserve instead what is called a Hermitian form (after the

important 19th century French mathematician Charles Hermite

1822–1901).

What is a Hermitian form? Let us Wrst return to the orthogonal case.

Rather than a quadratic form (in x), we could equally have used the

symmetric bilinear form (in x and y)

g(x, y) ¼ gabx
ayb ¼ xTgy:

This arises as a particular instance of the ‘multilinear function’ deWnition

of a tensor given in §12.8, as applied to the 2
0

� �

tensor g (and putting y ¼ x,

we retrieve the quadratic form above). The symmetry of g would then be

expressed as

g(x, y) ¼ g(y, x),

and linearity in the second variable y as

g(x, yþ w) ¼ g(x, y)þ g(x, w), g(x, ly) ¼ lg(x, y):

For bilinearity, we also require linearity in the Wrst variable x, but this now

follows from the symmetry.
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A Hermitian form h(x, y) satisWes, instead, Hermitian symmetry

h(x, y) ¼ h(y, x),

together with linearity in the second variable y:

h(x, yþ w) ¼ h(x, y)þ h(x, w), h(x, ly) ¼ lh(x, y):

The Hermitian symmetry now implies what is called antilinearity in the

Wrst variable:

h(xþ w, y) ¼ h(x, y)þ h(w, y), h(lx, y) ¼ lh(x, y):

Whereas an orthogonal group preserves a (non-singular) symmetric

bilinear form, the complex linear transformations preserving a non-singu-

lar Hermitian form give us a unitary group.

What do such forms do for us? A (not necessarily symmetric) non-

singular bilinear form g provides us with a means of identifying the

vector space V, to which x and y belong, with the dual space V*. Thus, if

y belongs to V, then g(y, ) provides us with a linear map on V, mapping

the element x of V to the number g(y, x). In other words, g(y, ) is

an element of V* (see §12.3). In index form, this element of V* is the

covector vagab, which is customarily written with the same kernel letter

y, but with the index lowered (see also §14.7) by gab, according to

vb ¼ vagab:

The inverse of this operation is achieved by the raising of the index of va by

use of the inverse metric [ 2
0
]-tensor gab:

va ¼ gabvb:

We shall need the analogue of this in the Hermitian case. As before,

each choice of elementy from the vector space V provides uswith an element

h(y, ) of the dual space V*. However, the diVerence is that now h(y, )

depends antilinearly on y rather than linearly; thus h(ly, ) ¼ �llh(y, ).

An equivalent way of saying this is that h(y, ) is linear in �yy, this vector

quantity �yy being the ‘complex conjugate’ of y. We consider these complex-

conjugate vectors to constitute a separate vector space �yy. This viewpoint is

particularly useful for the (abstract) index notation, where a separate

‘alphabet’ of indices is used, say a0, b0, c0, . . . , for these complex-conjugate

elements, where contractions (summations) are not permitted between

primed and unprimed indices. The operation of complex conjugation

interchanges the primed with the unprimed indices. In the index notation,

our Hermitian form is represented as an array of quantities ha0b with one

(lower) index of each type, so
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h(x, y) ¼ ha0b�xxa0yb

(with �xxa0 being the complex conjugate of the element xa), where ‘Hermiti-

city’ is expressed as

ha0b ¼ hb0a

The array of quantities ha0b allows us to lower or raise an index, but it

now changes primed indices to unprimed ones, and vice versa, so it refers

us to the dual of the complex-conjugate space:

�vva ¼ �vva0ha0b, va0 ¼ ha0bv
b:

For the inverses of these operations—where the Hermitian form is as-

sumed non-singular (i.e. the matrix of components hab0 is non-singular)—

we need the inverse hab0 of ha0b

hab0hb0c ¼ da
c , ha0bh

bc0 ¼ dc0

a0 ,

whence[13.53]

�vva0 ¼ �vvbh
ba0 , va ¼ hab0vb0 :

Note that all primed indices can be eliminated using ha0b (and the corres-

ponding inverse hab0) by virtue of the above relations, which can be applied

index-by-index to any tensor quantity. The complex-conjugate space is

thereby ‘identiWed’ with the dual space, instead of having to be a quite

separate space.

The operation of ‘complex conjugation’—usually called Hermitian con-

jugation—which incorporates this identiWcation with the dual into the

notion of complex conjugation (though not commonly written in the

index notation) is of central importance to quantum mechanics, as well

as to many other areas of mathematics and physics (such as twistor theory,

see §33.5). In the quantum-mechanical literature this is often denoted by a

dagger ‘{’, but sometimes by an asterisk ‘*’.

I prefer the asterisk, which is more usual in the mathematical literature, so

I shall use this here—in bold type. The asterisk is appropriate here because it

interchanges the roles of the vector space V and its dual V*. A complex

tensor of valence [ p
q
] (all primed indices having been eliminated, as above) is

mapped by * to a tensor of valence [ q
p
]. Thus, upper indices become lower

and lower indices become upper under the action of *. As applied to scalars,

* is simply the ordinary operation of complex conjugation. The operation *
is an equivalent notion to the Hermitian form h itself.

The most familiar Hermitian conjugation operation (which occurs

when the components ha0b are taken to be the Kronecker delta) simply

[13.53] Verify these relations, explaining the notational consistency of hab0 .
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takes the complex conjugate of each component, reorganizing the

components so as to read upper indices as lower ones and lower indices as

upper ones. Accordingly, the matrix of components of a linear transform-

ation is taken to the transpose of its complex conjugate (sometimes called

the conjugate transpose of the matrix), so in the 2� 2 case we have

a b

c d

� �

* ¼ �aa �cc
�bb �dd

� �

:

A Hermitian matrix is a matrix that is equal to its Hermitian conjugate in

this sense. This concept, and the more general abstract Hermitian operator,

are of great importance in quantum theory.

We note that * is antilinear in the sense

(T þU)* ¼ T* þU*,

(zT)* ¼ �zzT*,

applied to tensors T and U, both of the same valence, and for any complex

number z. The action of * must also preserve products of tensors but,

because of the reversal of the index positions, it reverses the order of

contractions; in particular, when * is applied to linear transformations

(regarded as tensors with one upper and one lower index), the order of

multiplication is reversed:

(LM)* ¼M*L*:

It is very handy, in the diagrammatic notation, to depict such a conjuga-

tion operation as reXection in a horizontal plane. This interchanges upper

and lower indices, as required; see Fig. 13.19.

H
er

m
it
ia

n 
co

nj
ug

at
e

S

S* T* =T*S*
(ST)*

T ST
,

, , , ,

, , ,

,
mirrormirror

Fig. 13.19 The operation of Hermitian conjugation (*) conveniently depicted as

reflection in a horizontal plane. This interchanges ‘arms’ with ‘legs’ and reverses

the order of multiplication: (ST)� ¼ T�S�. The diagrammatic expression for the

Hermitian scalar product hyjwi ¼ y�w is given (so that taking its complex conju-

gate would reflect the diagram on the far right upside-down).
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The operation * enables us to deWne a Hermitian scalar product between

two elements y and w, of V, namely the scalar product of the covector y*

with the vector w (the diVerent notations being useful in diVerent con-

texts):

hy j wi ¼ y*� w ¼ h(y, w)

(and see Fig. 13.19), and we have

hy j wi ¼ hw j yi:

In the particular case w ¼ y, we get the norm of y, with respect to *:

k y k¼ hy j yi:

We can choose a basis (e1, e2 , . . . , en) for V, and then the components ha0b

in this basis are simply the n2 complex numbers

ha0b ¼ h(ea, eb) ¼ hea j ebi,

constituting the elements of a Hermitian matrix. The basis (e1 , . . . , en) is

called pseudo-orthonormal, with respect to *, if

hei j eji ¼
	1 if i ¼ j

0 if i 6¼ j

�

;

in the case when all the + signs are þ, i.e. when each + 1 is just 1, the

basis is orthonormal.

A pseudo-orthonormal basis can always be found, but there are

many choices. With respect to any such basis, the matrix ha0b is

diagonal, with just 1s and �1s down the diagonal. The total number of

1s, p, always comes out the same, for a given *, independently of any

particular choice of basis, and so also does the total number of �1s, q.

This enables us to deWne the invariant notion of signature (p, q) for the

operation *.

If q ¼ 0, we say that * is positive-deWnite. In this case,21 the norm of any

non-zero vector is always positive:[13.54]

y 6¼ 0 implies k y k> 0:

Note that this notion of ‘positive-deWnite’ generalizes that of §13.8 to the

complex case.

A linear transformation T whose inverse is T*, so that

T�1 ¼ T*, i:e: T T* ¼ I ¼ T*T,

[13.54] Show this.
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is called unitary in the case when * is positive-deWnite, and pseudo-unitary

in the other cases.[13.55] The term ‘unitary matrix’ refers to a matrix T

satisfying the above relation when * stands for the usual conjugate trans-

pose operation, so that T�1 ¼T.

The group of unitary transformations in n dimensions, or of (n� n)

unitary matrices, is called the unitary group U(n). More generally, we get

the pseudo-unitary group U(p, q) when * has signature (p, q).22 If the

transformations have unit determinant, then we correspondingly obtain

SU( n) and SU(p, q). Unitary transformations play an essential role

in quantum mechanics (and they have great value also in many pure-

mathematical contexts).

13.10 Symplectic groups

In the previous two sections, we encountered the orthogonal and unitary

groups. These are examples of what are called classical groups, namely the

simple Lie groups other than the exceptional ones; see §13.2. The list of

classical groups is completed by the family of symplectic groups. Symplec-

tic groups have great importance in classical physics, as we shall be seeing

particularly in §20.4—and also in quantum physics, particularly in the

inWnite-dimensional case (§26.3).

What is a symplectic group? Let us return again to the notion of a bilinear

form, but where instead of the symmetry (g(x, y) ¼ g( y, x)) required for

deWning the orthogonal group, we impose antisymmetry

s(x, y) ¼ �s( y, x),

together with linearity

s(x, yþ w) ¼ s(x, y)þ s(x, w), s(x, ly) ¼ ls(x, y),

where linearity in the Wrst variable x now follows from the antisymmetry.

We can write our antisymmetric form variously as

s(x, y) ¼ xasaby
b ¼ xTSy,

just as in the symmetric case, but where sab is antisymmetric:

sba ¼ �sab i:e: ST ¼ �S,

S being the matrix of components of sab. We require S to be non-singular.

Then sab has an inverse sab, satisfying23

[13.55] Show that these transformations are precisely those which preserve the Hermitian

correspondence between vectors v and covectors v�, and that they are those which preserve hab0 .
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sabs
bc ¼ dc

a ¼ scbsba,

where sab ¼ �sba.

We note that, by analogy with a symmetric matrix, an antisymmetric

matrix S equals minus its transpose. It is important to observe that an

n� n antisymmetric matrix S can be non-singular only if n is even.[13.56]

Here n is the dimension of the space V to which x and y belong, and we

indeed take n to be even.

The elements T of GL(n) that preserve such a non-singular antisym-

metric sab (or, equivalently, the bilinear form s), in the sense that

sabT
a
c Tb

d ¼ scd , i:e: TTS T ¼ S,

are called symplectic, and the group of these elements is called a symplectic

group (a group of very considerable importance in classical mechanics, as

we shall be seeing in §20.4). However, there is some confusion in the

literature concerning this terminology. It is mathematically more accurate

to deWne a (real) symplectic group as a real form of the complex symplectic

group Sp( 1
2
n, C), which is the group of complex Ta

b (or T) satisfying the

above relation. The particular real form just deWned is non-compact; but

in accordance with the remarks at the end of §13.7—Sp( 1
2
n, C) being semi-

simple—there is another real form of this complex group which is com-

pact, and it is this that is normally referred to as the (real) symplectic

group Sp( 1
2
n).

How do we Wnd these diVerent real forms? In fact, as with the orthog-

onal groups, there is a notion of signature which is not so well known as in

the cases of the orthogonal and unitary groups. The symplectic group of

real transformations preserving sab would be the ‘split-signature’ case of

signature ( 1
2
n, 1

2
n). In the compact case, the symplectic group has signa-

ture (n, 0) or (0, n).

How is this signature deWned? For each pair of natural numbers p and q

such that pþ q ¼ n, we can deWne a corresponding ‘real form’ of the

complex group Sp( 1
2
n, C) by taking only those elements which are also

pseudo-unitary for signature (p, q)—i.e. which belong to U(p, q) (see

§13.9). This gives24 us the (pseudo-)symplectic group Sp(p, q). (Another

way of saying this is to say that Sp(p, q) is the intersection of Sp( 1
2
n, C)

with U(p, q).) In terms of the index notation, we can deWne Sp(p, q) to be

the group of complex linear transformations Ta
b that preserve both the

antisymmetric sab, as above, and also a Hermitian matrix H of compon-

ents ha0b, in the sense that

�TTa0

b0T
a
bha0a ¼ hb0b,

[13.56] Prove this.
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where H has signature (p, q) (so we can Wnd a pseudo-orthonormal

basis for which H is diagonal with p entries 1 and q entries �1; see

§13.9).25 The compact classical symplectic group Sp( 1
2
n) is my Sp(n, 0)

(or Sp(0, n) ), but the form of most importance in classical physics is

Sp( 1
2
n, 1

2
n).[13.57]

As with the orthogonal and unitary groups, we can Wnd choices of basis

for which the components sab have a particularly simple form. We cannot

now take this form to be diagonal, however, because the only antisym-

metric diagonal matrix is zero! Instead, we can take the matrix of sab to

consist of 2� 2 blocks down the main diagonal, of the form

0 1

�1 0

� �

:

In the familiar split-signature case Sp( 1
2
n, 1

2
n), we can take the real linear

transformations preserving this form. The general case Sp(p, q) is exhibited

by taking, rather than real transformations, pseudo-unitary ones of signa-

ture (p, q).[13.58]

For various (small) values of p and q, some of the orthogonal, unitary,

and symplectic groups are the same (‘isomorphic’) or at least locally the

same (‘locally isomorphic’), in the sense of having the same Lie algebras (cf.

§13.6).26 The most elementary example is the group SO(2), which describes

the group of non-reXective symmetries of a circle, being the same as the

unitary group U(1), the multiplicative group of unit-modulus complex

numbers eiy (y real).[13.59] Of a particular importance for physics is the fact

that SU(2) and Sp(1) are the same, and are locally the same as SO(3) (being

the twofold cover of this last group, in accordance with the twofold nature

of the quaternionic representation of rotations in 3-space, as described in

§11.3). This has great importance for the quantum physics of spin (§22.8). Of

signiWcance in relativity theory is the fact that SL(2, C), being the same as

Sp(1, C), is locally the same as the non-reXective part of the Lorentz group

O(1, 3) (again a twofold cover of it). We also Wnd that SU(1, 1), Sp(1, 1), and

SO(2, 1) are the same, and there are several other examples. Particularly

noteworthy for twistor theory is the local identity between SU(2, 2) and the

non-reXective part of the group O(2, 4) (see §33.3).

The Lie algebra of a symplectic group is obtained by looking for

solutions X of the matrix equation

XTSþ S X ¼ 0, i:e: S X ¼ (S X)T,

[13.57] Find explicit descriptions of Sp(1) and Sp(1, 1) using this prescription. Can you see why

the groups Sp(n, 0) are compact?

[13.58] Show why these two diVerent descriptions for the case p ¼ q ¼ 1
2
n are equivalent.

[13.59] Why are they the same?
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so the inWnitesimal transformation (Lie algebra element) X is simply S�1

times a symmetric n� n matrix. This enables the dimensionality 1
2
n(nþ 1)

of the symplectic group to be directly seen. Note that X has to be trace-free

(i.e. trace X ¼ 0—see §13.4).[13.60] The Lie algebras for orthogonal and

unitary groups are also readily obtained, in terms, respectively, of anti-

symmetric matrices and pure-imaginary multiples of Hermitian matrices,

the respective dimensions being n(n� 1)=2 and n2.[13.61]

We note from §13.4 that, for the transformations to have unit determin-

ant, the trace of the inWnitesimal element X must vanish. This is automatic

in the symplectic case (noted above), and in the orthogonal case the

inWnitesimal elements all have unit determinant.[13.62] In the unitary case,

restriction to SU(n) is one further condition (trace X ¼ 0), so the dimen-

sion of the group is reduced to n2 � 1.

The classical groups referred to in §13.2, sometimes labelled

Am, Bm, Cm, Dm (for m ¼ 1, 2, 3, . . .), are simply the respective groups

SU(mþ 1), SO(2mþ 1), Sp(m), and SO(2m), that we have been examining

in §§13.8–10, and we see from the above that they indeed have respective

dimensionalities m(mþ 2), (2mþ 1), m(2mþ 1), and m(2m� 1), as

asserted in §13.2. Thus, the reader has now had the opportunity to catch

a signiWcant glimpse of all the classical simple groups. As we have seen,

such groups, and some of the various other ‘real forms’ (of their complex-

iWcations) play important roles in physics. We shall be gaining a little

acquaintance with this in the next chapter. As mentioned at the beginning

of this chapter, according to modern physics, all physical interactions are

governed by ‘gauge connections’ which, technically, depend crucially on

spaces having exact symmetries. However, we still need to know what a

‘gauge theory’ actually is. This will be revealed in Chapter 15.

Notes

Section 13.1

13.1. Abel was born in 1802 and died of consumption (tuberculosis) in 1829, aged 26.

The more general non-Abelian (ab 6¼ ba) group theory was introduced by the

even more tragically short-lived French mathematician Evariste Galois

(1811–1832), who was killed in a duel before he reached 21, having been up the

entire previous night feverishly writing down his revolutionary ideas involving

the use of these groups to investigate the solubility of algebraic equations, now

called Galois theory.

Symmetry groups Notes

[13.60] Explain where the equation XTS þ SX ¼ 0 comes from and why SX ¼ (SX)T. Why

does trace X vanish? Give the Lie algebra explicitly. Why is it of this dimension?

[13.61] Describe these Lie algebras and obtain these dimensions.

[13.62] Why, and what does this mean geometrically?
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13.2. We should also take note that ‘–C ’ means ‘take the complex conjugate, then

multiply by �1’, i.e. �C ¼ (�1)C.

13.3. The S stands for ‘special’ (meaning ‘of unit determinant’) which, in the present

context just tells us that orientation-reversing motions are excluded. The O

stands for ‘orthogonal’ which has to do with the fact that the motions that it

represents preserves the ‘orthogonality’ (i.e. the right-angled nature) of coordin-

ate axes. The 3 stands for the fact that we are considering rotations in three

dimensions.

13.4. There is a remarkable theorem that tells us that not only is every continuous

group also smooth (i.e. C0 implies C1, in the notation of §§6.3,6, and even C0

implies C1), but it is also analytic (i.e. C0 implies Co). This famous result, which

represented the solution of what had become known as ‘Hilbert’s 5th problem’,

was obtained by Andrew Mattei Gleason, Deane Montgomery, Leo Zippin, and

Hidehiko Yamabe in 1953; see Montgomery and Zippin (1955). This justiWes the

use of power series in §13.6.

Section 13.2

13.5. See van der Waerden (1985), pp. 166–74.

13.6. See Devlin (1988).

13.7. See Conway and Norton (1972); Dolan (1996).

Section 13.3

13.8. We shall be seeing in §14.1 that a Euclidean space is an example of an aVine

space. If we select a particular point (origin) O, it becomes a vector space.

13.9. In many places in this book it will be convenient—and sometimes essential—to

stagger the indices on a tensor-type symbol. In the case of a linear transform-

ation, we need this to express the order of matrix multiplication.

13.10. This region is a vector space of dimension r (where r < n). We call r the rank of the

matrix or linear transformation T. A non-singular n� n matrix has rank n. (The

concept of ‘rank’ applies also to rectangular matrices.) Compare Note 12.18.

13.11. For a history of the theory of matrices, see MacDuVee (1933).

Section 13.5

13.12. In those degenerate situations where the eigenvectors do not span the whole

space (i.e., some d is less than the corresponding r), we can still Wnd a canonical

form, but we now allow 1s to appear just above the main diagonal, these

residing just within square blocks whose diagonal terms are equal eigenvalues

(Jordan normal form); see Anton and Busby (2003). Apparently Weierstrauss

had (eVectively) found this normal form in 1868, two years before Jordan; See

Hawkins (1977).

Section 13.6

13.13. To illustrate this point, consider SL(n, R) (i.e. the unit-determinant elements of

GL(n, R) itself). This group has a ‘double cover’ ~SL(n, R) (provided that n 
 3)

which is obtained from SL(n, R) in basically the same way whereby we eVectively

found the double cover ~SO(3) of SO(3) when we considered the rotations

of a book, with belt attachment, in §11.3. Thus, ~SO(3) is the group of (non-

reXective) rotations of a spinorial object in ordinary 3-space. In the same way,

we can consider ‘spinorial objects’ that are subject to the more general linear

transformations that allow ‘squashing’ or ‘stretching’, as discussed in §13.3. In

this way, we arrive at the group ~SL(n, R), which is locally the same as SL(n, R),

but which cannot, in fact, be faithfully represented in any GL(m). See Note 15.9.

Notes CHAPTER 13
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13.14. This notion is well deWned; cf. Note 13.4.

Section 13.7

13.15. See Thirring (1983).

13.16. Here, again, we have an instance of the capriciousness of the naming of

mathematical concepts. Whereas many notions of great importance in this

subject, to which Cartan’s name is conventionally attached (e.g. ‘Cartan sub-

algebra, Cartan integer’) were originally due to Killing (see §13.2), what we refer

to as the ‘Killing form’ is actually due to Cartan (and Hermann Weyl); see

Hawkins (2000), §6.2. However, the ‘Killing vector’ that we shall encounter in

§30.6 is actually due to Killing (Hawkins 2000, note 20 on p. 128).

13.17. I am (deliberately) being mathematically a little sloppy in my use of the phrase

‘the same’ in this kind of context. The strict mathematical term is ‘isomorphic’.

Section 13.8

13.18. I have not been very explicit about this procedure up to this point. A basis

e ¼ (e1 , . . . , en) for V is associated with a dual basis—which is a basis

e* ¼ (e1 , . . . , en) for V*—with the property that ei� ej ¼ di
j . The components of

a [ p
q
]-valent tensor Q are obtained by applying the multilinear function of §12.8 to

the various collections of p dual basis elements and q basis elements:

Q f...h
a...c ¼ Q(e f , . . . , eh; ea , . . . , ec).

13.19. See Note 13.3.

13.20. See Note 13.10. The reader may be puzzled about why the Ta
b of §13.5 can have

lots of invariants, namely all its eigenvalues l1, l2, l3 , . . . , ln, whereas gab does

not. The answer lies simply in the diVerence in transformation behaviour

implicit in the diVerent index positioning.

Section 13.9

13.21. Note that, in the positive-deWnite case, (e*
1, e*

2 , . . . , e*
n) is a dual basis to

(e1, e2 , . . . , en), in the sense of Note 13.18.

13.22. The groups U(p, q), for Wxed pþ q ¼ n, as well as GL(n, R), all have the same

complexiWcation, namely GL(n, C), and these can all be regarded as diVerent

real forms of this complex group.

Section 13.10

13.23. We can then use sab and sab to raise and lower indices of tensors, just as with gab

and gab, so va ¼ sabv
b va ¼ sabvb (see §13.8); but, because of the antisymmetry,

we must be a little careful to make the ordering of the indices consistent. Those

readers who are familiar with the 2-spinor calculus (see Penrose and Rindler

1984, vol.1) may notice a slight notational discrepancy between our sab and the

eAB of that calculus.

13.24. I am not aware of a standard terminology or notation for these various real

forms, so the notation Sp(p, q) has been concocted for the present purposes.

13.25. In fact, every element of Sp( 1
2
n, C) has unit determinant, so we do not need an

‘SSp( 1
2
n)’ by analogy with SO(n) and SU(n). The reason is that there is an

expression (the ‘PfaYan’) for Levi-Civita’s e . . . in terms of the sab, which must

be preserved whenever the sab are.

13.26. See Note 13.17.

Symmetry groups Notes
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14
Calculus on manifolds

14.1 DiVerentiation on a manifold?

In the previous chapter (in §§13.3,6–10), we saw how symmetry groups can

act on vector spaces, represented by linear transformations of these spaces.

For a speciWc group, we can think of the vector space as possessing some

particular structure which is preserved by the transformations. This notion

of ‘structure’ is an important one. For example, it could be a metric

structure, in the case of the orthogonal group (§13.8), or a Hermitian

structure, as is preserved by a unitary group (§13.9). As noted earlier, the

representation theory of groups as actions on vector spaces has, in a

general way, great importance in many areas of mathematics and physics,

especially in quantum theory, where, as we shall see later (particularly in

§22.2), vector spaces with a Hermitian (scalar-product) structure form the

essential background for that theory.

However, a vector space is itself a very special type of space, and

something much more general is needed for the mathematics of much of

modern physics. Even Euclid’s ancient geometry is not a vector space,

because a vector space has to have a particular distinguished point, namely

the origin (given by the zero vector), whereas in Euclidean geometry every

point is on an equal footing. In fact, Euclidean space is an example of what

is called an aYne space. An aYne space is like a vector space but we

‘forget’ the origin; in eVect, it is a space in which there is a consistent

notion of parallelogram.[14.1],[14.2] As soon as we specify a particular point

as origin this allows us to deWne vector addition by the ‘parallelogram law’

(see §13.3, Fig.13.4).

[14.1] Let [a, b; c, d] stand for the statement ‘abdc forms a parallelogram’ (where a, b, d, and c

are taken cyclicly, as in §5.1). Take as axioms (i) for any a, b, and c, there exists d such that

[a, b; c, d ]; (ii) if [a, b; c, d ], then [b, a; d, c] and [a, c; b, d ]; (iii) if [a, b; c, d ] and [a, b; e, f ], then

[c, d; e, f ]. Show that, when any chosen point is singled out and labelled as the origin, this algebraic

structure reduces to that of a ‘vector space’, but without the ‘scalar multiplication’ operation, as

given in §11.1—that is to say, we get the rules of an additive Abelian group; see Exercise [13.2].

[14.2] Can you see how to generalize this to the non-Abelian case?
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The curved spacetime of Einstein’s remarkable theory of general rela-

tivity is certainly more general than a vector space; it is a 4-manifold. Yet

his notion of spacetime geometry does require some (local) structure—

over and above just that of a smooth manifold (as studied in Chapter 12).

Similarly, the conWguration spaces or the phase spaces of physical systems

(considered brieXy in §12.1) also tend to possess local structures. How do

we assign this needed structure? Such a local structure could provide a

measure of ‘distance’ between points (in the case of a metric structure), or

‘area’ of a surface (as is speciWed in the case of a symplectic structure, cf.

§13.10), or of ‘angle’ between curves (as with the conformal structure of a

Riemann surface; see §8.2), etc. In all the examples just referred to, vector-

space notions are what are needed to tell us what this local geometry is, the

vector space in question being the n-dimensional tangent space TT p of a

typical point p of the manifold M (where we may think of TT p as the

immediate vicinity of p inM ‘inWnitely stretched out’; see Fig. 12.6).

Accordingly, the various group structures and tensor entities that we

encountered in Chapter 13 can have a local relevance at the individual

points of a manifold. We shall Wnd that Einstein’s curved spacetime indeed

has a local structure that is given by a Lorentzian (pseudo)metric (§13.8) in

each tangent space, whereas the phase spaces (cf. §12.1) of classical mech-

anics have local symplectic structures (§13.10). Both of these examples of

manifolds with structure play vital roles in modern physical theory. But

what form of calculus can be applied within such spaces?

As just remarked, the n-dimensional manifolds that we studied in Chap-

ter 12 need only to be smooth, with no further local structure speciWed.

In such an unstructured smooth manifold M, there are relatively few

meaningful calculus-based operations. Most importantly, we do not even

have a general notion of diVerentiation that can be applied generally

withinM.

I should clarify this point. In any particular coordinate patch, we could

certainly simply diVerentiate the various quantities of interest with respect

to each of the coordinates x1, x2 , . . . , xn in that patch, by use of the

(partial) derivative operators q=qx1, q=qx2 , . . . , q=qxn (see §10.2). But in

most cases, the answers would be geometrically meaningless, because they

depend on the speciWc (arbitrary) choice of coordinates that has been

made, and the answers would not generally match as we pass from one

patch to another (cf. Fig. 10.7).

We did, however, take note of one important notion of diVerentiation,

in §12.6, that actually does apply in a general smooth (unstructured)

n-manifold—agreeing from one patch to the next—namely the exterior

derivative of a diVerential form. Yet this operation is somewhat limited in

its scope, as it applies only to p-forms and, moreover, does not give much

information about how such a p-form is varying. Can we give a more

Calculus on manifolds §14.1
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complete notion of ‘derivative’ of some quantity on a general smooth

manifold, say of a vector or tensor Weld? Such a notion would have to be

deWned independently of any particular coordinates that might happen to

have been chosen to label points in some coordinate patch. It would,

indeed, be good to have some kind of coordinate-independent calculus

that can be applied to structures on manifolds, and which would enable us

to express how a vector or tensor Weld varies as we move from place to

place. But how can this be achieved?

14.2 Parallel transport

Recall from §10.3 and §12.3 that in the case of a scalar Weld F on a general

smooth n-manifold M, we were indeed able to provide an appropriate

measure of its ‘rate of change’, namely the 1-form dF, where dF ¼ 0 is the

condition that F be constant (throughout connected regions ofM). How-

ever, this idea will not work for a general tensor quantity. It will not even

work for a vector Weld j. Why is this? One trouble is that in a general

manifold we have no appropriate notion of j being constant (as we shall

see in a moment), whereas any self-respecting diVerentiation (‘gradient’)

operation that applies to j ought to have the property that its vanishing

signals the constancy of j (as, indeed, dF ¼ 0 signals the constancy of a

scalar Weld F). More generally, we would expect that for a ‘non-constant’

j, such a derivative operation ought to be measuring j’s deviation from

constancy.

Why is there a problem with this notion of vector ‘constancy’, on a

general n-manifold M? A constant vector Weld j, in ordinary Euclidean

space, should have the property that all the ‘arrows’ of its geometrical

description are parallel to each other. Thus, some kind of notion of

‘parallelism’ would have to be part of M’s structure. One might worry

about this, bearing in mind the issue of Euclid’s Wfth postulate—the

parallel postulate—that was central to the discussion of Chapter 2. Hyper-

bolic geometry, for example, does not admit vector Welds that could

unambiguously considered to be everywhere ‘parallel’. In any case, a

notion of ‘parallelism’ is not something thatM would possess merely by

virtue of its being a smooth manifold. In Fig. 14.1, the diYculty is

illustrated in the case of a 2-manifold pieced together from two patches

of Euclidean plane. The normal Euclidean notion of ‘parallel’ is not

consistent from one patch to the next.

In order to gain some insights as to what kind of notion of parallelism is

appropriate, it will be helpful for us Wrst to examine the intrinsic geometry of

an ordinary 2-dimensional sphere S2. Let us choose a particular point p on

S2 (say, at the north pole, for deWniteness) and a particular tangent vector y

§14.2 CHAPTER 14

294



Inconsistent
parallelisms

North pole p
'Greenwich
meridian'

p

p1

p2

p3

p4

c

(a) (b)

u u

Fig. 14.2 Parallelism on the sphere S2. Choose p at the north pole, with

tangent vector y pointing along the Greenwich meridian. Which tangent

vectors, at other points of S2, are we to regard to being ‘parallel’ to y? (a)

The direct Euclidean notion of ‘parallel’, from the embedding of S2 in E
3,

does not work because (except along the meridian perpendicular to the

Greenwich meridian) the parallel ys do not remain tangent to S2. (b)

Remedy this, moving y parallel along a given curve g, by continually projecting

back to tangency with the sphere. (Think of g as made up of large number of

tiny segments p0 p1, p1 p2, p2 p3 , . . . , projecting back at each stage. Then take

the limit as the segments are made smaller and smaller.) This notion of

parallel transport is indicated for the Greenwich meridian, but also for a general

curve g.

at p (say pointing along the Greenwich meridian; see Fig. 14.2a). Which

other tangent vectors, at other points of S2, are we to regard to being

‘parallel’ to y? If we simply use the Euclidean notion of ‘parallel’ that is

inherited from the standard embedding of S2 in Euclidean 3-space,

Fig. 14.1 The Euclidean

notion of ‘parallel’ is likely to

be inconsistent on the overlap

between coordinate patches.

Calculus on manifolds §14.2
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then we Wnd that at most points q of S2 there are no tangent vectors

to S2 at all that are ‘parallel’ to y in this sense, since the tangent

plane at q does not usually contain the direction of y. (Only the

great circle through p that is perpendicular to the Greenwich meridian

at p contains points at which there are tangent vectors to S2 that would

be ‘parallel’ to y in this sense.) The appropriate notion of parallelism,

on S2, should refer only to tangent vectors, so we must do the best we

can to pull the direction of y back into the tangent plane of q, as we

gradually move q away from p. In fact, this idea works, and it works

beautifully, but there is now a new feature in that the notion of

parallelism that we get is dependent on the path along which we move

q away from p.1 This path-dependence in the concept of ‘parallelism’ is

the essential new ingredient, and versions of it underlie all the success-

ful modern theories of particle interactions, in addition to Einstein’s

general relativity.

Let us try to understand this a little better. Let us consider a path g
on S2, starting from the point p and ending at some other point q on

S2. We shall imagine that g is made up of a large number, N, of

tiny segments p0p1, p1p2, p2p3 , . . . , pN�1pN , where the starting point

is p0 ¼ p and the Wnal segment ends at pN ¼ q. We envisage moving y
along g, where along each one of these segments pr�1pr we move y
parallel to itself—in our earlier sense of using the ambient Euclidean

3-space—and then project y into the tangent space at pr. See Fig. 14.2b.

By this procedure we end up with a tangent vector at q which we can think of

as having been, in a rough sense, slid parallel to itself along g from p to q, as

nearly as is possible to do totally within the surface. In fact this procedure

will depend slightly on how g is approximated by the succession of segments,

but it can be shown that in the limit, as the segments get smaller and smaller,

we get a well-deWned answer that does not depend upon the precise detailed

way in which we break g up into segments. This procedure is referred to as

parallel transport of y along g. In Fig. 14.3, I have indicated what this

parallel transport would look like along Wve diVerent paths (all great circles)

starting at p.

What, then, is this path-dependence, referred to above? In Fig. 14.4,

I have marked points p and q on S2 and two paths from p to q, one

of which is the direct great-circle route and the other of which

consists of a pair of great-circle arcs jointed at the intermediate point r.

From the geometry of Fig. 14.3, we see that parallel transport

along these two paths (one having a corner on it, but this is not important)

gives two quite diVerent Wnal results, diVering from each other,

in this case, by a right-angle rotation. Note that the discrepancy is

just a rotation of the direction of the vector. There are general reasons

that a notion of parallel transport deWned in this particular way

§14.2 CHAPTER 14
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p

p

r
q

Final result
depends on path

will always preserve the length of the vector. (However, there are other

types of ‘parallel transport’ for which this is not the case. These issues will

have importance for us in later sections (§14.8, §§15.7,8, §19.4.) We can see

this angular discrepancy in an extreme form when our path g is a closed

loop (so that p ¼ q), in which case there is likely to be a discrepancy

between the initial and the Wnal directions of the parallel-transported

tangent vector. In fact, for an exact geometrical sphere of unit radius,

this discrepancy is an angle of rotation which, when measured in radians,

is precisely equal to the total area of the loop (with regions surrounded in

the negative sense counting negatively).[14.3]

[14.3] See if you can conWrm this assertion in the case of a spherical triangle (triangle on S2

made up of great-circle arcs) where you may assume the Hariot’s 1603 formula for the area of a

spherical triangle given in §2.6.

Fig. 14.3 Parallel transport of y along

Wve diVerent paths (all great circles).

Fig. 14.4 Path dependence of

parallel transport. This is illus-

trated using two distinct paths

from p to q, one of which is a

direct great-circle route, the other

consisting of a pair of great-circle

arcs jointed at an intermediate

point r. Parallel transport along

these two paths gives results at q

diVering by a right-angle rota-

tion.
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14.3 Covariant derivative

How can we use a concept of ‘parallel transport’ such as this to deWne an

appropriate notion of diVerentiation of vector Welds (and hence of tensors

generally)? The essential idea is that we can compare the way in which a

vector (or tensor) Weld actually behaves in some direction away from a

point p with the parallel transport of the same vector taken in that same

direction from p, subtracting the latter from the former. We could apply

this to a Wnite displacement along some curve g, but for deWning a (Wrst)

derivative of a vector Weld, we require only an inWnitesimal displacement

away from p, and this depends only on the way in which the curve ‘starts

out’ from p; i.e. it depends only upon the tangent vector w of g at p

(Fig. 14.5). It is usual to use a symbol = to denote the notion of diVer-

entiation, arising in this kind of way, referred to as a covariant derivative

operator or simply a connection.

A fundamental requirement of such an operator (and which turns out to

be true for the notion deWned in outline above for S2), it depends linearly

on the vector w. Thus, writing =
w

for the covariant derivative deWned by the

displacement (direction) of w, for two such displacement vectors w and u,

this must satisfy

=
wþu
¼ =

w
þ =

u
,

and for a scalar multiplier l:

p

w

x
M

Fig. 14.5 The notion of cov-

ariant derivative can be under-

stood in relation to parallel

transport. The way in which a

vector Weld j onM varies

from point to point (black-

headed arrows) is measured by

its departure from that stand-

ard provided by parallel trans-

port (white-headed arrows).

This comparison can be made

all along a curve g, (starting at

p), but for the covariant Wrst

derivative =
w

at p we need to

know only the tangent vector

w to g at p, which determines

the covariant derivative =
w
j of

j at p in the direction w.
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=lw ¼ l=
w
:

It may seem that placing the vector symbol beneath the = looks notation-

ally awkward—as indeed it is! However, there is a genuine confusion

between the mathematician’s and the physicist’s notation in the use of an

expression such as ‘=w’. To our mathematician, this would be likely to

denote the operation that I am using ‘=
w
’ for here, whereas our physicist

would be likely to interpret the w as an index and not as a vector Weld. In

the physicist’s notation, we would express the operator =
w

as

=
w
¼ wara,

and the above linearity simply reXects a consistency in the notation:

(wa þ ua)ra ¼ wara þ uara and (lwa)ra ¼ l(wara):

The placing of a lower index onr is consistent with its being a dual entity

to a vector Weld (as is reXected in the above linearity; see §12.3), i.e. = is a

covector operator (meaning an operator of valence [ 0
1
]). Thus, when = acts

on a vector Weld j (valence [ 1
0
]), the resulting quantity =j is a [ 1

1
]-valent

tensor. This is made manifest in the index notation by the use of the notation

rax
b for the component (or abstract–index) expression for the tensor =j. In

fact, there is a naturalway to extend the scopeof the operator = fromvectors

to tensorsof general valence, theactionof =ona [ p
q
]-valent tensorTyielding

a [ p
qþ1

]-valent tensor =T. The rules for achieving this can be conveniently

expressed in the index notation, but there is an awkwardness in the math-

ematician’s notation that we shall come to in a moment.

In its action on vector Welds, = satisWes the kind of rules that the

diVerential operator d of §12.6 satisWes:

=(j þ h) ¼ =j þ =h

and the Leibniz law

=(lj) ¼ l=j þ j=l,

where j and h are vector Welds and l is a scalar Weld. As part of the normal

reqirements of a connection, the action of = on a scalar is to be identical

with the action of the gradient (exterior derivative) d on that scalar:

=F ¼ dF:

The extension of = to a general tensor Weld is uniquely determined[14.4] by

the following two natural requirements. The Wrst is additivity (for tensors

T and U of the same valence)

[14.4] Explain why unique. Hint: Consider the action of = on a � j, etc.
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=(T þU) ¼ =T þ =U

and the second is that the appropriate form of Leibniz law holds. This

Leibniz law is a little awkward to state, particularly in the mathematician’s

notation, which eschews indices. The rough form of this law (for tensors T

and U of arbitrary valence) is

=(T�U) ¼ (=T)�U þ T�=U ,

but this needs explanation. The dot � is to indicate some form of contracted

product, where a set of upper and lower indices of T is contracted with a set

of lower and upper indices of U (allowing that the sets could be vacuous, so

that the product becomes an outer product, with no contractions at all). In

the above formula, the contractions in both terms on the right-hand side are

to mirror those on the left-hand side exactly, and the index letter on the = is

to be the same throughout the expression.

There is an especial awkwardness with the mathematician’s notation—

where indices are not referred to—in writing down the formula that

expresses just what we mean by the tensor Leibniz law. This is slighly

alleviated if we use =
w

instead of = since the w keeps track of the index

on the =, and we can do something similar with the other indices if

we wish, contracting each one with a vector or covector Weld (not acted

on by =). In my own opinion, things are clearer with indices, but much

more so in the diagramatic notation where diVerentiation is denoted by

drawing a ring around the quantity that is being diVerentiated. In

Fig. 14.6, I have illustrated this with a representative example of the tensor

Leibniz law.

All these properties would also be true of the ‘coordinate derivative’

operator q=qxa in place ofra. In fact, in any one coordinate patch, we can

use q=qxa to deWne a particular connection in that patch, which I shall call

the coordinate connection. It is not a very interesting connection, since the

coordinates are arbitrary. (It provides a notion of ‘parallelism’ in which all

12 a{xbk(e
bc [d Dgh]

f )c } = + +

Fig. 14.6 In the diagrammatic notation, covariant diVerentiation is conveniently

denoted by drawing a ring around the quantity being diVerentiated. This is

illustrated here with example of the tensor Leibniz law applied to

ra{x
bl(e

bc[dD
f )c
gh] } (see Fig. 12.17). (The antisymmetry factor gives the ‘12’.)
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the coordinate lines count as ‘parallel’.) On the overlap between two

coordinate patches, the connection deWned by the coordinates on

one patch would usually not agree with that deWned on the other (see

Fig. 14.1). Although the coordinate connection is not ‘interesting’ (cer-

tainly not physically interesting), it is quite often useful in explicit expres-

sions. The reason has to do with the fact that, if we take the diVerence

between two connections, the action of this diVerence on some tensor

quantity T can always be expressed entirely algebraically (i.e. without

any diVerentiation) in terms of T and a certain tensor quantity G of

valence [ 1
2
].[14.5] This enables us to express the action of = on

any tensor T explicitly in terms of the coordinate derivatives2 of the

components Ta...c
d...f together with some additional terms involving the com-

ponents Ga
bc.

[14.6]

14.4 Curvature and torsion

Acoordinate connection is a rather special kind of connection in that, unlike

the general case, it deWnes a parallelism that is independent of the path. This

has to do with the fact (already noted in §10.2, in the

form q2f =qxqy ¼ q2f =qyqx) that coordinate derivative operators commute:

q2

qxaqxb
¼ q2

qxbqxa
:

Another way of saying this is that the quantity q2=qxaqxb is symmetric (in its

indicesab).We shall be seeingwhat this has todowith thepath independence

of parallelism shortly. For a general connection =, this symmetry property

does not hold for rarb, its antisymmetric part r[arb] giving rise to two

special tensors, one of valence [ 1
2
] called the torsion tensor t and the other of

valence [ 1
3
] called the curvature tensor R. Torsion is present when the action

ofr[arb] on a scalar quantity fails to vanish. In most physical theories, = is

[14.5] See if you can show this, Wnding the expression explicitly. Hints: First look at the action

of the diVerence between two connections on a vector Weld j, giving the answer in the index form

xcGa
bc; second, show that this diVerence of connections acting on a covector a has the index form

�acGc
ba; third, using the deWnition of a [ p

q
]-valent tensor T as a multilinear function of q vectors on

p covectors (cf. §12.8), Wnd the general index expression for the diVerence between the connections

acting on T.

[14.6] As an application of this, take the two connections to be = and the coordinate

connection. Find a coordinate expression for the action of = on any tensor, showing how to

obtain the components Ga
bc explicitly from Ga

b1 ¼rbd
a
1 , . . . , Ga

bn ¼ rbd
a
n, i.e. in terms of the action

of = on each of the coordinate vectors da
1 , . . . , da

n. (Here a is a vector index, which may be thought

of as an ‘abstract index’ in accordance with §12.8, so that ‘da
1’ etc. indeed denote vectors and not

simply sets of components, but n just denotes the dimension of the space. Note that the coordinate

connection annihilates each of these coordinate vectors.)
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taken to be torsion-free, i.e. t ¼ 0, and this certainly makes life

easier. But there are some theories, such as supergravity and the Einstein–

Cartan–Sciama–Kibble spin/torsion theories which employ a non-zero tor-

sion thatplaysa signiWcantphysical role; seeNote19.10, §31.3.When torsion

is present, its index expression tab
c, antisymmetric in ab, is deWned by[14.7]

(rarb �rbra)F ¼ tab
crcF:

The curvature tensorR, in the torsion-free case,[14.8] canbedeWned3 by[14.9]

(rarb �rbra)j
d ¼ Rabc

djc:

As is common in this subject, we run into daunting expressions with

many little indices, so I recommend the diagrammatic version of these key

expressions, e.g. Fig. 14.7a,b. In any case, I also recommend that indexed

quantities be read, where appropriate, as tensors with abstract indices, as

in §12.8 (Numerous diVerent conventions exist in the literature about

index orderings, signs, etc. I am imposing upon the reader the ones that

I tend to use myself—at least in papers of which I am sole author!) The

fact that Rabc
d is antisymmetric in its Wrst pair of indices ab, namely

Rbac
d ¼ �Rabc

d ,

(see Fig. 14.7c) is evident from the corresponding antisymmetry of

rarb �rbra ¼ 2r[arb]. We shall see the signiWcance of this antisymme-

try shortly. In the torsion-free case we have an additional symmetry

relation[14.10] (Fig. 14.7d)

R[abc]
d ¼ 0, i:e: Rabc

d þ Rbca
d þ Rcab

d ¼ 0:

This relation is sometimes called ‘the Wrst Bianchi identity’. I shall call it the

Bianchi symmetry. The term Bianchi identity (Fig. 14.7e) is normally re-

served for the ‘second’ such identity which, in the absence of torsion, is[14.11]

[14.7] Explain why the right-hand side must have this general form; Wnd the components ta
bc in

terms of Ga
bc. See Exercise [14.6].

[14.8] Show what extra term is needed to make this expression consistent, when torsion is

present.

[14.9] What is the corresponding expression for rarb �rbra acting on a covector? Derive

the expression for a general tensor of valence [ p
q
].

[14.10] First, explain the ‘i.e.’; then derive this from the equation deWning Rabc
d , above, by

expanding out r[arb(xdrd]F). (Diagrams can help.)

[14.11] Derive this from the equation deWning Rabc
d , above, by expanding out r[arbrd]j

e in

two ways. (Diagrams can again help.)
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R    dabc

, ,
= =   −

= 0,  i.e. + + = 0, = 0

(a)

(d) (e)

(b) (c)

Fig. 14.7 (a) A convenient diagrammatic notation for the curvature tensor Rabc
d .

(b) The Ricci identity (rarb �rbra)j
d ¼ Rabc

djc. (c) The antisymmetry

Rbac
d ¼ �Rabc

d . (d) The Bianchi symmetry R[abc]
d ¼ 0, which reduces to

Rabc
d þ Rbca

d þ Rcab
d ¼ 0. (e) The Bianchi identity r[aRbc]d

e ¼ 0.

r[aRbc]d
e ¼ 0, i:e:raRbcd

e þrbRcad
e þrcRabd

e ¼ 0:

The Bianchi identity is the linchpin of the Einstein Weld equation, as we

shall be seeing in §19.6.

Curvature is the essential quantity that expresses the path dependence

of the connection (at least on the local scale). If we envisage transporting

a vector around a small loop in the space M, using the notion of

parallel transport deWned by =, then we Wnd that it is R that measures

how much that the vector has changed when we return to the starting

point. It is easiest to think of the loop as an ‘inWnitesimal parallelogram’

drawn in the space M. (Such parallelograms adequately ‘exist’ when =
is torsion-free, as we shall see.) However, various notions here need

clariWcation Wrst.

14.5 Geodesics, parallelograms, and curvature

First, in order to build ourselves a parallelogram, let us consider the

concept of a geodesic, as deWned by the connection =. Geodesics are

important to us for other reasons. They are the analogues of the straight

lines of Euclidean geometry. In our example of the sphere S2, considered

above (Figs. 14.2–14.4), the geodesics are great circles on the sphere. More

generally, for a curved surface in Euclidean space, the curves of minimum

length (as would be taken up by a string stretched taut along the surface)

are geodesics. We shall be seeing later (§17.9) that geodesics have a

fundamental signiWcance for Einstein’s general relativity, representing

the paths in spacetime that describe freely falling bodies. How does our
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connection = provide us with a notion of geodesic? Basically, a geodesic is

a curve g that continues along ‘parallel to itself’, according to the parallel-

ism deWned by =. How are we to express this requirement precisely?

Suppose that the vector t (i.e. ta) is tangent to g, all along g. The require-

ment that its direction remains parallel to itself along g can be expressed as4

=
t
t / t, i:e: ta=at

b / tb,

(where the symbol ‘/’ stands for ‘is proportional to’; see §12.7). When this

condition holds, t can stretch or shrink as we follow it along g, but its

direction ‘keeps pointing the same way’, according to the parallelism

notion deWned by =. If we wish to assert that this ‘stretching or shrinking’

does not take place, so that the vector t itself remains constant along g,
then we demand the stronger condition that the tangent vector t be

parallel-transported along g, i.e. that

=
t
t ¼ 0, i:e: tarat

b ¼ 0,

holds all along g, where the vector t (with index form ta) is tangent to g,
along g.

According to this stronger equation, not just the direction of t, but also

the ‘scale’ of t is kept constant along g. What does this mean? The Wrst

thing to note is that any curve (not necessarily a geodesic), parameterized

by an (appropriately smooth) coordinate u, is associated with a particular

choice of scaling for its tangent vectors t along the curve. This is such that t

stands for diVerentiation (d/du) with respect to u along the curve. We can

write this condition, alternatively, as

t(u) ¼ 1

or as

=
t
u ¼ 1, i:e: ta=au ¼ 1

along the curve.[14.12]

In the case of a geodesic g, the stronger choice of t-scaling for which

=
t
t ¼ 0 is associated with a particular type of parameter u, known as an

aYne parameter[14.13] along g. See Fig. 14.8. When we have an appropriate

notion of ‘distance’ along curves, we can usually choose our aYne param-

[14.12] Demonstrate the equivalence of all these conditions.

[14.13] Show that if u and v are two aYne parameters on g, with respect to two diVerent choices

of t, then v ¼ Auþ B, where A and B are constant along g.
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eter to be this measure of distance. But aYne parameters are more general.

For example, in relativity theory, it turns out that we need such parameters

for light rays, the appropriate ‘distance measure’ being useless here, be-

cause it is zero! (See §17.8 and §18.1.)

Let us now try to construct a parallelogram out of geodesics. Start at

some point p in M, and draw two geodesics l and m in M out from p,

with respective tangent vectors L and M at p and respective aYne

parameters ‘ and m. Choose some positive number e and measure out

an aYne distance ‘ ¼ e along l from p to reach the point q and also an

aYne distance m ¼ e along m from p to reach r; see Fig. 14.9a. (Intui-

tively, we may think of the geodesic segments pq and pr having the

‘arrow lengths’ of eL and eM respectively, for some small e.) To com-

plete the parallelogram, we need to move oV from q along a new geodesic

m0, in a direction which is ‘parallel’ to M. To achieve this ‘parallel’

condition, we move M from p to q along l by parallel transport (which

means we require M to satisfy rLM ¼ 0 along l). Now, we try to locate

the Wnal vertex of the parallelogram at the point s which is measured out

from q by an aYne distance m ¼ 1 along m0. However, we could alterna-

tively try to position this Wnal vertex by proceeding the other way

around: move out from r an aYne distance ‘ ¼ e along l0 to a Wnal

point s0 where the geodesic l0 starts oV from r in the direction of M

which has been carried from p to r along m by parallel transport. For a

thoroughly convincing parallelogram, we should require these alternative

Wnal vertices s and s0 to be the same point (s ¼ s0)!
However, except in very special cases (such as Euclidean geometry),

these two points will be diVerent. (Recall our attempts to construct a

square in §2.1!) These points will not be ‘very’ diVerent, in a certain sense,

Geodesics,
tangent

N
on

-a
ff
in

e

t

A
ff
in

e

Equal u-intervals
marked off, t (u)=1

t=
o

t

t

t

t∝
t

Fig. 14.8 For any (suitably

smooth) parameter u deWned

along a curve g, a Weld of

tangent vectors t to g is naturally

associated with u so that, along

g, t stands for d/du (equivalently

t(u) ¼ 1, or tarau ¼ 1). If g is a

geodesic, u is called an aYne

parameter if t is parallel-trans-

ported along g, so =
t
t ¼ 0 rather

than just =
t
t / t. An aYne

parameter is ‘evenly spaced’

along g, according to r.
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k
k�

m�

m

s�

ε L�

ε M�

ε L

ε M
r

p
m

l

q

s
M

O(ε)

O(ε) O(ε)

O(ε)

O(ε3) O(ε2)

(a) (b) (c)

Fig. 14.9 (a) Try to make parallelogram out of geodesics. Take two geodesics

l, m, through p, inM, with respective tangent vectors L, M at p and correspond-

ing aYne parameters l, m. Take q an aYne distance l ¼ e along l from p, and r an

aYne distance m ¼ e along m from p (with e > 0 a Wxed small number). The

geodesic segments pq and pr have respective ‘arrow-lengths’ eL, eM . To make

the parallelogram, move M from p to q along l by parallel transport (=
L
M ¼ 0

along l) giving us a neighbouring geodesic m0 to m, extending from q to s along m0

by an aYne distance e along the new ‘parallel’ arrow eM 0. Similarly, move L from

p to r by parallel transport along m, and extend from r to s0 by a parallel arrow eL0

measured out from q an aYne distance m ¼ e along l0. (b) Generally s 6¼ s0 and the

parallelogram fails to close exactly, but this gap is only O(e3) if the torsion t
vanishes. (c) If there is a non-zero torsion t, this will show up as an O(e2) term.

if the vectors eL and eM are taken to be appropriately ‘small’. But exactly

how diVerent they are has to do with the torsion t. In order to understand

this properly we need rather more in the way of calculus notions than I

have provided up until now. The essential point is that we can think of the

relevant deviations from Euclidean geometry as showing up at some scale

that is dependent on the choice of our small quantity e. We are not so

concerned with the actual size of these measures of deviation from flatness,

but with the rate at which they tend to zero as e gets smaller and smaller.

Thus, we are not particularly interested in the precise values of these

quantities but we want to know whether such a quantity Q perhaps

approaches zero as fast as e, or e2, or e3, or perhaps some other speciWed

function of e. (We have already seen something of this kind of thing in

§13.6.) Here ‘as fast as’ means that, when expressed in some coordinate

system, the absolute values of the components of Q are smaller than a

positive constant times e, or times e2, or times e3, or times some other

speciWed function of e, as the case may be. (Hence ‘as fast as’ includes

‘faster than’!) In these cases, we would say, respectively, that Q is of order
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e, or e2, or e3, etc., and we would write this O(e), or O(e2), or O(e3), etc.

This is independent of the particular choice of coordinates, which is

one reason that this notion of ‘order of smallness’ is a sensible and

powerful notion. My description here has been very brief, and I refer the

uninitiated interested reader to the literature concerning this remarkable

and ubiquitous topic.5 Intuitively, we just need to bear in mind that O(e3)
means very much smaller than O(e2), which is itself much smaller than

O(e), etc.

Let us return to our attempted parallelogram. The original vectors

eL and eM, at p, are both O(e), so the sides pq and pr are both O(e), and

so also will be qs and rs’. How big do we expect the ‘gap’ ss’ to be?

The answer is that, if the connection is torsion-free, then ss’ is always

O(e3). See Fig. 14.9b. In fact, this property characterizes the torsion-free

condition completely. If a non-zero torsion t is present, then this will

show up in (some) parallelograms, as an O(e2) term. See Fig. 14.9c.[14.14]

Sometimes we say (rather loosely) that the vanishing of torsion is

the condition that parallelograms close (by which we mean ‘close to

order e2’).
Suppose, now, that the torsion vanishes. Can we use our parallelogram

to interpret curvature? Indeed we can. Let us suppose that we have a

third vector N at p, and we carry this by parallel transport around our

parallelogram from p to s, via q, and we compare this with transporting it

from p to s’, via r. (This comparison makes sense at order e2, when

the torsion vanishes, because then the gap between s and s’ is O(e3)
and can be ignored. When the torsion does not vanish, we have to worry

about the additional torsion term; see Exercise [14.7].) We Wnd the answer

for the difference between the result of the pqs transport and the prs’
transport to be

e2LaMbNcRabc
d :

This provides us with a very direct geometrical interpretation of the

curvature tensor R; see Fig. 14.10. (An equivalent version of this interpret-

ation is obtained if we think of transporting N all the way around the

parallelogram, starting and ending at the same point p, where we

ignore O(e3) discrepancies in the vertices of the parallelogram. The diVer-

ence between the starting and Wnishing values of N is again the above

quantity e2LaMbNcRabc
d .)

Recall the antisymmetry of Rabc
d in ab. This means that the above

expression is sensitive only to the antisymmetric part, L[aMb], of LaMb,

i.e. of the wedge product L ^M ; see §11.6. Thus, it is the 2-plane element

spanned by L and M at p that is of relevance. In the case whenM is itself a

[14.14] Find this term.
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m
k
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εL

εM�

εM
N

p

r

q

s
s�

Difference in
N-vectors is
measure of
curvature :
ε2Rabcd LaMbNc

2-surface, there is just one independent curvature component (since

the 2-plane element has to be tangent to M at p). This component

provides us with the Gaussian curvature of a 2-surface that I alluded to

in §2.6, and which serves to distinguish the local geometries of

sphere, Euclidean plane, and hyperbolic space. In higher dimensions,

things are more complicated, as there are more components of

curvature arising from the diVerent possible choices of 2-plane element

L ^M .

There is a particular version of this geometrical interpretation of

curvature that has especial signiWcance. This occurs if the vector N

is chosen to be the same as L. Then we can think of the sides pq and rs’
of our parallelogram as being segments of two nearby geodesics g and g0,
respectively, and the vector L is tangent to these geodesics. The vector

eM at p measures the displacement of g away from g0 at the point p.

M is sometimes called a connecting vector. The geodesics g and g0

start out parallel to each other (as compared at the two ‘ends’ of this

connecting vector, i.e. along pr). Carrying the vector L (¼N) to s’ by

parallel transport along the second route prs’ leaves it tangent to the

geodesic g0 at the point s’. But if we take L to s by parallel transport

along the Wrst route pqs, then we arrive at the starting vector for

another geodesic g00 nearby to g, where g00 is starting out parallel to g at

the slightly ‘later’ point q. The O(e2) diVerence between these two versions

of L (one at s’ and the other at s), namely e2LaMbLcRabc
d , measures

the ‘relative acceleration’ or ‘geodesic deviation’ of g0 away from g. See

Fig. 14.11. (This geodesic deviation is mathematically described by what

is known as the Jacobi equation.) In Fig. 14.12, I have illustrated this

Fig. 14.10 Use the parallelo-

gram to interpret curvature,

when t ¼ 0. Carry a third

vector N, by parallel transport

from p to s via q, comparing

this with transporting it from p

to s0 via r. The O(e2) term

measuring the diVerence is

e2LaMbNcRabc
d , i.e. e2 R (L,

M, N), providing a direct geo-

metrical interpretation of the

curvature tensor R.
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(a) (b)

Fig. 14.12 Geodesic deviation whenM is a 2-surface (a) of positive (Gaussian)

curvature, when the geodesics g, g0 bend towards each other, and (b) of negative

curvature, when they bend apart.

geodesic deviation whenM is a 2-surface of positive and negative (Gauss-

ian) curvature, respectively. When the curvature is positive, the neighbour-

ing geodesics, starting parallel, bend towards each other; when it is

negative, they bend apart. We shall see the profound importance of this

for Einstein’s general relativity in §17.5 and §19.6.

14.6 Lie derivative

In the above discussion of the path dependence of parallelism, for a

connection =, I have been expressing things using the physicist’s index

Fig. 14.11 Geodesic deviation: choose N ¼ L in

the parallelogram of Fig. 14.10. The sides pq and rs0

are segments of two neighbouring geodesics g and g0

(g being l and g0 being l0) starting from p and r,

respectively, with parallel-propagated tangent

vectors L and L0, the connecting vector at p being

M. The geodesic deviation between g and g0 is
measured by the diVerence between the results of

parallel displacement of L along the routes prs0 and

pqs, which is basically e2LaMbLcRabc
d .
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notation. In the mathematician’s notation, the direct analogues of

these particular expressions are not so easily written down. Instead, it

becomes natural to follow a slightly diVerent route. (It is remarkable

how diVerences in notation can sometimes drive a topic in conceptually

diVerent directions!) This route involves another operation of diVerentia-

tion, known as Lie bracket—which is a more general form of the operation

of the same name introduced in §13.6. This, in turn, is a particular

instance of an important concept known as Lie derivative. These notions

are actually independent of any particular choice of connection (and

therefore apply in a general unstructured smooth manifold), and it

will be pertinent to discuss the Lie derivative and Lie bracket generally,

before returning to their relevance to curvature and torsion at the end of

this section.

For a Lie derivative to be deWned on a manifold M, however, we

do require a vector Weld j to be pre-assigned on M. The Lie derivative,

written £
j
, is then an operation which is taken with respect to the

vector Weld j. The deriative £
j
Q measures how some quantity Q changes,

as compared with what would happen were it simply ‘dragged along’, by

the vector Weld j. See Fig. 14.13. It applies to tensors generally (and even to

some entities diVerent from tensors, such as connections). To begin with, we

just consider the Lie derivative of a vector Weld h (¼Q) with respect to

another vector Weld j. We indeed Wnd that this is the same operation that

we referred to as ‘Lie bracket’ in §13.6, but in a more general context. We

shall see how to generalize this to a tensor Weld Q afterwards.

Vecto
r fie

ldx

Difference
measured by

h£

Q£

x

x

Dragged
vector h

Difference
measured
by 

Dragged
tensor Q

Tensor
field Q

Vector field h

Fig. 14.13 Lie derivative £
j
,

defined on a general mani-

foldM, is taken with

respect to a given smooth

vector field j onM. Then

£
j
Q measures how a

quantity Q (e.g. a vector

field h or tensor field Q)

actually changes, as com-

pared with the quantity

‘dragged’ by j.
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Recall from §12.3 that a vector Weld can itself be interpreted as a

diVerential operator acting on scalar Welds F, C, . . . satisfying the three

laws (i) j(FþC) ¼ j(F)þ j(C), (ii) j(FC) ¼ Cj(F)þ Fj(C), and (iii)

j(k) ¼ 0 if k is a constant. It is a direct matter to show[14.15] that the

operator v, deWned by

v(F) ¼ j(h(F))� h(j(F))

satisWes these same three laws, provided that j and both h do, so v
must also be a vector Weld. The above commutator of the two opera-

tions j and h is frequently written (as in §13.6) in the Lie bracket nota-

tion

v ¼ jh� hz ¼ [j, h]:

The geometric meaning of the commutator between two vector Welds j and

h is illustrated in Fig. 14.14. We try to form a quadrilateral of ‘arrows’

made alternately from j and h (each taken to be O(e) ) and Wnd that v
measures the ‘gap’ (at order O(e2) ). We can verify[14.16] that commutation

satisWes the following relations

[j, h] ¼ �[h, j], [j þ h, z] ¼ [j, z]þ [h, z],

[j, [h, z] ]þ [h, [z, j] ]þ [z, [j, h] ] ¼ 0,

just as did the commutator of two inWnitesimal elements of a Lie group, as

we saw in §13.6.

How does our commutation operation, as deWned above, relate to the

algebra (§13.6) of inWnitesimal elements of a Lie group? Let me digress

brieXy to explain this. We think of the group as a manifold G (called a

εx
εx

xε2[ ,  ]εh

εh

h

[14.15] Show it.

[14.16] Do it.

Fig. 14.14 The Lie bracket [j,h] ( ¼ £
j
h) between two

vector Welds j, h measures the O(e2) gap in an

incomplete quadrilateral of O(e) ‘arrows’ made

alternately from ej and eh.
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group manifold), whose points are the elements of our Lie group. More

generally, we could think of any manifold H on which the elements act

as smooth transformations (such as the sphere S2. In the case of the

rotation group G ¼ SO(3), see Fig. 13.2) But, for now, we are primarily

concerned with the group manifold G, rather than the more general

situation of H, since we are interested in how the entire group G relates

to the structure of its Lie algebra. The inWnitesimal group elements are to

be pictured as particular vector Welds on G (or, indeed, H). That is,

we think of ‘moving G’ inWnitesimally along the relevant vector Weld

j on G, in order to express the transformation that corresponds to

pre-multiplying each element of the group by the inWnitesimal element

represented by j. See Fig. 14.15a.

(a)

x
h

I
Tangent
space

(b)

ε

ε ε

(c)

x hε2[     ],
x

x
x

hh

h

x

ε

G

Fig. 14.15 Lie algebra operations, interpreted geometrically in the continuous

group manifold G. (a) Pre-multiplication of each element of G by an inWnitesimal

group element j (Lie algebra element) gives an inWnitesimal shift of G, i.e. a vector

Weld j on G. (b) To Wrst order, the product of two such inWnitesimal motions j and

h just gives j þ h, reflecting merely the structure of the tangent space (at I). (c)

The local group structure appears at second order, e2[j, h], providing the O(e2)

gap in the ‘parallelogram’ with alternate sides ej and eh at I.
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Choosing a small positive quantity e, we can think of ej as being an

O(e) motion of G along the vector Weld j, the identity group

element I corresponding to zero motion. The product of two such

small group actions ej and eh is given, to O(e), by the sum ej þ eh of

the two, so the ‘arrows’ representing ej and eh just add according

to the parallelogram law (Fig. 14.15b). But this gives us little informa-

tion about the structure of the group (only its dimension, in fact, as

we are just revealing the additive structure of the tangent space at

the identity element I of the group). To obtain the group structure,

we need to go to O(e2), and this is done, as in §13.6, by looking

at the commutator jh�hj ¼ [j,h]. Now e2[j,h] corresponds to an

O(e2) gap in the ‘parallelogram’ whose initial sides are ej and eh at

the origin I. The relevant notion of ‘parallelism’ comes from the group

action, supplying the needed notion of ‘parallel transport’, which

actually gives a connection with torsion but no curvature.[14.17]

See Fig. 14.15c.

As was noted in §13.6, the Lie algebra of these vector Welds provides the

entire (local) structure of the group. The procedure whereby one obtains

an ordinary Wnite (i.e. non-inWnitesimal) group element x from a Lie

algebra element j may be noted here. This is called exponentiation (cf.

§5.3, §13.4):

x ¼ ej ¼ I þ j þ 1

2
j2 þ 1

6
j3 þ � � � :

Here j2 means ‘the second derivative operator of applying j twice’, etc.

(and I is the identity operator). This is basically a form of Taylor’s

theorem, as described in §6.4.[14.18] The product of two Wnite group elem-

ents x and y is then obtained from the expression ejeh. This diVers from

ejþh (compare §5.3) by an expression that is constructed entirely from Lie

algebra expression6 in j and h.

It may be noted that a version of this exponentiation operation ej also

applies to a vector Weld j in a general manifold M (where M and j
are assumed analytic—i.e. Co-smooth, see §6.4). Recall from §12.3 (and

Fig. 10.6) that, with e chosen small, ej(F) measures the O(e) increase of a

scalar function F from the tail to the head of the ‘arrow’ that represents ej.

More exactly, the quantity etj(F) measures the total value F that is

reached as we follow along the ‘j-arrows’ from a starting point O, to a

[14.17] Try to explain why there is torsion but no curvature.

[14.18] Explain (at a formal level) why ead=dyf (y) ¼ f (yþ a) when a is a constant.
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Wnal point given by the parameter value u ¼ t, where the parameter u is

scaled so that j(u) ¼ 1 (cf. §14.5 and Fig. 14.8). All the derivatives (i.e.

the rth derivative, in the case of jr(F)) in the power series expression for

etj(F) are to be evaluated at O (convergence being assumed). ‘Following

along the arrows’ would mean following along what is called an ‘integral

curve’ of j, that is, a curve whose tangent vectors are j-vectors.

See Fig. 14.16.7

What, then, is the deWnition of Lie derivative? First, we simply rewrite

the Lie bracket as an operation £
j

(depending on j) which acts upon the

vector Weld h:
£
j
h ¼ [j, h]:

This is to be the deWnition of the Lie derivative £
j
(with respect to j) of a [ 1

0
]-

tensor h. We wish to write this in terms of some given torsion-free

connection r. The required expression (see Fig. 14.17a, for the diagram-

matic form)

Integral
curve c
(  (u)=1)

p
u=t

u= 0

u

O

x

M
x

Value of     at p
is et    , evaluated

at O

x

Fig. 14.16 An integral curve of a vector Weld j inM is a curve g that ‘follows the

j-arrows’, i.e. whose tangent vectors are j-vectors, with associated parameter u, in

the sense j(u) ¼ 1 (cf. §14.5 and Fig. 14.8). Assume thatM and j are analytic (i.e.

Co), as is the scalar Weld F, and that g stretches from some base point O (u ¼ 0) to

another point p (u ¼ t). Then (assuming convergence) the value of F at p is given

by the quantity etj(F) evaluated at O, where etj ¼ 1þ tj þ 1
2
t2j2 þ 1

6
t3j3 þ . . . and

where jr stands for the rth derivative dr=dur at O along g.
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£
j
h ¼ =

j
h� =

h
j, i:e: (£

j
h)a ¼ xara�

b � �arax
b,

can be directly obtained using j(F) ¼ jaraF, etc.[14.19],[14.20] To obtain the

Lie derivative of a general tensor, we employ the rule that (except for the

absence of linearity in j) £
j satisWes rules similar to that of a connection =

j
.

These are: £
jF ¼ j(F) for a scalar F; £

j (T þU) ¼ £
jT þ £

jU for tensors

T and U of the same valence; £
j (T�U) ¼ (£jT)�U þ T� £jU with the

arrangement of contractions being the same in each term. From these,

and £
jh ¼ [j, h], the action of £

j on any tensor follows uniquely.8 In parti-

cular, for a covector a (valence [ 0
1
],

£
j
a ¼ =

j
aþ a � (=j), i:e: (£

j
a)a ¼ xbrbaa þ abrax

b

(r being torsion-free); see Fig. 14.17b. For a tensor Q of valence [ 1
2
], say,

we then have (Fig. 14.17c)[14.21]

=
j
Qc

ab ¼ xuruQ
c
ab þQc

ubrax
u þQc

aurbx
u �Qu

abrux
c:

We note that the Lie derivative, considered as a function both of j and of

the quantity Q (tensor Weld) upon which it acts is independent

of the connection, i.e. it is the same whichever torsion-free operator ra

we choose. (This follows because £
j is uniquely deWned from the

gradient ‘d’ operator.) In particular, we could use the coordinate derivative

£ £ £= − = = − + ++
, ,

(a) (b) (c)

Fig. 14.17 Diagrams for Lie derivative (a) of a vector h: (£
j
h)a ¼ xara�

b

��arax
b; (b) of a covector a: (£

j
a)a ¼ xbrbaa þ abrax

b; and (c) of a ([ 1
2
]-valent)

tensor Q: £
j
Qc

ab ¼ xuruQ
c
ab þQc

ubrax
u þQc

aurbx
u �Qu

abrux
c.

[14.19] Derive this formula for £
j
h.

[14.20] How does torsion modify the formula of Exercise [14.18] ?

[14.21] Establish uniqueness, verifying above covector formula, and give explicitly the Lie

derivative of a general tensor.
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operator q=qxa (in any local coordinate system we choose) in place of

ra, and the answer comes out the same. Even if we have a connec-

tion with torsion, we could still use it, by expressing it in terms

of a second connection, uniquely deWned by the given one, which is

torsion-free, obtained by ‘subtracting oV’ the given connection’s tor-

sion.[14.22]

The Lie derivative shares with the exterior derivative (see §12.6) this

connection-independent property, whereby for any p-form a, with index

expression ab...d ,

(da)ab...d ¼ r[aab...d],

where = is any torsion-free connection; see Fig. 14.18. This is the

same expression as in §12.6, except that there the coordinate connection

q=qxa was explicitly used. It is readily seen that the above expression is

actually independent of the choice of torsion-free connection.[14.23] More-

over, the key property d2a ¼ 0 follows immediately from this expres-

sion.[14.24] There are also certain other special expressions that are

connection-independent in this sense.9

Returning, Wnally, to the question of curvature, on our manifold M,

with connection =, we Wnd that we need the Lie bracket for the deWnition

of the curvature tensor in the mathematician’s notation:

=
L

=
M
� =

M
=
L
� =

[L, M]

� �

N ¼ R(L, M , N),

where R(L, M, N) means the vector LaMbNcRabc
d .[14.25] Whereas the inclu-

sion of an extra commutator term may be regarded as a disadvantage of

this notation, there is a compensating advantage that now torsion is

p-form

p

d = 1
(p+1)!

p+1

[14.22] Show how to Wnd this second connection, taking the ‘G’ for the diVerence between the

connections to be antisymmetric in its lower two indices. (See Exercise [14.5].)

[14.23] Establish this and show how the presence of a torsion tensor t modiWes the expression.

[14.24] Show this.

[14.25] Demonstrate equivalence (if torsion vanishes) to the previous physicist’s expression.

Fig. 14.18 Diagram for exterior deriva-

tive of a p-form: (da)ab...d ¼r[aab...d].
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εM�

εM

εL�

ε2[L,M ]

εL

N

gap: O(ε3)

Vector
difference:
ε2 R(L,M,N)

Fig. 14.19 Curvature, in the ‘mathematician’s notation’ (=
L
M � =

M
L� =

[M,L]
)N ¼

R(L,M ,N), from the O(e2) discrepancy in parallel transport of a vector N around

the (incomplete) ‘quadrilateral’ with sides eL, eM , eL0, eM 0. The Lie bracket

contribution e2[L,M ] Wlls an O(e2) gap, to order O(e3). (The index form of the

vector R(L,M,N) is LaMbNcRabc
d .)

automatically allowed for (in contrast with torsion needing an extra term

in the physicist’s notation). Recall the geometrical signiWcance of the

commutator term (Fig. 14.14). It allows for an O(e2) ‘gap’ in the O(e)
quadrilateral built from the vector Welds L and M. In fact, there is now

the additional advantage that the loop around which we carry our vector

N need not be thought of as a ‘parallelogram’ (to the order previously

required), but just as a (curvilinear) quadrilateral. See Fig. 14.19.

If [L, M ] ¼ 0, then this quadrilateral closes (to order O(e2)).

14.7 What a metric can do for you

Up to this point, we have been considering that the connection = has

simply been assigned to our manifoldM. This providesM with a certain

type of structure. It is quite usual, however, to think of a connection more

as a secondary structure arising from a metric deWned onM. Recall from

§13.8 that a metric (or pseudometric) is a non-singular symmetric

[ 0
2
]-valent tensor g. We require that g be a smooth tensor Weld, so that g

applies to the tangent spaces at the various points ofM. A manifold with

a metric assigned to it in this way is called Riemannian, or perhaps pseudo-

Riemannian.10 (We have already encountered the great mathematician

Bernhardt Riemann in Chapters 7 and 8. He originated this concept of
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an n-dimensional manifold with a metric, following Gauss’s earlier study

of ‘Riemannian’ 2-manifolds.) Normally, the term ‘Riemannian’ is re-

served for the case when g is positive-deWnite (see §13.8). In this case

there is a (positive) measure of distance along any smooth curve, deWned

by the integral of ds along it (Fig. 14.20), where

ds2 ¼ gab dxa dxb:

This is an appropriate thing to integrate along a curve to deWne a length for

the curve—which is a ‘length’ in a familiar sense of the word when g is

positive deWnite. Although ds is not a 1-form, it shares enough of the

properties of a 1-form for it to be a legitimate quantity for integration

along a curve. The length ‘ of a curve connecting a point A, to a point B is

thus expressed as11

‘ ¼
ðB

A

ds, where ds ¼ (gabdxadxb)
1
2:

It may be noted that, in the case of Euclidean space, this is precisely the

ordinary deWnition of length of a curve, seen most easily in a Cartesian

coordinate system, where the components gab take the standard ‘Kro-

necker delta’ form of §13.3 (i.e. 1 if a ¼ b, and 0 if a 6¼ b). The expression

for ds is basically a reXection of the Pythagorean theorem (§2.1) as noted

in §13.3 (see Exercise [13.11]), but operating at the inWnitesimal level. In a

general Riemannian manifold, however, the measure of length of

a curve, according to the above formula, provides us with a geometry

which diVers from that of Euclid. This reXects the failure of the Pythagor-

ean theorem for Wnite (as opposed to inWnitesimal) intervals. It is never-

theless remarkable how this ancient theorem still plays its fundamental

part—now at the inWnitesimal level. (Recall the Wnal paragraph of

§2.7.)

Length =  

ds = gabdxadxb

A

B

∫ A  ds
B

Fig. 14.20 The length of a smooth

curve is
R

ds, where ds2 ¼ gabdxadxb.
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We shall be seeing in §17.7 that the case of signature þ��� has

particular importance in relativity, where the (pseudo)metric now directly

measures time as registered by an ideal clock. Also, any vector y has a

length jyj, deWned by

jyj2 ¼ gabv
avb,

which, for a positive-deWnite g, is positive whenever y does not vanish. In

relativity theory, however, we need a Lorentzian metric instead (see §13.8),

and jyj2 can be of either sign. We shall see the signiWcance of this later on

(§17.9, §18.3).

How does a non-singular (pseudo)metric g uniquely determine a

torsion-free connection =? One way of expressing the requirement on

= is simply to say that the parallel transport of a vector must always

preserve its length (a property that I asserted, in §14.2, for parallel

transport on the sphere S2). Equivalently, we can express this require-

ment as

=g ¼ 0:

This condition (together with the vanishing of torsion) suYces to Wx =
completely.[14.26] This connection = is variously termed the Riemannian,

ChristoVel, or Levi-Civita connection (after Bernhardt Riemann (1826–66),

Elwin ChristoVel (1829–1900), and Tullio Levi-Civita (1873–1941), all of

whom contributed important ideas in relation to this notion).[14.27]

There is another way of understanding the fact that a (let us say

positive-deWnite) metric g determines a connection. The notion of a geo-

desic can be obtained directly from the metric. A curve on M that

minimizes its length
Ð

ds (the quantity illustrated in Fig. 14.20) between

two Wxed points is actually a geodesic for the metric g. Knowing the

geodesic loci is most of what is needed for knowing the connection =.

The remaining information needed to Wx = completely is a knowledge

of the aYne parameters along the geodesics. These turn out to be the

parameters that measure arc length along the curves, and the constant

multiples of such parameters, and this is again Wxed by g.[14.28] When g is

not positive deWnite, the argument is basically the same, but now the

[14.26]Derive theexplicit componentexpressionGa
bc ¼ 1

2
gad (qgbd=qxc þ qgcd=qxb�qgcb=qxd ) for

the connection quantitiesGa
bc (ChristoVel symbols). (See Exercise [14.6]).

[14.27] Derive the classical expression Rabc
d ¼ qGd

cb=qx
a � qGd

ca=qx
b þ Gu

cbG
d
ua � Gu

caG
d
ub for the

curvature tensor in terms of ChristoVel symbols. Hint: Use the deWnition in §14.4 of the curvature

tensor, where xd is each of the coordinate vectors da
1 , . . . , da

n , in turn. (As in Exercise [14.6], the

quantities da
1, d

a
2, etc. are to be thought of as actual individual vectors, where the upper index a

may be viewed as an abstract index, in accordance with §12.8).

[14.28] Supply details for this entire argument.
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geodesics do not minimize
Ð

ds, the integral being what is called ‘station-

ary’ for a geodesic. (This issue will be addressed again later; see. §17.9

and §20.1.)

In (pseudo)Riemannian geometry, the metric gab and its inverse gab

(deWned by gabgbc ¼ da
c) can be used to raise or lower the indices of a

tensor. In particular, vectors can be converted to covectors and covectors

to vectors (and back again), as in §13.9:

va ¼ gab v
b and aa ¼ gabab:

It is usual to stick to the same kernel symbol (here v and a) and

to use the index positioning to distinguish the geometrical character

of the quantity. Applying this procedure to lower the upper index of

the curvature tensor, we deWne the Riemann or Riemann–ChristoVel

tensor

Rabcd ¼ Rabc
e ged ,

which has valence [ 0
4
]. It possesses some remarkable symmetries in

addition to the two relations (antisymmetry in ab and Bianchi symmetry,

i.e. vanishing of antisymmetric part in abc) that we had before. We also

have[14.29] antisymmetry in cd and symmetry under interchange of ab

with cd:

Rabcd ¼ �Rabdc ¼ Rcdab:

See Fig. 14.21 for the diagrammatic representation of these things. A

general [ 0
4
]-valent tensor in an n-manifold has n4 components; but for a

Riemann tensor, because of these symmetries, only 1
12

n2(n2 � 1) of these

components are independent.[14.30]

At this point, it is appropriate to bring to the attention of the reader the

notion of a Killing vector on a (pseudo-)Riemannian manifoldM. This is a

vector Weld k which has the property that Lie diVerentiation with respect

to it annihilates the metric:

£
k
g ¼ 0:

This equation can be rewritten in the index notation (with parentheses

denoting symmetrization, as in §12.7; see also Fig. 14.21) as

rakb þrbka ¼ 0, i:e: r(akb) ¼ 0,

[14.29] Establish these relations, Wrst deriving the antisymmetry in cd from r[arb]gcd ¼ 0 and

then using the two antisymmetries and Bianchi symmetry to obtain the interchange symmetry.

[14.30] Verify that the symmetries allow only 20 independent components when n ¼ 4.
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au ua, ,

,

=

=

=  − =

Rabc
dRabcd

= = =

; Killing vector : = 0

Fig. 14.21 Raising and lowering indices in the ‘hoop’ notation: va ¼ gabv
b

¼ vbgba, va¼gabvb ¼ vbg
ba, Rabcd ¼ Rabc

eged , Rabc
d ¼ Rabceg

ed , Rabcd ¼ �Rabdc

¼ Rcdab; k
a is a Killing vector ifr(akb) ¼ 0.

where = is the standard Levi-Civita connection.[14.31] A Killing vector on a

(pseudo-)Riemannian manifoldM is the generator of a continuous sym-

metry ofM (which may only be a local12 symmetry, ifM is non-compact).

If M contains more than one independent Killing vector, then the com-

mutator of the two is a further Killing vector.[14.32] Killing vectors have

particular importance in relativity theory, as we shall be seeing in §19.5

and §§30.4,6,7.

14.8 Symplectic manifolds

It should be remarked that there are not many local tensor structures that

deWne a unique connection, so we are fortunate that metrics (or pseudo-

metrics) are often things that are given to us physically. An important

family of examples for which this uniqueness is not the case, however, is

obtained when we have a structure given by a (non-singular) antisym-

metric tensor Weld S, given by its components Sab. Such a structure is

present in the phase spaces of classical mechanics (§20.1). I shall have more

to say about these remarkable spaces later, in §§20.2,4, §27.3. They are

examples of what are known as symplectic manifolds. Apart from being

antisymmetric and non-singular, the symplectic structure S must sat-

isfy[14.33]

[14.31] Derive this equation.

[14.32] Verify this ‘geometrically obvious’ fact by direct calculation—and why is it ‘obvious’?

[14.33] Explain why this can be written raSbc þrbSca þrcSab ¼ 0, using any torsion-free

connection =.
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dS ¼ 0:

(This would be the standard case of a real symplectic form on a 2m-

dimensional real manifold, where the local symmetry would be given by

the usual ‘split-signature’ symplectic group Sp(m, m); see §13.10. I am not

aware of ‘symplectic manifolds’ of other signatures having been exten-

sively studied.)

The inverse Sab, of Sab, (deWned by SabSbc ¼ da
c), deWnes what is known

as the ‘Poisson bracket’ (named after the very distinguished French math-

ematician Siméon Denis Poisson, who lived from 1781 to 1840). This

combines two scalar Welds F and C on a phase space to provide a third:

{F, C} ¼ �1
2
SabraFrbC

(where the factor� 1
2
is insertedmerely for consistencywith the conventional

coordinate expressions). This is an important quantity in classical mechan-

ics. We shall be seeing later (in §20.4) how it encodes Hamilton’s equations,

these equations providing a fundamental general procedure that encom-

passes the dynamics of classical physics and supplies the link to quantum

mechanics. The antisymmetry of S and the condition dS ¼ 0 provide us

with the elegant relations[14.34]

{F, C} ¼ �{C, F}, {Y, {F, C}}þ {F, {C, Y}}þ {C, {Y, F}} ¼ 0:

This may be compared with the corresponding commutator (Lie bracket)

identities of §14.6. (Recall the Jacobi identity.) We shall return to the

remarkably rich geometry of symplectic manifolds when we consider the

geometrical description of classical mechanics in §20.4.

The local structure of a symplectic manifold is an example of what

might be called a ‘Xoppy’ structure. There is, for example, no notion of

curvature for a symplectic manifold, which might serve to distinguish one

symplectic manifold from another, locally. If we have two real symplectic

manifolds of the same dimension (and the same ‘signature’, cf. §13.10),

then they are locally completely identical (in the sense that for any point p

in one manifold and any point q in the other, there are open sets of p and q

that are identical13). This is in stark contrast with the case of (pseudo-)

Riemannian manifolds, or manifolds in which merely a connection is

speciWed. In those cases, the curvature tensor (and, for example, its various

covariant derivatives) deWnes some distinguishing local structure which is

likely to be diVerent for diVerent such manifolds.

There are other examples of such ‘Xoppy’ structures, among them being

the complex structure deWned in §12.9 which enables a 2m-dimensional

real manifold to be re-interpreted as an m-dimensional complex manifold.

[14.34] Demonstrate these relations, Wrst establishing that Sa[braS
cd] ¼ 0.
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In this case the Xoppiness is evident, because there is clearly no feature,

apart from the complex dimension m, which locally distinguishes one

complex manifold from another (or from C
m). It would still remain

Xoppy if a complex (holomorphic) symplectic structure were assigned to

it[14.35] (and now we do not even have to worry about a notion of ‘signa-

ture’ for the complex Sab; see §13.10).

Many other examples of Xoppy structures can be speciWed. One such

would be a real manifold with a nowhere vanishing vector Weld on it. On

the other hand, a real manifold with two general vector Welds on it would

not be Xoppy.[14.36] The issue of Xoppiness has some importance for twistor

theory, as we shall be seeing in §33.11.

Notes

Section 14.2

14.1. In fact there is a topological reason that there can be no way whatever

of assigning a ‘parallel’ to y at all points of S2 in a continuous way (the

problem of ‘combing the hair of a spherical dog’!). The analogous statement

for S3 is not true, however, as the construction of CliVord parallels (given in

§15.4) shows.

Section 14.3

14.2. In much of the physics literature and older mathematics literature, the coordinate

derivative q=qxa is indicated by appending a lower index a, preceded by a comma,

to the right-hand end of the list of indices attached to the quantity being diVer-

entiated. In the case ofra, a semicolon is frequently used in place of the comma.

The ‘ra’ notation works well with the abstract–index notation (§12.8) and the

the subsequent equations in the main text of this book can (should) be read in

this way. Coordinate expressions can also be powerfully treated in this notation,

but two distinguishable types of index are needed, component and abstract (see

Penrose 1968; Penrose and Rindler 1984).

Section 14.4

14.3. The index staggering is needed for when a metric is introduced (§14.7) since

spaces are needed for the raising and lowering of indices.

Section 14.5

14.4. Strictly, = acts on Welds deWned onM, not just along curves lying withinM. But

this equation makes sense because the operator diVerentiates only in the direc-

tion along the curve. If we like, we may think of the region of deWnition of t as

being extended smoothly outwards away from g intoM in some arbitrary way.

The precise way in which this is done is irrelevant, since it is only along g that we

are asking for the equation on t to hold.

14.5. See, for example, Nayfeh (1993); Simmonds and Mann (1998).

[14.35] Explain why.

[14.36] Explain why, in each case. Hint: Construct a coordinate system with j ¼ ]=]x1; then

take repeated Lie derivatives to construct a frame, etc.
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Section 14.6

14.6. We see the explicit role of the Lie algebra of commutators in the

Baker–Campbell–HausdorV formula, the Wrst few terms of which are given

explicitly in ejeh ¼ ejþhþ
1
2
[j,h]þ 1

12
([j,[j,h] ]þ[ [j,h],h])þ..., where the continuation

dots stand for a further expression in multiple commutators of j and h, i.e.

an element of the Lie algebra generated by j and h.

14.7. Somewhat more precisely, we can choose coordinates x2, x3 , . . . , xn constant

along this curve, with x1 ¼ t; then j ¼ q=qt, along the curve. It is simply

Taylor’s theorem (§6.4) that tells us that the above prescription gives etj(F).

14.8. Analogous to the exponentiation etj of j, which obtains the value of a scalar

quantity F a Wnite distance away, there is a corresponding expression with £
j in

place of j, to obtain a tensor Q a Wnite distance away, as measured against a

‘dragged’ reference frame.

14.9. See Schouten (1954); Penrose and Rindler (1984), p. 202.

Section 14.7

14.10. In some mathematical books the term ‘semi-Riemannian’ has been used for the

indeWnite case (see O’Neill 1983), but it seems to me that ‘pseudo-Riemannian’

is a more appropriate terminology.

14.11. A common way to give meaning to this expression is to introduce a parameter,

say u, along the curve and to write ds ¼ (ds=du)du. The quantity ds=du is an

ordinary function of u, expressed in terms of dxa=du.

14.12. This ‘locality’ can be understood in the following sense. For each point p ofM,

there is an exponentiation (§14.6) of some small constant non-zero multiple of k
that takes some open set containing p into some other open set inM with an

identical metric structure.

Section 14.8

14.13. Here, ‘identical’ refers to the fact that each can be mapped to the other in such a

way that the symplectic structures correspond.

Notes CHAPTER 14
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15
Fibre bundles and gauge connections

15.1 Some physical motivations for fibre bundles

The machinery introduced in Chapters 14 and 15 is suYcient for the

treatment of Einstein’s general relativity and for the phase spaces of

classical mechanics. However, a good deal of the modern theory of particle

interactions depends upon a generalization of the speciWc notion of ‘con-

nection’ (or covariant derivative) that was introduced in §14.3, this gener-

alization being referred to as a gauge connection. Basically, our original

notion of covariant derivative was based upon what we mean by the

parallel transport of a vector along some curve in our manifold M
(§14.2). Knowing parallel transport for vectors, we can uniquely extend

this to the transport of any tensor quantity (§14.3). Now, vectors and

tensors are quantities that refer to the tangent spaces at points ofM (see

§12.3, §14.1, and Fig. 12.6). But a gauge connection refers to ‘parallel

transport’ of certain quantities of particular physical interest that are

best thought of as referring to some kind of ‘space’ other than the tangent

space at a point p in M, but still to be thought of as being, in a sense,

‘located at the point p’.

To clarify, a little, what is needed here, we recall from §§12.3,8 that once

we have a vector space—here the space of tangent vectors at a point—we

can construct its dual (space of covectors) and all the various spaces of [ p
q
]-

valent tensors. Thus, in a clear sense, the spaces of [ p
q
]-tensors (including

the cotangent spaces, covectors being [ 0
1
]-tensors) are ‘not anything new’,

once we have the tangent spaces Tp at points p. (An almost similar remark

would apply—at least according to my own way of viewing things—to the

spaces of spinors at p; see §11.3. Some others might try to take a diVerent

attitude to spinors; but these alternative perspectives on the matter will not

be of concern for us here.) The spaces that we need for the gauge theories

of particle interactions (other than gravity), are diVerent from these (and

so they are something new), and it is best to think of them as referring to a

kind of ‘spatial’ dimension that is additional to those of ordinary space

and time. These extra ‘spatial’ dimensions are frequently referred to as

internal dimensions, so that moving along in such an ‘internal direction’
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does not actually carry us away from the spacetime point at which we are

situated.

To make geometrical sense of this idea, we need the notion of a bundle.

This is a perfectly precise mathematical notion, and we shall be coming to

it properly in §15.2. It had been found to be useful in pure mathematics1

long before physicists realized that some of the important notions that

they had been previously using were actually to be understood in bundle

terms. In subsequent years, theoretical physicists have become very famil-

iar with the required mathematical concepts and have incorporated them

into their theories. However, in some modern theories, these notions are

presented in a modiWed form, in relation to which spacetime itself is

thought of as acquiring extra dimensions.

Indeed, in many (or most?) of the current attempts at Wnding a deeper

framework for fundamental physics (e.g. supergravity or string theory),

the very notion of ‘spacetime’ is extended to higher dimensionality. The

‘internal dimensions’ then come about through the agency of these extra

spatial dimensions, where these extra spatial dimensions are put on an

essentially equal footing with those of ordinary space and time. The

resulting ‘spacetime’ thus acquires more dimensions than the standard

four. Ideas of this nature go back to about 1919, when Theodor Kaluza

and Oskar Klein provided an extension of Einstein’s general relativity in

which the number of spacetime dimensions is increased from 4 to 5. The

extra dimension, enables Maxwell’s superb theory of electromagnetism

(see §§19.2,4) to be incorporated, in a certain sense, into a ‘spacetime

geometrical description’. However, this ‘5th dimension’ has to be thought

of as being ‘curled up into a tiny loop’ so that we are not directly aware of

it as an ordinary spatial dimension.

The analogy is often presented of a hosepipe (see Fig. 15.1), which is to

represent a Kaluza–Klein-type modiWcation of a 1-dimensional universe.

When looked at on a large scale, the hosepipe indeed looks 1-dimensional:

the dimension of its length. But when examined more closely, we Wnd that

the hosepipe surface is actually 2-dimensional, with the extra dimension

looping tightly around on a much smaller scale than the length of the

hosepipe. This is to be taken as the direct analogy of how we would

perceive only a 4-dimensional physical spacetime in a 5-dimensional

Kaluza–Klein total ‘spacetime’. The Kaluza–Klein 5-space is to be the

direct analogue of the hosepipe 2-surface, where the 4-spacetime that we

actually perceive is the direct analogue of the basically 1-dimensional

appearance of the hosepipe.

In many ways, this is an appealing idea, and it is certainly an ingenious

one. The proponents of the modern speculative physical theories (such as

supergravity and string theory that we shall encounter in Chapter 31)

actually Wnd themselves driven to consider yet higher-dimensional versions

326

§15.1 CHAPTER 15



Fig. 15.1 The analogy of a hosepipe. Viewed on a large scale, it appears

1-dimensional, but when examined more minutely it is seen to be a 2-dimensional

surface. Likewise, according to the Kaluza–Klein idea, there could be ‘small’ extra

spatial dimensions unobserved on an ordinary scale.

of the Kaluza–Klein idea (a total dimensionality of 26, 11, and 10 having

been among the most popular). In such theories, it is perceived that

interactions other than electromagnetism can be included by use of the

gauge-connection idea that we shall be coming to shortly.

However, it must be emphasized that the Kaluza–Klein idea is still a

speculative one. The ‘internal dimensions’ that the conventional current

gauge theories of particle interactions depend upon are not to be thought

of as being on a par with ordinary spacetime dimensions, and therefore do

not arise from a Kaluza–Klein-type scheme. It is a matter of interesting

speculation whether it is sensible to regard the internal dimensions

of current gauge theories as ultimately arising from this kind of

(Kaluza–Klein-type) ‘extended spacetime’, in any signiWcant sense.2 I

shall return to this matter later (§31.4).

Instead of regarding these internal dimensions as being part of a higher-

dimensional spacetime, it will be more appropriate to think of them as

providing us with what is called a Wbre bundle (or simply a bundle) over

spacetime. This is an important notion that is central to the modern gauge

theories of particle interactions. We imagine that ‘above’ each point of

spacetime is another space, called a Wbre. The Wbre consists of all the

internal dimensions, according to the physical picture referred to above.

But the bundle concept has much broader applications than this, so it will

be best if we do not necessarily tie ourselves to this kind of physical

interpretation, at least for the time being.
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15.2 The mathematical idea of a bundle

A bundle (or Wbre bundle) B is a manifold with some structure, which is

deWned in terms of two other manifoldsM and V, whereM is called the

base space (which is spacetime itself, in most physical applications), and

where V is called the Wbre (the internal space, in most physical applica-

tions). The bundle B itself may be thought of as being completely made up

of a whole family of Wbres V; in fact it is constituted as an ‘M’s worth of

Vs’—see Fig. 15.2. The simplest kind of bundle is what is called a product

space. This would be a trivial or ‘untwisted’ bundle, but more interesting

are the twisted bundles. I shall be giving some examples of both of these in

a moment. It is important that the space V also have some symmetries. For

it is the presence of these symmetries that gives freedom for the twisting

that makes the bundle concept interesting. The group G of symmetries of V
that we are interested in is called the group of the bundle B. We often say

that B is a G bundle overM. In many situations, V is taken to be a vector

space, in which case we call the bundle a vector bundle. Then the group G is

the general linear group of the relevant dimension, or a subgroup of it (see

§§13.3,6–10).

We are not to think ofM as being a part of B (i.e.M is not inside B);

instead, B is to be viewed as a separate space fromM, which we tend to

regard as standing, in some sense, above the base spaceM. There are many

copies of the Wbre V in the bundle B, one entire copy of V standing above

each point of M. The copies of the Wbres are all disjoint (i.e. no two

intersect), and together they make up the entire bundle B. The way to

think of M in relation to B is as a factor space of the bundle B by the

family of Wbres V. That is to say, each point ofM corresponds precisely to

a separate individual copy of V. There is a continuous map from B down

V V V V V V
V

M

B

Fig. 15.2 A bundle B, with base space

M and fibre V may be thought of as

constituted as an ‘M’s worth of Vs’.
The canonical projection from B down

toM may be viewed as the collapsing

of each fibre V down to a single point.
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toM, called the canonical projection from B toM, which collapses each

entire Wbre V down to that particular point ofM which it stands above.

(See Fig. 15.2.)

The product space ofM with V (trivial bundle of V overM) is written

M�V. The points of M�V are the pairs of elements (a, b), where a

belongs to M and b belongs to V; see Fig. 15.3a. (We already saw the

same idea applied to groups in §13.2.)3 A more general ‘twisted’ bundle B,

overM, resemblesM�V locally, in the sense that the part of B that lies

over any suYciently small open region ofM, is identical in structure with

that part ofM�V lying over that same open region ofM. See Fig. 15.3b.

But, as we move around inM, the Wbres above may twist around so that,

as a whole, B is diVerent (often topologically diVerent) fromM�V. The

dimension of B is always the sum of the dimensions ofM and V, irrespect-

ive of the twisting.[15.1]

All this may well be confusing, so get a better feeling for what a bundle

is like, let me give an example. First, take our spaceM to be a circle S1,

and the Wbre V to be a 1-dimensional vector space (which we can picture

topologically as a copy of the real line R, with the origin 0 marked). Such

bundle is called a (real) line bundle over S1. NowM�V is a 2-dimensional

cylinder; see Fig. 15.4a. How can we construct a twisted bundle B, overM,

M�V

M M

B

b
(a,b)

a

(a) (b)

Fig. 15.3 (a) The particular case of a ‘trivial’ bundle, which is the product

space M�V of M with V. The points of M�V can be interpreted as pairs

of elements (a,b), with a in M and b in V. (b) The general ‘twisted’ bundle B,
over M, with Wbre V, resembles M�V locally—i.e. the part of B over any

suYciently small open region of M is identical to that part of M�V over

same region of M. But the Wbres twist around, so that B is globally not the

same asM�V.

[15.1] Explain why the dimension ofM�V is the sum of the dimensions ofM and of V.
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Zero

M=S1

(a) (b)

Fig. 15.4 To understand how this twisting can occur, consider the case whenM is

a circle S1 and the Wbre V is a 1-dimensional vector space (i.e. a space modelled on

R, but where only the origin 0 is marked, but no other value (such as the identity

element 1). (a) The trivial case M�V, which is here an ordinary 2-dimensional

cylinder. (b) In the twisted case, we get a Möbius strip (as in Fig. 12.15).

with Wbre V? We can take a Möbius strip; see Fig. 15.4b (and Fig. 12.15).

Let us see why this is a bundle—‘locally’ the same as the cylinder. We can

produce an adequately ‘local’ region of the base space S1 by removing a

point p from S1. This breaks the base circle into a simply-connected4

segment5 S1 � p, and the part of B lying above such a segment is just the

same as the part of the cylinder standing above S1 � p. The diVerence

between the Möbius bundle B and the cylinder emerges only when we look

at what lies above the entire S1. We can imagine S1 to be pieced together

out of two such patches, namely S1 � p and S1 � q, where p and q are two

distinct points of S1; then we can piece the whole of B together out of

two corresponding patches, each of which is a trivial bundle over one of

the individual patches of S1. It is in the ‘gluing’ together of these two trivial

bundle patches that the ‘twist’ in the Möbius bundle arises (Fig. 15.5).

Indeed, it becomes particularly clear that it is a Möbius strip that arises,

with just a simple twist, if we reduce the size of our patches of S1, as

indicated in Fig. 15.5b, this reduction making no diVerence to the struc-

ture of B:
It is important to realize that the possibility of this twist results from a

particular symmetry that the Wbre V possess, namely the one which re-

verses the sign of the elements of the 1-dimensional vector space V. (This is

y 7! �y, for each y in V.) This operation preserves the structure of V as a

vector space. We should note that this operation is not actually a

symmetry of the real-number system R. In fact, R itself possesses

no symmetries at all. (The number 1 is certainly diVerent from �1, for

example, and x 7! �x is not a symmetry of R, not preserving the
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(a) (b)

Fig. 15.5 (a) We can produce an adequately ‘local’ (simply-connected) region of

the base S1 by removing a point p from it, the part of the bundle above S1 � p

being just a product. The same applies to the part of B above S1 � q where q is a

diVerent point of S1. We get a cylinder if we can match the two parts of B directly,

but we get the Möbius bundle, as illustrated above, if we apply an up/down

reflection (a symmetry of V) to one of the two matched portions. (b) The resulting

Möbius strip is little more obvious if we reduce the size of the two parts of S1 so

that there are only small regions of overlap.

multiplicative structure of R.[15.2]) It is for this reason that V is taken

as a 1-dimensional real vector space rather than just as the real line R itself.

We sometimes say that V is modelled on the real line. We shall be seeing

shortly how other Wbre symmetries provide opportunities for other kinds of

twist.

15.3 Cross-sections of bundles

One way that we can characterize the diVerence between the cylinder and

the Möbius bundle is in terms of what are called cross-sections (or simply

[15.2] Explain this.
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sections) of a bundle. Geometrically, we think of a cross-section of a

bundle B over M as a continuous image of M in B which meets each

individual Wbre in a single point (see Fig. 15.6a). We call this a ‘lift’ of the

base spaceM into the bundle. Note that, if we apply the map that liftsM
to a cross-section of B, and then follow this with the canonical projection,

we just get the identity map fromM to itself (that is to say, each point of

M is just mapped back to itself ).

For a trivial bundleM�V, the cross-sections can be interpreted simply

as the continuous functions on the base spaceM which take values in the

space V (i.e. they are continuous maps fromM to V). Thus, a cross-section

ofM�V assigns,6 in a continuous way, a point of V to each point ofM.

This is like the ordinary idea of the graph of a function illustrated in

Fig. 15.6b. More generally, for a twisted bundle B, any cross-section of

B deWnes a notion of ‘twisted function’ that is more general than the

ordinary idea of a function.

Let us return to our particular example in §15.2 above. In the case of the

cylinder (product bundle M�V), our cross-sections can be represented

simply as curves that loop once around the cylinder, intersecting each Wbre

just once (Fig. 15.7a). Since the bundle is just a product space, we can

consistently think of each Wbre as being just a copy of the real line, and we

can thus consistently assign real-number coordinates to the Wbres. The

coordinate value 0, on each Wbre, traces out the zero section of ‘marked

points’ that represent the zeros of the vector spaces V. A general cross-

section provides a continuous real-valued function on the circle (the

‘height’ above the zero section being the value of the function at eachpoint

of the circle). Clearly there are many cross-sections that do not

B

M

(a) (b)

Fig. 15.6 (a) A cross-section (or section) of a bundle B is a continuous image of

M in B which meets each individual Wbre in single point. (b) This generalizes the

ordinary idea of the graph of a function.
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Zero

(a) (b)

Fig. 15.7 A (cross-)section of a line bundle over S1 is a loop that goes once

around, intersecting each Wbre just once. (a) Cylinder: there are sections that

nowhere intersect the zero section. (b) Möbius bundle: every section intersects

the zero section.

intersect the zero section (non-vanishing functions on S1). For example, we

can choose a section of the cylinder that is parallel to the zero section but

not coincident with it. This represents a constant non-zero function on the

circle.

However, when we consider the Möbius bundle B, we Wnd that things

are very diVerent. The reader should not Wnd it hard to accept that now

every cross-section of B must intersect the zero section (Fig. 15.7b). (The

notion of zero section still applies, since V is a vector space, with its

zero ‘marked’.) This qualitative diVerence from the previous case makes

it clear that B must be topologically distinct fromM�V. To be a bit more

speciWc, we can begin to assign real-number coordinates to the various

Wbres V, just as before, but we need to adopt a convention that, at some

point of the circle, the sign has to be ‘Xipped’ (x 7! �x), so that a cross-

section of B corresponds to a real-valued function on the circle that would

be continuous except that it changes sign when the circle is circumnavi-

gated. Any such cross-section must take the value zero somewhere.[15.3]

In this example, the nature of the family of cross-sections is suYcient to

distinguish the Möbius bundle from the cylinder. An examination of the

family of cross-sections often leads to a useful way of distinguishing

various diVerent bundles over the same base space M. The distinction

between the Möbius bundle and the product space (cylinder) is a little less

extreme than in the case of certain other examples of bundles, however.

Sometimes a bundle has no cross-sections at all! Let us consider a particu-

larly important and famous such example next.

[15.3] Spell this argument out, using the construction of B from two patches, as indicated

above.
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15.4 The CliVord bundle

In this example, we get a bit serious! The base space M is to be

a 2-dimensional sphere S2 and the bundle manifold B turns out to be a

3-sphere S3. The Wbres V are circles S1 (‘1-spheres’). This is commonly

referred to as the Hopf Wbration of S3, a topological construction pointed

out by Heinz Hopf (1931). But Hopf’s procedure was explicitly based

(with due reference) on an earlier geometrical construction of ‘CliVord

parallels’, due to our friend (from Chapter 11) William CliVord (1873). I

shall call S3 geometrically Wbred in this way the CliVord bundle.

The most revealing way to obtain the CliVord bundle is Wrst to consider

the space C
2 of pairs of complex numbers (w, z). (The relevant structure

of C
2, here, is simply that it is a 2-dimensional complex vector space;

see §12.9.) Our bundle space B (¼ S3) is to be thought of as the unit

3-sphere S3 sitting in C
2, as deWned by the equation (see the end of

§10.1)

jwj2 þ jzj2 ¼ 1:

This stands for the real equation u2 þ v2 þ x2 þ y2 ¼ 1, the equation of a

3-sphere, where w ¼ uþ iv and z ¼ xþ iy are the respective expressions of

w and z in terms of their real and imaginary parts. (This is in direct

analogy with the equation of an ordinary 2-sphere x2 þ y2 þ z2 ¼ 1 in

Euclidean 3-space with real Cartesian coordinates x, y, z.)

To obtain the Wbration, we are going to consider the family of complex

straight lines through the origin (i.e. complex 1-dimensional vector sub-

spaces of C
2). Each such line is given by an equation of the form

Awþ Bz ¼ 0,

where A and B are complex numbers (not both zero). Being a 1-complex-

dimensional vector space, this line is a copy of the complex plane, and it

meets S3 in a circle S1, which we can think of as the unit circle in that plane

(Fig. 15.8). These circles are to be our Wbres V ¼ S1. The diVerent lines

can meet only at the origin, so no two distinct S1s can have a point in

common. Thus, this family of S1s indeed constitute Wbres giving S3 a

bundle structure.

What is the base spaceM? Clearly, we get the same line AwþBz¼0 if

we multiply both A and B by the same non-zero complex number, so it

is really the ratio A : B that distinguishes the lines from one another. Either

of A or B can be zero, but not both. The space of such ratios is the

Riemann sphere as described at some length in §8.3. We are thus to identify

the base spaceM of our bundle as this Riemann sphere S2. Thus we can
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Riemann sphere
of ratios A:B

S2

S3

z

w
Aw+Bz=0

z 2+ w 2=1

C2

Fig. 15.8 The CliVord bundle. Take C
2 with coordinates (w,z), containing the

3-sphere B ¼ S3 given by jwj2 þ jzj2 ¼ 1. Each Wbre V ¼ S1 is the unit circle in a

complex straight line through the origin AwþBz¼0 (complex 1-dimensional

vector subspace of C
2), and is determined by the ratio A:B. The Riemann sphere

S2 of such ratios is the base space B.

see that S3 may be regarded as an S1 bundle over S2. (We must not expect

such a relation as this for other dimensions, if we require bundle, base

space, and Wbre all to be spheres. However, it actually turns out that S7

may be viewed as an S3 bundle over S4, as can be obtained (with care) by

replacing the complex numbers w and z in the above argument by quater-

nions;[15.4] also, S15 can be regarded as an S7 bundle over S8, where w and z

are now replaced by octonions (see §11.2 and §16.2); but this does not

work for any other higher-dimensional sphere.7

This family of circles in S3, called CliVord parallels, is a particularly

interesting one. The circles, which are great circles, twist around each

other, remaining the same distance apart all along (which is why they

are referred to as ‘parallels’). Any two of the circles are linked, so they are

skew (not co-spherical). In Euclidean 3-space, straight lines that are skew

(not coplanar) have the property that they get farther apart from one

another as they move out towards inWnity. The 3-sphere, however,

has positive curvature, so that the CliVord circles, which are geodesics in

S3, have a compensating tendency to bend towards each other in accord-

ance with the geodesic deviation eVect considered in §14.5 (see Fig. 14.12).

These two eVects exactly compensate one another in the case of CliVord

[15.4] Carry out this argument. Can you see how to do the S15 case?
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parallels; see Fig. 15.9. To get a picture of the family of CliVord

parallels, we can project S3 stereographically from its ‘south pole’ to an

equatorial Euclidean 3-space, in exact analogy with the corresponding

stereographic projection of S2 to the Euclidean plane that we adopted

in our study of the Riemann sphere in §8.3 (see Fig. 8.7). As with the

stereographic projection of S2, circles on S3 map to circles in Euclidean

3-space under this projection. See Fig. 33.15 for a picture of the family

of projected CliVord circles. This conWguration had some seminal

signiWcance for twistor theory,8 and the relevant geometry will be de-

scribed in §33.6.

I asserted above that this particular (CliVord) bundle would be one which

possesses no cross-sections at all. How are we to understand this? It should

Wrst be pointed out that the ‘twist’ in the CliVord bundle owes its existence

to the fact that the circle-Wbres possess an exact symmetry given by the

rotations of the circle (the group O(2) or, equivalently, U(1) see Exercise

[13.59]). We cannot identify each of these Wbres with some speciWcally given

circle, such as the unit circle in the complex plane C. If we could, then

we could consistently choose some speciWc point on the circle (e.g. the

point 1 on the unit circle in C) and thereby obtain a cross-section

of the CliVord bundle. The non-existence of cross-sections can occur be-

cause the CliVord circles are only modelled on the unit circle in C, not

identiWed with it.

Of course, this in itself does not tell us why the CliVord bundle has no

continuous cross-sections. To understand this it will be helpful to look at

the CliVord bundle in another way. In fact, it turns out that each point of

our sphere S3 can be interpreted as a unit-length ‘spinorial’ tangent vector

to S2 at one of its points.[15.5] Recall from §11.3 that a spinorial object is a

(a) (b)

Fig. 15.9 (a) In Euclidean 3-space, skew straight lines get increasingly distant

from each other as they go off. (b) In S3, the positive curvature provides a com-

pensating tendency to bend geodesics (great circles) towards each other (by

geodesic deviation; see Fig. 14.12). For CliVord parallels the compensation is

exact.

[15.5] Show this. Hint: Take the tangent vector to be uq=qv � vq=qu þ xq=qy � yq=qx.
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quantity which, when completely rotated through 2p, becomes the nega-

tive of what it was originally. According to the above statement, a cross-

section of our bundle B (¼ S3) would represent a continuous Weld of such

spinorial unit vectors on M (¼ S2). Now, it is a well-known topological

fact that there is no global continuous Weld of ordinary unit tangent

vectors on S2. (This is the problem of combing the hair of a ‘spherical

dog’! It is impossible for the hairs to lie Xat in a continuous way, all over

the sphere.) Making these directions ‘spinorial’ clearly does not help, so no

global continuous Weld of unit spinorial tangent vectors can exist either.

Hence our bundle B (¼ S3) has no cross-sections.

This deserves some further discussion, for there is a good deal more to

be gained from this example. In the Wrst place, we can obtain the actual

bundle B0 of unit tangent vectors to S2 by slightly modifying the CliVord

bundle described above. Since any ordinary unit tangent vector has just

two manifestations as a spinorial object (one being the ‘negative’ of the

other), we must identify these two if we wish to pass from the spinorial

vector to the ordinary vector. What this means, in terms of the CliVord

bundle B (¼ S3), is that two points of S3 must be identiWed in order to give

a single point9 of the bundle B0 of unit vectors to S2. The pairs of points of

S3 that must be identiWed are the antipodal points on this 3-sphere. See

Fig. 15.10. The Wbres of B0 are still circles. It is just that each circle-Wbre of

B (¼ S3) ‘wraps around twice’ each circle-Wbre of B0. Each point of B0 now

represents a point of S2 with a unit tangent vector at that point. In fact, the

space B0 is topologically identical with the space R that we encountered in

§12.1, and which represents the diVerent spatial orientations of an

S3

S2

O

C2

Fig. 15.10 The bundle B0 of unit tangent vectors to S2 is a slight modiWcation of

the CliVord bundle, where antipodal points of S3 are identiWed. Without this

identiWcation, we obtain S3 as the (CliVord) bundle B of spinorial tangent vectors

to S2. The Wbres of B0 are still circles, but each circle-fibre of B wraps twice around

each circle-fibre of B0.
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object (such as the book, considered in §11.3) in Euclidean 3-space. This is

made evident if we think of our ‘object’ to be the sphere S2 with an arrow

(unit tangent vector) marked on it at one of its points. This marked arrow

will completely Wx the spatial orientation of the sphere.

15.5 Complex vector bundles, (co)tangent bundles

A slight extension of the idea behind the CliVord bundle (and also of

B0) gives us a good example of a complex vector bundle, in this case, a

bundle that I shall call BC (or correspondingly B0C). Each of the lines

AwþBz¼0 is itself a 1-dimensional complex vector space. (The entire line

consists of the family of multiples of a single vector (w, z) by complex

numbers l, where (w, z) multiplies to (lw, lz).) We now think of this

complex vector 1-space as our Wbre V. The Riemann sphere S2 is our

base spaceM, just as before.

There is one further thing that we need to do in order to get the correct

complex vector bundle BC, however. In C
2, the diVerent Wbres are not

disjoint, all having the origin (0, 0) in common. Thus, to get BC, we must

modify C
2 by replacing the origin by a copy of the entire Riemann sphere

(CP
1; see §15.6), so that instead of having just one zero, we have a whole

Riemann sphere’s worth of zeros, one for each Wbre, giving the zero section

of the bundle (see Fig. 15.11). This procedure is known as blowing up the

origin of C
2 (an important idea for algebraic geometry, complex-manifold

theory, string theory, twistor theory, and many other areas). Since we are

now allowed zero on the Wbres, there do exist continuous cross-sections of

B. It turns out that these cross-sections represent the spinor Welds on S2. A

‘spinor’ at a point of S2 is to be pictured not just as a ‘spinorial unit

tangent vector’ at a point of S2, but the vector can now be ‘scaled up

and down’ by a positive real number, or allowed to become zero. It can

be shown that the possible such ‘spinors’ at a point of S2 provide us with a

2-complex-dimensional vector space.10,[15.6]

The entire bundle BC is a complex (i.e. holomorphic) structure—in

fact, it is called a complex line bundle, because the Wbres are 1-complex-

dimensional lines. It is a holomorphic object because its construction is

given entirely in terms of holomorphic notions.[15.7] In particular, the base

space is a complex curve—the Riemann sphere (see §8.3)—and the Wbres

are 1-dimensional complex vector spaces. Accordingly, there is also an-

other notion of cross-section that has relevance here, namely that of a

holomorphic cross-section. A holomorphic cross-section is a cross-section

of a complex bundle that is itself a complex submanifold of the bundle

[15.6] Why does every such spinor Weld take the value zero at at least one point of S2?

[15.7] Explain this in detail.
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C2

CP1

Fig. 15.11 By taking the entire line Awþ Bz ¼ 0 (a complex plane), rather than

just its unit circle, we get an example of a complex line bundle BC, the Wbre V being

now a complex 1-dimensional vector space. The Riemann sphere S2 ¼ CP
1 (also

a complex manifold, see §8.3, §15.6) is still the base space M. But to make the

diVerent Wbres disjoint, we must ‘blow up’ the origin (0,0), replacing it with an

entire Riemann sphere, giving us a Riemann sphere’s worth of zeros.

(which just means that it is given locally by holomorphic equations).

Sometimes, in the case of a complex line bundle, such a cross-section is

referred to as a twisted holomorphic function on the base space.

Such things have considerable importance in many areas of pure math-

ematics and mathematical physics.11 They also play a particular role in

twistor theory (see §33.8). Holomorphic sections constitute a tightly con-

trolled but important family. In the case of BC, it turns out that there are

no (global) holomorphic sections other than the zero section (i.e. zero

everywhere).

In a minor modiWcation of this construction (corresponding to the

passage from B to B0) we obtain vector Welds, rather than spinor Welds,

on S2. The appopriate bundle B0C can again be interpreted as a complex

vector bundle—in fact it is what is called the square of the vector bundle

BC. It is constructed in just the same way as BC, except that we now

identify each point (w, z) with its ‘antipodal’ point (�w, �z), multipli-

cation of (w, z) by the complex number l now being given by (l1=2w, l1=2z)

(rather than by (lw, lz)).
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T(M)

2n-manifold

n-manifold

M

(a)

T*(M)

2n-manifold
symplectic

n-manifold

M

(b)

Fig. 15.12 (a) For a general manifoldM, each point of its tangent bundle T(M)

represents a point ofM together with a tangent vector toM there. A cross-section

of T(M) represents a vector Weld on M. (b) The cotangent bundle T�(M) is

similar, but with covectors instead of vectors. Cotangent bundles are always

symplectic manifolds.

To end this section, I should point out that the bundle B0C can be loosely

re-interpreted, in real terms, as what is called the tangent bundle T(S2) of S2.

The tangent bundle T(M) of a general manifoldM is that space each of

whose points represents a point ofM together with a tangent vector toM at

that point. See Fig. 15.12a.[15.8] A cross-section of T(M) represents a vector

Weld onM. A notion of perhaps even greater physical importance is that of

the cotangent bundle T*(M) of a manifoldM, each of whose points repre-

sents a point ofM, together with a covector at that point (Fig. 15.12b). In

[15.8] Show that B0C, interpreted as a real bundle over S2 is indeed the same as T(S2). Hint: Re-

examine Exercise [15.5].
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Chapter 20, we shall be glimpsing something of the importance of these

ideas. Cross-sections of T*(M) represent covector Welds onM. It turns out

that the cotangent bundles are always symplectic manifolds (see §14.9,

§§20.2,4), a fact of considerable importance for classical mechanics. We

can also correspondingly deWne various kinds of tensor bundles. A tensor

Weld may be interpreted as a cross-section of such a bundle.

15.6 Projective spaces

Another important notion, associated with a general vector space, is

that of a projective space. The vector space itself is ‘almost’ a bundle

over the projective space. If we remove the origin of the vector space,

then we do get a bundle over the projective space, the Wbre being a line

with the origin removed; alternatively, as with the particular example of

BC given above, in §15.5, we can ‘blow up’ the origin of the vector space.

(I shall come back to this in a moment.) Projective spaces have a consider-

able importance in mathematics and have a particular role to play in

the geometry of quantum mechanics (see §21.9 and §22.9)—and also in

twistor theory (§33.5). It is appropriate, therefore, that I comment on these

spaces brieXy here.

The idea of a projective space appears to have come originally from the

study of perspective in drawing and painting, this being taken within the

context of Euclidean geometry. Recall that, in the Euclidean plane, two

distinct lines always intersect unless they are parallel. However, if we draw

a picture, on a vertical piece of paper, of a pair of parallel lines receding

into the distance on a horizontal plane (say of the boundaries of a straight

road), then we Wnd that in the drawing, the lines appear to intersect at a

‘vanishing point’ on the horizon (see Fig. 15.13). Projective geometry takes

these vanishing points seriously, by adjoining ‘points at inWnity’ to the

Euclidean plane which enable parallel lines to intersect at these additional

points.

There are many theorems about lines in ordinary Euclidean 3-space

which are awkward to state because of exceptions having to be made for

parallel lines. In Fig. 15.14, I depict two remarkable examples, namely the

theorems of Pappos12 (found in the late 3rd century AD) and of Desargues

(found in 1636). In each case, the theorem (which I am stating in ‘converse’

form) asserts that if all the straight lines indicated in the diagram (9 lines

for Pappos and 10 for Desargues) intersect in triples at all but one of the

points marked with black spots (there being 9 black spots in all for Pappos

and 10 in all for Desargues), then the triple of lines indicated as intersect-

ing at the remaining black spot do in fact have a point in common.

However, stated in this way, these theorems are true only if we consider
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Fig. 15.13 Projective geometry adjoins ‘points at inWnity’ to the Euclidean plane

enabling parallel lines to intersect there. In the artist’s picture, painted on a

vertical canvas, a pair of horizontal parallel lines receding into the distance—the

boundaries of a straight horizontal road—appear to intersect at a ‘vanishing

point’ on the horizon.

(a) (b)

Fig. 15.14 ConWgurations of two famous theorems of plane projective geometry:

(a) that of Pappos, with 9 lines and 9 marked points, and (b) of Desargues, with 10

lines and 10 marked points. In each case, the assertion is that if each but one of the

marked points is the intersection of a triple of the lines, then the remaining marked

point occurs in this way also.

that a triple of mutually parallel lines are counted as having a point in

common, namely a ‘point at inWnity’. With this interpretation, the the-

orems remain true when the lines are parallel. They also remain true even

if one of the lines lies entirely at inWnity. Thus, the theorems of Pappos and

Desargues are more properly theorems in projective geometry than in

Euclidean geometry.
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How do we construct an n-dimensional projective space P
n? The most

immediate way is to take an (nþ 1)-dimensional vector space Vnþ1, and

regard our space P
n as the space of the 1-dimensional vector subspaces of

Vnþ1. (These 1-dimensional vector subspaces are the lines through the

origin of Vnþ1.) A straight line in P
n (which is itself an example of a

P
1) is given by a 2-dimensional subspace of Vnþ1 (a plane through the

origin), the collinear points of P
n arising as lines lying in such a plane

(Fig. 15.15). There are also higher-dimensional Xat subspaces of P
n, these

being projective spaces P
r contained in P

n (r < n). Each P
r corresponds

to an (rþ 1)-dimensional vector subspace of Vnþ1.

This construction (in the case n¼2) formalizes the procedures of

perspective in pictorial representation; for we can consider the artist’s eye

to be situated at the origin O of the vector space V3, this space representing

the artist’s ambient Euclidean 3-space. A light ray through O (artist’s eye) is

viewed by the artist as a single point. Thus, the artist’s ‘Weld of vision’, taken

as the totality of such light rays, can be thought of as a projective plane P
2.

(See Fig. 15.15 again.) Any straight line in space (not through O), that the

artist perceives, corresponds to the plane joining that line to O, in accord-

ance with the deWnition of a ‘straight line’ in P
2, as given above.

'Artist's
eye'
O

Vn+1 − picture Pn − picture

Fig. 15.15 To construct n-dimensional projective space P
n, take an (nþ 1)-

dimensional vector space Vnþ1, and regard P
n as the space of the 1-dimensional

vector subspaces of Vnþ1 (lines through the origin of Vnþ1). A straight line in P
n is

given by a 2-dimensional subspace of Vnþ1 (plane through origin), collinear points

of P
n arising as lines through O in such a plane. This applies both to the real case

(RP
n) and the complex case (CP

n). The geometry of RP
2 formalizes the

procedures of perspective in pictorial representation: consider the artist’s eye to

be at the origin O of V3, taking V3 as the artist’s ambient Euclidean 3-space. A

light ray through O is viewed by the artist as single point. What the artist depicts

as a ‘straight line’ (RP
1 in RP

2) (on any particular choice of artist’s canvas)

indeed corresponds to the plane (V2) joining that line to O. Pairs of planes through

O always intersect, even when joining parallel lines in V3 to O. (For example, the

two bottom boundary lines in the left-hand picture play the role of the road

boundaries of Fig. 15.13.)
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Imagine that the artist paints an accurate picture of the perceived scene

on some canvas that coincides with some particular Xat plane (not through

O). Any such plane will capture only part of the entire P
2. It will certainly

not intersect those light rays that are parallel to it. But several such planes

will provide an adequate ‘patchwork’ covering the whole of P
2 (three will

suYce13,[15.9]). Parallel lines in one such plane, will be depicted as lines with

a common vanishing point in another.

We can consider either real projective spaces, P
n ¼RP

n, or complex

ones, P
n ¼ CP

n. We have already considered one example of a complex

projective space, namely the Riemann sphere, which is CP
1. Recall that

the Riemann sphere arises as the space of ratios of pairs of complex

numbers (w, z), not both zero, which is the space of complex lines through

the origin in C
2. (See Fig. 15.8.) More generally, any projective space can

be assigned what are called homogeneous coordinates. These are the co-

ordinates z0, z1, z2 , . . . , zn for the (nþ 1)-dimensional vector space Vnþ1

from which P
n arises, but the ‘homogeneous coordinates’ for P

n are the n

independent ratios

z0: z1: z2: . . . : zn

(where the zs are not all zero), rather than the values of the individul zs

themselves.[15.10] If the zr are all real, then these coordinates describe

RP
n, and the space Vnþ1 can be identiWed with R

nþ1 (space of nþ1 real

numbers; see §12.2). If they are all complex, then they describe CP
n, and

the space Vnþ1 can be identiWed with C
nþ1 (space of nþ 1 complex

numbers; see §12.9).

Since we exclude the point O ¼ (0, 0, . . . , 0) from the allowable homo-

geneous coordinates, the origin of R
nþ1 or C

nþ1 is omitted14 (to give

R
nþ1 �O or C

nþ1 �O) when we think of it as a bundle over, respectively,

RP
n or CP

n. The Wbre, therefore, must also have its origin removed. In

the real case, this splits the Wbre into two pieces (but this does not mean

that the bundle splits into two pieces; in fact, Rnþ1 �O is connected, when

n > 0).[15.11] In the complex case, the Wbre is C�O (often written C
*),

which is connected. In either case, we may prefer to reinstate the origin in

the Wbre, so that we get a vector bundle. But if we do this, then this

amounts to more than simply putting the origin back into R
nþ1 or

C
nþ1. As with the particular case of C

2, considered above, we must put

[15.9] Explain how to do this. Hint: Think of Cartesian coordinates (x, y, z). Take two at a

time, with the canvas given by the third set to unity.

[15.10] Explain why there are n independent ratios. Find nþ 1 sets of n ordinary coordinates

(constructed from the zs), for nþ 1 diVerent coordinate patches, which together cover P
n.

[15.11] Explain this geometry, showing that the bundle R
nþ1 �O over RP

n can be under-

stood as the composition of the bundle R
nþ1 �O over Sn (the Wbre, R

þ, being the positive reals)

and of Sn as a twofold cover of RP
n.
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back the origin in each Wbre separately, so that the origin is ‘blown up’.

The bundle space becomes R
nþ1 with an RP

n inserted in place of O, or

C
nþ1 with a CP

n in place of O.

In the complex case, we can also consider the unit (2nþ 1)-sphere S2nþ1

in C
nþ1, just as we did in the particular case n ¼ 1 when constructing the

CliVord bundle. Each Wbre intersects S2nþ1 in a circle S1, so now we obtain

S2nþ1 as an S1 bundle over CP
n. This structure underlies the geometry of

quantum mechanics—although this beautiful geometrical fact impinges

only infrequently on the thinking of quantum physicists—where we shall

Wnd that the space of physically distinct quantum states, for an (nþ1)-state

system, is a CP
n. In addition, there is a quantity known as the phase,

which is normally thought of as being a complex number of unit modulus

(eiy, with y real; see §5.3), whereas it is really a twisted unit-modulus

complex number.15 These matters will be returned to at the end of this

chapter, and when we consider quantum mechanics in earnest in Chapters

21 and 22 (see §21.9, §22.9).

15.7 Non-triviality in a bundle connection

I have just taken the reader on a whirlwind tour of some important Wbre-

bundle and bundle-related concepts! Some of the geometry and topology

involved is rather intricate, so the reader should not be disconcerted if it all

seems a little bewildering. Let us now return to something much simpler—

in the sense that we do not need so many dimensions (at Wrst, at least!)

in order to get the idea across. Although my next example of a bundle

is indeed a very simple one, it expresses an important subtlety involved

in the bundle notion that we have not encountered before. In all

the bundles considered above, the non-triviality of the bundle was

revealed in some topological feature of the geometry, the ‘twist’

being of a topological character. However, it is perfectly possible for

a bundle to be non-trivial in an important sense, despite being topologic-

ally trivial.

Let us return to our original example, where the base space M is an

ordinary circle S1 and the Wbre V is a 1-dimensional real vector space. We

shall now construct our bundle B in a somewhat diVerent way from the

simple ‘Xipping over’ of the Wbre V, when we circumnavigateM, that gave

us the Möbius bundle. Instead, let us give it a stretch by a factor of 2. This

is depicted in Fig. 15.16. This exploits a diVerent symmetry of a 1-dimen-

sional real vector space from the ‘Xip’ symmetry y 7! �y used in

the Möbius bundle. The ‘stretch’ transformation y 7! 2y preserves the

vector-space structure of V just as well. Now, the topology of the bundle

is not the issue. Topologically, we simply have a cylinder S1 �R, just as

in our Wrst example of Fig. 15.4a, but now there is a diVerent kind of
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B

Attempt
at horizontal
section

Zero
section

S1 base

a
b

Fig. 15.16 A ‘strained’ line bundle B overM¼S1, using a diVerent symmetry of

the Wbre V from that of Figs. 15.4, 15.5, and 15.7 (where V is still a 1-dimensional

real vector space V1), namely a stretch by a positive factor (here 2). The topology is

just that of the cylinder S1�R, but there is a ‘strain’ that can be recognized in

terms of a connection on B. This connection deWnes a local notion of ‘horizontal’,

for curves in B. But consider two paths from a to b in the base, the direct path

(black arrow) and the indirect one (white arrow). When we arrive at b we Wnd a

discrepancy (by a factor of 2), indicating that the notion of ‘horizontal’ here is

path dependent.

‘strain’ in the bundle, which we can recognize is terms of an appropriate

kind of connection on it.

Our previous type of connection, as discussed in Chapter 14, was

concerned with a notion of ‘parallelism’ for tangent vectors carried

along curves in the manifold M. The way to view this, in the present

context, is to think in terms of the tangent bundle T(M) of M. Since a

point of T(M) represents a tangent vector y to M at a point a of M,

the transport of y along some curve g inM will be represented just by a

curve gy in T(M). See Fig. 15.17a. Having a notion of what ‘parallel’

means for the transport of y is equivalent to having a notion of ‘horizon-

tal’ for the curve gy in the bundle (since keeping gy ‘horizontal’ in the

bundle amounts to keeping y ‘constant’ along g in the base). The idea

here is to generalize this notion so that it applies to bundles other than

the tangent bundle; see Fig. 15.17b. We have already seen, in Chapter

14, the beginnings of such a generalization, because we extended the

notion of connection so that it applies to entities other than tangent

vectors, namely to covectors and to [ p
q
]-tensors generally. However, as

noted in §15.1, this is a very limited kind of generalization, because the
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a

(a) (b)

Fig. 15.17 Types of connection on a general manifold M compared. (a) The

original notion (§14.3), deWning a notion of ‘parallel’ for tangent vectors

transported along curves in M, is described in terms of the tangent bundle

T(M) of M (Fig. 15.12a). A particular tangent vector y at a point a of M
is represented in T(M) by a particular point of the Wbre above a. A ‘horizontal’

curve gy in T(M) from this point represents the parallel transport of y
along a curve g in M. (b) The same idea applies to a bundle B over M, other

than T(M), where ‘constant transport’ inM is deWned from a notion of ‘horizon-

tal’ in B.

extension of the connection from vectors to these diVerent kinds of

entity is uniquely prescribed, with no additional freedom left (essentially

because cotangent bundle and the tensor bundles are completely deter-

mined by the tangent bundle). For a general bundle over M, there need

be no association with the tangent bundle, so that the way that the

connection acts on such a bundle can be speciWed independently of the

way that it acts on tangent vectors. For a bundle over M which is

unassociated with T(M), it is not so appropriate to speak in terms of a

‘parallelism’, because the (local) notion of ‘parallel’ is something that

refers to directions, which basically means directions of tangent vectors.

Accordingly, it is more usual to refer to a local ‘constancy’ for the quantity

that is described by the bundle, rather than to the ‘parallelism’ that refers

to the tangent vectors described by T(M). Such a local notion of ‘con-

stancy’—i.e. of ‘horizontality’ in the bundle—provides the structure

known as a bundle connection.
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Now, let us come back to our ‘strained’ bundle B, over the circle S1, as

is pictured in Fig. 15.16. Consider a part of B that is ‘trivial’ in the

sense that it stands above some ‘topologically trivial’ region of S1; let

us take this to be the part Bp, standing above the simply connected

segment S1 � p (as in Fig. 15.5), where p is some point of S1. We shall

regard Bp as the product space (S1 � p)�R, and our bundle connection

is to provide the the notion of constancy of a cross-section that can be

taken as constancy in the ordinary sense of a real-valued function on

S1 � p. Thus, in Fig. 15.18, we Wnd the constant sections represented

as actual horizontal lines in Bp. The same applies to a second patch Bq,

with q 6¼ p, where the entire bundle is glued together from these two

patches. In the gluing, however, there is a relative stretching by a factor

of 2 between the right-hand patching region and the left-hand one (where

the right-hand region is depicted as involving a stretch by a factor 2).

Thus, a (non-zero) section that remains locally horizontal will be discrep-

ant by a factor 2 when the base space S1 is circumnavigated (Fig. 15.5).

Accordingly, the bundle B has no cross-sections (apart from the zero

section) that are locally horizontal according to our speciWed bundle

connection.

We can look at this situation slightly diVerently. We imagine a curve in

the base space S1 which starts at a point a and ends at b, and we envisage

the ‘constant transport’, of a Wbre-valued function on S1, from a to b. That

is to say, we look for a curve on B that is locally a horizontal cross-section

above this curve. See Fig. 15.16. Now, there is more than one curve from a

to b on the base space; if we go one way around, then we get a diVerent

Fig. 15.18 Consider a part Bp, of B (of Fig. 15.16) that stands above a ‘trivial’

region S1 � p of S1, and similarly for Bq, just as in Fig. 15.5a. Take ‘horizontal’ in

each patch to mean horizontal in the ordinary sense. In the gluing, however, there

is a relative stretching by a factor of 2 between one region of gluing and the other

(illustrated in the right-hand patching). This provides the connection illustrated in

Fig. 15.16.

348

§15.7 CHAPTER 15



answer for the Wnal value at b from the answer that we obtain when we go

the other way around. The notion of constant transport that we have

deWned is path-dependent.

This is not quite the same as the path dependence that we encountered

for our tangent-bundle connection =, which we studied in Chapter 13.

For, in that case, there was a local path dependence that occurred even for

inWnitesimal loops, and was manifested in the curvature of the connection.

In the case of our ‘strained’ bundle B, the path dependence is of a

global character instead. Of course, there is no possibility of a local path

dependence in this example, since the base space is 1-dimensional. But this

example incidentally shows that it is possible to have path dependence

globally even when none is present locally.

15.8 Bundle curvature

We can, however, modify our example so as to obtain a bundle over a

2-dimensional space, within which we choose a particular circle to represent

our original S1. For convenience, let us take our S1 to be the unit circle in the

complex plane, so we shall take the base spaceMC of our new bundleBC, to

be given byMC ¼ C. See Fig. 15.19. The Wbres are to remain copies of the

real lineR.Letus seehowwecanextendourbundle connection to this space.

If there were to be no ‘strain’ in our new bundle BC, then we could take

this connection to be given by straightforward diVerentiation with respect

to the standard coordinates (z, �zz) for the complex plane MC. Then

‘constancy’ of a cross-section F (a real-valued function of z and �zz) could

be thought of simply as constancy in the ordinary sense, namely

qF=qz ¼ 0 (whence also qF=q�zz ¼ 0, since F is real). When we introduce

‘strain’ into the bundle connection, we can do this by modifying the

operator q=qz to become a new operator = where

= ¼ q
qz
� A,

the quantity A being a complex (not necessarily holomorphic) smooth

function of z, which ‘operates’ simply by (scalar) multiplication. The

operator = acts on quantities like F. Topologically, our bundle BC is to

be just the trivial bundle C�R, so we can use global coordinates (z, F)

for BC, with z complex and F real.

A cross-section of BC is determined by F being given as a function of z:

F ¼ F(z, �zz),
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C

Fig. 15.19 To obtain a local path dependence (with curvature), in our bundle

(now BC), we need at least 2 dimensions in the base MC, now taken as the

complex plane C, where the S1 of Fig. 15.16 is its unit circle. The Wbres are to

remain V1 (i.e. modelled on the real line R). Using z as a complex coordinate for

C ¼MC, we use the explicit connection r ¼ ]=]z� A, where A is a complex

smooth function of z. When A is holomorphic the bundle curvature vanishes, but

if A ¼ ikz (with suitable k), we get the strained bundle of Fig. 15.16 for the part

over the unit circle. The bundle curvature is manifested in the failure to close of a

horizontal polygon above a small parallelogram inMC.

(the appearance of �zz indicating lack of holomorphicity; see §10.5). For the

cross-section to be constant (i.e. horizontal), we require =F ¼ 0 (whence

=F ¼ 0 also, because F is real), i.e.

qF
qz
¼ AF:

If A is holomorphic, then there is no problem about solving this equa-

tion, because an expression of the form F ¼ e(Bþ�BB) will Wt the bill, where

B ¼
Ð

Adz.[15.12] However, in the general case, with a non-holomorphic

A, we do not tend to get non-zero solutions, because of the commutator

relation

[15.12] Check this.
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==� == ¼ qA
q�zz
� q �AA

qz

acting on F.[15.13] (The right-hand side gives a number multiplying F that

does not generally vanish, although the left-hand side annihilates any real

solution of the equation qF=qz ¼ AF.) This commutator serves to deWne a

curvature for =, given by the imaginary part of qA=q�zz, this curvature

measuring the local degree of ‘strain’ in the bundle.

By making a speciWc choice of A, for which this commutator takes

a constant non-zero value, such as A ¼ ik�zz for a suitable real

constant k, we can get a ‘stretching factor’, when we travel around a

closed loop in MC, that is simply proportional to the area of the

loop. This applies, in particular, to the unit circle S1, so that we can

reproduce our original ‘strained’ bundle B over S1 by taking just that

part of the bundle that lies above this S1. We get the required ‘stretching

by a factor of 2’ over the unit circle by taking an appropriate value

of k.[15.14]

This commutator is the direct analogue of the commutator of operators

ra that we considered in §14.4, and which give rise to torsion and curva-

ture. We may as well assume that the torsion is zero. (Torsion has to do

with the action of the connection on tangent vectors, and is not of any

concern for us in relation to bundles, like the one under consideration

here, that are not associated with the tangent bundle.) For an n-dimen-

sional base spaceM, we have quantities just like the ra and =
X

of Chapter

14, except that they now act on bundle quantities.16 When we form their

commutators appropriately, we extract the curvature of the bundle con-

nection. When this curvature vanishes, then we have many locally constant

sections of the bundle; otherwise, we run into obstructions to Wnding such

sections, i.e. we Wnd a local path dependence of the connection. The

curvature describes this path dependence at the inWnitesimal level. This is

illustrated in Fig. 15.19.

In terms of indices, the connection is usually expressed, in some coord-

inate system, as an operator of the general form

ra ¼
q
qxa
� Aa,

where the quantity Aa may be considered to have some suppressed ‘bundle

indices’.WecanuseGreek letters for these17 (assumingthatweareconcerned

[15.13] Verify this formula.

[15.14] Confirm the assertions in this paragraph, finding the explicit value of k that gives this

required factor 2.
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C

Fig. 15.20 We can also make the Wbre into a complex 1-dimensional vector space,

the ‘stretch’ corresponding to multiplication by a real number.

with a vector bundle, so that tensor ideas will apply), and then the quantity

Aa looks like Aa
m
l. (For the full index expression, there would be a

dml multiplying the other two terms.) The bundle curvature would be

a quantity

Fab
m
l,

where the antisymmetric pair of indices ab refers to tangent 2-plane direc-

tions inM, in just the same way as for the curvature tensor that we had

before, but now the indices l and m refer to the directions in the Wbre (and are

normally suppressed in most treatments). There is also a direct analogue of

the (second) Bianchi identity (see §14.4). (The use of complex coordinates in

the speciWc example of BC was a convenience only, and an index notation

could have been used, just as in the n-dimensional case.)

It should be pointed out that, in many cases of Wbre bundles, the

relevant symmetry involved in the bundle’s construction need not com-

pletely coincide with the symmetry of the Wbre. For example, in the

example of the ‘strained’ bundle B over S1, or BC over C, we could

think of the 1-dimensional Wbre as being broadened out into a 2-dimen-

sional real vector space, where the ‘stretch’ of the Wbre is represented as a

uniform expansion of the vector 2-space. We could also provide this real
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C

Fig. 15.21 Alternatively, we can impose a ‘complex stretch’ instead, such as

multiplication by a complex phase (eiy, with y real), so the group of the bundle

is now U(1), the multiplicative group of these complex numbers.

vector 2-space with the additional structure that makes it a 1-dimensional

complex vector space, the ‘stretch’ corresponding to multiplication by a

real number (Fig. 15.20). This leads us to consider what happens when we

impose a ‘complex stretch’ instead. A particular case of this would

be multiplication by a complex number of unit modulus (�eiy, with y
real), which would provide a rotation, rather than an actual stretch

(Fig. 15.21) (which is the sort of thing that is involved in the CliVord

bundle, considered above). In this case, the group involved is U(1),

the multiplicative group of unimodular complex numbers (see §13.9).

Bundle connections with this U(1) symmetry group are of particular

importance in physics, because they describe electromagnetic interactions,

as we shall be seeing in §19.4. The essence of such a bundle is captured if

the Wbre is taken to be modelled on just the unit circle S1, rather than on

the whole complex plane C. This is in a certain sense, more ‘economical’

since the rest of the plane is simply ‘carried along’ with the circle, and it

provides no extra information. Nevertheless some advantage could be

obtained from using the complex plane as Wbre, because the bundle then

becomes a (complex) vector bundle.18
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In later chapters, we shall be seeing the power of these ideas in

relation to the modern theories of physical forces. In their guise as

‘gauge connections’, bundle connections are indeed a key ingredient, and

certain physical Welds emerge as the curvatures of these connections

(Maxwell’s electromagnetism being the archetypical example). We have

seen how essential it is for this idea that we have Wbres possessing an

exact symmetry. This raises fundamental questions as to the origin

of such symmetries, and what these symmetries actually are. I shall return

to this important question later, most particularly in Chapters 28, 31

and 34.

Notes

Section 15.1

15.1. See, for example, Steenrod (1951). One of the Wrst physicists to appreciate, in

around 1967, that the physicists’ notion of a ‘gauge theory’ is really concerned

with a connection on a bundle seems to have been Andrzej Trautman; see Traut-

man (1970) (also Penrose et al. 1997, p.A4).

15.2. In fact, the extra spacetime dimensions (Calabi–Yau spaces; see §31.14)

of string theory are not to be thought of directly as the ‘Wbres’ of a Wbre

bundle. Those Wbres would be spaces of certain spinor Welds in the Calabi–Yau

spaces.

Section 15.2

15.3. Further information is required for a complete deWnition of product space, so

that the notions of topology and smoothness are correctly deWned for M�V.
When a volume measure can be assigned to each ofM and V, then the volume of

M�V is the product of the volumes ofM andV. It would be distracting for me to

go into these matters properly here, even though, technically speaking, they are

necessary. For an appropriate reference, see Kelley (1965); Lefshetz (1949); or

Munkres (1954).

15.4. See §12.1 for the general meaning of ‘simply-connected’.

15.5. For notational simplicity, I am adopting a (mild) abuse of notation by writing

‘S1�p’ for the space which consists of S1 but with the point p removed. Purists

would write ‘S1�{p}’, or more probably ‘S1n{ p}’ (see Note 9.13). The ‘diVer-

ence’ expressed in these notations is between two sets, and ‘{ p}’ denotes the set

whose only element is the point p.

Section 15.3

15.6. Normally pure mathematicians are relatively respectful of grammar, but many

of them have adopted the habit of using the dreadful phrase ‘associated

to’ when they seem to feel that ‘associated with’ has not a suYciently speciWc

Xavour. I am at a loss to understand why they do not use the perfectly

grammatical ‘assigned to’ instead. In my view, ‘associated to’ is rather

Notes CHAPTER 15
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worse than another common mathematician’s abuse of language namely

‘according as’ (which I must confess to having used myself on various occa-

sions) since the phrase ‘according to whether’, which it stands in for, is a bit of a

mouthful.

Section 15.4

15.7. See Adams and Atiyah (1966).

15.8. See Penrose (1987); Penrose and Rindler (1986).

15.9. We say that B is a covering space of B0. In fact B is what is called the

universal covering space of B0. Being simply connected, it cannot be covered

further.

Section 15.5

15.10. This geometrical description of 2-spinors is discussed in some detail in Penrose

and Rindler (1984), Chap. 1.

15.11. For example, in §9.5, the splitting of functions (of a real variable) into positive-

and negative-frequency parts (crucial for quantum Weld theory) was analysed in

terms of extensions to holomorphic functions; but the reader may recall a

certain awkwardness in relation to the constant functions. This issue is greatly

clariWed when we allow these to be twisted holomorphic functions and has

relevance to twistor theory in §§33.8,10.

Section 15.6

15.12. I use the Greek spelling here, although the Latinized version ‘Pappus’ is

somewhat more usual.

15.13. It would not be unreasonable to take the position that the artist’s Weld of

vision is more properly thought of as a sphere S2, rather than P
2, where

we take the directed light rays through O as the artist’s Weld of vision,

rather that the undirected ones that I have been (implicitly) using in the text.

The sphere is just a twofold cover of the projective plane, and the only

trouble with it as providing a ‘geometry’, in this context, is that pairs of

‘lines’ (namely great circles) intersect in pairs of points rather than single

points. The artist would need four canvases, rather than three, to cover the

sphere S2.

15.14. See Note 15.5.

15.15. This fact has relevance to an intriguing and important quantum-mechanical

notion known as the ‘Berry phase’ (see Berry 1984, 1985; Simon 1983; Ahar-

onov and Anandan 1987; also Woodhouse 1991, pp. 225–49), which takes

account of the fact that we do not know where ‘1’ is on the unit circle—i.e. such

a ‘number’ is an element of an S1-Wbre for an S1-bundle, in

this case, S2nþ1 over CP
n.

Section 15.8

15.16. In the case of ra, we also need it to act on (co)tangent vectors so that =a can

operate on quantities with spacetime indices, in order that the commutator

r[arb] can be given meaning. In the case of =
x
, we can use the commutator

expression =
L

=
M
� =

M
=
L
� =

[L, M ]
, which does not require this.

15.17. This type of index notation for bundle indices is developed explicitly in Penrose

and Rindler (1984), Chap. 5.
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15.18. On the other hand, when the Wbre is the unit circle, the bundle becomes an

example of a principal bundle which has advantages in other contexts. A

principal bundle is one in which the Wbre V is actually modelled on the group

G of its own symmetries. Roughly speaking, G and V are the ‘same’ for a

principal bundle, but where, more correctly, V is G but where one ‘forgets’

which is G’s identity element; accordingly V is a (not necessarily Abelian) aYne

space, in accordance with §14.1 and Exercises [14.1], [14.2].
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16
The ladder of infinity

16.1 Finite fields

It appears to be a universal feature of the mathematics normally believed
to underlie the workings of our physical universe that it has a fundamental
dependence on the inWnite. In the times of the ancient Greeks, even before
they found themselves to be forced into considerations of the real-number
system, they had already become accustomed, in eVect, to the use of
rational numbers (see §3.1). Not only is the system of rationals inWnite in
that it has the potential to allow quantities to be indeWnitely large (a
property shared with the natural numbers themselves), but it also allows
for an unending degree of reWnement on an indeWnitely small scale. There
are some who are troubled with both of these aspects of the inWnite. They
might prefer a universe that is, on the one hand, Wnite in extent and, on the
other, only Wnitely divisible, so that a fundamental discreteness might
begin to emerge at the tiniest levels.
Although such a standpoint must be regarded as distinctly unconven-

tional, it is not inherently inconsistent. Indeed, there has been a school of
thought that the apparently basic physical role for the real-number
system R is some kind of approximation to a ‘true’ physical number sys-
tem which has only a Wnite number of elements. (This kind of approach
has been pursued, particularly, by Y. Ahmavaara (1965) and some co-
workers; see §33.1.) How can we make sense of such a Wnite number
system? The simplest examples are those constructed from the integers,
by ‘reducing them modulo p’, where p is some prime number.
(Recall that the prime numbers are the natural numbers 2, 3, 5, 7, 11,
13, 17, . . . which have no factors other than themselves and 1, and where
1 is itself not regarded as a prime.) To reduce the integers modulo p, we
regard two integers as equivalent if their diVerence is a multiple of p; that is
to say,

a � b (mod p)

if and only if
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a� b ¼ kp (for some integer k):

The integers fall into exactly p ‘equivalence classes’ (see the Preface,
for the notion of equivalence class), according to this prescription
(so a and b belong to the same class whenever a � b). These classes
are regarded as the elements of the Wnite Weld Fp and there are exactly p

such elements. (Here, I am adopting the algebraists’ use of the term ‘Weld’.
This should not be confused with the ‘Welds’ on a manifold, such as vector
or tensor Welds, nor a physical Weld such as electromagnetism. An algebra-
ist’s Weld is just a commutative division ring; see §11.1.) Ordinary rules of
addition, subtraction, (commutative) multiplication and division hold
for the elements of Fp.[16.1] However, we have the additional
curious property that if we add p identical elements together, we
always get zero (and, of course, the prime number p itself has to count
as ‘zero’).
Note that, as Fp has been just described, its elements are themselves

deWned as ‘inWnite sets of integers’—since the ‘equivalence classes’
are themselves inWnite sets, such as the particular equivalence
class { . . . , � 7, � 2, 3, 8, 13, . . . } which deWnes the element of F5

(p ¼ 5) that we would denote by ‘3’. Thus, we have appealed to the
inWnite in order to deWne the quantities that constitute our Wnite
number system! This is an example of the way in which mathemati-
cians often provide a rigorous prescription for a mathematical entity
by deWning it in terms of inWnite sets. It is the same ‘equivalence
class’ procedure that is involved in the deWnition of fractions, as
referred to in the Preface, in relation to the ‘cancelling’ that my mother’s
friend found so confusing! I imagine that to someone convinced that
the number system Fp (for some suitable p), is ‘really’ directly rooted
in nature, the ‘equivalence class’ procedure would be merely a mathe-
matician’s convenience, aimed at providing some kind of a rigorous
prescription in terms of the more (historically) familiar inWnite procedures.
In fact we do not need to appeal to inWnite sets of integers here; it is
just that this is the most systematic procedure. In any given case, we
could, alternatively, simply list all the operations, since these are Wnite in
number.
Let us look at the case p ¼ 5 in more detail, just as an example. We can

label the elements of F5 by the standard symbols 0, 1, 2, 3, 4, and we have
the addition and multiplication tables

[16.1] Show how these rules work, explaining why p has to be prime.
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þ 0 1 2 3 4 � 0 1 2 3 4

0 0 1 2 3 4 0 0 0 0 0 0

1 1 2 3 4 0 1 0 1 2 3 4

2 2 3 4 0 1 2 0 2 4 1 3

3 3 4 0 1 2 3 0 3 1 4 2

4 4 0 1 2 3 4 0 4 3 2 1

and we note that each non-zero element has a multiplicative inverse:

1�1 ¼ 1, 2�1 ¼ 3, 3�1 ¼ 2, 4�1 ¼ 4,

in the sense that 2�3�1 (mod 5), etc. (From here on, I use ‘¼’ rather than
‘�’, when working with the elements of a particular Wnite number system.)
There are also other Wnite WeldsFq, constructed in a somewhat more ela-

borate way, where the total number of elements is some power of a prime:
q¼pm. Letme just give the simplest example, namely the caseq¼4¼22.Here
we can label the diVerent elements as 0, 1, o, o2, where o3¼1 and where
each element x is subject to xþx¼0. This slightly extends the multiplicative
groupof complexnumbers 1, o, o2 that are cube roots of unity (described in
§5.4 andmentioned in §5.5 asdescribing the ‘quarkiness’ of strongly interact-
ing particles). To get F4, we just adjoin a zero ‘0’ and supply an ‘addition’
operation for which xþx¼0.[16.2] In the general case Fpm , we would have
xþxþ� � �þx¼0, where the number of xs in the sum is p.

16.2 A finite or infinite geometry for physics?

It is unclear whether such things really have a signiWcant role to play in
physics, although the idea has been revived from time to time. IfFq were to
take the place of the real-number system, in any signiWcant sense, then p

would have to be very large indeed (so that the ‘xþxþ� � �þx¼0’ would not
show up as a serious discrepancy in observed behaviour). To my mind, a
physical theory which depends fundamentally upon some absurdly enor-
mous prime number would be a far more complicated (and improbable)
theory than one that is able to depend upon a simple notion of inWnity.
Nevertheless, it isof some interest topursue thesematters.Muchofgeometry
survives, in fact, when coordinates are given as elements of some Fq. The
ideas of calculus need more care; nevertheless, many of these also survive.

[16.2] Make complete addition and multiplication tables for F4 and check that the laws of

algebra work (where we assume that 1 þ o þ o2 ¼ 0).
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It is instructive (and entertaining) to see how projective geometry with a
Wnite total number of points works, and we can, accordingly, explore the
projective n-spaces P

n(Fq) over the Weld Fq. We Wnd that P
n(Fq) has

exactly 1þ qþ q2 þ � � � þ qn ¼ (qnþ1 � 1)=(q� 1) diVerent points.[16.3] The
projective planes P

2(Fq) are particularly fascinating because a very elegant
construction for them can be given. This can be described as follows. Take a
circular discmade from some suitablematerial such as cardboard, and place
a drawing pin through its centre, pinning it to a Wxed piece of background
card so that it can rotate freely. Mark 1þ qþ q2 points equally spaced
around the circumference on the background card, labelling them, in an
anticlockwise direction, by the numbers 0, 1, 2, . . . , q(1þ q). On the rotat-
ing disc, mark 1þ q special points in certain carefully chosen positions.
These positions are to be such that, for any selection of two of the marked
points on the background, there is exactly one position of the disc for which
the two selected points coincide with two of these special points on the disc.
Another way of saying this is as follows: if a0, a1 , . . . , aq are the successive
distances around the circumference between these special points, taken
cyclically (where the distance around the circumference between successive
marked points on the background circle is taken as the unit distance) then
every distance 1, 2, 3, . . . , q can be uniquely represented as a sum of a
cyclically successive collection of the as. I call such a disc a magic disc. In
Fig. 16.1, I have depicted magic discs for q ¼ 2, 3, 4, and 5, for which
a0, . . . , aq can be taken as 1, 2, 4; 1, 2, 6, 4; 1, 3, 10, 2, 5; 1, 2, 7, 4, 12, 5,
respectively.[16.4] In the cases q¼ 7, 8, 9, 11, 13, and 16, we can make magic
discsdeWnedby1,2, 10,19,4, 7,9, 5;1,2, 4,8, 16,5,18,9,10;1,2, 6,18,22,7,5,
16, 4, 10; 1, 2, 13, 7, 5, 14, 34, 6, 4, 33, 18, 17, 21, 8; 1, 2, 4, 8, 16, 32, 27, 26, 11, 9,
45, 13, 10, 29, 5, 17, 18, respectively. It is amathematical theorem thatmagic
discs exist for everyP

2(Fq) (withqapowerof aprime).1The readermayWnd
it amusing to check various instances of the theorems of Pappos andDesar-
gues (see §15.6, Fig. 15.14).2 (Take q > 2, so as to have enough points for a
non-degenerate conWguration!) Two examples (Desargues for q ¼ 3, and
Pappos for q ¼ 5, using the discs of Fig. 16.1) are illustrated in Fig. 16.2.
The simplest case q ¼ 2 has particular interest from other direc-

tions.[16.5] This plane, with 7 points, is called the Fano plane, and it is
depicted in Fig. 16.3, the circle being counted as a ‘straight line’. Although

[16.3] Show this.

[16.4] Show how to construct new magic discs, in the cases q ¼ 3, 5 by starting at a particular

marked point on one of the discs that I have given and then multiplying each of the angular

distances from the other marked points by some Wxed integer. Why does this work?

[16.5] The Wnite Weld F8 has elements 0, 1, e, e2, e3, e4, e5, e6, where e7 ¼ 1 and 1þ 1 ¼ 0.

show that either (1) there is an identity of the form ea þ eb þ ec ¼ 0 whenever a, b, and c are

numbers on the background circle of Fig. 16.1a which can line up with the three spots on the disc,

or else (2) the same holds, but with e3 in place of e (i.e. e3a þ e3b þ e3c ¼ 0).

360

§16.2 CHAPTER 16



2 2

3

3
1

1

0 0

6

6

5

5

4

4

7

8

9 10
11

12

2

3

1

0

6 5
47

8

9

10

11

12

13
14

15 16 17
18

19

20

6
5

4

2

3

1

0

789
10

11
12

13

14

15

16

17

18

19
20

21
22 23 24 25

26
27

28

29

30

(a)

(c)

(b)

2 1

4
6

2
1

4

10
3

1
5

2
12 5

1
2

7
4

(d)

Fig. 16.1 ‘Magic discs’ for Wnite projective planes p
2(fq) (q being a power of a

prime). The 1þqþq2 points are represented as successive numerals 0, 1, 2,

. . . , q(1þq) placed equidistantly around a background circle. A freely rotating

circular disc is attached, with arrows labelling 1þq particular places: the points of

a line in p
2(fq). These are such that for each pair of distinct numerals, there is

exactly one disc setting so that arrows point at them. Magic discs are shown for (a)

q¼2; (b) q¼3; (c) q¼4¼22; and (d) q¼5.
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Fig. 16.2 Finite-geometry versions of the theorems of Fig. 5.14. (a) Pappos (with

q¼5) and (b) Desargues (with q¼3), illustrated by respective use of the discs

shown in Fig. 16.1d and 16.1b.

361

The ladder of infinity §16.2



2 0 6

3

54

1

Fig. 16.3 The Fano plane p
2(f2), with 7 points and 7 lines (the circle counting as

a ‘straight line’) numbered according to Fig. 16.1a. This provides the multipli-

cation table for the basis elements i0, i1, i2, . . . ,i6 of the octonion division algebra,

where the arrows provide the cyclic ordering that gives a ‘þ’ sign.

its scope as a geometry is rather limited, it plays an important role of a
diVerent kind, in providing the multiplication law for octonions (see §11.2,
§15.4). The Fano plane has 7 points in it, and each point is to be associated
with one of the generating elements i0, i1, i2 , . . . , i6 of the octonion alge-
bra. Each of these is to satisfy i2r ¼ �1. To Wnd the product of two distinct

generating elements, we just Wnd the line in the Fano plane which joins the
points representing them, and then the remaining point on the line is the
point representing the product (up to a sign) of these other two. For this,
the simple picture of the Fano plane is not quite enough, because the sign

of the product needs to be determined also. We can Wnd this sign by
reverting to the description given by the disc, depicted in Fig. 16.1a, or
by using the (equivalent) arrow arrangements (intrepreted cyclicly) of
Fig. 16.3. Let us assign a cyclic ordering to the marked points on the
disc—say anticlockwise. Then we have ixiy ¼ iz if the cyclic ordering of
ix, iy, iz agrees with that assigned by the disc, and ixiy ¼ �iz otherwise.
In particular, we have i0i1 ¼ i3 ¼ �i1i0, i0i2 ¼ i6, i1i6 ¼ �i5, i4i2 ¼ �i1,
etc.[16.6]

Although there is a considerable elegance to these geometric and alge-
braic structures, there seems to be little obvious contact with the workings
of the physical world. Perhaps this should not surprise us, if we adopt the
point of view expressed in Fig. 1.3, in §1.4. For the mathematics that has
any direct relevance to the physical laws that govern our universe is but a
tiny part of the Platonic mathematical world as a whole—or so it would
seem, as far as our present understanding has taken us. It is possible that,

[16.6] Show that the ‘associator’ a(bc)� (ab)c is antisymmetrical in a, b, c when these are

generating elements, and deduce that this (whence also a(ab) ¼ a2b) holds for all elements. Hint:

Make use of Fig. 16.3 and the full symmetry of the Fano plane.
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as our knowledge deepens in the future, important roles will be found for
such elegant structures as Wnite geometries or for the algebra of octonions.
But as things stand, the case has yet to be convincingly made, in my
opinion.3 It seems that mathematical elegance alone is far from enough
(see also §34.9). This should teach us caution in our search for the under-
lying principles of the laws of the universe!
Let us drag ourselves back from such Xirtations with these appealing

Wnite structures and return to the awesome mathematical richness that is
inherent in the inWnite. As a preliminary, it should be pointed out that
inWnite structures (such as the totality of natural numbers N) might be
part of some mathematical formalism aimed at a description of reality,
whereas it is not intended that these inWnite structures have direct physical
interpretation as inWnite (or inWnitesimal) physical entities. For example,
some attempts have been made to develop a scheme in which discreteness
(and indeed Wniteness) appears at the smallest level, while there is still the
potential for describing indeWnitely (or even inWnitely) large structures.
This applies, in particular, to some old ideas of my own for building up
space in a Wnite way, using the theory of spin networks which I shall
describe brieXy in §32.6, and which depends upon the fact that, according
to standard quantum mechanics, the measure of spin of an object is given
by a natural number multiple of a certain Wxed quantity (1

2 h�). Indeed, as
I mentioned in §3.3, in the early days of quantum mechanics, there was a
great hope, not realized by future developments, that quantum theory was
leading physics to a picture of the world in which there is actually discrete-
ness at the tiniest levels. In the successful theories of our present day, as
things have turned out, we take spacetime as a continuum even when
quantum concepts are involved, and ideas that involve small-scale space-
time discreteness must be regarded as ‘unconventional’ (§33.1). The con-
tinuum still features in an essential way even in those theories which
attempt to apply the ideas of quantum mechanics to the very structure
of space and time. This applies, in particular, to the Ashtekar–Rovelli–
Smolin–Jacobson theory of loop variables, in which discrete (combinator-
ial) ideas, such as those of knot and link theory, actually play key
roles, and where spin networks also enter into the basic structure. (We
shall be seeing something of this remarkable scheme in Chapter 32 and, in
§33.1, we shall briefly encounter some other ideas relating to ‘discrete
spacetime’.)
Thus it appears, for the time being at least, that we need to take the use

of the inWnite seriously, particularly in its role in the mathematical descrip-
tion of the physical continuum. But what kind of inWnity is it that we are
requiring here? In §3.2 I brieXy described the ‘Dedekind cut’ method of
constructing the real-number system in terms of inWnite sets of rational
numbers. In fact, this is an enormous step, involving a notion of inWnity
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that greatly surpasses that which is involved with the rational numbers
themselves. It will have some signiWcance for us to address this issue here.
In fact, as the great Danish/Russian/German mathematician Georg
Cantor showed, in 1874, as part of a theory that he continued to develop
until 1895, there are diVerent sizes of inWnity! The inWnitude of natural
numbers is actually the smallest of these, and diVerent inWnities continue
unendingly to larger and larger scales. Let us try to catch a glimpse of
Cantor’s ground-breaking and fundamental ideas.

16.3 Different sizes of inWnity

The Wrst key ingredient in Cantor’s revolution is the idea of a one-to-one
1–1 correspondence.4We say that two sets have the same cardinality (which
means, in ordinary language, that they have the ‘same number of elements’)
if it is possible to set up a correspondence between the elements of one set
and the elements of the other set, one to one, so that there are no elements
of either set that fail to take part in the correspondence. It is clear that this
procedure gives the right answer (‘same number of elements’) for Wnite sets
(i.e. sets with a Wnite number 1, 2, 3, 4, . . . of members, or even 0 elements,
where in that case we require the correspondence to be vacuous). But in
the case of inWnite sets, there is a novel feature (already noticed, by 1638,
by the great physicist and astronomer Galileo Galilei)5 that an inWnite set
has the same cardinality as some of its proper subsets (where ‘proper’
means other than the whole set).
Let us see this in the case of the set N of natural numbers:

N ¼ {0, 1, 2, 3, 4, 5, . . . }:

If we remove 0 from this set,6 we Wnd a new set N� 0 which clearly has
the same cardinality as N, because we can set up the 1–1 correspondence
in which the element r in N is made to correspond with the element rþ 1

in N� 0. Alternatively, we can take Galileo’s example, and see that the
set of square numbers {0, 1, 4, 9, 16, 25, . . . } must also have the same
cardinality as N, despite the fact that, in a well-deWned sense, the square
numbers constitute a vanishingly small proportion of the natural numbers
as a whole. We can also see that the cardinality of the set Z of all the
integers is again of this same cardinality. This can be seen if we consider
the ordering of Z given by

{0, 1,� 1, 2,� 2, 3,� 3, 4,� 4, . . . },

whichwe can simply pair oVwith the elements {0, 1, 2, 3, 4, 5, 6, 7, 8, . . . }
of the set N. More striking is the fact that the cardinality of the rational

numbers is again the same as the cardinality of N. There are many ways of
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seeing this directly,[16.7],[16.8] but rather than demonstrating this in detail
here, let us see how this particular example falls into the general framework
of Cantor’s wonderful theory of inWnite cardinal numbers.
First, what is a cardinal number? Basically, it is the ‘number’ of elements

in some set, where we regard two sets as having the ‘same number of
elements’ if and only if they can be put into 1–1 correspondence with each
other. We could try to be more precise by using the ‘equivalence class’ idea
(employed in §16.1 above to deWne Fp for a prime p; see also the Preface)
and say that the cardinal number a of some set A is the equivalence class of
all sets with the same cardinality as A. In fact the logician Gottlob Frege
tried to do just this in 1884, but it turns out that there are fundamental
diYculties with open-ended concepts like ‘all sets’, since serious contradic-
tions can arise with them (as we shall be seeing in §16.5). In order to avoid
such contradictions, it seems to be necessary to put some restriction on the
size of the ‘universe of possible sets’. I shall have some remarks to make
about this disturbing issue shortly. For the moment, let us evade it by
taking refuge in a position that I have been taking before (as referred to in
the Preface, in relation to the ‘equivalence class’ deWnition of the rational
numbers). We take the cardinals as simply being mathematical entities
(inhabitants of Plato’s world!) which can be abstracted from the notion
of 1–1 equivalence between sets. We allow ourselves to say that the set A

‘has cardinality a’, or that it ‘has a elements’, provided that we
are consistent and say that the set B also ‘has cardinality a’, or that it

‘has a elements’, if and only if A and B can be put into 1–1 correspondence.
Notice that the natural numbers can all be thought of as cardinal num-
bers in this sense—and this is a good deal closer to the intuitive
notion of what a natural number ‘is’ than the ‘ordinal’ deWnition
(0 ¼ {}, 1 ¼ {0}, 2 ¼ {0, {0} }, 3 ¼ {0, {0}, {0, {0}}}, . . . ) given in §3.4!
The natural numbers are in fact the Wnite cardinals (in the sense that the
inWnite cardinals are the cardinalities of those sets, like N above, which
contain proper subsets of the same cardinality as themselves).
Next, we can set up relationships between cardinal numbers. We say

that the cardinal a is less than or equal to the cardinal b, and write

a � b

(or equivalently b � a), if the elements of a set A with cardinality a can be
put into 1–1 correspondence with the elements of some subset (not neces-
sarily a proper subset) of the elements of some set B, with cardinality b. It

[16.7] See if you can provide such an explicit procedure, by finding some sort of systematic way

of ordering all the fractions. You may find the result of Exercise [16.8] helpful.

[16.8] Show that the function 1
2
((aþ b)2 þ 3aþ b) explicitly provides a 1–1 correspondence

between the natural numbers and the pairs (a, b) of natural numbers.
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should be clear that, if a � b and b � g, then a � g.[16.9] One of the
beautiful results of the theory of cardinal numbers is that, if

a � b and b � a,
then

a ¼ b,

meaning that there is a 1–1 correspondence between A and B.[16.10]

We may ask whether there are pairs of cardinals a and b for which neither
of the relations a # b and b # a holds. Such cardinals would be non-

comparable. In fact, it follows from the assumption known as the axiom

of choice (referred to briefly in §1.3) that non-comparable cardinals do not
exist.
The axiom of choice asserts that if we have a set A, all of whose

members are non-empty sets, then there exists a set B which contains
exactly one element from each of the sets belonging to A. It would appear,
at Wrst, that the axiom of choice is merely asserting something absolutely
obvious! (See Fig. 16.4.) However, it is not altogether uncontroversial that
the axiom of choice should be accepted as something that is universally
valid. My own position is to be cautious about it. The trouble with this
axiom is that it is a pure ‘existence’ assertion, without any hint of a rule
whereby the set B might be speciWed. In fact, it has a number of alarming
consequences. One of these is the Banach–Tarski theorem,7 one version of
which says that the ordinary unit sphere in Euclidean 3-space can be cut
into Wve pieces with the property that, simply by Euclidean motions

A

B

[16.9] Spell this out in detail.

[16.10] Prove this. Outline: there is a 1–1 map b taking A to some subset bA (¼ b(A) ) of B,

and a 1–1 map a taking B to some subset aB of A; consider the map of A to B which uses b

to map A�aB to bA�baB and abA�abaB to babA�babaB, etc. and which uses a�1 to map

aB�abA to B�bA and abaB�ababA to baB�babA, etc., and sort out what to do with the rest of A

and B.

Fig. 16.4 The axiom of

choice asserts that for any

set A, all of whose

members are non-empty

sets, there exists a set B

which contains exactly one

element from each of the

sets belonging to A.
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(i.e. translations and rotations), these pieces can be reassembled to make
two complete unit spheres! The ‘pieces’, of course, are not solid bodies, but
intricate assemblages of points, and are deWned in a very non-constructive
way, being asserted to ‘exist’ only by use of the axiom of choice.
Let me now list, without proof, a few very basic properties of cardinal

numbers. First, the symbol # gives the normal meaning (see Note 3.1)
when applied to the natural numbers (the Wnite cardinals). Moreover, any
natural number is less than or equal to (#) any inWnite cardinal number—
and, of course, it is strictly smaller, i.e. less than (<) and not equal to it.
Now suppose that b # a, with a inWnite, then (in stark contrast with what
we are familiar with for Wnite numbers) the cardinality of the union A [ B

is simply the greater of the two, namely a, and the cardinality of the
product A�B is also a. (We have seen examples of the product before,
e.g. §13.2, §15.2. The set A�B is consists of all pairs (a, b), where a is taken
from A and b from B. For Wnite sets, the cardinality of their product, as
sets, is the ordinary numerical product of their cardinalities, which for
Wnite sets with more than one member is always larger than the cardinality
of either individually.) This does not seem to get us very far if we want to
Wnd inWnities that are bigger than the ones that we have already. We seem
to have got ‘stuck’ at a.
We shall be seeing how to get ‘unstuck’ in the next section. For the

moment, however, we can see that what we have done above is at least
enough to show us that the number of rational numbers is the same as the
number of natural numbers. Following Cantor, let us use the symbol Q0

(‘aleph nought’ or, in the US, ‘aleph null’) for the cardinality of the natural
numbers N which, as we have seen above, is the same as the cardinality of
the integers Z. In fact, the inWnite number Q0 is the smallest of the inWnite
cardinals. Now, what is the cardinality r of the rationals? Any rational
number can be written (in many ways) in the form a/b, where a and b are
integers. Choosing one of these ways (say, ‘lowest terms’) for each ra-
tional, we have found a 1–1 correspondence between the set of rationals
with a subset of the set N�N. Therefore r is less than or equal to the
cardinality of N�N. But by the above (or, by direct application of
Exercise [16.8], the cardinality of N�N is equal to the cardinality of
N, namely Q0. Thus, r#Q0. But the integers are contained in the
rationals, so Q0 #r. Hence, r ¼ Q0.

16.4 Cantor’s diagonal slash

Now we come to Cantor’s astounding early achievement, namely his
demonstration that there are indeed inWnities strictly greater than Q0,
and that the cardinality of the set R of real numbers is such an inWnity.
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I shall give this result here as a particular instance of Cantor’s more
general

a < 2a,

where a < b means a#b and a 6¼ b (and, of course, we can also write
a < b as b > a). Cantor’s remarkable proof of this result (and the result
itself) constitutes one of the most original and inXuential achievements in
the whole of mathematics. Yet it is simple enough that I can give it in its
entirety here.
First I should explain the notation. If we have two sets A and B, then

the set BA is the set of all mappings from A to B. What is the rationale for
this use of notation? We think of the set A spread out before us, each
element of A being represented as a ‘point’. Then, to picture an element of
BA, we place one of the elements of B at each of these points. This is a
mapping from A to B because it provides an assignment of an element of
B to each element of A (see Fig. 16.5). The reason for the ‘exponential
notation’ BA is that when we apply this procedure to Wnite sets, say to a
set A, with a elements, and a set B, with b elements, then the total number
of ways of assigning an element of B to each element of A is indeed ba.
(There are b ways for the Wrst member of A; there are b ways for the
second; there are b ways for the third; and so on, for each of the a

members of A. The total number in all is therefore b� b� b� . . .� b,
the number of bs in the product being a, so this is just ba.) Cantor’s
notation is

ba

for the cardinality of BA, where b and a are the respective cardinalities of B

and A.

B B � A

A

Fig. 16.5 For general

sets A, B, the set of all

mappings from A to B is

denoted BA (see also

Fig. 6.1). Each element of

A is assigned a particular

element of B. This

provides a cross-section

of B � A, regarded as a

bundle over A (as in Fig.

15.6a), except that there is

no notion of continuity

involved.
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This takes on a particular signiWcance when b ¼ 2. Here we can take B

to be a set with two elements that we shall think of being the labels ‘in’ and
‘out’. Each element of BA is thus an assignment of either ‘in’ or ‘out’ to
every element of A. Such an assignment amounts simply to choosing a
subset of A (namely the subset of ‘in’ elements). Thus, BA is, in this case,
just the set of subsets of A (and we frequently denote this set of subsets of
A by 2A). Accordingly:

2a is the total number of subsets of any set with a elements:

Now for Cantor’s astonishing proof. This proceeds in accordance with
the classic ancient Greek tradition of ‘proof by contradiction’ (§2.6, §3.1).
First, let us try to suppose that a ¼ 2a, so that there is some 1–1 corres-
pondence between some set A and its set of subsets 2A. Then each element
a of A will be associated with a particular subset S(a) of A, under this
correspondence. We may expect that sometimes the set S(a) will contain a

itself as a member and sometimes it will not. Let us consider the collection
of all the elements a for which S(a) does not contain a. This collection will
be some particular subset Q of A (which we allow to be either the empty set
or the whole of A, if need be). Under the supposed 1–1 correspondence, we
must have Q ¼ S(q), for some q in S. We now ask the question: ‘Is q in Q

or is it not?’ First suppose that it is not. Then q must belong to the
collection of elements of A that we have just singled out as the subset Q,
so q must belong to Q after all: a contradiction. This leaves us with the
alternative supposition, namely that q is in Q. But then q cannot belong to
the collection that we have called Q, so q does not belong to Q after all:
again a contradiction. We therefore conclude that our supposed 1–1 cor-
respondence between A and 2A cannot exist.
Finally, we need to show that a# 2a, i.e. that there is a 1–1 correspond-

ence between A and some subset of 2A. This is achieved by simply using the
1–1 correspondence which assigns each element a of A to the particular
subset of A that contains just the element a and no other. Thus, we have
established a < 2a, as required, having shown a# 2a but a 6¼ 2a.
Though this argument may be a little confusing (and any confused

reader may care to study it all over again), it is extremely ‘elementary’ in
the sense that it does not appeal to mathematical ideas requiring any
expert knowledge. In view of this, it is very remarkable that its implica-
tions are extraordinarily far-reaching. Not only does it enable us to see
that there are fundamentally more real numbers than there are natural
numbers, but it also shows that there is no end to the hugeness of the
possible inWnite numbers. Moreover, in a slightly modiWed form, the
argument shows that there is no computational way of deciding whether
a general computation will ever come to an end (Turing), and a related
consequence is Gödel’s famous incompleteness theorem which shows that
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no set of pre-assigned trustworthy mathematical rules can encapsulate all
the procedures whereby mathematical truths are ascertained. I shall try to
give the Xavour of how such results are obtained in the next section.
To end this section, however, let us see why the above result actually

establishes Cantor’s Wrst remarkable breakthrough concerning the inWnite,
namely that there are actually far more real numbers than there are
natural numbers—despite the fact that there are exactly as many fractions
as natural numbers. (This breakthrough established that there is, indeed, a
non-trivial theory of the inWnite!) This will follow if we can see that the
cardinality of the reals, usually denoted by C, is actually equal to 2Q0 :

C ¼ 2Q0 :

Then, by the above argument, C > Q0 as required.
There are many ways to see that C ¼ 2Q0 . To show that 2Q0 # C (which

is actually all that we now need for C > Q0), it is suYcient to establish that
there is a 1–1 correspondence between 2N and some subset of R. We can
think of each element of 2N as an assignment of either 0 or 1 (‘out’ or ‘in’)
to each natural number, i.e. such an element can be thought of as an
inWnite sequence, such as

100110001011101 . . . :

(This particular element of 2N assigns 1 to natural number 0, it assigns 0
to the natural number 1, it assigns 0 to the natural number 2, it assigns
1 to the natural number 3, it assigns 1 to the natural number 4, etc., so our
subset is {0,3,4,8, . . . }.) Now, we could try to read oV this entire sequence
of digits as the binary expansion of a some real number, where we think
of a decimal point situated at the far left. Unfortunately, this does not
quite work, because of the irritating fact that there is an ambiguity in
certain such representations, namely with those that end in an inWnite
sequence consisting entirely of 0s or else consisting entirely of 1s.[16.11]

We can get around this awkwardness by any number of stupid devices. One
of these would be to interleave the binary digits with, say, the digit 3, to
obtain

:313030313130303031303131313031 . . . ,

and then read this number oV as the ordinary decimal expression of some
real number. Accordingly, we have indeed set up a 1–1 correspondence
between 2N and a certain subset of R (namely the subset whose decimal
expansions have this odd-looking interleaved form). Hence 2Q0 # C (and
we now obtain Cantor’s C > Q0), as required.

[16.11] Explain this.
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To deduce that C ¼ 2Q0 , we have to be able to show that C # 2Q0 . Now,
every real number strictly between 0 and 1 has a binary expansion (as
considered above), albeit sometimes redundantly; thus that particular set
of reals certainly has cardinality # 2Q0 . There are many simple functions
that take this interval to the whole of R,[16.12] establishing that C # 2Q0 ,
and hence C ¼ 2Q0 , as required.
Cantor’s original version of the argument was given somewhat diVer-

ently from the one presented above, although the essentials are the same.
His original version was also a proof by contradiction, but more direct. A
hypothetical 1–1 correspondence between N and the real numbers strictly
between 0 and 1 was envisaged, and presented as a vertical listing of all
real numbers, each written out in decimal expansion. A contradiction with
the assumption that the list is complete was obtained by a ‘diagonal
argument’ whereby a new real number, not in the list, is constructed by
going down the main diagonal of the array, starting at the top left corner
and diVering in the nth place from the nth real number in the list. (There
are many popular accounts of this; see, for example, the version of it
given in Chapter 3 of my book The Emperor’s New Mind).[16.13] This
general type of argument (including that which we used at the beginning
of this section to demonstrate a < 2a), is sometimes referred to as Cantor’s
‘diagonal slash’.

16.5 Puzzles in the foundations of mathematics

As remarked above, the cardinality, 2Q0 , of the continuum (i.e. of R) is
often denoted by the letter C. Cantor would have preferred to be able to
label it ‘Q1’, by which he meant the ‘next smallest’ cardinal after Q0. He
tried, but failed, to prove 2Q0 ¼ Q1; in fact the contention ‘2Q0 ¼ Q1’,
known as the continuum hypothesis, became a famous unresolved
issue for many years after Cantor proposed it. It is still unresolved, in
an ‘absolute’ sense. Kurt Gödel and Paul Cohen were able to show that
the continuum hypothesis (and also the axiom of choice) is not
decidable by the means of standard set theory. However, because of
Gödel’s incompleteness theorem, which I shall be coming to in a moment,
and various related matters, this does not in itself resolve the issue of the
truth of the continuum hypothesis. It is still possible that more powerful
methods of proof than those of standard set theory might be able to decide
the truth or otherwise of the continuum hypothesis; on the other hand, it
could be the case that its truth or falsehood is a subjective issue depending

[16.12] Exhibit one. Hint: Look at Fig. 9.8, for example.

[16.13] Explain why this is essentially the same argument as the one I have given here, in the

case a ¼ Q0 for showing a < 2a.
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upon what mathematical standpoint one adheres to.8 This issue was
referred to in §1.3, but in relation to the axiom of choice, rather than the
continuum hypothesis.
We see that the relation a < 2a tells us that there cannot be any greatest

inWnity; for if some cardinal number O were proposed as being the
greatest, then the cardinal number 2O is seen to be even greater. This
fact (and Cantor’s argument establishing this fact) has had momentous
implications for the foundations of mathematics. In particular, the phil-
osopher Bertrand Russell, being previously of the opinion that there must
be a largest cardinal number (namely that of the class of all classes) had
been suspicious of Cantor’s conclusion, but changed his mind, by around
1902, after studying it in detail. In eVect, he appplied Cantor’s argument to
the ‘set of all sets’, leading him at once to the now famous ‘Russell
paradox’!
This paradox proceeds as follows. Consider the set R, consisting of ‘all

sets that are not members of themselves’. (For the moment, it does not
matter whether you are prepared to believe that a set can be a member of
itself. If no set belongs to itself, then R is the set of all sets.) We ask the
question, what about R itself? Is R a member of itself ? Suppose that it is.
Then, since it then belongs to the set R of sets which are not members
of themselves, it does not belong to itself after all—a contradiction!
The alternative supposition is that it does not belong to itself. But
then it must be a member of the entire family of sets that are not members
of themselves, namely the set R. Thus, R belongs to R, which con-
tradicts the assumption that it does not belong to itself. This is a clear
contradiction!
It may be noticed that this is simply what happens to the Cantor proof

a < 2a, if it is applied in the case when a is taken to be the ‘set of all
sets’.[16.14] Indeed this is how Russell came across his paradox.9 What this
argument is actually showing is that there is no such thing as the ‘set of all
sets’. (In fact Cantor was already aware of this, and knew about the
‘Russell paradox’ some years before Russell himself.10 It might seem odd
that something so straightforward as the ‘set of all sets’ is a forbidden
concept. One might imagine that any proposal for a set ought to be
perfectly acceptable if there is a well-deWned rule for telling us when
something belongs to it and when something does not. Here is seems
that there certainly is such a rule, namely that every set is in it! The
catch seems to be that we are allowing the same status to this stupendous
collection as we are to each of its members, namely calling both kinds
of collection simply a ‘set’. The whole argument depends upon our having
a clear idea about what a set actually is. And once we have such an idea,

[16.14] Show that this is what happens.
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the question arises: is the collection of all these things itself actually to
count as a set? What Cantor and Russell have told us is that the answer to
this question has to be no!
In fact, the way that mathematicians have come to terms with this

apparently paradoxical situation is to imagine that some kind of distinc-
tion has been made between ‘sets’ and ‘classes’. (Think of the classes as
sometimes being large unruly things that are not supposed to join clubs,
whereas sets are always regarded as respectable enough to do so.) Roughly
speaking, any collection of sets whatever could be allowed to be con-
sidered as a whole, and such a collection would be called a class. Some
classes are respectable enough to be considered as sets themselves, but
other classes would be considered to be ‘too big’ or ‘too untidy’ to be
counted as sets. We are not necessarily allowed to collect classes together,
on the other hand, to form larger entities. Thus, the ‘set of all sets’ is not
allowed (nor is the ‘class of all classes’ allowed), but the ‘class of all sets’ is
considered to be legitimate. Cantor denoted this ‘supreme’ class by O, and
he attributed an almost deistic signiWcance to it. We are not allowed to
form bigger classes than O. The trouble with ‘2O’ would be that it involves
‘collecting together’ all the diVerent ‘subclasses’ of O, most of which are
not themselves sets, so this is disallowed.
There is something that appears rather unsatisfactory about all this. I

have to confess to being decidedly dissatisWed with it myself. This proced-
ure might be reasonable if there were a clear-cut criterion telling us when a
class actually qualiWes as being a set. However, the ‘distinction’ appears
often to be made in a very circular way. A class is deemed to be a set if and
only if it can itself be a member of some other class—which, to me, seems
like begging the question! The trouble is that there is no obvious place to
draw the line. Once a line has been drawn, it begins to appear, after a
while, that the line has actually been drawn too narrowly. There seems to
be no reason not to include some larger (or more unruly) classes into our
club of sets. Of course, one must avoid an out-and-out contradiction. But
it turns out that the more liberal are the rules for membership of the club
of sets, the more powerful are the methods of mathematical proof that the
set concept now provides. But open the door to this club just a crack too
wide and disaster strikes—CONTRADICTION!—and the whole ediWce
falls to the ground! The drawing of such a line is one of the most delicate
and diYcult procedures in mathematics.11

Many mathematicians might prefer to pull back from such extreme
liberalism, even taking a rigidly conservative ‘constructivist’ approach,
according to which a set is permitted only if there is a direct construction
for enabling us to tell when an element belongs to the set and when it does
not. Certainly ‘sets’ that are deWned solely by use of the axiom of choice
would be a disallowed membership criterion under such strict rules! But it
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turns out that these extreme conservatives are no more immune from
Cantor’s diagonal slash than are the extreme liberals. Let us try to see,
in the next section, what the trouble is.

16.6 Turing machines and Gödel’s theorem

First, we need a notion of what it means to ‘construct’ something in
mathematics. It is best that we restrict attention to subsets of the set N

of natural numbers, at least for our primitive considerations here. We may
ask which such subsets are deWned ‘constructively’? It is fortunate that we
have at our disposal a wonderful notion, introduced by various logicians12

of the Wrst third of the 20th century and put on a clear footing by Alan
Turing in 1936. This is the notion of computability; and since electronic
computers have become so familiar to us now, it will probably suYce for
me to refer to the actions of these physical devices rather than give the
relevant ideas in terms of some precise mathematical formulation.
Roughly speaking, a computation (or algorithm) is what an idealized
computer would perform, where ‘idealized’ means that it can go on for
an indeWnite length of time without ‘wearing out’, that it never makes
mistakes, and that it has an unlimited storage space. Mathematically, such
an entity is eVectively what is called a Turing machine.13

Any particular Turing machine T corresponds to some speciWc compu-
tation that can be performed on natural numbers. The action of T on the
particular natural number n is written T(n), and we normally take this
action to yield some (other) natural number m:

T(n) ¼ m:

Now, a Turing machine might have the property that it gets ‘stuck’ (or
‘goes into a loop’) because the computation that it is performing never
terminates. I shall say that a Turing machine is faulty if it fails to terminate
when applied to some natural number n. I call it eVective if, on the other
hand, it always does terminate, whatever number it is presented with.
An example of a non-terminating (faulty) Turing machine T would be

the one that, when presented with n, tries to Wnd the smallest natural
number that is not the sum of n square numbers (02 ¼ 0 included). We
Wnd T(0) ¼ 1, T(1) ¼ 2, T(2) ¼ 3, T(3) ¼ 7 (the meaning of these equa-
tions being exempliWed by the last one: ‘7 is the smallest number that is not
the sum of 3 squares’),[16.15] but when T is applied to 4, it goes on
computing forever, trying to Wnd a number that is not the sum of four
squares. The cause of this particular machine’s hang-up is a famous

[16.15] Give a rough description of how our algorithm might be performed and explain these

particular values.
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theorem due to the great 18th century French–Italian mathematician
Joseph C. Lagrange, who was able to prove that in fact every natural
number is the sum of four square numbers. (Lagrange will have a very
considerable importance for us in a diVerent context later, most particu-
larly in Chapters 20 and 26, as we shall see!)
Each separate Turing machine (whether faulty or eVective) has a certain

‘table of instructions’ that characterizes the particular algorithm that this
particular Turing machine performs. Such a table of instructions can be
completely speciWed by some ‘code’, which we can write out as a sequence
of digits. We can then re-interpret this sequence as a natural number t;
thus t codiWes the ‘program’ that enables the machine to carry out its
particular algorithm. The Turing machine that is thereby encoded by the
natural number t will be denoted by T t. The coding may not work for
all natural numbers t, but if it does not, for some reason, then we can
refer to T t as being ‘faulty’, in addition to those cases just considered
where the machine fails to stop when applied to some n. The only eVective
Turing machines T t are those which provide an answer, after a Wnite time,
when applied to any individual n.
One of Turing’s fundamental achievements was to realize that it is

possible to specify a single Turing machine, called a universal Turing
machine U, which can imitate the action of any Turing machine whatever.
All that is needed is for U to act Wrst on the natural number t, specifying
the particular Turing machine T t that is to be mimicked, after which U

acts upon the number n, so that it can proceed to evaluate T t(n). (Modern
general-purpose computers are, in essence, just universal Turing
machines.) I shall write this combined action U(t, n), so that

U(t, n) ¼ T t(n):

We should bear in mind, however, that Turing machines, as deWned
here, are supposed to act only on a single natural number, rather than
a pair, such as (t, n). But it is not hard to encode a pair of natural
numbers as a single natural number, as we have seen earlier (e.g. in
Exercise [16.8]). The machine U will itself be deWned by some natural
number, say u, so we have

U ¼ Tu:

How can we tell whether a Turing machine is eVective or faulty? Can we
Wnd some algorithm for making this decision? It was one of Turing’s
important achievements to show that the answer to this question is in
fact ‘no’! The proof is an application of Cantor’s diagonal slash. We shall
consider the set N, as before, but now instead of considering all subsets of
N, we consider just those subsets for which it is a computational matter to
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decide whether or not an element is in the set. (These cannot be all the
subsets of N because the number of diVerent computations is only Q0,
whereas the number of all subsets of N is C.) Such computationally
deWned sets are called recursive. In fact any recursive subset of N is
deWned by the output of an eVective Turing machine T, of the particular
kind that it only outputs 0 or 1. If T(n) ¼ 1, then n is a member of the
recursive set deWned by T (‘in’), whereas if T(n) ¼ 0, then n is not a
member (‘out’). We now apply the Cantor argument just as before, but
now just to recursive subsets of N. The argument immediately tells us that
the set of natural numbers t for which T t is eVective cannot be recursive.
There is no algorithm, applicable to any given Turing machine T, for
telling us whether or not T is faulty!
It is worth while looking at this reasoning a little more closely. What

the Turing/Cantor argument really shows is that the set of t for which
Tt is eVective is not even recursively enumerable. What is a recursively
enumerable subset of N? It is a set of natural numbers for which there is
an eVective Turing machine T which eventually generates each member
(possibly more than once) of this set when applied to 0, 1, 2, 3, 4, . . .
successively. (That is, m is a member of the set if and only if m ¼ T(n) for
some natural number n.) A subset S of N is recursive if and only if it is
recursively enumerable and its complement N� S is also recursively enu-
merable.[16.16] The supposed 1–1 correspondence with which the Turing/
Cantor argument derives a contradiction is a recursive enumeration of the
eVective Turing machines. A little consideration tells us that what we have
learnt is that there is no general algorithm for telling us when a Turing
machine action T t(n) will fail to stop.
What this ultimately tells us is that despite the hopes that one might

have had for a position of ‘extreme conservatism’, in which the only
acceptable sets would be ones—the recursive sets—whose membership is
determined by clear-cut computational rules, this viewpoint immediately
drives us into having to consider sets that are non-recursive. The viewpoint
even encounters the fundamental diYculty that there is no computational
way of generally deciding whether or not two recursive sets are the same or
diVerent sets, if they are deWned by two diVerent eVective Turing machines
Tt and Ts![16.17] Moreover, this kind of problem is encountered again and
again at diVerent levels, when we try to restrict our notion of ‘set’ by too
conservative a point of view. We are always driven to consider classes that
do not belong to our previously allowed family of sets.

[16.16] Show this.

[16.17] Can you see why this is so? Hint: For an arbitrary Turing machine action of T applied

to n, we can consider an eVective Turing machine Q which has the property that Q(r) ¼ 0 if T

applied to n has not stopped after r computational steps, and Q(r) ¼ 1 if it has. Take the modulo 2

sum of Q(n) with T t(n) to get Ts(n).
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These issues are closely related to the famous theorem of Kurt Gödel.
He was concerned with the question of the methods of proof that are
available to mathematicians. At around the turn of the 20th century, and
for a good many years afterwards, mathematicians had attempted to avoid
the paradoxes (such as the Russell paradox) that arose from an excessively
liberal use of the theory of sets, by introducing the idea of a mathematical
formal system, according to which there was to be laid down a collection of
absolutely clear-cut rules as to what lines of reasoning are to count as a
mathematical proof. What Gödel showed was that this programme will
not work. In eVect, he demonstrated that, if we are prepared to accept that
the rules of some such formal system F are to be trusted as giving us only
mathematically correct conclusions, then we must also accept, as correct, a
certain clear-cut mathematical statement G(F), while concluding that G(F)
is not provable by the methods of F alone. Thus, Gödel shows us how to
transcend any F that we are prepared to trust.
There is a common misconception that Gödel’s theorem tells us that

there are ‘unprovable mathematical propositions’, and that this implies
that there are regions of the ‘Platonic world’ of mathematical truths (see
§1.4) that are in principle inaccessible to us. This is very far from the
conclusion that we should be drawing from Gödel’s theorem. What
Gödel actually tells us is that whatever rules of proof we have laid down
beforehand, if we already accept that those rules are trustworthy (i.e. that
they do not allow us to derive falsehoods), then we are provided with a
new means of access to certain mathematical truths that those particular
rules are not powerful enough to derive.
Gödel’s result follows directly from Turing’s (although historically

things were the other way around). How does this work? The point
about a formal system is that no further mathematical judgements are
needed in order to check whether the rules of F have been correctly
applied. It has to be an entirely computational matter to decide the
correctness of a mathematical proof according to F. We Wnd that, for
any F, the set of mathematical theorems that can be proved using its rules
is necessarily recursively enumerable.
Now, some well-known mathematical statements can be phrased in the

form ‘such-and-such Turing machine action does not terminate’. We have
already seen one example, namely Lagrange’s theorem that every natural
number is the sum of four squares. Another even more famous example is
‘Fermat’s last theorem’, proved at the end of the 20th century by Andrew
Wiles (§1.3).14 Yet another (but unresolved) is the well-known ‘Goldbach
conjecture’ that every even number greater than 2 is the sum of two
primes. Statements of this nature are known to mathematical logicians
as P1-sentences. Now it follows immediately from Turing’s argument
above that the family of true P1-sentences constitutes a non-recursively
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enumerable set (i.e. one that is not recursively enumerable). Hence there
are true P1-sentences that cannot be obtained from the rules of F (where
we assume that F is trustworthy) This is the basic form of Gödel’s the-
orem. In fact, by examining the details of this a little more closely, we can
reWne the argument so as to obtain the version of it stated above, and
obtain a speciWcP1-sentence G(F ) which, if we believe F to yield only true
P1-sentences, must escape the net cast by F despite the remarkable fact
that we must conclude that G(F ) is also a true P1-sentence![16.18]

16.7 Sizes of infinity in physics

Finally, let us see how these issues of inWnity and constructibility lie, in
relation to the mathematics of our previous chapters and to our current
understanding of physics. It is perhaps remarkable, in view of the close
relationship between mathematics and physics, that issues of such basic
importance in mathematics as transWnite set theory and computability
have as yet had a very limited impact on our description of the physical
world. It is my own personal opinion that we shall Wnd that computability
issues will eventually be found to have a deep relevance to future physical
theory,15 but only very little use of these ideas has so far been made in
mathematical physics.16

With regard to the size of the inWnities that have found value, it is rather
striking that almost none of physical theory seems to need our going
beyond C(¼2Q0 ), the cardinality of the real-number system R. The car-
dinality of the complex Weld C is the same as that of R (namely C), since
C is just R�R (pairs of real numbers) with certain addition and multipli-
cation laws deWned on it. Likewise, the vector spaces and manifolds that
we have been considering are built from families of points that can be
assigned coordinates from some R�R�. . .�R (or C�C�. . .�C) or
from Wnite (or countably many, i.e. Q0’s worth of) such coordinate
patches, and again the cardinality is C.
What about the families of functions on such spaces? If we consider, say,

the family of all real-number-valued functions on some space with C
points, then we Wnd, from the above considerations, that the family has
CC members (being mappings from a C-element space to a C-element
space). This is certainly larger than C. In fact CC ¼ 2C. (This follows
because each element of R

R can be re-interpreted as a particular element
of 2R � R, namely as a (usually far from continuous) cross-section of
the bundle R�R, and the cardinality of R�R is C.) However, the
continuous real (or complex) functions (or tensor Welds, or connections)
on a manifold are only C in number, because a continuous function is

[16.18] See if you can establish this.
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determined once its values on the set of points with rational coordi-
nates are known. The number of these is just CQ0 , since the number of
points with rational coordinates is just Q0. But CQ0¼ (2Q0 )Q0¼
2Q0�Q0¼2Q0¼C.[16.19] In §§6.4,6, we considered certain generalizations of
continuous functions, leading to the very great generalization known as
hyperfunctions (§9.7). However the number of these is again no greater
than C, as they are deWned by pairs of holomorphic functions (each C in
number).
In §22.3,we shall be seeing that quantum theory requires the use of certain

spaces, known asHilbert spaces, that may have inWnitely many dimensions.
However, although these particular inWnite-dimensional spaces diVer sign-
iWcantly from Wnite-dimensional spaces, there are not more continuous
functions on them than in the Wnite-dimensional case, and again we get C
as the total number. The best bet for going higher than this is in relation to
the path-integral formulation of quantum Weld theory (as will be discussed
in §26.6), when a space of wild-looking curves (or of wild-looking physical
Weld conWgurations) in spacetime are considered.However,we still seem just
to get C for the total number, because despite their wildness, there is a
suYcient remnant of continuity in these structures.
The notion of cardinality does not seem to be suYciently reWned to

capture the appropriate concept of size for the spaces that are encountered
in physics. Almost all the spaces of signiWcance simply have C points in
them. However, there is a vast diVerence in the ‘sizes’ of these spaces, where
in the Wrst instance we think of this ‘size’ simply as the dimension of the
vector space ormanifoldMunder consideration. This dimension ofMmay
be a natural number (e.g. 4, in the case of ordinary spacetime, or 6�1019, in
the case of the phase space considered in §12.1), or it could be inWnity, such
as with (most of) the Hilbert state-spaces that arise in quantum mechanics.
Mathematically, the simplest inWnite-dimensional Hilbert space is the space
of sequences (z1, z2, z3 , . . . ) of complex numbers for which the inWnite sum
jz1j2þjz2j2þjz3j2 þ . . . converges. In the case of an inWnite-dimensional
Hilbert space, it is most appropriate to think of this dimensionality as
being Q0. (There are various subtleties about this, but it is best not to get
involvedwith these here.) For an n-real-dimensional space, I shall say that it
has ‘1n’ points (which expresses that this continuum of points is organized
in an n-dimensional array). In the inWnite-dimensional case, I shall refer to
this as ‘11’ points.
We are also interested in the spaces of various kinds of Weld deWned on
M. These are normally taken to be smooth, but sometimes they are more
general (e.g. distributions), coming within the compass of hyperfunction
theory (see §9.7). They may be subject to (partial) diVerential equations,

[16.19] Explain why (AB)C may be identiWed with AB�C , for sets A, B, C.

379

The ladder of infinity §16.7



which restrict their freedom. If they are not so restricted, then they
count as ‘functions of n variables’, for an n-dimensionalM (where n¼4

for standard spacetime). At each point, the Weld may have k independent
components. Then I shall say that the freedom in the Weld is 1k1n

.
The explanation for this notation17 is that the Welds may be thought
(crudely and locally) to be maps from a space with 1n points to a
space with 1k points, and we take advantage of the (formal) notational
relation

(1k)1
n ¼ 1k1n

:

When the Welds are restricted by appropriate partial diVerential
equations, then it may be that they will be completely determined by
the initial data for the Welds (see §27.1 particularly), that is, by some
subsidiary Weld data speciWed on some lower-dimensional space S of,
say, q dimensions. If the data can be expressed freely on S (which
means, basically, not subject to constraints, these being diVerential
or algebraic equations that the data would have to satisfy on S),
and if these data consist of r independent components at each point
of S, then I shall say that the freedom in the Weld is 1r1q

. In many
cases, it is not an altogether easy matter to Wnd r and q, but the important
thing is that they are invariant quantities, independent of how the Welds
may be re-expressed in terms of other equivalent quantities.18 These
matters will have considerable importance for us later (see §23.2,
§§31.10–12, 15–17).

Notes

Section 16.2

16.1. See Stephenson (1972), §7; Howie (1989), pp. 269–71; Hirschfeld (1998), p. 098;

magic discs are equivalent to what are called perfect diVerence sets.

16.2. It is apparently unknown whether magic discs exist (necessarily not arising from

a P
2(Fq)) for which the theorem of Desargues (or, equivalently, of Pappos)

ever fails—or, indeed, whether non-Desarguian (equivalently non-Pappian)

Wnite projective planes exist at all.

16.3. A physical role for octonions has nevertheless been argued for, from time to

time (see, for example, Gürsey and Tze 1996; Dixon 1994; Manogue and Dray

1999; Dray and Manogue 1999); but there are fundamental diYculties for the

construction of a general ‘octonionic quantum mechanics’ (Adler 1995), the

situation with regard to a ‘quaternionic quantum mechanics’ being just a little

more positive. Another number system, suggested on occasion as a candidate

for a signiWcant physical role, is that of ‘p-adic numbers’. These constitute

number systems to which the rules of calculus apply, and they can be expressed
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like ordinary decimally expanded real numbers, except that the digits represent

0, 1, 2, 3, . . . , p� 1 (where p is the chosen prime number) and they are allowed

to be inWnite the opposite way around from what is the case with ordinary

decimals (and we do not need minus signs). For example,

. . . . . . 24033200411:3104

16.1. represents a particular 5-adic number. The rules for adding and multiplying are

just the same as they would be for ‘ordinary’ p-ary arithmetic (in which the

symbol ‘10’ stands for the prime p, etc.). See Mahler (1981); Gouvea (1993);

Brekke andFrend (1993); Vladimirov andVolovich (1989); Pitkäenen (1995) and

applications of p-adic to physics stuff.

Section 16.3

16.4. The modern mathematical terminology is to call this a set isomorphism.

There are other words such as ‘endomorphism’, ‘epimorphism’, and ‘mono-

morphism’ (or just ‘morphism’) that mathematicians tend to use in a general

context for characterizing mappings between one set or structure to another. I

prefer to avoid this kind of terminology in this particular book, as I think it

takes rather more eVort to get accustomed to it than is worthwhile for our

needs.

16.5. For some even earlier deliberations of this nature, see Moore (1990), Chap. 3.

16.6. Recall from Note 15.5 that I have been prepared to adopt an abuse of notation

whereby N� 0 indeed stands for the set of non-zero natural numbers. There is

the irony here that if one were to adopt the seemingly ‘more correct’ N� {0},

while also adopting the procedures of §3.4 whereby {0} ¼ 1, we should be

landed with the even more confusing ‘N� 1’ for the set under consideration!

16.7. See Wagon (1985); see Runde (2002) for a popular account.

Section 16.5

16.8. Similar remarks apply to Cantor’s generalized continuum hypothesis:

2Qa ¼ Qaþ1 (where a is now an ‘ordinal number’, whose deWnition I have not

discussed here), and these remarks also apply to the axiom of choice.

16.9. See Russell (1903), p. 362, second footnote [in 1937 edn].

16.10. See Van Heijenoort (1967), p. 114.

16.11. See Woodin (2001) for a novel approach to these matters. For general refer-

ences on the foundations of mathematics, see Abian (1965) and Wilder (1965).

Section 16.6

16.12. These precursors of Turing were, in the main, Alonzo Church, Haskell B.

Curry, Stephen Kleene, Kurt Gödel, and Emil Post; see Gandy (1988).

16.13. For a detailed description of a Turing machine, see Penrose (1989), Chap. 2; for

example, Davis (1978), or the original reference: Turing (1937).

16.14. See Singh (1997); Wiles (1995).

Section 16.7

16.15. See Penrose (1989, 1994d, 1997c).

16.16. See Komar (1964); Geroch and Hartle (1986), §34.7.

16.17. I owe this useful notation to John A. Wheeler, see Wheeler (1960), p. 67.

16.18. See Cartan (1945) especially §§68,69 on pp. 75, 76 (original edition). Some care

needs to be taken in order to ensure that the quantity r in 1r1q

is correctly

counted. Two systems may be equivalent, but having r values that nevertheless
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appear at Wrst sight to diVer. However, there can be no ambiguity in the

determination of the value of q. The rigorous modern treatment of these issues

makes things clearer; it is given in terms of the theory of jet bundles (see Bryant

et al. 1991). It may be mentioned that there is a reWnement of Wheeler’s

notation (see Penrose 2003) where, for example, 1212þ311þ5 stands for ‘the

Welds depend on 2 functions of 2 variables, 3 functions of 1 variable, and 5

constants’. We are thus led to consider expressions like1p(1)

, where p denotes a

polynomial with non-negative integer coeYcients.
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17
Spacetime

17.1 The spacetime of Aristotelian physics

From now on, in this book, our attention will be turned from the largely

mathematical considerations that have occupied us in earlier chapters, to

the actual pictures of the physical world that theory and observation have

led us into. Let us begin by trying to understand that arena within which

all the phenomena of the physical universe appear to take place: spacetime.

We shall Wnd that this notion plays a vital role in most of the rest of this

book!

We must Wrst ask why ‘spacetime’?1 What is wrong with thinking of

space and time separately, rather than attempting to unify these two

seemingly very diVerent notions together into one? Despite what appears

to be the common perception on this matter, and despite Einstein’s quite

superb use of this idea in his framing of the general theory of relativity,

spacetime was not Einstein’s original idea nor, it appears, was he particu-

larly enthusiastic about it when he Wrst heard of it. Moreover, if we look

back with hindsight to the magniWcent older relativistic insights of Galileo

and Newton, we Wnd that they, too, could in principle have gained great

beneWt from the spacetime perspective.

In order to understand this, let us go much farther back in history and

try to see what kind of spacetime structure would have been appropriate

for the dynamical framework of Aristotle and his contemporaries. In

Aristotelian physics, there is a notion of Euclidean 3-space E
3 to represent

physical space, and the points of this space retain their identity from one

moment to the next. This is because the state of rest is dynamically

preferred, in the Aristotelian scheme, from all other states of motion.

We take the attitude that a particular spatial point, at one moment of

time, is the same spatial point, at a later moment of time, if a particle

situated at that point remains at rest from one moment to the next. Our

picture of reality is like the screen in a cinema theatre, where a particular

point on the screen retains its identity no matter what kinds of vigorous

movement might be projected upon it. See Fig. 17.1.
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Time, also, is represented as a Euclidean space, but as a rather trivial

one, namely the 1-dimensional space E
1. Thus, we think of time, as well as

physical space, as being a ‘Euclidean geometry’, rather than as being just a

copy of the real line R. This is because R has a preferred element 0, which

would represent the ‘zero’ of time, whereas in our ‘Aristotelian’ dynamical

view, there is to be no preferred origin. (In this, I am taking an idealized

view of what might be called ‘Aristotelian dynamics’, or ‘Aristotelian

physics’, and I take no viewpoint with regard to what the actual Aristotle

might have thought!)2 Had there been a preferred ‘origin of time’, the

dynamical laws could be envisaged as changing when time proceeds away

from that preferred origin. With no preferred origin, the laws must remain

the same for all time, because there is no preferred time parameter which

these laws can depend upon.

Likewise, I am taking the view that there is to be no preferred

spatial origin, and that space continues indeWnitely in all directions, with

complete uniformity in the dynamical laws (again, irrespective of what

the actual Aristotle might have believed!). In Euclidean geometry, whether

1-dimensional or 3-dimensional, there is a notion of distance. In the

3-dimensional spatial case, this is to be ordinary Euclidean distance (meas-

ured in metres, or feet, say); in the 1-dimensional case, this distance is the

ordinary time interval (measured, say, in seconds).

In Aristotelian physics—and, indeed, in the later dynamical scheme(s)

of Galileo and Newton—there is an absolute notion of temporal simultan-

eity. Thus, it has absolute meaning to say, according to such dynamical

schemes, that the time here, at this very moment, as I sit typing this in my

oYce at home in Oxford, is ‘the same time’ as some event taking place on

the Andromeda galaxy (say the explosion of some supernova star). To

return to our analogy of the cinema screen, we can ask whether two

projected images, occurring at two widely separated places on the screen,

are taking place simultaneously or not. The answer here is clear. The

Fig. 17.1 Is physical

motion like that perceived

on a cinema screen? A

particular point on the

screen (here marked ‘�’)

retains its identity no

matter what movement is

projected upon it.
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events are to be taken as simultaneous if and only if they occur in the same

projected frame. Thus, not only do we have a clear notion of whether or

not two (temporally separated) events occur at the same spatial location

on the screen, but we also have a clear notion of whether or not two

(spatially separated) events occur at the same time. Moreover, if the spatial

locations of the two events are diVerent, we have a clear notion of the

distance between them, whether or not they occur at the same time (i.e.

the distance measured along the screen); also, if the times of the two events

are diVerent, we have a clear notion of the time interval between them,

whether or not they occur at the same place.

What this tells us is that, in our Aristotelian scheme, it is appropriate to

think of spacetime as simply the product

AA¼E
1 �E

3,

which I shall call Aristotelian spacetime. This is simply the space of pairs

(t, x), where t is an element of E
1, a ‘time’, and x is an element of E

3, a

‘point in space’. (See Fig. 17.2.) For two diVerent points of E
1 �E

3, say

(t, x) and (t’, x’)—i.e. two diVerent events—we have a well-deWned notion

of their spatial separation, namely the distance between the points x and x’
of E

3, and we also have a well-deWned notion of their time diVerence,

namely the separation between t and t’ as measured in E
1. In particular,

we know whether or not two events occur at the same place (vanishing of

spatial displacement) and whether or not they take place at the same time

(vanishing of time diVerence).

17.2 Spacetime for Galilean relativity

Now let us see what notion of spacetime is appropriate for the dynamical

scheme introduced by Galileo in 1638. We wish to incorporate the

principle of Galilean relativity into our spacetime picture. Let us try to

E1

Time
E3

Space
�

Fig. 17.2 Aristotelian spacetime

AA¼E
1�E

3 is the space of pairs

(t, x), where t (‘time’) ranges over

a Euclidean 1-space E
1, and x

(‘point in space’) ranges over a

Euclidean 3-space E
3.
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recall what this principle asserts. It is hard to do better than quote Galileo

himself (in a translation due to Stillman Drake3 which I give here in

abbreviated form only; and I strongly recommend an examination of the

quote as a whole, for those who have access to it):

Shut yourself up with some friend in the main cabin below decks on some

large ship, and have with you some Xies, butterXies, and other small Xying

animals . . . hang up a bottle that empties drop by drop into a wide vessel

beneath it . . . have the ship proceed with any speed you like, so long as the

motion is uniform and not Xuctuating this way and that. . . . The droplets will

fall . . . into the vessel beneath without dropping toward the stern, although

while the drops are in the air the ship runs many spans . . . the butterXies and

Xies will continue their Xights indiVerently toward every side, nor will it ever

happen that they are concentrated toward the stern, as if tired out from

keeping up with the course of the ship. . . .

What Galileo teaches us is that the dynamical laws are precisely the

same when referred to any uniformly moving frame. (This was an essential

ingredient of his wholehearted acceptance of the Copernican scheme,

whereby the Earth is allowed to be in motion without our directly noticing

this motion, as opposed to its necessarily stationary status according to the

earlier Aristotelian framework.) There is nothing to distinguish the physics

of the state of rest from that of uniform motion. In terms of what has been

said above, what this tells us is that there is no dynamical meaning to

saying that a particular point in space is, or is not, the same point as some

chosen point in space at a later time. In other words, our cinema-screen

analogy is inappropriate! There is no background space—a ‘screen’—

which remains Wxed as time evolves. We cannot meaningfully say that a

particular point p in space (say, the point of the exclamation mark on the

keyboard of my laptop) is, or is not, the same point in space as it was

a minute ago. To address this issue more forcefully, consider the rotation

of the Earth. According to this motion, a point Wxed to the Earth’s

surface (at the latitude of Oxford, say) will have moved by some

10 miles in the minute under consideration. Accordingly, the point p

that I had just selected will now be situated somewhere in the vicinity of

the neighbouring town of Witney, or beyond. But wait! I have not

taken the Earth’s motion about the sun into consideration. If I do

that, then I Wnd that p will now be about one hundred times farther oV,

but in the opposite direction (because it is a little after mid-day, and the

Earth’s surface, here, now moves oppositely to its motion about the Sun),

and the Earth will have moved away from p to such an extent that p is now

beyond the reach of the Earth’s atmosphere! But should I not have taken

into account the sun’s motion about the centre of our Milky Way galaxy?

Or what about the ‘proper motion’ of the galaxy itself within the local
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group? Or the motion of the local group about the centre of the Virgo

cluster of which it is a tiny part, or of the Virgo cluster in relation to the

vast Coma supercluster, or perhaps the Coma cluster towards ‘the Great

Attractor’?

Clearly we should take Galileo seriously. There is no meaning to be

attached to the notion that any particular point in space a minute from

now is to be judged as the same point in space as the one that I have

chosen. In Galilean dynamics, we do not have just one Euclidean 3-space

E
3, as an arena for the actions of the physical world evolving with time,

we have a diVerent E
3 for each moment in time, with no natural identiW-

cation between these various E
3s.

It may seem alarming that our very notion of physical space seems to be

of something that evaporates completely as one moment passes, and

reappears as a completely diVerent space as the next moment arrives!

But here the mathematics of Chapter 15 comes to our rescue, for this

situation is just the kind of thing that we studied there. Galilean spacetime

G is not a product space E
1 �E

3, it is a Wbre bundle4 with base space E
1

and Wbre E
3! In a Wbre bundle, there is no pointwise identiWcation between

one Wbre and the next; nevertheless the Wbres Wt together to form a

connected whole. Each spacetime event is naturally assigned a time, as a

particular element of one speciWc ‘clock space’ E
1, but there is no natural

assignment of a spatial location in one speciWc ‘location space’ E
3. In

the bundle language of §15.2, this natural assignment of a time is achieved

by the canonical projection from GG to E
1. (See Fig. 17.3; compare also

Fig. 15.2.)

E1

Time

E3

Space
E3

Space
E3

Space
E3

Space

Fig. 17.3 Galilean spacetime G is Wbre bundle with base space E
1 and Wbre E

3, so

there is no given pointwise identiWcation between diVerent E
3

Wbres (no absolute

space), whereas each spacetime event is assigned a time via the canonical projec-

tion (absolute time). (Compare Fig. 15.2, but the canonical projection to the base

is here depicted horizontally.) Particle histories (world lines) are cross-sections of

the bundle (compare Fig. 15.6a), the inertial particle motions being depicted here

as what G’s structure speciWes, that is: ‘straight’ world lines.
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17.3 Newtonian dynamics in spacetime terms

This ‘bundle’ picture of spacetime is all very well, but how are we to

express the dynamics of Galileo–Newton in terms of it? It is not surprising

that Newton, when he came to formulate his laws of dynamics, found

himself driven to a description in which he appeared to favour a notion of

‘absolute space’. In fact, Newton was, at least initially, as much of a

Galilean relativist as was Galileo himself. This is made clear from the

fact that in his original formulation of his laws of motion, he explicitly

stated the Galilean principle of relativity as a fundamental law (this being

the principle that physical action should be blind to a change from one

uniformly moving reference frame to another, the notion of time being

absolute, as is manifested in the picture above of Galilean spacetime GG).
He had originally proposed Wve (or six) laws, law 4 of which was indeed

the Galilean principle,5 but later he simpliWed them, in his published

Principia, to the three ‘Newton’s laws’ that we are now familiar with.

For he had realized that these were suYcient for deriving all the others.

In order to make the framework for his laws precise, he needed to adopt an

‘absolute space’ with respect to which his motions were to be described.

Had the notion of a ‘Wbre bundle’ been available at the time (admittedly

a far-fetched possibility), then it would have been conceivable for Newton

to formulate his laws in a way that is completely ‘Galilean-invariant’.

But without such a notion, it is hard to see how Newton could have

proceeded without introducing some concept of ‘absolute space’, which

indeed he did.

What kind of structure must we assign to our ‘Galilean spacetime’ GG? It

would certainly be far too strong to endow our Wbre bundle GG with a

bundle connection (§15.7).[17.1] What we must do, instead, is to provide it

with something that is in accordance with Newton’s Wrst law. This law

states that the motion of a particle, upon which no forces act, must be

uniform and in a straight line. This is called an inertial motion. In space-

time terms, the motion (i.e. ‘history’) of any particle, whether in inertial

motion or not, is represented by a curve, called the world line of the

particle. In fact, in our Galilean spacetime, world lines must always

be cross-sections of the Galilean bundle; see §15.3.[17.2] and Fig. 17.3.)

The notion of ‘uniform and in a straight line’, in ordinary spatial terms

(an inertial motion), is interpreted simply as ‘straight’, in spacetime terms.

Thus, the Galilean bundle GG must have a structure that encodes the notion

of ‘straightness’ of world lines. One way of saying this is to assert that GG is

an aYne space (§14.1) in which the aYne structure, when restricted to

individual E
3
Wbres, agrees with the Euclidean aYne structure of each E

3.

[17.1] Why?

[17.2] Explain the reason for this.
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Another way is simply to specify the 16 family of straight lines that

naturally resides in E
1�E

3 (the ‘Aristotelian’ uniform motions) and to

take these over to provide the ‘straight-line’ structure of the Galilean

bundle, while ‘forgetting’ the actual product structure of the Aristotelian

spacetime AA. (Recall that 16 means a 6-dimensional family; see §16.7.)

Yet another way is to assert that the Galilean spacetime, considered as a

manifold, possesses a connection which has both vanishing curvature and

vanishing torsion (which is quite diVerent from it possessing a bundle

connection, when considered as a bundle over E
1).[17.3]

In fact, this third point of view is the most satisfactory, as it allows for

the generalizations that we shall be needing in §§17.5,9 in order to describe

gravitation in accordance with Einstein’s ideas. Having a connection

deWned on GG, we are provided with a notion of geodesic (§14.5), and

these geodesics (apart from those which are simply straight lines in indi-

vidual E
3s) deWne Newton’s inertial motions. We can also consider world

lines that are not geodesics. In ordinary spatial terms, these represent

particle motions that accelerate. The actual magnitude of this acceleration

is measured, in spacetime terms, as a curvature of the world-line.[17.4]

According to Newton’s second law, this acceleration is equal to the total

force on the particle, divided by its mass. (This is Newton’s f ¼ ma, in the

form a ¼ f�m, where a is the particle’s acceleration, m is its mass, and f is

the total force acting upon it.) Thus, the curvature of a world line, for a

particle of given mass, provides a direct measure of the total force acting

on that particle.

In standard Newtonian mechanics, the total force on a particle is the

(vector) sum of contributions from all the other particles (Fig. 17.4a). In

any particular E
3 (that is, at any one time), the contribution to the force on

one particle, from some other particle, acts in the line joining the two that

lies in that particular E
3. That is to say, it acts simultaneously between the

two particles. (See Fig. 17.4b.) Newton’s third law asserts that the force on

one of these particles, as exerted by the other, is always equal in magnitude

and opposite in direction to the force on the other as exerted by the one. In

addition, for each diVerent variety of force, there is a force law, informing

us what function of the spatial distance between the particles the magni-

tude of that force should be, and what parameters should be used for each

type of particle, describing the overall scale for that force. In the particular

case of gravity, this function is taken to be the inverse square of the

distance, and the overall scale is a certain constant, called Newton’s

gravitational constant G, multiplied by the product of the two masses

[17.3] Explain these three ways more thoroughly, showing why they all give the same structure.

[17.4] Try to write down an expression for this curvature, in terms of the connection =. What

normalization condition on the tangent vectors is needed (if any)?
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Total force

(a) (b)

E3

Fig. 17.4 (a) Newtonian force: at any one time, the total force on a particle

(double shafted arrow) is the vector sum of contributions (attractive or repulsive)

from all other particles. (b) Two particle world lines and the force between them,

acting ‘instantaneously’, in a line joining the two particles, at any one moment,

within the particular E
3 that the moment deWnes. Newton’s Third Law asserts

that force on one, as exerted by the other, is equal in magnitude and opposite in

direction to the force on the other as exerted by the one.

involved. In terms of symbols, we get Newton’s well-known formula for

the attractive force on a particle of mass m, as exerted by another particle

of mass M, a distance r away from it, namely

GmM

r2
:

It is remarkable that, from just these simple ingredients, a theory of

extraordinary power and versatility arises, which can be used with great

accuracy to describe the behaviour of macroscopic bodies (and, for most

basic considerations, submicroscopic particles also), so long as their

speeds are signiWcantly less than that of light. In the case of gravity, the

accordance between theory and observation is especially clear, because of

the very detailed observations of the planetary motions in our solar

system. Newton’s theory is now found to be accurate to something like

one part in 107, which is an extremely impressive achievement, particularly

since the accuracy of data that Newton had to go on was only about one

ten-thousandth of this (a part in 103).

17.4 The principle of equivalence

Despite this extraordinary precision, and despite the fact that Newton’s

great theory remained virtually unchallenged for nearly two and one half

centuries, we now know that this theory is not absolutely precise; more-
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over, in order to improve upon Newton’s scheme, Einstein’s deeper and

very revolutionary perspective with regard to the nature of gravitation was

required. Yet, this particular perspective does not, in itself, change

Newton’s theory at all, with regard to any observational consequences.

The changes come about only when Einstein’s perspective is combined

with other considerations that relate to the Wniteness of the speed of light

and the ideas of special relativity, which will be described in §§17.6–8. The

full combination, yielding Einstein’s general relativity, will be given in

qualitative terms in §17.9 and in fuller detail in §§19.6–8.

What, then, is Einstein’s deeper perspective? It is the realization of

the fundamental importance of the principle of equivalence. What is the

principle of equivalence? The essential idea goes back (again!) to the great

Galileo himself (at the end of the 16th century—although there were pre-

cursors even before him, namely Simon Stevin in 1586, and others even

earlier, such as Ioannes Philiponos in the 5th or 6th century). Recall Gali-

leo’s (alleged) experiment, which consisted of dropping two rocks, one large

and one small, from the top of the Leaning Tower of Pisa (Fig. 17.5a).

Galileo’s great insight was that each of the two would fall at the same rate,

assuming that the eVects of air resistance can be neglected. Whether or not

he actually dropped rocks from the Leaning Tower, he certainly performed

other experiments which convinced him of this conclusion.

Fig. 17.5 (a) Galileo’s (alleged) experiment. Two rocks, one large and one small,

are dropped from the top of Leaning Tower of Pisa. Galileo’s insight was that if

the eVects of air resistance can be ignored, each would fall at the same rate. (b)

Oppositely charged pith balls (of equal small mass), in an electric Weld, directed

towards the ground. One charge would ‘fall’ downwards, but the other would rise

upwards.
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Now the Wrst point to make here is that this is a particular property of

the gravitational Weld, and it is not to be expected for any other force

acting on bodies. The property of gravity that Galileo’s insight depends

upon is the fact that the strength of the gravitational force on a body,

exerted by some given gravitational Weld, is proportional to the mass of

that body, whereas the resistance to motion (the quantity m appearing in

Newton’s second law) is also the mass. It is useful to distinguish these two

mass notions and call the Wrst the gravitational mass and the second, the

inertial mass. (One might also choose to distinguish the passive from the

active gravitational mass. The passive mass is the contribution m in

Newton’s inverse square formula GmM/r2, when we consider the gravita-

tional force on the m particle due to the M particle. When we consider the

force on the M particle due to the m particle, then the mass m appears in its

active role. But Newton’s third law decrees that passive and active masses

be equal, so I am not going to distinguish between these two here.6) Thus,

Galileo’s insight depends upon the equality (or, more correctly, the pro-

portionality) of the gravitational and inertial mass.

From the perspective of Newton’s overall dynamical scheme, it would

appear to be a Xuke of Nature that the inertial and gravitational masses

are the same. If the Weld were not gravitational but, say, an electric Weld,

then the result would be completely diVerent. The electric analogue of

passive gravitational mass is electric charge, while the role of inertial mass

(i.e. resistance to acceleration) is precisely the same as in the gravitational

case (i.e. still the m of Newton’s second law f ¼ ma). The diVerence is

made particularly obvious if the analogue of Galileo’s pair of rocks is

taken to be a pair of pith balls of equal small mass but of opposite charge.

In a background electric Weld directed towards the ground, one charge

would ‘fall’ downwards, but the other would rise upwards—an acceler-

ation in completely the opposite direction! (See Fig. 17.5b.) This can occur

because the electric charge on a body has no relation to its inertial mass,

even to the extent that its sign can be diVerent. Galileo’s insight does not

apply to electric forces; it is a particular feature of gravity alone.

Why is this feature of gravity called ‘the principle of equivalence’? The

‘equivalence’ refers to the fact that a uniform gravitational Weld is equiva-

lent to an acceleration. The eVect is a very familiar one in air travel, where

it is possible to get a completely wrong idea of where ‘down’ is from inside

an aeroplane that is performing an accelerated motion (which might just

be a change of its direction). The eVects of acceleration and of the Earth’s

gravitational Weld cannot be distinguished simply by how it ‘feels’ inside

the plane, and the two eVects can add up in two diVerent directions to

provide you with some feeling of where down ‘ought to be’ which (perhaps

to your surprise upon looking out of the window) may be distinctly

diVerent from the actual downward direction.
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To see why this equivalence between acceleration and the eVects of

gravity is really just Galileo’s insight described above, consider again his

falling rocks, as they descend together from the top of the Leaning Tower.

Imagine an insect clinging to one of the rocks and looking at the other. To

the insect, the other rock appears simply to hover without motion, as

though there were no gravitational Weld at all. (See Fig. 17.6a.) The

acceleration that the insect partakes of, when falling with the rocks,

cancels out the gravitational Weld, and it is as though gravity were com-

pletely absent—until rocks and insect all hit the ground, and the ‘gravity-

free’ experience7 comes abruptly to an end.

We are familiar with astronauts also having ‘gravity-free’ experiences—

but they avoid our insect’s awkward abrupt end to these experiences by

being in orbit around the Earth (Fig. 17.6b) (or in an aeroplane that comes

out of its dive in the nick of time!). Again they are just falling freely, like

the insect, but with a more judiciously chosen path. The fact that gravity

can be cancelled by acceleration in this way (by use of the principle of

equivalence) is a direct consequence of the fact that (passive) gravitational

mass is the same as (or is proportional to) inertial mass, the very fact

underlying Galileo’s great insight.

If we are to take seriously this equivalence principle, then we must take a

diVerent view from the one that we adopted in §17.3, with regard to what

should count as an ‘inertial motion’. Previously, an inertial motion was

distinguished as the kind of motion that occurs when a particle is subject

to a zero total external force. But with gravity we have a diYculty. Because

of the principle of equivalence, there is no local way of telling whether a

Fig. 17.6 (a) To an insect clinging to one rock of Fig. 17.5a, the other rock

appears simply to hover without motion, as though gravitational Weld is absent.

(b) Similarly, a freely orbiting astronaut has gravity-free experience, and the space

station appears to hover without motion, despite the obvious presence of the

Earth.
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gravitational force is acting or whether what ‘feels’ like a gravitational

force may just be the eVect of an acceleration. Moreover, as with our insect

on Galileo’s rock or our astronaut in orbit, the gravitational force can be

eliminated by simply falling freely with it. And since we can eliminate

the gravitational force this way, we must take a diVerent attitude to it.

This was Einstein’s profoundly novel view: regard the inertial motions as

being those motions that particles take when the total of non-gravitational

forces acting upon them is zero, so they must be falling freely with the

gravitational Weld (so the eVective gravitational force is also reduced to

zero). Thus, our insect’s falling trajectory and our astronauts’ motion in

orbit about the Earth must both count as inertial motions. On the other

hand, someone just standing on the ground is not executing an inertial

motion, in the Einsteinian scheme, because standing still in a gravitational

Weld is not a free-fall motion. To Newton, that would have counted as

inertial, because ‘the state of rest’ must always count as ‘inertial’ in the

Newtonian scheme. The gravitational force acting on the person is com-

pensated by the upward force exerted by the ground, but they are not

separately zero as Einstein requires. On the other hand, the Einstein-

inertial motions of the insect or astronaut are not inertial, according to

Newton.

17.5 Cartan’s ‘Newtonian spacetime’

How do we incorporate Einstein’s notion of an ‘inertial’ motion into the

structure of spacetime? As a step in the direction of the full Einstein

theory, it will be helpful to consider a reformulation of Newton’s gravita-

tional theory according to Einstein’s perspective. As mentioned at the

beginning of §17.4, this does not actually represent a change in Newton’s

theory, but merely provides a diVerent description of it. In doing this,

I am taking another liberty with history, as this reformulation was put

forward by the outstanding geometer and algebraist Élie Cartan—whose

important inXuence on the theory of continuous groups was taken note of

in Chapter 13 (and recall also §12.5)—some six years after Einstein had set

out his revolutionary viewpoint.

Roughly speaking, in Cartan’s scheme, it is the inertial motions in this

Einsteinian, rather than the Newtonian sense, that provide the ‘straight’

world lines of spacetime. Otherwise, the geometry is like the Galilean one of

§17.2. I am going to call this the Newtonian spacetimeNN, the Newtonian

gravitational Weld being completely encoded into its structure. (Perhaps I

should have called it ‘Cartannian’, but that is an awkwardword. In any case,

Aristotle didn’t know about product spaces, nor Galileo about Wbre

bundles!)
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The spacetimeNN is to be a bundle with base space E
1 and Wbre E

3, just

as was the case for our previous Galilean spacetime GG. But now there is to

be some kind of structure on NN diVerent from that of GG, because the

family of ‘straight’ world lines that represents inertial motions is diVerent;

see Fig. 17.7a. At least it is essentially diVerent in all cases except those in

which the gravitational Weld can be eliminated completely by some choice

of freely falling global reference frame. One such exception would be a

Newtonian gravitational Weld that is completely constant (both in magni-

tude and in direction) over the whole of space, but perhaps varying in time.

To an observer who falls freely in such a Weld, it would appear that there is

(a)

(b) (c)

E3

E3

E3

E3

E1

Time

Fig. 17.7 (a) Newton–Cartan spacetime N , like the particular Galilean case GG, is

a bundle with base-space E
1 and Wbre E

3. Its structure is provided by the family

of motions, ‘inertial’ in Einstein’s sense, of free fall under gravity. (b) The special

case of a Newtonian gravitational Weld constant over all space. (c) Its structure is

completely equivalent to that of GG, as can be seen by ‘sliding’ the E
3

Wbres

horizontally until the world lines of free fall are all straight.
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no Weld at all![17.5] In such a case, the structure ofNN would be the same as

that of GG (Fig. 17.7b,c). But most gravitational Welds count as ‘essentially

diVerent’ from the absence of a gravitational Weld. Can we see why? Can

we recognize when the structure ofNN is diVerent from that of GG? We shall

come to this in a moment.

The idea is that the manifoldNN is to possess a connection, just as was

the case for the particular case GG. The geodesics of this connection, = (see

§14.5), are to be the ‘straight’ world lines that represent inertial motions in

the Einsteinian sense. This connection will be torsion-free (§14.4), but

it will generally possess curvature (§14.4). It is the presence of this curva-

ture that makes some gravitational Welds ‘essentially diVerent’ from the

absence of gravitational Weld, in contrast with the spatially constant Weld

just considered. Let us try to understand the physical meaning of this

curvature.

Imagine an astronaut Albert, whom we shall refer to as ‘A’, falling freely

in space, a little away above the Earth’s atmosphere. It is helpful to think

of A as being just at the moment of dropping towards the Earth’s surface,

but it does not really matter what Albert’s velocity is; it is his acceleration,

and the acceleration of neighbouring particles, that we are concerned with.

A could be safely in orbit, and need not be falling towards the ground.

Imagine that there is a sphere of particles surrounding A, and initially at

rest with respect to A. Now, in ordinary Newtonian terms, the various

particles in this sphere will be accelerating towards the centre E of the

Earth in various slightly diVerent directions (because the direction to E

will diVer, slightly, for the diVerent particles) and the magnitude of this

acceleration will also vary (because the distance to E will vary). We shall

be concerned with the relative accelerations, as compared with the acceler-

ation of the astronaut A, since we are interested in what an inertial

observer (in the Einsteinian sense)—in this case A—will observe to be

happening to nearby inertial particles. The situation is illustrated in Fig.

17.8a. Those particles that are displaced horizontally from A will acceler-

ate towards E in directions that are slightly inward relative to A’s acceler-

ation, because of the Wnite distance to the Earth’s centre, whereas those

particles that are displaced vertically from A will accelerate slightly out-

ward relative to A because the gravitational force falls oV with increasing

distance from E. Accordingly, the sphere of particles will become dis-

torted. In fact, this distortion, for nearby particles, will take the sphere

into an ellipsoid of revolution, a (prolate) ellipsoid, having its major axis

(the symmetry axis) in the direction of the line AE. Moreover, the initial

distortion of the sphere will be into an ellipsoid whose volume is equal to

[17.5] Find an explicit transformation of x, as a function of t, that does this, for a given

Newtonian gravitational Weld F(t) that is spatially constant at any one time, but temporally

varying both in magnitude and direction.
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(a) (b)

E

E

A

Fig. 17.8 (a) Tidal eVect. The astronaut A (Albert) surrounded by a sphere of

nearby particles initially at rest with respect to A. In Newtonian terms, they have an

acceleration towards the Earth’s centre E, varying slightly in direction and magni-

tude (single-shafted arrows). By subtracting A’s acceleration from each, we obtain

the accelerations relative to A (double-shafted arrows); this relative acceleration is

slightly inward for those particles displaced horizontally from A, but slightly

outward for those displaced vertically from A. Accordingly, the sphere becomes

distorted into a (prolate) ellipsoid of revolution, with symmetry axis in the direction

AE. The initial distortion preserves volume. (b) Now move A to the Earth’s centre E

and the sphere of particles to surround E just above the atmosphere. The acceler-

ation (relative to A ¼ E) is inward all around the sphere, with an initial volume

reduction acceleration 4pGM, where M is the total mass surrounded.

that of the sphere.[17.6] This last property is a characteristic property of the

inverse square law of Newtonian gravity, a remarkable fact that will have

signiWcance for us when we come to Einstein’s general relativity proper. It

should be noted that this volume-preserving eVect only applies initially,

when the particles start at rest relative to A; nevertheless, with this proviso,

it is a general feature of Newtonian gravitational Welds, when A is in a

vacuum region. (The rotational symmetry of the ellipsoid, on the other

hand, is an accident of the symmetry of the particular geometry considered

here.)

Now, how are we to think of all this in terms of our spacetime

picture NN ? In Fig. 17.9a, I have tried to indicate how this situation

would look for the world lines of A and the surrounding particles. (Of

[17.6] Derive these various properties, making clear by use of the O( ) notation, at what order

these statements are intended to hold.
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A

E

(a) (b)

E

Fig. 17.9 Spacetime versions of Fig. 17.8 (in the Newton–Cartan picture N of

Fig. 17.7), in terms of the relative distortion of neighbouring geodesics. (a)

Geodesic deviation in empty space (basically Weyl curvature of §19.7) as seen in

the world lines of A and surrounding particles (one spatial dimension suppressed),

as might be induced from the gravitational Weld of a nearby body E. (b) The

corresponding inward acceleration (basically Ricci curvature) due to the mass

density within the bundle of geodesics.

course, I have had to discard a spatial dimension, because it is hard

to depict a genuinely 4-dimensional geometry! Fortunately, two space

dimensions are adequate here for conveying the essential idea.) Note

that the distortion of the sphere of particles (depicted here as a circle of

particles) arises because of the geodesic deviation of the geodesics that

are neighbouring to the geodesic world line of A. In §14.5, I indicated

why this geodesic deviation is in fact a measure of the curvature R of the

connection =.

In Newtonian physical terms, the distortion eVect that I have just

described is what is called the tidal eVect of gravity. The reason for this

terminology is made evident if we let E swap roles with A, so we now think

of A as being the Earth’s centre, but with the Moon (or perhaps the Sun)

located at E. Think of the sphere of particles as being the surface of the

Earth’s oceans, so we see that there is a distortion eVect due to the Moon’s

(or Sun’s) non-uniform gravitational Weld.[17.7] This distortion is the cause

[17.7] Show that this tidal distortion is proportional to mr�3 where m is the mass of the

gravitating body (regarded as a point) and r is its distance. The Sun and Moon display discs, at the

Earth, of closely equal angular size, yet the Moon’s tidal distortion on the Earth’s oceans is about

Wve times that due to the Sun. What does that tell us about their relative densities?

398

§17.5 CHAPTER 17



of the ocean tides, so the terminology ‘tidal eVect’, for this direct physical

manifestation of spacetime curvature, is indeed apposite.

In fact, in the situation just considered, the eVect of the Moon (or Sun) on

the relative accelerations of particles at the Earth’s surface is only a small

correction to the major gravitational eVect on those particles, namely the

gravitational pull of the Earth itself. Of course, this is inwards, namely in the

direction of the Earth’s centre (now the point A, in our spatial description;

see Fig. 17.8b) as measured from each particle’s individual location. If the

sphere of particles is now taken to surround the Earth, just above the

Earth’s atmosphere (so that we can ignore air resistance), then there will

be free fall (Einsteinian inertial motion) inwards all around the sphere.

Rather than distortion of the spherical shape into that of an ellipse of

initially equal volume, we now have a volume reduction. In general, there

could be both eVects present. In empty space, there is only distortion and no

initial volume reduction; when the sphere surrounds matter, there is an

initial volume reduction that is proportional to the total mass surrounded.

If this mass is M, then the initial ‘rate’ (as a measure of inward acceleration)

of volume reduction is in fact

4pGM

where G is Newton’s gravitational constant.[17.8],[17.9]

In fact, as Cartan showed, it is possible to reformulate Newton’s gravi-

tational theory completely in terms of mathematical conditions on the

connection =, these being basically equations on the curvature R which

provide a precise mathematical expression of the requirements outlined

above, and which relate the matter density r (mass per unit spatial volume)

to the ‘volume-reducing’ part of R. I shall not give Cartan’s description for

this in detail here, because it is not necessary for our later considerations,

the full Einstein theory being, in a sense, simpler. However, the idea itself

is an important one for us here, not only for leading us gently into

Einstein’s theory, but also because it has a role to play in our later

considerations of Chapter 30 (§30.11), concerning the profound puzzles

that the quantum theory presents us with, and their possible resolution.

17.6 The fixed finite speed of light

In our discussions above, we have been considering two fundamental

aspects of Einstein’s general relativity, namely the principle of relativity,

[17.8] Establish this result, assuming that all the mass is concentrated at the centre of

the sphere.

[17.9] Show that this result is still true quite generally, no matter how large or what shape the

surrounding shell of stationary particles is, and whatever the distribution of mass.
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which tells us that the laws of physics are blind to the distinction between

stationarity and uniform motion, and the principle of equivalence which

tells us how these ideas must be subtly modiWed in order to encompass the

gravitational Weld. We must now turn to the third fundamental ingredient

of Einstein’s theory, which has to do with the Wniteness of the speed of

light. It is a remarkable fact that all three of these basic ingredients can be

traced back to Galileo; for Galileo also seems to have been the Wrst person

to have such a clear expectation that light ought to travel with Wnite speed

that he actually took steps to measure that speed. The method he used,

involving the synchronizing of lantern Xashes between distant hills, was, as

we now know, far too crude. But in 1667, he had no way to anticipate the

extraordinary swiftness with which light actually travels.

It appears that both Galileo and Newton8 seem to have had powerful

suspicions concerning a possibly deep role connecting the nature of light

with the forces that bind matter together. But the proper realization of

these insights had to wait until the twentieth century, when the true nature

of chemical forces and of the forces that hold individual atoms together

were revealed. We now know that these forces are fundamentally electro-

magnetic in origin (concerning the involvement of electromagnetic Weld

with charged particles) and that the theory of electromagnetism is also the

theory of light. To understand atoms and chemistry, further ingredients

from the quantum theory are needed, but the basic equations that describe

both electromagnetism and light were those put forward in 1865 by the

great Scottish physicist James Clark Maxwell, who had been inspired by

the magniWcent experimental Wndings of Michael Faraday, over 30 years

earlier. We shall be coming to Maxwell’s theory later (§19.2), but its

immediate importance for us now is that it requires that the speed of

light has a deWnite Wxed value, which is usually referred to as c, and

which in ordinary units is about 3�108 metres per second.

This, however, provides us with a conundrum, if we wish to preserve the

relativity principle. Common sense would seem to tell us that if the speed

of light is measured to take the particular value c in one observer’s rest

frame, then a second observer, who moves with a very high speed with

respect to the Wrst one, will measure light to travel at a diVerent speed,

reduced or increased, according to the second observer’s motion. But the

relativity principle would demand that the second observer’s physical

laws—these deWning, in particular, the speed of light that the second

observer perceives—should be identical with those of the Wrst observer.

This apparent contradiction between the constancy of the speed of light

and the relativity principle led Einstein—as it had, in eVect, previously led

the Dutch physicst Hendrick Antoon Lorentz and, more completely, the

French mathematician Henri Poincaré—to a remarkable viewpoint

whereby the contradiction is completely removed.
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How does this work? It would be natural for us to believe that there is

an irresolvable conXict between the requirements of (i) a theory, such as

that of Maxwell, in which there is an absolute speed of light, and (ii) a

relativity principle, according to which physical laws appear the same no

matter what speed of reference frame is used for their description. For

could not the reference frame be made to move with a speed approaching,

or even exceeding that of light? And according to such a frame, surely the

apparent light speed could not possibly remain what it had been before?

This undoubted conundrum does not arise with a theory, such as that

originally favoured by Newton (and, I would guess, by Galileo also), in

which light behaves like particles whose velocity is thereby dependent

upon the velocity of the source. Accordingly Galileo and Newton could

still live happily with a relativity principle. But such a picture of the nature

of light had encountered increasing conXict with observation over the

years, such as with observations of distant double stars which showed

light’s speed to be independent of that of its source.9 On the other hand,

Maxwell’s theory had gained in strength, not only because of the powerful

support it obtained from observation (most notably the 1888 experiments

of Heinrich Hertz), but also because of the compelling and unifying nature

of the theory itself, whereby the laws governing electric Welds, magnetic

Welds, and light are all subsumed into a mathematical scheme of remark-

able elegance and essential simplicity. In Maxwell’s theory, light takes the

form of waves, not particles; and we must face up to the fact that, in this

theory, there is indeed a Wxed speed according to which the waves of light

must travel.

17.7 Light cones

The spacetime-geometric viewpoint provides us with a particularly clear

route to the solution of the conundrum presented by the conXict between

Maxwell’s theory and the principle of relativity. As I remarked earlier, this

spacetime viewpoint was not the one that Einstein originally adopted (nor

was it Lorentz’s viewpoint nor, apparently, even Poincaré’s). But with

hindsight, we can see the power of this approach. For the moment, let us

ignore gravity, and the attendant subtleties and complications provided by

the principle of equivalence. We shall start with a blank slate—or, rather,

with a featureless real 4-manifold. We wish to see what it might mean to say

that there is a fundamental speed, which is to be the speed of light. At any

point (i.e. ‘event’) p in spacetime, we can envisage the family of all diVerent

rays of light that pass through p, in all the diVerent spatial directions. The

spacetime description is a family of world lines through p. See Fig. 17.10a,b.

It will be convenient to refer to these world lines as ‘photon histories’

through p, although Maxwell’s theory takes light to be a wave eVect. This
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(a) (b) (c)

p
p p

Tp

Fig. 17.10 The light cone speciWes the fundamental speed of light. Photon

histories through a spacetime point (event) p. (a) In purely spatial terms, the

(future) light cone is a sphere expanding outwards from p (wavefronts). (b) In

spacetime, the photon histories encountering p sweep out the light cone at p. (c)

Since we shall later be considering curved spacetimes, it is better to think of the

cone—frequently called the null cone at p—as a local structure in spacetime, i.e. in

the tangent space Tp at p.

is not really an important conXict, for various reasons. One can consider a

‘photon’, in Maxwell’s theory, as a tiny bundle of electromagnetic disturb-

ance of very high frequency, and this will behave, quite adequately for our

purposes, as a little particle travelling with the speed of light. (Alterna-

tively, we might think in terms of ‘wave fronts’ or of what the mathemat-

icians call ‘bi-characteristics’, or we may prefer to appeal to the quantum

theory, according to which light can also be considered to consist of

‘particles’, which are, indeed, referred to as ‘photons’.)

In the neighbourhood of p, the family of photon histories through p, as

depicted in Fig. 17.10b, describes a cone in spacetime, referred to as the

light cone at p. To take the light speed as fundamental is, in spacetime

terms, to take the light cones as fundamental. In fact, from the point of

view that is appropriate for the geometry of manifolds (see Chapters 12,

14), it is often better to think of the ‘light cone’ as a structure in the tangent

space Tp at p (see Fig. 17.10c). (We are, after all, concerned with velocities

at p, and a velocity is something that is deWned in the tangent space.)

Frequently, the term null cone is used for this tangent-space structure—

and this is actually my own preference—the term ‘light cone’ being re-

served for the actual locus in spacetime that is swept out by the light rays

passing through a point p. Notice that the light cone (or null cone) has two

parts to it, the past cone and the future cone. We can think of the past cone

as representing the history of a Xash of light that is imploding on p, so that

all the light converges simultaneously at the one event p; correspondingly,

the future cone represents the history of a Xash of light of an explosion

taking place at the event p; see Fig. 17.11.
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How are we to provide a mathematical description of the null cone at p?

Chapters 13 and 14 have given us the background. We require the speed of

light to be the same in all directions at p, so that an instant after a light

Xash the spatial conWguration surrounding the point appears as a sphere

rather than some other ovoid shape.10 By referring to ‘an instant’, I really

mean that these considerations are to apply to the inWnitesimal temporal

(as well as spatial) neighbourhood of p, so it is legitimate to think of this as

indeed referring to structures in the tangent space at p. To say that the null

cone appears ‘spherical’ is really only to say that the cone is given by an

equation in the tangent space that is quadratic. This means that this

equation takes the form

gabv
avb ¼ 0,

where gab is the index form of some non-singular symmetric [ 0
2
]-tensor g of

Lorentzian signature (§13.8).[17.10] The term ‘null’ in ‘null cone’ refers to

the fact that the vector y has a zero length (jyj2 ¼ 0) with respect to the

(pseudo)metric g.

At this stage, we are concerned with g only in its role in deWning the null

cones, according to the above equation. If we multiply g by any non-zero

real number, we get precisely the same null cone as we did before (see also

§27.12 and §33.3). Shortly, we shall require g to play the further physical

role of providing the spacetime metric, and for this we shall require the

appropriate scaling factor; but for the moment, it is just the family of null

Fig. 17.11 The past cone and the future

cone. The past null cone (of past-null

vectors) refers to light imploding on p in

the same way that the future cone (of

future null vectors) refers to light origin-

ating at p. The world line of any massive

particle at p has a tangent vector that is

(future-)timelike, and so lies within the

(future) null cone at p.

[17.10] Explain why.
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cones, one at each spacetime point, that will concern us. To be able to

assert that the speed of light is constant, we take the position that it makes

sense to regard the null cones at diVerent events as all being parallel to one

another, since ‘speed’ in spatial terms, refers to ‘slope’ in spacetime terms.

This leads us to the picture of spacetime depicted in Fig. 17.12.

17.8 The abandonment of absolute time

We may now ask whether the bundle structure of Galilean spacetime GG
would be appropriate to impose in addition. In other words, can we

include a notion of absolute time into our picture? This would lead us to

a picture like that of Fig. 17.13. The E
3 slices through the spacetime

would give us a 3-plane element in each tangent space Tp, in addition to

the null cone, as depicted in Fig. 17.13. But, as I shall explain more fully in

the next chapter, g determines a notion of orthogonality which means that

there is now a preferred direction at each event p (the orthogonal comple-

ment, with respect to g, of this 3-plane element), and this preferred direc-

tion gives us a preferred state of rest at each event. We have lost the

relativity principle!

'absolute
time'
slices

Fig. 17.12 Minkowski space M is

flat, and its null cones are uniformly

arranged, depicted here as all being

parallel.

Fig. 17.13 A notion of absolute

time introduced into M would

specify a family of E
3-slices cutting

through M and hence a local

3-plane-element at each event. But

each null cone defines a (pseudo)

metric g, up to proportionality,

whose notion of orthogonality

thereby determines a state of rest.
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In more prosaic terms, this argument is simply expressing the ‘common-

sense’ notion that if there is an absolute light speed, then there is a

preferred ‘state of rest’ with respect to which this speed appears to be the

same in all directions. What is less obvious is that this conXict arises only

if we try to retain the notion of an absolute time (or, at least, a preferred

3-space in each Tp). It should now be clear how we must proceed. The

notion of an absolute time (and therefore of the bundle structure of GG and

NN ) must be abandoned. At the stage of sophistication that we have arrived

at by now, this should not shock us particularly. We have already seen that

absolute space has to be abandoned as soon as even a Galilean relativity

principle is seriously adopted (although this perception is not recognized

nearly as widely as it should be). So, by now, the acceptance of the fact

that time is not an absolute concept, as well as space not being an absolute

concept, should not seem to be such a revolution as we might have

thought.

Thus we must indeed bid farewell to the E
3 slices through spacetime,

and accept that the only reason for having an absolute time so Wrmly

ingrained in our thinking is that the speed of light is so extraordinarily

large by the standards of the speeds familiar to us. In Fig. 17.14, I have

redrawn part of Fig. 17.13., with a horizontal/vertical scale ratio that is a

little closer to that which would be appropriate for the normal units that

we tend to use in every-day life. But it is only a very little closer, since we

must bear in mind that in ordinary units, say seconds for time and metres

for distance, we Wnd that the speed of light c is given by

c ¼ 299 792 458 metres=second

where this value is actually exact!11 Since our spacetime diagrams (and our

formulae) look so awkward in conventional units, it is a common practice,

in relativity theory work, to use units for which c ¼ 1. All that this

means is that if we choose a second as our unit of time, then we must use

a light-second (i.e. 299792458 metres) for our unit of distance; if we use the

year as our unit of time, then we use the light-year (about 9:46� 1015

metres) as the unit of distance; if we wish to use a metre as our distance

measure, then we must use for our time measure something like 3 1
3

nanoseconds, etc.

Fig. 17.14 The null

cone redrawn so that the

space and time scales are

just slightly closer

to those of normal

experience.
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The spacetime picture of Fig. 17.12. was Wrst introduced by Hermann

Minkowski (1864–1909), who was an extremely Wne and original mathe-

matician. Coincidentally, he was also one of Einstein’s teachers at ETH,

The Federal Institute of Technology in Zurich, in the late 1890s. In fact,

the very idea of spacetime itself came from Minkowski who wrote, in

1908,12 ‘Henceforth space by itself, and time by itself, are doomed to

fade away into mere shadows, and only a kind of union of the two will

preserve an independent reality.’ In my opinion, the theory of special

relativity was not yet complete, despite the wonderful physical insights

of Einstein and the profound contributions of Lorentz and Poincaré,

until Minkowski provided his fundamental and revolutionary viewpoint:

spacetime.

To complete Minkowski’s viewpoint with regard to the geometry under-

lying special relativity, and thereby deWne Minkowskian spacetime M ,

we must Wx the scaling of g, so that it provides a measure of ‘length’ along

world lines. This applies to curves in M that we refer to as

timelike which means that their tangents always lie within the null cones

(Fig. 17.15a and see also Fig. 17.11) and, according to the theory, are

(a) (b)

τ =   ds
ds=0

Fig. 17.15 (a) The world line of a massive particle is a timelike curve, so its

tangents are always within the local null cones, giving ds2 ¼ gabdxadxb positive.

The quantity ds ¼ gabdxadxb
� �1=2

measures the inWnitesimal time-interval along

the curve, so the ‘length’ t ¼
R

ds, is the time measured by an ideal clock carried by

the particle between two events on the curve. (b) In the case of a massless particle

(e.g. a photon) the world lines have tangents on the null cones (null world line), so

the time-interval t ¼
R

ds always vanishes.
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possible world lines for ordinary massive particles. This ‘length’ is actually

a time and it measures the actual time t that an (ideal) clock would

register, between two points A and B on the curve, according to the

formula (see §14.7, §13.8)

t ¼
Z B

A

ds, where ds ¼ (gabdxadxb)
1
2:

For this, we require the choice of spacetime metric g to have signature

þ � � � (which is my own preferred choice, rather than þ þ þ �,

which some other people prefer, for diVerent reasons). Photons

have world lines that are called null (or lightlike), having tangents

that are on the null cones (Fig. 17.15b). Accordingly the ‘time’ that a

photon experiences (if a photon could actually have experiences) has to

be zero!

In my discussion above, I have chosen to emphasize the null-cone

structure of spacetime, even more than its metric. In certain respects,

the null cones are indeed more fundamental than the metric. In

particular, they determine the causality properties of the spacetime. As

we have just seen, material particles are to have their world lines con-

strained to lie within the cones, and light rays have world lines along

the cones. No physical particle is permitted to have a spacelike world

line, i.e. one outside its associated light cones.13 If we think of actual

signals as being transmitted by material particles or photons, then we

Wnd that no such signal can pass outside the constriants imposed by the

null cones. If we consider some point p in M, then we Wnd that the

region that lies on or within its future light cone consists of all the events

that can, in principle, receive a signal from p. Likewise, the points of M

lying on or within p’s past light cone are precisely those events that can,

in principle send a signal to the point p; see Fig. 17.16. The situation

is similar when we consider propagating Welds and even quantum-

mechanical eVects (although some strangely puzzling situations can arise

with what is called quantum entanglement—or ‘quanglement’—as we

shall be seeing in §23.10). The null cones indeed deWne the causality

structure ofMM: no material body or signal is permitted to travel faster

than light; it is necessarily constrained to be within (or on) the light cones.

What about the relativity principle? We shall be seeing in §18.2 that

Minkowski’s remarkable geometry has just as big a symmetry group as

has the spacetime GG of Galilean physics. Not only is every point of M

on an equal footing, but all possible velocities (timelike future-pointing

directions) are also on an equal footing with each other. This will all

be explained more fully in §18.2. The relativity principle holds just as

well for M as it does for GG!
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p

Past
of p

17.9 The spacetime of Einstein’s general relativity

Finally, we come to the Einsteinian spacetime EE of general relativity. Basic-

ally, we apply the same generalization to Minkowski’s M, as we pre-

viously did to Galileo’s GG, when we obtained the Newton(–Cartan)

spacetimeNN. Rather than having the uniform arrangement of null cones

depicted in Fig. 17.12, we now have a more irregular-looking arrangement

like that of Fig. 17.17. Again, we have a Lorentzian (þ � � �) metric g

whose physical interpretation is to deWne the time measured by an ideal

clock, according to precisely the same formula as for M, although

now g is a more general metric without the unifomity that is the characteris-

tic of the metric ofMM.

The null-cone structure deWned by this g speciWes EE’s causality structure,

just as was the case for Minkowski space M. Locally, the diVerences

are slight, but things can get decidedly more elaborate when we examine

the global causality structure of a complicated Einsteinian spacetime EE. An

Fig. 17.16 The future of p is the region

that can be reached by future-timelike

curves from p. A curved-spacetime case is

indicated (see Fig. 17.17). The boundary of

this region (wherever smooth) is tangential

to the light cones. Signals, whether carried

by massive particles or massless photons,

reach points within this region or on its

boundary. The past of p is defined similarly.

Fig. 17.17 Einsteinian

spacetime E of general

relativity. This generaliza-

tion of Minkowski’s M is

similar to the passage from

G to N (Figs. 17.12, 17.3,

17.7a, respectively). As

with M, the Lorentzian

(þ���) pseudo-metric g

defines the physical meas-

ure of time.
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extreme situation arises when we have what is referred to as causality

violation in which ‘closed timelike curves’ can occur, and it becomes

possible for a signal to be sent from some event into the past of that

same event! See Fig. 17.18. Such situations are normally ruled out as

‘unphysical’, and my own position would certainly be to rule them out,

for a classically acceptable spacetime. Yet some physicists take a consider-

ably more relaxed view of the matter14 being prepared to admit the

possibility of the time travel that such closed timelike curves would

allow. (See §30.6 for a discussion of these issues.) On the other hand, less

extreme—though certainly somewhat exotic—causality structures can

arise in some interesting spacetimes of great relevance to modern astro-

physics, namely those which represent black holes. These will be con-

sidered in §27.8.

In §14.7, we encountered the fact that a (pseudo)metric g determines

a unique torsion-free connection = for which =g ¼ 0, so this will apply

here. This is a remarkable fact. It tells us that Einstein’s concept of inertial

motion is completely determined by the spacetime metric. This is quite

diVerent from the situation with Cartan’s Newtonian spacetime, where the

‘=’ had to be speciWed in addition to the metric notions. The advantage

here is that the metric g is now non-degenerate, so that = is completely

determined by it. In fact, the timelike geodesics of = (inertial motions) are

Wxed by the property that they are (locally) the curves that maximize what

is called the proper time. This proper time is simply the length, as measured

along the world line, and it is what is measured by an ideal clock having

that world line. (This is a curious ‘opposite’ to the ‘stretched-string’ notion

of a geodesic on an ordinary Riemannian surface with a positive-deWnite

metric; see §14.7. We shall see, in §18.3, that this maximization of proper

time for the unaccelerated world line is basically an expression of the

‘clock paradox’ of relativity theory.)

The connection = has a curvature tensor R, whose physical interpreta-

tion is basically just the same as has been given above in the case ofNN.

Fig. 17.18 The causality

structure of E is determined

by g (as with M, see Fig.

17.16), so extreme unphy-

sical situations with ‘closed

timelike curves’ might

hypothetically arise,

allowing future-directed

signals to return from the

past.
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What locally distinguishes Minkowski’s M, of special relativity, from

Einstein’s EE of general relativity is that R ¼ 0 for M. In the next chapter

we shall explore this Lorentzian geometry more fully and, in the following

one, see how Einstein’s Weld equations are the natural encoding, into EE ’s
structure, of the ‘volume-reducing rate’ 4pGM referred to towards the end

of §17.5. We shall also begin to witness the extraordinary power, beauty,

and accuracy of Einstein’s revolutionary theory.

Notes

Section 17.1

17.1. Although in the past I have been a proponent of the hyphenated ‘space-time’, I

have found that there are places in this book where that would cause compli-

cations in phraseology. Accordingly I am adopting ‘spacetime’ consistently

here.

17.2. It appears that Aristotle may well have had diYculties with the notion of an

inWnite physical space, as is required if Euclidean geometry E
3 is to provide an

accurate description of spatial geometry, but his views with regard to time may

have been more in accord with the ‘E1’ of the E
1�E

3 picture. See Moore

(1990), Chap. 2.

Section 17.2

17.3. See Drake (1953), pp. 186–87.

17.4. See Arnol’d (1978); Penrose (1968).

Section 17.3

17.5. Thiswas inhismanuscript fragmentDemotu corporum inmediis regulariter ceden-

tibus—a precursor of Principia, written in 1684. See also Penrose (1987d), p. 49.

Section 17.4

17.6. But see Bondi (1957).

17.7. Now there are ‘tourist opportunities’, in Russia, for such experiences for

humans, in aeroplanes and in parabolic Xights!

Section 17.6

17.8. See Drake (1957), p. 278, concerning a remark Galileo made in the Assayer; see

also Newton (1730), Query 30; Penrose (1987d), p. 23.

17.9. See de Sitter (1913).

Section 17.7

17.10. There is a knotty issue of how one actually tells a ‘sphere’ from an ‘ellipsoid’,

because distances can be recalibrated in diVerent directions, so as to make any

ellipsoid appear ‘spherical’. However, what recalibrations cannot do is to make

a non-ellipsoidal ovoid look spherical, at least with ‘smooth’ recalibrations.

Such ovoids would give rise to a Finsler space, which does not have the pleasant

local symmetry of the (pseudo-)Riemannian structures of relativity theory.

Section 17.8

17.11. The reader might well be puzzled that the speed of light comes out as an exact

integer when measured in metres per second. This is no accident, but merely a

reXection of the fact that very accurate distance measurements are now much

Notes CHAPTER 17
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harder to ascertain than very accurate time measurements. Accordingly, the

most accurate standard for the metre is conveniently deWned so that there are

exactly 299792458 of them to the distance travelled by light in a standard

second, giving a value for the metre that very accurately matches the now

inadequately precise standard metre rule in Paris.

17.12. See Minkowski (1952). This is a translation of the Address Minkowski de-

livered at the 80th Assembly of German Natural Scientists and Physicians,

Cologne, 21 September, 1908.

17.13. Some physicists have toyed with the idea of hypothetical ‘particles’ known

as tachyons that would have spacelike world lines (so they travel faster than

light). See Bilaniuk and Sudarshan (1969); for a more technical reference, see

Sudarshan and Dhar (1968). It is diYcult to develop anything like a consistent

theory in which tachyons are present, and it is normally considered that such

entities do not exist.

Section 17.9

17.14. See, for example, Novikov (2001); Davies (2003).
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18
Minkowskian geometry

18.1 Euclidean and Minkowskian 4-space

The geometries of Euclidean 2-space and 3-space are very familiar to us.

Moreover, the generalization to a 4-dimensional Euclidean geometry E
4 is

not diYcult to make in principle, although it is not something for which

‘visual intuition’ can be readily appealed to. It is clear, however, that there

are many beautiful 4-dimensional conWgurations—or they surely would be

beautiful, if only we could actually see them! One of the simpler (!) such

conWgurations is the pattern of CliVord parallels on the 3-sphere, where we

think of this sphere as sitting in E
4. (Of course we can do a little better

here, with regard to visualization, because S3 is only 3-dimensional, and its

stereographic projection, as presented in Fig. 33.15, gives us some idea of

the actual CliVord conWguration. (If we could really ‘see’ this conWgura-

tion as part of E
4, we ought to be able to gain some feeling for what the

complex vector 2-space structure of C
2 actually ‘looks like’;1 see §15.4,

Fig. 15.8.) Minkowski space M is in many respects very similar to E
4, but

there are some important diVerences that we shall be coming to.

Algebraically, the treatment of E
4 is very close to the coordinate

treatment of ‘ordinary’ 3-space E
3. All that is needed is one more

Cartesian coordinate w, in addition to the standard x, y, and z. The E
4

distance s between the points (w, x, y, z) and (w0, x0, y0, z0) is given by the

Pythagorean relation

s2 ¼ (w� w0 )2 þ (x� x0 )2 þ (y� y0)2 þ (z� z)2:

If we think of (w, x, y, z) and (w0, x0, y0, z0) as only ‘inWnitesimally’

displaced from one another, and formally write (dw, dx, dy, dz) for the

diVerence (w0, x0, y0, z0)� (w, x, y, z), i.e.2

w0 ¼ wþ dw, x0 ¼ xþ dx, y0 ¼ yþ dy, z0 ¼ zþ dz,

then we Wnd

ds2 ¼ dw2 þ dx2 þ dy2 þ dz2:
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The length of a curve in E
4 is given by the same formula as in E

3, namely
Ð

ds (taking the positive sign for ds).

Now the geometry of Minkowski spacetime M is very close to this, the

only diVerence being signs. Many workers in the Weld prefer to concentrate

on the (þþþ�)-signature pseudometric

d‘2 ¼ �dt2 þ dx2 þ dy2 þ dz2,

since this is convenient when considering spatial geometry, the

quantity represented above by ‘d‘2’ being positive for spacelike displace-

ments (i.e. displacements that are neither on nor within the future or

past null cones; see Fig. 18.1). But the quantity ‘ds2’ deWned by the

(þ���)-signature quantity

ds2 ¼ dt2 � dx2 � dy2 � dz2

is more directly physical, because it is positive along the timelike curves

that are the allowable worldlines of massive particles, the integral
Ð

ds

(with ds > 0) being directly interpretable as the actual physical time

measured by an ideal clock with this as its world line. I shall use this

signature (þ���) for my choice of (pseudo)metric tensor g, with index

form gab, so that the above expression can be written in index form

(see §13.8)

ds2 ¼ gabdxa dxb:

Timelike:
ds2 positive

Null: ds2, d 2

both zero            

Spacelike:
d 2 positive

Fig. 18.1 In Minkowski

space M, the d‘2 metric

provides a measure of

spatial (distance)2 for

spacelike displacements

(neither on nor within

future or past null

cones). For timelike dis-

placements (within the

null cone), ds2 provides a

measure temporal

(interval)2, where
Ð

ds is

physical time as meas-

ured by an ideal clock.

For a null displacement

(along the null cone)

both d‘2 and ds2 give

zero.
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We should, however, recall from §17.8 that, unlike the case for a massive

particle,
Ð

ds is zero for a world line of a photon (so non-coincident points on

the world-line can be ‘zero distance’ apart). This would also be true for any

other particle that travels with the speed of light. The time ‘experienced’ by

such a particle would always be zero, no matter how far it travels! This is

allowed because of the non-positive-deWnite (Lorentzian) nature of gab.

In the early days of relativity theory, there was a tendency to emphasize

the closeness of M’s geometry to that of E
4 by simply taking the time

coordinate t to be purely imaginary:

t ¼ iw,

which makes the ‘d‘2’ form of the Minkowskian metric look just the same as

the ds2 of E
4. Of course, appearances are somewhat illusory, because of the

unnatural-looking hidden ‘reality’ condition that time is measured in purely

imaginary units whereas the space coordinates use ordinary real units.

Moreover, in amoving frame, the reality conditions get complicatedbecause

the real and imaginary coordinates are thoroughly mixed up. In fact, there is

a modern tendency to do something very similar to this, in various diVerent

guises, in the name ofwhat is called ‘Euclidean quantum Weld theory’. Later,

in §28.9, I shall come to my reasons for being considerably less than happy

with this type of procedure (at least if it is regarded as a key ingredient in an

approach toanewfundamentalphysical theory, as it sometimes is; thedevice

is also used as a ‘trick’ for obtaining solutions to questions in quantum Weld

theory, and for this it can indeed play an honest and valuable role).

Rather than adopting such a procedure that (to me, at least) looks as

unnatural as this, let us try to ‘go the whole hog’ and allow all our coordin-

ates to be complex (see Fig. 18.2). Then there is no distinction between the

diVerent signatures, our complex coordinateso, x, �, z now referring to the

complex space C
4, which we may regard as the complexiWcation CE

4 of

E
4. As a complex aYne space—see §14.1—this is the same as the complex-

iWcation CM of M. Moreover, each complex 4-space CE
4 and CM has a

completely equivalent Xat (vanishing curvature) complex metric Cg. This

metric can be taken to be ds2 ¼ do2 þ dx2 þ d�2 þ dz2, where E
4 is the

real subspace of CM for which all of o, x, �, z are real and M is that for

which o is real, but where x, �, z are all pure imaginary. The alternative

Minkowskian real subspace ~M, given when o is pure imaginary but x, �, z
are all real, has its ‘ds2’ giving the above ‘d‘2’ version of the Minkowski

metric. The three subspaces E
4, M, and ~M are called (alternative) real

slices of CE
4. We can single out just one of these if we endow CE

4 with

an operation of complex conjugation C, which is involutory (i.e. C2 ¼ 1),

and which leaves only the chosen real slice pointwise invariant.[18.1]

[18.1]FindCexplicitly foreachof the threecasesE
4,M, and ~M.Hint:ThinkofhowC is toacton

o, x, �, and z. It is not quite the standard operation of complex conjugation in the cases M and ~MM.
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Fig. 18.2 Complex Euclidean space CE
4 has a complex (holomorphic) metric

ds2 ¼ do2 þ dx2 þ d�2 þ dz2 in complex Cartesian coordinates (o, x, �, z). Eu-

clidean 4-space E
4 is the ‘real section’ for which o, x, �, z are all real. Minkowski

spacetime M, with the þ��� ds2 metric, is a diVerent real section, o being real

and x, �, z pure imaginary. We get another Lorentzian real section ~M by taking o
to be pure imaginary and x, �, z real, where the induced ds2 now gives theþþþ�
‘d‘2’ version of the Minkowski metric.

18.2 The symmetry groups of Minkowski space

The group of symmetries of E
4 (i.e. its group of Euclidean motions) is

10-dimensional, since (i) the symmetry group for which the origin is Wxed is

the 6-dimensional rotation group O(4) (because n(n� 1)=2 ¼ 6 when n ¼ 4;

see §13.8), and (ii) there is a 4-dimensional symmetry groupof translationsof

the origin see Fig. 18.3a. When we complexify E
4 to CE

4, we get a 10-com-

plex-dimensional group (clearly, because if we write out any of the real

Euclidean motions of E
4 as an algebraic formula in terms of the

coordinates, all we have to do is allow all the quantities appearing in the

formula (coordinates and coeYcients) to become complex rather than

real, and we get a corresponding complex motion of CE
4. Since the Wrst

preserves the metric, so will the second. Moreover, all continous motions
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6 dimensionsof rotations
4 dimensions

of tra
nslati

ons
6 dimensions of

pseudo-rotations
4 dimensions of

tran
slati

ons

(a) (b)

Fig. 18.3 (a) The group of Euclidean motions of E
4 is 10-dimensional, the

symmetry group with Wxed origin being the 6-dimensional rotation group O(4)

and the group of translations of the origin, 4-dimensional. (b) For the symmetries

of M, we get the 6-dimensional Lorentz group O(1,3) (or (O(3,1) ) for Wxed origin

and 4-dimensions of translations, giving the 10-dimensional Poincaré symmetry

group.

of CE
4 to itself which preserve the complexiWed metric Cg are of this

nature.[18.2]

Now it is very plausible, but not completely obvious at this stage, that the

group would have the same dimension, namely 10 (but now real dimen-

sional), if we specialize to a diVerent ‘real section’ of CE
4, such as the one

forwhich the coordinates (o, x, �, z) have the reality condition thato is pure

imaginary and x, �, z are real (signatureþþþ�) or else for which o is real

and x, �, z are pure imaginary (signatureþ���); seeFig. 18.2. The transla-

tional part is obviously still 4-dimensional. In fact, this part tells us that the

group is transitive on M, which means that any speciWed point of M can be

sent to any other speciWed point of M by some element of the group, just as

was the case for E
4. But what about the Lorentz group (O(3, 1) or O(1, 3))?

How can we see that this is ‘just as 6-dimensional’ as is O(4)? In fact the

Lorentz group is 6-dimensional (see Fig. 18.3b). The most general way of

seeing such a thing is to examine the Lie algebra—see §14.6—and check that

this stillworkswith the requiredminor sign changes.[18.3]We shall be seeinga

rather remarkable alternative way of looking at O(1,3) shortly (§18.5), and

checking its 6-dimensionality, by relating it to the symmetry group of the

Riemann sphere.

[18.2] Can you see why?

[18.3] ConWrm it in this case examining the 4� 4 Lie algebra matrices explicitly.
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The full 10-dimensional symmetry groupofMinkowski spaceM is called

the Poincaré group, in recognition of the achievement of the outstanding

French mathematician Henri Poincaré (1854–1912), in building up the

essential mathematical structure of special relativity in the years between

1898 and 1905, independently of Einstein’s fundamental input of 1905.3 The

Poincaré group is important in relativistic physics, particularly in particle

physics and quantum Weld theory (Chapters 25 and 26). It turns out that,

according to the rules of quantum mechanics, individual particles corres-

pond to representations (§§13.6,7) of the Poincaré group, where the values

for their mass and spin determine the particular representations (§22.12).

It is, in essence, the extensiveness of this group that allows us to assert

that the relativity principle still holds for M, even though we have a Wxed

speed of light (§§17.6,8). In the Wrst place, we see that every point of the

spacetime M is on an equal footing with every other, because of the

transitive nature of the translation subgroup. In addition, we have com-

plete spatial rotational symmetry (3 dimensions). This leaves 3 more

dimensions to express the fact that there is complete freedom to move

from one velocity (<c) to any another, and the whole structure remains

the same—which is basically M’s relativity principle! A little more for-

mally, what the relativity principle asserts is that the Poincaré group acts

transitively on the bundle of future-timelike directions of M.4 These are the

directions that point into the interiors of the future null cones, such

directions being the possible tangent directions to observers’ world

lines.[18.4] It may be noted, however, that this only works because we

have given up the family of ‘simultaneity slices’ through the the Galilean

or Newtonian spacetime. Preserving those would have reduced the sym-

metry about a spacetime point to the 3-dimensional O(3), without any

freedom left to move from one velocity to another.

18.3 Lorentzian orthogonality; the ‘clock paradox’

This point of view regards M as just a ‘real section’ or ‘slice’ of the

complex space CE
4 (or C

4), but a section with a diVerent character

from E
4 itself. This is very convenient viewpoint, so long as we can

adopt the correct attitude of mind. For example, in the Euclidean E
4,

we have a notion of ‘orthogonal’ (which means ‘at right angles’). This

carries over directly to CE
4 by the process of ‘complexiWcation’.5 How-

ever, there are certain types of property that we must expect to be a little

diVerent after we apply this procedure. For example, we Wnd that, in CE
4,

a direction can now be orthogonal to itself, which is something that

certainly cannot happen in E
4. This feature persists, however, when we

[18.4] Explain this action of the Poincaré group a little more fully.
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pass back to our new real slice, the Lorentzian M. Thus, we retain a

notion of orthogonality in M—but we Wnd that now there are real

directions that are orthogonal to themselves, these being the null directions

that point along photon world-lines (see below).

We can carry this orthogonality notion further and consider the orthog-

onal complement h? of an r-plane element h at a point p. This is the

(4� r)-plane element h? of all directions at p that are orthogonal to all

the directions inh at p. Thus the orthogonal complement of a line element is

a 3-plane element, the orthogonal complement of a 2-plane element

is another 2-plane element, and the orthogonal complement of a 3-plane

element is a line element. In each case, taking the orthogonal complement

again would return to us the element that we started with; in other words

(h?)? ¼ h. Recall that in §13.9 and §14.7 we considered the operations of

lowering and raising indices, on a vector or tensor quantity, with gab or gab.

When applied to the simple r-vector or simple (4� r)-form that represents

an r-surface element, in accordance §§12.4,7 (e.g. hab 7!hab ¼ hcdg
acgbd ;

hab 7!hab ¼ hcdgacgbd ), this raising/lowering operation corresponds to pass-

ing to the orthogonal complement; see also §19.2.

In E
4, the orthogonal complement of a 3-plane element h, for example,

is a line element h? (normal to h) which is never contained in h;

see Fig. 18.4. But as in Fig. 18.2, we can pass to the complexiWcation

CE4 and thence to the diVerent real section M. In eVect, we were

(a) (b)

^ ^

Fig. 18.4 In E
4, an r-plane element h at a point p has an orthogonal complement

h? which is a (4–r)-plane element, where h and h? never have a direction in

common. (a) In particular, if h is a 3-plane element, then h? is the normal

direction to it. (b) If h is a 2-plane element, then h? is another 2-plane element.
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appealing to this procedure in the previous chapter (§17.8) when we asked

for the orthogonal complement of a time slice (spacelike 3-plane element) at

a point p to Wnd a timelike direction (‘state of rest’), which showed us that

a relativity principle cannot be maintained if we wish to have both a Wnite

speed of light and an absolute time (see Fig. 17.15).[18.5] However, now let

us read this in the opposite direction. Consider an inertial observer at a

particular event p in M. Suppose that the observer’s world line has some

(timelike) direction t at p. Then the 3-space t? represents the family of

‘purely spatial’ directions at p for that observer, i.e. those neighbouring

events that are deemed by the observer to be simultaneous with p.

It is not my purpose here to develop the details of the special theory of

relativity not to see why, in particular, this is a reasonable notion

of ‘simultaneous’. For this kind of thing, the reader may be referred

to several excellent texts.6 The point should be made, however, that

this notion of simultaneity actually depends upon the observer’s velocity.

In Euclidean geometry, the orthogonal complement of a direction in

space will change when that direction changes (Fig. 18.5a). Correspond-

ingly, in Lorentzian geometry, the orthogonal complement will also change

when the direction (i.e. observer’s velocity) changes. The only distinction is

that the change tilts the orthogonal complement the opposite way from

what happens in the Euclidean case (see Fig. 18.5b) and, accordingly, it is

possible for the orthogonal complement of a direction to contain that

direction (see Fig. 18.5c), as remarked upon above, this being what happens

for a null direction (i.e. along the light cone).

(a) (b) (c)

Fig. 18.5 (a) In Euclidean 4-geometry, if a direction rotates, so also does its

orthogonal complement 3-plane element. (b) This is true also in Lorentzian

4-geometry, but for a timelike direction the slope of the orthogonal complement

3-plane (spatial directions of ‘simultaneity’) moves in the reverse sense; (c) accord-

ingly, if the direction becomes null, the orthogonal complement actually contains

that direction.

[18.5] (i)Underwhat circumstances is it possible for a 3-plane elementh to contain its normalh?,

in M? (ii) Show that there are two distinct families of 2-planes that are the orthogonal complements

of themselves in CE4, but neither of these families survives in M. (These so-called ‘self-dual’ and

‘anti-self-dual’ complex 2-planes will have considerable importance later; see §32.2 and §33.11.)
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In passing from E
4 to M, there are also changes that relate to inequal-

ities. The most dramatic of these contains the essence of the so-called

‘clock paradox’ (or ‘twin paradox’) of special relativity. Some readers

may be familiar with this ‘paradox’; it refers to a space traveller who

takes a rocket ship to a distant planet, travelling at close to the speed of

light, and then returns to Wnd that time on the Earth had moved forward

many centuries, while the traveller might be only a few years older. As

Bondi (1964, 1967) has emphasized, if we accept that the passage of time,

as registered by a moving clock, is really a kind of ‘arc length’ measured

along a world line, then the phenomenon is not more puzzling than the

fact that the distance between two points in Euclidean space depens upon

the path along which this distance is measured. Both are measured by the

same formula, namely
Ð

ds, but in the Euclidean case, the straight path

represents the minimizing of the measured distance between two Wxed end-

points, whereas in the Minkowski case, it turns out that the straight, i.e.

inertial, path represents the maximizing of the measured time between two

Wxed end events (see also §17.9).

The basic inequality, from which all this springs, is what is called the

triangle inequality of ordinary Euclidean geometry. If ABC is any Euclidean

triangle, then the side lengths satisfy

ABþ BC $ AC,

with equality holding only in the degenerate case when A, B, and C are

all collinear (see Fig. 18.6a). Of course, things are symmetrical, and it

does not matter which we choose for the side AC. In Lorentzian geometry,

we only get a consistent triangle inequality when the sides are all timelike,

and now we must be careful to order things appropriately so that AB, BC,

andACare all directed into the future (see Fig. 18.6b).Our inequality is now

reversed:

ABþ BC # AC,

again with equality holding only when A, B, and C are all collinear, i.e.

on the world line of an inertial particle. The interpretation of this is

precisely the so-called ‘clock paradox’. The space traveller’s world line

is the broken path ABC, whereas the inhabitants of Earth have the

world line AC. We see that, according to the inequality, the space travel-

ler’s clock indeed registers a shorter total elapsed time than those on

Earth.

Some people worry that the acceleration of the rocket ship is not

properly accounted for in this description, and indeed I have idealized

things so that the astronaut appears to be subjected to an impulsive (i.e.
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inWnite) acceleration at the event B (which ought to be fatal!). However,

this issue is easily dealt with by simply smoothing over the corners of the

triangle, as is indicated in Fig. 18.6d. The time diVerence is not greatly

aVected, as is obvious in the corresponding situation for the Euclidean

(a) (b)

(c) (d)

A A

C

C

B

B

AA

B

B

C

C

Fig. 18.6 (a) The

Euclidean triangle

inequality ABþ BC $ AC,

with equality holding only

in the degenerate case when

A, B, C are collinear. (b) In

Lorentzian geometry, with

AB, BC, AC all future-

timelike, the inequality is

reversed: ABþ BC # AC,

with equality holding only

when A, B, C are all on the

world-line of an inertial

particle. This illustrates the

‘clock paradox’ of special

relativity whereby a space

traveller with world-line

ABC experiences a shorter

time interval than the

Earth’s inhabitants AC.

(c) ‘Smoothing’ the corners

of a Euclidean triangle

makes little difference to

the edge lengths, and the

straight path is still the

shortest. (d) Similarly,

making accelerations finite

(by ‘smoothing’ corners)

makes little difference to

the times, and the straight

(inertial) path is still the

longest.
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‘smoothed-oV’ triangle depicted in Fig. 18.6c. It used to be frequently

argued that it would be necessary to pass to Einstein’s general relativity

in order to handle acceleration, but this is completely wrong. The answer

for the clock times is obtained using the formula
Ð

ds (with ds>0) in

both theories. The astronaut is allowed to accelerate in special relativity,

just as in general relativity. The distinction simply lies in what actual

metric is being used in order to evaluate the quantity ds; i.e. it depends

on the actual gij. We are working in special relativity provided that this

metric is the Xat metric of Minkowski geometry M. Physically, this means

that the gravitational Welds can be neglected. When we need to take the

gravitational Welds into account, we must introduce the curved metric of

Einstein’s general relativity. This will be discussed more fully in the next

chapter.

18.4 Hyperbolic geometry in Minkowski space

Let us look at some further aspects of Minkowski’s geometry and its

relation to that of Euclid. In Euclidean geometry, the locus of points

that are a Wxed distance a from a Wxed point O is a sphere. In E
4, of

course, this is a 3-sphere S3. What happens in M? There are now two

situations to consider, depending upon whether we take a to be a (say

positive) real number or (in eVect) purely imaginary (where I am adopting

my preferred þ��� signature; otherwise the roles would be reversed);

see Fig. 18.7, which illustrates both cases.

The case of imaginary a will not concern us particularly here. Let us

therefore assume a > 0 (the case a < 0 being equivalent). Now our ‘sphere’

consists of two pieces, one of which is ‘bowl-shaped’, HH þ, lying within the

future light cone, and theother, HH �, ‘hill-shaped’, lyingwithin thepast light

cone. We shall concentrate on HH þ (the space HH � being similar). What is

the intrinsic metric on HH þ? It certainly inherits a metric, induced on it from

its embedding in M. (The lengths of a curve in HH þ, for example, is deWned

simply by considering it as a curve in M.) In fact, for this case, the d‘2 (with

signatureþþþ�) is the better measure, since the directions along HH þ are

spacelike. We can make a good guess as to HH þ’s metric, because it is

essentially just a ‘sphere’ of some sort, but with a ‘sign Xip’. What can that

be? Recall Johann Lambert’s considerations, in 1786, on the possibility of

constructing a geometry in which Euclid’s 5th postulate would be violated.

He considered that a ‘sphere’ of imaginary radius would provide such a

geometry, provided that such a thing actually makes consistent sense. In

fact, our construction of HH þ, as just given, provides just such a space—a

model of hyperbolic geometry—but now it is 3-dimensional. To get

Lambert’s non-Euclidean plane (the hyperbolic plane), all we need to do is
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H+

H-
O

dispense with one of the spatial dimensions in what has been described

above. In each case the ‘hyperbolic straight lines’ (geodesics) are simply

intersections of HH þ with 2-planes through O (Fig. 18.8).

Of course, it is somewhat fanciful to imagine that Lambert might have

had something like this construction hidden at the back of his mind.

Nevertheless, it illustrates something of the inner consistency of ideas of

this general kind, in which signatures can be ‘Xipped’ and real quantities

made imaginary and imaginary quantities made real. This is something

about which Lambert could easily have had very creditable instincts. It

is perhaps instructive to examine Fig. 18.9. Here I have drawn a light

cone t2�x2�y2�z2¼0 (y suppressed), for Minkowski 4-space M, with

coordinates (t, x, y, z), and I have taken a family of sections of the cone by

the planes

zþ tþ l(t� z) ¼ 2,

for various values of l, all taken through a particular plane t¼1¼z. This

intersection is 2-dimensional (the cone itself being 3-dimensional), and it

turns out that, for each positive value of l, the metric of this 2-surface

is exactly that of a sphere, of radius l�1=2 ¼ 1= l
p

(with respect to the

d‘2 metric). When l ¼ 0, we get the metric of an ordinary Euclidean

Fig. 18.7 ‘Spheres’ in M,

as the loci of points a fixed

Minkowski distance a

from a fixed point O.

If a>0 (with the

þ��� ds2 signature)

we get two ‘hyperbolic’

pieces, the ‘bowl-shaped’

Hþ (within the future light

cone) and the ‘hill-shaped’

H�, (within the past light

cone). For imaginary a

(or with real a and the

þþþ� d‘2 signature)

we get a one-sheeted

hyperboloid, spacelike-

separated from O.
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H+

‘Straight line’ of
hyperbolic geometry

of H+

O

z +t = 2 (λ =
 0)

z  = 1
(λ = −1)

t = 1 (l = 1)

t = 1 = z

t2
 − x

2 −
 y2

 − z
2 =

 0

Fig. 18.9 Sections of the light cone t2 � x2 � y2 �z2 ¼ 0, by 3-planes (zþ t)þ
l(t� z) ¼ 2, through the 2-plane t ¼ 1 ¼ z. The coordinate y is suppressed, so

dimensions appear reduced by 1. When l > 0 the section S has a 2-sphere d‘2

metric, illustrated by the horizontal case l ¼ 1. When l ¼ 0 we get the Xat Euclid-

ean d‘2 metric of the paraboloidal section E. When l < 0 we get a hyperbolic d‘2

metric, illustrated by the vertical hyperbolic section H, in the case l ¼ �1.

plane. (This intersection does not look ‘Xat’, but ‘paraboloidal’ instead;

nevertheless its intrinsic metric is indeed Xat.)[18.6] When l becomes nega-

[18.6] Show all this. Hint: It is handy to make use of coordinates x, y, and w, where

w ¼ (t� z� 1=l) l
p
¼ (1� t� z)= l

p
.

Fig. 18.8 A ‘hyperbolic

straight line’ (geodesic)

in Hþ is the intersection

with Hþ of a 2-plane

through O. (The 2-

dimensional case is

illustrated, but it is

similar for a

3-dimensional Hþ.)
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tive, the intersection is Lambert’s sphere of imaginary radius ( ¼ 1= l
p

). It

indeed has an intrinsic metric (from d‘2) of hyperbolic geometry. In this

way, we see that Lambert’s tentative insight that imaginary-radius

spheres might make sense was perfectly justiWed, albeit centuries ahead

of its time.

The construction for hyperbolic geometry as the ‘pseudosphere’ HH þ
can be directly related to Beltrami’s conformal and projective representa-

tions that were described (in the 2-dimensional case) in §§2.4,5. In Fig.

18.10, I have illustrated the way that both of these can be obtained directly

from HH þ, explicitly depicting the 2-dimensional case of pseudospheres in

Minkowski 3-space M
3 (with coordinates t, x, y). Taking HH þ to have

equation t2 � x2 � y2 ¼ 1, we obtain Beltrami’s ‘Klein’ (i.e. projective)

representation by projecting it from the origin (0, 0, 0) to the plane

t ¼ 1, and we obtain Beltrami’s ‘Poincaré’ (i.e. conformal) representation

by projecting from the ‘south pole’ (� 1, 0, 0) to the ‘equatorial plane’

t ¼ 0 (i.e. ‘stereographic projection’; see §8.3, Fig. 8.7).[18.7]

t = 1

t = 0

(0,0,0)

(-1,0,0)

M3

Projective

Conformal

H+

Fig. 18.10 In Minkowski 3-space M
3, the hyperbolic 2-geometry ofHþ (given by

t2 � x2 � y2 ¼ 1) directly relates to Beltrami’s conformal and projective representa-

tions (illustrated in Figs. 2.11 and 2.16 respectively—M.C.Escher’s print and in its

distorted version). Beltrami’s projective (‘Klein’) model is obtained by projecting

Hþ from the origin (0,0,0) to the interior of the unit circle in the plane t ¼ 1.

Beltrami’s conformal (Poincaré) model is obtained by projecting Hþ from

(�1,0,0) to the interior of the unit circle in t ¼ 0. (See also Beltrami’s geometry of

Fig. 2.17.) The analogous construction works also for hyperbolic 3-geometry in M.

[18.7] Show why the hyperbolic straight lines are represented as straight in the ‘Klein’ case and

by circles meeting the boundary orthogonally in the ‘Poincaré’ case, indicating, by use of a

‘signature Xip’, why this second case is indeed conformal.
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Notice that the future-timelike directions are represented by the points

of HH þ (where, for deWniteness, I take a ¼ 1). These are simply the

possible velocities of a massive particle. Thus, HH þ can be thought of as

velocity space in relativity theory. (Recall that this issue was raised at the

end of §2.7.) It is one of the aspects of relativity that people often Wnd most

disturbing that one cannot simply add up velocities in the normal way.

Thus, in particular, if a rocket ship were to travel in some direction at 3
4
c,

relative to the Earth, and it were to eject a missile in the same spatial

direction at 3
4
c, relative to the ship, then the missile travels at only 24

25
c,

relative to the Earth, not the superluminal ( 3
4
þ 3

4
)c ¼ 3

2
c. (Here c is light

speed, re-introduced for clarity only; units are chosen so that c ¼ 1.) This

is understood here as an eVect of adding lengths in the hyperbolic geom-

etry (see Fig. 18.11).[18.8]

To appreciate this, we need to understand the physical interpretation of

this hyperbolic ‘length’. In fact, it is a quantity, known as the rapidity, for

which I shall use the Greek letter r, deWned in terms of the speed v by the

formulae (graphed in Fig. 18.12)

r ¼ 1

2
log

1þ v
1� v , i:e: v ¼ er � e�r

er þ e�r
,

(the right-hand expression being what is called the ‘hyperbolic tangent’ of r,

written ‘tanhr’). The rapidity is simply the measure of ‘distance’ in the

hyperbolic space HH þ (chosen to have unit pseudoradius—see §§2.4,6—

1
r

υ

q1

H+

[18.8] Use a ‘signature-Xip’ argument, to see why adding lengths in hyperbolic geometry should

give rise to the addition formulabeingusedhere, namely (uþ v)c=(1þ uv), for ‘adding’ the velocities

uc and vc in the same spatial direction. Consider adding arc lenghts around a circle or sphere, the

‘velocity’ corresponding to each arc length being the tangent of the angle it subtends at the centre.

Fig. 18.11 Velocity

space in relativity

theory is the (unit)

hyperbolic space Hþ,

where the rapidity

r (¼ tanh�1v) meas-

ures hyperbolic distance

along Hþ (the speed of

light c ¼ 1 correspond-

ing to infinite r). This is

analogous (by ‘signa-

ture flip’) to distance

along a unit circle being

the angle y subtended at

its centre.
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υ

r

υ=1

υ= −1

since a ¼ 1). For speeds v that are small compared with that of light, the

rapidity is the same as v.[18.9] Note that the boundary, in the Escher picture

shown in Fig. 2.11, which describes inWnity for hyperbolic geometry

(r ¼ 1), represents the unattainable limiting velocity c (¼ 1).

Composing velocities in the same direction is described simply by

adding their rapidities (i.e. adding hyperbolic lengths); see Fig. 18.13a.

We can compose velocities in diVerent directions simply by using the

procedure given for ordinary rotations in §11.4, as illustrated in Fig. 11.4

(appropriately ‘signature-Xipped’). Here we use a hyperbolic triangle law,

applied to the two velocities to be composed, where each is represented by

a hyperbolic segment whose hyperbolic length is exactly one half of the

rapidity that it represents (corresponding to the fact that the arc lengths in

Fig. 11.4 are exactly one-half of the angle that is being rotated through);

see Fig. 18.13b.

1

2

3

(a) (b)

Fig. 18.13 Composing relativistic velocities in hyperbolic velocity space Hþ. (a)

For velocities in the same direction, we simply add the rapidities. (b) For velocities

in diVerent directions, we use a triangle law to compose them, where the hyper-

bolic side-lengths are one-half of their respective rapidities. (Compare Fig.

11.4b, describing the composition of ordinary rotations in 3-space, the proof

being the same.)

[18.9] Justify this assertion; prove the equivalence of the above two displayed formulae.

Fig. 18.12 The

graph of velocity v
(with c ¼ 1) in

terms of rapidity

r defined by r ¼
1
2
log {(1þ v)=(1� v)},

i.e. v ¼ (er � e�r)=
(er þ e�r) ¼ tanh r.
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18.5 The celestial sphere as a Riemann sphere

Let us next have a look at the internal geometry of the ‘boundary at inWnity’

for hyperbolic geometry HH þ, where it must now be made clear that it is the

full 4-dimensional Minkowski spacetime that we are concernedwith, so that

this boundary is now a sphere S2, rather than a circle (S1) that we Wnd as the

boundary of the Escher picture of Fig. 2.11. Each point of this sphere

represents a direction along the null cone itself, representing the limiting

light speed that is unattainable by massive particles. These limiting veloci-

ties are attainable for massless particles however; in fact, these are the only

velocities available to massless particles in free Xight. Fortunately, photons

are such massless particles, and you can see photons. If you look up at the

sky on a clear cloudless night, you appear to see a hemispherical dome above

you, punctuated by myriads of stars. In fact, you are realistically picturing

the family of light rays that constitute the light cone centred at the event O

that is occupied by your eye at the moment that you perceive the celestial

scene. Actually, you are only percieving about half of the rays of the light

cone, but if you imagine that you are out in space, with a full view of the

celestial sphere surrounding you, then you will have a better picture of the

sphere of rays that make up the entire light cone of O. Perhaps it is easier to

picture this sphere as representingO’s past cone, because our concern is with

the light coming into your eye, not coming out of it. But light rays, in the

sense of null straight lines extend both ways, from past to future, so the

celestial sphere may also be thought of as simply representing this family SS
of entire light rays through O. (See also §33.2.)

This space SS is certainly topologically a 2-sphere, but does it have

some particular structure of note? We could imagine providing it with a

metric, and think of it as a 2-dimensional Riemannian space. The most

obvious way would be to take a slice through the light cone, say by the

spatial 3-plane t ¼ �1, to get the unit-radius metric sphere

x2 þ y2 þ z2 ¼ 1 (from the equation of the cone t2 � x2 � y2 � z2 ¼ 0) to

represent SS . Alternatively, we could slice the cone with t ¼ 1, and again

get a unit-radius sphere, the relation between one and the other being

through the antipodal map (which preserves this metric). But there is

nothing special about these particular ways of slicing the cone, unless we

single out some particular observer’s world-line through O and use that

observer’s ‘t coordinate’. For another observer who encounters the same

event O, but who might be travelling at some high speed with respect the

Wrst, there may be some distortion between the map of the celestial sphere

that one observer makes and the map that the other makes.

Indeed, there is some kind of distortion, because of the eVect known

as stellar abberation, which was observed by James Bradley in 1725.

According to this eVect, the apparentpositionof a star on the celestial sphere
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is seasonally slightlydisplaced,owing to the fact that thevelocityof theEarth

changes when it is at diVerent places in its orbit about the Sun. This eVect is

akin to that commonly observed bymotoristswhen travelling at speed in the

rain. To those who are in the car, it appears that the rain is coming almost

directly from the front,whereas from theperspective of anobserver standing

on the ground, the rain may be falling essentially vertically downwards.

This eVect comes about from the fact that the Wnite velocity of the rain

must be composed, appropriately, with the velocity of the car in order that

the observed relative eVect can be ascertained. In fact, in this situation, the

car’s speed is being taken to be much greater than that of the rain, so that the

main apparent eVect comes from the car’s motion. In the case of the star, on

the other hand, the variation in the Earth’s orbital velocity is much smaller

than the speed that of star’s light, as it travels towards us. Accordingly, the

seasonal variation in the star’s apparent position on the celestial sphere is

very small (about half a second of arc, in fact (for nearby stars)). Neverthe-

less, the eVect is present, and it represents a velocity-dependent distortion

of the celestial sphere, telling us thatwe cannot regard this sphere as having a

natural metric structure, independent of the velocity of the observer.

The question that I am posing here is whether there is some nice

mathematical structure on SS, weaker than a metric structure, which is

preserved when we pass from the celestial map that one observer makes to

the map that another makes, when both pass by each other at the event O,

at high relative speed. In fact there is such a structure; and, remarkably, it

is just that structure that we studied earlier in §§8.2,3, when we considered

the Riemann sphere. Recall that the Riemann sphere possesses a con-

formal structure: thus, although it does not have a particular metric

assigned to it, so that there is no notion of distance deWned between nearby

points, or lengths assigned to curves, there is an absolute notion of angle

deWned between curves on the sphere. Any allowable, i.e. conformal,

transformation of the Riemann sphere to itself must preserve this notion

of angle. Consequently, (inWnitesimally) small shapes are preserved under

such transformations, although their sizes may change. Moreover, circles

of any size on the sphere are transformed again to circles. This is indeed

the very structure that is possessed by the celestial sphere SS . Accordingly,

any circular pattern of stars, as perceived by one observer, must also be

perceived as circular by any other.[18.10] This suggests that a convenient

[18.10] Try to Wll in the details of an ingenious argument for this, due to the highly original and

inXuential Irish relativity theorist John L. Synge, which requires no calculation! The argument

proceeds roughly as follows. Consider the geometrical conWguration consisting of the past light

cone C of an event O and a (timelike) 3-plane P through O. Let S be the intersection of C and P.

Describe the ‘history’, as time progresses, of the respective spatial descriptions of C, P, and S,

according to some particular Minkowskian reference frame. Explain why any observer at O sees S
as a circle and, moreover, that this geometrical construction characterizes, in a frame-independent

way, those bundles of rays that appear to an observer as a circle.
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Fig. 18.14 FitzGerald–Lorentz ‘Xattening eVect’. A spherical planet moves to the

right at a speed v (close to that of light) with respect to a Wxed reference system. In

that system it would be described as being Xattened by a factor (1� v2=c2)1=2 in its

direction of motion.

labelling of the stars in the sky might be to assign a complex number

to each (allowing also 1)! I am not aware that such a proposal has

been taken up in astronomy, but the use of such a complex parameter,

called a ‘stereographic coordinate’, related to standard spherical polar

angles by the formula z ¼ ei’cot 1
2
y,[18.11] is common in general relativity

theory.7

This property may seem surprising, especially to those familiar with the

FitzGerald–Lorentz contraction, whereby a sphere, moving rapidly with

speed v, is regarded as being Xattened in its direction of motion, by a factor

g ¼ (
p

1� v2=c2), see Fig. 18.14. (I have not explicitly discussed this

Xattening eVect here. It arises when we consider the spatial description

of a moving object, and it can be found in most standard accounts of

relativity theory).8,[18.12] Imagine that the sphere passes horizontally over-

head at a speed approaching that of light. It is easy to imagine that this

Xattening ought surely to be perceivable to an observer standing at rest on

the ground. By the relativity principle, the eVect should be identical with

what the observer perceives if it is the observer who moves with speed v in

the opposite direction and the sphere remains at rest. But to an observer at

rest viewing a sphere at rest, the sphere is certainly perceived as something

with a circular outline. This would seem to contradict the ‘perceived circles

go to perceived circles’ assertion of the preceding paragraph. In fact,

there is no contradiction, because this FitzGerald–Lorentz ‘Xattening

eVect’ is, in fact, not directly observable. This follows by detailed consider-

ation of the path lengths of the light that appears to be coming to an

observer, with respect to whom the sphere is in motion. See Fig. 18.15. The

[18.11] Derive this formula.

[18.12] Try to derive this formula using the spacetime geometry ideas above.
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light which appears to come from the rear of the sphere reaches the

observer from a more distant point than that which appears to be coming

from the sphere’s front.9,[18.13]

18.6 Newtonian energy and (angular) momentum

There is one Wnal aspect of Minkowskian geometry that I wish to discuss

in this chapter. This concerns the important issues of energy, momentum,

and angular momentum in relativity theory. We shall come to this shortly

in §18.7, but I should Wrst make some remarks about these essential

concepts in Newtonian theory, as I have not introduced them before

in this book. The vital importance of these quantities is that they are

things with a well-deWned meaning in Newtonian theory which are con-

served—for a system not acted upon by external forces—in the sense

that the total energy, momentum, and angular momentum are constant

in time.

The energy of a system may be considered to be composed of two

parts, namely the kinetic energy (i.e. energy of motion) and the potential

energy (the energy stored in the forces between particles). The kinetic

Fig. 18.15 The FitzGerald–Lorentz flat-

tening is not directly visible because what

appears to an observer to be the rear of

the sphere involves a longer path length

than what appears to be the front of the

sphere (the rear part moving out of the way

of the light and the front part moving into

it). Accordingly, the apparent rear edge

refers to an earlier position of the sphere

than does the front edge, whereby the

image is compensatingly stretched in the

direction of motion.

[18.13] Develop this argument in detail, to show why the FitzGerald–Lorentz Xattening exactly

compensates for the eVect arising from the path-length diVerence. Show that for small angular

diameter, the apparent eVect is a rotation of the sphere, rather than a Xattening.
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energy of a (structureless) particle, in Newtonian theory, is given by the

expression

1
2
mv2,

where m is the mass of the particle and v is its speed. To obtain the

entire kinetic energy, we simply add the kinetic energies of all the individ-

ual particles (although, when there are a great many constiuent particle

components moving around randomly, we may refer to their energy as

heat energy; see §27.3). To obtain the total potential energy, we need

to know something of the detailed nature of all the forces involved.

Neither the total kinetic energy nor the total potential energy need

be individually conserved, but the total is. (The Wrst intimation of

this can be traced back to Galileo’s study of the motion of bodies

under gravity. As the bob of a pendulum swings, starting from a raised

position, its gravitational potential energy, as measured by its height

above the ground, is converted into kinetic energy, which is then con-

verted back into potential energy, and then back into kinetic energy, etc.,

etc.)

The momentum p mass of our particle is a vector quantity, given by the

expression
p ¼ mv

where v is the vector describing its velocity. To get the entire momentum,

we take the vector sum of all the individual momenta. This total quantity

is also conserved in time.[18.14]

Now, we recall from §17.3 that a relativity principle holds for Newtonian

theory (Galilean relativity). How do our conservation laws manage to

survive when neither the energy nor the momentum is left unchanged as

we move from one inertial frame to another? If the second frame moves

uniformly, with respect to the Wrst, with a velocity given by the vector u,

then a particle whose velocity is v, in the Wrst frame, has its velocity

described as v� u in the second. It turns out that conservation of energy

and momentum in the Wrst frame goes over to conservation of energy and

momentum in the second frame provided we take into account that mass is

also conserved (and we must also make use of Newton’s third law; see Fig.

17.4b, §17.3).[18.15]

It should be mentioned that in Newtonian mechanics there are also

other conserved quantities, the most important of which is angular

[18.14] Use conservation of energy and momentum to show that if a stationary billiard ball is

hit by another of the same mass, then they emerge at right angles (assuming an elastic collision, so

there is no conversion of kinetic energy to heat).

[18.15] Show all this.
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momentum (or moment of momentum), taken about some origin point O.

Suppose that the position vector relative to O of some particle is

x ¼ (x1, x2, x3),

x1, x2, x3 being its Cartesian coordinates and p is its momentum; then the

angular momentum is given by the quantity

M ¼ 2x ^ p

(see §11.6, for the meaning of ^).10 To, get the angular momentum of the

entire system, we simply add the quantities M for all the individual

particles.[18.16]

There is also another quantity that is conserved in time in the absence of

external forces, in Newtonian theory, which is less often discussed than

angular momentum. For a single particle, this is

N ¼ tp�mx,

where t is the time, and we get the total value of N by adding the individual

values for each particle. This total has the same form as N given above, but

where x is now the position vector of the mass centre and p the total

momentum. The constancy of this total N expresses the fact that the mass

centre moves uniformly in a straight line; see Fig. 18.16.[18.17]

We shall need to ask the question: how is all this aVected by the

upheavals of special relativity? Do we still have concepts of conserved

energy, momentum, angular momentum, and mass-centre motion? What

about conservation of mass? The answer to the Wrst four questions is ‘yes’,

although we have to be careful to deWne these quantities correctly. As

regards mass conservation, something very curious happens. The two

Fig. 18.16 Uniform motion of mass centre. The quantity N ¼ tp�mx, where t is

the time and x is the position vector of mass centre, is conserved. This expresses

fact that mass centre moves uniformly in a straight line, with velocity p/m.

[18.16] Why do spinning skaters pull in their arms to increase their rate of rotation?

[18.17] Show this. (N.B. The position vector of the mass centre is the sum of the quantities mx

divided by the sum of the masses m.)
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separate Newtonian conservation laws for energy and mass become sub-

sumed into one. In a clear sense, mass and energy become completely

equivalent to one another, according to Einstein’s most famous equation

E ¼Mc2,

where E is the total energy of the system and M is its total mass, c being the

speed of light, as before. In the Wnal section of this chapter, we shall see

how this all works.

18.7 Relativistic energy and (angular) momentum

Recall the way that space and time become united in relativity theory to

become the single entity ‘spacetime’, the time coordinate t being adjoined

to the 3-space position vector x ¼ (x1, x2, x3) to give the 4-vector

(x0, x1, x2, x3) ¼ (t, x):

We shall Wnd that momentum and energy become similarly united.

Any Wnite system in special relativity will have a total energy E and

a total momentum 3-vector p. These unite into what is called the

energy–momentum 4-vector, whose spatial components are

(p1, p2, p3) ¼ c2p,

and whose time-component p0 measures not only the total energy but also,

equivalently, the total mass m of the system according to

p0 ¼ E ¼ mc2,

which incorporates Einstein’s famous mass–energy relation.

With more natural units with c ¼ 1, energy and mass are simply equal.

However, I have explicitly exhibited the speed of light c (i.e. by not

choosing space/time units so that c ¼ 1) to facilitate the translation to

non-relativistic descriptions. The conventions that I am using are to take

the metric components gab to be the matrix whose non-zero components

are (1,�c�2,�c�2,�c�2) down the main diagonal; its inverse, with com-

ponents gab, has (1,�c2,�c2,�c2) down the main diagonal.

Although, initially, one may think of energy–momentum as a spacetime

vector in this way, it turns out that it is more appropriate (see §20.2 and

§21.2) to regard it as a covector, described by the index-lowered quantity pa

with components
(p0, p1, p2, p3) ¼ (E, �p):

This has an irritating minus sign (although the c has now gone). Which-

ever version is used (pa or pa), the 4-momentum satisWes a conservation law.
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Thus, in an encounter between two or more particles (or systems), or in the

decay of a single particle (or system) into two or more, or the capture of a

particle by another, the sum of all the 4-momenta before the encounter is

equal to the sum of all the 4-momenta afterwards. Thus, the law of energy

conservation, of momentum conservation, and also of mass conservation,

are all subsumed into this one law. The reason for collecting them together

in this way is that, under change of reference frame, these quantities get

transformed among themselves in the correct way for relativity theory, as

demanded by the index notation (see §12.8).

We note that the total mass of a system is not a scalar quantity

in relativity theory, so that its value depends on the reference frame

with respect to which it is measured. For example, a particle whose

mass is m, as measured in its own rest frame, appears to have a larger

mass when measured in a second frame with respect to which it is

moving. For this to be a signiWcant eVect, however, the relative velocity

between the two frames would need to be comparable with the velocity of

light.[18.18]

However, these comments apply only to the kind of mass which is

conserved in the additive sense just described (for a system not acted

upon by external forces). There is another concept of mass in relativity,

namely the rest mass m ($ 0), which does not depend on the reference

frame. It is equal to the mass measured in the system’s own rest frame—i.e.

in the frame for which the momentum is zero. The rest mass m is c�2 times

the rest energy (pap
a)1=2, so that

(c2m)2 ¼ pap
a ¼ E2 � c2p2;

and we have m ¼ c�2(E2 � c2p2)1=2. Here, I am adopting the 3-space vector

notation whereby, for an arbitrary 3-vector a, we deWne

a2 ¼ a � a ¼ a2
1 þ a2

2 þ a2
3. The ‘dot’ deWnes ‘scalar product’ (similarly to

the notation of §12.3):

a � b ¼ a1b1 þ a2b2 þ a3b3,

with a ¼ (a1, a2, a3) and b ¼ (b1, b2, b3). (This notation will be handy

later.)

For a single particle which is massive in the sense that m > 0, we can take

the 4-momentum to be the 4-velocity scaled up by the rest mass m. The

4-velocity va is the (future-)timelike vector tangent to the particle’s world-

line, having a (Minkowskian) length of c (i.e. a unit vector if c ¼ 1):

pa ¼ mva, where vav
a ¼ c2;

[18.18] Show that the formula for the increased mass is m(1� v2=c2)�1=2, where v is the velocity

of the particle in the second frame; see below.
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4-momentum

4-velocity
ua

pa

Fig. 18.17 For a massive particle, the 4-momentum pa is the 4-velocity va scaled

up by the rest mass m (> 0), where va is a (future-timelike) unit 4-vector tangent to

the particle’s world-line (taking c ¼ 1).

see Fig. 18.17. As remarked above, the rest mass of a massive particle is the

mass (mass–energy) of that particle as measured in its own rest frame.

Taking the particle’s ordinary 3-velocity to be v, so that

v ¼ (dx1=dt, dx2=dt, dx3=dt), where t ¼ x0, we get[18.19],[18.20]

p ¼ mv, m ¼ gm, va ¼ g(c2, v),

where

g ¼ (1� v2=c2)�1=2:

Particles can also be massless (i.e. with zero rest mass, m ¼ 0), the photon

being the prime example. Then the 4-momentum is a null vector. Since rest

mass is not conserved, there is nothing against a massive particle decaying

into massless ones, or massless particles coming together to produce

massive ones. In fact, a massive particle known as the ‘neutral pion’

(denoted by p0) will normally decay into two photons in about 10�16

seconds.

[18.19] Why?

[18.20] Use the Taylor series of §6.4, to derive (1þ x)1=2 ¼ 1þ 1
2
x� 1

8
x2 þ 1

16
x3 � . . . . Hence,

obtain a power series expansion for the energy E ¼ [(c2m)2 þ c2p2]1=2 of a particle of rest-mass m
and 3-momentum p. Show that the leading term is just Einstein’s E ¼ mc2 applied to the rest

energy m, and that the next term is the Newtonian expression for kinetic energy. Write down the

next two terms, so as to give better approximations to the full relativistic energy.
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Photon
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on

p0

In any particular frame, the total mass–energy (not the rest mass) is

additively conserved, the mass–energy of each individual photon

being non-zero. The way that the 4-momenta add up is illustrated in

Fig. 18.18.

Finally, let us see how angular momentum needs to be treated in special

relativity. It is described by a tensor quantity Mab, antisymmetrical in its

two indices:

Mab ¼ �Mba:

(See §22.12 for the relevance of Mab to quantum mechanics.) For a single

structureless point particle, we have11

Mab ¼ xapb � xbpa,

where xa is the position 4-vector (in index form) of the point on the particle’s

world line at the time that its angular momentum is being considered. If

the particle is in inertial motion, then Mab is the same for all points

on its world line.[18.21] To obtain the total relativistic angular momen-

tum, we simply add the angular momentum tensors for each particle separ-

ately. For an individual (non-spinning) particle, the three independent

purely spatial components M23, M31, M12 are the components (� c2) of

ordinary angular momentum M ¼ 2x ^ p considered in §18.6 above, and

Fig. 18.18 The decay of a massive ‘neutral pion’

p0 to 2 massless photons. The mass/energy 4-vector

is additively conserved (although rest-mass is not).

[18.21] Why?
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the remaining independent components M01, M02, M03 constitute the

quantity N ¼ tp�mx (� c2). (The conservation of the total N expresses

the uniform motion of the mass centre; see Fig.18.16.)[18.22]

Recall from §18.2 that the 10-dimensional Poincaré group of symmetries

of Minkowski space has 4 dimensions referring to spacetime translations

and the remaining 6 to (Lorentz) rotations. We shall be seeing in §20.6 how

an important principle of classical mechanics known as Nöther’s theorem

relates symmetries to conservation laws, and in §§21.1–5 and §22.8 how the

same kind of thing occurs in quantum theory. This provides a deep reason

for the conservation laws for 4-momentum pa and 6-angular momentum

Mab, since these arise, respectively, from the 4 translational symmetries

and the 6 (Lorentz) rotational symmetries of Minkowski space. The

conservation of pa and Mab has important relevance to Chapter 21 and

§§22.8,12,13.

Notes

Section 18.1

18.1. Tom BanchoV, of Brown University, has for many years been developing inter-

active computer systems aimed at developing 4-dimensional intuition, and in

particular complex function visualization in terms of Riemann surfaces in C
2.

See BanchoV (1990, 1996).

18.2. The quantities ‘ds’, in this expression should simply be read as ‘inWnitesimal

quantities’ (like the e of §13.6). Compare Note 12.8.

Section 18.2

18.3. For a particular detailed discussion of the roles of Lorentz, Poincaré, and

Einstein in the development of special relativity, see Stachel (1995), pp.

249–356. In my own view, even Einstein did not completely have special relativ-

ity in 1905, and it took Minkowski’s 4-dimensional perspective of 1908 to

complete the picture; see §17.8.

18.4. There are also time-reversing elements of the Poincaré group, which send future-

timelike directions into past-timelike directions.

Section 18.3

18.5. I should emphasize, particularly to those readers already familiar with quantum

mechanics, that the complex notion of ‘orthogonality’ that I am using here is

necessarily the holomorphic one (this being what ‘complexiWcation’ is all about),

and not the Hermitian notion of §13.9 that brings in complex conjugation, and

which is used in many other areas of mathematics and physics.

18.6. See, for example, Rindler (1982, 2001); Synge (1956); Taylor and Wheeler (1963);

Hartle (2002).

Section 18.5

18.7. See, in particular, Newman and Penrose (1966); Penrose and Rindler (1984, §§

1.2–4, §4.15; 1986, §9.8).

[18.22] Explain, in detail, in the relativistic case.
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18.8. See, for example, Rindler (1982, 2001).

18.9. See, for example, Terrell (1959); Penrose (1959).

Section 18.6

18.10. Some readers may be confused by the presence of a ‘2’ in this expression, but

they should re-examine the deWnition of ‘^’ that I have given in §11.6. The

components of x ^ p are x[ipi] ¼ 1
2
(xip j � xjpi). Hence, M has components

xip j � xjpi.

Section 18.7

18.11. We shall be seeing in §22.8 that most (quantum) particles also possess an

intrinsic spin which provides a (constant) ‘spin’ contribution to Mab (see

§22.12) added to the ‘orbital Mab’ that is given here.

Minkowskian geometry Notes
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19
The classical fields of Maxwell and Einstein

19.1 Evolution away from Newtonian dynamics

In the period between the introduction of Newton’s superb dynamical

scheme, which we can best date as the publication of his Principia in 1687,

and the appearance of special relativity theory, which could reasonably be

dated at Einstein’s Wrst publication on the subject, in 1905, many import-

ant developments in our pictures of fundamental physics took place. The

biggest shift that occurred in this period was the realization, mainly

through the 19th century work of Faraday and Maxwell, that some notion

of physical Weld, permeating space, must coexist with the previously held

‘Newtonian reality’ of individual particles interacting via instantaneous

forces.1 Later, this ‘Weld’ notion also became a crucial ingrediant of

Einstein’s 1915 curved-spacetime theory of gravity. What are now called

the classical Welds are, indeed, the electromagnetic Weld of Maxwell and the

gravitational Weld of Einstein.

But we now know that there is much more to the nature of the physical

world than just classical physics. Already in 1900, Max Planck had

revealed the Wrst hints of the need for a ‘quantum theory’, although

more than another quarter century was required before a well formulated

and comprehensive theory could be provided. It should also be made clear

that, in addition to all these profound changes to the ‘Newtonian’ foun-

dations of physics that have taken place, there had been other important

developments, both prior to these changes and coexistent with some of

them in the form of powerful mathematical advances, within Newtonian

theory itself. These mathematical advances will be the subject of Chapter

20. They have important interrelations with the theory of classical Welds

and, even more signiWcantly, they form an essential prerequisite to the

proper understanding of quantum mechanics, as will be described in

subsequent chapters. As a further important area of advance, the subject

of thermodynamics (and its reWnement, referred to as statistical mechanics)

should certainly be considered. This concerns the behaviour of systems of

large numbers of bodies, where the details of the motions are not regarded

as important, the behaviour of the system being described in terms of
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averages of appropriate quantities. This was an achievement initiated in

the mid-19th to early 20th centuries, and the names of Carnot, Clausius,

Maxwell, Boltzmann, Gibbs, and Einstein feature most strongly. I shall

address some of the most fundamental and puzzling issues raised by

thermodynamics later, in Chapter 27.

In this chapter, I shall describe the physical Weld theories of

Maxwell and Einstein: the ‘classical physics’ of electromagnetism and

gravitation. The theory of electromagnetism also plays an important

part in quantum theory, providing the archetypical ‘Weld’ for the further

development of quantum Weld theory, which we shall encounter in Chapter

26. On the other hand, the appropriate quantum approach to the gravita-

tional Weld remains enigmatic and controversial. Addressing these quan-

tum/gravitational issues will be an important part of the later chapters in

this book (Chapter 28 onwards). For the physics that we shall be examin-

ing next, however, we shall conWne our investigation to physical Welds in

their classical guise.

I referred, at the beginning of this chapter, to the fact that a profound

shift in Newtonian foundations had already begun in the 19th century,

before the revolutions of relativity and quantum theory in the 20th. The

Wrst hint that such a change might be needed came from the wonderful

experimental Wndings of Michael Faraday in about 1833, and from the

pictures of reality that he found himself needing in order to accommodate

these. Basically, the fundamental change was to consider that the ‘New-

tonian particles’ and the ‘forces’ that act between them are not the only

inhabitants of our universe. Instead, the idea of a ‘Weld’, with a disembod-

ied existence of its own was now having to be taken seriously. It was the

great Scottish physicist James Clark Maxwell who, in 1864, formulated the

equations that this ‘disembodied Weld’ must satisfy, and he showed that

these Welds can carry energy from one place to another. These equations

uniWed the behaviour of electric Welds, magnetic Welds, and even light, and

they are now known simply as Maxwell’s equations, the Wrst of the relativ-

istic Weld equations.

From the vantage point of the 20th century, when profound advances

in mathematical technique have been made (and here I refer particularly

to the calculus on manifolds that we have seen in Chapters 12–15),

Maxwell’s equations seem to have a compelling naturalness and simplicity

that almost make us wonder how the electric/magnetic Welds could

ever have been considered to obey any other laws. But such a perspective

on things ignores the fact that it was the Maxwell equations themselves

that led to a very great many of these mathematical developments.

It was the form of these equations that led Lorentz, Poincaré, and

Einstein to the spacetime transformations of special relativity which, in

turn, led to Minkowski’s conception of spacetime. In the spacetime

The classical fields of Maxwell and Einstein §19.1
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framework, these equations found a form that developed naturally

into Cartan’s theory of diVerential forms (§12.6); and the charge

and magnetic Xux conservation laws of Maxwell’s theory led to the body

of integral expressions that are now encapsulated so beautifully by that

marvellous formula referred to, in §§12.5,6, as the fundamental theorem of

exterior calculus.

Perhaps, in seeming to attribute all these advances to the inXuence

of Maxwell’s equations, I have taken a somewhat too extreme

position with these comments. Indeed, while Maxwell’s equations un-

doubtedly had a key signiWcance in this regard, many of the precursors

of these equation, such as those of Laplace, D’Alembert, Gauss,

Green, Ostrogradski, Coulomb, Ampère, and others have also had im-

portant inXuences. Yet it was still the need to understand electric and

magnetic Welds that largely supplied the driving force behind these devel-

opments—these, and the gravitational Weld also. The remainder of this

chapter is devoted to understanding the electromagnetic and the

gravitational Welds and how they Wt in with the modern mathematical

framework.

19.2 Maxwell’s electromagnetic theory

What, then, are the Maxwell equations? They are partial diVerential

equations (see §10.2) which describe the time-evolutions of the three

components E1, E2, E3 of the electric Weld and of the three components

B1, B2, B3 of the magnetic Weld, where the electric charge density r and the

three components of the electric current density j1, j2, j3 are considered as

given quantities. Certain other Weld quantities having to do with an

ambient material within which the Welds may be considered to be propa-

gating can also be incorporated. In discussions of fundamental physics, as

is our concern here, it is usual to ignore those aspects of Maxwell’s

equations that relate to such an ambient medium, since the medium itself

would, in reality, consist of many tiny constituents, each of which could in

principle be treated at the more fundamental level. It will be convenient,

also, to choose what are called ‘Gaussian’ units, and use standard

Minkowski coordinates (of §18.1), namely x0 ¼ t, x1 ¼ x, x2 ¼ y, x3 ¼ z

(þ��� signature) with spacetime units so that the velocity of light c is

taken to be unity (c ¼ 1).

The electromagnetic Weld and the charge-current density are, respect-

ively, collected together (according to a prescription originally due, in

eVect, to Minkowski) into a spacetime 2-form F, called the Maxwell Weld

tensor, and a spacetime vector J, called the charge-current vector, with

components displayed in matrix form as

§19.2 CHAPTER 19
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F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33

0

B

B

B

@

1

C

C

C

A

¼

0 E1 E2 E3

�E1 0 �B3 B2

�E2 B3 0 �B1

�E3 �B2 B1 0

0

B

B

B

@

1

C

C

C

A

,

J0

J1

J2

J3

0

B

B

B

@

1

C

C

C

A

¼

r

j1

j2

j3

0

B

B

B

@

1

C

C

C

A

:

Note that the antisymmetry Fba ¼ �Fab holds, as is required for a 2-form.

I shall also make use of what are referred to as the Hodge duals of F and J,

these being, respectively, the 2-form *F and the 3-form *J, deWned by

*F00
*F01

*F02
*F03

*F10
*F11

*F12
*F13

*F20
*F21

*F22
*F23

*F30
*F31

*F32
*F33

0

B

B

B

@

1

C

C

C

A

¼

0 �B1 �B2 �B3

B1 0 �E3 E2

B2 E3 0 �E1

B3 �E2 E1 0

0

B

B

B

@

1

C

C

C

A

*J123

*J023

*J013

*J012

0

B

B

B

@

1

C

C

C

A

¼

�r
j1

�j2

j3

0

B

B

B

@

1

C

C

C

A

:

Where the required antisymmetry properties *Fab ¼ *F[ab] and *Jabc ¼ *J[abc]

hold. In terms of the Levi-Civita tensor e (§12.7), with totally antisym-

metric components eabcd( ¼ e[abcd]) and normalized so that e0123 ¼ 1, the

duals can be written as

*Fab ¼ 1
2
eabcdF

cd and *Jabc ¼ eabcdJ
d ,

where the raised version Fab of Fab is simply gacgbdFcd , in accordance with

§14.7. Note that the ‘raised’ version eabcd ¼ gapgbqgcrgdsepqrs satisWes

e0123 ¼ �1, whence the e of §12.7 is given by[19.1] Eabcd ¼ �eabcd . See Fig.

19.1 for the diagrammatic form of these ‘dualizing’ operations (and also of

the Maxwell equations themselves). We shall Wnd that the notion of a

‘dual’ in this sense (and other related senses) will have importance for us

later, in various diVerent contexts.

A remark should be made about the geometrical signiWcance of the

Hodge dual. We recall from §12.7 that the operation of passing from

a bivector H, as described by the antisymmetric quantity Hab, to its

‘dual’ 2-form H#, as given by 1
2
eabcdH

cd , does not make much diVerence to

[19.1] Check both these statements.
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Fab Fab

*Fab

eabcd

(=−  abcd)

 abcd

(=−eabcd)

*Fab

=

=

=

=

,

,

,

,

=

=

= 24

= 4π

= 0

=−

=

= 0

1
2

1
2

=1
6

1
6

1
6

4π
3

Ja

Jabc

Fig. 19.1 Diagrams for Hodge duals and Maxwell equations. The quantities

eabcd ¼ e[abcd]

� �

and Eabcd ¼ E[abcd]
� �

, normalized so that E0123 ¼ E0123 ¼ 1 in a stand-

ard Minkowski frame, are related to their raised/lowered versions (via gab and gab)

by eabcd ¼ �Eabcd and Eabcd ¼ �eabcd . In the diagrams (left middle, lower two lines)

this sign change is absorbed by an eVective index reversal. Boxed oV at the top

right are the Maxwell equations, Wrst using the Weld tensor F (with its raised form

Fab ¼ gacgbdFcd ; cf. Fig. 14.21) so the equations are raF
ab ¼ 4pJb, r[aFbc] ¼ 0,

and beneath that, correspondingly using the dual *F (where *Fab ¼ 1
2
eabcdF

cd ,
*Jabc ¼ eabcdJ

d) so the equations are r*
[aFbc] ¼ 4p

3
*Jabc, r*

aF
ab ¼ 0.

its geometrical interpretation. If H were a simple bivector, for example,

so that the 2-form H# would also be simple (see the end of §12.7), then the

2-plane element determined by H# would be precisely the same as

the 2-plane element determined by H (the only diVerence being that,

strictly, H# has the quality of a density, as pointed out in §12.7). On

the other hand, the index-raising that takes us from a 2-form Hab to a

bivector Hab (¼ Hcdg
cagdb), has a more signiWcant geometrical eVect. In

the case of a simple bivector, the 2-plane element determined by Hab is

the orthogonal complement of the 2-plane element determined by Hab (see

§18.3). The Hodge dual, as applied to the 2-form Hab, taking us to
1
2
eabcdH

cd (i.e. to H#), employs the index raising Hab 7!Hab and therefore

involves passing to the orthogonal complement. See Fig. 19.2. Accordingly,

the Hodge dual taking us from F to *F also involves an orthogonal

complement.

§19.2 CHAPTER 19
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Hab or   abcd Hcd

Hab or  abcd
 Hcd

Fig. 19.2 In 4-space, a simple bivector H Hab
� �

represents the same 2-plane

element as its ‘dual’ 2-form H# 1
2
eabcdH

cd
� �

. But the index-lowered version of H,

the simple 2-form Hab, which is equivalent to its ‘dual’ bivector 1
2
EabcdHcd , repre-

sents the orthogonal complement 2-plane element (see Fig. 18.4). Hence it is the

index raising/lowering in the Hodge dual that leads to the passage to the orthog-

onal complement.

Having set up this notation, we can now write Maxwell’s equations very

simply as[19.2]

dF ¼ 0, d*F ¼ 4p*J :

We can also write the Maxwell equations entirely in index form as[19.3]

r[aFbc] ¼ 0, raF
ab ¼ 4pJb:

Note that, if we apply the exterior derivative operator d to both sides of

the second Maxwell equation d*F ¼ 4p*J , and use the fact that d2 ¼ 0

(§12.6), we deduce that the charge-current vector J, satisWes the ‘vanishing

divergence’ equation[19.4]

d*J ¼ 0 or equivalently raJ
a ¼ 0:

At this point, as a slight digression which will have considerable import-

ance for us later (§32.2 and §§33.6,8,11—see §18.3), it is worth while to

point out the self-dual and anti-self-dual parts of the Maxwell tensor, given

respectively by

[19.2] Write these out fully, in terms of the electric and magnetic Weld components, showing

how these equations provide a time-evolution of the electric and magnetic Welds, in terms of the

operator q=qt.

[19.3] Show the equivalence to the previous pair of equations.

[19.4] Show that the two versions of this vanishing divergence are equivalent.
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þF ¼ 1
2
(F � i*F) and �F ¼ 1

2
(F þ i*F)

(which are complex conjugates of one another). It turns out that, in the

quantum theory, these complex quantities describe respectively the right-

spinning and left-spinning photons (quanta of the electromagnetic Weld);

see §§22.7,12, Fig. 22.7. The self-dual/anti-self-dual properties are ex-

pressed in[19.5]

*(�F) ¼ � i�F:

Bearing in mind that *J is real, we can combine the two Maxwell equations

(as imaginary and real parts respectively) as

d þF ¼ �2pi *J :

Photons provide the particle description of light, and we shall be seeing

in Chapter 21 how quantum theory allows a particle and wave descrip-

tion of light to coexist. It was one of Maxwell’s supreme achievements

to show, by means of his equations, that there are electromagnetic

waves which travel with the speed of light, and have all the known

polarization properties that light has (and which we shall be examin-

ing in §22.7). In accordance with these remarkable facts, Maxwell pro-

posed that light is indeed an electromagnetic phenomenon. In 1888,

almost a quarter century after Maxwell published his equations, Hein-

rich Hertz experimentally conWrmed Maxwell’s marvellous theoretical

prediction.

In the explicit descriptions above, I have assumed that the

background spacetime is Xat Minkowski space M, and the discussions

to follow, in §§19.3,4, and the Wrst part of §19.5 can all be taken

on this basis, also. However, this is not really necessary, and all the

conclusions still apply if spacetime curvature is present. For this,

the components given above must be regarded as being taken with

respect to some local Minkowskian frame, and the index notation will

take care of the rest.[19.6]

19.3 Conservation and flux laws in Maxwell theory

The vanishing divergence of the charge-current vector provides us with

the equation of conservation of electric charge. The reason that it is

[19.5] Show this, Wrst demonstrating that dualizing twice yields minus the original quantity.

Does this sign relate to the Lorentzian signature of spacetime? Explain.

[19.6] Can you spell this out? What happens to the components of F and *F in a general

curvilinear coordinate system? Why are the Maxwell equations unaVected if expressed correctly?

§19.3 CHAPTER 19
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referred to as a ‘conservation equation’ comes from the fact that, by the

fundamental theorem of exterior calculus (see §12.6), we have
Ð

Rd *J ¼
Ð

qR
*J , so that

ð

Q

*J ¼ 0,

integrated over any closed 3-surface Q in Minkowski space M. (Any

closed 3-surface in M is the boundary qR of some compact 4-dimensional

region R in M.) See Fig. 19.3. The quantity *J can be interpreted as the

‘Xux of charge’ (or ‘Xow’ of charge) across Q ¼ qR. Thus, what the above

equation tells us is that the net Xux of electric charge across this

R

Q=∂R

∫Q*J =0

Time

Fig. 19.3 Conservation of electric charge in spacetime. The closed 3-surface Q is

the boundary Q ¼ ]R of a compact 4-volume R, in Minkowski spacetime M, so

the fundamental theorem of exterior calculus tells us
Ð

Q
*J ¼

Ð

Rd*J ¼ 0, since

d*J ¼ 0. The quantity *J describes the ‘Xux’ (or ‘Xow’) of charge across Q, so the

total charge Xowing in across Q is equal to that Xowing out, expressing charge

conservation.

The classical fields of Maxwell and Einstein §19.3

447



boundary has to be zero; i.e. the total coming into R has to be exactly

equal to the total going out of R: electric charge is conserved.[19.7]

We can also use the second Maxwell equation d *F ¼ 4p *J to derive

what is called a ‘Gauss law’. This particular law applies at one given

time t ¼ t0, so we are now using the three-dimensional version of the

fundamental theorem of exterior calculus. This tells us the value of

the total charge lying within some closed 2-surface S at time t0 (see Fig.

19.4), by expressing this charge as an integral over S of the dual of the

Maxwell tensor *F—which amounts to saying that we can obtain the

total charge surrounded by S if we integrate the total Xux of electric Weld

E across S.[19.8]

More generally, this applies even if S does not lie in some Wxed time

t ¼ t0. Suppose that S is the spacelike 2-boundary of some compact

3-spatial region A. Then the total charge w in the region A, surrounded

by S (or, in spacetime terms, ‘threaded through’ S—see Fig. 19.4), is

given by

t= to
S

A

[19.7] Although correct, this argument has been given somewhat glibly. Spell out the details

more fully, in the case whenR is a spacetime ‘cylinder’ consisting of some bounded spatial region

that is constant in time, for a Wxed Wnite interval of the time coordinate t. Explain the diVerent

notions of ‘Xux of charge’ involved, contrasting this for the spacelike ‘base’ and ‘top’ of the

cylinder with that for the timelike ‘sides’.

[19.8] Spell out why this is just the electric Xux.

Fig. 19.4 Within the

3-surface of constant

time t ¼ t0, Maxwell’s

d*F ¼ 4p*J gives us the

Gauss law, whereby the

integral of electric Xux

(integral of *F) over a

closed spatial 2-surface

measures the total

charge surrounded (by

the fundamental theorem

of exterior calculus). In

fact, this is not restricted

to 2-surfaces at constant

time, and the Gauss law

is thereby generalized.
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ð

S

*F ¼ 4pw, where w ¼
ð

A

*J :

We can also obtain a related kind of conservation law from the

Wrst Maxwell equation dF ¼ 0. This has just the same form as the

second Maxwell equation, except that F replaces *F and the source

corresponding to *J is now zero. Thus, for any closed 2-surface in Min-

kowski space,2 we always have the Xux law
ð

S
F ¼ 0:

Note that in passing from *F to F (or from F to *F) we simply

interchange the electric and magnetic Weld vectors (with a change of

sign for one of them). The absence of a source for F is an expression of

the fact that (as far as is known) there are no magnetic monopoles in

Nature. A magnetic monopole would be a magnetic north pole or a

magnetic south pole on its own—rather than north and south poles

always appearing in pairs, which is what happens in an ordinary magnet.

(These poles are not independent physical entities, but arise from the

circulation of electric charges.) It appears that in Nature there is never a

net ‘magnetic charge’ (non-zero ‘pole strength’) on a physical object.

From the point of view of the Maxwell equations alone, there does not

seem to be any good reason for the absence of magnetic monopoles, since

we could simply supply a right-hand side to the Wrst Maxwell equation

dF ¼ 0 without any loss of consistency. In fact, from time to time,

physicists have contemplated the possibility that magnetic monopoles

might actually exist and have tried to look for them. Their existence

would have important implications for particle physics (see §28.2) but

there is no indication, as of now, that there are any such monopoles in

the actual universe.

19.4 The Maxwell field as gauge curvature

The Wrst Maxwell equation dF ¼ 0 also has the implication that

F ¼ 2dA,

for some 1-form A. (This is taking advantage of the ‘Poincaré lemma’,

which states that, if the r-form a satisWes da ¼ 0, then locally there is

always an (r� 1)-form b for which a ¼ db; see §12.6.) Moreover, in a

region with Euclidean topology, this local result extends to a global

one.3 The quantity A is called the electromagnetic potential. It is not

The classical fields of Maxwell and Einstein §19.4
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uniquely determined by the Weld F, but is Wxed to within the addition of a

quantity dY,[19.9] where Y is some real scalar Weld:

A 7! Aþ dY:

In index form, these relations are

Fab ¼ raAb �rbAa

with freedom

Aa 7! Aa þraY:

This ‘gauge freedom’ in the electromagnetic potential tells us that A is not

a locally measurable quantity. There can be no experiment to measure ‘the

value of A’ at some point because Aþ dY serves exactly the same physical

purpose as does A. However, the potential provides the mathematical key to

the procedure whereby the Maxwell Weld interacts with some other physical

entity C. How does this work? The speciWc role of Aa is that it provides us

with a gauge connection (or bundle connection; see §15.8)

ra ¼ q=qxa � ieAa,

where e is a particular real number that quantiWes the electric charge of the

entity described by C. In fact, this ‘entity’ will generally be some charged

quantum particle, such as an electron or proton, and C would then be its

quantum-mechanical wavefunction. The full meaning of these terms will

have to await the discussion in Chapter 21, when the notion of a wavefunc-

tionwill be explained.All thatwe shall need to knowabout it now is thatC is

to be thought of as a cross-section of a bundle (§15.3), a bundle describing

charged Welds, and it is this bundle on which = acts as a connection.

The electromagnetic Weld quantities F and A are uncharged (e ¼ 0

for them), so that all our Maxwell equations, etc., are undisturbed

by having this new deWnition for ra; i.e. we still have ra ¼ q=qxa in those

equations, in Xat Minkowski coordinates—or the appropriate generaliza-

tion (see §14.3) if we are considering curved spacetime. What is the geomet-

rical nature of the bundle that this connection acts upon? One possible

viewpoint is to think of this bundle as having Wbres that are circles (S1s),

over the spacetime M, where this circle describes a phase multiplier eiy for

C. (This is the kind of thing that happens in the ‘Kaluza–Klein’ picture

referred to in §15.1 but where in that case the entire bundle is thought of as

‘spacetime’.) More appropriate is to think of the bundle as the vector bundle

of the possible C values at each point, where the freedom of phase multipli-

cations make the bundle a U(1) bundle over the spacetime M. (This kind of

issue was considered at the end of §15.8.) For this to make sense,Cmust be a

[19.9] Why can we add such a quantity?
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complex Weld whose physical interpretation is, in some appropriate sense,

insensitive to the replacementC 7! eiyC (wherey is somereal-valuedWeldon

themanifoldM).This replacement is referred toasanelectromagneticgauge

transformation, and the fact the physical interpretation is insensitive to this

replacement is called gauge invariance. The curvature of our bundle connec-

tion then turns out to be the Maxwell Weld tensor Fab.
[19.10]

Before exploring with these ideas further, it is appropriate to make some

brief historical comments. Shortly after Einstein introduced his general

theory of relativity in 1915, Weyl suggested, in 1918, a generalization in

which the very notion of length becomes path-dependent. (Hermann Weyl,

1885–1955, was an important 20th-century mathematical Wgure. Indeed,

among the work of those mathematicians who wrote entirely in the 20th

century, his was, to my mind, the most inXuential—and he was important

not only as a pure mathematician but also as a physicist.) In Weyl’s theory,

the null cones retain the fundamental role that they have in Einstein’s

theory (e.g. to deWne the limiting velocities for massive particles and to

provide us with the local ‘Lorentz group’ that is to act in the neighbour-

hood of each point), so a Lorentzian (say þ���) metric g still is locally

required for the purpose of deWning these cones. However, there is no

absolute scaling for time or space measures, in Weyl’s scheme, so the

metric is given only up to proportionality. Thus, transformations of

the form

g 7! lg,

for some (say positive) scalar function l on the spacetimeM, are allowed,

these not aVecting the null cones ofM. (Such transformations are referred

to as conformal rescalings of the metric g; in Weyl’s theory, each choice of

g provides us with a possible gauge in terms of which distances and times

can be measured.) Although Weyl may have had spatial separations more

in mind, it will be appropriate for us to think in terms of time measure-

ments (in accordance with the viewpoint of Chapter 17). Thus, in Weyl’s

geometry, there are no absolute ‘ideal clocks’. The rate at which any clock

measures time would depend upon its history.

The situation is ‘worse’ than in the standard ‘clock paradox’ that I

described in §18.3 (Fig. 18.6d). In Weyl’s geometry, we can envisage a

space traveller who journeys to a distant star and then returns to Earth to

Wnd not just that those on the Earth had aged much more, but also that the

clocks on Earth are now found to run at a diVerent rate from those on the

rocket ship! See Fig. 19.5a. Using this very striking idea, Weyl was able to

incorporate the equations of Maxwell’s electromagnetic theory into the

spacetime geometry.

[19.10] Show this. Hint: Have a look at §15.8.
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The essential way that he did this was to encode the electromagnetic

potential into a bundle connection, just as I have done above, but

without the imaginary unit ‘i’ in the expression for ra. We can think

of the relevant bundle over M as being given by the Lorentzian metrics

g that share the same null cones. Thus, the Wbre above some point x in

M consists of a family of proportional metrics (where we can, if desired,

choose the proportionality factors to be positive). These factors are

the possible ‘ls’ in g 7! lg above. For any particular choice of metric,

we have a gauge whereby distances or times along curves are deWned.

But there is to be no absolute choice of gauge, and so no preferred

choice of metric g from the equivalence class of proportional ones. There is

some structure additional to that of the null cones (i.e. to the conformal

structure), however, namely a bundle connection—or gauge connection—

which Weyl introduced, in order to have Maxwell’s F (i.e. Fab) as its

curvature. This curvature measures the discrepancy in the clock rates

as illustrated in Fig. 19.5a when the world-lines diVer only by an inWnitesi-

mal part; see Fig. 19.5b. (This may be compared with the ‘strained bundle’

BC, over C, considered in §15.8, Figs. 15.16 and 15.21; the basic bundle

concept is very similar.)

Fig. 19.5 In Weyl’s original

gauge theory of electromagnet-

ism, the notion of time interval

(or space interval) is not

absolute but depends on the

path taken. (a) A comparison

with the ‘clock paradox’ illus-

trated in Fig. 18.6: in Weyl’s

theory we find that the space

traveller arrives home (world-line

ABC) to find not only diVering

clock readings between those on

Earth (direct route AB) and

those on the rocket ship, but

also diVering clock rates! (b)

Weyl’s gauge curvature (giving

the Maxwell field F) comes

about from this (conformal)

time scale change as we go

around an infinitesimal loop

(diVerence between two

routes from p to neighbouring

point p0).
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When Einstein heard about this theory, he informed Weyl that he

had a fundamental physical objection to it, despite the mathematical

elegance of Weyl’s ideas. Spectral frequencies, for example, appear to

be completely unaVected by an atom’s history, whereas Weyl’s theory

would predict otherwise. More fundamentally, although not all the rele-

vant quantum-mechanical rules had been fully formulated at the time (and

we shall be coming to these later, in §21.4, §§23.7,8) Weyl’s theory is in

conXict with the necessarily exact identity between diVerent particles of

the same type (see §21.4). In particular, there is a direct relation between

clock rates and particle masses. As we shall see later, a particle of rest-mass

m has a natural frequency mc2h�1, where h is Planck’s constant and c the

speed of light. Thus, in Weyl’s geometry, not just clock rates but also a

particle’s mass will depend upon its history. Accordingly, two protons, if

they had diVerent histories, would almost certainly have diVerent masses,

according to Weyl’s theory, thereby violating the quantum-mechanical

principle that particles of the same kind have to be exactly identical

(see §§23.7,8).

Although this was a damning observation, with regard to the original

version of Weyl’s theory, it was later realized4 that the same idea

would work if his ‘gauge’ referred not to the real scaling (by l), but to a

scaling by a complex number of unit modulus (eiy). This may seem like

a strange idea, but as we shall see in Chapter 21 and onwards (see

§§21.6,9 most particularly), the rules of quantum mechanics force upon us

the use of complex numbers in the description of the state of a system.

There is, in particular, a unit-modulus complex number eiy which can

multiply this ‘quantum state’—the state often being referred to as C—

without observable consequences, locally. This ‘non-observable’ replace-

ment C 7! eiyC is still referred to today as a ‘gauge transformation’ even

though there is now no change in length scale involved, the change being

a rotation in the complex plane (a complex plane with no direct connection

with either space or time dimensions). In this strangely twisted form,

Weyl’s idea provided the appropriate physical setting for a U(1) connec-

tion, of the kind that I illustrated at the end of Chapter 15, and it

now forms the basis of the modern picture of how the electromagnetic

Weld actually interacts. The operator = that is deWned above from the

electromagnetic potential (i.e. ra ¼ q=qxa � ieAa) provides a U(1)-bundle

connection on the bundle of charged quantum wavefunctions c
(See §21.9).

It is interesting that the path dependence of the connection (which we

may compare with the path dependence illustrated in Fig. 19.5) shows up

in a striking way in certain types of experimental situation, illustrating

what is known as the Aharonov–Bohm eVect.5 Since our connection =
operates only at the level of quantum phenomena, we do not see this
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path dependence in classical experiments; instead, the Aharonov–Bohm

eVect depends upon quantum interference (see §21.4 and Fig. 21.4). In the

best-known version, electrons are aimed so as to pass through two regions

that are free of electromagnetic Weld (F ¼ 0), but which are separated from

each other by a long cylindrical solenoid (which contains magnetic lines of

force), arriving at a detector screen behind (see Fig. 19.6a). At no stage do

the electrons encounter any non-zero Weld F. However, the relevant Weld-

free regionR (starting at the source, bifurcating so that they pass on either

side of the solenoid, and reuniting at the screen) is not simply-connected,

and the Weld F outsideR is such that there is no gauge choice for which the

potential A vanishes everywhere within R. The presence of this non-zero

potential in the non-simply-connected R—or more correctly, the path

dependence of = in R—leads to a displacement in the interference fringes

at the screen.

In fact, the fringe-shifting eVect does not depend upon any particular

local values that A might have (which it cannot, because A is not locally

observable, as mentioned above) but upon a certain non-local integral

of A. This is the quantity
H

A, taken around a topologically non-trivial

loop within R. See Fig. 19.6b. Since dA vanishes within R (because

F ¼ 0 in R), the integral
H

A is unaVected if we continuously move our

closed loop around within R.[19.11] From this it is clear that the non-

vanishing of
H

A, within a Weld-free region, and thence the Aharonov–

Bohm eVect itself, depends upon this Weld-free region being topologically

non-trivial.

Electron 
gun

Beam
splitter

Solenoid
Screen

Mirror

∫A ≠ 0

(a) (b)

Fig. 19.6 Aharonov–Bohm eVect. (a) A beam of electrons is split into two

paths that go to either side of a collection of lines of magnetic Xux (achieved by

means of a long solenoid). The beams are brought together at a screen, and the

resulting quantum interference pattern (compare Fig. 21.4) depends upon the mag-

netic Xux strength—despite the fact that the electrons only encounter a zero Weld

strength (F ¼ 0). (b) The eVect depends on the value of
Þ

A, which can be non-zero

over the relevant topologically non-trivial closed path despite F vanishing over this

path. The quantity
Þ

A is unchanged for continuous deformations of the path within

the Weld-free region.

[19.11] Explain this.
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Because of its historical origins in Weyl’s remarkable idea (which origin-

ally did play a role as a path-dependent ‘gauging’), we call this electromag-

netic connection = a gauge connection—and this name is also adopted for

the generalizations of electromagnetism, referred to as ‘Yang-Mills’ theory,

that are used in the description of both weak and strong interactions in

modern particle physics. We note that the ‘gauge-connection’ idea really

does depend, strictly speaking, on the existence of a symmetry (which for

electromagnetism is the C 7! eiyC symmetry) that is supposed to be exact

and not directly observable. We recall Einstein’s objection to Weyl’s ori-

ginal gauge idea which, in eVect, was that the mass of a particle (and

therefore its natural frequency) is directly measurable, and so cannot be

used as a ‘gauge Weld’ in the sense required. We shall be Wnding later that this

issue becomes distinctly muddied in some modern uses of the ‘gauge’ idea.

19.5 The energy–momentum tensor

As a prerequisite to turning our attentions to that other fundamental

classical Weld with its ‘gauge theory’ aspects, namely the gravitational

Weld, it will be important Wrst to consider the question of the energy density

of a Weld, this density being the source of gravity. For Einstein’s famous

equation E ¼ mc2 tells us that mass and energy are basically the same thing

(see §18.6) and, as Newton had already informed us, it is mass that is the

source of gravitation. Thus, we need to understand how to describe the

energy density of a Weld, such as Maxwell’s, and how this can act as a source

of gravity. What Einstein tells us is that it does so via a tensor quantity

known as the energy–momentum tensor. This is a symmetric [ 0
2
]-valent

tensor T (index form Tab ¼ Tba) which satisWes a ‘conservation equation’

raTab ¼ 0:

(For the rest of this chapter, we use the spacetime covariant derivative

operator ra in place of q=qxa. Since our Welds here are all uncharged, our

earlier expressions will carry over unchanged; see also the Wnal paragraph of

§19.2, Note 19.2, and Exercise [19.6].) We may compare this expression with

the conservation equation raJa ¼ 0 for electric charge. The reason for the

extra index on Tab is that what is conserved, namely energy–momentum, is a

4-(co)vector quantity (the energy–momentum 4-(co)vector pa, considered

in §18.7) as opposed to the scalar electric charge. To describe the physical

content of Tab a little more fully, it is convenient to pass to the equi-

valent quantity Ta
b ¼ gacTcb, where one index has been raised by use

of the metric tensor gab.[19.12] The quantity Ta
b collects together all the

[19.12] How do the individual components Ta
b relate to Tab, in a local Minkowskian frame,

where the components gab have the diagonal form (1, � 1, � 1, � 1)?
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diVerent densities and Xuxes of the energy and momentum in the Welds and

particles. More speciWcally, in a standard Minkowski coordinate system,

the covector T0
b deWnes the density of 4-momentum, and the three covec-

tors T1
b, T2

b, T3
b, provide the Xux of 4-momentum in the three independ-

ent spatial directions. This is directly analogous to the case of Ja, since J0 is

the density of charge and the three quantities J1, J2, J3, provide the Xux of

charge (i.e. the current) in the three independent spatial directions. It is

the extra index b that tells us that our conservation law now refers to a

(co-)vector quantity. It turns out that the quantity T00 measures the energy

density, and T11, T22, T33, measure the pressure, in the three directions of

the spatial coordinate axes.

Recall that, as Maxwell taught us, electromagnetic Welds themselves

carry energy. In the index notation, the energy–momentum tensor of the

electromagnetic Weld turns out to be[19.13]

1
8p (FacF

c
b þ*Fac

*Fc
b):

Other physical Welds also have their energy–momentum tensors, and vari-

ous diVerent such contributions would have to be added together in order

to yield the full energy–momentum tensor T, satisfying the conservation

equation raTab ¼ 0.

However, something very diVerent happens with the energy–momentum

of gravity itself, as we shall be seeing shortly. When gravity is absent, space-

time is Xat (i.e. Minkowski space), and we can use Xat (Minkowskian)

coordinates. Then each of the four vectors Ta
0, Ta

1, Ta
2, and Ta

3 individu-

ally satisWes exactly the same conservation equation as does the vector Ja

(namelyraT
a
0 ¼ 0, etc., analogous toraJ

a ¼ 0), with the implication that

there is an integral conservation law exactly analogous to that of charge (i.e.

analogous to
Ð

Q
*J ¼ 0), for each of the 4 component of energy–momentum

separately.Thus, totalmass is conserved, and soare the three components of

total momentum. But recall the discussion given in Chapter 17 of Einstein’s

equivalence principle, and of why this leads us to a curved spacetime. Thus,

when gravity is present, we must take into account the fact that ‘ra’ is no

longer simply ‘q=qxa’, but (in accordance with §14.3) there are extra Gb
ac

terms that confuse the very meaning of ‘raT
a
0’ and which certainly pre-

vent us from deriving an integral conservation law for energy and momen-

tum just from our ‘conservation equation’raTab ¼ 0. The problem can be

phrasedas the fact that the extra indexb inTab prevents it frombeing thedual

of a 3-form, and we cannot write a coordinate-independent formulation of a

‘conservation equation’ (like the vanishing exterior derivative of the 3-form

[19.13] Show that this satisWes the conservation equation raTab ¼ 0 if J ¼ 0. Obtain the 00

component of this tensor, and recover Maxwell’s original expression (E2 þ B2)=8p for the energy

density of an electromagnetic Weld in terms of (E1, E2, E3) and (B1, B2, B3).
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*J in ‘d *J ¼ 0’).We seem to have lost thosemost crucial conservation laws of

physics, the laws of conservation of energy and momentum!

In fact, there is a more satisfactory perspective on energy/

momentum conservation, which refers also to certain curved spacetimes

M as well as to Minkowski space, and it applies also to angular-momentum

conservation (see §18.6 and §§22.8,11). For this perspective, suppose that we

have a Killing vector k for M (this satisWes r(akb) ¼ 0; see §14.8), which

describes some continuous symmetry ofM. In Minkowski space, there are

10 independent such symmetries, referring to the 4 independent transla-

tional symmetries (3 space and 1 time) and 6 independent spacetime rota-

tions (the non-reXective part of the Lorentz group O(1,3)). See Fig. 18.3b.

Thus, Minkowski space has 10 independent Killing vectors. As we shall be

encountering in the next chapter, the Lagrangian formalism (Nöther’s the-

orem) allows us to derive a conservation law from each continuous sym-

metry that the laws of the system possess. Time-translational symmetry

provides energy conservation, whereas space-translational symmetry pro-

vides 3-momentum conservation. Rotational symmetry gives angular mo-

mentum. (Ordinary spatial rotations give us the 3 components of ordinary

angular momentum, but there are also 3 components coming from the

Lorentzian ‘boosts’, that take us from one velocity to another. These give

us the conservation of mass-centre movement; see §§18.6,7, Fig. 18.16.) To

obtain the appropriate conservation law from any particular Killing vector

k, we construct the Xux quantity

La ¼ Tabkb,

which satisWes the conservation law raL
a ¼ 0 whenever the symmetric

Tab satisfy raTab ¼ 0.[19.14] Hence, as in §19.3, there is an integral conser-

vation law
Ð

Q
*L ¼ 0.

These conservation laws hold only in a spacetime for which there is the

appropriate symmetry, given by the Killing vector k. Physically,

the reason for this is that the degrees of freedom in the spacetime geom-

etry—i.e. gravity—are decoupled from the Welds. The spacetime geometry

serves merely as a background, so it is undisturbed by the Welds within

it; moreover, the Welds are unable to pick up the quantity in question

from the background (or lose it to the background) because of the sym-

metry. These considerations will have importance for us later, particularly

in Chapter 30 (§§30.6,7). Nevertheless, they do not really help us in

understanding what the fate of the conservation laws will be when gravity

itself becomes an active player. We still have not regained our missing

[19.14] Why? Why does this procedure specialize to the above raT
a
0 ¼ 0, etc.? Can you Wnd

an analogue of the continuous-Weld conservation law ra(Tabkb) ¼ 0, for a discrete system of

particles where 4-momentum is conserved in collisions? Hint: Find a quantity, given the Killing

vector ka, that is constant for each particle between collisions.
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conservation laws of energy and momentum, when gravity enters the

picture.

This awkward-seeming fact has, since the early days of general relativ-

ity, evoked some of the strongest objections to that theory, and reasons for

unease with it, as expressed by numerous physicists over the years.6 We

shall be seeing later, in §19.8, that in fact Einstein’s theory takes account of

energy–momentum conservation in a rather sophisticated way—at least in

those circumstances where such a conservation law is most needed. For the

moment, we take note of the fact that in Einstein’s theory, the symmetric

[ 0
2
]-valent tensor T that appears in his Weld equation is to include the

energy–momentum of all non-gravitational Welds (and particles). Whatever

energy there is in the gravitational Weld itself is to be excluded from having

any representation within T.

This point of view is made somewhat plausible if we think again of the

principle of equivalence. Imagine an observer in free orbit, say within some

spaceship without windows, so that it appears, at least to a Wrst approxima-

tion, that there is no gravitational Weld. That observer would expect that

energy is conserved within the spaceship, and would therefore expect that

equation raTab ¼ 0 holds without there being any contribution from the

gravitational Weld. This ‘conservation’ is, however, only an approximation,

which is expected to need correction as soon as the relative acceleration

(tidal) eVects due to the non-uniformity of the gravitational Weld (as studied

in §17.5; see Figs. 17.8a, 17.8b and 17.9) begin to play a role. Now this is a

slightly delicate issue, and it becomes necessary to examine the ‘orders’ at

which diVerent kinds of eVect begin to play a role. The upshot of it all is that

the quantity T and its equation raTab ¼ 0 should remain undisturbed by

the non-uniformity of the gravitational Weld—i.e. unaVected by the curva-

ture R of the spacetime connection =—and that the contributions of gravity

to energy–momentum conservation should somehow enter non-locally as

corrections to the calculation of total energy–momentum. (The only real

exception to this comment might occur if one needs to contemplate space-

time curvature corrections to those mathematical expressions that tell us

how physical Welds contribute to T. Normally there are no such corrections,

and it is not an important issue for our considerations here.) From this

perspective, gravitational contributions to energy–momentum, in a sense,

‘slip in through the cracks’ that separate the local equationraTab ¼ 0 from

an integral conservation law of total energy–momentum.

19.6 Einstein’s field equation

I shall return to this issue in §19.8, but for the present we shall need

to know the actual form of Einstein’s Weld equation. This equation is
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expressed in terms of the tensor formalism that, by now, the reader will

(I hope!) Wnd not too uncongenial. Part of the reason that tensors are

needed is that spacetime curvature, in 4-dimensions, is a complicated

thing. Recall Albert, our astronaut A of §17.5, orbiting freely in the

gravitational Weld of the Earth. In various directions out from A there

are inward accelerations, and in other directions there are outward accel-

erations. These represent the tidal forces experienced by A. Tidal forces are

manifestations of spacetime curvature. In order to collect together these

complicated eVects, a tensor quantity with components Rabcd is used,

which has 10 independent components in empty space, and a total of 20,

when there is also matter density around. In fact, Rabcd is simply the index

form of the Riemann(–ChristoVel) tensor R that we have previously

encountered in §14.7.

But there is another reason, apart from just organizing complication,

that the tensor calculus plays such a fundamental role in Einstein’s theory.

This goes back to the foundational principle of equivalence which started

Einstein’s whole line of thinking. Gravitation is not to be regarded as a

force; for, to an observer who is falling freely (such as our astronaut A),

there is no gravitational force to be felt. Instead, gravitation manifests

itself in the form of spacetime curvature. Now it is important, if this idea is

to work, that there be no ‘preferred coordinates’ in the theory.7 For, if a

certain limited class of coordinate systems were taken to be Nature’s

preferred choices, then these would deWne ‘natural observer systems’

with respect to which the notion of a ‘gravitational force’ could be re-

introduced, and the central role of the principle of equivalence would be

lost. The point is, in fact, a rather delicate one, and many physicists have,

from time to time and in one way or another, departed from it. To my way

of thinking, it is essential for the spirit of Einstein’s theory that this notion

of coordinate independence be maintained. This is what is referred to as

the principle of general covariance. It tells us not only that there are to be

no preferred coordinates, but also that, if we have two diVerent space-

times, representing two physically distinct gravitational Welds, then there is

to be no naturally preferred pointwise identiWcation between the two—so

we cannot say which particular spacetime point of one is to be regarded as

the same point as some particular spacetime point of the other! This

philosophical issue will concern us later (§30.11), regarding how Einstein’s

theory relates to the principles of quantum mechanics. For the moment,

the importance of the principle of general covariance to us is that it forces

us into a coordinate-free description of gravitational physics. It is for this

reason, most particularly, that the tensor formalism is central to Einstein’s

theory.

Let us now see what Einstein’s equation actually is. The form of this

equation is driven, basically, by the two further requirements: (i) that the
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(local) source of gravity should, in eVect, be the energy–momentum tensor

T, subject to raTab ¼ 0, and (ii) that, in the appropriate Newtonian limit

(small velocities, as compared with that of light, and weak gravitational

Welds), standard Newtonian gravitational theory should be recovered. We

must return to the discussion of §17.5, where we found that, in Newtonian

theory, there is a volume-reducing eVect for geodesics that are neighbour-

ing to, and initially parallel to, an observer’s geodesic world line g. These

neighbouring geodesics accelerate relative to g in such a way that

the (inWnitesimal) spacelike 3-volume dV that they enclose has an

overall acceleration that is equal to �4pG dM, where dM is the active

gravitational mass within the (inWnitesimal) volume enclosed by the geo-

desics. The minus sign comes from the fact that it is a volume reduction

that is involved; see Fig. 17.8b. This is a full expression of Newton’s

theory, with regard to the active gravitational eVect of a distribution of

mass.

How are we to translate this into an equation relating the spacetime

curvature R to the energy–momentum tensor T? The key geometrical

fact is that this inward acceleration of volume that occurs in this situation,

is measured by a [ 0
2
]-valent symmetric tensor, called the Ricci tensor,

deWned by

Rab ¼ Racb
c,

Rabcd being the Riemann tensor.[19.15] (See Fig. 19.7 for the diagram-

matic notation for this.) Again, there are innumerable diVerent con-

ventions with regard to signs, index orderings, signatures, etc. As before,

I am imposing upon the reader my own preferences; see §14.4.)

More speciWcally, the acceleration of volume (starting from rest) is

given by[19.16]

D2(dV ) ¼ Rabt
atbdV :

Here, D represents the rate of change with respect to the observer’s proper

time (see §17.9), along the observer’s world line g, so D2 indeed denotes

acceleration. We have

Rab =

[19.15] Why is Rab symmetric?

[19.16] See if you can prove this using the Ricci identity and the properties of Lie derivative.

Fig. 19.7 Diagrammatic notation for Ricci-tensor

deWnition Rab ¼ Racb
c (see Fig. 14.21).
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D ¼ tara ¼ =
t
,

where ta is the future-timelike unit vector tangent to g (so tata ¼ 1).

The mass density (which is the same as the energy density, by ‘E ¼ mc2’

with c ¼ 1; see §18.6), as measured by the observer, is the ‘00 component’ of

Tab in the observer’s local frame. This is just the quantityTabt
atb, so the mass

dM within the volume dV enclosed by the neighbouring geodesics is

dM ¼ Tabt
atbdV :

Thus, the ‘Newtonian expectation’ �4pG dM (§17.5) for the volume ac-

celeration due to matter density is

�4pGTabt
atbdV :

But we have just seen that the volume-acceleration eVect due to spacetime

curvature is Rabt
atb dV , so we come up with the expectation

Rabt
atbdV ¼ �4pGTabt

atb dV :

Dividing through by dV and realizing that this applies to all observers

through the same event, so we can remove tatb,[19.17] we arrive at the

suggested Weld equation

Rab ¼ �4pGTab

which, indeed, was Einstein’s initial proposal. This, however, is not satis-

factory, because the ‘conservation equation’ raTab ¼ 0 then leads to

raRab ¼ 0 which, in turn, leads to trouble!

What is this trouble? Recall, from §14.4, the Bianchi identity equation

r[aRbc]d
e ¼ 0. By taking a contraction of this equation, we get[19.18]

ra(Rab � 1
2
R gab) ¼ 0,

where the Ricci scalar (or scalar curvature—although ‘–R’ might Wt in

better with most mathematical conventions for the positive-deWnite case)

is deWned by

R ¼ Ra
a

(where R is not to be confused with the bold-face R that stands for the

entire curvature tensor). The ‘trouble’ with the above proposed equation

[19.17] Show fully why we can ‘lop oV’ all the tas, explaining the role of the symmetry of the

tensors.

[19.18] Show this, using the diagrammatic notation, if you like.
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Rab ¼ �4pGTab is that, when combined with the contracted Bianchi iden-

tity, it leads to the conclusion that the trace T of the energy–momentum

tensor, deWned by
T ¼ Ta

a ,

has to be constant throughout spacetime.[19.19] This is blatantly inconsist-

ent with ordinary (non-gravitational) physics. Accordingly Einstein even-

tually concluded (in 1915) that, for consistency, the two tensors satisfying

the ‘conservation equation’ ra( . . . ) ¼ 0 should be equated (to within a

constant factor), and he came up with what we now know as Einstein’s

Weld equation:8,[19.20]

Rab � 1
2
R gab ¼ �8pGTab:

In the particular situation when there is no matter present (including

electromagnetic Weld), we have Tab ¼ 0. This is referred to as vacuum.

Einstein’s equation—the vacuum equation—becomes Rab � 1
2
Rgab ¼ 0,

which can be rewritten as[19.21]

Rab ¼ 0:

A space with vanishing Ricci tensor is sometimes referred to as Ricci-Xat.

19.7 Further issues: cosmological constant; Weyl tensor

At this point, we should consider the additional term that Einstein sug-

gested in 1917, called the cosmological constant. This is an exceedingly tiny

constant quantity L, whose actual presence is strongly suggested by

modern cosmological observations, but which cannot diVer from 0 by

more than the very tiny amount of about 10�55 cm�2. It has no direct

observational relevance until cosmological scales are reached. The quan-

tity Rab � 1
2
Rgab, in the above expression, is accordingly replaced by

Rab � 1
2
Rgab þ Lgab. This still satisWes the ‘conservation equation’ since

L is constant (and rg ¼ 0). The Einstein equation now reads

Rab � 1
2
R gab þ Lgab ¼ �8pG Tab:

Einstein originally introduced this extra term, in order to have the

possibility of a static spatially closed universe on the cosmological scale.9

But when it became clear, from Edwin Hubble’s observations in 1929, that

the universe is expanding, and therefore not static, Einstein withdrew his

[19.19] Why?

[19.20] Explain the coeYcient �8pG, as compared with �4pG.

[19.21] Why?
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support for the cosmological constant, asserting that it had been ‘his

greatest mistake’ (perhaps because he might otherwise have predicted the

expansion of the universe!). Nevertheless, ideas once put forward do not

necessarily go away easily. The cosmological constant has hovered in the

background of cosmological theory ever since Einstein Wrst put it forward,

causing worry to some and solace to others. Very recently, observations of

distant supernovae have led most theorists to re-introduce L, or something

similar, referred to as ‘dark energy’, as a way of making these observations

consistent with other perceived requirements.10 I shall return to the issue

of the cosmological constant later (see §28.10, particularly). For my own

part, in common with most relativity theorists, although normally

allowing for the possibility of a non-zero L in the equations, I had myself

been rather reluctant to accept that Nature would be likely to make use of

this term. However, as we shall be seeing in §28.10, much recent cosmo-

logical evidence does seem to be pointing in this direction.

We can also write Einstein’s Weld equation (including the cosmological

constant) the opposite way around:[19.22] Rab¼�8pG(Tab � 1
2
Tgab)þ Lgab.

Using a local coordinate frame with the time axis given by ta, so that

contracting this with tatb gives the 00-component, we Wnd that the inward

acceleration of the volume is given by 8pG(T00 � 1
2
Tg00)� L, which is

4pG(rþ P1 þ P2 þ P3)� L, where P1, P2, and P3 are the values of the

pressure of the matter along three (orthogonal) spatial axes. Let us now

make the comparison with the 4pG dM that Newton’s theory gives,

Wnding the density rG of active gravitational mass, in Einstein’s general

relativity to be

rG ¼ rþ P1 þ P2 þ P3 �
L

4pG,

rather than rG ¼ r, the latter being what we might have expected simply

from ‘E ¼ mc2’. (Units have been chosen so that c ¼ 1.) TheL contribution

is extremely tiny and, indeed, the extra pressure terms are also normally very

tiny by comparison with the energy, roughly speaking because the little

particles that make up the material in question are moving around relatively

slowly, compared with the speed of light. However, the pressure contribu-

tions to active gravitational mass do play signiWcant roles under certain

extreme conditions. When a very massive star is getting close to a situation

in which it is in danger of collapsing under its own inward gravitational pull,

we Wnd that an increased pressure in the star, which we might expect to help

keep the star supported, actually increases the tendency to collapse because

of the extra gravitational mass that it produces!

As pointed out above (§19.5), the energy–momentum tensor Tab is

analogous, in Einstein’s theory, to the charge-current vector Ja of Maxwell

[19.22] Why?
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theory. The quantitity Tab may be regarded as describing the source of

gravitation, in the same way as Ja is the source of electromagnetism. We

may ask what might be the appropriate analogue of the Maxwell Weld

tensor Fab describing the gravitational degrees of freedom? The answer is

not the metric tensor g, which is more analogous to the electromagnetic

potential A. Some people might regard the full Riemann curvature tensor

Rabcd as the analogue of F, but it is more appropriate to choose what is

called the Weyl tensor (or conformal tensor) Cabcd , which is like the full

Riemann tensor, but has the Ricci tensor part ‘removed’. This is reason-

able, because the Ricci tensor can be closely identiWed with the source Tab,

so we need to remove these ‘source degrees of freedom’ if we wish to

identify those degrees of freedom that directly describe the gravitational

Weld. In free space, where there is no matter (and for simplicity take the

cosmological constant L to be zero), the Weyl tensor is equal to the

Riemann curvature tensor, but generally the Weyl tensor is deWned by

the somewhat complicated-looking formula which removes the Ricci

tensor part from the full curvature (where I have raised two indices in

order to make full use of the square-bracket notation of §11.6):[19.23]

Cab
cd ¼ Rab

cd � 2R[a
[cgb]

d] þ 1
3
Rg[a

cgb]
d :

We shall be seeing a key physical role for the Weyl tensor in §28.8. The

vanishing of this quantity is the condition for conformal Xatness of the

spacetime.

19.8 Gravitational field energy

Let us return to the question of the mass/energy in the gravitational Weld

itself. Although there is no room for such a thing in the energy–

momentum tensor T, it is clear that there are situations where a ‘disem-

bodied’ gravitational energy is actually playing a physical role. Imagine

two massive bodies (planets, say). If they are close together (and we can

suppose that they are instantaneously at rest relative to each other), then

there will be a (negative) gravitational potential energy contribution which

makes the total energy, and therefore the total mass, smaller than it would

be if they are far apart (see Fig. 19.8). Ignoring much tinier energy eVects,

such as distortions of each body’s shape due to the gravitational tidal Weld

of the other, we see that the total contributions from the actual energy–

momentum tensor T will be the same whether the two bodies are close

together or far apart. Yet, the total mass/energy will diVer in the two cases,

[19.23] Show that all the ‘traces’ of C vanish (e.g. Cabc
a ¼ 0, etc.). Do this calculation in

diagrammatic form, if you wish.
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(a) (b)

Fig. 19.8 Non-locality of gravitational potential energy. Imagine two planets

(which for simplicity we may suppose to be instantaneously relatively at rest). If

(a) they are far apart, then the (Newtonian) negative potential energy contribution

is not so great as (b) when they are close together. Thus the total energy (and hence

the total mass of the whole system) is larger in case (a) than in case (b) despite the

total energy densities, as measured by the energy–momentum tensors, being

virtually the same in the two cases.

and this diVerence would be attributed to the energy in the gravitational

Weld itself (in fact a negative contribution, that is more sizeable when the

bodies are close than when they are far apart).

Now let us consider that the bodies are in motion, in orbit about one

another. It is a consequence of Einstein’s Weld equation that gravitational

waves—ripples in the fabric of spacetime—will emanate from the system

and carry (positive) energy away from it. In normal circumstances, this

energy loss will be very small. For example, the largest such eVect in our

own solar system arises from the Jupiter–Sun system, and the rate of

energy loss is only about that emitted by a 40-watt light bulb! But for

more massive and violent systems, such as the Wnal coalescence of two

black holes that have been spiralling into each other, it is expected that the

energy loss would be so large that detectors presently being constructed

here on Earth might be able to register the presence of such gravitational

waves at a distance of 15 megaparsecs or about 4:6� 1023 metres.

Intermediate between these two extremes are the gravitational waves

emitted by the remarkable double-neutron-star system known as PSR

1913þ 16, studied by the Nobel prize-winning team of Joseph Taylor

and Russell Hulse; see Fig. 19.9. (A neutron star is an extremely compact

star, composed mainly of neutrons, so tightly squeezed together that the

star’s overall density is comparable with that of an atomic nucleus. A

tennis ball Wlled with such material would have a total mass comparable

with that of Mars’s moon Deimos!) This system has now been observed

over a period of some 25 years, and its detailed motion has been tracked to

great precision (which is possible because one of the stars is a pulsar which

emits very precisely timed electromagnetic ‘blips’ some 17 times a second).
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PSR 1913+16

Earth

Fig. 19.9 The Hulse–Taylor double neutron star system PSR 1913þ 16. One

member is a pulsar which sends out precisely timed electromagnetic signals that

are received at Earth, enabling the orbits to be determined with extraordinary

accuracy. It is observed that the system loses energy in exact accord with Einstein’s

prediction of energy-carrying gravitational waves emitted by such a system. These

waves are ripples in the spacetime vacuum, where the energy–momentum tensor

vanishes. (Not to scale.)

The timing of these signals is so precise, and the system itself so ‘clean’,

that comparison between observation and theoretical expectation provides

a conWrmation of Einstein’s general relativity to about one part in 1014, an

accuracy unprecedented in the scientiWc comparison between the observa-

tion of a particular system and theory. This Wgure refers to the overall

timing precision over a period of more than 20 years.11

With observations of this nature—and also the impressive gravitational

lensing eVects that will be addressed in §28.8—observational general rela-

tivity has come a long way from the early days of the subject. However, in

the years 1915–1969 (where 1969 marks the year that radio observations of

distant quasars initiated a new family of tests of general relativity12) there

were only the famous, but comparatively unimpressive, ‘three tests’ to give

support to the theory. The most signiWcant of these was Einstein’s explan-

ation of the ‘anomolous perihelion advance’ of the planet Mercury. This

was a very slight deviation from the predictions of Newtonian gravita-

tional theory (of just 43 seconds of arc per century, or about one orbital

rotation in 3 million years!) that had been observed for over half a

century13. (See also §30.1 and §34.9.) A second observational eVect was

the tiny bending of distant starlight by the Sun, seen by Arthur Edding-

ton’s expedition to the island of Principe (oV the coast of West Africa),

during the solar eclipse of 1919. This is an instance of the same ‘gravita-

tional lensing’ phenomenon, referred to above, that is now impressively

used out to near cosmological distances to obtain important information

about the mass distribution in the universe. (See §28.8.) Finally, there is the

slowing of clock rates in a gravitational potential, predicted by Einstein’s

theory. This was tentatively (and questionably) observed by W.S. Adams

in 1925, for a white-dwarf star known as the companion of Sirius (a star
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some thousands of times denser than the sun). But a far more convincing

conWrmation was later obtained, in a delicate experiment performed by

Pound and Rebka in 1960, for the Earth’s own gravitational Weld. (How-

ever, this eVect is to be expected simply from general energy and basic

quantum considerations and is a rather weak test of Einstein’s theory.)

There is also a diVerent kind of ‘time-delay’ eVect, for light signals reach-

ing the Earth from objects almost directly behind the Sun, which was Wrst

proposed (in 1964) by Erwin Shapiro, and later conWrmed by him in 1968–

1971, for observations of Mercury and Venus, and more precisely (to 0.1

per cent, in 1971) by Reasenberg and Shapiro using transponders on the

Viking spacecraft in orbit around Mars, in comparison with one on the

ground on Mars.

It is clear that Einstein’s theory is now very well supported observation-

ally. The existence of gravitational waves seems to be clearly conWrmed by

the Hulse–Taylor observations, even though this is not a direct detection

of such waves. There are now several projects for the direct detection of

gravitational waves which constitute a worldwide concerted eVort to use

such waves to probe violent activity (such as black hole collisions) in

distant parts of the universe. In eVect, these combined projects14 will

provide a gravitational-wave telescope, so that Einstein’s theory has the

potential to give us yet another powerful way of exploring the distant

universe.

We see that, despite some people’s worries about energy conservation,

general relativity has some very remarkable observational conWrmations.

Let us, therefore, return to the question of gravitational energy. It is an

essential point of consistency, both in theory and observation, that the

ripples of empty space that constitute the gravitational waves emitted by

PSR 1913þ 16 and other such systems indeed carry actual energy away.

The energy–momentum tensor in empty space is zero, so the gravitational

wave energy has to be measured in some other way that is not locally

attributable to an energy ‘density’. Gravitational energy is a genuinely

non-local quantity. This does not imply that there is no mathematical

description of gravitational energy, however. Although I believe that it is

fair to say that we do not yet have a complete understanding of gravita-

tional mass/energy, there is an important class of situations in which a very

complete answer can be given. These situations are those referred to as

asymptotically Xat, and they refer to gravitating systems that may be

regarded as being isolated from the rest of the universe, essentially because

of their very large distance from everything else. It might be, say, a double-

star system, like the Hulse–Taylor binary pulsar, in which one is concerned

with the energy that is lost through gravitational radiation. The work of

Hermann Bondi and his collaborators as generalized by Rayner Sachs15

(to remove Bondi’s simplifying asssumption of axial symmetry), provided
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Fig. 19.10 For an isolated system emitting gravitational waves, where it may be

assumed that the spacetime is asymptotically Xat, there is a precise measure of

total mass/energy–momentum and of its loss through gravitational radiation,

referred to as the Bondi–Sachs mass/energy conservation law. The relevant math-

ematical quantities are non-local and deWned at ‘null inWnity’ (a geometrical

notion which will be discussed in §27.12).

a clear-cut mathematical accounting of the mass/energy carried away

from such a system in the form of gravitational waves, and a conservation

law for energy–momentum was accordingly achieved;16 see Fig. 19.10.

This conservation law does not have the local character of that for

non-gravitational Welds, as manifested in the ‘conservation equation’

raTab ¼ 0, and it only applies in an exact way in the limit when the

system becomes completely spatially isolated from everything else.

Yet, there is something a little ‘miraculous’ about how things all Wt

together, including certain ‘positivity’ theorems that were later proved,

which tell us that the total mass of a system (including the ‘negative

gravitational potential energy contributions’ discussed above) cannot be

negative.17

There are general prescriptions for obtaining conservation laws for

systems of interacting Welds. These come from the Lagrangian approach,

which will be introduced in the next chapter. The Lagrangian approach is

very powerful, general, and beautiful, despite the fact that it does not (or,

at least, not directly) seem to give us everything that we need in the case of

gravitation. It, and the closely related Hamiltonian approach, both form
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central parts of modern physics, and it is important to know something

about them. Let us venture into this fabulous territory next.

Notes

Section 19.1

19.1. It seems doubtful that Newton himself would have held so dogmatically to such

a particle-based picture (see Newton’s Queries in his Opticks 1730). This ‘New-

tonian’ view was, however, argued for forcefully in the 18th century by R.G.

Boscovich; see Barbour (1989).

Section 19.3

19.2. The result would also apply in curved topologically trivial spacetime, so that

(more speciWcally) a closed 2-surface always spans a compact 3-volume).

Section 19.4

19.3. See, for example, Flanders (1963).

19.4. See Weyl (1928), pp.87–8 (transl., pp. 100–1). This observation was also made

independently by W. Gordon, and by Pauli and Heisenberg; see Pais (1986),

p.345.

19.5. See Aharonov and Bohm (1959). In fact this eVect had already been noted 10

years earlier by Ehrenberg and Siday (1949). It was experimentally veriWed by

Chambers, and then more convincingly established by Tonomura et al. (1982,

1986).

Section 19.5

19.6. See Pais (1982).

Section 19.6

19.7. The requirement, in the text, of ‘no preferred coordinates’ is not only rather

vague, but also something that might be regarded as somewhat too strong. In

Xat space, for example, it could reasonably be said that the choices of ‘Cartesian

coordinates’ (here the Minkowski coordinates (t, x, y, z) of §18.1, for which the

metric takes the particularly simple form ds2 ¼ dt2 � dx2 � dy2 � dz2) are ‘pre-

ferred’ over all other coordinate systems, and cosmological models also have

special coordinate systems in which the metric form looks particularly simple

(see §27.11, Exercise [27.18]). The point is, rather, the more subtle one that such

special coordinates should not have a physical role to play, and that the

equations of the theory should be such that their most natural expression

does not depend on any particular choice of coordinates.

19.8. See Stachel (2002), p. 353–64.

Section 19.7

19.9. Einstein’s model was the space E, with topology S3�E1, that we shall encounter

in §31.16.

19.10. Einstein’s introduction of a cosmological term was one of a number of modiWca-

tions of the original theory of general relativity that have been introduced over

the years. In addition to Weyl’s theory discussed in §19.4 and the higher-dimen-

sional Kaluza–Klein ideas referred to in §31.4 (nowadays usually combined with

supersymmetry; see §§31.2,3), there is the Brans–Dicke modiWcation in which

there is an additional scalar Weld, and Einstein’s own numerous attempts at a
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‘uniWed Weld theory’ put forward in the period between 1925 and 1955. See

Einstein (1925); Einstein (1945); Einstein and Straus (1946); Einstein (1948);

Einstein and Kaufman (1955); Schrödinger (1950); for a more recent reference,

see Antoci (2001). Most of these proposals were intended to incorporate electro-

magnetism, and perhaps other Welds, into the overall framework of general

relativity. Noteworthy also is the scheme referred to as the Einstein–Cartan–

Sciama–Kibble theory, in which a torsion is introduced (§14.4) and considered to

describe a direct gravitational eVect of a density of spin (see §22.8).

Section 19.8

19.11. Here, Einstein’s theory is taken to include Newton’s, and it should be empha-

sized that the ‘1014’ Wgure does not represent an increase of accuracy over

Newton’s scheme. Moreover, it should be borne in mind that some of the

timing accuracy goes to determine the unknown parameters, such as the masses,

orbit inclination, eccentricity, etc., that are needed to compute the details of the

system. The ‘1014’ is really a measure of the overall consistency of the picture.

19.12. The 1991 results of D.S. Robinson and collaborators, using ‘Very Long Base-

line Interferometry’, now conWrm the light-bending eVects of general relativity

to an accuracy of 10�4.

19.13. For a detailed account of Mercury’s perihelion anomaly, see Roseveare (1982).

19.14. These gravitational wave searches go by such colourful acronyms as LIGO,

LISA, and GEO. See Shawhan (2001); Abbott (2004); Grishchuk et al. (2001);

Thorne (1995b); as well as John Baez’s very useful web-commentary http://

math.ucr.edu/home/baez/week143.html

19.15. This work was partially anticipated by Trautman (1958); Bondi (1960); Bondi

et al. (1962); Sachs (1961, 1962a).

19.16. See also Newman and Unti (1962); Penrose (1963, 1964); Sachs (1962b); Bon-

nor and Rotenberg (1966); Penrose and Rindler (1986), pp. 423–7.

19.17. Schoen and Yau (1979, 1982); Witten (1981); Nester (1981); Parker and Taubes

(1982); Ludvigsen and Vickers (1982); Horowitz and Perry (1982); Reula and

Tod (1984); see also Penrose and Rindler (1986); and §32.3, particularly Note

32.11.
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20
Lagrangians and Hamiltonians

20.1 The magical Lagrangian formalism

In the centuries following Newton’s introduction of his dynamical laws, an

extremely impressive body of theoretical work was built up from these

Newtonian foundations. Euler, Laplace, Lagrange, Legendre, Gauss,

Liouville, Ostrogradski, Poisson, Jacobi, Hamilton, and others came

forth with reformulating ideas that led to a profound unifying overview.

I shall give a brief introduction here to this dynamical overview, although I

am afraid that my account of it will provide only a very inadequate

impression of the magnitude of the achievement. It should also be

remarked that just the existence of such a mathematically elegant unifying

picture appears to be telling us something deep about the mathematical

underpinnings of our physical universe, even at the level of the laws that

were revealed in 17th century Newtonian mechanics. Not many suggested

laws for a physical universe could lead to mathematical structures of such

imposing splendour.

What elegant unifying picture is it that resulted from Newton’s

mechanics? It occurs basically in two diVerent but closely related forms,

each having its characteristic virtues. Let us refer to the Wrst as the

Lagrangian picture and the second as the Hamiltonian one. (There is

the usual diYculty with names here. Apparently, both pictures were

known to Lagrange, signiWcantly before Hamilton, and the Lagrangian

one was at least partially anticipated by Euler.) Let us consider that we

have a Newtonian system consisting of a (Wnite) number of individual

particles and perhaps some rigid bodies each considered as an indivisible

entity. There will be a conWguration space C of some large number N of

dimensions, each of whose points represents a single spatial arrange-

ment of all these particles and bodies (see §12.1). As time evolves, the

single point of C that represents the entire system will move about in C
according to some law which encapsulates the Newtonian behaviour of

the system; see Fig. 20.1. It is a remarkable (and computationally very

valuable) fact that this law can be obtained by a direct mathematical

procedure from a single function. In the Lagrangian picture (at least in its
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Q

C

Fig. 20.1 ConWguration space. Each point Q of the N-dimensional manifold C
represents an entire possible conWguration of (say) a family of Newtonian point

particles and rigid bodies. As the system evolves in time, Q describes some curve

in C.

simplest and most usual form1), this function—called the Lagrangian

function—is deWned on the tangent bundle T(C) of the conWguration

space C (Fig. 20.2a); see §15.5. In the Hamiltonian picture, the func-

tion—called the Hamiltonian function—is deWned on the cotangent

bundle T*(C) (see §15.5), called the phase space (Fig. 20.2b). We note that

T(C) (each of whose points stands for a point Q of C, together with a

tangent vector at Q) and T*(C) (each of whose points stands for a point Q

of C, together with a cotangent vector at Q) are both 2N-dimensional

manifolds.

In this section, we investigate the Lagrangian picture, leaving the Hamil-

tonian one to the next. Coordinates for Lagrange’s T(C) would serve to

determine the positions of all the Newtonian bodies (including appropriate

angles to specify the spatial orientations of the rigid bodies, etc.) and also

their velocities (including corresponding angular velocities of rigid bodies,

etc.). The position coordinates q1, . . . , qN , usually termed ‘generalized co-

ordinates’, label the diVerent points q of the conWguration space C (perhaps

just given ‘patchwise’, see §12.2). Any (adequate) system of coordinates will

do. They need not be ‘Cartesian’ or of any other standard kind. This is the

beauty of the Lagrangian (and also Hamiltonian) approach. The choice of

coordinates is governed merely by convenience. This is just the same role for

coordinates used in Chapters 8, 10, 12, 14, and 15, etc., when general

manifolds of various kinds were considered. Corresponding to the chosen

set of generalized coordinates are the ‘generalized velocities’ _qq1, . . . , _qqN ,

where the ‘dot’ means the rate of change ‘d/dt’ with respect to time:

_qq1 ¼ dq1

dt
, . . . , _qqN ¼ dqN

dt
:

§20.1 CHAPTER 20
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q q
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Fig. 20.2 (a) In the standard Lagrangian picture, the Lagrangian L is a smooth

function on the tangent bundle T(C) of conWguration space C. (b) In the Hamilto-

nian picture, the Hamiltonian H is a smooth function on the cotangent bundle

T�(C) called phase space.

The Lagrangian L would be written as a function of all of these.2

L ¼ L(q1 , . . . , qN ; _qq1 , . . . , _qqN):

Each _qqr has to be treated as an independent variable (independent of qr, in

particular) in this expression. This is one of the initially baZing features of

Lagrangians—but it works!3

The normal physical interpretation of the actual value of the function L
would be the diVerence L ¼ K� V between the kinetic energy K of the

system and the potential energy V due to the external or internal forces,

expressed in these coordinates (see §18.6). The equations of motion of the

system—encoding its entire Newtonian behaviour—are given by what are

called the Euler–Lagrange equations, which are astonishing in their extra-

ordinary scope and essential simplicity:

d

dt

]L
] _qqr
¼ ]L

]qr
(r ¼ 1, . . . , N):

Remember that each _qqr is tobe treatedas an independent variable, so that the

expression ‘]L=] _qqr’ (whichmeans ‘diVerentiateL formallywith respect to _qqr,

holding all the other variables Wxed’) actually makes sense!

Lagrangians and Hamiltonians §20.1
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a

b

C

Fig. 20.3 Hamilton’s principle. The Euler–Lagrange equations tell us that the

motion of Q through C is such as to make the action—the integral of L along a

curve, taken between two Wxed points a, b, in C—stationary under variations of the

curve.

These equations express a remarkable fact, sometimes referred to as

Hamilton’s principle or the principle of stationary action. The meaning of

this is perhaps clearest if we think in terms of the motion of the point Q in

C, where we recall that C represents the space of possible spatial conWgura-

tions of the entire system (i.e. all the locations of all its parts). The point Q,

whose position at any time is labelled by the qr, moves along some curve in

C at a certain rate, this rate together with the tangent direction to the curve

being determined by the values of the _qqr. The Euler–Lagrange equations

basically tell us that the motion of Q through C is such as to minimize

the action, this ‘action’ being the integral of L along the curve, taken

between two Wxed end points, a and b, in the conWguration space C; see

Fig. 20.3.

More correctly, this may not be actually a ‘minimum’, but the term

‘stationary’ would be appropriate. The situation is basically similar to that

which happens in ordinary calculus (see §6.2), where the occurrence of a

minimum of a smooth real-valued function f(x) requires df =dx ¼ 0, but

where sometimes df =dx ¼ 0 occurs when the function f is not a minimum:

it might be a maximum or possibly a point of inXexion or, in higher

dimensions, what is called a saddle point (Fig. 20.4b). All places where

df (x)=dx ¼ 0 are called stationary. See Figs. 6.4 and 20.4. Recall the

basically similar characterization of a geodesic in (pseudo)Riemannian

space, given in §14.8, §17.9, and §18.3 as a ‘minimum-length path’ in the

positive-deWnite case (locally), and sometimes as a ‘maximum length time-

like path’ in the Lorentzian case, although merely of ‘stationary length’ in

the general case. Thus, Q’s trajectory can be thought of as some sort of

‘geodesic’ in the space C.
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x

(a) (b) (c)

Fig. 20.4 Stationary values of a smooth real-valued function f of several vari-

ables. Illustrated is the case of a function f(x,y) of two variables. This is stationary

where its graph (a 2-dimensional surface) is horizontal (]f =]x ¼ 0 ¼ ]f =]y). This

occurs (a) where F has a minimum, but also in other situations such as (b) at a

saddle point and (c) at a maximum. In the case of Hamilton’s principle (Fig.

20.3)—or a geodesic connecting two points a, b—the Lagrangian L takes the place

of f, but the speciWcation of a path requires inWnitely many parameters, rather

than just x and y. Again, L may not be a minimum, though a stationary point of

some kind.

It is helpful to consider a simple example of a Lagrangian, such as that for

a single Newtonian particle of mass m, moving in some Wxed external Weld

given by a potential V which depends on position: V ¼ V (x, y, z; t). The

meaning of V is that it deWnes the potential energy of the particle due to

this external Weld. For the case of the gravitational Weld of the Earth (near

the Earth’s surface), thought of as a constant downward pull, we can take

V ¼ mgz, where z is the height above the ground and g is the downward

acceleration due to gravity. The three components of velocity are _xx, _yy, _zz,
so using the expression 1

2
mv2 for kinetic energy (see §18.6), we Wnd the

Lagrangian

L ¼ 1
2
m( _xx2 þ _yy2 þ _zz2)�mgz:

The Euler–Lagrange equation for z now gives us d(m _zz)=dt ¼ �mg, from

which Galileo’s constancy of acceleration, in the direction of the Earth,

follows.[20.1]

20.2 The more symmetrical Hamiltonian picture

In the Hamiltonian picture, we still use generalized coordinates, but now

the generalized position coordinates q1 , . . . , qN are taken together with

[20.1] Fill in the full details, completing the argument to obtain Galileo’s parabolic motion for

free fall under gravity.
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what are called their corresponding generalized momentum coordinates

p1 , . . . , pN (rather than the velocities). For a single free particle, the

momentum is just the particle’s velocity multiplied by its mass. But in

general, the expression for generalized momentum need not be exactly

this. We can always get it from the Lagrangian, however, by use of the

deWning formula

pr ¼
]L
]qr

:

In any case, these parameters pr serve to provide coordinates for the

cotangent spaces to C, so that a covector can be written as

padqa

(where we recall the summation convention of §12.7 which we adopt

here, although it is legitimate to read this also as an abstract–index

expression, as in §12.8). This, of course, is a 1-form, and its exterior

derivative (§12.6)

S ¼ dpa ^ dqa

is a 2-form (satisfying dS¼0)[20.2] which assigns a natural symplectic

structure to the phase space T*(C) (see §14.8). Much of the strength of

the Hamiltonian picture lies in the fact that phase spaces are symplectic

manifolds, and this symplectic structure is independent of the particular

Hamiltonian that is chosen to provide the dynamics. Classical physics is

thereby intimately connected with the beautiful and surprising geometry of

symplectic manifolds that we shall be coming to in §20.4.

As a preliminary to understanding the role that this geometry plays, let

us see the form of Hamilton’s dynamical equations. These describe the

time-evolution of a system as a trajectory, within the phase space T�(C), of

a point P representing the entire Newtonian system. This evolution is

completely governed by the Hamiltonian function

H ¼ H(p1 , . . . , pN ; q1 , . . . , qN):

which (in the case of the time-independent Lagrangians and Hamiltonians

that we are concerned with here) describes the total energy of the system, in

terms of the (generalized) momenta and positions. We can actually obtain

it from the Lagrangian by means of the expression (summation convention

or abstract indices)

H ¼ _qqr ]L
] _qqr
� L,

[20.2] Why?
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which then has to be rewritten by eliminating all the generalized velocities

in favour of the generalized momenta (not an easy task, in general!). In

terms of these momentum and position coordinates, Hamilton’s evolution

equations are beautifully symmetrical:

dpr

dt
¼ � ]H

]qr
,

dqr

dt
¼ ]H

]pr

:

These equations describe the velocity of a point P in T*(C). This velocity is

deWned for every P, so we have a vector Weld on T*(C), deWned by the

Hamiltonian H. In terms of the ‘partial diVerentiation operator’ notation

for a vector Weld given in §12.3 this is[20.3]

]H
]pr

]

]qr
� ]H

]qr

]

]pr

:

This provides a ‘Xow’ on T*(C) which describes the Newtonian behaviour

of the system (Fig. 20.5).

In the particular example of a particle falling in a constant gravitational

Weld, as given above (§20.1) in Lagrangian form, the Hamiltonian is

Constant
H

Hamiltonian
vector field

[H,  ]

Fig. 20.5 The Hamiltonian Xow {H, }, representing the Newtonian time-

evolution of the system (see §20.4), is a vector Weld on phase space T�(C). For

the hypersurfaces of Wxed H-values (Wxed energy, taking H to be time independ-

ent), the trajectories remain within the Wxed-H hypersurface, in accordance with

energy conservation.

[20.3] Explain this.
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H ¼
p2

x þ p2
y þ p2

z

2m
þmgz

¼ p2

2m
þmgz,

where px, py, and pz are the ordinary spatial momentum components in the

directions of the Cartesian x, y, and z axes, respectively. This can be written

down directly from knowledge of what the total energy of the particle ought

tobewhenexpressedintermsofpositionandmomentumcomponents,orelse

we can obtain it from the Lagrangian, as given by the above procedures.[20.4]

At this point I should confess to a notational awkwardness that I see no

way around, so I had better come clean! We saw in §18.7, that the spatial

momentum components p1, p2, p3, in standard Minkowski coordinates for

Xat spacetime, with my preferred (þ���) signature, are the negatives of

the normal momentum components. Thus we have, in the above example,

px ¼ �p1, py ¼ �p2, and pz ¼ �p3. In the general discussion of Hamilto-

nians it is natural to use the ‘downstairs’ versions of the momenta pa, yet

this is inconsistent with the ‘pa’ (i.e. p1, p2, p3) that are natural in relativity

with (þ���) signature. The way that I am dealing with this notational

problem, in this book, is simply to give the general formalism using the

combination of qa and pa with the usual sign conventions connecting ps to

qs, whilst being non-speciWc about the particular interpretation that each q

or p might happen to have (so the reader can sort out his/her own choices

of signs!). When I am using the combination of xa and pa, on the other

hand, then I really do mean the notation consistent with that of §18.7, so

that �p1, �p2, �p3 are the ordinary momentum components (equal to

p1, p2, p3 in a standard Minkowski frame) of ordinary spatial momentum.

This has the implication that, when written in terms of the xs rather than

the qs, my Hamiltonian equations appear with the opposite sign

dpr

dt
¼ ]H

]xr
,

dxr

dt
¼ � ]H

]pr

:

Any reader who is not too concerned with the full details of the formalisms

that I shall be presenting is recommended simply to ignore this issue

completely. (Most experts would do the same—until the moment comes

when they have to write articles or books on the topic!)

20.3 Small oscillations

Before moving on, in the next section, to the remarkable geometry that the

Hamiltonian description of things leads us to, it will be illuminating, Wrst,

[20.4] Do this explicitly. Use Hamilton’s equations to obtain the Newtonian equations of

motion for a particle falling in a constant gravitational Weld.
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to consider the important topic of vibrations of a physical system about a

state of equilibrium. The topic has considerable relevance in a number of

diVerent areas, and it has particular signiWcance for us later in the context

of quantum mechanics (§22.11). The theory of vibrations can be conveni-

ently described either in the Lagrangian or the Hamiltonian formalism,

each of which is very well suited to its treatment. I shall give my descrip-

tions explicitly here in the Hamiltonian formalism primarily because this

more directly leads us into the quantum-mechanical version of vibrations,

which we shall catch a good glimpse of in §22.11. The Lagrangian theory

of vibrations, which is very similar to the Hamiltonian one, is left to the

reader (see Exercise [20.10]).

A simple example of a vibrating system occurs with an ordinary pendu-

lum, swinging under gravity. When the oscillations are small, then the

motion of the bob, backwards and forwards, describes a sine wave, as a

function of time (see Fig. 20.6). (This is the kind of behaviour encountered

with the individual ‘Fourier components’ studied in §9.1.) The period of

vibration, for such small oscillations, is actually independent of the ampli-

tude of the oscillation (i.e. of the distance through which the bob swings)—

a famous early observation of Galileo’s, in 1583. This type of motion is

referred to as simple harmonic motion.

We shall be seeing, in this section, how ubiquitous this motion is. A

general physical structure (supposing that frictional eVects can be disre-

garded) can ‘wobble’ about its equilibrium state only in very speciWc ways.

We shall Wnd that every small-scale wobble can be broken down into

particular modes of vibration—called normal modes—in which the whole

Time

Fig. 20.6 A pendulum, swinging under gravity. For small oscillations, the motion

of the bob approximates simple harmonic motion, the displacement of the bob

(mapped out as a function of time) giving a ‘sine wave’.
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structure partakes of a simple harmonic motion with a very speciWc

frequency, called a normal frequency.

Let us Wrst see how simple harmonic motion is described analytically.

Let q denote the horizontal distance of our pendulum bob out from the

lowest point—or else the outward displacement from equilibrium of what-

ever other vibrating quantity we might be considering. Then the equation

of motion, for small displacements q, is

d2q

dt2
¼ �o2q,

where the positive constant quantity o=2p is the frequency of the oscilla-

tion. This tells us that the inward acceleration d2q=dt2 is proportional

(with factor o2) to the outward displacement. We see from §6.5 that

q ¼ cosot and q ¼ sinot both satisfy this equation and so also does the

general linear combination

q ¼ a cosotþ b sinot,

where a and b are constants.[20.5] For a pendulum of length h swinging

under gravity (in one plane), we Wnd an equation of motion that closely

approximates the one given above, when q is small, with o2 ¼ g=h; but for

larger values of q, deviations from this equation arise.[20.6]

Suppose that we have a general Hamiltonian system, which is in equi-

librium when the qs take some particular values qa ¼ qa
0. It will be conveni-

ent to choose the origin of our generalized coordinates to represent our

equilibrium state, i.e. we choose qa
0 ¼ 0. ‘Equilibrium’ refers to a con-

Wguration where, if there is initially no motion, then the system will remain

stationary. We may be interested in whether or not the equilibrium is

stable—this being the situation where if a small disturbance is made to

the system in the equilibrium conWguration, then the system will not

deviate far from equilibrium, but will oscillate about it. In our study of

vibrations, we are indeed concerned with oscillations about a conWgura-

tion of stable equilibrium. We are thus concerned only with small values of

the generalized coordinates qa. Moreover, since our oscillations involve

only small disturbances with small velocities, we shall be concerned with

small values of the momenta pa also.

We assume that our Hamiltonian is an analytic expression in the qs

and ps—see §6.4 for the meaning of ‘analytic’—so we can expand it in a

[20.5] ConWrm this, explaining why o=2p is the frequency. Explain why the graph of this

function still looks like a sine curve. Why is this the general solution?

[20.6] Show this, Wnding the full equation, (a) using the Lagrangian method, (b) using the Hamil-

tonian method, and (c) directly from Newton’s laws. Hint: Show that L ¼ 1
2
mh2 _qq2(h2 � _qq2)�1þ

mg(h2 � q2)1=2. (Note that the Lagrangian and Hamiltonian methods do not gain us anything in

this simple case; their power resides in treating more general situations.)
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power series in the qs and ps. For a stable equilibrium conWguation, qa¼0

must represent a (local) minimum of potential energy.[20.7] Moreover,

when motion is introduced, this can only increase the energy (the kinetic

energy); the kinetic energy is minimum when pa ¼ 0. The total energy—

which is the value of the Hamiltonian H—is therefore locally a minimum

at qa ¼ 0 ¼ pa. It follows that our power series expansion must start oV

(terms linear in the qs, ps, or both, being absent) as

H ¼ constantþ 1
2
Qabq

aqb þ 1
2
Pabpapb

þ terms of order 3 or more in qs and ps,

where Qab and Pab are the components of positive deWnite constant sym-

metric matrices (so Qabq
aqb > 0 if qa 6¼ 0 and Pabpapb > 0 if pa 6¼ 0; see

§13.8). The factors 1
2
are put in for convenience.[20.8]

Let us ignore the higher-order terms, so as to Wnd the nature of the small

oscillations. Hamilton’s equations then give

dqa

dt
¼ ]H

]pa

¼ Pabpb;

whence, diVerentiating once more with respect to t,

d2qa

dt2
¼ d

dt
Pabpb ¼ Pab dpb

dt

¼ �Pab ]H
]qb
¼ �PabQbcq

c ¼ �Wa
c qc:

where Wa
c ¼ PabQbc is the matrix product of Qab with Pab (see §13.3),

which we can write in the form

W ¼ PQ,

so the conclusion of our previous displayed equation can now be rewritten

d2q

dt2
¼ �Wq:

We are interested in the eigenvectors of the matrix W (see §13.5) which are

the vectors q satisfying

Wq ¼ o2q,

where o2 is the eigenvalue of W corresponding to q. In fact, this eigenvalue

must be positive, because the matrices P and Q are both positive-

[20.7] Why?

[20.8] Can you explain all this more fully? Can we have the linear terms if the equilibrium is

unstable? Explain.
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deWnite[20.9] so we can write it as the square of the positive quantity o. We

see that any such eigenvector q must satisfy the equation

d2q

dt2
¼ �o2 q,

representing simple harmonic motion with frequency o=2p.[20.10]

Each such eigenvector q is some combination of generalized coordinates

qa, so the oscillation corresponding to q would require these coordinates all

to vibrate together, all at the same frequency. This is referred to as a

normal mode of oscillation, and the corresponding o=2p is called

the normal frequency corresponding to this mode. In the most general

case, these frequencies are all distinct, but in special ‘degenerate’ cases,

some of these normal frequencies may coincide.[20.11] Degenerate eigen-

values must count with their appropriate multiplicities; whence the total

number of normal modes is still equal to the number N of generalized

coordinates q1 , . . . , qN . It may be noted that any two normal modes

q and r, corresponding to diVerent frequencies, are ‘orthogonal’ to each

other with respect to the ‘metric’ deWned by Q, in the sense rTQq ¼ 0.[20.12]

What have we learnt from all this? We have formed a very general and

remarkable conclusion about how a classical system, with N degrees of

freedom, can vibrate about a conWguration of stable equilibrium. Any

such vibration is composed of normal modes—which can be treated as

independent of one another—each mode having its own characteristic

frequency, and where there are N modes altogether. In this description,

we ignore the eVects of dissipation, according to which, in practice, a

vibration in a macroscopic system would eventually die away, its energy

being transferred to the random motions of constituent particles. When all

the constituent parts are taken into account (as with a molecule, for

example), then dissipation does not occur.

Up to this point, I have been considering the ordinary situation in which

the number of degrees of freedom N in the system is Wnite, but the

foregoing theory also applies to systems that are—at least in idealiza-

tion—inWnite-dimensional. We are familiar with this idea when we are

concerned with the sounds that a musical instrument might make. A drum,

for example, or a musical triangle, will oscillate in accordance with various

frequencies when it is struck, these frequencies determining its particular

[20.9] See if you can prove this deduction. Hint: Show that the inverse of a positive-deWnite

matrix is positive-deWnite.

[20.10] See if you can carry out the foregoing analysis in the Lagrangian, rather than

Hamiltonian, form.

[20.11] Describe the system of eigenvectors in such degenerate cases.

[20.12] Prove this. (Recall from §13.7 that ‘T’ stands for ‘transposed’.)

§20.3 CHAPTER 20

482



timbre. The sound of a wind instrument is similar, coming from the

oscillation of the column of air within it. Similar also is the vibration of

a string of a stringed instrument, etc.

Fourier analysis, which we studied in Chapter 9, enables us to express

the vibrations of Wnite-length string. We could take this string to be Wxed

at its endpoints, or perhaps bent into a circle. Fourier analysis expresses

the general vibrations as a linear combination of modes, these being the

pure-tone sine waves or cosine waves—and are inWnite in number. In this

case, the frequencies are all integral multiples of that of the primary mode.

This is the kind of thing that one strives for in the construction of a

sonorous musical instrument! But generally (as with a drum or bell), the

normal frequencies are not so simply related.

In such situations, the Hamiltonian or Lagrangian formalisms can

readily be extended, so as to cover the case N¼ 1, but some care

is needed. In a sense, we are taken naturally to the Lagrangian (or

Hamiltonian) theory of Welds, which we shall have a look at in §20.5.

This has many applications in modern physics. In particular, the approach

to a fundamental theory of Nature—referred to as string theory—where

point particles are replaced by little loops (or else open-ended ‘strings’)

requires this formalism. Here, the various Welds or particles of Nature are

taken to arise from normal modes of vibration of the ‘strings’ (see

§§31.5,7,14).

One Wnal point should be made here. The discussion of this section has

been concerned only with oscillation about stable equilibrium, but it

applies also to movements from unstable equilibrium. The basic diVerence

is that our real symmetric matrix Q is not now positive-deWnite (or even

non-negative-deWnite) so that W ¼ PQ can have negative eigenvalues. The

corresponding small disturbances then diverge exponentially away from

equilibrium.[20.13]

20.4 Hamiltonian dynamics as symplectic geometry

Let us step back to see how Hamilton’s equations, in a Wnite number of

dimensions, tie in with symplectic geometry. As described in §14.8, any

symplectic manifold possesses an operation, that can be performed on

pairs of scalar Welds F and C on the manifold to produce another scalar

Weld Y, called their Poisson bracket[20.14]

Y ¼ {F, C} ¼ ]F
]pa

]C
]qa
� ]F

]qa

]C
]pa

:

[20.13] Describe this behaviour.

[20.14] ConWrm that this expression for {F, C} agrees with that of §14.9.

Lagrangians and Hamiltonians §20.4

483



If the ‘C slot’ is left blank, then we get a diVerential operator {F, }, a vector

Weld (see §12.3) whose action on C gives {F, C}. Let us substituteH for F.

We Wnd that the vector Weld {H, } ‘points along’ the trajectories on T*(C)
that represent time-evolution; in fact {H, } is just this evolution according

to Hamilton’s equations (see §20.2). One of the remarkable features of

symplectic geometry is that the dynamical evolution of a system can

thus be geometrically encapsulated in a single scalar function (namely the

Hamiltonian).

Symplectic geometry does many other things for us. For example, there

is a famous result due to Liouville which asserts that phase-space volume is

always preserved by the dynamics; see Fig. 20.7. The volume element in

phase space is taken to be the 2N-form

S ¼ S ^ S ^ . . . ^ S,

there being N of the Ss wedged together; here, as we recall, the symplectic

2-form S is given by S ¼ dpa ^ dqa. Now, it is not hard to check that S

itself is preserved by the Hamiltonian evolution (i.e. that the Lie derivative

of S, with respect to the vector Weld {H, }, vanishes).[20.15] It immediately

follows that the full volume form S is preserved by this evolution, also.

This is Liouville’s theorem.

[20.15] Show this.

Fig. 20.7 Liouville’s theorem.

The Hamiltonian Xow

preserves the volume of

the initial phase-space region

(representing a range of

possible initial states),

even though the shape of

this region may become

grossly distorted in the

time-evolution.
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Since {H, H} ¼ 0,[20.16] it follows that the Hamiltonian itself is pre-

served, i.e. it is constant along the trajectories, which is a reXection of

the fact that the total energy of a closed system is constant. Thus, each

trajectory lies on an (N� 1)-dimensional surface given by H ¼ constant;

see Fig. 20.5. Now, we can think of the entire history of the system as being

represented by its trajectory on T*(C), The space of these trajectories, for a

Wxed value of H, is (N� 2)-dimensional, see Fig. 20.8. (We lose one

dimension because we hold H Wxed, and lose another because we ‘factor

out’ by the 1-dimensional trajectories.) It is a striking and important fact

that the resulting (N� 2)-manifold is again symplectic. This procedure

(not just when F is chosen to be H) has many elegant applications in

classical mechanics and symplectic geometry.

There is undoubted beauty in this wonderfully comprehensive picture of

Newtonian dynamics. Nevertheless, as we shall be seeing also in relation to

later physical theories, it is important not to allow ourselves to be carried

away by the beauty and seeming Wnality of such apparently tightly knit

mathematical schemes. Nature has had a habit, in the past, of Wrst

tempting us to a euphoric complacency by the power and elegance of the

2N−2 dimensions
reduced phase space

2N
−1

 d
im

en
sio

ns

2N dimensions
phase space

Fig. 20.8 Phase space T�(C) is a 2N-dimensional symplectic manifold, for an

N-dimensional C. For a given energy value (constantH, as in Fig. 20.5), we have a

(2N–1)-dimensional region containing a (2N–2)-dimensional family of the Hamil-

tonian Xow trajectories. The reduced phase space, whose points represent these

trajectories, is itself a 2(N–1)-dimensional symplectic manifold.

[20.16] Why?
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mathematical structures that she appears to force us to accept as guiding

her world, but then jolting us, from time to time, out of our conceptual

torpor by showing us that our picture could not have been correct, after

all! Yet the shift has always been a subtle one which leaves the previous

ediWce still standing proud, despite the fact that the foundations on which

it had stood have now been completely replaced.

The Hamiltonian view provides a marvellous example. Although the

classical mechanics that it embodies is contradicted by some harsh facts of

the quantum world, the Hamiltonian framework provides us with an

important lead into the actual theory of quantum mechanics. Moreover,

the quantum versions of Hamiltonians provide essential ingredients for the

standard quantum formalism. This, I should say, is for the standard non-

relativistic quantum theory, in which there is no serious attempt to com-

bine time and space together in accordance with the principles of relativity.

In the case of relativistic quantum theory, however, it is the Lagrangian

framework that has generally been found to provide the more natural

leaping-oV point. But where do we leap to? It is the need for an appropri-

ate combination of the principles of special relativity with those of quan-

tum mechanics that entices us to plunge into the deep quagmire of

quantum Weld theory!

We shall be coming to the procedures of quantum theory and quantum

Weld theory later, in Chapters 21–23 and 26. But before we can do so, it

will be necessary to prepare a little more ground Wrst. The very term

‘quantum Weld theory’ implies that it is Welds, and not just particles,

that need to be brought into the framework of quantum-mechanical

rules. Thus, we shall need to see how Welds are to be treated using the

Lagrangian (or Hamiltonian) methods.

20.5 Lagrangian treatment of fields

In the discussions of Lagrangians (and Hamiltonians) given above, New-

tonian systems consisting of a Wnite number of particles and rigid bodies

were considered. In these, there are Wnitely many degrees of freedom, so

the conWguraton-space manifold M, and its tangent bundle T(M) (and

also its cotangent bundle T*(M)) are ordinary Wnite-dimensional mani-

folds. However, the Lagrangian (and Hamiltonian) formalism is more

general than this, and it can indeed be applied also to physical Welds. A

Weld varies continuously from place to place, and it cannot be speciWed by

a Wnite number of parameters. The conWguration space of Maxwellian free

Welds in some region, for example, will be inWnite-dimensional.

It is still possible to use the Lagrangian (or Hamiltonian) formalism in

the case of an inWnite-dimensional conWguration space; indeed, this is the
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standard procedure in both classical and quantum Weld theory. The main

novelty in the required formal mathematical procedures is the concept of

functional diVerentiation. The Lagrangian, rather than being a function of

a Wnite number of generalized coordinates q1 , . . . , qN and a Wnite number

of generalized velocities _qq1 , . . . , _qqN , is taken to be a function of a num-

ber of Welds F , . . . , C (each of which is itself a function on spacetime, and

perhaps possessing indices to indicate its tensorial or spinorial character)

and the derivatives of these Welds raF , . . . , raC (where usually only Wrst

derivatives appear, but higher-order derivatives are also allowed). Note

that there is now no special role for the time derivatives (as was indicated

by the ‘dot’ in the arguments of our original Lagrangians), and we are now

being more even-handed by using the ra operator instead. Accordingly,

the formalism is being brought into line with the requirements of relativity.

Particularly in this kind of situation, Lagrangians are often called func-

tionals because we are concerned with the functional form that they have,

rather than just their actual values for speciWc values of their arguments.

The Euler–Lagrange equations now involve ‘derivatives with respect to the

Welds’ and ‘with respect to the gradients of the Welds’. The formal carrying

out of these operations mirrors very closely the operations of ordinary

calculus, as described in Chapter 6. There are often mathematical subtle-

ties involved, if one wants to be sure that the results are rigorously true,

but it is customary for physicists not to be too worried about these, and

the main concern is the correct following of the formal rules.

It is not my purpose, here, to go into these issues in detail, but it is worth

writing down the Euler–Lagrange equations for this ‘functional derivative’

case (where functional derivative is denoted by using ‘d’ in place of ‘]’):

ra

dL
draF

¼ dL
dF

, . . . , ra

dL
draC

¼ dL
dC

:

As mentioned above, the Welds F, . . . , C may also possess indices. Carry-

ing out a functional derivative in practice is essentially just applying

the same rules as for ordinary calculus, and using a fair amount of

‘mathematical common sense’ (e.g. if L ¼ FaFbraCb, then dL=dFc ¼
FbrcCb þ FaraCc, dL=drcFd ¼ 0, dL=dCc ¼ 0, dL=drcCd ¼ FcFd).

There is an analogue of Hamilton’s principle for such Lagrangians,

where we recall that this principle expresses the Euler–Lagrange equations

as the stationarity of the action, the action being the integral of the

Lagrangian along a curve joining two Wxed points a and b of the con-

Wguration space (recall Fig. 20.3). In our more general situations under

consideration here, the Wxed end points a and b in C are replaced by

Weld conWgurations in some 3-dimensional region(s) of spacetime. Often

these are taken to be two 3-space regions A and B, in spacetime, spanning

the same 2-space S (where S is perhaps being taken at inWnity)—see
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Fig. 20.9—and this picture is also of importance in the path-integral formu-

lation of quantum Weld theory that we shall be coming to later (§26.6). If

desired, we can take A and B together (reversing the orientation of one of

them) to constitute the boundary ]D of a (possibly compact—see §12.6)

spacetime 4-volume D; see Fig. 20.10. In any case, the Hamilton principle

expresses the stationarity of the spacetime integral of the Lagrangian over

the region D. Thus, the Lagrangian L is to be thought of as a spacetime

density which, strictly speaking, means that the invariant entity is the 4-form

L«, where thenatural 4-form« is the quantity4 which is commonly expressed

as « ¼ dx0 ^ dx1 ^ dx2 ^ dx3 (
p
�det gij). The action integral is then

S ¼
ð

D
L«:

D
B

A
S

Fig. 20.9 Hamilton’s principle for Weld Lagrangians. The two Wxed end-points a,

b, in C, of Fig. 20.3, represent Weld conWgurations in two 3-dimensional spacetime

regions A, B, respectively—forming a ‘blister’ which encloses the 4-region D. We

may take A and B to come together, terminating at a Wnite 2-surface S (not drawn

in the Wgure), or we may regard ‘S’ to be out at inWnity, perhaps out along a

spacelike hypersurface throughout which A and B coincide beyond the region D
(the case illustrated).

D

∂D

Fig. 20.10 If desired, we may regard the A and B of Fig. 20.9 to be joined

together—but taken with opposite orientations (see Fig. 12.16)—so as to consti-

tute the boundary ]D of a (compact) spacetime 4-volume D. Hamilton’s principle

(Fig. 20.3) expresses the stationarity of
Ð

D L« for a given Weld conWguration on the

boundary ]D.
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The Weld equations then arise from the assertion that the quantity S is

stationary with respect to variations of all the variables (so it gives the

analogue of a geodesic; see Fig. 20.3), which means that the variational

derivative of L with respect to all the constituent Welds and their deriva-

tives has to vanish. This condition is written

dS ¼ 0:

The quantity S is central to the path-integral approach to quantum Weld

theory, which we shall come to in §26.6.

20.6 How Lagrangians drive modern theory

Lagrangian theory (as well as Hamiltonian theory) has a highly inXuential

role in modern physics, there being many remarkable uses to which it can

be put. For example, there is an important theorem, known as Nöther’s

theorem, which tells us that, if an ordinary Lagrangian possesses some

continuous (smooth) symmetry, then there will be a conservation law

associated with that symmetry. In particular, if there is invariance of the

Lagrangian under time translation (i.e. independent of time), then there is a

conserved energy; if it is invariant under some spatial translation, then a

momentum is conserved. Furthermore, if there is invariance under angular

rotation about some axis, then there is a conserved angular momentum

about the same axis. For an isolated system in Xat spacetime, these

symmetries are to be expected. If we choose coordinates so that our

given symmetry of the Lagrangian L is expressed in the fact that L is

independent of some generalized ‘position’ coordinate qr, then the con-

served quantity will be the ‘conjugate momentum’ pr to this coordinate qr,

as given by the above prescription (in §20.2): pr ¼ ]L=] _qqr. It is immediate

from the Euler–Lagrange equations that this pr is indeed constant in

time.[20.17]

This procedure can be generalized to Lagrangian functionals of Welds.

For example, if there is a ‘gauge invariance’, then we expect to Wnd a

corresponding ‘conserved charge’ (e.g. the electric charge, in the case of

the electromagnetic gauge invariance under C 7! eiyC). Complicating

issues begin to arise in such situations, however. For example, it is not at

all a clear-cut matter to apply these ideas to obtain energy–momentum

conservation in general relativity, and strictly speaking, the method does

not work in this case. The apparent gravitational analogue of the gauge

symmetry C 7! eiyC is ‘invariance under general coordinate transform-

ations’ (which general relativity takes care of by having its equations

[20.17] Explain why.
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written in terms of tensor operations), but the Nöther theorem does not

work in this situation, giving something of the nature ‘0¼ 0’. It appears

that some quite diVerent kinds of insight are needed for general relativity,

despite the powerful understanding that can be gained from the use of

Nöther’s theorem in other circumstances, some of it carrying over in

impressive ways to quantum theory, as will be indicated in §21.1. To

exemplify the limitations of Nöther’s theorem in the case of gravitational

theory, it should be pointed out that a signiWcant question mark still hangs

over the issue of angular momentum in general relativity, even in the case

of an asymptotically Xat spacetimes.5

Einstein’s theory can certainly be derived from a Lagrangian approach,

as was Wrst shown by the profound and versatile mathematician David

Hilbert (1915). Hilbert’s gravitational Lagrangian is basically the scalar

curvature R, divided by the constant �16pG, but this needs to be made

into a density (or a 4-form) by multiplying it by the natural 4-form « of

§20.5. This needs to be added to the matter Lagrangian L, and we get, for

the total action

S ¼
ð

D
L � 1

16pG
R

� �

«:

When Hilbert suggested this action, he was taken with a theory of

matter which was very popular at the time, namely Mie’s theory, and he

stated his gravitational action principle only for the case when the matter

Lagrangian was, in fact, the one that is appropriate to Mie’s theory. He

appears to have believed that his total Lagrangian gives us what we would

now refer to as a ‘theory of everything’. That was in 1915. Who remembers

Mie’s theory today?

Although Mie’s theory involved a departure from Maxwell’s theory,

an appropriate Lagrangian for the standard Maxwell theory of the elec-

tromagnetic Weld had actually been known many years previously6

namely

LEM ¼ � 1
4
FabF

ab:

But in order to make this work, we need to make sure that this Lagrangian

is written out in terms of the electromagnetic potential Aa. When there are

charged Welds also, then additional terms expressing this interaction are

needed, these also involving Aa. As an important point, the whole thing

needs to be checked for gauge invariance. When gravity is incorporated as

well, then there needs to be the ‘gauge invariance’ appropriate to gravity,

namely coordinate invariance. This is usually handled by writing things

appropriately in tensor form (or else according to other invariant prescrip-

tions using basis frames or appropriate spinor formalisms).
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In modern attempts at fundamental physics, when some suggested new

theory is put forward, it is almost invariably given in the form of some

Lagrangian functional. This has many advantages, such as the fact that

there is a greater chance (but not an absolute certainty) of the resulting

theory having required consistency and invariance properties, and that

some form of ‘Newton’s third law’ is implicit (in the sense that if two Welds

interact then the interaction is mutual: if one acts upon the other then the

other acts equally back on the one). Moreover Lagrangians have the

pleasant property that, if a new Weld is introduced, then its contributions

can usually simply be added to the Lagrangian that one had before, with

any required interaction terms added also. More importantly, perhaps,

there is a direct route to the formation of a quantum theory, via the path-

integral approach that I have alluded to above, that we shall come to

in §26.6.

However, Imust confessmyuneasewith this as a fundamental approach. I

have diYculties in formulating my unease, but it has something to do with

the generality of the Lagrangian approach, so that little guidance may be

provided towards Wnding the correct theories. Also the choice of Lagran-

gian is often not unique, and sometimes rather contrived—even to the

extent of undisguised complication. There tends to be a remoteness from

actual physical ‘hands-on’ understanding, particularly in the case of

Lagrangians for Welds. Even the Lagrangian for free Maxwell theory,
1
4
FabF

ab, has no obvious physical signiWcance (this quantity being 1
8
of the

diVerence between the squared lengths of the electric and magnetic Weld

vectors, in 3-dimensional terms.[20.18] Moreover, the ‘Maxwell Lagrangian’

does not work as a Lagrangian unless it is expressed in terms of a potential,

although the actual value of the potential Aa is not a directly observable

quantity. In the case of gravity (unlike the case of electromagnetism), the

Lagrangian for free Einstein theory vanishes identically when the Weld

equation is satisWed (since Rab � 1
2
Rgab ¼ 0 implies R ¼ 0). Again, R does

not work as a Lagrangian unless it is expressed in terms of quantities

(normally the metric components in some coordinate system) that are

again not invariantly meaningful. In most situations, the Lagrangian dens-

ity does not itself seem to have clear physical meaning; moreover, there tend

to be many diVerent Lagrangians leading to the same Weld equations.

Lagrangians for Welds are undoubtedly extremely useful as mathemat-

ical devices, and they enable us to write down large numbers of suggestions

for physical theories. But I remain uneasy about relying upon them too

strongly in our searches for improved fundamental physical theories. This

unease has a relevance also to the issues of quantum Weld theory that we

shall come to in §26.6, but this is enough for now.

[20.18] Show this.
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Notes

Section 20.1

20.1. More general types of Lagrangian (for non-Newtonian systems) can involve

higher derivatives and are deWned on what are called ‘jet bundles’ of C, but we

need not concern ourselves with these here.

20.2. I am simplifying the general discussion of Lagrangians, in my account here, by

assuming that our system is what is called holonomic. With a non-holonomic

system, there are not enough velocity coordinates available, in relation to the

generalized positions. A good example of a non-holonomic system is the rolling

of a hoop on a horizontal plane, where the hoop is constrained not to slip, so that

its contact point can move only in the direction of the hoop’s tangent, by a

rolling motion. Two coordinates are needed for the location of this contact

point, but only one is available for its velocity.

One may consider that for systems treated at the fundamental level of descrip-

tion, such non-holonimicity does not occur. In the case of our hoop, the rolling

constraint is an idealization in which the possibility of slipping is denied. Once a

small amount of slipping is allowed for, the system becomes a holonomic one.

20.3. I am taking the case of a ‘time-independent Lagrangian’ here, for simplicity of

description. But we can easily bring in a time-dependence of external forces,

simply by including another ‘generalized coordinate’ q0 ¼ t and a formal quan-

tity _qq0 which ultimately takes the value 1.

Section 20.5

20.4. Another way of specifying « is to say that the component e0123 of «, in a local

right-handed orthonormal frame, satisWes e0123¼1 (§19.2). The [0
4
]-tensor « is

Wxed up to sign by the metric by eabcdepqrsg
apgbqgcrgds ¼ �24, the choice of sign

for « sign providing the orientation of the spacetime volume.[20.19]

Section 20.6

20.5. See Penrose (1982); Penrose and Rindler (1986); Winicour (1980); Rizzi (1998).

20.6. See Pais (1986), p. 342, and references 46, 47, 48 on p. 357.

Notes CHAPTER 20

[20.19] Show that this prescription is equivalent to that given in the main text.
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21
The quantum particle

21.1 Non-commuting variables

It is probable that most physicists would regard the changes in our picture
of the world that quantum mechanics has wrought as being far more
revolutionary even than the extraordinary curved spacetime of Einstein’s
general relativity. Indeed, what quantum theory actually tells us to believe
about ‘reality’ at the submicroscopic levels of atoms or of fundamental
particles is, as we shall be seeing in this chapter and in the next two, so
greatly removed from our ordinary classical pictures that we may choose
simply to give up on quantum-level ‘pictures’ altogether. Indeed many
physicists appear even to doubt the very existence of a true ‘reality’ at
quantum scales and, instead, rely merely upon the quantum-mechanical
mathematical formalism to obtain answers. (In Chapter 29, I shall return
more fully to the controversial issue of ‘quantum reality’.)
Yet, despite all this, it is very remarkable how much of the Lagrangian/

Hamiltonian collection of procedures of Chapter 20—that comprehensive
but entirely classical scheme that grew out of 17th century Newtonian
mechanics—provides the essential background to quantum-mechanical
theory. Of course, there had to be changes in the mathematical formalism.
Otherwise the new theory would be just a copy of the old. But it is as
though the formalism that grew out of Newton’s scheme was already
waiting for quantum mechanics to come, with parts of its machinery of
just the right shape and size, so that the new quantum ingredients could
simply be inserted in their place.
The key mathematical property that allows this to happen is an appar-

ent ‘curiosity’ that had already been noted towards the end of the 19th
century by the highly original electrical engineer and mathematical physi-
cist Oliver Heaviside (1850–1925), whom we remember from §6.1. Heavi-
side’s observation was that diVerential operators can often be treated in
just the same way as can ordinary numbers, a fact that is often useful in
solving certain types of diVerential equation. Let us look at an example.
Consider the diVerential equation1
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yþ d2y

dx2
¼ x5,

for example (and see §6.3 for the meaning of the symbols). We wish to Wnd
some particular function y ¼ y(x) which satisWes this relation. Heaviside’s
method was to treat d/dx as though this operator were an ordinary
number. To make this look more ‘plausible’, let us denote the operator
by the single letter D:

D ¼ d

dx
:

The entity represented by ‘D2’ is then the repeated diVerentiation
d2=dx2 ¼ (d=dx)2, which is a second derivative operator; that represented
by ‘D3’ is the third derivative d3=dx3, etc. Then our equation becomes
yþD2y ¼ x5, which we can express as

(1þD2)y ¼ x5:

Wecan ‘solve’ it by formally ‘dividing throughby1þD2’,writing theanswer
asy¼ (1þD2)�1x5. Expanding (1þD2)�1 out as a ‘power series inD’,weWnd

y ¼ (1�D2 þD4 �D6 þ � � � )x5:

(Recall that we already considered this series in §4.3, with x in place of D.)
Noting(§6.5)thatDx5¼ 5x4, D2x5¼20x3, D3x5¼60x2,D4x5¼120x,D5x5¼
120, D6x5 ¼ 0, etc., we Wnd the (correct!) particular solution[21.1], [21.2], [21.3]

y ¼ x5 � 20x3 þ 120x:

Withcareful attention to theappropriate rules, thiskindof formalprocedure
can be made perfectly rigorous—although Heaviside encountered a great
deal of opposition to the use of it at Wrst!
Although the quantity D( ¼ d=dx) can be treated (if with due care) in an

algebraicway likeanordinarynumber,wemustbecautiouswhenwehaveDs
andxsmixedup together, because theydonot commute.Wehave to thinkof
‘x’ and ‘D’ as acting on some invisible function on the right, say C(x). The
operator x simply multiplies what lies to the right of it by x, whereas D

diVerentiates what lies to the right of it with respect to x. Then we Wnd that
we have the commutation relation

[21.1] Show that (1þD2) cosx ¼ 0 and (1þD2) sin x ¼ 0 (referring to formulae in §6.5, if you

need them).

[21.2] Taking note of Exercise [21.1], Wnd the general solution of (1þD2)y ¼ x5, providing a

proof that your solution is, in fact, the most general.

[21.3] See if you can explain why the procedure given in the text misses most of the solutions

given in Excerise [21. 2]. Can you suggest a modiWed general procedure which Wnds them all? Hint:

To what extent does ‘1�D2 þD4 �D6 þ . . .’ really satisfy the requirements for an inverse to

1þD2? Try acting on (1þD2) cosx with this infinite expression.

§21.1 CHAPTER 21
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Dx� xD ¼ 1:

Why is this? Recall the ‘Leibniz law’ property of §6.5, which tells us that
D(xc) ¼ (D(x) )cþ xD(c), i.e. D(xc)� xD(c) ¼ (D(x))c. This is simply
the relation (Dx� xD)c ¼ 1c, where we bear in mind that D(x) ¼ 1 (i.e.
D applied directly to x is 1), which is the above displayed relation applied
to an arbitrary c ¼ c(x) on the right.
Let us now extend this to many variables x1 , . . . , xN , and to the cor-

responding operators D1 ¼ ]=]x1 , . . . , DN ¼ ]=]xN (now partial deriva-
tive operators—and remember that xN is just the Nth coordinate, not N

copies of x multiplied together), where the ‘invisible’ function on the right-
hand side is now some function of all these variables: c ¼ c(x1 , . . . , xN ).
We obtain the commutation relations

Dbx
a � xaDb ¼ da

b:

(Recall the Kronecker delta da
b of §13.3; the above expression contains

both the previous commutator, when a ¼ b, and the fact that the x and
D commute[21.4] when a 6¼ b.) We could suppose that the coordinates xa

are ordinary spatial or spacetime coordinates in Xat space, but we
may imagine that they could also be something more general, such
as the generalized coordinates qa of the Lagrangian or Hamiltonian for-
malisms. There are some profound diYculties with taking this generality
too far, however. Thus, for the moment at least, it will be better to
imagine that we are dealing with some Xat N-space E

N (of not necessarily
just 3 or 4 dimensions). The operators D1 , . . . , DN then describe inWnite-
simal translations of E

N in the directions of each of the axes (Fig. 21.1),
each of these expressing an independent symmetry of the aYne space E

N .
We recall, from Nöther’s theorem (in §20.6), that there is a close associ-

ation between such symmetries of the space and momentum conservation: if
a Lagrangian is unchanged by spatial translation in some direction,

D1

D2
D3

x3

x2

x1

[21.4] Why?

Fig. 21.1 In (affine) Euclidean N-

space E
N , there are N independent

translational symmetries generated

by the operators (vector fields)

D1 ¼ ]=]x1, D2 ¼ ]=]x2, . . . ,
DN ¼ ]=]xN , satisfying commuta-

tion relations Dbx
a � xaDb ¼ da

b

with the respective Cartesian co-

ordinates x1, x2, . . . , xN . (The case

N ¼ 3 is illustrated.)

The quantum particle §21.1
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then the momentum in that direction that it provides is conserved. This is
an elegant and important fact, and it is mathematically perfectly compre-
hensible. Quantum mechanics does something that looks quite a bit like
this, but it is not nearly so mathematically comprehensible. In fact, it
seems to be mathematically completely crazy! Yet, there is an undoubted
mathematical elegance in this strange quantum-mechanical procedure.
For in quantum mechanics, not only is there a conserved momentum
associated with any such symmetry, but the momentum itself is actually
identiWed with the diVerential operator that generates that particular
symmetry!

21.2 Quantum Hamiltonians

How can a momentum actually be identiWed with a diVerential operator?
This indeed sounds crazy! To be more correct, there is a factor of �h
(Dirac’s version of Planck’s constant, namely h=2p, where h is the original
Planck’s constant; see below), and also of the imaginary unit i, to be
incorporated. Thus, we make the absurd-looking deWnition pa ¼ i�hDa,
that is

pa ¼ i�h
]

]xa
,

for the momentum associated with xa. Going along with this, we are led to
a commutation law called a canonical commutation rule relating position
and momentum

pbx
a � xapb ¼ i�h da

b:

What are we to dowith this crazy-looking operator/momentum?The role
of this ‘quantum-mechanical momentum’, i�h]=]xa, is that it is to be slotted
into the classical Hamiltonian function H(p1 , . . . , pN ; xa , . . . , xN), just
where the old classical momentum pa used to be. This is the key to the
procedure known as (canonical) quantization. We are not worrying about
relativity just yet, so the ‘momenta’ under consideration above are indeed to
be the spatial momenta,2 and not energy. Our spaceE

N is likely to bemuch
larger than just 3-dimensional, because there could be a greatmany particles
or other structures involved, and all of these diVerent position and momen-
tum components are to be in the list. In accordance with the general discus-
sion of Chapter 20, I am not allowing for the possibility of an explicit time
dependence in the Hamiltonian.3

The normal interpretation of these coordinates xa will be that they
provide the positions of a number of particles (or perhaps other suit-
able parameters). In this chapter I shall be concerned, in detail, only
with the quantum mechanics of a single particle, but it will be as well to
have the general formalism ready for when more complicated many-

§21.2 CHAPTER 21
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particle systems are considered in Chapter 23. Particularly for a single
particle, there turns out to be some evident relativistic symmetry between
its time component x0 and its three spatial components x1, x2, x3. We
shall be seeing in a moment how this plays an important role in deWning
the actual time evolution of quantum mechanics. Nevertheless, as
the procedures of (canonical) ‘quantization’ stand, particularly when
many particles are involved, they provide a non-relativistic procedure,
where the treatments of the spatial and temporal aspects of physics are
very diVerent.
Let us have a look at a simple example of a quantum Hamiltonian, so

as to see how this crazy idea is to proceed. We can consider the case
of a single Newtonian particle of mass m, moving in some external
Weld given by a potential energy function V which can depend on position:
V ¼ V (x, y, z). We have seen the classical Hamiltonian already, in
§20.2, and we recall that this is H ¼ (p2

x þ p2
y þ p2

z)=2mþ V (x, y, z),
where px, py, and pz are the spatial momenta in the directions of
the Cartesian x, y, and z axes. The quantum (canonically quantized)
Hamiltonian is therefore

H ¼
p2

x þ p2
y þ p2

z

2m
þ V (x, y, z) ¼ � �h2

2m
r2 þ V (x, y, z),

where r2 ¼ (]=]x)2 þ (]=]y)2 þ (]=]z)
2 (which means ]2=]x2 þ ]2=]y2þ

]2=]z2) is the Laplacian (as considered earlier, in §10.5, but now in the
3-dimensional case).
In this example, everything has moved along smoothly (but to where—

we shall need to wait for the next section!). In general, however, the
replacing of classical momenta by quantum ones in the Hamiltonian may
not be an unambiguous procedure, mainly because of non-commutation
between the quantum-mechanical p and its corresponding x. For example,
if a product term of the form px appears in the classical Hamiltonian, it is
not clear whether in the corresponding quantum Hamiltonian it should
appear as px, or as xp, or perhaps as 1

2
(pxþ xp) or as any one of an inWnite

number of other possibilities. This kind of ambiguity is referred to as the
factor-ordering problem. In many practical circumstances, this ambiguity
may not be very serious, as there often turns out to be some ‘obvious’
choice. The choice may be governed by some overriding guiding principle,
such as a symmetry or invariance requirement, or perhaps by some com-
pelling physical or mathematical instinctive or aesthetic demands. Or it
may sometimes be that diVerent alternatives nevertheless result in equiva-
lent quantum theories. Yet, the fact that such ambiguities do exist, in
general, tells us that the process of ‘quantizing’ some given classical theory
may well sometimes involve serious matters of choice.

The quantum particle §21.2
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There is a related issue which concerns the ‘generality’ of the choice of
coordinates x1 , . . . , xN . Recall that in §§20.1,2 we were allowed complete
freedom in our choice of generalized coordinates q1 , . . . , qN on the con-
Wguration space C. We may ask: is this complete freedom still allowed
when we pass to the quantum theory? In fact, the answer is ‘no’, if we are
expecting that the classical conjugate momentum pa, of each qa, is to be
‘quantized’ simply as �i�h]=]qa. The issue is a very delicate one, and it
takes us into the fascinating area known as geometric quantization.4 It has
a particular importance in relation to general relativity, whether one is
proposing to ‘quantize the gravitational Weld’ or merely to discuss quan-
tum Welds in a curved spacetime background. (I shall return to the matter
of quantum theory in curved backgrounds in §30.4.) There are, however
many standard situations in which we can get away with coordinates that
are more general than just Xat ones, so long as we are appropriately
careful. In particular, angular coordinates are useful to use, and the
conjugate momenta are then angular momenta. We shall be concerned
with angular momentum later (§22.8; and §22.12 for the relativistic case).

21.3 Schrödinger’s equation

Let us ignore these issues of factor ordering and generalized coordinates
etc., at least for the moment, and suppose that we have a quantum-
mechanical Hamiltonian that we are satisWed with. What use are we to
put it to? The answer is that it plays a crucial role in that equation,
fundamental to our understanding of how a quantum system evolves
with time, known as the Schrödinger equation. In fact, the form of
this equation is eVectively already determined by the rules set up above.
How does this work? In the Wrst place, we must bring into view the
‘invisible’ function c that has been hiding unseen at the extreme right-
hand side of all our commutator relations. The Hamiltonian is now an
operator, after all, because of all those ]=]xs, and it needs something
(potentially, at least) to operate on, at its extreme right-hand end. Since
Schrödinger’s equation, being a time-evolution equation, is now going to
make c vary with time, we need to write c as a function of t, as well as of
all our spatial xas:

c ¼ c(x1 , . . . , xN ; t):

But it cannot depend on the pas, because these quantities are not now
‘independent variables’, but are to be interpreted as diVerentiations with
respect to the xas. Such a function c is called a wavefunction. It provides
the quantum state of the system. We shall be looking at the physical
interpretation of wavefunctions in due course.
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How does diVerention with respect to t Wt into this? Here is where the
remarkable time evolution of Schrödinger comes in. Recall from §20.2 that
the (classical time-independent) Hamiltonian represents the total energy of
the system. We also take note of the fact—as hinted above (in §21.2)—that
if our quantum theory is ever to Wt in with the requirements of relativity,
the quantum rule pa ¼ i�h]=]xa (for a single particle) ought to extend to the
a ¼ 0 component as well as to the three spatial components (see §18.7).
Accordingly, in the ‘quantization’ procedure, energy should get replaced
by diVerentiation with respect to time (E ¼ i�h]=]t). What the Schrödinger
equation expresses is precisely this ‘quantum role’ of the total-energy
interpretation of the Hamiltonian:

i�h
]c
]t
¼ Hc,

where

H ¼ H i�h]

]x1
, . . . ,

i�h]

]xN
; x1 , . . . , xN

� �

As a simple example, using the particular case of a quantum Hamiltonian
given in §21.2 above, we can now write down the Schrödinger equation for
a single particle of mass m, moving in an external Weld whose energy
contribution is V ¼ V (x, y, z):[21.5],[21.6]

i�h
]c
]t
¼ � �h2

2 m
r2cþ Vc:

Of course, all this replacing of momentum and energy by diVerential
operators looks like so much mathematical mumbo-jumbo, and we may
well ask what such amusements have to do with the momentum imparted
by a boxer’s Wst or by a golfer’s swing. We may well ask! But according to
quantum mechanics, it has everything to do with it. The key to momentum
is that it is conserved, and the eVect of a blow on its recipient is simply a
result of the inevitability of that conservation. The momentum must go
somewhere; it cannot just disappear, because it is conserved. The same
applies to energy.

[21.5] Solve this Schrödinger equation explicitly in the case of a particle of mass m in a constant

Newtonian gravitational Weld: V ¼ mgz. (Here z is the height above the Earth’s surface and g is

the downward gravitational acceleration.)

[21.6] By transforming to the freely-falling frame with coordinates X ¼ x,Y ¼ y, Z ¼
z� 1

2
t2g, T ¼ t, show that the Schrödinger equation of Exercise [21.5] transforms to one without

a gravitational Weld, with wavefunction C ¼ ei(1
6
mt3g2þmtzg)c. What does this tell us about Einstein’s

principle of equivalence (see §17.4), as applied to quantum systems? (Take note of §21.9.)
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But surely we already have momentum conservation and energy conser-
vation in classical Hamiltonian theory, the skeptical reader may well
complain, so why the need for the curious identiWcation between a physical
quantity and an eVectively disembodied diVerential operator, whatever
good that does?[21.7] To attempt to answer this, and to make the proposal
more plausible, one needs to appeal to experiment. (Such a ridiculous-
looking proposal could hardly carry much weight otherwise!) Detailed
experimental issues are not things that I can go into here, but the essential
point that emerges from a vast amount of experimental evidence is that
there is a direct association between frequency and energy, and a corres-
ponding association between wave number (the reciprocal of wavelength)
and momentum; moreover, these associations appear to be universal, in all
phenomena. We shall be seeing the relevance of this to ‘pa ¼ i�h]=]xa’ in
§21.5. In the meantime, let us have a look at some of the experimental
reasons for believing that energy and momentum indeed have this kind of
‘wavy’ association.

21.4 Quantum theory’s experimental background

Perhaps one of the most direct manifestations of this sort of association
occurs with crystaline materials. In such structures we have a spatial
periodicity in the crystal’s atomic arrangements. As was first shown in a
famous experiment by C. J. Davisson and L. H. Germer (1927), if elec-
trons, having a suitable choice of initial 3-momentum, are fired at such a
material, then they are deflected (or reflected) from it through certain very
special angles. These directions and angles are found to depend specifically
on the incoming and outgoing 3-momenta in relation to the periodic
nature of the crystalline lattice. A manifest implication of these experi-
mental results is that there is a precise relationship of inverse proportion-
ality between the electrons’ 3-momenta and a distance of periodic
displacement; see Fig. 21.2. The same holds for other types of particle.
The upshot is that a particle of momentum p seems to be a periodic thing,
like a wave, where there is a universal relationship between the wavelength
l and the magnitude p of its momentum, according to the reciprocal
formula (involving Planck’s constant h ¼ 2p�h)

l ¼ hp�1 ¼ 2p�h

p
:

[21.7] Show that, if the quantum Hamiltonian H has a translation invariance, say being

independent of the position variable x3, then the corresponding momentum p3 is conserved in

the sense that the operator p3 commutes with the time evolution ]=]t. Explain, in the light of the

interpretations given later, why this commutation implies conservation.
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The wavelength l, associated with a particle of momentum p, is called
its de Broglie wavelength, after the highly insightful French aristocrat and
physicist Prince Louis de Broglie, who first suggested, in 1923, that all
material particles have a wavelike nature with a wavelength given by the
above formula. Moreover, in accordance with the requirements of relativ-
ity (see §18.7), the particle should also have a frequency n, given in terms of
its energy E by the Planck formula.

E ¼ hn ¼ 2p�hn

that we shall come to shortly.[21.8] In its own rest-frame the particle’s
energy is Einstein’s E ¼ mc2, where m is its rest-mass, so it is intrinsically
associated with the frequency mc2=2p�h, that is, mc2=h.
These kinds of consideration led to the conclusion that an ordinary

particle displays wavelike behaviour, this having a universal relationship
to the particle’s rest-mass as determined by the Planck and de Broglie
formulae. But, in the previous two decades, a converse to this had already
been established, demonstrating that entities previously thought of as
purely wavelike—basically Maxwell’s oscillating electric and magnetic
fields as the constituents of light (recall §19.2)—had also to be viewed as
having a particulate nature, again consistent with the Planck and de
Broglie formulae. The most convincing evidence for this was in the photo-

electric effect, first observed by Heinrich Hertz in 1887 and whose most
puzzling aspects, as demonstrated by Philipp Lenard in 1902, were mag-
nificently explained by Einstein in 1905 using a particle picture of light.
(This is what earned Einstein the 1921 Nobel Prize, not relativity theory!)
The photoelectric effect occurs when light of suitably high frequency n
shines on an appropriate metallic material, causing electrons to be emitted.

[21.8] See if you can see why the requirements of special relativity enable Planck’s E ¼ hn to be

deduced from de Broglie’s p ¼ hl�1. (Hint: You may assume that the hyperplanes in M along

which the wave takes a constant value are Lorentz-orthogonal to the particle’s 4-velocity.)

Fig. 21.2 The Davisson–Germer

experiment. A beam of electrons of

3-momentum p encounters a mater-

ial of periodic crystalline structure.

Scattering or reflection occurs when

the atomic pattern matches with

that of the electrons, these being

regarded as waves with a wavelength

l related to the magnitude of the

momentum p according to l ¼ h=p,
where h is Planck’s constant.
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The puzzle arises from the fact that the energy of the emitted electrons
does not at all depend upon the intensity of the light (whose frequency n is
taken to be constant). On a wave picture, one would expect that the
greater the intensity, the more energetic would be the ejected electrons.
This does not happen (though more electrons come out when the intensity
is greater). Einstein explained this on the basis of the light being pictured
as incident particles—now called photons—whose individual energy is
given by Planck’s E ¼ hn, and each ejected electron is taken to result
from the impact on an individual atom by such a photon. Einstein used
Planck’s formula to great effect, making several predictions that were later
confirmed, particularly by the initially skeptical American experimenter
Robert Millikan in the years up to 1916.

In fact, this quantum-mechanical particulate nature of light had al-
ready begun to reveal itself somewhat earlier. This was in 1900, when Max
Planck launched the quantum revolution. He did this by providing a very
remarkable analysis of black-body radiation, which concerned electromag-
netic radiation in equilibrium with its ‘black’5 material surroundings, all
kept at some specific temperature T (see Fig. 21.3a). He obtained the
(correct) formula, plotted in Fig. 21.3b,

2hn3

ehn=kT � 1ð Þ�1

(a) (b)

Intensity I

Frequency n

Fig. 21.3 Blackbody radiation. (a) The ‘black’ cavity ensures that the contained

radiation is in thermal equilibrium, at temperature T, with its heated surround-

ings. (b) For a given T, the intensity I at each frequency n is found to be a specific

function of n. The continuous curve is the observed one, given by Planck’s famous

formula I ¼ 2hn3= ehn=kT � 1
� ��1

(where h and k are Planck’s and Boltzmann’s

constants, respectively). The broken curve is that of Rayleigh–Jeans, I ¼ 2kTn2, in

which the radiation is treated as classical waves, approximating Planck’s formula

for small n, but diverging for large n. The dotted curve depicts Wien’s law

I ¼ 2hn3e�hn=kT in which the radiation is treated as classical particles.
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for the specific intensity I, as a function of the frequency n, where k is
Boltzmann’s constant (related to the units in which temperature is meas-
ured, cf. §27.3).
Planck’s formula turns out to fit the observations perfectly. Prior to

Planck, the nature of the black-body spectrum had been a mystery. The
entirely wave picture of electromagnetic radiation had led to the paradox-
ical Rayleigh–Jeans formula I ¼ 2kTn2, accurate for small n, but for which
the intensity would diverge to infinity for large n. An apparent improve-
ment was Wien’s proposal I ¼ 2hn3e�hn=kT , accurate for large n, which
could be given a ‘justification’ on the basis of treating the radiation as
though it were a bath of classical particles. The quantity h, as it appeared
in Planck’s own formula, was postulated, by him to be a new fundamental
constant of Nature (now called Planck’s constant), whose extremely tiny
value is found to be about 6:62� 10�34 Joule-seconds. To obtain his
formula, Planck found himself forced to the view that electromagnetic
oscillations could be absorbed or emitted only in bundles of a specific
energy E, directly related to the frequency n of oscillation according to the
above relation

E ¼ hn,

where he also adopted a ‘crazy’ statistical counting that amazingly fore-
shadowed the (quantum-mechanically correct) Bose–Einstein statistics
that we shall come to in §23.7.

Here the physical puzzle was the other way around from that of the
electrons encountering a crystal, since electromagnetic effects were
thought of, at that time, as being just waves, yet now they seemed to be
having properties of particles! Using Dirac’s form of Planck’s constant, we
find E ¼ 2p�hn, so the time-period of the oscillation n�1 satisfies the corres-
ponding formula to our earlier one (l ¼ 2p�h=p) relating wavelength to
momentum, namely n�1 ¼ 2p�h=E. Nowadays, (following the further in-
sights of Einstein, Bose, and others) we understand Planck’s relation to
refer not just to ‘oscillations of electromagnetic field’, but to actual ‘par-
ticles’—the quanta of Maxwell’s electromagnetism that we call photons—
although it took many years for Einstein’s original lonely insights to
become accepted. Among the further confirmations, following these suc-
cesses with the photoelectric effect, was the crucial experiment of Arthur
Compton (1923), which demonstrated that photons, in their encounters
with charged particles, indeed behaved just like massless particles, in
accordance of the relativistic dynamics of §18.7 (see §25.4, Fig. 25.9).
Accordingly, the energy and momentum are both reciprocally related to
a period (of time for energy and of space for momentum), the period being
always scaled in terms of 2p�h.
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One of the most convincing (and best known) reasons for our having to
face up to the fact that particles can behave as waves and waves as
particles is the two-slit experiment.6 Here we have a source of particles
and a detector screen, where there is a barrier with a pair of narrowly
separated parallel slits in it, situated between source and screen; see
Fig. 21.4a. We suppose that one particle at a time is emitted, aimed at
the screen. If we start with one slit open and the other closed, then a
haphazard pattern of dots will appear at the screen, forming one at a time
as individual particles from the source hit it. The intensity of the pattern
(in the sense of the greatest density of dots) is most extreme in a central
strip close to the plane connecting source to slit, as is to be expected, and it
falls oV uniformly in both directions from this central strip (Fig. 21.4b).
This pattern is eVectively the same if the experiment is repeated with the
other slit being the open one (Fig. 21.4c). No puzzle here. But if the
experiment is run once more when both slits are now open, then something
extraordinary happens; see Fig. 21.4d. The particles still make dots on the
screen one at a time, but now there is a wavy interference pattern of
parallel bands of intensity, where we even Wnd that there are regions on
the screen that are never reached by particles from the source, despite the
fact that when just one or the other of the slits was open, then particles
could reach those regions perfectly happily! Although the spots reach the
screen one at a time at localized positions, and although each occurrence
of a particle meeting the screen can be identiWed with a particular particle-
emission event at the source, the behaviour of the particle between source
and screen, including its ambiguous encounter with the two slits in the
barrier, is like a wave, where the wave/particle feels out both slits during
this encounter. Moreover—and this is the matter of particular relevance

Screen
Two slits

Electron gun
(a) (b) (c) (d)

Fig. 21.4 (a) Arrangement for the two-slit experiment. One electron is emitted at

a time, aimed at the screen through the pair of slits. (b) Pattern on the screen when

the right-hand slit is covered. (c) The same, when the left-hand slit is covered.

(d) Interference occurs when both slits are open. Some regions on the screen

cannot now be reached despite the fact that they can be with just one or the

other slit open.
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for our most immediate purposes—the spacing of the bands on the screen
tells us what the wavelength of our wave/particle must be, and this
wavelength l is indeed given in terms of the particles’ momentum p by
just the same formula as before, namely l ¼ 2p�h=p.

21.5 Understanding wave–particle duality

All this is as may be, so the hard-headed skeptic might well interject, but it
still does not force us into making this absurd-looking identiWcation
between energy–momentum and an operator! Indeed not, but we should
not turn down a miracle when it is presented to us! What miracle is this?
The miracle is the fact that these seemingly gross absurdities of experi-
mental fact—that waves are particles and that particles are waves—can
all be accommodated within a beautiful mathematical formalism, a for-
malism in which momentum is indeed identiWed with ‘diVerentiation
with respect to position’, and energy with ‘diVerentiation with respect to
time’.
How does this formalism help us to understand this mysterious wave–

particle duality? To describe our wave/particle, we shall require a
mathematical entity that can provide us with a clearly deWned particle’s
4-momentum Pa, while possessing a spatial and temporal wavelike period-
icity of the amount prescribed above. (I am now using a capital letter P,
because in this particular case I am referring to a speciWc ‘classical’ value
of 4-momentum that our particle might turn out to have. We are still
thinking of the ‘quantum 4-momentum’ as being described by a diVeren-
tial operator.) A natural such wavelike mathematical entity would be a
wavefunction with the particular spatio-temporal dependence of the form
(see §5.3)

c(xa) ¼ e�iPax
a=�h

(a plane wave). This quantity becomes itself again if we increase Pax
a by

2p�h (since that adds �2pi to the exponent, so the expression is multiplied
by e�2pi ¼ 1). It therefore has a temporal periodicity of 2p�h=P0 and a
spatial periodicity of 2p�h=P1 in the x1-direction, and similarly for the
other three spatial directions. This agrees exactly with the requirements
set out above.
Now, what is special about this particular entity? It is what is called an

eigenfunction of our quantum momentum operator

pa ¼ i�h
]

]xa
:

This means that if we apply this operator to the above c(xa) we simply get
a constant multiple of c(xa) again (§6.5):
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i�h
]

]xa
c(xb) ¼ i�h

]

]xa
e�iPbx

b=�h ¼ Pae
�iPbx

b=�h ¼ Pac(xb):

Notice that this constant multiplier is in fact just the (classical) 4-
momentum Pa that we require our entity to have. Thus, when c(xa) has
the right form, namely that given above, our mysterious quantum momen-
tum pa ¼ i�h]=]xa converts itself into a straightforward classical
momentum Pa, when applied to this c:

pac ¼ Pac,

but it does not do this for other kinds of state. We say that the above
c has a deWnite value for the 4-momentum, and we call it a momentum

state. We are to think of a particle in free Xight, which happens to
have a deWnite classically identiWable momentum Pa, as being mathe-
matically described by this particular wavefunction c, which is the eigen-
function of the quantum operator pa, having eigenvalue Pa.
The only wavefunctions that have a deWnite classical momentum
value are, indeed, those which are eigenfunctions of the quantum momen-
tum operator.
Recall that, in §13.5, the notion of an eigenvector of a linear operator

T was introduced, this being a vector y for which Ty ¼ ly, for some
scalar quantity l called its eigenvalue. This is exactly the situation that we
have here, with i�h]=]xa standing for the operator T, and with Pa standing
for l (taking each particular value for a in turn), except that in §13.5 wewere
basically referring to Wnite-dimensional vector spaces and their linear trans-
formations. Here, we are concerned with the vector space W of possible
c(xa)s, and that will be an inWnite-dimensional vector space. (It is a vector
space because we can add together functions of xa and we can multiply
functions of xa by numbers, and in each case we just get new functions of xa.
It is inWnite-dimensional because, for example, all the functions of the
particular kind that we have just been considering above, for inWnitely
many diVerent choices of Pa, are linearly independent.[21.9]

Eigenfunctions (or eigenstates, as they are frequently called in
quantum mechanics), play a key role in the quantum formalism. In the
language of quantum mechanics, various operators (like the pa ¼ i�h]=]xa

which we have just been considering, and others, such as position
or angular momentum, which we consider later) are called dynamical

variables. Our wavefunction c, that initially simply played the role of the
‘invisible function’ that we imagined as sitting in the shadows, over on the
right-hand side of all our operators, is now deWnitely beginning to play an
active role. We think of it as the state of the physical system, as mentioned
above. Sometimes it is called a state vector (although this is really a more

[21.9] Why? Here linear dependence can involve continuous sums, namely integrals.
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general term, where the particular descriptions in terms of space and time
coordinates that I have been using for c need not apply). As with the case
of 4-momentum, considered above, the eigenstates of some dynamical
variable are those states for which that particular dynamical variable has
what is called ‘a deWnite value’, and the eigenvalue is the actual ‘value’ that
the dynamical variable has for that state.
A point should be made about the fact that, up until this point, I have

been treating our momentum eigenstate in a completely 4-dimensional
spacetime way, consistently with the requirements of special relativity.
This is economical, in that the expression[21.10]

e�iPax
a=�h ¼ e�iEt=�h eiP � x=�h

(with Pa ¼ (E,� P) and xa ¼ (t,x), as in §18.7) contains both the
spatial dependence that makes it an eigenstate of the ordinary spatial
3-momentum

p ¼ (�p1, �p2, �p3) ¼ �i�h
]

]x1
,

]

]x2
,

]

]x3

� �

with eigenvalue P and the temporal dependence that makes it a solution
of the Schrödinger equation with energy eigenvalue E. However, the
Schrödinger formalism as a whole is not a relativistic scheme, in that
it treats time diVerently from the spatial variables, so in the discussions
that follow, in this chapter, it is better that I revert to non-relativistic
descriptions.

21.6 What is quantum ‘reality’?

Let us step back from these detailed matters for a moment, and ask what
all this is trying to tell us about ‘reality’. Are the dynamical variables ‘real
things’? Are the states ‘real’? Or should we say that we have achieved
reality only when we have arrived at the seemingly ‘classical’ quantities
that arise as eigenvalues of the dynamical variables (or of other oper-
ators)? In fact, quantum physicists tend not to be very clear about this
issue. Most of them are distinctly uncomfortable about addressing the
issue of ‘reality’ at all. They may claim to take what they would call a
‘positivist’ stand, and refuse to consider what ‘reality’ is supposed to mean,
regarding such an inquiry as ‘unscientiWc’. All that we should ask of our
formalism, they might claim, would be that it give answers to appropriate
questions that we may pose of a system, and that those answers agree with
observational fact.

[21.10] Why can I split it this way?
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If we are to believe that any one thing in the quantum formalism
is ‘actually’ real, for a quantum system, then I think that it has to be
the wavefunction (or state vector) that describes quantum reality. (I
shall be addressing some other possibilities later, in Chapter 29; see
also the end of §22.4.) My own viewpoint is that the question of
‘reality’ must be addressed in quantum mechanics—especially if
one takes the view (as many physicists appear to) that the quantum
formalism applies universally to the whole of physics—for then, if there
is no quantum reality, there can be no reality at any level (all levels being
quantum levels, on this view). To me, it makes no sense to deny reality
altogether in this way. We need a notion of physical reality, even if only a
provisional or approximate one, for without it our objective universe, and
thence the whole of science, simply evaporates before our contemplative
gaze!
All right then, what about the state vector? What is the diYculty about

taking it as representing reality? Why is it that physicists often express
extreme reluctance about taking this philosophical stance? To understand
the diYculties, we must look more carefully into the nature of wavefunc-
tions and their physical interpretations.
Let us Wrst examine our momentum state c ¼ eiP � x=�h more closely

(where I have taken it at time t ¼ 0, for convenience). We note that it
is in no way localized like an ordinary particle. It is spread out evenly
over the whole of the universe. Its ‘magnitude’, as measured by its
modulus jeiP � x=�hj, has the same value 1 everywhere in space (see §5.1).
The reader will be excused for thinking that this is a strange picture
to have to entertain, for a single particle, with just a well-deWned momen-
tum in some spatial direction. What has happened to our ordinary
picture of a particle, as something (at least approximately) localized at a
single point? Well, we might say that a momentum state is only an
idealization. We can still get away with having a very well-deWned (if
not perfectly precisely deWned) momentum if we pass to somewhat
similar states referred to as ‘wave packets’. These are given by wavefunc-
tions that peak sharply in magnitude at some position and are
‘almost’ eigenfunctions of momentum, in an appropriate sense. In one
dimension such wave packets can be presented explicitly, by taking the
product of a momentum state with a Gaussian e�x2

or, more appropri-
ately, with a general Gaussian

A ¼ e�B2(x�C)2 ,

(where A, B and C are real constants). This is the well-known ‘bell-
shaped’ curve of statistics (for an illustration of which, see Fig. 27.5 in
§27.4) where, in the above expression, its ‘peak’ is centred at the point
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x ¼ C. It is of some interest (and calculational advantage) that the wave
packet obtained by taking such a product can be succinctly expressed
by allowing C to be a complex number in above expression.[21.11]

Wave packets in the full three dimensions of space can also be
similarly constructed, such as by using a Gaussian Ae�B2(x2þy2þz2), with
its peak displaced in complex direction. In each case, B�1 provides
a measure of its spread. In fact, there is a theorem, underlying what is
called ‘Heisenberg’s uncertainty principle’, that tells us that there is an
absolute limit to how small its spread can be in relation to how closely
‘almost’ a momentum state it is. We shall see this a little more explicitly in
§21.11.
For now, let us try to get a better picture of what momentum states

and wave packets are actually like. Now we must bear in mind that a
wavefunction is a complex-valued wave, and its ‘wavy’ character is not
necessarily to be seen as an oscillation in its magnitude (or intensity). In
the case of a momentum state, it is the wavefunction’s argument (§5.1),
namely �Pax

a=�h, taken as measured round a circle—i.e. e�iPax
a=�h taken on

the unit circle in the complex plane—that has a ‘wavy’ character. In
quantum theory, we tend to refer to the argument of the value of the
wavefunction as its phase. We Wnd that the phase is not so much ‘wavy’ as
‘twisting round and round’. In Fig. 21.5a, I have tried to indicate
this behaviour of the wavefunction in some particular direction, by
plotting that direction at an angle sloping oV to the right (x axis of the
picture), and taking a plane perpendicular to that direction (remaining u

and v axes in the picture) to represent the complex plane of values that the

(a) (b)
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Fig. 21.5 A particle wavefunction: c as a complex function of position x.

(a) Momentum state e�iPx=�h, depicted as a corkscrew (eigenfunction of momentum

p). (b) A wave packet e�A2x2

e�iPx=�h.

[21.11] Replacing the real number C in the above displayed expression by the complex number

Cþ iD (where C and D are real), find the frequency of the wave packet and the location of its

peak.
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hp−1

wavefunction c can take (so the picture plots c ¼ uþ iv on that plane).
Thus, the x direction of my picture corresponds to some actual direction in
ordinary space, but the u and v directions are not ordinary spatial direc-
tions; they are put in to represent the complex plane of possible values of
the wavefunction. We notice that, for our momentum state, the wavefunc-
tion is a corkscrew (which is right-handed for positive momentum in the
spatial direction represented by our picture’s x direction). In Fig. 21.5b, I
have drawn the corresponding picture for a wave packet. It is like a
corkscrew for a stretch (so it has only a moderately well-deWned momen-
tum), but then this ‘corkscrewness’ tails oV in both directions, and the
wavefunction becomes very small outside a certain interval.
Of course, to get the full picture of these waves, we should have to try to

imagine that this is going on in all the three dimensions of space at once,
which is hard to do, because we would need two extra dimensions (Wve in
all) in order to Wt in the complex plane as well as the spatial dimensions!
But things are not so bad, in the case of the momentum state, if we just
think of the planes of constant phase. These are parallel planes perpendicu-
lar to the direction of the momemtum, where the spacing between each
plane and the next is 2p�h=p, where p is the magnitude of the (spatial) 3-
momentum. See Fig. 21.6. This kind of description is useful for consider-
ing such things as the picture of a photon wavefunction encountering a
crystal, as was done in Fig. 21.2. We can also use this description in the
case of the two-slit experiment, if we take the slits as being a long way from
the screen; then we can think of the wavefunction of each particle, as it
approaches some localized region of the screen, as being composed as
the sum of two parts, each of which is closely a momentum state (being

Fig. 21.6 Planes of a given phase,

for a momentum eigenstate with

spacing hp�1, where p is the magni-

tude of the spatial 3-momentum.

(Compare Fig. 21.2.)
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Screen

essentially a single-frequency plane wave—owing to the great distance of
the slits from the screen), but where the direction of each of the two
component parts is slightly diVerent. At some places on the screen, the
two waves will reinforce each other, while at other places they will cancel
out, giving the bands of greater and lesser intensity that I described above
(in Fig. 21.4d). We can see this geometry in Fig. 21.7, in which the planes
represent regions in space where each component wave has a constant
value for its phase. In the full wavefunction, these two component parts
must be added together. So, if we assume that each part individually has
the same intensity, they will cancel out at places where they are out of
phase and reinforce where they are in phase. This provides us with the
bands of intensity that are actually observed in the two-slit experiment.
Yes,yes, the impatient readermightwell interject,but this is justhowwaves

behave. I have not faced up to the fact that our wave/particles are wave/
particles! Apart from the apparently very minor embellishment that my
waves are complex waves, all that I have been doing is to describe wave
interference of a kind that would occur with ordinary waves in the sea, or
sound waves, or Maxwell’s waves built from classical electromagnetic Weld
(radio waves, visible light, X-rays, etc). But the whole point of the two-slit
experiment—so I was supposed to have been insisting—is that the experi-
ment shows up a conXict between the wave picture and a particle picture.
Indeed so; the most obvious manifestation of particle nature, in this experi-
ment, occurs when these little fellows make their tiny marks on the screen:
one at a time . . . !

21.7 The ‘holistic’ nature of a wavefunction

There is something that should be emphasized here. One could imagine
that a little spot on the screen comes about from time to time, when

Fig. 21.7 An electron’s wave-

function, approaching the screen of

Fig. 21.4 in the 2-slit experiment,

may be regarded as a superposition

of two of the plane waves of Fig.

21.6, mutually tilted at a slight angle.

Where the phases agree (along the

broken lines) the two reinforce each

other, giving rise to the greatest

probability of arraival at the screen.

Half way between these maxima, the

phases are opposite and the waves

cancel, giving zero probability of the

electron reaching the screen.
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the local intensity of the wave reaches some critical value or, rather, that
there is some probability of a little spot appearing on the screen, this
probability increases as the intensity of the wave increases. Nice try! But
as I have formulated the two-slit experiment (in its idealized form) above,
this simply will not work. For if it were just a matter of individual
probabilities at individual places, we should expect that sometimes two
spots would appear on the screen, at widely separated locations where the
intensity is appreciable, with just the one wavefunction describing the
emission of a single particle at the source. The diYculty is made more
manifest if we imagine that our particles are charged particles, such as
electrons. For if the emission of a single electron at the source could result
in a pair of electrons arriving at the screen, even if only very occasionally,
then we should have a violation of the law of conservation of charge. The
same would apply to any other conserved particle ‘quantum number’, such
as baryon conservation (§25.6), for example, if we were to use neu-
trons.[21.12] Such non-conservation behaviour would be in gross contradic-
tion with an enormous amount of experimental evidence. Yet, electrons
and neutrons do exhibit the kind of self-interference that results in a two-
slit-experiment behaviour as I have just described!
So we have just got exactly nowhere in understanding wave/particles—

some irate reader will surely object with increasingly justiWed impatience!
But hold on please, we are not through with interpreting our wavefunc-
tions. We have to think of the entire wave as describing (or ‘being’) just a
single particle. Although it does, in a deWnite sense, determine the prob-
ability that a spot will occur at the various places on the screen, this
probability refers to just the one particle. This interpretation will not
work if we think of the wavefunction in a local way, as independently
providing a probability of spot formation at each separate place on the
screen. We must think of a wavefunction as one entire thing. If it causes a
spot to appear at one place, then it has done its job, and this apparent act
of creation forbids it from causing a spot to appear somewhere else as well.
Wavefunctions are quite unlike the waves of classical physics in this
important respect. The diVerent parts of the wave cannot be thought of
as local disturbances, each carrying on independently of what is happening
in a remote region. Wavefunctions have a strongly non-local character; in
this sense they are completely holistic entities.
This point can be made even more forcefully in a somewhat diVerent

experimental situation. This has the additional advantage of making quite
clear to us that the wave-packet picture of a wave/particle is, by itself,

[21.12] Show that the probability of such double-spot appearances, according to such a

picture, must be quite appreciable, whatever the law of probability of spot appearance in terms

of wavefunction intensity might be. Hint: Divide the screen into two parts, with equal probability

of spot appearance in each.
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quite inadequate for explaning particle-like quantum behaviour. Let us
imagine that there is a particle source, just as before, and we are going to
suppose that it only emits a single particle. Instead of using a barrier with a
pair of slits, we are going to suppose that there is what is called a beam-

splitter in the particle’s path. It will help our imaginations if we think of
our particle as a photon, and we can imagine that the beam-splitter is a
kind of ‘half-silvered mirror’7 which is to split our photon wave packet
into two widely seperated parts. For clarity of our conceptions, let us
envisage our ‘experiment’ being carried out in interstellar space (and the
reader should be warned that I am not proposing anything remotely
practical here—our example will serve merely to exhibit some very basic
predictions of quantum mechanics under extreme circumstances). If we
choose, we can imagine the photon’s wavefunction to start out from the
source in the form of a neat little wave packet, but, after encountering the
beam-splitter, it will divide itself in two, with one wave-packet part
reXected from the beam-splitter and the other wave-packet part transmit-
ted through it, say in perpendicular directions (Fig. 21.8). The entire
wavefunction is the sum of these two parts. We could wait for a year, if
we like, before choosing to intercept the photon’s wavefunction with a
photographic plate or other kind of detector. The two parts will be a very
long way away from each other by now, but we can imagine that I have
two colleagues (in two diVerent space laboratories), more than 1.4 light
years separated from one another. Each of my colleagues has a separate
detector, and although each of the two wave-packet parts may individually
have dispersed considerably by now, each colleague has a large paraboidal
reXecting mirror which collects the dispersed wave packet, focusing it on
that particular colleague’s detector. What does quantum mechanics say
will happen? It says that one or other of my colleagues will indeed detect
the photon, but that they cannot both detect the photon. This is not the

Detector
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Detector
E

1 light year

1.4 light years

1 
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 y
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Source

Beam splitter

Fig. 21.8 A hypothetical space

experiment illustrating the non-local

nature of a wavefunction under

measurement. The photon’s wave-

function starts from the source as a

neat little wave packet, but divides

into two after encountering the

beam-splitter, to arrive, after one

year, at light-year distant detectors

D and E. But just one of D or E can

register the photon.
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kind of thing that a classical wave does. Remember that my two colleagues
are over 1.4 light years apart. Relativity insists that no signal can pass
between them in less than 1.4 years (§17.8); yet the fact that one wave-
packet part yields up a photon prevents the other one, 1.4 light years away,
from doing so, and vice versa. In only a year’s time, I learn from each of
them what has happened, and I Wnd that only one of them has received a
photon. The part of the wavefunction that each colleague has access to
seems to ‘know’ what the other part of the wavefunction is up to! Every
time I perform this experiment, I Wnd that one or other of them receives
the photon, but not both. No classical type of wave eVect could achieve
this apparently ‘instantaneous communication’ between the two parts of
the wavefunction. Quantum wavefunctions are just diVerent from classical
waves.
Yet, the sceptical reader may still not be convinced: for no such com-

munication would be needed if the photon simply made its choice to go
one way or the other at the beam splitter. Quite true. What the above
experimental set-up is exhibiting is the particle-like aspect of a photon. If
the photon were to remain localized and particle-like, then its decision as to
which way to go would have to be made at the beam-splitter. (A localized
particle can’t stretch simultaneously over light-year spans!) If experiments
like this were all that photons had to contend with, then wavefunctions
would not be needed. But there are other experiments that might be
performed on the photon after it emerges from the beam splitter. How
can our poor little photon know, when it is about to emerge, that my
colleagues do not plan a diVerent type of fate for it? Suppose that, instead
of each individually trying to detect the photon, they had concocted the
following plan. They would separately reXect their parts of the wavefunc-
tion to a fourth location, where the two reXected parts would, say after a
further year, simultaneously encounter a second beam splitter (Fig. 21.9).
There, each arriving wave packet part would be individually split in two,
so that one half emerges from this beam splitter in one direction to
encounter a detector A, and where the other half emerges in another
direction to go to another detector, B. (This applies separately for each
of the two wave-packet parts, coming from the separate vicinities of each
of my two colleagues.) If all the path lengths are accurately Wxed appro-
priately (say all equal), then we Wnd, remarkably, that the emerging
photon can only activate one of the detectors, say A, and not B, because
of constructive interference between the two parts of the wavefunction at
A and destructive interference at B.
No purely particulate picture of a photon can achieve this. The wave-

function is deWnitely needed, now, to explain the wave aspect of wave/
particle duality. If the photon had already made its choice as to which of
my colleagues to travel towards, when it left the Wrst beam splitter, then
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the other route would become irrelevant. In that case, when the photon
Wnally reaches the second beam splitter it comes from only one direction,
and it could go either way, to reach either A or B. There is now no
possibility of the needed destructive interference that prevents it from
reaching the detector at B. Since A is always the detector that registers,
it cannot just be the case that the photon has simply made its choice when
it leaves the Wrst beam splitter. It is necessary that both of the alternative
routes that the photon might take are simultaneously felt out by the
photon in its passage from the Wrst to the second beam splitter.8

Of course, I have been grossly over-fanciful in my speciWc astronomical-
scale situations described above. It is clear that no quantum experiment
with anything like such a baseline has actually been performed! On the
other hand, ground-based versions of this kind of experiment (the latter
being what is called a Mach–Zehnder interferometer) have frequently been
carried out, with arm lengths of perhaps metres rather than light years,
and the expectations of quantum mechanics have never been contradicted.
The key puzzle is that somehow a photon (or other quantum particle)
seems to have to ‘know’ what kind of experiment is going to be performed
upon it well in advance of the actual performing of that experiment. How
can it have the foresight to know whether to put itself into ‘particle mode’
or ‘wave mode’ as it leaves the (Wrst) beam splitter?
The way that quantum theory works is not to give the particle any such

‘foresight’ but simply to accept the non-local holistic character of a wave-
function. In both of the above experiments, we take the wavefunction to
be split into two parts at the initial beam splitter, and the particle-
like aspect of the wave/particle only shows up at the detector, when the
measurement is Wnally performed. The measurement makes the holistic
character of the wavefunction manifest, in the sense that the particle
always shows up in just one place, its appearance at one location forbid-
ding its simultaneous appearance anywhere else.

Fig. 21.9 Mach–Zehnder interfer-

ometer on an interstellar scale. How

can the photon know, upon emer-

gence from the Wrst beam splitter,

that instead of the arrangement of

Fig. 21.8, mirrors at D and E reflect

the wavefunction portions to a

second beam-splitter? Following this

encounter, only detector A is able to

receive the photon.
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21.8 The mysterious ‘quantum jumps’

But now another question looms large. How do we know what physical
circumstance it is that constitutes a ‘measurement’? Why, after we have
been happily using this wavefunction description of a particle as a wave
spread out in two quite diVerent directions through the reaches of space,
should we suddenly revert to a description of it as a localized particle as
soon as the detection of it is performed? This same curious kind of picture
of a quantum particle appears also to be appropriate for detection at the
screen in our two-slit experiment, just as it was with the (unspeciWed)
‘detectors’ used by my far-Xung colleagues. In my descriptions so far,
it certainly seems that the wavelike aspects must be maintained right
up until we choose to ‘perform a measurement’ to detect the particle,
but then we suddenly revert to a particle-like description, where there is
an awkward discontinuous (and non-local) change of the state—a quan-

tum jump—as we pass from the wavefunction picture to the ‘reality’
presented by the measurement. Why? What is it about the detection
process that demands that a diVerent (and highly non-local) mathema-
tical procedure should be adopted, in the event of a ‘measurement’, from
the standard quantum-evolution procedure provided by Schrödinger’s
equation?
I shall try to address this puzzling issue in some depth later, in Chapters

23, 29, and 30. But even if we accept that, at least at the level of formal
mathematical description, we must adopt this curious ‘jumping’ proced-
ure, there is the question of what this tells us about the ‘reality’ of the
wavefunction. This ‘jumping’ of the quantum state—a process that does
not seem to be covered by any continuous evolution in accordance with
the Schrödinger equation—is what leads a great many physicists to doubt
that the evolution of the state vector can possibly be taken seriously as an
adequate description of physical reality. Schrödinger himself was ex-
tremely uncomfortable with ‘quantum jumps’, and he once remarked in
a conversation with Niels Bohr:9

If all this damned quantum jumping were really here to stay then I should be
sorry I ever got involved with quantum theory.

For the moment, let us accept this curious description, at least as a
mathematical model of the quantum world, whereby the quantum state
evolves for a while in the form of a wavefunction, usually spreading out
throughspace(butpossiblybeingfocusedinagaintoamorelocalizedregion);
but then, when a measurement is performed, the state collapses down to
something localized and speciWc. This instant localization happens no
matter how spread out the wavefunction may have been before the meas-
urement, whereafter the state again evolves as a Schrödinger-guided wave,
starting from this speciWc localized conWguration, usually spreading out
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again until the next measurement is performed. From the above experi-
mental (and ‘thought-experimental’) situations, the impression could be
gained that the particle-like aspects of a wave/particle are what show up in
a measurement, whereas it is the wavelike ones that show up between
measurements.
This is not so far from the truth of what quantum mechanics tells us, but

the two wave/particle aspects are by no means so simply delineated as this.
Whereas some physicists have indeed taken the view that all measurements
are ultimately measurements of position,10 I would myself regard such a
perspective as being much too narrow. Indeed, the way that the quantum
formalism is normally presented certainly does not require measurements
to be only of position. For example, the measurement of a particle’s
momentum (or, say, of its angular momentum about some axis) would
constitute just as good a measurement as one of position. I shall discuss
the relationship between measurements of position and momentum in
§21.11, but the general question of how the quantum formalism treats
measurements will be left to the next chapter. The mathematical descrip-
tion of the physical measurement of a quantum system will be found to be
something very diVerent from a (Schrödinger) quantum evolution. The
controversial issues arising from this curious fact will be discussed later,
and most completely in Chapter 29.

21.9 Probability distribution in a wavefunction

Let us here address the more limited question of what the wavefunction c
is supposed to be telling us about the particle’s position. The rules of
quantum theory tell us that c’s squared modulus jcj2( ¼ �ccc; see §10.1) is
to be interpreted as the probability distribution, giving the likelihood of a
position measurement Wnding the particle at the various possible spatial
locations. Thus, wherever the wavefunction is largest in absolute value, the
particle is most likely to be found. Wherever it is zero, the particle will not
be found. Now, the total probability of Wnding the particle somewhere
in space has to be 1; therefore the integral of jcj2 over the whole of
space,11 i.e.

kck ¼
ð

E3

jc(x)j2dx1 ^ dx2 ^ dx3,

is equal to 1:
kck ¼ 1:

We say that the wavefunction c is normalized if this condition holds.
This normalization requirement has the irritating implication that

it rules out the ‘momentum-state’ wavefunctions c ¼ eiP � x=�h that we
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started with, because jcj2 ¼ 1 over the whole of inWnite space, so the above
integral (being equal to the total volume of space) diverges. We thus have to
regard the momentum states as unrealizable idealizations. We can make
life a little easier for momentum states, on the other hand, if we adopt a
somewhat more relaxed attitude with regard to wavefunctions. We can still
call c a ‘wavefunction’ even if it does not satisfy this normalization
condition, but we call it a normalized wavefunction if it does.
A wavefunction c will be normalizable if the integral deWning kck

converges. In this case we an divide c by the square root of kck to obtain
the normalized wavefunction: ckck�1=2. Only the normalizable wavefunc-
tions have a chance of being physically realized. The others (such as
momentum states) indeed represent physical idealizations. The complex
vector space of (not necessarily normalized) wavefunctions is our state
space W. I shall also have to allow that some of our wavefunctions might
actually be hyperfunctional (§9.7), the reason for which will become appar-
ent shortly.
With regard to physical interpretation (allowing for this more relaxed

attitude), we consider that if c is multiplied by a non-zero constant
complex number, then it represents the same physical situation that it
did before. It is, in any case, standard in quantum theory to regard c
and eiyc as being physically equivalent, where y is a real constant. In other
words, multiplying the wavefunction by a constant phase makes no diVer-
ence to the physical state. (Clearly this does not aVect the value of jc(x)j2.)
It is not unreasonable to carry this a little further and allow multiplication
by any non-zero complex constant k, still regarding the wavefunctions as
equivalent:

c � kc:

(The Schrödinger equation is clearly also unaVected by this replacement.)
Factoring out by this equivalence amounts to passing from the complex
vector space W of wavefunctions to its projective space PW of idealized
‘physical states’. (See §15.6, for the notion of a projective space.12) Of
course, the general constant scaling c 7! kc does not preserve jcj2, so we
need to re-interpret the probability density for the particle’s location, so
that it applies when c is not normalized. This we do by providing the
revised rule that the probability density is to be obtained by taking jcj2
divided by the integral of jcj2 over the whole of space:

jc(x)j2

kck :

For some states, such as momentum states, kck diverges, so we do not get
a sensible probability distribution in this way (the probability density being
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zero everywhere, which is reasonable for a single particle in an infinite
universe).
In accordancewith this probability interpretation, it is not uncommon for

thewavefunction tobe called a ‘probabilitywave’.However, I think that this
is a very unsatisfactory description. In the Wrst place, c(x) itself is complex,
andso it certainly cannotbeaprobability.Moreover, thephaseofc (up toan
overall constant multiplying factor) is an essential ingredient for the Schrö-
dinger evolution. Even regarding jcj2 (or jcj2=kck) as a ‘probability wave’
does not seem very sensible to me. Recall that for a momentum state, the
modulus jcj of c is actually constant throughout the whole of spacetime.
There is no information in jcj telling us even the direction of motion of the
wave! It is the phase, alone, that gives this wave its ‘wavelike’ character.
Moreover, probabilities are never negative, let alone complex. If the

wavefunction were just a wave of probablities, then there would never be
any of the cancellations of destructive interference. This cancellation is a
characteristic feature of quantum mechanics, so vividly portrayed (Fig.
21.4d) in the two-slit experiment!
At this point, it is appropriate to widen the discussion slightly and make

contact with our considerations, in §19.4, of the electromagnetic Weld and
the gauge connection = that is associated with it. If our wavefunction
describes a charged particle, then we are now allowed to make gauge

transformations of the form c 7! eiyc, where y (¼ y(x)) is an arbitrary
real-number function of position, providing the necessary ‘gauge sym-
metry’ which enables electromagnetism to act as a gauge connection. But
have I not just asserted that Schrödinger time-evolution depends essen-

tially upon the knowledge of how the phases of the wavefunction vary
from place to place? The application of a gauge transformation c 7! eiyc
would allow us to change the way the phases vary to anything we please!
Does that not contradict what I have just been claiming about the crucial
physical importance of how the phases vary?
Not at all: whereas these non-constant phase changes are allowed, this is

only if they are accompanied by a compensating change in the ]=]xa

operators (i.e. in the momentum). This change (]=]xa 7! ]=]xa � ieAa,
where Aa ¼ ray and e ¼ 1) is precisely such as to leave the action of the
bundle connection=unaltered.The ‘phase information’ is still there, but it is
now mixed up with the deWnition of =. One cannot simply apply c 7! eiyc
alone, with an arbitrarily varying y, and hope to leave the physical situation
unaltered. The details of the spatial variation of y (in relation to =)
are essential to the dynamical evolution of the state, and I would argue
that c is clearly much more than a probability wave. In any case, if c
describes an uncharged wave/particle (e ¼ 0), then the situation is exactly
as it was before.
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21.10 Position states

It seems to me to be clear that the wavefunction must be something
a good deal more ‘real’ than would be the case for merely ‘a probabi-
lity wave’. The Schrödinger equation provides us with a precise evolution
in time for this entity (whether it is charged or not), an evolu-
tion that depends critically upon how the phase indeed varies from place
to place. But if we ask of a wavefunction ‘where is the particle?’, by
performing upon it a position measurement, we must be prepared to lose
this phase-distribution information. In fact, after the measurement, we
have to start all over again with a new wavefunction. If the result of the
measurement asserts ‘the particle is here’, then our new wavefunction has
to be very strongly peaked at the position ‘here’, but then it rapidly
disperses again, in accordance with Schrödinger evolution. If our position
measurement were absolutely precise, then the new state would be ‘inW-

nitely peaked’ at that location; in fact it would have to be described by a
Dirac delta function, a quantity that we encountered brieXy in §6.6, and in
§9.7 in the guise of a hyperfunction.
Let us see how the formalism deals with this. For simplicity, consider

the measurement of just one component of a particle’s position, say the
coordinate x1. The result of our measurement ought to be a state with a
‘deWnite value for x1’; so, in accordance with what was said in the case of
momentum, we require c to be an eigenstate of the operator x1 (i.e. of
multiplication by x1), the eigenvalue being the particular value X 1 of the
coordinate x1 that the particle is found to have. In order for the action of
x1, namely

c 7! x1c,

to have the deWnite x1-coordinate value X1 (a real number), we require the
eigenvalue equation

x1c ¼ X 1c

(where we recall that x1 is a linear operator and X 1 is a number). This is
satisWed by

c ¼ d(x1 � X 1),

where d(x) is Dirac’s ‘delta function’, which was deWned (as a hyperfunc-
tion) in §9.7. For it has the property[21.13] that xd(x) ¼ 0, whence
(x1 � X1)d(x1 � X1) ¼ 0, i.e. x1d(x1 � X1) ¼ X1d(x1 � X 1), as required.
This ‘wavefunction’ is not a function in the ordinary sense, but it is an

[21.13] Check this from the hyperfunctional deWnition given in §9.7.
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idealized function (a hyperfunction or distribution), being inWnitely
peaked at the eigenvalue x1 ¼ X 1, as mentioned above.
This particular measurement says nothing about the remaining spatial

coordinates, and the wavefunction can still have arbitrary variation in
these coordinates, providing us with a scaling for the delta function that
is an arbitrary function of the remaining coordinates x2 and x3, so we get

c ¼ f(x2, x3) d(x1 � X 1)

for the general eigenstate of the operator x1.We can proceed further and ask
for a state that is simultaneously an eigenstate of all three of the spatial
coordinates. (This is a legitimate request because x1 , x2 , x3 all commute.
There is, indeed, a general property of quantum-mechanical observables
that if we have a collection of them, all of which commute among them-
selves, then common eigenstate(s) exist for all of them together; see §22.13.13

The answer is that, for the resulting value (eigenvalue)X ¼ (X1, X2, X 3) for
the (triple) spatial measurement, we require (up to an overall scale factor)

c ¼ d(x1 � X 1) d(x2 � X 2) d(x3 � X3)

¼ d(x� X),

the Wnal line being deWned by the one above it.14 This is what a position

state is like.
Such ‘position states’ are idealized wavefunctions in the opposite sense

from the momentum states. Whereas the momentum states are inWnitely
spread out, the position states are inWnitely concentrated. Neither is nor-
malizable (the trouble with c ¼ d(x� X) being that delta functions
cannot be squared, cf. §9.7). I shall end this chapter by pointing out that
there is an important duality between position and momentum which
elucidates this issue.

21.11 Momentum-space description

Up until this point, I have been representing quantum states entirely as
functions of position: wavefunctions. What this means, in eVect, is that
each state—element of W—is thought of as a linear combination of
eigenstates of the position operator x, i.e. of position states (states
d(x� X)). Expressing a wavefunction c as a function of position means,
in eVect, that it is regarded as a linear combination of such delta functions.
We achieve this by the formula c(x) ¼

Ð

c(X)d(x� X)d3X, expressing
c(x) as a continuous combination of them, where d3X ¼ dX 1^ dX 2^
dX3. In this formula, the ‘coeYcients’ in this linear combination are the
complex numbers c(X).

521

The quantum particle §21.11



But there are many other ways of representing a quantum state c. We
can, alternatively, represent it as a linear combination of momentum

states eiP � x=�h. Now the ‘coeYcients’ are diVerent complex numbers,
which we take to be (2p)�3=2 times the quantities ~cc(P), so we arrive at
the formula:

c(x) ¼ (2p)�3=2

ð

E
3

~cc(P) eiP � x=�h d3P:

(The reason for the (2p)�3=2 will be explained very shortly.) This formula
expresses c(x) as a Fourier transform of some function ~cc(P) just as
was done in §9.4, except that here we have a 3-dimensional Fourier
transform—which amounts to applying the formula of §9.4 three times
over.
This suggests that ~cc (as a function of P, but we can now write it as a

function of p), provides just as good a representation of the particle’s
quantum states as does the original function c(x). There is, indeed, a very
precise symmetry between the position and momentum variables. We can
now consider regarding the momentum variables p as the primary ones,
and represent the position variables x as ‘diVerentiation with respect to p’,
so we can make the reverse interpretation (noting the sign change):

xa ¼ �i�h
]

]pa

(at least for the spatial variables x1, x2, x3).[21.14] Indeed, commutation
relations are satisWed that are identical to those that we had before:

pbx
a � xapb ¼ i�h da

b:

The ‘invisible’ function at the extreme right is now to be a function of
momentum pa, rather than position xa. It is the momentum states that
are now represented by delta functions d(p� P), and the position states
are represented as the plane waves e�ip � X=�h. The representation of
momentum ‘wavefunctions’ in terms of the position eigenstates e�ip � X=�h

is given by the virtually identical (inverse) Fourier transform:

~cc(p) ¼ (2p)�3=2

ð

E
3

c(X)e�ip �X=�h d3X,

with only the very minor sign change in the exponent. (We now see the
reason for the (2p)�3=2; it is to balance things so that the inverse Fourier
transform is virtually the same as the original one.)

[21.14] Show that replacing c by x1c or by i�h]c=]x1 corresponds, respectively, to replacing ~cc
by �i�h]~cc=]p1 or by p1

~cc. Show that replacing c(xa) by c(xa þ Ca) corresponds to replacing c by

e�iCapa=�h ~cc (where a ranges over 1, 2, 3).
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Wave packets can be described just as well in the momentum-space
representation as in the position representation.[21.15] One can introduce
a precise notion of the ‘spread’ (or lack of localization) of a wave packet in
either the position description or the momentum description. Let us
denote these spread measures, respectively, by Dx and by Dp. Heisenberg’s

uncertainty relation tells us that the product of these spreads cannot be
smaller than the order of Planck’s constant, and we have15

Dp Dx * 1
2
�h:

Position states, momentum states, and wave packets are illustrated in
Fig. 21.10, in the both position and momentum representations. We note
that, in the extreme case of a pure momentum state, the spread in the
momentum is zero, so Dp ¼ 0 (i.e. a delta function in momentum space).
From the Heisenberg relation, Dx is now inWnite, in accordance with the
picture described above (in §21.6), where the wavefunction becomes spread
uniformly over the whole of position space. The situation is just the
opposite with a position state, where now Dx ¼ 0, the position being
deWned with complete precision, but where the spread Dp in the momen-
tum now becomes inWnite.
It is interesting to see that here we have examples that clearly illustrate

the incompatibility of non-commuting measurements in quantum
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[21.15] Use the results of Exercises [21.10], [21.13], and [21.14] to show that the Fourier

transform of the wave packet c ¼ Ae�B2(x�C)2 eiox is ~cc ¼ AeioC=B
ffiffiffi

2
p

� �

e�( p�o)2=4B2

e�iCp (putting

�h ¼ 1, for convenience).

Fig. 21.10 Position-space

pictures of wavefunctions c
are on the left, with corres-

ponding momentum-space

pictures of ~cc on the right.

The top pair depict a mo-

mentum state and the bottom

pair, a position state. The

two between them depict

wave packets. The Heisen-

berg uncertainty relation is

illustrated by the greater

spread in position being

accompanied by a smaller

spread in momentum and

vice versa.
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mechanics (which is a general phenomenon that we shall encounter fre-
quently in our later considerations). A measurement of a particle’s mo-
mentum would put it into a momentum state, corresponding to some
classical value P, and any subsequent measurement of the momentum in
this state would yield the same result P. However, if the state were instead
subjected to a subsequent position measurement following an initial meas-
urement of momentum, the result would be completely uncertain, and any
one result for the position would be as likely as any other. This measure-
ment makes the state a delta function in position. In momentum space,
this state is a plane wave, spread out uniformly in all possible values for
the momentum. A subsequent momentum measurement would then be
completely uncertain. Thus, the very act of intermediate position measure-
ment has completely ruined the purity of the original momentum state.
It should also be mentioned that, consistently with relativity (§18.7),

there is a similar Heisenberg uncertainty relation between energy and time:

DE Dt * 1
2
�h:

This is normally considered to have a somewhat diVerent physical status
from the more familiar momentum/position uncertainty relation, since
time is just treated as an external parameter in standard quantum mech-
anics, rather than as a dynamical variable. The usual interpretation of the
energy/time uncertainty is that if the energy of a quantum system is
ascertained in some measurement which is performed in a time Dt, then
there is an uncertainty DE in this energy measurement which must satisfy
the above relation.
This has particular relevance to, say, unstable nuclei. The fact that such a

nucleus (say uranium) is unstable means that there is a limit to the time—
namely the particle’s lifetime—during which the particle’s energy can be
ascertained. Accordingly, Heisenberg’s relation gives us a fundamental
energy uncertainty, for an unstable particle or nucleus, that is reciprocally
related to its lifetime. Because of Einstein’sE ¼ mc2 (see §18.7), this gives us
a fundamental uncertainty in its mass. For example, the lifetime of a
uranium U238 nucleus is about 109 years, so in this case there is an
energy uncertainty of some 10�51 Joules; the corresponding mass uncer-
tainty being utterly minute, namely about 10�68 kg. (The wavefunction of
an unstable particle deviates from being of the stationary form e�iEt=�h for
some deWnite real16 energy value E, there being also an exponential decay
factor. Being not an energy eigenstate, there is a resulting spread in the
measured energy, giving the energy uncertainty.) The Heisenberg energy/
time uncertainty relation will have a particular role to play in §30.11, in
connection with a particular approach to the resolution of the enigma of
quantum measurement!

524

§21.11 CHAPTER 21



Notes

Section 21.1

21.1. This is an example of what is called an ordinary diVerential equation, or ODE,

since it is an equation that involves only ordinary diVerential operators such as

d/dx, d/dy, etc. or its powers, e.g. d3=dx3. A partial diVerential equation, or PDE,

would be an equation involving the partial diVerential operators

]=]x, ]2=]x2, ]2=]x]y, etc., such as in the Maxwell or Einstein equations of

Chapter 19.

Section 21.2

21.2. However, for consistency sake (see also §21.3), I am sticking to the notation

appropriate to relativity (§18.7), so the spatial components of momenta in ‘pa’

are the negatives of the usual momentum components (which are c�2 times the

spatial components pa). This choice is compatible with my comments of §20.2

because I am now using x (rather than the q of the general Lagrange/Hamilton

formalism)

21.3. This time independence ensures that the interpretation of H as a conserved

total energy can be maintained. The reader might be disturbed by the

fact that since a dependence on space coordinates has been allowed for,

the requirements of a fundamental-level relativistic invariance might

demand that we allow for time dependence also (and see Note 20.3). But at a

fundamental level, both time and space independence would be a normal re-

quirement.

21.4. See Woodhouse (1991).

Section 21.4

21.5. The term ‘black’ refers here to the (as nearly as possible) completely absorbent

nature of the body surrounding the radiation. In these early experiments an

almost completely spherical dark cavity was used for containing the radiation,

with a very narrow opening connecting the internal volume to the outside. The

surrounding body might well be glowing, however, owing to the temperature

and so might not actually look black.

21.6. In my descriptions of this experiment, I am idealizing the situation, leaving out

all the practical diYculties, in order to get the essential point across.

Section 21.7

21.7. In accurate experiments, such a thing would be unlikely to involve actual

silvering, but would use interference eVects between the reXected waves from

the two sides of a thin transparent material.

21.8. In the description of quantum mechanics referred to as the de Broglie–Bohm

theory (Bohm and Hiley 1994), both the wave and the particle aspects are, in

eVect, simultaneously retained. Here the particle does indeed make its choice at

the beam-splitter, but the wave carries on, exploring both routes simultan-

eously. When the Wnal beam splitter is reached, it is the wave that instructs

the particle to reach the detector at A, forbidding it to reach B. I shall try to

assess this interesting but ‘unconventional’ (and still non-local) viewpoint in

§29.2.

Section 21.8

21.9. As reported by Heisenberg (1971), p. 73.

21.10. See Goldstein (1987); Bell (1987).

The quantum particle Notes
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Section 21.9

21.11. Many authors might deWne the ‘norm’ as the square root of what I mean by kck
here, that is, their kck2 is my kck.

21.12. Various authors have developed the quantum-mechanical formalism in an

elegant way, completely within the projective framework. See particularly

Brody and Hughston (2001); Hughston (1995); Ashtekar and Schilling (1998).

Section 21.10

21.13. This property of commuting observables is discussed in any text on quantum

mechanics; see, for example, Shankar (1994).

21.14. It is legitimate to multiply delta functions if they refer to diVerent variables. See

Arfken and Weber (2000) for properties of delta functions.

Section 21.11

21.15. See Shankar (1994); Hannabuss (1997).

21.16. It is common practice, in particle physics, to use the same e�iEt=�h time depend-

ence, but with a complex E, whose real part is the mean value of the energy and

whose imaginary part is � 1
2
�h log 2 times the reciprocal of the half-life. (See for

example, Das and Ferbel 2004)[21.16]

[21.16] Can you see how to justify the factor � 1
2
�h log 2? (The half-life is the time at which the

probability of decay has reached one half.)

Notes CHAPTER 21
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22
Quantum algebra, geometry, and spin

22.1 The quantum procedures U and R

The non-intuitive nature of quantum mechanics—or, rather, of Nature
herself at the level of quantum-mechanical activity—leads many people to
despair of Wnding any kind of trustworthy picture of quantum-level phe-
nomena. Yet, there is much beautiful geometry associated with quantum
mechanics in addition to its elegant algebraic structure, and it would be a
pity to feel that one must necessarily rely merely upon a pictureless,
unvisualizable formalism in order to make headway with the description
of quantum actions. Although we have seen that even a single featureless
‘point particle’ appears to be a mysterious spread-out wavy thing in the
quantum formalism, it is a ‘thing’ that can be pictured, having a fascinat-
ing mathematical structure in which many of the aspects of complex-
number magic start to show themselves.
This picture enables us to begin to come to terms with the quantum

description of a single point particle, and having understood what a single
quantum particle is like, we might suppose that we shall be able to sit back
and relax a little, since this surely provides us, in principle, with an
understanding of complicated systems involving many diVerent kinds of
particle. Unhappily, this expectation is premature, and we shall need a
broader perspective if we are to arrive at a comprehensive quantum picture
of the world. We shall be seeing, in Chapter 23, how much more confusing
our picture of things becomes when several particles have to be considered
together in a system. Instead of each particle individually having its
separate ‘state vector’, we Wnd that the entire quantum system requires a
thoroughly self-entangled single state vector.
But even individual ‘point particles’ tend to have more structure to them

than that encompassed by the descriptions that I have so far provided. For
they often possess what is called spin, which leads to extra complication.
Fortunately, as we shall see later in this chapter, spin is itself a phenom-
enon with a mathematical description of particular richness and elegance,
where other aspects of geometry and complex-number magic come to
the fore.
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Let us review the descriptions in the previous chapter, where we had to
become accustomed to the (non-relativistic) quantum particle as being
something described by what we have called a state vector (or wavefunc-
tion) whose evolution is, in a very precise way, provided by the Schrödin-
ger equation—until some measurement is performed on the system. As we
shall be seeing more explicitly, in Chapter 23, the same will apply to the
state vectors that describe entire complicated quantum systems. The meas-
urement itself is described mathematically in a completely diVerent way
from Schrödinger evolution. We have seen indications of this in §§21.4,7,8.
In §§21.10,11 we considered position measurements, in the course of
which, a particle’s state would jump to a (generally different) state, now
localized in some particular location—i.e. to a state which is an eigenvec-
tor of the position operator x (this eigenvector being a delta function in the
position coordinates). We also considered the results of momentum meas-
urements (in §§21.5,6,11), whereby a particle’s state has been made to jump
into an eigenstate of the momentum operator p, so the particle’s state is
now spread out in a wavelike form (in principle over all space). More
generally, a measurement would correspond to an operator Q of some sort
(usually a Hermitian operator; see §22.5), and the eVect of the measure-
ment on the state would be to make it jump into some eigenstate of Q.
Which eigenstate of Q is it to jump to? This is a matter of pure chance,
according to quantum theory, but there are precise rules for calculating the
probabilities (see §22.5).
The jumping of the quantum state1 to one of the eigenstates of Q is the

process referred to as state-vector reduction or collapse of the wavefunction.
It is one of quantum theory’s most puzzling features, and we shall be
coming back to this issue many times in this book. I believe that most
quantum physicists would not regard state-vector reduction as a
real action of the physical world, but that it reflects the fact that we should
not regard the state vector as describing an ‘actual’ quantum-level physical
reality. We shall come to this contentious issue in more detail in Chapter
29. Nevertheless, irrespective of whatever attitude we might happen to
have about of the physical reality of the phenomenon, the way in which
quantum mechanics is used in practice is to take the state indeed to
jump in this curious way whenever a measurement is deemed to take
place. Immediately after the measurement, Schrödinger evolution takes
over again—until another measurement is performed on the system, and
so on.
I denote Schrödinger evolution by U and state reduction by R. This

alternation between these two completely diVerent-looking procedures
would appear to be a distinctly odd type of way for a universe to behave!
See Fig. 22.1. Indeed, we might imagine that, in actuality, this is
an approximation to something else, as yet unknown. Perhaps there is
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a more general mathematical equation, or evolution principle of some-
coherent mathematical kind, which has both U and R as limiting approxi-
mations? My personal opinion is that this kind of change to quantum
theory is very likely to be correct—as a part of a new 21st century physics,
perhaps—and in Chapter 30 I shall be making some speciWc suggestions
directed towards this possibility. However most physicists appear not to
believe that this kind of route is a fruitful one to follow.
Their reason for preferring not to contemplate altering the basic frame-

work of quantum mechanics is (in addition to the great mathematical
elegance of its U formalism) the tremendously impressive and precise
agreement between quantum theory and experimental fact, where nothing
is known that tells against quantum theory (in its present hybrid form) and
many varied results conWrm it to great accuracy. Accordingly, most quan-
tum physicists would adopt a philosophical standpoint (or, rather, one of
the various diVerent alternative philosophical standpoints to be described
in §29.1) which try to come to terms with the apparent contradiction
between the U and R procedures, while not attempting to change the
present-day quantum formalism in any signiWcant way. One of my pur-
poses in this particular chapter, and in the next, is to begin to examine this
formalism, but without deviating from what is now conventional in quan-
tum theory. I shall come back to the U/R issue later, particularly in
§§29.1,2,7–9, and also in §§30.10–13 where I shall give my own perspectives
on the matter more fully.
I think that it would be fair to say that a common thread in much of

what might be called ‘conventional’ attitudes to quantum mechanics is
that the U process is to be taken as an ‘underlying truth’ and that one must
come to terms with R, in one way or another, as being some type of
approximation, illusion, or convenience, and there are many accounts in
the literature which pursue this kind of approach.2 Even those (myself
included) who are of the opinion that some change in the quantum
formalism is needed at some stage, would argue that the present-day
scheme is at least a marvellous approximation, so it is necessary to under-

Fig. 22.1 The time-

evolution of the state c for

a physical system, according

to accepted tenets of quantum

mechanics, alternates

between two completely

different procedures: unitary

(Schrödinger) evolution U

(continuous, deterministic)

and state reduction R

(discontinuous,probabilistic).
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stand it thoroughly if there is to be any hope of moving beyond it.
Accordingly, we must try to see more deeply how it is that U operates
and, moreover, how it is that it can dovetail so beautifully with R, whilst
nevertheless being inconsistent with it!
I should also explain the use of the letter U. It stands for unitary

evolution. We shall need to see in what sense Schrödinger’s equation is
indeed ‘unitary’ (see §13.9), and we shall be coming to this shortly, in §22.4.
There are also other (equivalent) ways of expressing this ‘unitary evolu-
tion’; most particularly, there is what is referred to as the Heisenberg

picture which we shall also come to in §22.4. Nevertheless, the picture
provided by the Schrödinger equation turns out to be the most convenient
for our descriptions here.

22.2 The linearity of U and its problems for R

Before addressing the full issue of unitarity, let us examine the more
primitive question of the linearity of U. We shall see that this aspect
alone, of U, presents a serious incompatibility with R. Let us, therefore,
again examine Schrödinger’s equation i�h]c=]t ¼ Hc. We shall imagine
the Hamiltonian H to be known (being speciWed by the nature of the
particles that it describes and the forces between them, and by any external
conservative—i.e. energy conserving—forces that might have an inXuence
on the system). There are certain consequences that are immediate from
the general form of the equation, and are quite independent of the detailed
nature of the Hamiltonian.
One thing that we note is that it is a deterministic equation (the time-

evolution being completely Wxed once the state is known at any one time).
This may come as a surprise to some people, who may well have heard of
‘quantumuncertainty’, and of the fact that quantum systems behave in non-
deterministic ways. This lack of determinism comes about in the application
of the R-process only. It is not to be found in the (U) time-evolution of the
quantum state, as described by the Schrödinger equation. Another thing
that we immediately see in the Schrödinger equation is that it is a complex

equation, owing to the manifest appearance of i on the left (and there are
many more possibilities for occurrence of i in the Hamiltonian).
Finally, we see that the Schrödinger equation is indeed linear, in the

sense that if c and f are solutions (with the same H) of

i�h
]c
]t
¼ Hc, i�h

]f
]t
¼ Hf,

then so also is any linear combination wcþ zf, where w and z are complex
constants. For, by adding w times the Wrst of the above equations to z

times the second we get (§6.5):
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W{H, }

i�h
q
qt

(wcþ zf) ¼ H(wcþ zf):

From this, we see that the Schrödinger evolution preserves the complex-

vector-space structure of the state space W (which is usually an inWnite-
dimensional space).
The Hamiltonian H deWnes the inWnitesimal linear transformation of W

that describes the change in a state that takes place after it has evolved for
an inWnitesimal time. This Hamiltonian action is therefore described by a
vector Weld on W (see Fig. 22.2). After a Wnite time, the states would have
changed according to a Wnite linear transformation, obtained by what is
called ‘exponentiating’ the inWnitesimal Hamiltonian action. This is very
similar to the ‘exponentiation’ that we encountered earlier (§14.6), describ-
ing the process whereby a Lie group element is obtained from the expo-
nentiation of an element of the corresponding Lie algebra. However, the
exponentiation in Hamiltonian evolution can be a good deal more diYcult
to carry out. (Also, further difficulties arise because of the inWnite-dimen-
sional nature of W.)
But diYcult or not, the essential point here is that, after any Wnite time

T, the transformation of the space W of quantum states will always be
linear. This amounts to the following assertion (where I shall use the
symbol to indicate how a state will have evolved after the speciWed
time-period T):
If

c c0 and f f0,

then
wcþ zf wc0 þ zf0:

Here, c and f are two arbitrarily chosen states (wavefunctions) and w and
z are arbitrary complex constants.[22.1]

[22.1] Make it clear why the action of any Schrödinger evolution is linear, despite the fact that

H may be a highly non-linear function of the ps and xs.

Fig. 22.2 The Hamiltonian flow {H, }

(a vector field) defines an infinitesimal

linear transformation of state space W,

giving the change in the state after an in-

finitesimal time. To get the (unitary) change

after a finite time, we must ‘exponentiate’

this infinitesimal Hamiltonian action.
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This has certain very curious implications if we try to take the view that
U is the whole story, and the measurement process is really just some kind
of ‘convenience’ that one calls upon to handle situations where the quan-
tum state gets unmanageably complicated, perhaps involving horren-
dously many ‘entangled’ particles in the system and its measuring
apparatus. (We shall come to the quantum-mechanical notion of ‘en-
tanglement’ more speciWcally in Chapter 23. We shall see that quantum
states are ‘holistic’ entities in a more serious way than in §21.7, where
diVerent parts of the system do not have separate quantum states of their
own, but are parts of one entangled ‘whole’. None of this aVects the
present discussion, however.) According to such a ‘convenience’ view of
R, one imagines that R would emerge as some kind of approximation to a
‘true’ underlying U evolution. But this viewpoint leads to serious para-
doxes.
For example, let us recall the thought experiment of §21.7, where my

two colleagues in space had individual detectors, and try to imagine that
the response of each detector is simply the result of a Schrödinger evolu-
tion starting from its interaction with the wave-packet part that it receives.
The quantum state before detection is actually a sum of the two individual
wave-packet parts, one reaching one detector and the other part reaching
the other detector; therefore, by linearity, the subsequent Schrödinger-
evolved response of each detector must coexist in superposition with a
response in the other. The Schrödinger evolution leads to one detector
response plus the other detector response (‘plus’ in the sense of quantum
superposition of the two detector responses), not one detector response or

the other detector response (the ‘or’ being what actually always happens in
practice). It seems to me untenable to maintain that U tells the whole story
(and the ‘conventional’ quantum mechanics of Niels Bohr’s ‘Copenhagen
interpretation’ certainly does not try to do this; for it treats the detectors
themselves as ‘classical entities’).
As far as I can see, the only way to insist that U holds for all processes,

including measurement, would be to pass to a ‘many-worlds’ type of view
(see §29.1) in which the two detector responses do actually coexist, but in
what are referred to as ‘diVerent worlds’.3 But even then, U cannot be ‘the
whole story’, because we would need a theory to explain that aspect of our
conscious perceptions which allows only individual detector responses to
be consciously perceived, whereas superpositions of responses with non-
responses are never consciously perceived! (These issues will be returned to
in §§29.1,8.) I should register, at this point, that I do not myself believe that
‘many worlds’ is the right way to go; I am merely arguing that it seems to
be where one is led if one insists on ‘U at all levels’.
We shall be coming back to these issues later, in Chapters 29 and 30,

where the question of whether U and R must be treated as approximations
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to some more comprehensive future theory will be addressed. For the
moment, let us follow the prescriptions of the conventional formalism. If
an improved theory is needed, it will in any case have to accord with the
prescriptions of this conventional theory to a very high degree of accuracy.
Any reader with aspirations towards the Wnding of a new theory (and I
hope that there are some!) will be well advised to come fully to terms with
what the conventional theory has to say.

22.3 Unitary structure, Hilbert space, Dirac notation

I have not yet properly addressed the ‘unitary’ aspect of Schrödinger
evolution. This has to do with the ‘normalization’ property of wavefunc-
tions referred to in the previous chapter. Recall that, for the wavefunction
c of a single (spinless) particle, the ‘norm’ referred to the quantity kck,
deWned as the integral of jc(x)j2 over the whole of space. The normaliza-
tion condition on c is that kck ¼ 1 (and when this condition is imposed,
then jc(x)j2 is the probability density for a position measurement Wnding
the particle at the point x). In a general quantum-mechanical situation,
where there may be many interacting spinning particles (or perhaps en-
tities of more general type, such as strings, etc.), we always demand
some corresponding notion of norm kck, which is to be a positive real
number4 for any properly acceptable quantum state c. Although this
norm is something pertinent to the U part of the quantum formalism, it
plays a crucial role also in the R part, determing, in eVect, all the probabil-

ities that arise.
We can think of the norm, mathematically, as providing a notion of

squared length, which ought to be Wnite for ‘acceptable’ vectors belonging
to the state space W. The adjective ‘unitary’, as applied to temporal
evolution, tells us that this norm is preserved throughout the evolution.
We shall be seeing shortly (in §22.4) why this indeed applies in the case of
Schrödinger evolution.
First, it will be helpful to set up some notation and to investigate some

of the properties of normalizable quantum states. It will be valuable to
think of the norm as a particular case of a Hermitian scalar product (§13.9)
between states. For states f and c, this is usually written hfjci, in the
quantum-mechanical literature, and the norm of c is the special case of
this when f ¼ c:

kck ¼ hcjci:

In the case of a single (spinless) particle, the scalar product is:

hfjci ¼
ð

E
3

�ffcdx1^dx2^dx3,
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generalizing the particular expression for kck given in §21.9. This gives us
a positive-deWnite Hermitian scalar product deWned between any two
normalizable 1-particle wavefunctions f and c.[22.2]

In fact, the normalizable wavefunctions constitute a complex
vector space H (a subspace of W), and it is a vector space of a particular
kind known as a Hilbert space.[22.3] The deWnition of a Hilbert space is
that it is a complex vector space possessing a scalar product operation
h j i, whose value is a complex number, which satisWes the algebraic
properties

hfjcþwi ¼ hfjciþhfjwi,
hfjaci ¼ ahfjci,
hfjci ¼ hcjfi

c 6¼ 0 implies hcjci > 0

(all of which are immediate, in the case of the 1-particle integral given
above).[22.4] These equations also imply hfþwjci ¼ hfjciþhwjci and
hafjci ¼ �aahfjci.[22.5] Moreover, once the norm is known, the scalar
product can be deWned in terms of it,[22.6] so linear transformations
that preserve the norm must also preserve the scalar product. In
addition, a Hilbert space should satisfy certain very basic continuity
properties.5

The above notation forms part of the valuable and widely used nota-
tional framework for quantum mechanics introduced by the great 20th-
century physicist Paul Dirac. As an ingredient of this general scheme, it
proves to be useful to regard expressions like

jci, jÆi, j�i, j $i, j0i, j7i, jþi, jXi, jdeadi, or joffi

as representing various state vectors belonging to the Hilbert space H,
where the symbol within the j . . .i is some appropriate (and perhaps
memorable) label indicating the state in question. These are sometimes

[22.2] See if you can explain why the hfjci integral converges whenever both hfjfi and hcjci
converge. Hint: Consider what is implied by the integral of jf� lcj2 being non-negative over any

Wnite region of E
3, deriving an inequality connecting the squared modulus of the integral of �ffc

with the product of the integral of �fff with the integral of �ccc. As an intermediate step, Wnd

conditions on complex numbers a, b, c, d that imply aþ lbþ �llcþ �llld $ 0 for all l.

[22.3] Following on from Exercise [22.2], show that the normalizable wavefunctions indeed

constitute a vector space.

[22.4] Verify this, stating carefully which properties of integration are being used.

[22.5] Show why.

[22.6] Show how hfjci can be deWned from the norm. Hint: Work out the norms of fþ c and

fþ ic.
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called ‘ket’ vectors. For each such ket, there will be a particular member of
the dual space H* (§12.3), called the corresponding ‘bra’ vector, which is
the Hermitian conjugate of that state (in the sense of §13.9), respectively
written

hcj, hÆj, h�j, h$ j, h0j, h7j, hþj, hX j, hdeadj, or hoffj:

Since the bra vectors are dual to the ket vectors, they have a scalar product
in the same sense as the dot product of §12.3. This scalar product—or
‘bracket’—of a bra vector hcj with a ket vector jfi is precisely the Her-
mitian scalar product written hcjfi above. This is consistent with the
complex number hcjfi being the complex conjugate of hfjci. The two
states jfi and jci are said to be orthogonal if hfjci ¼ 0, i.e. if hcjfi ¼ 0.
The action of some linear operator L on jci is written Ljci, and the

scalar product of the ket hfj with Ljci is written

hfjLjci:

This is also the scalar product of a certain bra ‘hfjL’ with jci. What is the
bra ‘hfjL’? It is the complex conjugate of a certain ket L*jfi, where L* is
the adjoint6 of L. This ‘adjoint’ operation, applied to a linear operator L, is
just the Hermitian conjugate operation * that was considered in §13.9, in
the Wnite-dimensional case. The complex conjugate of the complex number
hfjLjci is the complex number hcjL*jfi.

22.4 Unitary evolution: Schrödinger and Heisenberg

We are now in a good position to look at the ‘unitary’ nature of Schrö-
dinger evolution. We have already seen, in §22.3, that this evolution is
linear, so all we need to establish is that it preserves the scalar product
hfjci between two elements jfi,jci, of H. That is to say, hfjci is constant

in time: dhfjci=dt ¼ 0. (From what has been said above, preserving the
norm and preserving the scalar product are equivalent requirements.)
Basically, what we need from our quantum Hamiltonian H is (i) that it
keeps us in the Hilbert space, and (ii) it is Hermitian. These are very
minimal requirements, and will be satisWed by any reasonable suggestion
for a Hamiltonian. Its Hermitian nature, for example, is a natural require-
ment to ensure that its eigenvalues—the possible values for the energy of
the system—should be real numbers. It is usual also to demand that H be
positive-deWnite, which means that hcjH jci > 0 for all non-zero jci,
whence all the eigenvalues of H (energy values) are positive—although
this is not needed for the unitary nature of the evolution. We quickly
obtain (using the Leibniz property for the derivative of a product; see §6.5
and properties above)
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d

dt
hfjci ¼ d

dt
f
�

�

�

�

c
� �

þ f
�

�

�

�

d

dt
c

� �

¼ �i�h�1Hfjc
� �

þ fj � i�h�1Hc
� �

¼ i�h�1hfjHjci � i�h�1hfjHjci ¼ 0,

showing that scalar products are indeed preserved, i.e. Schrödinger evolu-
tion is unitary.[22.7] The same argument applies to other Hermitian oper-
ators, such as the generators of spatial translations or of rotations,
showing that these also correspond to unitary transformations of H.
The above equation shows that the rate of change of a scalar product
hfjci is zero. From this it follows that hfjci remains unchanged for all

time, where jfi and jci individually undergo Schrödinger evolution
according to the same H. Suppose we have quantum states jfi and jci
at time t ¼ 0, and take them to evolve by Schrödinger’s prescription until a
later time T, when the states become respectively jfTi and jcTi:

jfi jfTi and jci jcTi

(using the notation of §22.2). Then

hfjci ¼ hfT jcTi:

This tells us that the linear action of the Schrödinger evolution, on the
Hilbert space H, taken from t ¼ 0 until some deWnite time t ¼ T , is
unitary, in the sense that there is an operator UT eVecting this transform-
ation, so that

jfTi ¼ UT jfi, jcTi ¼ UT jci, etc:,

where this operator UT is unitary in the sense of §13.9, namely that its
inverse is equal to its adjoint:

U�1
T ¼ U*

T , i:e: UTU*
T ¼ U*

TUT ¼ I :

Here I is the identity operator on H. (See §13.9 for the demonstration of
this property of UT .)
As mentioned in §22.1, there are other ways of representing the evolu-

tion of a quantum system, and what is called the Heisenberg picture is the
most familiar alternative. In the Heisenberg picture, the ‘state’ of the
system is considered to be constant in time, the time-evolution being
taken up by the dynamical variables instead. The reader might well ques-
tion how the quantum state could be regarded as being ‘unchanging’ even
though some actual physical change might well be taking place in the

[22.7] Spell this argument out a little more fully. Can you explain why we should expect the

Leibniz property to hold for a Hilbert-space scalar product?
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quantum system! Indeed; but passing from the Schrödinger picture to the
Heisenberg picture is really just a matter of redeWning our symbols.
Consider, Wrst, the ordinary Schrödinger picture that we have been

adopting up until now. We have some quantum state jci at time t ¼ 0,
which we take to be evolving according to Schrödinger’s prescription, as
deWned by a given quantum Hamiltonian H, so that at some later time T

the state is jcTi:
jci jcTi ¼ UT jci:

Recall that the action of UT really applies linearly to the entire Hilbert
space H, so that any other state jfi would undergo a corresponding
evolution jfi ) jfTi ¼ UT jfi, with the same UT as was used for jci.
In the Heisenberg picture, we simply think of the ‘state’, at time T, as

jciH ¼ U�1
T jci ¼ U*

T jci:

It is clear that this ‘Heisenberg state’ jciH does not change (basically by
deWnition!) as time passes. On the other hand, in order that all the
algebraic procedures follow through as before, so that the eigenvalues
(measured physical parameters) are the same as in the Schrödinger picture,
we require the dynamical variables also to evolve compensatingly.
Thus, any linear operator Q (on H), must be replaced by its Heisenberg
version

QH ¼ U�1
t QUt ¼ U*

t QUt:

It follows directly that the Heisenberg version of any eigenvalue or of any
scalar product is the same as the Schrödinger version.[22.8] The Heisenberg
evolution now applies to the operators Q (assumed constant in Schrödin-
ger picture) and in particular to the dynamical variables. We Wnd that[22.9]

i�h
d

dt
QH ¼ HQH �QHH,

which are Heisenberg’s equations of motion. (Note that an obvious conse-
quence of this is conservation of energy, given when QH ¼ H.)
The reader may ask what we have gained by phrasing things in this way.

In some contexts, there are technical advantages in the Heisenberg picture,
but the Heisenberg picture does not help things with regard to the inter-
pretative puzzles of quantum mechanics. The problem of the ‘quantum
jumps’ has not gone away, but we may have the choice as to whether we
put the blame on the state, allowing the jciH to ‘jump’ to something else at

[22.8] Explain all this in detail.

[22.9] See if you can conWrm this.
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the operation of R or, instead, taking the Heisenberg dynamical variables
to do the ‘jumping’! For my own part, I Wnd that these ‘jumping’ matters
are simply made more obscure in the Heisenberg picture, without anything
being resolved.
At least in the Schrödinger picture we have an evolving state vector

which has a chance of giving us some glimpse of what ‘quantum reality’
might be like! The Heisenberg picture does not seem to have much chance
of doing this, since its state vector just sits there unmoving even though
physical action is taking place. Moreover, the evolution of the dynamical
variables cannot represent the change in any speciWc physical system,
because they do not describe speciWc systems at all, but rather questions
that can be asked of a system, such as ‘what is your position’, etc.
The reason for having these two diVerent pictures is, to a large extent

historical. Heisenberg was Wrst, producing his scheme in July 1925, and
Schrödinger put forward his proposal half a year later, in January 1926,
realizing the equivalence between the two schemes shortly afterwards. It
was Max Born who Wrst recognized the probability interpretation for
the squared modulus jcj2 of Schrödinger’s wavefunction (§21.9), in June
1926. Schrödinger himself had tried to hold to a more ‘classical-Weld’
picture of c. The general operator framework of quantum mechanics
arose out of the work of Heisenberg, Born, and Pascual Jordan, and
was fully formulated by Dirac, and described in detail in his highly
influential book, The Principles of Quantum Mechanics, first published in
1930. 7

Of course it may be that when a change is eventually introduced into
quantum theory, then there may be good reasons for preferring one
formalism over another, and the equivalence between the two may be
broken. This is mildly the case even with quantum Weld theory (see
Chapter 26), which tries to bring quantum theory and (special) relativity
theory together in one consistent scheme. Dirac has made some arguments
for preferring8 the Heisenberg picture in this case. Neither the Heisenberg
picture nor the Schrödinger picture is relativistically invariant, however,
and sometimes the hybrid ‘interaction picture’ is preferred in this context.9

22.5 Quantum ‘observables’

Let us now consider how a measurement of a quantum system is to be
represented in the formalism. As noted in §22.1, the examples of position
and momentum measurements given in Chapter 21 are illustrative of what
happens in the general case of a quantum measurement. Some ‘measur-
able’ quality of a quantum system would be represented by a certain kind
of operator Q, called an observable, and this operator could be applied to
the quantum state. The dynamical variables (say position or momentum)

538

§22.5 CHAPTER 22



would be examples of observables.10 The theory demands that an observ-
able Q be represented as a linear operator (like the position or momentum
operators), so that its action on the space H would be to eVect a linear
transformation of H—although possibly a singular one (§13.3). We say
that the state c has a deWnite value for the observable Q if c is an eigenstate
of Q, and the corresponding eigenvalue q would be that deWnite value.11

This is just the same terminology that we already encountered in
§§21.5,10,11 for position and momentum.
In conventional quantum mechanics, one normally demands that

all the eigenvalues have to be real numbers. One can ensure this by
requiring that Q be Hermitian in the sense that Q is equal to its adjoint
Q*:[22.10]

Q* ¼ Q:

In my opinion, this Hermitian requirement on an observable Q is an
unreasonably strong requirement, since complex numbers are frequently
used in classical physics, such as for the Riemann sphere representation of
the celestial sphere (§18.5), and in many standard discussions of the
harmonic oscillator (§20.3), etc.12 An essential requirement of an observ-
able is that its eigenvectors, corresponding to distinct eigenvalues, are
orthogonal to one another. This is a characteristic property of operators
that are referred to as ‘normal’. A normal operator Q is one that commutes
with its adjoint:

Q*Q ¼ Q Q*,

and any pair of eigenvectors of such a normal Q, corresponding to distinct
eigenvalues, must indeed be orthogonal.[22.11] Since I am happy for the
results of measurements (eigenvalues) to be complex numbers, while
insisting on the standard requirement of orthogonality between the alterna-
tive states that can result from a measurement, I shall demand only that my
quantum ‘observables’ be normal linear operators, rather than the stronger
conventional requirement that they be Hermitian.
I should comment, here, on a further requirement of quantum observ-

ables that their eigenvectors span the entire Hilbert space H (so that any
element of H can be expressed linearly in terms of these eigenvectors). In
the finite-dimensional case, this property is a mathematical consequence of
the Hermitian (or normal) nature of Q. But for an infinite-dimensional H
we need this as a separate assumption for any Q that is to play a role as a

[22.10] Show that any eigenvalue of a Hermitian operator Q is indeed a real number.

[22.11] See if you can prove this. Hint: By considering the expression hcj(Q* � �llI)(Q � lI)jci,
show Wrst that if Qjci ¼ ljci, then Q*jci ¼ �lljci.
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quantum observable. A Hermitian Q with this property is called self-

adjoint.
The orthogonality requirement for a quantum observable is important

for the quantum measurement process. According to the rules of quantum
mechanics, the result of a measurement, corresponding to some operator
Q, will always be one of its eigenstates: this is the ‘jumping’ of the quantum
state that occurs with the R process (see §22.1). Whatever state the system
is in before measurement, it jumps to one of the eigenstates of Q just as the
state is measured, in accordance with R. After the measurement, the state
acquires a deWnite value for the observable Q, namely the corresponding
eigenvalue q. Thus, for each of the diVerent possible results of the meas-
urement of the observable Q—that is, for each diVerent eigenvalue
q1, q2, q3 , . . .—we get one of a set of alternative resulting states, all of
which are mutually orthogonal.
Why is this important? We shall be seeing in a moment what the

quantum rules are for calculating the probabilities of each of these alter-
native outcomes. One implication of these rules will be that the probability
is always zero for a state to jump, as a result of a measurement, to an
orthogonal state. Accordingly, if the measurement deWned by an observ-
able Q is repeated, then the second measurement will give the same
eigenvalue—i.e. the same result for the measurement—as did the Wrst
measurement. To give a diVerent result would involve it in eVecting a
jump from one state to an orthogonal one, which the probability rules do
not allow. But this happy conclusion depends upon the orthogonality of
the eigenstates of Q for diVerent eigenvalues, which is why we are requir-
ing Q to be a normal operator.
Let us now turn to the assignment of probabilities to the diVerent

alternative eigenstates of the observable Q, when it is presented with the
state jci that is being ‘observed’. It is remarkable feature of the quantum
R process that the quantum-mechanical probability depends only upon
the quantum states before and after measurement, and not upon any other
aspect of the observable Q (such as the value of the measured eigenvalue,
for example). The rule is that the probability of the state jumping from jci
to the eigenstate jfi, of Q is given by

jhcjfij2,

assuming that jci and jfi are normalized (kck ¼ 1 ¼ kfk). Otherwise, we
need to divide the above by kck and kfk before the probability is
obtained. We may prefer to write this probability, for non-normalized
states, in the elegant form

hfjcihcjfi
hcjcihfjfi:
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This is always a real number between 0 and 1, taking the value 1 only if the
states are proportional.[22.12] Recall, from the above discussion, that
Schrödinger evolution preserves the scalar products hfjci. This is an
important consistency relation between the U and R processes, and it
expresses the fact that, despite being inconsistent with each other, U and
R indeed neatly ‘dovetail’ with each other. We see that, indeed, a state
never jumps directly to an orthogonal state, in a measurement, because
hfjci ¼ 0 implies that the probability for this would be zero.
In a quantum superposition between orthogonal normalized states c

and f, say wcþ zf, the complex-number weighting factors, w and z, are
sometimes called amplitudes—or ‘probability amplitudes’. In this case, an
experiment set up to distinguish c from f in the state wcþ zf would get c
with probability �www ¼ jwj2 and f with probability �zzz ¼ jzj2, i.e. we take
the squared moduli of the amplitudes to get the probabilities. A similar
comment applies to superpositions of more than two such states.
A useful property of a normal operator Q (assuming that its eigenvec-

tors span the whole of H) is that it always possesses a family of eigenstates
that form an orthonormal basis for the Hilbert space. An orthonormal

basis (compare §13.9) is a set of elements e1, e2, e3 , . . . of H such that

hei j eji ¼ dij

(dij being the Kronecker delta) and where every element c of H can be
expressed as

c ¼ z1e1 þ z2e2 þ z3e3 þ � � � ,

(z1, z2, z3 , . . .being complex ‘cartesian coordinates’ for c). This is similar
to the expression of a general wavefunction, for a single structureless
particle, as a continuous linear combination of momentum states (as is
achieved using a Fourier transform) or of position states (using
c(x) ¼

Ð

c(X)d(x� X)d3X) (§21.11), since the momentum and position
states are the eigenstates of the momentum and position operators p and
x respectively. Passing from the position representation to the momentum
representation amounts to a change of basis in the Hilbert space H (see Fig.
22.3). However, neither momentum states nor position states actually
form a basis, in the technical sense, because they are not normalizable
and certainly do not themselves actually belong to H! (Quantum mechan-
ics is full of irritating issues of this kind. As the state of the art stands, one
can either be decidedly sloppy about such mathematical niceties and even
pretend that position states and momentum states are actually states, or
else spend the whole time insisting on getting the mathematics right, in
which case there is a contrasting danger of getting trapped in a ‘rigour

[22.12] Show this, from the algebraic properties of h j i by methods used in Exercise [22.2].
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Momentum basis
Position
basis

H

mortis’. I am doing my best to steer a middle path, but I am not at all sure
what the correct answer is for making progress in the subject!)

22.6 YES/NO measurements; projectors

In the case of operators such as position or momentum, where the eigen-
states are not normalizable, we get zero for the probability of Wnding a
particle in such a state. This is actually the ‘correct’ answer, because the
probability of the position or momentum having any particular value
would indeed be zero (position and momentum being continuous
parameters). This is not very helpful to us, so we might prefer to use other
kinds of observable, such as that which poses a question: ‘is the position
within such-and-such a range of values’, and a similar question might
be posed for momentum (or for any other continuous observable). Yes/
no questions such as this can be incorporated into the quantum
formalism by, say, assigning the eigenvalue 1 to the yes answer and the
eigenvalue 0 to no. An observable of this kind is described by what is called
a projector.
A projector E has the property that it is self-adjoint and squares to

itself [22.13]

E2 ¼ E ¼ E*:

Such things provide the most primitive kind of measurement, and for
many purposes the issues raised by ‘measurement’ in quantum mechanics
are best carried out in terms of such operators. There is, however, a
particular issue that becomes especially prominent when such a yes/no

measurement is performed, because (in more than 2 dimensions) these
operators are (thoroughly) degenerate. We say that Q is degenerate, with
respect to some eigenvalue q, if the space of eigenvectors corresponding to
q is more than 1-dimensional, i.e. if there are non-proportional eigenvec-
tors of Q corresponding to the same eigenvalue q (§13.5). The entire linear

[22.13] Show that if an observable Q satisWes some polynomial equation, then every one of its

eigenvalues satisWes the same equation.

Fig. 22.3 Passing from a position to a

momentum representation is just

changing the basis in Hilbert space H
(although, technically, neither

momentum nor position states, being

non-normalizable, actually belong to H).
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subspace of H consisting of all eigenvectors corresponding to the same
eigenvalue q is referred to as the eigenspace of Q corresponding to q. In
such cases, the obtaining of the ‘result’ of the measurement (i.e. the
determining of the eigenvalue) does not, in itself, tell us which state the
state vector is supposed to ‘jump’ to. The issue is resolved by the so-called
projection postulate which asserts that the state jci being subjected to the
measurement is orthogonally projected to the eigenspace13 of Q corres-
ponding to q. In fact, the term ‘projection postulate’ is often used simply
for the standard quantum-mechanical procedure of §22.1 (as made explicit
by von Neumann14) that, as a result of the measurement of an observable
Q, the state jumps to an eigenstate of Q, corresponding to the eigenvalue
that the measurement provides. In this section and the next, I am stressing
the importance of the projection aspect of this postulate in the case of
degenerate eigenvalues.15

One of the best ways of expressing this projection is by use
of an appropriate projector E, namely the one whose eigenspace corres-
ponding to its yes eigenvalue 1 is identical to Q’s eigenspace corresponding
to q. (This can always be done;E is simply asking amore basic question than
that posed byQ, namely: ‘is q the result of theQmeasurement?’) Then what
the projection postulate asserts is that the result of the measurement (either
Q with the result q, or E with the result 1) is that

jci jumps to Ejci:

In this, I have not bothered about normalizations (and there is no need to
bother if we do not wish to). If we ask that the resulting state be normalized,
we can take jci to jump to the more messy-looking EjcihcjEjci�1=2. In
my descriptions here, however, I shall Wnd it more convenient not to have to
normalize my states. This makes many of the formulae look simpler than
otherwise.
In Fig. 22.4, I have indicated the geometrical nature, within the Hilbert

spaceH, of the projection postulate.Notice that if we replace the projectorE

by I–E (also a projector), then we Wnd that the yes and no eigenspaces are
simply interchanged. (Here I is the identity operator on H.) Thus if the
measurement obtains 0 for the E measurement, then jci jumps to
(I�E)jci( ¼ jci�Ejci) instead. Note that jci is the sum of the two
states Ejci and (I�E)jci, which are orthogonal to each other[22.14] and the
measurement E decides between the two, yes for the Wrst and ‘no’ for the
second:

jci ¼ Ejci þ (I�E)jci:

[22.14] Show this.
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YES
YES

E

I-E
y

Fig. 22.4 The geometric nature, within H, of the projection postulate. The eigen-

spaces of the projector E are indicated, the horizontal plane representing the

eigenvalue 1 (yes) and the vertical plane, the eigenvalue 0 (no). The picture

illustrates the decomposition jci ¼ Ejci þ (I � E)jci of jci into two orthogonal

parts, where Ejci is the projection of jci to within the yes space (the result of the

measurement yielding yes) and (I�E)jci, the projection to within the no space

(from the result no). The probability in each case is given by the exact proportion-

ality factor whereby the squared (Hermitian) length kck of jci is reduced in the

projection (state vectors not normalized).

There is a direct geometrical way expressing the probabilities of these two
alternatives, namely the amount whereby the ‘norm’ (squared length) of
the state gets reduced in each respective projection.[22.15] This simple
geometrical fact is obscured if we insist on normalizing our states!

22.7 Null measurements; helicity

Some physicists have expressed doubts about the projection postulate (or
that it is ‘unnecessary’ or ‘unobservable’), the diYculty being that we may
have no means of determining what the state has actually become after
measurement, perhaps because the measurement process itself has caused
the observed entity to become entangled with the measuring apparatus, so
that the state of the entity being observed cannot be considered on its own.
Indeed, that might sometimes be a complicating issue, but there are
certainly circumstances where the projection postulate manifestly de-
scribes a (degenerate if necessary) measurement. The clearest case of this
occurs with what is called a null (or interaction-free) measurement. This
fascinating type of situation is of interest in its own right, and it illustrates
one of the strangest aspects of quantum-mechanical behaviour. Accord-
ingly, it will be worth our while having a look at an example or two.

[22.15] Why?
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Let us consider a situation of the kind that was discussed in §21.7, where
a single photon is aimed at a beam splitter, and its state is partially
reXected and partially transmitted. After the encounter, the state is thus
a sum of these two orthogonal parts, the transmitted part jti and the
reXected part jri (where, to make it a nice straightforward sum, we absorb
any relative phase factor into the deWnitions of jti and jri and we do not
insist upon normalization):

jci ¼ jti þ jri
(see Fig. 22.5). Suppose that a detector is placed in the transmitted beam
where, for the purposes of argument, we assume that the detector has 100%
detection eYciency. Moreover, the photon source is to be such that each
photon emission event is recorded (at the source) with 100% eYciency.
(These are clearly idealizations; in an actual experiment it might be hard
to come very close to such eYciencies. Nevertheless, these are reasonable
idealizations to make, to illustrate how quantum mechanics works.) If we
Wnd that, on some occasions, the source has emitted a photon but the
detector has not received it, then we can be sure that on these occasions
the photon has ‘gone the other way’, and its state is therefore the reXected
one: jri. The remarkable thing is that the measurement of non-detection of
the photon has caused the photon’s state to undergo a quantum jump (from
the superposition jci to the reXected state jri), despite the fact that the
photon has not interacted with the measuring apparatus at all! This is an
example of a null measurement.
An impressive use of this kind of thing has been suggested by Avshalom

Elitzur and Lev Vaidman.16 Let us think of our beam-splitter as being part
of a Mach–Zehnder type of interferometer (recall the Wnal part of my
astronomical thought experiment described in §21.7; see Fig. 21.9), but

r

t

Fig. 22.5 Null measurement, requiring the

projection postulate. A single photon is

aimed at a beam-splitter. The resulting state

jci, being partially reflected and partially

transmitted, is the sum jci ¼ jti þ jri of

the transmitted part jti and the reflected

part jri (absorbing any relative phase

factor into the definitions and not

insisting on normalization). If it is found

that the source has emitted a photon but

the detector has not received it, then we

know that photon is in state jri even

though it has not interacted with the

detector at all.
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B

A

C

Fig. 22.6 Elitzur–Vaidman bomb test. A detector C, attached to a bomb, may or

may not be inserted into a Mach–Zehnder type of interferometer (see Fig. 21.9).

(The white thin rectangles specify beam splitters; the black ones, mirrors). Arm

lengths within the interferometer are equal, so that a photon emitted by the source

must reach detector A whenever C is not inserted. In the event that detector B

receives the photon (without the bomb exploding), we know that C is in place in

the beam, even though it has not encountered the photon.

where we do not know whether a detector C has, or has not, been placed in
the transmitted beam of the Wrst beam splitter. Let us suppose that the
detector C triggers a bomb, so that the bomb would explode if C were to
receive the photon. There are two Wnal detectors A and B, and we know
(from §21.7) that only A and not B can register receipt of the photon if C is
absent. See Fig. 22.6. We wish to ascertain the presence of C (and the
bomb) in some circumstance where we do not actually lose it in an
explosion. This is achieved when detector B actually does register the
photon; for that can occur only if detector C makes the measurement
that it does not receive the photon! For then the photon has actually taken
the other route, so that now A and B each has probability 1

2
of receiving the

photon (because there is now no interference between the two beams),
whereas in the absence of C, only A can ever receive the photon.17

In the examples just given, there is no degeneracy, so the issue that was
addressed above that the mere result of the measurement may not deter-
mine the state that the system ‘jumps’ into does not arise. Recall from
§22.6 that we need the proper use of the projection postulate to resolve
these ambiguities arising from degenerate eigenvalues. Accordingly, let us
introduce another degree of freedom, and it is convenient to do this by
taking into account the phenomenon of photon polarization. This is an
example of the physical quality, referred to earlier, of quantum-mechan-
ical spin. I shall be coming to the ideas of spin more fully in §§22.8–11. For
the moment we shall only need a very basic property of spin in the case of a
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(a) (b)

Fig. 22.7 A massless particle, such as a photon, can spin only about its direction

of motion. The magnitude jsj of this spin is always the same, for a given type of

massless particle, but if the helicity s is non-zero (as is the case for a photon), then

the spin can be either (a) right-handed (s > 0: positive helicity) or (b) left-handed

(s < 0: negative helicity). For a photon, we have jsj ¼ 1 (in units of �h), giving the

two cases s ¼ 1, for right-handed circular polarization, and s ¼ �1, for left-

handed circular polarization. By the quantum superposition principle, we can

form complex linear combinations of these, yielding the other possible states of

photon polarization, as shown in Figs. 21.12 and 21.13.

massless particle. Photons are indeed particles that possess spin but,
being massless, their spin behaves in a way that is a little diVerent
from the more usual spin of a massive particle (e.g. an electron or proton)
that we shall come to in §§22.8–10. We must think of a photon (or other
massless particle) as necessarily spinning about its direction of motion; see
Fig. 22.7.
The amount jsj of this spin is always the same, for a given type of massless

particle, but the spin can be either right-handed (s > 0) or left-handed
(s < 0), about the direction of motion. In addition, in accordance with the
general principles of quantum mechanics, the spin state can be any (quan-
tum) linear combination of the two. The quantity s itself is called the helicity

of the massless particle (§22.12), and its value always has to be an integer or
half integer (or, bringing the appropriate units in, we ought to say that the
helicity is an integralmultiple of 1

2
�h). Amassless particle is said to have spin j

if jsj ¼ j (or, with units brought in, jsj ¼ j�h). A photon has spin 1 (so its
helicity is�1); a graviton has spin 2 (helicity�2). Neutrinos have spin 1

2
, and

if there are massless neutrinos,18 such a neutrino would have helicity� 1
2
, its

corresponding antineutrino having helicity 1
2
.

In the case of a photon, the helicity states (states of deWnite helicity)
are the states of circular polarization, right-handed for s ¼ 1 and left-
handed for s ¼ �1, respectively. There are other possible states of polar-
ization of a photon, such as plane polarization, but these are simply linear
combinations of the right- and left-handed states. I shall come to the
geometry of all this shortly, at the end of §22.9, but for the moment this
will not be required. All that we need for now is one particular fact about
how circular polarization behaves upon reXection. I am supposing that a
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photon in a circularly polarized state impinges upon the beamsplitter (or
whatever other kind of mirror we might use) perpendicularly, so that the
reXected beam goes directly back in the direction from which the photon
came. The fact that we need is that the reXected photon’s state of polar-
ization is then opposite to that of the photon emitted at the source, whereas
the transmitted part has a polarization which is the same as that of the
emitted photon.[22.16] If desired, we can suppose that there is a very tiny tilt
in the initial beam direction, so that the reXected photon beam does not
simply re-enter the source. This will not signiWcantly aVect our consider-
ations.
Let us return to our original ‘null-measurement’ experiment of Fig. 22.5,

but with the photon now impinging perpendicularly, as in Fig. 22.8.
Suppose that our source can be tuned so that it emits its photons in either
a right-handed or a left-handed circularly polarized state. On a particular
occasion, it emits a right-handed photon (and takes note of this fact).
After the photon has encountered the beam splitter, the photon’s state is
now a linear combination (a sum with appropriate conventions about
phase factors, as before):

jcþi ¼ jtþi þ jr�i,

where theþ or� inside the ket refers to the sign of the helicity. Let us place
our detector in the transmitted beam, as before (and suppose that it is
insensitive to polarization). Then if, as before, the source registers that it
has emitted the right-handed photonbut the detector fails to register, so that
it has not received the photon, then it must be concluded that the state has
jumped(upon‘non-detection’bythesource) to thereXected left-handedstate
jr�i. The point that I ammaking here, is that the full projection postulate is

‘NO’
r

y+ t+
-

Fig. 22.8 A return to the experiment of Fig. 22.5, but now the photon

impinges almost perpendicularly. The source emits a right-handed photon. After

the photon has encountered the beam-splitter, its state is now jcþi ¼ jtþi þ jr�i
where the ‘þ’ or ‘�’ inside the ket refers to the sign of helicity. If the (polarization-

insensitive) detector records not receiving the photon, we conclude that state has

jumped (upon non-detection) to the reflected left-handed state jr�i. This requires

the full projection postulate (to the Lüders point; see Fig. 22.9), because there is

a degeneracy both in the case no (the 2-space spanned by jrþi and jr�i) and in

the case yes (that spanned by jtþi and jt�i). The actual starting state jtþi þ jr�i
is needed to determine where the state jumps to upon measurement (here a

non-detection).

[22.16] Can you suggest a simple reason for this?
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required to ascertain the nature of this resulting state; see Fig. 22.9.
The measurement is of a purely yes/no character, because the result is
either ‘non-detection’ (no) or ‘detection’ (yes). There is a degeneracy
for both these alternatives, because the eigenspace of the no answer is
the 2-space spanned by jrþi and jr�i, and the eigenspace of the yes

answer is that spanned by jtþi and jt�i. Since, in this case, the initial
state is jtþi þ jr�i, the projection postulate19 correctly carries us to jr�i,
in the case of no, rather than to jrþi or to jrþi þ jr�i (or to any
other linear combination of jrþi and jr�i) for the result of non-detec-
tion.20,[22.17]

22.8 Spin and spinors

This is hardly a very exciting experiment, but it illustrates a point. We shall
be seeing some much more remarkable things in Chapter 23. But in
preparation for this, it will be appropriate to say a little more about
spin. What this refers to, in the case of a massive particle, is the angular
momentum about its centre of mass.21 In §§21.1–5, we encountered the
signiWcance of mass–energy conservation and momentum conservation, as
features, respectively, of time-translation symmetry and space-translation
symmetry of our quantum laws. Rotational symmetry, in a similar way,
gives rise to angular momentum conservation (see also §18.7 and §20.6).

Fig. 22.9 A description in projective

Hilbert space PH4 (see Fig. 15.15) of

the projection postulate of Fig. 22.4, for

the photon polarization states in Fig.

22.8. The initial state is jtþi þ jr�i
indicated within PH2, the full space

being spanned by jtþi, jt�i, j rþi, and

jr�i. The white triangle arrow shows

the projection to (the Lüders point)

jr�i, this being along the line which

is the unique transversal to the yes

and no lines from the initial point

(jtþi þ jr�i). The (non-)detection

itself would merely tell us that the

resulting state lies on the no line, but

the choice of the initial state breaks

this degeneracy, according to the full

projection postulate.

[22.17] Explain more fully why the correct answer is given by ‘projection’.
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For a massive particle, we can imagine that we are in the particle’s rest
frame, and then the relevant rotations are those which constitute the
rotation group O(3) taken about the particle’s location in that frame.
Corresponding to the way that a component of momentum, in quantum

mechanics, would be represented as i�h times the operator generating
infinitesimal translations in the direction of the corresponding position
coordinate (§§ 21.1,2) so also is a component of angular momentum
represented as i�h times the generator of infinitesimal rotations about the
corresponding (Cartesian spatial) axis. Angular momentum components,
in quantum mechanics, therefore refer to the algebra of infinitesimal
rotations (§§ 13.6,10), i.e. the Lie algebra of the rotation group O(3),
or equivalently SO(3), since the Lie algebra does not distinguish between
the two.
Since SO(3) is non-Abelian, the Lie algebra elements do not all com-

mute; in fact the generators of this algebra, l1, l2, and l3, the inWnitesimal
rotations about the three Cartesian spatial axes, satisfy[22.18]

l1l2 � l2l1 ¼ l3, l2l3 � l3l2 ¼ l1, l3l1 � l1l3 ¼ l2:

These are related, according to the rules of quantum mechanics, to the
components L1, L2, L3 of angular momentum about the three axes,
according to:

L1 ¼ i�hl1, L2 ¼ i�hl2, L3 ¼ i�hl3:

So our angular momentum commutation rules are22

L1L2 � L2L1 ¼ i�hL3, L2L3 � L3L2 ¼ i�hL1, L3L1 � L1L3 ¼ i�hL2:

As with practically everything else in quantum mechanics, the angular
momentum components L1, L2, L3 must act as a linear operators on the
Hilbert space H. Thus, quantum systems possessing angular momentum
provide a representation of the Lie algebra of SO(3) in terms of linear
transformations of H (see §§13.6,10, §14.6).
This leads to one of the most elegant and revealing aspects of quantum

mechanics, and it is a subject which amply repays much detailed study.
This is not the place for full detail, however, and I shall try to provide only
a few points of particular signiWcance. In the Wrst place, we take note of the
fact that the explicit matrices

L1 ¼
�h

2

0 1

1 0

� �

, L2 ¼
�h

2

0 �i

i 0

� �

, L3 ¼
�h

2

1 0

0 �1

� �

,

[22.18] Use quaternions to check this.
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called (without the �h=2) the Pauli matrices, satisfy the required com-
mutation relations.[22.19] They provide the simplest (non-trivial) repre-
sentation of angular momentum, and we imagine that these 2� 2 matrices
act on a wavefunction with two components {c0(x), c1(x)} (thought of as
a column vector). When we start to rotate this state, the components c0(x)

and c1(x) get churned around, in accordance with the matrix multipli-
cation rules that the Pauli matrices generate.
We can label this 2-component wavefunction cA, using a lower index A

(which takes the values 0 and 1, or else we can think of this as an abstract
index according to the ‘abstract-index notation’ referred to in §12.8). The
quantity described by cA is called a spinor, and its index A is referred to as
a 2-spinor index. It turns out that cA is indeed a spinorial object in the
sense described in §11.3 (a continuous 2p rotation takes it to its negative).
Indeed, if we continuously ‘exponentiate’ (see §14.6) one of the Pauli
matrices until we get an entire rotation through 2p, we Wnd that we get
the operator �I , which sends cA to �cA.

[22.20]

This notation is part of a powerful formalism that can be developed to
supplement (or even replace23) the formalism of tensor calculus, by using
‘tensor-like’ quantities built up from things like ‘cA’. Although not fully
needed here, its real power arises when we take advantage of the relativis-
tic version of this formalism. For this, we also need ‘primed’ indices
A0, B0, C0 , . . . , in addition to the ‘unprimed’ ones A, B, C , . . . , the primed
and unprimed indices being, in an appropriate sense, complex conjugates

of one another; see §13.9. The notation has great value in quantum Weld
theory (a fact perhaps less well appreciated than it ought to be; 24 see §25.2
and §34.3) and in general relativity25 (and it plays a basic role in twistor
theory; see §33.6). It is not appropriate for me to enter into this at the
present stage (although we shall come back to it in §25.2), but it will be
helpful to borrow a little from this 2-spinor formalism. All that we need of
it here and in §§22.9–11 is to represent general spin states in a neat way. We
shall not need the primed indices (until §§25.2,3 and §§33.6,8) since we are
only doing non-relativistic physics here.
Before entering into this, I wish to make a notational simplification. For

the remainder of this section, and up until the end of §22.11, I shall adopt
the convenient assumption that units have been chosen so that �h ¼ 1. In
fact, this is always possible—and we shall be seeing in §27.10 (and §31.1)
that we could go much further than this and describe things in terms of
what are called ‘Planck units’, where the speed of light and the gravitational
constant are also both set equal to unity. There is no need to go this far
here, and in any case it is not hard to reinstate �h, if required, from simple

[22.19] Check this. Explain how their multiplication rules relate to those of quaternions.

[22.20] Do this explicitly.
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considerations of physical dimensions. (For example, to reinstate �h in any
physical formula for which �h has been set to unity, we replace any quantity
scaling as the qth power of mass, ignoring length and time, by �h�q times
that quantity. In particular, mass, energy, momentum, and angular mo-
mentum would simply be divided by �h.)
Now, returning to the 2-spinor formalism, we recall that a univalent

spinor quantity cA can be used to describe a particle of spin 1
2
. The same

kind of notation can be adopted for higher values of the spin, correspond-
ing to other representations of the Lie algebra of SO(3). The value of the
spin is always a non-negative integer multiple of 1

2
:

0, 1
2
, 1, 3

2
, 2, 5

2
, . . .

(or, reinstating �h we would say that the spin/�h takes these values) and the
wavefunction can be described by an object cAB...F (a ‘spin-tensor’) which
is completely symmetric in its n indices in the case of spin n

2

cAB...F ¼ c(AB...F )

(where the round brackets denote symmetrization over all n indices; see
§12.7). In fact, all representations of SO(3)—where we include the 2-valued
spinorial ones—can be built up as direct sums of these particular ones, the
irreducible representations (see §13.7). This amounts to saying that the
general representation can be expressed as a (possibly inWnite) collection of
wavefunctions

{cAB...F , fGH...K, wLM...R , . . . },

each of which is totally symmetric in its spinor indices.
For an individual particle, there would be only one such symmetric Weld,

e.g. cAB...F , for its wavefunction. (It would be an understandable mistake
to think that for two particles there would be two of them separately, for
three particles, three of them, etc. We shall be seeing how systems of more
than one particle are actually described in the next chapter. It is something
distinctly more subtle than this.) For a spin 0 particle, called a scalar

particle (such as a p meson), the wavefunction has 0 indices, and this
was the situation treated in Chapter 21. The most familiar particles,
electrons, muons, neutrinos, protons, neutrons, and also their constituent
quarks, all have spin 1

2
( just 1 index). The deuteron (nucleus of heavy

hydrogen) and the W-boson (see §25.4) have spin 1 (2 symmetric spinor
indices). Many heavier nuclei, or even whole atoms, can be treated like
single particles with much higher spin. For spin 1

2
n, the n-index object

cAB...F has nþ 1 independent26 complex components.[22.21] Although the
spin-tensor cAB...F is frequently referred to as an n-index spinor, it is a

[22.21] See if you can work this out, from the information given.
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spinorial object (§11.3) only when n is odd, these being the cases where the
spin is half-odd integral, not integral. It should be remarked, also, that the
spin value itself, j ¼ 1

2
n(� 0), determines (and is determined by) the eigen-

value j( jþ 1) of the ‘total spin’ operator27

J2 ¼ L2
1 þ L2

2 þ L2
3;

this being the ‘ignored length’ of the 3-vector operator J ¼ (L1, L2, L3):
The total spin J2 commutes[22.22],[22.23] with each component L1, L2, L3

of angular momentum (despite the fact that these components do not
commute among themselves). This property characterizes J2 as a Casimir

operator for SO(3); see §22.12. To delineate quantum states completely, we
usually form a complete set of commuting operators (§22.12), and look for
states that are simultaneously eigenstates of all the operators of the set.
For angular momentum, this is normally done by taking the operator L3

of angular momentum about the upward (‘z’) direction, to accompany J2.
The two ‘quantum numbers’ j and m are then taken to label the state,
where j( jþ 1) is the eigenvalue of J2, and m is the eigenvalue of L3. We
take j � 0 and �j � m � j, where j and m are both half odd integers
(spinorial case) or both integers. The 2jþ 1 ( ¼ nþ 1) diVerent possible
m values correspond to the diVerent components of cAB...F .
The choice of the upward direction is, of course arbitrary (and it

corresponds to choosing an up/down basis (the jÆi,j�i of §22.9) for the
spinor components. Any other spatial direction could equally well be
chosen in place of ‘up’. Accordingly, I shall occasionally refer to the ‘m
value’ in some other given direction (as with the Majorana description of
§22.10).

22.9 The Riemann sphere of two-state systems

Let us consider the remarkably concise—even magical—quantum geom-
etry of the individual spin states for spin 1

2
(e.g. electron, proton, neutron,

quark). This is also illuminating for the understanding of 2-state quantum
systems generally. Such a system is described by a complex 2-dimensional
Hilbert space H2, and the case of spin 1

2
nicely represents its geometry.

For our spin 1
2
particle, we shall be concerned with the spin degree of

freedom only, in the particle’s rest frame. To make this explicit, we can

[22.22] Check this commutation directly from the angular-momentum commutation rules.

[22.23] Consider the operators Lþ ¼ L1 þ iL2 and L� ¼ L1 � iL2 and work out their commu-

tators with L3. Work out J2 in terms of L� and L3. Show that if jci is an eigenstate of L3, then so

also is each of L�jci, whenever it is non-zero, and find its eigenvalue in terms of that of jci. Show

that if jci belongs to a finite-dimensional irreducible representation space spanned by such

eigenstates, then the dimension is an integer 2j, where j(jþ 1) is the eigenvalue of J2 for all states

in the space.
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imagine that the particle is ‘at rest’ in the sense that it is in the eigenstate
of zero momentum, so its state has to be constant[22.24] in the
space of variables x. Then c0 and c1 are just complex numbers, say
c0 ¼ w and c1 ¼ z, and we write the state as {w, z}. We can
arrange ‘spin up’ jÆi (right-handed about the upward vertical) to be
spin state {1, 0}; correspondingly, ‘spin down’ j�i (right-handed about
the downward vertical) is to be {0, 1}. These two basis states are orthog-
onal:

hÆj�i ¼ 0:

We also normalize:
hÆjÆi ¼ 1 ¼ h�j�i:

The general spin- 1
2
state cA ¼ {w, z} (general element of H2), is the linear

combination

{w, z} ¼ wjÆi þ zj�i

of these two basis states. The scalar product of another general state {a, b}

(i.e. ajÆi þ bj�i) with {w, z} is given by[22.25]

h{a, b}j{w, z}i ¼ �aawþ �bbz:

It now turns out that every spin-1
2
state must actually be a pure state

of spin that is right-handed about some direction in space, so
we can write (say)

wjÆi þ zj�i ¼ j�i,

where ‘�’ is some actual direction in space![22.26] This gives us a remark-
able identiWcation between the projective space PH2 (§15.6) and the
geometry of directions in space, these directions being thought of as spin
directions. The physically distinct spin 1

2
states are indeed provided by this

projective space (see §21.9), the diVerent points of PH2 being labelled by
the distinct ratios

z: w:

[22.24] Why?

[22.25] Obtain this expression.

[22.26] See if you can derive this fact in two diVerent ways: (i) Wnding the direction explicitly in

some suitable Cartesian frame, where the state {a, b} deWnes b=a as a point on the complex plane

of Fig. 8.7a; (ii) without direct calculation, using the fact that because H2 is a representation space

of SO(3), every direction of spin is included, yet PH2 is not ‘big enough’ to contain any more

states than this.
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Riemann
sphere

0
u

Fig. 22.10 The projective space PH2 for 2-state system is a Riemann sphere (see

Fig. 8.9). For the spin states of a massive particle of spin 1
2
, we can use the north

pole to represent the spin state jÆi (spin ‘up’) and the south pole, the state j�i
(spin ‘down’). A general spin state j�i is represented (with appropriate phases for

jÆi and j�i) by the point on the sphere whose direction out from the centre is that

of j�i (i.e. which gives the result ‘yes’ with certainty for a spin measurement E� in

that direction), as illustrated by the double-shafted arrow. We can express the

state j�i as a linear combination j�i ¼ wjÆi þ zj�i (where we can regard the

complex numbers z, w as the components w ¼ c0, z ¼ c1 of a 2-spinor cA). The

points on the sphere correspond to the distinct ratios z:w. Each of these can be

represented by a complex number u ¼ z=w (allowing1) in the complex plane, this

plane being taken to be the equatorial plane of the sphere. The point u projects

stereographically from the south pole to the point on the sphere representing j�i.

In other words, PH2 is just a copy of our old friend the Riemann sphere

that we Wrst became acquainted with in §8.3. Each point of this Riemann
sphere labels a distinct spin-1

2
state, this being the ‘m ¼ 1

2
’ eigenstate of the

particular spin measurement that is taken in the direction out to this point,
from the centre of the sphere (Fig. 22.10).
We see this geometrical relationship more explicitly if we use the stereo-

graphic projection of the sphere from its south pole to its equatorial
plane described in §8.3 (Fig. 8.7a). This plane is to be regarded as the
complex plane of the ratio u¼ z/w (rather than of the ‘z’ of §8.3) of
quantum-mechanical amplitudes z and w. This relates the particular
point on the sphere, corresponding to the spatial direction �, directly to
the ratio z/w.
Let us use the projector E� to denote the measurement that asks

the question ‘is the spin in the direction �?’, so the eigenvalue is 1 (yes)
if the spin state is found to be (or is projected to) j�i and it is 0 (no) if
the spin is thereby projected to the orthogonal spin state j�i in the opposite

spatial direction (corresponding to the antipodal point on the Riemann
sphere). (Note that ‘orthogonal’ in the Hilbert space does not correspond
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to ‘at right angles’ in space, in this example, but ‘opposite’.) If we start
with the state jÆi, then the probability of yes for the E� measurement is
jwj2=(jwj2 þ jzj2). If the spin is initially in some state jªi, and a measure-
ment is performed on it to ascertain whether the state is in some other
direction j�i, where the ordinary Euclidean 3-space angle between ª and
� is y, then the probability of Wnding the yes result is[22.27]

1
2
(1þ cos y):

We can also realize this probability directly in terms of the geometry of the
sphere, where ª and � are given by two points A and B respectively on the
sphere, and we orthogonally project B to a point C on the diameter
through A (Fig. 22.11). If A0 is the point antipodal to A, then the prob-
ability of yes is the length A0B divided by the sphere’s diameter AA0.[22.28]

Note that the ‘Riemann sphere’ used here has more structure than that
of §8.3 and the celestial sphere of §18.5, in that now the notion of ‘anti-
podal point’ is part of the sphere’s structure (in order that we can tell
which states are ‘orthogonal’ in the Hilbert-space sense). The sphere is
now a ‘metric sphere’ rather than a ‘conformal sphere’, so that its sym-
metries are given by rotations in the ordinary sense, and we lose the
conformal motions that were exhibited in aberration eVects on the celestial
sphere. Nevertheless, our present use of the Riemann sphere clearly ex-
hibits an explicit connection between the complex-number ratios that
arise in quantum mechanics and ordinary directions in space. We see
that the complex numbers that appear in the quantum-state formalism
are not completely abstract things; they are intimately related to geomet-
rical and dynamical behaviour. (Recall, also, the role of the complex
phases in determining the dynamics of a momentum state, as described
in §21.6.)
It should be pointed out that the geometry of Fig. 22.11, expressing

the probabilities that arise in a quantum measurement in relation to PH2,
is not restricted to the case of spin, but is quite general for a 2-state
system. What is special for the case of spin 1

2
is the immediate association

between oridinary spatial directions with the points of the Riemann
sphere PH2. The Riemann sphere is always there, in a 2-state system,
providing the ‘quantum spread’ of a pair of classical alternatives. In many
physical situations, however, the geometrical role of this sphere, and of the
underlying quantum-mechanical complex numbers (amplitudes), is not
very direct, and there is a tendency for physicists to regard them as entirely
‘formal’ quantities. This attitude arises partly from the fact that the overall

[22.27] Show this.

[22.28] ConWrm this.
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1
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2− cosq

1
2

1
2+ cosq

O
q

phase of the state vector for an entire physical system is taken to be
unobservable, so people often ignore the potential geometrical richness
of the internal complex coYcients. The relative phases between one part
and another certainly play an observable role. One way of expressing this
is in the fact that the complex geometry of the entire projective Hilbert
space PH for a system is physically meaningful. Although the overall
phase is completely taken out in the deWnition of PH, all relative phases
feature in its geometry. Indeed, there are elegant approaches to quantum
mechanics that exploit the complex projective geometry of PH.28

There are also other situations in which the Riemann sphere’s geometry
relates the complex numbers of quantum mechanics directly to spatial
properties of spin. Most signiWcantly, this applies to the general spin states
of a higher-spin massive particle, as will be described shortly (in §22.11).
But to end this section, let us return to the photon polarization that we
brieXy encountered in §22.7. Recall that the general polarization state of a
photon is a complex linear combination of the states of positive helicity
jþi and negative helicity j�i:

jfi ¼ wjþi þ zj�i:

The physical interpretation of such a state is in terms of what is called
elliptical polarization which generalizes the particular cases of plane polar-
ization and circular polarization. It is not my purpose to describe this in
full detail here, but a good enough picture is obtained if we think in terms
of a classical electromagnetic plane wave. The ‘planes’ are the wave fronts,

Fig. 22.11 Suppose that the initial state

of a 2-state system (like that of

Fig. 22.10) is represented by the point

B on the Riemann sphere and we

wish to perform a yes/no measurement

corresponding to some other point

on the sphere, where yes would find

the state at A and no would find it

at the point A0, antipodal to A.

Taking the sphere to have radius 1
2
,

and projecting B orthogonally to C

on the axis A0A, we find that the

probability of yes is the length A0C,

which is 1
2
(1þ cos y), and the

probability of no is the length CA,

which is 1
2
(1� cos y), where y is

the angle between OB and OA, the

sphere’s centre being O.
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which are perpendicular to the direction of motion. At each point in space,
there will be an electric vector E and a magnetic vector B, and for a plane
wave these are always perpendicular and lie in the wave fronts. If we
imagine keeping a point in space Wxed and allow the wave to pass by,
the electric vector swings round so that the tip of this vector describes an
ellipse in the wave-front plane. The magnetic vector follows it, describing
an identical ellipse, but rotated through a right angle. See Fig. 22.12. In
particular cases, the ellipse squashes down to become a line segment: the
cases of plane polarization. Circular polarization occurs when the ellipse
becomes a circle. If we orient things so that the wave is coming straight at
us, then the vectors swing round in an anti-clockwise sense for positive
helicity and clockwise for negative helicity.

Magnetic vector

Electric vector

(a) (b) (c)

Fig. 22.12 Photon polarization (see Fig. 21.7) as a feature of electromagnetic

plane waves. (a) A plane-polarized wave receding from the viewer. The electric

vectors (black-headed arrows) and magnetic vectors (white-headed arrows) each

oscillate back and forth, in two fixed perpendicular planes. (b) In a circularly

polarized plane wave, the electric and magnetic vectors rotate about the direction

of motion, always remaining perpendicular and of equal constant length. (c)

Viewed from behind, the diagrams show how the electric and magnetic vectors

rotate along the wave (positive helicity case), the lower figure showing the situ-

ation for circular polarization, and the upper one, for the general case of elliptical

polarization, the heads of the two arrows tracing out congruent ellipses with

perpendicular major axes. A single photon’s wavefunction would exhibit behav-

iour of this kind.
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Stokes vector

Riemann
sphere Polarization

ellipse

Equator

−

+

q=( z )   w
1 2

Fig. 22.13 Photon polarization states represented on the Riemann sphere. Take

the north pole to represent the positive helicity state jþi and south pole, the

negative helicity state j�i, where we think of the photon’s momentum to be in

the direction of north. The general polarization state wjþi þ zj�i is represented

by the point q ¼ (z=w)1=2 on the Riemann sphere. Consider the semi-diameter of

the sphere out to q, called the ‘Stokes vector’, and draw the great circle lying

in the diametral plane perpendicular to it. Orient this circle right-handed about

the Stokes vector. Then project this circle orthogonally down to sphere’s equa-

torial plane. This gives us the required polarization ellipse and the correct

orientation.

Let us see how the Riemann sphere Wts in with all this. Let us take the
north pole to represent the positive helicity state jþi, and the south pole to
represent the negative helicity state j�i. We assume that the photon is
travelling upwards, in the direction of jþi. Now, instead of marking z/w
on the Riemann sphere, we are going to look at its square root q ¼ (z=w)1=2

(it doesn’t matter which one). Let us consider the radius of the sphere out
through q (‘Stokes vector’) and draw the great circle on the sphere lying
in the diametral plane perpendicular to this line. Orient this circle in a
right-handed sense about the vector pointing out to q. Then project this
circle orthogonally to the sphere’s equatorial plane. We get the required
polarization ellipse, together with the correct orientation. See Fig.
22.13.[22.29]

22.10 Higher spin: Majorana picture

As a further example, illustrating the close relation between the apparently
abstract complex numbers in quantum mechanics and the geometry of

[22.29] Verify all this. Why do I not worry about the sign of q?
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space, consider the spin states for a massive particle—or atom—of spin
j ¼ 1

2
n. As claimed above (in §22.8), this can be described by a symmetric n-

index spin-tensor cAB...F . Now there is a theorem that asserts that every
such spin-tensor has a ‘canonical decomposition’ whereby it is expressible
as a symmetrized product of 1-index spinors, uniquely up to scale factors
and orderings:[22.30]

cAB...F ¼ a(AbB � � �’F ),

where we recall from §12.7 that round brackets around indices denote
symmetrization. Using the picture of Fig. 22.10, where a single-index
spinor cA is geometrically represented (up to an overall complex factor)
by a point on the Riemann sphere (i.e. by a direction in space), we
conclude that the spin-tensor cAB...F can itself be represented on the
Riemann sphere, up to an overall scale factor, as an unordered set of n

points on the sphere (i.e. n unordered directions in space); see Fig. 22.14.
This representation of a general spin n state is called the Majorana descrip-
tion. It was found originally in 1932 (but by a diVerent kind of procedure29

which I shall indicate brieXy in §22.11) by the brilliant Italian physicist
Ettore Majorana. (At the young age of 31, he disappeared mysteriously
from a ship in the Bay of Naples, perhaps by suicide.)
There is a standard basis of states for spin j ¼ 1

2
n. In the Majorana

description, these are realized as the states for which the points in the
Majorana description are all at either the north or south pole:

jÆÆÆ . . .Æi, j�ÆÆ . . .Æi, j��Æ . . .Æi, . . . , j��� . . .�i:

Fig. 22.14 Majorana’s description of the

general (projective) spin state for a

massive particle of spin n
2
, given by n unor-

dered points on the Riemann sphere. We

can think of the vectors out from the centre

to each of these points to be contributing

spin 1
2
, in accordance with the prescription

of Fig. 22.10. The symmetrical product of

these spins gives the total. (In 2-spinor

notation, the complete spin state is the

symmetric n-valent spinor, which

factorizes cAB...F ¼ a(AbB . . .’F), where

aA, bA, . . . , ’A, determine the n points, as

in Fig. 22.10.)

[22.30] See if you can prove this, using the ‘fundamental theorem of algebra’ stated in Note 4.2.

Hint: Consider the polynomial cAB...F z
AzB � � � zF , where the components of zA are {1, z}.
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Fig. 22.15 Stern–Gerlach apparatus, used to measure the ‘m-value’ of an atom’s

magnetic moment (coupled to its spin). The atoms pass through a strongly

inhomogeneous magnetic field, deflecting their paths slightly differently for each

m-value.

These nþ 1 states are the eigenstates of the observable L3 (the x3 axis
being the ‘up’ direction) and are therefore all orthogonal to one another.
They can be distinguished by the nþ 1 diVerent spin eigenvalues, called m

values (§22.8), respectively: j, j� 1, j� 2, . . . , � j. We shall see a little
more about this in §22.11.
There is a standard measuring device, known as a Stern–Gerlach appar-

atus, which can often be used to measure this ‘m value’ for an atom. For
this to work, we require that the atom possess a magnetic moment (so it is
a tiny magnet), where the magnetic-moment vector is a certain multiple of
the spin vector. The atoms are passed through a strongly inhomogeneous
magnetic Weld. This deXects their paths slightly diVerently for each m

value, since m determines how each atom’s magnetic moment vector is
oriented in relation to the inhomogeneous magnetic Weld; see Fig. 22.15.
Although the states for each diVerent m value are all orthogonal to one

another, the orthogonality conditions for general Majorana descriptions
are complicated.30 It may be remarked, however, that a Majorana state for
which some direction � features, is necessarily orthogonal to the state
j��� . . .�i, where � is diametrically opposite to �. Moreover, if �
features in the Majorana description with multiplicity r, then the state is
orthogonal to any other spin 1

2
n state whose Majorana description in-

volves the opposite direction � to multiplicity at least n� rþ 1.[22.31]

These results enable us to interpret the Majorana directions physically.
The Majorana directions are precisely those for which a Stern–Gerlach
measurement in that direction has probability zero to Wnd the spin to be
entirely in the opposite direction. For a Majorana direction of multiplicity
r, the probability is zero for the m value in that direction to be anything
from �j to �jþ r� 1.31

It should be pointed out that the procedure, outlined above, for repre-
senting the general spin state for a massive particle is not very familiar to
most physicists. Instead, they would adopt a diVerent procedure which

[22.31] See if you can show all this using the geometry of §22.9. Apply this result to the

orthogonality of the various eigenstates of L3.
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involves what is called harmonic analysis. This is an important topic for
many other reasons, and the next section provides a brief discussion of the
relevant ideas.

22.11 Spherical harmonics

In §20.3, we encountered the classical theory of vibrations (of small-
amplitude and without dissipation). Our main discussion was concerned
with systems having a Wnite number of degrees of freedom. But also
(brieXy)—as with the vibrations of a drum or a column of air—we con-
sidered systems for which the number of degrees of freedom is treated as
being inWnite. These vibrations (in either case) are composed of normal
modes, each having its own frequency of vibration called a normal fre-
quency. If the vibrating object is compact (see §12.6, Figs. 12–14, for the
meaning of this term), itsmodeswill constitute a discrete family, providing a
discrete spectrum of diVerent normal frequencies. In the particular case of a
sphere S2, the diVerent modes of vibration (which we can visualize as the
vibrational modes of a soap bubble, say, or a spherical balloon) correspond
to what are called spherical harmonics. What has this to do with the quan-
tum mechanics of angular momentum? We shall be seeing shortly.
To classify these harmonics, we look for eigenstates of the Laplacian

operator r2 deWned on S2. We have encountered the ordinary
2-dimensional Laplacian in §10.5, deWned on the Euclidean plane by
r2 ¼ ]2=]x2 þ ]2=]y2. On the unit sphere S2, this expression must be
modiWed to take into account the curved metric. This metric form is

ds2 ¼ gabdxadxb ¼ dy2 þ sin2y df2

in the usual spherical polar coordinates (y, f)—which is a labelling of
points on S2 for which Cartesian coordinates (in ordinary 3-space) of a
point are x ¼ sin y cosf, y ¼ sin y sinf, z ¼ cos y (Fig. 22.16). Thus, f is
essentially the longitude and 1

2
p�y the latitude (all in radians). The Lapla-

cian (with covariant derivative ra; see §14.3) is[22.32]

r2 ¼ gabrarb

¼ ]2

]y2
þ cos y

sin y
]

]y
þ 1

sin2 y

]2

]f2
:

The possible eigenvalues of r2 turn out to be the numbers
�j( jþ 1) (for j ¼ 0, 1, 2, 3, . . .), so

r2F ¼ �j( jþ 1)F,

[22.32] Can you derive this spherical polar expression?
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z

y

x

where F is the corresponding eigenfunction.32 These eigenfunctions are the
spherical harmonics, and it is usual to demand that the harmonics be
simultaneously also eigenfunctions of the operator ]=]f (which commutes
with r2). The possible eigenvalues of ]=]f are im, where the integer m lies
in the range �j # m # j:

]F
]f
¼ imF:

Examples of such eigenfunctions are F ¼ 1(for j ¼ m ¼ 0), F ¼ cos y
(for j ¼ 1 with m ¼ 0), F ¼ e�if sin y (for j ¼ 1, m ¼ �1),F ¼ 3 cos2 y�1

(for j ¼ 2, m ¼ 0) etc.33

The remarkable similarity with the eigenvalues j(jþ 1) for the total
angular momentum operator J2 ¼ L2

1 þ L2
2 þ L2

3, and with m for the com-
ponent L3, as referred to at the end of §22.8 and in §22.10 respectively,
should not be lost on the reader. Indeed, the angular dependence of the
wavefunction, for a particle with integral spin j, is necessarily a j-spherical
harmonic. Moreover, the eigenstates of L3 correspond to harmonics that
are eigenfunctions of ]F=]f. In fact, we can ‘identify’

J2 ¼ �r2 and L3 ¼ �i
]

]f

for the angular behaviour of such wavefunctions.34

This does not give us the ‘spinorial’ cases for which j is a half-odd
integer (as is m, accordingly). For this, we can generalize to what are
referred to as ‘spin-weighted spherical harmonics’.35 These are not simply
functions on the sphere S2, but they also have a dependence on a unit
(spinorial) tangent vector at each point of S2 (Fig. 22.17). (They may be
thought of as functions on the S3 that represents the bundle of ‘spinorial’
unit tangent vectors to S2 that the CliVord bundle provides us with, as
described in §15.4.36 Here is not the place to go into the details of this, and
the reader is referred to the literature.

Fig. 22.16 Standard spherical polar

coordinates y and f on the sphere are

related to Cartesian coordinates by

x ¼ sin y cosf, y ¼ sin y sinf, z ¼ cos y.
Thus f is basically a measure of

longitude (marked here both at the north

pole and on the equator) and p=2� y is

the latitude.
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S3 S2

Fig. 22.17 Spin-weighted spherical harmonics. Spin-weighted functions on the

sphere S2 (drawn on the right) are not simply functions on S2, but also have a

dependence on a unit (spinorial) tangent vector to S2 at the point in question

(represented here as a ‘half arrow’ to signal its spinorial nature). Such functions

are more properly on the S3 depicted on the left, which is the Clifford spin-vector

bundle of Fig. 15.10. (A function of ‘spin-weight s’ has an eisw dependence on the

angle w through which the spin-vector rotates within its tangent plane to S2. As w
increases, the corresponding point on S3 describes a Clifford circle.)

In fact, the 2-spinor description of spin states, as introduced in §22.8 and
used for the Majorana representation of §22.10, is closely related to the
theory of spherical harmonics and spin-weighted spherical harmonics.
Any n-index symmetric spin-tensor cAB...F corresponds explicitly to a
collection of (spin-weighted) spherical harmonics for j ¼ 1

2
n. To Wnd

them, we take two 2-spinors xA and �A, with components

{x0, x1} ¼ eif=2cos y
2
, e�if=2sin y

2
,

{�0, �1} ¼ �eif=2sin y
2
, e�if=2cos y

2
,

so that xA and �A represent diametrically opposite points on S2.[22.33] To
write down each (spin-weighted) harmonic, we take the components of
cAB...F with respect to xA and �A (regarded as a variable spinor reference
frame). These ‘components’ are the quantities

cA...CD...Fx
A . . . xC �D . . . �F :

If the number of xs is equal to the number of �s (¼ j), in this expression,
thenwe obtain ordinary (rather than spin-weighted) harmonics. (Generally,
the number of xs and �s is jþ s and j� s respectively, where s is the ‘spin-
weight’.) We get (multiples37 of) the standard spherical harmonics, which
are eigenstates of ]=]f, if we take cAB...F to be, in turn, each of the standard

[22.33] Explain why the points are antipodal.
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basis states referred to in §22.10, namely j� . . .�Æ . . .Æi. (For these, just
one of the nþ 1 independent components of cAB...F is non-zero.) We must
bear inmind that these basis states are symmetrized. For example, j�ÆÆi is
a multiple of j�ijÆijÆi þ jÆij�ijÆi þ jÆijÆij�i. In this particular case,
all components ofcABC vanish except for the single independent component
c011 ¼ c101 ¼ c110. Although my description of these matters is rather
inadequate owing to its brevity,38 it conveys an outline of what is involved,
and the readermay begin to appreciate that spinors provide what is actually
a remarkably eVective (though unconventional) route to spherical harmon-
ics.[22.34] Recall from §22.8 (cf. §13.7) that the spin-tensor quantities cAB...F

provide an (nþ 1)-dimensional irreducible representation space for the
rotation group SO(3), so the same applies to the space of j ¼ 2n (spin-
weighted) spherical harmonics.
The Majorana description can be readily obtained in this way, the

spinors aA, bA , . . . , ’A in the decomposition cAB...F ¼ a(AbB. . .’F ) cor-
responding to the zeros of the (spin-weighted) spherical harmonics arising
in the above description in which only xs appear, and no �s. In fact, it was
through considerations corresponding to this that Majorana Wrst found
his description. It is possible to obtain some valuable insights into spher-
ical harmonics by using the 2-spinor formalism. In many respects the
spinor approach is simpler to use, but it is not very familiar.
Spherical harmonics are important in many other areas, such as in

classical physics, and in most applications there is no particular connec-
tion with angular momentum. (In such situations, it is usual to use the
letter ‘ in place of j, as the latter seems to have connotations of angular
momentum.) Small oscillations of a soap bubble would be an example.
Another would be in the analysis of the temperature distribution, over
the celestial sphere, of the microwave (2.7K) radiation coming from the
depths of space, where one is interested particularly in high values of ‘, of
200 and more. This analysis has great signiWcance for cosmology, as we
shall be seeing in §§27.7,10,11, and §28.4.
The contrast between quantum and classical manifestations of spherical

harmonics is striking and non-intuitive. In a quantum system in which the y
and f coordinates have the standard angular spatial interpretation, the j

(or ‘) value always has the interpretation as an angular momentum, but this
is far from so for a classical system. In particular, a system of zero angular
momentum in quantummechanicsmust be spherically symmetrical because
a wavefunction with j ¼ 0 is composed solely of the spherical harmonic
constant on the sphere; but in classical physics, zero angular momentum
(i.e. ‘non-spinning’) certainly does not imply spherical symmetry!

[22.34] Calculate the ordinary spherical harmonics explicitly this way (up to an overall factor)

for j ¼ 1,2,3. Check that they are indeed eigenstates of r2 and ]=]f.
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In the opposite direction, we see that a randomly chosen quantum system
with a large angular momentum (large j value) has a state deWned by a
Majorana description consisting of 2j points more-or-less randomly
peppered about the sphere S2. This bears no resemblance to the
classical angular momentum state of a system of large angular momentum,
despite the common impression that a quantum systemwith large values for
its quantum numbers39 should approximate a classical system! For a clas-
sical-like quantum state, we require that the Majorana points mainly
cluster about a particular direction out from the centre of S2, namely the
direction that is the (positive) axis of classical spin. Why is there such a
discrepancy between these two pictures? The answer is that almost all
‘large’ quantum states do not resemble classical ones. The most famous
such example is Schrödinger’s hypothetical cat, which is in a quantum
superposition of being alive and dead (see §29.7). Why do we not actually
see things like this at a classical level? This is an aspect of the measurement

paradox which will be discussed in Chapters 29 and 30.
Harmonic analysis for spaces more general than S2 forms an important

part of many areas of scientiWc research. It is extremely valuable when
small perturbations or oscillations of a system are considered. A word of
warning may be appropriate, however. In a space that is non-compact, the
situation can get far more complicted than in the situation of S2, con-
sidered above. We saw something of this in Chapter 9, when we moved
from Fourier analysis (on the compact circle) to the Fourier transform (on
the non-compact open line). There is sometimes a tendency for
people to believe that one can take over the analysis from a compact to
a non-compact form—say from the sphere to hyperbolic space—with just
a few changes of sign (and with trigonometric functions being replaced by
their hyperbolic analogues, in accordance with the ‘signature flip’ ideas of
§18.4). Unfortunately the truth can be a lot more complicated than this.
Such an incomplete ‘harmonic analysis’ captures only a vanishingly small
proportion of the relevant functions on hyperbolic space, owing to the
extreme non-completeness of the system of harmonics.

22.12 Relativistic quantum angular momentum

Let us now address the issue of relativistic angular momentum. Recall the
classical expressions, described in §18.7. Analogous to mass/energy and
momentum combining into a 4-vector pa, there is an antisymmetric 6-tensor
quantity Mab describing an object’s angular momentum and mass-centre
movement. How are we to deal with these quantum-mechanically?40

We have seen in §§21.1–3 how the quantum notions of energy and
momentum mysteriously represent—or (essentially) are—the generators
of time- and space-translational motions of spacetime. Similarly, the
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components of 6-angular momentum Mab represent—are—the generators
of the (Lorentz) rotational motions of Minkowski space M. Together
with the translational motions pa, these rotational motions give rise to the
entire (non-reXective) Poincaré group (§18.2)—the Minkowskian analogue
of the rigid motions of Euclidean geometry.
More explicitly, the generators of translational Poincaré motions are the

components p0, p1, p2, p3 of the 4-momentum vector pa, where the energy
E ¼ p0 ¼ i�h]=]x0 generates time translation and the remaining three com-
ponents (i.e. momentum) similarly generate spatial displacements:
p1 ¼ i�h]=]x1, p2 ¼ i�h]=]x2, p3 ¼ i�h]=]x3—where we bear in mind that
(�p1, �p2, �p3) are the components of the 3-momentum p; see §18.7.
The 3-space rotational Poincaré motions are generated by the components
c�2M23 ¼ L1 ¼ i�hl1, c�2M31 ¼ L2 ¼ i�hl2, c�2M12 ¼ L3 ¼ i�hl3, which we
already considered in §22.8, deWning the quantum notion of ordinary
angular momentum. These are the entirely spatial components of the
6-angular momentum Mab, and the remaining 3 independent41 compon-
ents c�2M01, c�2M02, c�2M03, which generate the Lorentz velocity trans-
formations, refer to the uniform motion of the mass centre in accordance
with §18.7 (see Fig. 18.16).
Since the Poincaré group is non-Abelian, its generators do not all

commute. Their commutation laws tell us the commutation laws for our
quantum operators pa and Mab:

[pa, pb] ¼ 0,

[pa, Mbc] ¼ i�h(ga
bpc � ga

cpb),

[Mab, Mcd ] ¼ i�h(gbcMad � gbdMac þ gadMbc � gacMbd):

These may look somewhat complicated, but they have a fundamental
signiWcance in relativistic physics, as they deWne the Lie algebra (§14.6)
of the Poincaré group. They look a little simpler in the diagrammatic
notation, as depicted in Fig. 22.18.[22.35]

Recall that, for non-relativistic angular momentum, we were able to
describe a basis for states in terms of the eigenvalues j( jþ 1) and m of the
two commuting observables J2 and L3; see §§22.8,11. These operators
provide a complete commuting set (in the sense that any other operator
constructed from the generators L1, L2, and L3, and which commutes with
J2 and L3, gives nothing new, since it must itself be a function of these
two). It is an important part of quantum mechanics, generally, to Wnd such
a complete commuting set, for a given system under consideration. Most
particularly, we should like to be able to do this for operators constructed

Quantum algebra, geometry, and spin 22.12

[22.35] Show that the commutators given in §22.8 for 3-dimensional angular momentum are

contained in these.
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pa pa Mab

0

ih

ih

from the components of pa and Mab, and use their eigenvalues to classify
relativistic particles, or relativistic systems.
Why are we interested in commuting observables? The reason is that if A

and B are two such—so AB ¼ BA—then we can Wnd states jcrsi that
are simultaneously eigenstates of both, and the pair of corresponding
eigenvalues (ar,bs) can be used to label these states.42 If we have a complete
set of commuting observables A, B, C, D, . . . (whose eigenstates span the
space under consideration), then we have a family of basis states jcrstu...i
where the corresponding family of eigenvalues (ar, bs, ct, du, . . .) can be
used to label these states.[22.36]

In obtaining a complete commuting set, it is usual to start by Wnding the
Casimir operators, which are (scalar) operators that commute with all

the operators of the system under consideration. In the case of ordinary
3-dimensional angular momentum (recall §22.8), there is just one (inde-
pendent43) Casimir operator, namely J2 ¼ L2

1 þ L2
2 þ L2

3. An important
question is: what are the Casimir operators for the system generated by
pa and Mab, satisfying the above commutation laws?
Now, the spin about the mass centre is deWned by the quantity

Sa ¼ 1
2
eabcdM

bcpd ,

called the Pauli–Lubanski spin vector, where Levi-Civita’s antisymmetrical
eabcd was deWned in §19.2, but here we have e0123 ¼ c�3 since c ¼ 1 is not
assumed. (In the ‘mathematician’s notation’ we might write S ¼ *(M ^ p),
now using p to represent the 4-momentum, rather than the previous
3-momentum; cf. §11.6, §12.7, §19.2.) We have seen that a single classical
structureless particle has Mab ¼ xapb � xbpa, where xa is the position
vector of a point on the particle’s world line (see the end of §18.7). We
take the same expression in the quantum case—from which it follows that
Sa ¼ 0 for such a particle. But Sa need not vanish for a total system of two

Fig. 22.18 Diagrammatic form of the

relativistic 4-momentum and 6-angular

momentum quantum commutators

pa, pb½ � ¼ 0, pa, Mbc
� 	

¼ i�h ga
bpc � ga

cpb

 �

,

Mab, Mcd
� 	

¼ i�h gbcMad � gbdMac



þ gadMbc � gacMbdÞ.

[22.36] Work out the details of these claims—where you may assume, for convenience, that the

eigenvalues form a discrete rather than a continuous system. Assume Wrst that there are no degener-

ate eigenvalues, and then showhow the argument carries throughwhen there aredegeneracies. Hint:

Express each eigenvector of A in terms of eigenvectors of B, and so on.
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or more such particles. Moreover, for a single particle with spin, the
angular momentum Mab does not have this simple form, there being an
additional spin term m�2eabcdScpd , assuming m 6¼ 0 (see Note 18.11). We
Wnd that Sa is always orthogonal to pa ( paS

a ¼ 0) and that it commutes
with pa (i.e. [Sa, pb] ¼ 0), so that Sa, like pa, is origin-independent.[22.37]

There are two independent Casimir operators (Casimirs for the Poincaré
group), namely

pap
a ¼ c4m2 and SaS

a ¼ �m2J2,

m being the rest-mass of the entire system.[22.38] We Wnd that the ‘J2’ deWned
in the second of the above equations is indeed J2 ¼ L2

1 þ L2
2 þ L2

3, where
L1, L2, and L3 are the components of the angular momentum about the
mass centre in its rest frame. To complete the set of commuting operators
we may choose p1, p2, p3, and a component, say S3, of the spin vector
which—together with pap

a and SaS
a—give us six in all. (Although a great

many other choices are possible, in detail, the total number of independent
operators is always44 six.). This has considerable relevance to the discus-
sions of §22.13 and §31.10.
The situation is therefore very similar to the non-relativistic case where,

in order to include translations in time and space, we could choose the
energy E as a ‘Casimir operator’ to supplement the quantity J2, and the
three components of momentum in addition to L3. It should be noted that,
in the relativistic case, we do not directly get J2, but rather

J2 ¼ �c4( pap
a)�1 SaS

a,

which gives us something basically equivalent, provided that pap
a 6¼ 0.

Indeed, in the above discussion, we assumed that the rest mass m does
not vanish. If m ¼ 0, we cannot express the magnitude of spin in this way.
How do we deal with the massless case m ¼ 0? We retrieve, instead, the

helicity s—a quantity that we already encountered, in the case of a photon,
in §§22.7,9. This is deWned by a physical requirement that the Pauli–
Lubanski vector Sa be proportional to the 4-momentum pa:[22.39]

Sa ¼ s pa:

Right-handed helicity is given by s > 0, and left-handed by s < 0,
while s ¼ 0 is also allowed. Now, we have four independent commuting
observables, whichwe can take to be s, p1, p2, p3. In fact, it turns out that by
far the neatest way to handle the massless case is to appeal to twistor theory.

[22.37] Establish the properties claimed in these four sentences.

[22.38] Provide a simple reason why these two displayed operators must commute with pa and

Mab. Hint: Have a look at §22.13.

[22.39] How can Sa and pa be both orthogonal and proportional?
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We shall come to this in §33.6 (where we shall see that the ‘twistor variables’
Z0, Z1, Z2, Z3 can also be used as four independent commuting operators).

22.13 The general isolated quantum object

How does quantum mechanics describe an isolated object generally, such
as an atom or a molecule? I am assuming that there are no external forces
acting on the object and that it remains localized, but there could be
internal forces acting within it. As an important feature of the description
of such an object, we separate this description into (i) the external charac-
terization of the object as a whole and (ii) its internal detailed workings
and geometrical structure.
This external characterization (i) refers to its overall mass/energy, its

momentum, the location and movement of its mass centre, and its angular
momentum. Let us take these quantities in the relativistic sense, and use
the pa and Mab of §22.12 to describe the external parameters. The internal
workings (ii) refer to the constituent particles, their particular nature, the
nature of the forces between them, and their geometrical relations. These
relations will be taken to be given by some generalized coordinates qr

(§20.1) of an entirely relative45 nature (e.g. the distance of some part out
from the mass centre, or the angle that various parts make with one
another, or their distances from one another). Thus, they are not changed
if the whole object is displaced by a spatial or temporal translational
motion, or rotated through some deWnite angle, or moved in some direc-
tion with a uniform velocity.
Because of their relative nature, all the internal coordinates are un-

changed by any symmetry of the Poincaré group. It follows that they
must commute with pa and Mab. Why? Suppose that some symmetry
operator S acts on a quantum system according to

jci 7! Sjci,

and Q is some quantum operator, then the action of the symmetry oper-
ator on Q is[22.40]

Q 7! SQS�1:

If Q is unchanged by S, then SQS�1 ¼ Q, whence

SQ ¼ QS:

Thus, taking S to be each of the components of pa and Mab in turn,
we see that each internal parameter must indeed commute with pa

and Mab.

[22.40] Explain why. Hint: A glance at §22.4 may help.
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In the present context, this means that we can separate the part of
the wavefunction that refers to internal degrees of freedom from that
which refers to the external parameters of 4-momentum and 6-angular
momentum. In the usual treatments, we suppose that the system is
in an eigenstate of the appropriate complete system of external observ-
ables. In particular, the energy and momentum would be taken to be given
by deWnite eigenvalues, and it would be usual to refer things to the
reference frame in which the 3-momentum is zero (P¼0, in the notation
of §21.5). Then the angular momentum can be treated according to the
non-relativistic discussions of §§22.8–11, so we can ask for the system to
be in an eigenstate of total angular momentum J2, and also of L3 if
desired.
The internal parameters will, of course, depend upon the details of the

particular system under consideration. In some circumstances, it may be a
good approximation to consider the internal degrees of freedom to be well
decribed by small oscillations about equilibrium. Then the classical analy-
sis of §20.3 has relevance. We recall from §20.3 that, if we take a Hamilto-
nian in the form

H ¼ 1
2
Qabq

aqb þ 1
2
Pabpapb,

where Qab and Pab are symmetric, positive-deWnite, and constant in time,
then, in the classical case, each normal frequency o=2p arises from an
eigenvalue o2 of the matrix W¼PQ (i.e. of Wa

c¼PabQbc).
But what about quantum mechanics? Recalling Planck’s relation

E¼hn¼2p�hn, where n is the frequency, we might expect an energy
E¼�ho for an oscillation in that particular normal mode. Perhaps
we might anticipate higher values for the energy also, since classically
the amplitude of the oscillation could become as large as we like (so
long as the ‘small oscillation’ nature of the approximation is not
disturbed), and with greater amplitude we get greater energy. If we sup-
pose that ‘higher harmonics’ are involved—where we recall from §9.1 that
these occur with frequencies that are integer multiples of the basic
frequency o=2p—then we might imagine that the allowed quantum energy
eigenstates would be:

0, �ho, 2�ho, 3�ho, 4�ho, . . . :

In fact, this is not far oV the correct quantum-mechanical answer, but it
turns out that there is an additional contribution 1

2
�ho to the energy, called

the zero-point energy46. The allowed energy eigenstates are then:

1
2
�ho, 3

2
�ho, 5

2
�ho, 7

2
�ho, 9

2
�ho, . . . :
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This comes from the standard quantum discussion of the 1-dimensional
harmonic oscillator,47 for which theHamiltonian isH ¼ (m2o2q2þp2)=2m.
For each mode separately, there is an energy contribution from one of
these values, for each eigenvalue o of the matrix W.
For a general quantum system, these values would only be approxima-

tions, because higher-order terms could start to become important. How-
ever, various systems can be very well approximated in this way.
Moreover, rather remarkably, it turns out that the quantum Weld theory
of photons—or of any other particle of the kind referred to as a ‘boson’
(see §23.7 and §26.2)—can be treated as though the entire system of bosons
were a collection of oscillators. These oscillators are exactly of the simple
harmonic type, as considered above (where there are no higher-order
terms in the Hamiltonian) when the bosons are in a stationary state with
no interactions between them.48 Accordingly, this ‘harmonic oscillator’
picture provides a quite broadly applicable scheme. Nevertheless, to pro-
ceed more thoroughly, a detailed knowledge of the interactions is needed.
For example, a hydrogen atom consists of an electron in orbit around its

proton nucleus (usually taken to be Wxed, as a good approximation, since
the proton moves little, being so much more massive than the electron—by
a factor of approximately 1836). But the rules of quantum mechanics tell
us that the quantum-mechanical orbit will not involve just a single classical
trajectory about the nucleus, but is basically a quantum superposition of
many such. These superposed ‘quantum orbits’ will be stationary solutions
of the Schrödinger equation, with a Hamiltonian that is basically the same
as in the classical case, but ‘canonically quantized’ in accordance with the
rules of §§21.2,3 (and of §23.8, where needed). To be an eigenstate of
angular momentum, we Wnd wavefunctions that are spherical harmonics
in their angular dependence (§22.11). Generally, we could use the energy
eigenvalue E and the angular momentum eigenvalue j (together with m, if
appropriate) as quantum numbers labelling the various states. In the case
of the hydrogen atom (if we ignore the spins of the electron and proton
and take a non-relativistic form of the Hamiltonian), we Wnd that the
energy eigenvalue E happens to be determined by the total angular mo-
mentum eigenvalue j but, fortuitously, j is not determined by E. In a more
accurate theory of the hydrogen atom (and for more complicated atoms)
we Wnd, generally, that E does determine j, so all the diVerent states are
actually characterized by the energy eigenvalue alone.
In the original Bohr theory of the atom, put forward in 1913, more than

a decade before the much more precise full quantum mechanics of Heisen-
berg, Schrödinger, and Dirac, the allowed angular momentum and energy
values of hydrogen were calculated as though the orbits were the classical
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Kepler–Newton elliptical orbits—given by the inverse square law of elec-
trostatic attraction between nucleus and orbiting electron—but with the
‘quantum condition’ that the electron’s orbital angular momentum should
be an integral multiple of �h. Such ‘quantized orbits’ are sometimes referred
to as orbitals; see Fig. 22.19. This procedure worked remarkably well,49

but was unsupported by the theoretical underpinnings that the subsequent
quantum mechanics provided, these leading to results of far greater gen-
erality and accuracy. More complicated atoms, simple molecules, relativ-
istic eVects, the presence of electron spin and nuclear spin, etc. can all be
treated by the quantum formalism using the ideas outlined above, al-
though approximation techniques and numerical computation are to be
expected, rather than exact mathematical treatments.
The above use of electrostatics is also an approximation, and one must

allow for transitions from one stationary state to another by the emission/
absorption of photons. These require the Maxwell theory, but in its
quantized form which, strictly speaking, needs the formalism of quantum

Weld theory (to be outlined in Chapter 26). Dirac’s relativistic electron, of
Chapter 24, would also be needed for full accuracy. An atom in an
eigenstate of lowest energy, called the ground state, will remain in that
state (assuming that it is fully isolated from environmental disturbance),
but if it is in a more energetic state—referred to as an excited state—then
there there is likely50 to be a Wnite probability for it to drop into the
ground state, with the emission of one or more photons. For this reason,
one expects to Wnd free atoms or molecules in their ground states, or near
to their ground states. The frequency n of a single photon emitted when an
atom or molecule drops from one state to another, is Wxed, via Planck’s
E ¼ 2p�hn (see §21.4) and energy conservation, by the energy diVerence E

between the two states.
Such frequencies have long been obesrved, in spectral lines, the explan-

ation of which had been a long-standing scientiWc puzzle. The extraordin-
ary richness of information in these observed spectral-line patterns is

Fig. 22.19 ‘Bohr atom’, where the

orbiting electrons are primarily viewed as

having classical Kepler–Newton elliptical

orbits, according to the inverse square law

of electrostatic attraction, but where

their energies and angular momenta are

constrained by the ‘quantum condition’

that the orbital angular momenta must be

integer multiples of �h. The idea applied

most successfully to circular orbits for the

single electron of hydrogen.
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explained in the above way by quantum theory. This has provided one of
the supreme triumphs of 20th-century physics! The expectations of clas-
sical physics (involving the Coulomb inverse square law of attraction
between positive and negative charges and Maxwell’s equations, telling
us how accelerating electrons must radiate electromagnetic energy) had
previously yielded the clear prediction that the orbiting electrons ought to
spiral into the nucleus catastrophically, to give a singular state, in a very
short time. This conclusion was in manifest contradiction with the ob-
served facts. Not only did quantum mechanics remove this paradox, but it
provided a detailed theory of spectral lines that has provided an extrordi-
narily powerful tool in many areas of science, ranging from forensic
science to nuclear physics and cosmology.
As a Wnal general comment, of considerable importance, it may

be remarked that the existence of discrete quantum numbers, such as the j

and m of angular momentum, or of the energy eigenstates for the harmonic
oscillator or the hydrogen atom, etc. arise ultimately from the compactness

of some space.51 In the case of angular momentum, this comes from the
compactness of the sphere of spatial directions, which is the S2 to which the
harmonic analysis of §22.11 applies. Without something like compactness
(or periodicity), wewould just have solutions of equations liker2F ¼ �kF,
in which the eigenvalue k is unrestricted. It is ironic that in the absence of
such compactness, the general formalism of quantummechanics would not
have provided the striking discreteness that started the subject oV, and from
which the very name ‘quantum’ originally arose!

Notes

Section 22.1

22.1. These jumps seem to be what stimulated the now colloquial expression ‘quan-

tum leap’. To a physicist, this is an extremely odd choice of words, as the

quantum jumps that occur in quantum state reduction tend to be extraordin-

arily tiny, barely detectable, and possibly unreal events!

22.2. For a general discussion of different viewpoints on quantum mechanics, see

Rae (1994); Polkinghorne (2002); Home (1997); or DeWitt and Graham (1973).

Section 22.2

22.3. See Chapter 29, and Everett (1957); Wheeler (1957); DeWitt and Graham

(1973); Geroch (1984).

Section 22.3

22.4. As with the case of a single particle (§21.9), some authors might use ‘kck2’ for

my kck.
22.5. For a lovely introduction to the study of such spaces, see Chen (2002); Reed and

Simon (1972).

22.6. In the quantum-mechanical literature, the notation Q{ is frequently used, rather

than the Q* of most relevant mathematical literature; see §13.9.
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Section 22.4

22.7. See Dirac (1982) for the most recent reprinting. See Shankar (1994) for a more

recent treatment.

22.8. See Dirac (1966) for an argument that the Schrödinger picture does not exist in

relativistic quantum field theory.

22.9. The interaction picture, for example, is often used in ‘time-dependent perturb-

ation theory’ calculations, where the Hamiltonian is time-dependent. See Shan-

kar (1994), Chap. 18; Dirac (1966).

Section 22.5

22.10. I am here ignoring the fact that the eigenstates are not normalizable, which

might disqualify position or momentum from being true ‘observables’ in some

formulations.

22.11. More generally, whether or not it is an eigenvalue, we say that q is the

expectation value of Q for the normalized state jci if q ¼ hcjQjci.
22.12. See Dirac (1982). Complex parameters are used in many fields, e.g. Fortney

(1997).

Section 22.6

22.13. An elegant treatment of projection measurements may be found in Kraus

(1983); Nielsen and Chuang (2000).

22.14. See von Neumann (1955).

22.15. See Lüders (1951), see also Penrose (1994).

Section 22.7

22.16. See Elitzur and Vaidman (1993).

22.17. The original idea of interaction-free measurements appears to be due to

Robert Dicke (1981). It has some very striking applications, such as in gravita-

tional wave detection; see Braginsky (1977). The extraordinary Elitzur–

Vaidman ‘bomb-testing’ thought experiment described here (see also Penrose

1994) might lead to other kinds of application.

22.18. There is now good evidence that at least most of the various types of neutrino

are massive, and perhaps all are. Even so, the assumption that they are ‘mass-

less’ provides a good approximation to their behaviour. I shall come back to

this issue in §25.3.

22.19. This refinement of the projection postulate appears to be due to Lüders (1951)

and, in this case the point jr�i in PH4 would be referred to as the ‘Lüders

point’.

22.20. For a more economical (and more interesting) example, we could consider

a slightly diVerent situation in which the surface of a refracting medium is

used for the beam splitter, where rather than being polarized, the incoming

beam is aimed at the Brewster angle for the medium. The reXected beam

then has a speciWc linear polarization, and the transmitted beam, the opposite

linear polarization. The analysis is basically the same as the above (with linear

rather than circular polarization), but now we do not need to ensure that the

incoming photon is polarized, the mere fact that it comes from outside the

medium (at the appropriate angle), rather than from inside, being suYcient to

ensure that the null measurement produces the required resulting polarized

state. For a good general, reference on electromagnetism, see Becker (1982);

Jackson (1998).
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Section 22.8

22.21. A ‘structureless particle’ would have no angular momentum about its mass

centre, since the expression M ¼ 2x ^ p of §18.6 vanishes when x ¼ 0. But, as

noted in Note 18.11, a quantity describing ‘intrinsic spin’ needs to be added to

the angular momentum when there is the ‘structure’ deWned by the particle’s

spin. We shall see this more explicitly in §22.11.

22.22. The attentive reader may wonder whether there are any subtleties of sign

involved here, of the sort that we encountered in §21.5, arising from the

signature of the metric. For a detailed development of angular momentum

theory in quantum mechanics, from the Lie algebra of SO(3), the reader should

see the lucid expositions of Jones (2002); and Elliot and Dawber (1984). An

alternative, and somewhat more ‘physical’ derivation of the angular momentum

algebra is given in Shankar (1994); though in my opinion there is quite a bit

more work involved in this approach!

22.23. See Penrose and Rindler (1984).

22.24. See Geroch (University of Chicago Lectures, unpublished).

22.25. Witten (1959); Geroch (1968, 1970); Penrose and Rindler (1984, 1986).

22.26. The word ‘independent’ is used in the sense that all components of cAB...F can

be obtained algebraically from this independent set, but not from a smaller set.

Here this arises simply from the symmetry, so the total of 2n components reduce

to nþ 1 independent ones (e.g. c001, c010, and c100 are not independent com-

ponents trivially, since c001 ¼ c010 ¼ c100).

22.27. As usual, we refer to our canonical reference, Shankar (1994).

Section 22.9

22.28. See Note 21.12; Nielsen and Chuang (2000) also discuss some aspects of

quantum information science from a similar standpoint.

Section 22.10

22.29. See Majorana (1932).

22.30. See Biedenharn and Louck (1981) for a general review. For an interesting,

modern application, see Swain (2004).

22.31. See Penrose (1994, 2000); Zimba and Penrose (1993).

Section 22.11

22.32. In the context of spherical harmonics, the letter ‘ is frequently used, rather than

the j that I am employing here.

22.33. For more details see any text on quantum mechanics, e.g. Shankar (1994) or

Arfken and Weber (2000).

22.34. Shankar (1994).

22.35. See Newman and Penrose (1966); Penrose and Rindler (1984).

22.36. See Goldberg, et al. (1967).

22.37. There are also orthogonality and (to Wx the overall scale) normalization prop-

erties of spherical harmonics that are important for using and calculating with

them. These matters would take us too far aWeld, however, and the reader is

referred to the following expositions of the theory of spherical harmonics:

Groemer (1996); Byerly (2003).

22.38. The reader who wishes to follow through the spinor algebra and geometry a

little more thoroughly should take note of the fact that spinor indices can be

‘raised’ or ‘lowered’ according to the scheme: x1 ¼ x0, x0 ¼ �x1. See Penrose

and Rindler (1984); Zee (2003), Appendix.
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22.39. The term ‘quantum number’ usually refers to the possible discrete eigenvalues

of some signiWcant quantum observable, such as angular momentum, charge,

baryon number, etc. which is used to classify a particle or simple quantum

system. See §3.5.

Section 22.12

22.40. We shall be seeing in Chapters 24–26 that a properly (special-)relativistic

quantum mechanics requires a good deal more than the basic considerations

of this section, but this will not aVect the present discussion.

22.41. Recall Note 22.6. Here the independence takes into account the antisymmetry

of Mab.

22.42. There is a connection between this and the phenomenon of ‘separation of

variables’, which happens when a general function f (y, f), say, can be written

as a sum f (y, f) ¼
P

lijgi(y)hj(f), where gi(y) and hj(f) are respective eigen-

functions of appropriate (commuting) operators A and B. Spherical harmonics

have this property. See Groemer (1996); Byerley (2003).

22.43. ‘Independent’ refers, here, to functional independence (compare Note 22.26).

Thus, whereas 2J2, (J2)3, and cos J2 are not the same Casimir operator as J2,

they are not independent of J2.

22.44. Some caution is required concerning the invariance of the ‘number of independ-

ent commuting operators’. Strictly, this refers to the dimension of a space which

applies to the local solutions of partial diVerential equations. In quantum-

mechanical problems there are likely to be compactness requirements on the

solution space (e.g. the S2 of §22.11) which severely restrict the allowed eigen-

values and confuse the counting of degrees of freedom.

Section 22.13

22.45. Issues of general relativity are being ignored here, so ‘relative’ is being taken in

the sense of special relativity.

22.46. There is, however, the freedom to add a constant to the Hamiltonian, as

allowed for in §20.3, which simply redeWnes the zero of energy (cf. Exercise

[24.2] of §24.3), so this addition of 1
2
�ho is sometimes regarded as being of no

direct physical relevance.

22.47. See, for example, Dirac’s classic treatment in The Principles of Quantum Mech-

anics, Dirac (1982).

22.48. The quantities � ¼ (2m�ho)�1=2( pþ imq), in the Heisenberg picture §22.4, play

the role of the creation operators of §26.2.

22.49. In particular, it yielded the previously incomprehensible Balmer formula for

spectral-line frequencies of hydrogen: n ¼ R(N�2 �M�2), where R is a constant

(known as the Rydberg–Ritz constant) and where M > N > 0 are integers.

22.50. There may be ‘selection rules’, arising from conservation laws, forbidding some

of these transitions.

22.51. Compare Note 22.44.
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23
The entangled quantum world

23.1 Quantum mechanics of many-particle systems

We have seen, in the previous two chapters, how mysterious is the behav-
iour of individual quantum particles, with or without spin, and how a
strange and wonderful mathematical formalism has been evolved in order
to cope with this behaviour. It would not be unreasonable to expect that,
since our formalism has described for us the quantum behaviour of
individual particles or other isolated entities, so also should it have told
us how to describe systems containing several separate particles, perhaps
interacting with one another in various ways. In a sense this is true—up to
a point—since the general formalism of §21.2 is broad enough for this, but
some distinctly new features arise, when more than just one particle is
present in a system. The underlying quality that is new is the phenomenon
of quantum entanglement, whereby a system of more than one particle
must nevertheless be treated as a single holistic unit, and diVerent mani-
festations of this phenomenon present us with yet more mystery in quan-
tum behaviour than we have encountered already. Moreover, particles
that are identical to each other are always automatically entangled with
one another, although we shall Wnd that this can happen in two quite
distinct ways, depending upon the nature of the particle.
Let us return to what has been set out in the preceding two chapters, for

the mathematics of a quantum system. The quantum-Hamiltonian ap-
proach, which provides us with the Schrödinger equation for the evolution
of the quantum state vector, still applies when there are many particles,
possibly interacting, possibly spinning, just as well as it did with a single
particle without spin. All we need is a suitable Hamiltonian to incorporate
all these features. We do not have a separate wavefunction for each
particle; instead, we have one state vector, which describes the entire
system. In a position-space representation, this single state vector can
still be thought of as a wavefunction C, but it would be a function of all
the position coordinates of all the particles—so it is really a function on
the conWguration space of the system of particles (see §12.1), and it could
also depend upon some discrete parameters to label the spin states (e.g. if
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we use a 2-spinor description CAB...F to describe a spinning particle, as in
§22.8, then the ‘discrete parameters’ would be labelling the diVerent indi-
vidual components). The Schrödinger equation will tell us how C evolves
in time, so C will need to depend upon the time variable t also.
A noteworthy feature of standard quantum theory is that, for a system of

many particles, there is only one time coordinate, whereas each of the
independent particles involved in the quantum system has its own inde-
pendent set of position coordinates. This is a curious feature of non-
relativistic quantum mechanics if we like to think of it as some kind of
limiting approximation to a ‘more complete’ relativistic theory. For, in a
relativistic scheme, the way that we treat space is essentially the way that we
should also treat time. Since each particle has its own space coordinates,
it should also have its own time coordinate. But this is not how ordinary
quantum mechanics works. There is only one time for all the particles.
When we think about physics in an ordinary ‘non-relativistic’ way, this

may indeed seem sensible, since in non-relativistic physics, time is external
and absolute, and it simply ‘ticks away’ in the background, independently
of the particular contents of the universe at any one moment. But, since the
introduction of relativity, we know that such a picture can only be an
approximation. What is the ‘time’ for one observer is a mixture of space
and time for another, and vice versa. Ordinary quantum theory demands
that each particle individuallymust carry its own space coordinate. Accord-
ingly, in a properly relativistic quantum theory, it should also individually
carry its own time coordinate. Indeed, this viewpoint has been adopted
from time to time by various authors,1 going back to the late 1920s, but it
does not seem to have been developed into a full-blown relativistic theory.A
basic difficulty with allowing each particle its own separate time is that then
each particle seems to go on its merry way oV into a separate time dimen-
sion, so further ingredients would be needed to get us back to reality.
In §26.6, I shall introduce the ‘path-integral’ approach to relativistic

quantum theory, which is based on a relativistic Lagrangian rather than
on a Hamiltonian formalism, and the ‘one-time/many-spaces’ problem is
circumvented; however, as we shall see later, serious new problems come in,
as they always seem to, no matter what (known) procedure is used. More-
over, we shall be seeing shortly that the ordinary Schrödinger equation itself
is not immune from the diYculties of ‘getting back to reality’. In my
opinion, this simple spacetime asymmetry of the Schrödinger approach
hides something deep that is still missing from our quantum picture of
things; but this should not concern us at the moment. For now, I shall
ignore these issues, and present things merely from the standpoint of non-
relativistic quantum theory, where the notion of a universal external time
can be considered to apply. But the issue of relativity will not go away, and
we shall need to return to it at the end of this chapter, in §23.10.
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How, then, are we to treat many-particle systems according to the
standard non-relativistic Schrödinger picture? As described in §21.2, we
shall have a single Hamiltonian, in which all momentum variables must
appear for all the particles in the system. Each of these momenta gets
replaced, in the quantization prescription of the position-space (Schrödin-
ger) representation, by a partial diVerentiation operator with respect to the
relevant position coordinate of that particular particle. All these operators
have to act on something and, for consistency of their interpretation, they
must all act on the same thing. This is the wavefunction. As stated above,
we must indeed have one wavefunction C for the entire system, and this
wavefunction must indeed be a function of the diVerent position coordin-
ates of all the separate particles.

23.2 Hugeness of many-particle state space

This sounds harmless enough, but is it? Let us pause to digest the enormity
of this apparently simple last requirement. If it were the case that each
particle had its own separate wavefunction, then for n scalar (i.e. non-
spinning) particles, we should have n diVerent complex functions of
position. Although this is a bit of a stretch of our visual imaginations,
for n little particles, it is something that we can perhaps just about
cope with. (I am ignoring the time, in these considerations; just take
everything at just one instant.) For visualization purposes, we could
have a picture not so unlike that of a Weld in space with n diVerent
components, where each component could itself be thought to describe a
separate ‘Weld’. (Each separate such Weld might represent an individual
particle’s wavefunction.) Perhaps we should consider this as 2n compon-
ents, if we are talking about real components, because wavefunctions are
complex. An electromagnetic Weld has 6 real components, after all—that is
6 functions of 3 variables (analogous to three complex scalar wavefunc-
tions)—and a Weld of electric and magnetic vectors is not such a terrible
strain on the imagination!
How are we to count the ‘freedom’ in a complex scalar Weld, such as the

wavefunction for a scalar particle in 3-space? What is the ‘number’ of
diVerent possible such Welds? Recall that according to the notation of
§16.7, the expression 1a1b

denotes the freedom available to a freely
chosen (smooth) Weld with a real components in a space of b real dimen-
sions. Thus, for a complex scalar Weld, a ¼ 2 (because a complex number
counts as two real numbers), so that the freedom would be 1213

. This is
taking the Weld at just at one time—i.e. t is constant—so we are consider-
ing ordinary 3-space, giving b ¼ 3 (rather than the spacetime value b ¼ 4).
We could also consider spacetime, but in that case we have Weld equations
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restricting the freedom. In the case of the wavefunction, that restriction is
the Schrödinger equation, which reduces the freedom down to what can be
speciWed freely, as initial data, on an initial 3-space, so we still get1213

as
the freedom in the Weld.
As an incidental consideration, we may examine the case of a free

Maxwell Weld with no sources (charges) to worry about. Here we have 6
real components in ordinary 3-space, so if we take the Weld just at some
Wxed t and ignore the Maxwell equations, we get the freedom 1613

. But
the Maxwell equations imply that two constraints must hold on any initial
data 3-space: namely the vanishing of the divergence of the electric and
magnetic Weld vectors.[23.1] This reduces the eVective number of free com-
ponents on the initial data 3-surface by 2, so the freedom is actually1413

.
Let us now consider the quantum-mechanical description of n scalar

particles. If the description were just n diVerent wavefunctions, then the
freedom would be12n13

, since that is the freedom in choosing n complex
numbers per point in 3-space. But in the case of an actual quantum
wavefunction describing n scalar particles, we have one complex function
of 3n real variables. This is like a complex scalar Weld in a space of 3n
dimensions, so the freedom is1213n

instead, which is stupendously larger.
It is probably not so easy to appreciate the enormity of this increase

when it is hidden in all those1s. So let me consider a ‘toy’ universe which
just has 10 points in it. We can label these points 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
The wavefunction of a scalar particle in this universe would consist of a
complex number at each one of these 10 points, i.e. 10 complex numbers
z0, z1, z2 , . . . , z9. The space of all these wavefunctions would be the 10-
complex-dimensional (20-real-dimensional) Hilbert space H10. If we nor-
malize the wavefunction so that the sum of the squares of the moduli of
these zs is unity, then jz6j2 would represent the probability of a position
measurement Wnding the particle at 6, and so on.
This is not really such an absurdity. In actual physical situations, one

might have what is, in eVect, a sequence of 10 boxes, with an electron that
might be in one of the boxes. See Fig. 23.1. Experimenters can construct
things of this nature called quantum dots, and they have relevance to the
theoretical possibility of constructing quantum computers, which would
make use of the vastness of the sizes of the kinds of space of wavefunctions
that I am about to consider.
Suppose that there are now two particles in our universe. It is better that

they are not both the same kind of particle, for a reason that I shall be
coming to later. So let us call them an A particle and a B particle. Each of
the two particles could be in 10 diVerent alternative places, so there are 100

[23.1] Can you explain this vanishing? Recall the 4-dimensional notion of ‘divergence’

described in §19.3; here we need the 3-space version. Hint: See Exercise [19.2].

581

§23.2The entangled quantum world 23.2



A B

0 1 2 3 4 5 6 7 8 9

Fig. 23.1 We imagine a ‘toy universe’ with just 10 possible locations for particles,

here illustrated by 10 boxes. Two distinguishable particles A and B are shown,

each of which can occupy any one of the boxes, independently of the other.

diVerent possible placings for the pair of them (allowing them to be both in
the same box). We now need 100 diVerent complex numbers, say
z00, z01 , . . . , z09, z10, z11 , . . . , z19, z20 , . . . , z99 to define the wavefunction,
one complex number being assigned to each pair of placings. If we nor-
malize so that the sum of the squares of the moduli of all these zs is unity,
then jz38j2, for example, would represent the probability of Wnding that the
A particle is at 3 and the B particle is at 8. We are now dealing with H100. If
we had three diVerent particles—an A particle, a B particle, and a C

particle—then the wavefunction would consist of 1000 complex numbers
z000, z001 , . . . , z999, and our state-space is H1000. Had the rules been to
have merely three individual wavefunctions, than the state space would
have been only H30. For four diVerent particles, we have H10000, whereas
for four individual wavefunctions, merely H40, and so on.
Reverting to the ‘1a13n

’notation that I used above, we take note of the
fact that the upper ‘13’ refers to the ‘number of points’ in Euclidean 3-space
E

3. That number is now replaced by 10, the actual number of points in our
toy universe, so that1a13n

becomes1a10n

(which denotes the ‘number of
points’ in an (a� 10n)-real-dimensional space). Thus, instead of1213n

, for
the freedom in an n-particle scalar wavefunction inE

3, we now have12�10n

for the freedom in an n-particle wavefunction for our toy universe. The
complex Hilbert space is now H10n

, for our toy universe’s n-particle wave-
function, as comparedwithH10n forn separate 1-particle complexwavefunc-
tions. Thus, our n-particlewavefunction is definedona 2� 10n-dimensional
space (this 10n-complex-dimensionalHilbert space), rather than amere 20n-
dimensional space for n separate wavefunctions. For just 8 particles, for
example, this is 200 000 000 dimensions instead of a mere 160.

23.3 Quantum entanglement; Bell inequalities

What is all this extra information doing? It is expressing what are known as
the ‘entanglement’ relations between the particles. How are we to under-
stand these? Entanglements between particles, a notion first made explicit
by Schrödinger (1935b), are what lead to the extremely puzzling but
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actually observed phenomena known as Einstein–Podolski–Rosen (EPR)
eVects.2 They are, however, rather subtle features of the quantum world
whicharequite hard todemonstrate experimentally in a convincingway. It is
remarkable thatwe seem to have to turn to something so esoteric andhidden
from view when, for many-particle systems, almost the entire ‘information’
in the wavefunction is concerned with such matters! This is a puzzle that I
shall be comingback to shortly (§23.6). Inmyopinion, this puzzle is trying to
tell us something about what kind of new directions our present-day quan-
tum formalism ought to be moving in. But, be that as it may, it is certainly
telling us something of the potential power of quantum computing3—a
subject of very active current research which aims to exploit the enormous
‘information’ resources that lie hidden in these entanglement relations.
So what is quantum entanglement? What are EPR eVects? It will be

clearest if we consider just a Wnite-dimensional situation, which we can do
if we just concentrate on states of spin. The simplest EPR situation is that
considered by David Bohm (1951). In this, we envisage a pair of spin 1

2

particles, let us say, particle PL and particle PR, which start together in a
combined spin 0 state, and then travel away from each other to the left and
right to respective detectors L and R at a great distance apart (see Fig.
23.2). Let us suppose that each of the detectors is capable of measuring the
spin of the approaching particle in some direction that is only decided
upon when the two particles are well separated from each other. The
problem is to see whether it is possible to reproduce the expectations of
quantum mechanics using some model in which the particles are regarded
as unconnected independent classical-like entities, each one being unable
to communicate with the other after they have separated.
It turns out, because of a remarkable theorem due to the Northern Irish

physicist John S. Bell, that it is not possible to reproduce the predictions of
quantum theory in this way. Bell derived inequalities4 relating the joint
probabilities of the results of two physically separated measurements that

L

PL PR

R

Fig. 23.2 The EPR–Bohm thought experiment. A pair of spin-1
2
particles PL and

PR originate in a combined spin 0 state, and then travel out in opposite directions,

left and right, to respective widely separated detectors L and R. Each detector is

set up to measure the spin of the approaching particle, but in some direction which

is decided upon only after the particles are in full flight. Bell’s theorem tells us that

there is no way of reproducing the expectations of quantum mechanics with a

model in which the two can act as classical-like independent objects that cannot

communicate after they have become separated.
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are violated by the expectations of quantum mechanics, yet which are
necessarily satisWed by any model in which the two particles behave as
independent entities after they have become physically separated. Thus,
Bell-inequality violation demonstrates the presence of essentially quan-
tum-theoretic eVects—these being eVects of quantum entanglements be-
tween physically separated particles—which cannot be explained by any
model according to which the particles are treated as unconnected and
independent actual things.
There are many striking particular examples of this kind of Bell-

inequality violation in the literature.5 Some of these, referred to as ‘Bell
inequalities without probabilities’6 are particularly remarkable in that they
just involve yes/no issues, and we do not need to worry about probabil-
ities—or, rather, we worry only about the extreme deWnite cases of prob-
abilities 0 (‘never’) and 1 (‘always’). Here I shall give just two explicit
versions of the Bell-inequality type of contradiction between quantum
particles and individual particles. Both of these involve a pair of spin 1

2

particles going oV separately to a detector L on the left and another
detector R on the right. The Wrst, which follows an argument due to
Henry Stapp (1971), (1979), is a direct example of the original Bohmversion
of EPR, as referred to above, and in which we need to examine actual
probability values. The second, due to Lucien Hardy (1992), (1993), is
‘almost’ a version without probabilities, but it has a slight extra twist to it.
Before giving these in detail, I shall need one more bit of (Dirac)

notation. Suppose that we have a quantum system that consists of two
parts jci and jfi, which can be taken to be independent of each other.
Then if we wish to consider the quantum state that consists of both of
them together, we write this

jcijfi:

This is still a single state, and it would be legitimate towrite an equation such
as jwi ¼ jcijfi, which expresses this fact. The type of product that is being
employed here is what is called a tensor product by the algebraists, and it
satisWes the laws (zjci)jfi ¼ z(jcijfi) ¼jci(zjfi), (jyi þ jci)jfi ¼
jyijfi þ jcijfi, jci(jyi þ jfi) ¼ jcijyi þ jcijfi. The operation of tensor
product is commonly denoted by �, in the mathematical literature (see
also §13.7), and the product jcijfimight then be denoted jci�jfi.
In any case, it is handy to use the � symbol in connection with the

(Hilbert) spaces to which such products belong. Thus, if jci belongs to Hp

and jfi belongs to Hq then jcijfi belongs to Hp�Hq. The dimension of
Hp�Hq is the product of the dimensions of its two factors, so we could
legitimately write Hp�Hq ¼ Hpq. I am allowing either or both of p and q

to be1, in which case we take the product to be also1. Only a very small
part of Hp�Hq consists of elements of the form jcijfi (assuming
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p, q > 1), where jci belongs to Hp and jfi belongs to Hq. These are the
unentangled states. A general element of Hp�Hq would be a linear com-
bination of these unentangled states (possibly involving an inWnite sum or
integral, if both of p and q are inWnite).7 We should bear in mind, however,
that the very notion of entanglement depends upon the particular splitting
of our entire Hilbert space Hpq into something of the form Hp�Hq.
(No one such splitting of a general Hilbert space Hpq is to be preferred
over any other. Algebraically, there will always be many ways of express-
ing Hn as a tensor product, whenever n is a composite number.) In
situations where one is interested in the ‘entanglement’ notion, the par-
ticular splitting of physical interest is something reasonably obvious, most
notably when there are ‘individual’ particles separated by a large distance,
which is what EPR is all about.
It is sometimes useful to use an abstract-index formulation of oper-

ations such as this (see §12.8). The ket vector jci could be written ca, with
an upper abstract index, and its corresponding (complex conjugate) bra
vector hcj by �cca, with a lower abstract index. The full bracket hcjfi would
be �ccaf

a and an expression hcjQjfi would be �ccaQ
a
bf

b. The tensor product
jcijfi of ca with fb could then be written cafb. Unentangled states
always split in this way. But a general (probably entangled) state would
simply be an entity of the form fab. We shall be seeing a particular use for
this kind of notation later in this chapter.

23.4 Bohm-type EPR experiments

Let us now return to the Bohm version of EPR. Consider the initial state,
just before a measurement is performed on it. The two separated spin 1

2

particles, taken together, must constitute a state of spin 0. This is because
angular momentum is conserved, and the particles start out in a combined
state of spin 0. We therefore need a combination of basis states for the spin
of each particle for which the total spin is zero. This is achieved by the
state jOi, of spin 0, given by

jOi ¼ jÆij�i � j�ijÆi

(where I still do not worry about normalizing my states).[23.2],[23.3] In the
literature, one often sees this kind of thing written in some way such as
jÆLij�Ri � j�LijÆRi,where it ismade explicit in thenotationwhich state

[23.2] If jÆi and j�i are normalized, what factor does jOi need to make it normalized? (You

may assume that kjaijbik ¼ kak kbk.)
[23.3] Can you see quickly why this has spin 0? Hint: One way is to use the index notation to

show that any such anti-symmetrical combination must essentially be a scalar, bearing in mind

that the spin space is 2-dimensional.
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refers to the left-hand particle and which refers to the right-hand one. Inmy
opinion, this is not necessary because (i) the notation is only singling out the
spin part of the wavefunction in any case, and not the particle’s position or
momentum or whatever, so the direction of spin Wxes what it is we are
concerned with, and (ii) since tensor products do not commute, we can
unambiguously tell which ‘side’ of the product is which. My convention is
that the left-hand term of the product refers to the left-hand particle and the
right-hand term to the right-hand particle. Readers who Wnd this confusing
can reinstate L and R into the kets throughout the discussion, if they wish.
This a clear example of an entangled state, since it cannot be rewritten in

the form jaijbiwith jai localized at L and jbi localized atR.[23.4] Let us try to
see what implications this entangled state has. Now, I am going to imagine
that I am sitting at the left, at L, and I amgoing to performameasurement of
the spin of the left-handparticlePL in the ‘up’ directionÆ (yes ifÆ;no if�).
This would project the entire state jOi into jÆij�i if I get the answer yes,
and it would project it into (�)j�ijÆi if I get no. The result would now be
unentangled—except that standardU-evolutionwould tell us thatPL is now
likely to be hopelessly entangledwithmyownmeasuring apparatusL.What
can be clearly stated is that if I get the answer yes, then my colleague,
situated at the right-hand detector R, will be presented with PR having
spin state j�i, whereas if I measure no, then my colleague will be presented
with jÆi. Upon subsequently performing an ‘up’ measurement on PR, my
colleague will necessarily obtain the opposite result to my own.
There is nothing special about the up/down choice in all this; for

whatever direction I choose to measure, say �, then if my colleague
chooses the same direction �, the result will be opposite. This should be
clear from the rotational invariance of the spin 0, but it is instructive to
perform a direct algebraic calculation to verify (where /means ‘equals, up
to a non-zero overall factor’, see §12.7) that

jOi / j�ij�i � j�ij�i,

where � is the direction opposite to �. (Note: if j�i ¼ ajÆi þ bj�i, then
j�i / �bbjÆi � �aaj�i.)[23.5]
We also conclude from all this what would be the joint probabilities for

yy, yn, ny, nn (abbreviating yes to Y and no to n) if I and my colleague
choose diVerent directions in which to measure the spin. Suppose I choose
ª and my colleague chooses �, where the angle between ª and � is y.
Then, using the probability value given in §22.9 (see Fig. 22.11), we Wnd
the joint probabilities

[23.4] Why not? Find a way of doing this, however, if jai and jbi are not so localized.

[23.5] Confirm this parenthetic comment, and give a direct calculational veriWcation of the

above expression for jOi. Hint: See Exercise [22.26].
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L
My alternative

settings

R
Colleague's alternative

settings

PL PR

Fig. 23.3 Polarization arrangements for Stapp’s version of EPR–Bohm; an

example of Bell inequalities. Initially, we take the spin measurements at either

side to be in the directions given by the solid-shafted arrows, but by a change of

mind, either or both might be rotated to be in the direction of the broken-shafted

arrows. The quantum joint probabilities cannot be modelled by any classical-like

scheme with particle pairs behaving as non-communicating independent entities

without foreknowledge of the directions of proposed spin measurements.

agree: 1
2
(1� cos y), disagree: 1

2
(1þ cos y)

(where ‘agree’ means yy or nn and ‘disagree’ means yn or ny).
Now, let us consider Stapp’s example. Things are arranged so that my

own apparatus can be oriented to measure spin either in the direction Æ,
taken to be vertically upwards, or in the direction�, which is a horizontal
direction (perpendicular to Æ). My colleague’s apparatus is oriented to
measure spin either in the direction �, which lies in the plane of the
directions Æ and �, at 458 to each of them, or in the direction ª, which
lies in the same plane, but is at 458 toÆ and at 1358 to� (Fig. 23.3). There
are three possibilities where my measurement direction is at 458 to that of
my colleague, and there is just one where the angle between them is 1358.
In the 458 cases, we get a probability of agreement of a little under 15%,
whereas for 1358 we get just over 85%.
Let us allow that the decision as to which of the two possible measure-

ments that I might perform need not actually be made until the particles are
in full Xight, and the same applies to my colleague. OK, let’s put my
colleague on Titan (one of Saturn’s moons) and have the source of the
particles somewhere between the two of us, so that even at the speed of light
we would have something like three-quarters of an hour to make up our
minds! See Fig. 23.4. The particles have no way of ‘knowing’ which way my
colleague and I are (independently) going to orient our measuring devices.
Let us suppose that I have chosen Æ and my colleague has chosen �

when we each receive a stream of seemingly randomly oriented particles.
They come one at a time, each being a member of an EPR–Bohm pair, sent
from the mid-way source, one to me and one to my colleague. When we
compare notes (perhaps some years later, when my colleague returns) we
would find that there is only a little less than 15% agreement between our
corresponding results, in accordance with the above.
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Earth

EPR
source

Titan

Fig. 23.4 The author, situated on the Earth, imagines himself to be the receiver

of one component of a succession of EPR particle pairs, the other being a

colleague on Titan, where the source of the pairs is roughly equidistant between

the two receivers. Even for particles travelling at the speed of light, there would be

about 45 minutes to decide on the detector orientations.

Now if the particles have no prior knowledge about how we are going to
orient our measuring devices, and behave as separate individual non-
communicating (classical-like) entities, it should make no difference to
my colleague’s actual measurements had I suddenly changed my mind at
the last minute and measured the � direction instead. Were I to do so,
then—because the angle between the directions is still 458—there would
still have been only 15% agreement between the measurements that I
would now obtain and the original ones of my colleague. On the other
hand, suppose instead that it was my colleague who had a last minute
change of heart and measured ª instead of �, but I had not changed my
mind. My colleague’s change should likewise not have affected my own
originalÆmeasurements. Again, we would find that my colleague’s newª
measurements would have to be in just under 15% agreement with my
own original Æ measurements.

But suppose that both of us had decided to change orientations at the
last minute so that my own measurement would be � and my colleague’s
ª. Now the angle between them has come around to 1358, so the expect-
ations of quantum mechanics tell us that the agreement ought then to be
more than 85%. Is that consistent with the pairs of particles providing the
correct joint probabilities for each of the possible pairs of detector orienta-
tions just considered? Well, let’s see. The particle pairs have to be prepared
to encounter any of the four possible combinations of detector settings,
and to give the correct quantum-mechanical probabilities in each case. Let
us recall what these are. The results of my altered apparatus setting �
would be expected to have no more than 15% agreement with my col-
league’s original � setting. This, in turn, should have no more than 15%
agreement with my own original Æ setting, and this should have no more
than 15% agreement with my colleague’s altered ª setting. If a particular
particle pair is going to give agreement in the case �, ª, then it cannot be
in disagreement in all of the cases �, � and Æ, � and Æ, ª. (Three
disagreements must give disagreement, not agreement.) So in at least one

588

§23.4 CHAPTER 23§23.4 CHAPTER 23



of these three possible pairs of settings there must be an agreement. But
this happens in less than 15% of the cases, for each possible pair of setting.
There are only three of these, so this allows not more than 15% þ 15% þ
15% ¼ 45% agreement when we get around to the case�, ª. (In fact the
agreement percentage comes out as a bit less than this, because I have
effectively counted the case where there is agreement in all three pairs of
settings three times.) But 45% is nowhere near 85%, so we have a blatant
contradiction with our ‘classical-like’ assumptions for the particle pairs!

Some might worry that this argument seems to have been phrased in
terms of hypothetical measurements that ‘might have happened but didn’t’
(the philosopher’s ‘counterfactuals’). But this is not important. The key
issue is that the particles have been assumed to behave independently of
each other after they have left the source, and to give the correct joint
quantum probabilities whatever combination of detector settings con-
fronts them. The point is that the particles have to mimic the expectations
of quantum mechanics. We have found that these cannot be split into
separate expectations for the two particles individually. The only way that
the particles can consistently provide the correct quantum-mechanical
answers is by being, in some way, ‘connected’ to each other, right up
until one or the other of them is actually measured. This mysterious
‘connection’ between them is quantum entanglement.
Of course, no experiment of this nature has been performed over such

distances. But many EPR-type experiments of an essentially similar
kind have actually been performed (usually using photon polarization,
not the spin directions of particles of spin 1

2
, but the distinctions are

not important). The expectations of quantum mechanics (rather than of
common sense) have been consistently vindicated! Although direct
quantum entanglements of this nature have certainly not yet been ob-
served over Earth–Saturn distances, some recent experiments have
conWrmed Bell-inequality violations over distances of more than 15
kilometres.8

23.5 Hardy’s EPR example: almost probability-free

Let us now come to Lucien Hardy’s beautiful example.9 Again, my col-
league and I are poised to make spin measurements, where I select between
the Æ and � measurements (vertically up and the horizontal rightward
direction), as before, but now my colleague also selects between Æ and �,
quite independently of my own choice. The crucial new feature is that the
source of particle pairs does not now emit them in a combined state of spin
0, but in a particular state of spin 1. I am taking this initial state to be the
one with the Majorana description j��i (§22.10, Fig. 22.14), where the
direction of � lies in the quarter plane spanned by the perpendicular
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directions Æ and �, and has an upward slope of 4
3
(so the angle y between

� and � satisWes cos y ¼ 3
5
), and where � is opposite to �; see Fig. 23.5.

We can express this state as[23.6]

j��i ¼ j�ij�i þ j�ij�i

ignoring an overall factor, and it has the important feature that, while it is
not orthogonal to

j�ij�i

(with � opposite to Æ), it is orthogonal to each of [23.7]

j�ij�i, j�ij�i, j�ij�i:

These orthogonality relations are respectively responsible for the following
key ‘yes/no’ properties (0), (1), (2), and (3):

(0) sometimes I obtain no for a Æ measurement when my colleague
obtains no for a Æ measurement;
(1) if I obtain no for aÆ measurement, then my colleague must obtain yes

for a � measurement;
(2) if my colleague obtains no for a Æ measurement, then I must obtain
yes for a � measurement;
(3) I never obtain yes for a�measurement when my colleague obtains yes

for a � measurement.

It may be mentioned, in connection with (0), that the actual quantum-
mechanical probability for both of us to obtain a no answer, given that we
both choose to perform the Æ measurement, is exactly 1

12
, in this

L

My alternative
settings

R

Colleague’s alternative
settings

Spin 1

Spin 1
2 Spin 1

2

Fig. 23.5 Hardy’s version of EPR ‘almost’ without probabilities. The initial state,

of spin 1, is j��i ¼ j�ij�i þ j�ij�i, where the direction � lies in quarter plane

spanned by the vertical Æ and horizontal �, at an upward slope of 4
3
. Each

detector measures the spin of the approaching particle either vertically or hori-

zontally.

[23.6] Why?

[23.7] See if you can prove these.Hint: Use the coordinate and/or geometric descriptions of §22.9.
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experiment.[23.8] Note that 1
12
¼ 8:33%, whereas Hardy’s optimal value,

with some slight adjustments, is very close10 to 9.017%
I should make it quite clear why there is no way of contriving the results

(0), . . . ,(3), with the two particles being separate non-communicating
entities and without foreknowledge of the experiments to be performed
upon them. Because of (0), the two particles (now assumed not in commu-
nication, and without foreknowledge) must each be prepared jointly to
provide a no answer, from time to time ( 1

12
of the time, in fact), to the

eventuality that both I and my colleague might simultaneously perform Æ
measurements. Moreover, the preparation of the particles must have been
careful to have pre-arranged (when they were together) that on those
occasions when they might do this (i.e. give simultaneous no answers to
our simultaneous Æ measurements) they must also deWnitely give the yes

answer, on those occasions, to a � measurement performed by either of
us, so as not to violate (1) or (2). Yet that very decision places them in dire
jeopardy of (3), because I and my colleague might both happen to perform
� measurements, on some such occasion, and thereby obtain the forbid-
den result yes, yes.

23.6 Two mysteries of quantum entanglement

It seems to me that there are two quite distinct mysteries presented by
quantum entanglement, and I believe that the answer to each of them is
something of a completely diVerent (although interrelated) character. The
Wrst mystery is the phenomenon itself. How are we to come to terms with
quantum entanglement and to make sense of it in terms of ideas that we
can comprehend, so that we can manage to accept it as something that
forms an important part of the workings of our actual universe? The
second mystery is somewhat complementary to the Wrst. Since, according
to quantum mechanics, entanglement is such a ubiquitous phenomenon—
and we recall that the stupendous majority of quantum states are actually
entangled ones—why is it something that we barely notice in our direct
experience of the world? Why do these ubiquitous eVects of entanglement
not confront us at every turn? I do not believe that this second mystery has
received nearly the attention that it deserves, people’s puzzlement having
been almost entirely concentrated on the Wrst.
Let me begin by addressing this second mystery. I shall be returning to

the Wrst in due course. A puzzle that must be faced is the fact that
entanglements tend to spread. It would seem that eventually every particle
in the universe must become entangled with every other. Or are they
already all entangled with each other? Why do we not just experience an

[23.8] Show this.
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entangled mess, with no resemblance whatsoever to the (almost) classical
world that we actually perceive? The Schrödinger evolution of a system
does not help with this. It tends to make things worse and worse, with
more and more parts of the universe becoming entangled with any system
that we start with, as time goes on. In terms of Hilbert space H, I think
that it is generally accepted that the Schrödinger equation (U process) will
not, by itself, get us out of our diYculties. If we start safely in a relatively
unentangled part of H, then the Schrödinger evolution will (usually)
almost immediately plunge us into the depths of entanglement and will
not, in itself, provide us with any route, or even guidance, back out of this
enormous seaweed-strewn ocean of entangled states (see Fig. 23.6).
Yet, we seem to get along pretty well, in everyday life, without even

noticing these entanglements. Why is this? If we are to get no help from
quantum theory’s U process, then we must turn to its other essential
ingredient: the R process. In fact, we have already seen something of the
way that this might help in our considerations of EPR eVects. Recall that I
envisaged performing a measurement on an EPR pair, the other member
of which was approaching my colleague on the planet Titan. If I make my
measurement Wrst, then upon my performing this measurement, this very
act would cut my colleague’s particle free of its entanglement with mine,
and from then on (until it became measured by my colleague) it would
possess a state vector of its own, unencumbered by any further responsi-
bility to its partner, no matter what I might subsequently do to it. Thus, it
seems, it is measurements that slash through these entanglements. Can this
be true? Is R the general answer to the second puzzle presented by the very
phenomenon of quantum entanglement?
I think that this must be true, at least if we are thinking in terms of the

way that quantum mechanics is used in practice. This has relevance to how
we set up any quantum experiment, such at the (thought) experiments
that we have just been considering. Recall that, in our EPR considerations,
we required a number of pairs of particles that were arranged to be in

Rock of
unentangled

states

Sea of entangled
states Hp,q

= Hp   Hq

Fig. 23.6 Schrödinger

evolution, away from an initial

unentangled state (illustrated

by the rock at the lower right)

almost always leads to increas-

ing entanglements (illustrated

by the seaweed-strewn sea). So

why do the ordinary objects of

experience appear as separated

independent things?
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a particular quantum state: of spin 0 in the Stapp example and spin
1 in the Hardy example. How, using only U-process eVects, could we
ensure that our particles were not already horrendously entangled with
everything else around. It seems to me that something of the nature of a
‘measurement’ is always an essential part of the setting up of a quantum
experiment, to ensure that the state is uncontaminated by swarms of these
unwanted entanglements. In saying this, I do not mean to imply that the
experimenter deliberately sets up a ‘measurement’ to achieve this. It is my
own view that Nature herself is continually enacting R-process eVects,
without any deliberate intentions on the part of an experimenter or any
intervention by a ‘conscious observer’.
I am entering controversial waters here, and my own position on these

issues will need to be returned to later (in §§30.9–13). But how is the matter
dealt with in ‘conventional’ quantum mechanics? It seems that ‘in practice’
physicists always assume that these supposed entanglements with the
outside world can be ignored. Otherwise neither classical mechanics nor
conventional quantum mechanics could ever be trusted. The view seems to
be that all the entanglements will somehow ‘average out’ so that they do
not need to be considered in practice, in any actual situation. Yet I am
unaware of any remotely convincing demonstration that this is likely to be
the case. Rather than averaging out, it would appear to be the case that
everything just gets less and less like the universe we know, with individual
objects not even having approximately deWned locations that are not
conditional on vastly many other occurrences elsewhere in the universe. I
do not see any way out of this conundrum, if we are to see it as a problem
in isolation from the U/R paradox that lies at the centre of the interpret-
ation of quantum mechanics.
However we look at the issue of this pervasive entanglement with the

rest of the universe, we cannot divorce it from the broader issue of why it is
that, on the one hand, the U procedures work so supremely well for simple
enough systems, whereas on the other, we have to give up on U and
abruptly, yet stealthily, interpose the R process from time to time. Why,
but also when and how? This is the measurement problem or (I think, more
accurately) the measurement paradox, in the words of the Nobel Laureate
Tony Leggett. I shall be returning to the matter in Chapter 29.
I have not yet Wnished with the other puzzles presented to us by

entanglement. Some of these have to do with the way that the measure-
ment of an entangled system sits extremely uncomfortably with the re-
quirements of relativity, since a measurement of one part of an entangled
pair would seem to have to aVect the other simultaneously which, as we
have seen in Chapter 17, is not a notion that we ought to countenance if we
are to remain true to relativistic principles. Before attempting to face this
problem, I should address one other aspect of entanglement. It is an aspect
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that is even more ubiquitous than those that we have been addressing in
the preceding few paragraphs. It is so ubiquitous that even measurements
do not cut through it, in whatever way we may choose to look at the
measurement paradox. Moreover, it is a characteristic feature of quantum
mechanics that appears to be independent of the others that we have been
addressing so far. I refer to the remarkable way in which quantum mech-
anics treats systems of identical particles.

23.7 Bosons and fermions

Recall our entertaining of a ‘toy universe’ in which there were just 10
distinct locations open to a particle, labelled 0, 1, 2, . . . , 9. When I con-
sidered that this universe might be inhabited by more than one particle,
I was careful to require that the particles were not to be thought of as ‘the
same kind of particle’, and I referred to them as an ‘A particle’ and a ‘B
particle’, etc., rather than, say, ‘two electrons’, or some such. The reason
for this is that quantum mechanics treats Nature’s actual particles by
procedures that are characteristically diVerent from that of our earlier
discussion. In fact, we must make a distinction, at this point, between
two quite characteristically diVerent such procedures! One of these pro-
cedures applies to particles known as bosons and the other to those known
as fermions. The bosons turn out to be particles with integral spin (i.e.
where the spin, in units of �h, takes one of the values 0, 1, 2, 3, . . . ) and the
fermions, particles with half-odd-integer spin: values 1

2
, 3
2
, 5
2
, 7
2
, . . . . (This

association follows from a famous mathematical theorem, in the context
of quantum Weld theory, known as the spin-statistics theorem; see §26.2.)
Composite particles, such as nuclei or whole atoms or, indeed, individual
hadrons such as protons or neutrons (taken as composed of quarks) can
also be treated to an appropriate degree of approximation, as individual
bosons or fermions. Thus, photons are bosons, and so are mesons (pions,
kaons, etc.) and the particles responsible for weak interactions (W and Z
particles) and strong interactions (gluons). The clearly composite a particles
(2 protons, 2 neutrons), deuterons (1 proton, 1 neutron), etc. also behave
closely as bosons. On the other hand, electrons, protons, neutrons, their
constituent quarks, neutrinos, muons, and many other particles are fer-
mions. We may take note of the fact that the wavefunctions of fermions
are spinorial objects, in the terminology of §11.3 (compare §22.8), whereas
those of the bosons are not.
To see what really distinguishes the bosons from the fermions, let us

return to our toy universe with just 10 points in it, labelled 0, 1, . . . , 9.
Recall that the appropriate analogue of a wavefunction would simply be
a collection of complex numbers z0, z1 , . . . , z9, for a single particle,
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z00, z01 , . . . , z99, for a pair of distinguishable particles, z000, z001 , . . . , z999

for three such particles, etc. For a pair of bosons, however the requirement
is that the collection of complex numbers zij should be symmetric in its
indices:

zij ¼ zji ,

so that z38 ¼ z83, for example. Thus, it makes no diVerence, as far as this
‘wavefunction’ is concerned, which of the particles is the one at 3 and
which is the one at 8. There is just a particle pair, occupying the two points
3 and 8. Note that the pair of bosons can perfectly well have both of them
in the same place; for example z33 is the complex weighting factor for both
bosons simultaneously to occupy the point 3. We see that there are only
1
2
(10� 11) ¼ 55 distinguishable ways of putting the (unordered) pair of

particles down on the 10 points, and only this number of complex numbers
is needed (i.e. H55 rather than H100). With three identical bosons, we have
symmetry in all three arguments:

zijk ¼ zjik ¼ zjki ¼ zkji ¼ zkij ¼ zikj,

so that we now have 1
6
(10� 11� 12) ¼ 220 complex numbers to deWne the

state: an element of H220 instead of H1000. For n identical bosons, the
number is (9þ n)!=9!n! where this is the number of independent complex
numbers zij...m , required to be totally symmetric in the indices (see §§12.4,7
and §14.7 for the notation):

zij...m ¼ z(ij...m):

Now let us consider fermions. The diVerence from bosons is that, for
fermions, the wavefunction is required to be antisymmetric in its argu-
ments,

zij ¼� zji,

zijk ¼ �zjik ¼ zjki ¼� zkji ¼ zkij ¼ �zikj,

zij...m ¼ z[ij...m],

so that we have 1
2
(10� 9) ¼ 45 complex numbers for two identical fer-

mions, 1
6
(10� 9� 8) ¼ 120 complex numbers for three identical fermions,

and 10!=n!(10� n)! for n identical fermions.[23.9] The diVerence in the
counting arises from the fact that now we are not allowed to have two
fermions at the same point, because the antisymmetry implies that the
complex weightings z . . . must vanish when that occurs: z33 ¼ 0, z474 ¼ 0,
etc.

[23.9] Explain all these numbers in both the boson and fermion cases.
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Note that when we have more than 5 identical fermions in our toy
universe, the numbers start coming down again. When we get to 10
fermions, there is only one possible state, and we cannot have more than
10 identical fermions altogether in our toy universe. We see, in this model,
a manifestation of an important principle in quantum physics, called the
Pauli exclusion principle. This tells us that two identical fermions cannot be
in the same state (which is simply a feature of the antisymmetry of the
fermionic wavefunction). The fact that solid materials do not collapse in
on themselves ultimately depends upon this principle. Ordinary solid
matter is basically composed of fermions: electrons, protons, neutrons.
These have to ‘keep out of each other’s way’, because of the Pauli
principle.
In the case of bosons, things are the other way around. There is a slight

tendency for bosons to ‘prefer’ to be in the same state. (This comes about
as a purely statistical eVect, when we compare the counting of diVerent
boson states with the corresponding diVerent classical states.) When the
temperature is very low, this eVect can become important, and a phenom-
enon known as Bose–Einstein condensation may take place, when most of
the relevant particles collect together into the same state. SuperXuids are
examples of this sort of thing, and even lasers are taking advantage of it.
In a superconductor, electrons have a way of ‘pairing up’ and these
Cooper pairs have the capability of behaving as though they were individ-
ual bosons. Some of the most impressive and counter-intuitive practical
uses of quantum mechanics come about from this type of ‘collective’
phenomenon.

23.8 The quantum states of bosons and fermions

Although I have stated the symmetry and antisymmetry requirements of
bosons and fermions only in reference to our ‘toy universe’, the boson/
fermion symmetry requirements for a collection of actual bosons or fer-
mions in ordinary space are basically the same. The wavefunction will be a
function of a number of points in space, labelled u, v, . . . , y, as well as of
various discrete parameters labelled by u, v, . . . , y, respectively, to en-
compass each particle’s group of (spinor or tensor) indices. We ask, Wrst,
how a wavefunction c for a pair of identical bosons would look. The
requirement is that the function c ¼ c(u, u; v, v) should be symmetric

under interchange of the particles:

c(u, u; v, v) ¼ c(v, v; u, u):

For three identical bosons, our wavefunction should be symmetric under
permutations of all three particles:
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c(u, u; v, v; w, w) ¼ c(v, v; u, u; w, w) ¼ c(v, v; w, w; u, u) ¼ . . . ,

and so on.
For the case of fermions, these relations are replaced by anti-symmetry

under interchange of the particles:

c(u, u; v, v) ¼ �c(v, v; u, u):

c(u, u; v, v; w, w) ¼ �c(v, v; u, u; w, w) ¼ c(v, v; w, w; u, u) ¼ . . . ,

and so on. Note that, in each case, the spin state (as characterized by the
discrete variables u, v, . . .) must be carried with the particle in these
interchanges. This has the implication that, when applying the Pauli
exclusion principle, we regard the states as identical only if the spin states
are also identical, in addition to their locations being identical. This is
important in chemistry, for example, where two electrons can share the
same orbital provided that their spins are opposite (see Fig. 24.2).
Here is a place where the (abstract) index notation for states, referred to

in §23.3 above, is handy (and a diagrammatic notation, as described in
§12.8 can also be used—illustrated in Fig. 26.1). Accordingly, we could use
the notation ca for the wavefunction of a particular particle to which the
label a has been assigned, and fb for the wavefunction of a second particle
to which the label b has been assigned, and so on. If the particles are not
identical, then the wavefunction for the pair of them would be the (tensor-)
product state

cafb,

whereas if they are identical bosons, the state (not worrying about nor-
malizing factors) is

cafb þ facb:

(A point about the abstract-index formulation: we have commutative
multiplication, e.g. facb ¼ cbfa. The non-commuting of tensor product
is dealt with by the index ordering, so that jfijci 6¼ jcijfi is expressed
as facb 6¼ cafb.) We can write this symmetrized state (ignoring a factor 2)
as

c(afb),

using our round-bracket notation for symmetrization (§12.7, §22.8). This
has the advantage that we can immediately write down the quantum state
for n identical bosons, whose individual states would be ca, fb , . . . , wk, as
the symmetrized product

c(afb . . . wk):
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We can do just the same thing for fermions, where for individual states
ca, fb , . . . , wk, the collection of all n identical fermions, would have the
antisymmetrized state (§12.4)

c[afb . . . wk]:

Notice that these many-particle states are technically all entangled (as
we see, in particular, for the description of a pair of identical
fermions being the combination cafb � facb). It is a mild type of en-
tanglement, however, because the superposition is between states that are
‘physically indistinguishable’, being applied only to identical particles. The
states c(afb . . . wk) and c[afb . . . wk], for bosons and fermions respectively,
are the nearest that we can get to ‘unentangled’ states, and we could take
the alternative position to call such states ‘unentangled’. (The general n-
particle boson state, in this notation, would be some Cab...k ¼ C(ab...k)

which does not split in this way. Similarly, a general n-particle fermion
state is a ‘non-splitting’ Fab...k ¼ F[ab...k].) In terms of the ket notation, we
could envisage a ‘wedge product’ notation jci ^ jfi ^ . . . ^ jwi to deal with
these symmetry and antisymmetry requirements,11 where we bear in mind
that terms commute or anticommute depending on the ‘grades’ of the
individual factors (see §11.6).
Although the type of ‘entanglement’ that occurs with identical bosons

or fermions is relatively ‘harmless’ (and, in fact, serves to reduce rather
than increase the large number of alternatives that are open to a quantum
system), it has at least one signiWcant implication for an eVect stretching
over large physical distances. The bosonic ‘entangled’ nature of photons,
arriving at the Earth from opposite sides of a relatively nearby star, has
been be used to measure such stars’ diameters, using a method due to
Hanbury Brown and Twiss (1954, 1956). When their method was Wrst
proposed, it met with great opposition from many (even distinguished)
quantum physicists, who argued that ‘photons can only interfere with
themselves, not with other photons’; but they had overlooked the fact
that the ‘other photons’ were part of a boson-entangled whole.

23.9 Quantum teleportation

To end this chapter, we return to the puzzles that are inherent in the
interpretation of EPR eVects. Most particularly, we recall the seeming
conXict with special relativity: that the ‘communication’ between EPR
pairs seems to pay no respect to Einstein’s own requirements that signal-
ling faster than light should not be allowed. In order to illuminate these
issues I shall give one further rather mysterious implication of quantum
entanglement known as quantum teleportation. In my opinion, this impli-
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cation leads us in a direction which may well be the one that we
have to explore, if we are to come properly to terms with EPR eVects
generally. Yet, we shall Wnd this direction leading into a territory that
many people would, no doubt, be most reluctant to enter—and with
reason, as we shall see!
What is meant by the term ‘teleportation’? It evokes ‘Star-Trek’, with

images of Captain Kirk and some of his crew being beamed down to an
unexplored planet’s surface, and where the view is taken that, for a
person’s ‘identity’ to be successfully beamed, it is necessary for an actual
quantum state to be faithfully projected to the planet’s surface, not just
some classical listing of particle locations, etc. Such a perspective has the
philosophical advantage that the teleportation procedure could not be
used to duplicate an individual—which might present delicate conundrums
concerning which of the two represents the continuation of the individual’s
‘stream of consciousness’.12 Why is it not possible to copy an unknown
quantum state? The question has been convincingly addressed in the
literature,13 but we can see from basic considerations that such a possibil-
ity would lead to a contradiction with the principles of standard U/R

quantum mechanics. Unless one is prepared to destroy the original, then
one cannot make an exact copy, and one certainly cannot make two exact
copies of an unknown quantum state.
Why not? If one could, then repeating the process, one could have

4 copies, then 8, then 16, etc. Suppose that the state is just a simple spin
state j�iof amassive particle of spin 1

2
. Then, after copying itmany times,we

should have j�ij�i . . . j�i ¼ j��. . .�i, which for large enough angular
momentum could bemeasured in a classical way, and the spatial direction�
thereby obtained. By this means, we should have obtained a measurement
of what the state actually is (up to a proportionality factor). But the
standard U/R procedures of quantum mechanics do not allow us to do
this. The only measurements on a state j�i thatR permits us to perform are
given by some Hermitian (or normal) operator, and these simply provide
questions: ‘Is the spin in some direction �? Answer yes or no.’ After
measurement, the state will be in either the asked direction � (yes) or in
its opposite ª (no). There are actually other measurements that we can
perform if we regard the spin state as entangled with other things (and we
shall be seeing the value of this sort of thing shortly). But if the state being
examined is to be regarded as unentangled with the outside world, then we
cannot do better than perform a direct measurement on it. All that we can
get from the state is a single yes/no answer, i.e. just one bit (binary digit) of
information. We can rotate the measuring apparatus to whatever angle we
choose, but the system will not tell us the direction� that the state actually
points in. True, that direction is distinguished by the fact that it is the only
one for which the yes answer comes with certainty (probability 1), but we
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cannot knowbeforehandwhich direction this is. (If someonewhohad set up
the quantum state told us that the direction is �, then we could copy that;
but this is not how the problem is posed: it is a previously unknown quantum
state that we are examining and which we propose to copy.)
What quantum teleportation aims to achieve is the sending of a quan-

tum state from one place to another, say from Kirk’s spaceship Enterprise
to the unexplored planet’s surface. Quantum mechanics certainly provides
no bar to achieving this; indeed, we could just transport the quantum
object bodily from one place to another in an ordinary way. But we
suppose that, in the particular situation envisaged, the conditions have
become far too ‘noisy’ for the trustworthy transportation of a quantum
object or of a quantum signal of any kind. The transmitting of ordinary
classical information is to be all that the conditions allow. However, it is
not possible to transmit a quantum state using only classical signalling.
The reason for this should be clear, because classical signals, by their very
nature, can be copied. If they could be used to transmit a quantum state,
then quantum states could also be copied, and we have seen above that
this should not be possible. What we need to do is to ‘prepare the ground’
Wrst. Since the ‘unexplored planet’ image is a little inappropriate for this,
let me enlist the help of my colleague on Titan instead, and it is this
colleague to whom I intend to transmit an unknown quantum state of
spin 1

2
.

The ‘ground-preparation’ that is required is that each of us must be
already in possession of one member of an EPR pair of particles of spin 1

2
.

We can suppose that the particles started together in a state of spin 0, just
as in the original Bohm version of EPR. Our supposition was that it is now
unreliable to send quantum states across the reaches of space between
Earth and Titan. But let us say that, Wve years ago, before my colleague
left for Titan, we each took with us our respective particle of the aforesaid
entangled pair, and each particle was kept perfectly isolated from external
disturbance. If our particles still remain undisturbed by the time my
colleague returns, then on bringing the two of them together, the state of
spin 0 would again be retrieved.
Now, we suppose, some friend presents me with another particle of spin

1
2
, again kept isolated from external disturbance. I am asked to transmit the
state of spin of that particle, intact, to my colleague on Titan straight
away. Bearing in mind that conditions are now not supposed to allow that
a quantum state can be trusted to the reaches of space between here and
Titan, I am permitted to send only a classical radio signal. But before
doing so, I take my friend’s particle to where I have my EPR particle
stored and bring these two particles together. Each particle has spin 1

2
, so

together their states would constitute a 4-dimensional system (just H4, if it
were not for the entanglement between my particle and my colleague’s
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particle on Titan). I now perform a measurement on the pair of them (my
friend’s and mine) together, which distinguishes the four orthogonal states
(called Bell states)

(0) jÆij�i � j�ijÆi,
(1) jÆijÆi � j�ij�i,
(2) jÆijÆi þ j�ij�i,
(3) jÆij�i þ j�ijÆi:

I convey the result of this measurement, to my colleague on Titan by an
ordinary classical signal, coded (say) by the numbers 0, 1, 2, 3, corres-
ponding respectively to whichever of the above four states my measure-
ment reveals. On receiving my message, my colleague takes out the other
member of the EPR pair—carefully shielded, up until that point, from
external disturbance—and performs the following rotation on it:

(0) leave alone,

(1) 180� about x axis,

(2) 180� about y axis,

(3) 180� about z axis:

It may be directly checked that this achieves the successful ‘teleporting’ of
my friend’s quantum state to my colleague on Titan.[23.10]

What is particularly striking about quantum teleportation is that, by
sending my colleague merely 2 bits of classical information (one of the
numbers 0, 1, 2, 3, which could have been coded as 00, 01, 10, 11
respectively), I have conveyed the ‘information’ of a point on the entire
Riemann sphere. (Recall Fig. 22.14.) In ordinary classical terms, this
would have needed the information contained in the unrestricted choice
of a point in a continuum: strictly Q0 bits, for perfect accuracy! (See
§§16.3,4.) How have we achieved this feat? At this point I should mention
that real experiments have been performed which conWrm the expectations
of quantum-mechanical teleportation (over distances of the order of
metres, not Earth–Saturn spans, of course)14 so we must take these things
seriously. Not only that, but the blossoming subject of quantum cryptog-
raphy depends upon things of this general nature; so do many of the ideas
of quantum computation.
Have a look at Fig. 23.7. This is a spacetime diagram in which worldlines

of me, my friend, and my colleague are indicated and, more importantly,
of all the particles of relevance to the story, together with the classical
signal that I send to my colleague on Titan. Somehow, the ‘information’ of

[23.10] ConWrm this, with appropriate conventions concerning coordinate axes etc.
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the spin direction of my friend’s particle (indicated by j�i) has conveyed
itself to Titan despite the fact that only 2 bits of information have been
actually transmitted. How have all the other Q0 bits got across to my
colleague?
Some people might take refuge in the viewpoint that quantum states are

‘not real things’ being ‘not measurable’, or something. I Wnd it hard,
myself, to come to terms with this particular kind of perspective on the
world. For the direction of a spin 1

2
state is saying something very deWnite

about the world. It is saying that if someone (on the planet Titan, in this
example) chooses to measure the spin in that particular direction and only

in this particular direction, then the answer yes will be obtained with
certainty. Moreover, my friend, or a friend of my friend, could well have
prepared the original particle to have a spin in some preassigned direction,
and would know the result of a measurement to be performed on Titan in
that same (or opposite) direction with certainty. That sounds real to me.
(And don’t be put oV by the fact that my examples are a little outlandish;
the principle’s the point!)
So let us look again at Fig. 23.7. Something real has conveyed itself from

my friend to my colleague, but the classical channel (of just 2 bits) is far too
narrow to provide scope for the remainingQ0 bits to get across. Yet there is

a connecting link. It consists of a small stretch frommy friend to me, a long
one—back in time—from me to the origin of our EPR pair, and another
long stretch from that point of origin to my colleague on Titan. This,

Fig. 23.7 ‘Quantum teleportation’, demonstrating

the acausal propagation of quanglement. A space-

time diagram illustrates the process whereby the

unknown quantum state (j�i) of spin 1
2
, given to me

by my friend, can be conveyed to my colleague on

Titan by the mere transmission of 2 bits of classical

information, provided that my colleague and I

already share an EPR pair. The acausal quanglement

link is depicted as a dotted path.
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indeed, is the only connecting link between us that is capable of supporting
the amount of ‘information’ that is required. The trouble with it, of course,
is that it contains a stretch that extends 5 years into the past!

23.10 Quanglement

I must make it very clear that I am not trying to give support to the idea
that ordinary information can be propagated backwards in time (nor can
EPR effects be used to send classical information faster than light; see
later). That kind of thing would lead to all sorts of paradoxes that we
should have absolutely no truck with (I shall return to this kind of issue in
§30.6). Information, in the ordinary sense, cannot travel backwards in
time. I am talking about something quite diVerent that is sometimes
referred to as quantum information. Now there is a diYculty about this
term, namely the appearance of the word ‘information’. In my view, the
preWx ‘quantum’ does not do enough to soften the association with ordin-
ary information, so I am proposing that we adopt a new15 term for it:

QUANGLEMENT

At least in this book, I shall refer to what is commonly called ‘quantum
information’ as quanglement. The term suggests ‘quantum mechanics’ and
it suggests ‘entanglement’. This is very appropriate. This is what quangle-
ment is all about. Quanglement also does have something very much to do
with information, but it is not information. There is no way to send an
ordinary signal by means of quanglement alone. This much is made clear
from the fact that past-directed channels of quanglement can be used
just as well as future-directed channels. If quanglement were transmittable
information, then it would be possible to send messages into the past,
which it isn’t. But quanglement can be used in conjunction with ordinary
information channels, to enable these to achieve things that ordinary
signalling alone cannot achieve. It is a very subtle thing. In a sense,
quantum computing and quantum cryptography, and certainly quantum
teleportation, depend crucially on the properties of quanglement and its
interrelation with ordinary information.
As far as I can make out, quanglement links are always constrained by

the light cones, just as are ordinary information links, but quanglement
links have the novel feature that they can zig-zag backwards and forwards
in time,16 so as to achieve an eVective ‘spacelike propagation’. Since
quanglement is not information, this does not allow actual signals to be
sent faster than light. There is also an association between quanglement
and ordinary spatial geometry (via the connections between the Riemann
sphere and spin, as pictured in Figs. 22.10, 22.14, 22.16), this association
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Fig. 23.8 Parametric down-conversion. A photon, emerging from a laser, impin-

ging upon a suitable ‘non-linear crystal’, produces a pair of entangled photons.

This entanglement manifests itself in the EPR nature of the correlated polarization

states of the secondary photons, but also in the fact that their 3-momentum states

must sum to that of the incident photon.

being spatially reXected at a reversal of time direction, with interesting
implications.17 It would take us too far aWeld to explore these in detail.
One of the most direct uses of the idea of quanglement is in certain

experiments where a pair of entangled photons is produced according
to the process referred to as parametric down-conversion (see Fig. 23.8).
This occurs when a photon, produced by a laser, enters a particular type of
(‘non-linear’) crystal which converts it into a pair of photons. These emitted
photons are entangled in various ways. Their momenta must add up to the
momentum of the incident photon, and their polarizations are also related
to one another in an EPR way, like the examples given earlier, above.
In one particularly striking experiment, one of the photons (photon A)

passes through hole of a particular shape as it speeds towards its detector
DA. The other photon (photon B) passes through a lens that is positioned
so as to focus it, appropriately, at its detector DB. The position of detector
DB is moved around slightly as each photon pair is emitted. The situation
is illustrated schematically in Fig. 23.9a. Whenever DA registers reception
of photon A and DB also registers reception of B, the position of DB is
noted. This is repeated many times, and gradually an image is built up by
the detector DB, where only the positions of B are counted when simultan-
eously DA registers. The shape of the hole that A encounters is gradually
built up at DB, even though photon B never directly encounters the hole at
all! It is as though DB ‘sees’ the shape of the hole by looking backwards in
time to the emission point C at the crystal, and then forwards in time in the
guise of photonA. It can do this because the ‘seeing’ process in this situation
is achieved by quanglement. This Xitting back and forth in time is precisely
the kind of thing that quanglement is allowed to do. Even the strength and
positioning of the lens can be understood in terms of quanglement. To
obtain the lens location, think of a mirror placed at the emission point C.
The lens (a positive lens) is placed so that the image of the hole, as reXected
in this mirror at C, is focused at the detectorDB. Of course there is no actual
mirror at C, but the quanglement links act as though reXected at a mirror,
but they are reXected in time as well as space.[23.11]

[23.11] See if you can give a fuller explanation of this, using quanglement ideas or otherwise.
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Fig. 23.9 Transmission of an image via quantum effects. (a) Entangled photons A,

Bareproducedbyparametricdown-conversionatC.PhotonAhas topass througha

hole of some special shape to reach detector DA, while B passes through a lens,

positioned so as to focus it at detector DB. Detector positions are gradually moved,

appropriately in conjunction, and when they both register, the position of DB is

noted. Repeated many times, an image of the hole shape is gradually built up by DB,

where only those positions ofBare countedwhenDA also registers. (This is schemat-

ically illustratedhere byhaving, instead,DB as a fixedphotographicplate that is only

activatedwhenDA registers.)Quanglement is illustratedbythe lenspositioningbeing

determined as thoughCwere a ‘mirror’ that reflects the photonbackwards in time as

well as in direction. (b) An alternative scheme using an adaption of the Elitzur–

Vaidman bomb test of Fig. 22.6 (which is to be reflected in a horizontal line). The

photographic plate at B receives the photon only when the photon ‘would have been

stopped’ by the template at C, but actually took the lower route!

In case the reader Wnds this experiment far-fetched, I should make clear
that this is a real eVect. It has been successfully conWrmed in experiments18

performed at the University of Baltimore, Maryland. Various other re-
lated experiments involving parametric down-conversion, which can be
best understood in terms of quanglement, have also been carried out.19

On the other hand, the general type of situation illustrated in Fig. 23.9a
might be regarded as not being ‘essentially quantum mechanical’. For one
could envisage adevice atCwhich simply ejects classical particles pairwise in
the appropriate directions and, apart from the lensing, similar results could
be obtained. We can remedy this by using a modification of the Elitzur–
Vaidman set-up illustrated in Fig. 22.6 (reflected horizontally); see Fig.
23.9b. Now there is only one photon at a time. It can register at the
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photographic plate B only if the interference is destroyed when the alterna-
tive route for the photon wouldmiss the hole at C.
Now, let us lookagainat anordinaryEPReVect, like theStappandHardy

examples considered earlier. In the ordinary application of the quantum R

process, one imagines a particular reference frame in which there is a time
coordinate tprovidingparallel time slices, eachcorresponding toaconstant t
value, through the spacetime. The normal procedure is to adopt the (non-
relativistic) viewpoint that, when one member of an EPR pair is measured,
the state of the other is simultaneously reduced, so that a later measurement
looks at a reduced (unentangled) state rather than an entangled state. This
kind of description can be used, for example, in my speciWc EPR examples.
Let us suppose that, from the point of view of a reference frame stationary
with respect to the Sun, it ismy colleagueonTitanwhosemeasurement takes
place Wrst, some 15minutes beforemy ownmeasurement here on Earth. So,
in this picture of things, it is my colleague’s measurement that reduces the
state, and I subsequently perform a measurement on a particle with an
unentangled state. But we might imagine that, instead, the whole situation
isdescribedfromtheperspectiveof someobserverOpassingbyatgreat speed
(say 2

3
c) in the general direction frommy colleague on Titan tome. FromO’s

viewpoint, I was the one who Wrst made the measurement on the EPR pair,
thereby reducing the state, and it was my colleague who measured the
reduced unentangled state (Fig. 23.10) (see §18.3, Fig. 18.5b). The joint
probabilities come out the same either way, but O has a diVerent picture of
‘reality’ from theone that I andmycolleaguehadbefore. Ifwe thinkofR as a
real process, then we seem to be in conXict with the principle of special
relativity, because there are two incompatible views as to which of us

Earth Titan

O

B��

A

B�

A�

A��

B

EPR source

Fig. 23.10 Conflict between relativity and the

objectivity of state reduction? Spacetime

diagram of an EPR situation, with detectors on

Earth and Titan and source closer to Titan than

Earth. From the perspective of an inertial

frame, stationary with respect to the Sun, the

detector on Titan registers first (at B) and this

reduces the state simultaneously (at B0) on

Earth. Only later does detection on Earth take

place (at A) of a state now unentangled (sim-

ultaneous with A0 on Titan). However, to an

observer O, travelling towards Earth from

Titan with very great speed, detection takes

place first on Earth (at A, simultaneous with A
00

on Titan, according to the ‘sloping’ simultan-

eity lines of O) and Titan receives the reduced

unentangled state (at B, simultaneous with B
00

on Earth).
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eVected the reduction of the state and which of us observed the reduced
state after reduction.
We may deduce from this that EPR effects, despite their seemingly

acausal nature, cannot be directly used to transmit ordinary information
acausally, which one might imagine could influence the behaviour of a
receiver at spacelike separation from the transmitter. A reference frame
can always be chosen in which it is the ‘reception event’ which occurs first,
and the ‘transmitter’ then has only the reduced state to examine. It is ‘too
late’, by then, for the entanglement to be used for a signal because it has
already been destroyed by the state reduction.
What is the quanglement perspective on these matters?20 See §30.3. On

this picture, it is not correct to think of either measurement (mine or my
colleague’s) as eVecting the reduction and the other (my colleague’s or
mine) as measuring the reduced state. The two measurement events are on
an equal footing with one another, and we think of the quanglement as
providing a connection between these events which correlates the two. It
makes no diVerence which event is viewed as being to the past of the other,
for quanglement can equally be thought of as propagating into the past as
propagating into the future. Not being capable directly of carrying infor-
mation, quanglement does not respect the normal restrictions of relativis-
tic causality. It merely eVects constraints on the joint probabilities of the
results of diVerent measurements.
Although quanglement is a useful idea in ‘making sense’ of this kind of

puzzling quantum experiment, I am not sure how far these ideas can be
carried, nor how precisely the eVects of quanglement can be delineated.
The idea of quanglement certainly does not resolve the issue of quantum
measurement, telling us little, if anything, about the circumstances under
which R takes over from U. That issue will be addressed more fully in
Chapters 29 and 30, especially in §30.12, but the precise role of quangle-
ment in this in this is not yet very clear, to my mind. A more promising
connection is with some of the ideas of twistor theory, and these will be
examined brieXy in §33.2.
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24
Dirac’s electron and antiparticles

24.1 Tension between quantum theory and relativity

The considerations of §23.10 only just begin to touch upon some of the
profound issues about the relation between the principles of quantum
mechanics and those of relativity. Indeed, in presenting the detailed way
in which quantum theory operates, in the preceding three chapters, I have
taken a very non-relativistic standpoint, appearing to ignore those import-
ant lessons that Einstein and Minkowski have taught us (as described in
Chapter 17) about the interdependence of time and space. In fact, this is
quite usual in quantum theory. The standard approach adopts a ‘picture
of reality’ in which time is treated diVerently from space. As remarked
early in Chapter 22, there is a single external time coordinate; but there are
many spatial ones, each particle requiring its own set. This asymmetry is
usually regarded as a ‘temporary’ feature of non-relativistic quantum
theory, which would be merely an approximation to some more complete
fully relativistic scheme. In this chapter, and in the following two, we shall
begin to witness the profound issues that arise when we try seriously to
bring the principles of quantum theory together with those of special
relativity. (The more ambitious union with Einstein’s general relativity—
where gravitation and spacetime curvature are also brought into the
picture—requires something considerably more, and there is as yet no
consensus on the most promising lines of pursuit. I shall address some of
these lines in Chapters 28 and 30–33.)
It is a particular feature of combining quantum theory with special

relativity that the resulting theory becomes not just a theory of quantum
particles, but a theory of quantum Welds. The reason for this can be boiled
down to the fact that the bringing in of relativity implies that individual
particles are no longer conserved, but can be created and destroyed in
conjunction with their antiparticles. This comment needs some explan-
ation. Why is there this need for ‘antiparticles’ in a relativistic quantum
theory? Why does the presence of antiparticles lead us from a quantum
theory of particles to a quantum theory of Welds? This chapter is largely
aimed at the answers to these two questions, but particularly the Wrst, and
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with particular reference to Dirac’s wonderful insights into the mathemat-
ical description of electrons.
Quantum Weld theory itself will be discussed in Chapter 26, and we shall

be glimpsing some of the pervasive tension between special relativity and
quantum theory that has guided the subject of particle physics into more
and more elaborate mathematical schemes. We shall Wnd ourselves enticed
into a long and fascinating journey. When the tension can be resolved
appropriately, as with the standard model of particle physics, discussed in
Chapter 25, the resulting theory is found to have a very remarkable
agreement with observational fact.
Yet, in many respects, this tension has remained, and has never been

fully resolved. Strictly speaking, quantum Weld theory (at least in most of
the fully relevant non-trivial instances of this theory that we know) is
mathematically inconsistent, and various ‘tricks’ are needed to provide
meaningful calculational operations. It is a very delicate matter of judge-
ment to know whether these tricks are merely stop-gap procedures that
enable us to edge forward within a mathematical framework that may
perhaps be fundamentally Xawed at a deep level, or whether these tricks
reXect profound truths that actually have a genuine signiWcance to Nature
herself. Most of the recent attempts to move forward in fundamental
physics indeed take many of these ‘tricks’ to be fundamental. We shall
be seeing several examples of such ingenious schemes in this and later
chapters. Some of these appear to be genuinely unravelling some of
Nature’s secrets. On the other hand, it might well turn out that Nature is
a good deal less in sympathy with some of the others!

24.2 Why do antiparticles imply quantum fields?

The theoretical anticipation of antiparticles, in a relativistic quantum
theory, appears to have unravelled one of Nature’s true secrets, now well
supported by observation. We shall be seeing something of the theoretical
reasons for antiparticles later in this chapter, and most speciWcally in §24.8.
For the moment, instead of addressing that issue, let us restrict attention
to the second of the two questions raised above, namely: why does the
presence of antiparticles leads us away from a quantum theory of particles
and into a quantum theory of Welds? Let us, for now, just accept that there
is an antiparticle to each type of particle, and try to come to terms with the
consequences of this remarkable fact.
The key property of an antiparticle (at least, the antiparticle of a

massive particle) is that the particle and antiparticle can come together
and annihilate one another, their combined mass being converted into
energy, in accordance with Einstein’s E ¼ mc2; conversely, if suYcient

§24.2 CHAPTER 24
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energy is introduced into a system, localized in a suitably small region,
then there arises the strong possibility that this energy might serve to
create some particle together with its antiparticle. Thus, with this potential
for the production of antiparticles, there is always the possibility of more
and more particles coming into the picture, each particle appearing to-
gether with its antiparticle. Thus, our relativistic theory certainly cannot
just be a theory of single particles, nor of any Wxed number of particles
whatever. (In quantum theory, as we shall be seeing in Chapters 25 and 26
particularly, if there is the potential for something to happen—e.g. the
production of numerous particle/antiparticle pairs—then this potential
possibility actually makes its contribution to the quantum state.) In at-
tempting to come up with a theory of relativistic particles, therefore, one is
driven to provide a theory in which there is a potential for the creation of
an unlimited number of particles.
This takes us outside the framework of Chapters 21–24; but we shall see

in Chapter 26 how the quantum theory of Welds enables us to accommo-
date such behaviour. Indeed, according to a common viewpoint, the
primary entities in such a theory are taken to be the quantum Welds, the
particles themselves arising merely as ‘Weld excitations’. Yet, we shall Wnd
that this is not the only way to look at quantum Weld theory. In the
Feynman-graph approach, which we shall address in Chapters 25 and
26, there is a strong ‘particle-like’ perspective on the basic processes that
go to make up the quantum Weld theory where, indeed, an unlimited
number of particles can be created or destroyed.
It is instructive to elaborate, a little more, on the reasons underlying

particle creation, as a feature of a sensible relativistic quantum theory. I
am still assuming, for the moment, that antiparticles exist. Essentially, the
reason to expect particle creation comes down to Einstein’s famous
E ¼ mc2. Energy is basically interchangeable with mass (c2 being merely
a ‘conversion constant’ between the units of energy and mass that are
being used). When enough energy is available, then a particle’s mass can
be created out of that energy.
However, having the means to produce the particle’s mass is not,

in itself, suYcient for the conjuring up the particle itself. There are likely
to be various conserved (additive) quantum numbers, such as
electric charge (or other things, e.g. baryon number) which are not
supposed to be able to change in a physical process. Simply to conjure
a charged particle out of pure energy, for example, would represent a
violation of charge conservation (and the same would apply to other
conserved quantities, such as baryon number, etc.). However, with
the assumption that for every kind of particle there is a corresponding
antiparticle, for which every additive quantum number is reversed in
sign, a particle together with its antiparticle can be created out of pure
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energy (see Fig. 24.1). All the additive quantum numbers will be conserved
in this process.
The rest mass of the antiparticle (rest mass being non-additive) is, on the

other hand, the same as that of the original particle. We need suYcient
energy—at least twice that of the rest mass/energy of the particle itself—to
create both the particle and its antiparticle in this process. Conversely, if a
particle of a given type encounters another particle which is of its antipar-
ticle’s type, then it is possible for them to annihilate one another with the
productionof energy.Again, the energyhas to be at least twice the restmass/
energy of the individual particle. In either the creation or the annihilation
process, the energy can be more than this value, because the particle and
antiparticle are likely to be in relative motion, and there will be an energy
residing in this motion—the kinetic energy—that adds in to the total. In any
event, we see that the presence of antiparticles indeed forces us away from
the quantum theory of individual particles, as described in Chapters 21–23.

24.3 Energy positivity in quantum mechanics

Let us now return to the road that ultimately leads us to the requirement
of antiparticles in a relativistic quantum theory. We shall need to
examine the framework of quantum theory from a somewhat deeper
perspective than before. First, let us recall the basic form of the Schrö-
dinger equation

i�h
]c
]t
¼ Hc:

Suppose that we require our quantum system to have a deWnite value E for
its energy, so that c is an eigenstate of energy, with eigenvalue E; that is
(sinceH is the operator deWning the total energy of the system), we require

Hc ¼ Ec:

Fig. 24.1 A particle and its antiparticle can be

created out of energy. All the particle’s

conserved additive quantum numbers are

reversed in sign for the antiparticle, to ensure

conservation of these quantities in the creation

process.
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According to the quantum-mechanical R process (§§22.1,5), such a state c
would result from our having performed a measurement on a system
asking it the question ‘what is your energy’, where we have received the
speciWc answer ‘E’. Schrödinger’s equation then tells us

i�h
]c
]t
¼ Ec:

The solutions of this equation have the form[24.1]

c ¼ C e�iEt=�h,

where C is independent of t (i.e. a complex function of spatial variables
only).
Now, it is important that the energy value E be a positive number.

Negative-energy states are ‘bad news’ in quantum mechanics, for various
reasons (their presence leading to catastrophic instabilities1).[24.2] When
the energy E is indeed positive, the coeYcient �iE=�h of t in the exponent
(in e�iEt=�h) is a negative multiple of i. Recall from §9.5 (and see Note 9.3)
that functions c(t) of this nature, or linear combinations of such functions,
are said (a little confusingly) to be of positive frequency.
Recall, also, that in §9.3 we addressed the splitting of a function f(x) (of

a real variable x) into its positive- and negative-frequency parts in an
apparently completely diVerent way, namely in terms of the geometry of
the Riemann sphere.2 There we treated this as just an elegant piece of pure
mathematics. The real line could be thought as wrapped once around the
equator of the Riemann sphere, and the positive-frequency part of the
function f was understood as that part which extended—holomorphically
(see §7.1)—into the southern hemisphere, the negative-frequency part
extending, likewise, into the northern hemisphere. But now we have
come to a remarkable physical reason for the great importance of this
notion. Any self-respecting wavefunction, though it need not itself be an
eigenstate of energy, ought to be expressible as a linear combination of
eigenstates of energy, and each energy eigenvalue ought to be positive.
Thus the time dependence of any decent wavefunction ought indeed to
have this crucial positive-frequency property. It seems to me that this
remarkable relation between an essential physical requirement, on the
one hand, and an elegant mathematical property, on the other, is a

[24.1] Check that this is indeed a solution.

[24.2] Explain why adding a constant K to the Hamiltonian simply has the eVect that all

solutions of the Schrödinger equation are multiplied by the same factor. Find this factor. Does

this substantially aVect the quantum dynamics? Suppose we are concerned with the gravitational

eVect of a quantum system. Why can we not simply ‘renormalize’ the energy in this way under

these circumstances?
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wonderful instance of the deep, subtle, and indeed mysterious relationship
between sophisticated mathematical ideas and the inner workings of our
actual universe.
In non-relativistic quantum mechanics, this requirement of positive fre-

quency tends to come about automatically, as a natural feature of the
theory, provided that the Hamiltonian comes from a reasonable physical
problem where classical energies are positive. For example, in the case of a
single free non-relativistic (spinless) particle of (positive) mass m, we have
the Hamiltonian H ¼ p2=2m (recall §20.2, §21.2). The expression p2, and
hence the Hamiltonian H itself, is what is called ‘positive-deWnite’3

(§§13.8,9). Classically, this comes about because p2 is a sum of squares,
and this cannot be negative: p2 ¼ p � p ¼ (p1)

2 þ (p2)
2 þ (p3)

2. Quantum-
mechanically, we must make the replacement of p by �i�h=, where
= ¼ (]=]x1, ]=]x2, ]=]x3), and now the ‘positive-deWnite’ assertion refers
to the eigenvalues of the operator�H2 (for normalizable states, i.e. elements
of an appropriate Hilbert space H), and again these cannot be negative,
esentially for the same reason as in the classical case.[24.3]

24.4 Difficulties with the relativistic energy formula

Now, let us consider a relativistic quantum particle. In this case, the
Hamiltonian is obtained from the relativistic expression for the energy,
which is not p2=2m but

[(c2m)2 þ c2p2]
1
2:

This expression comes directly from the equation (c2m)2 ¼ E2 � c2p2 of
§18.7, where m is now the rest mass of the particle. The reader who worries
that this expression does not look much like p2=2m should refer back to
Exercise [18.20]. That told us, from a power series expansion of
[(c2m)2 þ c2p2]

1
2, that our relativistic expression incorporates Einstein’s

famous E ¼ mc2 as a Wrst term. This term is the energy contribution
coming from the particle’s rest mass, and it is additional to the kinetic
energy of the particle’s motion. The second term indeed gives us the
Newtonian (kinetic energy) Hamiltonian p2=2m.
The reader may thereby be reassured about our choice of relativistic

Hamiltonian! Nevertheless, it would be decidedly awkward (and not very

[24.3] Schrödinger’s equation, here, is ]c=]t ¼ (i�h=2m)r2c. ConWrming, Wrst, that for an

energy eigenstate with energy E we have �r2c ¼ Ac, where A ¼ 2m�h�2E, use Green’s theorem
R

�ccr2c d3x ¼ �
R

=�cc � =cd3x to show that A must be positive for a normalizable state. (Con-

versely, it is in fact true that, for positive A, there are many solutions of �r2c ¼ Ac, which tail

oV suitably towards inWnity so that the norm kck remains Wnite4 and we can normalize to

kck ¼ 1, if we wish.) Show how to derive Green’s theorem, from the fundamental theorem of

exterior calculus.
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illuminating) to attempt to use this actual power series expression for our
Hamiltonian, particularly because the classical series does not even con-
verge when p2 > m2. Yet, we shall Wnd that the square root (half power) in
the exact expression [(c2m)2 þ c2p2]

1
2 carries its own profound diYculties,

in relation to preserving the positive-frequency requirement. Let us try to
understand something of the importance of this.
To avoid cluttering our expressions unnecessarily, I shall return to units

for which the speed of light is unity

c ¼ 1,

so that our relativistic Hamiltonian (including the rest energy) is now

H ¼ (m2 þ p2)
1
2:

We must bear in mind that the p2, in quantum mechanics, is really the
second-order partial diVerential operator ��h2H2, so we shall need some
considerable mathematical sophistication, if we are actually to assign a
consistent meaning to the expression (m2 � �h2H2)

1
2, which is the square root

of a partial diVerential operator! (To appreciate the diYculty, think of
trying to assign a meaning to a thing like (

p
1� d2=dx2), for example.[24.4])

There is a more serious diYculty with this square-root expression,
because it contains an implicit sign ambiguity. In classical physics, such
things might not worry us, because the quantities under consideration are
ordinary real-valued functions, and we can imagine that we could keep the
positive values separate from the negative ones. However, in quantum
mechanics, this is not so easy. Part of the reason for this is that quan-
tum wavefunctions are complex, and the two square roots of a complex-
number expression do not tend to separate neatly into ‘positive’ and
‘negative’ in a globally consistent way (§5.4). This should be considered
in relation to the fact that quantum mechanics deals with operators acting
on complex functions, and things like square roots can lead to essential
ambiguities that are not simply resolved by just saying ‘take the positive
root’.
There is another way of expressing this diYculty. In quantum mechan-

ics, one has to consider that the various possible things that ‘might’
happen, in a physical situation, can all contribute to the quantum state,
and therefore all these alternatives have an inXuence on whatever it is that
does happen. When there is something like a square root involved, each of
the two roots has to be considered as a ‘possibility’, so even an ‘unphysical
negative energy’ has to be considered as a ‘physical possibility’. As soon as
there is the potential for such a negative-energy state, then there is opened

[24.4] Make some suggestions, either using Fourier transforms (§9.4), or a power series, or

contour integrals, or otherwise.
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up the likelihood of a spontaneous transition from positive to negative
energy, which can lead to a catastrophic instability. In the case of a non-
relativistic free particle, we do not have this problem of the possibility of
negative energy, because the positive-deWnite quantity p2=2m does not have
this awkward square root. However, the relativistic expression (m2 þ p2)

1
2 is

more problematic in that we do not normally have a clear-cut procedure
for ruling out negative square roots.
It turns out that in the case of a single free particle (or a system of such

non-interacting particles), this does not actually cause a real diYculty,
because we can restrict attention to superpositions of positive-energy
plane-wave solutions of the free Schrödinger equation, which are just
those considered in §21.5, and there are no transitions to negative energy
states. However, when interactions are present, this is no longer the case.
Even for just a single relativistic charged particle in a Wxed electromagnetic
background Weld the wavefunction cannot, in general, maintain the
condition that it be of positive frequency. In this, we begin to perceive
the tension between the principles of quantum mechanics and those of
relativity.
As we shall be seeing in §24.8, the great physicist Paul Dirac found a

way to resolve this particular tension. But as a Wrst step, he put forward an
ingenious and deeply insightful proposal—his now famous equation for
the electron—which got rid of the troublesome square root in a marvellous
and unexpected way. This subsequently led to a highly original point of
view in which negative energies are eliminated, their eVects being taken
over by what was then a startling prediction: the existence of antiparticles.
In order to understand all this, let us return to that essential feature of
relativity theory from which the square root originates.

24.5 The non-invariance of ›=›t

Let us recall the reason underlying our apparent need to adopt the Hamil-
tonian (m2 þ p2)

1
2 in the relativistic case. This ultimately comes down the

fact that Schrödinger’s equation makes use of the operator ]=]t (i.e. ‘rate
of change with respect to time’) whereas, in relativity, ]=]t is not an
invariant thing because time and space cannot be considered separately
but are just particular aspects of a combined ‘spacetime’. Thus, it is not
‘relativistically invariant’ to regard ]=]t as a fundamental thing. Now, as
we saw in §21.3, the ]=]t in Schrödinger’s equation comes from the general
‘quantization trick’ whereby the standard spacetime 4-momenta pa (i.e. the
energy E, and negative 3-momentum �p) are replaced by the diVerential
operators i�h]=]xa (i.e. the energy E by i�h]=]t and �p by i�h=). The ‘relativ-
istic non-invariance’ of ]=]t is thus closely related to the non-invariance of
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the energy. In the same way that time and space get mixed up in relativity
theory, energy and momentum also get mixed up (as we saw in §18.7).
Recall, also, that Einstein’s E ¼ mc2 (with the convention that c ¼ 1)

tells us that energy is mass and mass is energy, so mass, also, is ‘non-
invariant’. This, however, refers to the additive ‘mass’ concept m (time
component of the energy–momentum 4-vector) which is not intrinsic to a
particle itself, but which is the mass measured in some reference frame that
need not share that particle’s velocity. The larger the particle’s velocity, the
larger will be this ‘perceived’ mass (which, indeed, is the reason that m is
not an invariant quantity). The rest mass m, for a particle, is invariant, but
the trouble with rest mass is that it is not additive and it is not conserved in
particle transformations, so it makes a poor choice for something to be
equated to a Hamiltonian. Moreover, m is given as a square root of an
expression in the energy and momentum, namely (taking c ¼ 1)

m2 ¼ pap
a ¼ m2 � p2, i:e: m ¼ (m2 � p2)

1
2,

which re-expresses the square-root expression for the mass/energy
m ¼ E (¼ H) that we had earlier, namely m ¼ (m2 þ p2)

1
2.

Nevertheless, we might toy with the idea of using this invariant rest
energy m or its square m2 in a Schrödinger-type equation, instead of the
non-invariant energy component m. The quantization trick (i.e. m replaced
by i�h]=]t and p by �i�h=) applied to the squared rest energy, namely to
m2 ¼ m2 � p2, provides us with (i�h)2 times the operator5

& ¼ ]

]t

� �2

�r2

¼ ]

]t

� �2

� ]

]x

� �2

� ]

]y

� �2

� ]

]z

� �2

in Minkowskian coordinates (t, x, y, z). This is called the wave operator

or D’Alembertian, and it indeed has an invariant meaning. (Recall
that (]=]x)2 means the second derivative operator ]2=]x2, etc.) Although
the conventional Schrödinger equation does not allow us to employ
this operator directly (for reasons indicated above, the Schrödinger
equation requiring the Wrst-order ‘]=]t’ and not the second-order
(]=]t)2), we can nevertheless anticipate that the second-order equation
(i�h)2&c ¼ m2c (where (i�h)2& is obtained from m2 by the quantization
trick, and the m in the equation actually is the rest mass) should have
signiWcance as a wave equation for a relativistic particle. This equation can
be re-written as

(&þM2)c ¼ 0,
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where M ¼ m=�h and, indeed, it does have signiWcance in relativistic quan-
tum theory. This equation is now frequently referred to as the ‘Klein–
Gordon equation’, although Schrödinger himself appears to have been
about the Wrst to put forward this relativistically invariant equation, which
he did even before he settled on his now more famous ‘Schrödinger
equation’ (as described in §21.3).6

In the context of modern quantum Weld theory, the Klein–Gordon
equation can be used, if interpreted in the appropriate way, to describe
massive spinless particles, notably those particles referred to as mesons

(intermediate mass particles such as pions or kaons). But this interpret-
ation requires the full framework of quantum Weld theory, which was only
in an embryonic form when Dirac Wrst suggested his quite diVerent-
looking equation for the electron in 1928. Dirac had argued in favour an
equation in which the time-derivative ]=]t appears in a Wrst-order form (as
it appears in Schrödinger’s equation) rather than in the second-order form
(]=]t)2 that it has in the wave operator &. His reasons were related to
those indicated above, but more speciWcally he reasoned from a require-
ment that the wavefunction of a particle ought to provide an expression
for a probability density for Wnding the particle at any chosen place,
qualitatively similar to the �CCC of standard non-relativistic quantum
mechanics (§21.9), which should be positive-deWnite so that this probabil-
ity can never become negative. This is not quite the same as the require-
ment that the energy be positive-deWnite, but it is a complementary
requirement of essentially equal importance.7

24.6 Clifford–Dirac square root of wave operator

By an ingenious and magniWcently insightful resolution of the seemingly
irresolvable conXict between the demands of relativity and his perceived
need for a Wrst-order ]=]t, Dirac managed to Wnd an equation that is of the
Wrst order in ]=]t by explicitly taking the square root of the wave operator
& in a way that is subtly relativistically invariant. He did this by allowing
the introduction of certain additional non-commuting quantities. Such
quantities are legitimate in quantum mechanics because they are to be
treated as linear operators acting on the wavefunction, in the manner of
the non-commuting position and momentum operators that we originally
encountered in §21.2. As we shall shortly see, what is remarkable is that
these non-commuting operators, which Dirac found himself driven to
introduce, describe the physical spin degrees of freedom of the most
fundamental fermions (see §23.6) of nature, namely the electrons and
protons that were known in Dirac’s day, and the neutrons, muons, quarks,
and many other spin 1

2
particles that are known today.
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In fact, in Wnding his non-commuting ‘spin’ quantities, Dirac redis-
covered (an instance of) the CliVord algebras that we encountered in
§11.5. He appears not to have been aware of William Kingdon CliVord’s
earlier work, nor of the fact that CliVord (1877), and even Hamilton
before him, had already noticed that elements of these algebras can be
used to ‘take the square root’ of Laplacians—the wave operator & being
a particular kind of generalized Laplacian, where the dimension is 4
and the signature þ ���. In fact, as CliVord himself knew, William
Rowan Hamilton had already shown around 1840 that a square root of
the ordinary 3-dimensional Laplacian can be obtained by the use of
quaternions:8

i
]

]x
þ j

]

]x
þ k

]

]x

� �2

¼ � ]

]x

� �2

� ]

]x

� �2

� ]

]x

� �2

¼ �r2

(see §11.1). CliVord’s procedure generalized this to higher dimension.9

It is perhaps not surprising that Dirac was unaware of CliVord’s dis-
coveries of over half a century earlier, because this work was not
at all well known in the 1920s, even to many specialists in algebra.
Even if Dirac had known of CliVord algebras before, this would
not have dimmed the brilliance of the realization that such entities
are of importance for the quantum mechanics of a spinning electron—
this constituting a major and unexpected advance in physical under-
standing.
In Dirac’s case, it is indeed the wave operator that needs to have its

square root taken, this being the 4-dimensional (Lorentzian) Laplacian of
relevance to Minkowskian geometry:

& ¼ ]

]t

� �2

�r2:

We thus use ‘Lorentzian’ CliVord algebra elements g0 , . . . , g3, satisfying

g2
0 ¼ 1, g2

1 ¼ �1, g2
2 ¼ �1, g2

3 ¼ �1:

In a standard (þþ . . .þ signature) CliVord algebra, each of these squares
would be �1. Here, I follow what appears to be the standard physicist’s
convention, with regard to signs, whereby the spatial gs retain the original
Clifford negative squares.10 The temporal g0 has a positive square, how-
ever. It is in this sense that Dirac’s CliVord algebra is ‘Lorentzian’. For
diVerent gs, CliVord’s anti-commutation still holds (§11.5):

gigj ¼ �gjgi (i 6¼ j):
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The key fact that Dirac made use of is that the wave operator is the square
of a Wrst-order operator deWned with the help of these CliVord elem-
ents[24.5]

& ¼ (g0]=]t� g1]=]x� g2]=]y� g3]=]z)
2:

We can write this more concisely in vector notation, with g¼ (g1,g2,g3), as

& ¼ (g0]=]t� g�=)2,

or more concisely still, as

& ¼ =]2
,

where the quantity

=] ¼ g0]=]t� g�r
¼ ga]=]xa

(with ga ¼ gabgb) is called the Dirac operator. This handy ‘slash’ nota-
tion was introduced by Richard Feynman, where more generally, a vector
Aa could be represented, by the CliVord–Dirac algebra element

=A ¼ gaA
a:

24.7 The Dirac equation

Let us now return to our ‘wave equation’ (&þM2)c ¼ 0. Using the
Dirac operator =], we can now factorize the quantity&þM2 appearing in
this equation:

&þM2 ¼ =]2 þM2,

¼ ( =]þ iM)( =]� iM),

where M ¼ m=�h. The Dirac equation for the electron is then
( =]þ iM)c ¼ �0, i.e.

=]c ¼ �iMc,

or, reinstating �h by writing it in terms of the rest-mass m

�h =]c ¼ �imc:

It is clear from the above factorization that, whenever this equation holds,
the wave equation (&þM2)c ¼ 0 must hold also. (This would also
apply to the ‘anti-Dirac equation’ ( =]� iM)c ¼ 0, but with standard

[24.5] Check.

620

§24.7 CHAPTER 24



conventions, that would refer to a particle with negative mass��hM.) Thus,
wavefunctions that satisfy the above Dirac equation also must satisfy the
‘wave equation’ that governs relativistic particles of rest mass �hM.
The Dirac equation has the advantage over the wave equation that it is

Wrst-order in ]=]t. Indeed, Dirac’s equation can be rewritten in the form of
a Schrödinger equation[24.6]

i�h
]c
]t
¼ (i�hg0g�=þ g0m)c,

where i�hg0g�=þ g0m plays the role of a Hamiltonian operator. The
singling out of the operator ]=]t is, of course, not relativistically invariant,
but the entire Dirac equation =]c ¼ �iMc is relativistically invariant.
(To see this, one needs a careful examination of the interplay between
the CliVord algebra elements and Lorentz transformations.[24.7] It came as
a considerable shock to the physicists of the day to learn from this that
there are relativistically invariant entities that lie outside the standard
framework of the vector/tensor calculus (Chapters 12 and 14). What
Dirac had eVectively initiated was a powerful new formalism, now
known as spinor calculus,11 a calculus that goes beyond what had been
the conventional vector/tensor calculus of the day.
The ‘price’ that we seem to have pay for this remarkable elimination of

the awkward square root, while retaining relativistic invariance, is the
appearance of these strange non-commuting CliVord algebra elements
ga. What do they mean? Well, we have to think of these things as operators
acting on the wavefunction. Since these particular operators are new
things, not directly arising from the (non-commuting) position and
momentum quantum variables for a particle that we had been considering
before, they must refer to (and act upon) some new degrees of freedom
for our particle. We must ask what physical purpose these new degrees
of freedom can serve. With the hindsight that our present-day terminology
provides us with, we see the answer in the very name ‘spinor’—the new
degrees of freedom describe the spin of the electron.12 Let us recall what
was said in §11.5: ‘A spinor may be thought of as an object upon which the
elements of the CliVord algebra act as operators’. In the Dirac equation,
the CliVord elements act on the wavefunction c. Thus, c itself must be a
spinor. It has extra degrees of freedom (of a nature that we shall be
examining shortly) over and above the mere dependence on position and
time of an ordinary scalar wavefunction, and these extra degrees of
freedom indeed describe the electron’s spin!

[24.6] Show this.

[24.7] Explain this: Hint: Generalize Exercise [22.18].
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We now begin to see that the price that we have had to pay for being
able to factorize the wave operator by use of CliVord elements has bought
us an almost unbelievable bargain! Not only does it give us a theory which
precisely describes the electron’s spin, but when we add the standard term
to the Hamiltonian that gives interaction with a background electromag-
netic Weld—a term that introduces electrodynamics precisely in accordance
with the ‘gauge prescriptions’13 of §19.4 and §21.9—then we Wnd that
Dirac’s electron correctly responds to the electromagnetic Weld as the
charged electron should, including some subtle terms arising from the
electron’s relativistic motion.
But, not only is the electron’s charged-particle behaviour correctly

described; in addition Dirac’s electron responds in accordance with its
possessing a magnetic moment of a very speciWc amount, namely

�h2e=4mc,

where�e is the electron’s charge and m is its mass. This is to say that Dirac’s
electron is not only electrically charged, but it also behaves as a littlemagnet,
whose strength is given by the above value. Remarkably, Dirac’s clear-cut
value for the magnetic moment of the electron is a very close approxima-
tion to the actual observed value, to about one part in a thousand. The best
modern determination of the electron’s magnetic moment diVers from
Dirac’s original value, as given above, by the multiplicative factor

1:001 159 652 118 8 . . . :

Even this small discrepancy is now explained, to the above precision, from
correction eVects coming from quantum electrodynamics, which incorpor-
ates the Dirac equation as one of its fundamental ingredients. The accord
with Nature that is revealed in Dirac’s subtle little equation =]c ¼ �iMc is
indeed extraordinary!

24.8 Dirac’s route to the positron

But we are by no means Wnished with this story; I have described merely its
barest beginnings. Let us continue by next observing a seeming anomaly in
the mathematics of Dirac’s equation, with regard to the electron’s spin.
This apparent anomaly has to do with the number of independent com-
ponents that there are to be found in the Dirac spinor c. It turns out that
the Dirac’s c has four independent components, whereas superWcially we
might expect two because a spin-1

2
particle has just two independent spin

states (see §22.8). Let us try to understand this problem a little more fully.
In 1925, less than three years before Dirac published his equation (in

1928), George Uhlenbeck and Samuel Goudsmit had come to the conclu-
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sion that the electron must possess a quantum-mechanical spin, built from
two basic spin states. In 1927 Wolfgang Pauli showed how to represent the
transformationsof thesespinstatesunder rotationbyuseofwhatwenowcall
the ‘Pauli matrices’ (see §22.8, and also the Riemann sphere picture of the
states for spin 1

2
described in Fig. 22.6). Pauli matrices (which are basically

quaternions, with a factor i) are also CliVord algebra elements, but for the
3-dimensional rotation group.[24.8]

In fact, there is a strong physical need for the electron’s two spin states.
Indeed, the very subject of chemistry, as we know it, depends upon this. In
an atom, the electrons surrounding the nucleus are constrained to orbit the
nucleus in particular states known as ‘orbitals’ (see §22.13). By Pauli’s
exclusion principle, it would seem that each electron orbital can be occu-
pied by no more than one electron, yet we Wnd that a second electron is
always allowed in each of the orbitals. The pair of them can coexist and
still satisfy the exclusion principle because their states are not identical but
have opposite spins. There can be no more than two electrons in any one
orbital, however, because there are only two independent spin states for
the electron. The chemical notion of ‘covalent bond’ depends upon the
same phenomenon, the two shared electrons seeming to coexist in the same
state because their spins are opposite; see Fig. 24.2.
Pauli’s description of the electron is a two-component entity

cA ¼ (c0 , c1), corresponding to the fact that the Pauli matrices are 2� 2.
But we Wnd that Dirac’s CliVord elements (g0, g1, g2, g3) require 4� 4

matrices in order to represent theCliVordmultiplication laws.[24.9] Thus, the
Dirac electron is a 4-component entity, rather than just having the 2 com-
ponents of a ‘Pauli spinor’, describing the 2 independent states of spin that a
non-relativistic particle of spin 1

2
possesses, as described in §22.8.

(a) (b)

Fig. 24.2 Evidence of elec-

tron’s spin 1
2
. (a) In an atom,

two electrons, but not more,

can occupy the same orbital.

This is achieved by their spin

states being opposite, so the

Pauli exclusion principle is

not violated. (b) Chemistry’s

‘covalent bond’ involves a

pair of electrons of opposite

spin sharing orbitals of two

separate atoms.

[24.8] Explain this comment in relation to the connection between quaternions and Clifford

elements explained in §11.5.

[24.9]Showwhy2�2matricesconnotsatisfyall theconditions;Wndasetof4� 4matrices thatdo.
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In fact, there are only 2 components of spin for a particle described
by Dirac’s equation, despite there being 4 components for the wave-
function. Mathematically, the reason for this is closely related to the
fact that the Dirac equation =]c ¼ iMc is a Wrst-order equation, and
its space of solutions is spanned by only half as many solutions as in
the case of the second-order wave equation (&þM2)c ¼ 0. (That equa-
tion is also satisWed by the ‘anti-Dirac’ equation =]c ¼ þiMc, which is the
Dirac equation for the negative rest mass�M.)Physically, this ‘counting’14

of solutions of the Dirac equation must take into account the fact that the
degrees of freedom of the electron’s antiparticle, namely the positron, are
also hiding in the solutions of the Dirac equation. It would be misleading
to think of two of the components of the Dirac equation as referring to the
electron and the other two to the positron, however. Things are very much
more subtle than this, as we shall see.
Recall that one of our main tasks, leading up to our considera-

tion of the Dirac equation, had been to see what do about the
unwanted negative-frequency (i.e. negative-energy) solutions to Schrödin-
ger’s equation. But it turns out that the solutions of the Dirac equation
are not restricted to being of positive frequency, despite all our (or,
rather, Dirac’s) cleverness and hard work to eliminate the square root in
the Hamiltonian. As with the previous attempts, described earlier, the
presence of interactions, such as a background electromagnetic Weld, will
cause an initially positive-frequency wave to pick up negative-frequency
parts.
But Dirac’s ingenuity was not going to be turned back at this stage.

When he Wnally became convinced that the negative-frequency solutions
could not be mathematically eliminated, he argued basically as follows.
What, after all, is the danger in the negative-frequency solutions? The
problem would be that if negative-energy states exist, then an electron
could fall into such a state with the emission of energy, and if there is an
unlimited number of such states, then there would be a catastrophic
instability, in which all the electrons tumble into the negative energy states,
of greater and greater negative energy, with the emission of more and more
energy, without any limit. But, so Dirac reasoned, electrons satisfy the
Pauli principle, and it is not allowed for such a particle to occupy a state if
that state is already occupied. So he made the astounding suggestion that
all the negative-energy states should be already occupied! This ocean of
occupied negative-energy states is now referred to as the ‘Dirac sea’. Thus,
according to Dirac’s ‘crazy idea’, we indeed envisage that the negative-
energy states are already full up; by the Pauli principle, there is now no
room for an electron to fall into such a state.
But, as Dirac further reasoned, occasionally there might be a few

negative-energy states that are unoccupied. What would happen then?
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Energy

(a)

Energy

(b)

Fig. 24.3 Positrons as ‘holes’ in Dirac’s ‘sea’ of negative-energy electron states.

Dirac proposed that almost all negative energy states of the electron are filled, the

Pauli principle preventing an electron from falling into such a state. The occa-

sional unoccupied such state—a ‘hole’ in this negative-energy sea—would appear

as an antielectron (positron), thereby having positive energy. (a) An electron

falling into such a hole would be interpreted as the annihilation of the electron

and positron, with the release of energy—the sum of the positive

contributions from the electron and positron. (b) In reverse, the supplying of

sufficient energy to the Dirac sea could produce an electron-positron pair. (The

pictures are schematic only, the lattice structure depicted having no actual rele-

vance to Dirac’s sea.)

Such a ‘hole’ in the Dirac sea of negative-energy states would appear
just like a positive-energy particle (and hence a positive-mass
particle), whose electric charge would be the opposite of the charge on
the electron. Such an empty negative-energy state could now be occupied
by an ordinary electron; so the electron might ‘fall into’ that state with the
emission of energy (normally in the form of electromagnetic radiation,
i.e. photons). This would result in the ‘hole’ and the electron annihilating
one another in the manner that we now understand as a particle and
its anti-particle undergoing mutual annihilation (Fig. 24.3a). Conversely,
if a hole were not present initially, but a suYcient amount of energy (say in
the form of photons) enters the system, then an electron can be kicked
out of one of the negative-energy states to leave a hole (Fig. 24.3b).
Dirac’s ‘hole’ is indeed the electron’s antiparticle, now referred to as the
positron.
At Wrst Dirac was cautious about making the claim that his theory

actually predicted the existence of antiparticles to electrons, initially think-
ing (in 1929) that the ‘holes’ could be protons, which were the only massive
particles known at the time having a positive charge. But it was not
long before it became clear15 that the mass of each hole had to be
equal to the mass of the electron, rather than the mass of a proton,
which is about 1836 times larger. In the year 1931, Dirac came to the
conclusion that the holes must be ‘antielectrons’—previously unknown
particles that we now call positrons. In the next year after Dirac’s theoret-
ical prediction, Carl Anderson announced the discovery of a particle
which indeed had the properties that Dirac had predicted: the Wrst anti-
particle had been found!
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Notes

Section 24.3

24.1. Technically, catastrophe is avoided if the energy is what is called ‘bounded

below’, which means greater than some Wxed value E0 which might be

negative. In such circumstance we can ‘renormalize’ the energy by adding

�E0 to the Hamiltonian, and the resulting energy eigenvalues will now all be

positive.

24.2. There is a subtlety about the treatment of the point 1, as f is likely to be

singular there. The hyperfunctional treatment of §9.7 is appropriate; see Bailey

(1982).

24.3. Strictly, we should say positive semi-definite, since the (continuous) eigenvalue

spectrum does go down to, and include, zero.

24.4. See Shankar (1994) for the applications to quantum mechanics, Arfken and

Weber (2000) for a general discussion.

Section 24.5

24.5. Some people deWne this operator with the opposite sign, usually because they

adopt the þþþ� signature rather than the þ��� that I am using here.

24.6. See Pais (1986); Miller (2003); Dirac (1983). Schrödinger’s motivations may

have been both aesthetic and erotic!!

24.7. These two requirements combine together as essential ingredients of the proof

of the CPT theorem that we shall encounter in §25.4.

Section 24.6

24.8. See Trautman (1997) for a reference on these ‘square root’ ideas.

24.9. In Clifford (1882), pp. 778–815; see also Lounesto (2001) for a general treatment.

24.10. This convention seems to be at variance with the usual mathematician’s con-

vention (see Harvey 1990; Budinich and Trautman 1988; Lounesto 2001; Law-

son and Michelson 1990) and also with my own (see Penrose and Rindler 1986,

Appendix). If the þ ��� signature for spacetime is adopted, as here. The

defining equation for a general Clifford algebra is gigj � gjgi ¼ �2 gij .

Section 24.7

24.11. See CliVord (1878); Cartan (1966); van der Waerden (1929); Infeld and van der

Waerden (1933). In the 2-spinor notation of §22.8, this leads us to the ‘zig-zag’

form of the Dirac equation to be given in §25.2.

24.12. The term ‘spinor’ was apparently introduced by Paul Ehrenfest, in a letter to

Bartel van der Waerden.

24.13. The added term is ie =A, where =A ¼ gabAagb and Aa is the electromagnetic

potential, this amounting to replacing the =] operator by =]� i e =A.[24.10]

Section 24.8

24.14. The counting of solutions, for relativistic equations, is most easily carried out

by the method of ‘exact sets’ in the calculus of 2-spinors (see Penrose and

Rindler 1984, pp. ).

24.15. This work was done by Igor Tamm, Hermann Weyl, and J. Robert Oppenhei-

mer; see Oppenheimer (1930) for an example of the reasoning behind it. There

are some subtleties in the route to the positron that would take us rather far

afield; see Zee (2003) for a complete, rigorous, and lovely treatment of all this.

Notes CHAPTER 24

[24.10] Explain why this is the standard ‘gauge prescription’.
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25
The standard model of particle physics

25.1 The origins of modern particle physics

The Dirac equation for the electron provided a turning point for physics in
many ways. In 1928, when Dirac put his equation forward, the only
particles known to science were electrons, protons, and photons. The
free Maxwell equations describe the photon, as was eVectively foreseen
by Einstein in 1905, this early work being gradually developed by Einstein,
Bose, and others, until in 1927 Jordan and Pauli provided an overall
mathematical scheme for describing free photons according to a quantized
free-Weld Maxwell theory. Moreover, the proton, as well as the electron,
seemed to be well-enough described by the Dirac equation. The electro-
magnetic interaction, describing how electrons and protons are inXuenced
by photons, was excellently handled by Dirac’s prescription, namely by the
gauge idea (as basically introduced by Weyl in 1918; see §19.4), and a start
to the formulation of a full theory of interacting electrons (or protons)
with photons (i.e. quantum electrodynamics) had already been made by
Dirac himself in 1927.1 Thus, the basic tools seemed to be more or less to
hand, for the description of all the known particles of Nature, together
with their most manifest interactions.
Yet most physicists of the day were not so foolish as to think that this

could shortly lead to a ‘theory of everything’. For they were aware that
neither the forces needed to hold the nucleus together—which we now call
strong forces—nor the mechanisms responsible for radioactive decay—
now called weak forces—could be accommodated without further major
advances. If Dirac-style protons and electrons, interacting merely electro-
magnetically, were the only ingredients of atoms, including their nuclei,
then all ordinary nuclei (except the single proton that constitutes the
nucleus of hydrogen) would instantly disintegrate, owing to the electro-
static repulsion of the preponderence of positive charges. There must
indeed be an unknown something else, amounting to a very strong attract-
ive inXuence in operation within the nucleus! In 1932, Chadwick dis-
covered the neutron, and it was eventually realized that the proton/
electron model for the nucleus that had been popular earlier, must be
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replaced by one in which both protons and neutrons would be present, and
where a strong proton–neutron interaction holds the nucleus together. But
even this strong force was not all that was missing from the understanding
of the day. Radioactivity in uranium had been known since the observa-
tions of Henri Becquerel in 1896, and this proved to be the result of yet
another interaction—the weak force—diVerent from the strong and from
the electromagnetic. Even a neutron itself, if left on its own, would indulge
in radioactive disintegration, in a period of about ten minutes. One of the
mysterious products of radioactivity was the elusive neutrino, put forward
as a tentative hypothesis by Pauli in about 1929, but not observed directly
until 1956. It was the study of radioactivity that would eventually lead the
physicists to an unaccustomed notoriety and inXuence, towards the end of
the Second World War, and in its aftermath . . . .
Things have moved a great deal from these beginings of an understand-

ing of particle physics, as it stood in the Wrst third of the 20th century. As
we embark on the 21st century, a much more complete picture is to hand,
known as the standard model of particle physics. This model appears to
accommodate almost all of observed behaviour concerning the vast array
of particles that are now known. The photon, electron, proton, positron,
neutron, and neutrino have been joined by various other neutrinos, the
muon, pions (eVectively predicted by Yukawa in 1934), kaons, lambda
and sigma particles, and the famously predicted omega-minus particle.
The antiproton was directly observed in 1955 and the antineutron, in 1956.
There are new kinds of entity known as quarks, gluons, and W and Z
bosons; there are vast hordes of particles whose existence is so Xeeting that
they are never directly observed, tending to be referred to merely as
‘resonances’. The formalism of modern theory also demands transient
entities called ‘virtual’ particles, and also quantities known as ‘ghosts’
that are even further removed from direct observability. There are bewil-
dering numbers of proposed particles—as yet unobserved—that are pre-
dicted by certain theoretical models but are by no means implications of
the general framework of accepted particle physics, namely ‘X-bosons’,
‘axions’, ‘photinos’, ‘squarks’, ‘gluinos’, ‘magnetic monopoles’, ‘dilatons’,
etc. There is also the shadowy Higgs particle—still unobserved at the time
of writing—whose existence, in some form or other (perhaps not as a
single particle), is essential to present-day particle physics, where the
related Higgs field is held responsible for the mass of every particle.

25.2 The zigzag picture of the electron

In this chapter, I shall provide a brief guide to the standard model of the
particle physics of today—though my particular approach to it could be
judged a mite ‘non-standard’ in places. Let us indeed start in a slightly
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non-standard way, by re-examining the Dirac equation in terms of the
‘2-spinor notation’, brieXy introduced in §22.8. As remarked in §24.8
above, a ‘Pauli spinor’ description for a particle of spin 1

2
is a 2-component

quantity cA. (The components are c0 and c1.) When considering relativ-
ity, according to §22.8, we also need quantities with primed indices
A0, B0, C0, . . . , the primed indices resulting from complex conjugation
applied to unprimed indices. It turns out2 that the Dirac spinor c, as
described above, with its 4 complex components, can be represented, as
a pair of 2-spinors3 aA and bA0 , one with an unprimed index and one with a
primed index:

c ¼ (aA, bA0):

The Dirac equation can then be written as an equation coupling these two
2-spinors, each acting as a kind of ‘source’ for the other, with a ‘coupling
constant’ 2�1=2M describing the strength of the ‘interaction’ between the
two:

rA
B0aA ¼ 2�1=2MbB0 , rB0

A bB0 ¼ 2�1=2MaA0 :

The operators rA
B0 and rB0

A are just 2-spinor translations of the ordinary
gradient operator =. Do not worry about all those indices, the 2�1=2s, and
the exact form of these equations. I present them here just to indicate how
the Dirac equation can be brought into the general framework of the 2-
spinor caculus, and that, when this is done, some new insights as to the
nature of Dirac’s equation are revealed.4

From the form of these equations, we see that the Dirac electron can be
thought of as being composed of two ingredients aA and bB0 . It is possible
to obtain a kind of physical interpretation of these ingredients. We form a
picture in which there are two ‘particles’, one described by aA and the
other by bA0 , each of which is massless,[25.1] and where each one is continu-
ally converting itself into the other one. Let us call these the ‘zig’ particle
and the ‘zag’ particle, where aA describes the zig and bA0 describes the zag.
Being massless, each of these should be travelling with the speed of light,
but we can think of them, rather, as ‘jiggling’ backwards and forwards
where the forward motion of the zig is continually being converted to the
backward motion of the zag and vice versa. In fact, this is a realization of
the phenomenon referred to as ‘zitterbewegung’, according to which, the
electron’s instantaneous motion is always measured to be the speed of
light, owing to the electron’s jiggling motion, even though the overall
averaged motion of the electron is less than light speed.5 Each ingredient
has a spin about its direction of motion, of magnitude 1

2
�h, where the spin is

[25.1] By referring to Weyl’s neutrino equation, given in §25.3, explain why it is reasonable to

take the view that aA and bA0 each describe massless particles, coupled by an interaction convert-

ing each into the other.
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left-handed in the case of the zig and right-handed for the zag. (This has to
do with the fact that the zig’s aA has an unprimed index, which is associ-
ated with negative helicity, whereas the zag’s bB0 has a primed index, which
indicates positive helicity. All this has relevance to the discussion of
§§33.6–8, but it is not appropriate to go into details at this point.) We
note that, although the velocity keeps reversing, the spin direction remains
constant in the electron’s rest-frame (Fig. 25.1). In this interpretation, the
zig particle acts as the source for the zag particle and the zag particle as a
source for the zig particle, the coupling strength being determined by M.
In Fig. 25.2, I have given a diagrammatic illustration of how this process

is to contribute to the full ‘Feynmann propagator’ (see §26.7), in the
manner of the Feynman graphs6 that we shall be coming to in more detail
in the next chapter. Each constituent zigzag process is of finite length, but
the totality of these, involving zigzags of ever-increasing length, contrib-
utes to the entire propagation of the electron, according to the 2� 2

matrix depicted in Fig. 25.2. Typically a zig particle becomes a zag, and
the zag then becomes a zig, this zig becoming a zag again, and so on for
some finite stretch. In the total process, we find that the average rate at
which this happens is (reciprocally) related to the mass coupling parameter
M; in fact, this rate is essentially the de Broglie frequency of the electron
(see §21.4).

Zig

Zag

Zig

Zag

Zig

T
im

e

(a) (b)

Fig. 25.1 Zigzag picture of the electron. (a) The electron (or other massive

particle of spin 1
2
) can be viewed, in spacetime, as oscillating between a left-handed

massless zig particle (helicity � 1
2
, as described by the unprimed 2-spinor aA or, in

the more usual physicist’s notation, by the part projected out by 1
2

1� g5ð Þ) and a

right-handed massless zag particle (helicity þ 1
2
, as described by the primed

2-spinor bB0 , the part projected out by 1
2

1þ g5ð Þ). Each is the source for the

other, with the rest-mass as coupling constant. (b) From a 3-space perspective,

in the ‘rest-frame’ of the electron, there is a continual reversal of the velocity

(always the speed of light), but the direction of spin remains constant. (For

reasons of clarity, the Wgure is drawn not quite in the electron’s rest-frame, the

electron drifting slowly oV to the right.)
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There is a word of warning that I must give, however, about how we are
to interpret Feyman-graph diagrams. We can legitimately think of the
process that is being depicted as a spacetime description of what is going
on; but at the quantum level of things, we must take the view that, even for
a single particle, there are a great many such processes going on simultan-
eously. Each individual one of these processes is to be viewed as taking
part in some enormous quantum superposition of vast numbers of diVer-
ent processes. The actual quantum state of the system consists of the entire
superposition. An individual Feynman graph represents merely one com-
ponent of it.
Accordingly, my above description of the electron’s motion as consist-

ing of this jiggling back and forth, where a zig is continually being
converted into a zag and back again, must be taken appropriately in this
spirit. The actual motion is composed of a vast number of such individual
processes (in fact inWnitely many of them) all superposed, and we may
think of the electron’s perceived motion as being some sort of ‘average’
(though strictly a quantum superposition) of these. Even this describes
merely the free electron. An actual electron will be continually undergoing
interactions with other particles (such as photons, the quanta of the
electromagnetic Weld). All such interaction processes should also be in-
cluded in the overall superposition.
Bearing this in mind, let us raise the question as to whether these zig and

zag particles are ‘real’. Or are they perhaps artefacts of the particular
mathematical formalism that I have been adopting here for the description
of the Dirac equation for the electron? This raises a more general question:
what is the physical justiWcation in allowing oneself to be carried along by

=

+ + + + + +...

+ + +...

...

+ + +...

Fig. 25.2 Each zigzag process separately contributes, as part of an inWnite

quantum superposition, to the total ‘propagator’ in the manner of a Feynman

graph. The conventional single-line Feynman propagator is drawn at the left, and

it stands for the entire matrix of inWnite sums of Wnite zigzags, drawn on the right.
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the elegance of some mathematical descripion and then trying to regard
that description as describing a ‘reality’? In the present case, we should
begin by questioning the importance (and indeed elegance) of the 2-spinor
formalism itself, just as a mathematical technique. I should warn the
reader that it is not, in fact, the formalism most used by physicists who
concern themselves with the Dirac equation and its implications, such as in
quantum electrodynamics (QED) which is the most successful of the
quantum Weld theories.7

Most physicists would use what is called the ‘Dirac-spinor’ (or 4-spinor)
formalism, in which spinor indices are avoided. In place of the 2-spinor
‘aA’, they would employ the 4-spinor (1 � g5)c (calling it ‘the left-handed
helicity part of the Dirac electron’, or something similar, rather than using
my ‘zig particle’).8 Here, the quantity g5 is the product

g5 ¼ �ig0g1g2g3,

and it has the property that it anticommutes with every element of the
CliVord algebra, and (g5)

2 ¼ 1.[25.2] Similarly, they would use (1þ g5)c
instead of bA0 (the right-handed helicity part). One could say that this is
merely a notational matter, and indeed it is possible to translate back and
forth between the 2-spinor and 4-spinor formalisms. The ‘zigzag’ picture
that I have presented here is certainly a valid (but not altogether usual)
description in either formalism, but it is more directly suggested by
2-spinors than by 4-spinors.
So are these zigs and zags real? For my own part, I would say so; they

are as real as the ‘Dirac electron’ is itself real—as a highly appropriate
idealized mathematical description of one of the most fundamental ingre-
dients of the universe. But is this real ‘reality’? In §§1.3,4, I touched upon
this general question of mathematical and physical reality, and the relation
between the two. At the end of the book, in §34.6, I shall take up this
question again.

25.3 Electroweak interactions; reflection asymmetry

Each of the zig and zag particles has the same electric charge—which must
be the case since charge is conserved, and each particle continually
converts itself into the other. In the Feynman-graph picture, the inter-
action with the electromagnetic Weld that charged particles indulge in is
represented by the attachment of a line representing a photon. This is
depicted in Fig. 25.3a according to conventional procedures, whereby the
electron’s trajectory is represented as a single Dirac 4-spinor line in

[25.2] Show both of these things.
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the usual way, and in Fig. 25.3b using this (somewhat unconventional)
‘zigzag’ description.
Note that both the left-handed (zig) and right-handed (zag) indulge

equally in electromagnetic interaction. It turns out, however, that there
is another physical interaction—the weak interaction—according to which
these things are completely unequal, in the sense that only the electron’s zig
takes part in these weak interactions, and the zag, not at all (see Fig. 25.4).
Weak interactions are mediated by photon analogues, called W and Z
bosons. As remarked earlier, these interactions are responsible for radio-
active decay, whereby, for example, a uranium U238 nucleus will in about
5� 109 years, on the average, spontaneously disintegrate into a thorium
and a heliumnucleus (a particle), or whereby a free neutronwill decay into a
proton, an electron, and an antineutrino in an average of about 15 minutes;
see Fig. 25.5. These processes are referred to as ‘b decay’, the electron being
referred to, in this context, as a ‘b particle’ (for historical reasons).

(a) (b)

Fig. 25.3 (a) Feynman graph (in conventional form, without zigzags) of an

electron in interaction with a quantum of electromagnetic Weld, or photon.

Whereas in the left-hand Wgure we might view the process as the absorption of a

photon, the middle Wgure as the emission of one, and the right-hand Wgure as an

electrostatic inXuence, these processes are to be thought of as all being the same,

and are referred to as an interaction with a ‘virtual’ (oV-shell) photon. (b) The

same, with zigzags represented. The (virtual) photon interacts equally with the zag

and the zig. In all these Wgures, the propagation of electric charge is represented by

the white triangle-like arrow. The ones illustrated all point into the past because

we are considering electrons, which are negatively charged.

ZigZig

Zag ZagW or Z
W or Z

Fig. 25.4 In the case of weak interactions,

on the other hand, only the zig of a weakly

interacting particle interacts with the W or Z

boson. (But for what is classiWed as an ‘anti-

particle’, it would be the zag which interacts

weakly.)
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For many years, weak interactions had been treated as single point
processes—illustrated as the single point of decay in Fig. 25.5—in accord-
ance with a scheme dating back to 1933, that had been put forward by the
outstanding Italian physicist Enrico Fermi. But later this began to run into
theoretical diYculties which were Wnally resolved in the electroweak
theory of Weinberg, Salam, Ward, and Glashow, which we shall glimpse
something of in §25.5. As part of these newer ideas it was realized that in
place of the pointlike Fermi interaction, there would be an intermediate
‘gauge boson’—the W or Z particles just referred to—mediating the weak
interaction process, according to which the b-decay of Fig. 25.5 is now
interpreted as shown in Fig. 25.6. But is the signiWcance of the zig/zag
asymmetry? In 1956 there was a great shock to physicists when Tsung Dao
Lee and Chen Ning Yang made an astonishing proposal,9 concerning b
decay—and concerning weak interactions generally—that they should not

be reXection-invariant, this proposal being startlingly conWrmed experi-
mentally by Chien-Shiung Wu and her associates shortly afterwards, in
January 1957. According to this, the mirror reXection of a weak interaction
process surprisingly would not generally be an allowed weak interaction
process, so weak interactions exhibit chirality. In particular, Wu’s experi-
ment examined the emission pattern of electrons from radioactive
cobalt 60, Wnding a clearly mirror-asymmetric relation between the distri-
bution of emitted electrons and the spin directions of the cobalt nuclei (see
Fig. 25.7). This was astounding, because never before had a reXection-
asymmetric phenomenon been observed in a basic physical process!
In terms of our zigs and zags, the chiral asymmetry arises from the fact

that, in a mirror, a zig looks like a zag and a zag like a zig. Recall that the
zig has a left-handed helicity whereas the zag is right-handed. Each of
these is indeed converted into the other under mirror reXection. (In the
more conventional terminology, g5 changes sign under reXection, so the

P
ro

to
n

N
eutron

ElectronA
ntineutrino

Fig. 25.5 The b-decay of a neutron into a

proton, electron, and antineutrino, which takes

roughly 15 minutes (on average) for a free neu-

tron. The reverse arrow on the antineutrino

indicates that it is an ‘antiparticle’ in the lepton

classiWcation scheme. As in Fig. 25.4, the white

arrow on the electron and proton lines indicates

electric charge.
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roles of the left- and right-helicity parts of the electron’s wavefunction,
(1� g5)c and (1þ g5)c, are interchanged.) Thus, the non-invariance of
weak interactions under reXection symmetry is realized in the fact that
only the zig part of the electron indulges in weak interactions. The same
can be said of the neutron as it undergoes spontaneous b decay, and also
of the resulting proton. A neutron and a proton can, to a fair degree of
approximation, also be described by the Dirac equation, whence the zigzag
description becomes appropriate for each. Again, it is just the zig part of
the neutron and of the proton that engage in the weak decay process, and
this is illustrated in Fig. 25.8a. More appropriate, in accordance with the
modern picture, is to regard both the neutron and proton as composite
particles, where each is made up of three quarks. The quarks themselves
are taken to be individually described by Dirac’s equation, so the zigzag
picture becomes appropriate for each of them also, and in Fig. 25.8b, the
neutron’s b decay is represented in these terms.
The neutrino, also, attracts a special interest in this respect. At least to a

very good aproximation, it can be treated as a massless particle. (Its mass

W-boson
Fig. 25.6 Weak interactions are not

‘pointlike’, as would be suggested by

Fig. 25.5 (original Fermi theory), but

occur through the intermediary of a

‘vector boson’ (W� or Z0)—here a W

particle.

Co60
Co60

Co60

Fig. 25.7 Wu’s experiment exam-

ined the emission pattern of electrons

from radioactive cobalt 60, Wnding a

clearly mirror-asymmetric relation

between the distribution of emitted

electrons and the spin directions of

the cobalt nuclei. Here more

electrons come out at the top of the

picture than at the bottom.
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is, in any case, extremely tiny in relation to the mass of an electron, and
certainly not more than 6� 10�6 of the electron’s mass.) If we put M ¼ 0

in the 2-spinor version of the Dirac equation, the equations decouple, to
become

rA
B0aA ¼ 0, rB0

A bB0 ¼ 0:

Either one could exist in the absence of the other (and either one of these,
by itself, is referred to as the ‘Weyl equation’10 for the neutrino). But only
the zig version (given by the unprimed aA, subject torA

B0aA ¼ 0) indulges in
weak interactions, or could be created in a weak interaction process. Thus,
neutrinos are particles with a left-handed helicity.
Do neutrinos actually possess mass? There now appears to be good

experimental evidence that at least two out of the three neutrino types
must indeed be massive. These three types are the ‘electron neutrino’ ne

(which is the one involved in ordinary b decay, its antiparticle �nne being
what is emitted in the decay of the neutron; see Fig. 25.5), the ‘muon
neutrino’ nm, and the ‘tau neutrino’ nt. Observations at the Japanese de-
tector Superkamiokande clearly indicate that the diVerences in the mass of
these three neutrino types, though very small (around 10�7 of an electron’s
mass, in all) cannot be zero, owing to the fact that they have a tendency to

(a) (b)

Fig. 25.8 The b-decay process of Fig. 25.5 expressed in terms of zigzags. (a) A

neutron and proton can be described, to a fair degree of approximation, as a Dirac

particle, so zigzags are not inappropriate. As in Fig. 25.4, just the zig part of the

neutron and proton engage in a weak decay process, though with the antineutrino

it is zag (left handed), a small mass being allowed for by the presence of the tiny zig

at the upper left. (b) However, the neutron and proton are regarded as composite,

each made up of 3 quarks, these quarks themselves taken individually to be Dirac

particles, so the zigzag picture is appropriate for them. (Charge arrows and

connecting gluons for the quarks are not shown).
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Xip into one another (‘neutrino oscillations’), which cannot happen with
zero mass. I gather that it is still possible that ne (or conceivably some
appropriate quantum ‘linear combination’ of the three of them) could
have zero mass, but deWnitive evidence on these matters is still missing. A
massless neutrino could be entirely zig, but with a small mass, the picture
would be more like that depicted in Fig. 25.9a, where the zig very occasion-
ally Xips momentarily into a zag and back again. However, as viewed with
respect to a rest frame moving with the neutrino, the zig and zag aspects
would appear to contribute equally to its overall motion (Fig. 25.9b).
A few words of clariWcation are necessary here. When I have com-

mented, above, that it is the zig (i.e. left-handed) particles that indulge in
weak interactions and not the zag particles, I have presupposed that we
know how to distinguish a ‘particle’ from an ‘antiparticle’. With the
antiparticle, things are the other way around. In the case of the electron’s
antiparticle, the positron, we can again present a ‘zigzag’ description in
which the zig is left-handed and the zag right-handed, but the positron’s
zig is the antiparticle of the electron’s zag, and vice versa. Thus, in the case
of a positron, it is the right-handed zag (the antiparticle to the electron’s
zig) that indulges in weak interactions, rather than the zig. A similar
remark would apply to the antiproton and the antineutron and, indeed,
to the antiquark. It would also apply to the antineutrino which, if it were
massless, would be entirely zag.
Now, this could cause some confusion because I have given no criterion

for deciding whether a (spin 1
2
) particle-like entity is to be thought of as a

‘particle’ or as an ‘antiparticle’ in order that we can know whether it is its
zig or its zag that is to indulge in weak interactions. Although, in the
previous chapter, I have given the notion of an antiparticle only in terms of
Dirac’s original concept of a ‘hole’ in the ‘sea of negative energy states’, an
antiparticle should not really be thought of as a totally separate kind of
entity from a particle. In the context of modern quantum Weld theory, it is
not necessary to present things in Dirac’s original (seemingly asymmet-

(a) (b)

O O

O�

O�

Zig Zig

Zag

Zag

Zig

Zig

Fig. 25.9 (a) A massless neutrino

could be entirely zig; but with a small

mass we must envisage the occasional

momentary ‘Xip’ to a zag and back.

The picture is displayed from the

perspective of the laboratory’s rest-

frame O. (b) As viewed with respect to

a second rest-frame O0, moving with

the neutrino, the zig and zag aspects

appear to contribute equally to the

overall motion.
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rical) way. Antiparticles are just as much ‘particles’ as are the particles that
they are the ‘antis’ of. Moreover, the notion of antiparticle refers to bosons
(particles of integer spin) as well as it does to fermions, whereas only
fermions are subject to the Pauli principle (see §§23.7,8), so the ‘Dirac
sea’ perspective on antiparticles cannot be applied to bosons. The posi-
tively charged pion (the pþ meson), for example, which is a boson, has an
antiparticle which is the negatively charged pion (p� meson). In fact,
several bosons are their own antiparticles. A photon is an example of
this; so also is the neutral pion (p0 meson). As far as is known (and
certainly according to standard theory), every particle in nature has an
antiparticle.

25.4 Charge conjugation, parity, and time reversal

The operation that replaces every particle by its antiparticle is referred to
as C (which stands for charge conjugation). A physical interaction that is
invariant under the replacement of particles by their antiparticles (and
vice-versa) is called C-invariant. This operation of spatial reXection (reXec-
tion in a mirror) is referred to as P (which stands for parity). In accordance
with the above discussion, in §25.3, ordinary weak interactions are not
invariant under either P or C separately, but it turns out that they are
invariant under the combined operation CP (¼ PC). We may regard CP as
the operation performed by an unusual mirror, in which each particle is
reXected as its antiparticle. We see that CP sends a particle’s zig into its
antiparticle’s zag, and vice versa. There is one further operation that is
normally discussed in relation to these, which is that of time reversal,
referred to as T. An interaction is invariant under T if it unaltered if we
view it from the prespective of a time direction that is the reverse of
normal. There is a famous theorem in quantum Weld theory, referred to
as the CPT theorem which asserts every physical interaction is invariant if
all three of the operations C, P, and T are applied to it at once. Of course, a
theorem is ‘just a piece of mathematics’, so its physical validity is depend-
ent upon the physical validity of its assumptions. This issue will have
importance for us later (§30.2), when I shall be raising a critical matter
that may lead us to question the conclusions—and therefore the assump-
tions—of the CPT theorem. There is, however, no reason to expect any
diYculty of this sort, in relation to ordinary weak interactions. Accord-
ingly, the CP invariance of ordinary weak interactions implies their invari-
ance under T (time-reversal symmetry) also.
It should be remarked that there is, at the time of writing, precisely one

physical process (a ‘non-ordinary’ weak process, Wrst observed by Fitch
and Cronin in 1964) that is known to be non-invariant under CP. It is also
non-invariant under T (but, as far as can be told, invariant under CPT, in
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accordance with the CPT theorem). This is the decay-mode of the K0

meson (which can be into 2 pions or 3 pions, where there is a sophisticated
issue concerning K0

Xipping into its antiparticle �KK0, with an oscillation
between these two taking place).
The CPT theorem provides us with an alternative perspective on anti-

particles which is diVerent from using Dirac’s ‘sea’, and it is more satisfac-
tory since it can also be applied to bosons. Assuming CPT, we can regard
C—the interchange of particles with their antiparticles—as equivalent to
PT, so we can regard the antiparticle of some particle as being the ‘space–
time reXection’ (PT) of that particle. Ignoring the space-reXection aspect of
this, we obtain the interpretation of an antiparticle as being the particle
travelling backwards in time. This, indeed, is the way that Richard Feyn-
man liked to interpret anti-particles. It provides a very convenient and
consistent way of treating antiparticles within the conext of Feynman
graphs. (The idea had been suggested to Feynman by John A. Wheeler
and, it had been earlier proposed, independently, by Stückelberg (1942)).
In its diVerent way, it is just as ‘crazy’ an idea as was Dirac’s sea!
In a Feynman graph, particles that are not their own antiparticles have

to have lines in the diagrams that are directed in some way, such as by
attaching an appropriate kind of arrow on each line. We might think of
this arrow as pointing into the future—when the line depicts the particle
itself—but, in this case, when it points into the past, we get that particle’s
antiparticle. This perspective on antiparticles has the great advantage
that many very diVerent-looking particle processes are revealed as being
basically the same process, but viewed from diVerent ‘angles’ in spacetime.
As an example, in Fig. 25.10 (but without bothering with the zigzags), I
have depicted electron–positron annihilation into a pair of photons, show-
ing that this is ‘essentially the same’ (i.e. spacetime re-organized) process
as the Compton scattering of an electron by a photon. (We shall be seeing
shortly that we also need to allow that the particles’ lines can point in

Fig. 25.10 Crossing symmetry. Processes

which diVer only with respect to the

time-orderings in various places, but

without the topology of the diagram being

aVected, are basically mathematically

equivalent (through analytic continuation,

§7.4). This is illustrated by such an

equivalence between the particle–

antiparticle pair annihilation into two

photons, as illustrated on the left, and the

Compton scattering process on the right

(drawn without zigzags).
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spacelike directions, describing what is referred to as a ‘virtual particle’,
but this is enough confusion for the moment!)
Let us now return to the problem of deciding, for an entity of spin 1

2
,

whether it is its zig or the zag that takes part in weak interactions. We need
a clear rule for telling us whether it is to count as a ‘particle’ or as an
‘antiparticle’. The rule that is used decrees that those particle referred to as
‘leptons’ (electrons, their heavier sister particles, the muons and tauons,
and their corresponding neutrinos ne, nm, and nt), and also the quarks that
compose protons and neutrons (and other hadrons), are to count as
‘particles’. These have zigs that undergo weak interactions. The ‘antis’ of
all of these count as antiparticles, and in those cases it is the zags that
undergo weak interactions. The situation is complicated by the fact that
there are also (massive) entities of spin 1 involved in weak interactions,11

namely the W and Z bosons. These are the mediators of weak interactions,
playing roles similar to the photons that mediate electromagnetic inter-
actions (photons being the quanta of the electromagnetic Weld). Such
particles are sometimes called ‘gauge quanta’, for reasons that we shall
be coming to. There are two diVerent W bosons, labelled Wþ and W�

(antiparticles of each other), having respective electric charges 1 and�1 (in
units given by the charge on the positron), whereas there is only the
uncharged Z0 (its own antiparticle). Each of these takes part in weak
interactions, having a Feynman graph line that attaches itself at either
end to a zig part of a lepton or quark or to a zag part of an antilepton or
antiquark (see Fig. 25.11). Throughout each weak-interaction process,
electric charge is conserved, and so is lepton number. In fact, there are
three diVerent kinds of lepton number, each of which is separately con-
served (electron, muon, and tauon number) in the standard model of weak
interactions, the lepton numbers of the Ws and Z0 counting as zero. To
check these four conservation laws, in a Feynman graph, all we need to do
is make sure that each of the four kinds of arrow on the lines follow
through the diagram as a continuous, consistently oriented, path.

25.5 The electroweak symmetry group

All this no doubt sounds somewhat complicated for a fundamental
theory. Yes, it is complicated, though there is an underlying pattern that
I have not yet explained; however, I have only just begun to describe,
and in very qualitative terms, what is our present understanding of particle
physics according to less than half of what is called the ‘standard model’.
Moreover, my remarks have been of a rather ‘botanical’ character,
so far, concerning the diVerent particles involved in weak (and electro-
magnetic) interactions. In fact, in the standard model, the weak and
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W Z Z

(a) (b) (c)

electromagnetic interactions are uniWed in what is called electroweak

theory, where there is a special symmetry relating Wþ, W�, Z0, and
the photon g, according to the group SU(2)�U(1) or, more correctly,12

U(2). (See §13.9, if you need reminding what these groups are.) It is
this (hidden) symmetry that supplies the underlying pattern referred to
above.
I shall explain the role of this symmetry a little more completely later in

this chapter. This symmetry also interrelates the zig parts of various
leptons and quarks. The idea has the consequence that, from a more
primitive perspective, all of Wþ, W�, Z0, and g can, in a certain sense,
be continuously ‘rotated into one another’, so that various sets of (quan-
tum) linear combinations of these particles are on an equal footing with the
individual particles themselves!
As I have described things above, this ‘symmetry’ appears to be very

strange and subtle, particularly because pure electromagnetism is reXec-
tion-invariant, both zig and zag parts of the sources being equally in-
volved, whereas the weak interactions are about as non-invariant under
reflection as they can be, involving only the zig parts of the particles.
Moreover, the photon appears to be clearly singled out, among all the
bosons in the theory, by being a massless particle. Indeed, the mass of the
photon, if non-zero, would certainly have to be less than 10�20 of an
electron’s mass for good observational reasons, and so it is less than
about 5� 10�26 of the measured mass of the W and Z bosons. Further-
more, the W bosons are electrically charged, whereas the photon does not,
conversely, carry a weak charge.
In Fig. 25.12, I have listed all the possible 3-pronged Feynman vertices

involving only gauge bosons (i.e. Wþ, W�, Z0, or g). There are just two of
them. But the fact that there are any at all is an expression of a non-

linearity in the free gauge Weld, which arises from the gauge group being
non-Abelian—and this indeed applies to U(2). (Pure electrodynamics

Fig. 25.11 Illustrations of inter-

actions between a zig particle and a

weak-interaction gauge boson. (a)

The charged Wþ and W�

(antiparticles of each other) induce

a change in the zig’s electric charge

(to ensure electric charge

conservation), whereas (b) the

uncharged Z0 does not (and Z0 is

its own antiparticle). (c) The

neutrino’s zig can interact with the

uncharged Z0.
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comes from the Abelian gauge group U(1) and, consequently, there is no
analogous 3-pronged Feynman diagram involving only photons. These
would have given rise to non-linearities in the source-free Maxwell Weld.
An analogous statement applies to n-pronged vertices, with n > 2). See
§15.8, §19.2. It would appear from the limited nature of the set of diagrams
in Fig. 25.12 that there cannot be complete symmetry between all the
gauge bosons.

How do we reconcile these seemingly blatant deviations from symmetry
with the required goal of a uniWed symmetrical theory? The Wrst point to
realise is that there is actually more symmetry hidden in the Feynman
diagrams than is immediately apparent, and in fact they do exhibit U(2)
symmetry if looked at in the appropriate way. First consider the two
diagrams in Fig. 25.12. To get a better idea of the underlying symmetry
here, think of a 2� 2 Hermitian matrix (see §13.9). We may imagine that
its two real diagonal elements are analogous to Z0 and g, and that its two
remaining oV-diagonal elements—complex conjugates of each other—are
analogous to Wþ and W�. The real-number nature of the diagonal elem-
ents corresponds to Z0 and g being the same as their respective antipar-
ticles (lines without arrows in Fig. 25.12), whereas the complex-conjugate
nature of the oV-diagonal elements corresponds to the fact that Wþ and
W� are antiparticles of each other (reversal of arrow direction in passing
from one to the other). A general U(2) transformation of this Hermitian
matrix (which we must bear in mind involves both pre-multiplication by
the U(2) matrix and post multiplication by the inverse of that matrix) does
‘churn around’ the elements of this Hermitian matrix, in very speciWc
ways, but its Hermitian character is always preserved. In fact this analogy
is very close to the way in which U(1) indeed acts in electroweak theory
(the only complication being that we must allow for a linear combination
of the diagonal elements with the trace, in this identiWcation, related to the
‘Weinberg angle’ that we shall be coming to in §25.7). The asymmetry that
we seem to see in the actual world, with respect to these particles, comes
about in electroweak theory merely because Nature chooses certain par-
ticular combinations—i.e. particular quantum superpositions of these
elements—to be realised as actual free particles.

But what about the other seemingly most blatant asymmetry in our
Feynman diagrams, that the Z0 and W� can attach only to the zig lines of

Fig. 25.12 Electroweak 3-particle

gauge-boson vertices that can theoretically

occur, owing to the non-Abelian

nature of the gauge group. (Photon

lines are wiggly; Z0 lines are double

without arrow; W� lines are double with

white arrow.
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particles whereas g attaches indiscriminately to zig or to zag? Here again it
is a matter of which superpositions Nature allows us to Wnd as free
particles. For example, there would be some particular superposition of
Z0 and g—let us call it Y—which sees only the zag part of a particle.
(Roughly: ‘subtract’ Z0 from g so as to kill oV the zig interaction, leaving
only the zag.) We could retrieve our original g from Z0 and Y, but there
would be many other possible such superpositions which could equally
have played the role of the photon, had Nature chosen things in some
other way.

A key issue, therefore, is: what criteria does Nature adopt, in allowing
us to Wnd certain particular superpositions as free particles and not others?
The basic answer is that, for a free particle, we need it to be an eigenstate
of mass, so we need to know what it is that determines the mass of particles
generally. Here, we cannot expect full symmetry under U(2); in other
words, mass involves some kind of symmetry breaking. How is this done
in the standard model? The idea, at least as it is normally presented, is that
the asymmetry that we actually observe today, in particle interactions, is
the result of a spontaneous symmetry breaking that is taken to have
occurred in the early stages of the universe. Before that period, conditions
were very diVerent from those holding today, and standard electroweak
theory asserts that in the extremely high temperatures in the early universe
the U(2) symmetry held exactly, so that Wþ, W�, Z0, and g would be
completely equivalent to many other sets of quantum superpositions of
these particles, and where the photon g is on an equal footing with all sorts
of other combinations that could arise in this way. But, as this idea goes,
when the temperature in the universe cooled (to below about 1016K, at
about 10�12 seconds after the Big Bang; see §§28.1–3), the particular
Wþ, W�, Z0, and g that we observe today were ‘frozen out’ by this process
of spontaneous symmetry breaking. Thus, in this process, four actual
particles get resolved out of the completely symmetrical manifold of initial
possibilities. Just three of them acquire mass, and are referred to as the Ws
and the Z0; the other one remains massless and is called the photon. In the
initial ‘pure’ unbroken version of the theory, when there was complete
U(2) symmetry, the Ws, Z0, and g would all have to be eVectively massless.
As a fundamental aspect of this symmetry-breaking proposal, another
particle/Weld needs to come in, known as the Higgs (particle). The Higgs
(field) is regarded as being responsible for assigning mass to all these
particles (including the Higgs particle itself) and also to the quarks that
compose other particles in the universe.
How does it do this? The full details of this remarkable and ingenious

body of ideas must, unfortunately, remain outside the scope of this book,
but I shall be giving some of its ingredients later, in §26.11 and §28.1. For
the moment, I think that I can best describe the role of the Higgs field
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(very incompletely) by referring back to the ‘zigzag’ description of the
Dirac electron as displayed in Fig. 25.2. Recall that the electron was
viewed in terms of a continual oscillation between a left-handed zig (aA)
and a right-handed zag (bB0), each of which is, on its own, massless. There
was taken to be a ‘coupling constant’ 2�

1
2M governing the rate of ‘Xipping’

between the aA and the bB0 parts of the Dirac spinor. In eVect, the ‘Higgs’
point of view is to regard 2�

1
2M as a Weld—essentially the Higgs Weld—that

enters as an interaction where we previously had the coupling constant
2�

1
2M. (See Fig. 25.13.) One of the eVects of the act of spontaneous

symmetry breaking in the very early universe is taken to be that the
Higgs Weld settles down to have a constant value everywhere. This value
would Wx an overall scale for the determination of the masses of all
particles, the diVering values of these masses being scaled by some numer-
ical factor that depends upon the details of each particular particle.
I shall postpone my assessment of this extraordinary collection of

ideas until §§28.1–3, where it Wts in more appropriately. But whatever
we may think of these ideas, the resulting uniWed theory of weak and
electromagnetic forces—electroweak theory13—has been remarkably suc-
cessful. Among its predictions was the very existence of the Z0 (and also
W�, but the existence of W� had already been inferred on the basis of
earlier ideas) and some rather speciWc values for the masses of W� and Z0

(about 80 and 90 GeV, respectively).14 The W� and Z0 were observed
in experiments at CERN (in Geneva, Switzerland) in 1983 and the pre-
dicted mass values were conWrmed to a rather good precision, the modern
observed values being about 81.4 and 91.2 GeV, respectively. Numerous
other kinds of prediction have also been conWrmed, and the electro-
weak theory stands in excellent shape, observationally, at the time of
writing.

Higgs

field

Higgs

field

Higgs

field

Higgs

field

Higgs

field

Fig. 25.13 In the zigzag picture of a

Dirac particle, the vertices may be

viewed as interactions with the

(constant) Higgs Weld.
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25.6 Strongly interacting particles

Now, what of strong interactions? The modern theory that describes them
constitutes the other ‘half’ of the standard model, and it is referred to as
quantum chromodynamics or QCD. This may seem an odd name, since the
Greek khroma, from which the name comes, means ‘colour’, and we may
ask what place ‘colour’ has in a theory of the strong interactions that
govern nuclear forces. The answer is that the notion of ‘colour’ referred to
here is entirely whimsical and has nothing to do with the ordinary concept
of colour, which is concerned with the frequency of visible light.15 In order
to explain what the notion of ‘colour’ in (nuclear) particle physics might
be, it will be appropriate to backtrack a little and consider the mystifying
array of particles known as hadrons, of which neutrons and protons are
particular examples.
The name ‘hadron’ is from the Greek hadros meaning ‘bulky’. Hadrons

are the more massive of the basic particles of Nature, and they take part in
strong interactions (the strength of these interactions providing a large
energy contribution to this mass). The family of hadrons includes those
fermions known as ‘baryons’ and also those bosons referred to as
‘mesons’. All hadrons are taken to be composed of quarks, in conventional
theory, about which more will be said shortly. In particular, those hadrons
known as baryons are the ordinary ‘nucleons’ (neutrons or protons) and
their heavier cousins, called ‘hyperons’ (discovered in cosmic ray showers
and in particle accelerators). The original mesons were a remarkable
theoretical prediction by the Japanese physicist Hideki Yukawa in 1934,
on the basis of his analysis of nuclear forces, these being the pions (p
mesons) that were eventually found by C.F. Powell, in 1947, in cosmic ray
tracks. Now many other meson cousins to the pion are also known.
The term ‘baryon’ comes from the Greek barys meaning ‘heavy’, in

contrast with ‘lepton’, from leptos meaning ‘small’. The leptons are the
electron and its sister particles, the muon, and the tauon, together with
their corresponding neutrinos; the anti-particles of these are referred to as
antileptons. Both leptons and baryons are spin 1

2
fermions, but leptons are

distinguished from baryons by the fact that they do not directly indulge in
strong interactions—which is perhaps the main ‘reason’ that leptons tend
to be much less massive than baryons (though the tauon is an exception,
being almost twice as massive as the proton or the neutron).
Since the late 1940s, vast numbers of hadrons have been discovered, in

cosmic rays and in accelerators: L0, S�, S0, X�, X0, Dþþ, D�, D0, O�,
r0, r�, o0, Z0, K�, K0, and numerous heavier versions of many of these
particleshavinghigher spin (indicated,here,by theattachmentofasterisks to
the symbols, e.g.X*�) referred to as ‘Regge recurrences’ (see Fig. 31.6). This
wouldhavebeentotallybewilderinghad itnotbeenfor the fact that theywere
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observed to fall into certain families, calledmultiplets.Agoodunderstanding
of the nature of these multiplets was obtained (by Murray Gell-Mann and
YuvalNe’eman, in 1961) on the basis that thesemultiplets provide represen-
tations of the group SU(3) or, more correctly, SU(3)/Z3 (see §13.6 for the
notion of ‘representation’ and §13.2 for the interpretation of the notion of
‘factor group’ that is involved in the use of the ‘division’ /; hereZ3 stands for
the cyclic groupwith3 elements,whicharises naturally asanormal subgroup
of SU(3);[25.3] see also §5.5).
The best way of understanding what is involved in these representations

is to make the hypothesis (as was made explicit by Zweig and by Gell-
Mann in 1963) that each hadron is constructed out of certain basic entities
of spin 1

2
, that Gell-Mann christenend ‘quarks’ (three types) and ‘anti-

quarks’ (three types). Each baryon is taken to consist of just three of these
quarks, and each meson, of one quark and one antiquark, where the three
types of quark—referred to as three Xavours—are called (rather un-
imaginatively) ‘up’, ‘down’, and ‘strange’. A mysterious feature of quarks
was that they have to possess fractional electric charge (in proton-charge
units), the up, down, and strange quarks having respective charge values
2
3
, � 1

3
, and � 1

3
.

Perhaps largely because of these implausible-seeming values for the
quarks’ electric charges—and the related fact that quarks are never ob-
served on their own (observed particles always having integral values for
their charges; see §5.5)—quarks were not originally thought of as real
particles, but were taken simply to provided a convenient ‘bookkeeping’
for the diVerent representations of SU(3)=Z3. The bookkeeping only
worked, however, if the quarks were treated as entities that satisWed the
‘wrong statistics’ for particles of spin 1

2
. That is to say, one had to pretend

that quarks are ‘bosons’ for the multiplets to come out right, not the
fermions that the spin-statistics theorem (see §23.7 and §26.2) would
seem to demand.
In order to understand this last point, let us consider two examples. The

most clear-cut of the two is that provided by the decuplet of 10 spin 3
2

particles which led to the prediction of the O� particle, by Gell-Mann and
Ne’eman in 1962 (where all the other particles in the multiplet were
already known), this prediction being conWrmed in 1964:16

Dþþ Dþ D0 D�

S*þ S*0 S*�

X*0 X*�

O�

[25.3] Find this normal subgroup. Hint: Think of the determinant of a 3� 3 matrix.
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This array can be understood if we regard each particle to be made up of
three quarks, of various Xavours, where d stands for down, u for up, and s
for strange:[25.4]

uuu uud udd ddd
uus uds dds

uss dss
sss

Now, this works only because the three quarks are in a symmetrical
state. For example, uud is not distinguished from udu. Moreover, states
with two of the same kind of quark, such as uuu and uud, do not vanish
identically, which they would in the case of an antisymmetrical state for
which the Pauli principle holds. The fact that the spin is 3

2
means that all the

three quark spins (each being of value 1
2
) are aligned, so there is complete

symmetry with regard to the spin aspect of the state. If the quarks behaved
as fermions, then we would get antisymmetry under interchange of the
quarks, not symmetry, which is inconsistent with this picture.[25.5]

A similar (but more involved) comment applies to the more complicated
situation that arises for the octet of 8 spin 1

2
particles to which the ordinary

proton (Nþ) and neutron (N0) belong:17

Nþ N0

Sþ S0

S��0

X0 X�:

Here we must think of �0 and �0 as occupying basically the ‘same slot’ at
the centre of a hexagonal array. This arrangement comes about when we
consider that the spin is now 1

2
, so we can think of two of the quark spins

as parallel and one of them antiparallel. It turns out that there are just
two linearly independent ways of arranging this for the quark composition
uds that is represented at the centre (corresponding to the pair S0 andL0);
there is none at all for uuu, ddd, and sss, which explains the hexagonal
rather than a triangular array; and there is just one for each of the
rest.[25.6]

[25.4] Check that the charge values, indicated by the superWxes in the Wrst table, come out

right.

[25.5] Explain this more completely, using the 2-spinor index description for the quark spins, as

described in §22.8, and using a new 3-dimensional ‘SU(3) index’ which takes 3 values u, d, s.

[25.6] See if you can explain all this in some appropriate detail. Care is needed for the

treatment of the 2-spinor spin indices, if you wish to use them. An antisymmetry in a pair of

them allows that pair to be removed (as when representing a spin 0 state in terms of a pair of spin 1
2

particles, as in §23.4). Yet there is a (hidden) symmetry also, because there are only two independ-

ent spin states for each quark.
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25.7 ‘Coloured quarks’

How can we treat quarks as real particles, if they have the wrong ‘spin-
statistics’ relation (see §23.7 and §26.2). The way that this problem is dealt
with,18 in the standard model, is to demand that each Xavour of quark also
comes in three (so-called) ‘colours’, and that any actual particle, composed
of quarks, must be completely antisymmetrical in the colour degree of
freedom. This antisymmetry passes over to the quark states themselves, so
that antisymmetry between individual (fermionic) quarks gets eVectively
converted into symmetry, in a three-quark particle.[25.7] The colours are
never to manifest themselves in free particles, so colour is, in an essential
way ‘unobservable’. Any free particle has to be ‘colour-neutral’. We do not,
for example, have three diVerent versions of the Dþ particle, depending
upon which colour the d-quark is in ‘uud’. The antisymmetry in the colour
degree of freedom, for actual free particles, ensures this.[25.8]

The ‘colours’ are sometimes referred to as ‘red’, ‘white’, and ‘blue’,
which strikes me as being both confusing (since I do not think of white
as a colour) and revealing of some sort of misplaced patriotism. Some-
times they are called ‘red’, ‘green’, and ‘blue’, which is better; but since the
association between ‘quark colour’ and the colour receptors in the eye has
in any case no scientiWc justiWcation, I shall use ‘red’ (R), ‘yellow’ (Y), and
‘blue’ (B) instead. This choice of terminology has the advantage that I can
‘mix’ my colours more easily, and we note that ‘orange’, ‘green’, and
‘purple’ (these being regarded as quantum superpositions of the original
R, Y, and B) would do just as well as the original set. There is indeed a
symmetry here that goes well beyond merely permuting the colours. There
is to be a full 8-real-dimensional SU(3) of colour symmetry, in which R, Y,
and B provide merely one set of basis elements for the vector space on
which the SU(3) matrices act (see §13.9).
At this stage, the introduction of these apparently unobservable ‘colour’

degrees of freedom would appear to be rather contrived, since we now
have nine basic quarks (together with their various antiparticles and
quantum superpositions):

dR , dY , dB ; uR , uY , uB ; sR , sY , sB ;

none of which can be directly observed. In fact the situation, in the
standard model, is actually ‘twice as bad’ as this, because three more
Xavours of quark have had to be introduced, called (equally unimagina-
tively) ‘charm’ (c), ‘bottom’ (b), and ‘top’ (t), so we also have:

cR , cY , cB; bR , bY , bB; tR , tY , tB;

[25.7] Use indices to explain this comment, where there is a new 3-dimensional SU(3) colour

index, in addition to a 3-dimensional Xavour index of Exercise [25.5].

[25.8] Explain.
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giving eighteen independent quarks in all, every one of which is not
directly observable.
If satisfying the spin-statistics relation were to be the only beneWt of this

proliferation of hypothesized unobservable particles, then the scheme
would look decidedly artiWcial. But the complete unobservability of ‘free’
quark colour actually brings a bountiful reward! For this unobservability,
and the (closely related) totally unbroken nature of the colour SU(3) sym-
metry, provides us with the potential to use this symmetry directly as a basis
for thewonderful idea of a gauge connection, as described in §§15.1,8.Recall
that this is how the electromagnetic interaction is described, the gauge group
being U(1) in that case (see §19.4, §21.9, and §24.7). Indeed, the U(1) gauge
symmetry of electromagnetism is taken to be exact and unbroken.19 Recall,
also, that at the very basis of the Wbre-bundle idea, as described in Chapter
15, is the presence of an exact symmetry group acting on the Wbres. The
hadronic SU(3) ‘colour group’ of strong interactions provides just such an
exact symmetry, and the analogy with the U(1) electromagnetic gauge
group is very close. The generalization of electromagnetism, which is
based on a gauge connection for the abelian groupU(1), to a corresponding
theory based on a gauge connection for a non-abelian groups such as SU(2)
or SU(3) is called Yang–Mills theory.20

This, indeed, is the basis of QCD (quantum chromodynamics). As with
electromagnetism, we can use a quantity like the electromagnetic potential
Aa to modify the derivative ]=]xa, when acting on quark Welds, to an
appropriate notion of ‘covariant derivative operator’ (like the
]=]xa � ieAa of electromagnetism) that provides us with a bundle con-
nection (see §15.8 and §19.4). Because the colour space is 3-dimensional,
we have something more complicated than that which we had for the
1-dimensional electromagnetic case, and it is convenient to introduce
indices to cope with these extra degrees of freedom. A crucial diVerence
between the electrodynamic case and that of strong interactions is that
whereas U(1) is Abelian (i.e. commutative; see §13.1), the colour group
SU(3) is non-Abelian, and the theory is accordingly referred to as a non-

Abelian gauge theory. This leads to special complicated and interesting
features. For full details of what is involved here, I refer the reader to the
literature,21 but the essential idea of how the strong interactions manifest
themselves is basically as I have just described it.
The ‘gauge bosons’ of QCD (the SU(3) analogues of photons) are

quantities referred to as gluons. In the Feynman-graph descriptions, the
gluon lines attach themselves to quark lines in the same way that photon
lines attach themselves to charged particle lines (Fig. 25.14a). The
non-Abelian nature of SU(3) manifests itself in the fact that the gluon
lines themselves possess ‘colour charge’, so that three-pronged (or more)
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gluon Feynman graphs can occur (Fig. 25.14b) which is something that
does not happen for the Abelian electromagnetic case.
Thus, the main role of the group SU(3), in the standard model, has

moved from the ‘Xavour symmetry’ that it had in the 1960s and 1970s to
the ‘colour symmetry’ of the present-day standard model. In fact, in this
standard model, the three Xavours d, u, and s are not now fundamentally
grouped together at all. Instead, the groupings provide three generations of
doublets (d, u), (s, c), (b, t). The notion of having three generations applies
also to the leptons, the generations being that of the electron, the muon,
and the tauon (and their corresponding neutrinos).
In the standard model as a whole, there are complicated interrelations

between the strong and electroweak interactions. In particular, there are
certain ‘rotations’ that occur between the basic entities that are recognized
by strong interactions and those recognized by weak interactions. An
example occurs with the K0 meson, which can be produced in high-energy
proton–proton collisions. We say that K0 is an eigenstate of strong inter-

actions.When theK0 itself decays, however, it decays weakly, and for that it
has to be considered as a quantum linear combination of the two eigenstates
KL (K-long) andKS (K-short) of weak interactions. (TheKL usually decays
to three pions in about 5� 10�8 seconds, whereas the KS normally goes to
two pions in the much shorter timescale of 10�10 seconds.) Each of KL and
KS is a linear combination of K0 and its antiparticle �KK0, into which K0 can
‘Xip’ by means of weak but not strong interactions. The ‘rotation’ between
the strong-interaction basis states (K0, �KK0) and the weak-interaction basis
states (KL, KS) takes place through an (abstract) angle referred to as the
Cabibbo angle (which is about 0.26 radians). This same angle features in
the interrelations between strong and weak interactions generally.
In a somewhat similar way, there is an angle referred to as the Weinberg

angle or the weak mixing angle (§25.5) which features in the interrelation
between weak and electromagnetic interactions, and forms an integral part
of electroweak theory. Indeed, some of the most impressive conWrmations
of electroweak theory come from various (seemingly independent) types of

(a) (b)

Fig. 25.14 Gluons are the ‘gauge bosons’ of QCD. (a) Gluon exchange between

quarks (here drawn without zigzags) underlies nuclear forces and quark conWne-

ment. (b) The gauge theory being non-Abelian, gluon lines themselves possess

‘colour charge’, so three-prongedgluonFeynmangraphs canoccur (as inFig. 25.12).
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observational determination of this angle giving answers that closely agree
with one another. However, as theory stands, there is a diVerence in the
roles between the Cabibbo and Weinberg angles; for the weak and electro-
magnetic interactions are considered to be uniWed, and the view may be
taken, concerning the Weinberg angle, that it was something that got
‘frozen in’ when the U(2) symmetry of electroweak theory was ‘broken’
at about 10�12 seconds after the Big Bang (§28.1), but the Cabibbo angle
does not have such a status in the standard model, since that model makes
no assertion as to how the electroweak and strong interactions might be
uniWed. The basic symmetry group22 of the entire standard model is taken
to be SU(3)� SU(2)�U(1)=Z6.

25.8 Beyond the standard model?

On the other hand, one could adopt a perspective on the Cabibbo angle
corresponding to that taken for the Weinberg angle, but this would require
something beyond the present-day standard model of particle physics. We
would need a model in which both strong and weak interactions are united
under some larger symmetry group that includes SU(3) and U(2) together.
Such a theory is referred to as a grand uniWed theory or GUT. There is no
commonly accepted GUT, but there have been many attempts (the main
ones being based on SU(5), or SO(10), or the exceptional group E8; see
§13.2). We shall be seeing in §31.14 that string theory has something to say
about these matters also. Some remarkable implications of certain GUT
models will be considered in §28.2.
In any case, the standard model is clearly not the ‘ultimate answer’, with

regard to particle physics, because it contains many unexplained features
and ‘ragged edges’, despite its undoubted success. It involves about 17
unexplained parameters that simply need to be taken from observation
(such as the Cabibbo and Weinberg angles, the masses of the quarks and
leptons, and a number of other features). Also there is the rather strange
asymmetry between the roles of SU(3) and U(2)—in that SU(3) is taken to
be exact, whereas U(2) is severely broken. Indeed, in my view, there does
appear to be something strange about the particular way that U(2) is taken
as a ‘gauge group’, which would seem to require an exact unbroken
symmetry (see Chapter 15, particularly the Wnal paragraph of §15.8).
At this point, it is pertinent to refer to another development, distinct from

theGUT idea, that addresses this particular question in a novel way. It has a
special appeal for me personally, for reasons that will become apparent in
§33.13. This is a proposal due to the Chinese–British husband-and-wife
team Chan Hong-Mo and Tsou Sheung Tsun (2002). In their scheme,
each (non-Abelian) particle symmetry group has a corresponding dual

group, which is the same abstract group as the original one but which
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plays a kind of opposite role. Recall the dual *F of the Maxwell tensor F,
that was introduced in §19.2.We could imagine a ‘dual’ U(1) gauge connec-
tion that has *F as its bundle curvature (see §15.8), rather than F. The idea is
to do something similar for the remaining symmetry groups of the standard
model SU(2) and SU(3). But, since these groups are non-Abelian, it is not
possible simply to regard the corresponding dual curvatures directly as
bundle curvatures again[25.9] and something more sophisticated is required
(where ‘path-dependent’ quantities need to be considered).
One of the attractive aspects to this scheme is that the group and dual

group play qualitatively diVerent roles, one of the two being exact, like
the SU(3) of QCD (or the U(1) of electromagmetism), and the other being
broken like the SU(2) of electroweak theory, and where ‘conWnement’
(which is what prevents the ‘colour-changed’ quarks escaping into the
wide world, in the case of SU(3) ) is expected for the exact group. (This
property relates to earlier work by t’Hooft and Weinberg.23) In the Chan–
Tsou scheme, there would be a new exact SU(2) (dual to the broken one
that currently features in electroweak theory) which would refer to a
hitherto undiscovered symmetry, relating analogues of quarks that
would be conWned ‘2-coloured’ lepton constituents. (These sub-particles
would be very heavy, which is why they have not yet been detected, and
why leptons appear as point particles at present-day energies.) Corres-
pondingly, there must also be a broken SU(3) (dual to the colour SU(3) ),
and this is taken simply to be the ‘SU(3)’ of the 3 generations of quarks
and of leptons that seems so puzzling in the standard model as it is
conventionally understood. The Chan–Tsou scheme also has clear predic-
tions concerning the 17 (or so) free parameters of the standard model,
calculating 14 of them from 3 adjustable parameters. This strikes me as a
deWnite step forwards, provided that the predictions of the scheme are
borne out. As things stand, the outlook seems promising.
It is less clear to me how, in the conventional attitude to the standard

model, the group SU(2) can be taken actually as a gauge group, while
being so severely broken. Some might take this SU(2) as reXecting some
kind of ‘hidden symmetry’ which is really exact, and which acts only
‘potentially’ as a gauge group, and the SU(2) of electroweak theory is
some kind of external manifestation of this. (Perhaps this is not so far from
the Chan–Tsou idea, but not so explicit.) The conventional perspective on
electroweak theory’s SU(2) seems to be that it really is (or, rather, was)
exact and has become broken in extreme processes that took place in the
early universe. We shall be having a look at some of the unpleasant
implications of this in Chapter 28. In the meantime, as part of the discus-

[25.9] Can you see what the diYculty is? Hint: Work out expressions for gauge curvature,

Bianchi identities, etc.
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sion in the next chapter, we shall be seeing something of the exotic but
essential mathematical ideas that lie behind the way that symmetry break-
ing is presently handled in the standard model.

Notes

Section 25.1

25.1. See Pais (1986), pp. 334 and 356, refs. 25,26.

Section 25.2

25.2. I have not entered into the details of how the Dirac equation as described in

§24.7 can be transcribed into the 2-spinor form given here. The interested reader

is referred to Zee (2003), Appendix. Weyl introduced 2-spinors in Weyl (1929).

See van der Waerden (1929); Infeld and van der Waerden (1933); Penrose and

Rindler (1984), pp. 221–23 and Zee (2003), Appendix.

25.3. These are the reduced spinors (or half-spinors) referred to in §11.5.

25.4. See Penrose and Rindler (1984, 1986); van de Waerden (1933); Laporte and

Uhlenbeck (1931).

25.5. See Schrödinger (1930); Huang (1949) or, for an interesting modern perspective,

Hestenes (1990).

25.6. Those readers who already have some familiarity with Feynman graphs may

Wnd my vertical temporal ordering confusing. It is more usual, in the QFT

community, to depict increasing time as oV to the right. My own preference for

increasing time to be depicted upwards is in accord with the notation of much

of the relativity community, since this is consistent with most spacetime dia-

grams (see Chapter 17, most particularly).

25.7. In fact, such physicists’ lives could have been made signiWcantly simpler by use

of the 2-spinor formalism in QED! See Geroch (University of Chicago lecture

notes, unpublished), and also §34.3.

25.8. My own conventions would have been to write (1� ig5)c here, rather than

(1� g5)c (see Penrose and Rindler 1984, 1986, Appendix), as would some other

authors. Here, I am accommodating myself to what appears to be standard in

the physics community.

Section 25.3

25.9. This may have been partly inXuenced by a suggestion made by Martin Block

(and conveyed by Richard Feynman); see the fascinating account by Martin

Gardner in The New Ambidextrous Universe (W.H. Freeman 1990), Chap. 22.

25.10. This equation was proposed by Weyl in 1929, and it had been considered also by

Dirac before he came across his ‘Dirac equation for the electron’; Dirac (1928);

Dirac (1982). Pauli had vehemently objected to Weyl’s equation on account of

its lack of invariance under spatial reXection. Unfortunately, Weyl died in the

year before the non-invariance of reXection was proposed in weak interactions,

vindicating his proposal. Zee (2003) discusses both equations.

Section 25.4

25.11. Massive particles of spin 1 can be described as having three ingredients, a left-

handed zig (helicity 1), a right-handed zag (helicity �1), and a non-spinning

‘zog’ (helicity 0), let us say. (The zig 2-spinor and the zag 2-spinor has two

unprimed indices and two primed indices, respectively, while the zog 2-spinor

The standard model of particle physics Notes
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has one of each.) We may take the view that it is just the zog particle that

mediates the weak interactions.

Section 25.5

25.12. The group might be expressed as SU(2)�U(1)=Z2, where the ‘/Z2’ means ‘factor

out by a Z2 subgroup’. However, there is more than one such subgroup, so this

notation is not fully explicit. The notation ‘U(2)’ automatically picks out the

correct one. (I am grateful to Florence Tsou for this observation.) It seems that

the reason that the electroweak symmetry group is not conventionally referred to

as ‘U(2)’ is that this does not easily extend to the symmetry of the full standard

model, which also incorporates the strong symmetry group SU(3)=Z3, the full

group being a version of SU(3)� SU(2)�U(1)=Z6; see §25.7.

25.13. The electroweak theory was sorted out by Stephen Weinberg, Sheldon Gla-

show, and Abdus Salam in the late 1960s—work earning all three of them a

Nobel Prize. See Weinberg (1967); Salam and Ward (1959); Glashow (1959); for

a general reference on the electroweak theory, see Zee (2003) or Halzen and

Martin (1984); Kaku (1993).

25.14. GeV are giga electron-volts. Giga is a Greek preWx, indicating multiplication by

109; and an electron-volt a measure of energy, speciWcally how much energy a

single unbound electron will gain when falling through a potential diVerence of

1 volt. It is around 1:6� 10�19 J.

Section 25.6

25.15. Visible light falls between wavelengths l ¼ 400�700 nanometres, where one may

convert between wavelength and frequency � according to the relation � ¼ c
l.

25.16. See Gell-Mann and Ne’eman (2000) for the theory; V. E. Barnes paper on the

observation of the ��, originally published in 1964, is in the same work, on pp.

88–92.

25.17. In the terminology of modern particle physics, ‘Nþ’ and ‘N0’ seem to have

replaced ‘p’ and ‘n’, to denote the proton and neutron, respectively. This is

consistent with the notation for other particles in that (Nþ, N0) constitutes a

doublet, in the SU(3) classiWcation scheme, like (X0, X�), etc., and it allows us to

refer to a nucleon generically as ‘N’.

Section 25.7

25.18. See Han and Nambu (1965).

25.19. See Weinberg (1992).

25.20. C.N. Yang and R. L. Mills found this theory in 1954 (Phys. Rev. 96, 191–5),

although thebasic ideahadbeendiscovered earlier (and rejectedbecause the gauge

particles had to be massless) by Wolfgang Pauli, in the years after World War II,

and Ronald Shaw in 1955. See Abdus Salam (1980) for an exhaustive history of

these matters, presented in his Nobel lecture. The trick which is now used in order

to circumvent the ‘masslessness’ problem is the symmetry-breaking ‘Higgs mech-

anism’ that was alluded to in §25.5 and will be discussed further in §26.11.

25.21. See Aitchison and Hey (2004), Vol. 2, or Zee (2003) for the technical details. See

Chan and Tsou (1993) for an overview of gauge theory concepts.

25.22. See Note 25.12. An overview of the Standard Model can be found in any good

Quantum Field Theory textbook, for example, Zee (2003).

Section 25.8

25.23. The Chan–Tsou idea is laid out in Chan and Tsou (2002); it is based on a

property developed in t’Hooft (1978).

Notes CHAPTER 25
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26
Quantum field theory

26.1 Fundamental status of QFT in modern theory

We have made our brief acquaintance, in the previous chapter, with the
20th century’s standard model for particle physics. It is a mathematical
model in remarkable accord with observational facts over a broad range of
phenomena, and it involves some ingenious mathematical ingredients that
seem to Wnd a deep harmony with Nature’s ways. Yet, as I have presented
things, the mathematical structure of this model would appear to be
somewhat complicated and arbitrary. Of course much of this structure
has been motivated by brute facts of particle physics, and physicists have
had to come to terms with these facts, as Nature has presented them. This
is as it should be, for any serious scientiWc theory. But there are also
powerful theoretical reasons underlying the particular choices of structure
that are found in the standard model. The predictive power of the theory
indeed depends crucially upon the mathematical consistency of such the-
oretical underpinnings.
The theoretical driving force is a continuation of the story that we began

in Chapter 24: how do we Wnd a quantum theory for particle physics which
is consistent with the requirements of Einstein’s special theory of relativ-
ity? We saw, in that chapter, the importance of Dirac’s introduction of
antiparticles in a relativistic quantum theory, and that we were forced into
the framework of a quantum theory of Welds. In fact the standard model is
a particular instance of a quantum theory of interacting Welds, and has
been driven largely by certain powerful consistency requirements, hard to
satisfy in such theories. In order to appreciate something of the force
behind these consistency requirements (which continue to drive the more
modern speculative theories of today, such as string theory), we shall need
to look at something of the structure of quantum Weld theory (QFT). This
will also help us to appreciate the meaning of the Feynman graphs that we
encountered in the previous section. In addition, we shall gain yet another
perspective on anti-particles, which is somewhat broader than those that
we have encountered in Chapters 23 and 24.
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Quantum Weld theory constitutes the essential background underlying
the standard model, as well as practically all other physical theories
that attempt to probe the foundations of physical reality. It is therefore
necessary for us to catch a glimpse of that magniWcant and imposing
scheme of things, a scheme that arose, in good measure, from those
remarkable insights of Paul Dirac with which we made some acquaintance
in Chapter 24. It should be pointed out that Dirac was himself the main
initiator of QFT, although important initial contributions came also from
Jordan, Heisenberg, and Pauli. However, as it stood, and for most prob-
lems of interest, that theory was not able to provide Wnite answers—rather
than the ‘1’ that practically always seemed to arise. It took powerful later
developments from Bethe, Tomonaga, Dyson, Schwinger, and particularly
Feynman to make the theory workable for suitable QFTs referred to as
‘renormalizable’. More recent input from Ward, Weinberg, Salam,
Wilson, Veltman, and t’Hooft, among others, has lead us to a very
appropriate class of renormalizable theories, giving a vital input towards
what is now the standard model of particle physics (Chapter 25), from
which consistent answers can indeed be obtained.1 (The theoretical re-
quirements appear to be so tight that it might seem almost incidental that
these answers are actually in excellent agreement with experiment!) The
basic problem has always been to circumvent the inWnities in some appro-
priate way, and it has been this drive, together with important input from
observation, which has taken the theory in its appropriate and fruitful
directions.
In fact, QFT appears to underlie virtually all of the physical theories

that attempt, in a serious way, to provide a picture of the workings of the
universe at its deepest levels. Many (and perhaps even most) physicists
would take the view that the framework of QFT is ‘here to stay’, and that
the blame for any inconsistencies (these being usually inWnities coming
from divergent integrals, or from divergent sums, or both) lies in
the particular scheme to which QFT is being applied, rather than in the
framework of QFT itself. Such schemes are normally speciWed by
a Lagrangian, subject to certain symmetry principles. We shall be seeing
in §§26.6,10 the general way in which Lagrangian ideas are applied in
QFT.
Many modern attempts to remove the inWnities in QFT look to

gravity to alter spacetime behaviour profoundly at extremely tiny scales,
and thereby supply the ‘cut-oVs’ that could render the presently still
divergent expressions Wnite (see §31.1, in particular). Yet there remains a
question as to whether QFT itself might need modiWcation when the
(gravitational) principles of Einstein’s general relativity are brought in
(see Chapter 30). However, as judged by the activities of the vast majority
of current researchers in this kind of area, QFT in its present form is not
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normally questioned, and it will be important for us to come to terms with
its sophisticated ideas, as best we can. I shall certainly not be able to go
into great detail in my description of this magniWcent, profound, diYcult,
sometimes phenomenonally accurate, and yet often tantalizingly inconsist-
ent scheme of things. But I shall try, brieXy, to convey something of QFT’s
Xavour, albeit very incompletely, before Wnally returning to those
features that supply the theoretical driving force underlying the standard
model.

26.2 Creation and annihilation operators

One of the earliest ideas for QFT was the procedure which goes under the
rather misleading name of ‘second quantization’. According to this pro-
cedure, we try to pretend that the wavefunction c of some particle itself
becomes an ‘operator’, acting on some shadowy state vector which may be
denoted by j0i, hiding over on the far right (compare §21.3 and the
Heisenberg picture of §22.4). I shall denote this ‘wavefunction operator’
by the boldface capital Greek letterC, corresponding to the Greek letter c
that denotes our one-particle wavefunction. As in ordinary quantum
particle mechanics, C can be thought of as a function of the particle’s
3-space position x, i.e. C ¼C(x), or else of its 3-momentum p, if a
momentum representation is preferred, i.e. ~C ¼ ~C( p).
How are we to interpret this strange ‘wavefunction operator’ C (or ~C)?

It does not now represent the actual quantum state, but it describes the
operation that ‘creates’ a new particle having this given wavefunction2 c,
introducing it into the state that is there previously—this ‘previous’ state
being represented by the expression that follows immediately to the right
of the operator symbol C (or ~C). Such an operator is referred to as a
creation operator.
The shadowy state-vector j0i over on the extreme right is normally

taken to be the ‘vacuum state’, representing the complete absence of
particles of any kind. A succession of these creation operators then creates
a succession of particles, added one by one into the vacuum, so that

CF . . .Qj0i

is the state that results from introducing particles successively with wave-
functions

y, . . . , f, c:

Since any particular type of particle will be either a fermion or a boson,
this fact needs to be taken into account. In particular, the Pauli principle
has to be incorporated, which prevents us introducing two fermions into
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the same state, one after the other. The Pauli principle is expressed, in this
formalism by the property C2 ¼ 0 (i.e. CC ¼ 0) for any fermion wave-
function c, which tells us that, if we try to introduce this particular
fermion wavefunction into the state twice, we get zero, which is not an
allowable state vector. This ‘Pauli-principle’ rule is just a particular in-
stance of the anticommutation property

CF ¼ �FC,

where C and F are creation operators describing the same type of fer-
mion. For creation operators Q and J describing the same type of boson
we have the commutation property[26.1]

QJ ¼ JQ:

Thus, we see that creation operators satisfy the rules of a (graded)
Grassmann algebra, as described in §11.6, where the fermion creation
operators are considered to be of odd grade and the boson creation
operators, of even grade.
In accordance with the discussion of §24.3, the wavefunctions that are

introduced into a state, for the creation of a particle, must be of positive
frequency. Negative-frequency quantities also play a role in the formalism,
namely as annihilation operators. The complex conjugate c of the posi-
tive-frequency wavefunction c is a quantity of negative frequency. It is
associated with the annihilation operator C*, which is the Hermitian
conjugate3 of the creation operator C (see §13.9). The interpretation of
C* is that it represents the removal of a particle from the total state (that
total state being the one which, as before, is described by whatever lies to
the right ofC* in the expression. Since our shadowy vacuum state j0i, way
over on the right, contains no particles whatever, the action of any
annihilation operator directly on it must give zero:

C*j0i ¼ 0:

Of course, this does not mean that annihilation operators always yield
zero, because we could put some particles in Wrst. An expression like
C*FQj0i need not be zero, for example. This holds even if neither of the
statesF andQ is the same as theC that we are removing. Forwe should not
try to think of the operator C* as simply removing the particle’s speciWc
wavefunction c from that state.4 In general, the speciWc wavefunction c is
unlikely to feature exactly as part of the state. Instead, what C* does is, in
eVect, to form a scalar product with the part of the state that refers to
the type of particle that is being removed. (In Fig. 26.1—mainly for the

[26.1] Explain why this gives states with the correct symmetries for bosons and fermions, as

described in §23.8.
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Fig. 26.1 Diagrammatic form of the action of a creation operator C in the boson

case f(b
1 f

g
2 . . . fN
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g
2 . . . fN

n) and in the fermion case f[b
1 f

g
2 . . .fN

n] 7!
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n]; and of an annihilation operator C� in the boson case

f(a
1 f

b
2 . . . fN

m] 7!caf
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1 f

b
2 . . . fN

m) and in the fermion case f[a
1 f

b
2 . . .fN

m] 7!
caf

[a
1 f

b
2 . . . fN

m].

amusement of the experts—I have indicated the diagrammatic form of
what I mean by this, both in the fermion and the boson case, where I have
also given diagrams representing the creation as well as the annihilation
process.)[26.2] In accordance with this, it turns out that the creation and
annihilation operators (for the same type of particle) must satisfy (anti)-
commutation rules

C*F�FC* ¼ ikhcjfiI ,

where the ‘plus’ sign refers to fermions and the ‘minus’ sign to bosons,
where I represents the identity operator, with h j i standing for the
ordinary Hilbert-space scalar product for individual particles (the spinless
case having been considered in §22.3, there being an appropriate general-
ization for particles with spin5), and where ik stands for one of
1, i, �1, �i, depending on the spin (and I shan’t worry you about
which). We also have the following (anti)commutation rules for two
creation operators (also given above), and for two annihilation operators
(plus sign for fermions, minus for bosons):

CF�FC ¼ 0, C*F* �F*C* ¼ 0:

[26.2] Make sense of all this (and verify this commutation law for creation and annihilation of

particles of a given type) by referring to the index notation of §23.8 or the diagrammatic notation

of Fig. 12.17, or both, using expressions like �ccac
[afb � � �wk]. Sort out all the factorial factors which

preserve normalization of the state, both in the fermion and the boson case.
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It should be remarked that the spin-statistics theorem, referred to brieXy
in §23.7, demands that we have anticommutation rules (plus sign in the
above, whence fermions) for particles with half-odd spin (1

2
, 3

2
, 5

2
, . . .) and

commutation rules (minus sign, whence bosons) for particles with integer
spin (0, 1, 2, 3, . . . ). The reasons for this are beyond the scope of this
account.6 However, the essential issues have to do with energy positivity
(in the case of fermions) and particle-number positivity (in the case of
bosons), together with combinatorial properties of the relevant spinor
indices.7

26.3 Infinite-dimensional algebras

It is a remarkable fact that, in the case of fermions, these anti-
commutation rules are precisely of the same algebraic form as those
deWning a CliVord algebra, as described in §11.5.[26.3] The only essential
diVerence is that ordinary CliVord algebras are Wnite-dimensional,
whereas the space of creation and annihilation operators, for a fermion
Weld, is inWnite-dimensional—the space of one-particle wavefunctions
being inWnite-dimensional. The reader should be warned, however, that
inWnite-dimensional spaces, though often analogous to Wnite-dimensional
ones, can have some very diVerent properties, and are frequently much
harder to work with.
It is of interest that the formalism of QFT also involves inWnite-

dimensional versions of some of the other types of Wnite-dimensional alge-
braic structure that we have considered earlier in this book. The scalar
product h j i, for example, is really an inWnite-dimensional version of the
Hermitian scalar product considered in §13.9 (cf. §22.3). In fact, in QFT, it
turns out that not only are we concerned with ‘Hermitianness’ (unitarity),
but we find that symmetric forms (‘pseudo-orthogonality’), antisymmetric
(symplectic) forms, and complex structures also play their roles.8 The
ordinary Wnite-dimensional versions of pseudo-orthogonal and symplectic
forms were considered §§13.8,10; ordinary Wnite-dimensional complex
structures featured in §12.9.
There is a particular signiWcance, for QFT, in how an (inWnite-

dimensional) complex structure arises here. We have already seen that
complex numbers, holomorphic functions, and complex vector spaces
have fundamental roles in quantum theory (and therefore in the basic
structure of our world). But the particular inWnite-dimensional complex
structure that comes in at this point, in the study of QFT, seems to have a

[26.3] Explain this CliVord-algebra structure, spelling out the role of the scalar product more

explicitly. (Take the deWning laws for a CliVord algebra in the form gpgq þ gqgp ¼ �2gpqI .)

Hint: gpq need not be diagonal.
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somewhat diVerent (though interrelated) signiWcance from these earlier
instances of complex-number magic. It goes beyond the mere statement
that the Hilbert spaces of quantum theory are complex (i.e. that quantum
superposition takes place with complex coeYcients). Let us try to under-
stand what this is about.
Let us recall how the notion of complex structure was introduced in

§12.9. A complex vector space of n dimensions can be thought of as a real
vector space of 2n dimensions where there is an operation J, satisfying
J2 ¼ �1, whose action on the real 2n-space amounts to ‘multiplication by
i’ on the complex n-space. The inWnite-dimensional version of this relevant
to QFT has to do with the passage from a classical Weld to a quantum Weld.
Up to this point, I have been phrasing things in a particle/wavefunction
language. But we also need to know how to go straight from a classical
Weld to a quantum Weld, since with classical Welds there is no classical
particle picture to hand which we can ‘quantize’ according to the proced-
ures of Chapters 21–23.
It is useful to keep the electromagnetic Weld particularly in mind, as a

model. Here, the linearity of Maxwell’s equations (§19.2) makes things
easier. The space FF of solutions of the free Maxwell equations (with
suitable fall-oV conditions at inWnity to make the relevant integrals con-
verge) is an inWnite-dimensional real vector space.[26.4] Using procedures
related to those described in §9.5, we can express each solution F of
Maxwell’s equations9 as a sum of a positive-frequency solution Fþ and a
negative-frequency solution F�:

F ¼ Fþ þ F�:

This splitting into positive and negative frequencies is crucial for the
construction of the appropriate QFT (recall the comments on this issue
in §24.3 and §26.2). The operation J, as applied to this inWnite-dimensional
real vector space FF , transforms it into a complex (inWnite-dimensional)
vector space and, in doing so, provides a way of encapsulating this
positive/negative frequency splitting. J does this by acting on each free
Maxwell Weld F in the following way:

J(F) ¼ iFþ � iF�:

The eigenstates of J with eigenvalue i are the positive-frequency (com-
plex) Welds and those with eigenvalue �i are the negative-frequency
Welds.[26.5] The positive-frequency Welds supply the single-photon wave-
functions that the creation operators are to introduce. There is also an

[26.4] Explain what addition, and multiplication by a scalar constant, mean in this space.

[26.5] Show this. (Don’t worry about subleties like ‘fall-oV conditions’?)
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explicit scalar-product expression that can be used to normalize states when
required (involving an integral over any spacelike 3-surface of an expres-
sion involving Maxwell Weld components multiplied by Maxwell potential
components;10 compare §21.9 and §22.3 for the scalar case). Other classical
Welds can be treated in a similar way, but when the ‘free Weld equations’ are
not linear (such as with general relativity) profound diYculties can arise.
We may refer to non-linear Welds as ‘self-interacting’ Welds, and we can
attribute such diYculties to the problems associated with quantization in
the presence of interactions, which we shall be coming to very shortly.

26.4 Antiparticles in QFT

Before doing so, let us return to the issue of antiparticles. In Chapter 24, and
again in §26.1, I stressed the importance of the antiparticle concept forQFT.
Howdo antiparticles feature in the presentQFT formalism?As remarked in
§25.3, some particles are their own antiparticles, whereas most particles are
not. Mathematically, the issue is whether or not the operation of complex
conjugation, as applied directly to the classical Weld quantities (or to the
1-particle wavefunction), yields a quantity of the same kind as it was before,
or not. In the case of a scalar Weld, this is usually (but not quite adequately)
expressed as the issue of whether the classical Weld is a real Weld, or not. The
complex Welds are taken to be charged Welds, where the complex phase angle
(the eiy factor) is to be treated according to the ‘gauge-Weld’ prescriptions for
electromagnetic interactions, as described in §15.8 and §19.4. The complex
conjugate of such a Weld has the opposite charge, and so it is not a ‘quantity
of the samekind’ (so, for example,we couldnotmeaningfully add theWeld to
its complex conjugate). In such situations, the particle and its antiparticle
are certainly diVerent.However, the complexnature—or ‘charged’ nature—
of the classical Weld is not by any means the whole story. The uncharged K0

meson, for example, diVers from its antiparticle, whereas the uncharged p0

meson is the same as its antiparticle. In both cases, the classical Weld would
be a real scalar.
What about spinor (or fermion) Welds? With Dirac’s electron, its charge

is suYcient to characterize its complex conjugate as having a diVerent
character from the original Weld. But in the case of neutrinos, if they
are massive, there is more than one possibility. For example, in the
situation of what is referred to as a Majorana spinor Weld, the (massive)
neutrino would be its own antiparticle. (In the descriptions given in
Chapter 25, the neutrino’s zig would be the antineutrino’s zag, and vice-
versa.) According to current understanding,11 neutrinos all differ from
their antiparticles.
So, how does the QFT formalism deal with antiparticles? Consider the

case when the operation of complex conjugation on the classical Weld—or
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on the 1-particle wavefunction c—yields a quantity of a diVerent charac-
ter, so the quantum particle diVers from its antiparticle. (The situation
where particle and antiparticle are the same is handled by our earlier
discussion, in §26.2) Now an ordinary wavefunction c should have posi-
tive frequency, but we can also consider some quantity f, of the same kind
as c, but which is of negative frequency. Then the complex conjugate f, of
f, would be a wavefunction of a diVerent type from c,
although both f and c are now of positive frequency. The quantity f
would provide a wavefunction for a 1-antiparticle state. The correspond-
ing creation operator for the antiparticle in that state would be F and for
the annihilation operator, F

*
.

Let us try to make contact with Dirac’s original ‘sea’ (described in §24.8)
by thinking of the ‘shadowy’ state, over on the far right of all the oper-
ators, in Dirac’s case, as being diVerent from the usual vacuum state j0i,
where we recall that j0i is to be viewed as totally devoid of particles or
antiparticles. Instead, we take this new ‘vacuum’ state to be Dirac’s ‘sea’
itself, denoted by jSi, which is to be completely full of all negative-energy
electron states, but nothing else. Let us now consider the situation of a
single positron which, in Dirac’s original picture, is described by a single
‘hole’ in the negative-energy electron states. All the other negative-energy
states are to be Wlled except for this particular missing one, which is given
by some negative-frequency f. The quantum-Weld-theoretic description,
using this jSi vacuum, would be result of the annihilation operator F*

acting on jSi, since this operator removes the negative energy state f from
this vacuum, giving the total state F*jSi.[26.6]
If we were to use the description that employs the more usual vacuum
j0i, then we would think that, instead of removing the negative energy
electron state f, we are inserting the positron state with wavefunction f.
This is achieved by applying the creation operatorF to j0i, giving the total
state Fj0i. This does not look the same as the F*jSi that we had with the
‘Dirac sea’ description, but there is a certain sense in which the states Fj0i
and F*jSi are basically equivalent. The operators F and F* both involve
introducing the same algebraic quantity into the total state, namely that
particular vector deWned by f in the Hilbert space of 1-particle wavefunc-
tions. The diVerence between the actual operators F and F* lies merely in
the algebraic[26.7] way in which this Hilbert-space vector is deemed to act
on the total state. Since we can always use anticommutation laws to move
F or F* over to the far right, the way in which the f is deemed to act on
the total state boils down to its action on the chosen vacuum state, j0i or

[26.6] Explain why we can remove a speciWc state in this way, despite my earlier qualiWcations

about what an annihilation operator actually does. (Hint: See Exercise [26.2].)

[26.7] By referring back to Exercise [26.2] and Fig. 12.18, exhibit this algebraic diVerence in the

abstract–index or diagrammatic notation.
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jSi as the case may be, over on the far right. This information can be
considered to be part of the speciWcation of what this vacuum state
actually means.

26.5 Alternative vacua

Some important comments should be made here about this situation in
which there appear to be alternative choices for our ‘vacuum state’. We
shall Wnd that the issue of ‘alternative vacua’ has some considerable
importance in modern QFT. Let us consider the algebra A, consisting of
all operators A that can be constructed from algebraic expressions, or
convergent power series expressions, in the creation and annihilation
operators. Two proposals for a ‘vacuum state’, say j0i and jSi, may
have the property that there is no element of A that can be applied to
either one of j0i or jSi in order to get the other. In such cases, the states j0i
and jSi have to be regarded as belonging to diVerent Hilbert spaces, and
we are then likely to Wnd that there are expressions of the form

hSjAj0i or h0jAjSi,

where A belongs to A, which give us inWnite answers, or no meaningful
answer at all. This forbids us from constructing a consistent quantum
theory in which both the states j0i and jSi appear. (Recall from the
discussion of §22.5 that quantities like hSjAj0i are expressions of the
general kind that we would need to use in order to compute probabilities;
see §22.3 for the notation.)
The issue coming up here is a profound one in QFT, and it plays a vital

role in modern approaches to particle physics. The ‘choice of vacuum
state’ is a matter of importance comparable with (and complementary
to) the choice of the algebra A generated by creation and annihilation
operators, the latter deWning, in a sense, the dynamics of the QFT. In the
case of free electrons, the two vacuua that we have been considering,
namely j0i (containing no particles and no antiparticles) and jSi (in
which all the negative-energy particle states are Wlled) can be considered
as being, in a sense, eVectively equivalent despite the fact that j0i and jSi
give us diVerent Hilbert spaces. We can regard the diVerence between the
jSi vacuum and the j0i vacuum as being just a matter of where we draw a
line deWning the ‘zero of charge’.
Indeed, we might think that Dirac’s sea is physically diVerent from a

proper vacuum, because the sea of negative-energy electrons should pro-
vide us with an enormous—indeed inWnite—electric charge. For the state
jSi to make physical sense, we have to ‘renormalize’ the charge so that the
inWnite total charge value of the ‘sea’ (in fact negatively inWnite, the
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electron’s charge being negative) counts as zero. A similar situation would
come about if we were to consider the mass of Dirac’s sea, where we might
now be concerned with its (active) gravitational inXuence. The inWnite
total negative energy of Dirac’s sea would (by E ¼ mc2) provide
an inWnite negative mass, which is physically nonsensical, just as in the
case of inWnite electric charge. Again, if we are to take Dirac’s sea ser-
iously, we must also renormalize the mass of the vacuum, by ‘adding an
inWnite mass density’ to that of the sea, so that the total provides us with
the zero value that we require for the mass density of the observed
vacuum.
The reader may well have formed the impression that this question of

‘alternative vacua’ and of this apparent need to ‘renormalize’ such things
as charge and mass, adding in an inWnite constant in order to get sensible
physical answers, is merely an artefact of the strange ‘sea’ idea that Dirac
originally found the need to introduce. However, we shall be Wnding that
these two features are by no means speciWc to Dirac’s extraordinary ‘sea’.
They appear to be ubiquitous in all serious approaches to a realistic theory
of particle physics—at least as those approaches stand today. The stand-
ard model makes fundamental use both of renormalization and of alter-
native vacua. Far from being an anomaly of history, Dirac’s sea serves as a
kind of model that we do well to keep in mind when we try to move
forward, at least within the scheme of things that is available to us today.
The twin criteria of agreement with observation and of mathematical
consistency, although incompletely fulWlled, have taken us on a route
which, so far, has been dependent upon the ideas of renormalization and
non-unique vacua.

26.6 Interactions: Lagrangians and path integrals

The diYculties that have led us in these directions arise from the problems
that come about when we attempt to treat interactions within the frame-
work of QFT. Indeed, my discussion so far has been basically concerned
only with the case of free Welds, and although I have not supplied all the
details, I hope that the reader will trust me when I say that things proceed
in an essentially trouble-free way when interactions are absent. States can
be constructed in which there are superpositions of diVerent numbers of
particles and antiparticles, and even unlimited numbers of such particles.
These states are obtained by acting on j0i with an arbitrary element of A,
i.e. an expression in creation and annihilation operators (polynomial or
power series, paying due attention to convergence issues in the latter case).
The space of such states is referred to as Fock space (after the Russian
physicist V.A. Fock, who was one of the Wrst to study such things), and it
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can be thought of as what is called a direct sum12 (see §13.7) of Hilbert
spaces with increasing numbers of particles. The number of particles in a
state may be unlimited, such as with the coherent states which are, in a
certain well-deWned sense,13 the most ‘classical-like’ of the quantum Weld
states. These are states of the form

eJ j0i,

where J is the Weld operator associated with the particular Weld conWgura-
tion F (which let us take to be a free real Maxwell Weld with suitable fall-oV

properties at inWnity to ensure that a Wnite norm exists). We deWne J to be
the sum of the creation and annihilation operators (not normalized)
corresponding to the positive- and negative-frequency parts of F, respect-
ively.
We recall from §26.2 that the creation and annihilation operators satisfy

certain commutation relations. It follows that the various components of
the Weld operators do not generally commute with each other. For
example, in the case of the electromagnetic Weld, the components of the
operator deWning the magnetic Weld B and those deWning the electromag-
netic potential A (see §§19.2,4) satisfy canonical commutation rules (like
those between position and momentum of a particle, see §21.2).14 It
follows that Heisenberg uncertainly relations (see §21.11) must hold be-
tween these quantities, providing a limit to the accuracy that they can be
simultaneously measured.
How, then do we deal with interactions? Crucial to the general frame-

work of modern QFT is the Lagrangian (see §20.1), which is in many
respects more appropriate than a Hamiltonian when we are concerned
with a relativistic theory. As we recall from §21.2, §23.2, and Chapter 24,
the standard Schrödinger/Hamiltonian quantization procedures lie un-
comfortably with the spacetime symmetry of relativity. However, unlike
the Hamiltonian, which is associated with a choice of time coordinate, the
Lagrangian can be taken to be a completely relativistically invariant entity
(see §20.4). How do we construct a QFT starting from a Lagrangian? The
basic idea, like so many of the ideas underlying the formalism of quantum
theory, is one that goes back to Dirac,15 although the person who carried it
through as a basis for relativistic quantum theory was the brilliant Ameri-
can physicist Richard Feynman.16 Accordingly, it is commonly referred to
as the formulation in terms of Feynman path integrals or Feynman sum

over histories. It is also the basis of the Feynman graphs that we considered
in Chapter 25.
The basic idea is a diVerent perspective on the fundamental quantum-

mechanical principle of complex linear superposition that we encountered
earlier, and made particularly explicit in §22.5. Here, we think of that
principle as applied, not just to speciWc quantum states, but to entire
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spacetime histories. We tend to think of these histories as ‘possible alter-
native classical trajectories’ (in conWguration space). The idea is that in the
quantum world, instead of there being just one classical ‘reality’, repre-
sented by one such trajectory (one history), there is a great complex

superposition of all these ‘alternative realities’ (superposed alternative
histories). Accordingly, each history is to be assigned a complex weighting
factor, which we refer to as an amplitude (§22.5) if the total is normalized
to modulus unity, so the squared modulus of an amplitude gives us a
probability. We are usually interested in amplitudes for getting from a
point a to a point b in conWguration space.
The magic role of the Lagrangian is that it tells us what amplitude is to

be assigned to each such history; see Fig. 26.2. If we know the Lagrangian
L, then we can obtain the action S, for that history (the action being just
the integral of L for that classical history, according to the prescription
given in §20.5; see Fig. 20.3.). The complex amplitude to be assigned to
that particular history is then given by the deceptively simple formula

amplitude / eiS=�h:

Part of the deception, in the simplicity of this formula, lies in the fact
that the ‘amplitude’ is not really a (complex) number, here (which, as
written, would have to have unit modulus), but some kind of density. If
we had just a discrete family of alternative classical histories, numbered
1, 2, 3, 4, . . . , say, then we could imagine that the nth history could be
assigned a genuine complex number an as its amplitude, whose squared
modulus janj2 could be interpreted as the probability of that history, in
accordance with the rules of quantum measurement (§22.5), and we should
normalize, to have

P

janj2 ¼ 1, summed over all the classical alternatives,
to give total probability 1. But here we have a continuous inWnity of

Fig. 26.2 In the path-integral

approach to quantum theory

and QFT, we consider quantum

superpositions of alternative

classical histories, a history being

a path in conWguration space,

here taken between Wxed points a

and b. The amplitude assigned to

such a path is eiS=�h (times a Wxed

constant), where the action S is

the integral of the Lagrangian

along the path, as in §20.1 (Fig.

20.3). The total amplitude to get

from a to b is the sum of these.
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classical alternatives. Our above ‘amplitude’ thus has to be thought of as
an ‘amplitude density’, and we need something like

Ð

ja(X )j2dX ¼ 1, in-
stead, where we have to integrate over the space of classical states to
achieve our requirement that the total probability comes out as 1. This
would not be particularly troublesome—we did this sort of thing before, in
§21.9, in the case of a wavefunction, for the ordinary quantum mechanics
of a point particle (where jc(x)j2 gave us the probability density of Wnding
the particle at the point x). But the bad news here is that the ‘space of
classical paths’ will almost certainly turn out to be inWnite-dimensional. It is
a problem of a diVerent order of magnitude to make sense of the various
quantities involved—and to be sure to get out Wnite answers in the end—
when we have to deWne all the things that we need so as to work in an
inWnite-dimensional space.
The most accessible illustration of a path integral is the case of a single

point particle moving in some Weld of force (so the conWguration space is
now space itself). Here, we consider all the various histories, starting at
some spacetime point a and Wnishing at some other spacetime point b as in
Fig. 26.3a. These histories are taken to be continuous spacetime paths
winding their way from a to b. We do not require that the path be a ‘legal’
one, according to the rules of special relativity (i.e. that it be constrained to
lie within the light cones, as required by classical relativity; see §17.8), nor
do we even require that the path proceed entirely into the future. The
‘history’ can wiggle up and down in time if it wants to (Fig. 26.3b)![26.8] Let

b

M M
a

(a) (b)

a

b

Fig. 26.3 (a) For a single structureless particle, a classical history is a curve in

spacetime (here Minkowski space M), taken between Wxed events a, b. (b) The

curve need not be a classically allowable smooth world-line, with tangent always

future-timelike; it can even wander backwards and forwards in time.

[26.8] Give a ‘physical interpretation’ of the history of Fig. 26.3b, in terms of particle creation

and annihilation.
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us suppose that we have some Lagrangian L, describing (in accordance
with §20.1) the particle’s kinetic energy minus the potential energy due to
the Weld of force. For each history there will be some action S, where S is
the integral of the Lagrangian along the path (recall Fig. 20.3). In classical
mechanics, our friend Joseph L. Lagrange would have told us to search for
a particular history for which the action integral is stationary (Hamilton’s
principle; see §20.1), this being the actual particle motion consistent with
the classical motion under the given force. In the path-integral approach to
quantum mechanics, we are to take a diVerent view. All the histories are
supposed to ‘coexist’ in quantum superposition, and each history is
assigned an amplitude eiS=�h. How are we to make contact with Lagrange’s
requirement, perhaps just in some approximate sense, that there should be
a particular history singled out for which the action is indeed stationary?
The idea is that those histories within our superposition that are far

away from a ‘stationary-action’ history will basically have their contribu-
tions cancel out with the contributions from neighbouring histories (Fig.
26.4a). This is because the changes in S that come about when the history
is varied will produce phase angles eiS=�h that vary all around the clock, and
so will cancel out on the average. (This applies, in particular, to the very
‘non-physical’ contributions coming from the wildly acausal histories of
Fig. 26.3b.) Only if the history is very close to one for which the action is
large and stationary (so the argument runs), will its contribution begin to
be reinforced by those of its neighbours, rather than cancelled by them
(Fig. 26.4b), because in this case there will be a large bunching of phase
angles in the same direction.[26.9]

eis eis

a

b

a

b

(a) (b)

[26.9] Try to make these statements more precise by referring to Wrst-order changes in the path,

using ‘O’ symbols (as in §14.5), and relating this to the discussion given in §20.1, concerning the

meaning of ‘stationary action’. (Assume that S is large in units of �h.)

Fig. 26.4 The quantum ‘Hamil-

ton’s principle’. (a) A history for

which S is not stationary (and is

large compared with �h). The

values of eiS=�h for histories close

by tend to vary greatly around

the unit circle, and consequently

there is much cancellation in the

sum. (b) A history for which S is

stationary (and large). For

nearby histories, the values of

eiS=�h do not change much, so

there is much less cancellation.
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This is indeed a very beautiful idea. In accordance with the ‘path-integral’
philosophy, not only should we obtain the classical history as the major
contributor to the total amplitude—and therefore to the total probability—
but also the smaller quantum corrections to this classical behaviour, arising
from the histories that are not quite classical and give contributions that do
not quite cancel out, which may often be experimentally observable.
Although my descriptions above have been phrased in terms of a point
particle moving in a Weld of force, the ideas apply extremely generally, and
can be applied to the dynamics of Welds as well as to the motion of particles.
Again, the ‘Weld-histories’ that represent classical solutions of the Weld
equations should emerge as providing the main contributions, and there
will also be quantum corrections arising from the near-classical histories.

26.7 Divergent path integrals: Feynman’s response

At least, that is what is supposed to happen. But does it? Are the crude
descriptions that I have presented above mathematically justiWed? Even if
not, and we barge through, ignoring mathematical niceties, do we get good
physical answers that are in agreement with experiment?
I can only give very mixed answers to these questions. The issue of

mathematical justiWcation is particularly troublesome, and the fairest
answer to give, on this point, would be: ‘No; not as things stand today.’
Even the case of the single point particle, as described above, is decidedly
problematic. The space of paths is certainly inWnite-dimensional,[26.10] and
an appropriate ‘measure’ (the inWnite-dimensional version of a volume) is
required to handle this. It turns out that this measure is heavily weighted in
favour of histories that are not even smooth, sowehave toworry aboutwhat
the Lagrangian even means in such circumstances. Everything diverges, as
the deWnition stands.
These divergences are certainly serious from the mathematical point

of view, and we may prefer to resort to the ‘Eulerian’ philosophy that,
in §4.3, led us to speculate about the sense whereby we might be able to
trust the ‘nonsense’ summation

1þ 22 þ 24 þ 26 þ 28 þ . . . ¼ � 1
3
,

obtained by substituting x ¼ 2 in 1þ x2 þ x4 þ x6 þ x8 þ � � � ¼ (1� x2)�1.
Indeed, the path-integral approach is, it seems, almost wholly dependent
upon a faith that the wildly divergent expressions that we are presented
with (like the divergent series above) actually have a deeper ‘Platonic’
meaning that we may not yet properly perceive. We appear to be forced
to admit that something of this nature must be the case because, on the

[26.10] Why?
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physical side, we are not infrequently presented with answers of uncanny
physical accuracy when (if I may be permitted to conjure up an improb-
able-sounding metaphor) we bulldoze our way through the mathematics
with great sensitivity and precision! For example, these calculational
procedures yield the correction factor 1.001 159 652 188, referred to in
§24.7, to Dirac’s original value for the electron’s magnetic moment, pro-
viding an agreement between theory and observation17 which is discrepant
by less than 10�11.
It is indeed remarkable how far the application of mathematical/phys-

ical sensitivity can lead us to excellent answers in many cases. A valuable
Wrst step towards making sense of such path integrals,18 in the case of
individual free quantum particles, is the replacement of the wild collection
of histories by what is called the Feynman propagator.19 This gives us the
mathematical interpretation of one of the lines in a Feynman graph (such
as those encountered in Chapter 25).
More speciWcally, let us consider a sum over histories for which some

free particle is to start at a point p and to end at some other point q, in
spacetime. In principle, we are to form the sum (integral) of all the eiS=�h for
paths originating at p and terminating at q, but this is certainly wildly
divergent, as it stands. On the other hand, we can suppose that the sum
K(p, q) has some kind of mathematical (‘Eulerian/Platonic’) existence, and
we ask what formal algebraic and diVerential properties this sum ought to
have, if it existed. These properties (including an appropriate ‘positive-
frequency’ condition; see §24.3) Wx the form of K(p, q) uniquely (if we are
reasonably fortunate in the example that we have chosen), and this gives
us the Feynman propagator that we seek. In fact, it is more usual (though
by no means essential20) to describe these things in momentum space
rather than position space, the momentum-space descriptions looking
signiWcantly simpler.
In the case of a Dirac particle (e.g. an electron), the momentum-space

propagator turns out to take the form i(P=�Mþ ie)�1, where P= ¼ gaPa

(see §§24.6,7), the quantity Pa being the 4-momentum that the particle
happens to have, for the chosen path under consideration. The quantity ‘e’
is taken to be a very small positive real number, which is a device geared to
ensure the positive/negative-frequency requirements of the Feynman
propagator. In the limit e! 0, it turns out that we get a singularity in
the propagator—an inWnite value—when the ‘rest mass’ (PaP

a)1=2 that the
particle happens to have for that chosen path, takes the value M that is the
particle’s actual rest mass.[26.11] For a classical particle, we would require
that this ‘rest mass’ does take this value, i.e. that PaP

a ¼M2, but with the

[26.11] Explain how this singularity arises, by Wrst rewriting (P=�Mþ ie)�1 as a quotient for

which the denominator is PaP
a �M2 � e2.
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quantum-mechanical sum over histories, we must allow that the particle
feels out values of the momentum for which the rest mass comes out
‘wrong’. Because of the singularity just referred to, however, we Wnd
that the amplitude gets very large when PaP

a gets very close to the value
M2, so the classical value for the mass gives the dominant contribution.
This is a feature that is not speciWc to a Dirac particle, and it applies quite
generally.

26.8 Constructing Feynman graphs; the S-matrix

What has been described in the previous section is the Wrst step towards
obtaining a Feynman graph. This needs some further explanation. What
we have found is a single line (segment) of such a graph. A particular such
line in a Feynman graph would normally be just part of a complicated
expression, involving other particle lines and various vertices where the
lines come together. The contributions to the total amplitude coming from
the vertices are normally21 just simple factors, involving a scalar coupling
constant (such as the electric charge) governing the stength of the inter-
action, perhaps a term such as ga that is needed to ‘get the indices to match
up’, and a ‘delta-function’ term (§9.7) to ensure that the only non-zero
contributions to the total amplitude arise when conservation of
4-momentum takes place at each vertex.22 There will be various kinds of
term arising from the diVerent varieties of line in the graph (depending
upon the spin and rest-mass value for the particle that the line represents).
The inWnities in the expression (apart from those of the delta-function
terms, which are normally just regarded as providing constraints ensuring
4-momentum conservation) arise when the momenta Pa acquire the par-
ticular values expected for classical paths (basically PaP

a ¼M2). This
makes sense because we expect classical behaviour to dominate the path
integral. The presence of these singularities (the inWnities apart from those
in the delta functions) is therefore intimately related to the requirement
that classical behaviour provides, in some rough sense, the leading contri-
bution to the quantum-mechanical amplitude. Yet, there is danger lurking
in these singularities, as we shall shortly see.
Just to emphasize the necessity of these singular expressions, I should

point out that we cannot regard the condition PaP
a ¼M2 as a constraint

(like the momentum conservation at vertices), because of the existence of
basic processes such as that of Fig. 26.5, in which two electrons ‘exchange
a photon’ (the photon being indicated by a wiggly line, as in §§25.3–5).
This is the basic quantum-mechanical manifestation of the electrostatic
(Coulomb) repulsion between the two negatively charged particles (Møller
scattering). The two incoming lines (at the bottom of the graph) represent
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the two electrons in their initial state and the two outgoing lines (at the
top23 of the graph) represent the electrons in their Wnal state. These are
taken as ‘given things’—providing the external momenta—and are not to
be ‘integrated over’ in calculating the Wnal amplitude.
For these external states (and for these only) we take the momenta to

satisfy the classical relation PaP
a ¼M2. We say that a particle’s mass is on

shell when this relation holds, this being the ‘mass shell’, which is the
momentum-space version of the bowl-shaped hyperboloid depicted in Fig.
18.7. See Fig. 26.6. Real particles (the ones that are actually observed as
free particles) are always on shell. However, with regard to the internal

lines of a Feynman graph, we do not expect this on-shell requirement to
hold. In particular, the exchanged photon, in the Feynman graph of Fig.
26.5 cannot be on shell (i.e. its 4-momentum does not satisfy PaP

a ¼ 0)
whenever there is a non-trivial interaction.[26.12] Such oV-shell particles are
referred to as virtual particles, and they can occur only in the interior of a

Mass shell

Real :
Virtual :

Massive case
Massless case

Fig. 26.6 The mass shell in momentum space. (Compare Figs. 18.7, 18.17.) For

real (free) particles of rest-mass M, the 4-momentum pa lies on the mass shell (so

pa is future timelike or future null with pap
a ¼M2), but virtual particles, in the

interior of a Feynman graph, can be ‘off shell’.

Fig. 26.5 Møller scattering of electrons: the

most primitive quantum manifestation of the

electrostatic (Coulomb) force between two

charged particles. The electrostatic force comes

about, here, from the ‘exchange’ of a single

photon (wiggly line) between two electrons.

The photon is necessarily ‘oV shell’ and

therefore virtual, as follows from 4-momentum

conservation at each vertex.

[26.12] Why not? Explain how 4-momentum conservation at each vertex determines the

4-momentum of the virtual photon. Hint: All electrons have the same rest mass!
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(a) (b) (c)

Fig. 26.7 Higher-order processes giving corrections to Møller scattering. (a) and

(b) depict 2-photon exchanges between two electrons, while (c) is a much higher-

order process involving internal pair creations and annihilations. Each such Feyn-

man graph represents an integral, and the contributions from all of them must be

added up.

Feynman graph. The exchanged photon of Fig. 26.5 is virtual, and it
cannot ‘escape’ to be observed at large distances.
The process of Fig. 26.5 is rather special in that the state of the internal

line (virtual photon) is completely Wxed by the external lines. In this case,
the ‘integration over internal states’ that is generally required is completely
trivial, consisting of just a single term. However, in a more complicated
process, such as those depicted in Fig. 26.7a,b, where two photons are
exchanged, there is some freedom in the 4-momenta of the internal
lines.[26.13] The idea is that in such cases (and in myriads of ever more
complicated ones; see Fig. 26.7c) we are indeed supposed to integrate over
all the possibilities for the allowed momenta for the internal lines, and also
to add up all the diVerent contributions for all the diVerent possible
‘Feynman graph topologies’ that are consistent with the given external
lines with their given momenta. (A ‘topology’ simply refers to one of the
various diVerent ways that a Feyman graph can be connected up, without
regard to the particular 4-momentum values that have been assigned to the
lines in the graph.)
This process is to give us the total amplitude for the particular set of ‘in’

and ‘out’ momenta that have been speciWed as ‘given’. The collection of
amplitudes, for the various possible in-states and out-states, constitutes a
kind of matrix (though an inWnite-dimensional one) whose ‘rows’ and
‘columns’ correspond to a basis for the out-states and in-states, respect-
ively. This is referred to as the scattering matrix or, more usually, simply as
the S-matrix. The calculation of the S-matrix is considered to be a major
objective of QFT.24

[26.13] What is this freedom?
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The above procedure is a vast improvement, in calculational terms, over
the original ‘sum over histories’, because in eVect we have already eVec-
tively done the inWnite-dimensional (and seemingly hopelessly divergent)
path integrals that correspond to each separate line in the graph. Each
choice of Feynman graph topology represents an ordinary Wnite-dimen-
sional integral (like those considered in §12.6), and this is a considerable
advance from the wildly divergent inWnite-dimensional integrals that the
direct interpretation of a path integral would lead us into. Moreover, these
Wnite-dimensional integrals can be treated by the powerful methods of
complex contour integration (as discussed in §7.2). Feynman’s parameter
e, appearing in the propagator (see the last paragraph of §26.7), is really
just a prescription for guiding the contour of integration to the appropri-
ate side of the singularities that appear in the expressions.
Yet, we are very far from being ‘out of the woods’, because the merely

Wnite-dimensional integral that we have been left with, for each Feynman
graph topology, is itself going to be divergent, whenever there are closed

loops in the Feynman graph. This would appear to be ‘very bad news’; for
it is only with closed loops that we begin to come to terms with the
performing of any integration at all. In all other cases (i.e. the so-called
‘tree graphs’, which have no closed loops; see Fig. 26.8), the internal
momenta are simply Wxed by the external values. Tree graphs merely
reproduce the classical theory!

26.9 Renormalization

So it seems that for all our (or, rather, Feynman’s) eVorts, we are still
stuck with a divergent expression for the total amplitude of any genuinely
quantum process. The weary reader may be legitimately wondering, at
this stage, what good all this has done us. Indeed, from a strict mathe-
matical standpoint, we have got oYcially ‘nowhere’, in the sense that all

Fig. 26.8 A tree graph contains

no loops. The internal momenta

are consequently Wxed by the

external momenta, so no integration

is involved. Tree graphs reproduce

the classical theory.
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our expressions are still ‘mathematically meaningless’ (as was Euler’s
1þ 22 þ 24 þ 26 þ � � � ¼ � 1

3
). Yet good physicists will not give up so

easily. And they were right not to do so. Their eVorts were eventually
rewarded25 when it emerged that, in the case of QED (quantum electro-
dynamics: the theory of interacting electrons, positrons, and photons), all
the divergent parts of the individual Feynman graphs could be collected
together in various ‘parcels’ so that the inWnities could be regarded as
merely providing ‘rescaling’ factors that can be ignored, according to a
process known as renormalization (already hinted at, in §26.5).
These particular inWnities arise because the Feynman graphs yield inte-

grals that diverge when momentum values get indeWnitely large—or,
equivalently, when distances get indeWnitely small. (Recall Heisenberg’s
momentum–position uncertainty relation Dp Dx $ 1

2
�h; see §21.11.) The

inWnities are referred to as ultraviolet divergences. Although not the only
divergences in QFT, they are considered to be the most serious ones. There
are also infrared divergences that we can regard as coming about from
indeWnitely large distances (i.e. from indeWnitely small momenta). These
are usually regarded as ‘curable’ by various means, often by restricting the
type of question that is regarded as being physically sensible to ask of a
system.
In order to get some feeling for what is involved in the ultraviolet

divergences, let us examine the physical meaning of the clearest instance
of renormalization. This occurs with the value of the electric charge
possessed by the electron. Imagine an electron to be a point charge,
situated at some point E in space. There is an eVect known as vacuum

polarization which can be understood in the following way. We envisage
that, at some point close to E, there might be the creation of a (virtual)
pair of particles: an electron and positron, which after a very short period
of time annihilate each other. (We regard this period of time as being short
enough that the energy required to produce the pair falls within the
uncertainties of Heisenberg’s energy–time relation DE Dt $ 1

2
�h (§21.11.)

The Feynman graph for this process is indicated in Fig. 26.9a. The
presence of the (virtual) photon line at the beginning (and also at the
end) of this process is to indicate that the creation (and subsequent
annihilation) occurs in the ambient electric Weld of the electron at E. (We
could also contemplate completely disconnected Feynman ‘loops’, see Fig.
26.9b, in which the creation and annihilation processes take place without
the presence of the ambient Weld of the electron at E; but such ‘totally
disconnected’ processes are considered to have no physically observable
eVects.) The eVect of this ambient Weld is that the created electron is
slightly repelled by the electron at E, whereas the created positron is
slightly attracted by it, so there is a slight physical separation between
these charges during their momentary existence. This is happening all the
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E
(a) (b)

time all around the electron at E, and the net eVect, referred to as ‘vacuum
polarization’, is to reduce26 the apparent value of that electron’s charge, as
measured by its eVect on other charges; Fig. 26.10.[26.14] The vacuum
serves to ‘shield’ the electron’s charge, and make it appear to have a
smaller value—called the dressed value of the charge—than the ‘actual’
bare charge value of the electron. It is the dressed value that would be the
one measured directly in physical experiments.
This seems all very reasonable. But the trouble is that the calculated

numerical factor whereby the bare value must be scaled up, in relation to
the dressed value, tuns out to be inWnity! This inWnity can be clearly
identiWed as one of the inWnities in the quantum electrodynamical calcula-
tion (basically diagrams like that of Fig. 26.9a and elaborations of it). One
may take the view that according to some future theory, the divergent
integrals should be replaced by something Wnite, perhaps because there is a
‘cut-oV’ coming in at very small distances, i.e. to very large momenta
(§21.11), and the correct renormalization factor should be some rather

E

[26.14] Can you see why this should be?

Fig. 26.9 (a) A Feynman

graph involved in charge

renormalization. This

represents a positron–electron

pair creation and subsequent

annihilation in the Weld of a

background electron (see

Fig. 26.10). (b) Completely

disconnected Feynman graphs.

These are considered to have

no directly observable eVects.

Fig. 26.10 Vacuum polarization: the

physical basis of charge renormalization.

The electron E induces a slight charge

separation in virtual electron–positron pairs

momentarily created out of the vacuum.

This somewhat reduces E’s eVective

charge from its bare value—unfortunately

by an inWnite factor, according to direct

calculation.
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large Wnite number, rather than1. (In fact, in terms of the ‘natural units’
that we shall be coming to later—in §31.1—the electron’s measured
dressed charge is about 0.0854, and it is tempting to imagine that the
bare value should be 1, say. This would correspond to a scaling up factor
of 11.7062, or about

ffiffiffiffiffiffiffiffi

137
p

, instead of 1.) Another point of view is to
regard the bare charge as being no more than a conceptual convenience,
and to take the standpoint that the notion of ‘bare charge’ is actually
‘meaningless’, because it is ‘unobservable’.
Whatever philosophical position is taken on this issue, renormalization

is an essential feature of modern QFT. Indeed, as things stand, there is no
accepted way of obtaining Wnite answers without such an ‘inWnite rescal-
ing’ procedure applied not necessarily only to charge, or to mass, but to
other quantities also. Theories in which this kind of procedure works
are called renormalizable. In a renormalizable QFT, it is possible to
collect together all the divergent parts of the Feynman graphs into
a Wnite number of ‘parcels’27 which can be ‘scaled away’ by renormaliza-
tion, any remaining divergent expressions being deemed to cancel out
with each other in accordance with certain overall principles (such as
the symmetry principles that play important roles in the standard
model). QED is a renormalizable theory, and so is the standard
model as a whole. Most QFTs, on the other hand, are non-renormalizable.
It is a common standpoint, among particle physicists, to take renorma-
lizability as a selection principle for proposed theories. Accordingly
any non-renormalizable theory would be automatically rejected as in-
appropriate to Nature. Indeed, this principle has provided a powerful
guide towards the particular choice of theory that became the 20th cen-
tury’s standard model of particle physics which we encountered in Chapter
25. Thus, on this viewpoint, the prevalence of inWnities in QFTs is not a
‘bad’ thing at all, but is a feature that can be turned powerfully to our
advantage.28 Very few theories pass the test of renormalizability, and only
those that do pass have a chance of being regarded as acceptable for
physics.
Yet, not all physicists subscribe rigorously to this position. Even the

Nobel Laureate Gerard t’Hooft, who supplied the key ingredient for
demonstrating the renormalizability of the standard model, has voiced
certain reservations about the strict adherence to renormalizability. (In
1971, while still a graduate student at the University of Utrecht, t’Hooft
had shaken the physics community by demonstrating the renormalizabil-
ity of theories where there is a ‘spontaneously broken’ symmetry—which
became an essential feature of electroweak theory.) He expressed to
me, on one occasion, his viewpoint that the importance of renormaliz-
abiliy to a theory depends upon the size of the coupling constant in the
interaction under consideration. He referred speciWcally to gravity, which
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is extraordinarily weak compared with the forces of particle physics, yet
its quantum theory turns out to be non-renormalizable according
to standard approaches to the quantization of Einstein’s equation for
general relativity; see §19.6 and §31.1. (The gravitational attraction be-
tween the electron and proton in a hydrogen atom is weaker than the
electric force by a factor of some 10�40, which makes gravity almost
unimaginably weaker than the ‘weak interactions’ of radioactive decay.)
His remarks expressed what might be called a pragmatic view of
QFT. Even renormalizable theories are not free from inWnities, an issue
that I shall elaborate upon in a moment. His point was to question
whether inWnities, potentially present in a theory, are actually physically
relevant at energies remotely accessible to experiment. In the case of
a ‘quantized gravity’, such energies are ridiculously beyond what is
feasible, and many other uncertainties in physical theory would enter
the picture long before gravity’s non-renormalizability would begin to
make its mark.
On the other end of the scale, he argued, we have the strong interactions,

with a coupling constant so large that it is doubtful that a description
solely in terms of Feynman graphs is fully useful, because the series of
increasing terms would diverge too wildly. Renormalizability alone is
insuYcient to ensure that quantum chromodynamics can supply Wnite
answers. In this case, one takes advantage of what is called the asymptotic

freedom of the strong force. For very large momenta—which, in quantum
theory, amounts to very tiny distances—the strong force has the remark-
able property that it eVectively disappears. This is in complete contrast
with the familiar electric or gravitational force between particles, where
the inverse square law tells us that the force increases when the distance
gets smaller. The strong force is more like an elastic band, where the
strength of the force increases in proportion to the distance of stretch,
and it drops to zero when the distance becomes zero.29 This force law is
held responsible for the fact—referred to as conWnement (see §§25.7,8)—
that quarks cannot be individually pulled out of a hadron. Unlike an
ordinary elastic band, the strong force cannot ‘snap’, although if you
pull hard enough, other entities such as anti-quarks or quark pairs can
be dragged out of the vacuum as well—which is the kind of thing
that happens with the ‘jets’ that can occur in particle accelerators. This
remarkable property of asymptotic freedom is what saves the theory of
strong interactions from being calculationally useless, despite its renorma-
lizability. For the record, the strong coupling constant is about 10, which
may be contrasted with the electromagnetic coupling constant—the so-
called Wne-structure constant—which is about 1

137
, and the weak force,

though not directly numerically comparable, is vastly weaker (see also
§31.1).
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26.10 Feynman graphs from Lagrangians

In my descriptions of Feynman graphs, renormalization, etc., I have rather
leaped ahead, and have not explained how these diagrams are obtained,
for any particular Weld theory. Nor have I related the Feynman-graph
description to the general formalism of QFT with which this chapter
began. Let me now go a little way towards rectifying this omission and
make clearer the status of Feynman graphs within the general framework
of QFT.
The starting point would be a Lagrangian, appropriate to the theory

under consideration. The Feynman graphs then represent a perturbation

expansion of the quantum theory associated with that Lagrangian. A
perturbation expansion is basically just a power series expansion, in
terms of some parameter (or family of parameters) that we normally
think of as small. This type of expansion is the same sort of thing that
we discussed in §4.3, where a function f(x) is expanded as a power series in
x. The analogue of x for the Feynman graphs would normally be some
coupling constant. In the case of QED, for example, this parameter would
be electric charge e. For each vertex of a Feynman graph there would be a
factor of e, so the terms of the series would be graphs with increasing
numbers of vertices, where the graphs with n vertices would, together,
provide the coeYcient of en. For theories with more than one coupling
constant, we would get a more complicated power series, in more than one
variable. An example would be a version of QED in which the electron
lines of the standard approach are replaced by zigzags, in accordance with
Figs. 25.2 and 25.3b. The two ‘coupling constants’ would then be the
electric charge and the mass M of the electron.
I have remarked that renormalizable theories are not necessarily Wnite.

Even that archetypal renormalizable theory, QED, is not actually a Wnite
theory, even after renormalization. How can this be? Renormalization
refers to the removal of inWnities from Wnite collections of Feynman
graphs. It does not tell us that the summation of all these resulting Wnite
quantities is actually convergent. What QED gives us is a power series
like f0 þ f1eþ f2e

2 þ f3e
3 þ � � � , where each of the coeYcients

f0, f1, f2, f3, . . . is a Wnite quantity, obtained from the accepted ‘renorma-
lizing’ procedures of working out Feynman graph integrals, at each
successive order, 0, 1, 2, 3, . . . . (In fact, only even or only odd powers
would appear, in any particular case.[26.15]) Renormalizability does not
tell us that the sum of the entire series is Wnite. In fact it is not Wnite but
has a ‘logarithmic divergence’ (like the series 1þ 1

2
þ 1

3
þ 1

4
þ � � � for

� log (1� x) at x ¼ 1) which, for QED, does not begin to show up until

[26.15] Can you see why?
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we reach terms of order 137, or so, which is far beyond what is normally
considered to be relevant.
For a general quantum Weld theory, to work out exactly what graphs

occur at each order, we need to appeal to the original path-integral
expression, even though this expression represents something that would
be very badly divergent, if we tried to sum it directly. The procedure is to
treat the path integral as an entirely formal quantity, to which straight-
forward but formal functional derivative procedures are applied (§20.5).
Feynman graphs with successively more vertices are obtained when higher
and higher order functional derivatives are performed. I do not propose to
go into this matter in any more detail here, except to say that the gener-
ation of the Feynman graphs is unambiguous,30 according to this formal
procedure. The Lagrangian will, of course, be a Weld Lagrangian, of the
general type discussed in §20.5. The ‘path’ that is involved, for such a
Lagrangian, would not be an ordinary 1-dimensional curve, say in
some inWnite-dimensional conWguration space. For a fully relativistically
invariant picture, the ‘history’ must be an entire 4-dimensional Weld
conWguration in a speciWed spacetime region. The integral of the Lagran-
gian density over that region would be the action S, and eiS=�h then provides
the amplitude (density) that is to be assigned to that particular conWgura-
tion.

26.11 Feynman graphs and the choice of vacuum

For a theory with a symmetry under some group, like the U(2) symmetry
of electroweak theory or the SU(3) symmetry of quantum chromodynam-
ics or both, this symmetry would normally be taken to be a manifest
symmetry of the Lagangian. The presence of such a symmetry would be
important for the renormalizability of the QFT. Roughly speaking, the
symmetry is used in order to ensure that certain divergent terms cancel
each other out, the cancellation occurring (or being deemed to occur)
because if there were to be a surviving diverging expression, such an
expression could not share the postulated symmetry of the theory.
At least, that is the general idea. In the case of electroweak theory,

however, there is another subtlety, because the resulting theory does not,
after all, possess the originally postulated U(2) symmetry.31 The lack of
U(2) symmetry is taken to be the result of symmetry breaking (§25.5), but
to understand how this is to be accommodated, we need to return to our
general quantum-Weld-theoretic formalism. The basic idea is that the
breaking of the symmetry is accounted for by a U(2)-asymmetric choice
of vacuum state. Accordingly, the shadowy ‘j0i’ state that is imagined to be
over to the far right of all the creation and annihilation operators, and

681

Quantum field theory §26.11



which has been largely ignored in our considerations of Feynman graphs
up to this point, must begin to emerge from its shadows.
First, we shall need to see, very roughly, how to relate the elements of

the QFT algebra A to Feynman graphs. A key point of importance is that
the Feynman propagators, which the lines of a Feynman graph represent,
are basically the values of the commutators or anticommutators that we
came across in §26.2 (i.e. the ‘hcjfi’ in these expressions). In practice, these
are normally expressed in terms of momentum space—although there are
some subtleties in deWning the precise Feynman propagators, arising from
the positive/negative-frequency issues (which may perhaps be best under-
stood from the hyperfunctional perspective of §9.7). Let us not concern
ourselves with these subtleties here.
Now, suppose we are concerned with a situation which starts oV with a

certain collection of incoming particles, and where some collection of
outgoing particles Wnally emerges. We start with the vacuum state j0i,
and then apply the various creation operators that are needed to produce
the required state for the incoming particles. This procedure yields the
initial state jcini. Similarly, we can adopt the same procedure, but now
using the creation operators for the outgoing particles, again acting on j0i,
so as to produce the Wnal state jcouti. The amplitude hcoutjcini is what we
wish to calculate, from which we can obtain the probability of getting from
‘in’ to ‘out’ by simply using the standard formula, given in §22.5, which is
just jhcoutjcinij

2, if the states are normalized.
Now, the expression hcoutjcini involves annihilation operators on the

left (because the Hermitian conjugation involved in passing from jcouti to
hcoutj changes all the creation operators into annihilation operators).
These all lie to the left of the creation operators in jcini, so we can envisage
‘pushing’ all these annihilation operators through the creation operators
on their right, until they hit the j0i at the far right. Whenever this happens,
the j0i gets ‘killed’ (see §26.2), so the expression obtained is zero. But each
time we push an annihilation operator through a creation operator we
must take into account the commutator (and positive/negative frequency
requirements) referred to above, giving us one line of a Feynman graph, as
I have indicated. Each time we do this, another such line appears. Finally,
all we get is h0j0i multiplied by the collection of Feynman propagators
representing the lines of a Feynman graph—and h0j0i ¼ 1, for a normal-
ized vacuum state, so we just get the Feynman graph itself.
So far, our Feynman graph is completely trivial, having no vertices at

all—but this is because I have not included any interactions in the algebra of
operators A. To do so, we would need to examine the speciWc Lagrangian
that is relevant to our particular problem and use it to generate the correct
A. Basically, these procedures would just mirror those referred to in §26.10
for generating Feynman graphs, with their appropriate vertex terms.
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So far, we may have gained little, but an advantage of bringing our
Feynman graphs into the general framework of QFT is that now we can
replace the vacuum state j0i by an alternative vacuum jYi, which can be
inequivalent to it (as with the Dirac sea state jSi that we considered in
§26.4). The virtue of this, with regard to electroweak theory, and other
theories which depend crucially on a fundamentally broken symmetry, is
that whereas the Lagrangian—and consequently the Feynman graphs of
the theory—are subject to an exact symmetry (the group U(2), in the case
of electroweak theory), the actual states of the system are subject to only a
lower symmetry (the gauge group U(1) of electromagnetism, in the case of
electroweak theory), because the vacuum state jYi possesses only this
lower symmetry. By this means, the renormalizability of the theory that
the full unbroken symmetry confers is undisturbed, despite the fact that
the theory as a whole exhibits only a smaller ‘broken’ symmetry group.
This is clearly a marvellous device for producing physical theories which

can reap the beneWt of an exact symmetry while the observational situation
is one in which the symmetry is far from satisWed. It is the kind of thing
that has provided a great temptation to physicists in their further gropings
for better and deeper schemes. Indeed, all the modern ideas for going
beyond the standard model try to take advantage of this type of ‘symmetry
breaking’. Yet, all such attempts, no matter how popular—such as those
that I shall be addressing in §§28.1–5—must still be regarded as very
speculative. We shall need to keep a critical and skeptical eye on proposals
of this nature, lest we get carried away too easily.
As a prelude to addressing some of these proposals, we shall need

to gain some acquaintance with the Big Bang in the next chapter. Then
in Chapter 28, we shall try to come to terms with some of the alarming
issues that can accompany the idea of spontaneous symmetry breaking in
the particular context of the early universe. Finally, we shall need to brace
ourselves even harder, for the needed uses of this ubiquitous idea, when, in
Chapter 31, we come to examine supersymmetry, the original ideas of
string theory, and then some of their extraordinary descendents.

Notes

Section 26.1

26.1. See Aitchison and Hey (2004); or Zee (2003).

Section 26.2

26.2. I am going to be a little ‘non-standard’ in my descriptions here, by allowing

the ‘wavefunction’ c to be just a general, not necessarily normalized, positive-

frequency Weld. The lack of normalization correspondingly also applies to the

creation operator C (and to the annihilation operator C*). In many conven-

tional descriptions, c would be taken to be some momentum state.

Quantum field theory Notes
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26.3. In much standard literature, the symbol a is used for an annihilation operator,

where ay (the Hermitian conjugate of a) is used for the corresponding creation

operator, and a momentum-space description is normally adopted; see Shankar

(1994) and Zee (2003).

26.4. Some readers, familiar with the standard literature, may be confused by this

because it is frequently the case that the creation and annihilation operators

that are used are restricted to be those for the various diVerent momentum

states, which form an orthogonal basis. In that case, the annihilation operators

do remove speciWc states.

26.5. See Zee (2003); Peskin and Schröder (1995).

26.6. Zee (2003) for an incisive demonstration of this requirement.

26.7. There are also some intriguing topological issues that interconnect particle

exchange with 2p rotation, but the full implication of these with regard to

QFT remains unclear. See Finkelstein and Rubinstein (1968); Feynman

(1986); Berry (1984); see Shankar (1994) for the discussion of the Berry phase.

Section 26.3

26.8. See Landsman (1998) for a rather challenging technical reference; also Ashtekar

and Magnon (1980).

26.9. Perhaps written in terms of a potential.

26.10. General issues of state normalisation are treated, for example, in Ryder (1996).

Quantization of the electromagnetic field is given a somewhat more traditional

treatment in Shankar (1994).

Section 26.4

26.11. See Shrock (2003) for some of the latest news on neutrinos—currently a very

‘hot’ area in physics!

Section 26.6

26.12. The Fock space for the simple case of a boson Weld, where the particle is its own

antiparticle, can be written C�H�{H�H}�{H�H�H}�{H�H�H�H}

� . . . , where the direct sum operation is denoted by � and where the symbol �
denotes symmetrized tensor product. More complicated cases where there is spin

and charge, etc., can be treated correspondingly. See Shankar (1994) for the

general idea; Davydov (1976) may also be useful.

26.13. See Hannabuss (1997); Shankar (1994) for a discussion of coherent states—

which can come in many varieties (fermionic, spin, etc.).

26.14. See Wald (1994); Birrell and Davies (1984).

26.15. See Dirac (1933); Schwinger (1958).

26.16. See Feynman (1948, 1949). Feynman and Hibbs (1965) is an excellent overview

of the idea. Schwinger competing approach to quantum electrodynamics (see,

for example, Schwinger 1951) was in many ways more rigorous, but most

workers use the intuitive picture of path integrals and Feynman diagrams

today.

Section 26.7

26.17. As has been pointed out by Feynman, this degree of precision would determine

the distance between Los Angeles and New York to less than the thickness of a

human hair!

26.18. Some other noteworthy ideas, such as so-called ‘Euclideanization’ will be

discussed in §28.9.
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26.19. This is an example of what is called a Green’s function (after the very remarkable

miller’s son and self-taught English mathematician George Green; 1793–1841).

The Feynman propagator is a particular Green’s function K(p, q), deWned by

the positive-frequency requirements of quantum theory referred to in §24.3.

26.20. This may be viewed as slightly ‘old fashioned’; see for example the classic

Bjorken and Drell (1965).

Section 26.8

26.21. There are quantities referred to as ‘running coupling constants’ which have

functional dependence on the rest-energy of the total system of incoming

particles at a Feynman vertex. These have a signiWcance in many modern

theories of particle physics.

26.22. Thus, if P(1)
a , P(2)

a , . . . are the ingoing momenta and Q(1)
a , Q(2)

a , . . . the out-

going momenta, at a vertex, then include the term d(P(1)
a þ P(2)

a þ
� � � �Q(1)

a �Q(2)
a � � � � ).

26.23. See Note 25.5.

26.24. The important concept of an ‘S-matrix’ (due to the highly original American

physicist J.A. Wheeler) is not tied to the notion of a Feynman graph, and it may

be evaluated by some other means.

Section 26.9

26.25. See Zee (2003); or Ryder (1996) for more (gory) detail.

26.26. Since the electron’s charge is negative, ‘reduce’, here, means ‘make the modulus

smaller’.

26.27. There are certain elegant mathematical procedures, geared to the systematizing

of this method, that take advantage of the notion of a ‘co-product’, related to

the ideas of non-commutative geometry dicussed brieXy in §32.1; See Connes

and Kreimer (1998).

26.28. One important body of techniques is that supplied by the notion of the ‘renor-

malization group’. Zee (2003) and Ryder (1996) as well as Peskin and Schröder

(1995) treat these ideas; their bearing on statistical mechanics is elucidated in

the encyclopaedic Zinn-Justin (1996).

26.29. Gravitational forces are still noticeable (even to beyond galactic scales), despite

their falling oV with distance, according to the inverse square law. The reader

might worry why the strong force, on the other hand, is hardly noticeable at all

at greater than nuclear distances even though it actually increases with distance.

The reason is that, whereas gravitation accumulates, being always attractive,

the strong force is a composite of attractive and repulsive components which

necessarily cancel one another completely between separated nuclei (individual

nucleus being necessarily ‘colour singlets’).

Section 26.10

26.30. Zee (2003) and Zinn-Justin (1996) teach the algorithm; for a rather amusing and

intuitive take, Mattuck (1976) is also recommended.

Section 26.11

26.31. See Note 25.12.
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27
The Big Bang and its thermodynamic legacy

27.1 Time symmetry in dynamical evolution

What sorts of laws shape the universe with all its contents? The answer
provided by practically all successful physical theories, from the time of
Galileo onwards, would be given in the form of a dynamics—that is, a
speciWcation of how a physical system will develop with time, given the
physical state of the system at one particular time. These theories do not
tell us what the world is like; they say, instead: ‘if the world was like such-
and-such at one time, then it will be like so-and-so at some later time’.
Such a theory will not tell us how the world is shaped unless we tell it how
the world was shaped.
There have been important exceptions to this form of things, such as

Kepler’s wonderful conclusion, in 1609, that the orbits of the planets
about the Sun have certain geometrical shapes—ellipses with the Sun at
one focus—described with speeds satisfying speciWc rules. That was an
assertion about how the universe is, rather than how its state might
develop from moment to moment, in accordance with some dynamical
law. But our present perspective on Kepler’s geometrical motions is that
they are mere consequences of 17th century gravitational dynamics, as Wrst
shown by Newton and published in his great Principia of 1687, and
Kepler’s laws are not to be thought of as directly fundamental to the
ways of Nature. Indeed, it could be argued that Kepler—and science as
a whole—was immensely fortunate that the nature of the speciWc law of
force governing Newton’s gravity, the inverse square law (§17.3), has the
property that all the orbits of small bodies about a central force are
actually simple and elegant mathematical shapes (and, indeed, shapes
that had been intensively studied by the ancient Greeks, some eighteen
centuries earlier). For this is a very exceptional property, shared by hardly
any other simple central force law. In general, our modern perspective
holds that it is the dynamical laws that we expect to have an elegant
mathematical form, and it is a matter of good fortune for us if we happen
to Wnd simple mathematical shapes as consequences of these laws.
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The usual way of thinking about how these dynamical laws act is that it is
the choice of initial conditions that determines which particular realization
of the dynamics happens to occur. Normally, one thinks in terms of systems
evolving into the future, from data speciWed in the past, where the particular
evolution that takes place is determined by diVerential equations. (These
would be partial diVerential equations—Weld equations—when there are
dynamically evolving Welds or wavefunctions; see §10.2, §§19.2,6, §21.3,
Exercise [19.2], and Note 21.1) One does not, on the other hand, tend to
think of evolving these same equations into the past, despite the fact that the
dynamical equations of classical and quantum mechanics are symmetrical
under a reversal of the direction of time! As far as the mathematics is
concerned, one can just as well specify Wnal conditions, at some remote
future time, and evolve backwards in time.Mathematically, Wnal conditions
are just as good as initial ones for determining the evolution of a system.
Some comments are called for, concerning this time-symmetrical dy-

namical determinism. First, the reader may be reassured that it is not
substantially invalidated by the framework of either special or general
relativity. Data deWning the state of the system are speciWed at some initial
‘time’, which is some initial spacelike 3-surface, and these data evolve
according to the dynamical equations to determine the physical state of
the system to the future, and also to the past, of that 3-surface. There are,
however, some new issues that are raised by general relativity, because the
very structure of the spacetime into which the evolution Xows is part of the
physical state to be determined. (This has particular implications in the
context of black holes, that we shall need to confront later; see §28.8,
§§30.4,9.)
In the case of quantum mechanics, the determinism refers to the U part

of that theory only, the quantum state being taken to be governed by
Schrödinger’s equation (or equivalent). Under time reversal—the T re-
ferred to in §25.4—the time-derivative operator i�h]=]t of Schrödinger’s
equation (§21.3) must be replaced by �i�h]=]t (since t 7! � t). Provided
that the Hamiltonian is an ordinary one, which goes to itself under the
action of T, we see that Schrödinger evolution also goes to itself, so long as
we accompany the time reversal t 7! � t by a reversal of the sign of the
imaginary unit: i 7! � i. Indeed, this is how we think of the action of T in
quantum mechanics. (We may note that a positive-frequency function f(t)
is converted back to a positive-frequency function under the combined
replacements t 7! � t and i 7! �i so all is well, in this respect.[27.1]) The
behaviour of quantum state reduction R under the action of T is another
matter, however, and it will provide an important issue for our deliber-
ations in Chapter 30 (§30.3).

[27.1] Why? Also, explain why spatial momentum is handled consistently by this replacement.
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27.2 Submicroscopic ingredients

There are, however, other questions that might worry the knowing reader,
even just with regard to classical dynamics. Time-reversal symmetry is
certainly true of the submicroscopic dynamics of individual particles
and their accompanying Welds, in classical mechanics. But in practice,
one has little knowledge of the behaviour of the individual ingredients of
a system. A knowledge of the detailed position and momentum of every
particle is normally deemed to be both unobtainable and unnecessary, the
overall behaviour of the system being well enough described in terms
merely of some appropriate averages of the physical parameters of indi-
vidual particles. These would be things like the distribution of mass,
momentum, and energy, the location and velocity of the centre of mass,
the temperature and pressure at diVerent places, the elasticity properties,
the moments of inertia, the detailed overall shape and its orientation in
space, etc. An important issue, therefore, is whether or not a good initial
knowledge of such averaged ‘overall’ parameters will, in practice, suYce
for determining the dynamical behaviour of the system to an adequate
degree.
This is certainly not always the case. Systems known as chaotic have the

property that the Wnal behaviour depends critically on exactly how they
are started oV. As a familiar example, there is an ‘executive toy’ in which a
magnetic pendulum swings just above a collection of magnets placed in
some arrangement on the base. See Fig. 27.1. The dynamical behaviour is
well-enough governed, in a deterministic way, by Newton’s laws and the
laws of magnetostatics, together with the slowing down, due to frictional
resistance of the air. Yet the Wnal resting place of the pendulum depends so
critically upon the initial state that it is eVectively unpredictable, although
a fully detailed knowledge of this initial state, with all the constituent
particles and Welds would certainly Wx this evolution uniquely.1 Many
other examples of such ‘chaotic systems’ are known. A good measure of
the vagary of weather prediction is commonly attributed to the chaotic
nature of the dynamical systems involved. Even the highly ordered (and
very predictable) Newtonian gravitational motion of bodies in the solar

Fig. 27.1 Chaotic motion. An ‘executive toy’

consisting of a magnetic pendulum swinging

just above a collection of fixed magnets. The

actual path taken by the pendulum depends

extremely sensitively on its initial position

and velocity.
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system (probably) constitutes, technically, a chaotic system, although the
timescales that are relevant to such ‘chaos’ are vastly longer than those of
astronomical observation.
What about evolution into the past, rather than the future? It would be

a fair comment that such ‘chaotic unpredictability’ is normally much
worse for the ‘retrodiction’ that is involved in past-directed evolution
than for the ‘prediction’ of the normal future-directed evolution. This
has to do with the Second Law of thermodynamics, which in its simplest
form basically asserts:2

Heat Xows from a hotter to a colder body.

In accordance with this law, if we connect a hot body to a cold one
using some heat-conducting material, then the hot body will become
cooler and the cold body warmer until they settle down to the same
temperature. This is the expectation of prediction, and this evolution
has a deterministic character. If, on the other hand, we view this
process in the reverse-time direction, then we Wnd the two bodies at
eVectively the same temperature spontaneously evolving to bodies of
unequal temperature, and it would be a practical impossibility to decide
which body will get hotter and which colder, how much, and when. This
procedure of dynamical retrodiction, for this system, is clearly a hopeless
prospect in practice.
In fact, this diYculty would apply to the retrodiction of almost any

macroscopic system, with large numbers of constituent particles, behaving
in accordance with the second law. For this kind of reason, physics is
normally concerned with prediction, rather than retrodiction.3 As another
aspect of this, the Second Law is considered an essential ingredient to the
predictive power of physics, as it removes those problems that we just
encountered with retrodiction.
Nevertheless, many physicists would take the view that this law is

not ‘fundamental’ in the same sense that, say, the law of conservation
of energy, the principle of linear superposition in quantum mechanics,
and perhaps the standard model of particle physics are fundamental.
They would argue that the second law is an almost ‘obvious’ necessary
ingredient to any sensible physical theory. Many would take the view
that it is something vague and imprecise, and that it in no way can
compare with the extraordinary precision that we Wnd in the dynamical
laws that control fundamental physics. I wish to argue very diVerently,
and to demonstrate the almost ‘mind-blowing’ precision that lies
behind that seemingly vague statistical principle that we usually simply
refer to as the ‘Second Law’.
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27.3 Entropy

Let us examine, somewhat more exactly, what the Second Law actually
states. As a preliminary, I should inform the reader of the First Law of
thermodynamics. The First Law is simply the statement that the total
energy is conserved in any isolated system. The reader might well complain
that this is hardly something new (§18.6, §20.4, §21.4). But when this law
was put forward (initially by Sadi Carnot in the early 1820s, although not
published by him4), it had not been clear, previously, that heat is just a
form of energy—nor was the ordinary macroscopic notion of energy itself
completely clear. The Wrst law makes it explicit that the total energy is not
lost when, say, a body loses its kinetic energy (§18.6) as it slows down
because of air resistance. For this energy is simply taken up in heating the
air and the body. This heat energy is understood as (primarily) kinetic
energy in the motions of air molecules and vibrations of particles compos-
ing the body. Moreover, temperature is simply a measure of energy per
degree of freedom, so the thermodynamic notions of heat and temperature
are basically the same as previously understood dynamical notions, but
applied at the level of the individual constituents of materials and treated
in a statistical way. The First Law has the kind of precision that we are
familiar with: the value of something, namely the total energy, remains
constant despite the fact that all kinds of complicated processes may be
taking place. The total energy after the process is equal to the total energy
before the process.
Whereas the Wrst law is an equality, the second law is an inequality. It

tells us that a diVerent quantity, known as the entropy has a larger (or, at
least, not smaller) value after some process takes place than it had before.
Entropy is, very roughly speaking, a measure of the ‘randomness’ in the
system. Our body moving through the air starts with its energy in an
organized form (its kinetic energy of motion) but when it slows down
from air resistance, this energy gets distributed in the random motions of
air particles and individual particles in the body. The ‘randomness has
increased’; more speciWcally, the entropy has increased.
The notion of entropy was introduced by Clausius in 1865, but it was the

outstanding Austrian physicist Ludwig Boltzmann who, in 1877 made the
deWnition of entropy clear (or, at least, as clear as it seems possible to make
it). To understand Boltzmann’s idea (for a classical system), we need the
notion of the phase space (§12.1, §§14.1,8, §§20.1,2,4) which, we recall, for a
classical system of n (featureless) particles, is a space P of 6n dimensions,
each of whose points represents the entire family of positions and mo-
menta of all n particles. In order to make the notion of entropy precise,
we require a concept of what is called coarse graining.5 We can think of this
as a division of the phase space P into a number of subregions which I shall
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Macroscopically
indistinguishable

Phase space P, coarse grained

refer to as ‘boxes’. See Fig. 27.2. The idea is that collections of points of P
that represent states of the system that are indistinguishable from one
another with regard to macroscopic observations, are considered to be
grouped together in the same box, but points of P belonging to diVerent
boxes are deemed to be macroscopically distinguishable. The Boltzmann
entropy S, for the state of the system represented by some point x of P is

S ¼ k log V ,

where V is the volume of the box V that contains x (this being a natural

logarithm; see §5.3), and where k is Boltzmann’s constant,6 having the value

k ¼ 1:38� 10�23J K�1

(where J means joules and K�1 means ‘per degree kelvin’).
I have said that Boltzmann’s deWnition makes the notion of entropy

‘clear’. But for the above formula for S to represent something physically
precise, it would be necessary to have a clear-cut prescription for the
coarse graining that our family of ‘boxes’ is supposed to represent. There
is undoubtedly something ‘arbitrary’ in the particular division into boxes
that one might happen to select. The deWnition seems to depend upon how
closely one chooses to examine a system. Two states that are ‘macroscopic-
ally indistinguishable’ to one experimenter might be distinguishable to
another. Moreover, exactly where the boundary between two boxes
happens to be drawn is again very arbitrary, since two neighbouring points
of P, with one on each side of the boundary, might be assigned quite
diVerent entropies, despite their being virtually identical. There is still
something very subjective about this deWnition of S, despite its being a
distinct advance on earlier notions of more limited applicability, and an
undoubted improvement on the idea of just a measure of the ‘randomness’
in a system.

Fig. 27.2 Boltzmann entropy.

This involves the division of

phase space P into sub-regions

(‘boxes’)—called a ‘coarse

graining’ of P—where the points

of a given box represent physical

states that are macroscopically

indistinguishable. Boltzmann’s

deWnition of the entropy of a

state x, in a box V of volume V ,

is S ¼ k log V , where k is Boltz-

mann’s constant.
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My own position concerning the physical status of entropy is that I do
not see it as an ‘absolute’ notion in present-day physical theory, although
it is certainly a very useful one. There is, however, the possibility that it
might acquire a more fundamental status in the future. For this, quantum
physics would certainly need to be taken into consideration—and, in any
case, it is quantum mechanics that provides an absolute measure to any
particular phase-space region V, contained in P, where units may be
chosen so that �h ¼ 1 (as with Planck units, see §27.10).[27.2] Be that as it
may, it is remarkable how little eVect the arbitrariness in coarse graining
has in the calculations of thermodynamics. It seems that the reason for this
is that, in most considerations of interest, one is concerned with absolutely
enormous ratios between the sizes of the relevant phase-space box volumes
and it makes little diVerence where the boundaries are drawn, provided
that the coarse graining ‘reasonably’ reXects the intuitive idea of when
systems are to be considered to be macroscopically distinguishable. Since
the entropy is deWned as a logarithm of the box volume, it would indeed
need a ‘stupendous’ redrawing of boundaries to get any signiWcant change
in S.[27.3] In my view, entropy has the status of a ‘convenience’, in present-
day theory, rather than being ‘fundamental’—though there are indications
that, in a deeper context where quantum-gravitational considerations
become important (especially in relation to black-hole entropy), there
may be a more fundamental status for this kind of notion. We shall be
coming to this issue later in this chapter (§27.10) and in §§30.4–8, §31.15,
and §32.6.

27.4 The robustness of the entropy concept

A simple illustration may make the role of Boltzmann’s entropy formula a
little clearer. Consider a closed container in which a regionR is marked oV

as special, say a bulb-shaped protuberence of one tenth of the container’s
volume having access to the rest of the container through a small opening;
see Fig. 27.3. Suppose that there is a gas in this container consisting of m

molecules. We are going to ask for the entropy S to be assigned to the
situation in which the entire gas Wnds itself in R, in comparison with the
entropy to be assigned to the situation in which the gas is randomly
distributed throughout the container.
We shall have S ¼ k logVR, by Boltzmann’s formula, where VR is the

volume of the phase-space region VR representing all molecules being inR.

[27.2] Show how to assign an absolute measure to a phase-space volume if units are chosen so

that �h ¼ 1.

[27.3] How does the logarithm in Boltzmann’s formula relate to the ‘stupendous’ discrepancies

in box volumes?
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R

For simplicity, we assume what is called Boltzmann statistics, as opposed
to the ‘Bose–Einstein statistics’ of bosons and the ‘Fermi–Dirac statistics’
of fermions, as described in §23.7; that is, we suppose that all the gas
molecules are distinguishable from each other (at least in principle).[27.4]

Taking the gas to be ordinary air at atmospheric pressure, with a container
of a litre in volume, we have m ¼ 1022 molecules, approximately. The ratio
of the volume of the phase-space region VR to the volume of the entire
phase space P for the gas in the container is 10�m(¼ 1

10m ),[27.5] which is

10�10000000000000000000000,

so we see something of the ‘stupendous’ volume ratios that come up
with considerations of this kind. The Wgure above represents the ridicu-
lously tiny probability of Wnding—just by pure chance—that all the gas
molecules are indeed in R. The entropy of that exceedingly improbable
situation is much smaller than the entropy of the situation where the gas is
randomly distributed, the diVerence being about

�k log (10�10000000000000000000000) ¼ 2:3� 1022k

¼ 0:32 J K�1

by Boltzmann’s formula,[27.6] where I have used the fact that the natural
logarithm of 10 is about 2.3. Thus, if we suppose that the gas is initially
held inR, say by a valve closing it oV from the rest of the container, and if
we then open the valve to release the gas into the remainder of the
container, we Wnd an appreciable entropy increase of some 2:3� 1022k,
which in ordinary units is about one-third of a joule per kelvin.

[27.4] Explain how the counting would diVer, in the three cases.

[27.5] Why?

[27.6] Show why this result is not signiWcantly aVected if we bring in fermion/boson consider-

ations or if we take into account the probable momentum decrease of the gas molecules when they

cease to be constrained to R.

Fig. 27.3 A closed container, part of which is a

bulb-shaped region R whose volume is 1
10

of that of the

entire container. How much does the entropy increase

when a gas, initially all contained in R, is allowed to

Xow into the entire volume?
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The reader might worry that it would not be feasible, in practice, to have
a container in which absolutely no gas molecules are initially in the non-
special part of the container. Let us, accordingly, relax our deWnition of
the region VR a little, deWning it so thatR need only contain at least 99.9%
of the gas molecules. Thus, VR now demands that not more than one
thousandth of these molecules lie outside R. It is well within present-day
technology to have a vacuum of this relative perfection in the non-special
region. It turns out that the result is hardly aVected at all, and the entropy
increase, on opening the valve, is still of the general order[27.7] of
2:3� 1022k. This is a striking illustration of the fact that although there
is subjectivity in drawing the coarse-graining boxes (say VR), this causes no
serious problems so long as the boxes are drawn ‘reasonably’.
The logarithm in Boltzmann’s formula has an important purpose, in

addition to making the enormously large numbers look manageable. This
is that the resulting deWnition of entropy, for independent systems, is
additive. Thus, if the entropies assigned to two independent systems are
S1 and S2, then the entropy assigned to the total system, consisting of the
two taken together, will be S1 þ S2. I am assuming that the phase-space
for the total system is P ¼ P1 � P2, where P1 and P2 are the phase-spaces
for the two individual systems, and that the coarse-graining boxes of the
total system are the products of the coarse-graining boxes of P1 and P2,
this being a very natural assumption,[27.8] for independent systems S1, S2.
(See §15.2, Exercise [15.1], and Fig. 15.3a for the deWnition of �, applied to
spaces.) Since the box volumes are multiplied, the corresponding entropies
are added (by the standard property of the logarithm; see §5.2).
In normal examples of physical systems—and certainly the much-

studied case of an ordinary gas in an ordinary container—there is a
particular box E of the coarse graining whose volume E far exceeds
the volume of any of the other boxes. This represents the state of
thermal equilibrium. Indeed, E will normally be practically equal to
the volume P of the entire phase space, and so E will easily exceed the
volumes of all the other boxes put together. See Fig. 27.4. For an
ordinary gas, which we consider to be made up of identical spherically
symmetrical balls in thermal equilibrium, the distribution of velocities
takes up a particular form known as the Maxwell distribution (found
by the same James Clark Maxwell that we have encountered before,
in connection with electromagnetism). It has a probability density of
the form

[27.7] See if you can see why the entropy increase has dropped just a very little, from

2:30� 1022k to 2:29� 1022k, approximately, by making various rough estimates for the math-

ematical quantities involved. (Use Stirling’s formula n! � (n=e)n(2pn)�1=2, if you wish.).

[27.8] Why is this course-graining assumption natural?
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E

Thermal equilibrium

A e�bv
2

,

(which those in the know will recognize as that of a Gaussian distribution,
sometimes called the ‘bell curve’) where v is the magnitude of the 3-velocity
of the gas particle in question, b is a constant related to the temperature,
and A is a constant such that the probability integral over the space of all
possible velocities is 1; see Fig. 27.5. Thermal equilibrium, having easily
the largest possible entropy for the system, is the state that one would
expect a system to settle into if left for a suYciently long time, in accord-
ance with the second law.
The Maxwell distribution, as just described, refers to a gas made from

identical classical bodies, with no internal degrees of freedom. Things can
get considerably more complicated when there are many kinds of constitu-
ents of diVerent sizes and various internal degrees of freedom (such as spin
or vibrations between its constituent parts). There is a general principle, for
such systems in thermal equilibrium, known as equipartition of energy

according to which the energy of the system is distributed equally (with a
statistical spread) between all the diVerent degrees of freedom of the system.

u

Fig. 27.4 The particular box

E, representing thermal equi-

librium, has a volume E, that is

normally practically equal to

the volume P of the entire

phase space P, and therefore

far exceeds the volumes of all

the other boxes together.

Fig. 27.5 The Maxwellian

distribution of velocities, for

a gas in equilibrium, has the

form Ae�bv
2

, where A and b
are constants, with b related

to the temperature of the gas,

v being the particle’s speed.

The dotted part of the curve

extends this to negative

values of v, revealing the fa-

miliar ‘bell-curve’ form of

the Gaussian distribution of

statistics.
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Another way in which the Maxwell distribution can become generalized
is to move away from exact thermal equilibrium and ask how we may
expect a gas will move in its approach to equilibrium (in accordance
with the Second Law). In such circumstances, an equation known as
Boltzmann’s equation is used to describe the evolution. The reader
will perceive that there is a vast subject here, of considerable relevance to
the theoretical understanding of how classical macroscopic bodies
will behave, when there are far too many constituent particles for their
dynamics to be tracked individually. This subject is referred to as statis-

tical mechanics.

27.5 Derivation of the second law—or not?

Let us now try to understand what lies behind the second law. Imagine that
we have some physical system represented by a point x in some suitably
coarse-grained phase-space P. Suppose (Fig. 27.6a) that x starts now in
some small coarse-graining box V of volume V. The point x will move
around in P in some way, in accordance with the dynamical equations

NOW(a)

(b)

Fig. 27.6 The Second Law in action. The evolution of a physical system is

represented by some curve in phase space. (a) If we know that at the moment

now, our system is represented by a point x in a box V of very small volume V,

and we try to see what would be its probable future behaviour, we conclude,

because of the vast discrepancies in box volumes, that, in the absence of any great

bias in its motion, it will almost certainly enter larger and larger boxes, in

accordance with the Second Law. (b) But suppose we apply this argument into

the past, asking for the most probable way that the curve found its way into V in

the Wrst place. The same argument seems to lead to the apparently absurd

conclusion that the most likely way was that x simply found its way into V from

boxes that become progressively larger as we proceed into the past, in blatant

contradiction with the Second Law.
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appropriate to the physical situation under consideration. Bearing in mind
the enormous discrepancy in the sizes of the diVerent coarse-graining
boxes, and anticipating no particular bias with regard to x’s dynamical
motion in relation to the box locations, we expect that, in overwhelmingly
many cases, x will wander into boxes of larger and larger volume. In other
words, the entropy of the system will indeed get larger and larger, as time
marches forward. Once x Wnds its way into a box with a certain entropy
measure, it becomes overwhelmingly unlikely that, in any sensible period
of time, it can Wnd itself back in a box of signiWcantly smaller entropy than
that. To reach a signiWcantly smaller entropy would mean Wnding an
absurdly tinier volume, and the odds are immensely against it. Think of
the example that we have just been considering, and the absolutely stu-
pendous reduction in phase-space volume that would accompany a very
modest reduction in entropy, owing to the logarithm in Boltzmann’s
formula and the small size of Boltzmann’s constant. Once the gas has
found its way out of R, it is ridiculously unlikely that it will Wnd its way
back again into R (at least not within any time-scale that is not ‘utterly
ridiculously long’).[27.9]

This argument contains the essential reason for expecting the second
law to hold. We note that the argument does not appear to depend on the
particulars of the dynamics at all, except that we require no bias having the
eVect that the point x deliberately seeks out smaller boxes. Is this really all
there is to the second law? It all seems too easy—and the apparently
universal nature of this kind of argument is perhaps the reason that
many physicists take the view that there is nothing fundamentally puzzling
about the second law, and that any reasonable physical theory must satisfy
it. A wonderful quote from the outstanding astrophysicist Sir Arthur
Eddington is pertinent here:

If someone points out to you that your pet theory of the universe is in
disagreement with Maxwell’s equations—then so much the worse for Max-
well’s equations. If it is found to be contradicted by observation—well, these
experimentalists do bungle things sometimes. But if your theory is found to
be against the second law of thermodynamics I can oVer you no hope; there
is nothing for it but to collapse in deepest humiliation.7

But a few moments’ reXection tells us that there is something odd about
the conclusion of the argument that I have just presented, or perhaps
something signiWcantly missing from these elementary considerations.
What we seem to have deduced is a time-asymmetrical law when the
underlying physics may be taken to be symmetrical in time. How has this

[27.9] Try to estimate how long this would have to be, both in the case where all the gas returns

to R and in the case where 99.9% of it does. Do you really need to know how fast the gas

molecules are moving?
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come about? We could imagine trying to apply the very same argument in
the past time direction (Fig. 27.6b). We seem to conclude that if we place
our phase-space point x in the same small box that we chose before, at
time now, and then examine the past-directed evolution prior to now,
then we conclude that it is overwhelmingly likely that x entered this box
from boxes that, as we proceed farther and farther into the past, become
larger and larger! But this would tell us that the reverse of the second law
held in the past, with entropy increasing in past directions, despite our
expectations, on the basis of this argument, that the familiar version of the
second law should indeed apply into the future. This conclusion is grossly
at variance with observations of the way in which our universe actually
behaved in the past. See Fig. 27.7.
What has gone wrong? To try to understand this, let us apply these

arguments to the behaviour of our gas in its container, where we start (at
time t0) with the gas entirely in R, so x lies in VR. We seem to get the
correct future behaviour for the gas, where after the valve is opened, the
gas indeed Xoods from R into the entire container, the entropy going up
very signiWcantly as x fairly rapidly Wnds itself in the region E, representing
thermal equilibrium. But what about the past behaviour? We have to ask
the question what happened just before time t0. What, indeed, is the most
likely way for the gas actually to have found its way into R? If we imagine
that the valve were open just before t0, then the ‘most probable evolution’
that we seem to have obtained is that the gas started spread out through-
out the container, eVectively in thermal equilibrium, at sometime earlier
than t0, and then it spontaneously concentrated itself more and more in
the region R, Wnding itself entirely in R at the time t0.
Absurd as it may seem, this is actually the correct answer to the problem

posed in this particular way, with no interference from outside. In practice,
we would just never Wnd the gas entirely inR. The argument merely tells us
how a randomly moving gas would have to behave if we were to Wnd the

Actual

Inferred
Actual

NOW
t

S

Fig. 27.7 The conclusions of

Fig. 27.6, expressed in a plot

of the entropy S against time t.

The reasoning correctly leads us

to expect a Second Law

for behaviour to the future of us

now, but it gives us the seem-

ingly absurd answer that the re-

verse of the Second Law held in

the past, in gross contradiction

with actual experience.
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gas spontaneously all in R, which we won’t. There is no paradox here. But
this evades the problem that I wish the reader to consider, which is how
could such a situation as the gas being entirely inR arise in practice? There
is no problem with this happening in our actual universe (where we take
the relaxed deWnition of the region VR which permits one thousandth of
the gas to lie outside R). We could imagine that some experimenter
initially pumped ten times the required amount of gas into the entire
container, next closed the valve, and Wnally applied a vacuum pump to
the main part of the container, to remove practically all of that 90% of the
gas. Throughout this entire process, the entropy would have been going up
all the time, in accordance with the second law. Of course, to discuss this in
terms of phase space, we need a bigger phase space in which the experi-
menter is also incorporated—probably along with a good deal more of the
universe too, perhaps extending out to the Sun or beyond. The entropy in
the experimenter’s body is kept very low through the acts of eating and
breathing. For simplicity, let us suppose that the pump is hand-operated—
otherwise we need to worry about origin of the low entropy in the fuel
source (which raises issues inessential to our present purposes). Part of the
experimenter’s lowness of entropy is transferred to the container with its
gas, and is employed in getting the gas into R. The low entropy in the
experimenter’s meals and in the air ultimately comes from the external
Sun. I shall be returning to this speciWc role of the Sun shortly.
Thus, we have been able to obtain the required situation, in which

virtually all the gas in the container is in the region R, without violating
the second law, which has its physically appropriate form: ‘entropy in-
creases with time’. What has happened to our diYculty with the apparent
deduction of a time-reversed second law, for behaviour into the past? Has
it been resolved? No, it certainly has not! The experimenter’s body ought
to (and indeed does) act in accordance with the actual second law, as does
the Sun and everything described by our enlarged phase space. But if we
try to apply our phase-space argument—now to this enlarged phase
space—then we still seem to obtain the physical absurdity that the entropy
must have gone up again into the past, prior to any time when we examine
our entire system.

27.6 Is the whole universe an ‘isolated system’?

Some theoreticians try to make a distinction between ‘isolated’ and ‘open’
systems, arguing that while entropy increases (until equilibrium is reached)
in an isolated system, there is always the possibility of an input from the
outside world that can serve to reduce entropy from time to time—such as
intervention by an experimenter or a low-entropy input from the Sun, etc.
It seems to me that any attempted explanation for the time-asymmetry in
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the second law along these lines can have only a provisional status,
because these outside inXuences can, in their totality be incorporated
into the system. This implies that the ‘system’ under consideration really
has to be the universe as a whole. Sometimes people object to this, but I see
no justiWcation for such an objection. It may well be that the universe is
indeed inWnite in extent, but that is no bar to its being considered as a
whole (see Chapter 16). In any case, the universe might be spatially Wnite (a
distinct possibility that we shall come to shortly) and it would seem strange
to rely on an argument for the second law whose validity is dependent
upon the universe being actually spatially inWnite. As we shall see later, the
inWnite/Wnite distinction, is only very mildly relevant to the question of the
origin of the second law. The discussion of entropy can indeed be applied
to the entire universe U, where a phase-space PU (whose volume might be
inWnite) describes a broad totality of possible universes, incorporating all
their evolutions according to the dynamical equations of (the appropriate)
classical dynamics.
There are, however, some awkward issues to be faced. To treat the

universe as a whole, we need to enter the realm of cosmology, which
cannot be done adequately without bringing in general relativity. In
order to have a discussion that is completely in accord with the principle
of general covariance of general relativity (§19.6), it would be necessary to
employ a description in which there is no special choice of time coordinate
with respect to which the universe is supposed to ‘evolve’. A temporally
evolving picture is explicitly the way that we have been regarding a
physical system, when we represent it as a point x moving in a phase-
space P. Each location of x represents a spatial description (momentum
included) of the system at one time. But to adopt a more relativistic view
would complicate this description unnecessarily, and I do not think that,
for the points that I wish to make here, it is helpful to try to take a strictly
relativistic viewpoint. In fact, as we shall shortly see, the standard cosmo-
logical models possess a naturally deWned time coordinate, and this gives a
good approximation to a ‘time parameter’ t that the whole universe can be
described as evolving with respect to. Each point of PU will be taken to
describe not only the material contents of the universe at time t, but also
the distribution (and momentum) of continuous Welds. The gravitational
Weld is one such Weld, so the universe’s spatial geometry (together with its
rate of change—given by appropriate initial data for the gravitational
Weld)8 will also be encoded in the location of x within PU .
In fact, PU will be inWnite-dimensional, but this happens whether or not

the universe U is inWnite in extent, and it is a feature that occurs with all
other Welds also, such as the electromagnetic Weld. This causes some
technical problems for the deWnition of entropy, since each required
phase-space region V will have inWnite volume. It is usual to deal with
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this problem by borrowing ideas from quantum (Weld) theory, which
enables a Wnite answer to be obtained for the phase-space volumes which
refer to systems that are appropriately bounded in energy and spatial
dimension. The details of this are not important for us. Although there
is no fully satisfactory way of dealing with these issues in the case of
gravity—owing to a lack of a satisfactory theory of quantum gravity—I
am going to regard these as technicalities that do not aVect the general
discussion of the issues raised by the second law.
At this point, I should mention a misconception that frequently causes

great confusion with regard to the second law in a cosmological setting.
There is a common view that the entropy increase in the second law is
somehow just a necessary consequence of the expansion of the universe.
(We shall be coming to this expansion in §27.11). This opinion seems to be
based on the misunderstanding that there are comparatively few degrees of
freedom available to the universe when it is ‘small’, providing some kind
of low ‘ceiling’ to possible entropy values, and more available degrees of
freedom when the universe gets larger, giving a higher ‘ceiling’, thereby
allowing higher entropies. As the universe expands, this allowable max-
imum would increase, so the actual entropy of the universe could increase
also.
There are many ways to see that this viewpoint cannot be correct. It

implies for example that, in those universe models where there is a col-
lapsing phase, the entropy necessarily starts to decrease, in violation of the
second law. Some might not be unhappy about this,9 but this viewpoint
encounters fundamental diYculties, particularly in the presence of black
holes.10

We shall be considering black holes shortly (in §27.8), but we really do
not need to know about them to see why the aforementioned viewpoint—
demanding a ‘ceiling’ on entropy values depending upon the universe’s
size—is misconceived. This cannot be the correct explanation for the
entropy increase; for the degrees of freedom that are available to the
universe are described by the total phase space PU . The dynamics of
general relativity (which includes the degree of freedom deWning the uni-
verse’s size) is just as much described by the motion of our point x in the
phase space PU as are all the other physical processes involved. This phase
space is just ‘there’, and it does not in any sense ‘grow with time’, time not
being part of PU . There is no such ‘ceiling’, because all states that are
dynamically accessible to the universe (or family of universes) under
consideration must be represented in PU . It may take some while for x

to reach some large coarse-graining box from some given smaller one, but
the notion of an ‘entropy ceiling’ is inappropriate. (See also §27.13.)
Let us return to the argument given above for demonstrating the second

law. We shall use the phase space PU appropriate to the entire universe, so
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the evolution of the universe as a whole is described by the point x moving
along a curve x in PU . The curve x is parametrized by the time coordinate t,
and we can expect that, from the second law, x enters immensely larger
and larger coarse-graining boxes as t increases. We suppose that some
‘reasonable’ coarse graining has been applied to PU , but if we wish to
obtain Wnite values for the entropies that x encounters, we would want the
volumes of these boxes to be Wnite. It would appear that for this to be
achieved, for a physically appropriate coarse graining, the universe has to
be taken to be Wnite, with a Wnite bound on its available energy. In fact, as
we shall shortly see, one of the three standard cosmological models is
indeed of this nature, so we can imagine that the argument is being applied
in such a situation. But there is no deWnite requirement for this, if we do
not mind an actual inWnite numerical value for the entropy, at any one
time. (We can still make mathematical sense of the notion that some boxes
are ‘immensely larger’ than other boxes, even if the actual volumes of some
of them, and therefore their entropies, are inWnite.)

27.7 The role of the Big Bang

How are we to envisage that our parametrized curve x, representing a
possible universe history, is to be placed in the phase-space PU? If x were
simply to be thrown randomly into PU , then we would expect that, with
overwhelming probability, it would lie entirely (or almost entirely) in the
most enormous thermal-equilibrium box E, and there would be no con-
sistently discernible measure of ‘entropy increase’ throughout its length;
see Fig. 27.8a. Such a situation is completely at variance with the universe
as we actually know it, in which a second law holds sway. So also is the
situation indicated in Fig. 27.8b,c, where for some particular time t0(>0)

that represents now, the point x on x is constrained to be in some
reasonable-sized, but not particularly large, region V (representing a uni-
verse of an entropy value that we happen to observe now) but where the
curve x is otherwise chosen randomly. This corresponds to a universe
whose entropy goes up in the future from now, but also goes up into the
past from now—in violation of the second law! What we actually Wnd is
something like Fig. 27.8b,d, for a universe with our familiar second law,
where x has one end—the past end (say t ¼ 0)—in an exceedingly tiny
region B in PU (which therefore has a exceedingly small entropy), but from
there on it Xaps around as it will (following the dynamical laws), Wnding
volumes of immensely greater and greater size as t increases, and where for
our particular t value t0, representing now, we happen to Wnd x in the still
rather small volume V corresponding to the universe we observe. This
is simply what the second law asserts, and we get (d),(b), as opposed to
(c), (b).
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(a)

t = 0 t = 0

NOW

(d)

(c)

(b)

B

E

PU

Fig. 27.8 DiVerent possible universe evolutions, described by a parameterized

curve x in the phase space PU , of possible universe states (of Wxed overall mass,

say, or of any other conserved quantity). (a) If the curve x is thrown randomly into

PU , it spends almost all of its life in E and, apart from minor Xuctuations, the

universe hardly diVers from ‘thermal equilibrium’ (and could resemble Fig. 27.20d

if it is closed). (b) If we merely specify that the curve starts now in a very small box

V (shown shaded), taking the points of V to resemble the universe we now live in,

but where x is otherwise thrown randomly, then we Wnd a future evolution

consistent with what we continue to see, with the increasing entropy of the Second

Law. (c) If we apply the same consideration to the situation where the entire curve

x is constrained merely to pass through V at some particular time tN > 0, (now),

then we Wnd a reasonable future for the universe, but, as with Fig. 27.6b, we Wnd

gross violation of the Second Law in the past. (d) This is remedied if we further

specify that the initial end (t ¼ 0) of x lies in the absurdly tiny region B, at which

the universe starts with the extraordinarily special Big Bang that apparently

occurred in our actual universe.

Let me try to rephrase what has been said above. Suppose we look at
things from the vantage point of some particular time t0 (> 0) that we call
‘now’, Wnding x, at time t0, in some reasonable-sized region V. Then
looking at where x wanders for larger values of t, we indeed see it enter
larger and larger box sizes as t increases. This is consistent with the second
law and with the above assumption that x exhibits ‘no particular bias’ in
relation to the box locations. But as viewed from a reversed-time perspec-
tive, ‘starting’ at t, with x in V, the point x gives the impression of being
purposefully guided, back in time, towards the absurdly tiny region of
phase-space that I have labelled B.
With respect to this reverse-time direction, the behaviour of x indeed

seems unbelievably ‘biased’, seeking out boxes that become successively
smaller and smaller to an extraordinary degree, as time proceeds into
the past. Are we to understand this as a perverse ‘deliberate’ seeking of
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smaller and smaller boxes, just for the devilry of it? No, it is simply that B
just happens to be surrounded by boxes that get successively smaller and
smaller (see Fig. 27.8)—so, if x is to reach B at all, as t goes down to 0, it
just has to encounter smaller and smaller boxes in this way. The puzzle lies
simply in the fact that one end of x has to lie in B! This is what we must
understand if we wish to comprehend the source of the second law. The
region B represents the Big Bang origin of the universe, and we shall
shortly be seeing just how ridiculously tiny this region actually is!
We must try to understand what is involved here. In what particular

way is B special? Can we assign a numerical measure to this degree of
specialness? What are the observational reasons for believing in the Big
Bang in any case?
The reasons for believing in an explosive origin to the universe came

initially from a theoretical study of Einstein’s equation in a cosmological
context, made by Alexandr Friedmann in 1922 (see §27.11 below). Then, in
1929, Edwin Hubble made the remarkable discovery that the distant
galaxies are indeed receding from us11 in a way that seemed to be implying
that the matter in the universe was the result of a stupendous explosion.
On modern reckoning, the explosion—now called the Big Bang—took
place some 1:4� 1010 years ago. Hubble’s conclusions were based on the
fact that the light from rapidly receding objects is redshifted (so that
spectral lines are displaced to the ‘red end of the spectrum’, i.e. to longer
wavelengths) owing to the Doppler eVect.[27.10] He found that this redshift
was systematically greater the more distant the galaxy appeared to be,
indicating a velocity of recession that is proportional to the distance from
us, consistently with the ‘explosion’ picture.
But the most impressive direct piece of observational support for the Big

Bang is the universal presence of radiation permeating space, having the
temperature of about 2.7K (i.e. 2.7 8C above absolute zero).12 Although
this may seem to be an extraordinarily low temperature for such a violent
event, this radiation is believed to be the ‘Xash’ of the Big Bang itself,
enormously attenuated (‘redshifted’) and cooled, owing to the vast expan-
sion of the universe. The 2.7K radiation plays an exceedingly important
role in modern cosmology. It is commonly referred to as the ‘(cosmic)mi-
crowave background’, or sometimes as the ‘background black-body radi-
ation’, or the ‘cosmic relic’ radiation. It is exceedingly uniform (to
something like one part in 105), indicating that the early universe was
itself extremely uniform just after the Big Bang, and very well described by
the cosmological models that we shall be considering in §27.11.
Now, let us try to gain some physical insights as to the nature of the

enormously low-entropy constraint on the Big Bang that restricts B to

[27.10] Derive the special-relativistic Doppler frequency shift for a source receding with speed v

(a) using a wave picture of light, and (b) by using scalar products of 4-vectors and E ¼ hn.

704

§27.7 CHAPTER 27



have such a tiny volume.13 We shall Wnd that what was extraordinarily
special about the Big Bang was actually its great uniformity, as just
referred to. We must try to understand why this corresponds to a very
low entropy, and how it provides us with a Second Law that is relevant to
us here on Earth in the familiar form that we know.
First, consider, again, the Sun’s role as a low-entropy source. There

is a common misconception that the energy supplied by the Sun is what
our survival depends upon. This is misleading. For that energy to be of
any use to us at all, it must be provided in a low-entropy form. Had the
entire sky been uniformly illuminated, for example, with some uniform
temperature—whether that of the Sun or anything else—then there would
be no way of making use of this energy (whatever kind of creature we
might imagine having evolved to try to cope with it). An energy supply in
thermal equilibrium is useless. We, however, are fortunate that the Sun is a
hot spot in an otherwise cold background. During the day, energy reaches
the Earth from the Sun, but during the course of the day and night it all
goes back again into space. The net balance of energy is (on the average)
simply that we send back all the energy that we receive.14

However, what we get from the Sun is in the form of individual photons
of high energy (basically yellow high-frequency photons because of the
Sun’s high temperature), whereas this energy mostly goes back into space
in the form of photons of low energy (infrared, low frequency). (This
photon energy relation comes from Planck’s formula E ¼ hn and his
insights into black-body radiation; see §21.4). Because of their higher
energy (higher temperature) there are many fewer photons from the Sun
than there are photons going back into space, because the total energy
carried by them is the same coming in as going out. The Sun’s smaller
number of photons means fewer degrees of freedom, and therefore a
smaller phase-space region and hence a smaller entropy, than in the
photons returned to space. The plants make use of this low-entropy energy
in their photosynthesis, thereby reducing their own entropy. Then we take
advantage of the plants to reduce ours, by eating them, or eating some-
thing that eats them, and by breathing the oxygen that the plants release;
see Fig. 27.9.
But why is the Sun a hot spot in a cold sky? Although the detailed story

is complicated, it ultimately comes down to the fact that the Sun—and all
other stars—have condensed gravitationally from a previously uniform
gas (of mainly hydrogen). Whatever other inXuences are present (primarily
nuclear forces), the Sun could not even exist without gravity! The ‘lowness’
in the Sun’s entropy (considerable remoteness from thermal equilibrium)
comes from a huge reservoir of low entropy that is potentially available in
the uniformity of the gas from which the Sun has gravitationally con-
densed.
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Fig. 27.9 The Earth gives back the same amount of energy that it receives from

the Sun, but what it receives from the Sun is in a much lower entropy form, owing

to the fact that the Sun’s yellow light has higher frequency than the infrared that

the Earth returns. Accordingly, by Planck’s E ¼ hn, the Sun’s photons carry more

energy per photon than do those that Earth returns, so the energy from the Sun is

carried by fewer photons than that returned by the Earth. Fewer photons means

fewer degrees of freedom and therefore a smaller phase-space region and thus

lower entropy than in the photons returned to space. Plants make use of this low

entropy energy in photosynthesis, thereby reducing their own entropy, and we

take advantage of the plants to reduce ours, by eating them, or eating something

that eats them, and by breathing the oxygen that the plants release. This ultimately

comes from the temperature imbalance in the sky that resulted from the gravita-

tional clumping that produced the Sun.

Gravitation is somewhat confusing, in relation to entropy, because of
its universally attractive nature. We are used to thinking about
entropy in terms of an ordinary gas, where having the gas concentrated
in small regions represents low entropy (as with our container in Fig. 27.3),
and where in the high-entropy state of thermal equilibrium, the gas is
spread uniformly. But with gravity, things tend to be the other
way about. A uniformly spread system of gravitating bodies would repre-
sent relatively low entropy (unless the velocities of the bodies are enor-
mously high and/or the bodies are very small and/or greatly spread out, so
that the gravitational contributions become insigniWcant), whereas
high entropy is achieved when the gravitating bodies clump together
(Fig. 27.10).
What about the maximum-entropy state? Whereas with a gas, the

maximum entropy of thermal equilibrium has the gas uniformly
spread throughout the region in question, with large gravitating bodies,
maximum entropy is achieved when all the mass is concentrated in
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Fig. 27.10 Increasing entropy, with increasing time, left to right. (a) For gas

in a box, initially all tucked in one corner, entropy increases as the gas starts

to spread itself throughout the box, Wnally reaching the uniform state of

thermal equilibrium. (b) With gravity, things tend to be the other way about.

An initial uniformly spread system of gravitating bodies represents a relatively

low entropy, and clumping tends to occur as the entropy increases. Finally, there

is a vast increase in entropy as a black hole forms, swallowing most of the

material.

one place—in the form of an entity known as a black hole. We shall need to
understand something of these strange and wonderful objects in order to
proceed further, and thereby obtain a remarkably good estimate of the
entropy that is potentially available in the universe as a whole. This will
then enable us to estimate the required volumes of B and PU .

27.8 Black holes

What is a black hole? Roughly speaking, it is a region of spacetime that
has resulted from the inward gravitational collapse of material, where the
gravitational attraction has become so strong that even light cannot
escape. To get an intuitive picture of why such a situation might come
about, think of the Newtonian notion of escape velocity. If a stone is
hurled upwards from the ground at a certain speed v, then it will fall
back to the ground after it has reached a certain height, this height being
that for which the kinetic energy of the stone has been entirely used up in
overcoming the gravitational potential energy from ground level (§18.6).
The height from the ground is entirely dependent upon the speed of
projection, ignoring the eVects of air resistance.[27.11] However, for a

[27.11] Show that this height is v2R(2gR� v2)�1, where R is the Earth’s radius and g the

acceleration due to gravity at the Earth’s surface.
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speed exceeding (2GM=R)1=2, referred to as the escape velocity, the stone
would escape completely from the Earth’s gravitational Weld. (Here, M

and R are the Earth’s mass and radius, respectively, G being Newton’s
gravitational constant.) Now suppose that, in place of the Earth, we have a
much more massive and concentrated body. Then the escape velocity will
be larger (since M/R goes up if M increases and if R decreases), and we
could imagine that the mass and concentration might be so huge that the
escape velocity at the surface even exceeds the speed of light.
We can believe that when this happens, in Newtonian theory, the

body would appear to be completely dark when viewed from large dis-
tances, because no light from it could escape—and this indeed was the
conclusion that the notable English astronomer and clergyman John
Michell came to in 1784. Later, in 1799, the great French mathematical
physicist Pierre Simon Laplace came to the same conclusion.15 However,
the situation does not seem to me to be that clear, because the speed
of light has no absolute status in Newtonian theory, and one can argue
a good case that for such a body, the speed of light at its surface ought
to be considerably greater than that measured in free space, and that
light could still escape to inWnity, no matter how massive and concen-
trated that body might be.16,[27.12] Thus, Michell’s ‘dark star’, though a
prescient precursor of the black-hole concept, does not, to my mind,
provide a persuasive case for ‘invisible’ gravitating objects in Newtonian
theory.
This issue is muchmore pertinent in the context of relativity theory, since

there the speed of light is fundamental and indeed represents the limiting
speed for all signalling (§17.8). Since we are concerned with a gravitational
phenomenon, however, we require a general-relativistic spacetime, rather
than justMinkowski space. In general relativity the expectations are indeed
that situations will occur in which the escape velocity exceeds the speed of
light, resulting in what we now call a black hole.
A black hole is to be expected when a large massive body reaches a stage

where internal pressure forces are insuYcient to hold the body apart
against the relentless inward pull of its own gravitational inXuence.
Indeed, such gravitational collapse is to be expected when a large star, of
a total mass several times that of the Sun—let us say 10M� (where 1M� is
a solar mass, the Sun’s mass)—uses up all its available internal sources of
energy, so that it cools and cannot keep up suYcient pressure to avoid
collapse. When this happens, the collapse may become unstoppable, as the
gravitational eVects mount relentlessly.

[27.12] Can you see why? Hint: Think in terms of a particle theory of light, and of external light

falling to the surface of the body. What happens if the light falls on a horizontal mirror at the

body’s surface?
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The detailed picture can become very complicated, especially since
under conditions of great pressure, sophisticated issues concerning the
behaviour of matter become important. Of particular relevance is electron
or neutron degeneracy pressure. This has to do with the Pauli principle
which, as we recall from §23.7, prevents two or more identical fermions
from being in the same quantum state. A white dwarf, which could have
something like a solar mass concentrated into roughly the size of the
Earth, is held apart by electron degeneracy pressure; a neutron star of
the same mass would be a body of merely some 10 km across, held apart
mainly by neutron degeneracy pressure. (A tennis ball Wlled with neutron
star material would weigh as much as Mars’s moon Deimos!) However,
because of the requirements of relativity, it turns out that degeneracy pres-
sure alone cannot hold such a star apart if themass ismore than about 2M�.
The key result was obtained by Subrahmanyan Chandrasekhar, in 1931,
when he established such a limit of about 1.4M� for white dwarfs. Later
reWnements obtained a slightly larger limit for neutron stars.17Theupshot of
all this is that there is no resting conWguration for a cold object ofmore than
roughly 2M� (and probably not more than 1.6M�.) Such an object would
collapse inwards, and would continue to collapse right down to the kind of
dimension at which Michell’s considerations begin to become relevant.
What then happens?
Let us return to our large star, of, say, 10M�, assumed to be initially at a

high enough temperature that thermal pressures can support it. As the star
cools, however, at a certain stage its compressed core will exceed the
Chandrasekhar limit, and will collapse. The infall of the outer parts
could trigger a violent explosion, known as a supernova. Such exploding
stars have frequently been observed, mainly in other galaxies, and for a
few days the supernova can outshine the entire galaxy in which it resides.
But if suYcient material is not shed in such an explosion—and for a star
initially of 10M�, it is unlikely that it would lose that much—the expect-
ations are, indeed, that the star would collapse unstoppably until it reaches
the scale at which Michell’s considerations apply. Let us examine
Fig. 27.11, which is a spacetime diagram depicting collapse down to a
black hole. (Of course, one of the spatial dimensions has had to be
suppressed.) We see that the matter continues to collapse inwards, through
that surface—called an (absolute) event horizon—where the escape velocity
indeed becomes the speed of light. Thereafter, no further information
from the star itself can reach any outside observer, and a black hole is
formed.
The picture inFig. 27.11 is based on the famous Schwarzschild solution of

the Einstein equation, discovered by Karl Schwarzschild 1916,18 shortly
after the publication of Einstein’s theory, and only a few months before
schwarzschild died of a rare disease contracted on the eastern front during
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Fig. 27.11 Spacetime diagram of collapse to a black hole. (One spatial dimension

is suppressed.) Matter collapses inwards, through the 3-surface that becomes the

(absolute) event horizon. No matter or information can escape the hole once it has

been formed. The null cones are tangent to the horizon and allow matter or signals

to pass inwards but not outwards. An external observer cannot see inside the

hole, but only the matter—vastly dimmed and red shifted—just before it enters

the hole.

the Wrst world war. This solution describes the static gravitational Weld
surrounding a spherically symmetrical body, whether or not the body is
contracting. The horizon occurs at the radial distance r ¼ 2MG=c2

(exactly Michell’s critical value).[27.13]

[27.13] Schwarzschild’s original metric form was ds2 ¼ (1� 2M=r)dt2�(1� 2M=r)�1dr2�
r2(dy2 þ sin2 y df2), where units are chosen so that G ¼ c ¼ 1 and where y and f are standard

spherical polar coordinates (§22.10). Explain how the radial coordinate r is Wxed by a requirement

on the area of the spheres of constants r and t. This metric form does not extend smoothly to the

r # 2M region; for this, the Eddington–Finkelstein form of the metric

ds2 ¼ (1� 2M=r)dv2 � 2 dv dr� r2(dy2 þ sin2 y df2) can be used. Find a coordinate change

explicitly relating the two. Explain why the null curves in each (v, r) plane must be the radial

null geodesics, and use this fact to obtain their equations and to plot them. (Draw the constant-r

lines as vertical and the constant-v lines as sloping inwards from the right at 458.) Identify the

event horizon and the singularity (§27.9).
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The event horizon is not made of any material substance. It is
merely a particular (hyper)surface in spacetime, separating those places
from which signals can escape to external inWnity from those places from
which all signals would inevitably be trapped by the black hole. A hapless
observer who falls through the event horizon, from the outside to the
inside, would not notice anything locally peculiar just as the horizon is
crossed. Moreover, the black hole itself is not a ponderable body; we think
of it merely as a gravitating region of spacetime from within which no
signal can escape. And what of the fate of the poor star itself? We shall be
coming to this conundrum shortly, in §27.9.
First, let us consider the observational situation. Is there evidence for

the existence of black holes? Indeed there is. In the 1970s a number
of examples of curious ‘double-star’ systems were known, where only
one member of the pair would be luminous, in visible light. The existence,
the mass, and the motion of the other was inferred from the Wne details
of the motion of its visible partner. Moreover, from the emission of
X-ray signals coming from its vicinity, the invisible partner was deduced
to be a compact object, with amass too great for the object to be of either of
the two types—a white dwarf or neutron star—that accepted physical
principles could allow a compact star to be. The X-ray emission was
consistent with the invisible object being a black hole surrounded
by what is known as an ‘accretion disc’ of gas and dust, spiralling
gradually closer and closer in towards the hole at ever greater velocities,
becoming enormously heated as it gets nearer to the centre. Eventually,
X-rays would be emitted before the material actually enters the hole (see
Fig. 27.12a). The best known (and at that time observationally most
persuasive) of these black-hole candidates was the X-ray source Cygnus
X-1, the compact and dark member of the pair having a mass of about
7M�, which certainly bars it from being a white dwarf or neutron star,
according to accepted theory.
This kind of evidence was always rather indirect and less than totally

satisfactory, because it relied upon theory to tell us that such massive
compact objects cannot exist as extended bodies. Now, however, there is
some rather more directly impressive evidence for black holes. Accretion
discs are not the only conWgurations taken up by material falling into
black holes. In some cases the material simply falls ‘straight in’, and this
type of behaviour appears now to have been observed (Fig. 27.12b). If the
attracting compact object were to have a material surface of any kind, then
the infalling material would heat that surface up, and its glow would
become visible after a time. But no such glow is seen. There is thus
now some direct evidence that such a compact entity has no surface at
all, and it may be rather convincingly inferred that the entity is indeed a
black hole.19
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(a) (b)

Fig. 27.12 Double star systems, one member of which is a (tiny) black hole. (a)

Matter dragged from the larger star by the black hole forms an accretion disc

around it, gradually spiralling in and becoming heated until X-rays are emitted

before the material actually enters the hole. (b) In some cases there is no accretion

disc and the material simply falls ‘straight in’. If the attracting compact object

were to have a ponderable surface, in-falling material would heat it up, but no

glow is seen, conWrming the presence of a black hole.

All this refers to ‘stellar’ black holes, whose mass would be just a few
times that of the Sun. There is also some impressive evidence for very
much larger black holes. It seems that most—and perhaps all—galaxies
have very sizeable black holes at their centres. In particular, there appears
to be a massive 3� 10M� black hole at the centre of our own Milky Way
galaxy, and the actual motions of stars orbiting about it have been tracked
in detail, being fully consistent with this black-hole picture.

27.9 Event horizons and spacetime singularities

I have drawn in some of the null cones in Fig. 27.11, so that the causality
properties of the spacetime should become reasonably apparent. The most
essential feature is the existence of the black hole’s event horizon which, in
the spacetime, is a 3-surface H. As stated in §27.8, this has the property
that no signal originating in the region inside H can escape to the outside
region. This can be seen to be an eVect of the tilting of the cones inwards,
so that they Wnd themselves to be tangent toH. Any world line that crosses
from the inside to the outside ofH would have to violate the causality that
the cones deWne (§17.7). I have depicted the case where the gravitational
collapse is completely spherically symmetrical, which was the original
situation studied by J. Robert Oppenheimer and Hartland Snyder
(1939), and which employs Schwarzschild’s geometry to describe the
region external to the infalling matter.
Although the horizonH has strange properties, the local geometry there

is not signiWcantly diVerent from elsewhere. As noted above, an observer in
a space ship would notice nothing particular happening as the horizon is
crossed from the outside to the inside. Yet, as soon as that perilous journey
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has been undertaken, there is no return. The tipping of the null cones is such
that there is no escape, and the observer would encounter rapidly increasing
tidal eVects (spacetime curvature; see §17.5 and §19.6) that diverge to inWnity
at the spacetime singularity at the centre (r ¼ 0). These features are not
speciWc to the case of spherical symmetry, but are quite general. There are,
indeed, very comprehensive theorems which tell us that singularities cannot
be avoided in any gravitational collapse that passes a certain ‘point of no
return’.20 Some of the relevant issues will be discussed in a little greater
detail in §28.5.
For a black hole of a few solar masses, the tidal forces would be easily

enough to kill a person long before the horizon is even reached, let alone
crossed, but for the large black holes of 106M�, or more, that are believed
to inhabit galactic centres, there would be no particular problem from
tidal eVects as the horizon is crossed (the horizon being some millions of
kilometres across). In fact, for our own galaxy, the curvature at the
horizon of its central black hole is only about twenty times the spacetime
curvature here at the surface of the Earth—which we don’t even notice!
Yet, the relentless dragging of the observer inwards to the singularity at
the centre would subsequently cause tidal eVects to mount very rapidly to
inWnity, totally destroying the observer in less than a minute! Destruction
by rapidly mounting tidal forces is, indeed, what awaits any physical
material as it plunges inwards towards the centre of a black hole. Recall
our concern about the fate of the material of our 10M� collapsing star.
Even the individual particles of which it is composed will, in short order,
encounter tidal forces so strong that they will be torn apart—to what, no-
one knows!
At least, what we do know is that, so long as Einstein’s picture of

a classical spacetime can be maintained, acting in accordance with
Einstein’s equation (with non-negative energy densities and some other
mild and ‘reasonable’ assumptions), then a spacetime singularity will be
encountered within the hole.21 The expectation is that Einstein’s equation
will tell us that this singularity cannot be avoided by any of the matter in
the hole and that the ‘tidal forces’ (i.e. Weyl curvature; see §19.7) will
diverge to inWnity—very possibly in a wildly quasi-oscillatory fashion, in
the general case.22 In fact, it seems unavoidable that the realm of quantum

gravity (or whatever is the appropriate term) will be entered, so that
these expectations of the classical theory will have to be modiWed in
accordance with this. We do not yet know what the correct ‘quantum-
gravitational’ theory must be, but these black-hole considerations supply
us with an important input; and this input should be guiding us in the
appropriate directions in our search for the correct ‘quantum gravity’.
These issues will be important for us in later chapters, particularly Chap-
ters 30, 31, and 32.
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It is generally believed that the spacetime singularities of gravitational
collapse will necessarily always lie within an event horizon, so that
whatever happen to be the extraordinary physical eVects at such a
singularity, these will be hidden from view of any external observer.
This is not a mathematically established property of general relativity,
however. The assumption that the singularities will always be so hidden is
referred to as cosmic censorship,23 and it will be discussed more fully in
§28.8.
On the other hand, we do not have to go so far as the singularity

in order to Wnd extraordinary eVects resulting from gravitational
collapse. There are some very violent processes visible in the universe.
For example, the exceptionally luminous quasars are believed to be
powered by rotating black holes at galactic centres, where the rotation
of the black hole is the powerhouse, although the actual material
ejected (apparently along the axis of rotation) comes from outside the
hole (see §30.7). The energy emitted by some quasars, though coming
from a tiny region (about the size of the Solar System), can outshine
an entire galaxy by a factor of 102 or 103 or more! They can be seen at
enormous distances, and are important observational tools for cosmology.
There are also sources of powerful g rays (extremely energetic photons)
that are also believed to involve black holes, perhaps pairs of black holes
in collision.24

27.10 Black-hole entropy

Let us return to consideration of the ‘safer’ external regions of isolated
stationary (‘dead’) black holes. We shall see how extraordinarily large is
the entropy that is to be assigned to such an object. First, we should take
note of the fact that there are mathematical theorems25 providing compel-
ling evidence that general black holes, which may initially possess compli-
cated irregularities due to an asymmetrical collapse—in a possibly wildly
spiralling and irreversible catastrophe—will nevertheless rapidly settle
down (as far as their external spacetime geometries are concerned) to a
remarkably simple and elegant geometrical form. This is described by the
Kerr metric,26 and it is characterized by just two physical/geometrical
parameters (real numbers) labelled m and a.27 Here, m describes the total
mass of the black hole, and a�m is the total angular momentum (in units
where G ¼ c ¼ 1). As the Nobel Laureate Subrahmanyan Chandrasekhar
(whose famous 1931 result, as we recall from §27.8, set astrophysics on the
route to the black hole) has written:

The black holes of nature are the most perfect macroscopic objects there are
in the universe: the only elements in their construction are our concepts of
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space and time. And since the general theory of relativity provides only a
single unique family of solutions for their descriptions, they are the simplest
objects as well.28

The relentless nature of a black hole, as it sweeps up all kinds
of material—which could have an immense amount of detailed struc-
ture—converting it into a single conWguration describable by only ten
parameters (these being a, m, the direction of the spin axis, the position
of the mass centre, and its 3-velocity) is a powerful manifestation of
the second law. These ten parameters are all that are needed for an
adequate macroscopic characterization of the Wnal state.29 Although a
black hole does not look like ordinary matter in thermal equilibrium, it
shares with it the key property that huge numbers of microscopically
distinct states lead to something which can be described by very few
parameters. For this reason, the corresponding phase-space coarse-
graining box is indeed enormous, and black holes, consequently, have
enormous entropies.
In fact, black-hole entropy has a remarkable geometrical interpretation:

it is proportional to the area of the hole’s horizon! According to the
famous Bekenstein–Hawking formula, a well-deWned entropy can indeed
be attributed to a black hole, which is

SBH ¼
kc3A

4G�h

where A is the surface area of the black hole’s horizon—and where you can
take BH to stand for Bekenstein–Hawking or black hole, as you wish!
Note the appearance of Planck’s constant, as well as the gravitational
constant, indicating that this is this entropy is a ‘quantum-gravitational’
eVect. Indeed, this is the Wrst place where we have encountered both the
fundamental constant of quantum mechanics (Planck’s constant, written
in Dirac’s form �h) and that of general relativity (Newton’s gravitational
constant G) appearing together in the same formula.
For issues of fundamental physics, in which quantum mechanics and

general relativity are both involved, it is often convenient to adopt units in
which both these constants are taken to be unity. We have already seen, in
§17.8 and §§19.2,6,7 (and elsewhere such as in Chapter 24), that it is often
extremely convenient to adopt units in which the speed of light c is taken
to be unity. Without loss of consistency, we can extend this convention so
that �h and G are also unity. This has the remarkable implication that all
the units of time, space, mass, and electric charge are now completely
Wxed, providing what are known as Planck units (or natural units or
absolute units). Moreover, we can take Boltzmann’s constant k to be
unity also (see §27.3)
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G ¼ c ¼ �h ¼ k ¼ 1,

and then the unit of temperature becomes an absolute thing as well.
These are far from practical units for everyday use, as can be seen when

we try to put our conventional units in terms of Planck units:

gram ¼ 4:7� 104,

metre ¼ 6:3� 1034,

second ¼ 1:9� 1043,

degree Kelvin ¼ 4� 10�33:

In these units, the charge on the proton (or minus that on the electron)
comes out as roughly e ¼ 1

ffiffiffiffiffiffi

137
p , and more precisely as30

e ¼ 0:085 424 5 . . .

We can also express these relations the other way around, Wnding that

Planck mass ¼ 2:1� 10�5 g,

Planck length ¼ 1:6� 10�35 m,

Planck time ¼ 5:3� 10�44 s,

Planck temperature ¼ 2:5� 1032 K

Planck charge ¼ 11:7 proton charges

We shall be seeing more about Planck units in §31.1
Returning to the Bekenstein–Hawking formula for black-hole entropy,

we now Wnd that, in Planck units, the entropy SBH of a black hole of
surface area A is simply

SBH ¼ 1
4
A

In the case of the Kerr solution, we Wnd explicitly

A ¼ 8pG2

c4
mðmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 � a2
p

Þ

SBH ¼
2pGk

c�h
mðmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 � a2
p

Þ

(in general units). We shall be coming to some of the reasons lying behind
the remarkable Bekenstein–Hawking formula in §30.4.
To get some idea of the extraordinary entropy values that can be

achieved in a black hole, let us Wrst consider what had been thought, in
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the 1960s, to provide the greatest of all contributions to the entropy of the
universe, namely the entropy in the 2.7K microwave radiation: the rem-
nants of the ‘Xash’ of the Big Bang. This entropy is about 108 or 109 per
baryon, in natural units. (Roughly speaking, this is the number of photons
per baryon left over from the Big Bang.) Let us compare this admittedly
enormous Wgure with the entropy due to black holes in the universe.
Astronomers do not have a fully clear idea about how many black holes
there are, nor what size they all might be, but there is very good evidence
for a black hole at the centre of our own Milky Way galaxy of about
3� 106M�, which well be reasonably typical. Some galaxies have much
larger black holes, and these ought easily to compensate for large numbers
of other galaxies that might have smaller ones, since it is the large black
holes that easily dominate the entropy values over all.[27.14] As a rough
(probably very conservative) estimate, take our galaxy as typical, and we
Wnd an entropy per baryon of about 1021, which completely dwarfs the 108

or 109
Wgure for the microwave background. Moreover, whatever the

Wgure is now, it will relentlessly and stupendously grow in the future.

27.11 Cosmology

Before trying to Wnd an estimate for the admittedly colossal entropy Wgure
that is potentially accessible to our universe—so that we can get a feeling
for how ‘special’ our universe actually is now, and of how ‘particularly
special’ our universe must have been at the time of the Big Bang—we shall
need to know something about cosmology. We shall try to use cosmo-
logical evidence to estimate the size of the box B of phase space that
represents the Big Bang, and compare it with the size of the entire phase
space PU , and also with the phase-space volume of the coarse-graining box
N that represents the universe as it is now.
Let me start by brieXy describing what are known as the standard models

of cosmology, of which there are (in essence) three. As we recall from §27.7
the discussion goes back to the Russian Aleksandr Friedmann, who in
1922 Wrst found the appropriate cosmological solutions of the Einstein
equation, with a material source that can be used to approximate a
completely uniform distribution of galaxies on a large scale (sometimes
called a ‘pressureless Xuid’ or ‘dust’). The cosmological models of the
general class that Friedmann studied (sometimes with a diVerent type of
matter source from Friedmann’s ‘dust’) are now commonly referred to as
the Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) models, owing to
later contributions, clariWcations, and generalizations from these others.

[27.14] Can you see why?
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Basically, an FLRW model is characterized by the fact that it is com-
pletely spatially homogeneous and isotropic. Roughly speaking, ‘isotropic’
means that the universe looks the same in all directions, so it has an O(3)
rotational symmetry group. Also, ‘spatially homogeneous’ means that the
universe looks the same at each point of space, at any one time; accordingly,
there is group of symmetries that is transitive (§18.2) on each member of a
family of spacelike 3-surfaces, these being the 3-surfaces T t of ‘space’ at
constant ‘time’ t (giving a 6-dimensional symmetry group in all [27.15]). This
pair of assumptions is in good accord with observations of the matter
distribution on a very large scale, and with the nature of the microwave
background. Spatial isotropy is found directly to be a very good approxi-
mation (from observations of very distant sources, and primarily from the
2.7K radiation). Moreover, if the universe were not homogeneous, it could
appear to be isotropic only from very particular places,[27.16] so we would
have to be in a very privileged location for the universe to appear to us to be
isotropic unless it were also homogeneous. Of course, the observational
isotropy is not exact, since we see individual galaxies, clusters of galaxies,
and superclusters of galaxies only in certain directions. There are uneven
distributions of material, not always visible, on mind-boggling scales, such
as that referred to as the ‘Great Attractor’ which seems to be pulling on not
only our owngalaxy but several neighbouring galaxy clusters. But it appears
to be the case that the deviations from particular spatial uniformity get
proportionally smaller, the farther away we look. The best information that
we have for the most distant regions of the universe that are accessible to us
comes from the 2.7K black-body background radiation. The COBE,
BOOMERANG, and WMAP data etc. tell us that, although there are
very slight deviations at that scale, of a few parts in 105, isotropy is well
supported.31

It indeed seems that the homogeneous and isotropic cosmologies—the
FLRW models—are excellent approximations to the structure of the
actual universe, at least out to the limits of the observable universe
which extends to a distance that includes around 1011 galaxies, containing
some 1080 baryons. (We shall be seeing what this notion of ‘observable
universe’ means shortly.) Spatial isotropy and homogeneity implies32 that
3-dimensional ‘constant-time’ spatial sections T t Wll up the whole space-
timeM (without intersecting each other), each 3-geometry T t sharingM’s
homogeneity/isotropy symmetry group; see Fig. 27.13. The (essentially)
three diVerent possibilities for the 3-geometry depend upon whether the
(constant) spatial curvature is positive (K>0), zero (K ¼ 0), or negative
(K<0). It is usual, in the cosmological literature, to normalize the

[27.15] Why 6-dimensional?

[27.16] Give a general argument to show why a connected (3-)space cannot be isotropic about

two distinct points without being homogeneous.
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(a)

(d) (e) (f)

(b) (c)

Fig. 27.13 Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) spatially homo-

geneous and isotropic cosmological models. Time is depicted upwards and each

model starts with a Big Bang. Each is Wlled with a 1-parameter family of non-

intersecting homogeneous spacelike 3-surfaces T t, giving ‘space’ at time t. In

Friedman’s models, matter is treated as a pressureless Xuid (‘dust’). The three

cases are illustrated: (a) K > 0, where the T t are 3-spheres S3 (indicated in the

diagrams as a bounding circle S1), where the model ultimately collapses in a Big

Crunch; or (b) the T t being Euclidean 3-spaces E
3, depicted as the 2-plane at the

top; or (c) the T t being hyperbolic 3-spaces (indicated by a conformal representa-

tion at the top). In (d), (e), and (f), a positive cosmological constant L is incorpor-

ated into (a), (b), (c), respectively, with ultimate exponential expansion, where in

case (d) it is assumed that L is large enough to prevent the collapsing phase.

radius of curvature, in the K 6¼ 0 cases, referring to K>0 and K<0 as
simply K ¼ 1 and K ¼ �1, respectively. I shall not do this here, however,
for clarity in later discussions, preferring the respective descriptions K>0

and K<0.
In Fig. 27.13a,b,c, I have tried to depict the time-evolution of the

universe, according to Friedmann’s original analysis of the Einstein equa-
tion, for the diVerent alternative choices of spatial curvature. In each case,
the universe starts from a singularity—the so-called Big Bang—where
spacetime curvatures become inWnite and then it expands rapidly out-
wards. The ultimate behaviour depends critically on the value of K. If
K > 0 (Fig. 27.13a), the expansion eventually reverses, and the universe
returns to a singularity, often referred to as the Big Crunch, which is a
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precise time-reverse of the initial Big Bang in the exact Friedmann model.
If K ¼ 0 (Fig. 27.13b), then the expansion just manages to hang on and a
collapse phase does not take place. If K < 0 (Fig. 27.13c), then there is no
prospect of collapse, as the expansion ultimately approaches a constant
rate. (There is an analogy, here, with the stone thrown upwards from the
ground, as discussed in §27.8. If the stone’s initial speed is less than escape
velocity, then it eventually falls back to the ground, like Friedmann’s
universe for K > 0; if equal to escape velocity, then it just fails to fall
back, like K ¼ 0; if greater than escape velocity, then it continues and
approaches a limiting rate which does not slow down, like K < 0.)

The original Friedmann work did not involve a cosmological constant
L, but in practically all subsequent systematic discussions of cosmology,33

Einstein’s 1917 suggestion of a cosmological term Lgab has been allowed
for—despite Einstein’s own preferred choice (after 1929, see §19.7) to take
L ¼ 0. This has turned out to be fortunate, because recent observational
evidence, of various diVerent kinds, has begun to point clearly in the
direction of there actually being a positive cosmological constant (L > 0)
in the behaviour of our universe. I shall discuss these matters further in
§28.10 but, for the moment, the reader is referred to Fig. 27.13d,e,f, which
provide the analogues of Fig. 27.13a,b,c in which a (suYciently large)
positive L is incorporated into Friedmann’s equations. According to the
present-day balance of observation and opinion among cosmologists, one
of these models would seem to be fair descriptions of the history of our
actual universe, at least from the time of decoupling, when the universe was
a mere � 3� 105 years old, which is about 1/50000 of its present age of
roughly 1:5� 1010 years, decoupling being the time that we eVectively
‘look back to’ when we observe the microwave background.

Prior to decoupling, the universe would have been basically ‘radiation
dominated’ and after decoupling, ‘matter dominated’. We would not
expect Friedmann’s ‘dust’ model to be appropriate in the radiation-dom-
inated phase, and more appropriate might be the radiation-filled model of
Tolman (1934). This does not make a great deal of diVerence in our
pictures. It shortens the universe’s lifetime from Big Bang to decoupling
by a factor of about 3

4
from what would have been the ‘Friedmannian’

prediction[27.17] as I have indicated in Fig. 27.14. The proponents of
inXationary cosmology suggest a much greater change in the evolution,
namely an exponential expansion, increasing the scale of the universe by a
factor of perhaps 1060. But this would have come to an end by the time the
universe was only about 10�32 seconds old, so it does not make any

[27.17] See if you can derive this 3
4
factor, assuming that the behaviour of a Friedmannian ‘dust’

model is of the form t ¼ AR3=2 for small values of the time t, and that of Tolman’s ‘radiation’ is

t ¼ BR2, where R ¼ R(t) is a measure of ‘radius’ of the universe, and A and B are constants. Hint:

Must the tangents to the curves match?
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t

Decoupling

diVerence to the appearance of Fig. 27.13 or 27.14! Yet the implications in
other respects could be enormous, if the inXationary picture is correct. I
shall consider inXationary cosmology in §§28.4,5. In any case, I think it is
reasonable not to include inXation in what is to be called ‘the standard
model of cosmology’, and I shall not do so here.34

But which particular one of the three models of Fig. 27.13d,e,f is likely
to be the appropriate for the actual universe? I shall discuss this issue in
§28.10. For the moment, let us consider that any one of them might be
basically correct. Let us examine each of these diVerent spatial geometries
a little further.
The case K>0 is normally represented as the 3-sphere. It should be

mentioned, however, there is also the projective space RP
3 obtained by

identifying antipodal points of S3 (see §§15.4–6); it is hard to imagine that
the two would be observationally distinguishable, in practice. There are
other identiWcations between separated points of S3, giving what are called
lens spaces, but none of these is globally isotropic.35 The (isotropic)
case K¼ 0 is ordinary Euclidean 3-space, and K<0 likewise gives hyper-
bolic 3-geometry, which we studied in §§2.4–7 and §18.4. See Fig. 2.21a,b
and c, respectively, forM.C. Escher’s elegant and ingenious representations
of (the 2-dimensional versions of) the respective spatial geometries for
K>0, K¼0, and K< 0. The usual K>0 case is called a closed universe,
which means spatially closed (i.e. contains a compact spacelike hypersur-
face36). Frequently cosmologists refer to K<0 as the ‘open’ case, whereas
technically the K¼0 case is also spatially open. Accordingly, I shall not use
this somewhat confusing terminology here. If we abandon global isotropy
then, as with the K>0 lens spaces referred to above, there are (non-iso-
tropic) closed-universe models also for K¼0 and K<0.37

The full 4-space M is described in terms of a time-evolution for the
spatial 3-geometry, as we have seen, where there is an overall scale that
changes with time. In the standard picture, the universe initially expands

Fig. 27.14 Before ‘decoup-

ling’, which occurred when the

universe was about 300 000

years old (only about 1/50 000

of its present age)—the epoch

we ‘look back’ to with the

microwave background—the

universe was ‘radiation dom-

inated’ and Friedmann’s ‘dust’

approximation did not hold.

Instead, we have the somewhat

more rapid Tolman expansion,

indicated by the inner curve.
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(a) (b) (c) (d)
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K > 0,       = 0    > 0K < 0,     = 0K = 0,     = 0� � � �

Fig. 27.15 Graphs of R ¼ R(t) for Friedmann models, Wrst with L¼ 0: (a) K>0,

(b) K¼0, (c) K¼< 1, and then (d) with L> 0. (Case (d) is plotted for K¼0, but

the other cases are very similar, provided that L is large enough in relation to

spatial curvature.)

very rapidly away from a Big Bang, but it is an incorrect picture to think of
a ‘central point’ at which the explosion occurred, and from which every-
thing recedes. A more appropriate image, in the case of two spatial
dimensions, is the surface of a balloon as it is being blown up. Each
point on the surface gradually recedes from each other point, as time
passes, and there is no ‘central point’ in the universe-model. In this
analogy, the surface is to represent the entire universe. Thus, the centre
of the balloon does not count as part of the expanding universe; nor does
any other point that does not lie on the surface.
Let us use the notation d�2 to denote the metric form of one of these

three 3-geometries, where in the cases K 6¼ 0 we now normalize the metric
to be that of the unit 3-sphere or unit hyperbolic space (i.e. we take K¼1 or
K¼�1 respectively).[27.18] The 4-metric of the entire spacetime can then be
expressed in the form

ds2 ¼ dt2 � R2dS2,

where t is a ‘cosmic-time’ parameter, whose constant values determine the
individual T t, and where

R ¼ R(t)

is some function of the time-parameter t giving the ‘size’ of the spatial
universe ‘at time t’. Thus, the metric for each T t is given by R2dS2. In
Fig. 27.15a,b,c, I have plotted the graph of R ¼ R(t) for K ¼ 1, 0, � 1,

[27.18] See if you can show that d�2 ¼ dr2 þ sin2 ’ (d’2 þ sin2 y dy2) describes the

metric of a unit 3-sphere, and deduce that d�2 ¼ dr2 þ sinh2w (dw2 þ sin2 y dy2) describes unit

hyperbolic space, using the procedures of §18.1. Hint: Write down the metric for a 3-sphere of

arbitrary radius first.
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respectively, in Friedmann’s original case of ‘dust’ (pressureless Xuid)[27.19]

withL ¼ 0, and inFig. 27.15d, I have shownwhathappenswith apositiveL,
the curves for all three values of K being very similar (provided that, in the
case K > 0, L is large enough to overcome subsequent collapse—as obser-
vations indeed suggest). The ultimate expansion rate is then exponential.

27.12 Conformal diagrams

To understand what is meant by the term ‘observable universe’, it is
helpful to employ what is known as a conformal diagram38 in which a
(frequently 2-dimensional) representation of the entire spacetime is pre-
sented so that the null directions are drawn at 458 to the vertical, and
where inWnity is also represented, as (part of) the boundary of the diagram.
The script letter I is commonly used—and pronounced ‘scri’—for this
notion of ‘inWnity’, where I þ is used for future (or future null) inWnity,
ultimately ‘reached’ by outgoing light rays, and I � for past inWnity, for
incoming light rays. They normally turn out to be null 3-surfaces in
standard Einstein theory with L ¼ 0, and spacelike 3-surfaces if L > 0.39

Conformal diagrams depict the causality structure of the spacetime,
where it is the family of null cones, rather than the full spacetime metric,
that we are interested in. This is the Lorentzian version of the conformal
geometry that we encountered in §2.4, §8.2, and §§18.4,5 (deWned by an
equivalence class of metrics, g being equivalent to O2g where O is a positive
scalar function on the spacetime, soOmodiWes the distance scale from place
to place). In §2.2, we saw how the entire hyperbolic plane can be represented
conformally in a Wnite region of the Euclidean plane (Figs. 2.11, 2.12, 2.13).
The idea of a conformal spacetime diagram is basically the same, but now it is
the Lorentzian (non-positive-deWnite) metric of spacetime that is being
conformally represented. The key new feature is that, in Lorentzian geom-
etry, the null cones themselves deWne the conformal geometry.
In two dimensions, the null cone consists of a pair of null directions, and

this determines the 2-metric up to a local conformal factor. A circum-
stance where such a 2-dimensional representation is particularly valuable
is where there is spherical symmetry in the entire 4-space. Then we can
think of this 4-spacetime as being a 2-spacetime that is ‘rotated around’, so
that each point of the 2-space represents an entire S2 in the 4-space. For
such spacetimes, the conformal diagrams can be made quite precise, and

[27.19] Friedmann’s ‘dust’ solution for K > 0, L ¼ 0 can be expressed in the form

R ¼ C(1� cos x), t ¼ C(x� sin x), where C is a constant and x is a convenient parameter. Show

that this is the equation of a cycloid—the curve traced out by a point on the circumference of a

circle rolling on a horizontal straight line. Can you see how to get from the K > 0 to the K < 0

case using a ‘trick’ similar to that used in §18.1 and Exercise [27.16], and to K ¼ 0 by taking a

suitable limit (involving a coordinate rescaling)?
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for these I shall make use of the notion of a strict conformal diagram.
Conformal diagrams that are not strict will be called schematic. The points

of a strict conformal diagram indeed represent entire (metric) spheres S2.
(In the case of an n-dimensional Lorentzian ‘spacetime’ of the kind that
one might consider in string theory etc.—see §§31.4,7—these would be
(n� 2)-spheres Sn�2.) Exceptional places, where points of the diagram
represent single spacetime points, occur on those parts of the boundary
of the diagram that describe a symmetry axis. These are indicated by
dashed lines, so you have to think of the diagram as being rotated about
such a dashed line.[27.20] The parts of the boundary that represents inWnity
are indicated by solid lines, and those parts that represent singularities are
indicated by jagged lines. See Fig. 27.16a. There are also certain corners
where diVerent boundary lines of a conformal diagram meet. Those that
are indicated by little open circles � are to be thought of as representing
entire 2-spheres (like the boundary of hyperbolic 3-space; see §2.4 and
§18.4), while those indicated by Wlled-in points � are best thought of as
representing points (spheres of zero radius). Figure 27.16b is the strict
conformal diagram for Minkowski space and Fig. 27.16c, for gravitational
collapse to a Schwarzschild black hole (the spherically symmetric collapse
described in §27.11). In Fig. 27.17, I have depicted the respective cosmo-
logical models of Fig. 27.13.[27.21]

Conformal diagrams are useful because they make the causality proper-
ties of the spacetimes particularly manifest. Note, for example, that in the
spherically symmetrical collapse to a black hole depicted in Fig. 27.16b, the
black hole’s horizon lies at 458. Anymaterial particle’s world line cannot tilt
at more that 458 to the vertical, so it cannot escape from the interior region
behind the horizon once it has crossed into it. Moreover, once inside that
region, it is forced into the singularity (Fig. 27.18a). The singularity appears
to be a spacelike future boundary to the interior part of the spacetime, a fact
that is somewhat counter-intuitive from the more conventional perspective
of Fig. 27.11. The situation exhibited by the Big Bang plays a role like the
temporal reverse of this, acting as a spacelike past boundary to the space-
time (Fig. 27.18b). This is again somewhat counter-intuitive, since we tend
to think of the Big Bang as a (singular) point.40

The spacelike nature of this initial boundary leads us to the notion of a
particle horizon, which is an important aspect of the Big Bang. Consider

[27.20] See if you can obtain Minkowski 4-space of Fig. 27.16a explicitly, by taking the right-

hand half of the entire Minkowski 2-space (metric ds2 ¼ dt2 � dr2, with r � 0), and rotating about

the vertical axis in this way. Express the 4-space metric, using suitable functions of t, r, and

spherical polar angles y and f (see Exercise [27.18]). (For visualization purposes, try obtaining

Minkowski 3-space Wrst, where the rotation is now of a more familiar type.

[27.21] See if you can see how the diagrams of Figs. 27.11 and 27.16b match up. Find

appropriate conformal factors multiplying the metrics for each of the examples of Figs. 27.16,27.17.
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Fig. 27.16 Conformal diagrams are plane representations of spacetimes, usually

drawn so that the spacetime null lines which lie in the plane itself are oriented at

458 to the vertical, and where ‘infinity’ tends to be represented as a finite boundary

to the picture—where the conformal factor from the physical metric to that of the

diagram goes to zero on the boundary. (a) In a strict (as opposed to schematic)

conformal diagram, each point in the interior of the diagram represents an exact

2-sphere; but on a symmetry axis (shown with a dashed line) this 2-sphere shrinks

to a point, as it does at a corner marked with .; but at a corner marked with �, the

boundary point remains conformally a 2-sphere. InWnity is indicated with a solid-

line boundary (often denoted I —and pronounced ‘scri’); singularities are indi-

cated as wiggly-line boundaries. (b) A strict conformal diagram for Minkowski

space m. (c) A strict conformal diagram for Fig. 27.11, depicting spherically

symmetric collapse to a black hole.

Fig. 27.18b, where an observer is at a point p close to the Big Bang
boundary. The region of the universe that can transmit information to
the observer is that region on or within the past light cone of p, and we
note that this intersects only a portion P of the Big Bang initial hypersur-
face.41 Particles created in the Big Bang in the region outside P are not
accessible to observation at p. These regions are beyond p’s particle

horizon. We say that they lie outside p’s observable universe—this observ-
able part of the universe being that lying on or within p’s past light
cone.[27.22]

[27.22] By referring to the conformal diagrams given here, show that for, K ¼ 0 or K < 0,

where L ¼ 0, the observable universe of a particle originating at p increases to include the

entire universe, in the particle’s future limit of time, whereas this is not true for the case K > 0,

or for any K (in the cases depicted in Fig. 27.17) if L > 0 (where a ‘cosmological event horizon’

occurs).
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Fig. 27.17 Strict conformal diagrams for the respective Friedmann models of

Fig. 27.13: (a) K > 0, L ¼ 0; (b) K ¼ 0, L ¼ 0; (c) K < 0, L ¼ 0; (d) K > 0, L > 0

(and L large enough); (e) K ¼ 0, L > 0; (f) K < 0, L > 0.
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p
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Big Bang
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Fig. 27.18 Horizons. (a) Event horizons occur when a future boundary—either a

singularity or inWnity—is spacelike in a schematic conformal diagram. As an

observer p approaches the boundary, there always remains some portion of the

spacetime (whose boundary is deWned as an event horizon) that p cannot see,

although exactly which part depends upon how p moves. (For example, the event q

is ultimately seen if p takes the left-hand route, but not the right-hand route.) In

the case of a black hole the more familiar ‘event horizon’ of a more absolute

nature (dotted, in the Wgure) being common to all external observers. (b) Particle

horizons occur in all standard cosmologies, arising from the past singularity being

spacelike. The observer at p sees only the limited portion P of the Big Bang (and of

particles produced there), although this portion grows with time.

27.13 Our extraordinarily special Big Bang

Now let us return to the extraordinary ‘specialness’ of the Big Bang. The
fact that it must have had an absurdly low entropy is already evident from
the mere existence of the Second Law of thermodynamics. But low entropy
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Fig. 27.19 The microwave background has an intensity, in terms of frequency

that is extremely precisely in accord with Planck’s black-body curve (Fig. 21.3b).

(Note that the ‘error bars’ shown are exaggerated by a factor of 500.)

can take many diVerent forms. We want to understand the particular way

in which our universe was initially special.
One especially striking—and seemingly contradictory—property of the

Big Bang comes from excellent observational evidence that the very early
universe was in a thermal state. Part of this evidence is the exceptional
closeness to the theoretical Planck ‘black-body’ curve (see §21.4, Fig.
21.3b) that is exhibited by the 2.7K microwave background radiation
that represents the actual ‘Xash’ of the Big Bang, still in evidence today,
though immensely cooled by the ‘red-shift’ caused by the expansion of the
universe (Fig. 27.19). Other evidence comes from the remarkably detailed
agreement between what theory and observation tell us about nuclear
processes in the early universe. These theoretical calculations crucially
depend on assuming the thermal equilibrium of the matter in the early
universe—taken in conjunction with the universe’s rapid expansion.
It seems to me that this apparent thermal equilibrium in the early

universe has grossly misled some cosmologists into thinking that the Big
Bang was somehow a high-entropy ‘random’ (i.e. thermal) state, despite
the fact that, because of the second law, it must actually have been a very
organized (i.e. low-entropy) state. A prevalent view seems to have been
that the resolution of this paradox must lie in the fact that, soon after the
Big Bang, the universe was ‘small’, so that comparatively few degrees of
freedom were available to it, giving a low ‘ceiling’ to possible entropies.
This point of view is fallacious, however, as pointed out in §27.6.
The correct resolution of the apparent paradox lies in the fact that the
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gravitational degrees of freedom have not been ‘thermalized’ along with all
those matter and electromagnetic degrees of freedom which deWne the
parameters involved in the ‘thermal state’ of the universe, moments after
the Big Bang. In fact, these gravitational degrees of freedom—providing a
huge reservoir of entropy—are frequently not taken into account at all!
Recall that, whereas maximum entropy is indeed represented, in the

absence of gravity, by an ordinary ‘thermal state’, we have something quite
diVerent for maximum entropy when gravitational eVects begin to domin-
ate, namely in the case of a black hole. With gravitation, the clumping of
material can represent a much higher entropy than ordinary thermal
motions, especially when this clumping leads us into black holes. This is
made particularly manifest if we consider the case of a closed universe. Let
us imagine that (consistently with observation) the universe is close to
being a FLRW model, and let us, for the moment, pretend that
K>0 and L¼0. The presence of some irregularities42 in the original
material can lead to gravitational condensations, and let us suppose that
these are suYcient to yield galaxies containing substantial black holes (say
of 106M�), providing us with an entropy per baryon of some 1021. If we
take our closed universe to have about 1080 baryons (about the baryon
content of the observable universe), this gives a total entropy of 10101, far
larger than the 1088 that would be in the radiation and matter at the time
of decoupling, about 300000 years after the Big Bang. The galactic black
holes would gradually grow, but the major increase would occur during
the universe’s Wnal collapse phase, when galaxies come back together and
their black holes congeal. The Wnal Big Crunch is not the tidy one depicted
in Fig. 27.16a, which is the time-reversal of the neat symmetrical FLRW
Big Bang; it is more like the dreadful mess of congealing black-hole
singularities depicted in Fig. 27.20a. We can estimate the entropy of this
mess of a Big Crunch by using the Bekenstein–Hawking entropy formula a
little before its Wnal state, when we can still think of the mess as being
composed of actual black holes, approaching the ultimate black-hole
agglomeration in which all 1080 baryons are involved. The value of SBH

for this number of baryons, which is about 10123, should not be too far oV

the answer for the entropy to be assigned to this messy Big Crunch.
The reader may, of course, reasonably object, at this point, that even if it

is true that K > 0, present-day observations seem to be pointing strongly
against the L ¼ 0 assumption that I have been making, where (together
with observed limits on the spatial curvature) the observed positive value
of L indeed seems to be easily large enough to prevent the occurrrence
of the collapsing phase that I have been considering, but with the expect-
ation of an ultimate exponential expansion instead. However, if phrased
appropriately, the preceding discussion can still be applied, and the same
measure of an entropy value (� 10123) is found to be available to a closed
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(a) (b) (c) (d)

Fig. 27.20 (a) If, in the case K > 0, L ¼ 0 of Fig. 27.13a, we allow for irregular-

ities, of the type that we see in our actual universe, then instead of the ‘clean’ Big

Crunch of the exact Friedmann model, we get a dreadful mess of congealing

black-hole singularities of enormously higher entropy (S � 10123). (b) This is not

dependent on L ¼ 0, as we could likewise consider corresponding perturbations of

the time-reverse of Fig. 27.13d (K > 0, L > 0) and again we get a similar enor-

mously high entropy mess (S � 10123) of congealing black holes. (c) A generic Big

Bang would look like that of the time-reverse of such a generic collapse (illustrated

for K > 0 and either L ¼ 0 or L > 0). (d) The most ‘probable’ situation (like the

curve of Fig. 27.8a)—illustrated in the case K > 0, L ¼ 0 for clarity—bears no

similarity to the acual universe, in its early stages.

1080-baryon universe irrespective of L > 0. For the time-reverse of the
universe described by Fig. 27.13d is just as much a solution of the dynam-
ical equations as is that described by Fig. 27.13d itself (as we are consider-
ing dynamical laws that should be reversible in time). If we consider
perturbations of this universe, we can Wnd models in which already-formed
black holes come together and produce a similar kind of ‘mess’ of con-
gealing black holes that we had before. (See Fig. 27.20b.) Again, we reach
an entropy value which, by the same reasoning as before, is of the order of
10123. (This type of reasoning will have relevance to us again, when we
come to consider inXationary cosmology in §28.5.)
We are thus led to a reasonable estimate for the total volume of PU

(which is essentially the same as the volume E of the maximum-entropy
box E of Fig. 27.4), namely the exponential of this entropy value:

E ¼ e10123 � 1010123

very closely.[27.23] (This comes from Boltzmann’s S ¼ log V , in natural
units.) Now, how does this compare with what we know of the volume
N of the box N for entropy today, and with the volume B of the box B for

[27.23] Why are these Wgures—to within the precision expressed by the number ‘123’—

virtually the same? Why does the actual value of B not appear in the conclusions below?
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Fig. 27.21 Creation of the universe: a fanciful description! The Creator’s pin has

to Wnd a tiny box, just 1 part in 1010123

of the entire phase-space volume, in order to

create a universe with as special a Big Bang as that we actually Wnd.

the entropy in the Big Bang (assuming, for now, that we live in a 1080

baryon universe)? Taking the black-hole estimate, given above, for the
entropy today, and the value of 108 for the entropy per baryon in the 2.7K
radiation, we Wnd

B: N: E ¼ 101088

: 1010101

: 1010123

:

It follows that each of B and N is only

one part in 1010123

of the total volume E. Moreover, the volume B is only

one part in 1010101

of the phase-space volume N of the universe today.
As a way of appreciating the problem posed by the absurdly tiny phase-

space volume of B, we can imagine the Creator trying to use a pin to locate
this tiny spot in the space PU , so as to start the universe oV in a way that
resembles what we know of it today. In Fig. 27.21, I have drawn a fanciful
representation of this momentous event! If the Creator were to miss this
spot by just the tiniest amount and plunge the pin eVectively randomly
into the maximum entropy region E, then an uninhabitable universe like
that of Fig. 27.20d, in the case L ¼ 0, K > 0, but otherwise rather like the
ever-expanding case of 27.20c) would be the result, in which there is no
Second Law to deWne a statistical time-directionality (like Fig. 27.8a).
(Things are actually not much better explained if we imagine that our
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Creator merely aims to construct a universe in which there are sentient
beings, like ourselves. This raises the issue of the ‘anthropic principle’, and
I shall discuss these matters in §§28.6,7 and in §34.7.)
On the other hand, it may well be that the universe is spatially inWnite,

like the FLRW models with K ¼ 0 or K < 0. This does not invalidate the
foregoing argument. We can imagine applying it to just the observable
universe (at the present time) rather than to the entire universe. Taking the
presently observable universe to contain about 1080 baryons, it is hard to
see that the above considerations will be seriously aVected. On the other
hand, if we apply the arguments to the universe as a whole (still taking
FLRW as a good approximation), we simply get a requirement of inWnite

precision on the part of the Creator, rather than merely absurdly large
precision. I do not see how this in any way resolves the conundrum
presented by the extraordinarily precise ‘tuning’ that was inherent in the
Big Bang—an essential correlate of the Second Law.
What message do we carry from these considerations? We have learned

not only that the Big Bang origin of the universe was extraordinarily
special, but also something important about the nature of this special-
ness. As far as matter (including electromagnetism) was concerned, the
description ‘thermal equilibrium’, in the context of an expanding universe,
seems to have been highly appropriate. This is the successful ‘Hot Big Bang’
picture that is an important ingredient of the standardmodel of cosmology.
After about 10-11s, the universe seems to have had a temperature of about
1015 K, while after some 102s, the temperature dropped to 109 K. This drop
in temperature would have been in accordance with the Tolman–Fried-
mann expansion rate, and many observational details (e.g. hydrogen/deu-
terium/helium ratios) are consistent with the nuclear processes that would
take place at those later temperatures.
Yet, for gravitation, things were completely diVerent in that the gravi-

tational degrees of freedom were not ‘thermalized’ at all. The very uni-
formity (i.e. FLRW nature) of the initial spacetime geometry was what
was special about the Big Bang. The fact that an initial singular state for
the universe ‘need not have been so’ is illustrated in Fig. 27.20b—or in the
time-reversal of the physically appropriate Big Crunch of Fig. 27.20a.
Gravity seems to have a very special status, diVerent from that of any
other Weld. Rather than sharing in the thermalization that, in the early
universe, applies to all other Welds, gravity remained aloof, its degrees of
freedom lying in wait, so that the second law would come into play as these
degrees of freedom begin to become taken up. Not only does this give us a
second law, but it gives us one in the particular form that we observe in
Nature. Gravity just seems to have been diVerent!
But why was it diVerent? We enter more speculative areas when we

attempt answers to this kind of question. In Chapter 28, we shall see some
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of the ways that physicists have tried to come to terms with this puzzle and
related ones, concerning the origin of the universe. In my opinion, none of
these attempts comes at all close to dealing with the puzzle addressed in
the preceding paragraph. In accordance with my own beliefs, we shall need
to return to an examination of the very foundations of quantum mechan-
ics, for it is my strong opinion that these issues are deeply connected. We
shall do this in Chapter 29. Then, in Chapter 30, I shall try to present a
good measure of my own perspective on these fundamental questions.

Notes

Section 27.2

27.1. This is taking the dynamics to be entirely classical. Technically, a ‘chaotic

system’ is a classical system in which a tiny change in the initial state can result

in a subsequent behavioural change that grows exponentially with time rather

than, say, linearly. This ‘unpredictability’ is, of course, a matter of degree and

not the matter of principle that it is sometimes assigned, with regard to deter-

minism.

27.2. This assumes that the speciWc heats are positive, which is normally the case. But

with black holes, this assumption is usually untrue; see §31.15.

27.3. There is the curious ‘paradox’, however, that in ordinary life, things are nor-

mally the other way around! One is frequently making accurate ‘retrodictions’

by simply remembering what happened in the past, whereas we have no corres-

ponding access to the future. Moreover, archaeological investigations can

extend such ‘memories’ to times far earlier than there were human beings.

However, this retrodiction does not involve the evolution of dynamical equa-

tions, in any obvious sense, and its detailed connection with the second law still

remains somewhat obscure to me. (See Penrose 1979a).

Section 27.3

27.4. See Pais (1986).

27.5. See Gibbs (1960); Ehrenfest and Ehrenfest (1959); Pais (1982).

27.6. Actually, Boltzmann himself never used this constant, since he did not concern

himself with the actual units that might be used in practice; see Cercignani

(1999). The formula S ¼ k logV , involving this constant, appears to have been

Wrst explicitly written by Planck; see Pais (1982).

Section 27.5

27.7. From Eddington (1929a).

Section 27.6

27.8. See Hawking and Ellis (1973); Misner et al. (1973); Wald (1984); Hartle (2002).

27.9. See Gold (1962); see Tipler (1997) for these ideas taken to a rather fanciful

conclusion.

27.10. See Penrose (1979a).

Section 27.7

27.11. Some years before Hubble, in 1917, the American astronomer Vesto Slipher

had already found some indication that the universe is expanding. See Slipher
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(1917). Though he is rarely given credit for these observations, he also has the

distinction of having discovered Pluto!

27.12. This radiation was Wrst theoretically predicted by George Gamow in 1946, on

the basis of the Big Bang picture, and more explicitly by Alpher, Bethe,

and Gamow in 1948; then again independently by Robert Dicke, in 1964. It

was discovered observationally (accidentally), by Arno Penzias and Robert

Wilson, in 1965, and immediately interpreted by Dicke and his colleagues; See

Alpher et al. (1948); Dicke et al. (1965), and of course Penzias and Wilson

(1965)—possibly the most modestly named scientific paper of all time!

27.13. For further discussion, see Penrose (1979a, 1989).

27.14. In fact, overall, the Earth sends back just slightly more energy than it receives.

Ignoring the issue of human burning of fossil fuels, which Wnally returns some

energy received from the Sun and stored in the Earth many millions of years

ago (and, on the other side of the scales, ignoring the accompanying global

warming that results from the ‘greenhouse eVect’ whereby the Earth traps a

little more of the Sun’s energy than previously), there is the heating of the

Earth’s interior through radioactive decay, this energy being very gradually lost

into space through the atmosphere. See §34.8.

Section 27.8

27.15. See Michell (1784); Tipler et al. (1980).

27.16. See Penrose (1978).

27.17. See van Kerkwijk (2000) for the state of the art on this matter.

27.18. See Schwarzschild (1916), or the modern presentation in Wald (1984).

27.19. See Narayan (2003) for recent evidence.

Section 27.9

27.20. The occurrence of what is known as a ‘trapped surface’ is one useful character-

ization of such a ‘point of no return’. A trapped surface is a compact spacelike

2-surface S with the property that the two families of null normals to S both

converge into the future. (In more ‘colloquial’ terms, this means that, if a flash of

light originates at S, then the areas of both the outgoing and ingoing parts of the

Xash will start to get smaller.) We expect to Wnd trapped surfaces inside the

horizon H of a black hole. The virtue of the trapped-surface criterion is that it

does not depend upon any assumptions of symmetry, and it is ‘stable’ under small

perturbations of the geometry. Once a trapped surface is formed, then singular-

ities are inevitable (assuming certain very weak and reasonable conditions con-

cerning causality and energy positivity in the Einstein theory). Similar results

apply to the cosmological Big Bang singularity. See Penrose (1965b); Hawking

and Penrose (1970).

27.21. See Penrose (1965b); Hawking and Penrose (1970). Wald (1984) reviews these

theorems in a pedagogical setting.

27.22. See Penrose (1969, 1998); Belinskii et al. (1970).

27.23. See Penrose (1969, 1998).

27.24. See Reeves et al. (2002) for the most up-to-date view on these matters, and

Cheng and Wang (1999); Hansen and Murali (1998) for the collision theory.

Section 27.10

27.25. See Israel (1967).

27.26. See Kerr (1963); Newman et al. (1965) in the charged case. Wald (1984) has a

pedagogical presentation.
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27.27. Like Kepler’s ellipses, as referred to at the beginning of this chapter, the Kerr

metric supplies another of those exceptional situations where we have been

blessed with the good fortune that relatively simple geometrical conWgurations

actually arise from the dynamical laws.

27.28. See Chandrasekhar (1983), p. 1.

27.29. In fact (as we shall see in §27.9), there is a further parameter which describes the

total electric charge (this being a conserved quantity; see §19.3). But for realistic

astrophysical black holes, it can be ignored in the black-hole geometry, being

tiny in comparison with m and a, because of a strong tendency for a black hole

to neutralize itself electrically.

27.30. One should, of course, be careful not to confuse this ‘e’ with the base of natural

logarithms e ¼ 2:7182818285 . . . , see §5.3.

Section 27.11

27.31. See Smoot et al. (1991) for COBE evidence, Spergel et al. (2003) for WMAP.

27.32. Liddle (1999) is a superb introduction to cosmology. Wald (1984) covers the

topic at a more sophisticated level.

27.33. See Bondi (1961); Rindler (2001); Dodelson (2003).

27.34. The term ‘concordance model’ has emerged to describe the situation for which

K ¼ 0 and L > 0 where inXation is also incorporated. See Blanchard et al.

(2003); Bahcall et al. (1999). See §28.10 for my assesment of the present staus

of this.

27.35. A rather peculiar possibility is that the ancient Greeks were right (§1.1) and the

universe is actually a dodecahedron (or, rather a glued-up version of one). See

Luminet (2003).

27.36. The term hypersurface refers to an (n� 1)-dimensional submanifold of some

n-manifold, here a T t.

27.37. See Killing (1893); Wolf (1974).

Section 27.12

27.38. These are sometimes known as ‘Penrose diagrams’ or ‘Carter–Penrose dia-

grams’, because of the use made of them in my Warsaw lecture (1962); the

systematic notion of a strict conformal diagram was introduced by Carter

(1966).

27.39. See Penrose (1962); Carter (1966); Penrose (1963, 1964, 1965a). Hawking and

Penrose (1996) make use of the diagrams and provide some instruction on their

interpretation.

27.40. Certain hypothetical models in which the Big Bang is indeed conformally (i.e.

causally) a point—referred to as ‘the O point’—Wnd favour with some theoret-

icians; see Tipler (1997). I am not aware of any discussion, compatible with the

arguments of Chapter 27, which makes such models physically plausible, how-

ever.

27.41. See Note 27.36 for the term ‘hypersurface’. In this case, we see that the Big

Bang, in its conformal representation, is 3-dimensional. (We may contrast this

with certain other representations, see Rindler 2001).

Section 27.13

27.42. It is often considered that the phenomenon ultimately responsible for such

irregularities is ‘quantum Xuctuations’ in the initial matter density in the Big

Bang. (This will be discussed in §30.14.)
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28
Speculative theories of the early universe

28.1 Early-universe spontaneous symmetry breaking

Up to this point in the book, our considerations have been well within the

scope of Wrmly established physical theory, where impressive observa-

tional data has supplied powerful support for the sometimes strange-

looking theoretical ideas that have come into play. Some of my arguments

have been presented in ways that may be a little diVerent from those

usually found in the literature, but I do not think that there is anything

contentious about this. In this chapter, I shall begin to address some of the

more speculative ideas that are concerned with issues raised by the special

nature of the Big Bang.

In particular, I shall consider the ideas of inXationary cosmology, in

addition to others that relate to spontaneous symmetry breaking in the

early universe (see §25.5). Some readers, conversant with certain ideas in

common use in cosmology, may Wnd it puzzling that I am placing inXa-

tionary cosmology so Wrmly in the ‘speculative’ camp. Indeed, popular

accounts often seem to take as an established fact that, in the very early

stages of the universe, there was a period of exponential expansion in the

course of which the universe inXated by a factor of about 1030, or perhaps

even 1060 or more. Other knowledgeable readers may be even more

alarmed by the fact that I am regarding the general phenomenon of

spontaneous symmetry breaking in the early universe as a speculative

idea. Nevertheless, the notions that I wish to address in this chapter

have, as yet, not a great deal (if any) of signiWcant and unambiguous

support from observation, and one may well raise the issue of whether

or not these ideas have genuine relevance to Nature.

Let us start with the general idea of spontaneous symmetry breaking.

Recall the power of this idea for producing renormalizable QFTs, in which

the renormalizability takes advantage of a greater (‘hidden’) sym-

metry than is directly exhibited in observed behaviour. This lack of full

symmetry in what is observed is attributed to the system’s choice of a

‘vacuum state’ that does not share the full symmetry of the dynamical

theory. In particular, this formed a key ingredient of the electroweak part
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of the standard model of particle physics. Moreover, this kind of idea,

involvingdiVerentpossible ‘vacua’, isalsoanessential ingredientof inXation,

and these notions of spontaneous symmetry breaking and ‘false vacua’ are

also commonly invoked by theoreticians in search of ever-more uniWed

schemes. However, I should make clear that spontaneous symmetry break-

ing itself is not a speculative idea. It has undoubted relevance to many

genuine physical phenomena (superconductivity being an excellent ex-

ample). It most certainly applies to a number of well-established phenom-

ena, often in an elegant and satisfactory way. I am certainly not casting

doubt on the idea in itself. My trouble with it is that its distinctive appeal

may entice physicists sometimes to employ it too broadly, and sometimes

in inappropriate circumstances.

The idea of spontaneous symmetry breaking is often graphically intro-

duced by reference to the phenomenon of ferromagnetism. Imagine a

spherical solid ball of iron. We may think of its atoms as little magnets

for which, because of the forces involved, there is a tendency for them to

line up parallel with their neighbours, with the same north/south orienta-

tion. When the temperature is high enough, namely above a critical value,

which is about 770 8C (1043K), the energetic thermal agitation of the

atoms will override this tendency to magnetic alignment, and the material

exhibits no propensity to become a magnet on a large scale, there being an

eVectively random arrangement of the orientations of the little atomic

magnets. But at a lower temperature than 770 8C (the so-called ‘Curie

point’), it is energetically favourable for the atoms to line up, and in an

ideal situation the iron would become magnetized.1

Now, imagine that our iron ball is initially heated to above 770 8C (but

not to such a high temperature that it melts), so it is initially an unmagne-

tized spherical ball. Its environment is then gradually cooled to below the

critical 770 8C. What happens? The natural tendency is for the ball to Wnd a

minimum-energy state, the energy in the internal vibrations of its atoms

being conveyed out into the cooler environment. Because of the interactions

between neighbouring atoms, the minimum energy occurs when all atoms

are aligned, so that the ball becomes magnetized, with a deWnite direction

for its north/south polarity. But none of these directions is favoured above

any of the others. There is what is called a degeneracy in the states of

minimum energy (compare §22.6). There being no favoured direction in its

initial heated unmagnetized state, the Wnal magnetization direction comes

about randomly. This is an example of spontaneous symmetry breaking: the

initial spherically symmetrical state settles down into a state with smaller

symmetry, namely just the symmetry of rotation about the resulting mag-

netic north/south axis. An SO(3)-symmetrical state (namely the original hot

unmagnetized ball) evolves to an SO(2)-symmetrical one (the cold magnet-

ized ball; see §§13.1,2,3,8,10 for the meanings of these symbols).
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Fig. 28.1 Spontaneous symmetry breaking, with a ‘Mexican hat’ potential for the

allowable states of a system, height measuring energy. The state of the system is

represented as a marble, constrained to the surface of the hat. When the ambient

temperature is high enough (Curie point), the equilibrium state of the system is

represented by the marble resting at the peak, and has full rotational symmetry

(SO(2), in this simplified picture). But when the temperature cools, the marble

rolls down, finally reaching an arbitrary equilibrium point in the rim, breaking full

rotational symmetry.

The picture used to describe this sort of situation is the ‘Mexican hat’

potential depicted in Fig. 28.1. The ‘hat’ represents the family of allowable

states of the system (the ambient temperature having been cooled to zero),

where ‘height’ represents the system’s energy. We Wnd that there is an

equilibrium state (i.e. having a horizontal tangent plane) represented as the

peak of the hat which possesses the complete symmetry of the original

group—this group being represented, in the picture, as rotation about the

vertical axis. (This SO(2) rotational symmetry is taken to be analogous to

the full SO(3) symmetry of the iron ball, but we have had to lose one

spatial dimension in order to make the picture visualizable. The peak of

the hat represents complete lack of magnetization for the ball as a whole.)

But this equilibrium—representing the unmagnetized state—is unstable,

and it does not represent the minimum of the available energies. These

minima are the states represented by the horizontal parts—a whole circle’s

worth—just inside the rim of the hat (diVerent points in the rim represent-

ing diVerent directions of total magnetization of the iron ball).

We may envisage the state being initially at the peak, as represented by a

‘marble’ initially perched at that point to represent the physical state, left

there by the previous high-temperature state. But the lack of stability means

that the marble will roll away from that point (assuming the existence of

some random disturbing inXuences) and Wnally Wnds a resting point in the

rim. Each point in the rim that the marble might settle in represents a

diVerent direction of magnetization that the ball might Wnally acquire.

This marble location represents the Wnal physical state. But because of the

rotational degeneracy, there is no favoured place for the marble to come to

rest. All of these equilibria in the rim are on an equal footing. The marble’s

choice is taken to be a random one, and when that choice is made, the

symmetry has been broken—in some randomly chosen direction.
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A phenomenon of this nature, where a reduction in the ambient tem-

perature induces an abrupt gross overall change in the nature of the stable

equilibrium state of the material, is called a phase transition. In our

example of the iron ball, the phase transition occurs when the ball passes

from the unmagnetized state (when the temperature is above 770 8C) to the

uniformly magnetized one (temperature below 770 8C). More familiar are

the phenomena of freezing (where the state passes from liquid to solid, as

the temperature lowers) and, in a reverse process, boiling (where the state

passes from liquid to gas, as the temperature rises). A phase transition,

when the temperature is lowered, is often accompanied by a symmetry

reduction, but this is not essential.

In QFT processes, a phase transition would frequently be described

in terms of a new choice of vacuum state (like the jYi of §26.11), where it is

envisaged that the state ‘tunnels’2 from one vacuum into another. This

description must be taken as an approximation, however, since there is,

strictly speaking, no (unitary) quantum-mechanical process that can evolve

a state from one sector to another (where a ‘sector’ refers to the states that

can be built up from some particular choice of vacuum state jYi, the states

in diVerent sectors belonging to diVerent Hilbert spaces; see §§26.5,11). The

approximation, which involves taking a system as being inWnite, when in

practice it is Wnite, is evidently a good one, in practical situations. For

example, the well-established phenomenon of superconductivity (where

electrical resistance reduces to zero when the temperature is low enough)

is treated in this way, superconductivity being a phase transition which

accompanies the symmetry reduction that breaks the ordinary U(1) sym-

metry of electromagnetism.

In the speciWc example illustrated in Fig. 28.1, the symmetry is broken

down from the group of axial rotations SO(2) to the trivial group

(‘SO(1)’), containing just one element (so all symmetry is Wnally lost, in

this example, the marble’s resting location completely breaking the sym-

metry).3 But higher-dimensional versions of this ‘hat’ illustrate the spon-

taneous breaking of symmetry down from SO(p) to SO(p� 1), where

p > 2.[28.1] (Our ball of iron illustrates the case p ¼ 3.) We can also use

the ‘Mexican hat’ picture to illustrate the breaking from U(2) down to

U(1) that occurs in the standard model of particle physics,[28.2] whereby

the electroweak U(2) symmetry (see §25.5) is taken to be broken to

the U(1) symmetry of electromagnetism at a temperature of about

1016 K, which would have occurred a Xeeting 10�12 s after the Big

Bang. In the more general GUT theories (see §25.8), other groups are

[28.1] Show that the ‘hat’ with shape E ¼ (x2
1 þ � � � þ x2

p � 1)2 exhibits this symmetry breaking.

[28.2] Show this, with U(2) acting on C
2, with complex coordinates (w, z), the ‘hat’ being given

by E ¼ (jwj2 þ jzj2 � 1)2. Can you see the geometry of this symmetry reduction in the conWgura-

tion of CliVord parallels in S3, as described in §15.4 and illustrated in Figs. 15.8 and 33.15?
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involved, such as SU(5), and we can envisage diVerent stages of symmetry

breaking occurring at diVerent temperatures. Thus, at some temperature

much higher than 1016 K (i.e. at a signiWcantly earlier time than 10�12 s,

just after the Big Bang), SU(5) might Wrst break down to something that

appropriately4 contains both the SU(3) for strong interactions and the

SU(2)�U(1)=Z2 (i.e. U(2)) that is required for electroweak theory.

28.2 Cosmic topological defects

We should, however, bear in mind that this symmetry breaking is unlikely to

take place ‘all at once’, and domains in which the symmetry is broken in

diVerent ‘directions’ may well occur. Consider our idealized iron ball once

more; we may expect that the random initial choice of magnetization direc-

tion could be diVerent at diVerent places in the ball.We could imagine that if

the cooling is slow enough then these non-uniformities might ‘even them-

selves out’, to give just one uniform magnet.5 But, alternatively, with a more

rapid cooling, we might Wnd that we get a ‘patchwork’ of directions some-

what like that illustrated in Fig. 28.2. The size of the resulting cells, and the

patterns that they present, might indeed depend upon the rate at which the

cooling takes place, among other things. There is the issue of how readily

‘communication’ occurs between diVerent regions, and of how readily the

magnetization direction in one region of the ball might get ‘turned around’

under the inXuence of neighbouring regions.

More serious and interesting are the topological defects which cannot be

removed at all by continuous wriggling around of magnetization direc-

tions in the interior of the ball. Such a defect is a ‘Dirac magnetic mono-

pole’ (isolated north or south magnetic pole). However, such a monopole

cannot be produced in ordinary space with any collection of magnets and

currents.[28.3] However, an effective such monopole can be achieved if we

Fig. 28.2 Ideally, when a ferromagnet slowly

cools from its Curie point, the directions of

magnetization of its atom would all settle in

the same (arbitrary) direction. But in practice

(or with too rapid cooling), we get a ‘patch-

work’ of such directions of magnetization.

[28.3] Show this, by appealing to the integral expressions of Chapter 19.
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‘Dirac
 wire’

North
South

Fig. 28.3 A magnetic monopole could arise if we somehow ‘pipe away’ the excess

‘south pole’ at the sphere’s centre along a ‘magnetic wire’. With magnetic sources

allowed in Maxwell’s theory, such a pole could be inserted at the centre, and the

(Dirac) ‘wire’ need occur only as a glitch in the potential A. This glitch can be

eliminated with the appropriate ‘bundle’ point of view (such monopoles also

occurring in suitable non-Abelian gauge theories).

allow magnetic charge to be ‘piped away’ along a ‘Dirac wire’ as in Fig.

28.3. If magnetic charges are allowed for in Maxwell’s theory (§19.2), then

the ‘wire’ appears only in the potential A (§19.4), and can be eliminated

altogether by the adoption of the appropriate ‘bundle’ point of view

(§15.4). A similar kind of monopole will also exist in suitable non-Abelian

gauge theories.

These complications in the picture of spontaneous symmetry reduction,

partly illustrated above in the ‘down-to-earth’ example of a ball of iron, have

relevance also at the more esoteric level of basic physical theories (such as

electroweak or GUT) which depend fundamentally on the idea of spontan-

eously breaking symmetry. Topological defectsmay be expected to occur on

a grand (cosmological) scale, if such spontaneous symmetry breaking took

place in the early universe. In general (for 3-dimensional space), there are

three basic kinds of topological defect, depending upon the dimension of the

regions onwhich they essentially reside. These are called (cosmic)monopoles

(whichare spatially 0-dimensional), cosmic strings (spatially 1-dimensional),

and domain walls (spatially 2-dimensional). The dimension depends upon

topological issues to do with the groups involved. The serious point about

topological defects is that no amount of continuous wriggling of the ‘direc-

tion’ of symmetry breaking can remove them (where we consider that, at the
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defect itself, there is no well-deWned direction of symmetry breaking,

whereas continuous variation of this direction takes place elsewhere). We

must bear in mind that this notion of ‘direction’ does not refer to a direction

in ordinary space, but to a more abstract notion of ‘direction’ that occurs

within the physical model under consideration (e.g., in electroweak theory,

that which tells us what degree of electron/neutrino mixture is being con-

sidered). Geometrically, we should be thinking in terms of a vector bundle

over spacetime (see Chapter 15, if you wish to be reminded of this notion).

Topological considerations still apply, and the topological defects would

present serious issues that cannot just be ‘laughed away’ if the symmetry

breaking is to be taken seriously as part of basic physical theory.

Indeed, cosmic strings on enormous (even longer than galactic) scales

have been taken seriously as the essential agency responsible for induc-

ing those inhomogeneities in the background gas that lead to galaxy

formation.6 We can think of the gravitational Weld of such a cosmic

string as being constructed by a ‘scissors-and-paste’ procedure applied

to Minkowski spacetime. In spatial terms (see Fig. 28.4), we picture a

‘sector’ removed from 3-space, this being bounded by a pair of half

planes whose contained angle a is centred on the string itself. To con-

struct the cosmic string geometry, the two plane surfaces are ‘glued’

together again. (In the suggested models, a is about 10�6.)

The reader may, with some justiWcation, feel that these are extreme

measures for the production of such a ‘commonplace’ entity as an ordin-

ary galaxy. Yet there are still some theoretical puzzles about galaxy

formation, so such exotic ideas should not be dismissed out of hand,

despite their seemingly outrageous nature. Indeed, perhaps the most

plausible model for galaxy formation—which has some significant obser-

vational support—is that they are ‘seeded’ by the supermassive black holes

that now seem to reside at their centres.7 But black holes must today be

considered as conventional rather than exotic physics!

Most of these suggested topological defects refer to theories (such as the

various GUTs) that do not have signiWcant or unambiguous support from

Fig. 28.4 The gravitational field of a

cosmic string can be constructed by a

‘scissors-and-paste’ procedure applied to

Minkowski 4-space. In 3-space, a sector is

removed, bounded by two half-planes

meeting at an angle a along the string. The

half-plane surfaces are then ‘glued’.
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observation. Electroweak theory, on the other hand, is very well supported

observationally, sowe must pay heed towhat this theory implieswith regard

to processes in the early universe. Cosmic monopoles, resulting from the

symmetry breaking of electroweak theory, are a topological possibility, but

they are not a necessity. They could arise in the spontaneous breaking from

U(2) down to U(1), but only if what are called ‘gauge monopoles’ were

already present in the unbroken U(2)-symmetric phase of the theory, which

is taken to have occurred before 10�12 s. Such monopoles could arise from

an earlier breaking from a larger GUT symmetry, but these ideas are by no

means a necessary part of electroweak theory.8

Such gauge monopoles are the analogues, within some Yang–Mills (non-

Abelian gauge) theory, of the ‘magnetic monopoles’ that Dirac once

proposed (in 1931), in the context of the (Abelian gauge) theory of elec-

tromagnetism. By an ingenious argument, Dirac showed that, if even a

single magnetic monopole (a separate magnetic north or south pole) were

to exist in Nature, then all electric charges would have to have values that

are integer multiples of some particular value, this value being reciprocally

related to the magnetic strength of the monopole. In fact, present obser-

vations strongly suggest that electric charges are all integral multiples of a

particular value (say that of the anti-d-quark charge, which is one third of

that of the proton; see §3.5 and §25.6). Some would take this as circum-

stantial evidence for the actual existence of magnetic monopoles. Never-

theless, if such monopoles are not to be in gross conXict with observation,

they would have to be exceptionally uncommon.9 (Otherwise they would

have the eVect of ‘short-circuiting’ cosmic magnetic Welds, whereas such

Welds are observed to exist throughout large reaches of the universe.)

Similarly, Yang–Mills monopoles would cause severe observational con-

Xicts if such monopoles were signiWcantly present in the universe today.

This issue has had important implications for the development of the

subject of cosmology, as we shall soon be seeing!

28.3 Problems for early-universe symmetry breaking

Before coming to this, it is appropriate for us to consider again the

symmetry breaking in electroweak theory that is deemed to have taken

place at about 10�12 s after the Big Bang. Must we accept that this is a real

phenomenon, or might it be merely an artefact of the particular way in

which the theory is usually presented? As far as I can make out, most

electroweak theorists would certainly consider this process to be a real

one. The reader is hereby warned, therefore, that my proposal to question

its reality here is an unconventional position to take. Nevertheless,

let us press forward and consider some of the diYculties inherent in the

symmetry-breaking idea.
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Let us suppose that, contrary to my own (less than conventional)

opinions on this matter, there was indeed a time in the early history of

the universe—earlier than about 10�12 s after the Big Bang—when an

exact U(2) symmetry held in which leptons and quarks were all massless,

where ‘zig’ electrons and neutrinos were on an equal footing with each

other, and where the W and Z bosons and the photon could be appropri-

ately ‘rotated’ into combinations of each other according to a U(2) sym-

metry (see §25.5). Then, at time about 10�12 s, throughout the universe, the

temperature dropped to just below the critical value. At this moment a

particular choice of (W�, Wþ, Z0, g) was made, randomly, taken from the

entire U(2)-symmetric manifold G of possible sets of gauge bosons. We do

not expect this to happen exactly uniformly throughout space, simultan-

eously over the entire universe. We anticipate that, as with the domains of

magnetization in the iron ball illustrated in Fig. 28.2, in some regions one

particular choice will be made and in other places there will be diVerent

choices.

At this point, we should address the question of what is to be meant by

the terms ‘same’ and ‘diVerent’ in this context. The space G of possible

gauge bosons is, at each spacetime point, completely U(2)-symmetric

before the symmetry reduction takes place. As is inherent in the notion

of a bundle, there is to be no particular way, favoured over any other, of

making an identiWcation between the G at one point and the G at another

quite diVerent point. Thus, we do not seem to be given an a priori rule for

telling us which element of the G at one point is to be called ‘the same’

element as some element of the G at another point. This seems to give us

the freedom of holding to the standpoint that we simply deWne the notion

of ‘the same’ to be that provided by the particular choice that the spon-

taneous symmetry breaking provides. According to such a standpoint, the

particular (W�, Wþ, Z0, g) that is ‘frozen out’ at one point would be

identiWed with the corresponding (W�, Wþ, Z0, g) at any other point, so

it seems accordingly that we would not witness the kind of ‘inconsistency’

between the symmetry breakings at diVerent points that occurs with the

domains of iron magnetization illustrated in Fig. 28.2.

However, sucha standpointXies in the faceof thewhole ideabehindgauge

theory, according to which not only are the G spaces the Wbres of a Wbre-

bundle BG, with base space the spacetimeM, but also the particular gauge

theory—in this case unbroken electroweak theory—is deWned in terms of a

connection on this bundle (§§15.7,8). This connection deWnes the locally

meaningful identiWcation (parallelism) between the G spaces as we move

along any given curve inM.10 In general this identiWcation is not globally

consistent aswe go around closed loops (because of curvature in the connec-

tion, expressing the presence of non-trivial gauge Weld—see §15.8). In any

case, the randomness involved in the symmetry breaking at diVerent points
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will have the implication that local parallelism between the G-spaces will

generally not be consistentwith the choices that aremade in the spontaneous

symmetry breaking, so the picture of Fig. 28.2 is not such an unreasonable

analogy.Wecan imagine that, aswithasuYciently slowlycooledballof iron,

the inconsistencies will ‘iron themselves out’ if given suYcient time, where

here it is assumed that there are no topological defects (as indicated in Figs.

28.3 and 28.4). The issue that I wish to raise is whether there can ever be

‘enough time’ in the case of electroweak spontaneous symmetry breaking.

The diYculty has to do with the particle horizons that we encountered in

§27.12, Fig. 27.19b. Look at the schematic conformal diagram of Fig. 28.5.

An observer situated at point p sees quasars (cf. §27.9) in two opposite

directions, at respective spacetime points q and r. According to the standard

FLRW models, if the red shift11 (see §27.7) of the quasars is sufficiently

great, then the past light cones of p and q will not intersect each other,

so no kind of communication can have taken place between them. Being

out of communication with each other, they will not have had time to ‘iron

out’ their symmetry breaking to be consistent in the way indicated

above. We shall shortly be considering the ‘inXationary scenario’ which

pushes back the Big Bang line, in the conformal diagram, so as to bring q

and r into ‘communication’ after all. But that will not help us

Big Bang

Big Bang

(a)

(b)

p

q r

p

q r

uuuu ∑∑

Fig. 28.5 Schematic conformal diagrams illustrating causal (in)dependence in the

early universe. (a) Observer at p sees quasars in opposite directions, at q and r. If the

dotted line represents the 3-surface � of time 10�11 s, along which exact prior U(2)

electroweak symmetry (relating the photon g to the W and Z bosons) is taken to be

broken, then the particular ‘frozen out’ choice of g at q almost certainly differs from

that at r, the intersections of the pasts of q and r with � being disjoint; yet the

respective g choices cannot communicate their sameness/difference until p is

reached. Similarly, if � now represents decoupling, at time 1013 s, temperatures at

u and v cannot have equalized by thermalization, as their complete pasts are

disjoint. (b) Inflation’s ‘resolution’ of the latter ‘horizon problem’ is to push the

Big Bang back so that the pasts of q and r now do intersect before reaching the Big

Bang 3-surface. The former problem remains unresolved, however, since the inter-

sections of their pasts occur prior to the ‘freezing out’ at 10�11 s.
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here, because the 3-surface S, over which the electroweak symmetry

breaking is to take place, eVectively plays the role of the Big Bang in our

present causality considerations, because the spontaneous symmetry

breaking is taken as occurring randomly on the 3-surface S, with no

eVective common causal inXuence.

Now the lines qp and rp are null lines, so only the photon can travel from q

to p or from r to p, not the W or Z bosons—the photon being the only

massless member of the family of gauge bosons. Thus, all along these two

null lines, we must have a consistent notion of what a photon is. The notion

of ‘photon’ at q is highly likely to be inconsistent (in the sense indicated

above) with the notion of ‘photon’ at r, because each was supposed to have

been selected randomlywithout common causal inXuence, and without time

for communication between them.12 Can the ‘diVerent’ kinds of photon

‘iron themselves out’ in time to save the observer at p from a baZing W–Z–g
confusion upon receiving them? I do not see how this can be possible

without signiWcant departures from the direct null (i.e. ‘lightlike’) con-

nections from q to p and from r to p. This could lead to a gross conXict

with the fact that distant objects are seen clearly through optical telescopes.

It seems to me that here there is danger of being severely inconsistent with

observation, although I have not seen it discussed in the literature.

But some readers will no doubt grumble (perhaps under their breaths)

that I have seemed to ignore all the very impressive observational support

for electroweak theory. Surely I am not going to abandon all that just

because of some confusion that I may have concerning phenomena propa-

gated from cosmological distances! Indeed not. I am in no way suggesting

that we should abandon the essential beautiful insights of electroweak

theory, but I prefer a slightly diVerent attitude to the breaking of its U(2)

symmetry from that which is usually put forward. As I see it, Nature’s true

scheme for particle physics has not yet come to light. Such a scheme should

be mathematically consistent and will not have the nasty habit that our

present-day QFTs have, of spitting out the answer ‘1’ to so many reason-

ably phrased physical questions. Why this (still unknown) ‘correct’ theory

gives Wnite answers is not discernible to us today. Thus we have resorted to

various ‘tricks’, which happen to have comeourway through a combination

of historical fortune and exceptional human ingenuity, that enable us to

produce observation-matching Wnite answers. At our present stage of

understanding, we certainly want a theory of weak and electromagnetic

interactions that is renormalizable, and not only has the idea of broken non-

Abelian gauge symmetry provided a route to such a renormalizable theory,

but the constraints in doing so have guided us close to a family of deep truths

about the way that these interactions Wt together as part of a broader

picture. But I do not see why a spontaneously broken symmetry need be

Nature’s true way, in particle physics. Indeed, there are other routes to
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seeing why the demands of renormalizability provide the needed relations

between the parameters of electroweak theory.13

This raises an important issue (to which I shall return in §34.8): does the

notion of symmetry, so prevalent in many ideas for probing Nature’s

secrets, really have the fundamental role that it is often assumed to

have? I do not see why this need always be so. It does not necessarily

strike me that basing particle physics on some large symmetry group

(which is part of the GUT philosophy) is really a ‘simple’ picture, as far

as a fundamental physical theory is concerned. To me, large geometrical

symmetry groups are complicated rather than simple things. It might well

be the case that there are fundamental asymmetries inherent in nature’s

laws, and that the symmetries that we see are often merely approximate

features that do not persist right down to the deepest levels. I shall be

coming back to this issue later (in §34.8).

28.4 Inflationary cosmology

Let us return to the question of the cosmic monopoles, whose proliferation

is a feature of certain GUTs. The trouble with these monopoles is the lack

of any indication of their actual existence. Worse than this, there are

stringent observational limits on the cosmic abundance of such mono-

poles, far below the level predicted by the GUTs. However, in 1981, Alan

Guth put forward the ‘outrageous’ proposal (also previously suggested

independently, in essence, by Alexei Starobinski and Katsuoko Sato) that

if the universe were to have expanded, by a factor of, say 1030 or perhaps

even 1060 or more, at some period after the production of the monopoles

(though before electroweak symmetry was broken, at the time of 10�12 s)

then the unwanted monopoles would now be so sparse that they could

easily escape detection, as was required from observation.

It was soon realized that this ‘inXationary period’ of extreme exponen-

tial expansion might serve other purposes as well, having to do with the

uniformity of the universe. As emphasized in Chapter 27, the universe is

indeed extremely uniform, and close to being spatially Xat on a very

large scale, and this presented a puzzle to cosmologists. For example, the

observed temperature of the early universe is extremely closely the same in

diVerent directions (to at least about one part in 105). This might be taken

as the result of a ‘thermalization’ in the very early universe, but only if the

diVerent parts of the universe in question were ‘in communication’ with

each other. (Recall how the second law of thermodynamics serves to

equalize the temperatures of a gas at diVerent places, as part of the process

of coming to thermal equilibrium; see §27.2.) Yet, an examination of

Fig. 28.5. tells us that the equality of the temperatures at distant points q
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and r, both observed from our present location p in spacetime, cannot be

the result of thermalization in the conventional cosmological models

because the points q and r (now taken to be at the time of ‘decoupling’,

when the cosmic black-body radiation was formed) were far too distant

from each other to have ever been in causal communication, in the

standard model.

This impossibility of the causal communication that would be required

for thermalization, in the standard model, is referred to as the horizon

problem. The eVect of the period of inXation, in this respect, is depicted in

the conformal diagram of Fig. 28.5. The spacelike 3-surface that repre-

sents the Big Bang has now been displaced to a much ‘earlier’ location, so

that the pasts of q and r now do intersect before reaching the 3-surface

that describes the Big Bang, so that now thermalization does have the

opportunity to take eVect, and we may now imagine that the equality of

temperatures at q and r can come about through this means.

Another perceived beneWt of this proposed inXationary period was that

it could provide an explanation of the remarkable uniformity of the matter

distribution and spacetime geometry, this being referred to as the smooth-

ness problem. The idea is that, with inXation, the initial state of the

universe might have been very irregular in detail, but the enormous expan-

sion of the universe during the inXationary stage would have served to

‘iron out’ these irregularities, and a closely FLRW universe is thereby

anticipated. The inXationary viewpoint envisages that even a ‘generic’

initial state would look like a smooth manifold on a small scale, and we

see this tiny smooth portion expanded out to cosmological scales—so as to

appear to be spatially Xat—during the course of the inXationary phase; see

Fig. 28.6 (and compare Fig. 12.6). I shall be coming to my own assessment

of this extraordinary idea shortly. For the moment, it is worth pointing

out that, in this picture, not only is the universe uniform, but also it has

zero spatial curvature (K ¼ 0). This is an important factor for the histor-

ical development of the subject, as we shall be seeing. But whether or not

the observable universe is, on the average, actually spatially Xat, it is

certainly remarkably close to being so, and this had presented a puzzle

to many cosmologists—referred to as the Xatness problem.

It is not immediate to the eye what the inXationary phase of expansion

has to do with the moving back of the Big Bang 3-surface in the conformal

diagrams, as in Fig. 28.5. It will be instructive, therefore, to examine the

particular cosmological model on which this ‘inXationary phase’ is based.

This is the ‘steady-state’ version of de Sitter space. The quickest

way to describe de Sitter space mathematically is to say that it is a

Lorentzian 4-sphere (signature þ���) in Minkowski 5-space (signature

þ����). This description is in accordance with the geometrical ‘signa-

ture Xip’ ideas of §18.4, but it is geometrically clearer if we picture de Sitter
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space as the hyperboloid of Fig. 28.7. At this point, it is worth mentioning

another model, called anti-de Sitter space, which is a Lorentzian 4-sphere

in a pseudo-Minkowskian 5-space of signature þþ��� (Fig. 28.8).[28.4]

Note that anti-de Sitter space is not a very sensible spacetime, physically,

because it possesses (causality violating) closed timelike curves (e.g. the

circle in the plane spanning the t and w axes); see §17.9 and Fig. 17.18.

Sometimes the term ‘anti-de Sitter space’ refers to an ‘unwrapped’ version in

which each circle in a constant-(x, y, z) plane has been unwrapped into a

line, and the whole space becomes simply-connected (§12.1). I have drawn

a strict conformal diagram for de Sitter space in Fig. 28.9a, for the portion

of it that represents the steady-state model in Fig. 28.9b (the dotted

Fig. 28.6 One of the underlying mo-

tivations of inflation is that an expo-

nential expansion scale of perhaps 1050

(say between times 10�35 s and 10�32 s)

might serve to ‘iron out’ a generic initial

state, so as to provide an essentially

uniform, spatially flat, post-inflation

universe.

Fig. 28.7 The de Sitter spacetime (pictured as a

hyperboloid, with two spatial dimensions sup-

pressed) is a Lorentzian ‘4-sphere’ (of imaginary

radius, giving intrinsic metric signature

þ � ��) in Minkowski 5-space M
5 (whose

metric is ds2 ¼ dt2 � dw2� dx2 � dy2 � dz2).

To get the steady-state model, we ‘cut’ the

hyperboloid into half, along t ¼ w; constant

time being given by constant positive t� w.

[28.4] Write down explicitly the equations for the de Sitter and anti-de Sitter 4-spaces in the

background 5-space, using the coordinates t, w, x, y, z indicated in Figs. 28.8 and 28.9. Find

coordinates within ‘half’ of de Sitter space, so that its intrinsic metric takes the ‘steady-state’ form

given later in this section.
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Fig. 28.9 Strict conformal diagrams (with the conventions of Fig. 27.16a) of:

(a) de Sitter space, where the region above the internal dotted line gives the

steady-state model; (b) anti-de Sitter space (fully unwrapped version, without

causality violations); and (c) anti-de Sitter space in the original causality violating

‘hyperboloid’ form, where the top and bottom edges are to be identified. (d) The

same as (c), but with the identification performed, so the diagram appears as a

cylinder.

boundary line indicating the cut), for the causality-violating anti-de Sitter

space in Fig. 28.9c; (where the top and the bottom of the diagram must

be identiWed) and Fig. 28.9d, and for the unwrapped (causal) anti-de Sitter

space in Fig. 28.9b.

To obtain the steady-state universe explicitly, we ‘cut’ de Sitter space in

half, along the t ¼ w 4-plane of the Minkowski 5-space depicted

in Fig. 28.8, retaining only the ‘upper’ half.14 Curiously, although there

is an ‘incompleteness’ in this model, owing to the cut (dashed line

in Fig. 28.10b), this incompleteness is not usually considered as a defect,

Fig. 28.8 Anti-de Sitter spacetime

(pictured as a hyperboloid with two

spatial dimensions suppressed) is a

Lorentzian ‘4-sphere’ (of positive

radius, giving an intrinsic metric

signature þ � ��), in pseudo-

Minkowskian 5-space (with metric

ds2 ¼ dt2 þ dw2 � dx2 � dy2 � dz2).

As defined, we have closed timelike

curves, but these can be removed by

infinitely ‘unwrapping’ in the (t,w)-

plane.
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because no actual particle enters the spacetime from the ‘deleted’ lower

half. The metric for the upper half can be re-expressed in the form

ds2 ¼ dt2 � eAt(dx2 þ dy2 þ dz2),

(A being a constant), which is a particular case of the FLRW metrics given

in §27.11, with Xat K ¼ 0 space sections and an exponential expansion (the

factor eAt).[28.5] (This metric was of particular interest during the 1950s and

1960s when Hermann Bondi, Thomas Gold, and Fred Hoyle argued

strongly for it as a model for the actual universe—the ‘steady-state’

model of some considerable aesthetic appeal. It fell out of favour in the

1960s, after it became clear that the model was in conXict with observa-

tions, particularly measurements of the microwave background and

counts of distant galaxies.)

The Ricci tensor Rab for (anti-)de Sitter space is proportional to the

metric gab.
[28.6] (See §19.6, for the deWnition of this tensor, and also for

Einstein’s Weld equation, etc.) Recall the original form of Einstein’s

Weld equation Rab � 1
2
Rgab ¼ �8pGTab, which asserts that the energy–

momentum tensor of matter is �(8pG)�1 times the trace-reversed Ricci

tensor. Thus, for the de Sitter and anti-de Sitter models, the ‘matter tensor’

Tab must itself be proportional to the metric tensor. In fact, no ordinary

matter can have this property (for example, because its energy–momentum

would define no rest frame). The normal viewpoint is to regard the (anti-)

de Sitter spaces as representing matterless vacua, where the Einstein

equation has to be taken in the form where a cosmological constant L is

included, so the Weld equations now give us

Rab ¼ Lgab:

Here L ¼ A2, where A is the constant scaling the exponential-growth

factor in the above steady-state metric. In inXationary cosmology, the

inXationary ‘material’ is taken to be a ‘false vacuum’, about which I

shall say some more in a moment.

To construct an inXationary-universe model, we take a portion of the

steady-state universe, between two 3-surfaces of constant t, and paste it on

to two parts of a standard K ¼ 0 FLRW model. This procedure is illus-

trated in Fig. 28.10. In Fig. 28.10a, the entire de Sitter space is cut to

produce the steady-state model. In Fig. 28.10b, a greatly inXating portion

of the steady-state model is selected. In Fig. 28.10c, a piece is cut from the

[28.5] Find metric forms for de Sitter and anti-de Sitter spaces of the FLRW type

ds2 ¼ dt2 � (R(t))2d
P2

, where d
P2

gives the hyperbolic 3-metric according to the second

expression in Exercise [27.18]. What portion of the full (anti-)de Sitter space does this cover?

[28.6] Can you see why this must be so, without doing any calculation?
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(a) (b) (c) (d)

Fig. 28.10 Kit for constructing an inflationary-universe model. (a) de Sitter

space cut to give steady-state model. (b) Greatly inflating portion, of steady-

state model selected, between two constant-time lines. (c) Small constant-time

interval removed from K ¼ 0 FLRW model. (d) Portion from b inserted

into c to obtain inflationary universe model. This moves the Big Bang back, as

in Fig. 28.5b.

K ¼ 0 FLRW model, so it can receive the inXationary portion to complete

the model in Fig. 28.10d. The inserted steady-state portion in eVect ‘pushes

back’ the Big Bang (from the conformal, i.e. causal, point of view), so that

the particle horizon is greatly expanded; see Fig. 28.5b.

In order to achieve this inXationary period, it is necessary to introduce a

new scalar Weld ’ into the menagerie of known (and conjectured) physical

particle/Welds. As far as I am aware, this Weld ’ is not taken to be directly

related to any of the other knownWelds of physics, but is introduced solely in

order to obtain an inXationary phase in the early universe. It is sometimes

referred to as a ‘Higgs’ Weld, but it does not seem to be the ‘ordinary’ one,

related to electroweak theory (see §25.5). Some models require more than

one separate inXationary phase, in which case there would have to be a

diVerent scalar Weld for each phase. The inXation process is described in

terms of a picture bearing some relation to that of the ‘Mexican hat’, of Fig.

28.1, but without the initial symmetry. A diagram like that of Fig. 28.11

V(f)

f

Fig. 28.11 The eVective energy density of the very early universe, according to

the inflationary model, would be dominated by the eVective potential V (f) for the

scalar ‘inflaton’ quantum field f. The graph shows one commonly assumed

form of V (f), where inflation is taken to occur as the state (the ‘marble’ of

Fig. 28.1) ‘rolls’ down the hill on the left (where a ‘false vacuum’ is assumed

to take place). Inflation ceases when the bottom is reached.

751

Speculative theories of the early universe §28.4



is often used, where the vertical axis represents ‘eVective energy’. The view

is that before the inXation period, the state—our ‘marble’, as in Fig. 28.1—

is represented at the top of the hump, but then it gradually rolls down.

InXation takes place during the course of this rolling, and it ceases

when the ‘marble’ reaches the bottom. During the inXation stage,

we have a region of ‘false vacuum’, which represents a quantum-

mechanical phase transition to a vacuum diVerent from the one that we

are familiar with today.

As mentioned in §27.11, there is now some good evidence for a positive

L in our present epoch, but this is extremely small in ordinary terms,

corresponding to a density that is only about 10�30 of that of water. By

contrast, the false vacuum of the inflationary phase would have had an

effective L corresponding to a density exceeding that of water by about

1080. This would completely dominate the energy-momentum tensor of

any ordinary matter, and it is for this reason that the de Sitter model can

be used for this phase.

In Fig. 28.12, I have indicated the kind of picture of the history of the

very early universe that we are frequently presented with, and which has

now become almost ‘standard’. Note that the time and distance scales are

‘logarithmic’ ones (like the slide rule of Fig. 5.6) marked with diVerent

powers of 10, in units of one second (vertical) or one centimetre (horizon-

tal). The ‘radius’ denotes the history of the ‘R(t)’ of §27.11 (which must not

be confused with the scalar curvature ‘R’ of §19.6). In my own opinion,

this picture must be regarded as very speculative up to about 1
10

(and

certainly 10�30) of a second, although it is often presented as virtually

established fact!

Conventional
Tolman
expansion

Inflation(?)

log R

Electroweak
symmetry
breaking

Decoupling

NOW

N
O

W

Time
in

seconds

10−43 10−35 10−12 1013 1018

10−32
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D
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Fig. 28.12 A commonly

described ‘history of the

universe’, as a logarithmic

plot, including an

inflationary phase. Here

log R(t) is plotted against

log t.
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28.5 Are the motivations for inflation valid?

What reason is there to believe that such an inXationary picture of the

universe is likely to be close to the truth? Despite its evident popularity, I

wish to give my own reasons for casting considerable doubt on the entire

idea! Again I must give my statutory warning to the reader. InXationary

cosmology has become a major part of the body of modern cosmological

thinking. You will Wnd that even among those who are not yet convinced

of the necessity of inXation, there are few who will be as negative as I am

going to be in the following critique. If you feel the need to ‘balance’ my

account with one that Wnds more favour with the inXationary idea, see

Alan Guth’s very accessible book The InXationary Universe.15 For my own

part, I must present things as I see them, and since I believe that there are

powerful reasons for doubting the very basis of inXationary cosmology, I

should not refrain from presenting these reasons to the reader.

But before making my critical assessment, I should make clear that my

remarks do not tell us that inXationary cosmology is wrong. They merely

provide strong reasons to doubt most of the initial motivations behind the

inXationary idea. We may recall that many important scientiWc ideas of the

past have, after all, been based (partly) on motivations that did not stand

up in the light of subsequent understanding. One of the most important of

these was Einstein’s signiWcant dependence on Mach’s principle as a guide

to his eventual discovery of general relativity. Mach’s principle asserts that

physics should be deWned entirely in terms of the relation of one body to

another, and that the very notion of a background space should be

abandoned.16 Later analysis of Einstein’s theory showed that Mach’s

principle is not incorporated by general relativity,17 however, irrespective

of the motivational signiWcance of Mach’s idea.18 Another example was

Dirac’s discovery of the electron’s wave equation, which he based funda-

mentally on what he perceived to be the necessity for a Wrst-order equation

(see §§24.5,6). Later understanding of QFT showed that this requirement is

not necessary (§ 26.6).

Similarly, if the observational predictions of inXationary cosmology

are convincingly conWrmed, then any inadequacy in the initial motivations

would be less important, and the theory would be able to stand on its

own without the original ‘ladder’ which led Guth and others to this

particular scheme. In fact, inXationists have made some deWnite predic-

tions which, in recent years, have measured up remarkably well against a

number of impressive new observations.

I believe that particular caution is to be recommended in matters of

cosmology, as opposed to most other sciences, especially in relation to the

origin of the universe. People often have strong emotional responses to

questions of the origin of the universe—and sometimes these are either

753

Speculative theories of the early universe §28.5



implicitly or explicitly related to religious preferences. This is not unnat-

ural; for the issue is indeed that of the creation of the entire world in which

we live. As stressed in §27.13, because of the Second Law, there is an

extraordinary degree of precision in the way that the universe started, in

the Big Bang, and this presents what is undoubtedly a profound puzzle.

We ask: is the solution of this puzzle of the Big Bang’s precision something

that may be answerable by a future scientific theory, even though it is still

beyond our present-day scientiWc understanding? (This is essentially my

own optimistic position; see §§30.10–13.) Or must we resign ourselves to it

being some kind of ‘act of God’? The view of the inXationists is different,

namely that this puzzle is essentially ‘solved’ by their theory, and this belief

provides a powerful driving force behind the inXationary position. How-

ever, I have never seen the profound puzzle raised by the Second Law

seriously raised by inflationists!

Instead, three particular problems in the standard model of cosmology

tend to be singled out by inXationists, these all being issues that are indeed

related to the initial precision in the early universe. They were speciWcally

addressed in §28.4, and are referred to as the horizon problem, the

smoothness problem, and the Xatness problem. In the standard model,

these issues are handled by ‘Wne-tuning’ of the initial Big Bang state, and

this is regarded by inXationists as ‘ugly’. The claim is that the need for such

Wne-tuning of the initial state is removed in the inXationary picture, and

this is regarded as a more aesthetically pleasing physical picture. The

conclusion of overall spatial Xatness that comes about through inXation

is also regarded as a positive feature, from the aesthetic point of view.19

It seems to me that great caution should be adopted in relation to such

aesthetically based arguments. There are certainly some elements funda-

mental to the inXationary picture whose aesthetic status is somewhat

questionable, such as the introduction of a scalar Weld (or perhaps several

independent scalar Welds, if more than one period of inXation is envisaged)

unrelated to other known Welds of physics and with very speciWc properties

designed only for the purpose of making inXation work. Also, the aesthetic

preference for K ¼ 0 is very contentious. I know of many mathematicians

(including myself ) who regard the hyperbolic case (K < 0) as distinctly

more beautiful! Yet others prefer the ‘coziness’ of a spatially finite (say

K > 0) universe. The general issue of the role of beauty as a guide in basic

theoretical physics will be discussed later in this book (see §34.9), as will

further issues that relate speciWcally to inXation (§34.4) and to the role of

scientiWc fashion (§34.3). InXation is certainly extremely fashionable

among present-day cosmologists, and it is important to try and see how

far its fashionable status is justiWed.

As stated above, my basic objections to this idea of cosmic inXation

have mainly to do with the underlying motivations behind it. Let us Wrst
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consider the horizon problem, and how this is dealt with in inXationary

cosmology where, for example, the almost equal background temperatures

in diVerent directions is perceived to be the result of thermalization. InXa-

tion is brought in to remove the particle horizons that would otherwise

preclude this thermalization.

There is, however, something fundamentally misconceived about trying

to explain the uniformity of the early universe as resulting from a thermal-

ization process (§28.4), whether this is a uniformity in the background

temperature, the matter density, or in the spacetime geometry generally.

Indeed, it is fundamentally misconceived to try to explain why the universe

is special in any particular respect by appealing to a thermalization pro-

cess. For, if the thermalization is actually doing anything (such as making

temperatures in diVerent regions more equal than they were before) then it

represents a deWnite increasing of the entropy (§27.2). Thus, the universe

would have been even more special before the thermalization than after.

This only serves to increase whatever diYculty we might have had previ-

ously in trying to come to terms with the initial extraordinarily special

nature of the universe (§27.13). There are certainly deep puzzles relating to

the peculiarly constrained state of the early universe. But these constraints

are fundamental to the very existence of the Second Law of thermodynam-

ics, as was emphasized in Chapter 27. We cannot expect to be able to

explain these constraints simply by appealing to manifestations of the

Second Law (thermalization being one example)!

To elaborate upon this point, consider the issue of the equality of

temperatures as seen in diVerent directions from our particular vantage

point in the universe. Suppose that the temperatures in two distant

regions are indeed found to have been equal at some early cosmic time

t1, and suppose that we Wnd this ‘specialness’ puzzling. Let us consider

two possibilities. We might imagine (a) that in an even earlier era—time

t0—the temperatures were actually unequal and they became equal only

after a thermalization process took place between the times t0 and t1.

Alternatively, we might imagine (b) that at the earlier time t0 the two

temperatures were actually equal to each other, and no thermalization

took place. In case (a), we Wnd that there has been an entropy increase

between t0 and t1, so we Wnd an even greater degree of specialness at t0
than there was at t1, so we should be even more puzzled by the special

nature of the universe at time t0 than we were by its specialness at time t1.

The problem has got worse! In case (b), on the other hand, the problem

of the specialness at t0 is, at least, not any worse than that at t1. In

neither case have we explained the puzzle of why the universe is special,

in this or any other particular respect, but we see that invoking argu-

ments from thermalization, to address this particular problem, is worse

than useless!
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What about the uniformity (and Xatness) of the universe? Here, the

main inXationary argument is diVerent. The claim is that the exponential

expansion of the inXationary phase was what served to make the universe

so uniform (and spatially Xat). Again there is a fundamental misconcep-

tion. The idea seems to be that if we start from a ‘generic’ initial state, then

the ‘stretching eVect’ of the exponential expansion of the inXationary

phase will serve to iron out the irregularities of that initial state. Of course,

in order to know whether such process has a chance, we need to have some

idea of what a ‘generic’ initial geometry might be like. One important

presumption is that such a state would have to be, on some small scale,

smooth. But fractal sets, for example, never iron themselves out, no matter

how much they are stretched. Recall the Mandelbrot set, portions of which

are exhibited in Fig. 1.2. If anything, the Mandelbrot seems to get less

smooth, the more that it is magniWed.

But, I hear the reader muttering: surely that’s just a quibble—OK,

maybe there are some pathological situations in which stretching does

not smooth things out, but surely in the general realistic case we should

not expect such things. Unfortunately, this is by no means so clear;

something fractal—or worse than fractal—is what we almost certainly

have to be prepared for, in a generic starting state. Certainly, whatever

this generic singular structure is, it is not something that we can expect to

become ironed out simply because of a physics that allows inXationary

processes. Why is this? The reasons have nothing to do with detailed

technicalities, and are simply inherent in the misconceived nature of trying

to assume that our actual universe might have started in a generic state20—

which it cannot have done, because of the Second Law; see §27.7. If we

want to get some idea of what such a ‘generic’ state might be like, consider

the Wnal stages of a collapsing closed universe, such as that schematically

illustrated in Fig. 27.20a,b, and then reverse the Xow of time, as in Fig.

27.20c (or Fig. 27.20d). The great mess of congealing black-hole singular-

ities is the kind of thing that, in time-reversed form, we should expect for a

generic Big Bang.

Of course, I am not asking that the reader have an instant understand-

ing of the detailed complicated fractal-like geometry involved in a messy

generic Big Crunch! I have little real conception of this myself, and I don’t

think that anyone else knows a very great deal about it.21 But we do not

need to know anything detailed about this geometry. To understand the

essential issue, consider any collapsing-universe model, which we may

construct starting from some highly irregular initial expanded state (com-

pare Fig. 27.20b). It has to collapse to something; indeed, its collapse will

result in some sort of generic spacetime singularity, as we can reasonably

infer from precise mathematical theorems.22 If we now reverse the direction

of time in our model—assuming time-symmetrical dynamical laws—we
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obtain an evolution which starts from a general-looking singularity and

then becomes whatever irregular type of universe we may care to choose. It

might well be that there is no inXation in this evolution, although our time-

reversed physical laws allow the possibility of inXation. The point is that

whether or not we actually have inXation, the physical possibility of an

inXationary period is of no use whatever in attempts to ensure that the

evolution from a generic singularity will lead to a uniform (or spatially

Xat) universe.

Let us try to understand what the real problem is. This was discussed at

length in Chapter 27. The universe was very special at the Big Bang. It had

to be so for there to have been a Second Law of thermodynamics,

extending right back to the beginning. All thermalization processes depend

upon the Second Law; thus they explain neither why we have a Second

Law nor why we had a very special universe at the beginning. Moreover,

all spontaneous symmetry-breaking processes and all phase transitions

(these being needed for inXation) take place only by the good grace of

the Second Law. These processes do not explain the Second Law: they use

it. Moreover, all the serious calculations in inXationary cosmology assume

a spacetime geometry that is FLRW, or close to it, which gives no insight

as to what would happen in the generic case. If we want to know why the

universe was initially so very very special, in its extraordinary uniformity,

we must appeal to completely diVerent arguments from those upon which

inXationary cosmology depends.

28.6 The anthropic principle

Before we come to these arguments, I need to address another issue that is

frequently invoked as part of the inXationary standpoint. This is the anthro-

pic principle, and this principle is also used in many other arguments to

explain why the universe is as we Wnd it. Roughly speaking, the anthropic

argument takes as its starting point the fact that the universe we perceive

about us must be of such a nature as will produce and accommodate beings

who can perceive it. We could use this argument to explain why the planet

uponwhichwe live has such a congenial range of temperatures, atmosphere,

abundance of water, etc. etc. If conditions were not so congenial on this

particular planet, then we would not be here, but somewhere else!23

One of the most impressive uses of the anthropic argument was

that made by Robert Dicke (1957) and Brandon Carter (1973)24, when

they resolved a puzzle—pointed out by Dirac (1937)—concerning an

apparently coincidental relation between the age of the universe,

when measured in Planck units (§27.10) and the ratio between the strengths

of electromagnetism and gravity.25 If this coincidence were to reXect a
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fundamental relationship between the parameters of Nature, then it should

be maintained as constant throughout the history of the universe. But since

the age of the universe is something that increases with time (obviously!),

then, accordingly, the strength of gravitational forces should reduce in

comparison with electric ones. Indeed Dirac actually made that suggestion,

but the evidence, now, is that such a variation in the gravitational constant

is incompatible with the facts.26 What Dicke and Carter showed was that

there is another explanation for Dirac’s coincidence. By examining the

exact role that the constants of Nature play in determining the lifetime of

an ordinary star—a star congenial to life as we know it—they were able to

show that this timescale is of such an order that Dirac’s coincidence would

necessarily hold, pretty well, for beings who evolved on (and inhabit) a

planet orbiting such a star. Thus, Dirac’s coincidence has an anthropic

explanation. It comes about because the parameters involved in the pro-

duction of sentient life (in this case, those that determine a star’s age) are

related to those parameters that such sentient life will actually see in the

outside world!

It should be evident to the reader that arguments from the anthropic

principle are fraught with uncertainties, although they are not without

genuine signiWcance. We do not have much idea, for example, what condi-

tions are actually necessary for the production of sentient life. Nevertheless,

the situation is not so bad when used with examples, such as given above,

where we are taking the laws of physics and the overall spacetime structure

of the universe as given, and we ask merely questions like where or when in

the universe are conditions likely to be so-and-so, in order to be conducive

to sentient life. This version of the anthropic principle is referred to, by

Carter, as the weak anthropic principle (Fig. 28.13a).

Much more problematic are versions of the strong anthropic principle,

according to which we try to extend the anthropic argument to determine

actual constants of nature (such as the ratio of the mass of the electron to

that of the proton, or the value of the Wne structure constant §26.9, §31.1).

Some people might regard the strong anthropic principle as leading us to a

belief in a ‘Divine Purpose’, whereby the Creator of the universe made sure

that the fundamental physical constants were pre-ordained so as to have

speciWc values that enable sentient life to be possible. On the other hand we

may think of the strong principle as being an extension of the weak one

where we broaden our questions of ‘where’ and ‘when’, so that they apply

not just to a single spacetime, but to the whole ensemble of possible

spacetimes (Fig. 28.13b).27 DiVerent members of the ensemble might

be expected to possess diVerent values for the basic physical constants.

The where/when question now also involves a choice of universe within the

ensemble, so again we must Wnd ourselves in a universe which permits

sentience to come about.
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Fig. 28.13 Anthropic principle. (a) Weak form: sentient beings must find them-

selves in a spatio–temporal location in the universe, at which the conditions are

suitable for sentient life. (b) Strong form: rather than considering just one universe

we envisage an ensemble of possible universes—among which the fundamental

constants of Nature may vary. Sentient beings must find themselves to be located

in a universe where the constants of Nature (in addition to the spatio–temporal

location) are congenial.

The Wrst example of this kind of thing was, as far as I am aware, pointed

out by Fred Hoyle, when he deduced that there must be a hitherto unob-

served nuclear energy level of carbon, in order that it could be possible for

stars to build up elements heavier than carbon in the process of stellar

nucleosynthesis. This is the process whereby the heavier elements are

produced (in stars—and Wnally spewed out in supernova explosions to

provide the material for planet formation; see §27.8), and which our own

bodies depend upon. We could not exist as living beings (of a kind that we

know about) without it! On Hoyle’s prompting, William Fowler and his

associates28 subsequently found Hoyle’s energy level—conWrming, in

1953, an impressive piece of prediction on the part of Hoyle. It is remark-

able that the constants of Nature are so adjusted that such an energy level

should be in just the right place, so life, as we know it, could come about.

Another example of apparent cosmic good fortune is the fact that the

neutron’s mass is just slightly greater than that of the proton (1838 and

1836 electron masses, respectively). The existence of an appropriate family

of stable nuclei, on which almost the whole of chemistry depends, rests

upon this seemingly fortuitous fact.

My own position is to be extremely cautious about the use of the

anthropic principle, most particularly the strong one. My impression

is that the strong anthropic principle is often used as a kind of ‘cop-out’,

when genuine theoretical considerations have seemed to reach their limit.
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I have not infrequently heard theorists resort to saying something like:

‘the values of the unknown constant parameters in my theory will be

ultimately determined by the anthropic principle’. Of course it might

indeed ultimately turn out that there is simply no mathematical way of

Wxing certain parameters in the ‘true theory’, and that the choice of these

parameters is indeed such that the universe in which we Wnd ourselves

must be so as to allow sentient life. But I have to confess that I do not

much like that idea!

It seems to me that with a spatially inWnite and essentially uniform

universe (e.g. K # 0, in the standard models) the strong anthropic

principle is almost useless for tuning physical parameters, beyond

demanding that the physical laws be such that sentience is possible

(which is, itself fairly unusable, since we do not know the prerequisites

for sentience). For if sentient life is possible at all, then we expect that, in a

spatially inWnite universe, it will occur. This will happen even if the condi-

tions for sentience are extraordinarily unlikely to come about in any given

Wnite region in the universe. In a spatially inWnite universe, our expectation

is that there should be somewhere in its inWnite reaches where sentience

does happen, if only by the mere chance coming together of all the

necessary ingredients. This would indeed occur just by chance, even if

extraordinarily infrequently.

Now, if we Wnd that the fundamental physical constants happen to

be such-and-such—perhaps Wxed by mathematical criteria—then we

can ask a better question: what are the most probable circumstances for

intelligent life to come about, given these physical constant values? In

the universe that we know, with the fundamental constant parameter

values that we happen to have, the answer at least seems to be: ‘on

some planet rather like the Earth, near a star rather like the Sun, which

has been around for perhaps 109 or 1010 years—time enough to allow

appropriate Darwinian evolution to take place’. But for a universe with

diVerent constant parameter values, the answer might come out very

diVerently.

To end this section, I should mention a related point of view with

regard to the fundamental physical constants, originally put forward by

John A. Wheeler in 1973. It has some connection with the anthropic

principle. According to this viewpoint, the universe goes through cycles,

where new ‘big bangs’ continually occur, each having been born out of a

previous collapse phase.

Recall the Friedmann model in the case K > 0 L ¼ 0. The universe

expands from the initial Big Bang singularity and then contracts

down to another singularity, the Wnal Big Crunch. In the early days of

cosmology, however, this was referred to as an ‘oscillating’ model,

because the curve that plots R(t) against t is a cycloid which indulges in
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an inWnite number of cycles of expansion and contraction (see Fig. 27.15a,

Exercise [27.17]). However, it is now better appreciated than it was in the

early days that there is no way of ‘smoothing out’ the singularity that

joins each ‘crunch’ to the following ‘bang’, within the conWnes of conven-

tional classical general relativity.29 If one ignores this fact, or presumes

that some form of ‘quantum gravity’ will allow such a ‘bounce’ to

take place, then one may speculate that the Friedmann cycloid is a

plausible approximation to what could actually happen. Wheeler’s idea

was that the extreme quantum physics that takes place at the singular turn-

around might entail a change in the fundamental constants of nature.

Accordingly, the ‘ensemble’ of universes that is contemplated in connec-

tion with the strong anthropic principle is physically realized in Wheeler’s

proposal.

Lee Smolin, in his 1997 book The Life of the Cosmos,30 suggests an

intriguing modiWcation of this idea. Instead of requiring a closed universe

whose all-embracing Big Crunch converts itself into the Big Bang of the

next universe phase, Smolin takes the singularities inside black holes to be

the sources of new universe phases, where each black-hole singularity

individually produces a diVerent universe phase,31 and where in each case

there would be a slight readjustment to the fundamental physical constants.

Smolin puts forward the ingenious idea that there could then be some form

of ‘natural selection’ of universes, where the fundamental constants slowly

evolve to obtain ‘Wtter’ universe phases, and he takes the proliferation of

black holes as a better indication of a universe’s ‘Wtness’ (because it pro-

duces many ‘children’) than any anthropic consideration. He argues that

there is some indication that the fundamental physical constants that we

actually Wnd in our universe are indeed such as to favour a proliferation of

black holes. However, it seems to me that the anthropic argument would

also have a signiWcant role in this discussion, since we could not Wnd

ourselves in a ‘sentience-dead’ universe phase, no matter how many of

them there are!

The reader may well worry how the mass-energy of a single black hole

could be converted into that for an entire universe, which might well be

more than 1022 times more massive. Indeed, but since some unknown

physics is needed in order to circumvent the singularity and alter the

fundamental constants, ‘all bets are oV ’ with regard to the standard

conservation laws of conventional physics. In any case, it may be

argued that the law of conservation of mass-energy is problematic in the

context of general relativity without the assumption of asymptotic Xatness;

see §19.8.

I have quite a lot of trouble with both the Wheeler and the Smolin

proposals. In the Wrst place, there is the extremely speculative nature of the

key idea that some presently unknown physics can not only convert
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the spacetime singularity of collapse into a ‘bounce’, but also slightly

readjust the fundamental physical constants when this happens. I know

of no justiWcation from known physics to suggest such an extrapolation.

But, to my mind, it is even more geometrically implausible that the

highly irregular singularities that result from collapse can magically

convert themselves into (or glue themselves to) the extraordinarily

smooth and uniform Big Bang that each new universe would need if it is

to acquire a respectable Second Law of the kind that we are familiar with

(see §27.13).

28.7 The Big Bang’s special nature: an anthropic key?

Can the anthropic principle be invoked to explain the very special

nature of the Big Bang? Can this principle be incorporated as part of the

inXationary picture, so that an initially chaotic (maximum-entropy) state

can nevertheless lead to a universe like the one we live in, in which the

Second Law of thermodynamics holds sway? Basically the general argu-

ment is to say that the second law is essential to life as we know it;

moreover the overall densities, temperatures, matter distributions and

compositions, etc. must be so as to be conducive to life. In addition, the

universe must have existed for long enough for evolution to operate, and

so on. Sometimes this argument is used in conjunction with an inXationary

argument. Accordingly, although a completely generic initial state might

not inXate to give us a smoothed-out universe like the one we observe, we

should ask merely for some small region of the initial spacetime ‘mani-

fold’, just after the Big Bang, to be smooth enough for inXation to take

over in that region, the entire observable universe today coming about

as a result as an inXation of that tiny smooth region (see Fig. 28.14a).

The argument would run roughly: ‘for sentient life to exist, we need a

large universe with timescales long enough for evolution to take place,

in conducive conditions, etc.; this requires some inXation, originating

from our tiny smooth initial region, and once it starts, the inXation goes

on to provide us with the wonderfully enormous observable universe that

we know’.

Although, it may seem that this picture is of such a marvelously roman-

tic nature that it is completely immune from scientiWc attack, I do not

believe that this is so. Let us return to the extraordinary degree of precision

(or ‘Wne-tuning’) that seems to be required for a Big Bang of the nature

that we appear to observe. As was argued in §27.13, the required precision,

in phase-space-volume terms, is one part in 1010123

at least. The exponent

‘10123’ comes from the entropy of a black hole of mass equal to that in the

observable universe.
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(a) (b) (c)

Fig. 28.14 (a) A completely general initial state for the universe does not inflate,

but we can ask merely for a small initial region that is smooth enough to inflate to

the universe that we observe (cost: 1010123

). (b) But how much of our vast universe

is really needed for our sentient existence? Absurdly ‘cheaper’, for the creation of

sentient life, is for the Creator to produce a universe of one tenth of the linear

dimension (cost: merely 1010117

). (c) To create as many sentient beings as in (a), the

Creator can far more cheaply simply produce 103 independent instances of

the ‘smaller’ universes of (b) (at ‘bargain’ cost: (1010117

)1000 ¼ 1010120

). Hence the

anthropic principle does not account for the apparent extravagence of inflation.

But do we really need the whole observable universe, in order that

sentient life can come about? This seems unlikely. It is hard to imagine

that even anything outside our galaxy would be needed. Yet, it might be

that intelligent life is very rare, and it might be a bit more comfortable to

have somewhat more space than that. Let us be very generous and ask that

a region of radius one tenth of the distance out to the edge of the

observable universe must resemble the universe that we know, but we do

not care about what happens outside that radius. The phase-space volume

can be calculated as before. We calculate the mass in that region to be 10�3

of what we had before, and that gives us a black-hole entropy of 10�6 of

what we had before.[28.7] Thus, the precision needed, on the part of our

‘Creator’ (see Fig. 27.21), to construct this smaller region is now only

about:

one part in 1010117

:

Have a look at Fig. 28.14b. Our Creator now only requires a rather smaller

‘tiny smooth region’ of the initial ‘manifold’ than before. The Creator is

much more likely to come across a smooth region of this smaller size than

the somewhat larger one that we considered earlier. Assuming that the

inXation acts in the same way on the small region as it would on the

somewhat larger one, but producing a smaller inXated universe, in pro-

portion, we can estimate how much more frequently the Creator comes

across the smaller than the larger regions. The Wgure is no better than

[28.7] Why?
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10�10117 � 10�10123 ¼ 1010123

(to within the precision expressed by the highest exponents).[28.8] You see

what an incredible extravagance it was (in terms of probability) for the

Creator to bother to produce this extra distant part of the universe, that

we don’t actually need—and so the anthropic principle doesn’t actually

need—for our existence!

Some readers might worry that a comparatively smaller number of

sentient beings has been produced because of this ‘economy’ on the part

of the Creator. Whether this is an issue or not, it is not the answer to why the

‘extravagance’ took place. It would be far far ‘cheaper’, in terms of prob-

abilities (i.e. inverse box sizes in phase-space; see Fig. 27.2)—by a factor of

about 1 to 1010123

—to have 103 of the smaller inXated universe regions

(which gets us up to the same number of sentient beings as for a single

larger one) than to have just 1 larger universe region (Fig. 28.14c).[28.9]

To see how impotent the anthropic argument is, in this context, consider

the following facts. Life on Earth certainly does not directly need the

microwave background radiation. In fact, we do not even need Darwinian

evolution! It would have been far ‘cheaper’ in terms of ‘probabilities’ to

have produced sentient life from the random coming together of gas and

radiation. (One can estimate that the entire solar system, including its

living inhabitants, could be created from the random collision of particles

and radiation with a probability of one part in 101060

(or probably a good

deal less than 101060

). The Wgure 101060

is utter ‘chicken feed’ by comparison

with the 1010123

needed for the Big Bang of the observable universe.32 We

do not need a Big Bang to be in its observed uniform conWguration. We

do not need the Second Law at times earlier than life was around. It would

be far ‘cheaper’ for the Creator not to bother with that. And inXation is of

no help at all. The ‘cheapskate’ economy curve for the Creator to adopt, in

Fig. 27.8, just in order to produce sentient life, would be much more like

the curve (b), rather than the observed (c), inXation or no inXation!

All of this is simply reinforcing the argument that it is indeed miscon-

ceived to seek reasons of the above nature, where suitable universe condi-

tions are supposed to have come about from some kind of random initial

choice. There was indeed something very special about how the universe

started oV. It seems to me that there are two possible routes to addressing

this question. The diVerence between the two is a matter of scientiWc

attitude. We might take the position that the initial choice was an ‘act of

God’ (rather like that fancifully illustrated in Fig. 27.21). or we might seek

some scientiWc/mathematical theory to explain the extraordinarily special

[28.8] Explain these Wgures.

[28.9] Explain these Wgures carefully.
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nature of the Big Bang. My own strong inclination is certainly to try to see

how far we can get with the second possibility. We have become used to

mathematical laws—laws of extraordinary precision—controlling the phys-

ical behaviour of the world. It appears that we again require something of

exceptional precision, a law that determines the very nature of the Big Bang.

But the Big Bang is a spacetime singularity, and our present-day theories are

not able to handle this kind of thing. Our expectations, however, are that

what is required is some appropriate form of quantum gravity,33 where the

rules of general relativity, of quantum mechanics, and perhaps also of some

other unknown physical ingredients, must come together appropriately.

28.8 The Weyl curvature hypothesis

I shall postpone my main considerations of present-day activity in the Weld

of quantum gravity until Chapters 30–33. For the moment, let us just

concentrate on trying to understand what the geometrical constraints on

the Big Bang appear to have been actually like. Afterwards, we examine

the one proposal I know of, namely that of James Hartle and Stephen

Hawking, that attempts to explain this sort of geometry on the basis of a

serious quantum gravity theory.

Recall from §19.7 that the gravitational degrees of freedom are described

by the Weyl conformal tensor Cabcd . Thus, in empty space (where a possible

cosmological constant L, in any case small with regard to local physics, is

for the moment being ignored) we Wnd that the spacetime curvature is

entirely Weyl curvature (the Ricci curvature vanishing). Weyl curvature is

the kind of curvature whose eVect on matter is of a distorting or tidal

nature, rather than the volume-reducing one of material sources. The

eVect of Weyl curvature was illustrated in Fig. 17.8a (and the fact that

this picturewas originally a Newtonian spacetime picture in no way detracts

from its validity). This picture is to be contrasted with Fig. 17.8b, in which

we see the volume-reducing eVect of matter, i.e. Ricci tensor. However,

there are actually some complicating issues when we consider (as here) the

eVects of Weyl and Ricci curvature on timelike geodesics (freely moving

massive particles), since the Ricci tensor can also sometimes have a distort-

ing eVect, in addition to its volume-reducing eVect.

These complicating issues are eliminated if we think of the action of these

kinds of curvature on null geodesics (light rays). Moreover, we can then

reinstate a cosmological constant L, since a term of the form Lgab does not

focus light rays.[28.10] We can think of the geodesics in Fig. 17.9 as being light

rays belonging to some light cone (in the manner of Fig. 17.16). In fact, if we

think of them as belonging to the past light cone of some observer, the

[28.10] Why not?
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distortion eVects can be understood very graphically in terms of lenses

placed between a source of light and the observer. The eVect of Ricci

tensor,34 due to a matter distribution, is as a positively focusing lens,

whereas that of Weyl tensor, due to free gravitational Weld, is as a purely

astigmatic lens—with as much positive focusing in one plane as there is

negative focusing in a perpendicular plane (Fig. 28.15). We can get a very

good impression of the (lowest-order) eVects of these two diVerent kinds of

curvature if we imagine simply looking through a large transparent solid

massive spherical body having the refractive index of the vacuum. (Per-

haps we should think of ‘looking’ through the Sun with neutrinos—taken

as massless particles—which pass straight through the Sun, paying atten-

tion only to its gravitational Weld!) To a reasonable approximation, we can

consider the rays passing through the Sun to be mainly aVected by Ricci

curvature, so we get an apparent magniWcation (positive lens) of the star

Weld behind the Sun. On the other hand, beyond the Sun’s rim, we get, in

eVect, the purely astigmatic distorting eVects of Weyl curvature, so that a

small circular pattern in the background sky would appear to be elliptical

to the observer. See Fig. 28.16.[28.11] This is essentially the way that the

Sun’s gravitational Weld distorts the background star pattern, as Wrst seen

in Eddington’s 1919 expedition (see §19.8).

Let us now think of a universe evolving so that an initially uniform

distribution of material (with some density Xuctuations) gradually clumps

gravitationally, so that eventually parts of it collapse into black holes. The

initial uniformity corresponds to a mainly Ricci-curvature (matter) distri-

bution, but as more and more material collects together gravitationally,

we get increasing amounts of Weyl curvature, basically inhabiting

the regions of spacetime distortion surrounding the clumped matter. The

Fig. 28.15 The focusing eVect of (trace-

free) Ricci tensor (due to a matter distri-

bution) is as a positively focusing lens,

whereas that of Weyl tensor (due to free

gravitational field) is as a purely astig-

matic lens—with as much positive

focussing in one plane as there is negative

focussing in the perpendicular plane.

[28.11] Show that areas are preserved, for an inWnitesimal outward displacement, which varies

inversely as the distance out.
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Sun

Fig. 28.16 We get a good impression of (lowest-order) effects of the two different

kinds of spacetime curvature by ‘looking’ at the star field through a transparent

non-refracting Sun (as though with massless neutrinos). To a reasonable approxi-

mation, rays passing through the Sun are focused just by Ricci curvature, resulting

in magnification (as by a positive lens), whereas outside the Sun’s rim, we get

essentially purely astigmatic Weyl distortions, so a small circular pattern in the

star field would appear elliptical.

Weyl curvature Wnally diverges to inWnity as the black-hole singularities

are reached. If we think of the material as having been originally spewed

out from the Big Bang in an almost completely uniform way, then we start

with a Weyl curvature that is, for all intents and purposes zero. Indeed, a

characteristic feature of the FLRW models is that the Weyl curvature

vanishes completely (these models being, accordingly, conformally flat,

see §19.7). For a universe to start out closely FLRW, we expect the Weyl

curvature to be extremely small, as compared with the Ricci curvature, the

latter actually diverging at the Big Bang.

This picture strongly suggests what the geometrical diVerence is between

the initial Big-Bang singularity—of exceedingly low entropy—and the

generic black-hole singularities, of very high entropy. The Weyl curvature

vanishes (or is, at least, very very small—e.g. merely finite—compared

with what it might have been) at the initial singularity and is uncon-

strained, no doubt diverging wildly to inWnity, at Wnal singularities. It is

this geometrical characterization that seems to distinguish Fig. 27.20a

from Fig. 27.20d, for example even though it might be hard to recognize

the distinction in terms of conformal diagrams.

This observation should be taken in conjunction with another conjec-

tured feature of spacetime singularities, referred to as cosmic censorship.

This is a (currently unproved) assertion that, roughly speaking, in unstop-

pable gravitational collapse, a black hole will be the result, rather than

something worse, known as a naked singularity. A naked singularity would

be a spacetime singularity, resulting from a gravitational collapse, which is
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visible to outside observers, so it is not ‘clothed’ by an event horizon.

There are various slightly diVerent technical ways of specifying what is

meant by the term ‘naked singularity’, and I do not propose to enter into

the distinctions here.35 SuYcient for our purposes would be to say that a

naked singularity is ‘timelike’, in the sense that signals can both enter and

leave the singularity, as indicated in Fig. 28.17a. Cosmic censorship

would forbid such things (except possibly in certain highly contrived or

‘special’ situations that would not occur in a realistic gravitational

collapse).

Cosmic censorship is basically a mathematical conjecture—as yet neither

proved nor refuted—concerning general solutions of the Einstein equation.

If we assume this conjecture, then physical spacetime singularities have to

be ‘spacelike’ (or perhaps ‘null’) but never ‘timelike’. There are two kinds of

spacelike (or null) singularities, namely ‘initial’ or ‘Wnal’ ones, depending

upon whether timelike curves can escape from the singularity into the future

or enter it from the past; see Fig. 28.17b,c. The physical conjecture that I

refer to as the Weyl curvature hypothesis asserts that (in some appropriate

sense) the Weyl curvature is constrained to be zero (or at least very small) at

initial singularities, in the actual physical universe. The creation of a uni-

verse in a way that satisWes the Weyl curvature hypothesis would represent

an absolutely enormous constraint on the Creator’s choice, in the process

represented in Fig. 27.20. As a result, there would be a Second Law of

thermodynamics, and it would actually take the form that we observe.

There is now some good mathematical evidence that some form of ‘Weyl

curvature hypothesis’ indeed adequately constrains the Big Bang in a way

(a) (b) (c)

Fig. 28.17 (a) Causal signals can either enter or leave a ‘naked singularity’. If these

are excluded—by Cosmic Censorship—we are basically left with (b) ‘future singu-

larities’ (resulting from gravitational collapse) which causal signals can enter but

not leave, and (c) ‘past singularities’ (in the Big Bang, or perhaps more localized

creation events) which causal signals can leave but not enter. The Weyl curvature

hypothesis asserts that the Weyl curvature is (appropriately) constrained to zero (or

to being very small) at the initial singularities (c) of the actual physical universe.
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that the resulting universe model closely resembles an FLRW model in its

early stages.36

28.9 The Hartle–Hawking ‘no-boundary’ proposal

Simply as an assertion, the Weyl curvature hypothesis is perhaps more like

a claim for ‘an act of God’ than a physical theory. What is required is some

theoretical justiWcation for something of the nature of this hypothesis.

What kind of theory will we have to appeal to? The usual point of view,

with regard to spacetime singularities, is that this is the province of

quantum gravity.

The diYculty here is that, despite over Wfty years of determined eVorts

to bring general relativity and quantum mechanics together, there is still

nothing that even approaches a consensus as to the correct approach to

the subject. I shall be addressing some of the more currently popular

schemes in Chapters 31 and 32, but even among those there is little serious

attempt to come to terms with the particular nature of the Big Bang. There

is, however, one notable exception, put forward by James Hartle and

Stephen Hawking in 1983, and it is therefore appropriate that I make

some comments in relation to their main idea.

One of the ingredients of the Hartle–Hawking proposal is what is

commonly referred to as ‘Euclideanization’. The underlying idea is closely

related to that of a Wick rotation applied to Minkowski space, whereby the

time coordinate t is ‘rotated’ into t ¼ it. The (spatial) spacetime metric d‘2

then becomes d‘2 ¼ dt2 þ dx2 þ dy2 þ dz2 (see §18.1). The original (Gian

Carlo Wick) idea37 was that a (special-)relativistic quantum Weld theory

can be constructed by Wrst formulating it with Minkowski spacetime

replaced by this Euclidean 4-space E
4, where the theory is now taken to

be invariant under the Euclidean group of symmetries of E
4. Assuming

that the quantities obtained in the Euclidean version of the theory are

analytic in the coordinates, the Wick rotation can then be applied, with t
rotated continuously back into t, so that we now obtain a corresponding

theory that is invariant under the Poincaré group of Minkowski 4-space.

This procedure has two signiWcant advantages. First, quantities that are

liable to be divergent in Minkowski space may turn out to be convergent in

the Euclidean version of the theory. (The reason comes down to the

Euclidean rotation group O(4) being compact, so of Wnite volume, whereas

the relativistic Lorentz group O(3,1) is non-compact and of inWnite

volume.) In particular, path integrals (see §26.6) have a much better chance

of a mathematically meaningful deWnition in the Euclidean rather than the

Minkowskian version.) The other advantage is that requirements of posi-

tive frequency (see §§9.3,5, §24.3) can be ensured by carefully applying the

Wick rotation in the correct way.
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In the Hartle–Hawking scheme, it is necessary to use Hawking’s ingeni-

ous modiWcation of the Wick idea, in which the ‘rotation’ is applied not to

a space which is a background to the paths, in a path integral—which is the

usual idea—but to the individual spacetimes which themselves constitute

each path of the path integral.38 These ‘spacetimes’ are, accordingly,

allowed to have positive-deWnite Riemannian metrics, rather than the

Lorentzian metrics that apply to a normal spacetime. (These Riemannian

metrics are often confusingly referred to as ‘Euclidean’, despite the stand-

ard use of that name for a Xat Euclidean space E
n!) It should be made

clear, however, that there is a ‘leap of imagination’ involved in the

Hawking version of ‘Euclideanization’ going far beyond that of Wick’s

original idea. Whether or not this provides a fruitful route to the correct

union of general relativity with quantum mechanics remains to be seen.39

Hartle and Hawking’s striking proposal was that this path-integral ap-

proach ofHawking’s could describe the relevant quantum theory for theBig

Bang itself, and that in place of an actual singular spacetime there would be

a quantum superposition (i.e. ‘path integral’) of ‘spacetimes’ which could

have Riemannian in place of Lorentzian metrics. They referred to their idea

as the ‘no-boundary’ proposal, because rather than having the singular

boundary to the classical spacetime that the Big Bang represents, there

would be a superposed family of non-singular spaces, dominated by Rie-

mannian ones that simply ‘close oV ’ the bottom end in the manner indicated

in Fig. 28.18, so the singular boundary disappears completely. Moments

‘after’ the Big Bang, there has to be a transition where the dominance of

Lorentzian
metrics
dominate

Riemannian
metrics
dominate

Future singularity
‘closed off’ only
in the past

(a) (b)

Fig. 28.18 The Hartle–Hawking ‘no-boundary’ proposal suggests that (a) the Big

Bang can be treated according to a quantum-gravity procedure whereby Riemann-

ian (rather than Lorentzian) geometries dominate the path integral near the

classical singularity, and provide ways of closing off the spacetime in a non-

singular way. (b) With regard to the singularities of collapse, the ‘closing off’

seems to be required only at the ‘far end’ of the spacetime, thereby allowing the

high-entropy generic singularities that are expected to occur in gravitational

collapse to black holes (i.e. Big Crunch).
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Riemannian geometry goes over to Lorentzian. (We can imagine this being

achieved with the involvement of suitable complex metrics.) Even in the

Lorentzian region there is still a superposition of ‘spacetimes’ (some of

which are Riemannian), but away from the Big Bang, a classical Lorent-

zian spacetime is taken to dominate, whereas at the Big Bang region itself,

the ‘no-boundary’ Riemannian metrics are taken to dominate. Not only

does this scheme have genuine elegance, turning a seemingly intractable

problem into one that appears to be vaguely manageable, but it also has

the appearance of giving some direct support to a ‘smooth early universe’

that could be compatible with the Weyl curvature hypothesis.

So far, so good. But I also have some considerable diYculties with this

proposal. First, the very idea of ‘Euclideanization’ is problematic in a

number of respects, of relevance to the kind of context that Wnds its use

here. Even in a Xat-space context, it is normally out of the question to

compute a path integral exactly, and many approximations need to be

made. It would be usual to single out certain speciWc terms which may be

regarded as dominating the integral, and to leave out the rest. This might

be expected to give a reasonable approximation to the ‘Euclidean’ path

integral, but recall that a process of analytic continuation needs then to be

applied in order that the appropriate physical answer be obtained. This is a

highly unreliable procedure, because something that approximates a holo-

morphic function in one region is likely to be wildly oV in another region.

To appreciate the essence of the diYculty, suppose that we have a real

analytic function f(x) which we know for real values of x, but only

approximately, and we wish to infer its values for purely imaginary x. If

we add a function of the form e cos (Ax) to f(x), where e and A are real,

with e very small and A large, then f(x) will not be much altered along the

real axis of x; yet the behaviour along the imaginary axis will be changed

completely, thereby illustrating the extreme instability of the analytic

continuation process.[28.12] As far as I can see, the ‘Euclideanization

trick’ can be very useful for producing exact model QFTs, but I have

severe diYculties with it when used in conjunction with approximations, as

here. (It is not clear to me how strongly the Hartle–Hawking proposal

depends upon this analytic-continuation step, however.)

I also have some technical diYculties with the generality of Euclideani-

zation. As far as I can see, it is a clever trick for producing consistent

QFTs (and ensuring a positive-frequency condition), but it would be

grossly optimistic to expect that any particular QFT of interest can be

obtained by means of it. Theories obtained via Euclideanization have, in

eVect, hidden structures, originating from their associated symmetry

[28.12] Explain this, using results from §5.3. (Hint: What is eAix þ e�Aix?)
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group of the ‘wrong signature’; see §§9.3,5, §13.8, and §18.2. I do not see

why a ‘correct’ theory needs to have this special character.

28.10 Cosmological parameters: observational status?

There is also the question of agreement with observation. At least in its

original form, the Hartle–Hawking no-boundary proposal would seem to

point to a closed (in fact K > 0) universe, and for a number of years

Hawking had given his support to such models. But in the face of

mounting cosmological evidence, which had appeared to favour the hyper-

bolic (K < 0) case, Hawking, in collaboration with Turok, subsequently

modified his arguments to enable the ‘no-boundary’ proposal to accom-

modate the hyperbolic case also.40 There is an interesting parallel with the

expectations of inflationary cosmology, which had for many years been

argued to have the decisive implication that the observed universe must

turn out to be spatially flat (K ¼ 0). A number of inflationists, also,

subsequently modified their arguments, in the face of this increasingly

impressive cosmological data, to allow for the possibility41 of K < 0.

What is the present observational position? Well, things have now shifted

very significantly again,with the startling evidence (and frommore than one

source) that there seems to be a significant positive cosmological constantL.

This has the implication that we could have K ¼ 0 after all. And since if the

observational evidence allows for K ¼ 0, it cannot exclude a small positive

spatial curvature (Hawking’s preferred K > 0) or a small negative spatial

curvature (my own preferred K < 0)—so all bets are off again!

What is the bearing of this discovery of L > 0 on the value of K? I

should mention, first, the reasons behind the earlier belief that cosmo-

logical evidence favoured a negative value of K. The essential issue is the

total mass–energy content of the universe, and that if this is too small, then

it will not be able to close up the universe with positive curvature, or (in

the Friedmann models) to haul it back in again following its initial expan-

sion so as to produce a collapsing phase (see Fig. 27.15a,b,c). It had long

been known that the density of ordinary visible ‘baryonic’ (see §25.6)

material in galaxies is insufficient for this, being only about one thirtieth

of the critical value that represents the division between the positive and

negative K values, the critical density being that which gives us K ¼ 0. The

quantity Ob is commonly introduced to denote that fraction of the critical

mass–energy density which is achieved by normal baryonic matter. Thus,

if Ob ¼ 1, the baryonic matter would indeed supply the critical density,

and any significant further (positive) mass–energy would lead to a K > 0

universe. However, as mentioned above, we seem to have something like

Ob ¼ 0:03, instead, which had given a powerful indication of K < 0.

772

§28.10 CHAPTER 28



However, this fails to take into account the strong evidence that there is

a good deal of more matter in the universe than the baryonic material that

is directly observed in stars. For many years, it had become clear that the

dynamics of stars within galaxies does not make sense, according to

standard theory42 unless there is a good deal of more material in the neigh-

bourhood of a galaxy than is directly seen in stars. A similar comment

applies to the dynamics of individual galaxies within clusters. Overall,

there seems to be about 10 times more matter than is perceived in ordinary

baryonic form. This is the mysterious dark matter whose actual nature is

still not agreed upon by astronomers, and which may even be of some

material different from any that is definitely known to particle physicists—

though there is much speculation about this at the present time.43 Since the

dark matter seems to contribute about 10 times as much mass–energy as

there is ordinary baryonic matter, the density supplied by the dark matter,

as a fraction Od of the critical density, is roughly given by Od ¼ 0:3
(and the uncertainties are such that we can include the baryonic

Ob ¼ 0:03 into this figure, if we choose). This still leaves us considerably

short of the critical value. Moreover, various types of observation (includ-

ing of gravitational lensing effects—which we recall from §19.8 provide a

direct measure of the presence of mass) were beginning to show, fairly

convincingly, that there can be no other significant concentrations of

mass in the universe. So the conclusion K < 0 was now looking pretty

firm, and consequently the inflationists and followers of Hartle–Hawking

started looking for ways to incorporate K < 0 into their respective

worldviews.

Then came the bombshell of the cosmological constant. We recall from

§19.7 that Einstein had regarded the introduction of L as his ‘greatest

mistake’ (perhaps mainly because it contributed to his failure to predict

the expansion of the universe). Although since then it had always been

taken as a possibility by cosmologists, rather few of them seem to have

expected to find L to be non-zero in our actual universe. An additional

issue was the fact that calculations of ‘vacuum energy’ by quantum field

theorists (basically a renormalization effect like those of §26.9) had yielded

an absurd answer that there should actually be an effective cosmological

constant that is larger than what is seen by a factor of about 10120 (or at

least 1060 if different assumptions are made)! This became known as the

‘cosmological constant problem’. It might have been plausible that some

unknown cancellation or general principle could give the value 0 for this

vacuum energy, but to find a tiny residue that could have relevance to

cosmology at the present epoch was in no way anticipated. (It should be

mentioned that this ‘vacuum energy ought to be proportional to the metric

gab, by local Lorentz invariance, so the form Lgab is anticipated, for a

constant L, contributing to the Einstein equation precisely as Einstein had
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suggested in 1917. The only trouble is that the value of L comes out

completely wrong!)

Nevertheless, when in 1998 two teams observing very distant super-

novae (see §27.8)—one headed by Saul Perlmutter, in California, and the

other, headed by Brian Schmidt in Australia and Robert Kirschner in

eastern USA—came to the remarkable conclusion that the expansion of

the universe had begun to accelerate, as is consistent with the upward turn

in the graph of Fig. 27.15d, which is the hallmark of a positive cosmo-

logical constant! How big is this L that seems to be observed? There are

still some uncertainties about this (and some theoreticians have argued

that the case for a positive L has still not been convincingly made44), but

the remarkable conclusion is that the effective mass–energy density OL

that L provides, as a fraction of the critical density, is given approximately

by OL ¼ 0:7, so we seem to have, for the total effective density, as a

fraction of critical

O � Od þ OL � 0:3þ 0:7 ¼ 1:

In other words, the observations seem to be now consistent with K ¼ 0.

The inflationists (at least those who had the confidence not to shift their

ground) are, of course, jubilant, and it can certainly be counted as a

predictive success of their theory that against some seemingly powerful

evidence to the contrary, the prediction of K ¼ 0 seems to have won out.

However, the uncertainties are still too great for this conclusion to be

carried with conviction, and it is significant that other types of recent

observation also have a powerful bearing on this question. As mentioned

in §28.5, there have been several measurements of the detailed temperature

variations in the microwave background, starting with the COBE satellite,

launched in 1989, and the most recent survey (at the time of writing) being

that made by the WMAP space explorer.

These temperature variations are normally analysed by decomposing

the pattern over the sky into spherical harmonics, according to the

procedures discussed in §22.11. We recall that the different spherical

harmonics are labelled by a positive integer ‘ and an integer m in

the range �‘ to ‘. (In the quantum mechanical situation, ‘ is normally

called j, and both j and m could be half odd integers.) The m-quantity

is less important, because it depends on an arbitrarily chosen direction

in the sky, so the general intensity for each value of ‘ is regarded as

being the quantity of most interest. In Fig. 28.19, I have shown the

results of this analysis. Notice the indication that after the curve reaches

its maximum, at around ‘ ¼ 200, it starts to oscillate. These local

maxima are referred to as ‘acoustic peaks’ since they reflect a clear

theoretical prediction that in an early stage of the universe, local con-

centrations of matter would start by falling inwards and then either
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Fig. 28.19 The anticipated ‘acoustic peaks’ in the harmonic analysis of the

cosmic microwave background (solid line), and the observed data points (crosses,

with error bars). Be sure to notice the very significant discrepancy at the quadru-

pole (‘ ¼ 2), almost hidden (accidentally?) by the vertical axis.

rebound or fall through themselves (which is what might be expected

for dark matter), this resulting in a kind of sonic oscillation. The

typical scale at which this oscillation would happen would be governed

by the horizon size at decoupling (see Fig. 28.5a, and imagine the points u

and vmoved around on the decoupling surface until their pasts just touch;

this is the horizon size45). It is at this scale that the main peak occurs.

There is, however, the question of what angular separation in the sky

corresponds to what local distance separation in the universe at the time of

recombination, and it is here that the spatial curvature of the universe

plays an important role, the acoustic peaks being shifted one way or the

other, in ‘, depending on the value of K (to smaller for positive K and

larger for negative K). The issue is not quite straight forward, however,

because the expansion rate of the universe also plays a role in this, so

detailed calculations are necessary. The upshot is that this kind of analysis

of the cosmic microwave background is, in a general way, consistent with

K ¼ 0, but there is still room for a positive or negative K value that would

be of observational significance.

The results for high values of ‘, thus seem to be consistent with

the expectations of inflation (and there is also a scale-invariance in the

observed temperature fluctuations that had also been a prediction of some
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inflationary models). But what about low values of ‘? The value ‘ ¼ 0 is not

very illuminating, since this just describes the overall intensity. What about

‘ ¼ 1 (the ‘dipole moment’)? This does not tell us about the distant universe,

because the Earth’s motion through the microwave background leads to an

asymmetrical Doppler shift (see Exercise [27.10]) giving rise to an ‘ ¼ 1

temperature distribution with a slightly higher temperature perceived in the

direction of motion and a slightly lower one in the opposite direction. The

first cosmologically significant ‘ value is ‘ ¼ 2 (the ‘quadrupole moment’).

In fact, a discrepancy is seen with the scale-invariant predictions of inflation

at this point, which is confirmed by the next fewharmonics. The discrepancy

is small, but seems to be reasonably clear. The implied breaking of scale

invariance may be interpreted as something on the largest scales differing

from the flat K ¼ 0 geometry, possibly indicating that either K > 0 or

K < 0, since the ‘radius of curvature’ provides such a scale.

These considerations leave us in an intriguing but somewhat unsettled

state. But one should bear in mind that the graph of Fig. 28.19 is really

making use of only a tiny amount of the information that is contained in

WMAP’s temperature chart. For each ‘ value, there are 2‘þ 1 different m

values, and there is a real parameter for each of these. Most of that

information is being ignored in this analysis, and there must be enormous

amounts of hidden data telling us something of possibly great importance

about the early universe.

Here, I mention only one alternative way of analysing this data, due

mainly to Vahe Gurzadyan (1992, 1994, 1997, 2002, 2003, 2004) which

seems to have startling implications. In this approach, a harmonic analysis

is not used; instead, one examines the distortions in the shape of distant

regions of each particular temperature, due to intervening spatial curva-

ture. If we imagine that the undistorted shape of such a region is actually

circular, then curvature effects could cause this to become elliptical (recall

Fig. 28.15). Of course, in practice, we do not know the shape of the region

we are looking at, but there can be statistical effects, causing the regions of

a specific temperature to become more (or less) stretched and spindly than

they would be otherwise. This is clearly a delicate piece of statistical

analysis, but the conclusion that Gurzadyan and his colleagues come to

is that there is indeed a significant amount of ellipticity in the microwave

maps (originally COBE, then BOOMERANG, and subsequently

WMAP). What does this mean? The theoretical analysis of this situation

tells us that only with K < 0 can we expect this degree of ellipticity—as a

result of ‘geodesic mixing’. These results are new, so one must wait to see if

significant objections are levelled at this remarkable conclusion.

This analysis also provides independent evidence for a positive cosmo-

logical constant of about the size that is implied by the supernova data.

Thus, the negative curvature is concluded to be small, in the sense that
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Od þ OL cannot differ by much from unity, perhaps having a value of

about 0.9. This emphasizes a puzzle that has worried many cosmologists.

The quantities Ob, Od , and OL are not constant in time. In the early stages

of the universe, Ob and Od would have been far larger and OL far smaller.

In the very late stages of the universe, Ob and Od would become negligible,

with OL dominating the effective mass–energy density. The seeming coin-

cidence that OL and Od are of the same general order of size seems like a

puzzling coincidence.

Curiously, the term ‘cosmological constant’ seems to have gone out of

fashion almost as soon as L was observationally discovered, despite that

being the standard terminology since Einstein’s theoretical introduction of

it in 1917. Instead, L is referred to as ‘dark energy’, or ‘vacuum energy’, or

sometimes ‘quintessence’, perhaps because the cold term ‘cosmological

constant’ does not carry with it a sufficient air of mystery, or perhaps, a

little more rationally, because the presence of the word ‘constant’ rather

implies that L cannot change with time! Many cosmologists seem to be

happier with a varying L, possibly regarding the present ‘L’ as represent-

ing the onset of a ‘new inflationary phase’, where they point out the

similarity to the supposed very early inflationary phase of the universe.

We recall from §28.4 that this is taken to be dominated by a ‘false vacuum’

in which there is an effective cosmological constant that is so large that it

completely dominates all the (already enormously dense) ordinary matter.

If the universe was allowed to have an effective ‘L’ in those days, which

was so extraordinarily different from the value that we find today—so the

argument goes—then surely we should allow for a ‘varying L’ and the

term ‘cosmological constant’ is, accordingly, inappropriate.

However, this idea, attractive as it may seem to some people, has its

difficulties with the mathematics, as the term ‘cosmological constant’ was

introduced with good reason. The constancy of L is a direct consequence

of the energy conservation equationraTab ¼ 0, of §§19.5–7, since adding a

multiple of gab to Tab can leave that conservation equation undisturbed

only if that multiple is a constant.[28.13] Thus, any non-constancy in ‘L’

would have to be accompanied by a compensating non-conservation of the

mass–energy of the matter. It is certainly much more theoretically com-

fortable to have L constant—as is indeed consistent with observation.

Where does this leave us? Certainly in an interesting state. I do not see

that inflationary cosmology is ‘confirmed’ by these observations, and even

if it were, this would not resolve the cosmological problem that, in my

opinion, overshadows all others, namely the extraordinarily ‘special’ Big

Bang—to at least the degree of a part in 1010123

—which underlies the

Second Law. Some cosmologists would regard the ‘fine tuning’ that is

[28.13] Why?
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involved in this (see Fig. 27.20) as unaccepable, and they try to ‘explain’ it

in terms of inflation or the anthropic principle (§§28.5,7), although, as we

have seen, such procedures leave us very wide of the mark.

There is, indeed, a fundamental problem that I have with any proposal

(e.g. inflation or the Hartle–Hawking proposal) that attempts to address

the problem of spacetime singularities within an apparently time-symmet-

rical physics. There is no time-asymmetry in inflationary physics and, as

far as I can make out, there is none in the Hartle–Hawking proposal

either, so this proposal should be applied also to the final singularities of

collapse (in black holes, or in the Big Crunch if there is one) as well as to

the Big Bang. Hawking (1982) has argued that it can be, but in a decidedly

exotic way, the space in the neighbourhood of a final singularity being

‘closed off without boundary’, by taking the universe all the way back to

the Big Bang, the ‘Euclideanization’ being applied only there (Fig. 28.18)!

His argument is that the no-boundary proposal merely asserts that there is

some way of closing things off without boundary, and we define the ‘begin-

ning’ (which determines the universe’s time-sense) as the end at which the

closing off occurs. I have to say that I have great difficulties with this

argument—and indeed with any argument where there is no explicit time-

asymmetry in the physical laws themselves. (In Hawking’s ‘exotic’ argu-

ment, for example, it would appear that there is still a ‘boundary’, at the

final singularity of collapse, even though there has been a smooth bound-

ary-free closing off only ‘on the other side’ of the spacetime. It seems to me

that only one-half of the boundary-removal problem has been attended to.)

Do we, then, have to address the possibility of an actually time-asym-

metrical basic physics as I am claiming? In Chapter 30, I shall be confront-

ing exactly this issue head on! And we shall find that it is related to

something fundamentally puzzling that we have left hanging from our

chapters on quantum mechanics. In the next chapter, therefore, I shall

need to return to this important quantum-mechanical conundrum. Then in

Chapter 30 I shall present my own ideas as to the correct route towards its

resolution and hence, also, to the eventual resolution of the singularity

time-asymmetry problem. Yet, I must again give the reader my statutory

warning: many physicists may well be unhappy with the position that

I shall be taking.

Notes

Section 28.1

28.1. See, for example, Weinberg (1992), p.195, where he also uses the example of

ferromagnetism—as seems to be almost universal in popular expositions by

experts. Yet, we must bear in mind that this is a considerable idealization, for

a body of actual iron, in which the detailed eVects of the forces can be very
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28.2. complicated. While for small enough region within the iron this tendency to

magnetization may be a good approximation, such magnetized regions tend to

become randomly oriented in practice so that the iron as a whole does not tend

to provide an eVective magnet. Moreover, for the iron to become signiWcantly

magnetized, the cooling through the Curie point would need to be extremely

slow, and the ideal situation is not easy to achieve. For the present theoretical

discussion it is appropriate that we ignore such complications and accept the

idealization that is being described.

28.2. Quantum-mechanical tunnelling occurs when a quantum system spontaneously

undergoes a transition from one state to another of lower energy (with the

emission of the excess energy) where there is an energy barrier preventing this

from taking place classically.

28.3. ReXection symmetry has been excluded, in this example, because of the ‘S’ in

SO(2).

28.4. This ‘appropriate group’ seems to be SU(3)� SU(2)�U(1)=Z6.

Section 28.2

28.5. See Note 28.1.

28.6. See Vilenkin (2000); Gangui (2003); Sakellariadou (2002).

28.7. This theory is most closely associated with British astrophysicist Sir Martin

Rees. See Haehnelt (2003) for a review and further references.

28.8. See Chan and Tsou (1993).

28.9. The MACRO Collaboration has put stringent limits on the frequency of these

particles. See MACRO (2002).

Section 28.3

28.10. This connection would be initially taken as a gauge connection = on the smaller

bundle BL, overM, whose Wbres are the U(2)-symmetric spaces L of leptons at

each point. But in just the same way that, as in §14.3, in ordinary tensor calculus,

knowledge of how = acts on vectors completely Wxes how it acts on general ten-

sors, the knowledge of =’s action on BL completely determines its action on the

‘tensors’ deWned fromL. We can take G to beL� � L (one ‘index’ down, one up).

28.11. The ‘red shift’ z is defined so that 1þ z measures the factor by which the

wavelength is increased. Liddle (1999) is the most accessible text; Dodelson

(2003) is a more advanced treatment.

28.12. One might contemplate a possible role for a quanglement connection (see

§23.10) between q and r. This is certainly worth considering, but it goes beyond

current ideas of ‘spontaneous symmetry breaking’. My thinking on these issues

has been influenced by conversations with George Sparling and Bikash Sinha.

28.13. See Llewellyn Smith (1973).

Section 28.4

28.14. See Schrödinger (1956).

Section 28.5

28.15. See Guth (1997). Dodelson (2003) or Liddle and Lyth (2000) are technical

sources. For a careful and critical survey, Börner (2003) comes highly recom-

mended.

28.16. See Barbour (2001a, 2001b); Sciama (1959); Smolin (2002). An example of an

entirely ‘Machian’ physical approach is that of spin networks, described briefly

in §32.6.

28.17. See Ozsvath and Schücking (1962, 1969).
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28.18. There are newer perspectives on these issues, however, which can perhaps be

interpreted as support for Einstein’s theory being ‘Machian’ after all. See

Barbour (2004); Barbour et al. (2000); Raine (1975).

28.19. These aesthetic desiderata are speciWcally argued for in Mario Livio’s popular

account. See Livio (2000).

28.20. There was a precursor of this view in what was referred to a ‘chaotic cosmology’

put forward independently, in the 1960s by Charles W. Misner and by Yakov B.

Zeldovich, whereby a random initial state was envisaged—despite the seeming

fundamental conXict with the Second Law thermal processes being invoked in

an attempt to smooth the universe out. See Misner (1969) for the original paper.

28.21. The best proposal for a likely chaotic structure in this generic singularity comes

from the 1970 work of Belinskii et al. (1970).

28.22. See Note 27.21, which provides the relevant references.

Section 28.6

28.23. I believe that I Wrst heard of this ‘weak’ anthropic idea from Fred Hoyle’s radio

talks, given over BBC radio in the 1950s. I Wrst became acquainted with the

stronger form of the anthropic principle, which addresses the issue of ‘anthro-

pic’ role of basic physical constants, from one of Hoyle’s Cambridges lectures

‘Religion as a Science’, which referred to the building of heavy elements in stars

requiring a speciWc nuclear energy level in carbon, to be described shortly.

28.24. See Dicke (1961) and Carter (1974).

28.25. See Dirac (1937).

28.26. See Dirac (1938); Buckley and Peat (1996); Guenther et al. (1998). A recent

‘varying constant’ idea is given an amusing account in Magueijo (2003).

28.27. My use of the term ‘strong anthropic principle’, here, follows Carter (1974).

Barrow and Tipler (1988) break this down into several different categories.

28.28. See Hoyle et al. (1956); Burbidge et al. (1957).

28.29. See Hawking and Penrose (1970).

28.30. See Smolin (1997).

28.31. In my Adams Prize essay of 1966 (see Penrose 1966), I put forward such an idea

(but without the physical constant readjustments) in a non-serious way! Per-

haps others had also done so earlier.

Section 28.7

28.32. See Penrose (1989).

28.33. An alternative standpoint has been stressed to me by Abhay Ashtekar that

there might be something else, diVerent from ‘quantum gravity’ that Wxes the

extraordinarily special nature of the Big Bang. Maybe so, but I cannot help

being struck by the fact that it is gravity that was special at the Big Bang, and

apparently gravity alone.

Section 28.8

28.34. In fact, only the trace-free part of the Ricci tensor Rab � 1
4
Rgab is relevant here,

and the cosmological constant plays no role.

28.35. See Penrose (1998) for a general overview of cosmic censorship.

28.36. See Newman (1993); Claudel and Newman (1998); Tod and Anguine (1999a,

1999b); Anguine (1999). A particularly appealing version of the Weyl curvature

hypothesis is the one put forward by K.P. Tod, which simply asserts that at any

initial singularity, there is a regular conformal geometry with boundary.
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Section 28.9

28.37. See Wick (1956) for the first use of this technique, which is employed in Zinn-

Justin (1996) to great and frequent effect.

28.38. See Hartle and Hawking (1983).

28.39. Recent work by Renate Loll suggests that there may be profound diVerences

between the use of Riemannian metrics in the path integral, as with the

Hawking proposal, and the more directly appropriate Lorentzian metrics. See

Ambjorn et al. (1999).

Section 28.10

28.40. See Hawking and Turok (1998).

28.41. See Bucher et al. (1995) and Linde (1995).

28.42. Mordehai Milgrom (1994) has put forward the intriguing suggestion that there

is no dark matter, but instead Newtonian gravitational dynamics needs alter-

ation in a way different from Einstein’s, where for very low accelerations the

effect of gravity is increased in a certain specific way. Although this idea seems

to fit the facts remarkably well, there is as yet no coherent theory of this which

makes good overall theoretical sense. In my own opinion, such unconventional

ideas should not just be dismissed, and it could be worth the effort to see

whether this scheme can be made part of a broader consistent viewpoint. (I

have not been able to see how to do this myself!)

28.43. See Krauss (2001) for an accessible discussion of dark matter (and also of ‘dark

energy’—i.e. a possibly varying L).

28.44. See Blanchard et al. (2003). For the more ‘mainstream’ interpretation, see

Perlmutter et al. (1998); Bahcall et al. (1999).

28.45. Dodelson (2003) explains how to do this and related analysis of CMB data.

Speculative theories of the early universe Notes

781



29
The measurement paradox

29.1 The conventional ontologies of quantum theory

There is no doubt that quantum mechanics has been one of the supreme

achievements of the 20th century. It explains a great many phenomena

that had been profoundly puzzling in the 19th, such as the existence of

spectral lines, the stability of atoms, the nature of chemical bonds, the

strengths and colours of materials, ferromagnetism, solid/liquid/gas phase

transitions, and the colours of hot bodies in equilibrium with their hot

surroundings (black-body radiation). Even some puzzling matters of biol-

ogy, such as the extraordinary reliability of inheritance, are now seen to

arise from quantum-mechanical principles. These phenomena—as well as

many others which had become known in the 20th century, such as liquid

crystals, superconductivity and superXuidity, the behaviour of lasers,

Bose–Einstein condensates, the curious non-locality of EPR eVects and

of quantum teleportation—are now well understood on the basis of the

mathematical formalism of quantum mechanics. This formalism has,

indeed, provided us with a revolution in our picture of the real physical

world that is far greater even than that of the curved spacetime of Ein-

stein’s general relativity.

Or has it? It is a common view among many of today’s physicists that

quantum mechanics provides us with no picture of ‘reality’ at all! The

formalism of quantum mechanics, on this view, is to be taken as just that:

a mathematical formalism. This formalism, as many quantum physicists

would argue, tells us essentially nothing about an actual quantum reality of

the world, but merely allows us to compute probabilities for alternative

realities that might occur. Such quantum physicists’ ontology—to the

extent that they would be worried by matters of ‘ontology’ at all—would

be the view (a): that there is simply no reality expressed in the quantum

formalism. At the other extreme, there are many quantum physicists who

take the (seemingly) diametrically opposite view (b): that the unitarily

evolving quantum state completely describes actual reality, with the

alarming implication that practically all quantum alternatives must always

continue to coexist (in superposition). As already touched upon in §21.8,
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the basic diYculty that confronts quantum physicists, and that drives

many of them to such views, is the conXict between the two quantum

processes U and R, where (§22.1) U is the deterministic process of unitary

evolution (as can be described by Schrödinger’s equation) and R is the

quantum state reduction which takes place when a ‘measurement’ is

performed. The U process, when it was found, was something of the

kind familiar to physicists: the clear-cut temporal evolution of a deWnite

mathematical quantity, namely the state vector jci, controlled determinis-

tically by a (partial) diVerential equation—the temporal evolution of the

Schrödinger equation being not unlike that of the classical Maxwell equa-

tions (see §21.3 and Exercise [19.2]). On the other hand, the R process was

something quite new to them: a discontinuous random jumping of this

same jci, where only the probabilities of the diVerent outcomes are

determined. Had the physics of the observed world been described simply

by a quantity jci, just acting according to U on its own, then physicists

would have had no serious trouble with accepting U as providing a

‘physically real’ evolution process for a ‘physically real’ jci. But this is

not how the observed world behaves. Instead, we seem to perceive a

curious combination of U with the interjection of the very diVerent process

R, from time to time! (Recall Fig. 22.1.) This made it far harder for

physicists to believe that jci could actually be a description of physical

reality after all. The puzzling issue of how R can somehow come about,

when the state is supposed to be evolving in accordance with U-evolution,

is the measurement problem—or, as I prefer it, measurement paradox—

of quantum mechanics (discussed brieXy in §23.6, and hinted at in §21.8

and §22.1).

The viewpoint (a) is basically the ontology of the Copenhagen interpret-

ation as expressed speciWcally by Niels Bohr, who regarded jci as not

representing a quantum-level reality, but as something to be taken as

merely describing the experimenter’s ‘knowledge’ of a quantum system.

The ‘jumping’, according to R, would then be understood as the experi-

menter’s simply acquiring more knowledge about the system, so it is the

knowledge that jumps, not the physics of the system. According to (a), one

should not ask that any ‘reality’ be assigned to quantum-level phenomena,

the only acknowledged reality being that of the classical world within

which the experimenter’s apparatus Wnds its home. As a variant of (a),

one might take the view that this ‘classical world’ comes in not at the level

of some piece of ‘macroscopic machinery’ that constitutes the observer’s

measuring apparatus, but at the level of the observer’s own consciousness.

I shall discuss these alternatives in more detail shortly.

The supporters of alternative (b), on the other hand, do take jci
to represent reality, but they deny that R happens at all. They would

argue that when a measurement takes place, all the alternative outcomes
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actually coexist in reality, in a grand quantum linear superposition of

alternative universes. This grand superposition is described by a wavefunc-

tion jci for the entire universe. It is sometimes referred to as the ‘multi-

verse’,1 but I believe that a more appropriate term is the omnium.2 For

although this viewpoint is commonly colloqually expressed as a belief in

the parallel co-existence of different alternative worlds, this is misleading.

The alternative worlds do not really ‘exist’ separately, in this view; only the

vast particular superposition expessed by jci is taken as real.

Why, according to (b), is the omnium not perceived as actual ‘reality’ by

an experimenter? The idea is that the experimenter’s states of mind also

coexist in the quantum superposition, these diVerent individual mind

states being entangled with the diVerent possible results of the measure-

ment being performed. The view is that, accordingly, there is eVectively a

‘diVerent world’ for each diVerent possible result of the measurement,

there being a separate ‘copy’ of the experimenter in each of these diVerent

worlds, all these worlds co-existing in quantum superposition. Each copy

of the experimenter experiences a diVerent outcome for the experiment,

but since these ‘copies’ inhabit diVerent worlds, there is no communication

between them, and each thinks that only one result has occurred. Propon-

ents of (b) often maintain that it is the requirement that an experimenter

have a consistent ‘awareness state’ that forces the impression that there is

just ‘one world’ in which R appears to take place. Such a viewpoint was Wrst

explicitly put forward by Hugh Everett III in 19573 (although I suspect

that many others had, not always with conviction, privately entertained

this kind of view earlier—as I had myself in the mid-1950s—without

daring to be open about it!).

Despite their diametrically opposing natures, the viewpoints (a) and (b)

have some signiWcant points in common, with regard to how jci is taken

to relate to our observed ‘reality’—by which I mean to the seemingly real

world that, on a macroscopic scale, we all experience. In this observed

world, only one result of an experiment is taken to occur, and we may

justly regard it as the job of physics to explain or to model the thing that

we indeed normally refer to as ‘reality’. Neither according to (a) nor

according to (b) is the state vector jci taken to describe that reality. And

in each case, we must bring in the perceptions of some human experi-

menter to make sense of how the formalism relates to this observed real

world. In case (a) it is the state vector jci itself that is taken to be an

artefact of that human experimenter’s perceptions, whereas in case (b), it is

‘ordinary reality’ that is somehow delineated in terms of the perceptions of

the experimenter, the state vector jci now representing some kind of

deeper overriding reality (the omnium) that is not directly perceived. In

both cases the ‘jumping’ of R is taken to be not physically real, being, in a

sense, ‘all in the mind’!
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I shall be explaining my own diYculties with both positions (a) and (b)

in due course, but before doing so, I should mention a further possibility

for interpreting conventional quantum mechanics. This, as far as I can

make out, is the most prevalent of the quantum-mechanical standpoints—

that of environmental decoherence (c)—although it is perhaps more of a

pragmatic than an ontological stance. The idea of (c) is that in any

measurement process, the quantum system under consideration cannot

be taken in isolation from its surroundings. Thus, when a measurement

is performed, each diVerent outcome does not constitute a quantum state

on its own, but must be considered as part of an entangled state (§23.3),

where each alternative outcome is entangled with a diVerent state of the

environment. Now, the environment will consist of a great many particles,

eVectively in random motion, and the complete details of their locations

and motions must be taken to be totally unobservable in practice.4 There is

a well-deWned mathematical procedure for handling this kind of situation

where knowledge is fundamentally lacking: one ‘sums over’ the unknown

environmental states to obtain a mathematical object known as a density

matrix, to describe the physical system under consideration. Density

matrices are important for the general discussion of the measurement

problem in quantum mechanics (and are important also in many other

contexts), but their ontological status is hardly ever made clear. I shall

explain what a density matrix is very shortly (in §29.3). However, we shall

be seeing later why it is important for the position (c) that the ontology of

the density matrix is not made completely clear! Holders of viewpoint (c)

tend to regard themselves as ‘positivists’ who have no truck with ‘wishy-

washy’ issues of ontology in any case, claiming to believe that they have no

concern with what is ‘real’ and what is ‘not real’. As Stephen Hawking has

said:5

I don’t demand that a theory correspond to reality because I don’t know

what it is. Reality is not a quality you can test with litmus paper. All I’m

concerned with is that the theory should predict the results of measurements.

My own position, on the other hand, is that the issue of ontology is crucial

to quantum mechanics, though it raises some matters that are far from

being resolved at the present time.

29.2 Unconventional ontologies for quantum theory

Before entering into the details of all this, let me consider three further

general standpoints with regard to quantum mechanics. It should not be

assumed that my list is in any way comprehensive, nor should it be taken

that these new ones are completely independent of those that I have given

785

The measurement paradox §29.2



in the previous section. The list (a), (b), (c), (d), (e), (f) that I shall be

considering here represents the kind of spread of viewpoints that one most

frequently Wnds in the current literature, but I make no claims as to the

compleness, independence, or speciWcity of my list. The three additional

ontologies that I consider here represent actual changes in the usual

quantum formalism; but with two of them, (d) and (e), it is not anticipated

that there will be experimental distinctions between the proposed formal-

ism and standard quantum mechanics. The standpoint (d) is the ‘consist-

ent histories’ approach due to GriYths, Omnès, and Gell-Mann/Hartle,

and (e) is the ‘pilot-wave’ ontology of de Broglie and Bohm/Hiley.6 The

Wnal possibility (f) is that present-day quantum mechanics is merely an

approximation to something better, and that—in this improved theory—

both of U and R take place objectively as real processes; moreover, it is

part of the perspective of (f) that future experiments should be able to

distinguish such a theory from conventional quantum mechanics.

As soon as we have the necessary tools, I shall try to give my assess-

ments of the various alternatives (a), . . . , (f). However, in order that the

reader can take a suitably objective attitude to these assessments, it is best

that I ‘come clean’ with regard to my own position clearly at this stage. I

am, in fact, a strong believer that some developments in line with (f) are

necessary, in order that quantum mechanics can make fully consistent

sense. In the next chapter, I shall actually be putting forward the particular

version of (f) that seems to me to be most natural. With this warning to the

reader, let us proceed, where I Wrst list these alternatives, to aid the reader

in keeping them explicitly in mind.

(a) ‘Copenhagen’

(b) many worlds

(c) environmental decoherence

(d) consistent histories

(e) pilot wave

(f) new theory with objective R.

I shall need to make a few remarks about (d) and (e), since I have not

really explained them. The ‘consistent-histories’ scheme (d) provides a

generalization of the standard framework of quantum theory. Some pro-

ponents have provided (d) with an ontology that seems a bit like that of

many worlds (b), although in one respect even more extravagant—but as

far as I can see, such an extravagant ontology may well not be necessary.

In both (b) and (d) we can take the position that we have, as basic

ingredients, a Hilbert space H, a starting state jc0i belonging to H, and

a Hamiltonian H.7 In the many-worlds case (b), the ontological position

is to regard reality (of the omnium, that is) as being described as a
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continuous 1-parameter family of states (elements of H, and with time

parameter t), starting with jc0i at t ¼ 0 and completely governed, for t > 0

by the Schrödinger evolution determined byH. There is no R here, only U.

But the consistent-histories case (d) broadens this so as also to incorporate

‘R-type procedures’ into its ‘evolution’—even though these are not con-

sidered to be necessarily associated in any way with actual measurements.

To understand the mathematical nature of these procedures, we must

Wrst recall, from §§22.5,6, how a quantum-mechanical measurement is

mathematically described (even though, for (d), we do not think of these

procedures as measurements), in terms of the action of some Hermitian (or

normal) operator Q. If, just prior to measurement, the state of the system

is jci, then immediately following the measurement it is taken to ‘jump’ to

the eigenstate of Q corresponding to the eigenvalue of Q that the measure-

ment yields. But as far as its eVect on jci is concerned, we may as well

replace Q by a ‘complete set of orthogonal projectors’ E1, E2, E3 , . . . , Er

(supposing that Q has just r distinct eigenvalues, where for convenience we

take our Hilbert space H to be Wnite dimensional). Then, if the measure-

ment yields the eigenvalue qj, we Wnd that jci jumps to a state propor-

tional to Ejjci (projection postulate).

Let us look at this in a little more detail. We recall from §22.6 that a

projector is an operator E that squares to itself and is Hermitian, i.e.

E2 ¼ E ¼ E�:

The assertion that projectors E1 , . . . , Er are orthogonal to each other is

EiEj ¼ 0 whenever i 6¼ j

and their completeness is that they sum to the identity I on H:

E1 þ E2 þ E3 þ . . .þ Er ¼ I :

Let us simply call a set of Es satisfying all these conditions a projector set.

The connection between Q and its corresponding projector set is that for

each eigenvalue qj of Q, the corresponding eigenvector space consists of

the vectors of the form Ejjfi. The role of the projector Ej is that it projects

down to this eigenvector space, for the eigenvalue qj.
[29.1]

The projection postulate for the operation R (see §22.6), in the measure-

ment represented by Q, tells us that, if the result of the measurement is qj,

[29.1] Explain why Ej jci is the result (normalization ignored) of a measurement given by

Q ¼ q1E1 þ q2E2 þ q3E3 þ . . .þ qrEr applied to jci, where the eigenvalue is qj , the quantities

q1, q2, q3, . . . , qr being distinct real numbers. Can you prove that the general Wnite-dimensional

Hermitianoperatorhas this form? (Youmayassumethat anyWnite-dimensionalHermitianmatrixQ

can be transformed to a diagonal matrix by a unitary transformation.) The Es are called principal

idemponents of Q. What modiWcations are needed for a normal operator Q?
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then jci jumps to (something proportional to) Ejjci. This occurs with

probability given by

hcjEjjci,

if we assume that jci is normalized, i.e. hcjci ¼ 1. Thus, to describe the

eVect on the quantum state, of the measurement corresponding to Q we

need only consider the projector set deWned by Q.

Let us now return to the ontology of the consistent histories approach

(d). The theory operates with entities called coarse-grained histories,8 each

of which largely resembles a Schrödinger evolving ‘omnium’ of the many-

worlds approach (b), using the Hamiltonian H. But with (d) we also allow

projector sets to be inserted at various t-values during the course of the

evolution.

The ontological status of the insertion of such a projector set is still not

fully clear to me, but one is encouraged to adopt the attitude that the role

of such a projector set is to provide some kind of ‘reWnement’ of the

history, rather than representing a fundamental change to what is

happening in the world. The projectors certainly are not to be assigned

the ontological status given by some objective measurement. A more

appropriate analogy might be that the projector sets provide reWnements

for, or alterations to, coarse-graining ‘boxes’, as in classical phase space

(see §27.3)—and this accounts for the term ‘coarse-grained history’ used

here. In such a coarse-grained history, at the point at which a projector set

is encountered (and similarly to the standard procedure adopted in quan-

tum measurement), the current state jci gets replaced by (something

proportional to) Ej jci, where Ej is some member of the projector set.

This might be thought of as a loss of information, but there is no loss if we

keep track of the whole family of Ejjci, for all the Ej in the set, since jci is
simply the sum of all these.

In accordance with a desire for something to emerge which resembles the

kind of classical world that we actually perceive, some particular families of

coarse-grained histories are singled out and referred to as consistent (or,

sometimes, ‘decoherent’) if a certain condition is satisWed—expressing the

fact that the probabilities, calculated according to the standard quantum

rules, satisfy the ordinary classical rules of probability.9 A consistent set of

coarse-grained histories is called maximally reWned if one cannot insert

another projector set (inequivalent to any that have been already incorpor-

ated) without destroying the consistency. A history from a maximally

reWned set seems to me to provide a strong candidate for what might be

regarded as ontologically ‘real’, according to viewpoint (d).

Yet, I have not seen this viewpoint put forward explicitly, and some-

thing more akin to the totality of histories in a maximally reWned set seems

to be closer to the ontological viewpoint for ‘consistent histories’ that I
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have heard expressed.10 This is perhaps more aligned with what we have

seen in the many-worlds viewpoint (b), but the presence of many alterna-

tive possible consistent collections of projector sets seems to provide us

with an even vaster ensemble of alternative ‘worlds’. However, we recall

that also in the many-worlds picture (b), there can arise something of an

ontological confusion. The ontologically ‘real’ omnium (described by jci)
is a superposition of numerous diVerent worlds, and the collection of all

these individual worlds (rather than just their particular superposition jci)
is not to be taken as ‘real’. Set against this kind of confusion is the

advantage, in the consistent-histories viewpoint (d), that the correct quan-

tum probabilities are provided by the theory, which does not seem to be

the case with (b).

In the ‘Bohmian’ (pilot wave) case (e), the ontological position is,

refreshingly, much more down to Earth, although even here there are

some considerable subtleties—for there are, in a sense, two levels of reality,

one of which is Wrmer than the other. It is simplest to put the case Wrst for a

system consisting of just a single spinless particle. Then this Wrmer level of

reality is given by the particle’s actual position. In a two-slit experiment

(§21.4, Fig. 21.4), since the particle’s location is ontologically real, it

actually goes through one slit or it goes through the other, but its motion

is ‘guided’, in eVect, by c, so this provides a secondary, but nevertheless

ontologically still ‘real’ status to the c also. It is fairly common, in this

theory, to take somewhat diVerent attitudes to the modulus and the argu-

ment of c (§5.1), where a quantity referred to as the ‘quantum potential’ is

constructed from the former, and where the latter is employed to deWne

what is called the ‘pilot wave’. This kind of splitting is not necessary,

however, and its signiWcance seems to become less clear-cut with more

complicated systems.

Generally, we can think of c as a complex function that is deWned on

conWguration space C, and it serves the function of ‘guiding’ the behaviour

of a point P on C. The Wrmer part of the system’s reality is taken to be the

classical conWguration actually deWned by P, but a kind of (weaker) reality

is assigned also to the complex function c, by virtue of its role in guiding

the behaviour of P. It is considered that all measurements can ultimately

be reduced to ‘position’ measurements, which here means measurements

of the system’s conWguration. The squared modulus jcj2, at some point Q

on C, deWnes the probability density for Wnding the system in the con-

Wguration deWned by Q, but the location of P on C determines what is

considered to be the actual conWguration of the system.

Now, this all seems almost ‘too easy’, but there are subtleties. Most

particularly, the picture is a very non-local one, where c is a highly

‘holistic’ entity (as it must be, in order to accord with the holistic nature

of wavefunctions that was stressed in §21.7). This, however, seems inevit-
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able in quantum mechanics. Somewhat more serious is that there are

important conditions that must be imposed on the probability distribution

for the initial state jc0i, so that the jcj2 quantum probability law holds

true, and continues to hold true after sequential measurements. There is

the further point that one might question the correctness of the assump-

tion that all measurements can always ultimately be reduced to position

measurements (particularly as strict position measurements are not fully

legitimate in quantum mechanics, see §21.10), and whether the conWgura-

tion-space picture is adequately unambiguous when non-classical param-

eters like spin are being considered. Nevertheless, the clarity of the

ontological position of (e) is greatly to its credit (though, as we shall see

in §29.9, there are further issues to be faced here also).11

Finally, there are many diVerent proposals in accordance with (f). It is

not appropriate for me to describe them all here in detail. But I can make

some general comments about them. A good many of these proposals will

accept (at least as a provisional stance) an ontologically real status for an

evolving state vector jci. The time-evolution of jci, in such a theory,

would be something closely approximating the alternation of U with R,

that standard quantum mechanics tells us to adopt in practice; see

Fig. 22.1. Despite the fact that theories in line with standpoint (f) are

considered to be ‘outside the mainstream’ of quantum-mechanical think-

ing, it could be very reasonably said that (f) is actually the standpoint that

is most accepting of the reality of the formalism of quantum mechanics as

it is used in practice today, since both of the quantum-mechanical evolu-

tion processes U and R are taken seriously, ontologically, to describe the

evolution of reality! The trouble is, however, that U and R are mathemat-

ically inconsistent with each other, which is why (f) demands that there

must be changes from ordinary unitary evolution—and it is this that

separates (f) from the mainstream!

Why is R mathematically inconsistent with U? Perhaps the most obvious

reason is that R represents a discontinuous change in the state vector

(except in the exceptional circumstance that the state prior to measure-

ment is actually an eigenstate of the measurement operator), whereas U

always acts continuously. But even if we imagine that the ‘jump’ induced

by R is not absolutely instantaneous, there would be trouble with unitarity

because of the lack of determinism in R. DiVerent alternative outcomes

can result from the same input, which is something that never happens

with U. Moreover, a theory that makes R into a real process cannot ever

be unitary when a (non-trivial) quantum jump—in accordance with R—

actually takes place. Despite this, there is a remarkable accord, of a sort,

between the two processes U and R, since the ‘squared-modulus rule’ that

interrupts U to provide us with the probabilistic R, employs the very

‘unitarity’ of U to give us a law of conservation of probability for R
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(basically the fact that the scalar products hfjci, from which the quantum

probabilities are computed, are preserved under unitary time-evolution,

see §§22.4,5). This is an integral part of the wonders of quantum mechan-

ics, and it provides one strong reason that people are reluctant to monkey

with the principles of that theory in any way whatever—partly explaining

why (f) is not particularly popular among today’s quantum physicists.

Nevertheless, I believe that there are powerful reasons for expecting a

change. Such a change would, in my view, represent a major revolution, and

it cannot be achieved by just ‘tinkering’ with quantum mechanics. Yet, the

necessary changes must themselves be thoroughly respectful of the central

principles that lie at the heart of present-day physics. The very tightness of

the quantum formalism, as indicated in the preceding paragraph, is a reason

for both of these requirements. As a comparison, we recall the tightness of

Newtonian physics. Relativity and quantum mechanics were not obtained

from it by tinkering, but through the revolutionary changes of perspective

that nevertheless paid due respect to Newtonian theory’s highly organized

Lagrangian/Hamiltonian/symplectic-geometric structure. Are the changes

to quantum theory that have so far been suggested, by various people,12 of

such a respectful revolutionary character—or are they just tinkering? It

must be said that, for the most part, these ideas have to be regarded as

tinkering; yet some of these ideas could well provide pointers to the true

road to an improved quantum theory.

29.3 The density matrix

But why is there a need for ‘improving’ quantum theory in any case? Most

quantum physicists appear to believe that no such a theory is required,

having made their peace with the seeming contradictions and obscure

ontology of one or other of the standard pictures (or lack of such a picture).

Before we can attempt to address any of the diYculties that there might be

in any of the ‘standard’ pictures (a), (b), and (c), we should come to the

notion of a density matrix, which is fundamental not only to standpoint (c),

but which plays an important role in many other quantum-mechanical

considerations. Moreover, it raises intriguing and profound issues concern-

ing how reality should be represented in quantum mechanics.

Suppose that we have some quantum system whose state is not com-

pletely known to us. The state might be jci, or it might be jfi, or it might

be . . . , or it might be jwi. The list could be inWnite, but it will be suYcient

for our purposes to consider a Wnite list of possibilities only. Each of these

possibilities is to be assigned a probability, let us say p, q, . . . , s, respect-

ively. The possibilities are to be exhaustive, so the probabilities—real

numbers between 0 and 1 (inclusive)—must sum to unity:
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pþ qþ � � � þ s ¼ 1:

We suppose that each of jci, jfi, . . . , jwi is normalized:

kck ¼ 1, kfk ¼ 1, . . . , kwk ¼ 1:

(Recall, from §22.3, that kck ¼ hcjci, etc.) Then we deWne the density

matrix to be the quantity

D ¼ pjcihcj þ qjfihfj þ � � � þ sjwihwj:

Recall from §22.3 that the bra vector hcj is the Hermitian conjugate of the

ket vector jci. The quantity jcihcj is then the tensor product (or outer

product) of jci with hcj, etc. In the index notation, of §23.8, we can write

hcj as �cca, where ca stands for jci. Then, jcihcj could be written ca�ccb, etc.

Accordingly, D itself would have the index structure Da
b. The density

matrix has the algebraic properties that it is Hermitian, non-negative-

deWnite (see §§13.8,9), and of trace unity:

D* ¼ D, hxjDjxi $ 0 for all jxi, hDi ¼ 1,

where hDi ¼ trace D ¼ Da
a (see §13.4).[29.2]

The density matrix plays a role analogous to that which is frequently

used in classical statistical mechanics, where we might not be particularly

concerned with the precise (classical) state of a system, but we are content

to consider some probability distribution of classical alternatives. This is

most easily thought of in terms of the phase space P of the possible

classical alternatives. Instead of the system being represented as a point

P in P, it would be thought of in terms of a probability distribution on P.

If we have just a Wnite number of alternatives13 for the system, the various

probabilities being p, q, . . . , s, then we represent this as a Wnite set of

points P, Q, . . . , S, in P, each of which is assigned its respective probabil-

ity value p, q, . . . , s; see Fig. 29.1. We could, indeed, envisage doing

(a)

(b)P

Q

R

S

Fig. 29.1 Classical probability distributions

represented in phase space P. (a) For a Wnite set

of points P, Q, . . . , S, in P, a probability value

p, q, . . . , s (real numbers between 0 and 1) is

assigned to each point, where pþ qþ . . .þ s ¼ 1.

(b) A continuous distribution, with a probability

measure (a non-negative real-number density),

whose integral is 1, assigned in some region of P.

[29.2] Derive these properties.
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exactly the same thing, in quantum physics, with the Hilbert space H of the

quantum system playing the role of the phase space P; then we would have

some probability distribution in H. In relation to the density matrix D that

we have just been considering, this distribution would consist of just a

Wnite number of points P, Q, . . . , S, in H, each being assigned its respect-

ive probability value p, q, . . . , s.

But this is not what is normally done in quantum mechanics; the density

matrix is used instead.14 Why is this? The reason is that, in quantum

mechanics, a measurement, having the form of question posed to a quan-

tum system—and let us restrict attention to a yes/no question—is phrased

in terms of the action of some projector E applied to the (normalized) state

vector jxi. The probability of the answer yes is then given by[29.3]

probability of yes ¼ hxjEjxi,

from which it follows that for the probability mixture of possible alterna-

tive states jci, jfi, . . . , jwi, described above, with density matrix D, we

obtain the answer

probability of yes ¼ hEDi:

The signiWcance of this is that we do not need to know the complete

information of the distribution of probabilities for the alternative states

jci, . . . , jwi in order to be able to calculate probabilities for a standard yes/

no question in quantum mechanics (or, indeed, for the expectation value of

any other quantum-mechanical observable);[29.4] all the needed information

is stored in the density matrix—and as we shall be seeing shortly that a given

density matrix can be composed of many diVerent probability distributions

of states. There is a considerable economy and elegance in this remarkable

mathematical entity (introduced by the outstanding Hungarian/American

mathematician John von Neumann 1932). It combines together into one

expression what would appear to be two quite distinct notions of probabil-

ity. On the one hand, we have the numbers p, q, . . . , s, which are the

ordinary classical probabilities for the alternative states jci, jfi, . . . , jwi,
while on the other, we have the quantum probabilities obtained from the

squared-modulus rule of §21.9. The density matrix combines the two and

does not directly distinguish one kind from the other.

29.4 Density matrices for spin 1
2
: the Bloch sphere

Let me illustrate this point with a simple example. Suppose that we have a

particle of spin 1
2
, whose state of spin we know to be either jÆi or j�i, with

[29.3] Explain why; also derive the expression hEDi, below.

[29.4] Can you see why this should be so?
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probability 1
2
for each alternative. If we choose to measure this spin in an

up/down direction, we simply get ‘up’ if the state is jÆi, and ‘down’ if the

state is j�i. In each case the probability is 1
2
. These are just straightforward

classical probabilities, and there is no quantum mystery here. But suppose

that we measure the spin in the left/right direction instead. Then, if the

state is jÆi, the quantum R rules tell us that we get a probability of 1
2
that

the spin is ‘left’ and a probability 1
2
that the spin is ‘right’. Exactly the same

conclusion is obtained if the state is j�i. Thus for the equal-probability

mixture of jÆi and j�i, we still get probabilities of 1
2
for each of ‘left’ and

‘right’. Now, however, the probabilities are obtained entirely from the

quantum-mechanical ‘squared-modulus’ law. We could also choose to

measure the spin in any other direction. The probabilities would again

turn out to be 1
2
for each answer but this probability would, in general, be

composed of a mixture of classical and quantum probabilities.[29.5]

We could, alternatively, imagine rotating the statemixture rather than the

measuring apparatus. Thus, an equal-probability mixture of j�i and j�i
would give just the same answers as the above equal-probability mixture of

jÆi and j�i, and so also would an equal-probability mixture of jªi and j�i
(where in each case we take these pairs of states to be orthogonal and

normalized: hÆj�i ¼ h�j�i ¼ hªj�i ¼ 0 and hÆjÆi ¼ h�j�i ¼ . . . ¼
h�j�i ¼ 1). We get, for the density matrix D, in each case:

D ¼ 1
2
jÆihÆj þ 1

2
j�ih�j,

D ¼ 1
2
j�ih�j þ 1

2
j�ih�j,

D ¼ 1
2
jªihªj þ 1

2
j�ih�j,

the remarkable property of the density matrix being that all these Ds are the

same.[29.6] All the probabilities for spin measurements just referred to can be

obtained by use of the above hEDi formula; thus, since the Ds are the same,

the respective probabilities must come out the same, as we have seen.

But how are we to regard the ontology of these probability mixtures of

states? If we take the quantum state to have some kind of physical reality,

then these three situations are deWnitely ontologically distinct. It is quite a

diVerent thing to say that the there is an equal probability that the state is

one or other of the (physically real) alternatives jÆi, j�i than to say

that there is an equal probability of it being hªj or j�i. However, this

ontological issue is one that is extremely confused in much quantum-mech-

anical literature. Often, quantum physicists seem to be taking a quite

diVerent ontological position from that just described, regarding the density

[29.5] Work this out, for a general angle of slope y of the measuring direction, using the

expression 1
2
(1þ cos y) of §22.9, for the probability.

[29.6] Show this by explicit calculation, using the results of §§22.8,9 and Exercise [22.25].
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matrix itself as providing a better description of reality than the individual

states. Theymight take the view that the three apparently distinct ontologies

for D above (i.e. the three diVerent probability-weighted collections of

alternative quantum states) are physically indistinguishable. Accordingly,

such physicists—often holders of the environmental-decoherence viewpoint

(c)—might adopt the positivist or pragmatic position that it makes no sense

to distinguish between these alternatives. Such people might adopt the view

that it is the density matrix that best describes quantum reality.

Indeed, in many contexts, the word ‘state’ is often taken to refer to a

density matrix rather than to the more primitive notion that, up until this

point, I have been calling a ‘quantum state’—namely a quantity describ-

able by a ket such as jci. When the word ‘state’ is used in the sense of a

density matrix, the term ‘pure state’ is then used for a density matrix of the

special form jcihcj, and ‘mixed state’ for a more general density matrix

that cannot be represented in this way. The ‘pure states’ in this sense refer

to what I have been calling simply a ‘state’. Personally, I Wnd it very

confusing to refer to a density matrix (pure or otherwise) as a ‘state’,

and I shall refrain from using this terminology here. To me, a ‘quantum

state’ is eVectively a quantum state vector jci, not a density matrix. Yet,

some might prefer to distinguish the terms ‘quantum state’ and ‘quantum

state vector’, the latter being the ket jci and the former being represented

as the equivalence class of non-zero complex multiples of jci, i.e. the

element of the projective Hilbert space PH corresponding to the element

jci of H (see §15.6.) If we choose to normalize jci by hcjci ¼ 1, then the

only freedom left in jci (for a given point in PH) is the phase freedom

jci� eiyjci (with y real); see Fig. 29.2. The notion of a ‘pure-state’

Space of density
matrices

Space of
normalized kets

Com
ple

x 

pla
ne

S2

|j

|y

|y

j|

eiθ

0 S1

I1
2

( |j ) (|y j | j | )1
2

+ +

Fig. 29.2 How do we represent a pure quantum state? (a) Space of kets jci,
normalized by hcjci ¼ 1. (b) The density matrix jcihcj is ‘equivalent’ to jci up to

the phase freedom jci� eiyjci, and to the family of non-zero kets proportional to

jci (complex proportionality factors). Yet, basic quantum linearity is obscured in

the density-matrix description.
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density matrix is eVectively equivalent to this ‘projective’ notion of a

quantum state, since jcihcj is invariant under this phase freedom. Thus

we might reasonably take the position that a pure-state density matrix

appropriately describes the physical quantum state.

Nevertheless, I feel uncomfortable about regarding such a ‘pure-state

density matrix’ as the appropriate mathematical representation of a ‘phys-

ical state’. The phase factor eiy is only ‘unobservable’ if the state under

consideration represents the entire object of interest. When considering

some state as part of a larger system, it is important to keep track of these

phases. Moreover, the fundamental complex linearity of the basic struc-

ture of the Hilbert space of ket vectors becomes unnecessarily mathematic-

ally complicated if one has always to operate with the quantities jcihcj
instead of the mathematically simpler jci (or hcj).[29.7] Partly for such

reasons, my own position would be to take the density matrix not as

‘reality’, but as just a useful device. However, there are some intriguing

aspects to the density matrix’s confused ontological status, as we shall be

seeing here and in §29.5.

Before coming to this, it will be helpful for us to become acquainted with

the Bloch sphere, which represents the space of density matrices for a 2-state

system. This is the closed solid sphere (or, in the mathematician’s termin-

ology, the 3-ball or 3-disc) B3 residing in Euclidean 3-space. It represents the

density matrices for spin 1
2
(or for any other 2-state system); see §22.9. We

can write the general Hermitian 2� 2 matrix of trace unity as

1

2

1þ a bþ ic

b� ic 1� a

� �

,

where a, b, c are real numbers. For this to be a density matrix, it must be

non-negative-deWnite, which is the condition[29.8]

a2 þ b2 þ c2 # 1:

This represents a general point in the Bloch sphere B3, whose boundary S2

is the 2-sphere a2 þ b2 þ c2 ¼ 1. Here, S2 represents the pure states in

the 2-state (e.g. spin 1
2
) system, and this space can be identiWed with the

Riemann sphere S2 described in §22.9.15

Now the particular density matrix D ¼ 1
2
I

� �

that we have just been

considering is represented by the origin of the Bloch sphere, and its

thoroughly ambiguous ontological interpretation is pretty obvious from

the symmetry of the Wgure (Fig. 29.3). However any point (non-pure

[29.7] See if you can characterize the family of ‘pure-state’ density matrices that correspond to

the linear combinations wjci þ zj’i, for some arbitrary pair of Wxed states jci and j’i.
[29.8] Show this. Hint: What is the product of the eigenvalues, in terms of a, b, and c? What

does it mean that this product be non-negative?
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L

P2

P1

I1
2

density matrix) L in the interior of B3 represents a density matrix with an

equally ambiguous ontological interpretation. To see this, we simply draw

an arbitrary straight line (chord) through L to meet the boundary S2 in

two points P1 and P2. These represent two pure states, and the density

matrix L can then be interpreted as a probability mixture of these two.[29.9]

The only thing that is particular about the origin D of the Bloch sphere is

that all these pairs of pure states, in terms of which D can be represented,

are orthogonal pairs. But there is nothing in the deWnition of a density

matrix which requires that the probability mixture is between mutually

orthogonal states. We shall be seeing, in §29.5, how non-orthogonal

mixtures can certainly arise.

29.5 The density matrix in EPR situations

Let us examine a particularly clear-cut situation in which, in a natural way, a

probability-weighted collection of possible state vectors arises. This comes

about in the EPR–Bohm eVect (§23.4). Suppose that, somewhere between

Earth and Saturn’s moon Titan—but let us say about twice as distant from

Earth as from Titan—an EPR pair of spin 1
2

particles is emitted in a

combined state of spin 0. I am supposing that my colleague on Titan (our

old acquaintance of §§23.4,5) measures the spin of the particle arriving there

in an up/down direction and obtains some answer, roughly half an hour

before I receive my particle here on Earth. Assume that when my particle

does arrive, there has not been time for me to obtain any signal from my

colleague about the result of that earlier measurement. (Titan is about three

light hours fromEarth.)As far as I am concerned,myparticle has either spin

jÆi or spin j�i. It will be jÆi if my colleague happened to Wnd the state j�i
and my state will be j�i if my colleague actually found jÆi. Since I know

that the chances ofmy colleagueWnding j�ior jÆi are equal, Imust take the

Fig. 29.3 Bloch sphere B3 of density matrices for

a 2-state system, centred at 1
2
I . Any (non-pure)

density matrix L has an ambiguous ontological

interpretation. An arbitrary chord through L

meets the boundary S2 in P1 and P2; then L

has an interpretation as a probability mixture

of the pure states P1 and P2.

[29.9] Explain why this is so, showing that the two probabilities in the mixture have the same

ratio as the two lengths into which L divides the chord.
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view that the state of the particle that I receive (an hour after my colleague’s

measurement) has a probability of 1
2
of being jÆi and a probability of 1

2
of

being j�i. I thus use the density matrix

D ¼ 1
2
jÆihÆj þ 1

2
j�ih�j

(the two states, jÆi and j�i being taken orthogonal and normalized:

hÆj�i ¼ 0 and hÆjÆi ¼ 1 ¼ h�j�i).
However, it might have been the case that, by a last minute change of

heart, my colleague had decided to measure the spin of the particle

arriving on Titan not in an up/down direction but in a left/right direction

instead. If my colleague obtained the result j�i, then I must Wnd j�i for

my particle arriving here on Earth; if my colleague obtained j�i, then I

must Wnd j�i. Again the probability of my colleague’s two alternatives

would have been 1
2
in each case; so, although I do not yet know which of

these results my colleague obtained, I must conclude that my particle

might be j�i or it might be j�i, with probability 1
2
in each case. I therefore

assign the density matrix

D ¼ 1
2
j�ih�j þ 1

2
j�ih�j

to my particle (where h�j�i ¼ 0 and h�j�i ¼ 1 ¼ h�j�i). Of course, as

we have seen, this is just the same D as before. This is as it should be,

because my colleauge’s decision as to which way to measure the particle on

Titan should not aVect the probabilities here on Earth (otherwise there

would be a method of signalling from Titan to Earth faster than

light[29.10]). Thus it would seem that, for the type of situation under

consideration, the density matrix provides an excellent mathematical de-

scription of the physical situation. The spin state of the particle that I

receive here on Earth, provided that I know nothing whatever of the

proceedings on Titan—neither of the direction that my colleague chooses

to measure the spin, nor of the result of that measurement—is very well

described by the above density matrix D.

Of course, this works well only if I receive no information from Titan. If I

know the type of measurement that my colleague performs, this will aVect

my view of the ontology of the spin state that I receive, but it will not aVect

the expectations of the probabilities of the measurements that I might

perform here on Earth.16 I might take the view, if I know that my colleague’s

measurement is to be right/left, that the ontology of my particle’s spin state

is either right or left, but I do not know which—a viewpoint that I could not

have taken had I not knownof the direction ofmy colleague’smeasurement.

But this ontological knowledge will not aVect my estimations of the

[29.10] Explain how.
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probabilities of the results of the spin measurements that I perform on

Earth, so I might take the alternative position that the ‘ontology’ is of no

importance and, perhaps, even scientiWcally meaningless, so the density

matrix is all that is scientiWcally required. On the other hand, if I actually

receive a message from Titan telling me the results of my colleague’s meas-

urement, then my probability estimates may well be aVected. More than

that, there will actually be consistency requirements constraining the results

of our joint measurements (for example: I cannot obtain the result h�j if my

colleague obtained h�j). Now it is clear that the density matrix description is

quite inadequate, and we must revert to a description in terms of an actual

quantum state (vector) describing the entire entangled pair:

jOi ¼ jÆij�i � j�ijÆi ( ¼ j�ij�i � j�ij�i, etc.).

The particular density matrix that arises in the above example (already

considered in §29.4) is very special. In terms of any orthonormal basis, it

has the form

D ¼
1
2

0

0 1
2

 !

:

What is special about it is that all its eigenvalues are equal (the two

numbers 1
2

down the diagonal). This has the implication that it has the

same form whatever (orthonormal) basis is used—since it is just a multiple

of the identity matrix. Thus there is nothing to distinguish the up/down

basis from the left/right basis, etc.

It is important to point out that this is only a result of the particularly

simple situation that we considered in this example. We have already seen,

in §29.4, that there is nothing special about the particular (equal-

eigenvalue) density matrix D with regard to its ontology confusion. With

a very slight modiWcation of the example, we can get any 2� 2 density

matrix we wish. Instead of the pair of spin 1
2
EPR particles being produced

in a spin 0 state, as in the case just considered, we take them to be initially

in a state of spin 1. To see how this works in a particular case, we can

consider Lucien Hardy’s example, as studied in §23.5. Here, the initial

state is j��i ¼ j�ij�i þ j�ij�i (in the Majorana description of §22.10,

the tangent of the angle between � and � being 4
3
), and I shall suppose

that my colleague chooses to make a right/left measurement on the particle

arriving on Titan. From the results of §23.5, we Wnd that, if my colleague

obtains j�i, then the state that I receive here on Earth is j�i, whereas if

my colleague obtains j�i, then the state I receive is jÆi.[29.11] Thus, if I

know that my colleague performed a right/left measurement (and I know

that the initial state was j��i), then I conclude that the spin state of the

[29.11] Why?
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particle I receive on Earth is a probability mixture of j�i and jÆi. Note

that j�i and jÆi are not orthogonal. Orthogonality is not a requirement

for the probability mixture of states composing a density matrix, and we

see this explicitly in this example.

What is the density matrix that I would use for my particle? We can work

this out if we know the probability values for the two alternative results, j�i
and j�i, that my colleague can obtain. In fact, these respective probabilities

turn out to be 1
3
and 2

3
, so I have a 1

3
probability of receiving the state j�i

and a 2
3
probalility of receiving jÆi. My density matrix is therefore now

L ¼ 1
3
j�ih�j þ 2

3
jÆihÆj:

In terms of an up/down basis frame, this matrix looks like

L ¼
5
6
� 1

6

� 1
6

1
6

� �

(taking j�i ¼ (jÆi � j�i)= 2
p

). This certainly does not have equal eigen-

values, its eigenvalues in fact being 1
2
þ 1

6
5
p

and 1
2
� 1

6
5
p

.[29.12] The par-

ticular ontology ‘j�i with probability 1
3
and jÆi with probability 2

3
’ for this

density matrix is, nevertheless, far from unique. For example, it is obvious

from the symmetry between � and �, in the initial state j��i, that if my

colleague chose to measure in the direction of �, rather than left/right

(direction of �), then my own ontology for the density matrix D would be

very much changed, involving j�i and another state perpendicular to it.

Indeed, a diVerent ontology would be obtained for each possible measur-

ing direction that my colleague on Titan might happen to choose.[29.13]

Hosts of more complicated ontologies could be obtained, given any

particular density matrix, if we allow the probability mixture to involve

three or more diVerent states. Such a situation would arise if the initial

state had spin 1
2
n, for n > 2, which decays into a particle of spin 1

2
aimed at

Earth and one of spin 1
2
n� 1

2
aimed at Titan, since my colleague’s spin

measurement would then allow n diVerent outcomes, each with its own

probability (§22.10); see Fig. 29.4. This clearly also generalizes to situ-

ations where the Hilbert space of states that I use for my particle as it

arrives here on Earth is greater than 2-dimensional. All this serves to

emphasize that there is no unique ontology of ‘probability-weighted alter-

native states’ whatever density matrix is used.17 We shall see shortly that

[29.12] Derive this matrix form of L, verify that these are its eigenvalues, and Wnd the

eigenvectors. The point L in the Bloch sphere of Fig. 29.3 is chosen to agree with this. How far

out from the centre is it?

[29.13] Show that any preassigned 2� 2 density matrix can be obtained by the above proced-

ure, where the initial state for the EPR pair has spin 1. How do the eigenvector spin directions of

the density matrix relate to the Majorana description of this initial state?
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Earth

1
2

Spin

n
2

Spin

n-1
2

Spin Titan

Fig. 29.4 A density matrix can represent a probability mixture of more

states than the dimension of the space. In this example: at a point between

Earth and Titan, but nearer to Titan, a known initial state of spin n
2

(for n > 2) splits into a spin 1
2

particle aimed at Earth and a spin 1
2
(n� 1)

particle aimed at Titan. A colleague on Titan measures the latter’s spin m-value,

and the probability for each of the n possible measurement results is a speciWc

number that can be calculated (at Earth), knowing the initial state, so a

speciWc 2 � 2 density matrix arises at Earth, composed as a probability mixture

of n states. (This clearly also generalizes to a Hilbert space of more than 2

dimensions.)

this fact causes an awkwardness for the environmental-decoherence phil-

osophy of viewpoint (c).

A remark should be made here, concerning the actual calculation of a

density matrix—where, as above, part of the information in an entangled

state is hidden (e.g. ‘on Titan’). There is a very eYcient method, referred to

as ‘summing over the unknown states’. This is most easily expressed in the

index notation. Let us write our initial state (the normalized ket vector jci)
as car, which is to be thought of as an entangled state, where a refers to

here (say, the Earth) and r refers to there (say, Titan); see §§23.4,5. The

complex conjugate of this state (the bra vector hcj) is �ccar. The normaliza-

tion of the state is the condition

�ccarc
ar ¼ 1:

Then the density matrix that I would use here on Earth, in the absence of

information from Titan, is the quantity

Db
a ¼ �ccarc

br

(with a contraction on the index r). Correspondingly, my colleague’s

density matrix would be �ccarc
as.[29.14] See Fig. 29.5 for the diagrammatic

version of this.

[29.14] Show why this works. (Hint: Choose a separate orthonormal basis for here and for

there and work in terms of the joint probabilities for the various possible results of measurements

in the two places.) Verify the above probabilities 1
3

and 2
3

for the case jci ¼ j��i, considered

above.
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yar
, yar , Db

a
, Ds

ar

Fig. 29.5 Diagrammatic notation for density matrices constructed by ‘summing

over unknown states’. The normalized ket-vector jci is expressed as car, where ‘a’
refers to ‘here’ (Earth) and ‘s’ refers to ‘there’ (Titan). The Hermitian conjugate

(bra-vector hcj) is �ccar and the normalization is �ccarc
ar ¼ 1. The density matrix

used ‘here’ is Db
a ¼ carc

br, while that used ‘there’ is ~DDs
r ¼ �ccarc

as.

29.6 FAPP philosophy of environmental decoherence

The above considerations may be regarded as a ‘prelude’ to our investi-

gation of the environmental-decoherence viewpoint (c), which maintains

that state reduction R can be understood as coming about because the

quantum system under consideration becomes inextricably entangled with

its environment. To apply these ideas, we think of the system itself as the

here part, and the environment as the there part. We take the environment

to be extremely complicated and essentially ‘random’, so there is, in

practice, no conceivable way of extracting the environment’s there part

of the information of the total quantum state. Accordingly, we ‘sum over

the unknown states’ in the environment, to obtain a density matrix de-

scription for the here part of the state. Much work in this subject is geared

to showing that if the environment is modelled in a ‘reasonable’ way, then

in a very short period of time (for even a mildly ‘noisy’ environment) the

density matrix becomes diagonal:

D ¼

p
1

0 � � � 0

0 p
2
� � � 0

..

. ..
. . .

. ..
.

0 0 � � � p
n

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

to a high degree of approximation, when expressed in terms of some

particular basis j1i, j2i, . . . , jni, of special interest.[29.15] This is then inter-

preted as a probability mixture

D ¼ p1j1ih1j þ p2j2ih2j þ � � � þ p3jnihnj,

[29.15] In fact, any density matrix is diagonal in some basis! Can you see why, in the particular

case when all the eigenvalues are unequal?
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of those particular basis states that correspond to the diagonal terms. This

probability mixture is taken to reXect the alternatives that occur in the

state-reduction process R, the probabilities for each outcome being the

respective numbers p1, p2 , . . . , pn.

Yet, as we have seen above, any density matrix has a host of ontological

interpretations. We can never learn, merely from such an argument,

that any one of these interpretations provides us with the ‘real’ state

of aVairs. Further, we cannot even deduce that the state is one of

j1i, j2i, . . . , or jni, with respective probabilities p1, p2 , . . . , pn.

Under normal circumstances, moreover, one must regard the density

matrix as some kind of approximation to the whole quantum truth. For

there is no general principle providing an absolute bar to extracting

detailed information from the environment. Maybe a future technology

could provide means whereby quantum phase relations can be monitored

in detail, under circumstances where present-day technology would simply

‘give up’. It would seem that the resort to a density-matrix description is a

technology-dependent prescription! With better technology, the state-

vector description could be maintained for longer, and the resort to a

density matrix put oV until things get really hopelessly messy! It

would seem to be a strange view of physical reality to regard it to be

‘really’ described by a density matrix. Accordingly, such descriptions are

sometimes referred to as FAPP, an acronym suggested by John Bell (of

Bell inequalities fame; see §23.3) denoting ‘for all practical purposes’. The

density-matrix description may be thus regarded as a pragmatic conveni-

ence: something FAPP, rather than providing a ‘true’ picture of funda-

mental physical reality.

There might, however, be a level at which the detailed phase relations

indeed actually get lost, because of some deep overriding basic principle.

Ideas aimed in this direction often appeal to gravity as possibly leading us

to such a principle. Sometimes the idea of ‘quantum Xuctuations in the

gravitational Weld’ might be appealed to, according to which the very

structure of spacetime would become ‘foamlike’, rather than resembling

a smooth manifold (Fig. 29.6) at the ‘Planck scale’ of some 10�35m.18

Fig. 29.6 What is the nature of space-

time at the Planck scale of 10�33 cm or

10�43 s? It has been argued that quantum

Xuctuations in the gravitational Weld

may result in a seething mess of ‘foam’

with multiple topology changes, and

where possibly detailed quantum phase

relations may actually get lost at this

level.
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(I shall be referring to such ideas in §31.1 and §33.1.) One could imagine

that the phase relations might indeed get inextricably ‘lost in the foam’ at

such a scale. Another suggestion, due to Stephen Hawking, is that, in the

presence of a black hole, information about the quantum state might get

‘swallowed’ by the hole, and become irretrievably lost in principle. In such

circumstances, one might envisage that a quantum system—referring to

some external physics that is entangled with a part that has fallen into the

hole—should be actually described by a density matrix rather than by a

‘pure state’.19 I shall return to these ideas later, in §30.4.

29.7 Schrödinger’s cat with ‘Copenhagen’ ontology

Let us go back to the quantum-mechanical measurement problem of how R

might—or might seem to—come about when it is supposed that the

quantum state ‘actually’ evolves according to the deterministic U process

(§21.8, §§22.1,2, §23.10). This problem is frequently presented, very graph-

ically, in terms of the paradox of Schrödinger’s cat. The version that I am

presenting here diVers, but only in inessential ways, from Schrödinger’s

original version. We suppose that there is a photon source S which emits a

single photon in the direction of a beam splitter (‘half-silvered’ mirror), at

which point the photon’s state is split into two parts. In one of the two

emerging beams, the photon encounters a detector that is coupled to some

murderous device for killing the poor cat, while in the other, the photon

escapes, and the cat remains alive. See Fig. 29.7. (Of course, this is only a

‘thought experiment’. In an actual experiment—such as the one that we

shall be coming to in §30.13—there is no need to involve a living creature.

The cat is used only for dramatic eVect!) Since these two alternatives

for the photon must co-exist in quantum linear superposition, and

since the linearity of Schrödinger’s equation (i.e. of U) demands that

the two subsequent time-evolutions must persist in constant complex-

number-weighted superposition, as time passes (§22.2), the quantum

w

S

z

Fig. 29.7 Schrödinger’s cat (modiWed from original). A photon source S emits a

single photon aimed at a beam-splitter, whereupon the photon’s state splits into a

superposition of 2 parts. In one of these, the photon encounters a detector,

triggering a murderous weapon that kills the cat; in the other, the photon escapes

and the cat lives. U-evolution results in a superposition of a dead and a live cat.
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state must ultimately involve such a complex-number superposition

of a dead cat and a live cat: so the cat is both dead and alive at the same

time!

Of course such a situation is an absurdity for the behaviour of a cat-

sized object in the actual physical world as we experience it. How is this

paradox dealt with according to the various ‘standard’ interpretations

of quantum mechanics? Consider the Copenhagen viewpoint (a). As far

as I can make out, this interpretation would simply regard the photon

detector to be a ‘classical measuring device’, to which the rules of quantum

superposition are not applied. The photon state between its emission and

its detection (or non-detection) by the device is described by a wavefunc-

tion (state-vector), but no ‘physical reality’ is assigned to that. The wave-

function is used merely as a mathematical expression to be used for

calculating probabilities. If the beam splitter is such that the photon

amplitude is divided equally into two, then the calculation tells us that

there is a 50% chance for the detector to register reception of the photon

and a 50% chance that it will not. Therefore there is a 50% chance that the

cat will be killed and a 50% chance that it will remain alive.

This is physically the correct answer, where ‘physically’ refers to the

behaviour of the world that we actually experience. Yet this description

provides us with a very unsatisfactory picture of things if we wish to

pursue the physical events in greater detail. What actually goes on inside

a detector? Why are we allowed to treat it as a ‘classical device’ when, after

all, it is constructed from the same quantum ingredients (protons, elec-

trons, neutrons, virtual photons, etc.) as any other piece of physical

material, large or small? I can well appreciate that, in the early days of

quantum mechanics, something of the nature of Niels Bohr’s perspective

on the subject was almost a necessity, so that the theory could actually be

used, and progress in quantum physics could be made. Yet, as far as I can

see, such a perspective can only be a temporary one, and it does not resolve

the question of why, and at what stage, ‘classical behaviour’ might arise for

large and complicated structures like ‘detectors’. Since viewpoint

(a) requires such ‘classical structures’ for its interpretation of quantum

mechanics, it can only be a ‘stop-gap’ position, in which the deeper

issues concerning what actually constitutes a measurement are not

addressed at all.

Another variant of (a) would demand, in eVect, that the ‘classical

measuring apparatus’ is ultimately the observer’s consciousness. Accord-

ingly (if we dicount the consciousness of the cat itself), it is only when a

conscious experimenter examines the cat that classicality has been

achieved. It seems to me that, once we have arrived at this level, we are

driven to take a position that is more in line with (b) or with (f). If we take

the view that the U rules of quantum linear superposition continue to hold
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right up to the level of a conscious being, then we are in the realm of the

many-worlds perspective (b), but if we take the stand that U fails for

conscious beings, then we are driven to a version of (f) according to

which some new type of behaviour, outside the ordinary predictions of

quantum mechanics, comes into play with beings who possess conscious-

ness. A suggestion along this line was actually put forward by the distin-

guished quantum physicist Eugene Wigner in 1961.20

It seems to me, however, that any theory that demands the presence of a

conscious observer, in order that R be eVected, leads to a very lop-sided

(and, I would argue, highly implausible) picture of the universe. Imagine

some distant Earth-like planet without conscious life, and for which there

is no consciousness for many many light years in all directions. What is the

weather like on that planet? Weather patterns have the property that they

are ‘chaotic systems’, in the sense that any particular pattern which de-

velops will depend critically on the tiniest details of what happened before

(see §27.2). Indeed, it is probable that, in a month, say, tiny quantum

eVects will become so magniWed that the entire pattern of weather on the

planet would depend upon them. The absence of consciousness, according

to the particular version of (f) (or perhaps (a)) under discussion, would

imply that R never occurs on such a planet, so that the weather is, in reality,

just some quantum superposed mess that does not resemble an actual

weather in the sense that we know it. Yet if a spacecraft containing

conscious travellers, or a probe with the capacity to transmit a signal to

a conscious being, is able to train its sensors on that planet, then immedi-

ately—and only at that point—its weather suddenly becomes an ordinary

weather, just as though it had been ordinary weather all the time! There is

no actual contradiction with experience here, but is this ‘Wigner reality’ a

believable picture for the behaviour of an actual physical universe? It is

not, to me; but I can (just about) understand others giving it more

credence.

29.8 Can other conventional ontologies resolve the ‘cat’?

What about the many-worlds standpoint (b), then? Here the ‘reality’ of the

quantum superposition of a dead and a live cat is simply accepted (as

would the quantum-superposed weather patterns of the previous para-

graph); but this does not tell us what an observer, looking at the cat (or the

weather), actually ‘perceives’. The state of the observer’s perception is

considered to be entangled with the state of the cat. The perception state

‘I perceive a live cat’ accompanies the ‘live-cat’ state and the perception

state ‘I perceive a dead cat’ accompanies the ‘dead-cat’ state. See Fig. 29.8.

It is then assumed that a perceiving being always Wnds his/her perception

state to be in one of these two; accordingly, the cat is, in the perceived
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+ z �|ψ = w�

Fig. 29.8 The conclusion of Fig. 29.7 is unaVected by the presence of diVerent

environments entangled with the cat’s states or by an observer’s diVerent re-

sponses. Thus the state takes the form

jCi ¼ w� jlive catijlive cat’s environmentijperceiving live cati

þ z� jdead catijdead cat’s environmentijperceiving dead cati:

If U-evolution is to represent reality (many-worlds viewpoint (b) ) then we must

take the view that an observer’s awareness can experience only one or the other

alternative, and ‘splits’ into separate world-experiences at this stage.

world, either alive or dead. These two possibilities coexist in ‘reality’ in the

entangled superposition:

jCi ¼ wjperceiving live cati jlive cati þ zjperceiving dead cati jdead cati:

I wish to make clear that, as it stands, this is far from a resolution of the

cat paradox. For there is nothing in the formalism of quantum mechanics

that demands that a state of consciousness cannot involve the simultaneous

perception of a live and a dead cat. In Fig. 29.9, I have illustrated this issue,

where I have taken the simple situation in which the two amplitudes, z and

w, for reXection and transmission at the beam splitter, are equal. As with the

simple EPR–Bohm example with two particles of spin 1
2
emitted in an initial

state of spin 0, we can rewrite the resulting entangled state in many ways. In

the example illustrated in Fig. 29.9, the state jlive cati þ jdead cati is

accompanied by jperceiving live cati þ jperceiving dead cati and the

state jlive cati � jdead cati is accompanied by jperceiving live cati
�jperceiving dead cati. This is exactly analogous to the rewriting the state

2 |ψ

Fig. 29.9 Re-express Fig. 29.8 (in the case z ¼ w ¼ 1p
2
, and incorporating the

environment state with that of the cat) as follows:

2jci ¼ {jperceiving live cati þ jperceiving dead cati} {jlive cati þ j dead cati}

þ {jperceiving live cati � jperceiving dead cati} {jlive cati � jdead cati}:
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jOi ¼ jÆij�i � j�ijÆi as j�ij�i � j�ij�i, as in §23.4. Why do we not

permit these superposed perception states? Until we know exactly what it

is about a quantum state that allows it to be considered as a ‘perception’,

and consequently see that such superpositions are ‘not allowed’, we have

really got nowhere in explaining why the real world of our experiences

cannot involve superpositions of live and dead cats.

Sometimes people object to this example on the grounds that the equality

of the amplitudes for the two alternatives is a very special situation, and that

in general there is not the freedom to re-express the entangled states in this

way. When we look at this situation a little more deeply, however, we Wnd

that the ‘equal-amplitude’ aspect of this particular example is not really

important at all. It is useful to bear in mind the example of an EPR pair of

particles of spin 1
2
, considered above in §29.5. ‘Equality of amplitudes’

(actually ‘equality of moduli of amplitudes’ jzj ¼ jwj) is what give rise to a

density matrix with equal eigenvalues. We saw explicitly in §§29.4,5 that a

2� 2 density matrix with unequal eigenvalues has many representations as

a probability mixture of a pair of states, but the pair will in general be non-

orthogonal. In fact, orthogonality occurs only when the two states are

eigenvectors of the density matrix.[29.16] In the case of ‘equal amplitudes’

(strictly jzj ¼ jwj), we may take the states jlive cati and jdead cati to be

orthogonal and, indeed, the accompanying states jperceiving live cati and

jperceiving dead cati to be orthogonal (the ‘eigenvectors’). But in the case

jzj 6¼ jwj, the pair of perception states that accompany a particular orth-

ogonal pair of superposed cat states will not generally be orthogonal, and

the pair of cat states that accompany a particular pair of orthogonal

perception states will not generally be orthogonal. There is nothing wrong

with using either of these representations of the total state jCi, although one

might take the view that the perception states ought to be orthogonal if it is

those states that are to drive the appearance of reality in the many-worlds

view. But since R does not actually take place at all, according to position

(b), there is no special status for orthogonal alternatives (since nothing

‘reduces’ to them in any case).

In fact it turns out that, in the general case, there will be a unique pair of

orthogonal perception states accompanying a pair of orthogonal cat

states. This is something known as the Schmidt decomposition of

an entangled state.21 However, this is not of much use for resolving the

measurement paradox (despite the popularity of the Schmidt decompos-

ition in connection with quantum information theory22), because generally

this ‘mathematically preferred’ pair of cat states (eigenstates of the cat’s

density matrix) would not be the desired jlive cati and jdead cati at all, but

some unwanted linear superpositions of these! We can see that these

[29.16] Show this.
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density-matrix eigenstates that occur in a Schmidt decomposition need

have nothing to do with one’s expectations of what should be ‘ontologic-

ally real’, by looking again at Lucien Hardy’s example considered in

§29.5. We Wnd (see Exercise [29.13]) that the eigenvectors of the density

matrix (for the particle that I receive here on Earth) are quite diVerent

from the j�i and jÆi alternatives that are ‘macroscopically distinguish-

able alternatives’ according to the measurements of my colleague on

Titan!

Since the mathematics alone will not single out the ‘jlive cati’ and ‘jdead

cati’ states as being in any way ‘preferred’, we still need a theory of

perception before we can make sense of (b), and such a theory is lacking.23

Moreover, the onus on such a theory would be not only to explain why

superpositions of dead and live cats (or of anything else macroscopic)

do not occur in the perceived world, but also why the wonderous and

extraordinarily precise squared-modulus rule actually gives the right

answers for probabilities in quantum mechanics! A theory of percep-

tion that could do this would itself need to be as precise as quantum

theory. Supporters of (b) have come nowhere close to suggesting such a

scheme.24

Now let us return to the attempts at a resolution of the cat paradox by

environmental decoherence (c). Let us take the initial emission of the

photon as ontologically real. (The source could be arranged to register

this event in a macroscopic way.) Then, after the beam splitter is encoun-

tered, we have an ontologically real superposition of the photon in the two

beams. The transmitted part of the photon’s state evolves to a dead cat,

together with its environment, and the reXected part to a live cat, together

with a diVerent environment. For the moment, the ontology is still the

superposition of the two. The environmental alternatives, being ‘unobserv-

able’ are next summed over, leaving us with a 2� 2 density matrix. Now

the ontological position stealthily shifts, and ‘reality’ becomes described

by the density matrix itself. The environmental-decoherence argument

now asserts the conclusion that this matrix is extremely closely diagonal

in the basis (jlive cati, jdead cati), so there is another surreptitious shift in

the ontology, and the state becomes a probability mixture of jlive cati and

jdead cati. This is how we have been ‘allowed’ to get away with this

ontology shift from the superposition

wjlive catijlive cat’s environmenti þ zjdead catijdead cat’s environmenti

to the alternatives jlive cati or jdead cati! We recall that there is no unique-

ness in the ontological interpretation of a density matrix as a probability

mixture of states (whether or not the eigenvalues are equal). Indeed, to pass

to the mixture of jlive cati and jdead cati does represent a (double) ontology
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shift from the original superposition. Position (c) is indeed FAPP, and it

gives us no consistent ontology for physical reality.

29.9 Which unconventional ontologies may help?

I should comment brieWy on (d) and (e). If the ‘extravagant’ ontology

for the consistent-histories approach (d) is adopted, in which reality is

represented as a totality of maximally reWned consistent-history sets, then

a criticism can be raised which is somewhat similar to that of the

many-worlds case (b). As with (b), a detailed and precise theory of con-

scious perceivers seems to be needed in order that (d) can conjure up a

picture that is consistent with the physical world that we know. Attempts,

have been made in this direction (provided by the notion of an IGUS—

‘information gathering and using system’) but, as yet, these seem to be

rather far from suYcient.25 Alternatively, one might prefer something like

the more economical ontology hinted at in §29.2, in which a single max-

imally reWned consistent history set might be considered as a plausible

candidate for a ‘real-world’ ontology. However this (as well as the more

extravagant ontology above) depends upon the criterion of ‘consistent

history’ really achieving what it was designed for, namely to single out

histories resembling the kind of world we actually live in. However, as was

demonstrated by Dowker and Kent in 1996, this condition of ‘consistency’

alone is far from adequate. Some additional criteria seem to be required.

In my own view, a major drawback with (d) is that despite the intro-

duction of R-like procedures (via the insertion of projector sets), it does

not seem to get us any closer to an understanding of what a physical

measurement actually is than do the more conventional ontologies of (a)

or (b). Indeed, in (d), the R-like procedures are explicitly stated to be

nothing directly to do with actual physical measurements. My diYculty

with this is that by removing the association between these R-type replace-

ments and physical measurements, we gain no insight as to what actually

constitutes a physical measurement. Why, according to (d), do we not

actually witness things like Schrödinger cats, in superposed limbo between

life and death? The theory does not seem to give any improvement on

the standard Copenhagen position (a) in explaining which systems (such

as pieces of physical apparatus or cats) should behave classically,

whereas neutrons or photons do not. The requirement of ‘consistency’

for (maximally reWned) coarse-grained histories appears to be a long way

from what is needed in order to provide a model26 for observed physical

reality.

Although it is a positive feature of (d) that it makes a serious attempt to

incorporate R-like procedures at a fundamental level, the criteria that have
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so far been put forward do not do enough to narrow down the model’s

behaviour so that an unambiguous picture of something resembling the

world we know can arise. This seems to be true both at the macroscopic

‘classical-like’ level (as I have been commenting earlier, in relation to the

Dowker–Kent analysis of the ‘consistent-history’ criterion) and also at the

‘quantum level’ at which one would hope to see undisturbed unitary

evolution. Since the measurement paradox is concerned with the seeming

conWict between physical behaviour at these two diVerent levels, it is hard

to see how the consistent-history viewpoint (d) is yet in a position to shed

much light on this paradox.

What about (e)? As remarked in §29.2, the de Broglie–Bohm ‘pilot-wave’

viewpoint (e) appears to have the clearest ontology among all those which

do not actually alter the predictions of quantum theory. Yet, it does not, in

my opinion, really address the measurement paradox in a clearly more

satisfactory way than the others do. As I see it, (e) may indeed gain concep-

tual beneWt from its two levels of reality—having a Wrmer ‘particle’ level of

the reality of the conWguration of the system, as well as a secondary ‘wave’

level of reality, deWned by the wavefunction c, whose role is to guide the

behaviour of the Wrmer level. But it is not clear to me how we can be sure, in

any situation of actual experiment, which level we should be appealing to.

My diYculty is that there is no parameter deWning which systems are, in an

appropriate sense, ‘big’, so that they accord with a more classical ‘particle-

like’ or ‘conWguration-like’ pictures, and which systems are ‘small’, so that

the ‘wavefunction-like’ behaviour becomes important (and this criticism

applies also to (d) ). We know from §23.4, etc., that quantum behaviour can

stretch over distances of tens of kilometres at least, so that it is not just

physical distance that tells us when a system ceases to look quantum

mechanical and begins to behave like a classical entity. But nevertheless

there is a sense in which a large object (like a cat) seems not to accord with

the small-scale unitary quantum laws. (In §30.11 I shall begin to explain my

own particular views as to the type of ‘scale-measure’ that will be needed).

But whether or not one believes that any particular such measure is appro-

priate, it seems to me that some measure of scale is indeed needed, for

deWning when classical-like behaviour begins to take over from small-scale

quantum activity. In common with the other quantum ontologies in which

no measurable deviations from standard quantum mechanics is expected,

the point of view (e) does not possess such a scale measure, so I do not see

that it can adequately address the paradox of Schrödinger’s cat.
In relation to this issue, a general comment concerning attempts to

‘derive’ the apparent occurrence of R from the dynamics of (say) U, may

be appropriate. We can see that ordinary (deterministic) dynamics alone

can never achieve this—as is clear, if only for the reason that there are no

probabilities in such a dynamical equation as the Schrödinger equation.
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(I refer the reader to the discussion of §27.1.) Some probabilistic principle

is, of necessity, also needed. R is, after all, a probabilistic law. Thus, as

remarked upon in §29.2, it is indeed an essential ingredient of (e) that the

appropriate successive probabilities of measurements are correctly en-

coded in the choice of (say) the initial state.

This leaves us with (f). The main diYculties with most of the many

diVerent (often heroic) proposals lie in their unnatural appearance, their

essentially non-relativistic character, their need for the introduction of

arbitrary parameters unmotivated from known physics, their violations

of the law of conservation of energy, and in some cases their direct conXict

with observation. It would be inappropriate for me to discuss all of these

proposals here, and it would be unfair of me to single some of them out at

the expense of the others. In fact, I shall adopt the procedure of being

uniformly unfair to all the proposals that others have put forward by

imposing upon the reader, in Chapter 30, the one (in some ways minimi-

list) proposal that I myself believe to be the most likely to be correct (with

apologies to many of my friends)! In fact, there has been a very signiWcant

stimulation and input from various proposals that others have put for-

ward earlier, and I shall indeed refer to these (with appropriate gratitude),

but only in relation to the speciWc ideas that I wish to argue for.

Notes

Section 29.1

29.1. See Deutsch (2000).

29.2. I owe this term to my classicist colleague Peter Derow. See Penrose (1987a).

29.3. See Everett (1957); De Witt and Graham (1973).

29.4. Some physicists argue that there is ‘no problem’ about the quantum superpos-

ition of macroscopically diVerent states—like Schrödinger’s superposed dead

and alive cat that we shall be coming to in §§29.7–9—because it would simply

be ‘far too expensive’ (or a practical impossibility) to design an experiment to

detect interference between the dead and alive states. This, again, is taking a

‘pragmatic’ stance that does not really address the ontological issues that are our

concern here. I would place such physicists, generally, in category (c).

29.5. See Hawking and Penrose (1996), p. 121.

Section 29.2

29.6. The list is representative only, and there are many diVerent shades of standpoints

within those that I have listed. For example, some have expressed the view (for

example, Sorkin 1994) that ‘quantum reality’ is best understood in terms of the

path integrals and/or Feynman graphs that we encountered in §§26.6–11. As far

as I can make out, this particular family of ontologies would belong to the
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general class covered by (b) (although having some important elements in

common with (d)), according to which a particular superposition that deWnes

the ‘quantum state’ (or ‘quantum history’) would be assigned the status of

‘reality’. I should mention also the ‘transactional’ ontologies of Aharonov

and Vaidman (2001); Cramer (1988); Costa de Beauregard (1995); and Werbos

and Dolmatova (2000), according to which a wavefunction Schrödinger-propa-

gating into the future from the last measurement together with another wave-

function Schrödinger-propagating into the past from the next measurement are

both enlisted in the description of reality (see §30.3). I do not see that, without

further ingredients, the issue of the measurement paradox is better resolved in

any of these alternative views than in (a), (b), (c), (d), or (e), however.

29.7. The formalism (d) also allows that the ‘starting state’ could be a density matrix

(see §29.3).

29.8. Sometimes this is simply called a ‘history’, but this could cause confusion with

the use of that term in the Feynman ‘sum over histories’ of §26.6.

29.9. This is a condition of the following type. Suppose we have a given succession of

projector sets (and for the moment assume H ¼ 0); then we construct the

expression X ¼ hc0jE0F 0 . . . K 0L0D1LK . . . FEjc0i, where jc0i is the initial

state and where the ‘Wnal state’ could be taken to be a density matrix D1 (see

§29.3). The successive pairs of projectors (E,E0), (F,F 0), . . . , (K ,K 0), (L,L0)
belong, respectively, to the given succession of projector sets. The condition

of consistency demands that the real part of X vanish whenever any of the pairs

(E,E0), (F,F 0), . . . , (K ,K 0), (L,L0), is unequal. This is strictly the case only when

the Schrödinger part of the evolution has been ignored (i.e. we takeH ¼ 0), but

a non-trivial Schrödinger evolution can be re-instated by introducing this

evolution appropriately between the applications of the projectors. This ‘con-

sistency condition’ on coarse-grained histories can be interpreted as the condi-

tion of ‘no interference’ between the histories being compared.

29.10. In fact, I have not located a clear statement of any actually intended

‘(d)-ontology’ in the consistent-histories literature. What I am presenting here

is merely my own attempt at coming to grips with this issue, based on extended

discussions with Jim Hartle and, more particularly, some helpful correspond-

ence with Fay Dowker. It is likely that, despite my eVorts, I am still not

adequately presenting an underlying intended ontology of the ‘(d)’ community.

29.11. See Bohm and Hiley (1995); Valentini (2002). Antony Valentini also has a book

on de Broglie-Bohm theory in the works, which we hope will see press soon!

29.12. See Károlyházy (1974); Frenkel (2000); Ghirardi et al. (1986); Ghirardi et al.

(1990); Komar (1964); Pearle (1985); Pearle and Squires (1995); Kibble (1981);

Weinberg (1989); Diósi (1984, 1989); Percival (1994, 1995); Gisin (1989, 1990);

Penrose (1986a, 1989, 1996a, 2000a), Leggett (2002)—in no particular order.

Section 29.3

29.13. For a continuous probability distribution, we need a non-negative real-valued

function f on P which ‘integrates to 1’. The space P would have a natural

volume form—the 2N-form S of §20.4, which featured in Liouville’s theorem—

so that fS can legitimately be integrated over P, our required condition being

actually
R

fS ¼ 1.
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29.14. See Brody and Hughston (1998b). Nielsen and Chuang (2000) provide good

conceptual coverage of the density matrix in action.

Section 29.4

29.15. For an n-state system, with n > 2, the picture is more complicated. Only part of

the boundary of the (n2 � 1)-dimensional space of density matrices is the space

of pure states, this part being a complex projective (n� 1)-space CP
n�1 (see

§21.9 and §22.9).

Section 29.5

29.16. The reader may be wondering how the notion of quanglement, introduced in

§23.10, might aVect these ontological issues. This is an intriguing question, and

it may well be that the whole issue of ‘ontology’, in a quantum context, will

ultimately have to be viewed in a new light. But for the moment let us simply

adopt a more ‘common-sense’ attitude to reality, in which the issues raised by

relativity will not be entered into.

29.17. Nielsen and Chuang (2000) discuss this point; see also Hughston et al. (1993).

Section 29.6

29.18. The idea is originally due to Wheeler (like many things); see Ng (2004) for a

modern perspective.

29.19. See Hawking (1975); Preskill (1992); see, also, §30.14.

Section 29.7

29.20. I am not sure whether this viewpoint represented Wigner’s actual position with

regard to quantum measurement, which may, after all, have evolved during his

life. I should also point out that my position fundamentally diVers from those,

like the one referred to here, which assert that it is consciousness that reduces

the state. (In this regard, my view has sometimes been misrepresented by other

commentators.) See §§30.9–12.

Section 29.8

29.21. The Schmidt (or polar) decomposition of a general entangled state jCi belonging

to H2 �H2, expresses it (essentially uniquely) as jCi ¼ ljaijbiþ mjrijsi, where

jai and jri, belonging to the Wrst H2, are orthogonal (normalized eigenstates of its

density matrix), and jbi and jsi likewise correspond to the second H2. Here, �lll
and �mmm are density-matrix eigenvalues. A similar expression holds for Hn �Hn,

where the sum in jCi has n terms. See Nielsen and Chuang (2000).

29.22. See Nielsen and Chuang (2000), which is after all about quantum information

theory!

29.23. See Page (1995) for discussion of these issues.

29.24. See Gell-Mann (1994); Hartle (2004) for a ten-year slice of such thoughts.

Section 29.9

29.25 See Dowker and Kent (1996).

29.26 A striking example due to Adrian Kent shows clearly how far from suYcient

the ‘consistency’ condition is for providing a physically plausible picture of

‘reality’. In this example, a particle p can lie in one of three boxes A, B, C,

as described by the respective normalized orthogonal states jAi, jBi, and jCi.
Take the Hamiltonian to be zero, giving a constant unitary evolution. The

initial state is to be jAi þ jBi þ Ci and suppose that the Wnal state is

measured to be jAi þ Bi � jCi. (This is possible because jAi þ jBi þ Ci
and jAi þ jBi � jCi are not orthogonal.) The insertion of the projector set

Notes CHAPTER 29
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{jAihAj, I� jAihAj} between the two turns out to be ‘consistent’, and we seem

to conclude that p must lie in the box A at this intermediate stage (basically

because jBi þ jCi and jBi � jCi are orthogonal). The same argument, with B

in place of A, gives the equal conclusion that p must lie in B at the intermediate

stage! This example appears to have been evolved from Yakir Aharonov’s ‘King

problem’, See Albert et al. (1985), p.5.

The measurement paradox Notes
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30
Gravity’s role in quantum state reduction

30.1 Is today’s quantum theory here to stay?

In this chapter, I shall put the case to the reader that there are powerful
positive reasons, over and above the negative ones put forward in the
preceding chapter, to believe that the laws of present-day quantum mech-
anics are in need of a fundamental (though presumably subtle) change.
These reasons come from within accepted physical principles and from
observed facts about the universe. Yet, I Wnd it remarkable how few of
today’s quantum physicists are prepared to entertain seriously the idea of
an actual change in the ground rules of their subject. Quantum mechanics,
despite its extraordinary exception-free experimental support and strik-
ingly conWrmed predictions, is a comparatively young subject, being only
about three-quarters of a century old (dating this from the establishment of
the mathematical theory by Dirac and others, based on the schemes of
Heisenberg and Schrödinger, in the years immediately following 1925).
When I say ‘comparatively’, I am comparing the theory with that of
Newton, which lasted for nearly three times as long before it needed serious
modiWcation in the form of special and then general relativity, and quantum
mechanics. Even if we are to count Newton’s theory as suVering its Wrst
modiWcation with the introduction of Maxwellian Welds, this still gave it an
exception-free reign of over a century and three-quarters!
Moreover, Newton’s theory did not have a measurement paradox. While

the linearity of quantum theory’s U process gives that theory a particular
elegance, it is that very linearity (or unitarity) which leads us directly into
the measurement paradox (§22.2). Is it so unreasonable to believe that this
linearity might be an approximation to some more precise (but subtle)
non-linearity?
We have a clear precedent. Newton’s gravitational theory has the par-

ticular mathematical elegance that the gravitational forces always add up
in a completely linear fashion; yet this is supplanted, in Einstein’s more
precise theory, by a distinctly subtle type of non-linearity in the way that
gravitational eVects of diVerent bodies combine together. And Einstein’s
theory is certainly not short on elegance—of a quite diVerent kind from
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that of Newton. We also see, in Einstein’s theory, that the modiWcations to
Newton’s theory that were needed were nothing like the ‘tinkering’ that I
referred to in §29.2. At various times, such tinkerings with Newton’s
theory had indeed been suggested, such as a replacement of the power 2
in Newton’s inverse square formula GmM=r2 (see §17.3) by 2.000 000 16,
as suggested by Aspeth Hall in 1894, in order to accommodate those very
slight deviations, as ascertained in 1843, from the Newtonian predictions
of Mercury’s motion about the Sun (and Hall’s suggestion gets good fits
also for the other planets, as shown by Simon Newcombe).1 Einstein’s
theory subsequently explained these deviations, without fuss, but the new
theory was by no means obtained just by tinkering with the old; it involved
a completely radical change in perspective. This, it seems to me, is the
general kind of change in the structure of quantum mechanics that we
must look towards, if we are to obtain the (in my view) needed non-linear
theory to replace the present-day conventional quantum theory.
Indeed, it ismy ownperspective that Einstein’s general relativitywill itself

supply some necessary clues as to the modiWcations that are required. The
20th century gave us two fundamental revolutions in physical thought—
and, to my way of thinking, general relativity has provided as impressive a
revolution as has quantum theory (or quantum Weld theory). Yet, these two
geat schemes for the world are based upon principles that lie most uncom-
fortably with each other. The usual perspective, with regard to the proposed
marriage between these theories, is that one of them, namely general rela-
tivity, must submit itself to the will of the other. There appears to be the
common view that the rules of quantum Weld theory are immutable, and it is
Einstein’s theory that must bend itself appropriately to Wt into the standard
quantum mould. Few would suggest that the quantum rules must them-
selves admit to modiWcation, in order to ensure an appropriately harmoni-
ous marriage. Indeed, the very name ‘quantum gravity’, that is normally
assigned to the proposed union, carries the implicit connotation that it is a
standard quantum (Weld) theory that is sought. Yet, I would claim that there
is observational evidence that Nature’s view of this union is very diVerent
from this! I contend that her design for this unionmust be what, in our eyes,
would be a distinctly non-standard one, and that an objective state reduc-
tion must be one of its important features.

30.2 Clues from cosmological time asymmetry

What evidence is this? Let us Wrst turn to those places where Nature’s
choice of quantum-gravity union most clearly reveals itself. I refer to the
spacetime singularities of the Big Bang and of black holes (and also the Big
Crunch, if such is to take place). In Chapter 27, the extraordinarily special
nature of the Big Bang was presented, in stark contrast to the seemingly
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‘generic’ nature of the singularities of collapse. Despite the brave sugges-
tions made in accordance with the Hartle–Hawking proposal (as discussed
in §28.9) I see no escape from a gross time-asymmetry being a necessary
feature of Nature’s quantum-gravity union.
Such a temporal asymmetry would seem to be completely at variance

with the implications of any standard quantum Weld theory. Let us con-
sider, for example, the CPT theorem, noted in §25.4. (Recall that ‘T’ stands
for time reversal, whilst ‘P’ and ‘C’ stand respectively for space reversal
and for the replacement of particles by their antiparticles.) If we believe
that the CPT theorem applies to our sought-for quantum-gravity union,
then we are in trouble. If we apply CPT to any allowed ‘generic’ Wnal
singularity of gravitational collapse, then we get an initial-type singularity
as a possibility for the Big Bang (or for part of the Big Bang). Recall the
enormity of the available phase space, as described in §.27.13 (and graph-
ically illustrated in Fig. 27.22). Once such ‘generic’ initial singularities
become allowable, then there is nothing to guide the Creator’s pin into
that absurdly (and, from the ‘anthropic’ perspective, see Fig. 28.13, un-
necessarily) tiny region B, that seems to have been the actual starting point
of our universe. It seems to me to be clear that the mystery of the
extraordinarily special nature of the Big Bang cannot be resolved within
the standard framework of quantum Weld theory.
At least this would be the case for any theory for which the word

‘standard’ entails the validity of the CPT theorem (§25.4). Strictly speak-
ing, that theorem is not immediately applicable to a theory that fully
respects the curved-spacetime basis of Einstein’s general relativity. One
of the premises of the CPT theorem is that the background spacetime is Xat
Minkowski space. Nevertheless, I suspect that most physicists would
regard this as an unimportant ‘technicality’, taking the view that one can
re-express Einstein’s theory, if it is desired, in the form of a ‘Poincaré-
invariant Weld theory’ by introducing a Minkowski background as a
convenience. Personally, I have strong reservations about this type of
procedure;2 yet I would tend to agree that it seems unlikely that the
completely time-symmetrical classical Einstein theory of general relativity
should become so time-asymmetrical when submitted to the standard
time-symmetrical procedures of quantum Weld theory.
On the other hand, we recall that, in §25.5, §§26.5,11, we encountered

situations where a symmetry of the classical theory becomes broken when
we pass to the quantum theory. Might it be that it is this that happens,
when Einstein’s theory becomes brought, appropriately, within the com-
pass of standard QFT rules? I suppose that this is conceivable, but it is
hard to see how this could be very much like the type of symmetry
breaking that occurs in, say, electroweak theory, where the ‘vacuum
state’ jYi is taken not to share the symmetries of the quantum dynamics.
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If this idea is to work, then jYi has to be ‘time-asymmetrical’. I am not
sure how one could make sense of this kind of idea. It is true that the ket
jYi is what would be placed over on the right-hand side of all Weld
operators, in the manner described in §26.11, and could be thought of as
representing the initial state of the universe, which here means the very
particular Big Bang state. But in standard QFT, the complex conjugate of
jYi, namely the bra hYj, would also feature in the formalism, being needed
for the formulation of probabilities via expressions like hYjAjYi, and it
would play a completely symmetrical role to jYi, but with time reversed.
Thus, hYj would have to represent the Wnal state of the universe, and we
have a Wnal state of a similar structure to the initial one, in gross contra-
diction with the entire message of Chapter 27.
There are also other features that arise in the process of ‘quantization’,

whereby the quantum theory might not share the symmetries of the
classical theory, known as anomalies. These come about when the classical
commutation rules, providing the classical symmetry (given by Poisson
brackets—see §14.8) cannot be fully realized by quantum commutators,
with only a subgroup of the whole classical symmetry group surviving in
the quantum theory. Anomalies seem normally to be regarded as things to
be avoided (and we shall see the contortions that theorists sometimes have
to perform in order to eliminate such things when we come to consider
string theory in the next chapter). Yet, one might imagine taking a diVer-
ent view, and regard an anomaly as being a ‘good’ thing, in those circum-
stances when the larger symmetry is something that one does not want to
have. However, in our present case it is a discrete symmetry, namely CPT,
in addition to T, CT, and PT—indeed anything with a ‘T’ in it—that one
needs to violate, and it is hard to see the relevance of the usual anomaly
idea, which usually (but not always) refers just to the continuous symmet-
ries that can be realized in terms of Poisson brackets.
However one looks at it, it is hard to avoid the conclusion that, in those

extreme circumstances where quantum eVects and gravitational eVects
must both (have) come together—in the spacetime singularities at the
Big Bang and in gravitational collapse—gravity just behaves diVerently

from other Welds. Recall the Wnal conclusion in the penultinmate para-
graph of Chapter 27, concerning this point. For whatever reason, Nature
has imposed a gross temporal asymmetry on the behaviour of gravity in
such extreme circumstances.

30.3 Time-asymmetry in quantum state reduction

Does this relate to any other clues concerning the possible interrelation
between gravity and quantum mechanics? I strongly believe so. Whereas
we perceive no time-asymmetry in the U part of quantum theory (§27.1),
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there is an essential time-asymmetry in R. We can see this very easily in a
simple hypothetical quantum experiment. Suppose that there is a photon
source S which emits single photons from time to time, and that, whenever
it does so, this event is recorded.3 I shall suppose that the photons have
high energy, being possibly even X-ray photons. The photons are aimed at
a beam splitter B (‘half-silvered mirror’) angled at 458 to the beam, so that
if a photon is transmitted through, then it activates a detector D at the
other side, while if it is reXected, then it gets absorbed into the ceiling C
(see Fig. 30.1.) I am supposing equal amplitudes for these two alternatives,
so that the detector will register reception of the photon in just one-half of
the occasions that the source is registered as having emitted the photon.
This is just a straightforward application of the R procedure. There is an

amplitude 1
ffiffi

2
p (ignoring possible phase factors) for the photon history SBD

and an amplitude 1
ffiffi

2
p for the photon history SBC. Application of R’s

squared-modulus rule then gives the (correct) answer that whenever
there is an emission event at S, there is a 50% probability of a detection
event at D and (by inference) a 50% probability of the photon reaching C.
This is simply the correct answer.
But now let us imagine reading this particular experiment backwards in

time. I am not proposing that we try to build a ‘backward-time’ source or
detector.No, the physical processes are not to be altered in anyway. It is just
that I propose to phrase my questions about them in a reverse-time form.
Rather than asking about the Wnal probabilities, let us ask what the initial

probabilities are, given that there is a detection event at D. The relevant
amplitudes now refer to the two alternative histories SBD and FBD, where

C

B

F

DS

Fig. 30.1 A source S randomly emits single high-energy photons (each such event

being recorded) aimed at a beam-splitter B, tilted at 458 to the beam. If transmit-

ted through B, the photon activates a detector D (route SBD); if reXected, it is

absorbed at the ceiling C (route SBC). The quantum squared-modulus rule

correctly predicts probabilities 1
2
, 1

2
. On the other hand, given that D registers,

the photon could have come from S (route SBD) or from the Xoor F (route FBD).

Used in the reversed-time direction, the squared-modulus rule incorrectly retro-

dicts probabilities 1
2
, 1

2
, which should be 1, 0.
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F stands for a point on the Xoorwith the property that if a photonwere to be
emitted from there it could be reXected at B to be received at D. Again the
amplitudes are 1

ffiffi

2
p for each of these two histories (ignoring phases). This

must be so because the ratio of (the modulus of) the amplitudes for going
one way or the other is just a property of the beam splitter. There is no time-
asymmetry here. Now, if we were to apply the ‘squared-modulus rule’ to get
the probabilities for these two alternatives, we would Wnd a probability of
50% for emission at S and 50% (by inference) for the photon to come from
the Xoor F, whenever there is a detection event at D.
This, of course, is an absurdity. There is virtually a zero chance that an

X-ray photon will jump out of the Xoor, aimed at the beam splitter. The
probabilities are more like 100% that there was an emission event at S and
0% that the photon came from the Xoor F, whenever there is a detection
event at D. The squared-modulus rule, applied in the past direction, has
simply given us completely the wrong answer!4

Of course, this rule was not designed to be applied into the past, but it is
instructive to see how completely wrong it would be to do so. Sometimes
people have objected to this deduction, pointing out that I have failed to
take into account all sorts of particular circumstances that pertain to my
time-reversed description, such as the fact that Second Law of thermo-
dynamics only works one way in time, or the fact that the temperature of
the Xoor is much lower than that of the source, etc. But the wonderful
feature of the quantum-mechanical squared-modulus law is that we never
have to worry about what the particular circumstances might be! The
miracle is that the quantum probabilities for future predictions arising in
the measurement process do not seem to depend at all on considerations of
particular temperatures or geometries or anything.5 If we know the ampli-
tudes, then we can work out the future probabilities. All we need to know
are the amplitudes. The situation is completely diVerent for the probabil-
ities for retrodiction. Then we do need to know all sorts of detailed things
about the circumstances. The amplitudes alone are quite insuYcient for
computing past probabilities.
There are, however, situations in which the quantum probabilities can be

computed in a way that is completely symmetrical in time, and it is perhaps
instructive to have a look at these. These occur where the quantum state is
measured to be something known both before and after some intermediate
quantum measurement. To be more explicit, imagine a succession of three
measurements, where the Wrst one projects the state into jci and the third
one projects it into jfi, there being a yes/no measurement between these
two, described by the projector E (§22.6). The probability of yes for the
middle measurement is then given by[30.1]

[30.1] Why? Can you derive this formula?
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jhfjEjcij2

(where we assume the normalizations hcjci ¼ 1 ¼ hfjfi), which is cer-
tainly time-symmetrical. (To set up such a situation, one performs the
succession of three measurements many many times over and picks out,
for examination, only those cases for which the Wrst measurement yields
jci and the third yields jfi. The above probability then refers to the
fraction of these cases for which the middle measurement yielded yes.)6

This has led some people to conclude that there is, at root, no time-
asymmetry in quantum measurement.7

However most quantum measurements are not of this kind. For the
normal forward-time use of the squared-modulus rule, we do not specify a
jfi, and for the above backward-time attempted use, we do not specify
jci. We see that we can perfectly well calculate the quantum probabilities
while not specifying jfi, but we cannot get away with not specifying jci.
One might take the view that the reason that the quantum rules work well
for the future probabilities has to do with jfi being, in some sense
‘random’, which has to do with the Second Law of thermodynamics.
Perhaps there is something in this, but I Wnd this requirement for jfi
rather unclear. What does ‘random’ mean in this context? Nevertheless
there would certainly seem to be some connection with the Second Law in
the measurement question. We may take note of the fact that actual
measuring devices tend to take advantage of this law in some part of
their operation. That there is some connection between R and the Second
Law is, indeed, part of my own perspective on the matter. And since we
have seen that the Second Law is intimately tied up with the missing
quantum/gravity union, we must expect an intimate relation between R

and this anticipated union also.
Before coming to this issue more explicitly, it is worth pointing out that

the other aspect of R, namely the ‘jumping’ of the quantum state—as
opposed to the calculation of probabilities via the squared-modulus rule—
can (apparently) be equally well be phrased according to a backward-time
perspective as to a forward-time one. This is schematically illustrated in
Fig. 30.2a,b, where in Fig. 30.2a I have depicted the ‘normal’ view of the
. . . , U, R, U, R, U, . . . alternation (see Fig. 22.1), where the state is an
eigenstate of the measurement after it has taken place, and where in Fig.
30.2b. I have depicted the ‘time-reversed’ view, where the state is an
eigenstate just before the measurement. The calculation of amplitudes
comes out the same whichever viewpoint one adopts,[30.2] but the time-
reversed one has a ‘teliological’ aspect to it that some may Wnd disturbing.
There is also a standpoint, the ‘transactional’ interpretation, (due, inde-

[30.2] Explain why this is basically an expression of the ‘unitary’ nature of U; see §22.4.
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pendently to various quantum theorists8) according to which both pictures
are entertained simultaneously, and at any one time there are two simul-
taneously unitarily evolving state vectors describing the quantum system,
one looking like Fig. 30.2a and the other, like Fig. 30.2b. This is held to
have advantages with respect to interpreting the EPR phenomena of
Chapter 23. To my own mind, this description is a little excessive, and it
may be better to adopt a quanglement perspective in which the time
direction of ‘propagation’ of the state is not important, quanglement
simply providing connections between the states at diVerent times (§23.10).

30.4 Hawking’s black-hole temperature

Are there any ways of connecting R with the sought-for (time-asymmetric)
quantum–gravity union, that are more direct than just the fact of temporal
asymmetry in R? In my opinion there are, and I shall describe two such
connections. The Wrst of these follows on from the discussion of the previ-
ous section and has to do with the remarkable phenomenon of ‘black-hole
evaporation’. The argument is partly suggestive and certainly incomplete;
moreover it is controversial in certain central respects. The ingredients of
this discussion will be the subject of this section, and of following sections
up until §30.9, (excluding §§30.5,6, whichmay be regarded as something of a

U RR

R�

R

R

R

R� R� R�
R�

U U U

U
U

U
U

Time

Time
Eigenstate

Eigenstate Eigenstate Eigenstate Eigenstate

Quantum state
(backwards)

Quantum state

Eigenstate Eigenstate Eigenstate

(a)

(b)

Fig. 30.2 Schematic illustration of the alternation . . . ,U, R, U, R, U, . . . of

the two processes U and R as used in practice in quantum mechanics (compare

Fig. 22.1), according to: (a) standard time-direction of evolution, where operator

eigenstates occur at the past end of each stretch of U-evolution, and (b) time-

reversed viewpoint of evolution, where operator eigenstates occur at the future

end of each stretch of U-evolution. In the ‘transactional’ interpretation of

quantum mechanics, there are two state vectors, one evolving according to

(a) and the other according to (b).

823

Gravity’s role in quantum state reduction §30.4



digression). The second argument is much more explicit, coming from a
fundamental tension between the basic principles of general relativity and
quantum mechanics, and it leads to some clear quantitative predictions.
This train of reasoning will be given in §§30.10–13. However, the Wrst
argument—concerned with certain implications of black-hole entropy—
raises some other theoretical issues that are important for us, these being
much cited in curent theoretical discussions, and it will be helpful to obtain
some understanding of them.
We recall, from §27.10, the Bekenstein–Hawking expression SBH ¼ 1

4
A

(in natural units, where k ¼ c ¼ G ¼ �h ¼ 1 for the entropy SBH of a black
hole whose event horizon has surface areaA. As part of his own discussion,
Hawking (1973) showed that a black hole must also have a temperature,
which turns out to be proportional to what is called the ‘surface gravity’ of
the hole. For a stationary rotating hole (Kerr geometry; see 27.10), we Wnd

TBH ¼
1

4pm[1þ (1� a2=m2)�
1
2]

,

where, as in §27.10, m is the black hole’s mass and am is its angular
momentum. This temperature can be obtained from a standard formula
of thermodynamics:

T dS ¼ dE,

where, in varying the energy E, we hold the conserved angular momentum
constant.[30.3] Accordingly, the black hole will emit photons, as though it
were a physical object in thermal equilibrium, radiating energy with the
characteristic ‘black-body’ (Planckian) spectrum, described in §21.4 (see
Fig. 21.3b), for the temperature TBH. It may be noted that although the
Bekenstein–Hawking entropy of a black hole is enormous, and gives rise
to the extraordinary Wgures discussed in §27.13, the Hawking temperature
is absurdly tiny for black holes of a plansible size. For a black hole of a
solar mass, for example, the Hawking temperature is only about 10�7 K,
which is not much greater than the lowest man-made temperatures here on
Earth (about 10�9 K).
Jacob Bekenstein (1972) had derived the black-hole entropy expression

some years earlier, using a physical argument (based on applying the
Second Law of thermodynamics to situations in which quantum particles
are slowly lowered into the hole), but he had not obtained a clear value for
the ‘1

4
’ that now appears in that expession, nor had he obtained a black-

hole temperature. Stephen Hawking Wrst supplied the temperature and the
‘1
4
’ in the entropy formula by employing techniques of QFT in a curved

spacetime background. Here, the background describes a black hole that

[30.3] Obtain this formula for TBH, assuming the expression for the area of a Kerr hole’s

horizon given in §27.10.
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has come about from the collapse of some material (say a star) in the
remote past. The situation is described by the conformal diagram of Fig.
27.16b (this being strict if the collapse is spherically symmetrical).
In my opinion, Hawking’s remarkable calculation of the entropy and

temperature of a black hole (together with the related ‘Unruh effect’9) is
the only reasonably reliable conclusion that has been obtained, to date,
from any quantum-gravity theory. Even Hawking’s conclusions were not
strictly of quantum gravity but, rather, obtained from considerations of
QFT in a curved background spacetime. In general, there are severe
problems arising when one attempts to formulate quantum theory within
a curved background, and it is striking that Hawking was nevertheless able
to come to some Wrm conclusions.
One of the most crucial problems is to Wnd an appropriate notion

of ‘positive frequency’ in a curved background. As we saw in §24.3
and §26.2, this notion is a key ingredient of the standard view of
quantum particles and QFT. The problem of formulating this issue in a
general curved spacetime lies in the absence of a naturally deWned ‘time
parameter’ in terms of which the notion of ‘positive frequency’ can be
formulated.
The alert reader might well point out that there is no naturally deWned

time parameter in Xat Minkowski space either! However, a striking
fact comes to our aid here, to tell us that, for solutions of relativistic
wave equations (like those studied in Chapters 19, 24–26), positive fre-
quency in one choice of Minkowski time parameter t is equivalent
to positive frequency in any other such parameter—for which the tem-
poral orientation is not reversed. For massless Welds, one can even go
further, and obtain the same positive-frequency condition by use of a ‘time
parameter’ that is obtained from the standard Minkowski time parameter
by a time-orientation-preserving conformal transformation (which is of
relevance to twistor theory; see §§33.3,10).10

In a general spacetime, there is no natural analogue of such a parameter,
and the positive-frequency notion would certainly come out diVerently
for diVerent choices of time parameter, in general. Apart from the case
of the Hawking temperature, the most plausible results come from
considerations of stationary spacetimes, for which there is a continuous
family of time-displacements which preserve the spacetime geometry
(see Fig. 30.3). Such spacetime motions are generated by a timelike

Killing vector k (see §14.7 and §30.6). The curves along which the vectors
k point (integral curves of k) are the curves along which a reasonably
natural ‘time parameter’ t may be speciWed, so that

k ¼ ]

]t
,
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where the three remaining coordinates x, y, z are taken to be constant
along the curves. A notion of ‘positive frequency’ may then be deWned with
respect to this parameter.
A curious situationmayarisewhen there ismore thanone timelikeKilling

vector, since then theremaybemore thanone notion of ‘positive frequency’.
This multiplicity of timelike Killing vectors occurs with Minkowski space
M, of course, but from what has been said above, the notions of positive
frequency agree when we pass from one Minkowskian inertial frame to
another. This is not the case, however, when we pass from an inertial
frame to an accelerating frame. Thenwe obtain a distinct notion of ‘positive
frequency’, and the resulting QFT turns out to be in what is called a thermal

vacuum, according towhich an accelerating observer experiences a non-zero
temperature—although absurdly low for any reasonable acceleration.
It should be made clear that, although this is a surprising eVect, this

‘acceleration temperature’ is just the ordinary kind of temperature, as
would be measured by an ordinary (though idealized) thermometer. In
this case, the thermometer would be undergoing uniform acceleration, and
it is taken to be in an ambient vacuum which would be measured to have
zero temperature by an unaccelerated thermometer. (This notion of ‘ther-
mal vacuum’ has connections with the QFT notions of ‘alternative vacua’
in §§26.5,11 and ‘false vacuum’ in §§28.1,4.) This is referred to as the
‘Unruh eVect’, and it is consistent with Hawking’s thermal state of a
black hole. An observer being held stationary near a very large black
hole would, according to the principle of equivalence (§17.4), experience
an eVective acceleration, and the Unruh temperature of this acceleration
agrees with Hawking’s temperature, as obtained by his own procedures.
The diYculty presented, in general, by the lack of a natural deWnition of

‘positive frequency’ is circumvented in some approaches, by abandoning the
notion of ‘particle’ and concentrating on the algebra of quantum-mechan-
ical operators.11AtWrst sight, thismay appear to be too great a sacriWce, and
some ingenuity is indeed needed in the formulation of many questions of
interest in such an approach. At the time of writing, I have not myself been
able to assess the full merits of this intriguing and promising-looking type of

Fig. 30.3 Stationarity of a spacetime

is expressed as the presence of a timelike

Killing vector k. This generates a

continuous family of time-displacements

preserving the metric. If k ¼ ]=]t, where

t is the ‘time parameter’ of a coordinate

system (t,x,y,z), then x, y, and z must

be constant along the integral curves of k.

(See §14.7.)
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theory. I suspect that it is superior to approaches based on speciWc timelike
vector Welds, however. In any case, I do not myself see why QFT in a Wxed
background shouldnecessarilymake complete physical sense. It ismerely an
approximation to amore exact scheme inwhich the degees of freedom in the
gravitational Weld—i.e. in the geometry of the spacetime itself—must also
take part in the quantum physics.
In Hawking’s calculation of a black hole’s temperature and entropy, he

manages to avoid most of these issues by requiring a notion of positive/
negative frequency splitting only at inWnity. There is one such notion at
I � (past null inWnity) and a diVerent one at I þ (see §27.12). This diVer-
ence leads to the production of Hawking’s ‘thermal state’ by the black
hole, which results in what is referred to as its Hawking radiation. It is
noteworthy that this eVect owes its existence to the fact that some of the
information deWned at I � gets lost in the singularity, and does not all
make it out to I þ (see Fig. 30.4). We shall be seeing the signiWcance of this
fact in §30.8.

30.5 Black-hole temperature from complex periodicity

At this point, it is instructive to consider an ingenious later derivation of
the Hawking temperature, obtained by Gibbons and Perry in 1976, al-
though it is a slight digression from the main lines of reasoning of this
chapter. (These I shall resume in §30.8.) The Gibbons–Perry argument
raises some interesting issues concerning the role of elegant mathematical
ideas in the derivation of genuine physical phenomena. What they noticed
was that, if the solution of the Einstein equation (namely the Schwarzs-
child or Kerr solution—see §27.10) that represents the black hole in its
Wnal settled state is ‘complexiWed’ (i.e. extended from real to complex
values of the coordinates—see §18.1), then a basic regularity condition
on quantities deWned on this complexiWed space implies that these quan-
tities necessarily acquire a periodicity (see §9.1, Fig. 9.1a) in the complex-

Singularity

Horizon

Collapsing
matter

I +

I −

Fig. 30.4 Hawking’s calculation of a black hole’s

temperature, involving the collapse of some matter

to a black hole in the distant past, requires only the

(standard) notion of positive/negative frequency

splitting on I þ and on I �. The black hole’s vacuum

becomes a thermal state (a density matrix) because

the initial information on I þ gets divided between that

at I þ and that at the Wnal singularity, the latter be-

coming lost.
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iWed time, with purely imaginary period 2piTBH. Considerations of statis-
tical thermodynamics tell us that such a complex periodicity indeed cor-
responds to the exact temperature TBH, given in §30.4. This gives a
strikingly direct route to the Hawking temperature for a black hole.
But what are we to make of such a procedure as a physical derivation? It

is certainly a remarkably elegant argument, and it can be used directly to
obtain Hawking’s black-hole temperature in a number of diVerent situ-
ations to which his original discussion could not be readily applied. On the
other hand, I have a diYculty in taking this argument as genuinely
providing an actual physical justiWcation of Hawking’s temperature. It is
a good example of a beautiful piece of mathematics, which indeed happens
to give the correct answer (its ‘correctness’ being judged from its agree-
ment with the answer obtained from more physically acceptable criteria—
here, Hawking’s original argument referred to above), despite the fact that
some of the ‘physical’ assumptions going into the mathematics of this new
argument may be judged as of dubious validity.
Let us look at the mathematical ingredients of this ‘complexiWcation’ a

little more closely. A good way to understand what is involved is to think
Wrst of the ordinary 2-dimensional Euclidean plane E

2, and its standard
complexiWcation to CE

2( ¼ C
2). The real space E

2 is sometimes called a
real section of CE

2 (Fig. 30.5a,b; see also Fig. 18.2b). It is a Euclidean real
section, because it possesses an ordinary Euclidean metric. But CE

2 also
has Lorentzian real sections (see Fig. 18.2, §18.2), and we can construct one
of these, M

2, by taking the coordinate y of a standard pair of Cartesian
coordinates (x, y) for E

2 (which are real-number parameters) and
demanding that y take purely imaginary values rather than real ones.
Then t ¼ iy serves as a time coordinate for M

2. (This is just the 2-dimen-
sional case of what we already did in §18.1.) Now let us consider polar

coordinates (r, y) for E
2, rather than the Cartesian coordinates (x, y); see

§5.1 and Fig. 30.5a. The non-negative real number rmeasures distance from
the origin and the real-number angle y gives the angle between the radius
vector and the x-axis, measured in the anticlockwise sense. How do these
coordinates extend to our Lorentzian sectionM

2? Provided that we restrict
attention to the right-hand quadrant M

R, as indicated in Fig. 30.5b, the
quantity r is still real and non-negative, but y is now purely imaginary, so

t ¼ iy

is real. The coordinate r now measures the Lorentzian spatial distance
from the origin, and t is the ‘hyperbolic angle from the horizontal’.[30.4]

[30.4] Write these coordinates (r, t) in terms of the Lorentzian Cartesian coordinates (x, t); see

why the real part of y indeed vanishes on M
2.
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We are going to interpret the coordinate t (multiplied by a constant r0)
as measuring ‘time’ in the ordinary spacetime sense, for an observer (in this
2-dimensional Xat spacetime geometry) who ‘uniformly accelerates’ away
from the centre, and whose world line is given by r ¼ r0. (‘Rindler coordin-
ates’12). The spacetime itself is taken to be the entire M

2, despite the fact
that the observer’s ‘time’ applies only to the quadrant M

R. Let us suppose
that the observer is concerned with analytic quantities deWned onM

2. Such
quantities will have a holomorphic extension to the complexiWcation of the
spacetime (see §7.4 and §12.9), but this can only be guaranteed for some
immediate neighbourhood of the ‘real section’, which, in this case, means
theLorentzian section.However, if such a quantity is actually analytic at the
origin O of this section, then it must also be analytic at the origin of the
Euclidean section (since this is exactly the same point O in each case). But a
quantity that is regular at the Euclidean origin must be periodic in y, with
period 2p, since if we increase y by 2p (at some small radial value r ¼ e), we
simplywind once around the origin to arrive at precisely the same point that
we started at. Hence, the quantity t, referred to the original Lorentzian
spacetime coordinates, has an imaginary period of 2pi in t (complexiWed).
This is the basis of the Gibbons–Perry argument, where we now apply

it to a full 4-space black-hole geometry rather than to our simpliWed
2-dimensional spacetime M

2. The relevant geometry is now that of
Schwarschild (for the non-spinning spherically symmetrical case, but we

t

M2E2

q

(a) (b)

Fig. 30.5 Periodicity in imaginary time, illustrated by Minkowski 2-space M
2,

complexiWed to CM
2 ¼ CE

2. (a) The Euclidean plane E
2 is one real section of

the complex space CM
2. The Killing vector ]=]y generates rotations in E

2, where

we take polar coordinates (r, y). Any function that is single-valued on E
2 must be

periodic in y with period 2p. (b) In the Lorentzian real section M
2 of CM

2, the

‘Rindler’ (uniform-acceleration) time coordinate is t¼ iy (an analogue of the

Schwarzschild time that is natural for a black hole), and a function that is analytic

at the origin O must have an imaginary period in t, with period 2pi. (Killing vector

k¼]=]t¼�i]=]y.)
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can also use that of Kerr for a rotating hole). For the argument to work, we
need an analogue of the origin O in M

2. We see this in Fig. 30.6a, where I
have provided a strict conformal diagram for what is referred to as the
‘maximally extended’ Schwarzschild spacetime K.13 The spacetime K is
sometimes called an ‘eternal black hole’ because it was not created from a
gravitational collapse, but was ‘always there’. The central point O of the
diagram represents a 2-sphere, in accordance with the conventions of strict
conformal diagrams.K is the analogue ofM2, butwe also need an analogue
of theEuclidean spaceE

2. There is sucha space, sometimes referred toas the
‘Euclideanized’ Schwarzschild space G (and often even called a ‘Euclidean
space’, which strikes me as grossly confusing!), where the Schwarzschild
‘time’14 t in K takes purely imaginary values t ¼ iby in G, the quantity y
being an angular coordinate in G that is increased by 2p each time O is
circumnavigated in a positive direction (Fig. 30.6b), and where b is a (con-
stant, at constant r) real number called the ‘surface gravity’. Any quantity
that is regular (i.e. analytic; see §7.4) atO inKmust also be regular atO in G
(since this is exactly the same place ‘O’, in the complexiWed Schwarzschild
space, for eachof the two real sectionsK andG). Being regular atO inG, such
a quantity must be periodic, with period 2pib in t, because y is an ordinary
angular coordinate which when increased by increased by 2p (¼ 360�)
simply gets us back to the same place in the space(time) that we started
from. This imaginary periodicity is characteristic of a ‘thermal state of
temperature b’ according to the principles of statistical thermodynamics.
It is not my purpose here to discuss these thermodynamic principles.

This would take us too far aWeld. The only point of concern, here, is

O O

(a) (b)

t q

K G

Fig. 30.6 Hawking temperature from imaginary-time periodicity (Gibbons–

Perry argument). (a) Strict conformal diagram for an ‘eternal black hole’, which

is the ‘maximally extended’ Schwarzschild spacetime K, with Schwarzschild time t
and Killing vector k¼]=]t. The central point O represents a 2-sphere. (b) ‘Eucli-

deanized’ Schwarzschild space G, near O, has a real angular coordinate y, so the

‘time’ t takes purely imaginary values t¼ iby, the constant real number b being the

‘surface gravity’ of the hole. Here, y increases by 2p when we go once around O, so

any function on K, analytic at O (thereby extending to G), has period 2p in y, i.e.

period 2pib in t (near O), where b is to be interpreted as the black hole’s Hawking

temperature.

830

§30.5 CHAPTER 30



whether we can trust the argument for this complex periodicity. It depends
upon taking the region O seriously. Is this justiWed? This is by no means
clear. For an actual physical black hole, this entire ‘eternal’ picture is
certainly not appropriate. A physical hole must have been created from
some gravitational collapse (say, of a supermassive star or cluster of
material at a galactic centre), unless it was, in some sense a ‘primordial’
creation of the Big Bang itself. Even a primordial hole—a black hole
rather than its time-reverse, namely a white hole—would still in some
sense represent a ‘collapse’ and, whether black or white, is not well
described by the full model of Fig. 30.6a. A certain exterior part of this
model, however, is appropriate for the description of a collapse to a black
hole, namely that part of Fig. 30.6a lying above and to the right of the
indicated boundary line of the actual material indulging in the collapse.
Below and to the left of this boundary, the spacetime metric would be that
of the matter, and would be diVerent from that of the eternal black hole.
The complete collapse is sketched in Fig. 30.7, which amounts to a slight
redrawing of Fig. 27.16c. Now, we note that O is always outside the region
where the (extended) Schwarzschild metric applies. There appears to be no
physical justiWcation for assuming that physical quantities deWned on the
spacetime have a regularity at O, and it is hard to see why the argument
provides a justiWcation for the Hawking temperature, despite its math-
ematical elegance. (Any physically realistic model of a black hole would
possess deviations from the exact Schwarzschild—or Kerr—metric, and
these deviations can reasonably be expected to get larger and larger, Wnally
diverging to inWnity the closer we extend towards ‘O’.)[30.5]

Yet the exact stationary black-hole model represents the ultimate limit
of a realistic collapse, where all the irregularities are taken to iron them-
selves out as time progresses. It is the limiting spacetime that has this

[30.5] See if you can give an argument justifying this claim. Hint: Think of small linear

perturbations. Do you expect exponential behaviour-one way or the other in time?

O

I +

I −

Fig. 30.7 A history of spherical

gravitational collapse—a slight

redrawing of Fig. 27.16c—

represented in terms of the maximal

Schwarzschild spacetime K of Fig.

30.6a. The region shaded with

sloping lines is to be deleted and in

that shaded with dots the metric

diVers from that of K, because of

the presence of matter. Note that O

is always outside the region where

K’s metric applies.
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regularity and therefore the required complex periodicity and hence the
required temperature. Although I do not see how we can regard this
argument as any actual physical derivation of the Hawking temperature
(despite its commonly being taken as such), it does provide some sort of
‘strong indication’ of a hidden inner consistency of the whole idea of this
‘black-hole temperature’.
At this juncture, I cannot resist making a comparison with another

observation, due originally to Brandon Carter which, in a diVerent con-
text, has a signiWcant similarity to the argument just given, although it has
never been presented as a ‘derivation’ of anything. We recall that a
stationary charge-free black hole is described by the two Kerr parameters
m and a, where m is the hole’s mass and am its angular momentum (and
where for convenience I choose units for which c ¼ G ¼ 1, such as Planck
units, as in §27.10). A generalization of the Kerr metric found by Ezra T.
Newman15 (usually referred to as the Kerr–Newman metric) represents an
electrically charged rotating stationary black hole. We now have three

parameters: m, a, and e. The mass and angular momentum are as before,
but there is now a total electric charge e. There is also a magnetic moment
M ¼ ae, whose direction agrees with that of the angular momentum.
Carter noticed that the gyromagnetic ratio (twice the mass times magnetic
moment divided by the charge times angular momentum, which for a
charged black hole is 2m� ae=e� am ¼ 2), being completely Wxed for a
black hole (i.e. independent of m, a, and e), actually takes precisely the
value that Dirac originally predicted for the electron, namely 2
(where for the Dirac electron, the angular momentum is 1

2
�h and the

magnetic moment is 1
2
�he=mc, again giving a gyromagnetic ratio of 2,

taking c ¼ 1). See §24.7. Newman (2001) has provided an interpretation
of this ‘coincidence’ in terms of a displacement in a complex direction
in space.
Can we regard this argument as providing a derivation of the electron’s

gyromagnetic ratio, independently of Dirac’s original argument? Certainly
it does not, in any ordinary sense of the term ‘derivation’. It could only
apply if an electron could be regarded as being, in some sense a ‘black
hole’. In fact, the actual values for the a, m, and e parameters, in the case
of an electron, grossly violate an inequality

m2 $ a2 þ e2

that is necessary in order that the corresponding Kerr–Newman metric can
represent a black hole. Thus, this argument is very far from an actual
derivation of the Dirac electron’s gyromagnetic ratio. Yet, it somewhat
resembles the Gibbons–Perry argument for a black hole’s temperature in
revealing a certain ‘naturalness’ of this value, via extensions into the
complex.16 The Gibbons–Perry argument does have the additional point
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in its favour that it is not constrained merely to consideration of
the Schwarzschild/Kerr family of spacetime metrics. Nevertheless, in my
opinion, this hardly justiWes its common acceptance as an actual deriv-
ation.

30.6 Killing vectors, energy flow—and time travel!

The ‘eternal black hole’ has frequently caught people’s attention for other
reasons, despite the fact that it has some curious global properties which
make it hard to take seriously as a model of a physically acceptable
universe. Although some of these reasons would seem to have relevance
more to the realms of science Wction rather than reality, the eternal black
hole has some geometrical value for us, because it illustrates interesting
mathematical features that will be important in §§30.7,10. We see that it
has two distinct past null inWnities (I � and I �0) and two distinct
future null inWnities (I þ and I þ0). This spacetime is often thought of as
representing a time-evolution of two diVerent universes that become con-
nected by a ‘wormhole’, which subsequently ‘pinches oV ’ in a singularity;
see Fig. 30.8.
With respect to each of the two ‘external’ regions, it would seem that

each universe contains a black hole, but the black hole is an odd one in the
sense that it is also a ‘white hole’ at the same time. Signals can escape to
each external universe E and E0 from the past internal region B� (‘white-
hole’ behaviour) as well as signals being able to propagate into the future
internal region Bþ from each external universe E and E0 (‘black-hole’

O

Singularity

Singularity

(b)(a)

Fig. 30.8 The spacetime K viewed globally as a ‘time-evolving’ 3-space, which

represents a ‘wormhole’ connecting two asymptotically Xat regions. The wormhole

pinches oV in a singular way, both into the future and into the past. Any space

traveller who proposes to travel through the wormhole from one region to the

other cannot get through before it ‘pinches oV’ as is manifest from the conformal

diagram, since this would demand the traveller’s worldline having a spacelike

(superluminary) portion—shown dotted.
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behaviour). The fact that spacetime is stationary is expressed in the exist-
ence of a Killing vector k (see §14.7, §19.5, and §30.4). I have sketched this
Killing vector in Fig. 30.9. We notice that the Killing vector is timelike in
the two external regions E and E0, but it is spacelike in the internal regions
B� and Bþ. The timelike nature of k in the external regions means that k
expresses the stationarity of the black/white hole. A family of observers in
E, whose worldlines are tangent to the Killing vector Weld k, will perceive
an unchanging universe. The same applies in E0. However, the family of
observers in E0 with this property must apply these considerations to the
Killing vector �k, rather than k, because we need to keep the future/past
distinctions consistent for local observers throughout the spacetime. In a
sense, the ‘time direction’ has reversed as we pass from E to E0. The
conserved energy-density quantity (§19.5) obtained from the contraction
Tabkb of the energy–momentum tensor with the Killing vector k provides a
positive energy density (for normal matter) in E, but a negative one for
normal matter in E0 (since k is past-poining in E0, and �k is now the
ordinary Killing vector expressing stationarity). This is not exactly a
contradiction, but it illustrates the strange nature of the spacetime under
consideration.
In fact, it is not possible for a physical observer actually to ‘pass’ from E

to E0, as that would involve a ‘world line’ that is not timelike everywhere
(Fig. 30.8). Nevertheless, one frequently encounters attempts by theoret-
icians to get around this fact, by trying to modify the spacetime in some
seemingly ‘minor’ way. Their reasons come from an (in my opinion
misguided) intention to show that some kind of science-Wction ‘wormhole’
travel between universes—or (with a slight modiWcation of the picture, as
in Fig. 30.10) from one region of spacetime to a distant one—could be
achieved by some future technology. If such a proposal could succeed,
then this would open up the potential possibility of having a form of space
travel in which the normal limitations of relativity are transcended. In true
‘Star Trek’ traditions, a ‘warp-drive’ procedure is envisaged that allows the
spaceship to travel through the wormhole to a distant region that might
even be ‘earlier’ than when the spaceship entered the wormhole.

k E

B

B�

E� k

Fig. 30.9 The Killing vector k is time-

like in the two external regions E and E0,
but spacelike in the internal regions B
and B. Comparing k in E and in E0, we

Wnd that it reverses time-orientation, so

that the concept of conserved energy

density Tabka reverses its sign.
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Strange as it may seem, even Wrst-rate professionals in general relativity
have entertained the possibility of such ‘time travel’.17 A serious reason for
this is (presumably at least sometimes) not so much the possibility that
time travel might actually be feasible within the conWnes of present-day (or
imaginable) physics, but that we might learn something from the fact that,
physically, it ought not to be.[30.6] In the ‘spatial description’ given in Fig.
30.8, the wormhole ‘pinches oV to zero size’ before the space-traveller can
get through. The idea is that one entertains the possibility that it might be
allowable, within the conWnes of the theory, to ‘hold the wormhole apart’
for long enough for the traveller to get through to the other side, if
negative energy densities are allowed. Such negative energy densities are
normally considered to be forbidden in the classical theory, but might be
allowed under special circumstances in the appropriate quantum Weld
theory.
Do some relativity physicists really expect that such fanciful consider-

ations might lead us to a notion of ‘warp drive’, in which travel to a distant
part of the universe could be achievable through such a QFT-supported
wormhole? Very few, I imagine.18 A more serious issue seems to be that
these considerations might provide a ‘test’ for one’s ideas on quantum
gravity. If those QFT ideas actually do allow such a ‘holding apart’, then
this could be taken as a bad sign for those particular ideas about quantum
gravity—so one needs to think again. In this way, some useful guidance
could be obtained, as to the plausibility of the particular quantum gravity
theory under consideration. (At least this is my own reading of such

[30.6] Explain why, in accordance with the tenets of special relativity, the possibility of travel

between spacelike-separated events p and q, entails the possibility of travel from p to an event in

the direct past of p, on a timelike world line through p.

(a) (b)

Fig. 30.10 A science-Wction suggestion for superluminary space travel, based on

a modiWed wormhole spacetime. (a) By ‘identifying’ distant parts of the two

external spatial regions of Fig. 30.8 one obtains a wormhole connecting distant

regions of the same space, but again travel through the wormhole from one to the

other cannot be achieved by a timelike curve. (b) For this to be possible, some-

thing of the nature of the ‘stretched’ version of K, depicted here, would be needed

(but such a model requires negative energy densities).
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proposals. It may be that I am taking too ‘generous’ a line on this, and
more theoreticians than I imagine are actually thinking that such a ‘warp
drive’ is to be taken seriously!)

30.7 Energy outflow from negative-energy orbits

I have digressed much too far from the task at hand, which was to consider
the implications of the Hawking temperature of a black hole. Can we see
from more physical reasons why, in the context of quantum mechanics, a
black hole ought to emit radiation in accordance with it having a non-zero
temperature? In fact, Hawking also provided an ‘intuitive’ derivation of
the presence of this Hawking radiation. This is illustrated in Fig. 30.11. In
the vicinity of the hole’s horizon, virtual particle–antiparticle pairs are
continually being produced out of the vacuum, only to annihilate each
other in a very short period of time. (This is the process considered in
§26.9, and illustrated in Figs. 26.9 and 26.10). However, the presence of a
black hole modiWes this activity because, from time to time, one of the
particles of the pair falls into the hole, the other one escaping. This can
only happen when the escaping particle becomes a real particle (i.e. ‘on
shell’, as opposed to the virtual ‘oV shell’ particle it started out as, see §26.8
and Fig. 26.6), and therefore the escaping particle must have positive
energy, so that (from energy conservation) the particle falling into the
hole has to become a real particle with negative energy (these energies
being assessed from inWnity). In fact, negative energies can occur for real

Fig. 30.11 Hawking’s ‘intuitive’

derivation of Hawking radiation. (a)

Far from the hole, virtual particle-

anti-particle pairs are continually

produced out of vacuum, but then

annihilated in a very short time (see

Fig. 26.9a). (b) Very close to the hole’s

horizon, we can envisage one of the

pair falling into the hole, the other

escaping to external inWnity. For this,

the virtual particles both become real,

and energy conservation demands that

the ingoing particles have negative

energy. This it can do, because the

Killing vector k becomes spacelike

inside the horizon. (If ka is spacelike,

the conserved energy paka can be

negative, where pa is the particle’s

4-momentum.)
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particles inside the black hole. This possibility arises because the Killing
vector ka becomes spacelike in the interior region Bþ and a future-pointing
timelike 4-momentum pa can have a negative scalar product paka, this
being the (conserved) energy of the particle; see Fig. 30.11b.[30.7] The
Hawking process comes about because a real (as opposed to virtual)
particle can have negative energy if it is inside the hole’s event horizon.
The real partner of such a particle has to have positive energy, so positive
energy can be carried away from the hole.
At this point it is worth remarking that a very similar thing happens

in classical black-hole theory when the hole is rotating. And, in contrast
with the case of Hawking radiation, for which the emission of energy
is, for black holes of a plausible size, ridiculously small—and whose
interest is purely theoretical—what happens with a classical rotating hole
appears to have enormous astrophysical implications. Indeed, the most
powerful sources of energy known in the universe (quasars and radio
galaxies) appear to be fuelled by the rotational energy of a vast black
holes.
The process has a similarity to that which leads to Hawking radiation,

in that the energy comes from negative energy particles or Welds being
swallowed by the hole, which results in positive energy escaping from the
hole to inWnity. However, the important diVerence is that, with a rotating
black hole, the part of spacetime within which the Killing vector k be-
comes spacelike extends to a region outside the black hole’s horizon. This
region is referred to as the ergosphere (Fig. 30.12a). Thus, in the ergo-
sphere, particles can have negative energy (as measued from inWnity) while
still being able to communicate with distant parts of the universe. It
becomes possible, for example, for a particle to enter the ergosphere
from the outside and then to split into two, where one of the resulting
particles has negative energy so that the other escapes out again carrying
more energy than the original particle brought in!19 The net result is to
carry energy away from the hole, slightly reducing the energy stored in its
rotational motion (Fig. 30.12b). A similar conclusion can be obtained if
(electromagnetic) Welds are involved, rather than particles.20

It should be emphasized that the ‘negative-energy particle’ falling into
the hole is, when viewed locally, a perfectly ordinary particle (with an
ordinary timelike 4-momentum of the kind described in §18.7). It is just
that the quantity paka, which measures the conserved energy, as viewed
from inWnity, happens to become negative, which can perfectly well
happen when the particle lies within the ergosphere. This is a remarkable
and very potent fact about black holes, but there is nothing mathematic-
ally inconsistent or physically unreasonable about it. However, it is this

[30.7] Explain how a spacelike ka can give a negative ‘energy’ value paka.
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fact that allows the often enormous rotational energy of a black hole to be
hurled into the outside world.
In fact, the most plausible explanation of the vast energy output of a

quasar (see §27.9) is that this energy comes from the rotation of a huge
black hole. The hole’s immense rotational energy is gradually extracted—
and Xung out into space—by what is essentially the above-mentioned
process; see Fig. 30.12c. It has commonly been proposed that the negative
energy swallowed by the hole may be primarily in the form of an electro-
magnetic Weld (e.g. Blanford and Znajek 1977; Begelman et al. 1984)
rather than to actual particles (e.g. Williams 1995, 2002, 2004). But the
underlying reason is the same in each case.

30.8 Hawking explosions

Let us now return to the quantum-mechanical Hawking process. The
temperature for a black hole of a solar mass 1 M� is extremely low, as
noted above, in §30.4 (about 10�7 K). For larger black holes, this tempera-
ture would be even lower, in inverse proportion to the hole’s mass (for a
given a : m ratio; see §27.10). There is no astrophysical evidence that there
are any black hole of mass less than about 1 M�, so black-hole tempera-
tures are not believed to be of direct astrophysical interest.
Nevertheless, there is considerable theoretical interest in this tempera-

ture, as Hawking dramatically pointed out, in 1974.21 For example, if the
universe is of the ever-expanding kind (see §27.11 and §28.10), then there

(a) (b)

Stationary lim
it

Ergosphere

H
o rizon

Horizon
Stationary limit

Fig. 30.12 Views ‘down’ along the time-axis of a rotating (Kerr) black hole. (a)

For a Kerr black hole, there is a region—called the ‘ergosphere’—within which the

Killing vector k of stationarity becomes spacelike outside the black hole’s horizon.

Within the ergosphere, particles can have negative conserved energy (as measured

from inWnity), and other particles they directly encounter are able to escape to

inWnity, carrying away the excess. (b) According to the so-called ‘Penrose process’,

this fact can be harnessed, and the black hole’s rotational energy extracted. In the

simplest such process, a particle enters the ergosphere, splits into two particles,

one of which enters the hole carrying negative energy, and the other escaping to

inWnity carrying away more energy than the original particle brought in.
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will come a point when the ambient temperature will be lower than the
value for any given black hole. (For a 1 M� black hole in a K¼0¼L
universe, this would take some 1016 years, which is about 106 times the
present age of the universe.) After that, the black hole would start to lose
energy by radiating away more energy than it absorbs from the back-
ground. As it loses energy, it loses mass, so its radius gets smaller, and
accordingly it gets hotter. Let us imagine starting with a 1 M� black hole. It
would continue to radiate at a very slow rate, gradually losing mass
for some 1064 years, the temperature increasing slowly at Wrst and then at
an ever-accelerating rate, until it reaches about 109K or 1010K (the uncer-
tainties lying in our lack of knowledge of particle physics at enormously
high energies). At that point there is a runaway instability, and an explosion
takes place with the remaining mass–energy in the hole being converted,
almost instantaneously, completely into radiation! See Fig. 30.14.
At least, this appears to be the simplest and most natural-looking

assumption, as originally put forward by Hawking. (Hawking had initially
suggested that explosions of this nature might even be detectable now, if
the Big Bang had been so kind as to furnish us with a signiWcant number of
‘mini-holes’, say of the mass of a mountain and the diameter of a proton!
However, from our present perspective, this seems unlikely, and no such
explosions have yet been identiWed.) Other physicists22 have argued that
although such a Wnal explosion would take place, the hole would not
disappear completely, but would leave some ‘remnant’, or ‘nugget’. The
reason that they prefer this is that they are uncomfortable about the
‘information’ swallowed by the hole being lost to the system, and they
prefer it to be ‘stored’ in this remaining nugget.23 The problem is that it is
hard to see how all the information concerning the details of the matter
that collapsed into the hole—which might even have originally been a
stellar-sized or even galactic black hole before the thermal (and therefore
virtually ‘information-free’) radiation took away almost all the mass of the
hole—could be stored in such a remnant. As an alternative, some research-
ers take the view that the in the Wnal explosion, all the information comes
back out again ‘at the last minute’.

Fig. 30.13 The enormous energy output of

a quasar appears to come from the rotational

energy of a huge black hole at a galaxy’s

centre. This seems to be by a process of the

general nature described in Fig. 30.12, but

possibly mainly through the black hole swal-

lowing electromagnetic Welds of negative

energy rather than particles.
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These three alternatives are

loss: information is lost when the hole evaporates away
store: information is stored in Wnal nugget
return: information all returned in Wnal explosion.

The reader might wonder why people feel the need to go the lengths
required for store or return, when the most obvious alternative would
appear to be loss. The reason is that loss seems to imply a violation of
unitarity, i.e. of the operation of U. If one’s philosophy of quantum
mechanics demands that unitarity is immutable, then one is in diYculty
with loss. Hence we have the popularity, among many (and apparently
most) particle physicists of the possibilities of store or return, despite the
seemingly contrived appearance of these alternatives.
My own view is that information loss is certainly the most probable. An

examination of Fig. 30.14 conveys the clear picture that the collapsing
physical material simply falls across the horizon, taking all its ‘informa-
tion’ with it, to be Wnally destroyed at the singularity. Nothing particular,
of local physical importance, should happen at the horizon. The matter
does not even ‘know’ when it crosses the horizon. We should bear in mind

(a) (b)

I +

I −

Fig. 30.14 Hawking black-

hole evaporation. (a) A black

hole forms through classical

gravitational collapse. Then

over an extremely long period it

loses mass–energy at a very slow

rate, through Hawking radi-

ation, very gradually heating up

as it loses mass. Finally, it

appears to have an explosive

disappearance (in an explosion

that is small by astrophysical

standards, and independent of

the hole’s original mass). (b) A

strict conformal diagram of this

process (spherically symmet-

rical case). This would seem to

convey a clear picture in ac-

cordance with loss where col-

lapsing material simply

falls across the horizon,

taking all its ‘information’

with it, to be destroyed at the

singularity.
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that we could be considering an initially very large black hole, perhaps like
the holes that are believed to inhabit galactic centres, which could be of a
million solar masses or more. As the horzon is crossed, nothing particular
happens. The spacetime curvature and density of material is not large:
only of the kind that we Wnd in our own solar system. Even the location of
the horizon is not determined by local considerations, since that location
depends upon how much material later falls into the hole. If more material
falls in later, then the horizon would actually been crossed earlier! See Fig.
30.15. I Wnd it inconceievable that somehow ‘at the moment just before the
horizon is crossed’ some sort of signal is emitted to the outside world
conveying outwards the full details of all information contained in the
collapsing material. In fact, simply a signal would by itself not be enough,
since the material itself is, in a sense, really the ‘information’ that one is
concerned with. Once it has fallen through the horizon, the material is
trapped, and is inevitably destroyed in the singulatity itself.
At least, that is the clear conclusion if we accept cosmic censorship

(§28.8). I do not see that there is a great deal of leeway with this even if
we do not. The picture is essentially that of Fig. 30.14. According to this
picture, the material in the collapse is destroyed (and its ‘information’ is
destroyed) only when it enters the singularity, not when it crosses the
horizon. If one is to hold to the standpoint of return

24—that somehow
the information of the collapsing material all comes out again at the event
of the Wnal explosion—as indicated by the word ‘POP’ in Fig. 30.14, then
one must somehow explain how this information manages to sidle its way
out, to get to this point from right across the singularity (which, according
to a reasonable form of cosmic censorship, ought to be essentially space-
like; see §28.8). I do not Wnd this at all plausible.
The situation with store is not much better, if at all. Even if the

nugget is formed, it is not really of any use, since the information is

Ultimate
horizon

Initially
supposed
horizon

Fig. 30.15 The precise location of a black

hole’s horizon is determined ‘teleologically’, as

it depends upon how much material ultimately

falls into the hole.
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‘locked inside’ it forever, and it seems to me that it is as good as lost in
any case. If the sole purpose of the nugget is to ‘save unitarity’, then a
consistent QFT of nuggets would have to be formulated, and there are
severe diYculties with doing this.25 As I see it, the Hawking argument is
presenting us with a powerful case that, in accordance with loss, unitarity
must be expected simply to be violated in certain situations when
general relativity enters the picture in conjunction with quantum-mechan-
ical processes.
What is Stephen Hawking’s own standpoint with regard to these issues?

Right from thebeginning, hehas strongly argued for loss, and it seems tome
that the case for this is as strong now as it was whenHawking Wrst put these
ideas forward. Of course, black-hole evaporation is an entirely theoretical
notion, and it might be the case that Nature herself has other ideas for the
remote future of black holes. It is hard to see that any such alternatives could
occur, however, without some radical changes in the structure of eitherQFT
ormacroscopic general relativity (or both).Hawking’s position—at least, as
of 2003—was that unitarity should indeed be violated, but only in what I
would regard as a rathermild sense.Hawking proposed that, in the presence
of black holes, the quantum state of a system would actually evolve into a
(non-pure-state) density matrix. In fact, this idea was brieXy alluded to in
§29.6, when I remarked on the fact that, if some part of an entangled
quantum state could be genuinely lost—here by part of it falling into a
blackhole—asopposed tobeing lost onlyFAPP, then itmight be reasonable
to take the ontological position that quantum reality is actually to be
described by a density matrix rather than a (pure) state. Hawking envisaged
some kind of ‘super-unitary’ evolution that applies directly to densitymatri-
ces and allows ‘pure states’ to evolve into ‘mixed states’.26,[30.8]

30.9 A more radical perspective

My own standpoint is that, whereas I agree with Hawking that some form
of loss, is indeed likely to be correct, I believe that something even
more radical is needed. Hawking’s proposal, as outlined in the preceding
paragraph, does not incorporate any time-asymmetric features,27 for
example. But with time-symmetry, the ‘white-hole’ picture of Fig. 30.16a,
which is the time-reverse of Fig. 30.4, would be allowed—aswould the time-
reverse of the evaporating black hole given in Fig. 30.14, as depicted in Fig.
30.16b. The ‘general time-symmetrical situation’, in which there is much
destruction of information together with just as much creation of ‘new
information’ is illustrated in Fig. 30.17. All of these violate the Weyl

[30.8] Use the index notation (e.g. ca for jci) to indicate the kind of transformation that could

achieve this. (Hint: Have a look at Fig. 29.5.)
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curvature hypothesis (§28.8). The ‘symmetrical’ case Fig. 30.16c involves
the creation of a new white hole at the moment of Wnal evaporation of the
original black hole, the white hole growing until it reaches the size that the
black hole had; see Fig. 30.17. I have never seen such an absurd-looking
model seriously suggested! Once situations like those of Fig. 30.16 are
permitted, then I fail to see why they do not proliferate in the Big Bang,
leading to a gross inconsistency with the message of Chapter 27.
I do not propose to repeat all my arguments here,28 but, roughly

speaking, these rest upon the fact that Nature seems to be telling us that
something closely resembling the Weyl curvature hypothesis holds true,29

for the physical structure of those spacetime singularities that she actually
allows in her universe. If we accept this, then there is indeed a net ‘loss of
information’ in the singularities of black holes which is not regained. This
is because, according to this hypothesis, the Wnal singularities of collapse
can contain—and therefore absorb—huge numbers of degrees of freedom
(these residing in the Weyl curvature), whereas these degrees of
freedom are forbidden for any initial singularity.

(a) (b)

Fig. 30.16 White holes:

time-reversed black holes.

These violate the Weyl

curvature hypothesis.

(a) Conformal diagram of

time-reverse of black-hole

formation, as in Figs. 27.11,

27.16. (b) Conformal diagram

of time-reverse of black-hole

formation and subsequent

disappearance through

Hawking radiation, as in

Fig. 30.14.

Fig. 30.17 (a) Time-symmetrical situ-

ation, where there is creation of a white

hole at the moment of Wnal evaporation

of a black hole, which had been formed by

gravitational collapse. The new white hole

grows until reaching the previous black-

hole size before disappearing with the

ejection of a large amount of material.

(b) conformal diagram of this. (a) (b)

I +

I −

843

Gravity’s role in quantum state reduction §30.9



Let us try to put this argument in terms of the phase space of a system,
involving the formation and evaporation of black holes. Strictly, to make
our phase-space argument work, we should be considering a closed
system, containing a Wxed Wnite quantity of energy. To assist our imagin-
ations, we try to envisage a vast box, of greater than galactic dimensions,
with walls that are to be considered as perfect mirrors, so that no
information or material particles can cross either in or out; see Fig.
30.18. This, of course, is a practical absurdity—but I hasten to assure
the reader that our system constitutes merely a ‘thought experiment’,
not a real one! It is being contemplated30 only to enable phase-space
reasoning to be applied to a system involving the (apparent) loss of
degrees of freedom in the process of Hawking radiation. The phase
space P under consideration describes all possible physical states within
our hypothetical box, with the given total energy. The dynamical evolu-
tion is described, in Fig. 30.19, by a family of arrows on P, in the manner
of Fig. 20.5.
In this (‘thought’) situation, as time proceeds, degrees of freedom disap-

pear as they are absorbed into black-hole singularities. These degrees of
freedom are constrained from reappearing in initial (white-hole-type)
singularities by the Weyl curvature hypothesis, but my contention is that
they do reappear via the R process. The idea is that there is an overall
balance between the time-asymmetrical ‘loss of information’ in black holes
and the time-asymmetrical behaviour of probabilities in the quantum-
mechanical R process that was demonstrated in §30.3. The non-determin-
istic nature of the R process tells us that there can be several alternative
outputs for the same input, and this is to balance the fact that with black
holes there can be many diVerent inputs giving the same output, the

(a)

(b) (c)

Fig. 30.18 Hawking’s ‘box’ thought experiment. (a) Imagine a vast (galactic

scale) ‘box’ of matter, whose walls are perfect mirrors, allowing no information

or material to cross in or out. (b) One local entropy maximum is a black hole

providing most of the mass, but with a small amount of surrounding radiation

in thermal equilibrium with the hole. (c) Another local entropy maximum is

just thermal radiation (and a few particles) but with no black hole.
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‘information’ that distinguishes the various inputs being absorbed into the
singularities. Recall that, in the hypothetical experiment of §30.3
(Fig. 30.1), we had two diVerent outputs (photon reaching D and photon
reaching C) for a single given input (photon emitted from S), whereas for a
given output (photon reaching D) there was basically just one input
(photon emitted at S). Thus, we get an eVective spreading of the phase-
space volume according to the R process, whereas the asymmetry in
spacetime singularity structure causes an eVective narrowing down of
phase-space volume; see Fig. 30.19 again. The contention is that these
two eVects should, on average, balance each other out.
It should be made clear that this balancing is to be only an overall

feature of the physical processes. It is, of course, not being claimed that
there has to be the simultaneous presence of a black hole accompanying
each instance of quantum state reduction. The idea is only that throughout
the entire phase space there is a balance between these two eVects. Accord-
ingly, it is the potential possibility of the formation of black holes, with
their ability to absorb information, that is to balance the future random-
ness in R.
We may note that both of these eVects violate the theorem (Liouville’s

theorem; see §20.4, Fig. 20.7) that phase-space volume has to be preserved
in dynamical evolution. But in each case we have something that goes

A

B C

Fig. 30.19 Phase-space description of Hawking’s box, with arrows describing

(Hamiltonian) evolution (of the processes involved in Fig. 30.18). The regions

A,B,C, correspond, respectively, to (a), (b), (c) in Fig. 30.18. Accordingly, a black

hole is present for region B, but not for region C. The presence of a black

hole results in a conXuence of Xow lines (reduction of phase-space volume),

according to loss, owing to information destruction at the black hole’s (future)

singularity. There is a compensating creation of Xow lines (increase in phase-space

volume) involved in the time-asymmetry of the R process (assumed to be object-

ively real); see Fig. 30.1. The proposal is that there should be an overall balance

between these two Liouville-theorem violating processes, giving ultimate phase-

space volume preservation in the Xow.
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beyond the ordinary classical dynamics which provides the scope for that
theorem. Indeed, the very notion of a classical phase-space is not entirely
appropriate here, when we are considering quantum and classical eVects
together. For a purely quantum system, we should be thinking entirely in
terms of a Hilbert space instead. For those who believe that U-quantum
evolution is the whole story, the Hilbert-space description is the correct
one. But then the destruction of information (and therefore of unitarity) in
black-hole evaporation presents a serious problem. My own viewpoint is
that neither picture is entirely appropriate, and each should be regarded as
an approximation to something else that we do not yet know how to
describe.31

It has long been my intention to obtain a direct quantitive estimate
of the rate of quantum state reduction by investigating the details of
the balance between these two processes, as outlined in the above argu-
ment (and illustrated in Fig. 30.19), but I have so far been unable to
carry this argument to completion. It is therefore fortunate that there
is a quite diVerent general line of reasoning that can be used to obtain
an appropriate estimate. This is the subject of the remainder of this
chapter.

30.10 Schrödinger’s lump

Let us return to the kind of situation considered in §29.7, referred to as
‘Schrödinger’s cat’. In Fig. 29.7, I illustrated how one might set up a
quantum superposition of a live cat and a dead cat by using a beam
splitter to put a photon’s state into a superposition, where the transmitted
part of the photon’s state triggeres a device to kill the cat, while the
reXected part leaves the cat alive. Use of an actual cat would, of course,
be not only inhumane, but taking an unnecessarily complicated physical
system. So let us, instead, consider that the transmitted photon state
simply activates a device which moves a lump of material horizontally
by a small amount, whereas the reXected part leaves the lump alone; see
Fig. 30.20. The superposed lump now plays the role of the Schrödinger’s
cat—though not so dramatically as before!
The question that I now want to raise is the following: is the quantum

superposition of the two lump locations a stationary state? In conven-
tional quantum mechanics, this would certainly be the case if we con-
sider that each lump location separately represents a stationary state
and that the energy in each case is the same (so the resting place of
the displaced lump is neither raised nor lowered in relation to its
original location). This is just an elementary application of the rules that
we learnt in Chapter 21 (see also §24.3). Representing the original
lump location by the state jwi and the displaced one by j’i, we have the
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two Schrödinger equations describing stationarity for each of the two
lump locations,

i�h
]jwi
]t
¼ Ejwi, i�h

]j’i
]t
¼ Ej’i,

each giving us an eigenstate of energy, with energy eigenvalue E. If the
superposition is represented as the state

jCi ¼ wjwi þ zj’i,

then we directly obtain

i�h
]jCi

]t
¼ EjCi,

whatever values the (constant) amplitudes w and z might happen to
have.[30.9] Thus, each quantum superposition jCi is also a stationary
state. If the states jwi and j’i would each individually sit there forever,
then so would every quantum superposition jCi of them. This is just an
expectation of standard quantum mechanics.
Now let us start to bring in the lessons that Einstein has taught us with

his superb and now excellently conWrmed general theory of relativity. In
the Wrst place, we might consider it important to bring in the gravitational
Weld expressed in the background spacetime geometry. We can imagine
that the experiment is being performed on the Earth, with the two in-
stances of the lump sitting on a horizontal platform. The Earth’s spacetime
geometry is not quite Xat, and we must consider what eVect this spacetime
curvature might have on the above considerations. Indeed, we must worry
a little about the very meaning of the operator ‘]=]t’ that appears
in Schrödinger’s equation. In general relativity we do not usually
have a naturally presented coordinate system with respect to which the
concept of ‘]=]t’ would be deWned. Recall, from §10.3 and §12.3 (see Fig.
10.6) that the ‘invariant’ way of thinking about a partial diVerentiation
operator (like ]=]t) is to consider it as a vector Weld on the (spacetime)

[30.9] Why? Explain what properties of a vector Weld k are being used when we repeat this

conclusion in the case of a stationary background spacetime, below.

Fig. 30.20 Schrödinger’s ‘cat’ of Fig. 29.7, but now the resulting quantum super-

position is merely between two slightly diVering locations of a lump of matter.
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manifold—Fig. 30.21. Thus, we shall need a vector Weld on our spacetime
in order to express our required notion of ‘]=]t’.
In the present situation we are not so badly oV, because we are con-

sidering the issue of ‘stationary states’, so we must at least have a back-
ground spacetime that is itself stationary. Indeed, we consider the Earth’s
Weld to be stationary. As we saw above (§§30.4,6, Fig. 30.3), a stationary
spacetime is characterized by the existence of a timelike Killing vector k.
How does this particular vector Weld feature in the discussion? Our space-
time is stationary in the sense of being ‘independent of t’, telling us that we
can simply make the replacement (Fig. 30.21) in the previous formulae,

]

]t
7! k:

Theremay be an issue of an overall constant scale factor, but this is not very
important forushere.TheusualwayofWxing this overall factor is todemand
that k become an ‘ordinary’ time displacement at large distances, where the
gravitationalWeld is taken to tail oV to zero.Locally,however, themagnitude
of k may change from place to place, in a way that takes into account the
‘clock-slowing’ eVects of the Earth’s gravitational Weld (§19.8).[30.10] Since k
is now taking over the role of ]=]t, our individual Schrödinger equations,
deWning the stationarity of each of the separate states jwi and j’i, are

i�h kjwi ¼ Ejwi and i�h kj’i ¼ Ej’i,

and, just as before, we deduce that, for any superposition jCi, we still have

i�h kjCi ¼ EjCi:

Thus, the presence of a stationary gravitational Weld as a background does
not alter the fact that any quantum superposition of the two stationary
states jwi and j’i is itself stationary.

=Hy yih  
Schrödinger:

k
k

Fig. 30.21 The diVerentiation

operator ‘]=]t’ in Schrödinger’s

equation is to be thought of (invar-

iantly) as a vector Weld k on the

(spacetime) manifold (see Fig. 30.3),

where stationarity of the spacetime is

expressed in k(¼ ]=]t) being a (time-

like) Killing Weld (£kg ¼ 0; see §14.7).

[30.10] See if you can give an account of this, using the conservation law provided by a Killing

vector k, as described in §30.6 and taking note of the fact that the norm kaka may diVer from unity

in the vicinity of a gravitating body, even though it is normalized to unity at large distances from

the body. How does this aVect the measure of time?
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But now let us see what happens when we take into account the lump’s
own gravitational Weld. If we consider each of the states jwi and j’i
individually, then we appear to have no real problem. Of course, each of
jwi and j’i is a quantum state and, in the absence of an accepted quantum
gravity theory, we may not know how to treat its gravitational Weld. But it
does not really matter that we do not know how to do this in detail. The
conventional point of view would assert that the correct quantum gravity
theory can accommodate things that appear like classical lumps of mater-
ial with gravitational Welds that are very accurately described according to
the principles of Einstein’s classical general relativity, even if not quite
precisely. (To my mind, the validity of this ‘conventional viewpoint’ could
well be questioned, but if we believe the standard twin assumptions—that
the quantum formalism needs no change, and also that classical general
relativity is to hold for macroscopic bodies—then we must accept it. The
nature of the present argument, after all, is to explore the limits of the
compatibility of these two presumptions.) Accordingly, there ought to be
some quantum state jwi and some quantum state j’i that very accurately
describe the lump of material, sitting on the horizontal platform on the
Earth, in each of its two separate locations, where each lump occurrence is
accompanied by its nearly classical Einsteinian gravitational Weld.32 Since
each of these two lump location states is taken to be stationary in its
accompanying spacetime, each will have its respective associated Killing
vector,33 kw and k’, and will satisfy its appropriate Schrödinger equation
with eigenvalue E:

i�h kwjwi ¼ Ejwi and i�h k’j’i ¼ Ej’i:

In the previous situation, when we ignored the gravitational Welds of the
lumps, we were able to write down the Schrödinger equation for any
superposition wjwi þ zj’i and ascertain that all of these are stationary.
However, now there is trouble, because these two Killing vectors kw and
k’ are diVerent. What are we to do? It seems that we need an invariant
notion of ‘]=]t’ that applies to the superposed spacetimes, and neither kw

nor k’ seems to fulWl this need. We shall be seeing in the next section that
this problem is not a minor one, but it presents us with a fundamental
diYculty, and it leads us to a direct clash between the foundational
principles of quantum mechanics and those of general relativity.

30.11 Fundamental conflict with Einstein’s principles

It is important to elaborate rather more deeply upon the fact that these
two Killing vectors diVer. When I say that the Killing vectors kw and k’
are diVerent, I mean this in a profound sense. They are actually vector

849

Gravity’s role in quantum state reduction §30.11



Welds on diVerent spacetimes! One might try to take the view that these two
spacetimes only diVer in that they have very slightly diVerent metric
structures. Accordingly, we could try to think of them as being really
one and the same space, but with slightly diVerent metric tensor Welds
speciWed, say gw and g’. But to take this position is to part company with
one of the very basic principles of Einstein’s theory, namely the principle of

general covariance (see §19.6). To regard the sets of points of these two
spacetimes as being, in some sense, the ‘same’ sets of points would, in
eVect, be to specify a pointwise identiWcation between the two spacetimes.
That would be like identifying a point in one spacetime with the point in
the other that has the same coordinate labels. But the principle of general
covariance denies any signiWcance to particular coordinate systems.
Indeed, it asserts that there should be no preferred pointwise identiWcation
between two diVerent spacetimes.
Why does this lack of identiWcation between the spacetimes of the two

lump locations cause diYculties? We need to be able to write down the
Schrödinger equation. But without a unique ‘k’, how are we to do that?
The most immediate suggestion might be to try to identify kw with k’, but
that would certainly be commiting a violation of a fundamental principle
of Einstein’s theory, since it would imply that we are thinking of these two
Killing vectors as inhabiting the same space, which is cheating! It seems to
me that, in this situation, we are indeed beginning to witness a clash
between the fundamental principles of quantum mechanics and of general
relativity.
Nevertheless, we should not just ‘give up’ at this point. Although,

strictly speaking, we should need the appropriate new theory in order to
know what to do next, it seems to me that we can make some genuine
progress if we are prepared to accept this clash for the moment and merely
ask for some measure of the error that is involved in our ‘cheating’. Let us
take the position that, in some sense, what Nature would be prepared to
do would be to allow the identiWcation of two spacetimes locally, provided
that the notion of ‘free-fall’ is the same in each. This is some kind of
reXection of the principle of equivalence; see §17.4. Our attempted iden-
tiWcation would try to have the notion of a geodesic in one space coincide
with the notion of a geodesic in the other. This cannot normally be
arranged except in the immediate neighbourhood of a point; so instead
we shall try to compute the error that is involved in this if we do identify
the two spacetimes. This kind of thing is hard to do in full general
relativity, but we can apply most of these ideas also in the limiting
situation when the speed of light c is taken to be inWnity, while nevertheless
retaining much of the basic philosophy of Einstein’s theory. This situation
leads us to Cartan’s formulation of Newtonian gravity, as was discussed in
§17.5.34
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We recall, from Chapter 17 that in the Newton/Cartan gravitational
scheme, the spacetime is really a Wbre bundle over the 1-dimensional
Euclidean space E

1 of diVerent allowable ‘times’ t. The Wbres are the
diVerent Euclidean 3-spaces E

3, each of which refers to ‘space’ at some
given time. Thus, we actually have an ‘absolute time’, described by the
time coordinate t. The reader may be excused for perhaps thinking that,
since we now have the same notion of time (as measured by t) for the
spacetimes of both lump locations, our problems should have gone away.
But the sad truth is that knowing t does not enable us to know ]=]t. For
the operator ]=]t requires knowing that the remaining coordinate vari-
ables (say x, y, z) are being held Wxed. This is the issue of the ‘second
fundamental confusion of calculus’, considered in §10.3 (see Fig. 10.7). We
can see the issue clearly by referring to the geometry that is involved.
Knowing t tells us where the E

3 sections lie, but knowing ]=]t would tell
us a Killing vector Weld, which deWnes a family of curves cutting across this
family of 3-surfaces; see Fig. 30.22. In fact, this broad issue of not being
able to specify Schrödinger’s ]=]t is considered to be a profound one even
in more ‘conventional’ approaches to quantum gravity. It relates to the so-
called ‘problem of time’ in quantum cosmology.35

In the present context, I am not trying to be so ambitious as to resolve
all these issues. All we need is some estimate of the error involved if we try
to make an ‘illegal’ identiWcation of the diVerent vectors kw and k’. We do
this by actually identifying the E

3s but then taking the total error in the
diVerence between the gravitational accelerations (diVerences between free
falls, i.e. geodesics) in the two spaces. Suppose that the gravitational
accelerations are given, respectively, by the 3-vectors Gw and G’. Then
we estimate our error by forming the squared length of their diVerence
(Gw � G’)

2 and integrating this over the whole of E
3. This integrated error

is interpreted as a measure of the absolute uncertainty in the deWnition of
the ‘]=]t’ operator needed for Schrödinger’s equation, at the time t that
speciWes that particular choice of E

3. This uncertainty directly leads, via
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Fig. 30.22 Knowing t does not tell us ]=]t (‘second fundamental confusion of

calculus’, see Fig. 10.7, §10.3); t tells us where the E
3-sections lie, but ]=]t deWnes a

family of curves cutting across this family of 3-surfaces.
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Schrödinger’s equation, to an absolute uncertainty EG in the energy of the
superposed states under consideration. The next step is to convert this
expression for EG into another (equivalent) mathematical form, which we
can interpret[30.11] as:

EG ¼ gravitational self-energy of the difference between the two mass

distributions in the statesjwi and j’i:

The gravitational self-energy in a mass distribution is the energy that is
gained in assembling that mass distribution out of point masses completely
dispersed at inWnity. The above diVerence could be thought of as the mass
distribution in jwi taken positively, together with the mass distribution in
j’i taken negatively (see Fig. 30.23). (The reason that this does not just
give us zero is that the energy is concerned with the eVect of the gravita-
tional Weld of each mass distribution on the other.)
This is a little diYcult to appreciate, in ordinary terms, especially owing

to the negative mass distributions involved. It is fortunate that, in the most
usually considered situation, namely when the state j’i is merely a rigid
displacement of the state jwi, then the quantity EG can be interpreted more
directly in another way. We consider the energy that it would cost to
displace one instance of our lump, originally in location jwi, but moved to
location j’i, away from the gravitational Weld of the other, considered fixed
in location jwi. This energy turns out to be the same energy EG as before, in
the case of a rigid displacement,[30.12] but not always in other circumstances.

[30.11] See if you can conWrm this. The proof follows similar lines to that of Exercise [24.3], in

§24.3. We make use of Poisson’s equation r2F ¼ �4pr, where F is the Newtonian (scalar)

gravitational potential. Here our ‘error’ estimate is the space integral of jrf1 �rf2j
2
.

[30.12] Can you see why this gives the same answer for EG as before, in this particular

situation? What would happen if the Wnal location of the displaced lump is raised slightly with

respect to its initial location? What happens if it is compressed?

Fig. 30.23 Eachof the two stationary states in superposition, jwi and j’i, deWnes an

‘expectation value’ for its mass density distribution. The diVerence between these

two (i.e. one taken positively and the other negatively) forms a distribution of

positiveandnegativemassdensitywhosegravitational self-energy is thequantityEG.

852

§30.11 CHAPTER 30



In fact, one might consider adopting this second energy measure
(namely the gravitational interaction energy) as an alternative deWnition
of EG. The Wrst proposal, in terms of gravitational self-energy, seems to be
better founded, as far as I can see, but one should not rule out other
possibilities at the present stage of understanding. Diósi (1989) had con-
sidered both the above proposals, putting them to a purpose similar to the
one that I am about to give, but proposing also a (stochastic) dynamics,
which I am not doing here. These diVerent suggestions (and some others)
ought to be experimentally distinguishable, in experiments of the type that
I shall come to shortly. However, it should be stressed that even the best
founded of these proposals are somewhat incompletely motivated, and not
totally free of controversy.36

So, what are we to do with our fundamental ‘energy uncertainty’ EG?
The next step is to invoke a form of Heisenberg’s uncertainty principle (the
time/energy uncertainty relation; see §21.11). It is a familiar fact, in the
study of unstable particles or unstable nuclei (such as uranium U238) that
the average lifetime T having an inbuilt time uncertainty, is reciprocally
related to an energy uncertainty, given by �h=2T . For example, as noted in
§21.11, the lifetime of a U238 nucleus is about 109 years, so there is a
fundamental energy uncertainty in each nucleus of about 10�51 joules
which translates, via Einstein’s E ¼ mc2, to a mass uncertainty of about
10�44 of its total mass. Now, we are going to think of our superposed state
jCi ¼ wjwi þ zj’i as being analogous to this, itself being unstable, with a
lifetime TG that is related, by Heisenberg’s formula, to the fundamental
energy uncertainty EG discussed above. According to this picture,37 any
superposition like jCi would therefore decay into one or the other con-
stituent states, jwi or j’i, in an average timescale of

TG � �h=EG:

30.12 Preferred Schrödinger–Newton states?

The upshot of the above argument seems to be that a quantum superpos-
ition of two states ought indeed to decay into one or the other of its
constituents in a time scale of the order �h=EG. But the perceptive
reader may well complain, at this point, that any quantum state jci
can be expressed as a linear superposition of a pair of other states (e.g.
jci ¼ jai þ (jci � jai), for any jai). It would make no sense at all to
regard all these states as decaying to such ‘constituents’, particularly if
we choose jai, for a given jci, so that the mass distributions in these
alternatives diVers suYciently that the decay would have to be almost
instantaneous!
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An absurdity of this nature might be judged to be the conclusion of the
above discussion even if we are to consider our superposition
jCi ¼ wjwi þ zj’i to involve merely a single electron. For we could take
jwi ¼ jai, to represent the electron in an (almost) precise position. The
mass distribution would be almost a delta function (§21.10), leading to an
essentially inWnite value for EG, which would seem to imply an almost
instantaneous reduction of the state jCi to one or other of jwi or j’i. The
same would hold for a system composed of point-like entities (e.g. quarks).
Clearly this makes no sense; if such behaviour were true, there would be no
quantum mechanics.
What we must do is be much more careful about what kind of states our
jwi and j’i are to be allowed to be. Recall that in the above argument, we
considered jwi and j’i to be stationary states. An electron in an (almost)
Wxed-position state is certainly not stationary. By Heisenberg’s position/
momentum uncertainty principle (§21.11), it would involve very large
momenta and would instantly disperse. On the other hand, we seem to
have a diYculty in applying the argument at all to individual particles if we
require exact stationarity for both of jwi and j’i. For there are no station-
ary solutions of the ordinary Schrödinger equation, for a single free
particle (of positive mass), that tail oV towards spatial inWnity.[30.13] The
answer to this conundrum lies in the fact that we need to take into account
the particle’s gravitational Weld when writing down its Schrödinger equa-
tion. I am not asking for the gravitational Weld itself to be quantized, in
this description, but merely that its eVects be encapsulated in a Newtonian
gravitational potential function F, whose source is to be what is called the
‘expectation value’ of the mass distribution in the wavefunction. It is
perhaps not appropriate for this book for me to provide full description
of what is involved here.38 But this prescription does appear to give
reasonable answers. The details of this are matters of active research.
One concludes that for a single particle, this modiWed Schrödinger equa-
tion—I refer to this equation as the Schrödinger–Newton equation (on
account of it incorporating a Newtonian gravitational Weld)—does indeed
have well-behaved stationary solutions for a single particle that tail oV

appropriately towards inWnity. (For a single electron, however, the spread
in the wavefunction would exceed the extent of the observable universe;
for a hydrogen atom, it would be a little less than the observable universe,
the spread decreasing as the inverse cube of the mass of the particle.)
We now have what appears to be a plausible proposal for an objective

state reduction which applies, at least, in situations when a quantum state
is a superposition of two other states, each of which is stationary (in the
aforementioned Schrödinger–Newton sense). According to this proposal,

[30.13] Why? (Hint: Have a look at Exercise [24.3] again).
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such a superposed state will spontaneously reduce into one or the other of
its stationary constituents in an average timescale of about �h=EG, where
EG is the gravitational self-energy of the diVerence between the two mass
distributions. I refer to this proposal as gravitational OR (where OR stands
for the ‘objective reduction’ of the quantum state). For any pair of such
constituent stationary states, the gravitational self-energy quantity EG is
indeed well deWned. It refers to the diVerence between two mass distribu-
tions, each of these distributions being that same ‘expectation value’
expression used in defining the Schrödinger–Newton equation.
It is a feature of all other proposals for an OR scheme that they run into

diYculties with energy conservation. In particular, the ingenious and
ground-breaking proposal put forward by Giancarlo Ghirardi, Alberto
Rimini and Tullio Weber, in 1986 ran into precisely this kind of trouble, as
did various other proposals.39 It has been a common attitude to ‘live with’
this problem, provided that the energy non-conservation can be reduced to
an acceptably tiny level. My own perspective on this issue is to take it more
seriously. There is the advantage with the gravitational OR scheme put
forward above that the energy uncertainty in EG would appear to cover
such a potential non-conservation, leading to no actual violation of energy
conservation. This is a matter that needs further study, however. It would
seem that there is some kind of ‘trade-oV ’ between the apparent energy
diYculties in the OR process and the decidedly non-local (and curiously
‘slippery’) nature of gravitational energy that was referred to in §19.8.
It is my own standpoint, with regard to quantum state reduction, that it

is indeed an objective process, and that it is always a gravitational phe-
nomenon. This would be the case even in situations where there has been
substantial environmental decoherence leading to what might be con-
sidered as a FAPP state reduction, say in a system (such as a DNA
molecule) that is much too small for gravitational OR to apply directly
to it. In such situations, it would be the total displacement of mass in the
environment that results in gravitational OR. In the particular situations
that I have been considering, where the state in question is the superpos-
ition of two stationary states, I believe that this reduction process is indeed
well approximated by the gravitational OR scheme that I have just de-
scribed.
A full theory is certainly lacking, and I have provided no actual dynam-

ics for the reduction of the state, according to this OR process, even in the
case of the particular superpositions that I have been considering. In this
respect, my proposal is a ‘minimalist’ one, and it does not aspire to a more
complete dynamics, such as those inspirational proposals of Károlyházy;
Károlyházy and Frenkel; Pearle; Kibble; Ghirardi, Rimini, and Weber;
Ghirardi, Grassi, and Rimini; Diósi; Weinberg; Percival; Gisin; and
others.40 Nevertheless, my minimalist proposal seems to have clear
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experimental consequences, and I shall close this chapter by presenting the
underlying idea for a class of actual experiments that have a deWnite
potential for deciding whether or not such a gravitational OR scheme is
really respected by Nature.

30.13 FELIX and related proposals

The basic scheme is to construct a ‘Schrödinger’s cat’ that consists of a tiny
mirror M, placed in a quantum superposition of two slightly diVering
locations, displaced from each other by about a nuclear diameter.41 A
reasonable size for this tiny mirror would be something comparable to a
speck of dust, perhaps about one-tenth of the thickness of a human hair and
containing somethingof the order of 1014 to 1016 nuclei (so itsmasswould be
about 5� 10�12kg, and its diameter about 10�3 cm). Let us consider that
this mirror M is placed in its superposition by the impact of a single X-ray
photon which has been put in a superposition of two beams, one of which is
aimed at M.
A possible experimental set-up is indicated in Fig. 30.24. The photon is

produced by an X-ray laser L and directed at a beam-splitter B. The
transmitted part (say) of the photon’s resulting state is aimed at M, and
its impact is such that it imparts a momentum to this tiny mirror when
reXected from it. The mirror has to be of high quality, so it is of a ‘rigid’

~10 Earth
diameters

apart

Paraboloidal
grazing
mirrors

Paraboloidal
grazing
mirrors

L

D B

M

Tiny mirror
on cantelever

Flat
mirrors

Fig. 30.24 FELIX (Free-orbit Experiment with Laser-Interferometry X-rays). A

schematic set-up is indicated. A photon, produced by the X-ray laser L, is directed

at the beam-splitter B. The transmitted part of the photon’s resulting state is

aimed at a tiny mirror M, roughly a 10-micron cube, the impact imparting a

momentum to it when the photon is reXected. This puts M into a quantum

superposition (Schrödinger’s cat), which is to be held for, say, one second. In

the meantime, the two parts of photon’s wavefunction must be maintained coher-

ently (here, by reXection between two space platforms) until this period has

elapsed and whole process reversed. A perfect set-up (with equal path lengths)

and conventional quantum mechanics would demand that the detector respond

0% of the time. Gravitational OR leads to an expectation of 50%.
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nature, responding as a whole to the photon’s impact without internal
oscillations nor atoms being dislodged. The mirror is suspended in such a
way that it would be restored to its original location in, say, one-tenth of a
second. In the meantime, the two parts of the photon’s wavefunction have
somehow to be coherently maintained, marking time until this period has
elapsed, after which the entire process is to be reversed so that it can be
ascertained whether phase coherence has been lost, as would indeed be the
case if the quantum-superposed tiny mirror spontaneously reduces to one
position or the other.
Keeping an X-ray photon coherent for one-tenth of a second is no mean

task, however. (X-ray energies are unfortunately needed in order that a
suYcient momentum can be imparted that an adequate movement in the
tiny mirror occurs.) One suggestion for achieving coherence for this period
of time is to perform the entire experiment in space, where the photon
coherence is maintained by reXection between large mirrors on two space
platforms of perhaps an Earth-diameter separation. It takes about one-
tenth of a second for a photon to travel back and forth once over this
distance. That part of the photon’s wavefunction which had been reXected
from M is then returned to M, whereas that part which had been reXected
at the beam splitter B is returned to B. The timing is to be such that the
entire physical process is precisely reversed. Thus, the part of the photon’s
wavefunction that was responsible for the M’s motion encounters M again
just as M returns to its original position, so the photon recovers the
momentum that it had lost to M and reduces M to rest; moreover, the two
parts of the photon’s wavefunction are timed to recombine at the beam-
splitter B. Provided that there has been no loss of phase coherence through-
out this activity and path-lengths chosen appropriately, the photon’s wave-
function will combine into the single beam aimed back into the laser L.
Thus, a detector placed at the ‘alternative’ location D, that the photon
might have arrived at when emerging from the beam-splitter B (see Fig.
30.24), will detect nothing. This has been termed the FELIX proposal (Free-
orbit Experiment with Laser-Interferometry X-rays).
We note that for about one-tenth of a second, M’s state will be a

superposition of being displaced and not displaced, this being essentially
the same situation as with the lump of material described above, illustrated
in Fig. 30.20. According to the gravitational OR scheme, M’s state should
spontaneously reduce into having been displaced or not having been
displaced in a timescale of the order of one-tenth of a second. The
photon’s state is entangled with that of M, so, as soon as M’s state
reduces, the photon’s state also reduces with it. Then the photon is in
either one beam or the other, so that when it Wnally returns to the beam-
splitter B it will have equal probabilities of activating the detector D or of
returning to the laser L. This procedure would then be repeated many
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times. The eVect of OR would be that the detector responds in about 50%
of the trials; whereas if, in accordance with standard quantum mechanics
(for a perfect experiment), phase coherence is not lost, the detector does
not respond at all.
Of course, in any practical situation, there could bemany other ways that

phase coherence might get lost. For this experiment to be successful, it
would be necessary for these to be kept at a very low level, so that the
particular signature of gravitational OR can be distinguished. The experi-
mentwould have to be repeatedmany times, using diVerent tinymirror sizes
and materials, varying the timescale (perhaps using repeated reXections
between space platforms). An important factor, in the particular OR

scheme under consideration, would be the amount of ‘spread’ in the mass
distribution of the nuclei in the tiny mirror. For a particular total mass, a
more tightly localized mass distribution would give a shorter reduction
time; see Fig. 30.25.
The above FELIX proposal is technically extremely diYcult, for a

number of reasons. A major problem would be the required precision of
aiming of X-ray photons between space platforms of about 10 000 km
apart. In any case, space experiments are inherently diYcult and very
expensive, and if there is a feasible ground-based alternative, this can
have many advantages. Fortunately, it appears that such an alternative
is indeed a practical possibility. Owing to an ingenious suggestion of
William Marshall and some equally clever ideas for its implementation
by Dik Bouwmeester and Christoph Simon, a feasible ground-based alter-
native indeed seems on the cards, and is now under active investigation.
The proposal42 is that instead of having a single X-ray photon’s impact to
produce the desired tiny mirror movement, a photon of considerably lower
energy (such as a visible-light or even infra-red photon) could be used,
reXected backwards and forwards (say) �106 times so that there are now
106 impacts on the tiny mirror by the same photon, in place of the single
impact of the X-ray photon as proposed earlier; see Fig. 30.26. At the time
of writing, it seems that there is no fundamental obstruction to a prelimin-
ary experiment of this type being performed in a couple of years or so.

Fig. 30.25 A signiWcant factor would be the amount of ‘spread’ in the mass

distribution of the nuclei in the mirror. For a given total mass, more tightly

localized mass distributions would give shorter reduction times.
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If performed successfully, this preliminary experiment might still be some
Wve or six orders of magnitude short of what is required for a deWnitive test
of gravitational OR. Nevertheless, if quantum coherence for the superpos-
ition of the two tiny mirror locations can be maintained, this would
represent an advance (in terms of mass) over the current ‘record of
Schrödinger’s cat’ (C70 fullerene molecules43) by a factor of perhaps
1012. It would seem likely that if this stage can be successfully reached,
where the ‘minimalist’ gravitational OR scheme of §§30.9–12 predicts
agreement with standard quantum mechanics, then the additional im-
provements needed to test the novel predictions of gravitational OR may
well also be forthcoming within a few additional years.
It is perhaps remarkable that the extremely tiny gravitational energy

uncertainty EG that occurs in this class of experiment—say some 10�33 of a
joule—is suYcient to give such a ‘reasonable’ collapse lifetime of one-tenth
of a second or less. The smallness of gravitational eVects, generally, has
tended to lead many physicists to dismiss them altogether. Yet, we see that
the eVects of bringing gravitational considerations into our quantum
picture could have profound observational consequences. It should be
noted that the timescale �h=EG involves the quotient of the two small
quantities �h and G, and so need not be a small quantity in ordinary
human terms. This is in stark contrast with the characteristic quantum-
gravity quantities, the Planck length and Planck time (§27.10, §31.1), of
sizes 10�33 cm and 10�43 s, which are absurdly small, and arise from the
product of �h and G.
Let us imagine that an experiment to test gravitational OR has been

successfully performed. If phase coherence is not lost in the timescales
predicted by the gravitational OR scheme outlined above, that particular
scheme will have to be abandoned—or at least severely modiWed. But what

Multiple
reflections

Cavity

Fig. 30.26 A more practical version of ‘FELIX’ does not use X-rays, but requires

some 106 impacts on the tiny mirror by a visible light photon, in place of the single

impact by an X-ray photon.
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if that the results of such experiments turn out to support these predictions
of gravitational OR? Can we then conclude that quantum state-reduction
is indeed an objective gravitational eVect? I fear that many might still
prefer to hold to one of the more ‘conventional’ standpoints with regard to
this issue. They might still argue, for example, that strict unitarity (U) is
maintained, whereas part of the state becomes inaccessible—perhaps lost
in ‘quantum Xuctuations in the metric Weld’ (see. §29.6 and §30.15).
Personally I have no such desire to resist fundamental change in a

previously accepted physical theory, since I believe that, in the case of
quantum theory, fundamental change is indeed necessary—as I have
argued at length above. But perhaps it is not too fanciful to make a
comparison with those views of many highly esteemed physicists, such as
Lorentz, who preferred to regard the eVects of special relativity as merely
‘corrections’ to be applied within a 19th century world-view that accepts
an absolute state of rest. No doubt there would be as many esteemed
physicists who, likewise, might be as reluctant to relinquish their hard-won
20th century world-view of quantum mechanics, if it actually turns out
that the predictions of gravitational OR are supported by a successfully
performed experiment of the FELIX type. In my opinion, such a stand-
point would be retrograde, and would relinquish the possibility of power-
ful new progress to be made, on the basis of a new quantum picture of the
world that might actually make sense!
Of course, those of us who are expecting gravitational OR to bolster our

less conventional standpoints must be prepared for the alternative eventu-
ality that our views may be contradicted by such an experiment. My own
reaction to this would be considerable bewilderment, despite the fact that
many quantum physicists with whom I have discussed this issue have
expressed the Wrm expectation that conventional quantum mechanics
must again come through unscathed. My own bewilderment would arise
primarily from a conviction that present-day quantum mechanics has no
credible ontology, so that it must be seriously modiWed in order for the
physics of the world to make sense. This does not in itself imply that it is
gravitational OR that has to come to our rescue, nor is it imperative that
the particular gravitational proposal outlined here must be the correct
one.44 Nevertheless, I feel that the steadfastness and resilience of modern
quantum theory will not allow it to be shifted easily. In my own view, any
such shift would require the agency of something equally formidable, and
nothing else in known physics is of such stature save Einstein’s general
theory of relativity and its deep motivating principles. It is these that lead
me to anticipate a gravitational OR scheme like the one I have been
suggesting above. Whatever the Wnal result of such deliberations, I antici-
pate many powerful and intriguing new quantum-mechanical issues to be
raised and answered during the course of the 21st century!
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30.14 Origin of fluctuations in the early universe

Before bringing this chapter to a close, I wish to raise just one of those
numerous important issues that might indeed be profoundly aVected by a
change in the rules of quantum theory, in accordance with the deliberations
of this chapter. In §27.13, I drewattention to the extraordinarily special state
inwhich theuniverse appears tohave startedout.Themainway inwhich this
state was special, and which gave it its absurdly low entropy, was a very
precise spatial isotropy and homogeneity, so that the universe’s spacetime
geometry is (still) in remarkably close accord with one of the standard
cosmological FLRW models (§27.11). Of course, as is often argued, the
universe cannot have been, absolutely and precisely, such a symmetrical
model. If suchhigh symmetrywasonce there, itmusthave remained there for
all time; because the dynamics of Einstein’s general relativity—and of the
rest of classical physics—will preserve such symmetry precisely.
But what about quantum physics? Does not the ‘randomness’ inherent in

the quantum evolution processes allow for deviations from this exact
symmetry to arise? The notion of ‘quantum Xuctuations’ is frequently
invoked at this stage, as a means to providing the needed slight deviations
from exact symmetry. The idea is that such ‘Xuctuations’ might start out as
tiny, but they would act as the seeds of irregularity in the mass distribu-
tion, which would be gradually increased through gravitational clumping,
so that, eventually, stars, galaxies, and clusters of galaxies would be able to
develop—in accordance with observation.
But what are quantum Xuctuations? It is a feature of Heisenberg’s uncer-

tainty relations (§21.11), as applied to Weld quantities (see §26.9), that, if one
tries to measure the value of a quantum Weld in some very small region to
great accuracy, this will lead to a very large uncertainty in other (canonic-
ally) related Weld quantities, and hence to a very rapidly changing expected
value of the quantity being measured. Thus, the very act of ascertaining the
precise value of some Weld quantity will result in that quantity Xuctuating
wildly. This quantity could be some component of the spacetime metric, so
we see that any attempt at measuring the metric precisely will result in
enormous changes in that metric. It was considerations such as these that
led John Wheeler, in the 1950s, to argue that the nature of spacetime at the
Planck scale of 10�13 cm would be a wildly Xuctuating ‘foam’ (see end of
§29.6 and Fig. 29.6).
To clarify this picture, we must recall carefully what Heisenberg’s

uncertainty relations actually state. They do not tell us that there is
something inherently ‘fuzzy’ or ‘incoherent’ in the way that nature behaves
at the tiniest scales. Instead, Heisenberg uncertainty restricts the precision
whereby two non-commuting measurements can be carried out. We recall
that, for a single particle, both its position and momentum in some
direction, being non-commuting, cannot be determined precisely at the
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same time, the product of their respective errors being not less than
1
2
�h (§21.11). There is a perfectly well-deWned quantum state, however,

and if no actual measurement is performed, the state of the particle will
evolve precisely, according to Schrödinger’s equation (assuming that
standard U-quantum mechanics holds).
Similarly, in standard quantum mechanics, all the variables deWning a

spacetime state cannot be determined together. The quantum description
of spacetime should nevertheless be perfectly well deWned. But the Heisen-
berg principle tells us that this description cannot resemble a classical
(pseudo-)Riemannian manifold, as diVerent spacetime geometric quan-
tities do not commute with one another. Instead, according to Wheeler’s
picture, the state would consist of a vast superposition of diVerent geom-
etries, most of which would deviate wildly from Xatness and so have the
‘foamlike’ character that he envisages.
Let us see how this applies to the state of the early universe. Can the

deviations from exact symmetry indeed be attributed to ‘quantum Xuctua-
tions’, if the entire initial state possesses exact FLRW cosmological sym-
metry? The U-evolution of this state must continue to maintain this exact
FLRW symmetry, irrespective of ‘quantum Xuctuations’ or any other
manifestation of Heisenberg uncertainty.[30.14] How is this consistent with
the highly irregular ‘foam-like’ geometry that Wheeler envisages? There
need not be any contradiction here because the entire state is a superposition

of such irregular geometries, not an individual geometry. The superposition
itself can possess a symmetry not possessed by the individual geometries of
which it is composed. If one irregular geometry contributes, so do all the
others obtained from that by the application of each FLRW symmetry.45

How then is this FLRW-symmetric vast quantum superposition of
irregular geometries supposed to give rise to something resembling one
speciWc ‘almost FLRW-symmetric’ universe which is perturbed only in
some very minor way that is consistent with observations? It should be
clear to the reader that there is no way that this can happen entirely within
the U-evolution of standard quantum mechanics, since this must exactly
preserve the symmetry. There must be something of the nature of an R-
process taking place, which resolves this vast superposition of geometries
into a single geometry or, rather, into some lesser superposition of geom-
etries that more resembles a single geometry. The key is that irregularities
arising from ‘quantum Xuctuations’ cannot come about without some R-
like action, whereby the single initial quantum state somehow resolves
itself into a probability mixture of diVerent states. This takes us back to
the issues addressed in Chapter 29, where diVerent attitudes to the ‘reality’
of R were discussed.

[30.14] Can you see why the maintaining of this symmetry follows merely from the determin-

istic uniqueness of U-evolution, together with a very weak general assumption about U-evolution?
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We should bear in mind that we are here concerned with the very early
universe, where the temperature would have been perhaps some 1032K.
There were no experimenters around at that time performing ‘measure-
ments’, so it is hard to see how the standard ‘Copenhagen’ perspective ((a)
of §29.1) can be applied. What about the many-worlds view ((b) of §29.1)?
In that picture, there is no actual R, and the FLRW-symmetric state of the
universe would be maintained until the present day, this state being
representable as a grand superposition of many constituent spacetime
geometries. Only when conscious observers try to make sense of the
world, according to this view, would the resolution into alternative space-
time geometries be deemed appropriate—there now being a superposition
of conscious observers, each one perceiving a single ‘world’.46 On the
‘FAPP’ view ((c) of §29.1), the presence of (suYcient) environmental
decoherence is regarded as the signal, whereby our quantum superposition
of diVerent geometries is permitted to be regarded as a probability mixture

of diVerent geometries.
It is illuminating to make a comparison with an example in ordinary

quantum mechanics.47 Imagine a radioactive nucleus at rest, in a spheric-
ally symmetric state (i.e. spin 0, see §22.11) at some point O, centrally
situated within a bubble chamber48 (Fig. 30.27). Suppose that, by nuclear
Wssion, it splits into two parts A and B, which are ejected in opposite
directions from O. We may suppose that A and B are electrically charged,
so that they leave tracks in the bubble chamber. In this example, we started
with a state with spherical symmetry, centred at O. Yet, after decay, the
spherical symmetry is broken by the axis along which the parts A and B
have emerged. How are we to understand this in terms of the U-evolution

A

B

O

Fig. 30.27 Symmetry breaking by OR.

A (spherically symmetrical) spin-0

nucleus splits into two parts, which

are observed to occupy a speciWc

pair of oppositely directed paths. The

U-evolution of the initial state preserves

spherical symmetry, but this consists of

an (entangled) quantum superposition

of pairs of opposite paths (Mott).

R results in only one of these being

perceived. This example is being taken

as an illustrative model of what might

be happening in the creation of density

Xuctuations in an initially highly

symmetrical early-universe quantum

state.

863

Gravity’s role in quantum state reduction §30.14



of the original state? Clearly, as stated above, spherical symmetry must be
preserved, but the state achieves this by being composed as a linear
superposition of all the possible situations given by diVerent axis direc-
tions. The wavefunction has the form of a spherical wave centred at O—
although we must bear in mind that the state is an entangled one involving
both A and B, where each location of A is correlated with a location of B
in the antipodal direction. As the inXuence of the charges on A and B
begins to ionize the material in the bubble chamber, and bubbles are
formed, the state becomes entangled with this material, so we Wnd that
the entire state consists of a superposition in which each component
involves a pair of tracks of bubbles in opposite directions, one correspond-
ing to the passage of A, and the other, the passage of B.
The situation just described is not essentially diVerent from that in the

early universe. Some version of R is needed in order that the symmetrical
quantum superposition can be replaced by a probability mixture of less
symmetrical alternatives. It seems that, in practice, theoreticians tend to
adopt some form of FAPP interpretation ((c) of §29.1), where the size of
the cosmological horizon is arbitrarily (and illogically) taken to supply
some kind of ‘cut-oV ’ to quantum entanglements. The quantum superpos-
ition is then regarded as a probability mixture—although this actual
position is hardly ever made clear. For example, in their graduate-level
textbook ‘The Early Universe’ the prominent inXationary cosmologists
Kolb and Turner (1994) assert, on p.286:

As each mode crosses outside the horizon, it decouples from the microphy-
sics and ‘freezes in’ as a classical Xuctuation.

The ‘mode’ here refers to a component of a quantum superposition, so we
see that the authors are attempting to use the horizon as somehow
allowing a passage from a quantum amplitude to some probability of an
actual classical alternative. This appears to be something along the lines of
a FAPP proposal (see §29.6) and, as was argued in §§29.6,8, is strictly
speaking, illogical.49

In my own view, it is clear that the introduction of departures from
exact FLRW symmetry via quantum Xuctuations requires, of necessity,
some theory of objective state reduction. The ‘minimilist’ proposal for
gravitational OR that was set forth in §§30.9–12 is not, however, strong
enough as it stands. One needs some more comprehensive OR proposal, in
which, quantum superpositions of large numbers of spacetime geometries
can be handled, where the individual geometries need not be stationary,
as they were in §30.10. When such a scheme is to hand, it will be immedi-
ately confronted with an mountingly impressive assembly of observational
data, against which it must stand or fall. Already the BOOMERANG,
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WMAP, and other observations have provided enormous quantities of
data concerning density/temperature Xuctuations in the early universe,
and there will be a great deal more from other experiments now in the
pipeline.
A Wnal comment on this situation is appropriate here. We noted how the

symmetrical state in our above example of nuclear Wssion was a highly
entangled one. This would be true also, and to an even greater extent, for
the state reductions that take us away from an initially FLRW-symmet-
rical state to a universe subject to ‘quantum Xuctuations’. Thus, in accord-
ance with our discussion of EPR states given in §§23.3–6, we have ‘Bell-
inequality violations’ that provide correlations between distant events that
appear to violate classical causality. Such apparent causality violation
need not be indicative of a mechanism such as inXation which would
serve to bring such separated events into causal contact, but could arise
as a result of any appropriate objective state reduction scheme (OR).
However, we see from the discussion just given50 that even within the
standard FLRW cosmologies, such apparent ‘causality violation’ can
occur, without the need for any inXation, if the initial Xuctuations come
about via some objective state-reduction scheme.
It is clear that we are far from a theory which can reliably address all

these issues. But I hope, at least, that I have been able to persuade the
reader of the fundamental importance of having a quantum mechanics
with a viable ontology. The issues that are addressed in Chapters 29 and 30
of this book are not just matters of philosophical interest. The importance
of having an ontologically coherent (improved) quantum mechanics
cannot, in my view, be over-estimated. In this section, I have touched
upon just one of the foundational issues that could be deeply aVected by
knowledge of such a theory. There are many more, including situations in
biology (see §§34.7,10), where as with the early universe, the present-day
‘Copenhagen’ viewpoint cannot really be applied—there being no clear
division into a quantum system and a classical measuring device.

Notes

Section 30.1

30.1. See Roseveare (1982).

Section 30.2

30.2. See Penrose (1980).

Section 30.3

30.3. There is no theoretical or technical bar to this, at least if we do not demand 100%

accuracy. For example, one could arrange that the Wnal photon is always one of a

pair (produced, say, by parametric down-conversion—see §23.10), with the other

member of the pair triggering the registering device.
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30.4. I Wnd it remarkable how much diYculty people often have with this argument.

The matter is perhaps clariWed if we contemplate numerous occurrences of this

experiment, taking place at various locations throughout spacetime. There are

four alternative photon routes to be considered, SBD, SBC, FBD, and FBC. To

see what the various probabilities are, we ask for the proportion of SBD, given

S (forward-time situation), or for the proportion of SBD, given D (backward-

time situation). The squared-modulus rule correctly gives the actual answer

(50%) in the Wrst case, but it does not give the actual answer (nearly 100%) in the

second case.

30.5. They do, however, depend upon the initial state being what it is supposed to be

and not part of some entangled state (§23.3) that might also involve something

in the detector. We might raise the question as to whether the time reversal of

such entanglements could be responsible for the time-reversed squared-modulus

rule giving completely the wrong answers. But I am unable to see how to

construct any plausible explanation along these lines. Perhaps some enterpris-

ing reader can do better.

30.6. See Aharonov and Vaidman (1990).

30.7. For a discussion of this issue, see Aharonov et al. (1964).

30.8. See Aharonov and Vaidman (2001); Cramer (1988); Costa de Beauregard

(1995); and Werbos and Dolmatova (2000).

Section 30.4

30.9. See Unruh (1976); see also Wald (1994).

30.10. See Penrose (1968b, 1987b) and Bailey et al. (1982).

30.11. See Kay (2000); Kay and Wald (1991); Haag (1992).

Section 30.5

30.12. See Wald (1984).

30.13. See Wald (1984); Kruskal (1960); Szekeres (1960).

30.14. There is a slightly confusing discrepancy between the interpretation of ‘t’ as

actual time in the Schwarzschild case, considered here, whereas it is r0t that

measures the accelerating observer’s time in the Xat (Rindler) case of Fig.

30.5a,b.

30.15. See Newman et al. (1965).

30.16. This gyromagnetic ratio refers to a ‘pure Dirac particle’, to which an electron is

an excellent approximation, but an actual electron is subject to radiative correc-

tions that come from quantum Weld theory, see end of §24.7. A proton or

neutron is much further from being a Dirac particle, but that notion applies

much more closely to their constituent quarks.

Section 30.6

30.17. See Novikov (2001); Thorne (1995); Davies (2003).

30.18. Davies (2003) gives an amusing and readable discussion of such possibilities.

Section 30.7

30.19. See Penrose (1969); Floyd and Penrose (1971).

30.20. See Blanford and Znajek (1977); Begelman et al. (1984). See also Williams

(1995, 2002, 2004).

Section 30.8

30.21. See Hawking (1974, 1975, 1976a, 1976b); Kapusta (2001).

30.22. See Preskill (1992).

30.23. See Preskill (1992), or, for another way out, Kay (1998a, 1998b).
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30.24. See Preskill (1992); Susskind et al. (1993).

30.25. See Gottesman and Preskill (2003) for a critique of Horowitz and Maldacena

(2003). See also Susskind (2003).

30.26. Hawking introduced a generalization of unitary evolution in which the S-matrix

description of ordinary QFT (§26.8) is generalized to what he referred to as a

‘super-scattering’ operator (not connected with supersymmetry; see §26.8) de-

noted by a ‘$’ sign. This operates between density-matrix states, rather than

between the pure states treated by the S matrix. See Hawking (1976b).

Section 30.9

30.27. The main disagreement between Stephen Hawking and me has, for about 20

years, centred on this temporal-asymmetry question. Throughout these argu-

ments, he has steadfastly held to a time-symmetric physics and to either the

immutability of U-quantum mechanics or the mild generalization referred to

above (Note 30.26). As I shall be explaining, my own position is quite diVerent

on these matters.

30.28. See Hawking (1976b); Preskill (1992); Penrose (1979a).

30.29. The Weyl curvature hypothesis refers to classical geometry, so it says something

about what happens just at the point where ‘quantum geometry’ crystalizes into

a classical spacetime.

30.30. See Hawking (1976a, 1976b) and Gibbons and Perry (1978).

30.31. Perhaps some generalized notion of Hilbert space is required here, which could

also take on some of the properties of a (curved) phase space, e.g. Mielnik

(1974); Kibble (1979); Chernoff and Marsden (1974); Page (1987); and Brody

and Hughston (2001).

Section 30.10

30.32. These might be coherent states as referred to in §26.6.

30.33. Bear in mind that the indices on kw and k’, are just labels and are not ‘tensor

indices’ in the sense of §12.8. The same applies to gw and g’.

Section 30.11

30.34. See Christian (1995).

30.35. See Isham (1992); Kuchar (1992); Rovelli (1991); Smolin (1991); Barbour

(1992).

30.36. See Note 29.12. for many of the objective state reduction theories. Those of

Diósi, Percival, Kibble, Pearle, Squires, and myself involve gravitation crucially.

30.37. More recently, an idea has arisen for a more rigorous justiWcation of this kind

of proposal for gravitational OR. We recall from Exercise [21.6] that to make

quantum theory consistent with the principle of equivalence, a phase factor

involving a cubic term in the time t is needed, when passing from a freely falling

frame to one Wxed in a gravitational Weld. Accordingly, the two frames strictly

describe diVerent vacua (see §26.5), this being the remnant of the Unruh eVect,

mentioned in §30.4, that survives in the Galilean limit. Thus, if the principle of

equivalence is to be fully respected, the superposition of two gravitational Welds

will involve the superposition of diVerent vacua, and so should be unstable,

even in the Galilean limit. Details of this argument will be published later.

Section 30.12

30.38. See §22.5 and Moroz et al. (1998).

30.39. See Note 29.12. for many of the seminal references in this field.

Gravity’s role in quantum state reduction Notes

867



30.40. I have gained much from studying such proposals. Perhaps some of these may

supply pointers towards a more complete gravitational OR theory. See Note

29.12, as well as Gisin (1989, 1990) for certain NO-GO theorems.

Section 30.13

30.41. The speciWcs of this proposal have had signiWcant inputs from several col-

leagues. An important ingredient of the original idea (which involved the

impact on a ‘Mössbauer-type’ crystal by a beam-split photon) came from

Johannes Dapprich—some more speciWc ideas, including suggested parameters

for the tiny mirror’s size, photon energy, and many other things, arose in

conversations with Anton Zeilinger and others in his experimental group in

(at that time) Innsbruck. The idea of a space-based experiment (FELIX) arose

from discussions with Anders Hansson. The ingenious ideas that appear to

provide a more practical ground-based alternative are due to William Marshall,

Dik Bouwmeester, and Christoph Simon. See Penrose (2000), Marshall et al.

(2003).

30.42. See Marshall et al. (2003).

30.43. See Arndt et al. (1999).

30.44. For example, both, the original gravitational OR scheme of Károlyházy (1974)

and the more recent such proposal of Percival (1994), make very diVerent

predictions from those being put forward here.

Section 30.14

30.45. There is a subtlety here, however, because one might consider that the action of

an abstract symmetry on a spacetime geometry simply yields the same geometry

again (because of the principle of general covariance, see §19.6). There are

diVerent attitudes that one can take on this issue, but in any case, the general

point raised in the text is not aVected.

30.46. On Wheeler’s own variant, the ‘participatory universe’, see Wheeler (1983), it

would be the ultimate presence of conscious observers who somehow (teleo-

logically) determine the particular selection of spacetime geometry that oc-

curred in the early universe.

30.47. This bears some similarity to a discussion of the cloud-chamber tracks in a-
particle emission, due to Neville Mott (1929).

30.48. This is a standard piece of apparatus, whereby the passage of a charged particle

is indicated by a string of tiny bubbles; see Note 30.47, see Fernow (1989).

30.49. The real reason for a ‘cut-oV’ at the Hubble radius (where recession reaches the

speed of light), at that epoch, is not directly to do with the actual ‘horizon size’

(which is, in any case, far larger than the Hubble radius in the inXationary

scheme; see Fig. 28.5) and is nothing to do with the passage from quantum to

classical physics. It is a purely classical eVect of the expansion of the universe on

a Weld subject to the constraints of relativity.

30.50. Various people seem to have suggested that such ‘acausal’ EPR-type correl-

ations could have been present in the early universe fluctuations, for such

reasons. For example, a suggestion of this nature was put to me some years

ago by Bikash Sinha.
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31
Supersymmetry, supra-dimensionality,

and strings

31.1 Unexplained parameters

Most physicists probably have ideas quite diVerent from those outlined in

the previous chapter, concerning what the physics of the 21st century may

have in store for us. Very few of them appear to anticipate that there will

be fundamental changes in the framework of quantum mechanics. Instead

they argue for strange-sounding ideas like the need for extra dimensions to

spacetime, or for point particles to be replaced by extended entities known

as ‘strings’, or perhaps by higher-dimensional structures called ‘mem-

branes’, or p-branes, or simply ‘branes’—and where curious additional

objects called ‘D-branes’ seem to play important roles. There are puzzling

extensions of the idea of symmetry referred to as ‘supersymmetry’, or of

‘quantum groups’. There are generalizations of the very notion of geom-

etry described as ‘non-commutative’, and there are pictures of the world in

which discreteness rather than continuity holds sway at the tiniest levels,

or where the fabric of space itself consists of knots or links. There are

suggestions that the very notion of spacetime will have to be abandoned,

or reformulated in some other terms.

What are these various ideas and what are we to make of them? More

importantly, what motivates so many physicists to describe a ‘reality’

bearing little resemblance to what we directly perceive at ordinary

human scales. No doubt, part of the reason for contemplating such

proposals lies in the success of quantum mechanics and, to a lesser

extent, of general relativity. These 20th-century theories have shown us

how our direct intuitions can mislead, and ‘reality’ may diVer profoundly

from those pictures provided by the physics of previous centuries. Yet,

merely to be presented with a scheme for the world that is exotic or

unusual does not give us grounds for believing it. We shall need to try to

understand something of the underlying motivation of the research of

modern theoreticians, as they attempt to probe more deeply into the

inner workings of the universe.
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We must pick up the threads of reasoning that we Wrst encountered in

Chapter 24 and continued in Chapters 25 and 26, where the combined

requirements of special relativity and quantum theory forced us into the

quagmire of the quantum theory of Welds. This, in turn, led us into a

mineWeld of inWnities, and it needed great ingenuity to circumvent most of

these, ultimately leading to the standard model of particle physics, which

Wnds good accord with the measured workings of Nature. Yet the stand-

ard model itself is not free of inWnities, being merely a ‘renormalizable’

rather that a Wnite theory. Renormalizability just allows certain calcula-

tions to be performed, giving Wnite answers to most questions of interest

within the theory, but it does not provide us with any handle on certain of

the most important parameters, such as the speciWc values of the mass or

electric charge of particles described by the theory. These would have

come out as ‘inWnity’ (or perhaps ‘zero’), were it not for the renormaliza-

tion procedure itself, which evades these inWnite scalings through a redeW-

nition of terms, and allows Wnite answers for other quantities to be

obtained. Basically, one ‘gives up’ on mass and charge, whose values are

just inserted into the theory as unexplained parameters; indeed, there are

some 17 or more such parameters, including coupling constants of various

kinds in addition to the mass values of the basic quarks and leptons, the

Higgs particle, etc. that need to be speciWed.

There are considerable mysteries surrounding the strange values that

Nature’s actual particles have for their mass and charge. For example,

there is the unexplained ‘Wne structure constant’ a, governing the strength

of electromagnetic interactions, which is deWned by the formula

a ¼ e2

�hc
,

where �e is the electron’s charge. The reciprocal of the Wne structure

constant takes the value a�1 ¼ 137 rather closely, but more accurately

a�1 ¼ 137:0359 . . . :

For a number of years, some physicists thought that a�1 might actually

take the exact value 137. In particular, Sir Arthur Eddington (1946) spent

the latter part of his life trying to produce a ‘fundamental theory’, one

consequence of which would indeed be ‘a�1 ¼ 137’. Many of today’s phy-

sicsts might be less optimistic than their predecessors about Wnding a direct

mathematical ‘formula’ for a, or for other ‘constants of Nature’. Now-

adays, physicists tend to regard these quantities as functions of the energy

of the particles involved in an interaction, rather than simply as numbers,

and refer to them as ‘running coupling constants’ (see Note 26.21).

The observed scalar values that we refer to as ‘constants of Nature’
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would then be ‘low energy limits’ of these ‘running’ values. Although one

might still hope to Wnd a purely mathematical reason for these speciWc

limiting values, somehow such values may seem less ‘fundamental’ than

they would if there were no dependence on energy.

It is often revealing to express quantities like charge and mass in terms of

the absolute (Planck) units introduced in §27.10, for which Newton’s gravi-

tational constant G, the speed of light c, Dirac’s form of Planck’s constant �h,
and Boltzmann’s constant k are all put equal to unity:

G ¼ c ¼ �h ¼ k ¼ 1:

In these units, the charge on the proton (or minus that on the electron)

comes out as roughly e ¼ 1= 137
p

, and more precisely as1

e ¼ 0:085 424 6

and the basic quark charge (minus the charge of the down quark—see

§25.6) has one third of this value. Absolute units are usually referred to as

Planck units (or sometimes Planck–Wheeler units), because Max Planck

(of quantum-mechanical fame—see §21.4) put an idea of this nature

forward in a paper published in 1906. Ironically, in this paper, he used

the electric charge as a basic unit, rather than his own ‘Planck’s constant’

to Wx things, and in that scheme we simply have e ¼ �1. (The charge

mystery has not gone away, of course, because, in his own scheme,

�h ¼ 137:036.) It was John Wheeler (e.g. 1975) who later emphasized the

importance of these ideas in many of his writings (using �h, rather than

Planck’s choice of electric charge).

If that were all, then Planck units might more appropriately be called

Stoney units, because the Irish physicist George Johnstone Stoney (who

Wrst measured the electron’s charge) put forward the same idea as Planck

did in 1906, way back in 1881. However, there is another paper by Planck,

published in 1899, actually before his famous paper of 1900 which initiated

quantum theory, in which ‘Planck’s constant’ was used to deWne absolute

units. Accordingly, I shall stick to the conventional terminology which

refers to absolute units as ‘Planck units’!

What about the mass values of particles? The problem of mass is a much

thornier one than that of electric charge. It appears to be the case that all

particles of Nature have charge values that are integral multiples of one

basic charge. We can take this to be the charge on the proton if we are

concerned only with particles that can exist freely on their own, or minus

the down-quark charge, if we wish to include the internal constituents of

hadrons. Although there is, as yet, no full understanding of this fact, and

certainly no proper understanding of 137.036, this problem seems to be a

good deal more manageable than the corresponding one for mass values.

One of the mysterious aspects of the mass problem is the absurdly tiny size
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that the values that the masses of ordinary particles have when measured

in absolute units. For example, the mass me of the electron, in absolute

units, is about

me ¼ 0:000 000 000 000 000 000 000 043

and that of the proton is only about 1836 times this value. The mass of the

electron neutrino ne is less than 10�5 of the above value. Another way of

expressing the puzzle of these tiny mass values is to ask why the natural

‘Planck mass’, being a macroscopic 10�5g (about the mass of a small

midge), is so much larger than the masses of all the basic particles encoun-

tered in Nature. Yet another way of phrasing this puzzle is to ask why the

Planck distance of 1:6163� 10�35m is some 20 orders of magnitude

smaller than the tiniest scales normally encountered in particle physics.

This distance is considered to be of profound relevance in quantum gravity

theory, being a distance-scale below which the normal ideas of continuous

spacetime seem to make no real sense.2

One way of viewing these mysteries would be to regard the small values

of electric charge or mass as being the result of some renormalization

process where the bare value (§26.9) might be some mathematically re-

spectable number like 1 or 4p. Accordingly, the small observed values

could result from some merely large rather than inWnite renormalization

factor. This could occur if the divergent sums and integrals of QFT could

be replaced by something convergent. The divergences (‘ultraviolet’ diver-

gences, that is; see §26.9) normally come about because they involve

adding up larger and larger momenta, without limit, these referring to

tinier and tinier distances, without limit. Accordingly, the inWnities might

be removed if there were a cut-oV to the divergent integrals (or sums) at,

say, the (gravitational) Planck scale3 of 10�35m. Indeed, this kind of idea

was put forward by Oskar Klein in about 1935. All this suggests that,

when gravitation is appropriately brought in to the QFT calculations, a

Wnite theory, rather than a merely renormalizable one, might be the result,

and that within such a Wnite theory one might Wnd scope for understanding

these unexplained numbers.

Whereas such hopes have been around over half a century ago, now, the

problems involved in bringing gravity directly into the picture have so far

made things worse, rather than better. When standard techniques of

quantization have been applied to Einstein’s theory, a non-renormalizable

theory has been the result, rather than a Wnite one. This has led many

researchers to strive for something non-standard in their searches for a

quantum theory of gravity. It has, of course, been one of the messages of

earlier chapters of this book (most particularly Chapters 27–30) that we

should indeed look for a non-standard union between quantum (Weld)

theory and general relativity. But my contention that there should be
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some change on the quantum side of things is not one that has been

seriously taken up. An unsatisfactory non-renormalizable4 quantum grav-

ity is indeed the result when Einstein’s theory is submitted directly to the

standard procedures of QFT, and whereas many have argued for a change

in Einstein’s theory, they have not argued for a change in QFT.

31.2 Supersymmetry

What kinds of changes have been suggested? In one of these, the ideas of

supersymmetry have been adopted, and amalgamated with Einstein’s

theory (also with a torsion included; see §14.4 and Note 19.10 to produce

a scheme known as supergravity. What is supersymmetry? Why is this

regarded by a great many physicists as a ‘good thing’—to the extent that

supersymmetric ideas underlie a very large number of the developments in

modern fundamental theories, most importantly in string theory? Indeed,

a remarkable stature has been assigned to the tenets of supersymmetry,5

despite the fact that the predictions of this scheme of ideas seem to bear

little or no relation to what has so far been observed in Nature’s own

scheme of things.

At this point I must again declare my bias, and provide the required

statutory warning to the reader. I have found myself to be totally uncon-

vinced of the physical relevance of the scheme of supersymmetry, at least

in the form employed in particle physics and underlying theories today. As

of now, observations certainly do not provide much support—and prob-

ably none at all—for the claims of supersymmetry. The attraction of the

ideas comes from a much lauded mathematical elegance and from super-

symmetry’s undoubted value in cancelling away large batches of inWnities

in those QFT models that come under its umbrella. Suppose that you are a

physicist interested in constructing a QFT that is to be free of uncontrol-

lable inWnities. Then your task will be made enormously easier if you take

your theory to be supersymmetric!

The basic idea behind supersymmetry is that it provides a means

whereby fermions and bosons can be ‘paired oV ’ according to a kind of

symmetry relationship. As we have seen in §§25.5–8, the normal symmetry

groups of particle physics merely ‘rotate’ sets of bosons among themselves

and sets of fermions among themselves. They do not ‘rotate’ bosons into

fermions or vice versa. Supersymmetry, on the other hand does just this.

Recall from §26.2 that bosons satisfy commutation laws, whereas fermions

satisfy anticommutation laws. An operator that sends one to the other

must itself have anticommutation properties. But the operators that come

from an ordinary continuous group are the group’s inWnitesimal gener-

ators, which form a Lie algebra; see §13.6. Ordinary Lie algebra elements

satisfy commutation laws and not anticommutation laws. This means that
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the needed operators are not inWnitesimal generators of an ordinary

continuous group, but of a broader notion referred to as a supergroup,

where the laws of a Lie algebra are extended, so that some of the gener-

ators indeed satisfy anticommutation laws as well as commutation laws.

In §§26.2,3 we already encountered such things, namely equations like

ab� ba ¼ c,

which are satisWed by the creation, annihilation, and Weld operators of

QFT (in equations such as the C*F� FC* ¼ ikhcjfiI of §26.2). In ac-

cordance with this, a super-Lie algebra is constructed in the same way as

an ordinary Lie algebra, except that there is now the possibility of a plus

(þ) sign in the deWning relations. In §13.6, it was noted that the deWning

relations of a Lie algebra have the form [Ea, Eb] ¼ gwabEw, where gwab are the

structure constants and [Ea, Eb] ¼ EaEb � EbEa. These relations have

the form of the above displayed equation when there is the normal minus

sign between ab and ba. But for a super-Lie algebra we also allow the plus

sign, occurring when both the a and the b are fermionic quantities (rather

than both bosonic or one fermionic and one bosonic). The notation [a, b]þ
tends to be used for such anticommutators, i.e. [a, b]þ ¼ abþ ba, to

supplement the usual Lie bracket notation [a, b] ¼ ab� ba. This indeed

requires us to go beyond the usual notion of a Lie algebra.

The generators of supergroups are normally described as being built up

in a particular way. Rather than starting with ordinary real-number

quantities, we take these generators to be elements of a Grassmann alge-

bra, which, as we have seen in §11.6, involves anticommutation as well as

commutation properties. We shall be catching a more detailed glimpse of

how this works in §31.3.

Supergroups now form a respectable area of pure mathematics. More-

over, ideas from supersymmetry can be applied directly in mathematical

arguments to obtain results that are not so easy to obtain by other means.6

This, however, does not tell us whether supersymmetry, in the way that it

has been used, has any direct relevance to physics. On the other hand,

there are various instances where supersymmetry has proved useful in

either motivating or establishing mathematical results that are of direct

physical relevance.7 But again, this does not seem to me to carry a great

deal of weight for supergroups having any direct underlying relevance to

particle physics or QFT.

What evidence is there that supersymmetry does have a genuine role to

play in particle physics? Recall the standard model, as described in Chap-

ter 25. Its renormalizability owes a great deal to some precise ‘Wne-tuning’

of its parameters. These relationships can be largely understood in terms

of its requirements of SU(3)� SU(2)�U(1)=Z6 symmetry (§25.7). Yet,

according to some claims,8 the standard model requires some other very
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precise Wne-tuning over and above those relationships. Additional sym-

metries could be invoked to arrange for this, and supersymmetry has been

suggested as a means for achieving such Wne-tuning. Accordingly, such

ideas have frequently been made use of in grand uniWed theories (§25.8).

But do we have reason to believe in such GUTs? As yet there is no

observational evidence for this.

The tempting features of supersymmetry seem indeed to be that it

provides a way of interrelating bosons with fermions, and that it is much

easier to make supersymmetric QFTs provide Wnite answers than non-

supersymmetric QFTs. With a supersymmetric pairing-oV of bosons with

fermions, the inWnities of one set can be made to cancel the inWnities of the

other set. That makes the job of the QFT builder a good deal easier than it

would be without supersymmetry. But this does not tell us that Nature

herself does it this way. She may well have quite diVerent tricks up her

sleeve!

Now, the main diYculty with supersymmetry (as used today) is that it

demands that every fundamental particle in Nature has what is called a

‘superpartner’ with a spin that diVers from that of the original particle by
1
2
�h. There needs to be a 0-spin ‘selectron’ as partner to the electron, a

0-spin ‘squark’ to accompany each variety of quark, a 1
2
-spin ‘photino’ to

partner the photon, a 1
2
-spin ‘wino’ and ‘zino’ as respective partners for the

W and Z bosons, etc, etc. The trouble is that no such ‘supersymmetric

partner’ has ever been found. The oYcial explanation for this is that,

owing to some ‘supersymmetry-breaking’ mechanism, the nature of

which has never been adequately described, each of these putative super-

symmetry partners must be enormously more massive than the particle it

partners. The kind of mass that these unobserved particles are now being

postulated to have is something like a thousand times that of the proton,

or more. I have to say that I am far from alone in believing that this looks

a little contrived.

It seems to be postulated that, of the two ‘partners’, the one that has the

smaller spin (by 1
2
�h) is deemed to be the exceedingly more massive of the

pair (except when both members of the pair are massless). Presumably,

only particles considered as ‘elementary’ (these apparently being the

photon, the graviton, the W and Z bosons, gluons, leptons and quarks)

posses superpartners. Otherwise we have trouble with 0-spin particles

such as pions. If there are 0-spin elementary particles, such as the still

undiscovered Higgs boson, then they would have to count as more massive

than their superpartners, on this particular reckoning (since negative spin

is excluded). If this is correct, then why has the Higgs boson’s superpartner

not been found? Yet again, believers in both supersymmetry and inXa-

tionary cosmology must explain how the latter phenomenon’s scalar

’ particle (§28.4) Wts into the ‘superpartner’ picture.
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The one bit of ‘positive’ evidence that is now frequently cited as provid-

ing support for supersymmetry has to do with certain ideas as to how the

three forces of particle physics (strong, weak, and electromagnetic) are

claimed to have come together in one highly symmetrical uniWed scheme

when the temperature of the universe had some stupendous value (about

1028 K), some 10�39 seconds (only about 10 000 Planck moments) after the

Big Bang.9 The idea is that such uniWcation would require the interaction

strengths to be all the same, at that temperature. It should be remarked

that there is a factor of some 1013 between the strong and weak interaction

strengths under ordinary conditions (although the two cannot really be

directly compared). The argument is that, when renormalization eVects are

taken into consideration (and we recall from §26.9 how diVerent the

observed charge of a particle might be from its bare charge), then these

strengths would all come together, the ‘bare’ values coming into their own

at such enormous temperatures. (Recall the notion of ‘running coupling

constants’, referred to at the end of §31.1.) The arguments claim that,

without supersymmetry, the values do not quite come together, but just

‘miss’ (see Fig. 31.1); yet, when supersymmetry is brought into the picture,

the curves come to one glorious coincidence, and the grand uniWcation of

particle physics can take place!

The reader may well sense my lack of conviction. (Already in §28.3 I

have expressed some of my diYculties with theories for which ‘symmetry

restoration’ occurs, when the universe’s temperature is high enough.)

There are enormous extrapolations involved in this particular collection

of ideas claimed as observational support for supersymmetry. One of these

is the presumption that nothing essentially new is to be revealed in the

Sup
ersy

mmetry

Fig. 31.1 According to a certain ‘grand-uniWed’ perspective, the coupling con-

stants of strong, weak, and electromagnetic interactions, treated as ‘running

coupling constants’ (see Note 26.21 and §31.1), should all attain exactly the

same value at large enough temperatures, about 1028K, which would have oc-

curred at around 10 000 Planck moments after the Big Bang (� 10�39s). It was

found that supersymmetry is needed in order to bring all three values precisely

together.
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huge gap of energies (temperatures) between 1028 K and the roughly

1014 K that are accessible to present-day accelerators. This, in itself,

seems an unreasonable extrapolation, and I do not see how these argu-

ments can be regarded as providing any signiWcant observational support

for supersymmetry, except perhaps to those already committed.

31.3 The algebra and geometry of supersymmetry

Let us return to the supergravity theory with which I began this discourse.

In accordance with the above, there should be a 3
2
-spin superpartner of the

graviton, referred to as a gravitino. This postulated particle would be

massless, like the graviton itself unless there is severe supersymmetry

breaking. How is the gravitino to relate to geometry? Einstein has taught

us that gravitation is described by spacetime curvature (§17.9 and §19.6).

Does this imply that the gravitino ought to be playing some corresponding

(super)geometrical role? In accordance with a desire for such a role, many

supergravity theorists would argue that the ordinary notion of a manifold

(as described in Chapters 10 and 12) needs to be generalized, and the

concept of a supermanifold has accordingly been put forward. We can

think of this as being deWned in a very formal way, with the ordinary

notion of coordinates being generalized to include anticommuting elem-

ents. For an ordinary manifold, the coordinates are generally real numbers

(or complex numbers, if a complex manifold is being considered; see

§12.9). For a supermanifold, we take them to be elements of a Grassmann

algebra (§11.6).

Most supersymmetry theorists would not take such a rigorous attitude

to the nature of the ‘manifold’ on which their supersymmetric Weld quan-

tities live (even though the ‘geometric’ nature of standard general relativity

would seem to demand this for the case of supergravity). In the following

descriptions, it will not be necessary to hold rigorously to a ‘supermanifold’

point of view. The ‘superalgebra’ ideas may be considered to refer just to

quantities deWned on an ordinary spacetime manifold.

The simplest such algebra is obtained if we adjoin a single anti-

commuting element e to the real-number system R. The quantity e must

anticommute with itself: ee ¼ �ee, whence e2 ¼ 0. Thus, each element of

the algebra has the form
aþ eb,

where a and b are real numbers, commuting with e. Notice that the sum

and product of two such numbers is given by

(aþ eb)þ (cþ ed) ¼ (aþ c)þ e(bþ d),

(aþ eb) (cþ ed) ¼ acþ e(adþ bc):
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Notice also that, if we ignore the terms multiplying e, then we simply get

the rules of ordinary algebra back again.

This still applies if we have several diVerent supersymmetry generators,

say e1 , . . . , eN , which anticommute:

eiej ¼ �ejei, whence e2i ¼ 0,

and the general element of the superalgebra has the form[31.1]

aþ b1e1 þ b2e2 þ � � � þ bNeN þ c12e1e2 þ c13e1e3 þ � � � þ f12...Ne1e2 . . . eN :

The algebra behaves in such a way that, if we just take the ‘ordinary’ part a

of any element (with no es involved), then we just get the familiar algebra

of ordinary (real or complex) numbers. The ‘super’ part of the algebra is

the remainder. It is ‘nilpotent’ in the sense that when any of its elements

is raised to a suYciently high power, it vanishes completely.[31.2] Some-

times the fanciful terminology ‘body’ and ‘soul’ is used for this ‘ordinary’

and ‘super’ part, respectively.

Being someone who likes to be able to have a ‘picture’ of what is going

on, I have always found such a purely formal description of superalgebras

and supermanifolds unsatisfying. It is fortunate that there is indeed a more

conventional geometrical way of looking at these things. Let us, for the

moment, consider the easiest case of just a single supersymmetry generator

e. Since it is to be an anticommuting entity, we might try to think of it as a

1-form «. However, it cannot be just an ordinary 1-form that refers to

ordinary space—let us say the n-manifold M—with which we are

working. All the ordinary diVerential forms withinM already have mean-

ings that are taken up (see §12.4). What we must do is think of M as

embedded as a hypersurface in an (nþ 1)-dimensional manifold M0 (a

‘hypersurface’ being a submanifold of one dimension smaller than the

ambient space—see Note 27.11), where e is to be a 1-form that refers to

the larger manifold M0, but restricted to points of M. We are not sup-

posed to be interested in M0, except just at points of M, where M0

supplies an additional dimension pointing away fromM. See Fig. 31.2a.

(We are concerned only with what is referred to as the Wrst neighbourhood

of M in M0. That means ‘Wrst derivatives’ away from M, so we are

concerned with notions of tangent and cotangent vectors or spaces that

‘point’ into M0 away from M, but not higher-derivative notions such

as curvature in directions away from M.) What we are doing is still

something n-dimensional, in the sense that all our quantities can be

represented as functions of the n independent coordinates in the manifold

[31.1] Write down the sum and product of two such quantities when N ¼ 3. What is the

multiplicative inverse of such an element, where a 6¼ 0?

[31.2] Show this. What power?
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M. The ‘soul’ quantities refer to directions that point away from M
and into M0, whereas the ‘body’ quantities refer simply to directions

withinM itself.

The situation is not essentially diVerent if we require N supersymmetry

generators e1 , . . . , eN . We now think of our n-manifoldM as embedded in

an (nþN)-manifoldM0, where again we are to be interested inM0 only in

its immediate (Wrst) neighbourhood of M. We now require N diVerent

1-forms «1, . . . , «N to probe the N extra directions10 that point outwards

away from M and into M0. In my opinion, this picture (due to various

people, including Abhay Ashtekar, who features strongly in Chapter 32)11

makes the underlying ideas of supersymmetry and supermanifolds very

much clearer than the formal (and rather mysterious-looking) procedures

that are normally adopted. Note that the ‘body’ just refers to quantities

that are entirely intrinsic toM, whereas the ‘soul’ refers to quantities with

a component ‘pointing outwards’ intoM0, away fromM; see Fig. 31.2b.

Even with this clear geometrical interpretation, there are oddities in the

way in which ‘superalgebra’ is usually employed, if consistency with the

geometrical picture is to be maintained. An ordinary p-form a inM, for

which p is an odd number, would anticommute with a supersymmetry

generator «, if we take the product of « with a to be a wedge product.

However, this is not the normal convention in standard approaches to

superalgebra, where « would normally be taken to commute with a. This

is basically a notational matter, and if we are to consider products of

M

M

M�

M�

e

e

e

1
e 2

(a) (b)

Fig. 31.2 Geometrical description of supersymmetry generators. (a) For a single

generator e, regard our n-manifold M as a hypersurface in an (n þ 1)-manifold

M0, where « is a 1-form in M0 deWned at M (and « deWnes the n-plane tangent

toM as in Fig. 12.7, §12.3). We are interested inM0, only to ‘Wrst order’ atM, but

M0 supplies an additional dimension pointing away from M. (b) With N super-

symmetry generators e1, . . . , eN , the n-manifold M is now regarded as a sub-

manifold of an (n þ N)-manifoldM0, where again we are interested inM0 only to

Wrst order away fromM. The N independent 1-forms e1, . . . , eN ‘feel out’ the N

extra directions pointing out fromM, and intoM0.
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supersymmetry generators with forms, we can formally take this as a

symmetrical product rather than a wedge product. Although this makes

(formal) mathematical sense, it does somewhat muddy the ‘clean’ geomet-

rical picture that I am promoting here.

In fact, in the applications of supersymmetry in theories of ‘ordinary’

particle physics, the simplest case N ¼ 1 is usually adopted. The reason

seems to be that the proliferation of superpartners is much greater for

large N, each basic particle belonging to a 2N -plet of ‘partners’. The

observational problem is bad enough without this! In each case, the

relevant supergroups can be thought of as transformations involving

‘internal symmetries’ (which refer to the symmetries of the Wbres of some

bundle B over spacetime (§15.1) together with the ‘rotations’ that refer to

the extension of B into the immediate neighbourhood of B within some

space B0 of N greater dimensions.

31.4 Higher-dimensional spacetime

Now that we have a little better idea of what supersymmetry and ‘super-

geometry’ are really about, let us return to the matter of supergravity. The

original excitement surrounding this idea, in the late 1970s, came from the

hope that, unlike standard Einstein general relativity, supergravity could

turn out to be renormalizable. In the Einstein vacuum theory, non-renor-

malizable divergences had appeared ‘at the 2-loop level’—where the

‘loops’ refer to Feynman diagram expansions, the ‘number of loops’

referring to the number of cuts that would be needed in order to reduce

the Feynman graph to a tree graph (see §26.8, particularly the Wnal

paragraph and Fig. 26.8, and also §§26.9,10). With matter present, how-

ever, such divergences appear already at the 1-loop level, which can be

considered as a genuine disaster. In supergravity, these 1-loop divergences

magically cancelled out, for the type of matter that the theory allowed, and

many people had high hopes that this would continue to all loop orders.

Sadly, this turned out not to be the case, and non-renormalizable diver-

gences were found again at the 2-loop level in supergravity.12 It was

subsequently noticed that if the dimensionality of spacetime were to be

increased from the standard four to eleven, then matters looked very much

more promising. Despite this, a fully renormalizable version of super-

gravity was still not obtained and, as much more recent work has

shown,13 cannot be so obtained.

How is it that physicists could take seriously the possibility that the

dimensionality of spacetime might be other than the four that we directly

experience (one time and three space)? As mathematical exercises, such

higher-dimensional things seem Wne, but this is supposed to be a physical

theory where ‘spacetime’ really means the combination of actual space with
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time. Indeed, as we shall be seeing in §31.7, string theory (as it is currently

understood) requires that spacetime must indeed have more than four di-

mensions. In the early theory the dimension number was taken to be 26, but

later innovations (which involvedthe ideasof supersymmetry—see§31.2) led

to this spacetime dimensionality being reduced to 10.

Before we dismiss this idea as a total fantasy we must recall, from §15.1,

the ingenious scheme, put forward in 1919 by the (at that time) little-

known Polish mathematician Theodor Kaluza, and then further taken up

by that same Swedish mathematical physicist Oskar Klein whom we have

already encountered earlier in this chapter. Provided that the extra dimen-

sions (in excess of 4, that is) are taken as small dimensions, in some

appropriate sense, then we might not be directly aware of them. What

does ‘small’ mean in this context? Recall the ‘hosepipe’ analogy of

Fig. 15.1. When looked at from a great distance, the hosepipe appears to

be 1-dimensional, but if we examine it more closely, we Wnd a 2-dimen-

sional surface. The idea is that some being, inhabiting the hosepipe uni-

verse, would not ‘know’ that the extra dimension wrapping around the

pipe is actually ‘there’, provided that the physical dimensions of that being

are much larger than the circumference of the hosepipe. Similar remarks

would apply to a higher-dimensional ‘hosepipe universe’ of 4þ d dimen-

sions, where d of the dimensions are ‘small’ and not directly perceived by a

much larger being inhabiting this universe, who perceives only the 4 ‘large’

dimensions; see Fig. 31.3.

What degree of ‘smallness’ is to be expected in the Kaluza–Klein model,

or in modern yet-higher-dimensional versions of this idea? Klein himself

came to the conclusion that the ‘scale’ of the tiny extra dimension (‘hose-

pipe circumference’) should be of the order of the Planck distance of

10�35 m. This also seems to be the most popular kind of scale (or just a

little bigger than this) that is adopted in the more modern schemes, such as

in higher-dimensional supergravity and string theory. It is clear that, for

Normal spacetim
e

‘being’
Extra
dimensions

Fig. 31.3 Hosepipe model of a Kaluza–Klein-type higher-dimensional spacetime

(see Fig. 15.1), where the dimension along the length of the hosepipe represents

normal 4-spacetime and the dimension around the pipe represents the ‘small’

(perhaps Planck-scale) extra dimensions. We imagine a ‘being’ who inhabits this

world, as straddling these ‘small’ extra dimensions, and so is not actually aware of

them.
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beings such as ourselves, this indeed counts as ‘small’, and it may be

expected that we should have no direct experience of extra spacetime

dimensions as tiny as that.

In fact, there are some recent developments (in string theory) in which

the extra dimensions are not taken to be (that) small, but might refer to

something even so ‘large’ as a millimetre in diameter (or perhaps not even

closed up at all). One idea is that there might be observational conse-

quences of such a scheme which show up as a modiWcation of the inverse

square law of gravitational attraction at such distances. In fact, some

very delicate experiments have recently been performed in order to

ascertain whether such deviations from Newton’s theory might be detect-

able.14 So far, no such deviation has been found, down to half a milli-

meter.

Whatever the status of these newer ideas, this suggestion of a higher-

dimensionality for spacetime has, at this stage in our deliberations, a status

no more compelling than that of a ‘cute idea’—which the original Kaluza–

Klein suggestion certainly was. Whatever may be the mathematical at-

tractiveness of this idea, we have to address the question of whether there

are good physical reasons for believing in such a scheme. In the case of the

original Kaluza–Klein model, the reason for adopting this higher-

dimensional perspective was in order to ‘geometrize’ electromagnetism.

As we recall from §25.1, the only forces of Nature that were known (and

understood) in the early part of the 20th century were the gravitational

and the electromagnetic. Einstein had just shown how to incorporate the

gravitational Weld into the curvature of 4-dimensional spacetime. It was,

indeed, a very attractive and natural-looking idea to try to bring electro-

magnetism also into such a geometric framework. Moreover, there was

something rather miraculous in the way that the very same ‘vacuum

Einstein equations’—namely the vanishing of the Ricci tensor (Rab ¼ 0;

see §19.6)—apply in the Kaluza–Klein 5-dimensional theory just as in the

standard 4-dimensional general relativity. In the 4-dimensional theory,

this equation refers to the vacuum state—that is, to the absence of all

physical Welds except for gravity. In the 5-dimensional theory, it almost

refers to the state where only gravity and electromagnetism operate,

thereby encapsulating the known physical Welds of the time.

The ‘almost’ states the case somewhat too strongly, however. For, most

importantly, it is essential for the classical Kaluza–Klein model that there

be a symmetry in the ‘small’ dimension, so that there are not inWnitely too

many degrees of freedom. Let us see why these extra degrees of freedom

would otherwise come about. Recall the discussion of §16.7, concerning

the ‘size’ of the inWnite-dimensional space of Welds on some given

space. For a Weld that can be speciWed by k independent freely-chosen

components on a q-dimensional initial data surface, the freedom is1k1q

.

882

§31.4 CHAPTER 31



For standard Einstein general relativity, we have (for somewhat com-

plicated reasons)15 k ¼ 4 and q ¼ 3, so this quantity turns out to be

1413

and for Maxwell theory we get exactly the same freedom. For the

combined Einstein–Maxwell theory, the eVective number of components

per point of the initial data surface is the sum of the values for each

Weld separately, so we have 4þ 4 ¼ 8 eVectively independent components

per point of the initial 3-surface, and the correct value for the full

freedom is

1813

:

Now, in a 5-dimensional theory subject solely to the condition of Ricci

Xatness (i.e. Rab ¼ 0; see §19.6), the initial surface is 4-dimensional (so

q ¼ 4), and it actually turns out that k ¼ 10. This would give us an

enormously greater freedom 11014

for the Weld than the required value

(as displayed above), not because 10 is greater than 8 (the k value) but

because 4 is greater than 3 (the q value). There are hugely more functions

of 4 variables than there are functions of 3 variables!

In the Kaluza–Klein model, we reduce the 4 back to 3 by imposing a

continuous (in fact U(1), cf. §13.10) symmetry in the small dimension.

There has to be a Killing vector (§14.7) expressing this symmetry and,

in eVect, the Kaluza–Klein 5-space is an S1-bundle B over ordinary

4-dimensional spacetimeM. This does not seem so far from the conven-

tional bundle description of electromagnetism, as described in §19.4 (and

§15.8). A basic diVerence is that B itself is here assigned a Ricci-Xat

Lorentzian (pseudo)metric, rather than a metric being assigned only to

the spacetimeM.16 The striking fact about the Kaluza–Klein model is that

the imposition of Ricci Xatness on B (in addition to the U(1) symmetry) is

surprisingly close to providing us with the complete equations of Einstein–

Maxwell theory17 onM. All that one needs, in addition, is that the Killing

vector have a constant non-zero (in fact negative) norm. This eliminates an

unwanted scalar Weld, and the exact 4-dimensional Einstein–Maxwell

theory is thereby expressed!

Elegant as it is, the Kaluza–Klein perspective on Einstein–Maxwell

theory does not provide us with a compelling picture of reality. There is

certainly no strong motivation from physical directions to adopt it. Super-

symmetry, for example, certainly has a stronger physical case, because of

its undoubted value in reducing the problem of inWnities in QFT. Why,

then are higher-dimensional Kaluza–Klein-type theories so popular in

modern strivings towards a deeper theory of Nature? The main reasons

come from string theory which, in all comprehensive versions actively

pursued today employs both supersymmetry and higher dimensions18—

in essential ways.
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31.5 The original hadronic string theory

What, then, is string theory? And why does it have such a powerful hold

on so many of today’s theorists? Again, this scheme of things gains its

strongest motivation from the desire for the elimination of the inWnities of

QFT. In that sense, it represents a continuation of the driving ideas of

Chapters 24–26. But there was also another important historical motiv-

ation, of a seminal nature, that had speciWcally to do with some observa-

tional curiosities in hadronic physics. Let us take a glimpse at these Wrst.

This original issue had to do with certain relationships that were found

in the particle physics of hadron scattering. In Chapter 25, it was men-

tioned that, among the hadrons, there are many ‘particles’ that are so

short-lived (lasting only for about 10�23s) that they just barely deserve that

name, and are often referred to as resonances. Now, we recall that the rules

of QFT (§25.2, §§26.6,8) demand that in any physical process,

all the possible diVerent activities that might take place have to be added

into the total, in order to get the full quantum amplitude. All possible

particles and resonances must therefore be taken into account for this. We

might, for example, have a hadronic scattering process where two particles

A and B come together and, after a Xeeting moment, convert themselves

into the pair of particles C and D. Now one way that they might do this

could be for A and B to combine together to make a single particle

(resonance) X which, almost at once decays into the particles C and D.

There might be many such possible intermediate particles X, X0, X00 , . . . ,
and the eVect of each one would have to be added into the total. The

Feynman graphs for each of these processes are indicated in Fig. 31.4a.

Now, an alternative way that the transformation might happen is that a

particle Y is ‘exchanged’ between A and B, converting A to C and B to D.

Again, there might be a list of possible exchange particles Y, Y0, Y00 , . . . ,
the Feynman graphs being shown in Fig. 31.4b. There is a third family of

processes whereby the transformation might take place, which diVers from

this in that the outgoing particles C and D are taken the other way around,

and the Feynman graphs for these are shown in Fig. 31.4c. There are

other, more complicated, ways in which we might imagine that the trans-

formation takes place, involving closed loops (Fig. 31.4d) but these ‘higher-

order’ processes will be considered, for the present, as unimportant.

To obtain the total amplitude for the process whereby the pair (A, B)

becomes converted to the pair (C, D), we should add up all these diVerent

contributions; but what was found, rather surprisingly, was that each of

these three possibilities appeared to give the same answer, and that this

single answer seems to be basically the correct answer. If we are to add all

three answers together then we get something too big. Somehow, each of

the three collections of Feynman graphs, as given in Fig. 31.4a,b,c,

respectively, when summed up individually, represents physically the
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same thing! From the standard Feynman-graph perspective, this ‘dual-

ity’19 seems incomprehensible, but in 1970 the Japanese/American physi-

cist Yoichiro Nambu,20 basing his considerations on a remarkable

formula21 found by the young Italian Gabriele Veneziano in 1968, came

to the conclusion that all this could be made sense of from a diVerent

perspective, whereby the individual hadronic particles were modelled by

strings rather than point particles. A string history is a 2-dimensional

surface, so the processes described in the Feynman diagrams of Fig.

31.4a,b,c,d, respectively, can now be pictured as the various alternative

‘plumbings’ depicted in Fig. 31.5a,b,c,d respectively. What is striking

about this ‘string perspective’ is that the three processes (a), (b), (c),

which seem so diVerent, from the standard Feynman-diagram perspective,

are now all topologically equivalent, and may be regarded as just three

diVerent ways of looking at the same process. Thus the ‘string’ picture

suggests a way to make sense of a puzzling fact of hadronic physics.

T
im

e
A B A B A B A B

X,or...
Y,or...

Z,or...

C D
C D C D C D

(a) (b) (c) (d)

Fig. 31.4 Feynman graphs of a hadronic scattering, where two particles, A, B

are converted to the pair C, D. (a) In one family of such processes, A and B

combine to make a particle (resonance) which, almost at once, decays to C and D,

there being many possible intermediaries X, X0, X00, . . ., all contributing to

the total. (b) In an alternative family of processes, a particle Y (or Y0, or Y00,
or . . . ) is ‘exchanged’, converting A to C and B to D, each intermediary contrib-

uting. (c) A similar ‘exchange’, involving Z (or Z0, or Z00, or . . . ), where now A is

converted to D and B to C, each intermediary contributing. It turns out that to

lowest order, the alternatives (a), (b), (c) are equivalent, rather than having to be

added together. (d) Other ways of achieving this transformation, involve closed

loops.

Fig. 31.5 The string-history picture of the respective processes of Fig. 31.4

provides an explanation of the equivalence between (a), (b), and (c), since they

can be transformed into each other, as they are topologically the same. (d) Higher-

order processes correspond to more complicated topology, where the topological

genus corresponds to the number of loops (compare Fig. 8.9).
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This comment is just qualitative, but the string picture also presented a

physical model that provided a mathematical derivation of Veneziano’s

formula. In addition, the string model—in which the strings behaved

rather like tiny elastic bands, with a string tension increasing in proportion

to the amount that a string is stretched—provided an explanation of

another observed feature of hadronic physics, namely the straightness of

Regge trajectories. Regge trajectories are lines that are seen when, for a

particular class of hadron, we plot the value of the spin against the square

of the mass. These lines turn out to be remarkably straight. An example is

depicted in Fig. 31.6. As far as I am aware, there is still no complete

alternative explanation of this striking observed fact concerning

hadrons.22

Moreover, the string model gave signiWcant and reasonable hope that a

Wnite theory of hadronic physics might be obtainable with this picture.

Roughly speaking, it served to ‘smooth out’ the (ultraviolet) divergences of

the conventional Feynman approach (§26.8). One may think of these

divergences as arising from small-distance eVects when point particles

get closer and closer to one another, without limit. The strings are not

point particles, so this provides scope for relieving this problem. In fact, it

is the issue of closed loops in the standard Feynman-graph picture that

causes the divergence diYculties. In the string picture, the closed loops are

simply taken over by surfaces with higher topology, as indicated in Fig.

31.5d, this being a string version of Fig. 31.4d. This ought to provide

something Wnite rather than the divergent integrals from the Feynman

graphs. Furthermore, a single string-history picture can encompass many

diVerent Feynman diagrams, giving us a much better chance to represent

the physical total answer to a problem—which should be Wnite—rather

than non-physical parts that might individually diverge, these divergences

being supposed to cancel one another. Also, diVerent varieties of particles

could be incorporated simply as diVerent vibrational modes of the strings.

Finally, the 2-dimensional spacetime string histories have the remarkable

additional property that they can be taken as Riemann surfaces which, as

we recall from Chapter 8, have extraordinarily rich geometrical and ana-

lytical properties (the fact that actually underlies Veneziano’s remarkable

j

m2

Fig. 31.6 Straight ‘Regge trajectories’ of particle resonances of increasing spin,

plotted against mass squared. The elastic string picture provides an explanation.
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formula). Here is scope, indeed, for the complex magic that seems to be

part of Nature’s design at the quantum level of reality.

This is undoubtedly a most elegant mathematical picture of what could

perhaps be going on at some level of physical description deeper than that

of ordinary particles. When I Wrst heard of this picture (around 1970, from

Leonard Susskind, who was one of the earliest researchers in this Weld) I

was extremely struck by the beauty and potential power of this collection of

ideas. It seemed to me that here was something new which was both

mathematically exciting and of apparently direct relevance to an important

area of particle physics. My own primary interests at the time were in

twistor theory (which we shall come to in Chapter 33), and it seemed to

me that I should certainly attempt to forge some link between what I was

doing and these very promising-sounding new ideas. Twistor theory makes

crucial use of complex (holomorphic) structures, and with basic string

theory we seem to see such structures controlling physical behaviour, via

the essential use of Riemann surfaces—which are, indeed complex curves.23

Remarkably, some very recent work of Witten (2003) may now be

realizing some of these early aspirations. I shall return to these very

positive new developments, which do not employ higher dimensional

spacetime, in §31.18. But as yet these do not represent a comprehensive

new string theory, and my remarks in the intervening sections refer,

instead, to what may be called ‘main-stream’ string theory.

31.6 Towards a string theory of the world

How have these remarkable initial ideas stood the test of time, after the

more than 30 years that have elapsed since then? Have the developments in

the subject over those years kept up or exceeded this initial promise? These

are questions to which diVerent people may give wildly diVering answers.

String theory has sometimes even become a highly emotionally charged

subject. To its thoroughgoing supporters, string theory (with its later

transmutations) is the physics of the 21st century, and it represents a

revolution in physical thought at least comparable with, if not greater

than, those of general relativity or quantum mechanics. To its most

extreme detractors, it has achieved absolutely nothing, physically, so far,

and has little chance to play any signiWcant role in the physics of the

future.

It would be impossible for me even to attempt to be properly dispassion-

ate in my account of these developments, but at least I shall try to be

reasonably accurate and to give reasons for the impressions that I have

formed. I must, as before, provide my statutory warning to the reader that

many active and exceptionally capable theoretical physicists disagree with

my views. But I cannot do other than present things as I see them.
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Since my viewpoint will be less than positive about a good many

aspects of the current string-theory programme, I should at least give

the reader scope for redressing this possible imbalance. First I present

points of view of two of the most important Wgures in the development of

the subject. In the words of Michael Green,24 of the University of Cam-

bridge:

The moment you encounter string theory and realize that almost all of the

major developments in physics over the last hundred years emerge—and

emerge with such elegance—from such a simple starting point, you realize

that this incredibly compelling theory is in a class of its own.

And Edward Witten, of the Institute for Advanced Study in Princeton, has

famously remarked:25

‘It is said [by Danielle Amati] that string theory is a part of twenty-Wrst-

century physics that fell by chance into the twentieth century.’

As for a popular account, which is very accessible, eloquent, and enthusi-

astic, and not at all critical—but which does not go deeply into the

mathematical ideas—see Greene (1999).26

In order to present a consistent, if not necessarily fair, perspective on the

subject of string theory, taken from my particular vantage point, I propose

to give a roughly historical description of how the subject has itself

impinged upon my own thinking. In this way, I shall try to indicate not

only something of the successive developments that have taken place in the

theory, but also what my own reactions to these developments have been.

What makes string theory so diYcult to assess dispassionately is that it

gains its support and chooses its directions of development almost entirely

from aesthetic judgements guided by mathematical desiderata. I believe

that it is important to record each of the turnings that the theory has

undergone, and to point out that almost every turn has taken us further

from observationally established facts. Although string theory had its

beginnings in experimentally observed features of hadronic physics, it

then departed drastically from those beginnings, and subsequently has

had rather little guidance from observational data concerning the physical

world.

Imagine a tourist trying to locate a speciWc building in a vast and

completely unfamiliar city. There are no street names (or at least none

that make any sense to the tourist), no maps and no indication from the

totally overcast sky as to which directions are north, south, or whatever.

Every so often there is a fork in the road. Should the tourist turn right

or left, or perhaps try that attractive little passageway hidden over to

one side? The turns are frequently not right angles, and the roads are

hardly ever straight. Occasionally the road is a dead-end street, so steps

must be retraced and another turning made. Sometimes a route might
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then be spotted that had not been noticed before. There is no-one around

to ask the way; in any case the local language is an unfamiliar one. At

least the tourist knows that the building that is sought has a particular

sublime elegance, with a supremely beautiful garden. That, after all, is

one of the main reasons for looking for it. And some of the streets that

the tourist chooses have a more obvious aesthetic appeal than the others,

with more attractive architecture and beautiful courtyards adorned

with superb shrubs and Xowers—which sometimes, upon close examin-

ation may turn out to be plastic. Many choices are involved in the route

to be followed and, for each choice, the tourist’s only guide is the

area’s aesthetic appeal, together with some feeling for an overall general

consistency—of style, or of some kind of imagined underlying pattern for

the city.

Perhaps, for a better analogy, let us suppose that you are the tourist, but

you are part of a group, led by a tour guide of impressive intelligence,

knowledge, and sensitivity—the only trouble being that, in this case, the

guide has no prior knowledge of the city and has had no prior encounter

with the local language. You may well believe that the guide has better

aesthetic insights than you have yourself, and certainly comes to quicker

judgements about such things than you do. Occasionally, the guide’s

sensitivity to hidden patterns locates a building of particular sophistication

in its elegance. But the criteria are not, in essence, of a kind fundamentally

diVerent from those that you might yourself choose to use. If you follow

the group, then at least you will have the companionship of others, and

you can talk to them about the surrounding architecture and share the

excitement of the quest for your common goal. Even if you do not expect

to Wnd that goal, you enjoy the search. But perhaps, on the other hand,

you prefer to go oV on your own, as you become ever more suspicious that

the tour guide knows no more of how to Wnd your goal than you do

yourself. Each successive choice of turn is a gamble, and on frequent

occasions you may perhaps feel that a diVerent one held more promise

than the one that the guide had actually chosen . . .

Of course, we have witnessed several examples, in earlier chapters,

where great physicists have demonstrated the power of their special in-

sights, these insights being often of a distinctly mathematical character.

One of the most impressive of these must surely be Dirac’s Wnding of the

equation for the electron, as described in §24.7. Yet the aesthetic leap was

essentially just one majestic step into the unknown, from the sound body

of mathematical understanding that had arisen from the experimental

Wndings of quantum mechanics. Dirac’s prediction of the electron’s anti-

particle involved another such leap. But it was made with great caution,

and subsequently conWrmed in observation. Einstein’s general relativity

was also partly driven by mathematical aesthetic considerations, and
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general relativity’s strength gains, to an enormous degree, from its pro-

foundly beautiful mathematical structure. When Einstein Wrst formulated

the theory, there was no clear demand for it on observational grounds.

Yet, it can hardly be said that Einstein was simply driven by mathematical

aesthetic considerations. His guidance came primarily from the physics,

and lay in his conviction that the principle of equivalence (§17.4) must be

central to the understanding of gravity.

In contrast, string theory has been almost entirely mathematically

driven. I should Wrst make clear that this is, in itself, not necessarily a

bad thing. All successful physical theories have strong mathematical

underpinnings. Mathematical consistency is indeed a crucial feature for a

physical theory, if that theory is to make overall sense. And once a

particular mathematical framework has been established, then rigorous

mathematical developments within that framework can have powerful

implications for the physical world. (The Lagrangian and Hamiltonian

developments in classical physics described in Chapter 20 provide impres-

sive examples of this.) However, diYculties arise when, in order to over-

come an inconsistency, a previously believed theory must be changed, and

the particular way in which some theory might be changed may depend

upon the particular mathematical knowledge and aesthetic preferences of

the theorist. Very often, the change will be just an idea—perhaps even a

‘brilliant idea’—likely still to have failings of mathematical inconsistency,

although perhaps diVerent from those failings of the theory it replaces.

Further changes might then needed, and so on. If there are too many of

these, the chance of guessing right each time may become exceedingly

small.

31.7 String motivation for extra spacetime dimensions

An early inconsistency in the string-theory picture was the emergence of a

serious anomaly. Recall from §30.2 that anomalies arise when the classical

commutation rules, expressing a classical symmetry or invariance prop-

erty, cannot be fully realized by quantum commutators, so the quantum

theory loses a quality of the classical theory that might have been regarded

as essential. In the case of string theory, this anomaly referred to an

essential parametrization invariance in the description of the string. The

presence of the anomaly led to eVects that were regarded as disastrous. It

was found, however27 that increasing the number of spacetime dimensions

from 4 to 26, caused the anomaly to disappear.28 Accordingly, string

theory seemed only to be quantum-mechanically consistent in a spacetime

of 26 dimensions.

My own reaction to this was basically: ‘there ought to be a diVerent way

around this’—although I had never looked at the problem suYciently to
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appreciate the strength of the reasoning behind this ‘26-dimensional’

conclusion. I suspect that many others reacted in a similar way, because

the theory lost a good deal of its previous popularity at this point. But my

own reasons for discounting a 26-dimensional universe model had an

additional input, coming from twistor theory. As we shall be seeing in

§§33.2,4,10, it is an essential implication of my own particular ‘twistorial’

perspective that spacetime indeed have the directly observed values of one

time and three space dimensions (i.e. ‘1þ 3 dimensions’).

In addition to this problem of what to do with these extra dimensions—

which were presumably to be dealt with according to some Kaluza–Klein-

type prescription—this relatively simple-looking string model of hadrons

ran into other diYculties, such as the appearance of tachionic behaviour

(faster-than-light propagation). Also, the growing success of the standard

model, as described in Chapter 25, led physicists to be less interested than

they had been before in such ‘far-out’ suggestions as string models. The

puzzling features of hadronic physics, referred to above, that started

Veneziano, Nambu, and others on the road to strings, found a (partial)

alternative QCD explanation in terms of the gluon–quark picture.

Most particularly the ‘pointlike’ nature of the constituents of hadrons

was becoming experimentally apparent, this being consistent with the

quark picture of the standard model but not with the string picture as it

then was. The typical size of a loop of string would relate to the string’s

coupling strength, and for the original hadronic strings (with a string

tension consistent with the strength of the strong-interaction coupling

constant), this would give an average loop scale of some 10�15 m. This is

hardly ‘pointlike’ at the scale of a proton, being comparable to the ‘size’ of

a proton itself.

After nearly a decade during which there was little interest in string

theory, a development then took place that resulted in what is sometimes

referred to as ‘the Wrst superstring revolution’. In 1984, Michael Green and

John Schwarz put forward a scheme (subsuming some earlier suggestions

made by Schwarz and Joël Scherk) in which supersymmetry was incorpor-

ated into string theory (to provide us with ‘superstrings’ rather than just

‘strings’), and the spacetime dimensionality29 was thereby reduced from 26

to 10. This removed the ‘tachionic problem’ referred to above. Moreover,

with a radical change in the scale and nature of the string tension, string

theory was now to be considered as primarily a quantum-gravity theory,

rather than a theory of strong interactions. It had already been recognized

that there should be a massless particle/Weld of spin 2 arising from a

vibration mode of the strings. This had been an embarrassment with the

original ‘hadronic’ version of string theory, since there is no hadronic

particle of this nature. But with the new strings, with their far greater

string tension, it would indeed be appropriate to identify this massless Weld
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with gravity. Now, a typical string loop size is something of the general

order of the tiny (gravitational) Planck length—about 20 orders of magni-

tude smaller than before, and certainly pointlike at the hadronic scale.

I should mention one further technical diVerence in the nature of the

string tension that is introduced with the new ‘gravitational-scale’ strings

(not normally emphasized in popular accounts). The original hadronic

strings were rather like rubber bands, in that the the tension increases as

the string is stretched, in proportion to the amount of the stretch.30

However, the new gravitational-scale superstrings exert a constant tension

�hc=a0, which is thus independent of the amount of the stretch, where a0 is a

very small number (an area measure) referred to as the string constant. In

this respect, the original hadronic string was much more like the type of

entity that had been familiar in ordinary physics in which a classical

version of it makes physical sense. (A classical version of the new super-

string, with its constant tension, would almost instantly shrink away to a

singularity of zero size!)

31.8 String theory as quantum gravity?

These developments completely transformed the general perception of

string theory, and it rapidly gained great popularity. Frequent claims

were made that string theory provided a ‘complete consistent theory of

quantum gravity’, where the non-renormalizability of standard general

relativity (see §31.1) is replaced by a completely Wnite string theory of

quantum gravity.31 Although, if pressed, some string theory proponents

might admit that not all of the Wniteness claims were completely proved,

this would be regarded as a matter of little importance. As a prominent

theoretical physicist and string theorist had remarked32

String theory is so obviously Wnite that if someone were to publish a proof, I

wouldn’t be interested in reading it.

Moreover, the string theory of quantum gravity tended to be regarded by

the string theorists as ‘the only game in town’, as is illustrated by the

following comment on approaches to quantum gravity other than string

theory, by Joseph Polchinski (1999):

. . . there are no alternatives . . . all good ideas are part of string theory.

I suspect that it was the forcefulness of the early Wniteness claims (although

see §31.13) that supplied much of the impetus that the theory then ac-

quired. Indeed, if this claimed discovery of the sought-for ‘quantum

gravity’—the missing union between the two great revolutions of 20th-

century physics—were actually vindicated, then this would establish string

theory as being not only one of the major intellectual achievements of that
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century but also a revolutionary basic framework for future progress in

fundamental physics.

I believe that even many of today’s string theorists might regard as

overblown the claims that the quantum-gravity problem was completely

‘solved’ by string theory in the 1980s. Such people might be happier now to

take this more sober position, than they would have been before, because

today’s string theory has moved on, and it diVers appreciably from that

scheme of 1984. They would, nevertheless, be likely to take the view that

the 1984 string theory had at least provided the most impressive step yet

towards this quantum-gravity goal.

What was my own response to these claims? Very negative, I am afraid,

as was the reaction of most of my close colleagues. No doubt much of the

reason for this negative reaction could be attributed to diVerences in

cultural background between those, such as myself and my colleagues,

whose outlook was rooted in a deep interest in Einstein’s general relativity,

and those others whose drives came more from the QFT side. The main

eVect of this diVerence in outlook was that we would have quite separate

views as to the central issues to be resolved in a quantum–gravity union.

Those who come from the side of QFT would tend to take renormaliz-

ability—or, more correctly, Wniteness—as the primary aim of this union.

On the other hand, we from the relativity side would take the deep

conceptual conXicts between the principles of quantum mechanics and

those of general relativity to be the centrally important issues that needed

to be resolved, and from whose resolution we would expect to move

forward to a new physics of the future. Our negative reaction to the strong

claims that the string theorists were making at this time did not just arise

from matters of detail or general disbelief (though these were important

too), but from a frustration in the fact that the very problems that we

thought were central to the whole quantum/gravity issue seemed not to be

recognized by the string theorists as existing at all!

Some of these matters were touched upon in §30.11 (and another will

be referred to in §33.2). It should be mentioned, however, that the

issues raised in those sections barely scratch the surface of the profound

conXicts that the principle of general covariance entails33 in relation to

QFT (§19.6). There is also the basic issue of what a ‘quantum spacetime

geometry’ is to be actually like. String theory operates simply with a

smooth ‘classical’ background spacetime, which is not even inXuenced

directly by the presence of a string—since the basic unexited string itself

carries no energy, and so does not directly ‘curve’ the background space-

time. Most people in the relativity community have the expectation that

the true ‘quantum geometry’ should take on some elements of discreteness,

or should at least diVer profoundly from the classical smooth-manifold

picture.
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These deep issues will be faced more squarely in the next two chapters,

as will certain approaches to their resolution. In particular, the ‘loops’ that

we shall encounter in the next chapter (§32.4), although very superWcially

resembling strings, are quite diVerent from them in numerous respects. In

particular, the spacetime geometry is profoundly inXuenced—indeed, es-

sentially created—by the presence of these loops, the spatial metric being

entirely concentrated along them, completely vanishing elsewhere. In

string theory, on the other hand, a smooth spacetime is taken to be already

present as a background for the strings, and restrictions on its metric

geometry come about only from indirect inXuences of the strings, in a

manner that we shall come to shortly (in §31.9). But for now, let us set

aside this question of whether or not the really important quantum-gravity

issues have been properly addressed by string theory. Instead, let us

instead consider the string theorist’s claims that they have a Wnite quantum

theory of gravity. Do they? I shall try to address this question in the

remainder of this section, and in the Wve that follow it.

One point of signiWcance is perhaps contained in the wording. The

claims of string theorists are that they have a ‘quantum theory of gravity’,

not of general relativity or of Einstein’s theory. What do they mean by

‘gravity’ if not Einstein’s superbly conWrmed general relativity? We recall,

Wrst, that the string theorist’s spacetime is now 10-dimensional (or, as we

shall be learning shortly (§31.14), roughly 10-dimensional—but try not to

let that worry you for the moment!). What is ‘gravity’ in 10 dimensions?

Well, the tensor calculus works just as well in 10 dimensions as it does in 4

(see §§14.4,8), so we can still construct the Ricci tensor Rab, just as before.

As we saw in §19.6, the condition for a vacuum in ordinary Einsteinian

gravity is Ricci Xatness, so we might guess that the string theorist’s

gravitational ‘vacuum equation’ looks the same, namely

Rab ¼ 0,

except that we are now in 10 dimensions. We might also expect, by analogy

with what happens in 5-dimensional Kaluza–Klein theory where the

‘5-vacuum’ includes both gravitation and electromagnetism, that this

equation in 10 dimensions, i.e. the ‘10-vacuum’, is also to accommodate

all the non-gravitational Welds as well as gravity.

Well, this is what the string theorists basically mean—at least

roughly. Somewhat more precisely, they regard Ricci Xatness as being an

implication of only the Wrst term in an inWnite power series in the string

constant a0, the higher-order terms providing us with ‘quantum correc-

tions’ to Ricci Xatness. (The coeYcient of (a0)r could involve higher

derivatives of curvature tensors and polynomial expressions in

such tensors.) Moreover, in addition to the metric on the 10-dimensional

spacetime there are also other Welds that arise in this discussion. One of
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these is an antisymmetric tensor Weld, and also there is a scalar

Weld referred to as the dilaton34 (which has to do with overall scalings)

and is rather like the (unwanted) scalar Weld of the original Kaluza–

Klein theory. (We recall that this scalar is removed by normalizing

the Killing vector; see the penultimate paragraph of §31.4.) The dilaton

will have some relevance to later discussions; see §31.15. Recall that

the string constant is very small. It is now taken to be only very

slightly more than the square of the Planck length (a0 being a tiny

area), with

a0 � 10�68m2:

Thus, Ricci Xatness, for the 10-spacetime metric, is considered to be an

excellent approximation.

31.9 String dynamics

You might be wondering where these statements about spacetime curva-

ture actually come from, since string theory is really just a theory about

these little strings running about in some background spacetime (albeit of

9 spatial dimensions). In fact, I have not been speciWc, as yet, about the

equations that control the string dynamics. Let us see to this next.

As is usual in Weld theory, there is a Lagrangian (§§20.5,6 and §26.6), and

the string Lagrangian is deWned by 1=2a0 multiplied by the surface area of

the 2-surface history—the world sheet—that the string traces out in space-

time. The metric on the world sheet is to agree with that induced from the

spacetime; and classically the dynamics would be simply that the world

sheet is a kind of ‘soap Wlm’, or ‘minimal surface’ (of appropriate metric

signature) in the given spacetime background. The background is subject

to no constraints, classically. The string simply Xaps around according to

this speciWed dynamics. In quantum mechanics, however, the anomaly

issue looms large, and we Wnd that even the condition that the background

has 10 dimensions with supersymmetry, is now not suYcient, and the

above conditions on the 10-space curvature are also needed, to provide

consistency conditions on the background metric for the quantum strings.

In addition to this Einstein-equation-like consistency requirement, we

recall the ‘lowest mode of excitation’ of a closed string, referred to in §31.7,

that seemed to describe a massless particle of spin 2. Its ‘spin 2’ nature

arises because the mode has a quadrupole (or ‘ ¼ 2) structure to its

oscillation (see §22.11 and §32.2) and it is massless essentially because

it is the lowest mode of a very ‘stiff’ string. Although the mode had

presented a serious problem for the original hadronic strings, in its new

gravitational context it was now viewed with favour because, in ordinary
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(4-dimensional) physics, a graviton (quantum of the gravitational Weld)

would be a massless particle of spin 2. In the conventional analysis, this

comes about through an examination of perturbations in the metric Weld

(described by a symmetric tensor ‘hab’, giving the inWnitesimal shift in a

metric from gab to gab þ ehab, where e is inWnitesimal see also §32.2). The

viewpoint appears to be, in the new string theory—in view of the above

Einstein-equation-like consistency requirement (albeit in 10 rather than 4

dimensions), and this ‘graviton-like’ string excitation mode—that ‘string

theory includes gravity’. In the words of Edward Witten (1996):

String theory has the remarkable property of predicting gravity,

and Witten has further commented:35

the fact that gravity is a consequence of string theory is one of the greatest

theoretical insights ever.

It should be emphasized, however, that in addition to the dimensionality

issue, the string theory approach is (so far, in almost all respects) restricted

to being merely a perturbative theory, expressed in terms of a power series

(say in the ‘e’ referred to above, but most string-theory calculations refer to

power series in the string constant a0). This restriction is regarded as a

serious limitation by most relativity practitioners, who would not take the

considerations above as suYcient to provide us with a theory having the

same profound underlying principles as Einstein’s general relativity.

One version of a ‘string philosophy’ that I have heard expressed is that we

should try to think of physics as ‘actually’ being a 2-dimensional QFT, with

the geometrical notion of 10-dimensional spacetime being secondary to the

more primitive ‘reality’ of the 2-dimensional string world sheet itself. Every-

thing is to be described in terms of ‘string excitations’, and these are to be

thought of as quantities that are merely functions of the 2 coordinates on the

world-sheet. The 10 spacetime dimensions are felt out by these excitations,

but everything is some kind of ‘Weld on the 2-dimensional sheet’.

I have a great deal of diYculty with this sort of viewpoint for a theory

which purports to describe gravitation, where there would be dynamical

degrees of freedom in the spacetime geometry. Recall from §16.7 (and see

the discussion in §31.4 above and in §§31.10–12, 15–17 below) that there

are vastly more functions or Welds on a larger-dimensional space than on a

smaller-dimensional one, irrespective of the number of independent com-

ponents that the function (Weld) may have at each point, provided that this

number of components is Wnite. Moreover, for any ordinary notion of

‘string excitation’, this component number per point would indeed be

Wnite (since each point of the world sheet can only be displaced in a

Wnite number of independent directions in the ambient space). This par-

ticular ‘string philosophy’ would appear to be a very misleading way of
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looking at things. Although I doubt that it is really held to rigorously by

many string theorists, the fact that some of them have been prepared to

entertain such a viewpoint is perhaps indicative of the seemingly cavalier

attitude of many string theorists, with regard to spacetime dimensionality.

The 4-dimensionality of our observed spacetime, perhaps thought of as a

‘low energy effect’, often appears to be taken to be a matter of relatively

minor importance!

In any case—even in 10 dimensions—the ‘Einstein vacuum equation’ of

string theory is regarded as merely a consequence of the consistency of the

string’s 2-dimensional world sheet. And it is taken that Ricci Xatness must

continue to hold even at those spacetime locations where the string world

sheet is, itself, not located! If the quantum theory were really describing the

quantized dynamics of the coupled classical system speciWed by

background 9-space containing moving string,

then the consistency on the background curvature would need to hold only

where the string is located. So we have to take the view that it is not this

classical system that is being quantized. In fact, despite purporting to be a

theory of gravity, string theory does not really properly come to terms

with the problem of describing the dynamical degrees of freedom in the

spacetime metric. The spacetime simply provides a Wxed background,

constrained in certain ways so as to allow the strings themselves to have

full freedom.

31.10 Why don’t we see the extra space dimensions?

If we are now going to take the full dynamics of the 10-dimensional

spacetime seriously, we have to face the opposite problem of how to get

the huge extra functional freedom in the 10-dimensional space down

to what would be appropriate for an ordinary physical theory in four

spacetime dimensions. Ricci Xatness in ten dimensions allows a functional

freedom 17019

(see §16.7) that is enormously huger than the mere 1N13

that we have for an ordinary 4-space Weld theory, taking N independent

components per point (§16.7 and §31.4). (A 10-dimensional ‘Ricci-Xat’

theory would in fact have 70 independent functions as free data on a

9-dimensional initial surface.36) The extra hugeness comes from 9 being

greater than 3. In comparison, the relative size of 70 and N contributes

negligibly to this explosion of functional freedom.37 An ordinary classical

Weld theory in a 10-dimensional spacetime (without such a restriction as

the symmetry that is decreed by the Killing vector of the original Kaluza–

Klein theory—see §31.4) would certainly be in gross conXict with our

observed universe, owing to this horrendous excess of functional freedom.

We shall come back to this issue in §§31.12,16.
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Why do string theorists seem not to be particularly troubled by this

excessive functional freedom? Part of the reason would appear to be that

they have signiWcant hopes that, in an appropriately quantized string

theory, there may well be additional spacetime constraints, coming from

consistency requirements for the quantized strings, which eVectively

reduce the strings’ functional freedom. We shall be catching a glimpse of

these hopes in §31.16. But the main argument that is commonly voiced

comes from the expectation that, if it is assumed that the six ‘extra’

dimensions are exceedingly ‘small’ (say, having a Planck scale of

10�35m), then—for energies that are available in the physical world

today—quantum-mechanical considerations should come to the rescue

and would eVectively ‘kill oV ’ the degrees of freedom that are concerned

with the extra spatial dimensions.

How is this to work? As remarked above, almost all string-theoretic

considerations are carried out in a perturbative framework, where merely

small perturbations away from some particular basic model are examined.

Here, we are to consider a basic ‘spacetime’ that is the product M� Y of

normal Minkowski 4-space with some given compact spacelike Riemann-

ian 6-space Y, where the overall ‘size’ of this particular Y is very small, say

of the Planck scale of 10�35m. We are to look at small perturbations away

from M� Y.

First, we need to have a clearer picture of what a ‘product manifold’

A� B is, where both the m-spaceA and the n-space B are each taken to be

(pseudo-)Riemannian manifolds. Recall from §15.2 (and Fig. 15.3a) that

the points of A� B are described as pairs (a, b), where a belongs to A and

b belongs to B, so the dimension of A� B is mþ n (see Exercise [15.1]).

How are we to deWne the (pseudo-)Riemannian metric on A� B? This is

to be the ‘direct sum’ of the metrics on A and on B. We can use local

coordinates (x1 , . . . , xm, y1 , . . . , yn) for A� B, where (x1 , . . . , xm) and

(y1 , . . . , yn) are local coordinates for A and for B, respectively. Then the

metric components gij for A� B have ‘block-diagonal form’ (similar to

that displayed in §13.7 for the matrices of a fully reducible representation)

describing the direct sum of the metric components for A and for B,

respectively: the squared metric distance in A� B is the sum of those in

A and B individually (Fig. 31.7).

A key fact of later relevance (see §31.14) is that ifA’s metric andB’s metric

are both Ricci-Xat (vanishing Ricci tensor—see §19.6), then the direct-sum

metric ofA� B is also Ricci-Xat.[31.3] The spaceY, in our product M� Y is

taken to be indeed Ricci-Xat, and M itself, being Xat, is certainly Ricci-Xat.

The product M� Y is thus also Ricci-Xat, as will be required.

[31.3] Why? Hint: Look at the form of the explicit expressions in Exercise [14.26] and Exercise

[14.27] and in §14.7.
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We are to take the compact space Y to have an overall spatial size of the

general order of the Planck scale—or maybe a little larger. (Recall the

meaning of compactness, described in §12.6, Fig. 12.14.) How are perturb-

ations away from M� Y to be described? These will be given by (tensor)

Welds on M� Y, like the hab of §31.9, which provide us with an inWnite-

simal changes in the metric of M� Y.

To study Welds on M� Y, it is useful to think in terms of an initial value

problem; so we represent M as M ¼E
1 �E

3, where the Euclidean

1-space E
1 refers to a time coordinate t, and the Euclidean 3-space E

3

refers to space. We then analyze these Welds in terms of normal modes on

E
3 � Y. See Fig. 31.8. (Recall the concept of ‘normal mode’, as described

classically in §20.3 and in the quantum context in §§22.11,13.) What do these

normal modes look like? Because of the ‘product’ structure of E
3 � Y, we

can represent each of these modes simply as the ordinary product of a mode

on E
3 with a mode on Y. The modes of E3 are just momentum states

(§21.11), and they form a continuous family. As regards Y’s normal

modes, the compactness ensures that they form a discrete family, each

characterized by some Wnite set of eigenvalues. (Recall the discussion at

the end of §22.13.) How would one ‘excite’ one of these modes, so that the

simple E
3 � Y geometry is converted to something else?

The usual string theorist’s argument that we can disregard perturbations

of Y, at least at the present cosmological epoch, depends upon an expect-

ation that the energy needed to excite any of Y’s modes would be enor-

mous—except for a certain particular set of modes of zero energy (which

will have importance for us in §31.14) that I shall ignore for the moment.

Why is this energy expected to be so large? The reasoning rests upon the

very minute scale of Y itself. A ‘standing wave’ on Y would have a tiny

wavelength, comparable with the Planck distance of � 10�35m, and would

therefore have something like a Planck frequency of � 10�43s. The energy

A A�B

B

Fig. 31.7 The product manifold A� B (see Fig. 15.3a, §15.2) of two (pseudo-)

Riemannian spaces A and B is itself (pseudo-)Riemannian. If both A and B
are Ricci-Xat, then so is A� B.
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required to excite such a mode would be of the general order of a Planck

energy, namely around 1012 joules, which is some twenty orders of magni-

tude larger than the largest energies involved in ordinary particle inter-

actions! It is accordingly argued that the modes which aVect Y’s geometry

will remain unexcited, in all particle-physics processes that are of relevance

to the physical actions that are available today. The picture is presented

that at the very early stages of the universe, six of its dimensions settled

into the conWguration described by a roughly Planck-scale Y, whereas the

remaining three spatial dimensions expanded outwards enormously to give

the almost spatially Xat picture of a 3-dimensional universe in accordance

with present-day cosmology. The Y-spaces would have remained basically

undisturbed from a time not long after the Wrst Planck moments of the

universe’s existence.

Let us look at this argument a little more fully. To simplify matters,

consider a situation where, as with the original Kaluza–Klein theory of

§31.4 and the hosepipe analogy depicted in Fig. 15.1, Y is just a circle S1,

which we take to have some very small radius r. We can choose a real

coordinate y for S1 (with y identiWed with yþ 2p), where ry measures

actual distance round the circle. The modes of Y are now simply the

quantities einy, where n is an integer, namely the Fourier modes that we

encountered in §9.2. On E
3 we can choose ordinary Cartesian coordinates

(x, y, z). We recall from §22.11 that one way of addressing the question of

Wnding ‘modes’ is to look for eigenstates of (the appropriate) Laplacian

operator. In the present context, this may be regarded as an approxima-

tion (or just a ‘model’). More correctly, we should be concerned with

eigenstates of the Hamiltonian H for the evolution of the geometry. For

Ricci-Xat 5-spaces (our required pertubations ofMM� S1) we should need

the appropriate Hamiltonian formulation of Wve-dimensional general rela-

tivity, which is complicated. The leading term of this is essentially a

Laplacian, however, and this will suYce for our present discussion.

E3 E3 � Y

Y

Fig. 31.8 Perturbation modes on E
3 � Y (for the Laplace equation) are products

of modes on E
3 with modes on Y.
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We Wrst encountered the 2-dimensional Laplacian r2 ¼ ]2=]x2þ ]2=]y2

in §10.5. Here, we need the generalization to four dimensions, but the

metric of our space E
3 � S1 is still Xat, so we do not require a more

elaborate expression like that of §22.11. All we need here is to increase

the number of variables to four, so we can write the Laplacian as[31.4]

r2 ¼ ]2

]x2
þ ]2

]y2
þ ]2

]z2
þ 1

r2

]2

]y2
,

where our fourth coordinate is the ry needed for S1. To Wnd our ‘modes’,

we would look for eigenstates of this r2. More speciWcally, the procedure

is merely to worry about the mode analysis for the S1 part of E
3 � S1 and

to leave the E
3 part as an ordinary Weld. Accordingly, we split up our

Welds into diVerent contributions, each having a diVerent integer ‘n’, giving

a dependence on y of the speciWc form einy, as described above. Thus, for

an nth-order S1 mode, we can write

C ¼ einyc,

on our initial 4-surface E
3 � S1, where c is a function of the ordinary

space coordinates x, y, z. For any such nth order mode C, the term

r�2]2=]y2 in our above Laplacian can be replaced[31.5] simply by �n2=r2:

1

r2

]2

]y2
7! � n2

r2
:

With regard to the remaining variables x, y, z, our Laplacian now reverts

to the ordinary 3-space one, but we have the constant term �n2=r2 added

to this 3-space Laplacian.

Let us recall the Weld equation of an ordinary (spinless) particle of mass

m, in ordinary Minkowski spacetime M , this being the ‘Klein–Gordon’

wave equation (see §24.5)

&þ m2

�h2

� �

c ¼ 0,

where& ¼ ]2=]t2 � ]2=]x2 � ]2=]y2 � ]2=]z2.Wecan thinkof this as a ‘free

incoming particle’ (as would be appropriate in an S-matrix approach to

QFT—see §26.8). In the 5-space M� S1, however, we would have an

additional term�r�2]2=]y2 in the wave operator&. If we take this 5-space

particle to be in an n-mode eigenstate for S1, this termgets replaced by n2=r2,

as above. Accordingly, from the ordinary Minkowski 4-space point of view,

our 5-space n-mode Klein–Gordon particle satisWes the 4-space equation

[31.4] Why?

[31.5] Why can we do this?
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&þ m2

�h2
þ n2

r2

� �

c ¼ 0:

This is just the Klein–Gordon equation again, but with m2=�h2 þ n2=r2 in

place of m2=�h2. Thus, we have the 4-space Klein–Gordon equation for a

new particle, but where the mass is increased from m to (m2 þ �h2n2=r2)
p

.

Now, any of the observed particles of Nature would have a mass m that

is enormously smaller (see §31.1) than the Planck value of roughly �h=r (for

our chosen value of r). Assuming that n 6¼ 0, this new particle would have

a mass that is at least of Planck order (�hn=r being much greater than m) so

it would lie far beyond the reach of presently feasible particle accelerators.

It is accordingly reasoned by string theorists that no n 6¼ 0 mode can be

accessed in any particle-physics process that is available at the present

cosmological epoch!

Essentially the same argument would apply to the full Planck-sized

compact 6-space Y. In the relatively low-energy situation we Wnd ourselves

in today, the modes of excitation of Y for which n 6¼ 0 are experimentally

inaccessible to us—so the string theorists maintain. It is argued, therefore,

that there is no conXict between the hypothesis of extra spatial dimensions

and present-day observational physics.

31.11 Should we accept the quantum-stability argument?

But is this reasoning really appropriate? I believe that there are profound

reasons to question it.38 Even if we leave aside the unanswered puzzle of

why three of the spatial dimensions should behave so very diVerently from

the remaining six, we must be very cautious about this ‘particle-physics’

reasoning which is relied upon for the Y geometry to be immunized against

change during the subsequent evolution of the universe.

But before entering into the matter of Planck-energy (or higher) per-

turbations of Y, I should return to the modes of Y of zero energy which I

chose to ignore in §31.10. We shall see in §31.14 that these modes tend to

be regarded with favour in the string-theory programme, as they oVer

hope for genuine contact to be made with the symmetry groups of stand-

ard particle physics (§§25.5,7). Yet, mathematically, they lead to a serious

diYculty that has been referred to as the moduli problem. As with a

Riemann surface (see §8.4) there are certain parameters referred to as

moduli which deWne the speciWc shape of the type of Y-space under

consideration. (We shall be seeing in §31.14, that the preferred Ys are

certain complex 3-manifolds referred to as ‘Calabi–Yau’ spaces, whose

moduli generally constitute a family of complex numbers.) The zero-

energy modes refer to the varying of these moduli. We may choose to

allow this variation to have a spatial E
3-dependence, but this gives us only
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an acceptable1N13

, where N refers to the actual number of independent

(real) moduli. However, it turns out that there are modes in which moduli

rapidly shrink away to zero leading to a singular Y-space. This seemingly

catastrophic instability is essentially the string theorist’s ‘moduli problem’

(see also, §31.14).39 It appears to be unanswered; yet it is normally ignored.

Suppose that we choose to ignore it also(!). Then, are the positive-

energy (Planck-scale) modes of vibration of the six extra dimensions

immune from excitation? Although the Planck energy is indeed very

large when compared with normal particle-physics energies, it is still not

that big an energy, being comparable with the energy released in the

explosion of about one tonne of TNT. There is, of course, enormously

more energy than this available in the known universe. For example, the

energy received from the Sun by the Earth in one second is some 108 times

larger! On energy terms alone, that would be far more than suYcient to

excite the Y space for the entire universe!

In the string theorist’s reasoning, this energy is delivered in a local

particle interaction, and we tend to imagine it as being administered in

some tiny region of ordinary space. Yet the actual modes of excitation of Y
that are supposed to be inaccessible are spread uniformly over the whole of

E
3, in our perturbations of E

3 � Y. Recall that the modes of excitation of

E
3 � Y are simply products of the modes on E

3 with the modes on Y.

Those that we are considering here are just constant over E
3. There is

nothing to say that these need (or even should) be injected at a localized

region in ordinary physical space.

This in itself is no argument against local particle interactions being the

appropriate way to excite such modes, however. Their being spread out over

the whole of E
3 does not argue against a particle-physics perspective. We

recall from the discussion of creation and annihilation operators in §26.2

and of Feynman graphs in §§26.7,8, that particles and their interactions in

QFT are commonly described in terms of momentum states. Such states are

indeed ‘spread’ over the whole of E
3, as was emphasized particularly in

§21.11. ‘Quantum particles’ need in no way be spatially localized. Perhaps a

better way to think of these matters is to refer to ‘quanta’ rather than

particles. The issue is whether or not it is reasonable to expect that a single

quantum of Planck energy could be injected into a Y mode, by whatever

means. But it does not seem to me that we need think of such ‘means’ as

being necessarily local particle interactions, and not something else such as

a non-linear disturbance of the entire spacetime geometry.

Are there reasons to believe that there ought to be some such other

means? In my opinion there are indeed reasons to worry about this. Let us

return to our hosepipe analogy (Fig. 31.3). Think of the hosepipe as being

essentially straight in its ‘large’ dimension (analogous to E
3), and with a

constant S1 cross-section (analogous toY), which is a circle of tiny radius r.
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The hosepipe’s modes of excitation can be composed of various waves

travelling one way or the other along its length (‘E3 modes’) and of

various distortions of its circular cross-sectional shape (‘Y modes’). As

we have seen, any one of these latter modes occurs simultaneously along

the entire hosepipe. Quantum-mechanically, the energy in a single quan-

tum of excitation of such a mode—an exciton—of vibrational frequency n
is 2p�hn (see §21.4) and independent of the hosepipe length!

For an inWnite length of hosepipe, this gives a zero density of energy, for

each individual exciton, so it may be less confusing if we imagine the pipe

to be bent round into a very large circle, of radius R, say, where R� r.

Now, think of a particular mode of vibration of Y, with a particular

frequency n. The total energy 2p�hn in this exciton is indeed independent

of R. This may seem puzzling, because it implies that the larger we take R

to be, the smaller is the energy that exists locally in the vibration, in

proportion to 1/R. This is no inconsistency, but it tells us that the ampli-

tude of the vibration in an exciton, for a Wxed vibrational mode of Y, is

smaller, the greater the length of the pipe. If we take the limit R!1, the

energy stored locally in the mode goes to zero. We learn from this that any

particular way in which the hosepipe can vibrate locally, in the limit when

the hosepipe becomes inWnite, must involve higher and higher numbers of

quanta, the eVect of each individual quantum getting less and less, so we

are driven to consider that a classical rather than a quantum description of

the behaviour of the hosepipe might become appropriate.40

This raises the issue of the classical limit of a quantum system for large

quantum numbers, and the related matter of the state reduction R to such

a classical conWguration. We have seen, particularly from the discussion in

Chapter 29, that the R issue cannot really be fully resolved within the

framework of present-day quantum theory.41 Nevertheless, a good physi-

cist should know when a quantum description is appropriate to use, and

when it makes more physical sense to use a classical one. Recall the case of

ordinary angular momentum, as discussed in §22.10. A body with a very

large angular momentum tends to be best treated as a classical system, so

that we obtain a very well-deWned rotation axis. Treating this just as a

quantum system with a very large j value, we obtain a Majorana descrip-

tion with many spin directions, usually pointing all over the place! In

practice, the classical description would be the one to use for very large

angular momentum, and this provides a good picture of physical reality.

More generally, classical descriptions tend to be taken as physically ap-

propriate when quantum numbers get excessively large. In the case of

angular momentum, the relevant quantum number, namely j, is measured

in in terms of units of �h, so one could imagine a reasonable-looking

criterion telling us when we are far away from the quantum regime: the

value of j is very large in units of �h. With the hosepipe, we see that the
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smallness of the distance r is not, in itself, an appropriate measure for

telling us that a ‘quantum’ description is more suitable than a classical one.

For Wxed r, the description of local hosepipe vibrations seems to become

more and more ‘classical’ the larger we take R, since we need to involve

larger and larger numbers of excitons and excitons involving higher and

higher vibrational quantum numbers (modes of Y).42

In the absence of a theory that tells us how ‘large’ systems become well

described classically, while ‘small’ ones behave according to quantum rules

(which in my view requires a change in the very structure of quantum

mechanics along the lines of §§30.9–12), it would seem that we can come

to no deWnitive conclusion concerning the alleged inaccessibility of excita-

tions of Y. (The considerations of Chapter 30 do not yet seem to provide us

with any unambiguous answer, and certainly not an uncontroversial one.)

Nevertheless, in view of the fact that actual perturbations ofY do lead us to

a quantum picture of very large numbers of quanta, where each individual

quantum aVects the geometry of Y hardly at all, and to large quantum

numbers, it would appear that we may well get more insights into how

perturbations of an M� Y universe with ‘small’Y behave if we study these

classically, rather than quantum-mechanically. Let us consider this next.

31.12 Classical instability of extra dimensions

What can be said, if we indeed take the 10-space model as an entirely

classical one? This ought, at least, to give us some guidance as to how the

full quantum model will actually behave. We saw at the beginning of

§31.10 that in a classical (1þ 9)-spacetime (i.e. of one time dimension

and nine space dimensions), there would be an unaccaptable Xood of

excessive degrees of freedom (1M19 �1N13

). This is serious enough,

but in my opinion, things are actually much worse than this. We shall Wnd

that a classical M � Y universe—subject to Ricci Xatness—is highly

unstable against small perturbations. If Y is compact and of a Planck

size, then spacetime singularities (§27.9) are to be expected to result within

a tiny fraction of a second!

Let us Wrst consider perturbations of M � Y that disturb only the Y
geometry and which, accordingly, do not ‘leak out’ into the spatial E

3.

That is to say, we examine a ‘generic’ Ricci-Xat (1þ 6)-spacetime Z (the

perturbed evolution of Y), the entire (1þ 9)-spacetime being Z �E
3. We

consider that Z is the time-evolution of some 6-space that (at some

particular time) is ‘close’ to Y, so Z starts out close to the (unchanging)

‘time-evolution’ E
1 � Y of Y, although Z may deviate strongly from

E
1 � Y at later times (Fig. 31.9). Here, I am expressing M as

M ¼E
1 �E

3, as in §31.10 above (with E
1 describing the time dimen-

sion and E
3 the space dimensions), so we think of the spacetime M� Y
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as (E1 � Y)�E
3 (putting the time-evolution of Y Wrst in the product);

see Fig. 31.9a.

Now, in the late 1960s Stephen Hawking and I proved a singularity

theorem which shows that we must expect Z to be singular.43 As we

explicitly stated, this theorem applies just as well to (1þ 6)-spacetimes

(and to (1þ 9)-spacetimes) as it does to the conventional (1þ 3)-spacetimes

that we originally considered. As one of this theorem’s consequences, any

Ricci-Xat spacetime that (like E
1 � Y or Z) contains a compact spacelike

hypersurface, and that is ‘generic’ in a certain speciWc sense44 (and free of

closed timelike curves—see §17.9 and Fig. 17.18), must indeed be singular!

The original E
1 � Y escapes from being singular because the generic con-

dition fails in this case. But the generically perturbed Z has to be singular.

It should be noted that, in such ‘singularity theorems’, one does not

directly establish that the curvature diverges to an inWnite value, but merely

that there is an obstruction of some sort to timelike or null geodesics being

extendable within the spacetime to inWnite length (or to inWnite aYne length,

in the case of null geodesics—see §14.5). The normal expectation would be

that this obstruction indeed arises because of the presence of diverging

curvature, but the theorem does not directly show this. This theorem does,

however, tell us thatZ will become singular in this or some other way. If the

perturbation away from Y is of the same general scale asY itself (i.e. Planck

scale), then we must expect the singulatities in Z to occur in a comparable

timescale (� 10�43 s), but this timescale could become somewhat longer if

the perturbations are of a proportionally smaller size than Y itself.

We conclude that if we wish to have a chance of perturbing Y in a

generic way so that we obtain a non-singular perturbation of the full

(1þ 9)-space M� Y, then we must consider disturbances that signiW-

cantly spill over into the M part of the spacetime as well. But in certain

E3 E3

E1

Y Y �

Z

Fig. 31.9 A singularity theorem applies to perturbations of M� Y, where Y is a

‘small’ Calabi–Yau space. (a) The non-singular canonical case M� Y, where we

express M ¼ E
1 �E

3, with E
1 referring to the time. (b) A general perturbation

Y0 of Y evolves to a space Z that are singular, so general perturbations of E
3 � Y

that do not aVect E
3 evolve to spaces E

3 �Z that are singular.
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respects such disturbances are even more dangerous to our ‘ordinary’

picture of spacetime than those which aVect Y alone, since the large

Planck-scale curvatures45 that are likely to be present in Y will spill over

into ordinary space, in gross conXict with observation, and will result in

spacetime singularities in very short order.46

Of course, unacceptable singularities in a classical theory do not neces-

sarily tell us that such blemishes will persist in the appropriate quantum

version of that theory. As we have already seen in §22.13, quantum mec-

hanics cures the catastrophic instability of ordinary classical atoms,

whereby electrons would have spiralled into the nucleus with the emission

of electromagnetic radiation. However, the mere introduction of ‘quant-

ization procedures’ will not necessarily ensure that classical singularities

are removed. There are many examples (such as in most toy models of

quantum gravity47) where singularities persist after quantization.

We should also take note of the fact—see §31.8—that (1þ 9)-

dimensional Ricci Xatness is not precisely the requirement that string

theory demands. We recall that Ricci Xatness is regarded merely as an

excellent approximation to that requirement, coming about when terms

higher than the lowest order in the string constant a0 are ignored. Maybe

the ‘exact’ requirement, involving all orders in the string constant a0, could

evade the above singularity theorem. However, if this requirement pro-

vides us with a condition on the Ricci tensor for which the usual local

energy-positivity demands are satisWed (see especially Note 27.9, and

§28.5), then the singularity theorem would still apply. On the other hand,

violations of such local energy conditions can certainly occur in QFT

(§24.3), so these issues are far from conclusive.

More serious, to my mind, is the fact that the full requirement, involving

all orders in the string constant a0, is actually an inWnite system of diVer-

ential equations of unbounded diVerential order. Accordingly, the data

that would be needed on an initial 9-surface would involve derivatives of

all orders in the Weld quantities (rather than just the Wrst or second

derivatives that are needed in ordinary Weld theories). The number of

parameters per point needed on the 9-surface is then inWnite, so we get a

functional freedom greater than 1M19

, for any positive integer M. This

would seem to make the problem of excessive functional freedom even

worse than before! I am not aware of any serious discussion of the

mathematical form of this full requirement, and of what kind of initial

data might be appropriate for it.

31.13 Is string QFT finite?

The kind of argument that I have been giving above illustrates why I have

severe diYculty in being persuaded that string-theoretic models are likely

907

Supersymmetry, supra-dimensionality, and strings §31.13



to reproduce Einstein’s (1þ 3)-dimensional general relativity in any kind

of sensible ‘classical limit’. What about the other part of string theory’s

claim, that it is a consistent Wnite QFT (whatever the resulting theory

actually means, physically)? It seems to me that the case that a

Wnite amplitude is obtained, for a Wxed string world-sheet topology,

could indeed be the strongest part of the pro-string argument, this con-

clusion seeming to provide a true reXection of the original virtues of the

string idea. Yet, even here there are fundamental questions that must be

raised.

To begin with, there is a certain worry that I have always had with

regard to string theory. It is presented as a physical theory of string-like

structures whose world sheets are timelike, and whose induced ‘metric’ is

therefore a (1þ 1)-dimensional Lorentzian metric. Yet the mathematics is

carried out with string world sheets that possess a (positive-deWnite)

metric, so that the elegant ideas of Riemann surface theory can be

appealed to (as in Chapter 8); see Fig. 31.10. In accordance with the

former, one talks about modes of disturbance travelling along the timelike

world sheet either to the left or to the right with the speed of light. (These

propagate along the null curves on the Lorentzian world sheet.) In the

Riemannian version of the theory, these ‘left’ or ‘right’ modes become

‘holomorphic’ and ‘antiholomorphic’ functions on the Riemann surface.

The attitude seems to be that calculations are indeed done with the

positive-deWnite Riemann-surface picture, and then a ‘Wick rotation’

(§28.9) is performed to get the desired Lorentzian string theory out in

the end. It is certainly possible that this process is satisfactory here,

but this cannot simply be assumed without speciWc justiWcation. It depends

critically, for example, upon approximations not being made in the com-

putations of the amplitudes. Otherwise there could be serious question

marks about the procedure, of the type that we have encountered before in

relation to the Hawking approach to quantum gravity and other ap-

proaches to QFT involving analytic continuation (see §28.9). My under-

Riemannian

Null
lines

Lorentzian

Fig. 31.10 The mathematics of

string theory uses ‘string histories’

that are Riemann surfaces—having

Riemannian (positive deWnite)

metrics. But, physically, the string

histories are Lorentzian. Passing

from one to the other involves a

kind of ‘Wick rotation’.
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standing is that the Riemann-surface calculations are indeed intended to

be exact, so there is some reason to be hopeful that the Wick rotation can

be trusted. Nevertheless, the explicit justiWcation for a Wick rotation

depends upon the background spacetime being Xat, which would certainly

not be the case if we are doing serious (non-perturbative) general relativity,

so it remains unclear how far this takes us in the direction of a quantum

theory of actual gravity.

Even if we trust the validity of such Xat-space considerations, must we

go along with the forceful claims that, for each Wxed Riemann-surface

topology (i.e. fixed genus g, see §8.4, where g corresponds to the ‘number

of loops’ for an ordinary Feynman graph—see §26.8 and Fig. 31.5d,

§31.5), the total amplitude is indeed Wnite? In fact this has not been

established. Despite repeated assurances, no mathematical demonstration

of this claimed Wniteness has yet been provided. The Wniteness claims refer

only to the ultraviolet (large momentum, small distance) divergences that

quantum Weld theorists Wnd themselves to be most troubled by, but even

these have been established so far only at the 2-loop level. Moreover, there

seems to be no argument claiming that infrared (small momentum, large

distance) divergences (§26.9) are eliminated. Although such divergences

are normally considered to be less serious than the ultraviolet ones, they

certainly cannot be ignored, and need to be dealt with in some manner if

the ‘Wnite’ claim is to be justiWed. This leaves us in some uncertainty with

regard to the whole programme, as this Wniteness is the linchpin of the

entire string idea.48

Perhaps these are just irritating technicalities which will be overcome in

future mathematical developments. However, even if it is accepted that we

have Wnite amplitudes for each Wxed topology, we are far from Wnished.

The expressions have then to be summed up. Now there is a problem that

this sum apparently actually diverges.49 The intended Wnite theory is

actually not Wnite after all! This particular divergence seems not to worry

the string theorists, however because they take this series as an improper

realization of the total amplitude. This amplitude is taken to be some

analytic quantity, with the power series attempting to Wnd an expression

for it by ‘expanding about the wrong point’, i.e. about some point that is

singular for the amplitude (a bit like trying to Wnd a power series for log z,

expanded about z ¼ 0, rather than expanding in terms of powers of z� 1

(see §7.4—although in that particular case this series actually would have

inWnite coYcients). This could be OK, although the divergence encoun-

tered here has been shown to be of a rather uncontrollable kind (‘not

Borel-summable’). To make sense of the required ‘Eulerian’ type of

reasoning (such as that which gives 1þ 22 þ 24 þ 26 þ 28 þ � � � ¼ � 1
3
; see

§4.3 and §26.9), some more sophisticated procedures seem to be required.50

Moreover, if the string-theoretic (perturbational) calculations are actually
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expansions ‘about the wrong point’, then it is unclear what trust we may

place in all these perturbative calculations in any case! Thus, we do not yet

know whether or not string QFT is actually Wnite, let alone whether

string theory, for all its undoubted attractions, really provides us with a

quantum theory of gravity.

31.14 The magical Calabi–Yau spaces; M-theory

The particular reservations that I have had about string theory, as ex-

pressed in §§31.8–13, are not, however, the ones that seem to have worried

the string theorists themselves. They have been troubled by other matters

which I have not yet even referred to, namely the question of uniqueness of

the theory. Originally, it had been regarded as one of the great hopes/

triumphs of string theory that it might yield the one unique scheme for the

universe, and much store was set on this supposed uniqueness. A clear

issue had to do with the Planck-scale compact 6-manifolds Y, into which

the 10-dimensional universe is supposed to be largely curled. What are

these 6-manifolds? Why does the universe tend to curl into these ones

rather than some other ones? At Wrst, it had seemed that the stringent

requirements of supersymmetry, appropriate dimensionality, and Ricci

Xatness, together with some basic physical requirements, might lead to

unique answers; but then it appeared that vast numbers of alternatives

were equally possible.

Some early suggestions were that the Y space might be a hypertorus

S1 � S1 � S1 � S1 � S1 � S1, with zero curvature (see Note 31.45; recall

the term ‘torus’ for S1 � S1, see Figs. 8.9, 8.11, and 15.3). But it then

became clear that a hypertorus-based string theory could not be made to

incorporate the chiral aspects51 of the standard model (recall §25.3), and

something more sophisticated was needed. The ‘stringent requirements’

then led to these 6-manifolds being what are called Calabi–Yau spaces.52

These are spaces of considerable pure-mathematical interest, and had been

studied previously, by Eugenio Calabi and Shing-Tung Yau, for such

reasons. They are examples of what are called Kähler manifolds, which

means that they have both real Riemannian metrics and complex struc-

tures (and can therefore be interpreted as complex 3-manifolds), where

these two structures are compatible (in the sense that the metric connec-

tion preserves the complex structure from which it follows that they are

also symplectic manifolds;[31.6] see §12.9 and §§14.7,8 for the relevant

concepts). Calabi–Yau spaces have additional properties, deemed essential

[31.6] Can you see why they must consequently be symplectic manifolds? Hint: Construct Sab

from the metric gab and the complex structure Ja
b , and then verify that dS ¼ 0 (assume Sab is non-

singular).
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for the string programme: they possess metrics that are Ricci-Xat, and are

endowed with spinor Welds that are constant with respect to the metric

connection. These constant spinor Welds play necessary roles as supersym-

metry generators. Without them, supersymmetry would not be possible.

The various such spinor Welds, for a given choice of Calabi–Yau space, can

be (formally) ‘rotated into each other’ by a symmetry-group action. This

group is then to play the kind of role that the symmetry groups of particle

physics play.

It should be made clear that this symmetry does not directly apply to the

Calabi–Yau spaces themselves, in the manner of a symmetry applied to the

Wbre F of a Wbre bundle, as described in the discussion of Chapter 15. In

fact, Calabi–Yau spaces possess no (continuous) symmetries, and we

cannot regard our 10-space as a (non-trivial) Wbre bundle of Calabi–Yau

6-spaces over ordinary 4-spacetime. The (internal) particle symmetries

refer, instead, to the ‘rotation’ of the constant spinor Welds among them-

selves. The actual Calabi–Yau spaces are not aVected by the action of the

symmetry.53

Thus, string theory leads to a very particular but unusual type of GUT

theory (see §25.8 and §§28.1–3). It is intended that all of particle physics is

to be found within the appropriate string-theoretic scheme. The symmetry

groups that arise in this way are much larger than those of the standard

model (§§25.5–7) but, as with other GUT theories (§25.8), a form of

symmetry breaking is taken to be responsible for reducing the groups

down to those of more direct relevance to the standard model—although

this programme has not yet been successfully achieved.

What about the uniqueness issue? Unfortunately, there are tens of

thousands of classes of qualitatively diVerent possible alternatives for the

Calabi–Yau spaces, so the scheme, as described, is far from unique. In

fact, within a particular class of Calabi–Yau space, there are inWnitely

many diVerent ones, distinguished by the values of certain parameters,

called moduli (see §31.11), describing its shape (Fig. 31.11), just as as for a

Riemann surface (§8.4, Fig. 8.11). The presence of these moduli is regarded

as a good thing, because varying them provides the zero-energy modes of

oscillation of the Y space (referred to in §31.11), which are taken to be

physically realizable and would provide the needed route into particle

Fig. 31.11 The ‘shape’ of a Calabi–

Yau space Y is described by a number

of moduli (compare Figs. 8.10 and

8.11). Variations of these moduli

provide zero-energy modes of oscilla-

tion of Y.
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physics and observational consequences of string theory. However, as

already noted in §31.11, these can lead to instabilities.

However, there are other types of non-uniqueness that give the initial

impression of being more serious even than that of the Calabi–Yau non-

uniqueness. It turns out that there are Wve quite distinct possible overall

schemes for the detailed way in which the supersymmetry interrelates the

‘bosonic’ and ‘fermionic’ modes of vibration of the string. Thus, there are

Wve diVerent string theories, these being referred to as Type I, Type IIA,

Type IIB, Heterotic O(32), and Heterotic E8 � E8. The groups O(32) and

E8 � E8 are those that would arise in the way outlined in the previous

paragraphs of this section. (The reader may recognize the notation for

these groups from §13.2, E8 being the largest of the exceptional Lie

groups.) The Type I theories employ open-ended strings as well as closed

loops, all the others operating just with closed ones. Disturbances can

travel in a right-handed or left-handed sense in all these models.54 The

Type IIA and IIB diVer in how these right- and left-handed disturbances

relate to each other. The Heterotic strings are particularly strange in that

the left- and right-moving disturbances seem to belong to two spacetimes

of diVerent dimensionality (26 and 10, respectively). This hardly makes

good geometrical sense—certainly not to me(!)—but it appears to make

the appropriate formal sense. The view seems to be that the 10-dimen-

sional picture is the geometrically appropriate one, but the left-moving

disturbances behave in the same way as those of the older (non-supersym-

metric) ‘bosonic strings’ of §31.5 that were to inhabit a 26-dimensional

ambient spacetime. As we have seen before, string theorists seem not to be

much troubled by apparent inconsistencies in spacetime dimension, usu-

ally regarding this dimensionality as an ‘energy-dependent’ eVect (§31.10),

and therefore not of fundamental signiWcance. We shall see more of this

shortly and in §§31.15,16.

For a while, this proliferation of diVerent string models caused many

theorists to despair of being able to proceed much further. But some

remarkable developments started to take place, indicating certain possible

deep interrelationships between these apparently very diVerent models.

Then, in 1995, Edward Witten delivered a famous lecture,55 initiating

what has become known as ‘the second superstring revolution’. In this

lecture, Witten outlined a programme for the development of string theory

that has completely transformed the way that the subject is to be viewed.

The essential new feature is that by invoking certain kinds of mysterious

‘symmetry operations’ (referred to as ‘strong–weak duality’ or ‘mirror

symmetry’56 and sometimes called S dualities, or S-, T-, and U-dualities),

these diVerent string theories are revealed to have such deep relations to one

another that they may apparently be taken to be actually equivalent string

theories. The small-scale limit of some of these theories appears to be
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identical (in some appropriate sense) to the large-scale limit of others, and

there are other kinds of symmetry relationships of this general kind arising

from a duality of Yang–Mills theory (§25.7) that is analogous to the duality

between electricity and magnetism in ordinary electromagnetic theory.

(Compare, also, the duality that arises in the Chan–Tsou theory, as brieXy

described in §25.8.) Moreover diVerent Calabi–Yau spaces turn out also to

be dual to one another in various ways. As yet, as far as my knowledge of the

matter goes, not all of these relationships are proven as mathematical

results.57 But the original conjectures, coming from string theory with

some impressive circumstantial evidence, have stimulated some very con-

siderable pure-mathematical research leading to deeper understandings of

Calabi–Yau manifolds and the relations between them.58

A particularly striking example of this ‘circumstantial evidence’ is worth

recounting. It relates to a speciWc entirely mathematical problem that

certain pure mathematicians (algebraic geometers) had been interested in

for a number of years previously. This problem had nothing evidently to

do with physics, but it had with counting the number of rational curves in

certain complex 3-manifolds.59 A rational curve is a complex curve (i.e. a

Riemann surface—see Chapter 8) of genus zero; that is, it has the topology

of a sphere S2. These complex 3-manifolds turn out to be Calabi–Yau

spaces that the demands of string theory—according to the proposals of

‘the second superstring revolution’—ought, via mirror symmetry, to be

related to certain other Calabi–Yau spaces. The mirror symmetry, in a

certain sense, interchanges complex structure with symplectic structure;

accordingly, the problem of counting rational (holomorphic) curves

(which is technically a very diYcult problem) is converted to a much

simpler, and quite diVerent-looking counting problem in the ‘mirror’

Calabi–Yau space. Two Norwegian mathematicians, Geir Ellingstrud

and Stein Arilde Strømme, had developed methods for directly counting

the number of rational curves (of successive orders60 1, 2, 3, . . . ) in their

spaces, coming up with the successive numbers

2875, 609 250, 2 682 549 425,

for the Wrst three cases. But using the assumption that the mirror-sym-

metry relationship holds, so that the much simpler counting procedure can

be applied, Philip Candelas and his collaborators were able to come up

with the numbers

2875, 609 250, 317 206 375:

Since the mirror symmetry was only an unproved ‘physicist’s conjecture’

at the time, it was presumed that the agreement in the Wrst two cases was

accidental and that there was no reason to accept the number 317 206 375

that Candelas and his collaborators had come up with. But then it
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emerged that owing to a computer-code error, the Norwegian mathemat-

icians’ number was incorrect, and the correct value was indeed exactly that

obtained by the mirror-symmetry argument! Many subsequent numbers

were then computed using this mirror symmetry, such as the extension

of the above sequence to counting rational curves of higher orders (4,

5, 6 , . . . , 10):

242 467 530 000

229 305 888 887 625

248 249 742 118 022 000

295 091 050 570 845 659 250

375 632 160 937 476 603 550 000

503 840 510 416 985 243 645 106 250

704 288 164 978 454 686 113 488 249 750

This is a very remarkable example that strongly indicates that there is

indeed ‘something going on behind the scenes’. As things stand, this is

distinctly enigmatic. There is certainly something very non-obvious to be

unravelled in the mathematics, and some more recent mathematical devel-

opments appear to have gone some way towards achieving this.61 But the

more important question has to do with the physical signiWcance of these

results. Are we entitled to infer from the undoubted fact that string theory

has supplied deep and previously unexpected insights into mathematics

that it must also have a deep physical correctness? This answer to this

enigma is far from obvious. Witten has argued that string theory, as it had

been understood up until that point, was just the tip of an iceberg—or

rather, it represented Wve tips of some mysterious yet-unknown theory

that he christened ‘M-theory’; see Fig. 31.12. This new theory, when it is

Type I

Type IIB

Type IIA

Heterotic E

11-dim. supergravity

Heterotic O

Fig. 31.12 The enigmatic ‘M-theory’ claim is that the Wve diVerent types of string

theory, all related via S-, T-, and U-dualities, and 11-dimensional supergravity, are

six diVerent aspects of one and the same yet-undiscovered structure.
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found, is to supplant and supersede all the diVerent string theories that had

been put forward previously.

Not only is this mysterious M-theory intended to encompass all these

string theories, but it is to incorporate a number of other string-related and

supersymmetry-related ideas also. Strings are now regarded as being just a

special case of a more general notion which includes higher- (and even

lower-) dimensional structures. These are referred to as membranes (or

p-branes, or just branes) which have p spatial dimensions and one tem-

poral dimension, the world sheet being (1þ p)-dimensional. See Fig.

31.13. Some related timelike structures, called D-branes, can also be in-

volved, and I shall have something to say about these in §31.17.

In another development, M-theory is supposed also to encompass the

11-dimensional supergravity theory that we left behind earlier in this

chapter (§31.4). In fact, M-theory itself seems to be thought of roughly

as an 11-dimensional theory, so perhaps the dimensional mystery lies more

in its relation to the various 10-dimensional string theories than to 11-

dimensional supergravity. The fact that 11 dimensions seems now to be

‘allowed’ for a consistent string-type theory appears to be a conclusion due

to Witten that, in some sense, the original argument that the ‘one plus

nine’ dimensions needed to remove the string anomaly referred to in §31.7

are really to be regarded as an approximation (partly owing to the involve-

ment of these higher-dimensional ‘branes’), and the more correct answer is

indeed 11 (¼ 1þ 10, i.e. 1 time and 10 space dimensions).62 Yet even 11

dimensions may not satisfy the string theorists. There is some suggestion

that one should move to more dimensions still, to the even more mysteri-

ous (and even more undiscovered) ‘F-theory’ which has 12( ¼ 2þ 10)

dimensions (so there are 2 time dimensions)!63

How is it that a theory with an 11-dimensional (or perhaps 12-

dimensional) ‘spacetime’ can be something that specializes, in certain

low-energy or high-energy limits, to various theories, each (but one) of

which has a 10-dimensional spacetime? Again, this discrepancy in space-

time dimensionality seems to be regarded as an ‘energy eVect’ (§31.10), and

not particularly fundamental. It can be imagined that more and more

spacetime dimensions might be perceived when probed at higher and

String = 1-brane p-brane

1-dim.

Time

p-dim. Fig. 31.13 Membranes (or p-branes,

or just branes), have p spatial dimen-

sions and 1 time dimension, the world-

sheet being (1þ p)-dimensional. These

structures are involved, together with

ordinary strings (1-branes), as part of

the undefined M-theory.
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higher energies. In this kind of way, string theorists appear to justify their

seemingly cavalier attitude to their spacetime’s dimensions! I have already

expressed my considerable unease with this type of argument in §§31.11,12.

In my opinion, the diYculties with the vast diVerences in functional

freedom in diVerent numbers of dimensions64 are far from convincingly

addressed. This issue also looms large in other matters that are currently

occupying the interests of many string theorists, and I make brief mention

of these next.

31.15 Strings and black-hole entropy

Recall from §27.10 and §30.4 that the Bekenstein–Hawking formula

assigns an entropy to a black hole, proportional to its horizon’s surface

area. Although several diVerent arguments had been given in support of

this conclusion, none of these unambiguously65 equated the black-hole

entropy explicitly to the logarithm of a phase-space volume, as Boltz-

mann’s formula demands (§27.3). This would amount to a direct counting

of the degrees of freedom ‘lost in the hole’, the counting to be carried out

in accordance with the appropriate quantum gravity theory. Then in 1996,

Andrew Strominger and Cumrun Vafa provided a calculation,66

using strings and membranes, that supported an interpretation of the

Bekenstein–Hawking entropy formula as ‘counting degrees of freedom’

in this way. This was acclaimed by the string theorists in such terms as: ‘A

quarter-century-old puzzle had been solved’.67

As appears to be usual, with such string-theoretic proclamations, this

conclusion is very considerably overblown. For example, the original

Strominger–Vafa calculation pertained only to black holes in a 5-dimen-

sional spacetime. Later results do apply to ordinary 4-spacetime, but the

initial excitement that led to proclamations such as the above seem to have

been elicited by the original 5-dimensional calculation. Moreover, all

these string-theoretic results referred only to the extremely special limiting

case of an ‘extremal hole’ (or to perturbations away from this) for which

the Hawking temperature (see §30.4) is zero—and where the hole involves

additional supersymmetric Yang–Mills-type Welds which have no clear

justiWcation from known physics. In addition, the actual calculations

were performed in Xat space, where there is no actual event horizion,

and it is a matter of extrapolation to argue that they should also apply

to a signiWcantly curved black-hole metric.

Let me attempt some words of clariWcation. We have seen (§27.10) that

in the ordinary general relativity theory of the vacuum, where spacetime is

four-dimensional, a stationary isolated black hole is described by the Kerr

metric, characterized by the values of just two (non-negative) real param-

eters m and a, where m is the mass and a�m the angular momentum
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(in natural units). For the Kerr geometry actually to describe a black

hole, rather than a naked singularity (§28.8), we require m $ a.

(Note, for example, that this inequality is needed for the formula

A ¼ 8pm[mþ (m2 � a2)
1
2]G2=c4, of §27.10, for the area A of a Kerr hole’s

horizon.) The extremal case of an ordinary black hole occurs when m ¼ a,

which only just qualiWes it as a ‘black hole’. It is really an (astrophysically

unattainable) limiting case of an ordinary black hole, with zero as the

value for its Hawking temperature.

This may be compared with what happens with the explicit ‘black hole’

considered by the string theorists, which is also ‘extremal’, in the sense that

its Hawking temperature vanishes. But almost all of these string calcula-

tions refer to a completely diVerent kind of animal! Instead of rotation—as

is allowed for by the presence of the Kerr parameter a—additional phys-

ical Welds are introduced. The string theorists’ ‘hole’ is patterned, instead,

on the Reissner–Nordstrøm solution of the Einstein equation which,

unlike the Kerr solution, is spherically symmetrical. In place of Kerr’s a,

there is a parameter e which measures the total electric charge of the hole,

the Reissner–Nordstrøm metric being a solution of the Einstein–Maxwell

equations (§31.4), namely the Einstein equations with the energy–

momentum tensor being that of a source-free Maxwell Weld.68 The hori-

zon’s area is now given by a very similar-looking formula

A ¼ 8p[mþ (m2 � e2)
1
2]2G2=c4:

The condition for this metric to represent a black hole rather than a naked

singularity is m $ jej, and the condition for the hole to be extremal (zero

temperature) is m ¼ jej. (The modulus bars—see §6.1—simply allow for

negative e.)

The type of ‘black hole’ that the string theorists are mainly concerned

with is in essence the same as the Reissner–Nordstrøm case, but where a

supersymmetric family of Yang–Mills Welds (§25.7) replaces the Maxwell

Weld. The entire solution is, in eVect, a particular example of what is called

a BPS state (where ‘BPS’ stands for ‘Bogomoln’yi–Prasad–Sommerfeld’),

in which requirements of supersymmetry, stationarity, and minimal energy

determine the solution. I shall not bother with the details of what this

means. Although such things have clear interest for string theorists and

other people concerned with supersymmetry, there is yet no evidence of

their relevance to the actual physical world (see §31.2).

What about the fact that the speciWc calculations of string degrees of

freedom are performed in Xat space, where there is no event horizon? As

someone with a background in Einstein’s general relativity theory, I Wnd

this to be one of the most puzzling aspects of the string theorists’ claims. It

is hard to see how rigorous conclusions can be reached concerning black

holes, without full respect being paid to a black hole’s very curved space-
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time geometry, with the ‘information’ in its formation being captured

behind an event horizon.

Let us try to get a rough idea of how the string argument proceeds.69 To

start, imagine estimating the number of physical degrees of freedom by

counting the number of diVerent possible string loops, of length l, on a

Planck-scale lattice, say within a spherical volume of some Wxed radius,

these strings contributing a certain total mass–energy M. We are to suppose

that the actual value of Newton’s gravitational constant G is at our disposal.

For small enough G, there will be no black hole, and in the limit as G goes to

zero, the spacetime becomes actually Xat. But if we invisage gradually

increasing G (‘cranking up Newton’s constant’), we eventually come

to a situation in which, according to general relativity, a black hole

would form (recall Michell’s expression 2MG=c2 for the radius of a

‘Newtonian black hole’—see §27.8). In string theory, G depends on a

parameter gs, called the string coupling constant, and it turns out that G

would get larger as gs is made larger (G � g2
s ). In the limit of small G

(small gs), the logarithm of the count of string degrees of freedom (§27.3)

gives an entropy that is the same as the Bekenstein–Hawking value for a

black hole, even though there is no black hole. Scaling arguments are

provided in order to show that this relation persists as G increases, so that

the actual Bekenstein–Hawking formula is obtained when the black-hole

stage is arrived at.

This gives only a qualitative correspondence between a count of

string degrees of freedom and the Bekenstein–Hawking formula SBH ¼
1
4
A� kc3=G�h, conWrming a rough proportionality between string entropy

and black-hole surface area A. To obtain the precise value of 1
4
A in the

formula, Strominger and Vafa appealed to a consideration of BPS states,

where the supersymmetry requirements enable the mass to be Wxed in

terms of the various ‘charge’ values (for the supersymmetric Yang–Mills

Welds), and where instead of enumerating string conWgurations, the ‘count-

ing’ now enumerates all the diVerent BPS states70 that contribute to the

total (all BPS states with the given set of charges). This can be done

explicitly enough, and the logarithm of this number gives, somewhat

remarkably, the value of 1
4
A precisely (in the extremal case). Not

only this, but (as later work showed) perturbations away from extremality

(i.e. to Hawking temperatures inWnitesimally above zero) the entropy still

comes out correctly, as do certain slight corrections to the purely ‘black-

body’ nature of the Hawking radiation. Moreover, the same turns out to

hold when there is rotation, and in 4-dimensional spacetime.

The attentive reader may be puzzled why there appears to be ‘another

constant’ gs in string theory when everything should have been Wxed by the

string constant a0 (§§31.8,9), the only actual parameter that appears in the

Lagrangian. The answer to this lies in the fact that things have not really
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been Wxed, because a value needs to be settled on for the dilaton Weld

(§31.8). The value of gs is given by the expectation value71 of this dilaton

Weld, assumed to be a constant. In general, the dilaton Weld need not

be a constant, but it is often treated as such (as in the above discussion)

for convenience. Its value would depend on various things, such as

the speciWc choice of Planck-sized Y space and the choice of string theory

type (i.e. Type I, IIA, IIB, Heterotic O(32), or Heterotic E8 � E8; see

§31.14). In fact, this dependence underlies the strong/weak dualities of

§31.14, the gs of one theory being the reciprocal of the gs of the ‘dual’

theory.

The reader will perceive that I Wnd the above arguments to be very

far from an actual string-theoretic derivation of SBH, despite some remark-

able agreements. I know that other general-relativists also feel considerable

unease—most particularly with the fact that the essential horizon property

of a black hole, in determining its vast entropy, does not appear to have

played any real role at all. (This is in stark contrast with the loop-variable

discussion of black-hole entropy that we shall come to brieXy in §32.6.)

Indeed, in the string-theory picture, entropy hardly increases at all at the

point of formation of a black hole, giving a completely diVerent viewpoint

from the usual one (described in §27.10).

In addition, I should mention a speciWc technnical diYculty with the

string argument as it has been given.72 This relates to the peculiar thermo-

dynamic property of normal black holes that for small angular momentum

they have a negative speciWc heat (see Note 27.2). The speciWc heat of a

body is measured by how much its temperature rises when a small amount

of heat energy is supplied to it. For an ordinary body, this is a positive

number, our normal experience being that when heat is applied to a body,

its temperature rises. But with a black hole, we tend to Wnd that its

temperature decreases. Heat energy supplies mass to the hole (by

E ¼ mc2), so the hole gets more massive and, by Hawking’s TBH ¼ 8p=m
for a Schwarzschild hole (§30.4), its temperature decreases, so the speciWc

heat is indeed negative. This curious negativity of a black-hole’s speciWc

heat would seem to present a diYculty for the above string-theoretic

argument for black-hole entropy if it were to be applied to black holes

that are not close to the extremal case, since a positive speciWc heat seems

to be needed for the argument, and a black hole’s speciWc heat is only

positive when it is close to extremal. Indeed, we Wnd that the speciWc heat is

positive only when m > a > (2
ffiffiffi

3
p
� 3)1=2m in the Kerr case, and only

when m > e > m
ffiffiffi

3
p

=2 in the Reissner–Nordstrøm case, and the same

kind of thing holds for all the other Yang–Mills-charged Welds.

There do appear to be some surprising relationships emerging from

these string-theoretic calculations. But in my view, they fall far short of

providing an independent justiWcation of the Bekenstein–Hawking
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entropy formula. The loop-variable approach to this problem (brieXy

considered in §32.6), would seem to provide a much more impressive

quantum-gravity-based attack on this problem.

31.16 The ‘holographic principle’

The string arguments referred to above, like practically all string cal-

culations, are of a perturbative nature. More recently, however, certain

ideas have been proposed with the intention of providing exact results.

These depend on various instances of something called the ‘holographic

conjecture’, which has somehow got promoted to the holographic principle.

The idea of this ‘principle’ seems to be that, in certain appropriate circum-

stances, the states of a (quantum) Weld theory deWned on some spacetimeM
can be put into direct 1–1 correspondence with the states of another

quantum Weld theory, where the second QFT is deWned on another space-

time E of lower dimension! Often, E is presented as though it were a

(timelike) boundary ofM, or at least some conformally smooth timelike

submanifold of M, (see Fig. 31.14). However, this is not the case in the

usual example, that we shall examine in a moment. The holographic

principle is taken to be, in some sense, analogous to a hologram, where a

3-dimensional image is perceived when a (basically) 2-dimensional surface

is viewed.73

The most familiar form of this ‘holographic principle’, stemmed from

work of Juan Maldacena in 1998, and is sometimes referred to as the

Maldacena conjecture, or else the ADS/CFT conjecture. Here, M is to

be a (1þ 9)-dimensional product AdS5 � S5, where AdS5 is the (‘un-

wrapped’) (1þ 4)-dimensional anti-de Sitter space (see §28.4, Figs. 28.9

and 28.10c,d—but here there are four space dimensions). The S5 is a

spacelike 5-sphere whose radius is of cosmological dimension, equal to

(� L0)
1
2, where L0 is the (negative) cosmological constant of AdS5 (§19.7).

The smaller space E is to be the 4-dimensional ‘scri’ (i.e. conformal

inWnity—see §27.12) of AdS5; see Fig. 31.15. We note that E, being

4-dimensional, is certainly not the boundary of M in this case, since

M¼ AdS5 � S5 is 10-dimensional. Instead, the ‘boundary’—i.e. the

‘scri’—of M can be thought of (but not conformally) as E � S5. The

M

E

Fig. 31.14 ‘Holographic principle’? A spacetime E is

a (timelike) boundary of another spacetimeM. It is

conjectured that a suitable QFT deWned on E can be

equivalent to a string QFT onM.
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Maldacena conjecture proposes that string-theory on AdS5 � S5 is to be

equivalent to a certain supersymmetric Yang–Mills theory on E.
Here there is no chance of appealing to the type of ‘quantum-energy’

argument put forward in §31.10 for explaining away the gross discrepancy

between the functional freedom of an ordinary Weld onM, namely1M19

and an ordinary Weld on E, namely1E13

. Since the extra dimensions ofM
are in no way ‘small’—being of cosmological scale—the Xood of additional

degrees of freedom, from the Welds’ dependence on the S5 part ofM, would

spoil any possibility of an agreement between the two Weld theories. The

same would apply to ordinary QFTs onM and E, since one-particle states

are themselves described simply by ‘ordinary Welds’ (see §26.2). The only

chance of the holographic principle being actually true for these spaces is for

the QFTs under consideration to be far from ‘ordinary’.

In the case the string theory onM, it is certainly conceivable that there

are very strong consistency conditions which drastically reduce the1M19

functional freedom. But, on the face of it, this seems very unlikely. Recall

from Chapter 21, §22.8, and §16.7, that the quantum state of a single

particle in (1þ n)-dimensional spacetime has the functional freedom

1P1n

, where P is some positive integer describing the number of internal

or rotational degrees of freedom (e.g. spin) of the particle. The quantum

state of a single string would seem to have a much greater functional

freedom, since a classical string has inWnitely many degrees of freedom.

If the number 1P1n

is somehow to be reduced, then there must be huge

constraints, perhaps of the type that led to the restrictions on spacetime

dimension and curvature referred to in §31.7, but I am not aware of any

such constraints having been suggested—which, in any case, would dras-

tically aVect the counting of string states, such as in §31.15.

The remaining possibility is to Wnd a way of greatly increasing the

functional freedom in the supersymmetric Yang–Mills Welds on E. The

only way that I can see of achieving this would be have an inWnite number

of such Welds, which could be attained by taking the limit N!1 (N being

AdS5

S5

E

Fig. 31.15 ADS/CFT (Maldacena)

conjecture. Here E is to be the 4-di-

mensional ‘scri’ (conformal inWnity;

§27.12) of anti-de Sitter 5-space AdS5

(see Fig. 28.9b), rather than of the 10-

dimensionalM ¼ AdS5 � S5, but the

string-theory onM is conjectured to be

equivalent to a supersymmetric Yang–

Mills theory on E.
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the number of supersymmetry generators). However, in the usual form of

this conjecture, one takes N ¼ 4, in order that there be an SO(6) ‘internal

group’ acting on the supersymmetric partners but leaving the Yang–Mills

potentials unchanged.74 This internal symmetry is taken so as to match the

SO(6) symmetry of the S5 that features in AdS5 � S5. In my own view, it is

fundamentally misconceived to try to match a ‘spacetime symmetry’ to an

internal group of this kind—unless, as with the original Kaluza–Klein

theory (§33.4), the spacetime symmetry is speciWed as exact, by the exist-

ence of Killing Welds, and is also to be respected by all physical Welds on

the spacetime. The excessive degrees of freedom in 1M19

come about

precisely for the reason that there is no such speciWed symmetry on the S5

part ofM, which is to be respected by Welds onM.

It is my opinion that the importance this kind of discrepancy in func-

tional freedom has been profoundly underrated. The ‘sizes’ of the

Fock spaces (see §26.6) will completely diVerent whenever the functional

freedom in the classical Welds is completely diVerent. It should be noted

that the condition of positive frequency, as demanded of 1-particle states in

QFT, does not change the ‘1M1N

’ freedom for the classical Welds. It

simply compensates for the fact that these classical Welds need to be

complexiWed when we pass to a QFT description; see §26.3.

Why is the ADS/CFT conjecture taken so seriously? The support for it

seems to come from a correspondence between BPS states on the two sides,

that had been noticed by Maldacena and from a number of other corres-

pondences. A good many of the latter can be understood purely from the

correspondence between the symmetry groups (namely SO(2, 4)� SO(6))

of the Weld theories on the two sides, but there are also some additional

‘coincidences’ that seem to need explaining. A reason for hoping that ADS/

CFT is true appears to be that it might provide a handle on what a string

theory could be like, without resorting to the usual perturbative methods,

with all the severe limitations that such methods have.

Calculations on the E side are made easier by the fact that the space E is

conformally Xat (and sometimes referred to as ‘Xat’, although it has no

actual metric assigned to it, only a conformal metric of signatureþ���).

It is the universal covering space (Note 15.9) of the ‘compactiWed

Minkowski space’ that we shall come to75 in §33.3, having the topology

of S3 �E
1. The metric space S3 �E

1 is sometimes called the ‘Einstein

cylinder’ or ‘Einstein universe’, being the cosmological model favoured by

Einstein for the period 1917–1929, when he had incorporated a cosmo-

logical constant into his Weld equation (§19.7)76

The ADS/CFT conjecture arose as another way of looking at the string

‘derivation’ of the Bekenstein–Hawking black-hole entropy formula

(§31.15). For this, a ‘black hole’ is represented as a ‘thermal state’ on E.
This would only be of relevance to cosmological-size black holes and, at
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best, and provides a ‘conjecture’, based on some remarkable agreements

between ‘entropy calculations’ done in diVerent ways, rather than an

actual derivation of the Bekenstein–Hawking expression.

31.17 The D-brane perspective

In various places in the above discussion, particularly in §§31.11,12,15,16, I

have expressed my discomWture with the use of higher-dimensional space-

time in string theory. One of my most fundamental diYculties with it is the

enormous increase in functional freedom in higher-dimensional theories

(1P1M

, for a (1þM)-dimensional spacetime), where one has to envisage

some means of freezing out this extra freedom. Recall the ‘hosepipe’

analogy, illustrated in Fig. 15.1 and Fig. 31.3a. What we perceive as a

‘spacetime point’ is a fully dynamical entity—here described as a circle,

but generally with high dimensionality, and this is what provides us with

the enormous extra freedom. We recall that Kaluza and Klein resorted to

eliminating this freedom by decree, by asserting the presence of a Killing

vector taking us around the ‘hosepipe’, in eVect reducing the spacetime to

a 4-dimensional one. This is, mathematically, a perfectly respectable pro-

cedure, but it appears never to have been seriously put forward in string

theory. Instead, as in §31.10, string theorists seem normally to rely upon

the hugeness of the energy that would be required to excite oscillations in

these extra dimensions. As we have seen in §§31.11,12, there is every reason

to doubt this line of argument.

Yet, the nature of the string-theory activity is such that it is hard to

attack by means of speciWc arguments, such as those indicated in

§§31.11,12,16. For the subject is always likely to metamorphose into a

diVerent form, at which point such attacks are deemed irrelevant.77

Indeed, according to some recent ways of looking at the higher dimen-

sions, the entire philosophy may be overturned, as far as I can see, with no

public intimation that any serious change has happened at all. Although

not necessarily the clear viewpoint of ‘mainstream’ string theorists (what-

ever that may be), the introduction of a certain ‘D-brane philosophy’

seems to be of this character.

First, what are D-branes? Why does string theory require them? The basic

answer to the second question is that they make sense of the open strings

that feature in the Type I theory, as referred to §31.14: each of the two ends

of an open string must reside on some D-brane (Fig. 31.16). In response to

the Wrst question, a D-brane (or a D-q-brane) is a timelike structue of 1þ q

spacetime dimensions (i.e. q space dimensions and 1 time dimension) that is

a stable solution of 11-dimensional supergravity. (Invoking one of the

M-theory dualities, we may, alternatively regard a D-brane as a solution

of the equations of some other version of string/M-theory.) Basically, this is
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a ‘brane’ (as described in §31.14) of some dimension (0, 1, 2, . . . , or 9) that is

a BPS state (see §§31.15,16), so it possesses some supersymmetric collection

of Yang–Mills ‘charges’ and has minimum energy, subject to this. D-branes

feature in many modern string-related discussions (for example, in black-

hole entropy—see §31.15). They tend often to be treated as though they are

classical objects lying within the full spacetime of 1þ 9 (or 1þ 10) dimen-

sions. The D stands for ‘Dirichlet’, by analogy with the kind of boundary-

value problem referred to as a Dirichlet problem, in which there is a timelike

boundary on which data is speciWed (after Peter G. Lejeune Dirichlet, an

eminent French mathematician who lived from 1805 to 1859—recall the

‘Dirichlet series’ of §7.4).

I shall make no attempt to discuss D-branes in any detail here. The only

issue that I wish to raise is that, with the introduction of such ‘D-branes’,

various theorists have provided a ‘string philosophy’ that seems to repre-

sent a profound shift from what had gone before. For it is not uncom-

monly asserted that we might ‘live on’ this or that D-brane, meaning that

our perceived spacetime might actually lie within a D-brane. Indeed, it

might even coincide with the D-brane, so that the reason that certain ‘extra

dimensions’ are not perceived would be explained by the fact that ‘our’

D-brane does not itself extend into these extra dimensions.

The latter possibilitywould be themost economical position, of course, so

‘our’ D-brane (a D-3-brane) would be of 1þ 3 dimensions. This does not

remove the degrees of freedom in the extra dimensions, but it drastically

reduces them. Why is this? Our perspective is now that we are not ‘aware’ of

the degrees of freedom that are concerned with the deep interior of the

higher-dimensional space between the D-branes, this being where the exces-

sive functional freedom ismaking itself felt.Weare tobe awareof these extra

dimensions only where they directly impinge upon the D-brane on which we

‘live’. Let us return toour hosepipe analogy.Rather than the ‘factor-space’78

kind of picture that the original Kaluza–Klein analogy conjures up (Fig.

31.3), our observed spacetime now appears as a 4-dimensional subspace of

D-brane

Fig. 31.16 The two ends of an open string are sup-

posed to reside on a timelike (q þ 1)-dimensional

subspace of spacetime called a D-brane, or D-q-

brane. A D-brane is an essentially classical entity

(though possessing supersymmetry properties), rep-

resenting a solution of 11-dimensional supergravity

theory (a type of ‘BPS state’).
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the higher-dimensional space. To visualize this, think of a strip drawn along

the length of our hosepipe to represent the D-brane subspace that is now

‘our observed 4-dimensional universe’ (Fig. 31.17).

How much functional freedom do we now anticipate? The situation is

somewhat similar to the geometrical picture that was adopted in §31.3 in

order to obtain a more conventional perspective with regard to ‘super-

geometry’; see Fig. 31.2. Since we are now concerned with behaviour only

at the D-brane (assumed to be, geometrically, an ordinary (1þ 3)-space-

time), we may imagine that our functional freedom has now become an

acceptable 1M13

, albeit for some rather large M. However, even this

assumes that the restriction of the dymamics in the full 10-space (or

11-space) provides us with dynamical equations within ‘our’ 4-dimensional

D-brane that are of the conventional type, so that initial data on some

3-space will suYce to determine behaviour throughout the 4-space. This is

hardly likely, in general, so that a still excessive 1M14

may be expected.

The problem has still not gone away!

One of the things that this attitude to D-branes has been used for is to

attempt to resolve the ‘hierarchy problem’ referred to in §31.1. SpeciWcally,

this is the question of why gravitational interactions are so tiny in relation

to the other important forces of Nature or, equivalently, the gravitation-

ally fundamental Planck mass is so much larger than the masses of the

elementary particles of Nature (by a factor of some 1020). The D-brane

approach to this problem seems to require the existence of more than one

D-brane, one of which is ‘large’ and the other ‘small’. There is an exponen-

tial factor involved in how the geometry stretches from one D-brane to the

other, and this is regarded as helpful in addressing the 1040, (or so)

discrepancy between the strengths of gravitational and other forces.79 It

may be mentioned that this kind of picture of a higher-dimensional space-

time, which stretches from one D-brane boundary to another, is one of the

types of geometry suggested for the 11-dimensional theories, such as M-

theory, where the 11th dimension has the form of an open segment, each

boundary geometry having the topological form (e.g. MM�Y) of the

10-spaces we considered earlier. In other models the 11th dimension is

topologically S1.

‘being’D
-b

ra
ne

Fig. 31.17 An alternative viewpoint to that

of Fig. 31.3, often expressed in the context of

D-branes, is that a ‘being’ in higher dimensional

space need not straddle all the extra dimensions

but may be thought of as ‘living’ in a subspace,

perhaps on a D-brane boundary
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31.18 The physical status of string theory?

What are we to make of all this with regard to string theory’s status as a

physical theory of the future? The situation strikes me as having some very

enigmatic and remarkable aspects to it, as well as some highly implausible-

sounding ones, and it would be wrong to attempt to be completely dog-

matic at this stage. Yet, many of the string theorist’s claims are strongly

asserted with apparent conWdence. Undoubtedly, these must be watered

down and taken with a sizeable heap of salt before serious consumption is

contemplated. I think that it is fair to say that some of the strongest claims

can be discounted altogether (such as string theory having provided a

complete consistent theory of quantum gravity). But having said that, I

have to admit to there being the appearance of something of genuine

signiWcance ‘going on behind the scenes’ in some aspects of string/M-

theory. As the mathematician, Richard Thomas, of Imperial College

London remarked to me, in an e-mail message

I can’t emphasise enough how deep some of these dualities are; they con-

stantly surprise us with new predictions. They show up structure never

thought possible. Mathematicians conWdently predicted several times that

these things weren’t possible, but people like Candelas, de la Ossa, et al.

have shown this to be wrong. Every prediction made, suitably interpreted

mathematically, has turned out to be correct. And not for any conceptual

maths reason so far—we have no idea why they’re true, we just compute

both sides independently and indeed Wnd the same structures, symmetries

and answers on both sides. To a mathematician these things cannot be

coincidence, they must come from a higher reason. And that reason is the

assumption that this big mathematical theory describes nature . . .

Yet, it still may well be that this ‘something’ is of purely mathematical

interest, without there being any real reason to believe that it takes us any

closer to Nature’s secrets. I think that this is a perfectly tenable position to

take, although in my actual beliefs I am prepared to accept that Nature

might indeed have an interest in these matters (probably along somewhat

diVerent lines from those suggested so far). The strength of string theory’s

case appears to rest on a number of remarkable mathematical relation-

ships between seemingly diVerent ‘physical situations’ (where this ‘physics’

is usually something that would seem to be rather removed from the

physics of Nature’s actual world). Are these relationships ‘coincidence’,

or is there some deeper reason behind them? It seems to me that for many

of them there is indeed such a reason, in some cases as yet undiscovered,

but that still does not reassure us that the string theorists are doing

physics. Or, if they are, what aspect of physics are they really exploring?

I do not think that a proper assessment of these matters can be made

without addressing the particular status of Edward Witten. He is generally
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accepted as being the Wgure who is most responsible for the direction of

string-theory (and M-theory) research since the late 1980s. I have men-

tioned his role in launching the ‘second superstring revolution’ in 1995

(§31.14), but already by then he had established his pre-eminence in

initiating several important developments in string theory, and in many

other areas that have (not always obviously) some relation to string

theory. String theory has had several ‘tour-guides’ throughout its over-

30-year history, but Witten has been, in many respects, clearly the most

impressive of these. Where Witten goes, it does not take long for the rest

to follow. As an example of this, one may mention that the original

Maldacena paper, which initiated much of the activity discussed in

§31.16, lay essentially unnoticed on the archives by the string theory

community until it was followed up by Witten in 1998. Immediately, it

became the paper most cited by string theorists.80

It is interesting that in some very signiWcant-looking new work,81 Witten

has reverted to considerations within a standard 4-dimensional spacetime

(although supersymmetry is still involved). By combining ideas from

twistor theory and string theory, Witten is able to derive some fascinating

results concerning the Yang-Mills interactions of several gluons (§25.7).

This work is particularly signiWcant from my own twistor-oriented per-

spective (see Chapter 33), and it could well lead to some important new

developments.

There is no question about the extraordinary quality of Witten’s intellec-

tual achievements. I can speak from a great deal of direct experience. There

have been numerous occasions when I have attended seminars at the

Mathematical Institute in Oxford (in the Geometry and Analysis series),

in which a new highly original approach to some problem has been an-

nounced, and it has turned out that the seminal idea actually came wholely

or at least partly from Witten. Frequently, such approaches have opened up

a new Weld, where these unforeseen insights have shed a powerful original

light on diYcult mathematical problems—sometimes ones that previously

seemed intractable. There is no doubt in my own mind that Witten possesses

remarkable mathematical insight and understanding, of a high order.

(Indeed, he won a Fields Medal in 1990, which has the status, among

mathematicians, of a Nobel Prize in the world of science. This is certainly

an extraordinary achievement for a physicist.) Yet, I believe that Witten

himself would deny that his abilities lie so much on the mathematical side.

As I understand his own views, his successes have come from peering more

deeply into the ways of Nature, gaining insights from the structure of QFT

with its path integrals and inWnite-dimensional function spaces, from the

ideas of supersymmetry, and from the very nature of string theory and its

generalizations. If he is right, then this is perhaps one of the strongest cases

for accepting his contentions that supersymmetry and string theory do
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indeed Wnd deep favour with Nature. On the other hand, perhaps he is a

more remarkable mathematician than he admits to being!

How impressed am I that the very striking mathematical relationships

that Witten and his colleagues have uncovered indicate some deep closeness

to Nature? I am not totally sure how to view this issue, and I am certainly

not convinced about it. Recall the remarkable achievement of the mathem-

atician Andrew Wiles, in proving the famous ‘Fermat’s Last Theorem’ after

three and one-half centuries of failed attempts (§1.3). What Wiles actually

established was that, in an important case, two very diVerent-looking

calculations actually always yield the same list of answers, the general

form of this remarkable assertion being known as the Taniyama–Shimura

conjecture. (In fact, Wiles’s proof established only part of the full T–S

conjecture—a part that was suYcient for establishing the Fermat asser-

tion—but his methods provided an essential input for the full proof, subse-

quently completed by Breuil, Conrad, Diamond, and Richard Taylor.)

There is perhaps some vague similarity between this conjecture and the

‘mirror-symmetry’relationsofCalabi–Yauspacesreferredtoabove(§31.14).

In each case one has two inWnite lists of numbers that turn out mysteri-

ously to be the same. This kind of thing is far from unique in mathematics,

and it may take a considerable number of years, in any particular case,

before the underlying reasons for the equality of the lists come to light. As

I understand it, many of the relations obtainable using ‘mirror symmetries’

have now been established by purely mathematical arguments.82 As far as

I am aware, such mysterious relationships are not normally put forward to

support proposals for scientiWc (as opposed to mathematical) theories.

This kind of issue will be taken up again in §34.9.

We have seen the same kind of ‘coincidence’ in the string-theoretic

arguments for black-hole entropy, as put forward in §31.15 (and even in

the much earlier ‘non-string’ arguments of §30.5). Are these in fact merely

mathematical coincidences, or do we take these arguments as providing

actual derivations? Let me end this chapter by taking another example of a

striking mathematical coincidence, taken from early 20th-century physics.

In 1912, Woldemar Voigt constructed a theory of spectral lines, based on

an incorrect oscillator model. Fifteen years later, Heisenberg and Jordan

found what we would today regard as the correct approach to this prob-

lem, and it is worth quoting from Heisenberg on his reminiscences of

Voigt’s work:83

He was able to arrange the coupling of the oscillators with one another, and

with the external Weld, in such a way that, in weak magnetic Welds, the

Paschen–Back eVect was also correctly represented. For the intermediate

region of moderate Welds, he obtained, for the frequencies and intensities,

long and complex quadratic roots; formulae, that is, which were largely
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incomprehensible, but which obviously reproduced the experiments with

great exactness. Fifteen years later, Jordan and I took the trouble to work

out the same problem by the methods of the quantum-mechanical theory of

perturbation. To our great astonishment, we came out with exactly the old

Voigtian formulae, so far as both frequencies and intensities were concerned

and this, too, in the complex area of themoderateWelds. The reason for thiswe

were later able to perceive; it was a purely formal and mathematical one.

I shall return, in Chapter 34, to this perplexing issue of mathematical

relationships, as a driving force behind string theory and other proposals

for the development of a fundamental physical theory.

Notes

Section 31.1

31.1. One should, of course, be careful not to confuse this e with the base of natural

logarithms: e ¼ 2:718281828459 . . . ; see §5.3.

31.2. This enormous discrepancy between the strengths of interactions—strong,

electromagnetic, weak, and particularly gravitational, as roughly characterized

by the respective coupling constants 1, 1
137

, �10�6, �10�39—is sometimes

referred to as ‘the hierarchy problem’. Georgia State University has a lovely

little page explaining the finer points of comparing these couplings; see http://

hyperphysics.phy-astr.gsu.edu/hbase/forces/couple.html

31.3. The relatively ‘mild’ renormalizaton factor for charge could come about because

of the logarithmic nature of the electrodynamic divergence. The perceptive

reader will, of course, notice that the puzzle of the tiny values of particle masses

has not gone away, merely rephrased in terms of an absurdly tiny distance scale.

31.4. But recall t’Hooft’s remark, referred to in §26.9.

Section 31.2

31.5. For a very useful collection, giving accounts of the history, personalities, and

basic ideas underlying the introduction of supersymmetry, see Kane (2001) at a

lay level, and Kane (1999) for something a bit more technical.

31.6. See Witten (1982); Seiberg and Witten (1994) on supersymmetric Yang-Mills

theory led to great simplifications in the Donaldson theory of 4-manifolds; see

Donaldson and Kronheimer (1990). According to John Baez, the Seiberg-

Witten theory shortens some proofs in Donaldson theory to 1/1000th their

original length.

31.7. See Witten (1981); Deser and Teitelboim (1977) for proofs of positive energy

using supersymmetry; see Gibbons (1997) for interesting black hole inequalities.

31.8. See Greene (1999), Note 5 on p. 399.

31.9. See Lawrie (1998), or, for much more detail, see Mohapatra (2002).

Section 31.3

31.10. There is a tendency for N to be a power of 2, this being the number of

components of some spinor (see §11.5, §33.4). This should not be confused

with the number 2N of elements in the supersymmetry algebra. See Wess and

Bagger (1992) for a discussion of supersymmetry by one of the creators!

31.11. For more information about supermanifolds, see DeWitt (1984); Rogers (1980).

Supersymmetry, supra-dimensionality, and strings Notes

929



Section 31.4

31.12. See the review article by Bern (2002) for an extended discussion of all this. See

also Deser (1999, 2000).

31.13. See Deser (1999, 2000) on the ‘last hope’ for renormalizability of supergravity;

also Deser and Zumino (1976).

31.14. See, for example, Hoyle et al. (2001), p. 1418.

31.15. See Penrose and Rindler (1984).

31.16. In a conventional bundle description, the metric on a base space M could be

‘lifted’ back into a bundle B, over it, if desired, generally just to provide a

canonical ‘degenerate’ metric on B, but perhaps a non-degenerate metric if use

may be made of a metric structure on the Wbres. But this is not an essential

aspect of the structure of a bundle.

31.17. These are the Einstein equations with Maxwell’s energy–momentum tensor as

source, together with the free Maxwell equations on the curved spacetime

background.

31.18. There are, however, some recent applications of ideas combining string theory

with twistor theory which use normal 4-dimensional spacetime. See §§31.6,18,

§33.14 and Note 31.76.

Section 31.5

31.19 Compare with Note 14.3.

31.20. See Schwartz (2001) for a general history of string theory; in particular, see

Veneziano (1968); Nambu (1970); Susskind (1970); Nielsen (1970); and God-

dard et al. (1973).

31.21. This describes things in terms of the b function, found by the great Euler in

1777. See Goddard et al. (1973) for the first important exposition of the duality.

31.22. Veneziano (1968) first conceived the model to explain the Regge poles. See

Collins (1977) for Regge Theory in general, as well as Penrose et al. (1978).

31.23. Some limited success was later achieved in the bringing together of twistor ideas

and those of string theory, but these were basically of a mathematical nature

and did not provide a uniWed physical viewpoint; see Shaw and Hughston

(1990) and Note 31.76.

Section 31.6

31.24. Quoted in Greene (1999), p.139, from an interview of Michael Green, by Brian

Greene, 10 December, 1997.

31.25. See Witten (1996).

31.26. See Greene (1999). Authoritative works that are more detailed and technical are

Green et al. (1987); Polchinski (1998); and Green (2000).

Section 31.7

31.27. See Green et al. (1987); Polchinski (1998); or Green (2000) for an argument

leading to 26 dimensions.

31.28. The relevant number that anomalously appears in the quantum commutators

(and must be set to zero) is 24� s, where s is the number of space dimensions

minus the number of time dimensions.

31.29. With supersymmetry, the anomaly is now removed when 8� s is set to zero,

with s as in the previous footnote.

31.30. A hadronic string exhibits a minor diVerence from an ordinary rubber band in

that the latter has a Wnite natural length for which the tension goes down to

zero. For a hadronic string this ‘natural length’ would itself be zero.
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Section 31.8

31.31. Many such claims are to be found in Greene (1999).

31.32. Quoted by Abhay Ashtekar in a lecture at the NSF-ITP Quantum Gravity

Workshop at the University of California, Santa Barbara (1986).

31.33. Although not all of the relativity community would go the whole way with me,

that the sought-for quantum/gravity union must involve a change in the rules of

QFT, I continually Wnd encouragement for this standpoint from that commu-

nity. The response from the QFT community tends to be much less sympathetic!

31.34. The term ‘dilaton’ is not a misspelling of ‘dilation’, but it refers to a quantum

version of that notion, arising from degrees of freedom available in a change of

scale in the metric. Recall, from Chapter 26, that according to the rules of QFT,

quantized degrees of freedom may manifest themselves as a kind of particle.

Section 31.9

31.35. Quoted in Greene (1999), p. 210 from an interview of Edward Witten by Brian

Greene, 11 May 1998.

Section 31.10

31.36. The number 70 comes from the formula n(n� 3), for the number of independent

components per point of an initial (n� 1)-surface in a Ricci-Xat n-space; See

Wald (1984); Lichnerowicz (1994); Choquet-Bruhat and DeWitt-Morette (2000).

31.37. See Penrose (2003); Bryant et al. (1991); Gibbons and Hartnoll (2002).

Section 31.11

31.38. See Penrose (2003).

31.39. See Dine (2000) for reflections on moduli.

31.40. One might prefer to stay within a QFT framework and use a coherent state

(§26.6) instead of a classical description. This does not evade the issues being

raised here, however.

31.41. Although I doubt that many string theorists would be keen on making R into

a dynamical process, there are some notable exceptions; see Ellis et al. (1997a,

1997b).

31.42. The excitons behave as bosons in a quantum-Weld-theoretic description of the

hosepipe vibrations (§22.13, §23.8, §26.2), so there can be many quanta in any

one particular Y mode. An actual physical system for which such a quantum

description can be appropriate would be long and narrow optical waveguide

(e.g. an optical Wbre).

Section 31.12

31.43. See Hawking and Penrose (1970).

31.44. The condition is that each timelike or null geodesic encounters ‘generic’ curva-

ture, in the sense that, somewhere along each such geodesic, k[aRb]cd[ekf ] 6¼ 0,

where the null vector ka is tangent to the geodesic. A simple direct assessment of

degrees of freedom shows that this condition is certainly satisWed in any

‘generic’ spacetime. It should be mentioned that the theorem applies in circum-

stances more general than Ricci Xatness. We need only that the Ricci tensor

satisWes an appropriate ‘non-negative energy condition’ (see §27.9, especially

Note 27.20, and §28.5).

31.45. There are exceptional cases of a zero-curvature Y with the topology of a

‘hypertorus’ S1 � S1 � S1 � S1 � S1 � S1. These are not the models for Y
favoured by today’s string theorists, however (§31.14). Moreover, most per-

turbations of the hypertorus would not be Xat.
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31.46. This conclusion follows from another application of the aforementioned singu-

larity theorem, which applies directly to the entire spacetimeM. In this appli-

cation, the condition that there exist a compact spacelike hypersurface is

replaced by the existence of some point p whose future light cone C ‘curls

round and meets itself’ in all directions. The locus C is that swept out by the

family of light rays ‘ (i.e. null geodesics—see §28.8), with past end point p and

which extend indeWnitely into the future. Technically, the required condition is

satisWed if every such ‘ contains a point q for which there is a strictly timelike

curve into the future from p to q. In the exactMM�Y models just described, the

condition fails (as it must, becauseMM�Y can be non-singular), but it only just

fails. Essentially what happens is that, among the 8-dimensional family of light

rays ‘, there is only a tiny 2-dimensional subfamily that fails to wander into the

‘Y part’ of the spacetime and back, thereby curling into the interior of C. It can

be shown that, with a generic but small perturbation encountered by C, this

saving property will be destroyed, and the above-mentioned singularity the-

orem will indeed apply. Details of this argument will be presented elsewhere.

31.47. See, for example, Minassian (2002), which refers to further relevant research.

Section 31.13

31.48 See Smolin (2003) and Nicolai (2003).

31.49. See Smolin (2003); Gross and Periwal (1988); Nicolai (2003).

31.50. The series 1þ 22 þ 24 þ 26 þ 28 þ � � � is not Borel-summable either, even

though the ‘Eulerian’ value � 1
3

for this sum is unambiguous, as can be seen

using anaytic continuation (§7.4). I am not aware of whether such procedures

have been applied to the total string amplitudes.

Section 31.14

31.51. This remark does not apply to the heterotic strings, that we shall come to

shortly, for which the basic string framework is already chiral.

31.52. The most recent reference seems to be Gross et al. (2003). Smolin (2003)

provides further references to these manifolds in string theory, and Polchinski

(1998) discusses them as well.

31.53. I have a certain diYculty with this, since spinor Welds actually have a geomet-

rical interpretation. They cannot be ‘rotated’ (and therefore ‘gauged’, strictly

speaking—see §§15.2,7) without this applying to the ambient space itself; see

Penrose and Rindler (1984).

31.54. Applying a ‘Wick rotation’ to obtain a Riemann surface, the distinction is

between holomorphic and antiholomorphic, as mentioned in §31.13.

31.55. Greene (1999); Smolin (2003) lists virtually all the known dualities, their status,

and references.

31.56. This notion of ‘mirror symmetry’ is completely diVerent from the space-

reXection symmetry (parity), denoted by P, that was discussed in §25.4.

31.57. See Cox and Katz (1999), which provides an excellent coverage of such ideas.

31.58. See, for example, Kontsevich (1994); Strominger et al. (1996); for some of the

most recent developments, see Yui and Lewis (2003).

31.59. These particular manifolds are complex 3-surfaces called ‘quintics’, which

means that they have ‘order 5’. The order of a complex n-surface in CPm is

the number of points in which it meets a general complex (m� n)-plane in CPm.

31.60. For the ‘order’ of a complex curve, see previous Note (31.59). Here n ¼ 1.

31.61. See Cox and Katz (1999); Candelas et al. (1991); Kontsevich (1995).
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31.62. See Smolin (2003), reference 171 particularly; Witten (1995); for a popular

account, Greene (1999), p. 203.

31.63. See Vafa (1996); or Bars (2000).

31.64. See Bryant et al. 1991; Note 31.37.

Section 31.15

31.65. For a suggestive argument, however, see Thorne (1986).

31.66. See Strominger and Vafa (1996).

31.67. See Greene (1999), p. 340.

31.68. The reader might worry how a source-free Maxwell Weld might lead to a non-

zero charge. There is no inconsistency here, since the black hole could have

arisen from the collapse of a charged body of material, where all the charged

sources have disappeared into the hole.

31.69. For a fairly readable survey of these matters, see Horowitz (1998).

31.70. The count involves structures called ‘D-branes’ that we shall consider in §31.17.

31.71. See Note 22.11.

31.72. Pointed out to me by Abhay Ashtekar.

Section 31.16

31.73. See Kasper and Feller (2001) for a reference on ‘real’ holograms.

31.74. This is a rather difficult set of ideas. For a real challenge, see Maldacena (1997)

and Witten (1998).

31.75. Gary Gibbons has pointed out some intriguing geometry associated with this

picture which even appears to have connections with twistor theory. Various

matters of relevance to this construction are to be found in Penrose (1968).

31.76. See Nair (1988); Witten (2003); Cachazo et al. (2004).

Section 31.17

31.77. See Ashtekar and Das (2000) for an example of this phenomenon.

31.78. A ‘factor space’ is like the base space of a bundle; see §§15.1,2.

31.79. See Randall and Sundrum (1999a); see also Randall and Sundrum (1999b) for

more general thoughts on these issues. Johnson (2003) is the standard reference

on D-brane ‘technology’. One of the more fantastical applications of this

technology has been the ‘ekpyrotic’ model of the origin of the universe, put

forward by Steinhardt and Turok (2002) in which it is proposed that the Big

Bang arose from the collision of two D-branes in a previous phase of the

universe. Despite invoking such exotic elements, the authors of this model

make no attempt to explain the main puzzle presented by the Big Bang, namely

its extraordinary specialness, as described in §27.13.

Section 31.18.

31.80. See Note 31.74.

31.81. See Notes 31.18, 31.76.

31.82. See Notes 31.57, 31.58.

31.83. This quote is from Heisenberg’s 1975 address to the German Physical Society,

‘What is an elementary particle?’ (I am grateful to Abhay Ashtekar for this

example.) See Heisenberg (1989).
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32
Einstein’s narrower path; loop variables

32.1 Canonical quantum gravity

Despite string theory’s popularity, it would be an absurdity to take the

view, as some have done,1 that it is ‘the only game in town’ (see §31.8).

Many other interesting ideas are being pursued, these having diVerent

virtues and diVerent diYculties. Unfortunately, it is not feasible for me to

enter into a discussion of a great many of the alternative ideas for uniting

quantum theory with spacetime structure here. Instead, in this chapter and

the next, I shall concentrate on some of the more active areas that are closer

to my own beliefs as to what lines are likely to be fruitful in the search for

the true union between general relativity and quantum mechanics. As may

be gathered from my comments in the previous chapter, I am of the opinion

that we shall have to take a more tightly controlled position than those that

allow a growth in spacetime dimensionality or ventures into supersym-

metry (though I have less against the latter than the former which, as

we have observed in §§31.11,12, encounters serious stability problems).

Accordingly, in these two chapters, we shall be seeing some ideas that relate

speciWcally to 4-dimensional Lorentzian spacetime, where it is intended

that Einstein’s actual Weld equation,2 without supersymmetry, is to be

addressed in some kind of genuinely quantum context. We shall see that,

even here, the ‘pictures of physical reality’ that we encounter are still greatly

removed from what is familiar, in some respects not to the extent that we

saw in the previous chapter, but in other respects, more so. In this chapter,

we shall witness some of the ideas behind Ashtekar variables, loop vari-

ables, and spin networks. In the following chapter, we shall make some

acquaintance with twistor theory. Certain other ideas that have gained

currency will also be touched upon in these two chapters, particularly

discrete spacetime, q-deformed structures (‘quantum groups’), and non-

commutative geometry.

One of the most direct ways of approaching the quantization of

Einstein’s theory is to put it into a Hamiltonian form and then to try to

apply the procedures of canonical quantization that were described in

§§21.2,3. There are many diYculties about this, and I do not want to get

934



mired in the details. A lot of these stem from the fact that Einstein’s theory

is ‘generally covariant’ (§19.6), so any particular coordinates that are used

have no signiWcance. Recall from the discussion of §21.2 that the standard

‘quantization prescription’ whereby the momentum pa is replaced by the

operator i�h]=]xa, where xa is the (classically) conjugate position variable,

is not always correct, not even in Xat spacetime if we use curvilinear

coordinates. Thus, a great deal of care must be taken when carrying

through this sort of quantization procedure.

Another diYculty is the complicated non-polynomial structure that is

found for the standard Hamiltonian for general relativity. We should also

take note of the fact that in addition to having evolution equations that

take us away from an initial spacelike 3-surface S, these being governed by

the Hamiltonian, there are other equations that act within S, which are

called constraints.3 These provide us with consistency equations for the

data on S, and the satisfaction of the constraint equations is necessary

(and suYcient) for a satisfactory evolution of the data away from S (at

least locally) and this evolution then preserves satisfaction of the con-

straints.

The canonical approach to quantizing general relativity has a long and

distinguished history, going back to Dirac in 1932, who had to develop a

whole new quantization framework, in order to handle the complicated

constraints that indeed occur in Einstein’s theory.4 For many years this

kind of approach was followed by a number of diVerent researchers, with

increasing sophistication,5 but the complicated non-polynomial nature

of the Hamiltonian made progress diYcult. Then, in 1986, the Indian/

American physicist Abhay Ashtekar made an important advance. By a

subtle choice of the variables used in the theory (partly related to ideas that

had been put forward earlier by Amitabha Sen),6 whereby the constraints

could be reduced to polynomial form, he was able to simplify the structure

of the equations dramatically, and the awkward denominators in the

Hamiltonianwere eliminated, leading to a comparatively simple polynomial

structure.

32.2 The chiral input to Ashtekar’s variables

One of the striking features of Ashtekar’s original ‘new variables’, as they

are (still) called, is that they are asymmetrical with respect to their treat-

ment of the right-handed and left-handed parts of the graviton (the

quantum of gravitation).7 We recall from §§22.7,9 that a (non-scalar)

massless particle has two states of spin, which can be right-handed or

left-handed about its direction of motion. These are referred to, respect-

ively, as the states of positive and negative helicity of the particle. The
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graviton is to be a particle of spin 2, so its two respective helicity states

should be s¼2 and s¼�2 (taking �h ¼ 1), where s stands for the helicity

(see also §22.12). The original Ashtekar approach treats these two states

diVerently. Thus this formalism is left–right asymmetrical!

A comment is appropriate here as to why the graviton is indeed con-

sidered to be an entity of spin 2, whereas the photon has spin 1 (see §22.7,

§32.3). What does this mean? The spin value of a quantum particle has to

do with the symmetries (and Weld equations) of the Weld quantity describ-

ing it (and, as we shall see in §34.8, is most manifest with equations written

in 2-spinor form). But it is good to have a directly geometrical way of

seeing the diVerence between the spin-2 nature of gravity as opposed to the

spin-1 nature of electromagnetism. Let us examine the waves appropriate

to each Weld, namely the electromagnetic waves that constitute light on the

one hand, and gravitational waves on the other.
In the case of electromagnetism, we have seen the geometric nature of

the waves in Fig. 22.12, §22.9. The key point is that the electric and

magnetic vectors are, indeed, vector quantities, so that a rotation of the

wave through p (i.e. 1808) about its direction of motion sends the Weld

quantity to its negative, and we need a rotation through 2p to restore it to

itself. In the case of gravity, the wave would be one of spacetime distor-

tion, as is illustrated in Figs. 17.8a and 17.9a. Now if we rotate the wave

through just p the distortion goes to itself, and it would be a rotation

through 1
2
p that sends it to its negative. We may note that this results from

the Weyl curvature being a quadrupole entity, as is illustrated by the

ellipses of distortion in Figs. 17.8a and 17.9a, and we noted in §31.9 that

this corresponds to a spin 2 entity. For spin value s, a rotation through

p=s about the direction of the wave would send the Weld quantity to its

negative, whereas a rotation through 2p=s would be required to restore it

to itself. (Note that this also works if s is a half-odd integer, the Weld

quantity being necessarily spinorial in that case; see §11.3.)
For a massless Weld, as is the situation here, we can go further, and

think of plane waves as being composed of right-handed and left-handed

circularly polarized parts, electromagnetic circular polarization being il-

lustrated in Fig. 22.12b. For a quantized Weld, the relevant particles would

correspondingly have positive or negative helicity (Fig. 22.13). For spin s,

these helicity values would be �s (with a corresponding description to

Fig. 22.13, but with q2s ¼ z=w replacing q1=2 ¼ z=w). Thus, for gravity we

indeed get the two possible helicity values þ2 and �2.
To see how the helicity states are described, we shall need to examine

the mathematics a little more explicitly. In fact, this left–right asymmetry

that I have been referring to is an important feature of the twistor theory

that we shall be examining in the following chapter, and the Ashtekar

approach seems to have gained some of its initial inspiration from such
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twistorial ideas. For the moment, all that we shall require from twistor-

related ideas is how this left–right asymmetry is mathematically expressed

in ordinary spacetime terms. Let us recall the two tensor quantities that

describe the two known massless Welds of Nature, electromagnetism and

gravitation. These quantities are the Maxwell Weld tensor F¼Fab (§19.2)

and the Weyl conformal tensor C¼Cabcd (§19.7). Each of these has what is

called a dual tensor, deWned in the index notation by

*Fab ¼ 1
2
eabpqF

pq and *Cabcd ¼ 1
2
eabpqC

pq
cd ,

(where eabpq is the antisymmetric Levi-Civita tensor, chosen here so that

e0123 ¼ 1, in a standard right-handed orthonormal basis; see §12.7 and

§19.2). We have already seen the dual Maxwell tensor *F in §19.2. The

dual Weyl tensor *C is seen to be an analogous quantity. We might also

contemplate ‘dualizing’ the latter pair cd of the Weyl tensor’s indices

instead. But this turns out to be the same as dualizing on ab.[32.1]

Recall that a 2-plane element at a point in 4-dimensional spacetime can

be described by a 2-form f (or else a bivector) which is simple (§12.7). As

with the Maxwell tensor (2-form) F, we can construct its dual *f and give

meaning to the notion that, for a complex f, it might be self-dual, i.e.

*f ¼ if , or anti-self-dual, i.e. *f ¼ �if . The (complex) 2-plane element

corresponding to f is called ‘self-dual’ or ‘anti-self-dual’ accordingly. This

notion has importance in twistor theory (§33.6).[32.2]

Now, in the quantum theory, Weld quantities are allowed to take

complex-number values, at least when they have the interpretation of

wavefunctions. In fact there are various diVerent, but mathematically

equivalent ways of looking at these things (see Chapter 26.) It will suit

our present purposes best if we indeed think of a complex Maxwell tensor,

or even a complex Weyl tensor, as representing some form of wavefunc-

tion for the photon or graviton, respectively. In place of the reality condi-

tion which is characteristic of a classical Weld quantity, our complex

wavefunctions must be of positive frequency (in accordance with the

requirements speciWed in §24.3, §26.2). Let us not worry too much what

this actually means in the case of the Weyl curvature. (We can, pro-

visionally, consider that we are looking at curved spaces that are only

inWnitesimally diVerent from Xat, in which case C can be thought of as just

a Weld in Minkowski space, and then the condition of positive frequency is

not problematic. (But it turns out that one can even do better than this, as

will be indicated in §§33.10–12.8) Now, the right-handed photons and

[32.1] Explain why. (You may Wnd the diagrammatic notation and the identities of §12.8

helpful.)

[32.2] Show that, if the two indices of fab, describing a self-dual f, are both contracted with any

pair of indices of an anti-self-dual Weyl (or Maxwell) tensor, then the result is zero.
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gravitons are described by the (positive-frequency) self-dual quantities þF
and þC , where þF¼ 1

2
(F�i*F) and þC¼ 1

2
(C�i*C), so that we have

*(þF)¼ i þF and *(þC)¼ i þC ,

and the left-handed ones by the (positive-frequency) anti-self-dual quan-

tities �F¼ 1
2
(Fþi*F) and �C¼ 1

2
(Cþi*C), for which

*(�F)¼�i �F and *(�C)¼�i �C :

In the original Ashtekar framework, the self-dual and anti-self-dual parts

of the Weyl curvature play diVerent roles.

This may seem strange, from the physical point of view, because there is

no evidence of any left/right asymmetry in the gravitational Weld, and there

is certainly none in the standard Einstein theory of general relativity. As far

as I can see, we can take two diVerent attitudes to this question. On the one

hand, we might regard the asymmetry as an unimporant feature of the

particular mathematics that just happens to be useful in simplifying the

Hamiltonian. On the other, we may take the position that there is something

deeply left/right-asymmetrical about Nature, and the asymmetrical formal-

ism is probing this in some way. In fact, we know that Nature is left/right

asymmetrical, as is clearly manifested in weak interactions (see §25.3). In a

certain sense, electromagnetism contains remnants of this asymmetry, but

this is only seen indirectly, via its uniWcation with the weak interactions in

electroweak theory. In the absence of a (known) similar uniWcation that

relates to gravity, there is no reason to expect that gravity should itself

directly or indirectly possess such asymmetrical features. Yet, as with the

string theorists’ perspective on their own theory, we may take the view that

a quantum gravity theory is aimed at something much more than merely

gravitation; it is laying the basic framework for all of physics, where the

current framework of a classical spacetime is to be viewed as a convenience

or approximation to something more fundamental. If that ‘something’ has

an inbuilt chirality (as do the heterotic aspects of string theory—see

§31.14—as well as the Ashtekar and twistor frameworks), then the fact

that there are gross chiral asymmetries in weak interactions is far more

readily comprehended.

32.3 The form of Ashtekar’s variables

What then are these chiral Ashtekar variables? The chirality comes from an

asymmetrical choice of one of the two kinds of 2-spinor that apply to

Lorentzian 4-space. We may recall these objects from §25.2, where we saw

that the electron’swavefunctionc could be thought of as consisting of a pair

of 2-complex-component entities aA and bA0 , one of them having an un-

primed index and the other a primed one. We noted that the unprimed index
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refers to the zig or left-handed (negative-helicity) part of the electron and the

primed part, to the zag or right-handed (positive-helicity) part. We also saw

(§25.3) that the weak interaction pays attention to the zig part aA, but not to

the zag part bA0 . A spacetime formalism that selects either the unprimed or

the primed spinor as being ‘more fundamental’ than the other thus incorp-

orates a basic chirality, and it lays down a framework that has the capability

of distinguishing these two helicities at a fundamental level.

In fact, this is just what happens in the original Ashtekar (and twistor)

formalisms. In the Ashtekar approach, the canonical variables, chosen with

respect to a spacelike 3-surface S, are basically the components of the

(inverse) 3-metric g intrinsic to S, and the components of the (unprimed)

spin connection G taken on S. To be a little more precise, these are inverse

metric components referred to a local spinor basis and represented as

2-forms. Moreover, the spin connection G refers to parallel transport of

spinors aA deWned in the full 4-space and not just to ‘spinors intrinsic to

S’.9 Thus, G tells us how to carry an unprimed 4-space spinor aA (a

2-spinor) parallel to itself with respect to the 4-space’s metric connection

(§§14.2,8) along some curve that happens to lie within the 3-space S.10 The

Weld of 3-metric (density) quantities g plays the role of the set of momentum

variables and the Weld of connection quantities G, the role of the corres-

ponding conjugate positions; see Fig. 32.1. In the quantum theory, cor-

responding to the way that the momentum pa is replaced by i�h]=]xa in the

xa-representation (§21.2), in the G representation we may take the g Welds

to be replaced by i�hd=dG (where the ‘d=dG’ refers to the notion of functional

derivative that was referred to in §20.5). Correspondingly, in the g repre-

sentation, G is represented by �i�hd=dg.

Evo
lut

ion
Evolution

g

M

SG

aA

Fig. 32.1 Ashtekar’s original canonical variables, deWned on a spacelike 3-sur-

face S in spacetimeM, takes the ‘position’ parameters G to be the components of

the 4-space spin-connection, restricted to S (for spinors aA, indicated by half-

arrows). The ‘momentum’ parameters are basically the components of the (in-

verse) intrinsic metric g of S (expressed as 2-forms and referred to an orthonormal

basis at each point of S).
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G2

The connection G has a part G1 that refers just to the intrinsic curvature of

S and another part G2 that refers to the extrinsic curvature (i.e. to how S is

‘bent’ within the spacetimeM); see Fig. 32.2. The entire quantity G can be

expressed as
G ¼ G1 þ iG2

(where we would have had G1�iG2 if we had chosen the opposite chirality

for the formalism). The quantity G deWnes a bundle connection (in the

sense of §15.8), where the base space is S and the Wbre is the (unprimed)

spin space S (a 2-dimensional complex vector space). The relevant group

of the Wbre is SL(2,C) (see §13.3).11

At this point, I should mention a technical diYculty in the original Ash-

tekar approach. This is that the Wbre group SL(2,C) is non-compact and

has unwanted inWnite-dimensional irreducible representations, most of

which are non-unitary (see §13.7). All this creates serious problems for

the rigorous construction of the required quantum-gravity theory. Ac-

cordingly, in order for progress to be made, the modiWed connection

G� ¼ G1 þ �G2

has been used, where � is a non-zero real number, known as the Barbero-

Immirzi parameter. This has the purely technical advantage that the group

is now SU(2), which is compact, and its (irreducible) representations are

all Wnite-dimensional and unitary. The classical theory deWned by each G�

diVers from that deWned by G only by what is called a ‘canonical trans-

formation’, which means that the classical theories are equivalent (having

the same symplectic structure; see §14.8, §20.4), though described by

diVerent ‘generalized coordinates’ on the phase space (§20.2). The resulting

quantum theories need not be equivalent, however. This is the issue raised

in §21.2: the quantization process is not normally invariant under change

of generalized coordinates. It appears to be an unresolved issue of how

much ‘damage’ the replacement of G by G� might do. In any case, much

can be learnt from studying the ‘easier’ case of G� Wrst. Although one

might worry that the resulting quantum gravity theory is just a ‘toy model’

rather than being the intended approach to quantum gravity (where values

of Z other than +i or 0 seem to be without geometrical justification), the

deviation from the intended quantized version of Einstein’s theory is

assumed not to be great.

Fig. 32.2 We can express G ¼ G1 þ iG2, where

G1 refers to the intrinsic curvature and G2 to

the extrinsic curvature of S (so G2 measures

how S ‘bends’ withinM).
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In the case of G�, life is made relatively simple because the needed

diVerent irreducible representations of SU(2) are mathematically identical

to the diVerent states of spin (of a massive particle) in ordinary (non-

relativistic) quantum mechanics. We recall from §22.8 that these diVerent

spins are labelled by the natural numbers n ¼ 0, 1, 2, 3, 4, 5 , . . . , where
1
2
n�h is the value of the spin. (In §22.8 we also saw that the representation

space, for each n, consists of symmetric spin tensors cAB...D, with n in-

dices.) We shall see shortly how these diVerent ‘spin values’ are to be used.

32.4 Loop variables

How do we express things in a way that makes general covariance (§19.6)

more manifest, at least within the initial 3-surface SS ? This is done by the

ingenious device of describing our general quantum state in terms of a

particularly simple family of basic quantum-gravity states that can be

described in an essentially discrete way and for which the general covariance

withinSS is taken care of very simply. (We shall come to these basic states in a

moment.) The general state is then expressed in terms of these basic states by

means of linear superposition. To understand what is needed, consider a

closed loop within S, and let us envisage the eVect of using our connection G
to enable us to carry an unprimed spinor aA ‘parallel to itself ’ all the way

around such a loop. When we get back to where we started, we Wnd that

a linear transformationof the spin spaceShas been eVected. This is deWned,

in component form, by a complex 2� 2 matrix TA
B (see §13.3), the elements

of this matrix depening upon some choice of basis in SS. However, the trace

TA
A of this matrix is a basis-independent complex number,[32.3] so it is

simply a property of the spin connection G in relation to the choice of

loop. (This is an instance of a more general notion, referred to as a Wilson

loop, after Kenneth Wilson, who Wrst made use of this idea in gauge

theories.12 In 1988, Carlo Rovelli, Lee Smolin, and Ted Jacobson developed

this idea in general relativity, calling these loop-dependent traces the loop

variables for general relativity. Taking these loop variables as quantum

operators, the ‘basic states’ referred to at the beginning of this paragraph

are essentially just their eigenstates.

What is the geometric character of these basic quantum-gravity states?

They turn out to be very peculiar from the point of view of the ordinary kind

of metric geometry with which we are familiar, and very far from the

‘smooth geometries’ of classical general relativity. Indeed; we shall find

that these basic states are very ‘singular’ as geometrics, analogous to the

(Dirac) delta functions we considered §9.7 and §21.10. First, think of S as a

featureless manifold.13 Next, consider a family of closed loops in S. We are

[32.3] Can you explain why?
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Curvature vanishes

Curvature
δ-functions

Metric
vanishes

Area δ-function
(a) (b)

LoopCone 2-surface

Fig. 32.3 (a) This non-smooth example of a conical 2-surface has zero curvature

everywhere except at the vertex and at the rim around the base, where there are

curvature d-functions. (The Regge-calculus approach to quantum gravity operates

with analogous 4-spaces, with d-function curvature on 2-spaces; see Fig. 33.3.) (b)

However, this is not what happens with loop quantum gravity. Here there is an

area d-function along the loops, the metric itself vanishing everywhere else.

to think of each loop state as having all its geometry somehow concen-

trated along the loop. It is not really the curvature that lies concentrated

along the loop—which would be analogous to the geometry of the Xat-

based cone illustrated in Fig. 32.3, where there is a delta function (§9.7) in

the curvature along the edge around the base of the cone, and also at the

vertex,[32.4] this being the kind of situation arising in a different approach

to quantum gravity, known as Regge calculus; see §33.1—but, instead, the

entire metric is to be concentrated along the loop in a kind of delta

function, disappearing completely outside the loop. There is a ‘degree’ of

this concentration which is measured by a ‘spin’ value assigned to the loop,

the diVerent such values j ¼ 1
2
n corresponding to diVerent irreducible

representations of SU(2) (where we are using G� for our connection, rather

than the apparently more ‘correct’ G).

These statements need further clariWcation. The notion of ‘metric’ that

arises here is really that which assigns an area to any test 2-surface element

that encounters the loop. In essence, there is a delta function in the area

measure which is concentrated entirely along each loop in the family. What

does this mean? Imagine a (not necessarily closed) 2-dimensional test sur-

face T in the 3-surface S. This may intersect various loops in a number of

places. Every time T meets one of the loops, it clocks up a certain measure of

area; there is no contribution whatever to its area except where it meets the

loop. Thus, the ‘delta-function’ character of the metric is here manifested in

the fact that each loop assigns a measure of area only where T intersects the

loop. Each intersection point provides the value

8pG��h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j( jþ 1)
p

,

[32.4] Can you explain? Hint: Use the ideas of §14.5.
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Tj1 j2

where j ¼ 1
2
n is the particular loop’s ‘spin’ value; see Fig. 32.4. We add up

these area contributions coming from all the loops of the family.

There is an interesting contrast between string theory and loop-variable

theory. Whereas string theory is an almost entirely perturbative approach to

quantum gravity, the loop-variable approach is fundamentally non-

perturbative. In string theory, calculations are almost invariably performed

in a background that is Xat spacetime, i.e. a product of Minkowski space M

with, say, some Calabi–Yau 6-space (see §31.14), and one is concerned only

with weak Welds in that background. The idea is that one contemplates

‘perturbing away’ from this weak-Weld limit (i.e. considering power series

in some small parameter); see §26.10and §31.9.On theother hand, in the case

of the loop variables, the basic loop states (or spin-network states; see §32.6)

are very far fromXat (or classical), having delta functions in the areameasure

along the loops (or spin-network lines). To obtain the loop-variable descrip-

tion of an approximately classical spacetime, we need to consider something

like an almost uniform spreading of ‘weaves’, as indicated in Fig. 32.5.

Notice that this is a very topological description. It makes no diVerence

how ‘close’ one loop might be to another (since the notion of ‘metric’

makes no sense away from the loop itself). The only things that have

signiWcance are the topological ‘linking’ and ‘knotting’ (or intersecting)

relations among loops, and the discrete ‘spin’ values that are assigned to

them. Thus, general covariance (within S) is completely taken care of,

provided that we retain merely this discrete topological picture.

32.5 The mathematics of knots and links

The loop-variable picture of quantum gravity leads us into that Weld

of mathematics which is concerned with the topology of knots and links.

This is a surprisingly sophisticated subject, considering the commonplace

nature of its ingredients—basically untangling bits of string! We need to

Fig. 32.4 A 2-dimensional test surface T in the

3-surface S. Each intersection of T with a loop

contributes the value 8pG��h j
p

( jþ 1) of area ( j being

the loop’s ‘spin’ value).

Fig. 32.5 The original loop-variable descrip-

tion of an approximately classical spacetime

could be presented as a superposition of

almost uniform spreadings of ‘weaves’.
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(a) (b) (c) (d) (e)

Fig. 32.6 Knots and links. (a) A trefoil knot—an example of a knotted loop. (b)

An example of a (non-obviously, to the eye) un-knotted loop. (c) A simple link

between two loops. (d) A Whitehead link, where the two loops cannot be separ-

ated though they have zero ‘linking number’ (the net number of times each meets a

surface spanning the other) (e) Borromean rings, which cannot be separated,

despite no pair of them being linked.

make use of mathematical criteria that are available to us for deciding

whether or not a closed ‘loop of string’ is actually knotted (where ‘knotted’

means that it is impossible, by smooth motions within ordinary Euclidean

3-space, to deform the loop into an ordinary circle, where it is not permit-

ted to pass stretches of the loop through each other; see Fig. 32.6).

Likewise, we can ask for criteria that decide whether or not two or more

distinct loops can be completely separated from one another—so they are

unlinked. Various ingenious mathematical expressions that supply moder-

ately complete answers to this question (such as the ‘Alexander polyno-

mial’) have been known since the early 20th century, but in more recent

years, a number of fascinating and more reWned procedures have been

found, gaining their inspiration largely from ideas coming from physics.

These go under such names as ‘Jones polynomial’, ‘HOMFLY polyno-

mial’, ‘KauVmann polynomial’, etc.14

One way of thinking of these new mathematical structures is to consider

them as arising from a kind of ‘diagrammatic algebra’, this being a general-

ization of the diagrammatic description of tensor algebra introduced in

§12.8 (see Figs. 12.17 and 12.18) and used extensively in Chapter 13 (see

Figs. 13.6–13.9, etc.). In this generalization, it makes a diVerence whether

an ‘index line’ passes above or below another such line, whenever they

cross one another in a diagram; see Fig. 32.7. There are various ‘algebraic

identities’ that can be imposed on the algebra, such as that depicted in

Fig. 32.7 The kind of diagrammatic tensor algebra of Figs. 12.17, 12.18 and Figs.

13.6–13.9, etc. can be generalized so as to produce an algebra for knots and links.

The additional feature is that it now makes a diVerence whether an ‘index line’

passes above or below another such line when they cross.
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= A + A−1

Fig. 32.8 The basic algebraic identity for the KauVmann algebra is illustrated,

where q ¼ A2 ¼ eip=r, giving a q-deformed version of the ‘binor’ algebra under-

lying spin-network theory (for which A ¼ �1, and the crossing issues of Fig. 32.7

do not occur).

Fig. 32.8, which serves to specify the KauVmann algebra. These provide

elegant generalizations of the combinatorial scheme that underlies the

spin-network theory that we shall be coming to shortly.

The quantity A in Fig. 32.8 is a complex number, and sometimes A is

written in terms of a quantity q ¼ A2 ¼ eip=r. (The case A ¼ �1 gives the

‘binor calculus’ that underlies spin-network theory; Penrose 1969, 1971.)

There are analogues of the symmetrizers and antisymmetrizers of Fig.

12.17. A considerable theory of such things has been developed, sometimes

referred to a q-deformed structures. Frequently the term ‘quantum’ is used,

rather misleadingly, in place of ‘q-deformed’, such as with the notion of a

‘quantum group’. There is no very clear relation between a ‘quantum

group’ and quantum theory, however, and the existence of a signiWcant

application of quantum groups to physics at the fundamental level, though

entirely possible, is largely conjectural at present.

As something of an aside, it is worth mentioning that there is another

possible connection between these newly found mathematical structures

(Jones polynomials, etc.) and physics, which has been developed particu-

larly by Edward Witten.15 This is the notion of a topological quantum Weld

theory. In such a theory, the Weld equations disappear completely, but

there is still information in global structure and in ‘glitches’ that can be

thought of as providing ‘sources’ for the (locally vanishing) Weld. A good

example would be general relativity in 1þ 2 dimensions. In 1þ 2 (¼3)

dimensions, the Weyl tensor vanishes identically, so all the curvature lies in

the Ricci tensor. Thus, in ‘empty space’ (Ricci-Xatness), the entire curva-

ture vanishes. The gravitational Weld of a ‘point source’ is not trivial,

however, because the source provides a ‘glitch’ which shows up in the

global geometry. This is illustrated in Fig. 32.9. The geometry is very

similar to the geometry of a cosmic string illustrated in Fig. 28.4, except

that here the picture represents a (1þ 2)-dimensional spacetime, rather

than 3-dimensional space. A segment is removed, with axis along the

(timelike) world line of the source, and the two resulting planar boundaries

glued together. In the classical picture, the world lines of such sources have

to be straight, but a QFT based on this classical model—a topological

QFT, since the Weld (here, the curvature Weld) vanishes—allows curved,
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and indeed knotted or linked source lines. It is this that allows insights16

to be gained concerning the mathematics of knots and links using

the topological QFT idea. It will be noticed that loop variables

provide a system somewhat resembling the general scheme of ‘topological

QFT’ since the contribution to the area measure vanishes except

at the ‘glitches’ that are the loops themselves. Nevertheless, there is a

diVerence, because with loop variables the Weld equations do not

disappear.

Topological QFTs are interesting as mathematical structures, but it is

hard to see them playing direct roles as models of serious physical theories,

owing to the complete disappearance of Weld equations. Most of known

physics depends upon the non-triviality of such equations in order that

Welds propagate into the future in a controlled manner. There is, however,

another distinct possibility that the ideas of topological QFT could be used

in conjunction with twistor theory. As we shall be seeing in Chapter 33 (at

the end of §33.11), in the twistor-space description, Weld equations do

disappear locally. The application of topological QFT ideas to twistor

theory has not been carried very far, as yet,17 but it would be interesting to

see what can be achieved in this area.

32.6 Spin networks

Remarkable as the loop states are, as limiting (‘d-function’) conWgurations

of 3-geometry, they still do not provide a suitable (orthonormal) basis

for this geometry. For this, it is necessary to pass to a generalization

in which loops can intersect. This leads us to consider a kind of

network of ‘intersecting loop lines’, but we need to ask: what are we to

do at these intersection points? The answer turns out to lie in certain types

of structure that are formally very close to the spin networks that I had

Fig. 32.9 ‘General relativity’ in 2þ 1

dimensions demands Xat spacetime wher-

ever there are no sources (since the Ricci

tensor vanishes there, and the Weyl tensor

always vanishes in 3 dimensions). But a

source worldline provides a ‘glitch’ in the

Xat spacetime (a conical singularity) remin-

iscent of the ‘cosmic string’, whose spatial

3-geometry is illustrated in Fig. 28.4, §28.2.

The source worldlines are always straight,

classically, but this is relaxed in the quan-

tum version of this theory—an example of

a topological quantum Weld theory.
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myself studied nearly 50 years ago, for a diVerent but somewhat related

purpose.

What are spin networks, and why had I been interested in them in

the 1950s? My own particular goal had been to try to describe physics in

terms of discrete combinatorial quantities, since I had, at that time,

been rather strongly of the view that physics and spacetime structure

should be based, at root, on discreteness, rather than continuity (see

§3.3). A companion motivation was a form of Mach’s principle (§28.5),18

whereby the notion of space itself would be a derived one, and not initially

present in the scheme. Everything was to be expressed in terms of the

relation between objects, and not between an object and some background

space.

I had come to the conclusion that the best prospect for satisfying

these requiremants was to consider the quantum-mechanical quantity of

total spin of a system. ‘Total spin’ is deWned by the scalar quantity j (¼ 1
2
n)

that measures the amount of spin as a whole, rather than a particular

component of spin in some direction, measured by a quantity m.

(The letters ‘j’ and ‘m’ are those commonly used in the discussion of

quantum-mechanical angular momentum, taken in units of �h, where m

ranges, in integer steps, between the integers or half integers �j and j;

see §§22.8,10,11.) The actual magnitude of the total spin (obtained as the

square root of the sum of the squares of the m-values in three perpendi-

cular directions) is �h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j( jþ 1)
p

, which is the same quantity that appears

in the area expression above. The allowed values of n ¼ 2j are simply

natural numbers (even numbers for bosons and odd numbers for

fermions; see §23.7). Moreover, though direction-independent, n is never-

theless intimately related to directional aspects of space. It had seemed to

me that total spin, as measured by the natural number n, was an ideal

quantity to Wx attention upon if one were interested in building up, from

scratch, some discrete combinatorial structure that leads to a notion of

actual physical space. As a further ingredient, if one sets things up in the

right way, one could exhibit the quantum-mechanical probabilities as

being pure probabilities, not dependent in detail on the way in which

diVerent parts of a physical apparatus might be oriented with respect to

other parts.

How does this work? Let us call a quantity of total spin 1
2
n�h an n-unit. For

clarity, we can think of this ‘unit’ as being a particle, but it need not be an

elementary particle. For example, a whole hydrogen atom would do per-

fectly well. It simply needs to have a well-deWned value for its total spin

(which, in the case of a hydrogen atom would be given by n ¼ 0 or 2, the case

of ortho- or para-hydrogen, respectively19). How do we get a pure probabil-

ity? We could, for example, take a couple of EPR–Bohm 1-unit pairs (A, B)
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Fig. 32.10 Spin networks. Each line segment, labelled by a natural number n,

represents a particle or subsystem of total spin n
2
� �h, called an n-unit. In this very

simple example we have two EPR-Bohm 1-unit pairs, (A,B) and (C,D), each

starting from 0-unit state (as in Fig. 23.2). If B and C combine to form a single

unit, there are two possibilities: it can be a 0-unit or 2-unit, the respective prob-

abilities being 1
4
and 3

4
. The same probabilities occur if alternatively we combine A

and D. But these probabilities are not independent, since we cannot have 0-unit in

one case and 2-unit in other.

and (C, D), each starting from 0-unit state. (This is just a pair of arrange-

ments, each like that of Fig. 23.3 of §23.4; see Fig. 32.10.) Now if we bring

B and C together and allow them to combine into a single unit, the

two possibilities are that they might result in 0-unit or a 2-unit, and the

respective probabilities[32.5] are 1
4

and 3
4
. If, alternatively, we bring A and

D together, then the possible results and probabilities would be just the

same. However, these two probabilities are far from independent of each

other, since if we get a 0-unit in one case we cannot get a 2-unit in the other

case, and vice versa.

This was the sort of idea I had for getting pure probabilities, and I had

formed the opinion that any such probability had to come out as a rational

number (since it would amount to Nature making a random choice of

some kind between a Wnite number of discrete possibilities). The example

just considered above is a very simple one, but it begins to illustrate the

general idea. All the units in a particular spin network are imagined as

being initially produced in the above way from initial 0-units (although

this would not be normally expressed explicitly in the diagram), so there is

no bias with regard to any particular spatial direction. Subsequently,

various pairs of units may then be brought together to form single units,

and the spin values for the resulting units noted. Individual units are also

allowed to split into pairs of units. An example is illustrated in Fig. 32.11.

We may choose to visualize all of this as happening within some space-

time. However, for the original spin-network theory, there was to be no

actual background spacetime presupposed. The idea was to build up all

[32.5] Can you see why?
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the required spatial notions simply from the network of spins and from the

probabilities that arise (and these can be computed using quantum-

mechanical rules) when two units are brought together to make a third.

A particular feature of these spin networks is that, at each such vertex,

exactly three lines come together. This leads to a uniqueness in the prob-

ability calculations. The topological (graph) structure of the spin network,

together with the speciWcation of all the spin numbers on the lines, is all

that is required.

I developed an entirely combinatorial (‘counting’) procedure for calcu-

lating the required probabilities (which, in fact, are all rational). The rules

originally come from the standard quantum mechanics of spin, but we can

then ‘forget’ where they come from and simply consider the spin-network

system as providing a kind of ‘combinatorial universe’. It is then possible

to extract the notions of geometry (ordinary Euclidean 3-geometry in this

case) by considering spin networks that are ‘large’ in an appropriate sense.

The picture is that a unit of large spin might be considered to deWne a

‘direction in space’ (to be thought of as like the axis of spin of a tennis ball,

for example). We can envisage measuring the ‘angle between the rotation

axes’ of two such large units by, say, detaching a 1-unit from one and

attaching it to the other. The joint probability that one spin goes up while

the other goes down, in this operation, gives a measure of the angle

between the spin axes.[32.6]

This almost works as it stands, but not quite, and a further ingredient is

required. What is additionally needed is a means to distinguish the ‘quan-

tum probability’—coming from the angle of spin axes between the large

units—from the ‘probability through ignorance’ that can come about

simply because of insuYcient connections between the two large units.

(Recall the subtle interplay between these two notions of probability that

occurs with density matrices, as discussed in §§29.3,4.) It turns out that this

[32.6] What is this angle measure, in terms of the probabilities?

Fig. 32.11 Example of a spin-

network, as originally conceived.

No actual background spacetime

manifold is presupposed. All

spatial notions are to arise from

the network of spins and from the

probability values (when two

units are combined to make a

third). Exactly three lines meet at

each vertex, uniquely specifying

the connection.
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‘ignorance factor’ can be removed by repeating the transfer of a 1-unit

from the one large unit to the other, and selecting only the situations

where the probabilities come out the same the second time. For families of

large units for which this is the case, a geometry theorem can be proved,

to the eVect that the ‘angle-geometry’ deWned by the quantum probabilities

in this way is precisely the geometry of angles between directions in

ordinary Euclidean 3-space.20 In this way, notions of ordinary Euclidean

geometry are seen to arise merely from the quantum combinatorics of spin

networks.

It will be seen that the underlying motivation behind the spin networks

that I originally had is very diVerent from that underlying the loop-

variable approach to spacetime quantization, there being no actual place

for gravity in the spin networks, as originally put forward. It was therefore

a considerable surprise to me to Wnd spin networks playing such an

important role in this approach to a quantum-gravity theory. Of course,

there is something very much in common between the two programmes,

because, in each case, one is trying to break down the notion of space into

something more discrete and quantum-mechanical. There is, however, the

important diVerence that in the loop-variable context, the quantity n is

really an area measure, rather than the spin measure of the original spin

networks. These are dimensionally diVerent, as is reXected in the appear-

ance of the gravitational constant G in the loop-variable expression. I shall

return to this issue and its possible signiWcance shortly.

Now, how are spin networks to feature in loop-variable quantum grav-

ity? As I implied earlier, the spin-network nodes are, in eVect, to result

from the intersecting of a pair of loops. This also allows the j-value on the

loop to change at such a place. Accordingly, we shall have nodes where

four lines (or perhaps more) come together, rather than the three which

occurred for my original spin networks. This results in ambiguities, since

uniqueness of interpretation occurs only with the original ‘trivalent’ nodes.

Accordingly there is an additional speciWcation required (an ‘intertwining

operator’) at each node. One way of expressing this speciWcation is illus-

trated in Fig. 32.12, where we can represent such an ‘X’, where four lines

1 3 1 3 1 3

2 2

31

2 2
2 2

a + b

Fig. 32.12 All the nodes of spin networks in loop-variable theory are 4-valent

(or more) and need extra ‘intertwining’ information. This can be encoded in

‘X’-type vertex being expressed as a linear combination of ‘H’-type 3-edge vertex

pairs. The speciWc coeYcients remove this ambiguity.
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come together, as a linear combination of ‘H’-type 3-edge vertex pairs.

Specifying the coeYcients removes the ambiguities.

There is another rather more important diVerence between these loop-

variable spin networks and the ones that I had put forward earlier, namely

that the earlier ones were entirely combinatorial structures, whereas the

loop-variable networks acquire additional topological structure from their

embedding in the manifold S. The network lines could, for example, be

knotted or could link one another in various ways, and this provides

additional information (see Fig. 32.13). This information is still of a discrete

combinatorial nature, however, being of an entirely topological character,

but it is harder to express than simply specifying what goes on at the

individual nodes.

So far, our loop descriptions have given us, eVectively, just a static

description, with no dynamics involved. In eVect, the loops and spin net-

works that we have been considering have been concerned with solving the

constraint equations of general relativity—i.e., the conditions needed to be

satisWed within the surface S—while paying full respect to Einstein’s

principle of general covariance. This is no mean achievement, but the

formalism seems not yet to have solved the more diYcult problem of the

dynamical evolution away from S (sometimes referred to as the ‘Hamilto-

nian constraint’), in order that the Einstein equation can be fully accommo-

dated (see §32.1). Some signiWcant work by Thomas Thiemannhas provided

one possible answer to this Hamiltonian-evolution problem, but there

remains some doubt as to whether this is actually the appropriate one for

Einstein’s theory.21

Pending a fully accepted solution to these diYcult dynamical issues, it

has nevertheless been possible to use the loop-variable formalism to arrive

at some impressive results in other directions. In particular, these spin-

network ideas have proved useful in providing a much more direct and

realistic-looking approach to the issue of black-hole entropy than that of

string theory, as referred to in §31.15. Here the black-hole geometry is

directly that of a Schwarzschild or Kerr vacuum solution of the Einstein

4-dimensional theory. The counting of gravitational quantum states

can be explicitly carried out using spin networks, using appropriate

Fig. 32.13 The spin networks of the

standard loop-variable approach are no

longer entirely disembodied combina-

torial entities, but must be embedded

in a structureless (but perhaps analytic)

3-surface (like S), their topological

linking and knotting properties being of

signiWcance.
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approximations. When the black hole begins to get reasonably large,

the answer for the entropy comes out in agreement with the Bekenstein–

Hawking formula SBH ¼ 1
4
A (where k ¼ c ¼ G ¼ h ¼ 1), but to get

Hawking’s precise factor 1
4
, one needs to take the curious value

� ¼ log 2

p 3
p

for the Barbero–Immirzi parameter. Although this certainly seems strange,

this one choice then correctly gives the Bekenstein–Hawking entropy for all

situations in which an unambiguous answer has been provided by other

means, where there can be charge, rotation, and cosmological constant.22

In relation to this, there are various apparent numerical ‘coincidences’

upon which the theory seems to depend. Two separate inWnite sequences,

calculated in two quite diVerent ways have to agree, term-by-term, which

in fact they do. This seems to reXect a deep inner consistency of some of

the ideas of quantum geometry.

Nevertheless, the black-hole results seem to have elicited something of a

change in viewpoint with regard to the Barbero–Immirzi parameter. Pre-

viously, the introduction of � seems to have been just a means for making

progress, where the ‘geometrically correct’ theory seemed to demand

� ¼ � i. Taking a real value for � was just a mathematical convenience,

in order that the compact group SU(2) would arise rather than the non-

compact SL(2,C). The impressive successes in obtaining the correct en-

tropy values for a very wide class of horizons—this being dependent on the

single choice � ¼ log 2=p 3
p

, for the Barbero–Immirzi parameter—has led

a number proponents of the loop-variable approach to take the view that

perhaps this value is actually the ‘correct’ one for quantum gravity, after

all.

This, of course, is a possibility, though personally I Wnd it somewhat

hard to believe, as there appears to be no clear geometrical reason for such

a choice. I should make the comment that with any real value for �, such

as this one, the chiral aspect of the theory that I stressed in §32.3 to

introduce the subject has disappeared. The spinor transport that G� is

concerned with, with a real value of �, is a peculiar but even-handed

mixture of left- and right-handed parts, whose meaning I Wnd particularly

obscure. Perhaps future work will shed light on this issue.

32.7 Status of loop quantum gravity?

I should try to give my assessment of the achievements of the Ashtekar–

Rovelli–Smolin loop-variable approach to quantum gravity and its poten-
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tial for future development into a full-blown theory. Again, I must alert

the reader to a possible bias that may be relevant to any such assessment.

In this case I must declare an interest, for not only are the people respon-

sible for this programme all very good friends of mine, but I have also held

regular visiting appointments at the two US universities (Syracuse and

Penn State) where major developments in this Weld have taken place. To

this I must add my own interest in spin-network theory; it is natural that I

should Wnd it gratifying that these old ideas should now Wnd signiWcant

new value in this approach. Nevertheless, my own involvement in the

Ashtekar-variable/loop-variable quantum-gravity programme has been

somewhat tangential to the main work in this area, so I hope that I may

stand back and be reasonably objective.

To begin with, I should comment that both the original Ashtekar vari-

ables and the later descriptions in terms of loop variables strike me as

powerful and highly original developments in the quest for a quantum

gravity theory. They are directly addressing Einstein’s actual general

relativity theory in the context of QFT, providing profoundly innovative

ideas that are relevant to the problem at hand. In fact, I have little

hesitation in saying that these developments are the most important in

the canonical approach to quantum gravity since the subject itself was

started roughly half a century ago, by Dirac and others. The loop states

do appear to address at least some of the profound problems raised

by general covariance. Moreover, these developments seem to have

moved the discussion in a fascinating and perhaps not fully anticipated

direction, where some gratifying elements of discreteness in spacetime

structure begin to appear. Furthermore, in recent work, the original purely

gravitational theory has moved in the direction of incorporating physical

interactions other than just gravity, so the theory can now make claims of

being an approach to fundamental physics generally.23

Set against this is the somewhat disturbing fact that the theory seems to

have found itself necessarily deXected into adopting the G� connection

(with an undetermined value of �), rather than the seemingly ‘geometric-

ally correct’ G. In my view, a fully believable approach to quantum gravity

will not come about, in this approach, until a way has been found to

overcome the diYculties that seem to arise with the adoption of the

original G. Moreover, there is still the fundamental difYculty that the

full Einstein Hamiltonian has yet to be unambiguously encompassed

within the loop-variable framework, even though the constraint equations

are handled by the use of spin-networks.

It strikes me as likely that these diYculties are related to another (to my

mind) less-than-satisfactory feature of the Ashtekar/loop-variable theory.

In common with all other conventional canonical approaches to quantum

gravity, its formulation is directly dependent upon a 3-space description
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(i.e. in terms of S), rather than being a more global spacetime one. As we

have seen, the 3-space part of the ‘general covariance’ problem is neatly

taken care of in the loop/spin-network states, but the extension of this to a

full 4-space general covariance brings with is a whole ‘Pandora’s box’ of

problems. As far as I can make out, these are not very much better

addressed in the loop-variable approach, as yet, than in other canonical

approaches.24

The diYculty has to do with the issue of how time-evolution, according

to the Einstein equation, is to be properly expressed in a generally covar-

iant 4-space formalism. It is related to what is known as the ‘problem of

time’ in quantum gravity (or, sometimes, the problem of ‘frozen time’). In

general relativity, one cannot distinguish time-evolution from merely a

coordinate change (i.e. just replacing one time coordinate by another). A

generally covariant formalism should be blind to a mere coordinate

change, so the concept of time-evolution becomes profoundly problem-

atic. My own perspective on this question, as indicated in §30.11, is that

the issue is unlikely to be resolved without the problem of state-vector

reduction R being satisfactorily addressed, and that this, in turn, will

require a drastic revision of general principles.

In relation to these issues, there is another matter that I Wnd less than

satisfactory, although it is more a problem with generally covariant pre-

scriptions per se, rather than with the loop-variable approach in particular.

In a sense, this approach is a victim of its own success! For although the

spin-network basis states individually have a pleasing coordinate-

independent geometric description, it is most unclear how to interpret

quantum superpositions of such basis states. Because of the general covar-

iance, there is no correspondence between the ‘location’ of one spin

network and that of another with which it is to be superposed. (This is a

much more serious version of the issue addressed in §30.11, which I used to

justify gravitational OR.) How are we expected to understand how an

almost classical world is to emerge out of all this?

As the reader will have gathered by now, particularly from the discus-

sion of Chapter 30, I regard as a necessary feature of the correct quan-

tum–gravity union that it must depart from standard quantum mechanics

in some essential way, so that R becomes a realistic physical process

(OR). Is there scope for this in the loop-variable approach? Possibly so.

With loop variables, the numbers n ¼ 2j on the spin-network edges refer

to area in units of squared Planck length; but my original use of spin

networks did not address such metric issues nor, in fact, any aspect of

gravity at all, the spin numbers n referring to angular momentum. How-

ever, my original ideas demanded that each of these numbers must be, in

eVect, the result of an individual measurement of total spin value (action

of R at each edge), where probabilities arise in the bringing together of
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two units to make a third. If R is an objective gravitational phenomenon,

then the involvement with gravitational processes would have to enter at

this stage, as is the claimed message of Chapter 30. In that case, it is not

possible to separate gravity from the probability issues of spin-network

theory. It may be that the full combination of loop-variable and spin-

network ideas will need to incorporate state reduction into the formalism.

If this proves to be the case, then it might provide a lead into an

appropriate gravitational OR scheme, as recommended in Chapter 30.

In the absence of such a formalism, however, such ideas must remain

speculation.

Finally, I should comment on other work that relates to loop-variable

theory. It is now not an entirely pure-gravitational theory, electromagnet-

ism having now been addressed25 in this formalism.26 There are also

seemingly less radical ways, than that of the previous paragraph, of

making the spin networks of loop quantum gravity more ‘4-dimensional’.

One of these involves an ingenious higher-dimensional version of spin

networks referred to as spin foams. In these, there are 2-surfaces carrying

the ‘spin values’ n ¼ 2j, and we can picture such a spin foam as a time-

evolving spin network. Such ideas, originated by Louis Crane, John

Barrett, and others27, have been further developed and modiWed by several

others28, but the proper connections with quantum-gravity ideas have not

been fully worked out, as yet. There are also possible connections with

twistor theory, and it will be interesting to see whether these can be

developed more fully. In the next chapter, we shall be having a look at

some of the basic notions that are indeed involved in twistor theory.

I have tried to emphasize elsewhere in this book, and in Chapter 30 most

particularly, that the issue of quantum state reduction is intimately related

to the structure of spacetime singularities and their asymmetry under time-

reversal. It is interesting that a start has in fact been made, in examining

what the loop-variable approach has to say about the eVect of quantum

theory on spacetime singularities.29 I am not able to comment in any detail

on this work, except to say that I see no hint of the necessary time-

asymmetry arising.
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33
More radical perspectives; twistor theory

33.1 Theories where geometry has discrete elements

Have the theories described in the preceding chapters been suYciently
radical, in their attempts to decipher Nature’s actual scheme whereby the
quantum physics of the small is somehow united with the curved-space
geometry of the large? Perhaps we should be seeking something of a
character fundamentally diVerent from the real-manifold setting of con-
tinuous spacetime which Einstein’s theory and standard quantum mech-
anics depend upon. The question was raised in §3.3, and we must indeed
ask whether the real-number spacetime continuity that is almost univer-
sally assumed in physical theories is really the appropriate mathematics for
describing the ultimate constituents of Nature.
We have seen how the loop-variable approach to quantum gravity begins

to take us away from the standard picture of a continuous and smoothly
varying spacetime and towards something of a more discrete topological
character. Yet, some physicists would strongly argue that a far more radical
overhaul of the ideas of space and time is needed, if the appropriately
deeper insights are to be gained as to the nature of a ‘quantum spacetime’.
The original (albeit limited) spin-network proposal of §32.6 was indeed of a
completely discrete character, but the standard loop-variable picture is still
dependent upon the continuous nature of the 3-surface in which the ‘spin
networks’ are taken to be embedded. In the latter scheme, one has not really
obtained the entirely discrete and manifestly ‘combinatorial’ framework
that some would feel is necessary in order that we may come to terms with
Nature’s workings at the tiniest scales.
Various ideas have been proposed, quite distinct in approach from

that of the initial spin-network or spin-foam schemes where the intention
is to provide a completely discrete/combinatorial picture of the world.
Among the more extravagant of such ideas (already referred to in §16.1)
was one put forward by Ahmavaara (1965). He suggested that the real-
number system, fundamental to the mathematics of conventional physics,
should be replaced by some Wnite Weld Fp, where p is some extremely large
prime number. We recall (from §16.1) that Fp is obtained by taking the
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system of integers modulo p. Other suggestions take spacetime to have a
discrete periodic lattice structure, like the vertices of a set of cubes stacked
up on each other in a regular way2 (Fig. 33.1). Considerably more physic-
ally plausible are schemes like Raphael Sorkin’s causal-set geometry3

(or certain closely related earlier ideas)4 according to which spacetime is
taken to consist of a discrete, possibly Wnite, set of points for which the
notion of causal connection between points is taken to be the basic notion.
In ordinary classical terms, this ‘causal connection’ refers to the possibility
of sending a signal from one of the points to the other, so one of the points
lies on or within the light cone of the other. See Fig. 33.2. The largely
random nature of the causal connections in Sorkin’s scheme enables
something like the Lorentz invariance of special relativity to emerge,
while there are serious diYculties for Lorentz invariance with the lattice-
type structures (although there is more such symmetry than one might
think at Wrst, for the lattices like that of Fig. 33.1). Other ideas leading
to exotic spacetime structures arise from the quantum set theory or qua-
ternionic geometry of David Finklestein,5 the octonionic (§11.2, §16.1)
physics of Corinne Manogue and Tevian Dray6 etc.

Fig. 33.1 A Snyder–Schild-type spacetime

is a periodic lattice, like the vertices of a set

of cubes stacked up on each other in a regu-

lar way. (There can be rather more Lorentz-

invariance than one might expect!)

(a) (b)

Fig. 33.2 (a) A discrete universe model,

described by a causal-set geometry. (b)

The relations between points are mod-

elled on Lorentzian causality, where the

arrows point either within or on the null

cones.
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There is also the interesting proposal for a quantum-gravity theory put
forward by Tullio Regge in 1959, according to which, spacetime is taken to
be an irregular ‘tetrahedral’ 4-dimensional polyhedron (or ‘polytope’), with
its curvature concentrated as delta functions (§9.7) along 2-dimensional
‘edges’—that Regge referred to as ‘bones’.7 See Fig. 33.3 (and also Fig.
32.3a, §32.4). The quantum state is taken to be a complex-number-weighted
sum of such spaces, in accordance with the ‘Feynman sum over histories’
described in §26.6. The description of the spaces themselves is entirely
combinatorial, except for the fact that an ‘angle’ must be speciWed at each
bone, to represent the strength of the curvature. In fact, the ‘cosmic string’
described in §28.2 (Fig. 28.4) is an example of this same type of geometry.
There have also been other intriguing radical proposals, such as those of

Richard Jozsa8 and of Christopher Isham9 which employ topos theory.
This is a kind of set theory10 arising from the formalization of ‘intuitio-
nistic logic’ (see Note 2.6), according to which the validity of the method
of ‘proof by contradiction’ (§2.6, §3.1) is denied! I shall not discuss any of
these schemes here, and the interested reader is referred to the literature.
Another idea that may someday Wnd an signiWcant role to play in

physical theory is category theory and its generalization to n-category
theory. The theory of categories, introduced in 1945 by Samuel Eilenberg
and Saunders Mac Lane,11 is an extremely general algebraic formalism (or
framework) based on very primitive (but confusing) abstract notions,
originally stimulated by ideas of algebraic topology. (Its procedures are
often colloquially referred to as ‘abstract nonsense’.) Its great power is
deceptive, given the very elementary character of its basic ingredients,
these being just ‘arrows’ connecting ‘objects’, and it has a very ‘combina-
torial’ appearance, like other ideas referred to in this section. The exten-
sion of the theory of categories to that of n-categories reXects the way that
‘homotopy’ reWnes the notion of ‘homology’, as was brieXy discussed in
§7.2. Category theory has already provided an input into twistor theory
(in relation to §33.9), and n-category theory has relations to loops, links,
spin-foams (§32.7) and q-deformed structures (§32.5).12 It would not
altogether surprise me to Wnd these notions playing some signiWcant role
in superseding conventional spacetime notions in the physics of the 21st
century.

Fig. 33.3 In ‘Regge calculus’, spacetime is

approximated by a 4-dimensional polyhe-

dron (a ‘polytope’), normally one built from

4-dimensional ‘tetrahedra’ (5-simplexes).

The curvature resides (as d-functions) along

2-dimensional (normally triangular) edges,

called ‘bones’.
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Rather more in line with present-day mainstream ideas is the notion
of non-commutative geometry, developed, most particularly, by the
Fields Medalist mathematician Alain Connes. What is a ‘non-commuta-
tive geometry’? To appreciate the idea, think Wrst of an ordinary smooth
real manifold M. Next, consider the family of smooth real-valued
(scalar) functions on M (which we may take to be C1-smooth; see
§6.3). Such functions can be added or multiplied together, and they
can be multiplied by ordinary (constant) real numbers. In fact, they
constitute an algebraic system A, called a commutative algebra over the

reals R. (Compare §12.2 and Note 12.5.) Now, it turns out13 that, if
we know A only as an algebra, where no information is provided as
to where this algebra came from, then we can nevertheless, reconstruct
the manifold M simply from the algebra A. We thus see that each of
M and A can be constructed from the other, so it follows that these
two mathematical structures are, in a clear sense, equivalent to one
another.
In quantum mechanics, one frequently encounters algebras that are, on

on the other hand, non-commutative. An example would be the algebra of
xa and pa that satisWes the standard canonical commutation rules
pbx

a � xapb ¼ i�hda
b of §21.2. If we try to reconstruct a ‘manifold’ from such

analgebra, in the samekindofway thatMwouldbeobtained fromAabove,
then we obtain what is referred to as a non-commutative geometry. As
another example, we could take another particular case and start with the
quantum-mechanical angular momentum components L1, L2, L3 of §22.8
(recall that the algebra generated by them is deWned by the non-commuta-
tive laws L1L2 � L2L1¼ i�hL3, L2L3� L3L2 ¼ i�hL1, L3L1� L1L3 ¼ i�hL2.
We may think of these operators as generating the rotations of an ordinary
sphere S2. It turns out that we can get a non-commutative geometry from
the algebra generated by L1, L2, L3, which we can refer to as the ‘non-
commutative sphere’. There are many mathematical subtleties, beautiful
structures, and unexpected applications of this idea, but I cannot go into
all this here. I shall return to non-commutative geometry brieXy (§33.7) in
relation to twistor quantization.
Connes and his colleagues have developed the idea of non-commutative

geometry with a view to producing a physical theory which includes the
standard model of particle physics.14 Their model uses an algebra A that is
a product A1 �A2, where A1 is the (commutative) algebra of functions on
spacetime (but taken to have a positive-deWnite metric) and where A2 is a
non-commutative algebra arising from the internal symmetry groups of
the standard model of particle physics and providing ‘two copies’ of
spacetime. This model does not, as it stands, incorporate the Lorentzian
ideas of special relativity, and certainly not general relativity. Moreover,
the potential richness of the idea of non-commutative geometry does not
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seem to me to be at all strongly used, so far. Yet, the model makes a start,
and it has intriguing features to it that entail predictions with regard to the
mass of the Higgs boson.15

All these ideas concentrate on the construction of notions of ‘spacetime’
that take on aspects of discreteness or ‘quantum’ characteristics of some
kind. In the remainder of this chapter I shall describe a quite diVerent
family of ideas, namely those of twistor theory (to which I have, myself,
now devoted over 40 years!) in which there is no discreteness speciWcally
imposed upon spacetime. Instead, spacetime points are deposed from their
primary role in physical theory. Spacetime is taken to be a (secondary)
construction from the more primitive twistor notions. Twistor theory has
some relations to spin-network theory and to Ashtekar variables, and
possibly to non-commutative geometry, but it does not directly lead to
any notion of a ‘discrete spacetime’. Instead, its departure from real-
number continuity is in the opposite direction, for it calls upon the
magic of complex numbers as a primary guiding principle for physics.
According to twistor theory, there is a fundamental underlying role for
complex numbers in deWning spacetime structure, in addition to the well-
established basic role of these same numbers in quantum mechanics. In
this way, an important thread of connection is perceived, between the
physics of the large and the physics of the small.

33.2 Twistors as light rays

As we have seen in Chapters 21 and 22, complex-number structure is
indeed fundamental to quantum mechanics. The ‘amplitudes’ that appear
as coeYcients in the basic superposition law of quantum mechanics are
complex numbers, leading to the complex Hilbert spaces of the theory.
Whereas these amplitudes are commonly regarded as abstract quantities,
and they play basic roles in providing probabilities when a measurement
takes place, we have seen (in §22.9) that there is a strong interconnection
between these complex numbers and spatial geometry. This is most mani-
fest with the quantum mechanics of a spin 1

2
particle, where the possible

states of spin correspond to the diVerent spatial directions, via the notion
of a Riemann sphere; moreover, we saw in §22.10 that spin states for higher
spin can also be described in terms of the spatial geometry of the Riemann
sphere by means of the Majorana representation. Yet it is not just in
quantum mechanics that we see a fundamental geometrical role for the
Riemann sphere. We recall (from §18.5) that this sphere plays an import-
ant spacetime role in relativity theory, since the Weld of vision of an
observer can also be validly regarded as a Riemann sphere. This fact
has a seminal signiWcance in twistor theory, as we shall be seeing very
shortly.
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Another guiding principle behind twistor theory is quantum non-

locality. We recall from the strange EPR eVects discussed in §§23.3–6,
and more speciWcally from the role of ‘quanglement’, as manifested parti-
cularly in the phenomenonof quantum teleportation, as described in §23.10,
that physical behaviour cannot be fully understood in terms of entirely local
inXuences of the normal ‘causal’ character. This suggests that some theory
is needed in which such non-local features are incorporated at a basic level.
Some guidance for achieving this may be gained from spin-network

theory. We recall from §32.6 that we are to regard all spin networks to
be built up initially from EPR pairs. The lines of a spin network that
subsequently arise can legitimately be thought of as quanglement links.
The ‘quantum information’ that represents quanglement, can ‘travel’ one
way or the other along a quanglement line, or spin-network line. There is
no speciWcation of a time in spin-network theory (and, indeed, the original
spin networks could equally be read using various diVerent time-senses—
forwards, backwards, sideways, etc, see Fig. 33.4). Thus, the curious
‘backwards-time’ aspects of quanglement, are just reXections of this indi-
Verence to a time-Xow direction that is a feature of spin networks.
It is possible to regard twistor theory as a continuation of the spin-

network programme to obtain a relativistic scheme, in which idealized
light rays (or their generalizations, with spin) appear to be, in a sense,
the carriers of quanglement. Ordinary spacetime notions are not initially
among the ingredients of twistor theory but are to be constructed from
them. This has a good deal in common with the underlying philosophy
behind my original spin networks, where spatial notions are to be con-
structed from the spin networks, rather than the spin networks being
thought of as inhabiting a previously assigned spatial geometry.
The twistor description of spacetime indeed turns out to be a non-local

one; moreover, there is a fundamentally ‘holistic’ character to the twistor
description of physical Welds that comes about via a remarkable feature of
complex magic (namely holomorphic sheaf cohomology) that we have not
yet properly encountered in this book—though we shall do so in §33.9
(and there was a hint of it already in the hyperfunction theory of §9.7)—

or
time

or
tim

e
Time

Fig. 33.4 In a spin network of the original

type, the lines may be read as quanglement

links (see §23.9 and Fig. 23.7). Any time-

direction may be chosen—forwards, side-

ways, or backwards—and an equally valid

interpretation of the spin network is

obtained.
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which meshes with another aspect of complex-number magic, namely the
underlying holomorphic character of the essential positive-frequency con-
dition of quantum Weld theory (§24.3, §33.10). We thus see that the non-
local aspects of twistor theory are intimately bound up with the most
important of its underlying motivations, namely the desire to exploit the
magic of complex numbers in a belief that Nature herself may well be
dependent upon such things at a deep level. We shall be seeing, in this and
the next several sections, how all these aspects of complex-number magic
begin to come together in the twistor-theoretic framework. We shall
also begin to see how twistor theory Wnds a remarkable and unexpected
deep relation to general relativity, and that it provides an intriguing
perspective on QFT, particle physics, and the possible non-linear general-
ization of quantum mechanics.
How do these ideas indeed begin to come together in twistor theory? As

a Wrst step towards the understanding of twistor ideas, we may think of a
twistor as representing a light ray in ordinary (Minkowski) spacetime M.
One can regard such a light ray as providing the primitive ‘causal link’
between a pair of events (i.e. of spacetime points). But events are them-
selves to be regarded as secondary constructs, these being obtained from
their roles as intersections of light rays. In fact, we may characterize an
event R (spacetime point R) by means of the family of light rays that pass
through R; see Fig. 33.5. Thus, whereas in the normal spacetime picture a
light ray Z is a locus and an event R is a point, there is a striking reversal of
this in twistor space, since now the light ray is described as a point Z and
an event is described as a locus R.

Riemann sphere

R

Z

Twistor picture
PN

Light ray

Z

R

Spacetime M

Fig. 33.5 A light ray Z in Minkowski spacetime M is represented as a single

point Z in the twistor space PN (projective null twistor space); a single point R in

M is represented by a Riemann sphere R in PN (this sphere representing the

‘celestial sphere’ of light rays at R). (For the complete correspondence this requires

the compactiWed Minkowski space M
# described in Fig. 33.9.)
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The twistor space that is referred to here, whose individual points
represent light rays in M, is denoted16 by PN. (This notation is taken
to Wt in with the terminology of §33.5.) Thus, the point Z in PN corres-
ponds to the locus Z (a light ray) inside M and the point R in M

corresponds to the locus R (a Riemann sphere; see §18.5) inside PN.
Now, an essential part of the philosophy of twistor theory is that ordinary
physical notions, which normally are described in spacetime terms, are to
be translated into an equivalent (but non-locally related) description in
twistor space. We see that the relationship between M and PN is indeed
a non-local correspondence, rather than a point-to-point transformation.
However, the space PN provides us merely with the beginnings of such a
translation. The full richness of twistor geometry—which turns out to be
quite remarkable—is revealed only gradually, as the correspondence be-
tween spacetime concepts and twistor-space geometry is developed in
further detail.
This locus R inside PN, describes the ‘celestial sphere’ (total Weld of

vision) of an observer at R, the celestial sphere of R being regarded as the
family of light rays through R. As has been noted above, this sphere is
naturally a Riemann sphere which is a complex 1-dimensional space (a
complex curve; see Chapter 8). Thus, we think of spacetime points as
holomorphic objects in the twistor space PN, in accordance with the
complex-number philosophy underlying twistor theory. We shall be seeing
explicitly in §§33.5,6 how this ‘holomorphic philosophy’ can be extended
to the geometry of a more complete twistor space T, and in §§33.8–12 how
it enables us to encode, in a remarkable way, the information of linear and
non-linear massless Welds.
The space PN, of light rays, does not itself immediately Wt in with the

‘holomorphic philosophy’, however, because it is not a complex space.
PN cannot be a complex manifold because it has Wve real dimensions[33.1]

and Wve is an odd number, whereas any complex n-manifold must have an
even number, 2n, of real dimensions (see §12.9). We shall be seeing shortly
(in §33.6) that if we make our ‘light rays’ a little more like physical massless
particles, by assigning them both spin (actually helicity—see §22.7) and
energy, then we get a six-dimensional space PT, which actually can be
interpreted as a complex space—of three complex dimensions. The space
PN sits inside PT, dividing it into two complex-manifold pieces PT

þ

and PT
�, where PT

þ may be thought of as representing massless
particles of positive helicity and PT

�, massless particles of negative
helicity; see Fig. 33.6. However, it would not be correct to think of twistors
as massless particles. Instead, twistors provide the variables in terms of
which massless particles are to be expressed. (This is comparable with the

[33.1] Why do light rays have Wve degrees of freedom?
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ordinary use of a position 3-vector x to label a point in space. Although a
particle might occupy the point labelled by x, it would not be correct to
identify the particle with the vector x.)
The twistor perspective leads us to a very diVerent view of ‘quantized

spacetime’ from that which is often put forward. It is quite a common
‘conventional’ viewpoint that the procedures of quantum (Weld) theory are
to be applied to the metric tensor gab, this being thought of as a tensor Weld
on the spacetime (manifold). The view is expressed that the quantized

metric will exhibit aspects of ‘fuzziness’ owing to the Heisenberg uncer-
tainty principle. One is presented with the image of some kind of four-
dimensional space which possesses a ‘fuzzy metric’ so that, in particular,
the null cones—and consequently the notion of causality—become subject
to ‘quantum uncertainties’ (see Fig. 33.7a). Accordingly, there is no clas-
sically well-deWned notion of whether a spacetime vector is spacelike,
timelike, or null. This issue had posed foundational diYculties for any
too-conventional ‘quantum theory of gravity’, for it is a basic feature of
QFT that causality requires Weld operators deWned at spacewise separated
events to commute (§26.11). If the very notion of ‘spacelike’ is subject to
quantum uncertainties (or has, itself, become a quantum notion), then the
standard procedures of QFT—which involve the speciWcation of commu-
tation relations for Weld operators (§§26.2,3)—cannot be directly applied.
Twistor theory suggests a very diVerent picture. For now the appropriate
‘quantization’ procedures, whatever they may be, must be applied within
twistor space rather than within the spacetime (where the latter would
have been the ‘conventional’ viewpoint). By analogy with the way that, in
the conventional approach, ‘events’ are left intact whereas ‘null cones’
become fuzzy, in a twistor-based approach it is now the ‘light rays’ that are
left intact whereas ‘events’ become fuzzy (see Fig. 33.7b).
Twistor theory, as we have just seen, initially exploits a manifestation of

complex number magic diVerent from those to be found in quantum
theory, namely the classical feature of spacetime geometry that the celes-
tial sphere can be regarded as a Riemann sphere, which is a 1-dimensional
complex manifold. The idea is that this provides us with hints as to
Nature’s actual scheme of things, which must ultimately unify spacetime

+h
eli

cit
y

Null
 ra

y

−h
eli

cit
y

PT+
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Fig. 33.6 The real 5-mani-

fold PN divides projective

twistor space PT into two

complex-3-manifold pieces

PT
þ and PT

�, these rep-

resenting massless particles of

positive and of negative heli-

city, respectively.
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structure with the procedures of quantum mechanics. It is noteworthy that
this feature of spacetime geometry is speciWc to the particular dimension
and signature actually possessed by the physical spacetime we are aware
of. Indeed, the fact that the Riemann sphere plays an important role as
the celestial sphere in relativity theory (§18.5) requires spacetime to be
4-dimensional and Lorentzian, in stark contrast with the underlying ideas
of string theory and other Kaluza–Klein-type schemes. The full complex
magic of twistor theory proper is very speciWc to the 4-dimensional space-
time geometry of ordinary (special) relativity theory, and does not have
the same close relationship to the ‘spacetime geometry’ of higher dimen-
sions (see §33.4, later).
To proceed further, let us return to the original pure spin-network pic-

ture, noting that the main thing that was missing from it was any reference
to spatial displacement. In that theory, Euclidean angles arise as a kind of
‘geometric limit’ of pure spin-network theory; yet distances do not arise in
that theory. In the loop-variable scheme, the ‘distance’ aspect of things is
addressed by the numbers (n ¼ 2j) on the lines referring to area rather than
spin. But this is diVerent from the interpretation in the original spin-net-
work theory, where there is no measure of distance because spin is angular

momentum, having to domerely with rotations and angles. We would need
a corresponding role for linearmomentum in that theory in order to be able
to incorporate translational displacements and actual distances. Accord-
ingly, it would appear that we need to move from the rotation group to the
full group of Euclidean motions and, for a properly relativistic scheme, to
the Poincaré group (§18.2).17

(a) (b)

Fig. 33.7 (a) It has been a common viewpoint, with regard to the possible nature

of a ‘quantized spacetime’, that it should be some kind of a spacetime with a

‘fuzzy’ metric, leading to some sort of ‘fuzzy’ light cone, where the notion of a

direction at a point being null, timelike, or spacelike would be subject to quantum

uncertainties. (b) A more ‘twistorial’ perspective would be to take the twistor

space (in this case PN) to retain some kind of existence (so there would still be

light rays), but the condition of their intersection would become subject to

quantum uncertainties. Accordingly the notion of ‘spacetime point’ would instead

become ‘fuzzy’.
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In the late 1950s and early 1960s, when Iwas actively thinking about these
things, the theory of loop variables had not yet been developed, and I did
indeed contemplate a generalization of spin networks in which the Poincaré
group features directly. However, I was worried about an awkward aspect
of the Poincaré group—that it is not semi-simple (see §13.7)—which has
unpleasant implications with regard to its representations. I had the view, at
that time, that an extension of the Poincaré group to what is known as the
conformal group (which is semi-simple)mightmake the relevant analogue of
the spin-network theory into a more mathematically satisfactory structure.
The conformal group extends the Poincaré group by demandingmerely that
the light cones be preserved, rather than the Minkowski-space metric.
Indeed, it turns out that the conformal group has an important place in
twistor theory, as it is also the symmetry group of the space PN of
(idealized) light rays. (The non-reXective part of the conformal group is
also the symmetry group of each of the spaces PT

þ and PT
�, referred to

above, describing massless particles with helicity and energy.) We shall see
more explicitly what the role of this group is in the next two sections.

33.3 Conformal group; compactified Minkowski space

I have referred to the conformal group of spacetime above. Let us try to
explore the role of this group a little more fully. It has a particular import-
ance in physics in relation to massless Welds (e.g. the Maxwell Weld), as it
turns out that the Weld equations for massless Welds are invariant under this
larger group, not merely under the Poincaré group.18 One may take the
position that at the fundamental level, massless particles/Welds are the basic
ingredients,mass being something that comes in at a later stage. Indeed, this
seems to be the standpoint implicit in the standard model, as described in
Chapter 25, wherebymass is introduced via theHiggs boson, and is taken to
come about only through a symmetry-breaking mechanism (§25.5). Be that
as it may, one of the important underlying motivations behind twistor
theory was indeed a belief in the basic importance of massless Welds and
the conformal group. We shall Wnd (§33.8) that massless particles and Welds
have a remarkably concise description in twistor theory, and this fact forms
one of the basic cornerstones of that theory.
What exactly is the conformal group? Strictly speaking, this group acts

not on Minkowski space M, but on a slight extension of M known as
compactiWed Minkowski space M

#. The space M
# is a beautifully sym-

metrical closed manifold, which, in many respects has a more elegant
geometry than Minkowski space itself. We must not think of it as ‘actual
spacetime’, however, but as a mathematical convenience. It is a useful
intermediary to the understanding of twistor geometry and its relation to
physical spacetime geometry.
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A good picture to have in the back of the mind is the Riemann sphere
and its relation to the complex plane. We recall, from §8.3, that the
Riemann sphere is obtained from the complex plane by adjoining to it
an ‘inWnite element’, namely the point labelled1, and when we have done
so, we obtain a geometric structure with an even greater symmetry than
the plane that we started with. In a similar way, the ‘compactiWed
Minkowski space’ M

# is obtained from ordinary Minkowski space M

by adjoining an ‘inWnite element’ which, this time, turns out to be a
complete light cone at inWnity. The resulting space has a greater symmetry
(namely the conformal group) than Minkowski space itself.
Let us see how this works. The space M

# turns out to be a 4-dimen-
sional real compact manifold with a Lorentzian conformal metric. Recall
from §27.12 that a Lorentzian conformal metric is, in eVect, just the family
of null cones speciWed on the space. This structure is more usually phrased
in terms of an equivalence class of metrics, where a metric g is considered
to be equivalent to a metric g0 if g0 ¼ O2g for some smooth scalar Weld O
that is everywhere positive. This rescaling indeed preserves the null cones
(Fig. 33.8). Now, to pass from M, (regarded as a conformal manifold) to
the compact conformal manifold M

#, we adjoin the 3-surface I referred
to above as the ‘light cone at inWnity’. Recall from §27.12 the 3-surfaces
I � and I þ (called ‘scri-minus’ and ‘scri-plus’, respectively) that represent
the past and future null inWnities of Minkowski space (see Fig. 27.16b).
We can construct M

# by identifying I � with I þ in the way indicated in
Fig. 33.9. A point of I � is considered to be the same point as a corres-
ponding point of I þ which is spatially antipodal to it (on the 2-sphere
that most of the points on the diagram represent). The light cone of a point
a� on I � comes to a focus again at the point aþ of I þ, and it is the points
a� and aþ that are to be identiWed. In addition, all three points represent-
ing temporal and spatial inWnities, i�, i0, iþ, are also identiWed as the single
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Singularity

Confo
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Fig. 33.8 The null-cone struc-

ture of a Lorentzian manifoldM
is equivalent to its conformal

structure. A conformal rescaling

ofM aVects its metric, but not

its causality properties. (A metric

g conformally rescales to

g0 if g0 ¼ V2g, the scalar Weld V
being everywhere positive.) In

favourable circumstances, such

rescalings can be useful for

‘bringing into view’ singularities

and inWnite regions.
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point i.[33.2] The conformal manifold M
# indeed has more symmetry than

Minkowski space, having a 15-dimensional symmetry group—the con-

formal group—rather than merely the 10-dimensional Poincaré group.
There is an elegant way of describing the space M

# and its group of
transformations. Consider the ‘light cone’ K of the origin O in a pseudo-
Euclidean 6-space E

2,4, with signature þþ����. Choose standard
coordinates w, t, x, y, z, v for E

2,4, so that K is given by the equation

w2 þ t2 � x2 � y2 � z2 � v2 ¼ 0,

the metric ds2 of E
2,4 being

ds2 ¼ dw2 þ dt2 � dx2 � dy2 � dz2 � dv2:

This is a 5-dimensional ‘cone’, with vertex O. I have done my best to depict
it in Fig. 33.10, but one of the main ways that the picture is misleading is
the fact that what seem to be two distinct ‘pieces’ to K (‘past’ and ‘future’)
are actually connected up into ‘one piece’.[33.3] Now, consider the section of
K by the null 5-plane w� v ¼ 1. This intersection is a 4-manifold (‘para-
boloid’) whose intrinsic metric, induced from that of E

2,4 is[33.4]

[33.2] See if you can describe the geometry of M
# in more detail. What is the ordinary spacetime

description of the light cone of a point of I �? Can you see why M
#’s topology is S1 � S3? Can you

think of an important diVerence that would occur for an odd number of spacetime dimensions?

[33.3] Can you see why?

[33.4] Why?

Identify
antipodally

i+

io
io

i−
i−

a+

i+

a+

a−
a−

IdentifyI −

I +

(a) (b)

Fig. 33.9 CompactiWed Minkowski space M
# is obtained from ordinary Min-

kowski space M by adjoining its future and past null inWnities I þ and I � and

then identifying them appropriately as I . (a) The future light cone of any point a�

on I � focuses back to another vertex aþ on I þ (this ‘light cone’ being, in

ordinary terms, simply the history of a plane wavefront travelling at the speed

of light), and a� is to be identiWed with aþ. Spacelike inWnity io and the past and

future timelike inWnities i� and iþ are all to be identiWed as a single point i. (b) This

identiWcation I is shown, in terms of the strict conformal diagram of Fig. 27.16b,

where a� is antipodal to aþ on the ‘S2 of rotation’ for the whole diagram.
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ds2 ¼ dt2 � dx2 � dy2 � dz2:

We recognize this as the metric form of ordinary Xat Minkowski 4-space
(§18.1), so we can identify it with M, even though it is embedded in a ‘bent’
way in E

2,4 (with the appearance of a parabola in Fig. 33.10). How do we
WndM

# in this picture? It is the abstract space of complete generators ofK
(straight lines throughO that lie onK, where the complete line throughO in
both directions counts as a single generator). Thus, we can think of each
point of M

# simply as a generator of K (Fig. 33.10)—so M
# is the

‘celestial sphere’ for some ‘observer’ situated at the origin of E
2,4!

Why does this work? Each generator that does not lie in the 5-plane
w� v ¼ 0 meets M in a unique point, so this family of generators is in a
continuous 1–1 correspondence with M. But, in addition, there are the
generators that do lie in this 5-plane. These supply M with the additional
points that constitute I . The space M

#, deWned in this way, has a
conformal Lorentzian metric which is locally provided by that of any
local cross-section of K.[33.5]
The pseudo-orthogonal groupO(2, 4), acting onE

2,4 (see §13.8, §§18.1,2)
consists of the ‘rotations’ that preserve themetric ds2. This sends generators
ofK toother generators ofK, so it sendsM# to itself.Moreover, it preserves
M

#’s conformal structure.[33.6] There are exactly two elements of O(2, 4)
that act as the identity on M

#, namely the identity element of O(2, 4) itself
and the negative identity element of O(2, 4), the latter simply reversing the
direction of each generator. Apart from the two-to-one nature of the cor-
respondencearising fromthis reversibilityof thegeneratordirections,O(2,4)
is theconformalgroup. It includesa10-dimensional subgrouppreserving the

[33.5] Why is the conformal metric provided by any one local cross-section the same as that of

any other? Why do the points of I , deWned in this way, agree with the deWnition given above?

Hint: See §18.4 and Fig. 18.8.

[33.6] Why?

w−u
=1

w−u
=0

K

M

E2,4

Fig. 33.10 CompactiWed Minkowski space

M
# may be identiWed as the space of generators

of the ‘light cone’ K, in pseudo-Euclidean E
2,4,

given by w2 þ t2 � x2 � y2 � z2 � v2 ¼ 0. The

‘paraboloidal’ 4-manifold section M of K by

the null 5-plane w � v ¼ 1, has Minkowskian

intrinsic metric ds2 ¼ dt2 � dx2 � dy2 � dz2.

The family of generators of K in w � v ¼ 0

(not visible in this diagram owing to the

depiction of only one ‘time’ dimension) are

parallel to w � v ¼ 1 and do not meet M,

these generators providing the points of I .
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5-plane w�v ¼ 0, and this gives the Poincaré group of M.[33.7] In fact, this
argument is just a higher-dimensional version of what we did in §18.5, when
showing that the conformal transformations of an ordinary sphere (which is
the compactiWedEuclideanplane)providea realizationof theLorentz group
O(1, 3); see Fig. 18.8.

33.4 Twistors as higher-dimensional spinors

How do twistors Wt in with all this? The shortest—but hardly the most
transparent—way to describe a (Minkowski-space) twistor is to say that it
is a reduced spinor (or half spinor) for O(2, 4). (Do not be alarmed by
the mathematical laconism of this description; I shall be giving a much
more physical picture shortly!) See §11.5 for a brief mention of the
notion of a reduced spinor. For a 2n-dimensional space, on which a
pseudo-orthogonal group O(n� r, nþ r) acts, the space of reduced spi-
nors is 2n�1-dimensional. In the present case, n ¼ 3 (and r ¼ 1), so we have
a 4-dimensional space of reduced spinors, referred to as twistor space.19

Unfortunately, with a deWnition like this, we do not get a clear geomet-
rical or physical picture of what a twistor is like. Moreover, we see that a
twistor theory should exist for any even number 2(n� 1) of spacetime
dimensions, despite what was said towards the end of §33.2. We generalize
the above construction for K (taking it now to be of 2n� 1 dimensions)
and the compactiWcation of the 2(n� 1)-dimensional Minkowski space-
time works in a way analogous to that given above, where we simply
introduce two new coordinates v and w as before, one with a minus sign
in the metric and the other a plus sign. The ‘twistor space’ is now 2n�1-
dimensional. For an odd number 2n� 1 of spacetime dimensions this will
also work, except that we do not now have the notion of reduced spinors,
and it is the entire 2n-dimensional spin space that would have to count as
our ‘twistors’. An important feature of twistors is lost in the odd-
dimensional case, however, namely their chiral nature (which we shall
discuss more fully in §§33.7,12,14). Only when we pass to the reduced
spin spaces do we achieve an essentially chiral formalism (so that left-
handed and right-handed entities receive diVerent twistorial descriptions;
see §33.7), and hope may be thereby entertained that the chiral aspects of
weak interactions (§25.3) may ultimately be incorporated. We shall also be
seeing later why this general n-dimensional deWnition of a twistor misses
many of the key physical (and holomorphic) properties that make twistor
theory so eVective.

[33.7] What is the explicit condition on a 6� 6 matrix, that it represents an inWnitesimal

element of O(2, 4)? Which of these matrices give inWnitesimal Poincaré transformations?
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Since twistors refer to an active group of spacetime transformations (the
conformal group) where spacetime points get sent to other spacetime
points under the action of the group, twistors are seen to be entities that
refer globally to the spacetime, rather than to individual points in the
spacetime. Local quantities such as vectors, tensors, or ordinary spinors
refer to the symmetry group that acts at a point; see §14.1—e.g. the
rotation or Lorentz group (§14.8). Although this makes twistors more
diYcult to handle than ordinary vectors, tensors, or spinors, this globality
has an advantage when we are seeking a formalism intended to replace the
spacetime rather than merely to be deWned in reference to a previously
given spacetime manifold. As mentioned in §33.2, one of the main aims of
twistor theory is indeed to obtain such a formalism. The main disadvan-
tage of such an approach is that it is diYcult to see how such a formalism
can be applied to a general curved spacetimeM, when such things as the
conformal group do not appear as a symmetry ofM. We shall be seeing
how twistor theory comes to terms with this kind of diYculty in a remark-
able way, in §§33.11,12.
The above deWnition of a twistor, as a reduced spinor for O(2, 4), gives

us only a very limited perspective on twistor-theoretic ideas and motiv-
ation. As just stated, there is nothing speciWcally 4-dimensional about this
approach, and it gives no clear indication of why one should be interested
in twistor theory as providing us any guidance in moving forwards in our
search for a deeper theory of Nature. To appreciate more fully what
twistor theory is trying to do in this respect, let us recall the message of
Chapters 29 and 30. Whereas it is commonly accepted that the appropriate
quantum–gravity union must be a major goal in the search for a funda-
mentally new perspective on physics, the message of those chapters is that
we should seek a development in which the very rules of quantum (Weld)
theory are not held sacrosanct but should be bent, just as should the
geometry of our conventional spacetime pictures. Nevertheless, there is
clearly much truth as well as beauty in quantum-mechanical principles,
and these should not simply be abandoned. In twistor theory, instead of
imposing QFT rules, one looks into these rules and tries to extract features
that mesh with those of Einstein’s conceptions, seeking hidden harmonies
between relativity and quantum mechanics. As has been stated earlier, one
key element of guidance is the complex-number magic that has featured in
so many places in this book. Another is an especial harmony with Ein-
stein’s theory of Lorentzian 4-space rather than with its generalizations to
higher dimensions or to other signatures.
What is so special about Lorentzian 4-space, in this respect? As has been

stressed in §18.5 and §33.2, the celestial sphere of an observer has a natural
conformal structure and can be interpreted as a Riemann sphere. It should
be borne in mind that something of this general nature actually occurs in

More radical perspectives; twistor theory 33.4
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any (non-zero) number of space and time dimensions, where the celestial
sphere always has the structure of a conformal manifold.[33.8] What is
particular about the Lorentzian 4-dimensional case, however, is that this
conformal manifold can be naturally interpreted as a complex manifold
(the Riemann sphere), a property that does not arise in any other number
of space and time dimensions. What is the importance of this fact? In
twistor theory, the magic of complex numbers is exploited to the full. Not
only does twistor space turn out to be a complex manifold, but this
complex manifold has a direct physical interpretation. In fact, general
results tell us that the only cases where the ‘twistor space’ is a complex
space of any kind20 occur when the diVerence between the number of space
dimensions and the number of time dimensions leaves the remainder 2
when divided by 4. It is noteworthy that this is not the case for the original
Kaluza–Klein theory, nor for 10- or 11-dimensional supergravity theories,
nor for the original 26-dimensional string theory, nor for 10-dimensional
superstring theory, nor for 11-dimensional supergravity or M-theory, nor
even for 12-dimensional F-theory (since in that case there are 2 time
dimensions)!

33.5 Basic twistor geometry and coordinates

What is the physical or geometrical interpretation of a general twistor for
ordinary Minkowskian 4-space? It is easiest to describe things if we use
standard Minkowski coordinates t, x, y, z for a point R of M, where we
take the speed of light as unity: c ¼ 1. The full twistor space T for M is a
4-dimensional complex vector space, for which standard complex coordin-
ates Z0, Z1, Z2, Z3 may be used. We say that a twistor Z, with these
coordinates, is incident with the spacetime point R—or, that R is incident
with Z—if the key matrix relation (see §13.3 for matrix notation)

Z0

Z1

� �

¼ i
ffiffiffi

2
p tþ z xþ iy

x� iy t� z

� �

Z2

Z3

� �

holds—from which the basics of Xat-space twistor geometry all
follow![33.9]

In accordance with the notation of §12.8, the (abstract-)index notation
Za will sometimes be used to represent the twistor Z (where the compon-
ents of Z in a standard frame would be Z0, Z1, Z2, Z3). Each twistor Z, or
Za, (an element of T ) has a complex conjugate �ZZ, which is a dual twistor

[33.8] Explain why.

[33.9] Write this equation out in ordinary algebraic notation.
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(element of the dual twistor space T*). In index form, �ZZ is written �ZZa, with
a lower index, and its components (in the standard frame) would be

(�ZZ0, �ZZ1, �ZZ2, �ZZ3) ¼ (Z2, Z3, Z0, Z1):

This notation is probably a little confusing. The four quantities (complex
numbers) on the left are simply the four components of the dual twistor �ZZ.
The four on the right are the respective complex conjugates of the complex
numbers Z2, Z3, Z0, Z1. Thus, the component �ZZ0 of �ZZ is the complex
conjugate of the component Z2 of Z, etc. Note the interchange of the Wrst
two with the second two when forming the complex conjugation. Since �ZZ
is a dual twistor, we can form its (Hermitian) scalar product (see §13.9 and
§22.3) with the original twistor Z to obtain the (squared) twistor norm

�ZZ�Z ¼ �ZZaZ
a ¼ �ZZ0Z

0 þ �ZZ1Z
1 þ �ZZ2Z

2 þ �ZZ3Z
3

¼ Z2Z0 þ Z3Z1 þ Z0Z2 þ Z1Z3

¼ 1
2
(jZ0 þ Z2j2 þ jZ1 þ Z3j2 � jZ0 � Z2j2 � jZ1 � Z3j2),

where this last formula shows that the Hermitian expression �ZZaZ
a has

signature (þþ��), in accordance with §13.9.[33.10] (The symmetry of
twistor space exhibits the local equivalence, mentioned in §13.10, of the
group SU(2, 2) to the O(2, 4) of §33.3.). We Wnd, from the key incidence
relation given above, that a twistor Za can be incident with an event
in real Minkowski space M only if its norm vanishes: �ZZaZ

a ¼ 0.[33.11]

When �ZZaZ
a ¼ 0, we say that the twistor Z is null.

To connect with the discussion of §33.2, we should Wrst make our
acquaintance with the projective twistor space PT, which is the complex
projective 3-space (CP

3) constructed from the complex vector space T.
(See §15.6 for a general discusion of projective spaces.) Much of twistor
geometry is most easily expressed in terms of PT, rather than T. The
numbers, Z0, Z1, Z2, Z3 now provide homogeneous coordinates for PT,
so that the three independent ratios

Z0: Z1: Z2: Z3:

serve to label points of PT. The null projective twistors constitute the
space PN, which is the 5-real-dimensional subspace of the 6-real-dimen-
sional space PT for which the twistor norm vanishes:

�ZZaZ
a ¼ 0:

[33.10] Verify this Wnal expression; explain why this tells us the signature.

[33.11] Show this; show, conversely, that such an event always exists if �ZZaZ
a ¼ 0, provided

that Z2 and Z3 do not both vanish.
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This equation also deWnes the 7-real-dimensional subspace N of the null
non-projective twistors, in the vector space T. When �ZZaZ

a > 0, we get the
space T

þ of positive twistors; and when ZaZ
a < 0, we get the space T

� of
negative twistors. The projective spaces PT

þ and PT
� are deWned

correspondingly. See Fig. 33.11 (and compare Fig. 33.6).
Let us explore the geometrical relation between PN and M, depicted

in Fig. 33.5, as a consequence of the key incidence relation given at
the beginning of this section. It can be seen directly from this relation
that two points P, R of M (events) that are incident with the same
non-zero twistor Z (necessarily a null twistor) must be null-separated

from each other (i.e. each of P and R lies on the light cone of the
other). It follows that Z deWnes a light ray—null straight line in M—
since all the points of M that are incident with Z must be mutually null
separated. See Fig. 33.12. Moreover, the twistor Z represents the same
light ray if we replace Za by lZa, where l is any non-zero complex
number. The locus of events incident with a (non-zero) null projective
twistor is indeed a light ray; but in the particular situation when
Z2¼Z3¼ 0, we must interpret this appropriately, for we get no actual
points in M incident with Za, yet we can still regard such a null twistor
as describing a light ray at inWnity (a generator of I , lying in M

#, rather
than M).[33.12]

[33.12] Demonstrate the assertions of this paragraph, explicitly.

Z
PT+

PN

PT−

T+

N

T−

Fig. 33.11 Twistor space T is a complex vector space with a pseudo-Hermitian

metric. The projective twistor space PT (a CP
3) is the space of rays (1-dimen-

sional subspaces) in T. Thus, if a twistor Z has coordinates (Z0, Z1, Z2, Z3), the

ratios Z0: Z1: Z2: Z3 determine the corresponding point in PT. The 7-real-

dimensional subspace N (of null twistors: �ZZaZ
a ¼ 0) divides twistor space T

into the complex 3-spaces T
þ (of positive twistors: �ZZaZ

a > 0) and T
� (of negative

twistors: �ZZaZ
a < 0). The respective projective versions of these spaces are the

5-real-dimensional PN (representing light rays in M
#) and the two complex

3-manifolds PT
þ (representing positive helicity massless particles) and PT

�

(representing negative helicity massless particles).
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Let us now examine the converse. Fixing the event R, with real coordin-
ates t, x, y, z, we Wnd that the space of twistors Z incident with R is deWned
by two linear homogeneous relations in the components Z0, Z1, Z2, Z3.
Each of these linear relations deWnes a plane in PT and their intersection

(the set of points in PT satisfying both relations) gives us a projective line
R in PT (a CP

1)—lying in PN, in fact—which is therefore a Riemann
sphere, as is required (§§15.4,6). Thus, points of M (events) are represen-
ted, in twistor space, by projective lines in PN. When Z2 ¼ 0 ¼ Z3, we
get a particular projective line in PN which we refer to as I. This special
line represents the point i that is the vertex of the light cone I at inWnity.
Any other point Q of I is represented, in PN, by a projective line Q

meeting I.[33.13] The situation is illustrated in Fig. 33.12.
The way that these complex structures represent the geometry of

Minkowski space (in the standard number of space and time dimensions)
is very remarkable. We can re-interpret Minkowski space as the space of

[33.13] Why?

Q

QIi

I

I

P

P

Z Z

R

R

X

X

M#

Two planes in PT

PT

PN

(a) (b)

Fig. 33.12 The geometry of the basic loci in M
# and PN, given by the

incidence relation of the twistor correspondence. (a) Fix a point (projective null

twistor) Z in PN. The points of M
# (e.g. P, R) which are incident with Z

constitute a light ray, since all such points are null separated from one another. (b)

Fix a point R in M
#. The points of PN (e.g. Z, X) that are incident with R (lying

on the intersection of two complex planes in PT) constitute a complex projective

line, which is a Riemann sphere. Points P and R in M
# which are null separated

along the light ray Z have corresponding Riemann spheres P and R, which

intersect in the single point Z. (I have drawn these Riemann spheres very elong-

ated, as a compromise with the fact that they are also projective straight lines in

the projective geometry of PT!) A particular one of these Riemann spheres is I,

which represents the point i in M
#. The point i speciWes spacelike/timelike

inWnity; it is the vertex of the light cone I at inWnity. Any other point Q of I

is represented in PN, by a projective line Q meeting I.
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complex lines lying in PN (or in PN�I , if we want only the Wnite
spacetime points), taking PN as the primary structure and M as second-
ary. This amounts to taking light rays as more primitive than the spacetime
points themselves. Intersection of light rays Z and X is represented by the
existence of a projective line onPN containing the corresponding pointsZ

andX ofPN and, as we have seen, the condition that two spacetime points
P and R are null-separated is represented by the condition that the corres-
ponding projective linesP andR, inPN, intersect (Fig. 33.12). Thus we see
that twistor space provides a completely diVerent perspective, on physical
geometry, from the normal spacetime picture. Ordinary spacetime points
are represented as Riemann spheres inPN. Points ofPN are represented
as light rays in spacetime. Either way the correspondence is non-local. Yet,
we can pass from one picture to the other by precise geometrical rules.

33.6 Geometry of twistors as spinning massless particles

We recall that the most fundamental of the motivating ideas behind twistor
theory is that complex-number magic should be exploited to the full.
Despite containing a large (4-real-parameter) system of complex projective
lines, PN is not itself a complex manifold (which it could hardly be, as
noted in §33.2, since it is odd-real-dimensional). However, it becomes one,
namely PT (which is a CP

3), when just one more real dimension is
added. Can we interpret these extra points of PT in a physically natural
and meaningful way? Remarkably (as was hinted in §33.2), we can. Recall
that actual free photons have more structure than being simply light rays
in M. A light ray describes a point particle travelling with the speed of
light in a Wxed direction, but actual photons have energy and spin. For the
time being, we can think of this classically. The two basic ways that a
photon can spin are right-handed and left-handed about the direction of
motion (positive and negative helicity, respectively, deWned by right-
handed and left-handed circular polarization; see §22.7). The magnitude
of this helicity is just �h, in each case. It turns out that the positive-helicity
classical photons can be represented as points of PT

þ, and the negative
helicity ones, as points of PT

�, where the extra dimension comes from
the energy of the photon. This description holds also for any other
massless particle with nonzero spin 1

2
n�h.

How does this work? This is not the place to enter into details, but
the essential features can be outlined as follows. As a Wrst step, it is
helpful to realize that the Wrst two components Z0 and Z1 of the twistor
Z are really the two components of a 2-spinor v, with index form oA,
where o0¼Z0 and o1¼Z1 (see §22.8 and §25.2). The remaining two
components Z2 and Z3 of Z are the components of a primed (dual) spinor
p, with index form pA0 , where p00 ¼ Z2 and p10 ¼ Z3. We sometimes write
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Z ¼ (v, p)

and refer to v and p as the spinor parts of the twistor Z. The complex
conjugate twistor �ZZ has its spinor parts in reverse order, i.e.

�ZZ ¼ (�pp, �vv),

so the twistor norm can be expressed

�ZZaZ
a ¼ Z�Z ¼ �pp �vþ �vv �p ¼ �ppAoA þ �ooA0pA0 :

The incidence relation between the twistor Z and the spacetime point R,
with Minkowski coordinates t, x, y, z, is now written

v ¼ irp,

which stands for oA ¼ irAA0pA0 , where r (or rAA0) has the matrix of com-
ponents

r000 r010

r100 r110

� �

¼ 1
ffiffiffi

2
p tþ z xþ iy

x� iy t� z

� �

:

The spinor p is associated with the momentum of the massless particle,
in the sense that the outer product �ppp (no contractions—see §14.3)
describes its 4-momentum. The spinor v is associated with the particle’s
angularmomentum, in the sense that the symmetrizedproductofvwith �ppde-
scribes the anti-self-dual part of the particle’s 6-angular momentum (§18.7,
§19.2, §22.12, §32.2) and the symmetrized product of �vv with p describes its
self-dual part.21 Unlike the case of momentum, angular momentum
depends upon a choice of spacetime origin O, and we sometimes refer
to the angular momentum about O. This origin-independence/dependence
is reXected in the translational behaviour of the two spinor parts p and v
of a twistor Z. Under displacement of the origin O to a new spacetime
pointQ, with position vector q relative to O, we Wnd (with q in matrix form,
as above) that the spinor parts undergo the transformations[33.14]

p 7! p and v 7! v� iqp:

There is also a scalar quantity that is origin-independent, which can be
constructed from the momentum and angular momentum, namely the
helicity s. It turns out that helicity is half the twistor norm:

s ¼ 1
2

�ZZaZ
a ¼ 1

2
�ZZ�Z

[33.14] Show that the relation of incidence between a twistor and a spacetime point is preserved

under this transformation; show that the twistor norm is preserved.
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(and we note from the above that this is just the real part of �vv �p). In fact,
twistors give a considerably more concise formalism for handling massless
particles than the conventional 4-vector/tensor approach of §22.12. We
now have a clear physical picture of a non-null twistor (up to the phase
rescaling Z 7! eiyZ, with y real) as a classical spinning massless par-
ticle;[33.15] compare Fig. 33.6.
We still do not have a very clear geometrical picture of a non-null

twistor. We can obtain this if we are prepared to consider complexiWed

Minkowski space CM (or its compactiWcation CM
#), where the space-

time coordinates t. x, y, z are now taken to be complex numbers. For there
is always a non-trivial 2-complex-dimensional locus of points of CM

#

incident with any (non-zero) twistor Za, called an a-plane, which is self-

dual in the sense that a 2-form tangent to it is self-dual (§32.2). This
a-plane represents Za up to proportionality; see Fig. 33.13. Similarly,
a dual twistor Wa deWnes a b-plane which is an anti-self-dual complex
2-plane in CM

#.[33.16]

So far, this just gives us a complex-spacetime geometrical picture of a
twistor. Can we obtain a ‘real’ picture that we can actually visualize? The
reality structure of CM

# is contained in its notion of complex conjugation

(§18.1); this interchanges a-planes with b-planes, in accordance with the
fact that it interchanges upper with lower twistor indices (i.e. twistors with

[33.15] Explain why there is this phase freedom and why, for a particle of given helicity s > 0,

the particle’s energy is encoded in the location of the point in PT
þ.

[33.16] Show this.

a plane
Z

b plane
W

M#

CM#

Za

Wa

PN

PT

Fig. 33.13 Complex spacetime description of (generally non-null) twistors and

dual twistors. For any non-zero twistorZa, there always is a 2-complex-dimensional

locus in CM
# of points incident with it, called an a plane, which is everywhere self-

dual. For any non-zero dual twistor Wa, the points in CM
# incident with it always

constitute 2-complex-dimensional plane which is anti-self-dual, called a b plane.

Only for null twistors or null dual twistors are there any real points on these loci, and

then the real points constitute a light ray, in accordance with Fig. 33.12.
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dual twistors) and it interchanges ‘self-dual’ with ‘anti-self-dual’. In terms
of the projective geometry of PT, complex conjugation interchanges
points with planes, since a dual twistor determines a plane in PT.[33.17]

This fact enables us to obtain a picture of a non-null projective twistor Za

in terms of real spacetime geometry. What we do is Wrst represent Za by its
complex conjugate �ZZa which, being a dual twistor, is associated with a
complex plane in PT. This plane is Wxed by its intersection with
PN, which is a real 3-dimensional locus. We can interpret this locus as
providing a 3-parameter family of light rays in M. Thus, this family of
light rays geometrically represents the twistor Za (up to proportionality);
see Fig. 33.14.
The light rays twist around in a complicated way, but it is possible

to obtain a striking picture of the conWguration. Consider one moment
of time E

3 (i.e. an ordinary Euclidean 3-space section—‘now’—through
Minkowski spacetime M). Any light ray in M—a point particle moving
in a particular direction with the speed of light—is represented E

3 by a
point with an ‘arrow’ attached to it, where the arrow determines the
direction of motion. We are to picture a 3-parameter family of such light
rays—called a Robinson congruence—to represent our single twistor Z. In
Fig. 33.15, we see a system of oriented circles (and one straight line) Wlling
the whole of ordinary 3-space E

3. There will be one particle of our family
at each point of E

3, and it moves (with the speed of light) in the direction
indicated by the oriented tangent to the circle that passes through that
point. It is rather remarkable that, as time progresses, this entire con-
Wguration simply propagates as a whole with the speed of light in the
(negative) direction of the one straight line in the picture, and this propa-
gation represents the motion of the spinning massless particle described by
the twistor. This conWguration of circles is, in fact, the stereographic
projection (§8.3, Fig. 8.7a), to ordinary Euclidean 3-space, of the con-
Wguration of CliVord parallels on S3 (§15.4).

Robinson congruence

3 dim.

M# PT

z

z

Fig. 33.14 We can obtain a ‘real’

picture of a non-null twistor Za by Wrst

passing to its complex conjugate �ZZa,

thus deWning a complex projective

plane in PT. This plane is Wxed by

its intersection with PN, which is a

3-real-dimensional locus. This locus

deWnes a 3-parameter family of

light rays in M
# called a Robinson

congruence.

[33.17] Why?
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We are not to think of these ‘light rays’ as physical entities; they are only
to provide us with a geometrical realization of a (projective) twistor. This
conWguration actually encodes the structure of the angular momentum of
the (classical) spinning massless particle.22 It is certainly a non-local
picture. There is a smallest circle, in Fig. 33.15, whose radius is the spin
divided by the energy of the particle. The centre of this circle, roughly
speaking, represents the ‘location’ of the spinning particle (but the history
of this centre cannot accurately be thought of as a light ray representing
the history of the massless particle, because it does not behave appropri-
ately under Lorentz transformations).[33.18] It was this conWguration that
originally provoked the name ‘twistor’.23

33.7 Twistor quantum theory

This outlines the basic geometry of Xat-space twistor theory. But some
readers may be understandably impatient in wondering how such a pic-
ture, for all its geometrical prettiness, is to help us move forward in
physics. What, indeed, does twistor theory have to say about unifying
spacetime structure with quantum-mechanical principles? So far, we
have merely seen some ‘cute’ geometrical and algebraic ways to describe
massless particles, but neither quantum-mechanical nor general-relativistic
ideas have yet played any roles. I had better to see to this!
Let us return to the most basic idea of twistor theory. It is to regard all

spacetime notions as being subsidiary to those of twistor space T. Being a

[33.18] Find the centre (in the coordinates of §33.5) and show how it transforms under a

general Lorentz velocity transformation.

Direction
of motion

Fig. 33.15 A spatial picture giving a

‘snapshot’ of a Robinson congruence.

(Stereographically projected CliVord

parallels on S3, see Figs. 8.7a, 15.8, which

is a 3-parameter family of circles—and

one straight line—Wlling the whole of E
3.)

We imagine a particle at each point of E
3,

moving in a straight line with the speed

of light (a light ray) in the direction of

the (oriented) circle on which it lies. The

whole conWguration propagates with

the speed of light in the (negative)

direction of the straight line in the Wgure.

This represents the motion and angular

momentum of the spinning massless

particle described by the Za.

982

§33.7 CHAPTER 33



fully complex space, T provides the potential to exploit complex-number
magic in ways that do not readily present themselves in the standard
spacetime framework. Accordingly, rather than using descriptions in
terms of real spacetime coordinates, one uses the complex twistor variables
Za instead. Now twistor variables are mixtures of position and momentum
variables, and we must ask: what takes the place of the standard quantiza-
tion rule (§21.2)

pa 7! i�h
]

]xa

(or else xa 7! � i�h]=]pa)? The answer is that, in analogy with xa and pa

being canonical conjugate variables, as expressed in the operator commu-
tation law pbx

a � xapb ¼ i�hda
b of §21.2, the twistor variables Za and �ZZa are

to be taken to be canonical conjugate operators:

Za �ZZb � �ZZbZ
a ¼ �hdab,

where, like position and momentum separately, the Za and �ZZa commute
among themselves: ZaZb � ZbZa ¼ 0 and �ZZa �ZZb � �ZZa �ZZb ¼ 0.[33.19]

As an aside, it may be remarked that this quantum non-commutation of
�ZZa with Za raises some intriguing questions with regard to the kind of
‘geometry’ that might arise if we take more seriously the fact that the
fundamental ‘coordinates’ for a quantum twistor space might be such non-
commuting entities. Classically, when we consider the real 8-manifold
structure of twistor space T, we can use Za and �ZZa as independent
commuting variables (see §10.1). But in this quantum picture, Za and �ZZa

do not commute. To attempt to use such a ‘quantum’ pair, Za and �ZZa, as
independent coordinates would lead us to the area of non-commutative
geometry, which was discussed brieXy above, in §33.1. It may well be
interesting to pursue this line further, but I am not aware that anyone
has done so.
Now, we recall that in an ordinary position-space wavefunction c(x) for

a particle, the momentum variables p do not appear, but instead momen-
tum is represented in terms of the operator ]=]xa (as above). What is the
twistor analogue of this? We seem to require that our ‘twistor wavefunc-
tion’ f (Za) should be ‘independent of �ZZa’ and that �ZZa should instead be
represented in terms of the operator ]=]Za. Indeed, this is correct, but
what does f being ‘independent of �ZZa’ actually mean? Formally, this
‘independence’ would be expressed as ]f =]�ZZa ¼ 0, which (as we recall
from §10.5) are simply the Cauchy–Riemann equations asserting that
f (Za) is a holomorphic function of Za.

[33.19] Can you see, from general considerations of Hilbert-space operators why it is appro-

priate that there should be no ‘i’ in the twistor commutator?
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This is a very striking and somewhat remarkable fact. Twistor wavefunc-
tions are indeed holomorphic entities, so they canmake proper contact with
the magical complex-number world. The quantum role of the complex-
conjugate variables �ZZa is that they indeed appear as diVerentiation:

�ZZa 7! � �h
]

]Za ,

which is a holomorphic operator, so that, at the quantum level of descrip-
tion, holomorphicity is preserved. It is reassuring that the interpretation of
twistors in terms of momentum and angular momentum for a massless
particle is consistent with the twistor commutation rules, the angular
momentum and momentum commutators (§22.12) coming out correctly
and being subsumed in the twistor commutators given above.24

A quantity of particular interest is the helicity s, now regarded as an
operator, whose eigenvalues are the various possible half-integer values
(. . . , � 2�h,� 3

2
�h,� �h,� 1

2
�h, 0, 1

2
�h, �h, 3

2
�h, 2�h, . . .) that are allowed for a

massless particle. It is especially noteworthy that, with non-commutation
correctly taken into account, the helicity operator becomes25,[33.20]

s ¼ 1
4
(Za �ZZa þ �ZZaZ

a) 7! � 1
2
�h 2þ Za ]

]Za

� �

:

The operator

U ¼ Za ]

]Za

is called the Euler homogeneity operator. (We recall our old friend Leon-
hard Euler from Chapters 5, 6, 7, and 9, particularly.) As Euler showed, U
has the remarkable property that its eigenfunctions are homogeneous, the
degree of homogeneity being the eigenvalue. That is to say, the equation

U f ¼ uf ,

where u is some number, is the condition for the homogeneity property

f (lZa) ¼ luf (Za)

to hold.[33.21] It follows that a twistor wavefunction for a massless particle
of a deWnite helicity value S (so sf ¼ �hSf , where s is the operator and S the
eigenvalue) must be homogeneous of degree �2S� 2 as well as being
holomorphic.[33.22]

[33.20] Verify the equality between these two expressions for s.

[33.21] See if you can prove this.

[33.22] Why this value?
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Thus, in particular, a photon’s twistor wavefunction (S ¼ �1) would be
sum of two parts, one being homogeneous of degree 0, describing the left-
handed component (S ¼ �1), and one of degree �4, describing the right-
handed component (S ¼ 1). A neutrino, taken as a massless particle,
would have a wavefunction homogeneous of degree �1 (since the helicity
is � 1

2
), whereas a (massless) antineutrino’s wavefunction would be of

degree �3. A massless scalar particle’s wavefunction is of homogeneity
degree �2. Most important, for our deliberations here, is the case of a
graviton, which we shall take (provisionally) to be a massless particle of
spin 2 in a Xat Minkowski background (S ¼ �2). Its left-handed part
(S ¼ �2) has a twistor function homogeneous of degree 2 and its right-
handed part (S ¼ 2), a twistor wavefunction of degree �6.
This lop-sidedness is striking, and it illustrates the essentially chiral

nature of twistor theory. We shall be seeing shortly that this lop-sidedness
looms particularly large when we try to bring general relativity proper
under the twistor umbrella. For the moment, let us try to understand how
twistor (linear) wavefunctions are to be interpreted. For these, the lop-
sidedness causes no problems, and everything works very smoothly. There
is, however, an important subtlety about how our wavefunction f (Za)—
usually referred to as a twistor function—is to be interpreted. Let us come
to this next.

33.8 Twistor description of massless fields

For the spacetime representation of the wavefunction of a free massless
particle of general spin, the Schrödinger equation translates to a certain
equation known as the massless free-Weld equation.26 We have seen an
instance of this, in the case of spin 1

2
, in the massless (Dirac–Weyl) neutrino

equation (§25.3). It is not appropriate to go into the details here, but
the equation itself is simple enough to write down once we have the
2-spinor formalism to hand, as used in §22.8 and §25.2. For negative
helicity S ¼ � 1

2
n, we have a quantity cAB...D; for positive helicity S ¼ 1

2
n,

there is a primed-indexed quantity cA0B0...D0 . Each of these is completely
symmetrical in all its n indices, and each of them has positive frequency,
satisfying the respective equations

rAA0cAB...D ¼ 0, rAA0cA0B0...D0 ¼ 0,

where rAA0 is just the 2-spinor translation of the ordinary gradient oper-
atorra (written in raised-index form; see §14.3).[33.23] For spin 0, we simply

[33.23] Write these equations out explicitly, for helicity� 1
2
n using the notation cr ¼ c00...011...1,

where there are n� r 0s and r 1s, and translating rAA0 from ra in just the same way that the

quantity rAA0 is translated from ordinary Minkowski coordinates t, x, y, z, as described above.
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have the wave equation &c ¼ 0, where & is the ordinary D’Alembertian
introduced in §24.5. In fact, the convenient 2-spinor notation for these
equations makes light of some subtleties. When n ¼ 2 (spin 1), these two
equations simply become Maxwell’s free-Weld equations in the anti-self-
dual and self-dual cases, respectively.[33.24] When n ¼ 4, they become the
weak-Weld Einstein equation, split into anti-self-dual and self-dual parts,
where the curvature is regarded as an inWnitesimal perturbation of Xat
space M.27

What do these equations have to do with twistor functions? It turns out,
remarkably,28 that there is an explicit contour-integral expression (§7.2)
which automatically gives the general positive-frequency solution of the
above massless free-Weld equations simply starting from the twistor func-
tion f (Za). In fact, the expression also works perfectly well without this
positive-frequency requirement, though the requirement is easily ensured
in the twistor formalism, as we shall be seeing in §33.10. It is inappropriate
to give full details here, but the basic idea is that, in the positive-helicity
case, f (Za) is Wrst multiplied by p (§33.6), taken n times (this supplying n

primed indices), or, in the negative-helicity case, Wrst operated upon by
]=]v taken n times (supplying n unprimed spinor indices); then it is
multiplied by the 2-form t ¼ dp00 ^ dp10 and integrated over an appropri-
ate 2-dimensional contour, where the incidence relation v ¼ irp is Wrst
incorporated so as to eliminate v in favour of p and r. This integration
eliminates p, so we end up with an indexed quantity c... at any chosen
spacetime point R (so c... is a function of r alone). The contour is to
lie within the locus v ¼ irp (for each Wxed r), i.e. within (the non-
projective29 version of) the line R, in N, which represents the event R;
see Fig. 33.16.
The positive-frequency condition is ensured by requiring that the contour

integral still works when the line R is allowed to venture entirely into
the twistor region PT

þ. Lines in PT correspond to ‘complex spacetime
points’, as we have seen in §33.6, and those lying entirely in the subregion
PT

þ correspond to points of the subregion M
þ of CM known as the

forward tube.30 We shall return to this matter in §33.10. Massless Welds
of mixed helicity—such as a plane-polarized photon, which is a sum of a
left-handed and right-handed part—can also be described in this frame-
work, where the twistor functions for the two diVerent helicities are simply
added.
The very existence of such an expression strikes me as being some-

what magical. The massless Weld equations seem to evaporate away in
the twistor formalism, being converted, in eVect, to ‘pure holomorphicity’.

[33.24] See if you can show this, where c00 ¼ C1 � iC2, c01 ¼ �iC3, and c11 ¼ �C1 � iC2,

with C ¼ 2E� 2iB (see §19.2), and where corresponding expressions hold for cA0B0 .
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When we examine this expression more carefully, we Wnd that there
is an important subtlety about how a twistor function is to be inter-
preted, and this relates in a striking way to the positive/negative fre-
quency splitting of massless Welds (§33.10). This subtlety is also crucial
to how twistor functions manifest themselves in active ways, and
provide us with curved twistor spaces. What is this subtlety? It is
that twistor functions are not really to be viewed as ‘functions’ in the
ordinary sense, but as what are called elements of holomorphic sheaf

cohomology.31

33.9 Twistor sheaf cohomology

What is sheaf cohomology? The ideas are fairly sophisticated mathe-
matically, but actually very natural. We shall be concerned here only
with what is called Wrst sheaf cohomology. Perhaps the easiest way to
picture this notion is to think of the way in which a manifold can be
constructed in terms of a number of coordinate patches, as discussed in
§10.2 and §12.2 and illustrated in Fig. 12.5a. DeWned on each overlap
between a pair of patches is a transition function (providing the gluing of
the patches). We recall from §12.2, Fig. 12.5a, that these transition func-
tions are subject to certain consistency conditions, on triple overlaps
between patches.
Now think of a manifold built up in this way but where the transition

functions diVer from the identity by only an inWnitesimal amount. See

PN

PT+

R

U1 U2

Fig. 33.16 The basic twistor contour integral. A twistor function f (for helicity
1
2
n), homogeneous of degree�n� 2, is multiplied n times by p (n positive) or acted

upon �n times by ]=]v (n negative), these supplying the indices, and then

multiplied by the 2-form t ¼ dp00 ^ dp10 . For any particular choice of spacetime

point R, with position vector r, a contour integral is then performed in the region

R of twistor space deWned by the incidence relation v ¼ irp. This integrates out

the p-dependence, and we are left with a solution of the massless Weld equations.

In the case illustrated, R is taken in the top half of twistor space PT
þ (or T

þ)
and f is holomorphic in the intersection of U1 and U2, where the open sets U1 and

U2, together cover the whole of PT
þ (or T

þ).
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Fig. 33.17. This inWnitesimal shift between one patch U i and another patch
U j would be described by a vector Weld F ij on the part of U i that overlaps
with U j, describing how the patch U i is to be inWnitesimally ‘shunted along’
with respect to U j. Equivalently, we can think of U j to be shunted along
with respect to U i, but in the opposite direction. This is described by the
vector Weld F ji on the part of U j that overlaps with U i, whence on this
overlap we have

F ji ¼ �F ij

(see Fig. 33.18a). On triple overlap between patches U i, U j, and Uk, we Wnd
(Fig. 33.18b) that the consistency relation

F ij þ F jk ¼ F ik

must hold.[33.25]

There are also ‘trivial’ inWnitesimal deformations that arise simply from
changing the coordinate system (inWnitesimally) in each patch. We can
think of these as being given by a vector Weld H i in each particular patch
U i, which simply ‘shunts’ this entire patch along over itself. This would
give us a family of ‘trivial’ F ijs of the form

F ij ¼ H i �H j

on overlaps between pairs of patches, which do not change the manifold
(Fig. 33.18c).
These ideas essentially tell us the rules of Wrst sheaf cohomology.32 We

do not need to be concerned just with vector Welds, however. Ordinary

[33.25] Show that antisymmetry in Fij is a consistency requirement of the triple-overlap

condition.

F32

F24

F34

F13F12 U3

U4

U1

U2

Fig. 33.17 Recall (from Fig. 12.5a) how

a manifold is constructed from several

coordinate patches. (DeWned on each

overlap between a pair of patches is a

‘transition function’, providing the

‘gluing’ of the patches.) Here, we consider

transition functions which diVer only

inWnitesimally from the identity, and

therefore given by a vector Weld F ij on

each overlap of patches U i, U j, telling us

how each patch is to ‘shunt’ relative to

the others which it overlaps. (The

‘patches’ are open sets U1, U2, U3, . . . on

the Xat coordinate space.)
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functions fij would do as well as the vector Welds F ij that we have been
considering. We just require that each fij be deWned in the intersection of
U j with U i, that fij ¼ �fji, that fij þ fjk þ fki ¼ 0 on each triple overlap, and
that the whole collection {fij} is considered to be equivalent to another
such collection {gij} if each member of the collection of corresponding
diVerences {fij � gij} has the ‘trivial’ form {hi � hj}. We say that the {fij}

are reduced modulo quantities of the form {hi � hj}, which is essentially the
same sense in which the term ‘modulo’ was used in §16.1 (see also the
notion of ‘equivalence class’ referred to in the Preface). In fact, the class of
function (fij or hi) that one may be concerned with in cohomology theory
can be extremely general. In twistor theory, one normally deals with
holomorphic functions. This gives us the notion of ‘holomorphic sheaf
cohomology’.
SpeciWcally, this cohomology idea applies to twistor functions. Indeed,

we are to think of a ‘twistor function’ as being, in general, not simply a
single holomorphic function f, but as provided by a collection of holo-
morphic functions {fij}, where each individual fij is deWned on the overlap
between a pair of open sets U i and U j , with fji ¼ �fij, where on triple
overlaps we have fij þ fjk þ fki ¼ 0, and where the whole collection of these

F12

F13F12

F23

F21U1

U2

U1

U2

≡ −

(a)

(b)
(c)

Fig. 33.18 The vector Welds F ij are subject to certain requirements. (a) On the

intersection of U j with U i, we have F ji ¼ �F ij. This is illustrated as the movement

of U1 over U2, as shown by the vector F12 on U1. But the same relative movement

is achieved by the negative of this on U2. (b) The triple overlap condition

F ij þ F jk ¼ F ik is illustrated. On the triple intersection of U1, U2, and U3, the

motion F12 of U1 over U2 is the sum of the motion F13 of U1 over U3 and the

motion F32 of U3 over U2. (c) If all the patches are shunted individually in their

entireties, this has no eVect (except for a coordinate change in each patch). This

illustrates that the overall shunt F ij ¼ H i � H j counts for nothing and must be

‘factored out’.
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open sets {U i} covers the entire region Q of twistor space under consider-
ation. A Wrst cohomology element on Q (with respect to the covering {U i})
is represented as this collection {fij}, reduced modulo the quantities of the
form hi � hj, with hi deWned on U i. The collection of functions fij is not to
be thought of as the cohomology element, but merely as providing a way
of representing that mysterious ‘element’. We call the fij representatives of
this Wrst cohomology element.
For the strict deWnition of cohomology, however, we would also have to

consider taking the limit of Wner and Wner coverings of the region Q.
Fortunately, there are theorems telling us that, for holomorphic sheaf
cohomology, we can stop the reWnement when the U i are suYciently
simple types of set referred to as Stein sets.33 (Holomorphic Wrst sheaf
cohomology always vanishes in any Stein set.) Thus, if we restrict our
attention to coverings for which every U i is a Stein set, we do not need to
say ‘with respect to the covering {U i}’ when we refer to a cohomology
element deWned on Q. The cohomology notion does not depend upon
the speciWc choice of Stein covering. A cohomology element is a ‘thing’
deWned on Q, which comes out the same whichever such covering is
used.34 This remarkable fact is part of the magic of (holomorphic) sheaf
cohomology!
How does all this apply to the twistor functions and contour integrals

that we considered in §33.8? The simplest situation arises when there are
just two patches U1 and U2, which together cover the region of twistor
space under consideration. There is now just one function to consider, and
this is the ‘twistor function’ of §33.8: f (Za) ¼ f12 ¼ �f21. According to the
above rules of sheaf cohomology, we say that f (Za) is equivalent to g(Za) if
the diVerence is trivial in the above sense, i.e. if

f� g ¼ h1 � h2,

where the holomorphic function h1 is deWned globally on U1 and h2

globally on U2. It turns out to be a simple matter to show that the
appropriate contour integral applied to f is indeed the same as that applied
to g whenever these functions are equivalent in this sense. Sometimes it is
necessary to consider more complicated patchings, however. In essence,
the above ‘cohomology rules’ for equivalence between twistor functions
are geared to preserving the answers that the contour-integral expressions
provide, but where the notion of a contour integral must now be general-
ized to that of a ‘branched contour integral’, with one branch in each
overlap region. This is indicated in Fig. 33.19.35

An important feature of cohomology is that it is essentially non-local.
We might have a cohomology element deWned on some region Q. It then
makes sense to consider the restriction of that element down to some
smaller region Q0, contained in Q. The non-local feature of cohomology
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is manifested in the fact that, for any suYciently small (open) subregion
Q0, in Q, the element necessarily vanishes when restricted down to Q0, in
the sense that, given fij onQ0, then hs can always be found, inQ0, for which
fij ¼ hi � hj.
This non-locality, for twistor functions, tells us that there is no sign-

iWcance to be attached to the value attained by fij at some particular point.
We can, indeed, restrict down to a small enough open region surrounding
that point and Wnd that the cohomology element disappears completely;
see Fig. 33.20. This non-locality, as exhibited by twistor functions (regar-
ded as Wrst cohomology elements) is tantalizingly reminiscent of the non-
local features of EPR eVects and quanglement (§23.10). In my opinion,
there is something important going on behind the scenes here which may
someday make sense of the mysterious non-local nature of EPR phenom-
ena, but it has yet to be fully revealed, if so.
We are to think of this ‘cohomology element’ as being a ‘thing’ deWned

on the space Q, which is a bit like a function deWned on Q, but which is
fundamentally non-local. One example of this kind of ‘thing’ is actually an
entire (complex) vector bundle over Q, as described in §§15.2,5. We recall
that, in the deWnition of a bundle, that part of the bundle lying above a
small enough region of the base space (here Q) is ‘trivial’, in the sense of
being just a (toplogical product, cf. §15.2). (See Fig. 15.3.) This is an
example of the fact that if we restrict our Wrst cohomology element
down to a small enough region, it becomes ‘trivial’ also; i.e. it vanishes.

Fig. 33.19 A ‘branched contour’ (on the Riemann

sphere), applicable to the spacetime evaluation of

twistor functions for which the covering consists of

more than two sets.

Restriction
of holonomic
cohomology
element=0

Holomorphic 1st cohomology element ≠ 0

Fig. 33.20 A cohomology element can

always be restricted down to a smaller

region. But if this region is suYciently

small, the cohomology always disappears.

This illustrates the non-locality of

cohomology.
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Thus, the ‘information’ expressed in a cohomology element is something
of a fundamentally non-local character.
It is perhaps worthwhile to provide an elementary example that

illustrates the notion of cohomology, albeit only in a simple case, in a
particularly graphic way. See Fig. 33.21 for a drawing of an ‘impossible
object’ sometimes referred to as a ‘tribar’.36 It is clear that the ‘3-dimen-
sional object’ which the drawing apparently depicts cannot exist in ordin-
ary Euclidean space. Yet locally there is nothing impossible about the
drawing. The impossibility is non-local, and disappears if one considers
a small enough region in the drawing. In fact, this notion of ‘impossibility’
in such a drawing can be expressed as a speciWc cohomology elem-
ent.37,[33.26] It is a relatively simple type of cohomology, however, where
the functions {fij} are taken to be constants.
I have only just touched upon some basic ideas of sheaf cohomology

here. There are many applications of these ideas in mathematics, not all of
which are concerned with holomorphicity. The ‘sheaves’ that one is mainly
concerned with in twistor theory are those expressed in terms of holo-
morphic functions, and there is a special magic in cohomology theory in
this particular context. (Roughly speaking, the term ‘sheaf’ refers to the
type of function that one is concerned with, but the sheaf notion actually
applies considerably more generally than just to ordinary functions.38)
There are many other types of use of cohomology, including some that
have importance in the study of the Calabi–Yau spaces that occur in string
theory (§31.14), for example. Also, there are several other quite diVerent
ways of deWning sheaf-cohomology elements, all of which can be shown to
be mathematically equivalent, despite their very diVerent appearances.39

In my opinion (sheaf) cohomology is an excellent example of a Platonic
notion (§1.3), where—like the system of complex numbers C itself—it
seems to have a ‘life of its own’ going far beyond any particular way in
which one may choose to represent it.

[33.26] See if you can do this: breaking the drawing up into a number of overlapping drawings

(the {U i}), each of which individually represents a consistent 3-space structure, and using the

logarithm of the distance of this 3-space structure from the observer’s eye to calculate the {fij}.

Fig. 33.21 A drawing of an ‘impossible object’

(a ‘tribar’). Locally, there is nothing impossible about

what the drawing represents. The ‘impossibility’ is

measured by a cohomology element, which disappears

in any small enough region in the drawing.
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33.10 Twistors and positive/negative frequency splitting

How do we incorporate the positive-frequency condition, so fundamental
to QFT, into twistor theory? Recall, from §9.5, the way in which the
division of the Riemann sphere S2 into the southern and northern hemi-
spheres S� and Sþ provides us with the splitting of a function, deWned
on the equator S1, into its positive- and negative-frequency parts. The
positive-frequency part extends into S� and the negative-frequency part
extends into Sþ (Fig. 33.22a). Projective twistor space does a correspond-
ing thing, but in a global way that directly applies to massless Welds in their
entirety. It achieves this according to a direct analogy between the
Riemann sphere and the projective twistor space PT where the analogue
of a function on the Riemann sphere S2 is a Wrst cohomology element on
PT. The analogue of the equator S1 is to be the space PN, and we note
that PN divides PT (which is a CP

3) into two halves PT
þ and PT

�

in just the same sort of way that S1 divides S2 (which is a CP
1) corres-

pondingly40 into two hemispheres S� and Sþ (Fig. 33.22b).
More explicitly, the analogue of an ordinary (complex) function deWned

on S1, or on S�, or on Sþ is, respectively, a Wrst cohomology element
deWned on PN, or on PT

þ, or on PT
�. Massless Welds on M (strictly,

onMM#) are represented as Wrst cohomology elements on PN. Each one
of these can be expressed (essentially uniquely) as a sum of an element that
extends into PT

þ and an element that extends into PT
�. The Wrst

− frequency
 function

− frequency 1st cohomology

+ frequency 1st cohomology+ frequency
functionS−

S+

− i S2 = CP1 PT = CP3

PT+

PN

PT−

(a) (b)

R

Fig. 33.22 An analogy between the Riemann sphere S2( ¼ CP
1) and projective

twistor space PT( ¼ CP
3). (a) A complex function (i.e. a ‘0th cohomology

element’), deWned on the real axis R of S2, splits into its positive frequency part,

extending holomorphically into what is here depicted as the northern hemisphere

S�, and its negative frequency part, extending into the southern hemisphere Sþ.

(The Riemann sphere is here drawn so that R is its equator, but so that�i is at the

north pole and i at the south pole; compare Figs. 8.7 and 9.10, §9.5.) (b) A 1st

cohomology element, deWned on PN (and representing a massless Weld) splits

into its positive frequency part, extending holomorphically into the top half PT
þ

of projective twistor space, and its negative frequency part, extending into the

bottom half PT
�.
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describes a positive-frequency massless Weld and the second, a negative-
frequency one.41 In spacetime terms, this positive-frequency part of the
Weld extends to be deWned in the forward tube, which we recall from §33.8 is
the region M

þ of CM
# consisting of points that are represented in

twistor space by projective lines in PT
þ. In CM

þ, these are the (com-
plex) points whose position vectors have imaginary parts that are timelike
and past-pointing.[33.27]

This analogy between PT and the Riemann sphere leads to a possible
way that twistor-theoretic ideas might Wnd an analogy with some of those
of string theory. Recall, from §§31.5,13, that Riemann surfaces are used to
represent ‘string histories’ in that theory. The Riemann sphere (CP

1) is
the simplest such surface, but surfaces with various numbers of ‘handles’
(higher-genus Riemann surfaces—see §8.4) are brought in to represent
more general kinds of string history. These Riemann surfaces may also
have ‘holes’ (with S1 boundaries), in addition to handles (see Fig. 31.5). By
analogy,42 one can consider generalizations of the space PT, which
acquire ‘handles’ in a corresponding way, and also ‘holes’ (with boundar-
ies that are copies of PN). These have been referred to as ‘pretzel twistor
spaces’, and a form of QFT can be developed, based on these spaces (see
Fig. 33.23). As yet, the status these ideas has not been fully ascertained.
Historically, the positive-frequency requirement—and this property that

PN divides PT into two such halves—provided a key motivation in the
original formulation of twistor theory, in 1963, more than 12 years before

S1

S1 S1

PN

PN PN

PN PNS1 S1

(a) (b)

Fig. 33.23 (a) Conformal Weld theory (a string-theory type model), based on

generalizations of the Riemann sphere to Riemann surfaces of higher genus which

can have Wnite-sized ‘holes’ as well as handles (see Fig. 31.5, holes representing

places where external information is fed in). (b) A twistor version which employs

generalizations of PT, acquiring ‘handles’ in a way corresponding to Riemann

surfaces, and also ‘holes’ whose boundaries are copies of PN (‘pretzel twistor

spaces’).

[33.27] Show this: demonstrate, from the incidence equation, that a complex position vector ra

for a point R of CM is represented by a projective line in PT
þ, if and only if the imaginary part

of ra is past-pointing and timelike.
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the discovery that massless Welds have a twistor description as holo-
morphic Wrst sheaf cohomology.43 It is striking that here again we have
a property speciWcally arising from spacetime’s four-dimensionality
with Lorentzian signature. It is also speciWc that Wrst cohomology elements
play a role in this aspect of twistor theory, rather than ordinary func-
tions—which are ‘zeroth’ cohomology elements—or second or higher
cohomology elements. Higher-order notions of cohomology also exist
(and have a role to play in twistor theory), but there is something unique
to Wrst cohomology, which is fundamental to twistor theory. For only
these quantities Wnd a direct role in generating deformations of twistor
space. Let us come to this next.

33.11 The non-linear graviton

The cohomology elements (twistor functions) that we have been consider-
ing should be thought of, so far, as being entirely ‘passive’, in the sense
that they are simply ‘painted on’ the (twistor) space. This corresponds to
the fact that they describe spacetime Welds that just reside on the space-
time, and do not inXuence other Welds. To see how they can provide an
active inXuence, let us think of the ‘paint’ on the twistor space ‘drying’, so
that the space now becomes distorted (Fig. 33.24). To see how this can
happen, we think of our previously passive twistor function fij as being
associated with a vector Weld F ij in an appropriate way. By ‘sliding the
patches over each other’ in the direction of these vector Welds by an
inWnitesimal amount, we begin to ‘dry the paint’ and construct an inWni-
tesimally ‘curved’ twistor space. We can imagine that this deformation
is ‘exponentiated’ (§14.6), until a Wnite deformation of twistor space is
obtained (paint fully dry!).
The Wrst situation in which this procedure was successfully applied was

in the case of anti-self-dual gravity.44 In the inWnitesimal (weak-Weld) case,
we have a massless Weld of helicity S ¼ �2, so using the above formula

(a) (b)

Fig. 33.24 A 1st cohomology vector Weld element is ‘passive’ (i.e., just ‘painted

on’ the space). For it to have an active inXuence, think of the ‘paint drying’ as a

result of an exponentiation of the vector Weld on each overlap. This results in a

Wnite ‘sliding’ of one patch over another, giving a Wnite distortion, or ‘curved

space’.
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�2S� 2 for the homogeneity degree, we have a twistor function f (¼fij) of
homogeneity 2. Here we are assuming, for simplicity, that there are just
two patches U1 and U2, each taken to be a portion of Xat twistor space T

with the standard coordinates of §33.5. The required vector Weld F, con-
structed from f, turns out to be

F ¼ ]f

]o0

]

]o1
� ]f

]o1

]

]o0
:

Note that the homogeneity degree 2 of f exactly compensates for that of
the two diVerential operators, to give an operator that is homogeneous of
degree zero, so that is acts on the projective twistor space.[33.28]

Now, imagine exponentiating this inWnitesimal shunt of one patch over
the other (see Fig. 33.25). Then we obtain a curved twistor space (portion)
T . The absence of p derivatives in our inWnitesimal patching relation
implies that the twistor in one patch must have the same p part as the
twistor with which it is matched in the next patch. It follows that the
operation which ‘projects out’ the p spinor from the entire patched space
T is consistent over the whole of T . That is to say, there is a global
projection of T down to the space of p spinors. Let us ignore (or prefer-
ably remove) the ‘zero elements’ of both T and the p space. Then we Wnd
that T is a kind of Wbre bundle over the p-space (see §15.2).45 Each Wbre

(inverse image of any particular p, i.e. the part of T that lies ‘above’ p)
turns out to be a complex 2-manifold with a symplectic structure, as does
the p space itself (see §14.8—here this just means that an area measure is
deWned on the 2-manifold), a fact which is ensured by the speciWc form of
the patching, given above.
How do we get from this curved twistor space back to some notion

of ‘spacetime’? The answer is that each ‘spacetime point’ corresponds

[33.28] Why does degree zero imply that this gives a vector Weld on a region in PT? Hint:

What’s the commutator of F with Y?

U1 U2

p−space Symplectic

Sy
m

pl
ec

ti
c

TT

p

Fig. 33.25 Apply the idea of Fig. 33.24 in case of the twistor description of

anti-self-dual gravity (with two patches). The vector Weld is (]f =]o0)]=o1�
(]f =]o1)]=o0, with f homogeneous of degree 2. We get a curved twistor space

(portion) T . There is a global projection of T to the p-space. Each Wbre of this

projection is a complex symplectic 2-space, as is the p-space itself.
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uniquely to a holomorphic cross-section of the bundle T . (The notion of a
holomorphic cross-section was given in §15.5; here it is a map from the p
space back into T .) Why is this a reasonable deWnition? In the Xat case T,
this amounts to representing the (possibly complex) spacetime point R by
the map which takes p to Z ¼ (irp, p). In terms of the Xat projective
twistor space PT, this cross-section is simply the straight line R (a
Riemann sphere, CP

1) in PT that we used in §33.5 to represent
R.[33.29] It is very striking that this deWnition of a ‘spacetime point’
works just as well for the curved twistor space T . We Wnd46 that there is
a 4-complex-parameter family of holomorphic cross-sections, just as in the
Xat case. (In the projective space PT , this is a 4-complex-parameter
family of lines CP

1s.) We therefore have a 4-dimensional complex mani-
fold M to represent this family. The 4-dimensionality is a remarkable
fact—an instance of the complex magic of higher complex dimensions—
that follows from theorems of the Japanese mathematician Kunihiko
Kodaira.47 (Experience only with real manifolds might have led to the
expectation that there would be an inWnite-parameter family of such
things. But we have already noted in §15.5 that holomorphic cross-sections
can be very restricted.)
In Fig. 33.26, this procedure is illustrated graphically (in the projective

description). Start with a suitable region R of complex Minkowski space-
time CM. For simplicity, let us just take R as some suitable (open)
neighbourhood of a point R in CM. The corresponding region Q of
projective space PT is that swept out by the family of lines, each of
which represents a point ofR. This will be a neighbourhood (referred to as
a tubular neighbourhood) of the line R, in PT, that represents R (Fig.
33.26a). We can take it that the topology of Q is S2 �R

4, where the S2

comes from the topology of the line R—or, equivalently, of the projective
p-space—and the R

4 describes the transverse part of the immediate
neighbourhood of each point of R. We now think of S2 (here the projective
p-space) as separated into two hemispheres, slightly extended so that there
is a ‘collar’ of overlap, and then regard Q as being built up from the two
overlapping (open-set) pieces U1 and U2 lying above each of these slightly
extended hemispheres (Fig. 33.26b). We now ‘shunt’ U2 relative to U1,
according to the above vector Weld, to get our deformed projective twistor-
space region PT (Fig. 33.26c).
There is still a global projection down to the p space (Fig. 33.26d),

giving the bundle structure. However, the original ‘straight lines’ in U1 and
U2 are now broken, so they do not give cross-sections, but Kodaira’s
theorem tells us that there is a new 4-parameter family of holomorphic
curves in PT , these being the actual holomorphic cross-sections of the
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[33.29] Explain the sense in which this line is a ‘cross-section’ of PT� I.
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bundle structure. The required spaceM is constructed so that each of its
points corresponds to one of these cross-sections (Fig. 33.26e). It turns out
that M can be assigned a metric g in a natural way, and that its Weyl
curvature is anti-self-dual, and it is Ricci-Xat. We can easily Wnd the null
cones of g (conformal structure) using the fact that two points P and R of
M are null-separated if and only if the corresponding lines P and R in
PT intersect (Fig. 33.26).

P

P

P*

P*

Q

Q* Q*

R

RR

Q R

R*

U1 U2M PT

π space
M Q

(a)

(c)

(d)

(e)

(f)

(b)

(g)

Fig. 33.26 Construction of a left-handed non-linear graviton. (a) In the standard

Xat-space twistor correspondence, points P and Q of CM are null separated

whenever the corresponding lines P and Q in PT meet. (b) We wish to deform

PT, somehow, to a curved twistor space, but mathematical theorems tell us that

this cannot be done globally. Accordingly, we take only a suitable (open) neigh-

bourhoodR, of a point R in CM as our starting ‘spacetime’. (c) This corresponds

to a tubular neighbourhood Q, in PT, of the line R. (d) We can now apply the

procedure of Fig. 33.25 to deform Q (considered as the union of two open sets U1

and U2. (e) However, we Wnd that the original line R is now broken, and cannot be

used as a sensible deWnition of a ‘spacetime point’. (f) A theorem of Kodaira

comes to our rescue, to tell us that there is a 4-parameter family of ‘lines’ R�

(compact holomorphic curves, belonging to the same topological class as our

original lines), which will serve this purpose. (g) The points of our sought-for

‘non-linear graviton’ spaceM (a complex 4-space) are given by Kodaira’s curves

R�. The (complex conformal) metric ofM is deWned (as in (a) ) by the condition

that P� and Q� are null separated whenever the corresponding lines P� and Q�

meet. The Weyl curvature ofM turns out to be automatically anti-self-dual, and it

is also Ricci-Xat by virtue of the details of the construction.
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The reader may well worry what this ‘spacetime’ M actually means
physically. It has turned out to be complex (and therefore 8-dimensional
rather than 4-dimensional when considered as a real manifold). In the Xat
case, we could single out the real spacetime points (events in M) by taking
cross-sections of T lying in N, and then regard ourM as being simply the
complexiWcation CM of Minkowski space M. But, in the curved case, we
are not allowed such a luxury. Indeed, in this case, the ‘spacetime’ that we
obtain by this construction is necessarily a complex manifold in its own
right, and it cannot arise as a complexiWcation of a Lorentzian real space-
time.
Why is this? A Lorentzian 4-manifold with an anti-self-dual Weyl cur-

vature is necessarily Weyl-Xat (since the complex conjugate of the zero
self-dual part is the anti-self-dual part, which is therefore also zero). If it is
also Ricci-Xat, then it is simply Xat altogether. In the complex case,48 on
the other hand, there is a vast family of non-trivial anti-self dual Ricci-Xat
4-manifolds. It is a striking fact that these can all be obtained (at least
locally) by means of the aforementioned twistor procedure!
What are we to do with this complex space M? Physically, the inter-

pretation of a complex anti-self-dual Ricci-Xat complex 4-space (if it can
be said to be of ‘positive frequency’ in some appropriate sense) is that it
represents a left-handed graviton. In fact, it is a non-linear graviton, in the
sense that it is a ‘wavefunction’ of a kind, but now it is a solution of the
actual non-linear Einstein vacuum equation (Ricci-Xatness), rather than of
its linear approximation. The latter would have been the case if we had just
taken the twistor function f as a cohomology element, rather than allowing
the ‘paint to dry’ and thereby deform the twistor space itself. We see that
twistor theory has carried us in a curious and previously unexpected
direction in the uniWcation of quantum-theoretic ideas with spacetime
structure. Our twistor wavefunctions are now non-linear entities, so that
deviations from standard rules of linear quantum mechanics (§§22.2–4) are
beginning to appear.
There is a feature of this construction that is particularly noteworthy. If

we take any point Z of the curved twistor space T , we Wnd that any
suYciently small neighbourhood of Z has a structure identical to that of
some neighbourhood of any chosen point Z0 of the Xat twistor space T

(not lying on the ‘inWnite’ region I—see §33.5). Accordingly, the local
structure possessed by twistor space is ‘Xoppy’, in the sense in which this
word was used in §14.8. Thus, all the information concerning curvature,
etc., of the spaceM is stored globally in T , not locally. This is a reXection
of the fact, referred to above, that a cohomology element deWned by a
twistor function disappears completely when restricted down to a small
enough region. There are no ‘Weld equations’ in twistor space. The kind of
information that is normally stored in solutions of Weld equations in
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spacetime (in this case, the anti-self-dual Einstein equation) seems to be
stored only non-locally in a twistor-space construction.49

33.12 Twistors and general relativity

This ‘non-linear graviton construction’ has been central to the develop-
ment of twistor theory since the mid-1970s. In its initial form, it cried out
for advances in two diVerent directions. The most obvious of these was for
a corresponding construction for the right-handed non-linear graviton,
and for this to be combined with the left-handed one so that mixed
polarizations states (such as plane-polarized non-linear gravitons) could
be formed. This would appear to be a key part of the twistor programme.
As noted above, the notion of a ‘non-linear graviton’ is very much in the
spirit of a search for a theory, as strongly promoted in Chapter 30, in
which the standard linear rules of ordinary U-quantum theory need to be
bent in order that the correct union with Einstein’s general relativity may
be obtained. However, the ‘graviton’ that has arisen in the above construc-
tion is only ‘half a graviton’, in that only one of the two possible helicity
states has been incorporated.
Some alert readers might venture the suggestion that if we pass to a

description in terms of dual twistors Wa, rather than twistors Za, then a
non-linear wavefunction for a right-handed graviton would be obtained,
by repeating the foregoing construction in terms of dual twistors.[33.30]

This way around it would be the right-handed graviton that corresponds
to homogeneity of degree 2 (in Wa) and the left-handed one that corres-
ponds to �6 homogeneity. This does not get us out of our diYculties,
however, because now we lose the left-handed helicity states—and it would
make no sense to use the Wa variables for the right-handed states and the
Za variables for the left-handed ones, most immediately because we also
need to describe mixed helicity states.50

The problem of somehow ‘exponentiating’ the �6 homogeneity twistor
functions f (Za) to obtain a right-handed non-linear graviton has been
referred to as the (gravitational) googly problem. (The word ‘googly’ is a
cricketing term that describes a ball which spins in a right-handed sense
about its direction of motion, though seemingly bowled with an action
that would normally impart a left-handed spin.) It has taken nearly 25
years to Wnd a plausible solution, but recent developments do appear to
provide an appropriate construction for this.51 Yet, at the time of writing,
the procedures still remain conjectural in some important respects. I shall
not signiWcantly attempt to describe these developments here, and merely
say that the essential new feature is that the Wbres of the projection of our

[33.30] Why? Hint: Why does a spatial reXection convert twistors into dual twistors?
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curved twistor space T down to the projective space PT get ‘twisted up’
in a way that is deWned by a twistor function of homogeneity degree �6.
(The ‘twist’ is eVected by exponentiating a vector Weld, on a pair of
overlapping patches, of the deceptively simple form Cf�6Z

a]=]Za, where
C is a suitable constant, f�6 being a �6-homogeneity-degree twistor func-
tion.) This allows both the left-handed and right-handed parts of the
graviton to be incorporated together.
At least in the case of a suitably asymptotically Xat spacetimeM, there

is a direct explicit construction for T in terms ofM. Moreover, there is a
tentative proposal for obtainingM from a given T , i.e. for constructing
spacetime points from the purely twistorial structure of T , which is con-
jectured to ensure that the required Ricci Xatness (Einstein’s vacuum
equation) is correctly incorporated. The proposal relates, in signiWcant
ways, to a long-term research project due to Ezra T. Newman and his
colleagues, for interpreting spacetime points in terms of what are called
‘light-cone cuts’, these being the intersections of light cones in M with
future null inWnity I þ.52 However, though apparently promising, some
important aspects of this twistor construction remain unresolved at the
time of writing.53

The other direction in which the original left-handed non-linear gravi-
ton construction (of 1975/6) cried out for advances was in generalizations
from gravitational theory to other gauge Welds. Very early on, in 1976–7,
Richard Ward showed how the general anti-self-dual gauge Welds could
also be obtained using a twistor construction somewhat similar to the
gravitational one. In fact, the Ward construction has led to a considerable
degree of mathematical interest and development by Ward and others,
particularly in the area of integrable systems (non-linear equations that
can, in an appropriate sense, be solved in the general case). Here twistor
theory has provided a powerful overview for the subject as a whole.54 It
seems likely that the above-mentioned advances towards a full solution to
the gravitational mixed-helicity problem will point to a way that general
(mixed-helicity) gauge Welds are also to be treated within the twistor
formalism.

33.13 Towards a twistor theory of particle physics

This leads us to the question of how twistor theory might develop into a
full-blown physical theory—which it is not, at the moment. For this to
happen, it is important that two additional areas of study in twistor theory
are developed further. The Wrst is to provide a comprehensive treatment of
QFT. In fact, there has been a considerable body of activity, developed
mainly by Andrew Hodges and his students in Oxford (with some initial
input from me and some others in the early 1970s), which provides a
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perturbative approach to QFT where Feynman diagrams are replaced by
constructions known as twistor diagrams. These involve high-dimensional
contour integration, and the formalism achieves some striking success in
avoiding many of the inWnities that are encountered using the conven-
tional Feynman procedures.55 The approach is still somewhat more com-
plicated than one would like, however, and it lacks an independent
underlying guiding principle, like that of §§26.6–8, telling us exactly what
contour integrals to perform, without our having to appeal to the conven-
tional Feynman expressions as intermediaries.
The other of these areas is twistor particle theory which was primarily

developed by Zoltan Perjés, George Sparling, Lane Hughston, Paul Tod,
and Florence Tsou (Tsou Seung Tsun) from ideas that I introduced, in the
mid 1970s to early 1980s, but which largely has lain dormant since that
period. The basic idea here is that, whereas massless particles can be
described by twistor wavefunctions of a single twistor variable, say
f (Za), massive particles require more variables, e.g. Xa, . . . , Za. There is
an expression for the momentum and angular momentum of a massive
particle that involves summing up the indvidual contributions from all
these twistors, but there is now an internal symmetry group arising
from transformations among these twistor variables and their complex
conjugates that do not aVect the total momentum and angular momen-
tum. It is perhaps noteworthy that one gets groups that include, but
slightly generalize, the U(2) of electroweak interactions and the SU(3) of
strong interactions. A number of striking relationships with the standard
classiWcation of particles according to the standard model were noted, but
the scheme stagnated for certain technical reasons. There appears to be a
reasonable prospect that the recent developments on the ‘googly prob-
lem’—particularly if they can be applied to gauge Welds—could open up
the subject again.
There is, to my mind, also a signiWcant possibility that the Chan–Tsou

proposal for a particle-physics model, brieXy described in §25.8, might tie
in signiWcantly with these developments. That proposal requires there to
be a dual group to each (non-Abelian) particle symmetry group, in add-
ition to the original gauge group. Twistor theory suggests that, in accord-
ance with Ward’s construction mentioned above—together with its
conjectured ‘googly’ version—each group should feature in anti-self-dual
and self-dual versions, and this appears to require that the dual form of the
gauge group should play a signiWcant role in addition to the role of the
original gauge group. Thus, through the agency of ideas from the Chan–
Tsou proposal, the twistor particle programme could well play its part in a
future particle physics. It is to be anticipated, moreover, that successful
progress in this area should also have an important impact on the QFT
programme of twistor diagram theory.
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33.14 The future of twistor theory?

In my descriptions of twistor theory, I have omitted to give the reader my
statuatory warning that my own views on the subject do not reXect those
of the community of physicists at large. In fact, since I have devoted more
than half of my life span to twistor theory (on and oV), it is hardly likely
that my own perspective will correspond closely to the perspectives of that
vast majority of physicists who have not been so devoted. I should make
clear, moreover, that the community of physicists who know much about
the subject is rather small, and certainly exceedingly small in relation to
those who know something about string theory or supersymmetry. Twis-
tor theory could in no way be called a ‘mainstream’ activity of theoretical
physicists today.
Yet twistor theory, like string theory, has had a signiWcant inXuence on

pure mathematics, and this has been regarded as one of its greatest
strengths. Twistor theory has had an important impact on the theory of
integrable systems (as mentioned brieXy above), on representation
theory,56 and on diVerential geometry. (In this last area, I should mention
the work of Sergei A. Merkulov and L.J. Schwachhöfer, who were able to
Wnd a solution to what is known as the ‘holonomy problem’, using
methods developed from those of the original non-linear graviton con-
struction.57 In related work, twistor theory has a signiWcant value in the
construction of what are called ‘hyperkähler manifolds’, ‘Zoll spaces’,
etc.58) Twistor theory has been greatly guided by considerations of math-
ematical elegance and interest, and it gains much of its strength from its
rigorous and fruitful mathematical structure.
That is all very well, the candid reader might be inclined to remark with

some justiWcation, but did I not complain, in Chapter 31, that a weakness of
string theory was that it was itself largely mathematically driven, with too
little guidance coming from the nature of the physical world? In some
respects this is a valid criticism of twistor theory also. There is certainly no
hard reason, coming from modern observational data, to force us into a
belief that twistor theory provides the route that modern physics should
follow. Also, many might well feel that the strongly chiral nature of the
theory takes things too far in the direction of spatial asymmetry. There is no
physical evidence, after all, that a left–right asymmetry has any role to play
in gravitational physics. In Chapters 27, 28, and 30, I have been stressing the
need for time-asymmetry in the appropriate quantum–gravitational union,
but there is no apparent physical requirement for space-asymmetry (except
perhaps indirectly, via the CPT theorem of QFT; see §25.4 and §30.2).
Of course, it may be the case that the space-asymmetry in the formalism

will simply not translate itself into an asymmetry in physical eVects. The
best reason to hope that this may be true lies in the fact that the algebras
generated by the pair (Za, � �h]=]Za), on the one hand, and by
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(�h]=]�ZZa, �ZZa), on the other, are formally identical. This suggests that,
whatever conclusion we might reach using a twistor description (Za vari-
ables) might equally be obtained using a dual-twistor description
(using Wa ¼ �ZZa variables), and that this similarity is so complete that no
left–right asymmetry in gravitation will emerge in the resulting theory. On
the other hand, if the formalism is to mirror Nature, then we shall require
a left–right asymmetry when the theory comes to describe weak inter-
actions (§25.3). But, as twistor theory stands, in its present relatively
primitive state, there is no clear reason for this diVerence.
The main criticism that can be levelled at twistor theory, as of now, is

that it is not really a physical theory. It certainly makes no unambiguous
physical predictions. My own (over-)optimistic perspective would be to
regard twistor theory as being vaguely comparable with the Hamiltonian
formalism of classical physics. Hamiltonian theory did not introduce
physical changes, but it provided a diVerent outlook on classical physics
that later proved to be just what was required for the new quantum theory
according to Schrödinger’s prescriptions, as described in Chapters 21–23.
Twistor theory, likewise, is merely a reformulation that does not necessar-
ily introduce physical changes. The optimistic hope is that its framework
might also provide a leaping-oV point for some signiWcant physical devel-
opments in the future.
There is, of course, no compulsion for the skeptic to believe that such

developments will take place, and the primary case for twistor theory
indeed lies, like string theory (or M-theory) in the strength its aesthetic
or mathematical appeal. The two theories are, however, mathematically
incompatible as they stand, because they operate with diVerent numbers of
spacetime dimensions. One might justly (but perhaps over-harshly) say
that it is a prediction of twistor theory that the aspirations of string theory
are wrong—or, conversely, that it is a prediction of string theory that
those of twistor theory are wrong! This incompatibility does not extend to
variants or re-interpretations of string (or M-) theory in which the extra
dimensions are not taken to be spacetime dimensions at all, but are
regarded as ‘internal’ dimensions of some kind. Although such a re-inter-
pretation appears to provide a consistent viewpoint, it is somewhat at
variance with the driving force behind string theory, as normally espoused.
In this connection, I should remind the reader of certain very recent

work, alluded to in §31.18, primarily by Edward Witten.59 This points to
some fascinating possibilities for a new outlook on Yang–Mills scattering
amplitudes. It combines ideas of twistor theory with some of those from
string theory—but now in a 4-dimensional context!
In any case, twistor theory does require some new input. Among the

most important ingredients of other successful physical theories have been
Lagrangians and Feynman path integrals, these providing the appropriate
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QFT way of dealing with Weld equations (see §26.6). Twistor theory boasts
the evaporation of Weld equations (§§33.8,11), however, so some new ideas
seem to be required for the development of a full twistor QFT.60

Does twistor theory have any clear-cut ‘predictions’? The closest to a
prediction that I can think of is that the underlying motivations of the
theory seem to imply that the universe ought to have negative spatial
curvature, i.e. K<0. To see the reason for this expectation, Wrst recall
from Chapters 27 and 28 (especially §27.13) that the Big Bang seems to
have had an extraordinarily uniform nature, with a very close resemblance
to one of the FLRWmodels. These models are conformally Xat (vanishing
Weyl curvature) and can be described very simply in terms of a Xat twistor
space (CP

3).61 In each of the cases K>0, K ¼ 0, K<0, there is an exact
symmetry group, but only in the case K<0 is this a holomorphic group. In
fact, in that case, the group is precisely the one that started us oV with the
‘complex magic’ of twistor theory, namely the Lorentz group O(1, 3),
which (ignoring reXections) is the group of holomorphic transformations
of the Riemann sphere. Where is this Riemann sphere? It is the ‘inWnity’ of
hyperbolic 3-space—like the bounding circle of Escher’s picture, repro-
duced in Fig. 2.11—analogous to the celestial sphere of §18.5, as a bound-
ary to the hyperbolic 3-space of §18.4; see Fig. 18.10.
We see that K<0 is not so much a prediction of twistor theory, but of

the underlying holomorphic philosophy. Can we go further and say any-
thing about the cosmological constant L? Presently proposed twistor
constructions (see §33.12) seem to be able to accommodate the Einstein
vacuum equation in a natural way only in the case L ¼ 0, and it is hard to
see how the present type of procedure can be modiWed in order to accom-
modate L 6¼ 0. Does this tell us that L ¼ 0 is a prediction of twistor
theory? It had better not (despite my own previous preference for
L ¼ 0)! For impressive recent observational data (see §28.10) strongly
indicate L > 0. This simply provides twistor theory with new challenges.
Clearly twistor theory will have to do a lot better than just this if it is to
become respectable as a physical theory!
What about the rules of quantum theory? Does twistor theory point to

any speciWc directions for change, in accordance with the aspirations of
Chapter 30? The ‘non-linear graviton’ of §33.11 does begin to indicate that
the twistor approach will ultimately entail a (non-linear) modiWcation of
the rules of quantum mechanics. However, there is not yet very much,
within the twistor formalism, that indicates the presence of a fundamental
time-asymmetry in these modiWcations, as would be required according to
the discussions of §§30.2,3,9. However, it is a possibly suggestive feature of
the particular ‘googly’ developments that were brieXy discussed in §33.12
that they do seem to depend upon a time-asymmetric description. The
strength of this possibility will have to await future developments, and the
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comments of the previous paragraph should be kept in mind. Accordingly,
twistor theory so far says nothing useful about quantum state reduction,
despite this phenomenon having provided a signiWcant part of the initial
motivating inputs behind the theory.
Finally, let us address the issue of the status of the underlying holo-

morphic philosophy that forms one of the main drives behind twistor
theory. I think that it is fair to say that this philosophy has indeed been
maintained and has provided a powerful driving force—which has in some
respects exceeded expectations (such as with the twistor represenations of
massless Welds, both linear (§§33.8–10) and non-linear (§§33.11,12). Yet, at
some point, the theory will have to say something about real-number
aspects of physics and non-holomorphic behaviour, such as the emergence
of probability values (in accordance with the non-holomorphic squared-
modulus rule z 7! jzj2) and real spacetime points, where we would hope to
be able to accommotate non-analytic (let alone non-holomorphic) behav-
iour. With regard to this last issue, some encouragement should be gained
from the remarkable theory of hyperfunctions, inroduced at the end of
Chapter 9 (see §9.7), according to which non-analytic behaviour can be
represented very elegantly within the context of holomorphic operations.
The extent to which a future twistor theory will be able to address such
issues is a matter for the future.
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34
Where lies the road to reality?

34.1 Great theories of 20th century physics—and beyond?

Let us try to take stock of what we have learnt from our physical
theories—as we begin to explore the third millennium AD—concerning
the fundamental nature of this remarkable world in which we Wnd our-
selves. There is no doubt that extraordinary advances in understanding
have been made, and that these have come about through careful physical
observation and superb experimentation, through physical reasoning of
great depth and insight, and through mathematical arguments ranging
from the complicated but routine to inspirational leaps of the highest
order. These have led us from the understanding of the ancient Greeks
concerning the geometry of space through to Newtonian mechanics, to the
magniWcent structures of classical mechanics, then to Maxwell’s electro-
magnetic theory, and to thermodynamics. More recently, the 20th century
gave us special relativity, leading to Einstein’s extraordinary and precisely
veriWed general theory of relativity, and we also have the deeply mysteri-
ous yet profoundly accurate and broad-ranging quantum mechanics and
its development to quantum Weld theory (QFT); in particular, we have the
remarkably successful standard models of particle physics and cosmology.
It has been a not uncommon view among conWdent theoreticians that

we may be ‘almost there’, and that a ‘theory of everything’ may lie not far
beyond the subsequent developments of the late 20th century. Often, such
comments had tended to be made with an eye on whatever had been the
status of the ‘string theory’ that had been current at the time. It is harder
to maintain such a viewpoint now that string theory has transmogriWed to
something (M- or F-theory) whose nature is admitted to being fundamen-
tally unknown at present.
Frommy own perspective, we are much farther from a ‘Wnal theory’ even

than this. I have no faith at all that the developments outlined in Chapter 31
are at all close to the right lines. Various remarkablemathematical develop-
ments have indeed come out of string-theoretic (and related) ideas. How-
ever, I remain profoundly unconvinced that they are very much other than
just striking pieces of mathematics albeit with some input from deep
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physical ideas. For theories whose spacetime dimensionality exceeds what
we directly observe (namely 1þ 3), I see no reason to believe that, in
themselves, they carry us much further in the direction of physical under-
standing.With regard to the other schemes that have been put forward, such
as themain ones outlined inChapters 32 and 33,withwhich I ammuchmore
in accord, there is no doubt inmymind that they, also, lack some important
insights. It would be unwise to predict with any great conWdence that even
these theories are close to making the further necessary leaps that would
guide us to the true road to the understanding of physical reality.
Yet, already in the 20th century, the human species had undoubtedly

made some extraordinary progress towards such an understanding, and
I have attempted, in this book, to convey something of what has been
accomplished. Einstein’s general relativity stands out, in my opinion, as
that century’s greatest single achievement. Quantum theory (and QFT)
might well be regarded by most physicists as an even greater achievement.
From my own particular perspective on the matter, I do not feel able to
share that view. While it is undoubtedly the case that quantum theory has
explained incomparably more than general relativity, over a vastly greater
range of diVerent phenomena, I do not regard the theory as having yet
achieved the necessary coherence as a theory. The problem, of course, is the
measurement paradox, considered at length in Chapter 29. In my opinion,
quantum theory is incomplete. When it is completed—which I would an-
ticipate happening some time in the 21st century—it will, no doubt, repre-
sent an even greater achievement than Einstein’s general relativity. Indeed,
as the claims of Chapter 30 would strongly suggest, such a completed
quantum mechanics ought to include Einstein’s theory as the limit case
for large mass and distance. (And I hope that it is clear to the reader from
my remarks in §31.8 that I certainly do not regard string theory as having
already achieved this union, despite many claims to the contrary.)
In my view, general relativity is probably here to stay as a description of

spacetime in the large-scale limit (where the presence of a cosmological
constant L is permitted as part of Einstein’s theory), although we must
expect serious modiWcations to its descriptions at the absurdly tiny Planck
distance of 10�35 m, or where densities may approach the Planck value of
about 5� 1093 times that of water in the vicinity of some spacetime
singularities. This position on the status of general relativity must now
be regarded as the conventional one. The theory’s observational status, at
least at the rather large end of the distance scale of orbiting neutron stars
and gravitational lensing eVects, and even of black holes, must be regarded
as excellent. And here I mean the standard Einstein theory, without a
cosmological constant.
But what about the cosmological constant? Observations over the past

few years appear to favour a positive value for it. If L is indeed there, it is
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certainly very small in ordinary local terms. If we think of L as a curva-
ture, then it is the reciprocal of the square of a distance, that distance being
on a scale comparable with the radius of the observable universe, so L is
certainly ignorable at all but cosmological scales. When we interpret L as
an eVective density OL, then that density cannot be more than 2 or 3 times
the tiny average matter density that our universe now has, which is about
10�27 kgm�3—considerably less than the best artiWcially produced vacuum
here on Earth. Again, L could only have relevance on cosmological scales.
Yet, on the basis of the viewpoint frequently expressed by quantum Weld
theorists, L is really a measure of the eVective density of the vacuum,
generated by ‘quantum-mechanical vacuum Xuctuations’ (a feature of
Heisenberg uncertainty in QFT, see §21.11; see also §29.6, §30.14) and,
accordingly, it ‘ought’ to have a value (comparable to the Planck value)
that is something like 10120 larger (or possibly only 1060 larger) than
the upper limit of what is observed! This is regarded as a fundamental
puzzle in QFT,1 unresolved by any of the conventional approaches to
quantum gravity or by string theory. My own attitude is to be less
disturbed by this than many theorists appear to be. My guess (see
§30.14) is that the whole issue of ‘vacuum Xuctuations’ will need to be
radically overhauled when we have a better quantum theory of gravity
and, indeed, better QFT.
We must, of course, recognize the extraordinary range of phenomena

that give support to existing quantummechanics and to QFT. But I should
make clear that there is no contradiction, in this, with the viewpoint that
I have argued for in Chapter 30, where changes in the foundations of
quantum theory are anticipated. No experiment to date seems to have yet
got very close to exploring the ‘quantum-gravity’ level at which I expect
such changes to become manifest, with state-vector reduction occurring
objectively (gravitational OR). The observed quantum entanglements over
distances of some 15 kilometers2 are completely consistent with these
expected changes, since these entanglements involve only pairs of photons
with energies of the order of 10�19J, and spontaneous state reduction
according to gravitational OR is not to be expected until the photons are
actually measured (at which point OR would take place in the measuring
apparatus). The present experimental situation with regard to the validity
of quantum mechanics when signiWcant mass movements are involved is
best revealed in recent experiments by Anton Zeilinger and colleagues in
Vienna.3 They have performed what is basically a two-slit experiment with
C60 (and also C70) ‘bucky balls’. These are fullerenes, where each molecule
has 60 carbon atoms, in a beautifully symmetrical arrangement resembling
the pattern of seams on most modern soccer balls (or else a less symmet-
rical arrangement involving 70 carbon atoms). These fullerene molecules
are about a nanometer in diameter and they interfere with themselves after
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having been in a superposition of two locations separated by about 10�7m,
which is some 100 times the bucky ball’s diameter. According to the
scheme suggested in §30.11, such a superposition would last for some
hundred thousand years or so before spontaneously reducing according
to gravitational OR, so there is clearly no contradiction here with the
Zeilinger experiment.
Of course, the situation might well be diVerent with some future experi-

ments. Something like the FELIX space-borne proposal of §30.13, or more
likely some related experiment such as could result from Dik Bouwmee-
ster’s work in Santa Barbara, could directly test the gravitational OR
scheme, and it may well be that there are other possibilities for experi-
ments that could be performed early in the 21st century. I regard this
prospect as particularly exciting, and there is the distinct possibility that
such experiments could signiWcantly change our present outlook on quan-
tum mechanics. At the very least, they could severely limit speculations on
how quantum mechanics might be modiWed according to some future
theory.
This is in stark contrast with the present (or plausibly projected) experi-

mental situation with regard to other attempts, such as those outlined in
Chapters 31–33, at combining quantum theory with gravitation. Most
considerations of experiments designed to address such quantum-gravity
proposals involve particles hurled with extraordinarily high energies, ab-
surdly far beyond the capabilities of any existing (or seriously projected)
particle accelerator. (The only exceptions to this that I am aware of are
experiments designed to test the possibility of the existence of ‘large’ extra
dimensions (§31.4) which could, for example, aVect the inverse square law
of gravity at small distances, or some other loosely related proposals
aimed at seeing whether Lorentz covariance might be violated at high
energy, owing to suggested quantum–gravitational effects.4) There is,
indeed, a profound diYculty confronting the testing of any ‘conventional’
quantum-gravity scheme, where the eVects of this union would modify
only spacetime structure (at the extraordinarily tiny Planck distances or
times), leaving the standard procedures of quantum mechanics intact. We
are in much better shape, experimentally, if the rules of quantum mechan-
ics are modiWed by general-relativistic eVects, as suggested in Chapter 30,
since these proposed eVects are just about within the scope of present-day
technology. If such experiments are successfully performed and indicate a
need for a change in the rules of quantum mechanics, then there would at
last be some good physical guidance to supplement the largely mathemat-
ical desiderata driving current quantum-gravity research.
The absence of experimental data relating to the normal quantum-

gravity proposals has led to a curious situation in theoretical fundamental
physics research. A general consensus seems indeed to have grown up that,
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in order for real progress to be made in our moving beyond the standard
models of particle physics (and cosmology), and thereby obtaining a
deeper understanding of the basic ingredients of the universe, it will be
necessary to have a quantum theory that encompasses gravity in addition
to the strong, weak, and electromagnetic forces. Part of the reason for this
appears to be the (no doubt physically justiWed) conception that a Wnite (as
opposed to merely renormalizable) QFT will require divergences to be ‘cut
oV ’ at the tiny Planck distance, whence gravity must necessarily be part of
the picture (see §31.1). But since experiments in this area are absent, the
eVorts of theoreticians have been directed very much into the internal
world of mathematical desiderata.

34.2 Mathematically driven fundamental physics

The interplay between mathematical ideas and physical behaviour has
been a constant theme of this book. Throughout the history of physical
science, progress has been made through Wnding the correct balance
between, on the one hand, the strictures, temptations, and revelations of
mathematical theory and, on the other, precise observation of the actions
of the physical world, usually through carefully controlled experiment.
When experimental guidance is absent, as is the case with most current
fundamental research, this balance is thrown out of kilter. Mathematical
coherence5 is far from a suYcient criterion for telling us whether we are
likely to be ‘on the right track’ (and, in many cases, even this apparently
necessary requirement is thrown to the wind). We Wnd that aesthetic
mathematical values begin to take on a much larger role than they did
before. Researchers often point to the successes of Dirac, of Schrödinger,
of Einstein, of Feynman, and of many others, in their being guided to
some considerable extent by the aesthetic attractions of the particular
theoretical ideas that they put forward. It is my opinion that there is no
denying the value of such aesthetic considerations, and they play a funda-
mentally important role in the selection of plausible proposals for new
theories of fundamental physics.
Some such aesthetic judgements may sometimes merely express a clear-

cut need for a mathematically coherent scheme; since mathematical beauty
and coherence are indeed closely related. It seems to me that the need for
such coherence, in any proposed physical model, is unarguable. Moreover,
unlike many aesthetic criteria, mathematical coherence has the advantage
that it is fairly clearly something objective. The diYculty with aesthetic
judgements, in general, is that they tend to be very subjective.
Yet mathematical coherence need not itself be readily appreciated.

Those who have worked long and hard on some collection of mathemat-
ical ideas can be in a better position to appreciate the subtle and often
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unexpected unity that may lie within some particular scheme. Those who
come to such a scheme from the outside, on the other hand, may view it
more with bewilderment, and may Wnd it hard to appreciate why such-
and-such a property should have any particular merit, or why some things
in the theory should be regarded as more surprising—and, perhaps, there-
fore more beautiful—than others. Yet again, there may well be circum-
stances in which it is those from the outside who can better form objective
judgements; for perhaps spending many years on a narrowly focused
collection of mathematical problems arising within some particular ap-
proach results in distorted judgements!
But mathematical coherence and elegance, in the mathematics of a

physical theory, despite their undoubted value, are clearly far from suY-

cient. Physical considerations usually have a much greater importance.
But in situations where experimental guidance is lacking, mathematical
qualities then assume the greater importance. I would certainly not argue
that there are any simple answers to these issues. Individual researchers
are right, I believe, to follow their own aesthetic drives. But they should
not be surprised if they Wnd some colleague to be completely unmoved by
the alleged magniWcence of the conclusions that these drives happen to
lead to. I regard such aesthetic motivations to be an essential part of
the development of any important new ideas in theoretical science. But
without the constraints of experiment and observation, such motivations
frequently carry the theory far beyond what is physically justiWed.
We can see many examples throughout history, where a beautiful math-

ematical scheme has seemed, at Wrst, to provide a revolutionary new way
to uncover Nature’s secrets, yet where these initial hopes have not been
realized—at least, not in the way originally anticipated. A good example
must be the system of quaternions, in respect of their beautiful property of
forming a division algebra. As we saw in §11.2, having been found by
Hamilton in 1843, they enticed him into devoting the remaining 22 years of
his life in attempts to represent Nature’s laws entirely within this frame-
work. However, this ‘pure-quaternion’ work (by which I mean his original
actual quaternions, with their division-algebra property) had rather little
direct eVect on the further development of basic physical science. Hamil-
ton’s other inXuences on physical theory have certainly been enormous,
and quite direct. For it was his own earlier researches into what we now
call ‘Hamiltonians’, ‘Hamilton’s principle’, and the ‘Hamilton–Jacobi
equation’, etc.—these forming part of an exploration of the analogy
between Newtonian particles and waves—that provided the jumping-oV

point for the 20th-century development of quantum mechanics and QFT
(see §20.2 and §§21.1,2). But the inXuence of quaternions on physics was
only distant, through generalizations in which the division-algebra prop-
erty had to be thrown away.
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It must have been all too easy, in the mid 19th century, to be mesmerized
by the beautiful mathematical feature of quaternions that one can divide
by them (§11.1). This wonderful property, enjoyed by quaternions and by
comparatively few other algebras, has had a signiWcant inXuence on pure
mathematics, but not directly on mainstream physics. It was CliVord’s
generalization of quaternions to higher dimensions, together with the later
ideas of Pauli and particularly of Dirac, in which the Lorentzian signature
relevant to spacetime is adopted, that Wnally allowed enormous strides in
physical theory to be made possible (§11.5, §§24.6,7). In these later devel-
opments, which were extremely important for physics, Hamilton’s beauti-
ful division property is of necessity abandoned!
I shall return to this somewhat mysterious issue of beauty in the math-

ematics that is successful for physics in §34.9. But these matters touch
upon the important and fascinating complementary issue of mathematical
‘spin-oV ’. Ever since ancient Greek times, theories which started close to
the behaviour of the world have spawned vast areas of beautiful math-
ematics, initially studied for their own sake alone, but often Wnding
applications far removed from those physical considerations from which
they originated. Sometimes these applications take many centuries to be
realized (such as in the case of Apollonios’s study, in about 200BC, of
conic sections, which played a fundamental part in the understanding of
planetary motions provided by Kepler and Newton in the 16th and 17th
centuries, or with Fermat’s ‘little theorem’ of 1640, which found important
applications in cryptography in the late 20th century). Mathematics—
good mathematics particularly—has the habit of Wnding its applications
in very disparate Welds, which is one reason for its strength and robustness.
The workings of Nature have often provided a wonderful source of such
mathematical ideas. That there should be precision and reliability in such
ideas stimulated by Nature is perhaps not so surprising, if we accept that
Nature operates accurately in accordance with mathematical laws. More
remarkable is the subtlety of the mathematics that seems to be involved in
Nature’s laws, and the habit that such mathematics seems to have in
Wnding applications in areas far removed from its original purpose (as
was the case, in particular, with the calculus of Newton and Leibniz—see
Chapter 14).
But can we argue conversely that a putative physical theory which

stimulates much productive research in broadly spread mathematical
areas thereby gains physical believability by virtue of this? The issue has
relevance particularly to the physical schemes of Chapters 31, 32, and 33.
It cannot be answered in any simple way, I believe; but great caution is
certainly to be recommended.
String theory, in particular, has stimulated beautiful mathematical re-

search and gains considerable strength from this mathematical appeal.
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(The same could be said of much of twistor theory and of the Ashtekar
and Hawking approaches.) But it is unclear to what degree this is indica-
tive of any underlying accord with physical reality. Yet, I have very
frequently heard pure mathematicians express delight that some result
that they may have found has applications in physics merely because it
has a mathematical relevance to string theory! I can well understand the
desire, among many pure mathematicians, that aspects of their beautiful
subject should Wnd important application to the workings of the physical
world. But it should be made clear that there is (as yet) no observational
reason to believe that string theory (in particular) is physics, although it is
certainly motivated by powerful physical aspirations. String theory is also
a subject that is studied by a good many physicists, but does that make it
physics? This raises the issue of fashion in fundamental physical research,
and I wish to address this matter next.

34.3 The role of fashion in physical theory

Let me begin by quoting a survey carried out by Carlo Rovelli, and
reported in his address to the International Congress on General Relativ-
ity and Gravitation, held in Pune, India, in December 1997.6 Rovelli is one
of the originators of the loop-variable approach to quantum gravity, as
described in §32.4, and he claimed no professionalism in the conducting of
his survey. Yet the results he found certainly reXect what my own (unsub-
stantiated) expectations would have been. He made a count of articles on
the subject of quantum gravity published over the previous year, as
recorded in the Los Angeles Archives. The rough average of papers per
month, in the various approaches to the subject, came out as follows:

String theory: 69

Loop quantum gravity: 25

QFT in curved spaces: 8

Lattice approaches: 7

Euclidean quantum gravity: 3

Non-commutative geometry: 3

Quantum cosmology: 1

Twistors: 1

Others: 6

The reader will perceive that I have only very loosely followed the
demands of fashion in the space that I have devoted to these respective
theories, in my accounts in this book. (I have brieXy touched upon QFT in
curved spaces in relation to the Hawking eVect, as discussed in §30.4.
Lattice approaches take discrete spacetime models in place of continuous
ones—see §33.1. Euclidean quantum gravity features in the Hawking
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approach, as discussed in §28.9. Quantum cosmology uses simpliWed
spacetimes where most gravitational degrees of freedom are ignored. The
other approaches cited have been dicussed in Chapters 31–33.) It will be
noted that there were more articles in the area of string theory than in all
the other areas put together. It seems to be a general view that if such a
survey were repeated today, the preponderance of string theory papers
would be even greater. If we were to think of scientiWc research as being
driven by the principles of democratic government, then we would see that
owing to an absolute majority being with the string theorists, all decisions
as to what research should be done would be dictated by them!7

Fortunately, the criteria of science are not those of democratic govern-
ment. It is right and proper that minority activities should not suVer
merely by virtue of the fact that they are in the minority. Mathematical
coherence and agreement with observation are far more important. But
can we ignore the whims of fashion altogether? Certainly we cannot. In
addition to many less believable ideas, very fashionable in their day (such
as the 11-dimensional supergravity notion of seven extra dimensions
constituting a ‘squashed 7-sphere’),8 I can recall many fashions of the
past that seemed—and still seem—to me to contain very signiWcant truths
(such as Regge trajectories—see §31.5—and GeoVrey Chew’s analytic S
matrix9), but which have now been out of fashion for decades. To some
extent, the popularity of a theory provides a measure of its scientiWc
plausibility—but only to some extent.
It is also true that, as with business concerns, it is the large ones that

have a natural tendency to get larger at the expense of the smaller ones. It
is not hard to see why that should be the case also with scientiWc fashions,
particularly in the modern world of jet travel and the internet, where new
scientiWc ideas spread rapidly across the globe, being propagated by word
of mouth at scientiWc conferences or almost instantaneously transmitted
by e-mail and on the internet in (frequently unrefereed) scientiWc articles.
The often frantic competitiveness that this ease of communication engen-
ders leads to ‘bandwagon’ eVects, where researchers fear to be left behind
if they do not join in. Fashion need not be so much of an issue with those
theoretical ideas that continually come under experimental scrutiny. But
with ideas that are as far from the possibility of experimental conWrmation
or refutation as are those in quantum gravity, we must be especially
cautious in taking the popularity of an approach as any real indication
of its validity.
Fashion also has its role to play in other areas such as with notation, or

speciWc mathematical formalism. This is perhaps a less important issue
than those discussed above, but still signiWcant for the development of
research. Let me describe one particular example, namely the highly
prevalent use of Dirac’s 4-component spinor formalism rather than the
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later 2-component one of van der Waerden (see §22.8, §24.7, §25.2). This
has certain aspects of irony about it, as we shall see. In fact, in quantum
electrodynamics, the 4-spinor formalism is almost universally used,
whereas, as has been shown by Robert Geroch,10 it is really a great
deal simpler to use 2-spinors (brieXy described in §22.8). When Dirac
discovered his equation, in 1928, he used 4-spinors. Dirac’s equation
stimulated much interest in the importance of spinors, and a year
later the distinguished Dutch mathematician Bartel L. van der Waerden
formulated the powerful 2-spinor calculus.11 However, by then, the excite-
ment caused by Dirac’s discovery of the electron’s equation meant that
most physicists followed Dirac’s original approach, not many being even
acquainted with van der Waerden’s more Xexible and polished formalism.
Nevertheless, Dirac himself seems eventually to have appreciated the
power of what van der Waerden had done. In fact, in the early 1950s
I attended a lecture course of Dirac’s in which he gave a beautiful intro-
duction to the 2-spinor calculus, making the whole subject clear to me
when it had been almost completely baZing in accounts that I had seen
previously.
Dirac had actually used the 2-spinor approach himself, in 1936, to Wnd

generalizations of his equation for the electron to particles of higher spin.12

But not being familiar with the 2-spinor formalism, a number of other
researchers seem to have rediscovered special cases of Dirac’s higher-spin
equations, and now they are called such things as the ‘DuYn–Kemmer’
equation (1936, 1938 for spin 0 and 1), the ‘Proca’ equation (1930) and the
‘Rarita–Schwinger’ equation (1941, for spin 3

2
). It is their work, in this area,

rather than Dirac’s earlier work, that people quote.
Dirac was no follower of fashion, and it seems that he did not even

always follow the fashion that he had himself set! Nevertheless, others
sometimes Wnd themselves drawn into it even when they do not intend to
be. I became acquainted with one example of this when in the mid 1970s I
visited CERN to talk to Bruno Zumino, one of the originators of some of
the basic ideas of supersymmetry. (His 1974 work, with Julius Wess,13 had
had a deWnite connection with twistor theory, and I had wanted to explore
this.) He told me that he appreciated the strength of the 2-spinor formal-
ism, and he had once written a paper in which he used 2-spinors to
formulate a certain idea of his. However, a few months later, as he told
me, the esteemed physicist Abdus Salam put forward the same idea, but
using 4-spinors. Everyone then referred to Salam’s paper and none to his
own. Zumino concluded that he would not make the mistake again of
using the (technically superior) 2-spinor formalism!
There is a related issue which makes it diYcult for researchers, particu-

larly young ones, to break away from the fashionable lines of research
even if they wanted to. This is the sheer quantity of disparate and diYcult
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mathematical ideas that they are confronted with in modern mathematical
physics. It is hard enough to single out one small part of one particular line
of work and to try to master it. To be able to make an authoritative
comparative study of the overall merits of several diVerent lines at once
would certainly be beyond the capabilities of most young researchers. If
they are to make a choice, they must rely on the preferences of those who
are already established researchers, and this can only add to the propaga-
tion of already fashionable lines of work, at the expense of those that are
less well known.
Although my remarks above have been aimed at the kind of theoretical

research that is unconstrained by experimental results, the element of
fashion is not unimportant in relation to experiment also, but for a
somewhat diVerent reason. This springs largely from the enormous
expense that is usually involved in the setting up of experiments at the
frontiers of fundamental physics. Since most experiments are indeed so
expensive, they normally require government support, or the support
of large commercial concerns, and there will be the need for numerous
committees to decide whether to go ahead with an experiment, or whether
this or that type of experiment would make a better use of limited funds. It
is natural that the scientiWcally knowledgeable members of these commit-
tees should be those who have establised themselves for their part in
developing ideas that have successfully led to the current perspectives.
Thus, they would tend only to favour experiments that directly address
questions that seem natural from these particular perspectives. There is
therefore a signiWcant tendency for theory to get somewhat ‘locked’ into
particular directions. It could well be very hard to make any major change
in direction for this kind of reason.

34.4 Can a wrong theory be experimentally refuted?

One might have thought that there is no real danger here, because
if the direction is wrong then the experiment would disprove it, so
that some new direction would be forced upon us. This is the traditional
picture of how science progresses. Indeed, the well-known philosopher
of science Karl Popper provided a reasonable-looking criterion14 for
the scientiWc admissability of a proposed theory, namely that it be obser-

vationally refutable. But I fear that this is too stringent a criterion, and
deWnitely too idealistic a view of science in this modern world of ‘big
science’.
Let me take the example of supersymmetry in modern particle physics.

It is a theoretical idea with a certain mathematical elegance and which
makes the theoretician’s life easier in the construction of renormalizable
QFTs (§31.2). Most importantly, it is a central ingredient of string theory.
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Its status among theoreticians these days is so strong that it is almost
considered to be part of today’s ‘standard’ particle-physics model. Yet, it
has no (serious) experimental support (§31.2), as things stand. The theory
predicts ‘superpartners’ for all the observed fundamental particles of
Nature, but none of these has so far been observed. The reason that
they have not, according to supersymmetry theorists, is that a symmetry-
breaking mechanism (of unknown nature) causes the superpartners to be
so massive that the energies needed to create them are still beyond the
scope of present-day accelerators. With increased energy capabilities, the
superpartners might be found, and a new landmark in physical theory
would be thereby achieved, with important implications for the future. But
suppose that still no superpartners are actually found. Would this disprove
the supersymmetry idea? Not at all. It could (and probably would) be
argued that there had simply been too much optimism about the smallness
of the degree of the symmetry breaking, and even higher energies would be
needed to Wnd the missing superpartners.
We see that it is not so easy to dislodge a popular theoretical idea

through the traditional scientiWc method of crucial experimentation,
even if that idea happened actually to be wrong. The huge expense of
high-energy experiments, also, makes it considerably harder to test a
theory than it might have been otherwise. There are many other theoretical
proposals, in particle physics, where predicted particles have mass–ener-
gies that are far too high for any serious possibility of refutation. Various
speciWc versions of GUT or string theory make many such ‘predictions’
that are quite safe from refutation for this kind of reason.
Does the ‘un-Popperian’ character of such models make them unaccept-

able as scientiWc theories? I think that such a stringent Popperian judge-
ment would be deWnitely too harsh. For an intriguing example, recall
Dirac’s argument (§28.2) that the mere existence of a single magnetic
monople somewhere in the cosmos could provide an explanation for the
fact that each particle in the universe has an electric charge that is an
integral multiple of some Wxed value (as is indeed observed). The theory
which asserts that such a monopole exists somewhere is distinctly un-
Popperian. That theory could be established by the discovery of such a
particle, but it appears not to be refutable, as Popper’s criterion would
require; for, if the theory is wrong, no matter how long experimenters
search in vain, their inability to Wnd a monopole would not disprove the
theory!15 Yet the theory is certainly a scientiWc one, well worthy of serious
consideration.
A similar remark might be made in relation to cosmology. The region of

the universe that is outside our particle horizon (§27.12) is beyond direct
observation. Yet, it seems to be a reasonable scientiWc proposal that region
should resemble, on a broad scale, the region that is accessible to direct

1021

Where lies the road to reality? §34.4



observation. The theory that the unobservable region does resemble the
observationally accessible region—which indeed is part of the standard
model of cosmology (§27.8), although not of most inXationary schemes
(§28.4)—is not observationally refutable.
Moreover, even if we restrict attention to the directly observable part of

the universe, we may ask whether the spatial geometry, assumed homoge-
neous and isotropic on a broad scale, has positive, negative, or zero
curvature (the respective cases K>0, K<0, or K ¼ 0; see §27.8). If our
theory asserts that K ¼ 0, then this has the character of being observation-
ally refutable, because for any Wnite deviation from spatial Xatness, a
suYciently precise observation could (in principle—although perhaps not
in practice) discern this departure from Xatness, no matter how small that
spatial curvature might be. But if our theory asserts K 6¼ 0, then that
theory could not be refuted if in actuality K ¼ 0, because there would
always be some range of uncertainty in the observations that would allow
for a very slight negative or positive spatial curvature. We note that the
case K > 0 could in principle be refuted if in actuality K < 0, and K < 0

could be refuted if in actuality K > 0. On the other hand, K ¼ 0 cannot be
(directly) conWrmed,16 whereas K 6¼ 0 could be observationally conWrmed
(if the universe turns out that way). Thus both assertions K > 0 and K < 0

are Popperian in the restricted sense that they are refutable in certain
circumstances—although they are not able to be refuted if, in actuality,
K ¼ 0—and they are also individually conWrmable. We note that K ¼ 0 is
fully Popperian, in principle, but not conWrmable!
I am not sure where the Popperian perspective leaves us, in view of these

various possibilities. It seems to me to be clear that each of K > 0, K < 0,
or K ¼ 0 is equally ‘scientiWc’ as an assertion, despite these subtle diVer-
ences with regard to Popper’s criterion. And, in any case, most cosmolo-
gists would not take quite the pedantic line that I have been adopting here,
namely, that ‘K ¼ 0’ really means that this is to hold precisely. Neverthe-
less, a correct theory would be in better shape if it happens to predict either
K > 0 or < 0, since then it has the chance of being observationally
conWrmed (and conWrmation is what a scientiWc theory seeks, despite
Popper’s more negative perspective on the issue of scientiWc acceptability).
A theory that predicts K ¼ 0 would have to depend upon other justiWca-
tions for it to gain acceptance.
One such justiWcation might be that K ¼ 0 is an implication of a par-

ticular theory that Wnds observational conWrmation in some other way.
Indeed, this is the claimed situation for the highly fashionable inXationary
cosmology which was discussed in §28.4. We recall that, similarly to
supersymmetry being ‘almost’ part of the standard model of particle
physics, inXationary cosmology is frequently almost considered to be
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part of today’s ‘standard’ model of cosmology! Let us try to examine the
status of inXation with regard to Popper’s refutability issue.
One might think that the situation is clear, and that inXation is indeed a

Popperian theory. For over a decade, it had been consistently asserted that
K ¼ 0 is one of the implications of the idea of inXation,17 and I recall
having attended numerous lectures, given by supporters of inXation, in
which such predictions were made.18 Thus, if observations convincingly
tell us that K 6¼ 0, then inXation is out! This seems to be as clear an
adherence to Popper’s principle as one could ask for. Moreover, there
are some detailed predictions about the microwave background that come
from inXation (together with certain other assumptions), and these seem to
enjoy some considerable observational support, in a general way, particu-
larly with regard to the continued observed scale invariance of the Xuctua-
tions, in agreement with most inXationary expectations. However, in the
mid 1990s, evidence was beginning to mount, from various independent
types of observation, that the average matter density Od of the universe
(baryonic plus dark) falls short of what would be required for overall
spatial Xatness, being at most only roughly one third of that value. (The
density quantities Od and OL are taken as a fraction of the critical dens-
ity—that being the density which would have given K ¼ 0 in Einstein’s
theory without cosmological term; see §28.10.) SpeciWcally, Od , is about
0.3. In accordance with this trend in observations, inXation theorists began
to provide inXationary models which now allowed K 6¼ 0, with K < 0 in
fact.19 We may note in addition that the Hawking school, in which K > 0

had seemed to be deWnite prediction (in connection with the Hartle–
Hawking ‘no-boundary’ proposal—see §28.9), also began to perceive
ways in which K < 0 could be accommodated within their scheme.20

This situation lasted until about 1998, when observations of distant
supernovae (§28.10) seemed to be telling us that a positive cosmological
constant needs to be incorporated into the Einstein equation, i.e. L > 0.
This provides an eVective additional densityOL which, when taken together
with the matter density Od , could provide the perceived critical total
Od þ OL ¼ 1 (or, instead, the Od þ OL > 1 that would be needed for
the original Hartle–Hawking proposal). In this way, overall spatial Xatness
(K ¼ 0) can be consistent with observation (as could overall positive spatial
curvature), with OL � 0:7. In the face of this, most inXationists appear to
have reverted toK ¼ 0 as being a prediction of inXationary cosmology. I am
not sure what Popper would have had to say about all this!
In fact, there is now an exotic inXationary proposal in which a new

ingredient (a new Weld) is introduced, referred to as ‘quintessence’, which
would provide an eVective cosmological constant through a dynamical
‘dark energy’ of negative pressure. See Steinhardt et al. (1999). It has
been argued that this might be signalling a new phase of inXation coming
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upon us (see §28.10)! It is to be hoped that somewhat fantastic-
sounding suggestions like these will indeed Wnd rapid ways to be convin-
cingly settled observationally, though, in practice, matters seem rarely this
clear cut.
In my opinion, we must be exceedingly cautious about claims of this

kind—even if seemingly supported by high-quality experimental results.
These are frequently analysed from the perspective of some fashionable
theory. For example, the superb BOOMERanG21 observations of the
microwave background were originally interpreted very much from the
inXationary perspective, and strong claims have been made that the obser-
vations indeed show that K ¼ 0 (whence L > 0). Moreover, in the case of
some experiments (as with BOOMERanG), with vast quantities of data
and much scope for diVering analyses, the raw data may not be generally
released for a period of several years, in order that the people involved
may (very reasonably) have ‘Wrst go’ at it. For the intervening period, there
is little scope for the data being analysed from a diVerent point of view. In
fact, in the case of BOOMERanG, Vahe Gurzadyan, with some members
of the team, were actually able to access the data and apply his ellipticity
analysis (§28.10) to it, Wnding the strong direct indication that K < 0 (later
supported by his corresponding analysis of the WMAP data). Like the
‘anomalous’ ‘ ¼ 2 WMAP measurement (strangely hidden by the vertical
axis in Fig. 28.19), this is not too friendly to the inXationist position. We
shall have to wait until the dust thoroughly settles before coming to a clear
conclusion about all this!
We see how strongly matters of scientiWc fashion can inXuence the

directions of theortical scientiWc research, despite the traditional protest-
ations from scientists of the objectivity of their subject. Nevertheless, I
should make it absolutely clear that the apparent lack of objectivity is not
the fault of Nature herself. There is an objective physical world out there,
and physicists correctly regard it as their job to Wnd out its nature and to
understand its behaviour. The apparent subjectivity that we see in the
strong inXuences of fashion, referred to above, are simply features of our
gropings for this understanding, where social pressures, funding pressures,
and (understandable) human weaknesses and limitations play important
parts in the somewhat chaotic and often mutually inconsistent pictures
that we are presently confronted with.

34.5 Whence may we expect our next physical revolution?

I believe that, in my descriptions in this chapter, I may have presented a
rather more pessimistic picture of current progress towards a fundamental
understanding of physics than is often given in popular accounts. But I
believe also that it is a considerably more realistic one. On the other hand,
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I certainly do not wish to suggest that we have reached a stage in which
fundamental progress is well-nigh impossible, as some popularizers have
tried to maintain.22 There is, indeed, an enormous quantity of observa-
tional data that still needs to be made sense of—and this would be so even
if no further experiments are ever performed.
Data from modern experiments are often stored automatically, and only

a small particular aspect of that stored informationmay be of interest to the
theorists and experimenters who are directly involved. The entire mass of
data would thus be likely to be analysed only in the particular way that
addresses questions that they are concernedwith. It is certainly possible that
there aremany clues toNature’s ways hidden in such data, even if we do not
properly read themyet.Recall that Einstein’s general relativitywas crucially
based on his insight (the principle of equivalence—see §17.4)which hadbeen
implicit in observational data that had been around since (and before) the
time of Galileo, but not fully appreciated. There may well be other clues
hidden in the immeasurably more extensive modern observations. Perhaps
there are even ‘obvious’ ones, before our very eyes, that need to be twisted
round and viewed from a diVerent angle, so that a fundamentally new
perspective may be obtained concerning the nature of physical reality.
I believe, indeed, that a new perspective is certainly needed, and that this

change in viewpoint will have to address the profound issues raised by the
measurement paradox of quantum mechanics and the related non-locality
that is inherent in EPR eVects and in the issue of ‘quanglement’ (Chapters
23 and 29). I have argued, in Chapter 30, that the measurement paradox
must be deeply interconnected with the principles of general relativity
(and, speciWcally, with the Galileo–Einstein principle of equivalence just
referred to). Perhaps new experiments (such as that of FELIX or a more
realistic ground-based alternative; §30.13) may lead the way to the needed
improved understandings of quantum theory. Perhaps there will be other
types of experiment shedding light on the nature of quantum gravity (such
as those designed to test the possibility of higher dimensionality to space-
time). Perhaps, on the other hand, it will be theoretical considerations that
will take us forward.
Are the seeds of any such putative theoretical developments already to

be found in some of the ideas described in the previous chapters of this
book? Clearly there would be numerous diVering viewpoints on this
matter, and personal opinion must play a strong part in any answer. It
has certainly been—and still is—my own particular hope (for over 40
years, in fact) that the framework of twistor theory might yield insights
that could lead to such a change of physical viewpoint. But despite the
progress that has been made (see Chapter 33), twistor theory cannot be
said to have moved us signiWcantly, as things stand, in any direction that
helps us to resolve the measurement paradox.
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Whatever one’s stance might be, concerning the relative merits of the
theories that I have described, new insights and new perspectives are
deWnitely needed. How are these to come about? May we expect a ‘new
Einstein’ working in a solitary way, and coming upon such revolutionary
views from largely internal deliberations? Or will we Wnd ourselves driven
again by immensely puzzling experimental Wndings? In Albert Einstein’s
case, his internal insights led ultimately to general relativity, which is very
largely a ‘one-person theory’ (despite the essential input that Einstein had
from Lorentz, Poincaré, Mach, Minkowski, Grossmann, and others).
Quantum theory, on the other hand, was very much a ‘many-person’
theory, being driven externally by the extraordinary results of a great
many careful experiments. In the present climate of fundamental research,
it would appear to be much harder for individuals to make substantial
progress than it had been in Einstein’s day. Teamwork, massive computer
calculations, the pursuing of fashionable ideas—these are the activities
that we tend to see in current research. Can we expect to see the needed
fundamentally new perspectives coming out of such activities? This
remains to be seen, but I am left somewhat doubtful about it. Perhaps if
the new directions can be more experimentally driven, as was the case with
quantum mechanics in the Wrst third of the 20th century, then such a
‘many-person’ approach might work. But I perceive this happening, in
the area of quantum gravity, only if there are experiments that reveal an
inXuence of general-relativistic principles on the very structure of quantum
mechanics (as I argue for in Chapter 30). Failing this, I feel that something
more like the Einsteinian ‘one-person’ approach is likely to be needed.
And for that, there is little doubt in my own mind but that mathematical
aesthetics must be an important driving force in addition to physical
insight.
The reason for this belief is that, the more deeply we probe the funda-

mentals of physical behaviour, the more we Wnd that it is very precisely
controlled by mathematics. Moreover, the mathematics that we Wnd is not
just of a direct calculational nature; it is of a profoundly sophisticated
character, where there is subtlety and beauty of a kind that is not to be
seen in the mathematics that is relevant to physics at a less fundamental
level. In accordance with this, progress towards a deeper physical under-
standing, if it is not able to be guided in detail by experiment, must rely
more and more heavily on an ability to appreciate the physical relevance
and depth of the mathematics, and to ‘sniV out’ the appropriate ideas by
use of a profoundly sensitive aesthetic mathematical appreciation.
It is, by the very nature of the problem, supremely diYcult to lay down

any sort of reliable criteria for achieving this. We have already seen, in the
contrast between the approaches that have been described in the later
chapters of this book, how diVerent mathematical developments, each
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guided by its own set of aesthetic mathematical and physical criteria, can
devlop in mutually contradictory directions. Some have argued that per-
haps we should seek ways in which all these approaches can be brought
together in some kind of synthesis, perhaps by distilling what is appropri-
ate from the body of all of them taken together. On the other hand, it
could reasonably be argued that the contradictions between the diVerent
approaches are too great, and that at most one of them can survive, all
the rest having to be discarded. I suspect, myself, that the truth lies
somewhere between these extremes, and that something of importance
may yet be found even in many of the theories whose major tenets will
eventually have to be abandoned.
Some of the theories that I have been describing, although not al-

together consistent with one another, do have appreciable common ground.
In particular, the loop-variable approach of Chapter 32 has signiWcant
features in common with twistor theory (Chapter 33) and I can well
imagine that an appropriate combination of the ideas from each (perhaps
involving spin networks, spin foams, n-category theory, or even non-
commutative geometry) could lead to a way forward. But string theory,
as it presently stands, with its dependence on extra space dimensions,
strikes me as being too far from twistor or loop-variable theory for any
forseeable union to emerge. Strings themselves are not a reason for incom-
patibility (§31.5). Even supersymmetry has been brought together with
twistor ideas.23 But string theory’s insistance on higher dimensions (espe-
cially on those particular dimensions/signatures that violate twistor theo-
ry’s holomorphic philosophy—see the Wnal paragraph of §33.4) represents
a fundamental conXict with both twistor and loop-variable theory. Until
very recently, string theorists have shown no inclination to provide a
consistent (1þ3)-dimensional theory. However, as mentioned in §31.18
and §33.14, there has been a recent shift, and applications of string-
theoretic ideas to ordinary (1þ3)-dimensional spacetime seem now to be
taken seriously.

34.6 What is reality?

As the reader will gather from all this, I do not believe that we have yet
found the true ‘road to reality’, despite the extraordinary progress that has
been made over three and one half millennia, particularly in the last few
centuries. Some fundamentally new insights are certainly needed. Yet,
some readers may well still take the view that the road itself may be a
mirage. True—so they might argue—we have been fortunate enough to
stumble upon mathematical schemes that accord with Nature in remark-
able ways, but the unity of Nature as a whole with some mathematical
scheme can be no more than a ‘pipe dream’. Others might take the view
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that the very notion of a ‘physical reality’ with a truly objective nature,
independent of how we might choose to look at it, is itself a pipe dream.
Indeed, we may well ask: what is physical reality? This is a question that

has been posed for thousands of years, and philosophers throughout the
ages have attempted various kinds of answer. Today we look back, from
our vantage point of modern science, and claim to take a more sober
position. Rather than attempting to answer the ‘what’ question, most
modern scientists would try to evade it. They would try argue that the
question has been wrongly posed: we should not try to ask what reality is;
merely, how does it behave. ‘How?’ is, indeed, a fundamental question that
we may consider to have been one of the main concerns of this book: how
do we describe the laws that govern our universe and its contents?
Yet, many readers will no doubt feel that this is a somewhat disappoint-

ing answer—a ‘cop-out’, no less. To know how the contents of the uni-
verse behave does not seem to tell us very much about what it is that is
doing the behaving. This ‘what?’ question is intimately connected with
another deep and ancient question, namely ‘why?’. Why do things in our
universe behave in the particular ways that they do? But without knowing
what these things are, it is hard to see why they should do one thing rather
than another.
Modern science would be cautious in attempting answers to ‘why?’

questions as well as ‘what?’. Yet, questions as to ‘what?’ and ‘why?’ are
frequently supplied with answers. It is considered acceptable to do so
provided that the questions are not asking about reality at its deepest
levels. One may expect an answer to such a question as the following.
‘What is a cholesterol molecule made of ?’; ‘why does a match burst into
Xame when dragged rapidly across a suitable rough surface?’; ‘what is an
aurora?’; ‘why does the sun shine?’; ‘what are the forces which hold a
hydrogen atom or a hydrogen molecule together?’; and ‘why is a uranium
nucleus unstable?’. Yet, some other questions that one might pose could
cause more embarassment, such as ‘what is an electron?’ or ‘why does
space have just three dimensions?’. These questions can, however, Wnd
meaning within some more fundamental picture of physical reality.
It will be seen, particularly from the discussions of Chapters 31–33, that

modern physicists invariably describes things in terms of mathematical
models. This is irrespective of which particular family of proposals they
may happen to hold to. It is as though they seek to Wnd ‘reality’ within the
Platonic world of mathematical ideals. Such a view would seem to be a
consequence of any proposed ‘theory of everything’, for then physical
reality would appear merely as a reXection of purely mathematical laws.
As I have been arguing in this chapter, we are certainly a long way from any
such theory, and it is a matter of contention whether anything resembling a
‘theory of everything’ will ever be found. Be that as it may, it is undoubtedly
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the case that the more deeply we probe Nature’s secrets, the more pro-
foundly we are driven into Plato’s world of mathematical ideals as we seek
our understanding. Why is this so? At present, we can only see that as a
mystery. It is the Wrst of the three deep mysteries referred to in §1.4, and
illustrated in Fig. 1.3, here redrawn and embellished somewhat as Fig. 34.1.
But are mathematical notions things that really inhabit a ‘world’ of their

own? If so, we seem to have found our ultimate reality to have its home
within that entirely abstract world. Some people have diYculties with
accepting Plato’s mathematical world as being in any sense ‘real’, and
would gain no comfort from a view that physical reality itself is con-
structed merely from abstract notions. My own position on this matter is
that we should certainly take Plato’s world as providing a kind of ‘reality’
to mathematical notions (and I tried to argue forcefully for this case in
§1.3), but I might baulk at actually attempting to identify physical reality
within the abstract reality of Plato’s world. I think that Fig. 34.1 best
expresses my position on this question, where each of three worlds—
Platonic-mathematical, physical, and mental—has its own kind of reality,
and where each is (deeply and mysteriously) founded in the one that
precedes it (the worlds being taken cyclicly). I like to think that, in a
sense, the Platonic world may be the most primitive of the three, since
mathematics is a kind of necessity, virtually conjuring its very self into
existence through logic alone. Be that as it may, there is the further
mystery, or paradox, of the cyclic aspect of these worlds, where each
seems to be able to encompass the succeeding one in its entirety, while
itself seeming to depend only upon a small part of its predecessor.

Truth
Beauty

Morality

Mentality

Physicality

Fig. 34.1 A repeat of the

diagram (Fig. 1.3) depicting

‘Three Worlds and Three

Mysteries’, but embellished with

the other ‘Platonic absolutes’ of

Beauty and Morality, in addition

to the absolute Truth that is to

be found in mathematics.

Beauty and Truth are inter-

wined, the beauty of a physical

theory acting as a guide to its

correctness in relation to the

Physical World, whereas the

whole issue of Morality is

ultimately dependent upon the

World of Mentality.
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34.7 The roles of mentality in physical theory

We must bear in mind that each ‘world’ possesses its own distinctive kind
of existence, diVerent from that of the other two. Nevertheless, I do not
think that, ultimately, we shall be able to consider any of these worlds
properly, in isolation from the others. Since one of these is the world of
mentality, this raises the issue of the role of mind in physical theory, and
also of how mentality comes about in the physical structures with which it
is associated (such as living, wakeful, healthy human brains, at least). I
have deliberately refrained from addressing, at any great length, the
question of conscious mentality in this book, despite the fact that this
issue must ultimately be an important one in our quest for an understand-
ing physical reality. (I have discussed such matters at detail elsewhere, and
I have no wish to get embroiled here in many of the contentious issues that
arise.24) Yet, it would be inappropriate for me to try to avoid the issue of
mentality altogether. Quite apart from the world of mentality having to be
considered in conjunction with the other two worlds, in accordance with
Fig. 34.1, there are several places in this book where the issue of con-
sciousness has already played a signiWcant role in physical theory, either
implicitly or explicitly.
One of these is in connection with the anthropic principle, mentioned in

§27.13 and discussed at some length in §§28.6,7. Any universe that can ‘be
observed’ must, as a logical necessity, be capable of supporting conscious
mentality, since consciousness is precisely what plays the ultimate role of
‘observer’. This fundamental requirement could well provide constraints
on the universe’s physical laws, or physical parameters, in order that
conscious mentality can (and will) exist. Accordingly, the anthropic
principle asserts that the universe that we, as conscious observers, actually
do observe, must operate with laws and appropriate parameter values that
are consistent with these constraints. Such constraints could manifest
themselves in particular values for the fundamental (dimensionless) con-
stants of Nature, discussed in §31.1. Indeed, it has become quite common-
place to regard the values that we actually Wnd as being the result of some
kind of application of the anthropic principle.
Unfortunately, even if the values of these constants are determined

by the anthropic principle—rather than, say, by mathematical consider-
ations—the principle is almost unusable, because we know so little about
the conditions that are necessary for consciousness to exist and actually to
come about. It is almost completely unusable in a spatially inWnite and
essentially uniform (K # 0) universe because, in such a universe, any
conWguration of material that might occur by chance will occur some-
where, so that even very unfavourable conditions for conscious life would
be allowed by the principle; see §28.6. It is, in my opinion, a much more
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optimistic possibility that these fundamental constants are actually math-
ematically determinable numbers. In a spatially inWnite universe, this need
not raise signiWcant problems with the anthropic principle.
There is a quite separate important role played by consciousness in

many interpretations of the R part of quantum mechanics, as discussed
in Chapter 29 (particularly §§29.7,8). In fact, almost all the ‘conventional’
interpretations of quantum mechanics ultimately depend upon the pres-
ence of a ‘perceiving being’, and therefore seem to require that we know
what a perceiving being actually is! We recall that the Copenhagen inter-
pretation (viewpoint (a) in §29.1) takes the wavefunction not to be an
objectively real physical entity but, in eVect, to be something whose
existence is ‘in the observer’s mind’. Moreover, at least in one of its
manifestations, this interpretation requires that a measurement be an
‘observation’, which presumably means something ultimately observed
by a conscious being—although at a more practical level of applicability,
the measurement is something carried out by a ‘classical’ measuring ap-
paratus. This dependence upon a classical apparatus is only a stopgap,
however, since any actual piece of apparatus is still made of quantum
constituents, and it would not actually behave classically—even approxi-
mately—if it adhered to the standard quantum U evolution. (This is
simply the issue of Schrödinger’s cat;—see §§29.7–9 and §§30.10–13.) The
issue of environmental decoherence (viewpoint (c) in §29.1) also provides
us with merely a stopgap position, since the inaccessibility of the infor-
mation ‘lost in the environment’ does not mean that it is actually lost, in an
objective sense. But for the loss to be subjective, we are again thrown back
on the issue of ‘subjectively perceived—by whom?’ which returns us to the
conscious-observer question.
In any case, even with environmental decoherence, if we retain rigorous

adherence to U evolution for the ‘true’ quantum description of the
universe, then we are driven to the many-worlds description of reality
(viewpoint (b) in §29.1). The many-worlds viewpoint is manifestly depend-
ent upon having a proper understanding of what constitutes a ‘conscious
observer’, since each perceived ‘reality’ is associated with an ‘observer
state’, so we do not know what reality states (i.e. ‘worlds’) are allowed
until we know what observer states are allowed. Put another way, the beha-
viour of the seemingly objective world that is actually perceived depends
upon how one’s consciousness threads its way through the myriads of
quantum-superposed alternatives. In the absence of an adequate theory of
conscious observers, the many-worlds interpretation must necessarily
remain fundamentally incomplete (see §29.8).25

The consistent-histories approach (viewpoint (d) in §29.2) is also expli-
citly dependent upon some notion of what an ‘observer’ might be (the
notion referred to as an IGUS in the Gell-Mann–Hartle scheme26). The
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point of view suggested by Wigner (a version of viewpoint (f) in §29.2) that
consciousness (or perhaps living systems generally) might violate U evolu-
tion is also one which makes explicit reference to the role of the mind (or
whatever constitutes an ‘observer’) in the interpretation of quantum mech-
anics. As far as I can make out, the only interpretations that do not

necessarily depend upon some notion of ‘conscious observer’ are that of
de-Broglie–Bohm (viewpoint (e) in §29.2)27 and most of those (viewpoints
(f) in §29.2) that require some fundamental change in the rules of quantum
mechanics, according to which U and R are both taken to be approxima-
tions to some kind of objectively real physical evolution.
As I have stated in many places in this book (particularly in Chapter

30), I am an adherent of this last view, where it is with gravitational
phenomena that an objective R (i.e. OR) takes over from U. This gravita-
tional OR would take place spontaneously, and requires no conscious
observer to be part of the process. In usual circumstances, there would
be frequent manifestations of OR occurring all the time, and these would
lead to a classical world emerging on a large scale, as an excellent approxi-
mation. Accordingly, there is no need to invoke any conscious observer in
order to achieve the reduction of the quantum state (R) when a measure-
ment takes place.
On the other hand, I envisage that the phenomenon of consciousness—

which I take to be a real physical process, arising ‘out there’ in the physical
world—fundamentally makes use of the actual OR process. Thus, my own
position is basically the reverse of those referred to above, in which, in one
way or another, it is envisaged that consciousness is responsible for the R

process. In my own view, it is a physically real R process that is (partly)
responsible for consciousness!.28

Is this contention experimentally testable? I believe that it is. In the Wrst
place, there are speciWc suggestions about the structures in the brain which
might be directly relevant—most particularly, A-lattice neuronal microtu-
bules as originally suggested by Stuart HameroV

29 (but perhaps also other
structures, like synaptic clathrins,30 whose structure closely resembles the
C60 molecules)—and there is considerable scope for conWrming/refuting
these speciWc ideas. The scheme would require some kind of large-scale
quantum coherence, acting broadly across considerable regions of the
brain (having features in common with high-temperature superconduct-
ivity;31 see §28.1), and it is envisaged that A-lattice neuronal microtubules
would play an important part in this, where a conscious event would be
associated with a partial state reduction (orchestrated OR) of this quan-
tum system. This would normally involve many diVerent parts of the brain
together, in order to achieve suYcient coherent movement in protein
molecules to eVect gravitational OR in accordance with the proposal
described in §§30.11,12.
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There is an ingenious suggestion that has been put forward by Andrew
Duggins, according to which such conjectured ideas—though not speciWc
to the microtubule hypothesis—might be tested. This suggestion depends
upon the fact that quite diVerent regions in the brain are responsible for
diVerent aspects of perception (such as the visual perceptions of motion, of
colour, or of shape), yet in the image that consciousness comes up with, all
these diVerent aspects come together to form a single image. This is
sometimes referred to as the binding problem. Duggins’s idea is to test to
see whether there are signiWcant violations of Bell’s inequalities involved in
the forming of a conscious image, indicating the presence of non-local
EPR-type occurrences (§§23.3–5), which would strongly suggest that large-
scale quantum eVects are part of conscious perception. Preliminary results
are so far inconclusive, but with some encouraging aspects.32

Whatever the status of these ideas, it seems to me that a ‘fundamental’
physical theory that lays claim to any kind of completeness at the deepest
levels of physical phenomena must also have the potential to accommo-
date conscious mentality. Some people would try to evade (or belittle) this
problem, arguing that consciousness simply ‘emerges’ as some sort of
‘epiphenomenon’. Accordingly, so it would be claimed, there is no import-
ance, for the emergence of consciousness, in the precise type of physics
that happens to underlie the relevant (not necessarily biological) processes.
A standard position is that of computational functionalism, according to
which it is merely computational activity (of some suitable but yet unspe-
ciWed nature) that gives rise to conscious mentality. I have argued strongly
against this view (partly using reasoning based on Gödel’s theorem and the
notion of Turing computability—see §16.6), and I have indeed suggested
that consciousness actually depends upon the missing (gravitational)
OR theory.33 My arguments demand that this missing theory must be a
non-computational theory (i.e. its actions lie outside the scope of Turing-
machine simulation, §16.6). Theoretical ideas for producing an OR model
of this type are in a very preliminary stage, at present, but possibly there
are some clues here.

34.8 Our long mathematical road to reality

I hope that it is clear, from the discussion given in the preceding sections
that our road to the understanding the nature of the real world is still a
long way from its goal. Perhaps this goal will never be reached, or perhaps
there will eventually emerge some ultimate theory, in terms of which what
we call ‘reality’ can in principle be understood. If so, the nature of that
theory must diVer enormously from what we have seen in physical theories
so far. The most important single insight that has emerged from
our journey, of more than two and one-half millennia, is that there is a
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deep unity34 between certain areas of mathematics and the workings of the
physical world, this being the ‘Wrst mystery’ depicted in Figs. 1.3 and 34.1.
If the ‘road to reality’ eventually reaches its goal, then in my view there
would have to be a profoundly deep underlying simplicity about that end
point. I do not see this in any of the existing proposals.
This ancient Greek insight that it is mathematics that underscores the

workings of physical reality has served us extraordinarily well, and I hope
that I have made it clear that, despite our distance from our intended goal,
we have come to an remarkably impressive understanding of the oper-
ations of the universe at the deepest levels that we know. Certain math-
ematical concepts stand out as having been particularly successful in the
past. Among these are the real number system and the ideas of geometry.
Initially it was the Euclidean geometry, Wrst systematically studied by the
ancient Greeks, but then the ideas developed away from the geometry
of Euclid to that of Lambert, Gauss, Lobachevski, Bolyai, Riemann,
Beltrami, and others. Then Minkowski told us to incorporate time with
space, and Einstein presented us with his magniWcent curved spacetime
geometry of general relativity. The integral and diVerential calculus of
Archimedes, Fermat, Newton, Leibniz, Euler, Cauchy, Cartan, and many
others, and also the related ideas of diVerential equations, integral equa-
tions, and variational derivatives, have proved to be absolutely vital for
the successful theories describing the workings of the world, these ideas
having linked with geometry in profoundly important ways. Fundamental
also, have been the statistical ideas that enable us to handle large and
complicated physical systems of hugely numerous individual ingredients,
as Maxwell, Boltzmann, Gibbs, Einstein, and others have taught us.
Mathematics profoundly underlies quantum theory, from the matrix-
theory ideas of Heisenberg to the complex Hilbert spaces, CliVord alge-
bras, representation theory, inWnite-dimensional functional analysis, etc.
of Dirac, von Neumann, and many others.
I should like to single out just two particular aspects of the mathematics

that underlies our understanding of the workings of the world, discussing
each of these in turn, for I believe that they may hint at important but
largely unadressed questions of principle in our physical theory. The Wrst is
the role of the complex-number system, which we Wnd to be so fundamental
to the operations of quantum mechanics—as opposed to the real-number
system, which had provided the foundation of all successful previous
theories. The second is the role of symmetry, which has a central import-
ance in virtually all 20th-century theories, particularly in relation to the
gauge-theory formulation of physical interactions.
First, consider the complex numbers. It has been a recurring theme of

this book that there is not only a special magic in the mathematics of these
numbers, but that Nature herself appears to harness this magic in weaving
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her universe at its deepest levels. Yet, we may well question whether this is
really a true feature of our world, or whether it is merely the mathematical
utility of these numbers that has led to their extensive use in physical
theory. Many physicists would, I believe, lean towards this second view.
But, to them, there is still something of a mystery—needing some kind of
explanation—as to why the role of these numbers should appear to be so
universal in the framework of quantum theory, underlying, as they do, the
fundamental quantum superposition principle and, in a somewhat diVer-
ent guise, the Schrödinger equation, the positive-frequency condition, and
the inWnite-dimensional ‘complex structure’ (§26.3) that comes about
in quantum Weld theory. To such physicists, the real numbers seem ‘nat-
ural’ and the complex numbers ‘mysterious’. But from a purely mathemat-
ical standpoint, there is nothing especially more ‘natural’ about the real
numbers than the complex numbers. Indeed, in view of the somewhat
magical mathematical status of the complex numbers, one might well
take the opposite view and regard them as being distinctly more ‘natural’
or ‘God-given’ than the reals.
From my own peculiar standpoint, the importance of complex

numbers—or, more speciWcally, the importance of holomorphicity (or
complex analyticity)—in the basis of physics is indeed to be viewed as a
‘natural’ thing, and the puzzle is indeed perhaps the other way around.35

How is it that real structures seem to play such an important part in
physics? It should be made clear that even the standard formalism of
quantum mechanics, although based on complex numbers, is not an
entirely holomorphic theory. We see this in the usual requirement that
quantum observables be descibed by Hermitian operators (or even normal
ones, as described in §22.5) and in the unitary (rather than simply complex-
linear) nature of quantum evolution—these depending upon the notion of
complex conjugation (z 7! �zz). Related to this, the important property
of orthogonality between states is a non-holomorphic notion. The
Hermitian property has to do with the usual (but not entirely necessary)
demand that the results of measurements be real numbers, and the unitar-
ity, that ‘probability be conserved’, i.e. that the squared-modulus rule (also
to do with measurements) is maintained, whereby a complex amplitude z

be converted to a probability, in accordance with the non-holomorphic
operation

z 7! �zzz:

We see that it is basically in the conversion of ‘quantum information’ (i.e.
quanglement—see §23.10) into ‘classical information’ (measurement prob-
ability) where quantum holomorphicity is broken. The orthogonality of
alternatives is again a crucial feature of measurement. Thus, non-
holomorphicity seems to enter just at the point where measurements are
introduced into quantum theory.
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Of course, we see the role of real numbers also in the background
spacetime within which the formalism of quantum theory is placed. If
gravitational OR turns out to be the true basis of quantum state reduction,
then we shall see the real-number (non-holomorphic) structure of actual
spacetime relating to that of the operation z 7! �zzz. Perhaps there is some
lesson for twistor theorists here, with the theory’s particular reliance on
holomorphic operations? Perhaps, on the other hand, we should be seek-
ing a role for discrete combinatorial principles somehow emerging out of
complex magic, so ‘spacetime’ should have a discrete underlying structure
rather than a real-number based one (as discussed in §§3.3,5, §32.6, and
§33.1)? In any case, I believe that there are deep matters of importance,
here, concerning the very mathematical basis of physical reality.
Now let us turn to the fundamental role of symmetry in modern physical

theory. There is no doubt about the utility of this notion. Both relati-
vity theory (in relation to the Lorentz group) and quantum theory make
highly signiWcant use of it. But are we to regard symmetry as fundamental
to Nature’s ways, or an incidental or approximate feature?
It seems to be a tenet of many of the modern approaches to particle

physics to take symmetry as being indeed fundamental, and to regard the
presently seen deviations from symmetry as a feature of symmetry break-
ing in the early universe. Indeed, as noted in §13.1 and §§15.2,4, exact
symmetry is a necessary feature of the bundle-connection idea. Moreover,
we recall from §§25.5,8 that the standard attitude to electroweak theory is
to regard the U(2) symmetry as being fundamentally exact, so that it can
indeed play a role as the gauge symmetry of the electroweak forces
(§§15.1,8), but where it is normally envisaged that the symmetry is broken
spontaneously (about 10�12 seconds after the Big Bang). We recall from
§28.3 that there are certain diYculties with invoking the early universe to
provide the needed symmetry breaking. This applies to the U(2) symmetry
of electroweak theory and also to the much larger symmetries that are
employed in GUT theories.
Do the large symmetry groups of GUT theories really simplify our

picture of particle physics? Or would it be simpler if many of these
apparent symmetries were fundamentally broken right from the start?
From this second alternative perspective (which is indeed a consistent
one even for electroweak theory; see §28.3), many of the symmetries that
we perceive in our fundamental theories would really be only approximate
at the fundamental level, and we must search more deeply for an under-
standing of where these apparent symmetries come from.
In ordinary quantum theory we have examples of both types of broken

symmetry. There are well-understood situations in which spontan-
eous symmetry breaking manifestly does occur, such as with supercon-
ductivity (U(1) breaking) and other phenomena. On the other hand, there
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are examples where symmetry ideas can be used to provide an excellent
understanding of a phenomenon, but where it is known that the symmetry
is only an approximation, arising from a more exact but less symmetrical
deeper underlying theory, such as in the classiWcation of atomic spectra.36

It remains to be seen which of these two types of situation will have greater
importance in a more profound future theory of particle physics.37

As a related point of interest, there are circumstances where an exact
symmetry group can come about even with structures where no symmetry
is initially imposed. We see this with the Riemann sphere itself, which we
can imagine being pieced together from patches of the complex plane in a
speciWc way that lacks any symmetry whatsoever. But, provided that the
topology of the resulting complex manifold is indeed S2, we Wnd that it is
equivalent to the Riemann sphere, as a complex manifold (by a theorem of
Riemann), so its symmetry group is exactly SL(2, C), i.e. the non-reXective
Lorentz group (§18.5), no matter how irregularly it is pieced together.38

There is a somewhat related question concerning the mysterious pure-
number constants of Nature (§31.1). Are these numbers determined in the
extremely early universe (such as with the Wheeler/Smolin-type proposal
referred to in §28.6), in analogy with the symmetry-breaking idea? Indeed,
some of these constants, like the Cabibbo and Weinberg angles (§25.7) are
normally taken to arise in just this kind of way. Or might these numbers
actually be mathematically determined from some deeper underlying
theory? The latter would be my own personal preference, but we do not
seem to be close to having a believable theory of this kind.39

An interesting question, in relation to this, is the chiral asymmetry of
weak interactions (§25.3). In the normal approach to the standard model,
this chiral asymmetry is built in to the framework of the theory. But
neutrinos (at least most of them) are now observed to be massive particles
(i.e. with non-zero rest-mass), and this fact already represents a deviation
from the original standard electroweak model. One cannot simply ‘blame’
a left-handed neutrino for all the chiral asymmetry of weak interactions. A
massive neutrino is not entirely a left-handed ‘zig’ particle since, with
mass, it would also have a right-handed ‘zag’ part (see §25.2). One could
imagine that, in some forms of the standard model (slightly extended so
thatmassive neutrinos are incorporated) therewas a spontaneous symmetry
breaking from a previously left/right symmetric model. But in this instance
it is the ‘conventional’ perspective that the asymmetry is there right from
the start, rather than arising from a spontaneous symmetry breaking in the
early universe.
We might also contemplate whether time-asymmetry (as demanded

from the discussion of Chapters 27 and 28) is an issue that should be re-
examined from this perspective. However, it certainly cannot arise from a
conventional ‘spontaneous symmetry breaking in the early universe’. The

1037

Where lies the road to reality? §34.8



conventional picture makes use of the Second Law of thermodynamics; it
cannot be used to derive it.

34.9 Beauty and miracles

Let us now turn to somemore general andmysterious aspects of the mathe-
matics that has been found to underlie physical theory at its deepest
levels—at least at such deep a level as has been revealed to us so far.
Two powerful internal driving forces have strongly inXuenced the direc-
tion of theoretical research, yet which usually go unmentioned in serious
scientiWc writings—for fear, no doubt, that these inXuences may seem to
have drifted too far from the strict rules of proper scientiWc procedure. The
Wrst of these is beauty, or elegance, and I have touched upon the matter in
many places elswhere in this book. The second, namely the irresistible
allure of what are frequently termed ‘miracles’, I have only hinted at so far
(in §19.8, §21.5, and §31.14); yet, as I can vouch from personal experience,
these can indeed exert a powerful inXuence on the direction of one’s
research.
Before coming to the question of miracles, which are the prime concern

of this section, let us Wrst return to the issue of beauty, since the two are
not unconnected. As indicated above, many of the ideas perceived to have
achieved a major advance in physical theory will also be viewed as com-
pellingly beautiful. There is the undoubted beauty of Euclidean geometry,
which formed the basis of the Wrst profoundly accurate physical theory,
namely the theory of space formulated by the ancient Greeks. A millen-
nium and a half later came the extraordinary elegance of Newtonian
dynamics, with its deep and beautiful underlying symplectic geometry
structure, as later revealed via the Lagrangian and Hamiltonian formal-
isms (§20.4). The mathematical form of Maxwell’s electromagnetism, also,
is indeed exquisite, and there is no doubt of the supreme mathematical
beauty of Einstein’s general relativity. The same can be said of the struc-
ture of quantummechanics and many of its speciWc features. I would single
out the extraordinary mathematical elegance of quantum-mechanical spin,
of Dirac’s relativistic wave equation, and of the path-integral formalism of
QFT as developed by Feynman.
Yet, we may question whether the undoubted mathematical beauty in

these schemes is something that would shine independently, simply as pure
mathematics, had it not been for the remarkable fact that they accord so
well with the workings of our universe? How would they stand comparison
as just mathematical structures with some of the gems or beacons of pure
mathematics? I believe that they would stand up rather well, but not
overwhelmingly so. There are many bodies of pure mathematics, with
no discernable relations to the physical world, whose beauty equals or
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even exceeds that of the physical theories that we have yet come across.
(See also §16.2.)
Let us consider some deep and beautiful developments in mathematics,

where the inXuence on physics—so far at least—has beenminimal. Cantor’s
theory of the inWnite is one noteworthy example. In my opinion, it is one of
the most profoundly beautiful mathematical contributions in the whole of
mathematical history. However, extraordinarily little of it seems to have
relevance to the workings of the physical world as we know it (see
§§16.3,4,7). The same issue arises in relation to another of the monumental
achievements of mathematical understanding, a closely related descendent
of Cantor’s theory of the inWnite, namely Gödel’s famous incompleteness
theorem (§16.6). Also, there are the wide-ranging and deep ideas of category
theory (§33.1) that have yet seen rather little connection with physics.
In these last two areas there is some plausible indication that there might

be some signiWcant relation to a physics that could develop in the 21st
century (§34.7, §33.1), but this is very speculative. It seems a good deal less
plausible for some important connection with physics to transpire for the
vast majority of profound and beautiful other mathematical theories that
have been developed. Consider, for example, the remarkable 20th-century
achievement of Andrew Wiles in establishing the truth of the assertion,
of over 350 years standing, known as ‘Fermat’s Last Theorem’. This
seems to be very remote from physical laws, as we understand them today,
despite the magniWcent mathematical ideas involved. Many other marvel-
lous developments took place in the 20th century, such as the classiWcation
of simple groups, both continuous and discrete. Here there have certainly
been applications to physics, but this is far from saying that the theory of
simple groups provides us with a ‘physical theory’. It is just that the
mathematical classiWcations are helpful to physicists in enabling them to
see what the possibilities are. Consider another example. The 19th century
saw Riemann’s exquisite theory of the z-function and its relation to the
distribution of prime numbers. This seems almost equally remote from
physics, despite the undoubted beauty and great mathematical importance
of the still unproved Riemann hypothesis (§7.4). In fact, there are some
intriguing connections with physics here,40 but it would be hard to main-
tain that Riemann’s theory provides us with anything resembling a model
of the physical world.
Are we to expect that there will be a close relationship to a greater body

of profound and beautiful mathematics in the physics of the future? Or are
we being misled by the successes that we have so far seen in physical theory
into believing that the relation between mathematics and physics is closer
than it actually is? The question can be succinctly phrased in terms of
Fig. 1.3. How much of the Platonic mathematical world lies at the base of
the arrow that depicts the ‘Wrst mystery’?
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We may also ask whether there may be any way of perceiving what kind
of mathematics it is that Wnds a deep role in governing the behaviour of the
physical world? That is an intriguing issue. Perhaps the crucial underlying
factors governing the mysterious relation between mathematics and phys-
ics will be better understood at some future date.
I hope that considerations such as the above make it clear to the reader

that mathematical beauty is, by itself, an ambiguous guide at best. Yet, as
I have remarked at many earlier places in this book, it is hard to doubt the
remarkable role that aesthetic judgements play, both mathematical and
physical, in making decisions as to the most fruitful lines to follow in
research into theoretical physics. Most of these are of a subtle character,
and it is easy to believe that it is a highly personal matter which of several
alternatives is judged to be the most attractive one to follow. Occasionally,
however, something can arise, in research into mathematical theories of
the physical world, which has a much more powerful impact on such
choices than mere mathematical elegance, and this is what I refer to as a
‘miracle’.
I can think of many examples of such things in recent history of

‘quantum gravity’ ideas. One of these was in supergravity theory (§31.2)
where it was found that, whereas the perturbative approach to the QFT of
standard Einstein general relativity theory led to non-renormalizable di-
vergences at the second order, when supersymmetry was introduced, the
divergent terms miraculously cancelled out.41 This cancellation involved
large numbers of terms, and for a time it was thought by many super-
gravity researchers that this apparent ‘miracle’ of cancellation was a signal
that the theory was on the right track, so that renormalizability was
therefore to be expected at all orders—and the true quantum-gravity
theory would, accordingly, soon be revealed! Unfortunately for the super-
gravity researchers when they were able to complete the third-order calcu-
lation, non-renormalizable divergences returned. This led to higher-
dimensional considerations, but things stagnated for a while. Then, in
the late 1990s, supergravity was revived as part of the route leading to
M-theory, as described in §§31.4,14.
I am sure that string theory and M-theory have themselves been guided

by a great many such miracles. Surely one of the most important was the
discovery of mirror symmetries whereby the puzzling collection of appar-
ently quite diVerent string theories, as described in §31.14, received strong
indications that they could be united into one grand scheme referred to as
‘M-theory’. These mirror symmetries acted like magic, and numbers that
had previously seemed to have little to do with one another were found to
be the same, such as was the case for the calculations performed by
Candelas and his colleagues, as described in §31.14. This certainly qualiWes
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as a miracle, in the sense that I am using the term here. I feel sure that
when the number 31,7206,375, as obtained in Candelas’s calculation using
mirror symmetry, was Wnally conWrmed by the algebraic geometers, then
this was hailed as a miracle, providing convincing evidence that the new
string/M-theory must be on the right lines! Whether or not that turns out
to be the case, this ‘miracle’ certainly provided excellent support for the
mathematical aspects of the mirror-symmetry idea. Indeed, much pure-
mathematical interest in this issue has subsequently been stimulated, and a
good pure-mathematical understanding of much of what is involved has
now been obtained.42

Are such apparent miracles really good guides to the correctness of an
approach to a physical theory? This is a deep and diYcult question. I can
imagine that sometimes they are, but one must be exceedingly cautious
about such things. It may well be that Dirac’s discovery that his relativistic
wave equation automatically incorporated the electron’s spin seemed like
such a miracle, as had Bohr’s use of angular momentum quantization to
obtain the correct atomic spectrum of hydrogen, and likewise Einstein’s
realization that his approach to gravity through the curved space of
general relativity actually gave the correct answer for the perihelion
motion of Mercury—which had puzzled astronomers for over 70 years
previously. But these were clearly appropriate physical consequences of the
theories that were being put forward, and the miracles supplied impressive
conWrmation of the respective theories. It is less clear what the force of the
purely mathematical miracles is, such as in the case of supergravity or
mirror symmetry. When Wnally a mathematical understanding of a miracle
of this mathematical kind is obtained, there is the possibility that this may,
to some degree, provide a ‘debunking’ of the miracle in question. Even so,
this may not completely remove the psychological force of the miracle
itself, which must always be viewed in its appropriate historical setting.
One thing is certain, however, and that is that such mathematical

miracles cannot always be a sure guide. During the course of my own
studies of twistor theory, I have come across several diVerent pieces of
encouragement that would seem to come under the heading of ‘miracles’ in
the sense that I am using this term here. The discovery (§33.8) that
homogeneous functions of single twistors generate general solutions of
the massless Weld equations was one such, and the non-linear graviton
construction of §33.11 was another. How strong an indication are these
that twistor theory is ‘on the right lines’? Again one must be cautious. I
have no wish to make a comparison between the miracles of twistor theory
with those of string theory. But they cannot both be unambiguous sign-
posts, because, as pointed out in §33.14, the two theories are, as they stand,
incompatible with each other!
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Yet, these comments apply only to what I understand to be the state of
these theories ‘at the moment’. Some exciting-looking developments that
have occurred only within the past several months could completely
overturn the conclusion that I seem to have come to in my Wnal remarks
in the previous paragraph. These are some highly innovative applications
of string-theoretic ideas in the context of twistor theory due, primarily, to
EdwardWitten43 (and I have referred to these brieXy in §31.18 and §33.14).
In these developments, the string theory is applied to standard four-
dimensional spacetime physics and is concerned with the kind of Yang–
Mills interactions that are likely to be of direct relevance to actual particle
interactions, thereby representing a substantial break with the form of
string theory that I was referring to in the previous paragraph. How is this
achieved? Essentially, it is done by regarding the ‘target space’ into which
the Riemann surfaces of string theory are to be mapped as being not a
Calabi–Yau complex 3-manifold (§31.14), which had been invoked to
supply the ‘extra spatial dimensions’ of ‘standard’ string theory, but as
the complex 3-maniford which is projective twistor space PT (a CP

3; see
§33.5). As we have seen, twistor geometry explicitly refers to ordinary
4-dimensional spacetime, and there are no ‘extra space dimensions’! As
these new ideas have been described, there is still some supersymmetry
involved, and this supersymmetric version of PT can actually be regarded
as a kind of ‘Calabi–Yau space’. (This is so that a certain ‘anomaly’ cancels
out—but it seems to me that the necessity of such anomaly
cancellation may possibly be over-rated, and perhaps the supersymmetry
is not really needed.) As these new ideas stand, the Riemann surfaces are
taken to have genus 1 (see §8.4) i.e. they are Riemann spheres.44 This
enables some appreciable contact to be made with a good deal of earlier
twistor theory, in which ‘string’ ideas had been previously involved.45

If string theory can become changed like this, in what appears to me to
be a very substantial way, what physical relevance do the ‘miracles’ of that
theory then have? It would be my guess that they could indeed have some
signiWcant (albeit indirect) relevance, and that some greater understanding
of what is ‘going on behind the scenes’ (as is suggested in Richard Tho-
mas’s remarks quoted in §31.18) might possibly come more readily to light.
Can one extract what is powerful in string theory and remove it from a
necessary dependence on spacetime supra-dimensionality? Possibly so.
What appears to be true, in essence, is that there is something deep in
the idea of a quantum Weld theory based on the mappings of Riemann
spheres into complex manifolds46 (or perhaps also the mappings of Rie-
mann surfaces of higher genus) and this kind of thing could still have
relevance in this newer context, the complex manifold being (projective)
twistor space. But exactly what is really going on appears still to be largely
a mystery.
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34.10 Deep questions answered, deeper questions posed

Issues such as those described in the preceding several sections are far from
answered within present-day physical understanding, and we may hope
that important light will be shed on them in a future physics in the 21st
century. But if we look back to see what we had already achieved in our
understanding at the end of the 20th century, the human race may justly
feel some considerable pride. A great many questions that had been
profoundly puzzling—and sometimes terrifying—to the ancients have
found answers, and it is frequently possible to act in a positive way, in
the light of these answers. Many of the terrors of disease now cause no
fear, not only because of modern drugs (where scientiWc method has been
invaluable), but where early diagnosis by use of modern technology (X
rays, ultrasound, tomography, etc.) can be used, as well as sophisticated
physical treatments (radiation, lasers, etc.). Often this technology depends
upon deep understandings from physics that were not available to the
ancients. The same type of understanding has given us many other things,
such as hydroelectricity, electric lighting, modern materials that serve as
protection against the elements, telecommunications such as television
and mobile telephony, computer technology, the internet, modern trans-
portation in its various forms, and numerous other aspects of our modern
lives.
Many of these developments certainly depend directly upon physics in

one form or another. Moreover, the basic rules of chemistry, as under-
stood today, are also fundamentally physical ones (in principle if not in
practice)—mainly coming from the rules of quantum mechanics. Biology
is a good deal further from being reducible to physical laws, but we have
no reason to believe (consciousness apart) that biological behaviour is not,
at root, purely dependent upon physical actions that we now basically
understand. Accordingly, biology seems also to be ultimately controlled
by mathematics.
Consider, for example, the miraculous way in which a seed can develop

into a living plant, where the superb structure of each plant is similar in
great detail to each of the others that come from the same type of seed.
There is deep underying physics here, since the DNA that controls the
growth of the plant is a molecule, the persistence and reliability of its
structure depending crucially upon the rules of quantum mechanics (as
Schrödinger famously pointed out in 1967, in his very inXuential little
book What is Life?47). Moreover, the plant’s growth is ultimately con-
trolled by the same physical forces that govern the individual particles of
which it is composed. The relevant ones are mainly electromagnetic in
origin, but the strong nuclear force is vital in determining what nuclei are
possible, and therefore what kinds of atoms there can be.

1043

Where lies the road to reality? §34.10



The weak force too, plays its role in phenomena that we see on a large
scale, and it is remarkable how, despite its weakness (only about 10�7 of
the strength of the strong force and 10�5 of the strength of electromagnet-
ism), this force can result in some of the most dramatic events that have
been experienced by mankind. For it is the weak force that is, through
radioactive decay in the Earth’s interior, largely responsible for the heating
of the Earth’s magma. In particular, volcanic eruptions are its legacy.
There was a period of a few years in the Earth’s history, starting from
about 535AD when there were world-wide famines and uncharacteristic-
ally cold weather, owing to a virtually continuous cover by dust that had
been thrown out in an enormous volcanic explosion. The volcano was
probably the same object as Krakatoa, near Java which seems to have
erupted cataclysmically in 535, and did so again (but not quite so vio-
lently) in modern times in 1883.
Possibly even more dramatic to its civilized onlookers was the volcanic

explosion that destroyed the island of Thera (Santorini), which would
have been easily visible from Crete, some 100 miles to the south of it, in
about 1628 BC. It wiped out the civilized community on Thera itself and
was probably ultimately responsible for the subsequent downfall of the
peaceful and cultured society of Knossos in Crete, where the famed
labyrinth of Daedalus was said to be located at its Great Palace.48 It has
been persuasively argued that the destruction of Thera may well have been
the source of the legend of Atlantis.49 Perhaps we may take some comfort
in the fact that some of the cataclysms of the past may have also ultimately
spawned the growth of new advances that might not have taken place
otherwise. (The most dramatic of these was the global annihilation of the
dinosaurs, which allowed the mammalian development leading ultimately
to human beings—though this seems to have been an astreoid collision
rather than volcanic activity.) Did the extraordinary development of an-
cient Greek culture in the millennium following the destruction of Thera
owe anything to that catastrophic volcanic event?
It is perhaps even more striking that the most violent explosions seen in

the universe are caused by the weakest force of all—if it is fair to call it a
force—namely gravitation (only about 10�40 of the electric force, in a
hydrogen atom, and about 10�38 of the strength of the weak force),
where black holes fuel the unbelievably powerful energy sources of
quasars. But their distance from us is so great that, as seen from the
Earth, the brightest quasar, 3C273 is only about 10�6 of the brightness
of the nearby star Sirius, despite the quasar’s extraordinary power. Indeed,
as we examine the sky, on a clear and peaceful night, although we may feel
awe at the immensity of the universe, we in fact perceive only the minutest
fraction of its enormous scale. The most distant objects visible to the
naked eye (the Andromeda galaxy) is only a puny 10�3 of the distance
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to 3C273 and about 10�4 of the distance out to the edge of the observable
universe!
The spacetime singularities lying at cores of black holes are among the

known (or presumed) objects in the universe about which the most pro-
found mysteries remain—and which our present-day theories are power-
less to describe. As we have seen in §§34.5,7,8, particularly, there are other
deeply mysterious issues about which we have very little comprehension. It
is quite likely that the 21st century will reveal even more wonderful
insights than those that we have been blessed with in the 20th. But for
this to happen, we shall need powerful new ideas, which will take us in
directions signiWcantly diVerent from those currently being pursued. Per-
haps what we mainly need is some subtle change in perspective—some-
thing that we all have missed . . . .
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Epilogue

Antea, a postdoctoral student of physics, came from a small town in
southern Italy, and she possessed remarkable artistic as well as mathemat-
ical talents. She stared at the clear night sky through a large eastward
window of the Albert Einstein Institute in Golm, near Potsdam, Germany.
This prestigious research institute had been set up at the end of the 20th
century close to where Einstein had once owned a holiday cottage. A good
part of the research was concerned with the vexed issue of ‘quantum
gravity’ which attempts to unify the principles underlying Einstein’s gen-
eral relativity with those of quantum mechanics—a mystery at the very
basis of the laws of the world.
This was the direction of Antea’s own research, but she was a new-

comer, and she had some unorthodox and not yet fully formed ideas as to
how to proceed, some of which were fundamentally at variance with those
of her colleagues. That night, she had continued to work well into the
small hours, in the institute’s upper library, at a time when all the others
had long left for their beds. She had been studying some old research
pertaining to gigantic energy emissions taking place at the centres of some
galaxies. It is indeed fortunate, she thought to herself, that the Earth and
solar system are nowhere close to any of these, else they would be, in
entirety, almost instantly vaporized. The established explanation of these
stupendous explosions is that each is powered by a black hole of immense
proportions.
Antea knew that a black hole is a spacetime region in whose interior lies

a structure known as a ‘spacetime singularity’—whose scientiWc descrip-
tion was still profoundly elusive, and which depends upon the still missing
theory of quantum gravity. But Antea’s real interest was not so much with
galactic black holes as with an even more monstrous explosion: the explo-
sion to end all explosions—or, rather, the one that began them all—known
as the ‘Big Bang’. She mused that it was the origin of all things good as
well as of all things bad. Yet the spacetime singularity in the big bang
provided mysteries even greater than those in black holes. Antea knew that
at the root of these mysteries lay the secret of how to unite Einstein’s large-
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scale theory of space, time, and gravity with the quantum-mechanical
principles of physics.
It was a peaceful night and the stars were unmistakably clear. For a

while Antea stood in a pensive state, with folded arms resting on the
balustrade over the staircase, staring at the patterns of the stars through
the large window—she did not know for how long. She always felt awe as
she contemplated, in that vast seeming hemispherical dome, the great
distance of those tiny pinpricks of light, though it counted but little
compared to the greater enormity of cosmological scales. Yet, she
mused, if some cosmic explosion were to become visible to her now, no
matter how far away, its little photons would have experienced no time at
all in reaching her. The same would apply to the tiny gravitons produced
in the explosion, some of which might be felt by the Institute’s gravita-
tional wave detector near Hannover about 250 km away. She felt moved
by the thought that she would in eVect be in immediate direct contact with
that explosive event . . .
As she stood there looking to the east, she was startled by a momentary

and unexpected streak of green light, just as the dawn was about to come
upon her, whereupon the deep red of the Sun broke through. The phe-
nomenon of the ‘green Xash’ and its well-established physical explanation
were known to her, but she had never actually witnessed it before and it
created in her a strange emotional eVect. This experience mingled with
some puzzling mathematics thoughts that had been troubling her through-
out the night.
Then an odd thought overtook her . . .

An Ancient Theorem and a Modern Question Epilogue
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Diósi, L. (1989). Models for universal reduction of macroscopic quantum fluctu-

ations. Phys. Rev. A40, 1165–74.
Dicke, R. H. (1961). Dirac’s Cosmology and Mach’s Principle. Nature 192,

440–1.
Dicke, R. H. (1981). Interaction-free quantum measurements: A paradox?

Am. J. Phys. 49, 925.
Dicke, R. H., Peebles, P. J. E., Roll, P. G., and Wilkinson, D. T. (1965). Cosmic

Black-Body Radiation. Astrophys. J. 142, 414–19.
Dine, M. (2000). Some reflections on Moduli, their Stabilization and Cosmology.

[hep-th/0001157]
Dirac, P. A. M. (1928). The quantum theory of the electron. Proc. Roy. Soc. Lond.

A117, 610–24; ibid, part II, A118, 351–61.
Dirac, P. A. M. (1932). Proc. Roy. Soc. A136, 453.
Dirac, P. A. M. (1933). The Lagrangian in Quantum Mechanics. Physicalische

Zeitschrift der Sowjetunion, Band 3, Heft 1.
Dirac, P. A. M. (1937). The Cosmological Constants. Nature 139, 323.
Dirac, P. A. M. (1938). A new basis for cosmology. Proc. R. Soc. Lond. A165,

199.

Bibliography

1057



Dirac, P. A. M. (1950). Generalized Hamiltonian dynamics. Can. J. Math. 2, 129.
Dirac, P. A. M. (1964). Lectures on Quantum Mechanics. Yeshiva University, New

York.
Dirac, P. A. M. (1966). Lectures in Quantum Field Theory. Academic Press, New

York.
Dirac, P. A. M. (1982a). The Principles of Quantum Mechanics 4th edn. Clarendon

Press, Oxford.
Dirac, P. A. M. (1982b). Pretty mathematics. Int. J. Theor. Phys. 21, 603–5.
Dirac, P. A. M. (1983). The Origin of Quantum Field Theory. In The Birth of

Particle Physics (ed. Brown and Hoddeson). Cambridge University Press,
New York.

Dixon, G. (1994). Division Algebras, Quaternions, Complex Numbers and the
Algebraic Design of Physics. Kluwer Academic Publishers, Boston.

Dodelson, S. (2003). Modern Cosmology. Academic Press, London.
Dolan, L. (1996). Superstring twisted conformal field theory: Moonshine, the

Monster, and related topics. (South Hadley, MA, 1994). Contemp. Math.
193, 9–24.

Donaldson, S. K. and Kronheimer, P. B. (1990). The Geometry of Four-Manifolds.
Oxford University Press, Oxford.

Douady, A. and Hubbard, J. (1985). On the dynamics of polynomial-like map-
pings. Ann. Sci. Ecole Norm. Sup. 18, 287–343.

Dowker, F. and Kent, A. (1996). On the consistent histories approach to quantum
mechanics. J. Stat. Phys. 82. [gr-qc/9412067]

Drake, S. (1957). Discoveries and Opinions of Galileo. Doubleday, New York.
Drake, S. (trans.) (1953). Galileo Galilei: Dialogue Concerning the Two Chief World

Systems—Ptolemaic and Copernican. University of California, Berkeley.
Dray, T. and Manogue, C. A. (1999). The Exceptional Jordan Eigenvalue Prob-

lem. Int. J. Theor. Phys. 38, 2901–16, [math-ph/99110004].
Dunajski, M. (2002). Anti-self-dual four-manifolds with a parallel real

spinor. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458(2021), 1205–22.
du Sautoy, M. (2004). The Music of the Primes. Perennial, New York.
Dunham, W. (1999). Euler: The Master of Us All. Math. Assoc. Amer., Washing-

ton, DC.
Dyson, F. J. (1966). Symmetry groups in nuclear and particle physics: a lecture-note

and reprint volume. W. A. Benjamin, New York.
Eastwood, M.G., Penrose, R., and Wells, R.O., Jr. (1981). Cohomology and

massless fields. Comm. Math. Phys. 78, 305–51.
Eddington, A. S. (1929a). The Nature of the Physical World. Cambridge Univer-

sity Press, Cambridge.
Eddington, A. S. (1929b). A Symmetrical Treatment of the Wave Equation. Proc.

R. Soc. Lond. A121, 524–42.
Eddington, A. S. (1946). Fundamental Theory. Cambridge University Press,

Cambridge.
Edwards, C.H. and Penney, D.E. (2002). Calculus with Analytic Geometry. Pren-

tice Hall; 6th edition.
Ehrenberg, W. and Siday, R. E. (1949). The refractive index in electron optics and

the principles of dynamics. Proc. Phys. Soc. LXIIB, 8–21.
Ehrenfest, P. and Ehrenfest, T. (1959). The Conceptual Foundations of the Statis-

tical Approach in Mechanics. Cornell University Press, Ithaca, NY.
Eilenberg, S. and Mac Lane, S. (1945). General theory of natural equivalences.

Trans. Am. Math. Soc. 58, 231–94.

Bibliography

1058



Einstein, A. (1925). S. B. Preuss. Akad. Wiss. 22, 414.
Einstein, A. (1945). A generalization of the relativistic theory of gravitation. Ann.

Math. 46, 578.
Einstein, A. (1948). A generalized theory of graritation. Rev. Mod. Phys. 20, 35.
Einstein, A. (1955). Relativistic theory of the non-symmetric field. In Appendix II:

The Meaning of Relativity, 5th ed., pp. 133–66. Princeton University Press,
Princeton, NJ.

Einstein, A. and Kaufman, B. (1955). A new form of the general relativistic field
equations. Ann. Math. 62, 128.

Einstein, A. and Straus, E. G. (1946). A generalization of the relativistic theory of
gravitation II. Ann. Math. 47, 731.

Einstein, A., Podolsky, P., and Rosen, N. (1935). Can quantum-mechanical
description of physical reality be considered complete? In Quantum
Theory and Measurement (ed. J. A. Wheeler and W. H. Zurek). Princeton
University Press, Princeton, New Jersey, 1983; originally in Phys. Rev. 47,
777–80.

Elitzur, A. C. and Vaidman, L. (1993). Quantum mechanical interaction-free
measurements. Found. Phys. 23, 987–97.

Elliott, J. P., and Dawber, P. G. (1984). Symmetry in Physics, Vol. 1. Macmillan,
London.

Ellis, J., Mavromatos, N. E., and Nanopoulos, D. V. (1997a). Vacuum fluctu-
ations and decoherence in mesoscopic and microscopic systems. In Sympo-
sium on Flavour-Changing Neutral Currents: Present and Future Studies.
UCLA.

Ellis, J., Mavromatos, N. E., and Nanopoulos, D. V. (1997b). Quantum decoher-
ence in a D-foam background. Mod. Phys. Lett. A12, 2029–36.

Engelking, E. (1968). Outline of General Topology. North-Holland & PWN,
Amsterdam.

Everett, H. (1957). ‘Relative State’ formulation of quantum mechanics. In Quan-
tum Theory and Measurement (ed. J. A. Wheeler and W. H. Zurek). Princeton
University Press, Princeton, New Jersey, 1983; originally in Rev. Mod. Phys.
29, 454–62.

Fauvel, J. and Gray, J. (1987). The History of Mathematics: A Reader. Macmillan,
London.

Ferber, A. (1978). Supertwistors and conformal supersymmetry. Nucl. Phys. B132
55–64.

Fernow, R. C. (1989). Introduction to Experimental Particle Physics Cambridge
University Press, Cambridge.

Feynman, R. P. (1948). Space-time approach to nonrelativistic quantum mechan-
ics. Rev. Modern Phys. 20, 367–87.

Feynman, R. P. (1949). The theory of positrons. Phys. Rev. 76, 749.
Feynman, R. P. (1987). Elementary Particles and the Laws of Physics: The 1986

Dirac Memorial Lectures. Cambridge University Press, Cambridge.
Feynman, R. P. and A. Hibbs. (1965). Quantum Mechanics and Path Integrals.

McGraw-Hill, New York.
Fierz, M. (1938). Uber die Relativitische Theorie kräftefreier Teichlen mit belie-
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Nantes 5–9 Juin 2000. Groupement de Recherche 1151 du CNRS. [gr-qc/
0103056]

Kay, B. S. and Wald, R. M. (1991). Theorems on the uniqueness and thermal
properties of stationary, nonsingular, quasifree states on space-times with a
bifurcate Killing horizon. Phys. Rept. 207, 49–136.

Kelley, J. L. (1965). General Topology. van Nostrand, Princeton, New Jersey.
Kerr, R. P. (1963). Gravitational field of a spinning mass as an example of

algebraically special metrics. Phys. Rev. Lett. 11, 237–8.
Ketov, S. V. (2000). Quantum Non-Linear Sigma-Models: From Quantum Field

Theory to Supersymmetry, Conformal Field Theories, Black Holes, and
Strings. Springer-Verlag, Berlin, London.

Kibble, T. W. B. (1979). Geometrization of quantum mechanics. Commun. Math.
Phys. 65, 189.

Kibble, T. W. B. (1981). Is a semi-classical theory of gravity viable? In Quantum
Gravity 2: A Second Oxford Symposium (ed. C. J. Isham, R. Penrose, and
D. W. Sciama), pp. 63–80. Oxford University Press, Oxford.
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ical Logic, 1879–1931. Harvard University Press, Cambridge, MA.

van Kerkwijk, M. H. (2000). Neutron Star Mass Determinations. [astro-ph/
0001077]

Varadarajan, M. (2000). Fock representations from U(1) holonomy algebras.
Phys. Rev. D61, 104001.

Varadarajan, M. (2001). M. Photons from quantized electric flux representations.
Phys. Rev. D64, 104003.

Veneziano, G. (1968). Nuovo Cimento. 57A, 190.
Vilenkin, A. (2000). Cosmic Strings and Other Topological Defects. Cambridge

University Press, Cambridge.
von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics.

Princeton University Press, Princeton, New Jersey.
Wald, R. M. (1984). General Relativity. University of Chicago Press, Chicago.

Bibliography

1078



Wald, R. M. (1994). Quantum Field Theory in Curved Spacetime and Black Hole
Thermodynamics. University of Chicago Press, Chicago.

Ward, R.S. and Wells, R.O., Jr. (1989). Twistor Geometry and Field Theory.
Cambridge University Press, Cambridge.

Weinberg, S. (1967). A model of leptons. Phys. Rev. Lett. 19, 1264–66.
Weinberg, S. (1989). Precision Tests of Quantum Mechanics. Phys. Rev. Lett. 62,

485–8
Weinberg, S. (1992). Dreams of a Final Theory: The Scientists Search for the

Ultimate Laws of Nature. Pantheon Books, New York.
Werbos, P. (1989). Bell’s theorem: the forgotten loophole and how to exploit. In

Bell’s Theorem, Quantum Theory, and Conceptions of the Universe (ed.
M. Kafatos). Kluwer, Dordrecht, The Netherlands.

Wells, R. O. (1991). Differential analysis on complex manifolds. Prentice Hall,
Englewood Cliffs.

Werbos, P. J. and Dolmatova, L. (2000). The Backwards-Time Interpretation of
Quantum Mechanics: Revisited With Experiment. [http://arxiv.org/ftp/quant-
ph/papers/0008/0008036.pdf]

Wess, J. and Bagger, J. (1992). Supersymmetry and Supergravity. Princeton Uni-
versity Press, Princeton.

Weyl, H. (1928). Gruppentheorie und Quantenmechanik. Hirzel, Leipzig; English
translation of 2nd edn, The Theory of Groups and Quantum Mechanics.
Dover, New York.

Weyl, H. (1929a). Z.Phys. 56, 330.
Weyl, H. (1929b). Elektron und Gravitation I. Z. Phys. 56, 330–52.
Wheeler, J. A. (1960). Neutrinos, Gravitation and Geometry: contribution to Rendi-

conti della Scuola Internazionale di Fisica’ Enrico Fermi-XI, Corso, July 1959.
Zanichelli, Bologna. (Reprinted in 1982.)

Wheeler, J. A. (1965). Geometrodynamics and the issue of the final state. In
Relativity, Groups and Topology (ed. B. S. and C. M. DeWitt). Gordon and
Breach, New York.

Wheeler, J. A. (1975). Assessment of Everett’s ‘Relative State’ Formulation of
Quantum Theory. Rev. Mod. Phys. 29, 463–65.

Wick, G. C. (1956). Spectrum of the Bethe-Salpeter equation. Phys Rev. 101, 1830.
Wigner, E. P. (1960). The Unreasonable Effectiveness of Mathematics. Commun.

Pure Appl. Math. 13, 1–14.
Wilder, R. L. (1965). Introduction to the foundations of mathematics. John Wiley &

Sons, New York.
Wiles, A. (1995). Modular elliptic curves and Fermat’s Last Theorem. Ann. Maths

142, 443–551.
Williams, R.K. (1995). Extracting X-rays, g-rays, and Relativistic e�eþ Pairs from

Supermassive Kerr Black Holes Using the Penrose Mechanism. Phys. Rev.
D51, 5387.

Williams, R.K. (2002). Production of the High Energy–Momentum Spectra of
Quasars 3C279 and 3C273 Using the Penrose Mechanism. [astro-ph/
0306135]. Accepted for publication in Astrophysical Journal, 2004.

Williams, R.K. (2004). Collimated Escaping Vortical Polar e�eþ Jets Intrinsically
Produced by Rotating Black Holes and Penrose Processes. [astro-ph/
0404135].

Willmore, T. J. (1959). An Introduction to Differential Geometry. Clarendon Press,
Oxford.

Wilson, K. (1975). Phys. Reps. 23, 331.

Bibliography

1079



Wilson, K. (1976). Quarks on a lattice, or the colored string, model. Phys. Rep.
23(3), 331–47.

Winicour, J. (1980). Angular momentum in general relativity. In General Relativ-
ity and Gravitation Vol. 2 (ed. A. Held), pp. 71–96. Plenum Press, New York.

Witten, E. (1981). A new proof of the positive energy theorem. Comm. Math.
Phys. 80, 381–402.

Witten, E. (1982). Supersymmetry and Morse theory. J. Diff. Geom. 17, 661–92.
Witten, E. (1988). Topological quantum field theory. Commun. Math. Phys. 118,

411.
Witten, E. (1995). String theory in various dimensions. Nucl. Phys. B443, 85.
Witten, E. (1996). Reflections on the Fate of Spacetime. Phys. Today, April 1996.
Witten, E. (1998). Anti de Sitter Space and Holography. [hep-th/9802150]
Witten, E. (2003). Perturbative Gauge Theory as a String Theory in Twistor

Space. [hep-th/0312171]
Witten, L. (1959). Invariants of general relativity and the classification of spaces.

Phys. Rev. 113, 357–62.
Woodhouse, N. M. J. (1991). Geometric Quantization , 2nd edn. Clarendon Press,

Oxford.
Woodin, W. H. (2001). The Continuum Hypothesis. Parts I & II. Notices of

the AMS. Available online at: http://www.ams.org/notices/200106/fea-
woodin.pdf

Wooters, W. K. and Zurek, W. H. (1982). A single quantum cannot be cloned.
Nature 299, 802–3.

Wykes, A. (1969). Doctor Cardano: Physician Extraordinary. Frederick Muller,
London.

Yang, C. N. and Mills, R. L. (1954). Conservation of Isotopic Spin and Isotopic
Gauge Invariance. Phys. Rev. 96, 191–5.

Yui, N. and Lewis, J. D. (2003). Calabi-Yau Varieties and Mirror Symmetry.
Fields Institute Communications, V. 38. American Mathematical Society,
Providence, RI.

Zee, A. (2003). Quantum Field Theory in a Nutshell. Princeton University Press,
Princeton.

Zeilinger, A., Gaehler, R., Shull, C. G., and Mampe, W. (1988). Single and double
slit diffraction of neutrons. Rev. Mod. Phys. 60, 1067.

Zel’dovich Ya, B. (1966). Number of quanta as an invariant of the classical
electromagnetic field. Soviet Phys.-Doklady 10, 771–2.

Zimba, J. and Penrose, R. (1993). On Bell non-locality without probabilities: more
curious geometry. Stud. Hist. Phil. Sci. 24, 697–720.

Zinn-Justin, J. (1996). Quantum Field Theory and Critical Phenomena. Oxford
University Press, Oxford.

Bibliography

1080



Index

Page numbers in italic, e.g. 921, refer to figures.

1-forms 186, 191–3
density 230–1
n-manifolds 223

Abel, Niels Henrik 249
Abelian groups 249
absolute function 104–5
accumulation points 234
actual numbers 51–2
Adams, W. S. 466
ADS/CFT (Maldacena) conjecture 920–2,

921
affine parameters 304–5, 305, 319
affine spaces 292, 414
Aharonov–Bohm effect 453–4, 454
Ahmavaara, Y. 357, 958
Alexander polynomial 944
algebra, geometrical representation of 86–90,

86
alpha (a) decay 633
amplitudes 541
analytic continuation 130–3
analytic functions 113–14
Anderson, Carl 625
angular frequency 157
angular momentum 550, 954

Newton’s formulation 432–4
relativistic quantum angular

momentum 566–70, 568
twistors 979

annihilation operators 658–9, 659
annulus of convergence 159–60, 159
anomalies 819
anthropic principle 757–62, 759, 1030–1
anti-de Sitter space 748–9, 749, 750
antiholomorphic functions 908
antilinearity 282, 284
antineutron 628
antiparticles 66–7, 609–10, 628

positrons 622–5, 625, 637
quantum field theory (QFT) 662–4
quantum fields 610–12, 612
travelling backwards in time 639

antipodal points 208

antiprotons 67, 628
antisymmetry 286–7
Argand, Jean Robert 81
Aristotelian physics 383–5, 384, 385
Ashtekar, Abhay 935
Ashtekar variables 953

chiral input 935–8
form 938–41, 939, 940

Ashtekar–Rovelli–Smolin–Jacobson theory
of loop variables 363

quantum gravity 941–43, 942, 943, 952–3
associative laws of addition and

multiplication 199, 248
asymptote 45, 45
axioms 10, 28

axiom of choice 14–15, 366, 366

Baez, John 955
Banach–Tarski theorem 366–7
Barbero–Immirzi parameter 940, 952
bare charges 677–8
baryons 645

number in the universe 728
base space 328
Becquerel, Henri 628
Bekenstein, Jakob 824
Bekenstein–Hawking formula 715, 716, 824,

918, 952
Bell, John S. 583, 802
Bell inequalities 582–5
Beltrami, Eugenio 39, 40, 45–6
beta (b) decay 633–6, 634, 635
Bianchi identity 302–3, 303
Bianchi symmetry 302, 303, 320
Big Bang 643, 702–7, 703

see also universe, early development
anthropic principle 762–5
microwave background radiation 704, 727,

1024
point of origin 722
specialness 726–32

Big Crunch 719–20, 728, 729
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