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Preface

During the 1995 Society for American Archaeology (SAA) Meetings in
Minneapolis, Minnesota, I caught up with my old friend Konnie Wescott, who
happened to be presenting a paper in a general session I was attending on
Information Management and Remote Sensing. It appeared that our research
interests had crossed paths again. While attending Northern Illinois University in
the late 1980s, we had both worked at the site of Copan, Honduras, under Dr.
William Fash, and now we found ourselves pursuing work tied to the many
facets of geographic information systems (GIS).

Konnie had continued her affiliation with Argonne National Laboratory. As a
principal investigator, she discovered the myriad of potential applications of GIS
in archaeology, whether it be for predictive modeling, cultural resources
management, or, even more generally, the environmental planning and
management of both natural and cultural resources. I was coming in from a more
technical direction, having worked at Fort Bliss, Texas, researching the
relationship of archaeological sites with the dynamic desert landscape.

We outlined a plan of attack for the remainder of the meeting by which the
two of us would be able to cover most of the GIS papers being presented. In the
afternoons we would meet to discuss the pros and cons of the papers we had seen.

By Saturday afternoon we were both exhausted, and disappointed. With the
exception of a few papers, it seemed the current use of GIS in archaeology was
limited to including this catchy buzzword in the title of the presentations. We
found that archaeologists, instead of using GIS as a tool to explore human
interaction with the prehistoric and historic landscape, utilized GIS for nothing
grander than “gee-whiz” visualization of data.

Konnie and I reflected on how little direction there was for this potentially
useful tool. We were also concerned about a possible backlash to the poorly
represented application of this technology. If it became the norm to use GIS as a
catchphrase to draw people to a paper with little GIS substance, those
archaeologists with potential interest in the technology might leave with a bitter
taste in their mouths. The lessons of the 1970s when statistics came to center
stage in archaeology were fresh in our minds. During its heyday, statistics had
been waved above archaeologists’ heads as an “answer” to dealing with a



multitude of archaeological problems. In the end, after much yelling and arm-
waving, most agreed that statistics were not an answer in themselves but, like
GIS, an extremely important tool available for archaeological use.

That afternoon, slumped on a bench, as we watched the number of brown
corduroy jackets with patches on their sleeves dwindle, we decided that for the
1996 SAAs we would organize a focused GIS symposium. Together we
hammered out the idea to bring together more than just a catch-all symposium on
GIS. Our symposium would be tightly focused on a theme with broad
implications in archaeological research for both the academic and commercial
worlds: predictive modeling. From the outset we orchestrated this symposium to
be directed towards generating a publication on GIS uses for predictive modeling.
We both felt that the archaeological community would benefit from a book with
a narrower and more clearly defined focus. We also believed that by presenting
GIS as what it is, a useful and robust tool, and not an answer in and of itself, we
could help steer GIS applications in archaeology on a more solid course. Nor did
it hurt our motivation when we realized the meetings would be in New Orleans
at the end of Bourbon Street.

The symposium at the New Orleans SAAs in 1996 was well received. Our
plan not to become mired in introductions as to what GIS is, or the intricacies of
each particular GIS software and hardware product, was appealing to both the
participants and the audience. This focused structure allowed the presentations to
concentrate on the application and caveats when using GIS for predictive
modeling. These concepts, such as significance of specialized layers, data
development concerns, and theoretical considerations, provided the audience
with a solid grasp of the important issues archaeologists need to address and
work with in predictive modeling. Because of this tight focus on the real and
long-term implications of GIS predictive modeling, we feel that the chapters in
this book represent a robust body of research that will be as useful to
archaeology in twenty years as it is today. This volume addresses the important
issues of understanding and applying GIS and predictive modeling to the
landscape.

R.JOE BRANDON
Fayetteville, Arkansas

xi



Acknowledgments

We would like to thank all of the contributors to this volume (Kathleen Allen,
David Asch, Kristen Beckman, David Bennett, Galen Burgett, Tim Church, Luke
Dalla Bona, Richard Duncan, James Ebert, Jon Hageman, Jim Kuiper, and
Robert Warren) for their participation and cooperation in this project. They have
been a pleasure to work with and are all outstanding researchers. Although we
were unable to present the work of Patricia Hansell and Anthony Ranere here,
we would like to thank them for their participation in the symposium and to wish
them well with their interesting research in Panama. We would like to thank Fred
Limp for his thought-provoking discussion at the 1996 SAAs. We would also
like to thank Taylor & Francis for this opportunity to share some of our thoughts
and research with the academic and scientific community.

Konnie L.Wescott
R.Joe Brandon



CHAPTER ONE
Introduction

KONNIE L.WESCOTT

Geographic information systems (GIS) offer archaeologists an exciting and
powerful research tool destined to have as profound an effect on the field of
archaeology as did the introduction of carbon dating in the 1950s.
Archaeological data is spatial and temporal in nature, and therefore especially
suited to the basic principles driving the development and use of GIS. Until
recently, archaeologists had to cope with hand-drawn maps and cumbersome
paper databases which were difficult to integrate and manipulate. However,
widespread commercial development of GIS software and easy access to
powerful desktop (and even laptop) computers have enabled archaeologists to
view and manipulate their data in a medium that reflects its complex origins
without being prohibitively complex to use.

GIS is proving itself to be a powerful and efficient managerial tool for spatial
data sets, allowing the land or resource manager the ability to access, analyze,
and interpret large amounts of archaeological data in a fraction of the time
previously required. When archaeological data sets are combined with
ecological, hydrological, geological, and other data, an even more impressive
land management planning tool is created. Less likely to be constrained by
resource management and planning issues, academic archaeologists are using
GIS to develop innovative approaches for analyzing data or, in most cases, to
apply traditional methods to large data sets previously considered too complex
and time-consuming to tackle. The ability to integrate multiple layers of
information simultaneously is also providing research archaeologists with a new
means for interpreting prehistoric and historic landscapes. GIS is emerging as a
fundamental component of archaeological method, and is likely to have an
increasing impact on archaeological theory.

Several books have now been published on GIS and archaeology (Allen et al.
1990; Gaffney and Stan′ i′  1991; Lock and Stan′ i′  1995; Maschner 1996) or
related topics (Reilly and Rhatz 1992; Aldenderfer and Maschner 1996). These
books provide a great deal of background information on GIS technology and
concepts and demonstrate the wide range of possible archaeological or
anthropological applications. As interest in GIS continues to expand and as
members of the archaeological community become familiar with the basic



principles of GIS, the opportunities to publish more specialized material increase
as well. With this book we chose to focus on a specific, yet widespread, practical
application of GIS for archaeology, predictive modeling.

Predictive modeling is not a new endeavor in archaeology, and the topic in and
of itself has generated a great deal of methodological and theoretical controversy
over the years. However, predictive modeling continues to generate a great deal
of interest, especially now with the computer tools that have been made available
(Carr 1985; Kohler and Parker 1986; Judge and Sebastian 1988; Kvamme 1992).
It is our intent with this book to provide the reader with a “toolkit” with which to
approach the complexities of predictive modeling using a GIS. Each chapter in
this book offers one or more concept(s) as part of the toolkit.

The first several chapters in the book focus on models that have been
developed. These chapters provide the toolkit with methodological information
and a number of lessons learned about what worked and what did not and what
potential pitfalls to watch out for. Robert Warren and David Asch (Chapter 2)
lead the series of modeling chapters with a brief introduction to predictive
modeling and a comprehensive description of their model’s methods and results.
The thoroughness with which the authors have written this chapter makes it a
must-read for future modelers and a key component of the modeling toolkit.
Cross-validation testing of their logistic regression model’s predicted site
locations indicates that the predictions are approximately 73% accurate, an
improvement of up to 51% over a random or chance classification.

Richard Duncan and Kristen Beckman (Chapter 3) address the formulation of
a GIS modeling process by which the archaeological sensitivity of several areas
can be determined despite differing geographic locations. Although the model is
similar to, that employed by Warren and Asch, its use within a cultural resource
management context adds another dimension to the model. Duncan and Beckman
discuss the “disturbance factor” which takes site preservation into account
beyond site presence or absence. The authors also introduce the interesting
variable of solar insolation into their GIS model.

Konnie Wescott and James Kuiper (Chapter 4) also work within a cultural
resource management framework that extends beyond locating sites to
determining where sites are most likely to be adversely affected by a given
action. The authors use a GIS predictive model which focuses on frequencies of
unique combinations of variables in an area largely unsurveyed (and to some
extent unsurveyable without incurring some additional risk and cost). This
method relies more heavily on available data within a larger geographical area,
but less on nonsite locations than the logistic regression models used by Warren
and Asch and Duncan and Beckman. Wescott and Kuiper also address the need
to adjust the model based on site type due to differences in environmental
conditions favorable to particular site types. The authors describe the benefits of
using GIS beyond just modeling site locations, including the benefits of
combining GIS and modeling in the greater context of resource planning and
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management. To this end, the potential for linking environmental impact models
to the results is also mentioned.

The last of the modeling chapters is by Luke Dalla Bona (Chapter 5). Dalla
Bona continues with the resource planning theme, as his chapter discusses the
use of GIS predictive modeling for forest management plans in Ontario, Canada.
The chapter provides a detailed look at the research and development of the
archaeological models that will serve as a resource management tool in all new
forest management plans for an area encompassing 45 million hectares. The need
to communicate effectively using these models is stressed. Once a model is
generated it must be interpreted and presented in a way that the land-use planners
or others, most of whom are nonarchaeologists, can quickly understand. The
planners want to know how the archaeological potential might affect proposed
activities within the forest and what can be done about it. Clear explanation of
model results and the explicit identification of management options is the means
by which cultural resources can be successfully protected.

The chapters by Kathleen Allen (Chapter 6) and Jon Hageman and David
Bennett (Chapter 7) focus on two serious considerations to be taken into account
when developing a predictive model using GIS: issues of scale and choosing the
proper digital elevation model, or DEM.

Allen’s chapter (Chapter 6) uniquely identifies and elaborates on the issue of
scale, whether it be global, regional, or local, with respect to modeling
settlement patterns. In addition to reviewing a number of unpublished GIS
studies on the Iroquois, Allen compares global patterning with regional and local
patterning using an example from the Lake Cayuga watershed in central New
York. She discusses an additional important consideration, the need to pay
careful attention to the spatial resolution of the data so that it coordinates with
the chosen scale of analysis.

Digital elevation models (DEMs) provide an important data set for use with
GIS in creating an archaeological predictive model as they affect critical
variables such as elevation, slope, and aspect. However, these models are not
useful if the data inaccurately reflects the landscape. Hageman and Bennett
(Chapter 7) discuss the implications of using the wrong DEM and how these
pitfalls can be avoided. Four DEM interpolation methods are described and a
case study is used to illustrate how one might go about choosing the proper DEM
for a given terrain.

The last two chapters of the book switch gears yet again and discuss some of
the theoretical implications of GIS and predictive modeling, or, more accurately,
the implications of the current perceived lack of theory. Both chapters suggest
quite strongly that there is a tremendous need to use a critical eye when
evaluating other models and when developing one’s own approach.

James Ebert (Chapter 8) critically discusses the application of GIS for
archaeological predictive modeling, focusing primarily on what, in his opinion, are
common mistakes modelers tend to make. His unique perspective is likely to elicit

INTRODUCTION 3



lively discourse regarding both commercial and academic archaeological
applications of predictive modeling and GIS in the future.

Tim Church, R.Joe Brandon, and Galen Burgett (Chapter 9) discuss how the
way archaeologists look at and interpret the past is being revolutionized and
freed from many of the constraints of analytical methods which trace their
origins to half a century ago. They discuss the importance for archaeologists,
while at this crossroads, to take a minute to critically examine their approach to
using GIS for analysis. Many modern uses of GIS, while innovative, in these
authors’ opinion are merely allowing archaeologists to automate modeling
activities that were once done by hand. In this chapter, the authors argue that
archaeologists need to take a long, hard look at what goals they ultimately want
to achieve. If the goal is simply to automate modeling and perform statistical
analyses of probable site locales, then that goal is very close to being achieved.
However, if archaeologists want to take this technology to the next level of analysis
and, in the fashion of classic scientific methods, begin to generate testable
hypotheses which will serve as the foundation for a robust body of theory, then
they must delve into other disciplines, such as landscape ecology, to derive a
more holistic view of the landscape. By using GIS as a means to generate and test
hypotheses, managers and modelers alike will have a new and more powerful
tool at their disposal to create even more accurate models of prehistoric land use.

In conclusion, the body of literature on GIS and predictive modeling is
growing. Our intent with this book is to provide the reader with a basic toolkit of
things to consider when embarking on a GIS predictive modeling project. This
volume is certainly not, nor is it intended to be, all-encompassing. Hopefully, it
is sufficient to start the many wheels out there turning. A substantial dialogue,
innovative and critical thinking, and a great deal of experimentation are what it will
take to realize the true potential of GIS.
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CHAPTER TWO
A Predictive Model of Archaeological Site
Location in the Eastern Prairie Peninsula

ROBERT E.WARREN AND DAVID L.ASCH

A geographic information system (GIS) was used to create a high-
resolution predictive model of prehistoric archaeological site location
in a poorly drained upland prairie region of central Illinois. The
model is based on a logistic regression analysis of sample data using
qualitative and quantitative measures of the natural environment as
independent variables. Cross-validation testing indicates that the
model’s predictions are about 73% accurate and represent a gain of
up to 51% over a random or chance classification. Sites are most
probable along the margins of wooded stream valleys and on the
crests of well-drained knolls in the upland prairies. In contrast, site
probabilities are low across extensive tracts of flat to gently
undulating prairies. The modeled distribution of settlement appears
to reflect complex prehistoric strategies of resource use, but it also
could have been affected by geomorphic processes of landscape
evolution. The model’s predictive capabilities may be a useful tool
for modern land managers and development planners in the area.

2.1
INTRODUCTION

The Prairie Peninsula was a mosaic of tall-grass prairie and deciduous forest that
existed historically in the midwestern United States (Transeau 1935). In central
Illinois, the Prairie Peninsula environment consisted of extensive prairies on flat
upland landforms and narrow strips of woodland along stream valleys (Anderson
1970). Aquatic and forest resources were clustered along the valleys, while
grassland resources were more widely dispersed.

The prairie-forest mosaic presented interesting challenges and opportunities for
human settlement. During the 1700s and early 1800s Native American and Euro-
American farmers commonly settled along the ecotone between prairie and
forest. Here they had ready access to water, timber, pasture, and tillable soil
(Faragher 1986; Klippel 1976). The open prairies were less suitable for



settlement; they lacked wood for fuel and building material, they were
susceptible to fire, and prairie sod was difficult to cultivate before John Deere’s
invention of the steel plow. Also, many prairies were poorly drained and became
seasonal marshes in spring and early summer. Wet prairies were valued for their
great flocks of migratory waterfowl, but they were not fit for cultivation until the
advent of artificial drainage systems in the late 1800s (Winsor 1975).

Evidently, most prehistoric settlement in the eastern Prairie Peninsula focused
on the forested river valleys. The largest and most complex settlements were
located in and along major valleys, and site densities appear to be highest there
as well (Bareis and Porter 1984; Brown 1981). We know far less about
prehistoric settlement in the upland prairies, despite the fact that the prairie
biome historically covered more than 60% of Illinois landforms (Iverson et al.
1989). If we are to understand patterns of human land use throughout the state, we
must study the uplands as well as the valleys. Recent archaeological surveys in
central Illinois have shown that upland resources did attract settlement
throughout the Holocene (Ferguson and Warren 1991; Klippel and Maddox 1977;
Warren 1995). However, patterns of upland land use appear to vary from region
to region, and much remains to be learned.

In this chapter we examine prehistoric site distributions in an upland prairie
area of central Illinois (Figure 2.1). We describe a formal predictive model of
site location developed for the area using a geographic information system (GIS)
and logistic regression analysis. The model is based on archaeological data from
a systematic survey and environmental data obtained from maps.

2.2
PREDICTIVE MODELING

Predictive models are tools for projecting known patterns or relationships into
unknown times or places. Such models are potentially useful in archaeology.
Archaeologists have documented only a fraction of the millions of sites in the
New World, while thousands of sites are destroyed each year to make way for
ongoing land development. One way to help us understand and protect these sites
is to create formal models capable of predicting where they are located.

Predictive modeling emerged only recently as an important component of
archaeological research (Carr 1985; Kohler 1988; Kohler and Parker 1986). An
underlying key to the success of these models is the fact that archaeological sites
tend to recur in environmental settings favorable to human settlement. Predictive
models take advantage of such redundancies; they exploit contrasts between the
environmental characteristics of places where sites do and do not occur. With
appropriate data it is possible to make predictions from a relatively small sample
of known locations to a much broader area.

Most archaeological predictive models rest on two fundamental assumptions:
first, that the settlement choices made by ancient peoples were strongly
influenced or conditioned by characteristics of the natural environment; second,
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that the environmental factors that directly influenced these choices are
portrayed, at least indirectly, in modern maps of environmental variation across
an area of interest. Given these assumptions, it is possible to develop an empirical
predictive model for any particular area, as long as the area has been adequately
sampled by archaeological surveys. Several criteria can be used to judge the
adequacy of surveys, the most important of which is that they consistently
distinguish between locations where sites are present and locations where sites
are absent (sites versus nonsites, respectively).

The distinction between sites and nonsites is essential, as it provides a
framework within which probabilities can be calculated (Kvamme 1983). This
may be done by computing a statistical classification model that capitalizes on
the measurable environmental differences between the two groups. Such models
make it possible to predict the probability that a site occurs at a given location
simply by measuring an appropriate set of environmental variables. A successful
predictive model is one that minimizes classification errors (site versus nonsite)
to such an extent that it offers a substantial gain in accuracy over null models
arising from chance alone.

The practical benefits of predictive models stem from the fact that they can be
applied to extensive unsurveyed tracts of land where the actual locations of sites
and nonsites are not known. Predicted distributions are useful in a variety of
ways. First, they provide archaeologists not only with images of the patterns of
prehistoric settlement in an area, but also with evidence of the most important
environmental determinants of site location. Second, they provide land managers
with expected distributions of the resources they are charged with protecting.
Conversely, they also provide development planners with preliminary guides to
the places where cultural resources are least likely to be affected by future
construction projects.

Inductive or empirical predictive models are formal devices of pattern
recognition (Kvamme 1990; Warren 1990a). Most such models use statistical
methods to extract from a sample of observations a formal decision rule, a rule
that can be used to predict the composition or characteristics of future samples.
One of the most powerful and widely used of the empirical methods is a set of
procedures called probability models (Aldrich and Nelson 1984). These models
are well suited for predicting the locations of archaeological sites, as they are
designed to predict the responses of either-or situations (site presence versus site
absence) to the interactions of independent variables (environmental
measurements). The predictions themselves are expressed in terms of
probabilities. Probabilities are readily interpretable and easily testable values that
range between 0 (low probability) and 1 (high probability).

As noted by Carr (1985), archaeologists interested in predicting site location
are abandoning the traditional methods of settlement-subsistence research in
favor of procedures that are more appropriate for prediction (Kvamme 1983,
1985, 1988, 1989, 1990, 1992; Limp and Carr 1985; Parker 1985; Scholtz 1981;
Warren 1990a, b). One consequence of this reorientation is a new focus on land
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parcels, rather than sites, as the basic unit of analysis. Other changes include a
more widespread use of probability models, such as logistic regression analysis,
and a healthy expansion of the environmental factors used as independent
variables. Another unavoidable outgrowth of these developments is an increased
reliance on computers—not just for analysis, but also for the collection of raw data
and for the automated creation and measurement of variables. Computer-based
geographic information systems (GIS) are needed to handle the vast amounts of
data required for predictive models (Kvamme 1989; Kvamme and Kohler 1988).

Figure 2.1 Location of the Montgomery study area In west-central Illinois. 
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One of the most powerful and flexible statistical techniques for predictive
modeling is logistic regression analysis (Stopher and Meyburg 1979; Neter et al.
1983; Aldrich and Nelson 1984). In archaeological applications, logistic
regression creates a prediction formula that uses independent environmental
variables of virtually any scale to predict the probability that a site occurs on any
given parcel of land. The formula defines an S-shaped probability curve of group
membership that is oriented along an axis of intergroup discrimination
(Figure 2.2). The axis comprises an interaction of environmental variables that
best discriminates site locations from nonsite locations. 

A logistic regression model can be tested for accuracy by predicting the group
memberships of the locations used to develop the model (training sample).
However, this approach yields overly optimistic results, as training-sample
locations are not independent of the model (Kvamme 1988; Gong 1986). It is more
realistic to run tests using locations that are truly independent of the training
sample, locations that were either unknown at the time of model development or
were randomly withheld from the modeling process (testing sample). In either
case, accuracy is readily measured by calculating the percentages of correct and
incorrect predictions along the probability scale of group membership (Kvamme
1988; Warren 1990a).

2.3
MATERIALS AND METHODS

This chapter describes a predictive model of archaeological site location in the
eastern Prairie Peninsula. The project was supported in part by the Illinois
Department of Energy and Natural Resources, which provided grant funds for
developing predictive models of archaeological and paleontological resources in
Illinois (Oliver et al. 1987; Warren et al. 1987).

2.3.1
Environmental setting

The study area is located in the northern panhandle of Montgomery County,
Illinois (Figure 2.1). The panhandle occupies an interstream divide between the
headwaters of Macoupin Creek, which drains to the west, and tributaries of the
Sangamon and Kaskaskia rivers, which drain to the north and south,
respectively.

During the Middle Pleistocene the study area was planed off by a series of
Illinoian glaciers, the last of which retreated from the area by about 132,000
years ago (Johnson 1986). Surficial deposits consist of glacial drift overlain by
about 1.5–2.5 m (5–7.5 ft) of loess. Since the Illinoian glaciation, the landscape
has become submaturely dissected by its drainage networks. Upland landforms
are relatively flat and stream valleys are incised less than 10m (30ft) below the
elevation of the surrounding uplands. Elevations across the study area as a whole
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range from about 180 to 209 m (590 to 685 ft) above mean sea level. Although
the upland surface is relatively featureless, it is crossed by a series of broad,
gently sloping ridges and swales that tend to parallel one another and are oriented
from northeast to southwest. Topographic relief of the ridges and swales is
generally about 3 m (10 ft). The ridge-swale structure is evident on 5-ft interval
contour maps (1:24,000 USGS quadrangles) and also on county soil-survey maps
(Downey and Odell 1969). Ridge soils (e.g., Harrison silt loam, Herrick silt loam)
are moderately well drained to somewhat poorly drained, whereas swale soils
(e.g., Virden silty clay loam) are poorly drained and seasonally experience high-
water-table elevations which are at or near the ground surface (0–0.3 m depth).

The native vegetation of the study area was almost entirely prairie; the only
forests observed by General Land Office (GLO) surveyors in 1818 and 1819
were located in the western part of the area along Macoupin Creek and its
tributaries. Paleoenvironmental records indicate that central Illinois was forested
with cool temperate deciduous forests during the terminal Pleistocene and then
warm temperate deciduous forests during the early Holocene (King 1981).
Prairies evidently did not appear in the area until about 8000 years BP (King

Figure 2.2 Idealized logistic regression of two groups of objects (sites and nonsites)
across two independent variables (X and Y) (after Warren 1990a). The line running
lengthwise through the horizontal scatter of points is the axis that best discriminates sites
from nonsites. The vertical plane is defined by an S-shaped logistic regression line. This
line shows an increase in site-presence probability from left to right along the axis of
discrimination. [LogRegModel.jnb] 
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1981; Webb et al. 1983) or perhaps later (Baker et al. 1992; Chumbley et al.
1990; Wright 1992).

2.3.2
Archaeological survey

The Montgomery County panhandle was selected for archaeological survey
because of its suitability for developing predictive models of archaeological site
location (Asch 1978). The area has a homogeneous environment with “very little
relief, relatively little post-Pleistocene geomorphic change, no large deeply
incised streams, virtually no forest, and a high percentage of cropland favorable
to surface reconnaissance” (Asch 1978:6).

The study area comprises part or all of six congressional townships (T10–
12N, R4– 5W, 3rd PM). It extends about 23 km (14 mi) north-south and 14 km
(9 mi) east-west, and has a surface area of about 322 km2 (126 mi2). This area
was systematically sample-surveyed from 1974 to 1977 in a project directed by
David L.Asch, then of the Northwestern University Archeological Program
(Asch 1975, 1978; Asch et al. 1981). The Asch survey was a stratified
probabilistic sample that covered 13.7 km2 of land, or about 4.3% of the study
area.

Sampling units were widely dispersed (Figure 2.3). They include a series of
square 40-acre (16-ha) quadrats selected at random from the entire study area (21
quadrats, 1.0% of study area), as well as a series of stratified random samples that
often had irregular borders (3.3% of study area). The stratified samples focused
survey activities on four specific environmental zones, including (1) square 40-
acre quadrats containing areas of moderately well-drained prairie soil (14
quadrats); (2) irregular areas of moderately well-drained prairie soil (12 tracts);
(3) linear segments of alluvium-floored valleys along streams (28 tracts); and (4)
linear segments of headwater streams lacking well-defined valleys (8 tracts).

Most of the study area was farmed in the 1970s. The survey was restricted to
cultivated fields with good ground-surface visibility, which, based on survey
data, covered about 95.5% of the panhandle. Surveyors followed traverses
spaced at 15-m (50-ft) intervals and inspected the ground for artifacts and other
traces of prehistoric occupation. Traverse intervals were reduced to about 2.3 m
(7.5 ft) upon the discovery of artifacts. Surface artifacts were flagged before they
were collected to aid in the mapping of site boundaries on aerial photographs.
Sites were defined as concentrations of three or more prehistoric surface artifacts.
Surveyors also mapped find spots yielding isolated cultural debris (1–2 artifacts),
but these locations were excluded from the present analysis.

The survey recorded 59 prehistoric archaeological sites (including 89 distinct
artifact concentrations) ranging in age from terminal Pleistocene to late
Holocene, or during the past 12 000 years (Asch 1978). Five sites covering a total
area of about 1.7 ha (4.2 acres) were discovered in the 21 randomly selected
survey quadrats. Surveyors covered a total land area of 324.8 ha (802.5 acres) in
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the random quadrats, so prehistoric sites in the study area cover only about 0.53%
of the ground surface. On the basis of these data, the a priori probability that a
site occurs at any randomly selected location is p=0.0053.

2.3.3
GIS data and predictive modeling

Development of the Montgomery predictive model was basically a two-step
process (Figure 2.4). The first step was to create digital map coverages of the
area using a GIS. The second step was to create and test a formal predictive
model of site location based on data contained in the digital coverages.

Geographic information systems are integrated systems of computer hardware,
software, and peripheral equipment that can be used to create, process, and
display spatial data (Burrough 1986; Kvamme 1989). We used a GIS running
ARC/INFO software to generate the data needed to create the Montgomery
predictive model (Environmental Systems Research Institute 1986).

The first step in this process was to transfer information from original maps to
computer storage using a coordinate digitizer (Figure 2.4a). The digitized
information included contour lines and stream courses from 7.5' USGS
topographic quadrangles (1:24,000), soil types from county soil surveys (1:15,
840; Downey and Odell 1969), and native vegetation from GLO plat maps (~1:
45,000). We also digitized the archaeological survey data, including the locations
of sites and surveyed areas. For convenience, we use the term nonsite to refer to
surveyed areas lacking evidence of prehistoric settlement. We then edited and
gridded the map images to create a series of primary coverages of elevation,
streams, soils, vegetation, and archaeology. Each of the primary coverages was
then transformed to create a suite of derivative secondary coverages, including
topographic relief, distance to stream, soil drainage, distance to prairie-forest
ecotone, and the locations of sites and nonsites in surveyed areas.

The basic unit of analysis in the Montgomery model was the grid cell. The
grid consisted of a regular lattice of square cells, each measuring 50 m on a side
and representing a land area of 0.25 ha. The survey region as a whole contained
1.3 million cells. The survey sample contained 5,473 cells, including 265 site
cells and 5,208 nonsite cells. Each grid cell in the Montgomery data base was
associated with dozens of numerical codes, including a sequential cell label,
locational coordinates, a utility variable, and codes for each of the secondary
environmental coverages.

The secondary environmental coverages included 24 independent variables
derived from topographic maps, soil maps, and vegetation maps (Table 2.1). A
majority of the variables were ratio scale, although several of the soil and
vegetation coverages were nominal, ordinal, or interval scale (see Blalock 1979;
Warren 1990a).

The topographic variables were derived from a digital elevation model (DEM)
of surface landforms using a series of GIS transformations. The DEM model, in
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turn, was derived from a triangulated irregular network (TIN) interpolation of
elevation contours (Environmental Systems Research Institute 1986). The
secondary topographic coverages included six relief variables, a measure of
surface slope, and a measure of surface aspect (Table 2.1). The relief variables
measured various elevation ranges—including total relief, above-site relief, and
below-site relief—within 100-m and 500-m radius catchments of each grid cell.
For example, a plot of total relief within 500-m catchments (Figure 2.5a)
indicates that relief is highest in the darker areas along creeks and lowest in the
lighter areas of glaciated uplands.

Figure 2.3 Map of the Montgomery study area, showing the distribution of
archaeologically surveyed land areas.
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Stream courses were buffered to create two measures of stream distance:
distance to nearest stream and distance to nearest permanent stream. For the

Figure 2.4 Generalized flow charts of the procedures used (a) to create computer files of
geographical data using a geographic information system (GIS), and (b) to create, test,
and apply probability-based predictive models of archaeological site location from GIS data
sets (after Warren 1990a). 
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purpose of this analysis, permanent streams were defined as watercourses
mapped on 7.5' United States Geological Survey quadrangles with rankings of ′ 3
based on the Strahler (1957) method of stream rank-ordering.

Soil coverages in the study area plot the distributions of 43 distinct mapping
units, including 17 soil series and their various surface-slope and erosional
manifestations. Soils were classified and recombined across such properties as
permeability, drainage, flood frequency, and landform type. For example, a plot
of surface runoff (Figure 2.5b) indicates that runoff is most rapid in the darker
areas along stream valleys and on sloping knolls scattered across the uplands.
The light shading depicts areas of slow to ponded runoff, which are common in
upland swales.

Univariate statistical tests were used to compare the environmental differences,
if any, between site and nonsite locations for each of the variables listed in
Table 2.1. Ratio- and interval-scale variables were tested with the Mann-Whitney
rank-sum statistic; ordinal- and nominal-scale variables were tested with chi-
square or Fisher’s exact test (see Blalock 1979).

In developing the Montgomery predictive model, we used secondary
environmental coverages as independent variables and site presence as the
dependent variable (Figure 2.4b). The model itself was created by applying
logistic regression analysis to a random subsample of site and nonsite locations.
We used simple random sampling to select the nonsite cells and random cluster
sampling to select the site cells.1 The logistic regression program we used (BMD-
PLR) is a stepwise procedure that measures the predictive power of each
independent variable and calculates regressions using only 

Table 2.1 Map sources and environmental variables used to describe sample locations
(sites and nonsites) in the Montgomery study area.

Map source/
variable

Code Scale Measurement
interval

Statistical testa

Topographic maps

Total relief
(dm) in 100-m
catchment

RELIEF 1 Ratio 1 dm Mann**

Total relief
(dm) in 500-m
catchment

RELIEF5 Radio 1 dm Mann**

Above-site
relief (dm) in
100-m
catchment

RELFABO1 Ratio 1 dm Mann**

Above-site
relief (dm) in
500-m
catchment

RELFABO5 Ratio 1 dm Mann**
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Map source/
variable

Code Scale Measurement
interval

Statistical testa

Below-site
relief (dm) in
100-m
catchment

RELFBEL1 Ratio 1 dm Mann**

Below-site
relief (dm) in
500-m
catchment

RELFBEL5 Ratio 1 dm Mann

Surface slope
(% grade)

PCTSLOPE Ratio 1% Mann**

Surface aspect
(deviation
from northerly
aspect)

ASPECT Ratio 1° Mann

Distance to
nearest stream
(m)

STRMDIST Ratio 50m Mann**

Distance to
nearest
permanent
stream (m;
stream rank >3)

PERMDIST Ratio 50m Mann**

County soil maps

Biome of soil
formation

SOLBIOME Nominal — Chi**

Soil landform SOILLAND Nominal — Chi**

Soil parent
material

PARENTMA Nominal — Chi**

Soil moisture
regime

SOILMOIS Nominal — Chi**

Soil drainage DRAINAGE Ordinal — Chi**

Soil
permeability

PERMEABL Ordinal — Chi**

Soil surface
runoff

SURUNOFF Ordinal — Chi**

Soil flood
frequency

FLOODFRQ Ordinal — Chi**

Soil erodibility
(K factor)

ERODIBIL Interval 100 K Mann**

Soil
productivity
(basic
management;
adjusted for

SOILPROD Interval 1 unit Mann**
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Map source/
variable

Code Scale Measurement
interval

Statistical testa

slope and
erosion)

Minimum
depth to
seasonal high
water table
(cm)

WATERTAB Ratio 1cm Mann**

Distance to
closed-
depression soil
(m)

DEPRESDI Ratio 50m Mann

General Land Office plat maps

Native
vegetation
biome

VEGETATN Nominal — Fisher*

Distance to
prairie-timber
ecotone (m)

ECOTDIST Ratio 50m Mann**

a Statistical tests reflect differences between the environmental characteristics of sites
(265 cells) and nonsites (5208 cells) in a survey sample of the Montgomery
study area. Mann is the Mann-Whitney rank-sum test; Chi is the chi-square
test; Fisher is Fisher’s exact test (see Blalock 1979). Asterisks mark the 21
variables for which site and nonsite distributions are significantly different
(*p<0.05; **p<0.001).

the strongest combination of predictors (Engelman 1985). We tested the validity
of the resulting model by measuring the accuracy of its predictions using both a
training sample and a testing sample. The training sample consists of sample
data that went into creating the model; the testing sample is an independent
subset of sample data that was withheld from model development. 

2.4
RESULTS

Univariate statistical tests indicate that site and nonsite locations in the
Montgomery study area tend to occur in different environmental settings. The
differences between sites and nonsites are statistically significant for all but three
of the 24 independent variables created for the analysis (Table 2.1). For example,
frequency distributions of site and nonsite grid cells differ significantly from one
another on the soil-drainage variable (DRAINAGE); sites tend to occur on well-
drained soils, whereas nonsites tend to be poorly drained (Figure 2.6). Given the
many environmental contrasts between sites and nonsites, the Montgomery data
set should be suitable for predictive analysis. 
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We used a training sample of 1,181 grid-cell locations to create the logistic
regression model (Table 2.2). These cells included a random cluster sample of
162 site cells (representing 45 archaeological sites) and a random sample of 1,
019 nonsite cells. The testing sample consisted of 4,292 cells, all of which were
withheld from the process of model development.

The stepwise logistic regression program used F-to-enter scores to evaluate the
predictive power of independent variables and select the most powerful
combination of predictors (Figure 2.7). An assessment of F-to-enter scores at
step 0 (i.e., prior to the inclusion of any variables in the model) showed that 21
of the 24 variables had significant predictive power (p<0.05). The single most
powerful variable at step 0 was topographic relief in 500-m catchments
(RELIEF5), which provided greater 

Figure 2.5 GIS coverages of the Montgomery study area, showing (a) topographic relief
within 500-m radius catchments of each grid cell (RELIEF5), where relief ranges from 0
to 2 m (white shading) to >8 m (black shading); and (b) rate of soil surface runoff
(SURUNOFF), where runoff ranges from ponded/slow (white shading) to rapid (black
shading).
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Table 2.2 Grid-cell composition of the training and testing samples used to develop and
validate the Montgomery predictive model.

Sample Site cellsa Nonsite cells Total

Training sample 162 1019 1181

Testing sample 103 4189 4292

Total 265 5208 5473
a Random cluster samples representing a total of 89 archaeological sites (45 sites

comprise the 162 site cells in the training sample; 44 sites comprise the 103 site
cells in the testing sample). 

separation between sites and nonsites along the axis of discrimination than any
other single variable (Figure 2.7). The program ultimately selected six
independent variables for inclusion in the model, including two topographic
variables (RELIEF5, PCTSLOPE), two soils variables (SURUNOFF,
SOILLAND), and two hydrologie variables (STRMDIST, PERMDIST). Some
significant variables were bypassed in the selection process because they
correlated with more powerful predictors that had already entered the model.

The Montgomery predictive model consists of a logistic regression formula
that may be separated into a probability component and a score component
(Table 2.3). The score component consists of an intercept value and 15
regression coefficients. The formula can be used to calculate the probability that
an archaeological site occurs at any given location in the Montgomery study area
simply by measuring and classifying the environmental context of the location in

Natural soil drainage

Figure 2.6 Frequency distributions of site and nonsite grid cells on various categories of
the soil drainage variable (DRAINAGE) in the Montgomery study area. The two
distributions are significantly different (p<0.01); sites tend to occur on well-drained soils,
whereas nonsites tend to be poorly drained.

20 ROBERT E.WARREN AND DAVID L.ASCH



terms of the six variables comprising the model.2 Regression coefficients for the
four ratio-scale variables (RELIEF5, PCTSLOPE, STRMDIST, PERMDIST) are
simple multipliers that operate like standard regression coefficients (see Blalock
1979). However, regression coefficients for the categorical soil variables
(SURUNOFFdl−d5, SOILLANDdl−d6) operate on design-variable codes (see
Engelman 1985). Table 2.4 lists the design-variable coding sequence for each
category. For example, the coefficients and codes for a location with rapid
surface runoff would be as follows: SURUNOFF=−2.863(0)−1.96(0)−1.696(0)
−0.67(0)+9.046(1)=9.046.

In the Montgomery predictive model, the axis of discrimination between sites
and nonsites is a multivariate function of the six independent variables included
in the logistic regression. Figure 2.8 compares the frequency distributions of sites
and nonsites along the discriminant axis. The two distributions do overlap,
indicating that the model does not provide a perfect separation between sites and

Figure 2.7 Comparison of the predictive power of all variables considered for inclusion in
the Montgomery logistic regression analysis, (a) F-to-enter scores at step zero in the
analysis, where scores increase with predictive power. Shaded bars denote variables that
were entered and retained by the model, (b) Statistical significance of the F-to-enter
scores in comparison with a significance level of p=0.05. 
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nonsites. However, there is a clear separation of modes; site cells tend to be most
abundant at high site probabilities (p[site]>0.5) and nonsite cells are more
abundant at low site probabil

Table 2.3 Logistic regression formula predicting the site-presence probability of
archaeological sites in the Montgomery study area, including the probability component
(upper portion) and the score component (lower portion).

Probability component:

Score component:

SCORE=0.979 +0.020 (RELIEF5) +0.176
(PCTSLOPE)

−0.196
(STRMDIST)

+0.012
(PERMDIST)

−2.863
(SURUNOFFd1)

−1.960
(SURUNOFFd2)

−1.696
(SURUNOFFd3)

−0.670
(SURUNOFFd4)

+9.046
(SURUNOFFd5)

+1.229
(SIILLANDd1)

−0.704
(SOILLANDd2)

−2.348
(SOILLANDd3)

−0.147
(SOILLANDd4)

+1.380
(SOILLANDd5)

+0.719
(SOILLANDd6)

Table 2.4 Design-variable codes for categorical soil variables in the Montgomery
predictive model.

Variable Category Design variables

d1 d2 d3 d4 d5 d6

SURUNOFF Ponded to slow −1 −1 −1 −1 −1

Slow 1 0 0 0 0

Slow to medium 0 1 0 0 0

Medium 0 0 1 0 0

Medium to rapid 0 0 0 1 0

Rapid 0 0 0 0 1

LANDFORM Upland flats −1 −1 −1 −1 −1 −1

Upland knolls 1 0 0 0 0 0

Upland depressions 0 1 0 0 0 0

Upland swales 0 0 1 0 0 0

Valley slopes 0 0 0 1 0 0

Small floodplains 0 0 0 0 1 0

Large floodplains 0 0 0 0 0 1 

ities (p[site]<0.5). A log-likelihood chi-square value of 
indicates there is less than one chance in a thousand that the observed separation
of sites from nonsites could have arisen by chance (see Stopher and Meyburg
1979).

22 ROBERT E.WARREN AND DAVID L.ASCH



One can determine the accuracy of a predictive model by comparing the
model’s predictions with the actual archaeological characteristics of site and
nonsite locations (Kvamme 1988). Accuracy can be measured at any given point
along the gradient of predicted site probability (0′ p[site]′ 1). Along this gradient
one should expect to see a decline in the accuracy of site predictions and an
increase in the accuracy of nonsite predictions (Figure 2.9). Measures of internal
consistency indicate that the Montgomery model attains an optimum overall
performance at a probability of 0.5 (Figure 2.9a). This is the point on the training-
sample graph where the site and nonsite accuracy curves intersect; at this cut-
point the model correctly classified 77.2% of sites and 77.4% of nonsites in the
training sample. However, an independent cross-validation test based on testing-
sample data indicates the model’s true accuracy to be somewhat less
(Figure 2.9b). Optimal results for the testing sample were obtained at a
probability cut-point of about 0.5, where the model correctly classified 69.9% of
sites and 73.3% of nonsites.

Another way to assess the performance of a predictive model is to measure its
gain in accuracy over a random or null classification (Kvamme 1992). This can
be done by assuming that the nonsites in a model are equivalent to the
background environment or land area. This is a reasonable assumption in the
Montgomery study area, where probabilistic sample data indicate that
archaeological sites occupy only about 0.5% of the land surface. Performance
curves plotted along the gradient of predicted site probability compare the
percentages of sites and land area (=nonsites) incorporated in the model
(Figure 2.10a, c) and the percentage gain in accuracy over a random or null
classification (Figure 2.10b, d). With regard to the training sample (Figure 2.10a,
b), the model incorporates 77% of the sites but only 30% of the land area at a site
probability of 0.5 (Figure 2.10a). As shown in the adjacent graph (Figure 2.10b),
this represents a rather substantial gain of 47% over a random classification. The
testing sample also indicates good results (Figure 2.10c, d). There is a rather
substantial separation between the site and land-area curves (Figure 2.10c) and a
51% gain over random at the 0.3 probability cut-point. The Montgomery
predictive model clearly outperforms a chance classification.

One advantage of formal predictive modeling with a GIS is that models can be
displayed in map form. Figure 2.11 plots the distribution of predicted site-
presence probabilities across the entire Montgomery study area. It was created by
applying the logistic regression formula (Table 2.3) to the independent
environmental variables associated with each of the 1.3 million grid cells in the
region. The map indicates that sites are most probable in two distinct and
spatially limited environmental settings: (1) in and along the valleys of
headwater streams, and (2) on isolated upland knolls scattered across the till
plain. In contrast, site probabilities are low across extensive tracts of the upland
surface.

Although maps of site probability are helpful for interpreting multivariate
predictive models, a deeper understanding can be gained by assessing the
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behavior of the particular independent variables incorporated in the model. To
observe such trends, we calculated site probability curves for the observed
ranges of specific variables while holding all other variables constant at their
median or modal values. The four curves plotted in Figure 2.12 illustrate the

Figure 2.8 Frequency distributions of (a) site cells and (b) nonsite cells on the axis of
discrimination (p[site]) of the Montgomery predictive model. The two distributions are
significantly different (p<0.01); site cells are relatively abundant at high site-presence
probabilities, whereas nonsite cells are relatively abundant at low site-presence
probabilities. 
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relationships between site probability and the four ratio-scale variables in the
Montgomery model. First, site probability increases as one moves from flat
landforms to more rugged landforms with greater topographic relief (RELIEF5;
Figure 2.12a). Second, site probability increases as one moves closer to the
nearest stream (STRMDIST; Figure 2.12b). Third, site probability increases as
surface slope becomes progressively steeper (PCTSLOPE; Figure 2.12c). And
fourth, site probability increases as one moves away from permanent streams
(PERMDIST; Figure 2.12d).

Figure 2.9 Accuracy of the Montgomery logistic regression model. The curves are
percentages of correct predictions along a gradient of predicted site probability (p[site])
for (a) a training sample of 162 site cells and 1019 nonsite cells, and (b) a testing sample
of 103 site cells and 4189 nonsite cells.
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Similarly, bar graphs can be used to compare site probabilities among the
various categories of nominal- and ordinal-scale variables. Figure 2.13 plots
probabilities associated with the two soils variables in the Montgomery model. As
indicated in the first graph, site probability tends to increase on soils with
progressively more rapid surface runoff (SURUNOFF; Figure 2.13a).3 The only
exception to this trend is the “Ponded to slow” category, which has a higher site
probability than both the “Slow” and “Slow to medium” categories. The landform
associations indicate that while site probabilities are lowest on upland swales,
they are highest on upland knolls and on floodplains (SOILLAND;
Figure 2.13b).4 Intermediate probabilities are evident for locations on upland
flats, upland depressions, and valley slopes.

Figure 2.10 Performance curves (a, c) and percentage gain (b, d) of the Montgomery
logistic regression model over a random or chance classification for (a, b) the training
sample of 1181 grid cells and (c, d) a testing sample of 4292 grid cells.
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2.5
DISCUSSION AND CONCLUSIONS

Predictive models developed with the aid of GIS can provide accurate probability
estimates of prehistoric site location in sample-surveyed study areas. The
Montgomery model joins a growing list of studies which demonstrate that fine-
grained probability models can provide reliable predictions of where
archaeological sites should—and should not—occur on a given landscape
(Duncan and Beckman 1996; Kvamme 1983, 1985, 1988, 1992; Parker 1985;

Figure 2.11 Map of predicted site-presence probability in the Montgomery study area. 
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Warren 1990b). Cross-validation testing indicates that the model’s predictions
are correct about 70–73% of the time and represent a gain of up to 51% over a
chance classification. The predictive power of the model should be of interest to
any land managers or development planners in Montgomery County who wish to
take into account the potential effects of their projects on cultural resources.

In the Montgomery study area, surficial traces of prehistoric human settlement
are concentrated in two distinct environmental settings: (1) on sloping, well-
drained valley landforms on or near the floodplains of headwater streams, and
(2) on the crests of well-drained upland knolls scattered across the otherwise flat
till plain. In general, sites are most probable in areas with relatively rugged
relief, where surface slopes are steep and runoff is rapid. The valley locations are
distinguished by their proximity to streams and their common occurrence on

Figure 2.12 Variation in site probability for ratio-scale variables in the Montgomery
predictive model, including (a) relief within 500-m catchments (RELIEF5; m); (b)
distance to nearest stream (STRMDIST; m); (c) surface slope (PCTSLOPE; %grade); and
(d) distance to nearest permanent stream (PERMDIST; m). The probabilities were
calculated by holding constant at their median values all other variables in the model. 
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floodplain soils. The knoll locations are defined by their occurrence on
characteristic hilltop soils and their greater distance from permanent streams.

The complex distribution of prehistoric settlement in the Montgomery study
area could have been shaped by cultural as well as natural processes operating
over the past 12,000 years. Three hypotheses seem plausible.

1 Bimodal settlement pattern. The complex distribution of settlement may
reflect a bimodal settlement pattern in which prehistoric hunter-gatherers focused
their activities on both valleys and upland knolls. If so, it would appear that
prehistoric land-use strategies were geared toward two sets of resources: (1)
aquatic-riparian resources that were concentrated along upland stream courses,
and (2) prairie or forest resources that were broadly dispersed across the
glaciated uplands. The different modes of settlement could have had a seasonal
dimension in which valley resources were exploited at one time of year and
upland resources at another. Assuming that strategic differences are reflected in

Figure 2.13 Variation in site probability for nominal and ordinal variables in the
Montgomery predictive model, including (a) soil surface runoff (SURUNOFF); and (b) soil
landform (SOILLAND). The probabilities were calculated by holding constant at their
median values all other variables in the model.
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the composition or utilization of toolkits, this hypothesis could be tested by
comparing the artifact assemblages and occupational structures of valley sites
with those of knoll sites. Consistent with the structural implication is Asch’s
(1978) observation that knoll sites are generally larger than valley sites and have
more abundant artifacts. However, this difference could be related to the fact that
knolls represent highly restricted zones of habitable living space in the poorly
drained uplands of Montgomery County and were the focus of recurrent
occupations.

2 Composite settlement patterns. Rather than a bimodal settlement pattern, the
complex distribution of settlement in the Montgomery area could represent a
composite of two different unimodal settlement patterns of different ages.
Changes in upland settlement patterns have been documented in other parts of
central Illinois, and these changes appear to have been related to the rather
significant environmental changes that occurred in the eastern Prairie Peninsula
during the past 12000 years (Ferguson and Warren 1991; Klippel and Maddox
1977; Warren 1995). Settlement in the Montgomery area could have shifted
through time among valley and knoll locations in response to environmental
change. However, a preliminary analysis of diagnostic artifacts from the
different landforms suggests there were no major qualitative shifts in settlement
location during the Holocene. For example, artifacts dating to the Early Archaic
(~8,000–10,000 years BP) and Middle Archaic (~4500–8000 years BP) cultural
periods were recovered from both valley and knoll locations in the Montgomery
area (see Asch 1978). Hence, it does not appear that the complex Montgomery
site distribution is a composite of unimodal settlement patterns.

3 Landscape evolution. Geoarchaeological research in the Midwest has shown
that geomorphic processes of landscape evolution can affect the preservation and
surface visibility of archaeological sites (Hajic 1990a, b; Van Nest 1993; Wiant
et al. 1983). While some sites are destroyed or deflated by sediment erosion,
others may be buried and obscured by sediment deposition. To the extent that
erosion and deposition have destroyed or obscured archaeological sites in a given
study area, site surveys designed to detect surface exposures of artifacts may lead
to the development of incomplete and distorted models of settlement
distribution. In the uplands of western Illinois between the Illinois and
Mississippi rivers, Van Nest (1993) has shown that some prehistoric occupations
are buried and preserved beneath the modern plow zone, which is generally about
20–30 cm thick. Several sites are buried in Holocene alluvium along ephemeral
stream channels beneath thin veneers (0.5–1 m) of historic alluvium. Another,
the Penstone site, is a discrete Late Archaic occupation dated to 3700 years BP
that is partially buried in Holocene colluvium within a subtle upland swale. Van
Nest (1993) suggests the Penstone occupation may have been buried by
“developmental upbuilding” of the surface soil through the long-term
assimilation of colluvium via the processes of soil creep or frost creep. If similar
burial processes occurred in the Montgomery study area, some undetected sites
may exist in the alluvium of stream valleys and in the colluvium of upland
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swales. Although more than 95% of the area was plowed during the Asch
survey, some occupations may have been located beneath the reach of the plow
and were undetected by surveyors. However, modeled site probabilities are
relatively high on floodplain soils despite the potential obfuscation effect of
historic alluvium. It seems unlikely that buried prehistoric occupations would be
common in upland swales, a poorly-drained landform where modern buildings
are rarely constructed (Asch 1978). Nevertheless, it should be borne in mind that
the Montgomery predictive model is based on surface-exposed sites and may not
adequately portray the locations of any buried occupations that may exist in the
area.

Although it is difficult to weigh the relative importance of the various factors
that may have effected the complex distribution of Montgomery settlement, it
appears that the bimodal-settlement-pattern hypothesis is most plausible.
Prehistoric hunter-gatherers exploited the region throughout much of the
Holocene and apparently located their occupations strategically to take
advantage of various upland resources and to maximize the habitability of their
living surfaces in a region with poor surface drainage. Geomorphic processes of
landscape evolution may have affected the distribution of surface-exposed sites,
but the importance of developmental upbuilding and other burial processes
remains to be tested in this area.

In closing, it is worth noting that geographic information systems are
indispensable for creating, testing, and interpreting complex predictive models of
human settlement. The Montgomery data set consists of more than 36 million
data values associated with 1.3 million grid-cell locations. Without the aid of a
GIS, we would have required the services of a small army to help us create, test,
and display the Montgomery predictive model.

Acknowledgments

The Montgomery County archaeological survey was directed by D.L.Asch and
was supported by a grant from the Illinois Department of Conservation to the
Northwestern University Archeological Program. The computer modeling
project was directed by R.E.Warren and was supported by a grant from the
Illinois Department of Energy and Natural Resources to the Illinois State
Museum Society. We thank Sheryl G. Oliver and Ray E.Druhot for creating
digital map coverages and data sets in the Illinois State Museum GIS lab. Drs
Bonnie W.Styles and Michael D.Wiant provided support and encouragement. Dr
Wayne M.Wendland arranged access to computing facilities at the University of
Illinois, Urbana-Champaign. Jacqueline A.Ferguson assisted with the computer
analysis. We also thank Kenneth L.Kvamme for helpful discussions of predictive
modeling.

SITE LOCATION IN THE EASTERN PRAIRIE PENINSULA 31



Notes

1 We selected site cells using random cluster sampling, where each cluster consisted
of the one or more cells comprising an individual site. Cluster sampling was used to
ensure that the sample of site cells used to create the predictive model (training
sample) was truly independent of the sample of site cells used to test it (testing
sample). We avoided simple random sampling of site cells because it would have
introduced problems with spatial autocorrelation (Kvamme 1988). Spatial
autocorrelation occurs when the values of adjacent cells are highly correlated with
one another, which is clearly the case in the Montgomery study area in terms of the
distributions of archaeological sites and their environmental characteristics. In our
study, simple random sampling would have assigned some cells of multi-cell sites
to the training sample and others to the testing sample, thereby violating the logical
assumption that a model is independent of test data.

2 The y-intercept constant (α ′=0.979) in the score component of the logistic
regression formula (Table 2.3) is an unbiased value that was adjusted to equalize
the weight of site and nonsite cells in the model using the following equation: α ′=α
+ln (n2/n1), where α ′ is the unbiased constant, α  is the biased constant (α =−0.860),
nl is number of site cells in the training sample (n1=162), and n2 is number of
nonsite cells in the training sample (n2=1019) (see Stopher and Meyburg 1979).

For the purposes of field-testing the Montgomery predictive model, the unbiased
y-intercept constant (α ′) should be readjusted to account for the a priori probability
of encountering a site on a given parcel of land. In the 21 randomly selected quadrats
in the Montgomery study area, 1.71 ha (4.23 acres) of site area were discovered in
a total surveyed area of 324.8 ha (802.5 acres). The estimated prior probability of
site occurrence is p=(site area/surveyed area)=0.0053. The unbiased y-intercept
constant (α ′) can be adjusted to account for the prior probability of site occurrence
using the following equation: α ′=α ′  −ln (N2/Nl), where α ′  is the adjusted constant (α
′ =−4.269), α ′ is the unbiased constant (′ ′=0.979), N1 is site area in the 21 randomly
selected quadrats (N1=1.71 ha), and N2 is nonsite area in the 21 randomly selected
quadrats (N2=323.0 ha). The adjusted constant (α ′ ) yields lower site probabilities
than the unbiased constant (α ′); it reflects the rarity of prehistoric sites in the
Montgomery study area and provides a more realistic estimate of site probabilities
in the field.

3 Soil series and mapping units associated with various categories of the soil-surface
runoff variable (SURUNOFF) are as follows: (1) ponded to slow: Cowden,
Cowden-Piasa, Ebbert, Herrick-Piasa, Sable (=Harvel), Virden; (2) slow: Herrick,
Lawson; (3) slow to medium: Clarksdale, Ipava, Oconee, Oconee-Tamalco,
Radford; (4) medium: Harrison, Stoy, Tamalco; (5) medium to rapid: Blair, Downs
(=Sicily), Velma; (6) rapid: Hickory.

4 Soil series and mapping units associated with various categories of the soil-
landform variable (LANDFORM) are as follows: (1) upland knolls: Harrison,
Oconee (0–2% slope), Oconee-Tamalco, Tamalco; (2) upland flats: Clarksdale,
Cowden, Cowden-Piasa, Herrick, Herrick-Piasa, Ipava; (3) upland depressions:
Ebbert, Sable (=Harvel); (4) upland swales: Virden; (5) valley slopes: Blair,
Harrison, Hickory, Oconee (2–7% slope), Oconee-Tamalco, Downs (=Sicily),
Stoy, Velma; (6) small floodplains: Radford; (7) large floodplains: Lawson. For
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the purpose of this study, small floodplains are defined as the floodplain soils of
low-order streams (Strahler ranks 1–3) and large floodplains are defined as the
flood-plain soils of medium-order streams (Strahler rank 4). 
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CHAPTER THREE
The Application of GIS Predictive Site

Location Models within Pennsylvania and
West Virginia

RICHARD B.DUNCAN AND KRISTEN A.BECKMAN

Skelly and Loy, Inc., of Monroeville, Pennsylvania has used a
geographic information system (GIS) to formulate models for site
potential or archaeological resource sensitivity within four areas of
Pennsylvania and West Virginia. The models use easily available
coded and digitized locational data for a variety of natural and
cultural factors. The GIS models allow for the predictive evaluation
of relative impacts of ground-disturbing activities in a flexible and
cost-effective manner.

3.1
INTRODUCTION

The development and application of predictive models which assess the
probability of prehistoric archaeological sites occurring across the landscape
have greatly increased in recent years (Allen et al. 1990; Brandt et al. 1992; Carr
1985; Judge and Sebastian 1988; Kohler and Parker 1986; Kvamme 1983, 1986,
1990, 1992; Neumann 1992; Phillips and Duncan 1993). The driving force
behind this growth in predictive model development has been the need for the
identification, protection, and management of increasingly threatened cultural
resources in a cost-effective and useful manner. The basis of such models is that
the spatial distribution of cultural remains, which are often represented as
archaeological sites, is the result of human decision-making activities within the
possibilities and conditions presented by the environment. The development of
most contemporary predictive models involves the consideration of multiple
thematic layers of information relating to past environmental and/or cultural
conditions. Interpreting the interplay between these multiple thematic layers and
their various permutations may reveal identifiable patterns that reflect actual
human behavioral patterns and choices (Kincaid 1988).

One major difficulty in effectively developing predictive site location models
has been the synthesis of vast amounts of data pertaining to complex
environmental and cultural factors at a sufficient level of geographic detail to



have cultural resource management and planning utility. Early efforts involved
either intuitive and simplified methods or very labor-intensive manual
computation systems. Within the past decade, innovations in computer hardware
and software have led to the growing use of geographic information systems
(GIS) within the realm of archaeological predictive modeling (Allen et al. 1990;
Calamia 1986; Kvamme 1986, 1989, 1990, 1992; Savage 1989; Warren 1990).
The application of GIS has brought a powerful geographic database tool to the
modeling task, a tool that allows for greater quantity and complexity of data,
more sophisticated quantitative methods, and an increased flexibility for site
predictive modeling. The ability of GIS to rapidly manipulate vast amounts of
disparate locational data from multiple map layers and to investigate potential
relationships between these layers has made it possible to develop and
implement detailed, complex, and yet effective predictive models. The purpose of
this chapter is to describe the general process of developing and applying GIS
predictive models within several studies located in Pennsylvania and West
Virginia, and to briefly discuss some of the problems encountered within the
process.

3.2
BACKGROUND

Since 1994, Skelly & Loy, Inc. has utilized a GIS—specifically ARC/INFO
version 7.0 (ESRI 1992)—to formulate models for site potential or
archaeological resource sensitivity within four study areas located in
Pennsylvania and West Virginia. These four studies and the models developed
for them are currently in various stages of completion. This chapter presents the
overall results of these studies as examples of the application of GIS in
archaeological predictive modeling. Although each project area was
geographically different and the intended use of the final product varied from a
basic-level sensitivity map to a more detailed quantitative model, our goal was to
develop a process by which the GIS could be used with easily obtained and
consistent data sets to produce a reliable but flexible model which could be
applied to almost any geographic location. This goal has met with considerable
success, although several areas of concern have been identified.

The locations of the four study areas are shown in Figure 3.1: the
Monongahela River Valley in southwestern Pennsylvania, the Central
Susquehanna River Valley in north-central Pennsylvania, the Tygart Valley
River in northern West Virginia, and the Kanawha River Valley near the Ohio
border in western West Virginia. The discussion of the process that developed
the GIS models will focus greater attention on the Monongahela River Valley
study, as the three remaining studies and models are similar in structure. The
current status and results of each study will be presented.
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3.3
PREDICTIVE MODEL DEVELOPMENT

3.3.1
Monongahela River Valley, Pennsylvania

The first study area within which our GIS modeling process was employed was
the Monongahela River Valley of southwestern Pennsylvania. The study area
was defined as three US Geological Survey USGS. 7.5′ quadrangles which
contained a proposed highway corridor running across the uplands and tributary
valleys west of the Monongahela River (Figure 3.2). The area is situated within
the unglaciated Appalachian Plateau, a landscape of broad ridges, heavily
dissected drainages, and narrow valleys and floodplains. The GIS-based
archaeological predictive model was produced for this project in order to

Figure 3.1 Study areas within Pennsylvania and West Virginia.
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evaluate a previous model that had been applied within the early stages of the
highway corridor study. The GIS model was designed to be quantitative in
nature, allowing the results to be statistically analyzed. The highway construction
right of way had previously undergone full Phase I archaeological testing, the
results of which were left out of the model construction process in order to create
a valid external test of the model.

Methods

The following methodology is built upon the foundation of GIS modeling
developed and reported by Kvamme (1983, 1986, 1989, 1990), Kohler and
Parker (1986), Savage (1989) and Warren (1990). The basic assumption of the
GIS model is that the prehistoric settlement and utilization within the study area
was both dependent upon and restricted by local environmental conditions.
Construction of the model relies upon a combination of deductive reasoning,
statistical analysis, and the spatial analysis capabilities of the raster module
within the GIS. Overall, the GIS model is an inductive model of site potential
based on the correlation between known site locations and background
environmental variables. The correlation of variables within the study area is
mapped as a predictive surface consisting of a grid of 30-m×30-m cells or “land
parcels,” each with a site potential score. This score represents the relative
“attractiveness” of the cell for use by prehistoric populations. In addition, this
score is augmented by a “disturbance factor” which relates to the current
potential for preservation of archaeological remains within each cell.

The creation of the GIS model followed a stepwise process:

1 the collection of primary data sets;
2 the derivation of secondary data sets;
3 the sampling of the environmental variables with site locations and random

background samples;
4 the exploration and statistical analysis of the two populations;
5 if appropriate, the implementation of logistic regression analysis;
6 the identification of significant variables to be used within the model;
7 the creation of a model formula, which is a weighted sum of the significant

variable values;
8 the creation of the predictive surface from the formula;
9 the internal testing of the model against the model training sample;

10 the external testing of the model against an independent sample;
11 reiteration of the model formula and predictive surface given the testing

results; and
12 continued updating of the model given future discoveries.

The GIS modeling process focused on several primary data sets which are
relatively common to most areas and which can be easily obtained or digitized.
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These primary data sets included recorded prehistoric site locations, historically
documented Indian trails, roads and other disturbance factors, hydrologie
features (e.g., rivers, streams, lakes, wetlands and springs), soils data based on
the United States Department of Agriculture (USDA) soil surveys, and a digital
elevation model (DEM).

From these primary data sets, secondary data sets such as slope, aspect, and
distance to water were developed within the GIS. By focusing on a small portion
of the study area (see Figure 3.2, inset), various data sets and derived variables
can be examined. The actual derivation of the secondary variables was a complex
process, the description of which is beyond the intent or scope of this chapter
(see Kvamme 1989, 1992; Kvamme and Kohler 1988). Of the 70 variables that
were initially examined for potential significance, 26 were selected for use in the
predictive model. Only a portion of these selected variables will be illustrated in
this chapter. 

Several primary data sets were purchased or digitized as vector data for use
within the GIS. Figure 3.3 shows the digitized data for streams and other
hydrologie features, major drainage divides, roadways, and topographic contour
lines within the inset area. 

The DEM, obtained from USGS 7.5′ data, is an extremely important data set
within the model. A large number of variables are derived from or influenced by
the elevation data set. In Figure 3.4 elevation is shown by a grayscale range in
which black represents the lowest elevations around the Monongahela River and
white represents the highest elevations in the uplands. 

There are several derivations of the elevation data set, including slope, aspect,
terrain roughness, and relief. These derivatives are created by the GIS from the
DEM. Figure 3.5 presents a map view of the slope variable. Slope is used both as
an independent variable and as a cost surface for many of the cost-distance
functions. Using the grayscale range, black represents low slope and white
represents high slope.

As an example of the complexity of some of the derived variables, Figure 3.6
presents a map of the solar insolation gain of the landscape for the morning of 22
December, the shortest day of the year. Solar insolation gain relates aspect, slope,
and elevation, to derive a data set that has more relevance to site location during
colder seasons than the simple variable of aspect. In Figure 3.6, the white areas
represent locations with the highest solar gain or sun warmth on a cold winter
morning.

In addition to DEM-derived variables, cost-distance analysis was performed
using slope as the cost surface for water, Indian trails, fifth-order drainage
divides, saddles, and vantage points. The results of the cost-distance analysis to
permanent water resources are shown in Figure 3.7, with black representing the
lowest cost and white the highest cost. The cost-distance method provides a more
relevant and accurate reflection of the effort which prehistoric populations had to
expend to obtain a given resource.
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The GIS was also used to identify certain landforms, such as saddles, peaks,
vantage points and rims, so that subsequent correlations with site locations could
be made. Figure 3.8 shows the saddles (black to white squares) and peaks (black
triangles) identified by the GIS within a portion of the inset area. The squares
denoting the saddles in Figure 3.8 are ranked from “major saddles” (black) to
“minor saddles” (white) by the GIS. Saddles were particularly important
landforms for site locations during certain cultural periods within this study area.

Selection of variables is based on the assumption that prehistoric site locations
should occupy only a limited portion of the total variation present in the

Figure 3.2 Monongahela River Valley study area.

42 RICHARD B.DUNCAN AND KRISTEN A.BECKMAN



environment (Kvamme 1985). Exploratory and univariate statistics were used to
compare the distributions of variable values for both site and background
location samples. Univariate analysis consisted of the Kolmogorov-Smirnov two-
sample test and/or the standard Chi Square test (Thomas 1986). Figure 3.9 is an
example of a bar graph comparing two populations—site cells and random
background cells—for the slope variable. Once identified, the potentially
significant variables were subjected to logistic regression (Kvamme 1988; Rose
and Altschul 1988; Warren 1990), in which background cells were assumed to be

Figure 3.3 Inset location: streams, drainage divides, topography, and roads.
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nonsite locations. The results of the logistic regression were used to redefine and
adjust the relative weights of the selected variables within the predictive model
formula. This formula was applied to the study area using the raster map algebra
function of the GIS. The predictive model formula was designed as a weighted
sum of the selected variable values, resulting in a site potential score for each of
the 500,000 or more 30 m cells contained in the study area. This score is essentially
a combined measure of the “attractiveness” of the cell as a site location and the
“potential for preservation” of any site remains within the cell. The score is not a

Figure 3.4 Digital elevation model within inset area.
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statistic of mathematical probability for the occurrence of a site in the cell. The GIS
predictive model produced a range of site potential scores from 0 to 425 within
the study area.

Internal model test

The model was tested internally against the training sample of 2082 site and
random background cells. A graph of percentage of correct predictions in

Figure 3.5 Slope within the inset area. 
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Figure 3.10 shows the results of this test, indicating that the highest level of
correct predictions (approximately 75%) of both site and “nonsite” (or
background) locations is at a site potential score of approximately 245. If this
score is used as a cut-point or decision point, a two-by-two contingency table
analysis indicates that the result is statistically significant. In spite of the
statistically significant result, an internal test of a predictive model is by nature
overly optimistic. Therefore, an external test was performed in order to validate
the performance of the model. 

Figure 3.6 Solar gain on the morning of 22 December.
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External model test

The external test of the GIS model utilized the data set from the Phase I
archaeological study of the proposed corridor. This data was omitted from the
model construction process expressly for this purpose. The external data set
consisted of 5262 cells that fell within the tested corridor. Figure 3.11 indicates
the results of the external test of the predictive model. The results were very
similar to the internal test, with a peak accuracy of approximately 78% at a cut-

Figure 3.7 Cost distance to permanent water sources within the inset area.
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point score of 220. The contingency table analysis again indicated a significant
result at this cut-point.

Results

The final result of the modeling process is the predictive surface applied across
the entire study area. Figure 3.12 shows the range of site potential created within
the three USGS quadrangle study area. For display purposes, the 0 to 425 range

Figure 3.8 Landforms identified by the GIS: saddles and peaks.
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of site-potential scores has been reclassified into 20 intervals and assigned values
along the greyscale, white for high potential, black for low potential.

In order to give some indication of the discriminating ability of the GIS
predictive model, Figure 3.13 is a close-up of an area tested by Phase I
archaeological survey which was found to contain several artifact
concentrations. As shown, the model was able to identify both high-potential
locations (dark) and intrasite areas of less potential (light) which correlated well
with the documented finds from the field-testing (dashed site boundaries). 

3.4
ADDITIONAL GIS PREDICTIVE MODELS

3.4.1
Tygart Valley River, West Virginia

Since the development of the predictive model in the Monongahela River
Valley, Skelly & Loy has utilized the GIS modeling process to predict
archaeologically sensitive locations for three other projects whose settings and
other characteristics are quite varied. The Tygart Valley River study area, shown
in Figure 3.14, is located in the Allegheny Mountain section of the Appalachian

Figure 3.9 Population graph of the slope variable for random background and site cells.
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Plateau province in northern West Virginia. The study area is relatively small
(two USGS 7.5′ quadrangles) and consists primarily of floodplain and terrace
landforms circumscribed by low mountains and steep, narrow ridgelines. The
area is dominated by the broad valley and sweeping meander loops of the Tygart
Valley River and its major stream confluences. As shown in Figure 3.15, the
predictive model estimates that the areas of higher site potential are generally
confined to the well-drained lowlands in undisturbed locations. The site potential
scores ranged from 0 to 1,100. An internal test of the model discovered an
optimum cut-point score of 500 with an associated correct percentage for both
site and nonsite cells of approximately 79%. An external test of the Tygart
Valley River model is planned.

3.4.2
Central Susquehanna River Valley, Pennsylvania

The Central Susquehanna River Valley study area is located in the Ridge and
Valley physiographic province of central Pennsylvania. The study area, shown in
Figure 3.16, consists of steep ridges, narrow valleys and numerous streams and
river bodies. The site potential within the area is dominated by landforms along
the rivers, major tributaries, and larger streams. A fully operational predictive
model has not yet been prepared for the study area. However, a preliminary
archaeological resource sensitivity map for the area has been produced and is
presented in Figure 3.17. The development of the sensitivity map used fewer data

Figure 3.10 Results of the internal model test: percentage of correct predictions.
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sets and more cursory data analysis than the predictive model process described
above. The sensitivity map was developed for use as an early-stage planning tool
and may be upgraded to a full predictive model for later stages. 

3.4.3
Kanawha River Valley, West Virginia

The Kanawha River Valley study area is located in the unglaciated Kanawha
section of the Appalachian Plateau province in West Virginia, near the Ohio
border (Figure 3.18). The study area is defined by nine USGS 7.5′ quadrangles
that contain the Kanawha River Valley and the uplands to the southwest. The
area is characterized by the broad floodplains and terraces along the Kanawha
River, the steep, narrow ridges of the uplands, and the winding “hollows” or
valleys of the tributary streams. As in many areas, most recorded archaeological
site data occurs in lowland, floodplain, and terrace locations. The documentation
on upland sites in the area is extremely sparse. This disparity of site data
necessitated the creation of independent upland and lowland models, which were
later combined. In addition, it diminished the utility of an internal model test.
The tentative model produced for the Kanawha River study area has site-potential
scores ranging from 0 to 800 for 1.4 million cells. The highest site potentials
occur within well-drained soils of the Kanawha River floodplain, as indicated in
Figure 3.19. However, areas of high potential for archaeological sites do occur
within the uplands, particularly in the upland “hollows” and “passes.” An

Figure 3.11 Results of the external model test: percentage of correct predictions. 
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external test of the Kanawha River Valley predictive model is currently under
way. 

Figure 3.12 Predictive surface of site potential within the study area. 
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3.5
DISCUSSION

Although only one of the predictive models presented in this chapter has
undergone external testing, the preliminary results indicate that the application of
GIS to archaeological predictive modeling has been successful within a cultural
resource management context. After we had applied the modeling process to the
diverse regions outlined above, it was discovered that the process can be applied
consistently from one study area to another, regardless of differences in the
relative importance of selected variables as site predictors from region to region.
Thus, the application of the GIS allows for the creation of a geographically
flexible and adaptable modeling process.

The promotion, development, and application of GIS predictive modeling as a
cultural resource management tool should be tempered by the consideration of a
number of concerns, some of which will be mentioned here. As many
researchers working with recorded site files can attest, there are often problems
with the accuracy or completeness of data regarding site locations and cultural

Figure 3.13 GIS model results compared to phase I archecological testing.
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information. These problems may preclude any functional or temporal
considerations within the site data set of the model. Inaccuracies in site location
or extent may lead to erroneous environmental correlations. In addition, the site
record is a highly biased sample of site distribution across the landscape, both in
methodology and in documentation. When attempts are made to determine areas
of relative probability for site locations, the lack of sufficient and reliable data
ultimately controls the modeler’s ability to create an effective inductive model.
In all cases, the bias and insufficiency of the known site record is an inherent and
pervasive problem that is difficult to overcome (Kvamme 1988).

Another consideration is the nature of the environmental data set. The
modeling process assumes that the attractiveness of the land parcels in the past
can be related, either directly or indirectly, to currently measurable modern
characteristics across the landscape. This assumption may be faulty, and at times
directly misleading. For instance, in the search for statistical relationships
between sites and environmental variables within the Monongahela River Valley

Figure 3.14 Tygart Valley River study area.
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study area, no statistical correlation was found between site locations and the
existence of springs as a nearby water source. This lack of correlation was
counterintuitive, given the general archaeological knowledge in the area. Closer
examination of the data sets determined that a number of factors contributed to
this incongruity, including the fact that disturbance and/or development may
have obliterated the location of springs; that springs are not consistently mapped
features; that changes in the water table may have occurred; and that the areas
which do have mapped springs tend to be those which have not been seriously
investigated/documented by archaeologists.

Numerous additional concerns have been raised, and many of them are well
presented and discussed within the chapters of this book. Ultimately, the nature
and accuracy of the data sets used for the development of the GIS model
condition and limit the effectiveness and utility of the model, regardless of the
sophistication of the process that follows. The data and their inherent

Figure 3.15 Predictive surface of site potential within the Tygart Valley River study area.
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relationships and weaknesses must be carefully inspected and considered within
the production of the predictive model. 

3.6
CONCLUSIONS

An archaeological predictive model is always a work in progress. There is no
absolute correlation between predictions and site locations, merely a level of

Figure 3.16 Central Susquehanna River Valley study area. 
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confidence at which the model becomes a useful tool. The requirements of the
particular study or project determine the level of confidence necessary for the
model to obtain. There are many influences that a predictive model based on
current levels of generally available data cannot account for, such as
sociopolitical factors, or the occurrence of sites in less predictable locations, such
as steep, generally uninhabitable terrain (rock shelters, quarries, etc.). In turn, the
scoring of an area by the model as having a very high “attractiveness” for use or
habitation does not mean that the probability of discovering a site in that area is

Figure 3.17 Sensitivity map for site potential within the Central Susquehanna River
Valley study area.
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100%. Sites are relatively rare concentrations of recoverable remains within an
active landscape. Although the model may assign a high probability score to a
parcel of land, it does not necessarily follow that a sufficient amount of human
activity occurred at that location to have produced nonperishable and preserved
remains. In sum, the GIS predictive model is a tool whose utility is relative to the
nature of the data we employ, the expectations we make, and the limits of the
creativity we bring to the task. Despite the technical challenges and the pitfalls of
our assumptions, the application of GIS can be a valuable, flexible, and powerful
tool for use in the development of archaeological predictive models.

Figure 3.18 Kanawha River Valley study area. 

58 RICHARD B.DUNCAN AND KRISTEN A.BECKMAN



Acknowledgments

The research discussed in this chapter was performed by Skelly & Loy, Inc.,
engineers-consultants, of Harrisburg and Monroeville, Pennsylvania. This work
was supported by the Pennsylvania Turnpike Commission, the Pennsylvania
Department of Transportation, and the West Virginia Department of
Transportation. This chapter is based on a paper presented at the annual meeting
of the Society for American Archaeology in 1996.

Figure 3.19 Predictive surface of site potential within the Kanawha River Valley study
area.
 

SITE LOCATION IN PENNSYLVANIA AND WEST VIRGINIA 59



References

ALLEN, K.M.S., GREEN, S.W. and ZUBROW, E.B.W. (eds), 1990, Interpreting Space:
GIS and Archaeology, London: Taylor & Francis.

BRANDT, R., GROENWOUDT, B.J. and KVAMME, K.L., 1992, An experiment in
archaeological site location: modeling in the Netherlands using GIS techniques,
World Archaeology 24(2): 268–282.

CALAMIA, M.A., 1986, Geographical Information System Applications for Cultural
Resource Management, Denver: Bureau of Land Management.

CARR, C., 1985, Introductory remarks on regional analysis. In C.Carr (ed.) For
Concordance in Archaeological Analysis: Bridging Data Structure, Quantitative
Technique, and Theory, Kansas City: Westport Publishers.

ESRI, 1992, Understanding GIS, the Arc/Info Method, Redlands, CA: Environmental
Systems Research Institute.

JUDGE, W.J. and SEBASTIAN, L. (eds), 1988, Quantifying the Present and Predicting
the Past: Theory, Method, and Application of Archaeological Predictive
Modeling, Denver, CO: US Department of the Interior, Bureau of Land Management
Service Center.

KING AID, C., 1988, Predictive modeling and its relationship to cultural resource
management applications. In W.J.Judge and L.Sebastian (eds) Quantifying the
Present and Predicting the Past: Theory, Method, and Application of Archaeological
Predictive Modeling, Denver, CO: US Department of the Interior, Bureau of Land
Management Service Center, pp. 549–569.

KOHLER, T.A. and PARKER, S.C., 1986, Predictive models for archaeological resource
location. In M.B.Schiffer (ed.) Advances in Archaeological Method and Theory, vol.
9, Tucson: University of Arizona Press, pp. 397–452.

KVAMME, K.L., 1983, Computer processing techniques for regional modeling of
archaeological site locations, Advances in Computer Archaeology 1:26–52.

—— 1985, Determining empirical relationships between the natural environment and
prehistoric site location: a hunter-gatherer example. In C.Carr (ed.) For Concordance
in Archaeological Analysis: Bridging Data Structure, Quantitative Technique, and
Theory, Kansas City: Westport Publishers, pp. 208–238.

—— 1986, The use of geographic information systems for modeling archaeological site
distributions. In B.K.Opitz (ed.) Geographic Information Systems in Government,
Vol. 1, Hampton: A.Deepak Publishing, pp. 345–362.

—— 1988, Using existing archaeological survey data for model building. In W.J.Judge
and L.Sebastian (eds) Quantifying the Present and Predicting the Past: Theory,
Method and Application of Archaeological Predictive Modeling, Denver, CO: US
Department of the Interior, Bureau of Land Management Service Center,
pp. 301–323.

—— 1989, Geographic information systems in regional archaeological research and data
management. In M.B.Schiffer (ed.) Archaeological Method and Theory, Vol. 1,
Tucson: University of Arizona Press, pp. 139–203.

—— 1990, The fundamental principles and practices of predictive archaeological
modeling. In A.Voorrips (ed.) Studies in Modern Archaeology, Mathematics and
Information Science in Archaeology: A Flexible Framework, Vol. 3, Bonn: Holos
Verlag.

60 RICHARD B.DUNCAN AND KRISTEN A.BECKMAN



1992, A predictive site location model on the high plains: an example with an
independent test, Plains Anthropologist, 37(138): 19–40.

KVAMME, K.L. and KOHLER, T.A., 1988, Geographic information systems: technical
aids for data collection, analysis and display. In W.J.Judge and L.Sebastian (eds)
Quantifying the Present and Predicting the Past: Theory, Method and Application of
Archaeological Predictive Modeling, Denver, CO: US Department of the Interior,
Bureau of Land Management Service Center, pp. 493–547.

NEUMANN, T.W., 1992, The physiographic variables associated with prehistoric site
locations in the Upper Potomac River Basin, West Virginia, Archaeology of Eastern
North America 20:81–124.

PHILLIPS, J.C. and DUNGAN, S., 1993, Archaeology and the geographic resources
analysis support system: a preliminary model of archaeological site location in Santa
Rosa County, Florida, Florida Anthropologist 46(4):251–262.

ROSE, M.R. and ALTSCHUL, J.H., 1988, An overview of statistical method and theory
for quantitative model building. In W.J.Judge and L.Sebastian (eds) Quantifying the
Present and Predicting the Past: Theory, Method and Application of Archaeological
Predictive Modeling, Denver, CO: US Department of the Interior, Bureau of Land
Management Service Center, pp. 173–255.

SAVAGE, S.H., 1989, Late Archaic Landscapes: A Geographic Information Systems
Approach to the Late Archaic Landscape of the Savannah River Valley, Georgia and
South Carolina, Anthropological Studies No. 8, prepared by the University of South
Carolina South Carolina Institute of Archaeology and Anthropology. 

THOMAS, D.H., 1986, Refiguring Anthropology: The First Principles of Probability and
Statistics, Prospect Heights: Waveland Press.

WARREN, R.E., 1990, Predictive modeling in archaeology: a primer. In K.M.S.Allen,
S.W. Green and E.B.W.Zubrow (eds) Interpreting Space: GIS and Archaeology,
London: Taylor & Francis, pp. 90–111.

SITE LOCATION IN PENNSYLVANIA AND WEST VIRGINIA 61



CHAPTER FOUR
Using a GIS to Model Prehistoric Site

Distributions in the Upper Chesapeake Bay
KONNIE L.WESCOTT AND JAMES A.KUIPER

A GIS was used to predict the distribution of prehistoric sites in a
largely unsurveyed coastal area of 39,000 acres (15,800 ha) in the
Upper Chesapeake Bay. The potential occurrence of sites in this area
was assessed on the basis of environmental variables recorded from
over 500 known sites in the region. Shell midden sites and nonshell
midden sites were treated as two separate data sets to avoid the
possibility of competing environmental variables.

4.1
INTRODUCTION

At Argonne National Laboratory, natural and social scientists have been working
together to develop a computer-based resource management system for large
federal facilities. This system uses a geographic information system (GIS) as its
primary means of organizing large amounts of spatial and tabular data for
environmental assessment. We believe that GIS technology is having a profound
effect on facility management and planning in regard to day-to-day facility
operations, especially compliance activities.

Argonne has been working with the Directorate of Safety, Health, and
Environment (DSHE) of Aberdeen Proving Ground (APG) in Maryland to
develop such a system for environmental management and compliance. The
primary goal of the system is to manage APG’s environmental resources in an
efficient and cost-effective manner. Areas of concern include air and water
quality, wetlands, threatened or endangered species, and cultural resources. The
first step was to gather all known information about each resource and store it in
one place for quick and easy retrieval. The next step was to assess the potential
for a series of proposed projects to impact those resources. GIS provides an
effective mechanism for integrating management decisions for all of these areas
of concern. As part of this effort, over 100 data layers have been compiled on a
GIS for APG (DSHE 1996).



Very little of APG had been surveyed for cultural resources; therefore, little
information on archaeological sites existed for use in assessing potential impacts.
Historic map sources provided helpful information for identifying nearly 500
potential historic site locations; however, information regarding prehistoric sites
was lacking. Development of a predictive model for prehistoric site locations
using the GIS seemed a cost-effective solution for meeting cultural resource
planning and management needs.

4.2
ABERDEEN PROVING GROUND

APG consists of 75 000 acres (30,400 ha) on the western shore of the Upper
Chesapeake Bay in Maryland (Figure 4.1). Slightly more than half of the total
area (39,000 acres, or c. 15,800 ha) is land, and the remaining area is water. APG
has been owned and operated by the Army since 1917, and much of the facility
has been spared the significant land disturbance that accompanies urbanization.
Although military activity has affected the landscape, especially in core facility
operation areas, over 25,000 acres (10,000 ha) of wetlands and woodlands still
exist where natural and cultural resources are present and protected.

Only a small percentage of Aberdeen’s land area (approximately 1%) has been
intensively surveyed for cultural resources. This is largely a result of the unusual
character and history of the facility. Access to many areas of the facility is
restricted by mission activities (such as ordnance testing), and survey is
constrained by the widespread occurrence of unexploded ordnance and, in some
cases, chemical contamination. Over 45% of APG is under water, and many of
the land areas are currently covered with marshes, which present additional
difficulties for archaeological survey.

Forty-six prehistoric sites have been recorded at APG (Maryland Historical
Trust (MHT) 1995). Most of these sites were recorded during archaeological
work conducted in the late nineteenth and early twentieth centuries or during
subsequent work by amateurs in the mid-twentieth century (Envirosphere Co.
1988). A coastal study of the Chesapeake Bay conducted in the 1970s did
investigate a portion of APG that was not restricted; 22 sites were recorded
(Wilke and Thompson 1977). The known sites are distributed predominantly
along the coast (43 of 46 are within 50 m of a shoreline or stream) (Goodwin &
Associates 1995). This distribution, however, is biased because of a lack of
adequate inland survey. The sites range in age from PaleoIndian to the Late
Woodland/Contact period. The predominant site types are shell middens and
lithic scatters, although some sites contain ceramics.
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4.3
THE MODEL

An extremely conservative predictive map for archaeological resources had been
produced for the Aberdeen Proving Ground Cultural Resources Management
Plan (Goodwin & Associates 1995). The map showed nearly two-thirds of the
land area as having a high potential for containing prehistoric sites. Distance to
water was determined to be the variable most likely to influence site location.
Therefore, the map was made by creating a buffer area of a specified distance to
water (in this case 100 m). However, specific water sources were not identified
before applying the buffer, and the results consequently included areas near
recent artificial drainage ditches, in addition to major stream courses, as having a
high potential for containing sites. 

For the purpose of effective impact assessment and for future planning needs,
a more refined map was needed. This map could be derived from a predictive
model for prehistoric sites developed in conjunction with the GIS data layers.
This effort would not only result in an improved map of areas of high potential
for prehistoric sites, but also provide a means to integrate the information with
the overall management system being developed on the GIS.

The model was developed using “available data,” which is critical to
understanding this model and the results. Ideally, a predictive model would be
generated in a controlled environment. The unusual situation at APG did not
easily allow for such an opportunity. As is often the case in cultural resource
management, the time and money required to conduct an intensive controlled
survey within APG from which to develop a rigorous model were not necessarily
justified by the anticipated end use of the results. Additional clearance
requirements, such as thorough metal detector sweeps for locating unexploded
ordnance, would also have to be met. Ultimately, however, the safety issue over
undetected unexploded ordnance would have seriously affected the amount of
survey that it was reasonable to conduct at the facility; therefore, a predictive
model based on “available data” was the most feasible approach.

Data was compiled on 572 prehistoric sites recorded throughout the Upper
Chesapeake Bay region in areas most closely resembling the APG facility. Known
survey areas and prehistoric site locations were transferred to US Geological
Survey (USGS) topographic maps from the Maryland Historical Trust (MHT)
Mylar over-lays. Data forms were completed for each site on the basis of the
contents of the MHT site recording forms and included information on site type,
distance to water, soil, topographic setting, slope, elevation, aspect, geomorphic
setting, time period, dimensions, and contents (MHT 1995). On the basis of
regional data, the assumption was made that APG is a representative subset of
the region and any changes that occurred to the prehistoric environment had been
uniform throughout the region. For example, paleoclimatic changes and
associated fluctuations in sea level would have affected settlement patterns
similarly throughout the region (Custer 1989).
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Two groups of data were separated on the basis of regional site types. Shell
midden sites and “nonshell” sites, predominantly lithic scatters, were put into
distinct data sets to avoid problems of competing variables. These two categories
of sites were assumed to be located with respect to different (although
overlapping) sets of variables, and thus have different distributions. Had the two
data sets not been separated, the values of the variable(s) for which their
distributions differed might have been averaged out within the model and might

Figure 4.1 Aberdeen Proving Ground and surrounding area.
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not have adequately reflected the distribution of either site type. This problem
was previously identified by Warren (1990b).

Locations of known sites and survey areas were mapped in the GIS, and a
copy of the site database was linked. GIS layers for each of the environmental
variables in the database of known sites were also produced. The final layers for
the model were made in raster format with a 100-ft (30.48 m) cell size. The final
step was to mask the layers against the land area of the site so that edges of the
layers would match exactly and could be modeled consistently. Most layers were
derived from existing line or polygon layers, but some required a number of
steps to produce the final result. On the basis of subsequent statistical analysis,
the resulting GIS layers for aspect, slope, soil type, and soil drainage were not
used in the final model.

The distance to water layer was produced from a generalized hydrology layer
already existing in the GIS (Figure 4.2). Very small channels and known artificial
channels or ditches were removed from this layer, and polygons were
constructed for the remaining water bodies (i.e., lakes and ponds). Once the layer
was converted to raster format, distance to shorelines was calculated with a
Euclidean distance function; water bodies themselves were assigned a distance
of zero. The water source type layer (described below) was used in a similar
process to produce a distance to brackish water layer for use with the shell
midden model (Figure 4.3).

Several analyses and processing steps were necessary to create the type of
water source layer from available GIS information (Figure 4.4). Shorelines in the

Figure 4.2 Input environmental layer: distance to water.
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hydrology layer used for distance to water were subdivided into bay, river, creek,
and lake/pond categories. Water chemistry data in the US Fish and Wildlife
Service National Wetlands Inventory (NWI) polygons were then used to separate
the creeks into brackish and fresh categories. River mouths at APG widen as they
reach Chesapeake Bay and are identified as brackish. After conversion to raster
format, a Euclidean distance function was used with a distance of 1,000 ft to
identify the water source type of all land areas within 1,000 ft (304.8 m) of a
major water source. The remaining land area was then coded as having no major
water source.

A digital elevation model (DEM) for the entire APG facility existed in the GIS
database. The DEM was derived from 2-ft (60.9 cm) contour lines and point
elevations for the Aberdeen peninsula and 5-ft (152.4 cm) contour lines for the
Edgewood peninsula and the other APG areas. To match the more general
elevation categories in the database of known sites, elevations were grouped into
four ranges: 0 to 10 ft, 11 to 20 ft, 21 to 40 ft, and over 40 ft (Figure 4.5).

The topographic setting layer included floodplain/beach, terrace, bluff, hill top,
hill slope, and interior flat categories (Figure 4.6). The DEM and hydrology data
were used to locate the floodplains, which were defined as areas adjacent to
shorelines with an elevation of 5 ft or less. Beach areas were designated on the
basis of unconsolidated shoreline regions in NWI data and were combined with
the floodplain category. Bluffs and hilltops were manually identified by
examination of the contour and DEM data. Knowledge of the site, including
locations of bluffs and human-caused topographic alterations, was taken into
account for much of this work. Remaining land areas were categorized as hill

Figure 4.3 Input environmental layer: distance to brackish water.
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slope if they had a slope of at least 5% and were 150 ft (45.7 m) or greater in width;
otherwise they were labeled as inland flat.

A set of 500 points within the APG boundary was randomly selected in the
GIS, and the environmental variables associated with those points were derived
from the raster data layers. This information was used as a background data set to
which the regional site data could be compared.

Frequency tables were generated from the regional data and the APG
background data for each of the environmental variables and for groupings of
variables. These tables were used to eliminate a number of variables from further
consideration. Aspect was eliminated because the predominant aspects for the
eastern and western shores are different, and information on aspect is missing on
many of the site forms. Topographic relief was too subdued for either slope or
aspect to be a significant contributor to site distribution. Soil type was eliminated
for a variety of reasons (e.g., the data source was not very current and was
potentially unreliable). The considerable variability of the soils within the region
also indicated that it might not be a strong or reliable predictor. Neither did soil
drainage appear to be a strong predictor because the percentage of site locations
occurring on well-drained soils was not significantly different than the
percentage of well-drained soils occurring in the background data. (In other
words, site locations appear to favor well-drained soils, but the background data
indicates that well-drained soils dominate the data set.) Thus, the variables
finally used to generate the predictive models were elevation, distance to water,
water type, and topographic setting.

Figure 4.4 Input environmental layer: type of nearest water. 
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Although logistic regression or log linear analyses typically have been used
for this type of analysis (e.g., Kvamme 1985, 1992; Parker 1985; Warren 1990a;
Carmichael 1990; Maschner and Stein 1995), our approach using available data
does not meet all of the statistical assumptions of these models, such as the
availability of nonsite data, or a sampling population of sufficient size.

Frequency tables of unique combinations for elevation (′ 20 ft, >20 ft [20 ft= 6.
1 m]), distance to water (0–500 ft, >500 ft [500 ft=152.4 m]), water type
(brackish, fresh), and topographic setting (terrace/bluff, floodplain/flat) were
produced for shell and nonshell sites from the regional data (Tables 4.1 and 4.2).
Different categorical breakdowns of variables were investigated, but the most
useful results have occurred by using these simple categories that produce larger
sample sizes. A high-potential designation was assigned to areas where unique
combinations of the four variables occurred over 20% of the time in the regional
database. Areas of medium potential for sites occur between 6.25% and 20%,
and areas of low or no potential occur at less than 6.25% (an equal distribution of
all variable categories is indicated at 6.25%). In the APG GIS, a raster image
combining all four of the environmental variables was created. The unique
combination of variables for each cell was determined, and then each cell was
assigned the proper coding for site potential. Figures 4.7 and 4.8 show the site
potential maps for shell and nonshell sites, respectively. 

Figure 4.5 Input environmental layer: elevation.

SITE DISTRIBUTIONS IN THE UPPER CHESAPEAKE BAY 69



Table 4.1 Frequencies of unique combinations for shell prehistoric sites

Distance
to Water
(ft)

water
type

Elevation
(ft)

Topograp
hy

Frequenc
y

Percenta
ge

Cumulati
ve
frequenc
y

Cumulati
ve
percenta
ge

0–500 Brackish ′ 20 Terrace/
Bluff

75 34.7 75 34.7

0–500 Brackish ′ 20 Floodpla
in/Flat

81 37.5 156 72.2

0–500 Brackish >20 Terrace/
Bluff

14 6.5 170 78.7

0–500 Brackish >20 Floodpla
in/Flat

2 0.9 172 79.6

0–500 Fresh ′ 20 Terrace/
Bluff

24 11.1 196 90.7

0–500 Fresh ′ 20 Floodpla
in/Flat

10 4.6 206 95.4

0–500 Fresh >20 Terrace/
Bluff

4 1.9 210 97.2

>500 Brackish ′ 20 Terrace/
Bluff

4 1.9 214 99.1

>500 Fresh ′ 20 Terrace/
Bluff

2 0.9 216 100.0

Figure 4.6 Input environmental layer: topographic setting. 
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Table 4.2 Frequencies of unique combinations for non-shell prehistoric sites

Distance
to water
(ft)

Water
type

Elevation
(ft)

Topograp
hy

Frequenc
y

Percenta
ge

Cumulati
ve
frequenc
y

Cumulati
ve
percenta
ge

0–500 Fresh >20 Terrace/
Bluff

89 27.3 89 27.3

0–500 Fresh >20 Floodpla
in/Flat

14 4.3 103 31.6

0–500 Fresh ′ 20 Terrace/
Bluff

27 8.3 130 39.9

0–500 Fresh ′ 20 Floodpla
in/Flat

23 7.1 153 47.0

0–500 Brackish >20 Terrace/
Bluff

27 8.3 180 55.3

0–500 Brackish >20 Floodpla
in/Flat

8 2.5 188 57.8

0–500 Brackish ′ 20 Terrace/
Bluff

33 10.1 221 67.9

0–500 Brackish ′ 20 Floodpla
in/Flat

35 10.7 256 78.6

>500 Fresh >20 Terrace/
Bluff

26 8.0 282 86.6

>500 Fresh >20 Floodpla
in/Flat

34 10.4 316 97.0

>500 Fresh ′ 20 Terrace/
Bluff

2 0.6 316 97.6

>500 Fresh ′ 20 Floodpla
in/Flat

2 0.6 316 98.2

>500 Brackish >20 Terrace/
Bluff

2 0.6 316 98.8

>500 Brackish ′ 20 Terrace/
Bluff

4 1.2 314 100.0

4.4
RESULTS

In the resulting raster image for shell sites at APG, 16.5% of the total land area
was coded as high-potential, 2.5% as medium-potential, and 81.0% as low-
potential. The corresponding raster image for nonshell sites included 2.7% of the
area as high-potential, 44.3% as medium-potential, and 53.0% as low-potential.

Known shell and nonshell sites at APG (not included in the original data set
that generated the models) were plotted as initial tests of the models. Of the 13
known shell sites on APG, 12 fell within the high-potential zone and 1 fell within
the low-potential zone. Of the 33 known prehistoric sites at APG that did not
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contain shells, 2 fell within the high-potential zone, 30 within the medium-
potential zone, and 1 within the low-potential zone. 

Model performance was evaluated using Kvamme’s Gain Statistic (1−[%area/
%sites]) (Kvamme 1988). The shell model performed quite well, resulting in a 0.
82 gain statistic for high-potential areas and 0.80 for medium-potential areas.
These results are consistent with expectations based on the number and level of
surveys conducted in coastal areas both regionally and at APG, and the large
number of sites recorded.

The model performance results for nonshell sites were considerably lower.
The gain statistic for high-potential areas was 0.55 and that for medium-potential
areas was 0.52. These numbers are also consistent with our expectations. APG
has no known/recorded noncoastal prehistoric sites, and very little of the interior
has been intensively surveyed. Therefore, the percentage of known sites falling
in high-potential areas was expected to be lower since the regional data that
generated the model included results from interior as well as coastal surveys.
However, the regional data also favor coastal surveys, otherwise the gain statistic
might have been even lower. An additional factor that influenced the results is
that less than 3% of APG’s land area meets the regional criteria for high
potential for nonshell sites, while nearly 45% of the land area is coded as
medium-potential. Because less than 1% of APG has been surveyed, these
numbers significantly affect the total number of sites falling within the high- and
medium-potential areas. Hence, there is a higher number of sites falling in
medium-potential areas (30) than in high-potential areas (2).

Figure 4.7 Shell predictive archaeological site model.
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For overall compliance purposes, the two model outputs were combined in
order to assess the potential for impact to any prehistoric archaeological sites,
shell or nonshell (Figure 4.9). (Areas of potential historic site locations would
also be overlain with the combined predictive model results when assessing
impacts to cultural resources.) Within the resulting map of prehistoric site
potential for APG, 19.2% of the area was coded as high-potential, 29.0% as
medium-potential, and 51.8% as low-potential. Forty-two of the 46 known
prehistoric sites fell within the high-potential zone, 4 within the medium-
potential zone, and no sites fell within the low-potential zone (Figure 4.10).
Applying Kvamme’s Gain Statistic to these results, a 0.79 gain statistic is
attained for high-potential areas and 0.52 for medium-potential areas.

Although the results obtained from the model turned out rather well, several
problems or issues must be kept in mind when using these results. The model
results are consistent with the bias toward shoreline surveys throughout the
region that is apparent in the data set. This bias should be kept in mind as new
survey and site data are collected, especially for inland areas. This new data will
be invaluable in the future to refine and retest the results of this model.

The use of “available data” was also problematic. We were limited to the
variables collected during previous surveys and by the quality of the data on the
site forms, which varied considerably. Ideally, it would have been preferable to
use a GIS to generate the data for different environmental variables on the basis
of known site locations, but such data was not available. For example, more
detailed information on soils would have been helpful. It was clear that in most

Figure 4.8 Nonshell predictive archaeological site model.
 

SITE DISTRIBUTIONS IN THE UPPER CHESAPEAKE BAY 73



cases, the information on the site forms was simply taken from the county soil
survey maps without field verification (along with slope information that was
recorded from the county soil type descriptions). Likewise, soil data from APG
had not been verified since the 1927 soils map was produced, again because of
ordnance testing and restricted access to the facility.

In addition, a great deal of data regarding the site descriptions was missing,
such as unrecorded or unknown site types and associated time periods. As a
result, the analysis was limited to site content (shell versus nonshell), which
offered reasonable sample sizes, in addition to logical distributional differences.

Despite these problems, the model still provides a useful predictive map that
significantly refines and reduces areas of potential high probability for sites.
Ground-truthing is a necessary follow-up procedure to determine the model’s
actual utility. In combination with ground disturbance data on the GIS,
additional refinement to the areas of concern can be made by eliminating areas
too disturbed to contain eligible sites regardless of their potential. Although a
model can identify areas of high potential for sites, it in no way substitutes for or
eliminates the need for intensive archaeological survey.

The uses of such a probability map are many. Staff at Argonne are developing
ways to link impact models to the GIS data (Hoffecker 1997). For example, a
watershed model, ANSWERS, developed by EPA to identify soil movement
within watersheds (Beasely and Huggins 1981), has been modified and linked to
the GIS. Potential impacts on cultural resources due to soil erosion and
deposition can therefore be considered. By overlaying areas of known or

Figure 4.9 Combined predictive archaeological site model.
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predicted archaeological sites with locational-based results of the watershed
model, areas of potential impact can be predicted.

The model provides project planners with information about what areas would
most likely require less time, effort, and money to develop from a cultural
resource compliance point of view. For example, upfront avoidance of a high-
potential area could result in less cost for survey and evaluation activities and
avoid a potential project delay. The model is also helpful in determining priority
areas (as well as evaluation, monitoring and mitigation efforts) for more efficient
use of time, money, and human resources. These data can also be used for
planning future projects at a level above cultural resource management (i.e.,
facility management) in which other environmental constraints (e.g., wetlands,
contaminated areas) are also taken into consideration.
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CHAPTER FIVE
Protecting Cultural Resources through

Forest Management Planning in Ontario
Using Archaeological Predictive Modeling

LUKE DALLA BONA

The Ontario Ministry of Natural Resources (OMNR) identifies and
protects cultural resources through its forest management planning
process. The OMNR is developing a predictive modeling
methodology based upon weighted variables developed using a GIS
in a deductive framework. This methodology, tested in stages from
small areas to entire forest management units, has demonstrated a
high level of predictive strength. Examples of models developed for
use in Ontario’s forests are described. The importance of presenting
the model in a clear and understandable way to nonarchaeologists,
such as land-use planners, so they know exactly how archaeological
potential might affect proposed activities is also discussed.

5.1
INTRODUCTION

The Ontario Ministry of Natural Resources (OMNR) identifies and protects
cultural resources through the forest management planning process. The problem
that presents itself to cultural resource managers in northern Ontario, as well as
much of the rest of the Canadian boreal forest, is one where the resources are
known to exist, but their exact locations are unknown. So how do we manage a
resource that we know to exist but we don’t know where it is? In the late 1980s,
OMNR identified archaeological predictive modeling as a means of addressing
this situation and, given available knowledge, providing the best statement
regarding the likelihood of archaeological resource existence. The OMNR
sponsored three years of research and development that led to a first-generation
predictive model. This was followed by three years of pilot projects which served
to expand the applied base of the model from the original research and
development area in northwestern Ontario and also to develop various means by
which existing Ontario government digital databases can be incorporated into the
archaeological predictive modeling process. The OMNR is now at a stage where
it is ready to employ archaeological predictive models as a cultural resource



management tool in all new forest management plans—an area encompassing 45
million hectares of forested land.

5.2
BACKGROUND

In 1991, the Ontario Ministry of Natural Resources introduced the Timber
Management Guidelines for the Protection of Cultural Heritage Resources
(OMNR 1991). These guidelines outline the manner in which cultural heritage
resources are protected through the forest management planning process. In
addition to protecting known/verified archaeological sites, the guidelines
explicitly state that areas determined to have a high potential for archaeological
sites will also be protected. In 1995, the Ontario government legislated a new
Forest Management Planning Manual (OMNR 1996) that changed the manner in
which forests are managed in the province. Among the many changes was the
introduction of guidelines for the protection of numerous values that previously
were not formally considered in planning; values such as woodpecker habitat,
impact on tourism, and protection of cultural heritage values, among others.
While the protection of recorded archaeological sites has been a part of forest
planning in Ontario for decades, it was never formalized and relied more upon
the personal interest of the plan author or the ability of the regional provincial
archaeologist to keep abreast of new forest management plans and schedules. It
would be fair to say that, in spite of honest efforts prior to 1991, cultural heritage
protection was a low priority in forest management planning.

The new Forest Management Planning Manual identifies cultural resources as
one of many values that must be considered and protected in the planning
process. There are seven steps outlined in the guidelines to be followed when
identifying and protecting cultural resources (OMNR 1991:7–9; emphasis
added):

1 Prepare a thematic overview of the heritage for the management unit…both
the precontact and postcontact periods would be described.

2 Assemble known site databases for all four categories of heritage resources
(i.e., cultural landscapes, structural remains, archaeological remains and
traditional use sites).

3 Apply and document appropriate site potential models for the management
unit (or parts thereof). Assemble all relevant environmental and cultural
data necessary to translate the models into maps showing areas of high
potential for heritage resources.

4 Rank the importance of the various types of known resources.
5 Combine the maps of areas of high potential (Step 3) and of known sites

(Step 2). The output of this step is the heritage component of the values map.
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6 Identify where the areas selected for operations during the 5 year term of the
Plan coincide with heritage resource components of the values map. These
coincident areas are the areas of concern for cultural heritage.

7 Identify a specific prescription for each cultural heritage area of concern.

In summary, not only is the Ontario government committed to using
archaeological predictive modeling to protect cultural heritage resources, it is
required to do so. 

5.3
MODELING METHODOLOGY

The modeling methodology employed in OMNR’s archaeological predictive
models is a deductive model using the weighted value method. Kohler and
Parker (1986: 432) see deductive models as encompassing three considerations:

A deductive model must:

1) consider how humans make choices concerning location…. This
requires considering: (a) a mechanism for decision making; and (b) an
end for decision making— what is the goal?;

2) specify the variables affecting location decisions for each significant
chronological or functional subset of sites;

3) be capable of operationalization; it must propose a means for
measuring each of the relevant variables and must allow for a set of
predictions that can be compared with the archaeological data.

A number of interesting points can be raised when considering deductive
models. For example, environmental variables are often considered by
archaeologists to be important in conditioning the choice of activity location in
the precontact past. Many predictive models, including this one, make the
fundamental assumption that “settlement choices made by prehistoric peoples
were strongly influenced by characteristics of the natural environment” (Warren
1990:202). This assumption figures prominently in determining which
environmental characteristics or variables are used in the modeling process. An
examination of the literature reveals some of the most basic environmental data
used in predictive models: elevation, slope, aspect, and distance to water
(Kvamme 1985; Parker 1985; Altschul 1990; Carmichael 1990; Warren 1990).
However, most researchers recognize that a wide range of environmental
considerations are important, including vegetation change over time as well as
the use of various plants for medicinal purposes.

From the standpoint of human adaptation, patterns of local vegetation are
of crucial concern. Many plants serve as primary food and technological
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resources as well as secondary resources that attract economically
important animals. The distribution of non-food resources, especially water
and fuel, can be equally important to settlement decisions. Diversity is also
beneficial when considering non-food resources. In addition to fuel, a
variety of trees provide the raw materials for tools, utensils, shelter, and
weapons, pitch for sealing seams, and fibers from the inner bark for
cordage, bags and nets. A variety of plants can be used to make dyes, reeds
can be woven into mats, and clay from local stream banks can be made into
pottery. Evaluations of topography, water, soils, vegetation, precipitation,
temperature, and availability of rock outcrops or glacial till exposures are all
important in decisions about the adequacy of shelter and the availability of
economic resources.

(Schermer and Tiffany 1985:220)

Dean (1983:11) has pointed out that people may search only for a few cues in
their surroundings when identifying and selecting activity locations, rather than
processing the entire range of environmental “cues” available. It may be only these
basic variables that really have any association with archaeological sites. This
raises interesting questions about the analysts’ choice of the proper
environmental variables for inclusion in the modeling process: 

Perhaps in building predictive models we are too ready to make the
assumption that only a complex multivariate model can adequately account
for human locational behavior, when in fact, a few (proxy?) variables,
observed in the highly correlated database that is our environment, may be
sufficient for forming locational decisions.

(Kohler and Parker 1986:433)

Support for this position lies in the fact that archaeologists have presented
successful predictive models using very few variables. For example, Altschul
(1990) developed a predictive model for the 9000-acre (3640-ha) Mount
Trumbell area of Arizona. There were 228 known sites in the study area that had
been sampled by various agencies in the past. Three environmental variables
were identified which account for the majority of site locations: elevation, slope,
and aspect (Altschul 1990:229–30). Altschul concluded that in this area “over 70
per cent of all component locations can be predicted with just three variables”
(1990:234). However, he does not discuss what his three variables are measuring.
What are they “proxy” variables for? Without this information, one is unable to
discuss why sites are being found where they are, nor can explanations be
offered for settlement systems in the area.

The weighted value method employed within a deductive framework begins
with the assumption that each landscape variable contributed differently to
ancient land-use decision-making. To account for this, each landscape variable is
given a different numeric weight to reflect its assumed contribution to potential.
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This is an arbitrary weighting scale and might offer a range for 0 to 5 where
0=no contribution to potential and 5=highest contribution to potential. The
variables to be modeled are divided into categories and subcategories. Categories
encompass broadly defined divisions such as Proximity to Water, Soil, or
Drainage. Subcategories encompass detailed subdivisions of categories. For
example, if the category was Landform, the subcategories might be Moraine, and
the variables could be End Moraine, Ground Moraine and Hummocky Moraine.

A value V is applied by the researcher to the category to reflect its importance
and contribution to the overall determination of potential. In addition, variables are
assigned weights, W, to reflect differences within categories, again reflecting
their contribution to potential. By multiplying the category value by the weight
of the variable (V×W), a weighted value is defined for each variable used in the
modeling process (Table 5.1). The determination of the numerical weight and
value scale is purely subjective, but there must be a basis upon which the
researcher makes these numerical assignments. Reference may be made to
previous archaeological work which has identified characteristics of the
landscape presumed to be associated with archaeological sites. Ethnographic,
ethnological, historical, or ethnoarchaeological studies may also be sources upon
which the basis for weighting of variables is derived. The experience of the
archaeologist, colleagues, and even the interested public, working or having
experience in the area, may also contribute to determining a weighting scheme.
Additionally, the nature of the project itself may have some bearing on the
weighting applied to variables. For example, a researcher applying a predictive
model within a given theoretical framework may give more importance to
economic-related variables than to some geographic variables. In another
instance, a researcher may combine their own experience with data obtained from
the ethnographic literature and derive weights and values accordingly. In
conclusion, the manner in which weights and values are applied is subjective, yet
it is based upon data obtained and 

Table 5.1 Example of assigned weights and values.

Category Subcategory Variable Value Weight Weighted
value

Drainage Dry 4 5 20

Mixed wet/dry 4 3 12

Wet 4 1 4

Landform Glaciofluvial Delta 3 5 15

Esker 3 5 15

Kame 3 3 9

Outwash plain 3 4 12

Raised beach 3 5 15

Weights and variables are ranked on a scale of 0–5 with 5 having the highest contribution
to potential.
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evaluated by the researcher from a variety of sources and applied within project-
specific frames of reference.

Because the weighted value method allows certain variables to have more
“predictive strength” than other variables, it results in a model that better reflects
the decisions made by people when they choose their activity locations. In
addition, because it is imperative to clearly outline the manner in which the
categories and variables are weighted, the contribution of each variable to the
final model of archaeological potential is also clearly established. This final
point is perhaps the greatest strength of this methodology. For any model to be
valid, it must be reproducible and defensible. When the weighting factor of each
variable is clearly defined, discussion can occur concerning the weights of
individual variables, and the effects of changing weights and values can be tested.
The results of these tests can then be evaluated. In the end, one has a model for
precontact activity location that is clearly defined, testable, and reproducible.

5.4
MODEL RESEARCH AND DEVELOPMENT

Between July 1991 and March 1994, the OMNR and Lakehead University,
through a memorandum of understanding, undertook research into the
development of archaeological predictive models for use in forest management
planning. This research took place through the Centre for Archaeological
Resource Prediction (CARP) at Lakehead University in Thunder Bay, Ontario,
and was based on a methodology developed by Dalla Bona (1993) for the
northern Plains in Saskatchewan, Canada. The project was geared to answer the
question, “Can archaeological predictive modeling be done in the boreal forest of
northern Ontario?” Research was carried out in the areas of contemporary/
historical boreal forest land use, predictive modeling history/methodology, and
boreal forest archaeology.

A component of the research and development included archaeological field
surveys that were carried out to collect baseline archaeological data and to
provide initial indications of the predictive success of the archaeological
predictive models. More than 50 km2 of boreal forest were surveyed over two
summers at as close to 100% coverage as possible. The purpose of the surveys
was to return information about site density and distribution in those areas where
forest harvesting activities were being carried out—precisely those areas where
our archaeological knowledge was weakest. These initial, tentative surveys
demonstrated that archaeological sites do exist in areas subjected to forest
harvesting activities—perhaps not in the densities encountered elsewhere in the
bush (i.e., along the shores of larger lakes and rivers) but more or less
conforming to our understanding of boreal forest land use.

The results of this work were presented to the OMNR in March 1994 in six
volumes that detailed the work completed and outlined a prototype predictive
modeling methodology (Dalla Bona 1994a, b, c; Hamilton and Larcombe 1994;
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Larcombe 1994; Hamilton et al. 1994). It is beyond the scope of this chapter to
summarize these reports. However, it is important to note that the modeling
results presented here are based upon models generated using the methodology
described in Volume 4 of the CARP Reports (Dalla Bona 1994b).

5.5
PILOT PROJECTS

Upon completion of the research and development work, it was decided that
additional work should be carried out to evaluate the reliability of this research
product in an applied environment. A three-stage process was established to
bring the predictive model from the realm of research and development into the
realm of forest management planning: Stage 1 involved small-scale application of
the model in an actual forest management plan; Stage 2 involved large-scale
application of the model in an entire management unit, establishing the
parameters it would be required to operate within the forest management
planning process; and Stage 3 involved applying the model to a substantial area
rich in cultural resource data to determine the correspondence of high-potential
areas with verified sites.

5.5.1
Stage 1: small-scale applications

In January 1994, two management units were identified by the OMNR as being
suitable for a pilot-project application of an archaeological predictive model as
they were entering the first stages of the timber management planning cycle. The
two management units identified were the Geraldton Management Unit and the
Dog River/ Matawin Management Unit (Figure 5.1). The full pilot-project results
are reported in Dalla Bona (1995). For reasons of brevity, only the Geraldton
Management Unit pilot project will be discussed here.

Geraldton Management Unit

The Burrows Lake study area is located approximately 50 km north of
Geraldton, Ontario. It is centered on Burrows Lake, a tributary of the Kenogami
River, which meets the Albany River at the Albany Forks. Burrows Lake has
three navigable waterways flowing into it, which exit from the lake eastward
through Burrows River. The Burrows River in turn empties into the Kenogami
River. Burrows River and False Creek flow into Burrows Lake from the south,
and Murky Creek, which drains Poilu Lake and Arm Lake, from the west.
Burrows Lake is therefore easily accessible by water.

All major rock types in the Burrows Lake area are early Precambrian in
origin. The surficial geology of a major portion of the study area consists of
lacustrine deposits of clay and silt with some sands. The remainder of the area is
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ground moraine of silty to sandy till. An end moraine of sand, gravel, and boulders
occurs east of Poilu Lake (Feldbruegge 1979:7). Burrows Lake has low, sloping,
sandy to clayey banks on the eastern side of the lake while the northern and
western sides have considerable bedrock exposures, boulders, and cobbles. Also
of interest on Burrows Lake are the large quantities of chert pebbles that litter the
beaches. While the majority of these pebbles may be too small for use in tool-
making, it may be supposed that larger pebbles/cobbles existed in the past and
were used for such purposes. The tree species in the Burrows Lake area consist
mainly of white and black spruce, jackpine, poplar, white birch, and cedar
(Feldbruegge 1979:7). Additionally, the different dates of harvesting through the
past have resulted in a variety in the composition and age of forest stands.

The model was applied to a 148.2 km2 area. This area is represented in the GIS
database by a map 438×376 cells (164 688 cells total—134 001 when not
counting cells identified as water), where each cell represents 28.57 m×28.57 m.

Figure 5.1 Location of predictive modeling applications discussed in this chapter.
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The information was derived from 1:50,000 topographic maps and 1:100,000
surficial geology maps. The following map layers were generated: digital
elevation model, first-through fifth-order water, aspect, drainage, grade,
landform, soils, topography, and archaeological sites. The predictive modeling
methodology was applied to the digital map layers to produce a visual possibility
statement—that is, a map indicating the potential for the existence of
archaeological sites (Figure 5.2).

In the summer of 1979, an archaeological survey was conducted in the general
Burrows Lake area that resulted in the discovery of 36 sites (Hems 1980), 22 of
which fall within the pilot project study area. Hems identified 40 separate
components at the 36 sites (Hems 1980: table 5.2). Most of the sites could not be
assigned a cultural affiliation due to the lack of diagnostic material recovered.
None of the sites recorded showed any evidence of having Paleo-Indian or
Archaic components, while two Initial Woodland and six Terminal Woodland
components were identified. One site was characterized by undifferentiated
Woodland and four others had a Historic component. Two recent cabins were
also recorded as components, as were 25 of unknown precontact affiliation. Very
little material was found on the surface except on a large peninsula that divides
the southern portion of Burrows Lake into two arms. This peninsula had recently
been burned over and this had exposed large areas, which greatly facilitated
surface collection. Nearly all the other sites were found in a relatively
undisturbed context and were located and delineated through shovel testing
(Hems 1980:174).

A second archaeological survey was conducted in 1994 and 14 new sites were
identified (Dalla Bona 1995). Thus, the total archaeological site sample for the
Burrows Lake study area is 37. During the 1994 surveys, approximately 60% of
survey time was spent examining areas identified as being of high archaeological
potential and the remaining 40% was spent examining areas that were identified
as “not having high archaeological potential” (i.e., all other areas). While this is
not a statistically valid sampling program, a deliberate effort was made not to
focus solely on areas of high potential, including areas of “not high potential”
that are removed from shorelines. Although the site database was not generated
through the statistically-studly principles, the fact that 37 sites exist cannot be
ignored.

The 37 archaeological sites identified during the two surveys (1979 and 1994)
are represented by 48 grid-cell locations in the digital database. Some sites fall
across more than one grid cell, while the smallest sites are represented by only
one cell, equivalent to an area of 816.24 m2. The combined area covered by all
the archaeological sites accounts for 0.03% of the total land base of the study
area.

A one-sample Kolmogorov test (Kvamme 1990:373) was used to compare the
observed pattern of weighted values at site locations against the pattern of
weighted values in the background (expected). The background population is, in
effect, the entire study area and represents the number of sites in each weighted
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value category. The null hypothesis states that there is no difference between the
cumulative frequency distribution of the background and the site sample, thereby
indicating that the occurrence of weighted values at sites locations is random.
We can reject the null hypothesis if the maximum difference between the
distributions exceeds a critical value. Accordingly, to reach significance at the 0.
001 level, a value of D at least as large as 1.95/ n is required. A minimum value
of D=0.3205 at the 0.001 level of significance results. Cumulative relative
frequencies for both the background and the sample were computed and the

Figure 5.2 Visual possibility statement expressing archaeological potential for the
Burrows Lake model test area, Geraldton Management Unit, Ontario, Canada.
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largest difference between the two is 0.7671, which exceeds the minimum
expected value of 0.3205. We can therefore reject the null hypothesis of no
difference between the background and the sample (site location) distributions
and state with confidence that there is some difference between them.

An examination of the data provides illumination into patterns of association
between site location and the distribution of cells across weighted values
(Table 5.2). It is evident that if those areas where cells with weighted value equal
to 89 occur, 91.67% of site cells (89.19% of sites) would have been identified.
Those weighted values are represented at only 12.48% of the study area.
Correspondingly, very few sites are found on cells with lower-weighted values.
In fact, only 8.33% of all remaining site cells (10.81% of sites) are found on
weighted values equal to 88. This relationship is demonstrated graphically in
Figure 5.3. As the percentage of background cells increases, the percentage of
site cells remains low, until weighted value 88. At this point, 87.52% of the land
base has been counted, compared to only 10.81% of all sites.

With this information in hand, it is possible to refine categories of potential. It
will be noted that an a priori assumption defined high-potential areas as those
falling within the upper 10% of the scale of potential. From the cumulative
frequency table (summarized in Table 5.2), three separate categories of potential
become apparent. The zone of low potential is defined by weighted values 29
through 68. Together, they comprise 26.38% of the total land base but include no
known archaeological sites. The zone of medium potential is defined by
weighted values 69 through 88. These cells comprise 61.14% of the total land
base but include only 10.81% of known archaeological sites. The zone of high
potential is defined by weighted values 89 through 128 and comprises only 12.
48% of the land base but includes 89.19% of known archaeological sites. There
is a clear inverse relationship between the distribution of weighted value cells
and archaeological sites/site cells. While there is a high percentage of the study
area falling within zones of low and medium potential, a low percentage of known
sites fall in those zones. Conversely, while a small percentage of the study area is
represented as having high potential, a high percentage of known sites fall in that
zone. Therefore it was concluded, at this early stage in the model evaluation
process, that the application of the model in the Burrows Lake study area
produced results which appeared to predict reasonably well where one could
expect to encounter sites.

Table 5.2 Summary of cumulative frequency table—weighted values at site locations
compared against weighted values in the entire background referent.

Zone of
potential

Weighted
values

No. of
background
cells

No. of Sites %
Background
total

% Sites total

High 89–128 16722 33 12.48 89.19

Medium 69–88 81933 4 61.14 10.81

88 LUKE DALLA BONA



Zone of
potential

Weighted
values

No. of
background
cells

No. of Sites %
Background
total

% Sites total

Low 29–68 35346 0 26.38 0 

5.5.2
Stage 2: management unit-scale application

The Caribou Forest Management Unit (Figure 5.1) was selected for application of
the archaeological predictive modeling methodology for two reasons. First, this
unit was acting as a “test unit” for the application of the new forest management
planning manual (OMNR 1996). A number of new guidelines and approaches
that arose from the new manual were being applied for the first time—including
the cultural heritage guidelines, in which archaeological predictive modeling was
but one component. Second, this unit had seen minimal forest harvesting
activities, when compared with units further to the south, and, coupled with the
fact that it lies entirely within the boreal forest zone, made this unit well suited
for archaeological study within the context of forest management planning in
northern Ontario.

Figure 5.3 Comparison of percentage cumulative frequencies of the background and the site
sample, Burrows Lake study area.
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The physical geography of this 800,000-hectare forest management unit is
characterized by Precambrian bedrock that exhibits numerous faults resulting in
long, thin lakes extending for kilometers. There is considerable evidence for
glacial activity throughout this management unit. Numerous sinuous eskers wind
their way in lines, primarily from the northeast to the southwest. Ancient beach
ridges dot the landscape in the southern reaches of the unit. Outwash plains,
drumlins, deltas, and other features can be found throughout the study area. The
unit is primarily vegetated by a conifer forest. This unit is at the northern limits of
red pine, but jackpine and spruce are common, with aspen, poplar and birch
occurring as well. 

The archaeological predictive modeling methodology applied was essentially
that developed by CARP (Dalla Bona 1994b) with some exceptions. First, the
amount of existing digital information available for that management unit was
extremely limited. While digital elevation models exist for most of the province,
they did not exist for the Caribou Unit at the time (1995). As a result, I was faced
with two choices: create the data myself or contract the work to an outside
agency. The first option was possible but not within the time frame available.
The second option was not possible due to the enormous cost involved (>$50,
000) and the unreasonable level of resolution (50–100 m per pixel). Therefore,
no digital elevation model was used in the application of this predictive model,
which effectively means that two variables could not be incorporated into the
model:aspect, which reflects the compass direction parcels of land face; and
slope, which reflects ground steepness. The latter variable is encompassed in part
by the variable topography, which measures overall relief in a broad area but not
at the level of detail reflected by that derived from elevation values.

An addition to the variables identified in the model developed by the CARP
research and development project is the “portage” variable. Portages identified
on OMNR values maps, National Topographic Series (NTS) maps, and
NOGETS geology maps are digitized onto a map layer and weighted accordingly.
This data layer complements rapids/waterfall data but strictly identifies one side
of a water body or the other as having higher potential. In cases where portages
go overland, this variable adds another dimension to identifying archaeological
potential in areas away from lakes and rivers.

The GIS data for the Caribou Forest Management Unit was digitized by
myself from 1:50,000 NTS topographic maps and 1:100,000 NOGETS surficial
geology maps at an effective scale of 1:85,000 (resolution=29.4 m/cell)
following the methodology detailed in Dalla Bona (1994b). The resulting digital
database is 3,649 rows by 2993 columns, totaling 10,921,457 cells, of which 3,
596,495 fall outside of the management unit boundaries. A total of 7,324,960
cells occur within the unit’s boundaries: 5,477,506 (74%) are classed as land; 1,
597,493 (21.81%) are classed as water; and 249,961 (3.41%) are north of latitude
50° (where geological map data did not exist). Therefore, archaeological
potential could not be generated for this area (north of 50° latitude) at that time
(1995). The following digital map layers were generated: soils, landform,
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topography, drainage, portages, rapids/waterfalls, first—through fifth-order
water bodies.

The predictive modeling methodology was applied to the digital map layers to
produce a visual possibility statement identifying archaeological potential
(Figure 5.4). For the Caribou Management Unit, archaeological potential ranges
from the lowest potential, where the numerical value equals 5, to the highest
potential, where the numerical value equals 149. Following from the results of
the pilot applications in the Stage 1 projects, archaeological potential is identified
by the upper 15% of the landbase representing the highest weighted values.

Prior to 1995, there were no known archaeological sites for the 800,000 ha
that comprise the Caribou Forest Management Unit. After two years of survey
(Dalla Bona 1996, 1997), 23 archaeological sites were discovered in various
parts of the unit, representing everything from the very earliest occupations
(radiocarbon dated to 8100 BP; Pilon 1998) through to turn-of-the-century
historic occupations. The surveys were not conducted according to the principles
of random sampling theory, nor were prejudgments made about surveying in
areas of high or not-high potential. Rather, these surveys were conducted to
obtain a basic understanding of the density and distribution of archaeological
sites in this part of the bush. Although not statistically valid, 22 of 23 sites were
discovered to be in areas identified as having high archaeological potential. 

The distribution of potential

The Caribou Forest Management Unit provided excellent information about the
distribution of potential across the landscape. A common public perception of
archaeological site location in northern Ontario is one in which sites are located
adjacent to lakes and water bodies. This perception is transferred to an
understanding of potential when it is surmised that protecting shorelines will also
protect all the archaeological sites. An archaeological understanding of site
distribution places a high density of sites along the shores of major lakes and
rivers. We understand this to be the result of summer occupations, which are of
longer duration and with a greater population concentration than occurs at other
times of the year. However, that same understanding of land use also suggests
that a lower-density but wider distribution of sites may be expected in areas high
up in watersheds, well removed from the shores of major lakes and rivers
(Larcombe 1994; Dalla Bona and Larcombe 1996).

The nonarchaeological-predictive-modeling-specialist’s perception of
archaeological potential as being highest along the shores of major lakes and
rivers is not necessarily correct. The modeling methodology employed here clearly
demonstrates that the distribution and “shape” of archaeological potential is as
varied as the landscape itself (Figure 5.4). This is reflective of the power and
utility of this methodology. When people consider where to set up a campsite,
they do not paint the entire shore of a lake with the same stroke of the brush. There
are selected shores of the lake that are preferred and there are other parts where it
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might not be physically possible to set up a camp (e.g. where there are cliffs or
steep slopes). Three areas of archaeological potential, which correspond to aerial
photographs of regions included in the archaeological survey of 1995, exemplify
this point.

The Ragged Wood Lake area is illustrated in Figure 5.5, and was the starting
point of one of the 1995 surveys. Immediately apparent to the viewer is the large
swath of high potential that loops through the lower center portion of the image
area. This feature represents a raised beach identified from the geology maps and

Figure 5.4 Archaeological predictive model generated for the Caribou Forest
Management Unit, northwestern Ontario, Canada, classified into three zones—high,
medium and low potential.
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is weighted high due to the expectation of identifying associated archaeological
material. Examination of the image suggests that the highest potential for the
existence of archaeological sites is on land south of the lake that intersects with
the raised beach feature. Around the lake itself, archaeological potential is not
uniformly distributed. Indeed, the northwest margins of the lake are of
considerably lower potential than the northeast shore directly opposite. Clearly,
the greatest influence on archaeological potential is the glacial beach that runs
through the southern portion of the image. The only archaeological site (EcJt-1)
identified in this image area is found on the point of land east of the small island
near the center of the lake (Dalla Bona 1996).

A second area of aerial coverage is in an area south of Marchington River where
harvesting has already taken place (Figure 5.6). This image is primarily
characterized by numerous eskers running through the area, trending northeast to
southwest. Archaeological potential in this image is distributed such that the
areas with the highest potential occur considerable distances from the major
water body, the Marchington River, which flows west across the top third of the
image. In this area, the eskers clearly have the greatest influence on the
distribution of potential, and the Marchington River, while a major contributor to
potential itself, is not ringed in high potential. Rather, high potential crisscrosses
through areas already harvested, well away from most of the water bodies. 

A third area of aerial coverage is the central Fairchild Lake region
(Figure 5.7). In this area, archaeological potential is distributed more in line with
popular expectation. Highest potential is located along the margins of the lake
and major creeks, and falls off as distance increases from the lake. There are no
exceptional geological or glacial features in this area—a factor contributing to
the fairly uniform distribution of potential. Two pictograph sites are located
within the image area, on the south side of the small peninsula at the left center of
the image. Two other sites are located outside the image: a third pictograph to
the north and a small lithic scatter to the south.

The three examples above demonstrate that all potential is not distributed
equally. Indeed, this is something that any archaeologist who has ever done any
fieldwork already knows. The whole of the shoreline around a lake is not equally
likely to contain a site. One side of a lake may be more favorable than the other
and there are certainly going to be selected areas that are more likely to contain
archaeological sites. This modeling methodology really does make explicit an
attempt to quantify the subjective experience of archaeologists. The contributors
to variation in potential are the innumerable combinations among the variables
defining the model. Where there is little variation, potential is uniformly
distributed; where there is great variation, potential appears distributed on the
map like a pack of crayons melted in the sun. A model that reflects our
understanding as professionals has some use. If it is accepted that we as
professionals have a reasonable grasp on understanding the past, then we might
find such a model useful. 
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5.5.3
Stage 3: application within forest management plans

The Temagami and Nipissing Forest Management Units in Ontario represent
unique challenges to predictive modeling (Figure 5.1). First, these areas are well
represented digitally with only detailed geology data lacking. More importantly,
this area represents perhaps the best cultural heritage database in northern
Ontario. Over a decade of study, resulting from intense scrutiny of land-use
practices in these areas, has resulted in an excellent database that spans historical
and archaeological categories. A full range of site types are documented, from
simple one-flake wonders, to precontact native village sites, to spiritual sites with
no physical evidence betraying their presence. Indeed, heritage sites,
representing the rich mining and forest heritage of this area occupied early in the
twentieth century, are also documented.

Figure 5.5 Southern Ragged Wood Lake, Caribou Forest Management Unit.
Archaeological potential is superimposed onto an aerial photograph (Air Photo no. 75–
5019/78–2). The highest archaeological potential occurs in the bottom center of the image,
where the influence of a glacial beach ridge is clear.
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There were two primary reasons for applying the model in this area. First, it
represents an unparalleled opportunity to evaluate the correspondence of areas
predicted to contain archaeological sites with a large database of verified
archaeological sites. Second, planners in this area were in the initial stages of
writing a new forest management plan and the opportunity existed to apply the
methodology and incorporate the results into an actual forest management plan—
and follow it through its five-year cycle.

Together, the Temagami and Nipissing Units cover an area of some 24,275 km2

and stretch from just north of Algonquin Park, in the heart of the mixed-wood
forest, north to the base of the Hudson Bay Lowland clay belt, through the boreal
forest. While primarily a Precambrian bedrock environment, this study area is
represented by a full range of postglacial features including dramatic glacial
spillways, dunes, clay plains, and some of the highest elevations in Ontario.

Figure 5.6 Marchington River Locality, Caribou Forest Management Unit.
Archaeological potential is superimposed onto an aerial photograph (Air Photo no. 94–
174). The highest archaeological potential occurs through the middle of the image where a
series of eskers run northeast to southwest through an area already harvested.
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The predictive modeling methodology was applied to this area, resulting in a
raster database 8000×6667, for a total of 53,336,000 cells at 30 m resolution. Of
that total, 26.3 million cells fall outside the management unit boundaries, 5.25
million cells are water and the remaining 21.7 million cells form the land base.
The same methodology as described in Dalla Bona (1994b) was applied but
again with the exclusion of elevation-related data. While there was digital terrain
information for parts of the unit, it did not exist for the complete unit, and as a
result it was not used. Consultation with John Pollock, a local archaeologist with
considerable experience of working in the region, assisted in “tweaking” the
weighting scheme applied to the variables. Perhaps the greatest difference
between the original weighting (Dalla Bona 1994) and the weighting applied in
the Temagami/Nipissing area was the increased importance of bedrock-related
variables and the decrease of the importance of sandier soils. In the final

Figure 5.7 Fairchild Lake Locale, Caribou Forest Management Unit. Archaeological
potential is superimposed onto an aerial photograph (Air Photo no. 75–5016/85–18). High
potential is uniformly distributed around the lake except in the bottom center, where there
is a large concentration away from the lake.
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computations required for creating the model, ten different map layers (totaling
one-half billion cells of information) were simultaneously juggled to produce the
final visual possibility statement representing a map of archaeological potential
(Figures 5.8 and 5.9). High potential was defined as 16.25% of the land base.

This map of potential was compared against the known site database.
Table 5.3 summarizes the performance of the model. For the initial evaluation of
model performance, and in the absence of full site records (still to be obtained
from the provincial record-keeping agency), a total of 222 registered precontact
archaeological sites were used as the comparative database. Of these, 83.8%
(186/222) of the sites were found in areas identified as being of high
archaeological potential, 15.8% (35/222) of the sites were found in areas
identified as being of medium archaeological potential, and 1 site was located in
an area of low archaeological potential. Two different statistical tests were
conducted to evaluate the robustness of these predictions. First of all, it should be
stated that the existing archaeological site database was not used to generate the
model. Second, the archaeological data was not collected via statistically valid
sampling methodology.

The first test conducted was Kvamme’s (1990) one-sample Kolmogorov test.
Once again, this test measures a sample of the background against the entire
background. The sample in this case is the weighted values as they occur at
known site locations. The background is every weighted value in every cell in
the entire database. The null 

Table 5.3 Summary of cumulative frequency table—weighted values at site locations
compared against weighted values in the entire background referent—Temagami and
Nipissing Forest Management Units

Zone of
potential

Weighted
values

No. of
background
cells
(n=2271078
5)

No. of sites
(n=222)

%
Background
total

% Sites total

High 76–147 3 691 475 186 16.25 83.78

Medium 55–75 14696318 35 61.14 15.77

Low 29–68 15232258 1 26.38 0.5

hypothesis states that there is no difference between the cumulative frequency
distribution of the background and that of the site sample, thereby indicating that
the occurrence of weighted values at sites locations is random. We can reject the
null hypothesis if the maximum difference between the distributions exceeds a
critical value, which is computed to be D=0.1308 at the 0.001 level of
significance. Cumulative relative frequencies for both the background and the
sample were computed and the largest difference between the two is 0.6769,
which exceeds the expected value of 0.1308. We can therefore reject the null
hypothesis of no difference between the background and the sample (site

PROTECTING CULTURAL RESOURCES IN ONTARIO 97



location) distributions and state with confidence that there is some difference
between them. We can examine this relationship graphically and visualize the
dramatic separation between the two (Figure 5.10).

A second test conducted was a two-sample Kolmogorov-Smirnov test (Blalock
1979:266). In this case, rather than compare a sample of weighted values taken
at site locations against all weighted values, the test compares two samples
drawn from the population: sample 1 is weighted values taken at site locations,
and sample 2 is a random sample taken from the background. The null
hypothesis in this case states that to draw two independent random samples from
identical populations results in two essentially similar cumulative frequency
distributions. The K-S test produces a statistic that is the maximum difference
between the two cumulative distributions. “If the maximum difference is larger
than would be expected by chance under the null hypothesis, this means that the
gap between the distributions has become so large that we decide to reject the
hypothesis” (Blalock 1979:267).

As stated above, sample 1 is weighted values drawn from known site locations
(n=222) and sample 2 is drawn randomly from the entire background of
weighted values (n=222). The critical value, D, is computed to be 1.95/ [(222

Figure 5.8 Predictive model of archaeological site location for the Temagami Forest
Management Unit, Ontario, Canada.
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+222)/ (222×222)]=0.1851 at the 0.001 significance level. Cumulative
frequencies were computed for both samples and shown in graph form
(Figure 5.11), and the largest difference between the two was 0.6669,
significantly exceeding the expected value. Thus, the null hypothesis could be
rejected, indicating that there is a significant difference between the distribution
of weighted values in the background as against those at site locations.

In summary, a predictive model applied to two forest management units in
northern Ontario appears to have a reasonable level of predictive reliability.
When compared against a known-site database of 222 sites, almost 84% of the
known sites fall within areas identified as having high archaeological potential
(16.25% of the land base).

5.6
OIL AND WATER CAN MIX! INTEGRATING

ARCHAEOLOGY INTO FOREST MANAGEMENT
PLANNING

The preparation of policy statements and guidelines is a necessary step in the
development of appropriate cultural heritage protection in any development
environment. However, there is a big difference between presumed means of

Figure 5.9 Predictive model of archaeological site location for the Nipissing Forest
Management Unit, Ontario, Canada.
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protection, arrived at through committee discussion, and actually implementing
that protection in an operational setting. There are considerable hurdles to be
cleared in getting an independent forest contractor to effect protection for a
resource that we-think-might-be-there-but-aren’t-really-sure-because-no-one-
has-looked-for-it.

Perhaps the biggest hurdle facing archaeologists dealing with archaeological
predictive models is the means by which the model is operationalized.

Figure 5.10 Cumulative frequencies of entire background referent versus site sample.

Figure 5.11 Cumulative frequencies of the random background sample versus site sample. 
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Generating a reasonable model result is a task in itself, but it must be
remembered that a map of potential or a predictive model is not a final result; it
is just a map, and all maps require interpretation and study. It is the product of a
tool that allows us to make decisions regarding the appropriate types of activities
that can be carried out in certain areas. While predictive models certainly have
the capability to be used in theoretical research and purely academic exercises, we
must recognize honestly that foresters and land-use planners are too busy to
worry about the details of patch theory or biomass potential. They want to know
how archaeological potential affects their proposed activities and we have to be
able to interpret and present archaeological potential to people other than
archaeologists in a manner that not only is understandable in an operational
sense, but can be defended and justified when questioned.

For example, presenting a map of archaeological potential to a forest company
will immediately elicit the question “What do I do with this now?” All users of
the land base, be they developers or harvesters or cottage-lot owners, need to be
instructed as to how they are being affected by the identification of a cultural
heritage value. If high potential is identified as a value in a forest management
unit, and that value has been identified as coming into conflict with a proposed
activity, people want to know what they should do. Should a road be moved?
Should a different site preparation or harvesting technique be employed? The
map of archaeological potential essentially becomes another layer of information
used by land-use planners in planning activities. This provides them with options
and alternatives they can choose to exercise— as long as the implications of
conducting activities in areas of high potential are clearly understood.

There is a common perception that forestry activities are destructive and
damaging to the ground surface, which is where one tends to find the majority of
precontact archaeological sites. Viewed from a distance, forestry-related
activities appear to cause considerable disturbance to the ground. Road-building,
mechanical site preparation, and borrow pits are all features which undoubtedly
destroy cultural resources that might coincide with that activity location.
However, forestry involves many more activities than road-building, and when
these are examined in more detail many of them are not as destructive as might be
perceived.

A detailed examination of forestry activities in the boreal forest of
Saskatchewan was conducted by Western Heritage Services to evaluate the
impact and effects different forest activities have on buried archaeological
resources, with the intention of developing an impact classification system
(Finnigan and Gibson 1993:92–3).

The kind of impact to a site, and its degree of intensity, will dictate the
kinds of responses that can be taken to minimize site disturbance or
mitigation cost. Direct impacts are said to occur as a consequence of an
industry-related activity…. Indirect impacts occur not so much as a
consequence of forestry activity, but as a consequence of forestry activity
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having taken place, for example, when construction of a logging road into
a formerly inaccessible area permits hunters or campers easy access….

The amount of damage that is caused by a given forestry activity depends
on the activity being undertaken. Therefore, it is necessary to devise some
kind of general classification scheme which can codify the severity of site
disturbance. Disturbance would entail the alteration of a site in any manner
from its natural state. Although the best information can be obtained from
a site which has not been disturbed at all since it was created, in practice
all sites become degraded to some extent by natural causes. Furthermore,
some kinds of alterations, both natural and artificial, may ostensibly appear
severe, but in fact may not constitute significant disturbance from the point
of view of heritage data recovery.

Finnigan and Gibson went on to develop a six-stage Impact Classification System
which basically categorizes forestry activities with respect to their impact on the
ground surface—and, by extension, to archaeological sites. At one end of the
scale, a Class “0” impact results in no ground damage and does not require pre-
impact archaeological inspection. At the other end of the scale, a Class “5”
impact completely destroys the ground surface and does require a pre-impact
archaeological assessment (Finnigan and Gibson 1993:93–4).

The rationale behind this impact classification system is simple. The goal of
cultural resource protection is to protect cultural resources—a goal that can be
achieved using a variety of means, only one of which is complete avoidance of
the locality. Protection can be achieved by understanding the effects of forest
activities and the threshold of impact that specific “potential” localities can
withstand. The challenge is to schedule activities which do not exceed the impact
threshold of specific localities. Once this is understood, an entire range of
options opens up to forest management professionals and land-use planners. In
Ontario, the process of identifying a impact classification system has begun in
earnest. Because Ontario’s forests span a biogeographical range, from primarily
hardwood woodland stands to primarily conifer boreal stands, the types of forest
activities conducted in those forests are broader than those described for the
boreal forest of Saskatchewan (Finnigan and Gibson 1993). However, a
preliminary classification scheme (Table 5.4) has now been completed, assessing
forest activities and their impacts on archaeological sites.

The importance of Finnigan and Gibson’s work is that it provides a link
between predictive models, as archaeological products that rigidly define areas
of doubt and 

Table 5.4 Interim impact classification system for high archaeological potential—boreal/
mixed-wood forests of Ontario.

Category 1 Minimal disturbance ′  Maximum 1% random disturbance of mineral
soil
′  Disturbance of humic layer acceptable
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′  Soil compaction acceptable
′  Chemical site preparation acceptable
▪  Does not require pre-impact assessment

Category 2 Localized disturbance ′  Between 1% and 50% random disturbance
′  Tire rutting acceptable
′  Disturbance of humic layer acceptable
′  Compaction of soil acceptable
′  Some mechanical site preparation acceptable
▪  Requires post-impact assessment

Category 3 Complete disturbance ′  More than 50% random disturbance
′  Any regular area disturbance (landings,
leveling)
′  Any activity which results in complete
alteration of the ground surface
▪  Requires pre-impact assessment

uncertainty, and the end user, who is the land-use planner. The true challenge that
faces us is the process of getting archaeologists to communicate in a manner
understandable to land-use planners. When cultural heritage requirements are
presented in such a way that they can be operationalized by nonarchaeologists,
protecting cultural resources will become yet another land-use planning exercise.
Archaeological sites are fairly easy to protect: they do not move once
discovered, and they have definable boundaries. Once the impact of various
activities are made clear—from a heritage integrity point of view—then forest
activities appropriate for specific locations, seasons, soil types, etc. can be
scheduled. For example, a tree-cutting operation can be scheduled for winter,
when the ground is frozen and after a sufficient snow pack has built up. In these
conditions, one would be hard pressed to locate a tire track in that area the
following spring. Even though certain land-use practices are being allowed,
cultural resource protection is being achieved. If a company chooses to conduct
an activity that will be detrimental to potential resources, it has arrived at that
decision in light of other alternatives, and the cost of hiring archaeological
professionals will have been weighed alongside other factors.

It is too difficult to tie prescriptions (instructions regarding protection of
values) to specific forestry activities. While the activity may remain the same
(e.g. harvesting with a feller-buncher), the impact will depend upon the season of
the year, the soil type, the soil moisture content, etc. It makes much more
operational sense to tie the prescription to the desired outcome of the activity. In
this regard, forest operators can ask themselves, “Will Activity A result in a
Category 3 impact?” If the answer is yes, they are required to hire an
archaeologist before conducting the activity. Since all the variables (Activity A;
Category 3) are defined, there can be no doubt or uncertainty as to the necessary
actions that are required. 

Once again, the goal is to work with foresters and other land users, not against
them. If the only available alternative provided to land-use planners is avoidance
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of the value, there will be hesitancy to work with archaeologists. However, if a
range of alternatives is available, presented in a format compatible with existing
activity scheduling, the working relationship between archaeologists and land
users will be productive and can lead to forest companies considering cultural
heritage first before all other forest values, as is happening in Saskatchewan
(Gibson 1995, pers. comm.). There can be no compromising the requirement that
potential cultural values be protected. There must be a change in opinion that
complete avoidance of the value is the only means of protecting predicted
archaeological site locations.

5.7
SUMMARY

The Ontario Ministry of Natural Resources has been actively protecting cultural
resources through forest management planning since 1991. Concurrently, the
OMNR has been developing a predictive modeling methodology based upon
weighted variables developed in a deductive framework. This methodology,
tested in stages from small areas to entire forest management units, has
demonstrated a high level of predictive strength. The most recent applications of
the model have resulted in almost 84% of known sites to be accounted for by
high-potential areas, which comprise 16.25% of the land base.

The challenge faced by archaeologists is not with the development of
archaeological predictive models. This is an area where archaeologists with
differing theoretical or methodological backgrounds could spend entire careers
debating the merits of different GIS systems, theoretical approaches, or
validation scenarios. It is time to shift these debates to a forum which continues
to contribute to the development of archaeological predictive modeling without
impeding it. The real challenge lies in presenting the results of archaeological
predictive modeling in a manner that is not decipherable only by the gods. Only
through clear explanation of predictive modeling results and the provision of
explicit instructions that detail management options will the protection of
cultural resources be achieved. The forest industry, like all other land users, is
under increasing pressure to demonstrate responsible and sustainable use of the
forests and their resources. Cultural heritage is but one of hundreds of other
concerns that must be addressed in land-use planning. Forest management
professionals are not cultural heritage professionals: they look up at the trees and
archaeologists look down at the ground. Success will be achieved when our eyes
meet and we reach the common understanding that protecting cultural resources
will not result in massive withdrawal of the available land base. It is not our
responsibility as archaeologists to ensure that importance is given to the
protection of cultural resources. That responsibility belongs to government
legislators. It is our responsibility to identify the actual or potential location of
the resources and provide management alternatives through which appropriate
protection can be achieved. This process has already begun in Ontario’s forests,
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and the success that has already been realized serves as the foundation for
continued protects of Ontario’s cultural resources. 
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CHAPTER SIX
Considerations of Scale in Modeling

Settlement Patterns Using GIS:
An Iroquois Example

KATHLEEN M.SYDORIAK ALLEN

Issues of spatial scale and data resolution are examined using GIS in
the analyses of Iroquoian settlement locations. Models for the
evolution of Iroquoian settlement patterns conflict over the relative
rate at which populations became sedentary and began to reside in
semipermanent (but year-round) villages. Settlement locations for
base camps and villages in the central New York State region were
plotted and examined using GIS with reference to particular
environmental features critical for subsistence needs. Spatial and
temporal variability in settlement locations needed to be evaluated as
to their implications for models of Iroquoian sedentarization.

6.1
INTRODUCTION

Archaeologists have long been aware of the necessity to consider scale as they
model settlement systems. Although there is no consensus on the particular
spatial scales at which settlement studies might be investigated, there are
common themes. In early work, Clarke (1977) used the terms “micro”, “semi-
micro”, and “macro” to refer to studies at the structure, within-site, and intersite
levels. Butzer (1982) used “micro” (within-structure) and “semi-micro” (within-
site in a limited or multiple-activity area) and added terms for larger spatial areas.
“Mesoscale” was used for within-site structure aggregation areas and
“macroscale” for intersite patterning related to environmental features in or
around a node of administrative, economic, or ceremonial purpose (Butzer 1982:
232–3). Although there is some difference in the terminology employed, both
Clarke and Butzer emphasized patterning at the local level. More recently, the
increase in regional settlement pattern studies has provoked renewed emphasis
on the broader spatial patterning of settlements at both the regional and larger
levels.

In this chapter, I examine some issues of scale. In particular I consider some
of the different kinds of questions that can be answered using studies at different



spatial scales of analysis and I compare several studies that have been done in the
eastern Great Lakes region of North America. 

My aim is not to suggest that we standardize the use of certain scales of
analysis for different kinds of studies. Rather, I wish to bring a consideration of
spatial scale to the forefront, especially with reference to the collection of data
and the kinds of questions that are asked in settlement location studies. Scales of
analysis, data scales, and data resolution will be considered. These issues are
important in light of the increasing availability of data in a wide variety of forms
and at widely varying levels of resolution that are incorporated into GIS studies.

6.2
SPATIAL SCALE AND KINDS OF PROBLEMS

There is some consistency in the terminology used in settlement studies.
Regional or macroscale studies generally refer to areas that are larger than the
site level and thus involve intersite analysis, although the area covered may vary
from a single drainage to a broader physiographic region. The spatial scale used
depends on the research problem and on the availability of data. Marquardt and
Crumley (1987) suggest that switching the scale of analysis at various times
during the course of a study may be necessary. A recent GIS study in the
Netherlands moves through four spatial levels from the site through to the macro-
region (c. 4500 km2) (Wansleeben and Verhart 1995). Such work underscores
the importance of suiting the scale of the study to the problem at hand and of
planning to move among several scales as needed.

In this chapter, I use global to refer to studies at a broad regional level that
may incorporate areas of roughly 10,000 km2 or more, regional to refer to
studies of roughly 5500 km2, and local to refer to studies of approximately 100
km2 or less. These areas are derived from the scales used in studies I review.

Global studies of settlement are most useful for studying the broad effects of
environmental variables on settlement and adaptive patterns. In these studies, one
can examine the particular broad environmental characteristics of a region and
identify the relationship between these variables and settlement location. In
addition, patterns such as widespread population movements that are most
visible at a broad scale may be recognized. Regional-level studies focus on more
specific variables of importance. While many of these variables will continue to
be environmental in nature and may include soil types, temperature regimes, and
vegetation, other factors such as proximity to different ethnic groups can also be
considered. The smaller focus results in a more detailed view of settlement
choices that can be compared from one area to another. At the local level of
analysis, particular resources available in the immediate vicinity of the site can
be identified and assessed for their importance to particular location choice. For
example, at this level one might consider the importance of clay deposits, nearby
wetland resources, and routes between the site and resources. While these can be
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examined at the regional level, the spatial scale and consequent resolution of the
base data are critical in making these comparisons meaningful.

The availability of data in a variety of digital and hard-copy forms that can be
readily converted into GIS databases has made the careful consideration of map
scale an important aspect of GIS design. Map scale refers to the relationship
between a distance on a map and the distance in the real world. In the United
States, digital data is widely available from the US Geological Survey (USGS) at
scales of 1:250,000, 1:100,000, and 1:24,000, although not all areas of the
country have complete coverages, especially at the largest scale (1:24,000). The
resolution of data is the accuracy or level of uncertainty in point location or
distance measurement. At a map scale of 1:250,000, a mapped feature may vary
by 127 m; at a scale of 1:24,000, a feature may vary by 12 m (Marozas and Zack
1990:168–9). The accuracy of the mapped area required varies according to the
kinds of questions being asked at the spatial level of interest. At the global and
often at the regional level, very specific locations (within 15–30 m) may be less
important. At local levels of analysis, a lower tolerance for error exists.

In addition to data resolution, consideration must be given to cell size within
the GIS. Broadly speaking, the cell size should be as small as the smallest unit
area in which one is interested. If one is studying the distribution of lithic
scatters, the most appropriate cell size may be 10 m2 or less. Concerns of data
quality, resolution of the data layers, and size of the GIS also merit attention.

These issues of spatial scale and level of resolution of the data are framed
below through an examination of several case studies of the use of GIS in the
analysis of Iroquois settlement location. The studies incorporate global, regional,
and local scales of analysis and so are particularly apt examples of the effect of
spatial scale and data resolution on settlement analyses. Following this, a brief
study of settlement in the Lake Cayuga region of central New York State is
discussed and compared with the pattern presented in other studies.

In what follows, the term “global” is used to refer to all of those groups that
share the basic Iroquoian cultural pattern. This incorporates most of New York
State and southern Ontario. “Regional” refers to subareas that correspond to
tribal groups, for example the Huron settlements in the Lake Simcoe region and
those in western, central, and eastern New York State that roughly correspond to
tribal groups. “Subregional” or “local” refers to particular drainages or clusters
of settlements in close proximity to each other.

6.3
GLOBAL, REGIONAL, AND LOCAL VIEWS OF THE

IROQUOIAN WORLD

Iroquoian peoples were slash-and-burn horticulturalists at the time of European
contact and much of our modeling and understanding of them derives from the
observations made by early missionaries and settlers. Subsistence models stem
especially from Jesuit missionary observations in Ontario (as in the Jesuit
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Relations, Thwaites 1959). The Iroquoians were dependent on maize, beans, and
squash horticulture although there is substantial evidence for continued
utilization of a variety of wild plant and animal resources (Fenton 1978).

The location of horticulturalists in the eastern Great Lakes was eased by the
presence of the Great Lakes; Lakes Erie and Ontario have a moderating effect on
climate such that the number of frost-free days is sufficient for agricultural
production. South of the traditional Iroquois area in New York State on the
Allegheny Plateau, the frost-free season is shorter and thus the area is less
conducive for horticultural settlement. Iroquoians were surrounded by upland
areas to the south and east (areas less conducive to horticulture). To the north
was the Canadian biotic zone, where horticulture was not possible but where
hunting, fishing, and gathering were important subsistence pursuits. 

Villages were spaced over the landscape. The global Iroquoian pattern
includes a number of different tribal groups in the eastern Great Lakes region. In
Ontario, groups at contact were located in a relatively small area, especially in
the vicinity of Lake Simcoe; in New York, Iroquoian groups were spread across
the state in an east-to-west orientation characterized by settlement clusters.
Because there was spatial separation between each of the groups in New York at
the time of European contact, and because each of these groups had names for
themselves, our understanding of prehistory has been underpinned by a concern
for the regional and the local. The evidence for group coalescence within
restricted areas seems to stem primarily from the late prehistoric period (late
fifteenth to mid-sixteenth centuries) (Snow 1994; Tuck 1971). In earlier
prehistoric times, concentration of populations into territories that correspond to
tribal groups is not so readily apparent. However, we can identify some regions
of population concentrations (i.e., western New York, the Genesee Valley,
Central New York around Syracuse, the Mohawk Valley, and the Susquehanna
Valley).

These tribal settlement clusters are on the regional level. Areas occupied by
the different Iroquois tribes can be divided into regions (including the Mohawk
Valley, the Lake Oneida area, the hills south of Syracuse, the central Finger
Lakes region, the western Finger Lakes and Genesee River valley region, and the
western New York State region). These areas roughly correspond to tribal
locations as known during the early contact period. On this regional level, we can
trace the origins of some of these groups to the early part of the Late Woodland
period (c. AD 1000). In the Onondaga area, the formation of the Onondaga tribe
has been identified on the basis of village movement and artifactual and
settlement evidence (Tuck 1978).

It is also at the regional level that we can begin to identify the ways in which
Iroquoian groups differed from each other. Aside from settling in areas of
productive agricultural soils, what other factors come into play in the selection of
village locations? What are the differences between tribal areas? Are certain
resources more available in one area than another? How does this affect
interaction between groups? An understanding of the evolution of tribal forms of
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organization requires that we understand similarities and differences between
regions. The global view tends to obscure differences in order to understand
overall settlement patterning and subsistence.

With the Iroquoian subsistence pattern, soils became depleted over time and
villages were moved every 15 to 20 years. This periodic movement of villages
results in a pattern of village sequences. These sequences occur at the regional
level and specific sequences identify local patterns of development. Several of
these sequences have been identified. The longest sequence is known from the
central New York Onondaga area (Tuck 1971). The most precise example is from
the historic Seneca villages south of Rochester, New York, where a dual
sequence of villages has been traced from AD 1550 to 1687 (Wray and Schoff
1953; Wray et al. 1987, 1991). These village sequences are part of the local
pattern.

In particular village sequences, we are assuming that the same population is, in
general, moving from one village location to the next and therefore that there is
continuity in population (ancestor/descendant) over time. In terms of settlement
location, the decisions that lead to the choosing of particular village sites are of
interest. Factors of agricultural soil, defensibility, proximity to other resources,
previous village placement and therefore ease of village relocation and the
relationship of this population to others in neighboring valleys are all involved in
such decisions. 

6.4
GIS AND SPATIAL SCALE: GLOBAL, REGIONAL AND

LOCAL VIEWS

Geographical information systems (GIS) can be used at a number of different
scales depending on the problem being investigated. Many GIS studies have
been done at the regional level and most have focused on the relationship
between site locations and particular environmental variables.

The Iroquoian area has been a veritable hotbed of GIS activity from the late
1980s to the present. Several major studies have been conducted. These studies
have concentrated on helping us understand the location of settlements primarily
in relationship to environmental features. This, of course, is not surprising, given
the relative ease with which environmental data can be incorporated into a GIS
and the greater uncertainty that revolves around the measurement, quantification,
and even identification of variables important to understanding the impact of
social and political factors in cultural development.

Although there has been general agreement in the data categories used, there has
been less uniformity in scale. Studies at the broad regional or global (eastern
Great Lakes including southern Ontario and New York State) (Knoerl 1988;
Hasenstab 1990), regional (New York State) (Hasenstab 1990), and local
(western New York; Hunt 1990) levels have been conducted. Each of these
studies will be discussed below.
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Several studies of the Iroquois area have examined settlement location at close
to the global scale. John Knoerl dealt specifically with issues of scale in his
dissertation (1988). Knoerl identified three kinds of scale: spatial, temporal, and
phenomenological (which includes populational, behavioral, and archaeological
scale). He notes that some types of scale (particularly at the regional level) are
more commonly used by archaeologists and it is important to identify the correct
scale to use in researching problems. He suggests that patterns that appear
random at one level may have meaning at another, a point also discussed in some
depth by Ebert (1992). Knoerl notes that archaeological units often start at the
lowest level with behavior (sets of activities that are performed over space and
through time by groups of varying sizes) and are combined into larger units. He
identifies the articulation of scale with the archaeological phenomenon under
investigation as being of critical importance and suggests that one needs to
isolate the relative spatial and temporal scales at which archaeological
phenomenon form patterns so that one can look for causal phenomena at the
same levels. Knoerl (1988:44) defines archaeological scale as a combination of
space, time, and the behavioral grouping that is correlated to the archaeological
unit of interest.

Knoerl’s research, then, focuses primarily on spatial scale and establishes a
database that encompasses the eastern Great Lakes region. He sets up a cell-
based GIS with a grid cell size of 5 km, although his environmental data come
from maps of a variety of different scales. He uses trend surface analysis as a
means to identify regional, subregional, and local trends. He first demonstrates
the utility of trend surface analysis to pick out these trends through the use of
simulated data. Then he devises a maize suitability map, which includes
information on frost dates, rainfall, soil associations, and physiographic
diversity. His aim is to identify the spatial scale at which the data is patterned. By
plotting the residuals from trend surface analyses, and comparing these with
archaeological site locations from the eastern Great Lakes region (c. AD 1350–
1650), he is able to demonstrate that the patterning in site location appears to be
at the local level. He concludes that this is the case because areas of residuals
(that is, where there are areas of higher or lower ratings for maize than appear in
the trend) do not correspond with site locations. There is some overlap (c. 38%)
but fully 62% do not overlap. The pattern for site occupation dates is more
localized than it is for areas suitable for maize cultivation.

Knoerl’s study is important in several ways. First, his detailed discussion of
scale and resolution illuminates important issues in developing and analyzing
large databases. Second, he does not stop at identifying broad patterns of
settlement but also notes that simply looking at the broad patterns of settlement
in relationship to environmental features important for maize cultivation does
not suffice for an understanding of local patterns of settlement. His work
encourages us to look for local as well as global and regional patterns in
settlement location.
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Hasenstab (1990) too conducted a major GIS study that looks at the patterning
of settlements for the New York State Iroquois. His research area includes the
central east-west spine of New York State. His study is directed towards
identifying the extent to which movement of sites over time is associated with
external forces— specifically with the impact of Mississippian cultures to the west
who demanded furs —and with other groups to the west who moved into the
western New York region.

The GIS Hasenstab develops is very detailed. His cell size is 0.5 km, while the
scale of his environmental data source maps varies from 1:250,000 to 1:1,000,
000 (Hasenstab 1990:29). He divides his research area into three regions based
on physiography in association with drainages. These three regions are the Lake
Plain, the Central Riverine Valley, and the Allegheny Plateau. He includes a very
large area in the Central Riverine Valley region; it encompasses several large
river valleys including the Genesee River and the Mohawk and Hudson River
drainages. The largest central area is the Finger Lakes region, which includes all
of the Finger Lakes that flow into the Seneca River, thence to the Oswego River
and into Lake Ontario. This Central Valley area was home to all of the Five
Nations Iroquois and is the area where Hasenstab identifies soil productivity as
an important component of settlement location.

Hasenstab (1990) looks at changes in settlement location over time in each of
the three regions through examining site location in relationship to a number of
variables including wetlands, canoe-navigable waterways, forest diversity, soil
associations, etc. He suggests that the broad pattern of village movement is
indicative of depletion of animal resources that resulted from demands for furs,
skins, and meat from peoples to the west and south. He makes other interesting
observations as well, especially regarding broad patterns of settlement shifts over
time in relation to environmental variables. Some of these are discussed more
fully below in the section on patterning in the Lake Cayuga region.

Hasenstab clearly demonstrates the utility of broad-scale investigations. His
large-scale study identifies causal factors for patterning of village locations that
operate at the same spatial scale. Although he uses a relatively small grid size for
site location, the level at which other data was mapped is coarser. For example,
soils information was obtained from 1:750000-scale maps and is therefore
relatively coarse.

Eleazer Hunt (1990) conducted a major GIS study of the western region of
New York State that combined a regional and local approach to settlement
location. He used ARC-INFO, a vector GIS, and a base map at a scale of 1:250,
000 (Hunt 1990:103). Other environmental data maps appear to range from a
scale approximating 1:20,000 (soils) to 1:500,000 (isotherm climatic maps). He
considered a number of variables at the regional level including precipitation,
snowfall, number of frost-free days, and soil associations. At the local level he
examined soil associations in great detail for a small sample of sites. Hunt
concluded that sites were located in horticulturally productive areas even prior to
the time of dependence on cultivation. He also demonstrated that it was not
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detailed determination of soil types and textures that was critical for settlement;
rather, general classes of soil textures were selected for, in addition to favorable
climatic regimes, such as appropriate length of the frost-free growing season and
avoidance of exceptionally heavy-snowfall areas. While his study included an in-
depth assessment of soils in the catchment area surrounding a village site, his
work does not as carefully consider other factors that might influence site
location at the local level.

Several additional local-level studies have been done in the Iroquois area that
have also focused on characteristics of soils and village placement, although in
neither case was GIS employed. Vandrei (1987) examined the location of the
historic Seneca sequence of villages in relationship to categories of soil
productivity, as well as in relationship to site size and defensibility. He used soil
maps at the 1:20,000 scale. He found that, in general, sites in the western
sequence of villages were located near more acres of highest-productivity soil.
Sites in this sequence were also generally larger than those in the eastern
sequence. In several cases it was clear that defensive considerations were more
important in settlement location than was the amount of productive soil in the
vicinity.

In the Mohawk area, Bond (1982) examined the relationship between soils (1:
20,000-scale maps) and settlement in an attempt to identify whether groups were
maximizing production through their choice of settlement locations. He
concluded that while all sites were located in regions of highly productive soils,
village location was also strongly influenced by defensive concerns. There was
no attempt by these groups to maximize agricultural production.

Approaches to understanding village location in relationship to specific soils
focus on the local level—either in plotting the placement of sites with regard to
soil associations or in identifying proportions of particular soil types within 1 or
2 km of the village location. However, in all three cases above, it appears that the
Iroquois performed quite a bit less of a detailed evaluation of soil types
surrounding the village than did the researchers. Both Vandrei and Bond stress
the importance of defensibility in at least some of the village locations selected.
Note that this is a local cause for a local pattern and is most clearly visible with
large-scale data (1:24,000).

Attention to both regional and local patterns is needed. At the local level, this
could be approached from the perspective of those within the settlement, on the
basis of what we know of Iroquois subsistence. The Iroquois were dependent on
horticulture, so settlements had to be located near productive agricultural land.
However, in the local studies that have been done, it does not appear that villages
were located on or near to the best soils. There was no trend over time for village
location selection to maximize the amount of prime agricultural land. Defensive
considerations were also important. In addition, access to hunting and fishing
resources was important for their contribution to subsistence. While these wild
food resources may have been less crucial to specific village site location than
was proximity to good agricultural soils, good soils in combination with access
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to other food resources could have tipped the balance in favor of one site location
over another.

6.5
CENTRAL NEW YORK REGION: REGIONAL AND

LOCAL

Global studies have provided us with a good understanding of those factors
important in conditioning Iroquois settlement. The general importance of good
agricultural soils in village placement is clear. Regional and local studies have
identified additional variables. In order to understand settlement in a smaller
region within the Iroquois homeland, I have been compiling a database of sites in
the Cayuga Lake watershed, the home of the Cayuga tribe of the Iroquois,
preparatory to developing a GIS for the region.

As I have set about developing the GIS, however, I have faced the problems of
identifying the kinds of data I need to acquire, the level of data resolution to use,
and how to do this in the most efficient way possible yet still ensure that enough
categories of data are included to model settlement in the region adequately. As a
preliminary step, I decided to combine my data on specific site location with
Hasenstab’s environmental data to identify those categories of data that would be
most useful to a subregional and local-level study and to help in identifying the
level of resolution that is needed.

In order to assist with this process, several comparisons are made. First, the
extent to which subregional and local patterns in the Cayuga area correspond
with those identified for the Central Riverine Valley area used by Hasenstab is
considered. Does the regional pattern he has identified correspond with
subregional and local patterns? Is important local patterning not visible at higher
levels? Second, the extent to which differences that are found are the result of
problems of data resolution is addressed. What are the areas of incongruity
between his results and what is known of the area at a larger scale? Third, to what
extent can the patterns visible at the subregional or local level be ascribed to local
causes? This, of course, takes us back to a concern voiced earlier: that is, the
level of the patterning examined is the level at which one sees causes.

Hasenstab (1990) indicates that the most consistent pattern in this central
valley region is the very strong association of village locations with soil
attributes favorable to maize horticulture. The soil attributes most important for
maize horticulture are overall ratings for maize suitability, lime status of soils,
moisture availability, and physical condition of the soils. This is particularly the
case in the Transitional and Iroquois periods (c. AD 1250–1550). Prior to this
time, during the earlier Owasco period (c. AD 1250), settlements were in areas
that exhibited high forest productivity. Due to settlement shifts away from the
Seneca River lowlands with their higher concentration of wetland resources and
forest diversity, and the greater focus on good agricultural soils, Hasenstab
suggests that this provides support for the hypothesis that there was depletion of
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game resources and subsequent movement away from the lowlands after the
Owasco period (Hasenstab 1990:59–60). However, a movement into areas that
are horticulturally productive but that contain fewer “wild” resources does not
necessarily suggest depletion of game resources. “Wild” resources
(including those resulting from hunting and fishing activities) can be obtained
more easily at locations that are more distant from the settlement than can
horticultural products.

In examining the data for the Lake Cayuga region, several patterns are
evident. As Hasenstab has noted for the Central Valley region, in this area as
well, virtually all of the village sites are located in areas with productive
agricultural soils. The majority of sites (19 of 29) are located in places with the
highest possible ratings for suitability for corn cultivation, lime status, potassium
rating, physical condition, and moisture availability, and with no limitations
aside from relatively slow permeability of soils. Given the level of resolution of
the base map used for these determinations (1:750,000, a statewide map), this
relative uniformity is not surprising. There are some exceptions, however. The
sites in the immediate vicinity of the Seneca River, where there is easy access to
wetland resources, have less than optimal ratings for lime status and potassium.
On the west side of Cayuga Lake, five of the six village sites have less than
optimal ratings again for the lime and potassium variables, and one has a low
rating for all five variables, including the lowest rating for suitability for corn
cultivation. Finally, on the east side of the lake, there is one village site with low
ratings for all five of the soil variables.

In general, then, the view from the Lake Cayuga drainage supports
Hasenstab’s conclusions about the region as a whole. That is, village locations
are in areas with soils that are very suitable for corn cultivation, although there
are some exceptions. As a second step in this comparison of global with regional
and local patterning, the Lake Cayuga watershed was divided into five groups
that broadly correspond to smaller drainages within the region. These include the
Seneca River Lowlands, Paines Creek drainage, Salmon Creek drainage, Great
Gully and several other small creeks that flow west directly into Lake Cayuga,
and the set of two drainages on the west side of the lake in close proximity to
each other, Trumansburg and Taughannock Creeks. As noted earlier, sites on the
west side of the lake in general have slightly less favorable soils for corn
cultivation. An examination of the mean frost-free growing season data suggests
that all of these villages are below the norm as well, although they are all above
the 120-day frost-free growing season limit (ranges for these sites are from 138
to 155 days). However, note that the mean number of frost-free days is an
average, so there are undoubtedly years when this number falls well below 138
days. These sites, then, appear to be more marginal for corn horticulture than are
other sites in the region.

Are there other compensating factors that would militate against the
comparative marginality of this local area for corn cultivation? Forest
productivity measures within 10 km are lower for this set of sites (44 to 46) (with
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the exception of one site) than for the region as a whole (48 to 53). There is little
difference, however, in forest productivity within 20 km of the village
(considered the traditional tribal hunting territory). Forest diversity measures are
slightly above those for villages east of the lake. On the other hand, large
wetland resources are further away for these western villages. There is no clear
evidence, then, for increasing importance of other environmental resources to
balance the somewhat poorer soil characteristics.

An examination of the other drainages reveals some differences in
environmental characteristics for several sites. In particular, two sites in the
vicinity of the Salmon Creek drainage exhibit differences from the general
pattern. One of these sites, Locke Fort, has low ratings for all five soil
characteristics. This site and another one, Genoa Fort, have low values as well
for mean number of frost-free days in the growing season and for forest
productivity in both 10- and 20-km catchment areas.

In order to identify the importance of defensive considerations in village
location, sites were coded on the basis of the natural defensibility of the landform
(based on 1:24,000-scale maps) and/or the presence of palisades or other
defensive structures. In general, sites that were located on naturally defensible
landforms had evidence for palisades as well. In addition, several sites in every
local drainage area were situated with regard to defense. Third, Genoa Fort and
Locke Fort were among those villages sited on the most highly defensible
landforms. Concerns for defense were important determinants for some of the
villages in the region, and overrode requirements for good agricultural soils.

6.6
CONCLUSIONS

The patterning in site location that is apparent from an examination of villages at
the subregional and local levels generally supports Hasenstab’s findings, while
providing additional amplification. Specific instances of what appear to be less
than optimal placement of villages can be understood by looking at other factors
such as landforms and detailed physiographic patterning. While explanations for
village movements over time in the global view invoke global-level population
influence and intrusions, at the regional and subregional level village locations
can be seen as resulting from other needs, including defense.

In further investigation of these issues, more detailed mapping of soils
especially is needed, as well as better estimation of frost-free seasons, taking
extreme values into account rather than depending on means. This information
can assist in the identification of the extent to which an apparently less optimal
region is actually so. Using larger-scale soil maps will allow for the identification
of possible areas of more productive soils in the immediate vicinity of sites.
More detailed mapping of particular physiographic and geological features
within the local environment is also important. In addition, characteristics of
village size and material remains are required for a better understanding of local
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and regional village patterning. For example, one of the village sites on the
western side of the lake where I have been working has large quantities of deer
bone. From the larger pattern of hypothesized depletion of animal resources and
primary dependence of populations on corn cultivation, we might expect less
evidence for hunting or perhaps, alternatively, greater dependence on a larger
mammal with high return for the effort. Comparisons of faunal diversity and
butchering practices between village sites will help in answering this question.

Finally, the usefulness of global-scale GIS for ideas about local processes is
apparent. However, better understanding of the subregional and the local
depends on the use of more detailed and more diverse data. Although the level of
detail required must fit the particular questions under investigation, the fruitfulness
of working with large-scale and small-scale data sources and identifying and
playing off global, regional, and local views is clear. Larger-scale data (1:24,
000) provides the kind of specific information on local environmental
characteristics that is critical for understanding decision-making at the village or
camp level. Smaller-scale data (1:250,000 or 1:100,000) permits the delineation
of environmental factors of broad importance. 

These observations mesh with some comments made in a recent article in a
volume on GIS (Gaffney and van Leusen 1995). In a debate about the purposes
for which GIS is employed and the extent to which GIS studies tend toward
environmental determinism, Gaffney and coworkers note that small-scale data
provides information on what is possible within a given environmental
framework, while larger-scale data allows for the specific delineation of local
environmental and social factors involved in selecting settlement location.
Gaffney advocates concern with landscape history, with the local level at which
people perceive the environment and in which they act (Gaffney and van Leusen
1995:377). The influence of cultural factors becomes more obvious at larger
scales (i.e., 1:24,000) of research.

Using data at the largest possible scale provides the greatest flexibility in
investigating problems at several levels of analysis. Household, village, tribal,
and intertribal analyses are all possible with high-quality, large-scale data. In
addition, large-scale data permits the greatest accuracy in locational information
and increases the likelihood that landscape features perceived by past residents
become visible in the present. In this way, cultural landscapes can be identified
and followed through time and a better understanding of cultural change in
response to environmental and cultural factors can be achieved.
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CHAPTER SEVEN
Construction of Digital Elevation Models

for Archaeological Applications
JON B.HAGEMAN AND DAVID A.BENNETT

The use of interpolation in archaeology is becoming common. As
archaeologists incorporate geographic information systems (GIS) and
computer mapping programs into their research, questions of
interpolation become fundamental considerations in the
representation and manipulation of topographic data. To date,
however, few archaeologists have dealt with these questions.
Uncritical use of interpolation algorithms can result in unrealistic
representations of the landscape in a mapping program or can result
in an inaccurate digital elevation model (DEM) used in a GIS. This,
in turn, can lead to an ineffective predictive model of site location.
By carefully selecting an interpolation algorithm that is well suited to
the data, statistical pitfalls and wasted effort can be avoided.

7.1
INTRODUCTION

The creation of digital elevation models (DEM) in archaeological applications of
geographic information systems (GIS) has, with rare exceptions (e.g., Kvamme
1990; Warren 1990; Wiemer 1995; Madry and Rakos 1996), been largely
ignored in print. As Kvamme (1990:123) has noted, archaeologists are usually
concerned with the quality of archaeological data, not the quality of data
obtained by computer means. Yet given the same data points, substantively
different surfaces can be generated from alternative computer algorithms
designed to accomplish the same task. These differences can have significant and
unexpected impacts on archaeological investigations.

Consider, for example, the development of a site prediction model in which
elevation, slope, and aspect are important independent variables. Available
elevation data is likely to be incomplete and/or in a form that is not suitable for
the calculation of slope and aspect (e.g., sampled data points or contour lines).
To construct a usable DEM (e.g., a lattice of elevation points), an interpolation
algorithm must be applied. Yet different algorithms can provide different



elevations for the same point in space. Landscapes constructed using alternative
interpolation algorithms may superficially appear to be similar, but be both
quantitatively and qualitatively different. The implications of this for the
predictive modeling of archaeological site locations are critical, as landforms
that had been used in the past may be under- or overrepresented in the derived data
set. Thus, selecting an inappropriate interpolation algorithm could lead to a low
degree of accuracy in the overall predictive model.

Unfortunately, guidelines for selecting a particular DEM or interpolation
method do not exist in the archaeological literature. How, then, can the
archaeologist determine which interpolation algorithm to use on a given set of
points? Is there a single best algorithm? Are vector-based DEMs more accurate
than raster-based DEMs?1

The purpose of this chapter is to examine these questions. A data set from
northwestern Belize will be used to describe methods by which archaeologists
can evaluate the results of alternative interpolation algorithms that create DEMs
for use in archaeological applications, including predictive models of site
location. This comparison of algorithms will be made within the context of ARC/
INFO Version 7.0, a commercially available GIS that is commonly used in
academic, government, and private-sector applications.

7.2
WHY SHOULD THE ARCHAEOLOGIST CARE ABOUT

INTERPOLATION?

Although digital elevation models are becoming increasingly available from
government (e.g., USGS) and commercial (e.g., SPOT) sources, there are several
reasons why archaeologists should develop a fundamental understanding of
interpolation techniques. First, the spatial coverage of such databases is far from
complete (Kvamme 1995:6; Madry and Rakos 1996:118). This is particularly
true for Third World nations, but even in the United States many areas do not
have the 7.5-minute quadrangle series in a digital format. For example, less than
one-third of the state of Illinois was available in 7.5-minute digital format as of 1
August 1996 (USGS 1996).

As alluded to above, archaeologists work at a variety of spatial scales, from
that of the region down to that of a single excavation unit. Available digital data
sets tend to provide regional or continental coverage, and thus often lack the
spatial resolution and accuracy needed for site-specific work (e.g., Biswell et al.
1995; Gaffney and Stan′ i′  1991; Meffert 1995). Accordingly, archaeologists
working in areas without existing digital topographic coverages at the
appropriate resolution may have to create their own DEMs by digitizing
topographic maps or by capturing elevation data using total stations and/or
global positioning system (GPS) receivers (Forte 1995:232; Madry and Rakos
1996:118; Rick 1996). Points located with total stations or GPS are typically

122 JON B.HAGEMAN AND DAVID A.BENNETT



recorded as three-dimensional (XYZ) coordinates, and can be entered into a GIS
or mapping program to create a DEM and/or a contour map.

Finally, all DEMs are discrete approximations of a continuous phenomenon.
How closely this approximation reflects reality depends on a variety of factors
that include:

1 how many sample points were collected;
2 where they were collected;
3 the accuracy of the data collection device;
4 the skill and knowledge of the data collector; and
5 the explicit and implicit assumptions built into the interpolation algorithm

(Robinson et al. 1995). 

Just as the improper use of statistical tools can lead to a misinterpretation of data,
the misuse of DEMs and interpolation algorithms can result in a
misinterpretation of terrain. To maintain high levels of accuracy, therefore, the
archaeologist using automated forms of data recording and manipulation should
be aware of the assumptions that these tools bring with them.

7.3
WHAT IS INTERPOLATION?

A brief review of interpolation is appropriate at this point. Burrough (1986:147)
defines interpolation as “the procedure of estimating the value of properties at
unsampled sites within the area covered by existing point observations.” This is
largely based on the rationale that two points that are near one another in space
are more similar than two points farther apart (i.e., spatial autocorrelation exists
in topo-graphical data2). The goal of interpolation is to model variation so that
values at unknown locations may be estimated on the basis of known values in
the vicinity. For the purposes of this chapter, interpolation algorithms take a set
of data points in space and create a digital elevation model (DEM) from which a
continuous surface may be inferred. Since the DEM is fundamental to locational
modeling in archaeology, it is important to understand (1) the data structure of
each method, (2) the assumptions of each method, and (3) how each method
manipulates a data set to construct a DEM. Next, four types of interpolation
methods will be reviewed. Each of these have either appeared in written reports
on the use of GIS within archaeology or are commonly used in the geosciences.
In this review we describe the characteristics of each algorithm. These
descriptions are derived primarily from Burrough (1986).
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7.3.1
Ordinary Kriging

Ordinary Kriging is an algorithm based on stochastic or random surfaces, rather
than on mathematical smoothing functions (Ripley 1981:45). The product of this
type of interpolation is a lattice. Kriging assumes that variation across a landscape
can be expressed as a sum of: (1) a constant trend; (2) a random, spatially correlated
component; and (3) random noise. The technique requires that the random,
spatially correlated variation in a data set be relatively homogeneous, so that
differences between known points are functions of the distance between those
points. The semivariance is calculated from the sample data (often the variance is
used). This semivariance is then used to determine weights for interpolation,
since it is a function of the distance between sample points (Burrough 1986:155–
6). With Ordinary Kriging it is usually assumed that there is no inherent trend in
the data. By considering directional differences in the semivariance, such trends
can be incorporated into the interpolation process. In sum, Ordinary Kriging
looks to the data set to judge the area to examine for a specified number of
known data points around the location to be interpolated. Data beyond this area
is assumed to possess little predictive value. 

Different semivariogram models can be fitted to the estimated semivariance,
and some models fit the data better than others. ARC/INFO provides five
different semivariogram models for use in Ordinary Kriging. Since a high degree
of homogeneity is assumed between data points, Ordinary Kriging is usually not
recommended for use in data sets that contain sharp breaks in the landscape, such
as steep cliffs and ridges (Aronoff 1993:220). Ordinary Kriging can, however,
handle even and uneven distributions of points. Ordinary Kriging is a frequently
used interpolation method in the geosciences (Cressie 1993; Carr 1995).

7.3.2
Universal Kriging

Universal Kriging is another lattice-based interpolation method. Though similar
to Ordinary Kriging in its general assumptions, Universal Kriging has the added
assumption of well-defined, though not extreme, local variations or drift within
the larger landscape. Accordingly, the random noise within the local variation is
assumed to have a semivariogram within the locality (Lam 1983:133). As such,
Universal Kriging is applicable to slightly more complex landforms than
Ordinary Kriging. Burrough (1986:161) suggests that Universal Kriging can be
used with smoothly varying landforms. If the local variation is too extreme, such
as a cliff or ridge, it may be treated as random noise or residual error (the nugget
in semivariograms). If this is the case, data sets with large residual error may
stand to gain very little from using Universal Kriging instead of Ordinary
Kriging (Webster and Burgess 1980 cited in Burrough 1986:161). In general,
however, Ordinary Kriging has more restrictive assumptions but fewer

124 JON B.HAGEMAN AND DAVID A.BENNETT



computational problems, while Universal Kriging has more generalized
assumptions but places greater demands on processing time (Lam 1983:133).
ARC/ INFO provides two types of Universal Kriging: one with a linear local
interpolator and the second with a quadratic local interpolator. As with Ordinary
Kriging, Universal Kriging is widely used in geoscience applications of spatial
statistics (Cressie 1993).

7.3.3
Inverse distance weighting (IDW)

A third algorithm is known as inverse distance weighting, or IDW. IDW is a
lattice-based algorithm that calculates the unknown elevation at a point by
computing an average value from a fixed distance, or window, from that point.
The influence that a given sample point has on an interpolated value at a
different point is weighted by the inverse of the distance between the two points
(Burrough 1986:153). A certain minimum number of points (often n=12) is
required to increase accuracy. Thus, as the window “moves” to a cell with an
unknown Z-value, the nearest known n points are located and a weighted average
is computed. This process is repeated until the elevation for each cell in the
lattice has been calculated, resulting in a DEM. IDW assumes a more or less
regular distribution of points, since clustering of data may create undesirable
results (Ripley 1981:36–7). In contrast to kriging, which assumes a random
component, IDW is more of a smoothing function. IDW was used by Robert
Warren (1990) in his creation of a predictive model for archaeological site
location within the Shawnee National Forest in southern Illinois. 

7.3.4
Triangulated irregular network (TIN)

Triangulated irregular networks (TINs) are often used to construct DEMs for use
in archaeological predictive modeling (e.g., Marozas and Zack 1990; Fedick
1994). In contrast to the lattice-based methods of DEM construction described
above, the TIN is a vector-based structure. As such, it has a drastically different
appearance, and often significantly smaller data storage requirements (Peucker et
al. 1978). A TIN is composed of a set of triangular facets derived from
irregularly spaced data points. TINs often are used to accurately represent stream
channels and ridge lines. Accordingly, a major assumption of TIN utilized in this
manner is that the digitizing process captures the overall landform as a set of
topographically significant points rather than contour-line inflections (ESRI
1995). However, most TIN generation algorithms produce a Delaunay
triangulation.

A triangulation is considered to be a Delaunay triangulation if the circle
defined by the vertices of each triangle does not contain any other point in the
data set. This circle rule generates triangles that are as equilateral as possible and
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produces a triangulation that is the dual of the Theissen diagram defined by the
same data set (Worboys 1995). Edges within a Delaunay triangulation, however,
will not necessarily follow such topographically important features as ridge and
stream lines. In ARC/INFO, these features (referred to as break lines) must be
imposed onto the Delaunay triangulation.

ARC/INFO provides two interpolators for TINs. The first is linear, and
represents the landscape surface as the flat face of a triangle. The second is
quintic, and can represent each facet with a curved surface, if appropriate. TIN
has been used in predictive modeling efforts in Belize (Fedick 1994), in Montana
(Marozas and Zack 1990), and in Hungary (Csáki et al 1995).

7.4
SELECTING AN INTERPOLATION ALGORITHM

The description of these four methods for constructing DEMs (Ordinary Kriging,
Universal Kriging, IDW, and TIN) answers one of the questions asked above: Is
there a single best interpolation algorithm? The answer is that no single algorithm
is superior to all others across various applications. The consensus among
geographers and others who deal with topographic modeling is that the selection
of an appropriate interpolation algorithm depends largely on the type of data
being used, whether the data fits the assumptions of the algorithm, the degree of
accuracy desired, and the amount of time that can be spent on data processing
(Aronoff 1993; Roman et al. 1995; Burrough 1986; Houk 1984:18; Lam 1983:
130). How, then, does one go about choosing between TIN or one of the lattice-
based interpolation algorithms for the construction of a DEM?

Previous applications of GIS to archaeological predictive modeling do not
provide much guidance in this endeavor. Though Kvamme (1990) has pointed
out that different algorithms produce different results, most studies have not
provided an explicit rationale behind the use of a particular algorithm in the
creation of a DEM (e.g., Kvamme and Jochim 1985; Maschner 1996). Some
appeal to “past experience” as the criteria used to select a particular method
(Marozas and Zack 1990:167). Others allude to problems with the interpolation
algorithm that was utilized in a particular study (Warren 1990:211). Otherwise,
few guidelines exist in the archaeological literature regarding the selection of a
particular type of DEM or interpolation algorithm for use in predictive modeling.

Researchers in other disciplines have conducted studies that compared various
interpolation methods in an effort to select one that is best suited to their data set.
A qualitative means of doing this is through the use of visualization, which
consists of inspecting the DEM for any spurious data or undesirable effects
produced by the interpolation algorithm. This allows the user to explore the pattern
of error that might result from the creation of a DEM (Weibel and Heller 1991:
285; Wood and Fisher 1993:55).

Quantitative methods can also be used to compare the relative accuracy of
DEMs. This research revolves around applying multiple algorithms to a single
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data set, and comparing interpolated values with the actual elevations at known
reference points (e.g., Monckton 1994; van Kuilenburg et al. 1982; Weibel and
Heller 1991:285). Next, the root mean square error (RMSE) for each DEM is
calculated; the individual RMSEs are then compared to one another. The RMSE
provides an indication of how well interpolation algorithms represent the actual
topography. The utility of this index depends in large measure on the number and
location of real-world data points and the spatial variability of the terrain.

To ascertain which algorithm is best suited to a particular data set, it is
necessary to consider a variety of factors, which include the type of data,
algorithm assumptions, desired accuracy, and processing time. Archaeologists
should perform the same qualitative and quantitative comparisons between DEMs
generated by TIN or different lattice-based interpolation algorithms to identify
the method that is most appropriate for their data set. To illustrate how this can
be done, we will examine a real-world data set generated from paper maps.

7.5
A BELIZEAN CASE STUDY

7.5.1
The data

Data for this exercise was obtained from 1:50000-scale topographic maps of
Belize, produced under the direction of the Director General of Military Survey
of the UK Ministry of Defence and published in 1992. The study area consists of
four maps, which represent a large portion of northwestern Belize (Figure 7.1).
The resulting area measures 46 km×43 km (north-south by east-west), covering a
total of 1978 km2. Over 50000 points were manually digitized in the process of
creating this topographic coverage.

This area of northwestern Belize is characterized by two rivers flowing
southwest-northeast: the Rio Bravo to the west, and the Booth’s River to the
east. To the west of the Booth’s River, a karstic topography dominates the
landscape. To the east of the same river is a large coastal plain. The land surface
is characterized by the Booth’s River floodplain and an associated swamp.
Elevations across the entirety of the study area range from 7 to 20 m above mean
sea level (AMSL) on the coastal plain and 20 to >300 m AMSL in the karstic
uplands. The contour interval for these maps is 20 m, making the choice of DEM
extremely important so as not to compromise surface accuracy or detail. This
highly variable data set is used in spite of, rather than in accordance with, the
assumptions of the interpolators described above purely for the purpose of
demonstrating qualitative and quantitative error assessment.

As mentioned above, this coverage was manually digitized from paper contour
maps. The digitizing regime centered on representing contour inflections rather
than capturing data about individual features or landforms. Prior to running the
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data set through various interpolation algorithms, a generalizing procedure was
run. The effect of this procedure was to eliminate redundancy by removing
points of equal elevation with virtually identical values located closely together
that do not contribute to the form of the line.3 As a result, some 15,000 points were
removed from the data set.

Prior to constructing a DEM from this database, we considered the
assumptions of each of the algorithms described above. The data set consists of
an irregular distribution of points that are not homogeneous in their elevations.

Figure 7.1 Map of Belize showing location of study area. 
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Since the digitizing method did not explicitly include break-line features, and
contours rather than landforms were digitized, TINs were ruled out. At first
glance, the uneven distribution of data points suggested that IDW would not be
applicable here; however, the generalization procedure reduced the relatively
uneven nature of this particular data set. Thus, IDW would be a consideration.
Kriging, with its ability to handle unevenly distributed data, was also thought to
be a favorable choice. Whether to prefer ordinary or universal kriging, however,
was not obvious. Thus, both forms of kriging (with their accompanying variants)
were deemed worthy of consideration.

In practice, this would suggest that a comparison of the results produced by
IDW and various forms of kriging would be a productive means of identifying the
best algorithm for this data set. For this study, however, all of the previously
discussed algorithms were applied to the data set in an effort to illustrate the
pitfalls associated with an inadequate understanding of interpolation techniques.

7.5.2
The analysis

All analyses were performed using ARC/INFO Version 7.0, operating on a Sun
Sparcstation 5. Several common parameters for each algorithm were held as
constant as possible in an effort to maintain comparability. For lattice-based
interpolators, we used a maximum search radius of 250 m to search for the
nearest 12 points. A 460×430 DEM was created to produce lattices with an
individual cell size of 100 m×100 m.

The IDW procedure took about 10 minutes to complete. Five Ordinary
Kriging procedures were run, based on circular, exponential, spherical, linear,
and Gaussian models. Two Universal Kriging procedures were also performed,
one with a linear local interpolator and one with a quadratic local interpolator.
Each of the kriging operations required about 1.5 hours of processing time. Next
the TIN was created; this took about 5 minutes. From this TIN, both a linear and
a quintic interpolation were run. These procedures resulted in a total of ten
DEMs.

One hundred reference points were then digitized from the original paper
maps. Survey benchmarks and spot heights were used as reference points. None
of these points was located on a contour line. The reference points and the predicted
elevations for a given DEM were compared and the resulting error was
calculated. Fifteen of the reference points were eventually disregarded as they
were too near the edge of the coverage to provide accurate results. 

In fact, a few interpolators returned negative elevation values near the margins
of the DEM. This may have been due to edge effect. Edge effect is the artificial
exaggeration of certain landscape trends (such as steep slopes) by an
interpolation algorithm due to a shortage of information along the edge of the
coverage, resulting in unrealistically high or low elevation values (Clarke 1995).
Once these points with spurious elevations were identified and discarded, the root
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mean square error (RMSE) for each DEM was calculated and recorded. RMSE
is, essentially, standard deviation. The procedure of comparing reference and
DEM values was repeated for each DEM.

7.5.3
The results

The results of this study are presented here in tabular form (Table 7.1). A low
RMSE is desirable. As can be seen, no DEM perfectly matched the reference
points. Some DEMs, however, are distinctly better than others. Kriging with a
circular semivariogram model has the lowest RMS error at 7.99 m, and appears
to best fit this data set. The TIN interpolations are extremely inaccurate; this
could be due to the manner in which the contours were initially digitized (ESRI
1995). Essentially, TIN is more accurate when the data represents landforms rather
than contour lines. In addition, the two methods with the most complex local
interpolator, the Quintic TIN and Quadratic Universal Kriging, were also the
least accurate. These algorithms seemed to be particularly inaccurate when
estimating the elevation of points in close proximity to steep slopes, such as cliff
edges.

Table 7.1 also verifies the rationale outlined above for selecting an algorithm.
Given the nature of the Belizean data, IDW and one of the various forms of
kriging were thought to be particularly suitable. TINs were considered to be
inapplicable to this data set. As Table 7.1 shows, IDW and six forms of kriging
have an RMSE within 3.3 m of one another.

Quantitative analysis provides only half of the picture, however.4 While
Table 7.1 shows the overall error of each DEM, it does not indicate how this error
is spatially distributed. A qualitative visual analysis can be used to identify the
spatial distribution

Table 7.1 Comparison of digital elevation models (DEMs) by their root mean square
error (RMSE).

DEM method RMSE

Ordinary Kriging (circular) 7.990

Inverse distance weighting (IDW) 9.240

Ordinary Kriging (exponential) 9.994

Universal Kriging (linear) 10.180

Ordinary Kriging (spherical) 10.319

Ordinary Kriging (linear) 10.509

Ordinary Kriging (Gaussian) 11.311

TIN (linear interpolator) 17.129

TIN (quintic interpolator) 18.388

Universal Kriging (quadratic) 26.375 
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of error (Wood and Fisher 1993). Many of the reference points used to assess
RMSE came from peaks, which are notorious for being sources of error in
DEMs. An examination of the reference points indicates that, for all methods
described above, predicted elevations for hilltops and peaks were very low. This
problem may be remedied by digitizing peaks in as points (rather than arcs) when
such values are provided on the source map.

In addition, these features may be checked visually by generating a grayscale
representation of the coverage and comparing it to the original source map.
Potential sources of error, such as peaks, ridge lines, and streams, can be
examined in this manner. Figure 7.2 shows a portion of the study area as
represented by the source map, from which the digital data for this exercise was
obtained. This area is characterized by uplands to the west, with a sharp drop to
the Booth’s River floodplain as one moves east. Figure 7.3 is a grayscale

Figure 7.2 Map of study area (box delineates area represented in Figures 7.3 and 7.4). 
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representation of the same area created by ordinary kriging with a circular
model. Note how the swampy area of the floodplain is represented as alternating
dark and light shades of gray. The darker the color, the lower the elevation; thus,
this area appears lower than the adjacent river. These alternating bands of color are
an artifact of the interpolation algorithm, and could be remedied by including
several points of the same elevation as the rest of the floodplain in the zone
between the cliff line and the even-colored area to the east.

In contrast, Figure 7.4 is the same area created by IDW. Note that the area
appears to be characterized by periodic rises in the floodplain, without any trace
of the low area seen in Figure 7.3. Again, this is an unintended effect of the
interpolation algorithm. A solution to this problem would be similar to that
mentioned for the kriging example mentioned above: to include additional points
on the floodplain east of the cliff edge in order to reduce the reliance of the
algorithm on points located on the cliff edge for information. As can be seen,
then, the two algorithms with the lowest RMSE are not perfect. Additional work
beyond the digitizing of contours is required.

As noted above, the data set used in this study was generalized to remove
redundant data. After the data set had been generalized, data points were more or
less regularly distributed across the landscape. Thus, we were fortunate not to
encounter a problem common to users of IDW. In their evaluation of different
interpolation algorithms, two geographers, Wood and Fisher (1993), experienced
a terracing, or “stair-step”, effect in their IDW-generated DEM. In his creation of
a predictive model for southern Illinois, Robert Warren (1990:210–11)
encountered an identical problem, in that the hill slopes of the resultant DEM
appeared as “step-like tiers.” This is an artifact of the IDW algorithm applied to a
data set composed of points that are clustered closely together. In these cases,
both landscapes were represented inaccurately. In Warren’s (1990) case, this was
identified as the primary factor in a predictive model of archaeological site
location that was not very powerful. These particular situations are illustrative of
the need for qualitative as well as quantitative examination of DEMs used in
archaeological analysis.

7.6
CONCLUSION

As Kvamme (1990:123) has noted, archaeologists tend to be more concerned
with archaeological data than data obtained from a computer. Warren (1990)
found that an inaccurate DEM can be detrimental to the overall power of a
predictive model, since coverages such as slope and aspect are ultimately derived
from a DEM. This exercise, based on topographic data from northwestern
Belize, has shown that the same critical eye an archaeologist casts toward a sample
of artifacts can also be used to evaluate the overall quality of data manipulated
within the context of a GIS. Given the fact that an archaeologist using a GIS or
computer mapping program is likely at some point to encounter a situation in
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which interpolation is a consideration, a basic understanding of the nature of
interpolation is essential. Through an awareness of the assumptions of various
algorithms, as well as the combined use of quantitative and qualitative methods,
archaeologists can create more accurate representations of land surfaces and
avoid the pitfalls inherent in the uncritical usage of spatial statistics. This, in
turn, can lead to more powerful predictive models of archaeological site location.
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Notes

1 Throughout this chapter, the terms “lattice” and “raster” are interchangeable.
2 For a recent review of this concept see Vasiliev (1996).
3 This procedure uses the Douglas-Peucker (1973) simplification algorithm.
4 For a discussion on the limitations of RMSE as an error estimation technique, see

Morad et al. (1996).

Figure 7.3 Booth’s River floodplain as created by Ordinary Kriging using a circular
model. 
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CHAPTER EIGHT
The State of the Art in “Inductive’

Predictive Modeling:
Seven Big Mistakes (and Lots of Smaller Ones)

JAMES I.EBERT

Archaeologists have always been intrigued by new analytical
directions coupled with technical means, be they stratigraphy,
seriation, radiocarbon dating, remote sensing, and now GIS, as
avenues to hopefully, rather automatically, understand the “past”
using contemporary data. It can be argued that archaeologists have
often used such data and analytical methods uncritically, without
thinking very carefully about the real goals they must pursue, the
meanings they must bring to the data, or the implications of their
work in anthropological terms regarding prehistory. Predictive
modeling cannot be an effective technique until we determine what
factors drew prehistoric populations to certain places at certain
times, until we begin to acknowledge the systemic activities of the
people who made these sites. This requires some complex thinking
and not just “camping thinking” among archaeologists.

8.1
INTRODUCTION

The topic of predictive modeling has commanded considerable interest within
the profession of archaeology for at least a decade and perhaps somewhat more.
A number of archaeologists have pursued predictive modeling relentlessly, and a
few have even built most of their repertoires and reputations around it. A number
of them have insisted that “inductive” predictive modeling, which consists
basically of finding correlations between site locations and the proximity of
“environmental variables” taken from maps, is a valid pursuit in and of itself, and
that anthropological theory or explanation need not figure in predictive modeling
efforts. “Inductive” predictive modeling needs at this time to be critically
examined, and its basis and results analyzed. My discussion will be structured
around seven major mistakes or misconceptions which have (mis)guided
“inductive” predictive modeling.



8.2
GIS IS REVOLUTIONIZING PREDICTIVE MODELING

Most recent treatises on predictive modeling begin with the assertion that there is
something new about predictive modeling, and what’s new about it has more
than a little to do with geographic information systems (GIS). While it is true
that increasing numbers of archaeologists are becoming comfortable with the
concept of using geographic information systems (one hears fewer and fewer
complaints about how expensive or difficult to use geographic information
systems software is), and while geographic information systems can streamline
correlations of data extracted from maps, they are simply analytical tools, little
different from word processing software or computers in general. Predictive
modeling will be transformed into a worthwhile adjunct to archaeology and
archaeological thinking only by the formulation of a body of explanatory
propositions linking contemporary correlations with the past. In other words, it is
productive, explanatory thought, and not computers, that can potentially raise
predictive modeling above an anecdotal level.1

8.3
PREDICTIVE MODELING PREDICTS AND MODELS

THE PAST

Some archaeologists clearly seem to believe that the data they study is somehow
directly and automatically linked with the past, and perhaps in no other area of
archaeological “specialty” is this as pronounced as in predictive modeling.2 Little
real introspection is required to arrive at the realization that the variables and
correlations which comprise the entire substance of “inductive” predictive
modeling experiments are solely contemporary. Given this, how is the “past”
involved in such predictive modeling? Almost invariably, it is only mentioned in
the concluding paragraphs of reports or presentations, where the presumed
preferences sought by past peoples in proximity to their sites are speculated about
in at best an anecdotal manner. Predictive modeling cannot be a productive
archaeological pursuit without the explicit realization that statistical tests and
correlations can only inform us about coincidences in the present, which must
then be linked with the past through the process of explanation. The insistence
that “inductive” predictive modeling can be separated or distinguished from
“deductive” or explanatory predictive modeling is a clear indication not only of
the fact that predictive modeling has not yet reached the point where it can make
a contribution to the science of archaeology, but (in my opinion) of the level of
sheer indolence among those who think we can “stop” at “inductive predictive
modeling.” In any event, the concept that inductive predictive modeling
somehow is a pursuit valid in itself is the source of many of the misconceptions
of current predictive modeling.
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8.4
WHAT WE WANT TO PREDICT IS SITE LOCATION

Whereas predictive modeling is so often extolled as a new archaeological
direction, it is actually wholly grounded upon that most basic and unthinking
assumption of traditional archaeology: that sites—i.e., discovered concentrations
of artifacts or other archaeological materials—are where people lived or
conducted activities and that they are therefore appropriate “analytical units,”
and thus their locations are what we want to predict. Some of the corollary
assumptions of a solely site-centered archaeology almost ubiquitous in predictive
modeling are:

′ sites are circumscribed and independent entities; 
′ sites occupy only a small percentage of the landscape, so there are many more

places where sites are not3 than places where they are;
′ predicting where sites are is the obverse of predicting where they are not;
′ sites are where people do things and nonsites are not;
′ some sites are “single-purpose” and others are “multi-purpose”;
′ some sites are “single-component” and others are “multiple-component.”

Site-centered, inductive predictive modeling ignores a vast body of
anthropological and archaeological evidence and thought that emphasizes that
people, the things they do, the places they do those things, and all other aspects of
human behavior are a systemically organized whole. “Sites,” in fact, are not
independent entities at all, but components of systems—and their locations are
dependent upon the locations of other components of that system, including
other sites. This relationship is clearly not approachable through correlational
analyses based on proximity of sites to one another. Instead, activities within
human systems are demonstrably scheduled and planned within another systems
component, time, and the location of a settlement, and what is done there should
thus depend upon where the last settlement was, and where the next will be, and
what was done or is planned at those places.

Another ethnographically demonstrated component of human systems that
may be even more important than sites is travel between sites, where some
studies suggest the largest part of human interaction with the environment occurs.
Site locations should therefore be influenced by what lies between sites within a
system, and not just what is near each of them. In the course of mobility,
resources are extracted from the environment and transported—not just to the
next site that is occupied, but through many occupations. Where a site is located
and what is done there may therefore be quite independent of what resources are
located nearby. What is located where sites are not is therefore probably just as
important a factor in site placement as what is found where they are.

Other ethnographic and ethnoarchaeological studies have demonstrated that
most settlement and activity locations are in fact reoccupied by human groups,
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sometimes for the same activities but often for a variety of different purposes, for
instance seasonally. Therefore, nearly all sites (particularly where cultural debris
is concentrated) should be “multicomponent” sites, as well as “multiple-purpose”
settlements. Properties of the environment at different times—seasonally, as well
as properties that change more slowly through time—must therefore be taken
into account in explaining their locations. Simple explanations about specific
resources or situations required for “single-purpose” occupations should be
expected to be “successful predictors” only very rarely, if ever.

8.5
PROXIMITY TO ENVIRONMENTAL VARIABLES IS

IMPORTANT

Instead of considering the dynamics of human systems, however, site-centered,
inductive predictive modeling assumes that the proximity of “environmental
variables” is why people have placed their sites where they did.4 Properties of the
environment that are closer to sites are more important factors in site placement
than those that are farther away. A more sophisticated-sounding way of saying this
is to cite principles of “cost-distance theory” or “least effort”—basically, that
people consider the trade-off between what benefit they obtain and the amount of
energy they will expend in making decisions about where to travel.

While this is something that can be easily modeled or simulated using GIS
techniques, it clearly is not the way people or systems “behave.” Again, aspects
of time must be considered. One such aspect is time utility gained versus energy
expended; for instance, rather than walking down a valley and up the next, one
might travel across the intervening mountain because it saves time. Another
aspect of time that physical proximity correlations cannot address is the
sequencing of activities across multiple locations in space.

8.6
MAPS CONTAIN ENVIRONMENTAL VARIABLES

The next step in correlating site locations with environmental “variables” in
current inductive predictive modeling assumes that maps contain information that
can be directly translated into variables. There are two kinds of map data that are
correlated: site locations, and everything else. How much of everything else is
used in various predictive modeling experiments seems to depend, more than
anything else, on how much map data is available to the researcher in previously
compiled and digitally automated form.5 Hence, “existing” map data is used,
sometimes in surprisingly uncritical fashion. One environmental variable
universally employed by inductive predictive modelers is distance to water,
derived by the measurement of how far it is from the dot representing a site in
the database to blue lines taken from a (US Geological Survey (USGS)
topographic quad. As another chapter in this book emphasizes, those blue lines
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(at least in many regions) can mean many things in terms of water quality,
seasonality, and the like, some of which you wouldn’t even want to be close to.
Other “environmental variables” uncritically used include everything else one
can get from topographic maps: that is, often dozens of variables derived simply
from topography, such as elevation, slope, aspect, topographic “diversity,” and
the like. Researchers fortunate enough to have automated sources of other
environmental data, often at places like parks or government facilities, where
many scientists have undertaken mapping projects, use habitat, vegetation, soils,
and other even less transparent map data, and “variables” derived from them, as
well. All of these derived data are then usually subjected to multiple regression
analysis, a clear indication that the initial assumption is that many are unrelated
and one needs many such “variables” to predict site locations.

8.7
MAP DATA IS INACCURATE

Another component of most reports or papers detailing predictive modeling
experiments nearly invariably follows the explication of the environmental
variables and the specific correlational analyses performed. In the very next
section, the modeler now turns about-face and roundly criticizes the map data
they have used. They now opine that map data is inaccurate and therefore
inhibits the accurate carrying out of predictive modeling. Maps, after all, only
show accurate locations of things to within National Map Data Accuracy
standards, which are all but uninterpretable and untestable for anything but
cultural features on maps. Often even more rabidly condemned is archaeological
data; at least until the advent of Global Positioning System (GPS) methods for
recording site locations, archaeologists must have recorded the locations of many
sites incorrectly, and the recording of information about what sites are and what
they contain is even more biased.

8.8
THE ACCURACY OF INDUCTIVE PREDICTIVE

MODELS CAN BE DETERMINED

Why do inductive predictive modelers find it necessary to denounce
archaeological and “environmental” map data? The answer is that their
predictive models are not as accurate as they would like, so surely, they
conclude, the data are to blame.

Virtually all inductive predictive modeling adherents advocate testing to
determine the accuracy of one’s model. A predictive model—that is, an array of
correlations, and their strengths, among site locations and environmental
variables in a study area—is derived on the basis of a “sample,” i.e., part of the
known site locations in the area, and then tested with another “sample,” the rest
of the known site locations in the area. This is referred to as “jackknife
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sampling,” and what it amounts to is a grossly inefficient way to determine if
there is inhomogeneity in one’s data. The goal of inductive predictive modeling
is, of course, to find invariability in the data—i.e., to arrive at accurate
predictions.6 The success of an inductive predictive model is based on its “gain,”
the degree to which it predicts that sites will be found in a small percentage of
the area considered by the model; predicting that there will be sites in places
there aren’t is a “wasteful” error, while predicting that there will not be sites but
then it turns out there are (however one would know) is a “gross” error.

For some reason, and I have yet to determine just why this may be, the
reported accuracies of inductive predictive modeling seem to hover in the 60–
70% range. Perhaps nobody wants to report “success” rates only minimally
higher than 50%. Perhaps it has to do with the practice of some inductive
predictive modelers of assessing the accuracy of their models by superimposing
two cumulative and invariably somewhat logarithmic curves—predicted site
probability versus percentage of correct predictions for sites as against nonsites—
and noting their intersection as indicative of the accuracy of the predictive
model. Sixty to seventy percent is not really bad but it is not very good either—
certainly not good enough to justify spending a lot of money on doing this sort of
predictive modeling as a substitute for doing “blanket” cultural resource surveys,
the major expectation that initiated interest in inductive predictive modeling in
the first place.

So what is inductive predictive modeling worth? And what will it become,
when perfected? My assessment is, not very much. Inductive predictive
modeling, which seems to be antithetical to using ethnographic observation and
theory to approach an explanatory basis for its “modeling,” is not going to get
any more accurate than it is right now, whether it is done with GIS or a stack of
semitransparent map over-lays on a light table. It focuses on the wrong units of
analysis, sites rather than systems, and attempts to relate their locations to
“environmental variables” which not only are probably not variables at all, but
cannot be warranted by any theoretical argument to be effective predictors of the
locations of components of systems across landscapes.

Notes

1 It can in fact be supportably argued that using computers may have been, thus far,
detrimental to analytical thinking and explanation. Since the mid-1980s, when
personal computers became generally available, the focus of most archaeological
discussion, literature, and, unfortunately, aspiration has shifted further and further
from theory toward method.

2 This may also be due to a focus on computer methods to the exclusion of theoretical
thinking on the part of many archaeologists who have embraced and based their
professional renown on “inductive” predictive modeling.

3 The places where sites are not are quite tellingly referred to by site-centered
predictive modeling specialists as “nonsites.”
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4 In fact it might be more realistic to say “why a person placed his/her site where he/
she did,” for correlations which overlook entirely the operation of human systems
can only offer individualistic, instantaneous, anecdotal “explanations” for such
correlations.

5 Automating others’ analog data is sometimes nearly as difficult as collecting one’s
own “independent” noncultural data, and few archaeologists have the time to do
either.

6 This may be the direct inverse of what a noninductive predictive modeling
approach, when developed, will seek: that is, variability among correlations which
needs to be explained.
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CHAPTER NINE
GIS Applications in Archaeology:

Method in Search of Theory

TIM CHURCH, R. JOE BRANDON AND GALEN R.BURGETT

GIS applications in archaeology have been largely confined to data
visualization, simple mapping, or predictive models of site locations.
We argue that as such GIS has been used in an atmosphere bereft of
theory and often using data of doubtful reliability or significance.
This paper critically examines traditional predictive modeling as
well as outlining what we consider to be the potential of a new
archaeologist’s toolbox, driven by models adapted from landscape
ecology, and capable of producing theory. This toolbox is composed
of techniques already in use in archaeology such as remote sensing,
GIS and simulation studies. What we advocate is these techniques be
used as an integrated whole to generate a landscape perspective of
prehistoric dynamics rather than the traditional static models.

“Contrariwise,” continued Tweedledee, “if it was so, it might be;
and if it were so, it would be: but as it isn’t, it ain’t. That’s logic.”

9.1
CURRENT USE OF GIS IN ARCHAEOLOGY

The three typical applications of GIS in archaeology have been analysis or, more
rightly, visualization; management; and the development of “predictive” models.
A predictive model is defined as “hypotheses or sets of hypotheses which
simplify complex observations whilst offering a largely accurate predictive
framework structuring these observations” (Clarke 1968:32). Correlative
predictive models are those that “identify and quantify relationships between
archaeological site locations and environmental variables” (Sebastian and Judge
1988:4). Explanatory predictive models are “models that are deductively derived
and attempt to predict how particular patterns of human land use will be reflected
in the archaeological record” (Sebastian and Judge 1988:4). We would argue that
except for management applications, the vast majority of GIS studies have
confused either “pretty pictures” with innovation, as in the case of visualization,
or the statement of simple correlations with theory, as in the case of predictive



models. This is not to say that previous predictive modeling efforts were wasted;
indeed, without these early studies many of the tools discussed here would have
remained undeveloped. However, predictive modeling in archaeology has
entered a period of doldrums that will be overcome only when we shift from a
methods orientation to a theoretical one. GIS grew out of efforts by land
managers to construct a visually linked database that would allow them to track
growth, would provide a basis for planning, and would allow them to isolate
areas suitable for specific activities or facilities. Geographers and biologists then
began to use GIS to conduct spatial analysis of various activities or populations.
With the growth of cultural resource regulations in the 1970s coupled with large-
scale impact projects (e.g., strip mines), land managers were immediately
interested in the promise of predictive modeling. Predictive modeling efforts
developed out of a desire on the part of land managers to categorize their lands
as to the likelihood of site presence. There was an initial hope that lands placed
in a low-likelihood category could be essentially exempted from further
investigation. This attitude was quickly tempered into the present goal of
flagging areas with a high likelihood for site presence as an aid in management
decisions rather than as a way to exempt lands.

9.2
CORRELATIVE PREDICTIVE MODELS

The correlative model is the preferred model type in archaeology for a couple of
reasons. The first is that it uses existing data. The second related factor is the
modest time investment needed (still considerable) to compile and computerize
the information. However, we believe that archaeologists need to take a cold,
hard look at the precision, accuracy, and nature of the data we have collected
(and continue to collect). Previous predictive modeling has, for the most part,
relied upon indirect measures and/or implied cultural value of environmental
variables. Thus, some models have established a correlation with certain soil
types, suggested to result from a particular soil being a better resource (for a
reason not always made clear) than the other soils present in the area. Adoption
of these types of indirect measures may be expedient and was logically argued as
a limitation of the resolution of the environmental data available for early
predictive models. As Winterhalder has stated:

Typological thinking remains commonplace in Anthropology and
permeates descriptions of the environments to which humans adapt. This
paper has argued that normative description using spatial and temporal
averages of environmental factors destroys the information necessary to
analyze human adaptations…Environmental description must be suited to
theory and adjusted to the spatial and temporal scales apposite to the
organism (population) and function being studied.

(Winterhalder 1980:163)
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Expediency should not be an acceptable reason for anything other than initial,
exploratory studies, and new technology has made environmental data available
at a much higher resolution. In discussing the overlooked potential of GIS, Tosta
states, “data are only the building blocks of information and ultimately of
knowledge. Data alone do not provide understanding. It’s only when we put data
in context that we create information to provide new understanding” (Tosta 1991:
46). The key variables selected for most correlative models are identified from
the location of sites based on their statistical significance. The problem with
many of these statistical studies is that they are only confirmatory in nature; that
is, they seek to confirm preexisting statements. Butzer warns that “Proper
statistical processing is an essential component of scientific research, but only as
a means to an end. When the intellectual framework is too narrow, the results, no
matter how elaborately programmed, cannot hope to allow high level
interpretations” (Butzer 1978:191). Thus, a number of studies correlate such
variables as distance to water, slope, aspect, relief, etc. with the location of sites.
Use of these variables actually limits the model to addressing only issues of
shelter and regards variables such as slope, aspect, etc. as environmental when in
fact they are merely measures of terrain. There is also, however, no explicit
explanatory component to these models. As Kvamme points out, “Without
knowledge of the nature of the background environment, however, there is no
way to ascertain whether the tendency [of certain environmental variables to
correlate with site locations] is a result of real locational patterns exhibited by the
sites or is merely a reflection of the nature of the background environment on that
variable” (Kvamme 1990:367). This is key to understanding the limitations of
correlative models, and one that has long been recognized in urban planning and
suitability analysis. Such models are more appropriate for locating suitable
campsites for contemporary hikers than for predicting prehistoric site locations,
let alone understanding prehistoric behavior.

To give a contemporary example, suppose we wish to predict the best location
for a new fast food business. In a correlative model we would look at the
locations of existing fast food businesses. In doing so we would probably find
high correlation with major streets. We would therefore conclude that the key
factor for locating a fast food business would be distance to the nearest major
street, with locations on major streets being most desirable. This can be simply
demonstrated in Figures 9.1–9.4. If we collect data about the locations of existing
fast food businesses we will conclude, as stated previously, that there is a high
correlation to streets (Figure 9.1). If, however, we change our perspective and
look at the streets (landscape) we will conclude that there is a low correlation
between streets and fast food businesses (Figure 9.2). This is a landscape
perspective in a geographic sense but remains essentially descriptive in nature
and continues to ignore the influence of a whole host of additional factors or
resources such as residential income, zoning, parking, etc. More important are
the interpretative limitations imposed by this perspective. Again, the
interpretation based upon a correlative model is one that does little to tell why, in
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explicit terms, locating a business along a major street is important. Figure 9.3
presents the same area but with additional resources and variables considered,
and Figure 9.4 portrays the same model with time depth, providing a true
dynamic landscape. With this information explanatory statements can be formed.
The difference is in a contextual perspective where locations are isolated from
their environment to one where locations are specifically put into a dynamic
environment. Spurious correlation occurs when key resources are not
recognized, and when they are recognized their parameters are not adequately
established. That is, there is only an assumed relation to the truly critical
resources of water, shelter, food, and lithics. A landscape location may be
perfect in the sense that it is flat and south-facing, but if no exploitable resource
is nearby there would be no reason to use the spot. Landform attributes may
prove useful if we use them to further refine the basic model, but they do not in
themselves provide a suitable foundation for modeling. For example, if we
know, or can deduce, that the foothills of a mountain range contained a critical
resource, say good populations of mule deer during the fall, then determining those
specific areas suitable for campsites within this area could provide powerful
predictive statements. This type of model has been termed a synoptic model
which is based on “regional combination of variables relevant to archaeological
site locations rather than specific site locations” (Custer et al. 1986). Synoptic
models are rare and to date have also used only broad environmental classes.

Second, all the predictive models to date have relied on variables expressed in
the contemporary environment. There is an acknowledgment that these may or
may not reflect prehistoric conditions, but there is little else. To expect a model
based on present-day environmental conditions to be of use to modeling the site
locations of say, Paleo-Indian sites, is a tenuous assumption at best. The
dynamics of the paleoclimate and its impact upon other environmental
parameters need to be understood in order to provide a robust data foundation for
any predictive model. Butzer observes that “archaeologists often take a static,
classificatory approach to the environment, even when the human variables
happened to be considered part of a dynamic system. It is my belief that
‘environment’ should not be synonymous with a body of static and descriptive
background data” (Butzer 1980:418). The present-day environment is a good
place to start, but a poor place to end. 

Finally, the scale of the environmental data in almost all previous predictive
models is broad—so general, in fact, that any recognized correlation may be
spurious, more happenstance than fact. Much of this environmental information
is at a scale of “zones.” Within these broad zones important resources are
implicitly assumed to be uniformly distributed through time and space. This is
the key weakness in the use of these broad categories, as it is demonstrable that
important resources are almost never uniformly distributed spatially or
temporally. There is often a passive acceptance of these correlations by
archaeologists, particularly in a normative approach, and there is typically little
discussion as to alternative reasons for the correlation. As Kvamme has stated:
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A wide range of environmental phenomena, including hydrographie,
landform, soil, and vegetation characteristics, has been examined for
possible relationships with the immediate locations of prehistoric sites.
These studies, however, have usually failed to offer objective evidence that
the environmental phenomena examined are actually related to the
presence or absence of sites.

(Kvamme 1985:208)

And as Keene has pointed out:

Figure 9.1 Simplification of a landscape model. 
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Hence, we look not at adaptations to the highs and lows or the range of
variability possible, but to averages or most common events. This practice
tends to homogenize behaviors and environments and obscures any real
variability we hope to understand.

(Keene 1983:147)

Traditional predictive modeling also only addresses residential site types to the
almost total exclusion of other site types (such as lithic procurement, rock
shelters, or rock art sites (see Bradley et al. 1994 for a study of rock art with a
landscape perspective)). As these site types are often of regulatory or research

Figure 9.2 Simplification of a traditional correlative model. 
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significance, overlooking them can limit the value of any modeling effort no
matter the objective.

In summary, traditional correlative models can be questioned because of their
reliance on inaccurate data, imprecise data, incomplete data, and static data.
There is an axiom in data modeling, “the model is only as good as the data.”
Prehistoric site data generated from inventory projects is inaccurate, spotty, and
biased. Uncoordinated fact-gathering, as practiced under CRM, is not an
adequate base for modeling prehistoric population behavior. Much of this data is
reflective of the needs imposed by either management considerations or a culture

Figure 9.3 Landscape model with additional variables. 
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history paradigm. Therefore, data currently gathered during cultural resource
management projects is often unsuitable for landscape model building in a
processual, explanatory paradigm. It is not that we do not have the tools to make
major advances in the use of GIS, but, rather, we lack an integrated methodology
incorporating these tools. We also lack a theoretical perspective within which to
operate that enables us to recognize and gather valid and useful data.

Figure 9.4 Landscape with temporal components.
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9.3
THE RESOURCE LANDSCAPE

People move around a landscape in relation to a number of resources. The value
of these resources in a cultural system is dynamic, as can be the resource itself.
The term “resource” has been misused in a number of studies. In describing
optimal location strategies Wood used Judge’s early attempt at analyzing the
locations of Paleo-Indian sites identified as overviews, trap areas, etc. as
resources and assigned a value to these resources based on the distance to the
“resource” (Wood 1978). In reality, what Wood was describing was travel cost to
terrain features which were assumed to be valuable in obtaining the true resource.
A predictive model using combinations of resources available across space and
through time and related to adaptive value will be much more flexible in
determining the influence of these resources upon populations and will provide a
platform for explanatory interpretation rather than mere correlation.

The role of resource distributions and the impact of their dynamic nature upon
populations has increasingly come under discussion in ecology and elsewhere
(e.g., Cushman et al. 1988; Houston et al. 1995; O’Neill et al. 1988;
Slobodchikoff 1984; Tilman 1980). Resources are four-dimensional in that their
length, breadth, depth, and duration (time available) can be measured. Further,
measures of these dimensions will shift through time due to disturbances.
Disturbances can be caused by climatic, geomorphological, or cultural factors in
a dynamic web of feedback loops. Key variables are suggested to include water,
shelter, botanical, animal (food), and lithic resources.

By any model’s measure water is a key resource. Despite this, water is often
dealt with in a superficial, implicit manner in predictive models. Water is available
naturally as rain or snowfall (short-duration area sources), in lakes (long-duration
area sources), playas (short- to moderate-duration area sources), rivers and
streams (moderate- to long-duration linear sources), springs/seeps (moderate- to
long-duration point sources), and arroyos (short-term linear sources). The
duration and spatial availability of water was enhanced by prehistoric
populations through the construction of check dams, reservoirs, irrigation systems,
and wells (e.g., Crown 1987; Evans 1951; Green 1962; Mobley-Tanaka et al.
1995; Scarborough 1988). Water availability is also directly influenced by
climatic change (Hay et al. 1993).

Landscape features such as depressions and drainages are assumed to indicate
the presence of water resources without regard to the duration (short and long
term) of the water, its quality, or geomorphological and geological factors
influencing its availability (an exception is Jackson 1988). Beyond this there is
often only a descriptive, speculative statement made as to how these conditions
may have limited use. As Jackson states:

However, the effectiveness of predictive settlement models is limited in
this regard because although the close spatial association between
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archaeological sites and water sources is recognized, the models cannot
actually predict where adequate water sources exist apart from perennial
streams and springs depicted on topographic maps.

(Jackson 1988:227)

Shelter resources are often implicitly dealt with in traditional predictive models
with measures such as slope and aspect. These are in reality measures of terrain,
not environmental variables. While certainly they are factors in the choice of
shelter sites, other factors such as wind direction, exposure to sun and rain,
temperature fluctuations, and defensive value can also be expected to condition
choice and can be modeled with GIS (Lapen and Martz 1993). The location of
caves and rock shelters as potential shelter sites is almost always ignored (an
exception is Hall and Klippel 1988). Unfortunately this study falls into the same
trap of trying to predict locations of specific features without the model
containing any of the natural mechanisms that form these features (e.g.,
Thrailkill 1968).

A narrow view of food (botanical and animal) resources is often evident in those
few previous predictive models that have addressed these resources. Besides the
obvious use as a source of food, botanical resources can also provide fuel, tools,
and construction materials. In certain cases, such as arrow shafts, very specific
species of plants were preferred. Simulation models have often taken an
optimizing economic viewpoint which focuses on food resources and their “cost”
to procure versus their return in terms of calories (e.g., Lee 1969). However,
others have placed this type of optimization analysis within a dynamic
framework (Laferriere 1995) or an ecological one (e.g., Osborne 1993).
Ecologists have used simulation to model animal behavior (e.g., Folse et al.
1989; Turner et al. 1993). Within archaeology there has been only limited
investigation of the impact of dynamic food resources upon subsistence
strategies (e.g., Walsh 1988), while GIS studies have started to appear that would
provide the necessary data (Walker 1990). As Bamforth correctly notes,
identifying the species of plants and animals exploited by the people in a region
provides only part of the information needed to assess the relationship between
environment and human adaptation. Thomas, Winterhalder, and McCrae have
argued that human beings adapt to the overall spatial and temporal pattern of
resource abundance and scarcity in a region and to the nature and degree of
variation in this pattern rather than just to specific species of plants and animals
found there. These authors argue that many anthropological explanations are
irrelevant to societies other than the one for which they were initially formulated.
This is because they rely on specific environmental characteristics, such as
absolute temperatures or the species of plants and animals available, thereby
obscuring structural similarities between superficially diverse regions (Bamforth
1988:16).

The exploitation of special use sites, such as lithic procurement sites, is
conditioned by fewer environmental variables, fundamentally the presence of
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suitable stone, as well as other factors such as accessibility, abundance, and
quality. These factors have a high degree of stability; for example, except in the
case of exhaustion of the source or burial by natural forces, most of these remain
constant and may override other considerations such as the availability of water,
etc. That said, it is important to acknowledge that the lithic environment is
variable; that is, a model developed for one area may not be applicable in
another. Custer et al. (1983) broached the subject of how differential distribution
of lithic resources might result in different procurement systems. Gould and
Sagger (1985) also used differential lithic resource distribution in an attempt to
explain differences in material use at prehistoric Australian sites. Subsequent to
that, other investigators attempted to hypothesize how this differential landscape
would be reflected in archaeological assemblages.

Resource potential models have been extensively used in geology in helping to
determine areas that have a high potential for the presence of minerals (e.g.,
Agterberg 1974; Griffiths 1978; Pan and De Harris 1992; Reddy and Koch
1988). Mineral resource potential has been defined in the literature of geology as
“a measure of the likelihood of occurrence of valuable minerals or minerals that
may become valuable within the foreseeable future” (Taylor and Steven 1983:
1268). These models are somewhat like the predictive models of site locations in
archaeology. As with site predictive models, a resource potential model
calculates the potential of any given area to contain the resource under
investigation. These models range from strict statistical models to heuristic ones
(Kliem and Petropulos 1990). The basic difference is that a resource model is
environmentally based while a site predictive model is culturally based. Another
difference is the scale: the typical geologic model has a scale from 4 to 10 km. A
model that will be useful to the archaeologist must have a maximum scale of 1
km2.

Lithic sources offer several distinct advantages for modeling. The first is that
they are unmoving and relatively unchanging. They can only be physically
depleted. This also means that they are present today and have been investigated
and mapped to some extent by geological studies, thus providing a reliable base
of information. Further, desired sources of chipped stone are a relatively rare
occurrence in the landscape. Second, stone was a consistently sought resource until
the introduction of metal. Prehistoric people could often decide to shift to other,
comparable resources if needed. They could shift from big game to small game or
from a game emphasis to gathering emphasis. No such option existed in terms of
the stone needed to perform many day-to-day activities, although they might
shift emphasis within the narrow set of types of stone.

Lithic procurement sites are unique in several ways:

1 Their value can override other environmental variables. A source of
excellent material will be exploited despite being on a steep slope far from
water, for example.
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2 They are an essentially stable resource. They do not move and are subject to
only exhaustion or burial.

3 Their occurrence, both vertically and horizontally, is fixed.
4 They are an extremely localized resource. Although some areas extend for

miles, most areas are smaller than 1 acre (0.4 ha) in size.

Predictive modeling of lithic resources in archaeology was first proposed by
Fanale in 1973, but very little additional work has been completed until recently.
Predictive models of potential lithic resources have been done for the
Appalachian Mountains (La Porta 1995) and on a smaller scale for the Bearlodge
Mountains of Wyoming (Church 1996). In addition to these predictive models, a
number of geological studies have made use of remote sensing and image
analysis techniques to identify deposits or establish the spatial distribution of a
number of rock types of interest to archaeology. These include silcrete (Densen
and Peterson 1995), jasperoid (Murphy 1995), porcellanite (Clark 1981),
silicates (Hunt and Salisbury 1970; Hunt et al. 1973), and sandstone (Vincent et
al. 1972), as well as others.

Prehistoric people did not normally choose activity locations on the basis of
the presence of a single resource, but rather on the presence of multiple resources
and their perceived value at that time. Thus, an area may have the attributes of an
excellent campsite in that the land is well drained, sheltered from wind, and
warmed in the morning and cooled in the afternoon. But if other resources were
not in proximity, then the most perfect campsite probably would have remained
unused. 

9.4
AN ALTERNATIVE: EXPLANATORY MODELS FROM

A LANDSCAPE PERSPECTIVE

So, do we now have a suite of tools able to provide data of a suitable nature and
a conceptual framework with which to intelligently structure this data and
explore some of the hypotheses that have been proposed in the previous 30
years? We would answer yes, with the conceptual framework provided by a
landscape perspective.

A truly useful predictive model, from both a management and a research
perspective, is one that puts human use of the area into this environmental
context. Not only will it define those environmental variables or combinations of
variables that would attract human use and thus predict site location, but also it will
address post-site formation processes that could obscure or destroy these sites.
Butzer echoes this view by stating, “the primary goal of environmental
archaeology should be the characteristics and processes of the biophysical
environment that provide a matrix for, and that interact with, socio-economic
systems as, for example, reflected in subsistence activities and settlement
patterns” (Butzer 1980:419). Landscape is defined here as mosaics of temporally
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and spatially dynamic resource patches in which ecological, geomorphological,
and cultural systems operate at various scales. It is not an aggregate of types of
sites, nor is it simply a large area. Much of what is discussed in this chapter is
neither new nor unique. The chapter’s perspective has drawn heavily upon the
work of L.R.Binford, B.Winterhalder, L.Wandsnider, D.B.Bamforth, J.Ebert,
K.W.Butzer, and A.Osborne in archaeology and R.T.T.Forman, B.Milne,
R.H.Gardner, and R.V. O’Neill in ecology. What this chapter does offer,
hopefully, is a holistic view in terms of both theoretical context and application
methodology. That said, we do not advocate adoption of ecological concepts, but
rather a critical exploration and adaptation.

An explanatory model seeks to establish dynamic relationships between
variables: “they [explanatory models] are models that attempt to build the bridge
between the dynamics of the living system and its observed outputs” (Kohler
1988:37). And as McGlade argues, the real questions that concern us, therefore,
are those relating to change, to discontinuous transition, and ultimately to the
structuring and restructuring of the socionatural environment. Such issues are
fundamentally concerned with causality—and especially with the nonlinear
dynamic processes and counterintuitive feedbacks that structure complex
socionatural systems (McGlade 1995:114).

There might appear to be little real difference between the two approaches, but
a couple of example statements point out the fundamental difference. Within a
correlative model a statement such as “sites are located on level to moderately
level slopes composed of soil type A and that are within X distance from water”
is typical. In an explanatory framework a statement such as “residential hunting
sites dating to the Archaic period are located in the foothills between elevations
of X to Y on moderately level slopes and within X distance of water because the
resources of food (mule deer) and water are present and these resources form the
most reliable subsistence base available at that time” is possible. Further,
prehistoric use of this area can be expected to fluctuate with the availability of
resources, many of which will themselves fluctuate due to changing
environmental conditions. Dincauze summarizes this point by stating, “The
observation of a correlation is the beginning of the search for mechanism; the
end is explanation of a relationship” (Dincauze 1987:319). The basic factors that
have limited the number of explanatory models are the need for more detailed
environmental data, a misunderstanding of the scope and nature of the needed
initial theoretical foundation, and a basic passivity on the part of archaeologists
in developing explanatory modeling techniques.

9.5
TOOLS TO TACKLE LANDSCAPES

The landscape tools include geographical information systems (GIS), remote
sensing, and nonlinear simulation modeling. The exponential growth in the power
of personal computers has helped to revolutionize the availability of GIS
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applications for archaeologists. GIS programs that just a few years ago would
have required a Unix workstation are now becomingly increasingly available on
the platforms of personal computers. Though possibly not as robust as a Unix-
based GIS, all current PC GIS applications are capable of performing the basic
functions of GIS well. The marriage of the landscape perspective with GIS
(Johnston 1990) does not necessarily require the latest technology. Indeed, some
GIS modules providing specialized functions of landscape analysis already exist
(Baker and Cai 1992).

Likewise, there is an abundance of remotely sensed data available to the
researcher in any part of the globe at almost any scale. As Roughgarden et al.
point out, “Two of the most important tools for extrapolating understanding from
local to regional scales are remote sensing and computer simulation modeling,
two very synergistic technologies” (Roughgarden et al. 1991:1919–1920). The
only real drawback to this flood of data is determining what is applicable to our
specific research interests, including landscape analysis (Quattrochi and Pelletier
1991).

The vast majority of simulations in archaeology have been based on an
economic optimization perspective and while some included ecological data the
models were driven by economic concerns. Further, most, if not all, of these studies
were linear, some limited to a Newtonian mechanical approach (Reidhead 1979).
Since the early 1980s simulation studies in archaeology have almost ceased. This
is in contrast to ecology, where simulation studies are now viewed as an
important tool in understanding ecological dynamics. Indeed, a whole journal is
devoted to the subject (Ecological Modelling). Modeling procedures are more
thoroughly discussed by Aldenderfer (1991), Doran (1970), and Swartzman and
Kaluzny (1987).

It is time to reassess the role of GIS, remote sensing, and simulation studies,
not as techniques isolated from others but as an integral part of a triad of
methods. By combining these three elements we can achieve dynamic,
explanatory models of prehistoric behavior of value not only in a scientific
context but also in a management context.

9.6
THE TEMPORAL DIMENSION

Time is the ultimate dynamic force. “One of the most challenging problems for
both the experimental ecologist and the theorist is the interaction of biological
populations with the time dimension” (Garsd 1984:199). In those predictive
models that implicitly deal with time through the use of cultural sequences its
impact is minimized to general observations. To more explicitly include time in
modeling requires substantial methodological (Dunn et al. 1991; Johnson 1990;
Langran 1992) and theoretical consideration. The traditional predictive models
are based on large-scale environmental variables against which are superimposed
a generalized cultural structure with only an implicit temporal structure. While
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some have voiced the need to add in a temporal aspect to the mix, this too is at a
gross level and has resulted in statements such as “during period X more sites are
within landscape classification Y than during period Z.” Such statements are
descriptively shallow and are contained in a vague conceptual twilight zone that
denies the possibility of testing the statement. They are in essence a
quantification of common sense rather than a true model.

9.7
SCALE AND GRAIN

An understanding of scale is essential to any attempt in model-building. “The
problem of relating phenomena across scales is the central problem in biology
and in all of science” (Levin 1995:311). Scale is not confined to the mere
measure of geographic distances or in the number of “things” as typically
recognized in archaeological studies but is also inherent in theory and method
(Woodcock and Strahler 1987). It is also an inherent part of all natural systems,
and all such systems operate on multiple scales (e.g., Clark 1985). Chronological
resolution must be factored into models applied to archaeology (Jones and Beck
1992). Chronological grain is determined by the resolution of the data produced
by the various dating methods. As radiocarbon dating is the most accepted and
widespread, the chronological grain of most studies will be limited to 500 years
(multigenerational).

9.8
THE ROLE OF CLIMATE

Climatic variation is the independent variable and one that has long been
recognized as shaping the nature and compositions of ecosystems (Malanson
1993; Yeakley et al. 1994). It is the driving force behind the approach advocated
here, and one that has not been incorporated into previous predictive modeling
efforts, although it has been modeled in a GIS environment for ecological studies
(Baker et al. 1991). This is not to say that numerous authors have not postulated
a correlation between prehistoric adaptations and shifts in climate (e.g., Metcalfe
1987). However, most of these correlations are built upon generalized models of
climate (Bryson 1994) rather than small-scale climate fluctuations
(Matyasovszky et al. 1993; Strandman et al. 1993). “Traditional averaging
procedures (annual average, climatic normals) have both theoretical and
practical failings when used for the detection of small climatic changes” (Burt
1986: 279). This is not to say generalized models are not valuable; indeed, they
provide the necessary framework which structures the development of smaller-
scale models.
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9.9
GEOMORPHOLOGICAL PROCESSES AND THEIR

IMPACT

The geomorphological processes that affect the distribution of resources and,
post-depositionally, the archaeological record, must also be taken into account
(Brakenridge and Schuster 1986; Kirkby and Kirkby 1976). The initial
measurement of the current geomorphological surface can be characterized using
a number of remote sensing techniques (e.g., Connors et al. 1987; Pickup 1985;
Pickup and Nelson 1984). Although a complex system, geomorphological
modeling must be an integral part of the modeling process (e.g., Anderson 1988;
Khanbilvardi and Rogowski 1986; Pickup and Chewings 1986), and we are
heartened by the recent attempt to place these processes into a landscape
perspective (Stafford 1995).

9.10
SUMMARY

1 We advocate that the body of theory and methods that have come to be
termed “landscape ecology” has much to offer to the study of prehistoric
populations. We are fully cognizant of the pitfalls in borrowing from other
disciplines. In regards to this we agree with Keene, who stated, “The source
of the problem is borrowing without modification and a tendency to adopt
rather than adapt” (Keene 1983:142). However, we find that arguments
against any use of ecological method and theory in archaeology are
provincial and arrogant.

2 We accept the argument that, as societies have developed, the constraints
imposed by the surrounding environment have been increasingly mitigated
by cultural responses. However, we believe that during almost all of North
American prehistory ecological forces have limited and shaped prehistoric
population activities to a substantial degree. We therefore argue that an
understanding of the ecological system and its interaction with the
geomorphological and culture systems is essential to interpreting the
archaeological record.

3 Arguments to the effect that human behavior is too complex to model and,
therefore, any attempt to model cultural systems will be so generalized as to
be useless are nihilistic and passive in viewpoint. No one is denying the
complexity of the task, but that is the challenge, not an excuse.

4 We strongly believe that the current additive strategy in archaeology where
information from a number of points or sites is used as the base to build a
picture of regional prehistory is theoretically shallow, methodologically
costly, and ultimately misleading. The archaeological record is more
profitably used to validate hypotheses generated by models than as a basis
for model-building itself.
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5 Exploration of remote sensing, geographic information systems, and
simulation modeling by archaeology during the past 20 years has been
fruitful and necessary. However, much of the potential value of these
methods remains limited, not by the techniques themselves, but by the
theoretical perspective (or lack of one) that they have been operating in to
date.

6 The role of scale, in terms of both phenomena and inquiry, in understanding
these systems cannot be underestimated and must be explicitly addressed.

7 The challenges looming before us are in identifying those variables in the
archaeological record that will provide the means to test these models and in
the conceptualization of measurement units that relate those variables to the
models. 

8 The key factor that makes this proposed approach superior to traditional
correlative models is the flexibility of data. Traditional predictive models are
generalized models of static variables. With the predictive model structure
proposed here, managers can generate data that incorporates temporally
variable aspects, postdepositional processes that might obscure, alter, or
destroy the archaeological record, as well as flag areas having a high
probability of sites, including those more specialized sites that are often
ignored in traditional predictive models. “Understanding patterns in terms of
the processes that produce them is the essence of science and the key to the
development of principles for management” (Levin 1995:278). We agree
with Smith that “an adequate theory of adaptation must not only enable us to
identify adaptations and adaptive processes, describe and measure them, and
predict responses from specified environmental alterations; it must also
provide solid deductive explanations for the existence of specific adaptive
responses and general adaptive capabilities” (Smith 1979:56).

9.11
CONCLUDING REMARKS

Archaeologists’ goal has been to assemble sufficient pieces of prehistoric life
from archaeological sites to generate synthetic theories of behavior. After over
50 years of fact-gathering we have remarkably little synthetic, let alone
explanatory, theory to show for our efforts. We liken this approach to trying to
assemble a 10000-piece jigsaw puzzle without the box top. For archaeology to
advance past mere description we need to look at the box top first, to put
archaeological remains into context (as Butzer and others have argued). Costanza
and coworkers put it quite well in stating:

Systems are groups of interacting, interdependent parts linked together by
exchanges of energy, matter, and information. Complex systems are
characterized by: (1) strong (usually nonlinear) interactions between parts;
(2) complex feedback loops which make it difficult to distinguish cause
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from effect; (3) significant time and space lags; discontinuities, thresholds
and limits; all resulting in (4) the inability to simply “add up” or aggregate
small-scale behavior to arrive at large-scale results.

(Costanza et al. 1993:545)

By combining these three technologies under a theoretical umbrella drawn from
landscape ecology we can begin to examine issues of transportation costs (e.g.,
Brannan 1992; Jones and Madsen 1989; Rhode 1990; Soule and Goldman 1972)
and travel corridors (Rice 1993), site exploitation territories (Bailey and
Davidson 1983), the conditioning role of resource variation across space and
through time upon human populations (e.g., Clapham 1976; Harpending and
Davis 1977), the effects of ecological fluctuations on material culture (Fernstrom
1984), and adaptive responses to these changes (e.g., Pate 1986).

The approach we advocate is not new, being grounded in landscape ecology
and archaeology and derived from the works of others. What we hope we have
presented is a refinement of these pioneers’ approach and the advocacy of a suite
of methods and tools that have the potential of providing an analytical basis for
exploiting the landscape perspective. However, we must echo Thomas’s warning
that “Blind acceptance of modeling results from the bowels of the computer can
be as irrational as reliance on the honored and ancient skills used by the oracles
in deciphering messages in the entrails of a sacrificial chicken” (Thomas 1986:
xxi).
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